APPENDIX G - VOLUME 7 (Part 6 of 7)
 TABLE OF CONTENTS

Section No.

30 March Outfall 004 - AMEC Data Validation Reports, Del Mar Analytical Laboratory Reports
31 March Outfall 005 - AMEC Data Validation Reports, Del Mar Analytical Laboratory Reports
32 March Outfall 006 - AMEC Data Validation Reports, Del Mar Analytical Laboratory Reports
33 March Outfall 007 - AMEC Data Validation Reports, Del Mar Analytical Laboratory Reports

34 March Outfall 008 - AMEC Data Validation Reports, Del Mar Analytical Laboratory Reports

35 March Outfall 009 - AMEC Data Validation Reports, Del Mar Analytical Laboratory Reports
36 March Outfall 010 - AMEC Data Validation Reports, Del Mar Analytical Laboratory Reports

37 March Outfall 011 - AMEC Data Validation Reports, Del Mar Analytical Laboratory Reports

APPENDIX G

Section 30

March Outfall 004

AMEC Data Validation Reports
Del Mar Analytical Laboratory Reports

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental

550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226

ACTION ITEMS:

Laboratory Alta
Reviewer K. Shadowlight
Analysis/Method Dioxins

Package ID T711DF36
Task Order 313150010
SDG No. Multiple
No. of Analyses 4

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, egg.
Holding Times

Qualifications were assigned for the following:
* EMPCs.
* Detects below the lower method calibration level

Method blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and Quantitation
System Performance
COMMENTS ${ }^{\text {b }}$
${ }^{2}$ Subcontracted analytical laboratory is not meeting contract and/or method requirements.

- Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

amec ${ }^{\theta}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: DIOXINS/FURANS
 SAMPLE DELIVERY GROUPS: Multiple SDGs

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010
Sample Delivery Group \#:
Project Manager:
Matrix:
Analysis:
QC Level:
Multiple
B. Mcllvaine
Water
Dioxins/Furans
Level IV
No. of Samples: 4
No. of Reanalyses/Dilutions: 0
Reviewer: K. Shadowlight
Date of Review: March 252005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Alta)	Matrix	COC Method
Outfall 001	IOC1042-01	$25897-001$	water	1613
Outfall 002	IOC0995-01	$25899-001$	water	1613
Outfall 004	IOC0450-01	$25848-001$	water	1613
Outfall 011	IOC0996-01	$25898-001$	water	1613

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

All of the samples in these SDGs were received at Del Mar Analytical within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The samples were shipped to Alta for dioxin/furan analyses and were received below the temperature limits at $1.2^{\circ} \mathrm{C}$ and $1.3^{\circ} \mathrm{C}$; however, as the samples were not noted to have been frozen or damaged, no qualifications were required. According to the laboratory login sheets, all samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COCs and transfer COCs were legible and signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. As the samples were couriered directly to Del Mar Analytical, custody seals were not required. The coolers received by Alta had custody seals present and intact; however, custody seals were not present on the sample containers. The EPA IDs were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and $2,3,7,8$-TCDD reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

	Project:
DATA VALIDATION REPORT	NPDES SDG No.:

2.3 CALIBRATION

2.3.1 Initial Calibration

There was one initial calibration, analyzed 08/30/04. The calibration consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with $\%$ RSDs $\leq 20 \%$ for the 15 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of $\%$ RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of $\%$ Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standards instead of being analyzed separately, as noted in section 2.2 .1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank (6613-MB001) was extracted and analyzed with the samples in these SDGs. There were no target compound detects reported in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One Ongoing Precision Recovery (OPR) sample (6613-OPR001) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2.7.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for these SDGs.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any reported EMPC was qualified as an estimated nondetect, "UJ." Any detects below the lower method calibration level (MCL) were qualified as estimated, "J." No further qualifications were required.

Martha M. Maier 22-Mar-2005 09:19

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental

550 South Wadsworth Boulevard

Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer P. Meeks
Analysis/Method Metals

Package ID T711MT47
Task Order 313150010
SDG No. Multiple
No. of Analyses 5
Date: 03/29/05
Reviewer's Signature
P. Meels

ACTION ITEMS ${ }^{*}$

1. Case Narrative Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables

6. | Deviations from |
| :--- |
| Analysis Protocol, e.g., |
| Qualifications were applied for detects below the reporting limit. |
| Holding Times |
| GC/MS Tune/Inst. |
| Performance |
| Calibrations |
| Blanks |
| Surrogates |
| Matrix Spike/Dup LCS |
| Field QC |
| Internal Standard |
| \quad Performance |
| Compound Identifica- |
| I and Quantitation |
| System Performance |

COMMENTS ${ }^{\text {b }}$

[^0]
amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: METALS SAMPLE DELIVERY GROUPS: IOC0449, IOC0450, IOC0451, IOC0452 \& IOC0453

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOC0449, IOC0450, IOC0451, IOC0452 \& IOC0453
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Metals
QC Level: Level IV
No. of Samples: 5
No. of Reanalyses/Dilutions: 0
Reviewer: P. Meeks
Date of Review: March 29, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form L as having only the 'R' data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

Table 1. Sample identification

Client ID	EPA D	Laboratory DD	Matrix	COC Method
Outfall 003	Outfall 003	IOC0449-01	water	LM04
Outfall 004	Outfall 004	IOC0450-01	water	LM04
Outfall 005	Outfall 005	IOC0451-01	water	LLM04
Outfall 006	Outfall 006	IOC0452-01	water	LLM04
Outfall 007	Outfall 007	IOC0453-01	water	LM04

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel. The COCs accounted for the samples and analyses presented in these SDGs. Duplicate samples were submitted for all the samples in these SDGs; however, duplicate analyses were not required. No sample qualifications were required.

2.1.3 Holding Times

The dates of collection recorded on the COCs and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS metals. No qualifications were required.

2.2 ICP-MS TUNING

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. All $\%$ RSDs were less than 5%. The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, $90-110 \%$ for ICP/MS metals. The reporting limit check standards were recovered within the AMEC control limits of $70-130 \%$. No sample qualifications were required.

	Project:	SDG No.:
DATA VALIDATION REPORT	Analysis:	Multiple

2.4 BLANKS

Lead was not detected in any of the blanks associated with these SDGs. No qualifications were required due to the method and calibration blank results.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB standards were not analyzed in association with the samples in this SDG; therefore, no assessment can be made with respect to this criterion.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP/MS LCS sample was identified as 5C08106-BS1 and the LCS result on the summary forms and in the raw data was within the laboratory-established ICP/MS control limits of $85-115 \%$. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MS/MSD or laboratory duplicate analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

2.8 MATRIX SPIKE

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on the LCS result:

2.9 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

2.10 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2.11 INTERNAL STANDARDS PERFORMANCE

The ICP-MS internal standard recoveries for the site samples and associated QC sample analyses were within the $60-125 \%$ control limits and no qualifications were required.

2.12 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Lead detected below the reporting limit was qualified as estimated, "J." No further qualifications were required.

2.13 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.13.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site samples.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 004
Routine Outfall 004
Report Number: 10 CO 450

Sampled: 03/04:05
Received: 03/04;05

DRAFT: METALS
MDL Reporting
Analyte Method Batch Limit Limit Result FactorExtracted Analyzed Qualifiers

Sample D: IOC0450-01 (DRAFT: Outfall 004 - Water)
Reporting Units: ug/
Lead
EPA $200.8 \quad 5 C 08106 \quad 0.13$
1.0
0.49

1
03/08/05 03/09/05

DRAFT REPORT

DRAFT REPORT
DATA SUBJECT TO CHANGE

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 004

Sampled: 03/04/05
Received: 03/04/05
Issued: 03/28/05 10:26

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis umless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report:
This entre report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
IOC0450-01

CLIENT ID
Outfall 004

MATRIX
Water

Reviewed By:

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 004

	Sampled: 03/04/05
Report Number: $10 C 0450$	Received: 03/04/05

Sampled: 03/04/05
Received: 03/04/05

METALS

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 10C0450-01 (Outfall 004 - Water)								
Reporting Units: ugh								
Antimony	EPA 200.8	$5 \mathrm{C08106}$	2.0	ND	1	3/8/2005	3/9/2005	
Cadmium	EPA 200.8	$5 \mathrm{C08106}$	1.0	0.040	1	3/8/2005	3/9/2005	J
Copper	EPA 200.8	5 C 08106	2.0	2.7	1	3/8/2005	3/9/2005	
Lead	EPA 200.8	$5 \mathrm{C08106}$	1.0	0.49	1	3/8/2005	3/9/2005	J
Mercury	EPA 245.1	5C09049	0.20	0.066	1	3/9/2005	3/9/2005	J

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 004
$\begin{array}{ll} & \text { Sampled: } 03 / 04 / 05 \\ \text { Report Number: } 10 C 0450 & \text { Received: 03/04/05 }\end{array}$

INORGANICS

Analyte	Method	Batch	Reporting Limit	Sample Result	Dillution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 10C0450-01 (Outfall 004 - Water)								
Reporting Units: mg/								
Chloride	EPA 300.0	5 C 04107	0.50	3.5	1	3/4/2005	3/5/2005	
Nitrate/Nitrite-N	EPA 300.0	5 C 04107	0.11	1.1	1	3/4/2005	3/5/2005	
Oll \& Grease	EPA 413.1	$5 \mathrm{C09091}$	5.0	1.0	1	3/9/2005	3/9/2005	B, J
Sulfate	EPA 300.0	$5 \mathrm{C04107}$	0.50	4.6	1	3/4/2005	3/5/2005	
Total Dissolved Solids	SM2540C	$5 \mathrm{C08110}$	10	110	1	3/8/2005	3/8/2005	
Total Suspended Solids	EPA 160.2	$5 \mathrm{C07073}$	10	ND	1	3/7/2005	3/7/2005	

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 004
$\begin{array}{lr} & \text { Sampled: 03/04/05 } \\ \text { Report Number: } 10 \mathrm{C} 0450 & \text { Received: 03/04/05 }\end{array}$

Sampled: 03/04/05

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed	
Sample ID: Outfall 004 (IOC0450-01) - Water EPA 300.0	2	$03 / 04 / 200514: 30$	$03 / 04 / 200517: 50$	$03 / 04 / 2005$	$23: 00$	$03 / 05 / 200501: 16$

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 004
10C0450 Sampled: 03/04/05
Report Number: IOC0450
Received: 03/04/05

METHOD BLANKIQC DATA

METALS

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 004	
300 North Lake Avenue, Suite 1200		Sampled: $03 / 04 / 05$
Pasadena, CA 91101	Report Number: $10 C 0450$	Received: 03/04/05
Attention: Bronwyn Kelly		

METHOD BLANKJQC DATA

METALS

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 004
Report Number: $10 \mathrm{CO450}$

Sampled: 03/04/05
Received: 03/04/05

METHOD BLANKIQC DATA

INORGANICS

Analyte Result	Reporting Limit	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C04107 Extracted: 03/04/05									
Blank Analyzed: 03/04/2005 (5C04107-BLK1)									
Chloride ND	0.50	mg/l							
Nitrate/Nitrite-N ND	0.11	$\mathrm{mg} / 1$							
Sulfate ND	0.50	$\mathrm{mg} / 1$							
LCS Analyzed: 03/04/2005 (5C04107-BS1)									
Chloride 5.16	0.50	mg / l	5.00		103	90-110			M-3
Sulfate 10.4	0.50	mg / l	10.0		104	90-110			M-3
Batch: 5C07073 Extracted: 03/07/05									
Blank Analyzed: 03/07/2005 (5C07073-BLK1)									
Total Suspended Solids ND	10	mg / l							
LCS Analyzed: 03/07/2005 (5C07073-BS1)									
Total Suspended Solids 980	10	mg / l	1000		98	85-115		\vdots	
Duplicate Analyzed: 03/07/2005 (5C07073-DUP1)				ource: I	C0451-0				
Total Suspended Solids ND	10	mg / l		ND				10	
Batch: 5C08110 Extracted: 03/08/05									
Blank Analyzed: 03/08/2005 (5C08110-BLK1)									
Total Dissolved Solids ND	10	mg/l							
LCS Analyzed: 03/08/2005 (5C08110-BS1)									
Total Dissolved Solids 976	10	mg / l	1000		98	90-110			

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 004
Report Number: $10 \mathrm{CO450}$
Sampled: 03/04/05
Received: 03/04/05

METHOD BLANKMCC DATA

INORGANICS

Analyte Result	Reporting Limit	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C08110 Extracted: 03/08/05									
Duplicate Analyzed: 03/08/2005 (5C08110-DUP1)	Source: IOC0454-01								
Total Dissolved Solids 187	10	mg / l		180			4	10	
Batch: 5C09091 Extracted: 03/09/05									
Blank Analyzed: 03/09/2005 (5C09091-BLK1)									
Oil \& Grease 1.70	5.0	mg / l							J
LCS Analyzed: 03/09/2005 (5C09091-BS1)									M-NR1
Oil \& Grease 22.4	5.0	mg / l	20.0		112	65-120			
LCS Dup Analyzed: 03/09/2005 (5C09091-BSD1)									
Oil \& Grease 18.8	5.0	mg / l	20.0		94	65-120	17	20	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 004
Report Number: 10 C0450 Received: 03/04/05

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
1OC0450-01	413.1 Oil and Grease	Oil \& Grease	mg / l	1.00	5.0	15
10C0450-01	Antimony-200.8	Antimony	ug/l	0	2.0	6.00
10C0450-01	Cadmium-200.8	Cadmium	ug/	0.040	1.0	4.00
10C0450-01	Chloride - 300.0	Chloride	mg / l	3.50	0.50	150
10C0450-01	Copper-200.8	Copper	ug/	2.70	2.0	14
10C0450-01	Mercury - 245.1	Mercury	ug/	0.066	0.20	0.20
10C0450-01	Nitrogen, $\mathrm{NO} 3+\mathrm{NO} 2-\mathrm{N}$	Nitrate/Nitrite-N	mgh	1.10	0.11	10.00
10C0450-01	Sulfate-300.0	Sulfate	mg / l	4.60	0.50	250
10C0450-01	TDS - SM 2540C	Total Dissolved Solids	$\mathrm{mg} / 1$	110	10	850

MWH-Pasadena/Bocing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 004
Report Number: $10 C 0450 \quad$ Sampled: 03/04/05

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.

M-3

M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike accepted based on acceptable recovery in the Blank Spike (LCS). Duplicate.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD

Relative Percent Difference

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 004

Report Number: $10 \mathrm{C0450}$
Sampled: 03/04/05
Received: 03/04/05

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
EPA 160.2	Water	\mathbf{X}	\mathbf{X}
EPA 200.8	Water	\mathbf{X}	\mathbf{X}
EPA 245.1	Water	\mathbf{X}	\mathbf{X}
EPA 300.0	Water	\mathbf{X}	\mathbf{X}
EPA 413.1	Water	\mathbf{X}	\mathbf{X}
SM2540C	Water	\mathbf{X}	\mathbf{X}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical Calfornia Cert \#1640

1104 Windfield Way - El Dorado Hills, CA 95762
Analysis Performed: 1613-Dioxin-HR Samples: IOC0450-01
Analysis Performed: EDD + Level 4
Samples: 10C0450-01
OSnCDET
Page 1 of 1

CHAIN OF CUSTODY FORM
Del Mar Analytical version 02117/05

Client Name/Address:	$\begin{array}{l}\text { Project: } \\ \text { Boeing-SSFL NPDES }\end{array}$

MWH-Pasadena
300 North Lake Avenue, Suite 1200
Project Manager: Bromwn Kelly Phone Number:
Sampler. "Cllcily

March 23,2005

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention: Bronwyn Kelly
Project: Routine Outfall 004
Sampled: 03/04/05
Del Mar Analytical Number: IOC0450

Dear Ms. Kelly:
Alta Analytical Laboratory performed the EPA Method 1613 Dioxin analysis for the project referenced above. Please use the following cross-reference table when reviewing your results.

MWH ID	Del Mar ID	Alta ID
Outfall 004	IOC0450-01	$25848-001$

Attached is the original report from the subcontract laboratory. If you have any questions or require further assistance, please do not hesitate to contact me at (949) 261-1022, extension 215.

Sincerely yours,
DEL MAR ANALYTICAL

MUCNClHCM
Project Manager

March 22, 2005
Alta Project I.D.: 25848
Ms. Michele Harper
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Dear Ms. Harper,
Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on March 08, 2005 under your Project Name "IOC0450". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,
Tucuillia taser
Martha M. Mayer
Director of HRMS Services

Alta Analytical Laboratory Inc.

Section I: Sample Inventory Report
Date Received: 3/8/2005

Alta Lab. ID
25848-001

Client Sample ID
1OC0450-01

SECTION II

Sample 1D: \quad IOC0450-01						EPA Method 1613		
Client Data			Sample Data		Leboratory Data			
Name: \quad Del			Matrix: Sample Size:	Aqueous$1.002 \mathrm{~L}$	Lab Sample: QC Batch No.: Date Analyzed DB-5:			8-Mar-05
	$\begin{aligned} & 0450 \\ & \text { Iar-05 } \end{aligned}$							18-Mar-05-05
Time Collected: 1430								
Analyte	Conc. (pg / L)	DL	EMPC ${ }^{\text {b }}$	Qualifiers	Labeled Standard	\%R	LCL-UCL ${ }^{\text {d }}$	Oualifiers
2,3,7,8-TCDD	ND	1.38			IS 13C-2,3,7,8-TCDD	69.6	25-164	
1,2,3,7,8-PeCDD	ND	1.64			13C-1,2,3,7,8-PeCDD	62.9	25-181	
1,2,3,4,7,8-HxCDD	ND	2.56			$13 \mathrm{C}-1,2,3,4,7,8-\mathrm{HxCDD}$	62.9	32-141	
1,2,3,6,7,8-HxCDD	ND	2.56			13C-1,2,3,6,7,8-HxCDD	67.8	28-130	
1,2,3,7,8,9-HxCDD	ND	2.55			13C-1,2,3,4,6,7,8-HpCDD	61.4	23-140	
1,2,3,4,6,7,8-HpCDD	15.7			J	$13 \mathrm{C}-\mathrm{OCDD}$	39.7	17-157	
OCDD	216				13C-2,3,7,8-TCDF	72.7	24-169	
2,3,7,8-TCDF	ND	1.54			13C-1,2,3,7,8-PeCDF	57.6	24-185	
1,2,3,7,8-PeCDF	ND	2.57			13C-2,3,4,7,8-PeCDF	61.0	21-178	
2,3,4,7,8-PeCDF	ND	2.28			13C-1,2,3,4,7,8-HxCDF	54.8	26-152	
1,2,3,4,7,8-HxCDF	ND	0.705			13C-1,2,3,6,7,8-HxCDF	59.9	26-123	
1,2,3,6,7,8-HxCDF	ND	0.692			13C-2,3,4,6,7,8-HxCDF	62.4	28-136	
2,3,4,6,7,8-HxCDF	ND	0.747			13C-1,2,3,7,8,9-HxCDF	60.6	29-147	
1,2,3,7,8,9-HxCDF	ND	1.13			13C-1,2,3,4,6,7,8-HpCDF	55.6	28-143	
1,2,3,4,6,7,8-HpCDF	2.98			J	13C-1,2,3,4,7,8,9-HpCDF	66.9	26-138	
1,2,3,4,7,8,9-HpCDF	ND	1.01			13C-OCDF	50.4	17-157	
OCDF	6.09			J	CRS 37Cl-2,3,7,8-TCDD	85.8	35-197	
Totals					Footnotes			
Total TCDD	ND	1.38			a. Sample specific estimated detection limit.			
Total PeCDD	ND	1.64			b. Estimated maximum possible concentration.			
Total HxCDD	ND		1.60		c. Method detection limit.			
Total HpCDD	29.7				d. Lower control limit -upper control limit.			
Total TCDF	ND	1.54						
Total PeCDF	NB	2.42						
Total HxCDF	5.57		6.69					
Total HpCDF	8.54							
Analyst: JMH					Approved By: Martha M.	22-M	r-2005 09:19	

APPENDIX

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank.
D The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.
I Chemical Interference
J The amount detected is below the Lower Calibration Limit of the instrument.

* See Cover Letter

Conc. Concentration
DL Sample-specific estimated detection limit
MDL The minimum concentration of a substance that can be measured and reported with 99\% confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration
NA Not applicable
RL Reporting Limit - concentrations that corresponds to low calibration point
ND Not Detected
TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

The control limits are "interim limits only" until in-house limits are utilized.

CURRENT CERTIEICATIONS

NELAP - (Primary AA: California, Certificate No. 02102CA)
Department of the Navy
U.S. Army Corps of Engineers
U.S. EPA Region 5

Bureau of Reclamation - Mid-Pacific Region - (MP-470, Res-1.10)
Commonwealth of Kentucky - (Certificate No. 90063)
Commonwealth of Virginia - (Certificate No. 00013)
State of Alaska, Department of Environmental Conservation - (Certificate No. OS-00197)
State of Arizona - (Certificate No. AZ0639)
State of Arkansas, Department of Health - (Approval granted through CA certification)
State of Arkansas, Department of Environmental Quality
State of California - (Certificate No. 1640)
State of Colorado
State of Connecticut - (Certificate No. PH-0182)
State of Florida - (Certificate No. 87456)
State of Louisiana, Department of Health and Hospitals - (Certificate No. LA000014)
State of Louisiana, Department of Environmental Quality
State of Maine
State of Michigan (Certificate No. 81178087)
State of Mississippi - (Approval granted through CA certification)
State of Nevada - (Certificate No. CA413)
State of New Jersey - (Certificate No. CA003)
State of New York, Department of Health - (Certificate No. 11411)
State of North Carolina - (Certification No. 06700)
State of North Dakota, Department of Health - (Certificate No. R-078)
State of New Mexico
State of Oklahoma - (D9919)
State of Oregon - (Certificate No. CA413)
State of Pennsylvania - (Certificate No. 68-490)
State of South Carolina - (Certificate No. 87002001)
State of Tennessee - (Certificate No. 02996)
State of Texas - (Certificate No. TX247-1000A
State of Utah - (Certificate No. E-201)
State of Washington - (Certification No. C091)
State of Wisconsin - (Certificate No. 998036160)
State of Wyoming - (USEPA Region 8 Ref: 8TMS-Q)

SUBCONTRACT ORDER - PROJECT \# IOC0450

SENDING LABORATORY: Del Mar Analytical, Irvine 17461 Derian Avenue. Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 261-1228 Project Menager. Michele Harper	RECEIVING LABORATORY: Altn Analytical 1104 Windfield Way $2584 / 8 \quad 1.3^{\circ} \mathrm{C}$ El Dorado Hills, CA 95762 Phone :(916) 933-1640 Fax: (916) 933-0940
Standard TAT is requented unless specific due date is requ	Due Date: In___ Initials:
Analynis Expiration	Comments
Simple ID: 1OCO450-01 Water 1613-Dioxin-HR Sampled: 03/04/05 14:30 EDD + Level 4 $04 / 01 / 0514: 30$ 	Inmant Noflication J flags, 17 congeners, no TEQ, sub to Alta Exeel EDD email to pm,Include Std logs for Lvi IV
Contaters Suppited: 1 L. Amber ($10 \mathrm{CO450} 01 \mathrm{O}$) 1 L Amber (10C0450-01D)	

SAMPLE LOG-N CHECKLIST

ALTA Project No.: 25848

1. Dete Samples Antvedr $38 / 050939$ inltals:1/200 Location: WR-2		
2. Time / Date logged in: 1245 38/05 inlials:		
3. Samples Artived By. (drcie) FedEx DPS Wordd Courier Other:		
B. Shipping Container(s) Custody Seale Prosent? Intact If not hitaet, deserbe condition in comment tection.		
7. Shippling Documentation Present? (chrclo) Shipping Label Tracking Number $7928 \quad 6415 \quad 1912$		
8. Sample Custody Seal(s) Prasent? No. of Seals \qquad or Seal No. Intaot? In not intuct, deseribe condition in cornment section.		
9. Sample Container infact? if no, indicate sample condtion in cormment section.		
10. Chain of Custody (COC) or other Sample Documentation Preeent?		
11. COCrDocumentiton Accoptable? It no, complete COC Anomaly Form.		
12. Shipping Container (ckela): ALTA Clion m Retaln of (Retum of Diaposed		
13. Contaher(s) and/or Bottle(e) Requestad?		
14. Dinding Water Sample? (HRMS Only) If yes, Accaptable Preservation? Y or NPreegrvation info From? (crcie) COC or Sample Container or None Notad		

Cormments:

SUBCONTRACT ORDER - PROJECT \# IOC0450

$$
\text { Sampler }=P . P .
$$

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Alta
Reviewer H. Chang
Analysis/Method Dioxin\&Furans/1613

Package ID T711DF37
Task Order 313150010
SDG No. Multiple
No. of Analyses 10
Date: April 4, 2005
Reviewer's Signature

ACTION ITEMS ${ }^{2}$
 1. Case Narrative
 Deficiencies

2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables \qquad

Incorrect Hardcopy
Deliverables
6. Deviations from Analysis

Protocol, e.g.,
Holding Times
GC/MS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Intemal Standard Performance
Compound Identification and
Quantitation
System Performance
COMMENTS ${ }^{\text {b }}$

[^1]
$a m e c^{0}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: DIOXINS/FURANS

SAMPLE DELIVERY GROUPS: Multiple SDGs

Prepared by
AMEC-Denver Operations

	Project:
DATA VALIDATION REPORT	NPDES
SDG No.:	Multiple

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 10
No. of Reanalyses/Dilutions: 0
Reviewer: H. Chang
Date of Review: April 4, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple
	Analysis:	D/F

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Alta)	Matrix	COC Method
Outfall 002	IOC1521-01	$25935-001$	water	1613
Outfall 011	IOC1523-01	$25936-001$	water	1613
Outfall 005	IOC1524-01	$25940-001$	water	1613
Outfall 006	IOC1525-01	$25937-001$	water	1613
Outfall 011 Composite	IOC1526-01	$25938-001$	water	1613
Outfall 001	IOC1561-01	$25941-001$	water	1613
Outfall 004	IOC1563-01	$25939-001$	water	1613
Outfall 008	IOC1564-01	$25942-001$	water	1613
Outfall 003	IOC1565-01	$25943-001$	water	1613
Outfall 009	IOC1566-01	$25944-001$	water	1613

	Project:
DATA VALIDATION REPORT	NPDES SDG No.: Multiple D/F

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

Samples Outfall 001, Outfall 004, and Outfall 008 were received at Del Mar Analytical outside the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. Due to non-volatile nature of the target compounds, no qualifications were required. The other samples were received with cooler temperatures within the limits. According to the laboratory login sheets, all samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COCs and transfer COCs were legible and signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. As the samples were couriered directly to Del Mar Analytical, custody seals were not required. The coolers received by Alta had custody seals present and intact. The EPA IDs were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and $2,3,7,8$-TCDD reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple
Analysis:	D/F	

2.3 CALIBRATION

2.3.1 Initial Calibration

There was one initial calibration, analyzed $08 / 30 / 04$. The calibration consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with $\%$ RSDs $\leq 20 \%$ for the 16 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standards instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank ($0 _6624$ MB001) was extracted and analyzed with the samples in these SDGs. There were no target compound detects reported in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One Ongoing Precision Recovery (OPR) sample (0_6624_OPR001) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2.7.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for these SDGs.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any reported EMPC was qualified as an estimated nondetect, "UJ." Any detects below the lower method calibration level (MCL) were qualified as estimated, "I." No further qualifications were required.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental

550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer P. Meeks
Analysis/Method Metals
Package ID T711MT70

Task Order 313150010
SDG No. IOC1563
No. of Analyses 1
Date: 04/06/05

Analysis/Method Metals

ACIION ITEMS

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Qualifications applied for detects below the reporting limit, CCB detects and

Analysis Protocol, e.g.,
the antimony MDL was raised.
Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification
and Quantitation
System Performance \qquad
\qquad
\qquad
\qquad
\qquad

COMMENTS ${ }^{\text { }}$

${ }^{2}$ Subcontracted analytical laboratory is not meeting contract and/or method requirements.
${ }^{5}$ Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: METALS
\section*{SAMPLE DELIVERY GROUP: IOC1563}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC1563

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOC1563
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Metals
QC Level: Level IV
No. of Samples: 1
No. of Reanalyses/Dilutions: 0
Reviewer: P. Meeks
Date of Review: April 06, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, SW-846 Method 6010B for Inductively Coupled Plasma, SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC1563

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 004	Outfall 004	IOC1563-01	water	ILM04

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOCI563

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel and accounted for the sample and analyses presented in this SDG. No sample qualifications were required.

2.1.3 Holding Times

The date of collection recorded on the COC and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS metals and 28 days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. All $\%$ RSDs were less than 5%. The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, $90-110 \%$ for the ICP/MS metals and 80 120% for mercury. The reporting limit check standards were recovered within the AMEC control limits of $70-130 \%$. No sample qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOCI563

2.4 BLANKS

Antimony was detected in every CCB in the analytical sequence in which Outfall 004 was analyzed. The detects ranged from 0.52 to $0.55 \mu \mathrm{~g} / \mathrm{L}$ and indicated that the laboratory could not detect antimony at the reported MDL. The reviewer raised the antimony MDL to the level of the highest CCB, $0.55 \mu \mathrm{~g} / \mathrm{L}$, and qualified the result as estimated, "UJ." There were no other reported detects in the CCBs or method blanks associated with the site sample. No further qualifications were required due to the method and calibration blank results.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were included in the raw data for the ICP-MS analyses. Results were not provided for spiked interferents sulfur, phosphorus, carbon, and chloride, and antimony and lead were not spiked into the ICSAB solution. Aluminum was recovered below the control limit in all the ICSA and ICSAB analyses; however, as aluminum was found at a low level in the site sample, no qualifications were required. Copper, and cadmium were detected above the reporting limit in the ICSA. The validator reviewed the raw data for the site sample ICP/MS analyses for the level of reported interferents, $\mathrm{Al}, \mathrm{Ca}, \mathrm{Fe}$, and Mg , and determined that the levels of reported interferents were not high enough to cause matrix affects. No assessment could be made with respect to possible interference from sulfur, phosphorus, carbon, and chloride. No qualifications were required.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP LCS sample was identified as 5 C05038-BS1 and the mercury LCS sample was identified as $5 \mathrm{C} 03115-\mathrm{BS} 1$. The LCS results on the summary forms and in the raw data were within the laboratory-established ICP and mercury control limits of $85-115 \%$. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MS/MSD or laboratory duplicate analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.8 MATRIX SPIKE

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on LCS results.

2.9 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analysis of this sample; therefore, furnace atomic absorption QC is not applicable.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOCl563

2.10 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.11 INTERNAL STANDARDS PERFORMANCE

The ICP-MS internal standard recoveries for the site samples and associated QC sample analyses were within the $60-125 \%$ control limits and no qualifications were required.

2.12 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit was qualified as estimated, "J." No further qualifications were required.

2.13 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated sample.

2.13.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site sample.

 98.30 South $5 i$ si Si. Site E-120, Phoenix, A己 85044 (480) 785-9043 FAx (480) $785-285$ 2520 E Sunset Re. $=3$. Las Vegas, NV $89: 20$ (702) $799-3520$ FAX (02) $796-3 \in 2$

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 004
Report Number: 10 Cl 563 Sampled: 03/19/05
Received: 03/19005

DRAFT: METALS

AMES VALIDATED

Level IV

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
\quad Laboratory Del Mar Analytical

\quad Reviewer | L. Jarusewic |
| :--- |
| Analysis/Method General Minerals |

Package ID T711WC117
Task Order 313150010 SDG No. IOC1563
No. of Analyses 1

Date: 04/07/05
Revigner's Signature
facuscerze

ACTION ITEMS:

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from

Analysis Protocol, e.g.,
Holding Times.
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Intemal Standard
Performance
Compound Identification
and Quantitation
System Performance

Qualifications were applied for:

1) Detects below the reporting limit
\qquad
\qquad
\qquad
, , , , ,
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

COMMENTS ${ }^{\text {b }}$

[^2]
amec ${ }^{9}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: GENERAL MINERALS
SAMPLE DELIVERY GROUP: IOC1563

Prepared by
AMEC-Denver Operations 550 South Wadsworth Boulevard, Suite 500

Lakewood, Colorado 80226

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOCI563

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: 10C1563
Project Manager: B. McIlvaine
Matrix: Water
Analysis: General Minerals
QC Level: Level IV
No. of Samples: 1
Reviewer: L. Janusewic
Date of Review: April 7, 2005

The sample listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 413.1, 160.2, and 300.0, Standard Methods for the Examination of Water and Wastewater Method SM2540C, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC1563

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 004	Outfall 004	IOC1563-01	Water	General Minerals

	Project:	NPDES
DATA VALIDATION REPORT	SDGNo.:	IOCI563

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory above the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ at $7^{\circ} \mathrm{C}$; however, as the sample had insufficient time to cool in transit to the laboratory, no qualifications were required. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel. The COC accounted for all analyses present in this SDG. No sample qualifications were required.

2.1.3 Holding Times

The holding times were assessed by comparing the date of collection with the dates of analyses. The 28 -day analytical holding time for chloride, sulfate, and oil and grease, the seven-day holding time for total suspended solids and total dissolved solids, and the 48 -hour holding time for nitrate/nitrite were met. No qualifications were required.

2.2 CALIBRATION

For the applicable analyses, the initial calibration correlation coefficients were ≥ 0.995. The initial and continuing calibration information was acceptable with recoveries within the control limits of $90-110 \%$. Calibration is not applicable to oil and grease, total dissolved solids, or total suspended solids. No qualifications were required.

2.3 BLANKS

The method blank and CCB results reported on the summary forms and in the raw data for blank analyses associated with the sample were nondetects at the reporting limit. No qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample and laboratory control sample duplicate (oil and grease only) recoveries and RPD were within the laboratory-established control limits. No qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOCIS63

2.5 SURROGATES RECOVERY

Surrogate recovery is not applicable to the analyses presented in this SDG.

2.6 LABORATORY DUPLICATES

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was assessed based on LCS results.

2.8 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analyses of this sample; therefore, furnace atomic absorption QC is not applicable.

2.9 ICP SERIAL DILUTION

ICP serial dilution is not applicable to the analyses presented in this data validation report.

2.10 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Oil and grease detected below the reporting limit was qualified as estimated, " J ." No further qualifications were required.

2.11 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated sample. The following are findings associated with field QC samples:

2.11.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.11.2 Field Duplicates

There were no field duplicate pairs associated with this SDG.

Del Mar Analytical

MWH-Pasadena/Boeing Project ID: Routine Outfall 004		
300 North Lake Avenue, Suite 1200		Sampled: 05/1905
Pasadena, CA 91101	Report Number: 10 Cl 563	Received: 03/19:05
Attention: Bronwyn Kelly	Replanher,	Recaived. 0319705

DRAFT: NORGANICS

Analyte
Method
Batch Limit Limit Result FactorExtracted

Date Data Analyzed Oualifiens

Sample ID: 1OC1563-01 (DRAFT: Outfall 004 - Warer) - cont. Reporting Units: mgh
Chloride
Nitrate/Nitrite-N
Oil \& Grease
Sulfate
Total Dissolved Solids
Total Suspended Solids

EPA 300.0	$5 C 20029$	0.26	0.50
EPA 300.0	5 C 20029	0.072	0.11
EPA 413.1	5 C 21062	0.94	5.0
EPA 300.0	5 C 20029	0.18	0.50
SM2540C	$5 C 21073$	10	10
EPA 160.2	$5 C 21068$	10	10

1	$03 / 20105$	$03 / 20 / 05$
1	$03 / 20 / 05$	$03 / 20 / 05$
1	$03 / 21 / 05$	$03 / 21 / 05$
1	$03 / 20 / 05$	$03 / 20 / 05$
1	$03 / 21 / 05$	$03 / 21 / 05$
1	$03 / 21 / 05$	$03 / 21 / 05$

AMEC VALIDATED

LEVEL IV

DRAFT REPORT
 DRAFT REPORT
 DATA SUBJECT TO CHANGE

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 004

Sampled: 03/19/05
Received: 03/19/05
Issued: 04/01/05 09:08

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
1OC1563-01

CLIENT ID
Outfall 004

MATRIX
Water

Reviewed By:

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 004
Report Number: 10 C 1563

Sampled: 03/19/05
Received: 03/19/05

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 10C1563-01 (Outfall 004 - Water)									
Reporting Units: ugh									
Antimony	EPA 200.8	5 C 21088	0.18	2.0	0.68	1	03/21/05	03/21/05	J
Cadmium	EPA 200.8	5C21088	0.015	1.0	0.094	1	03/21/05	03/21/05	J
Copper	EPA 200.8	5C21088	0.49	2.0	7.7	1	03/21/05	03/21/05	
Lead	EPA 200.8	5 C 21088	0.13	1.0	0.83	1	03/21/05	03/21/05	J
Mercury	EPA 245.1	5C21082	0.063	0.20	ND	1	03/21/05	03/21/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 004
Report Number: $10 \mathrm{Cl} 1563 \quad \begin{array}{r}\text { Sampled: } 03 / 19 / 05 \\ \text { Received: } 03 / 19 / 05\end{array}$

INORGANICS

Analyte Method

Sample ID: 1OC1563-01 (Outfall 004 - Water) - cont. Reporting Units: mg/

| Chloride | EPA 300.0 | 5 C 20029 | 0.26 | 0.50 | $\mathbf{7 . 4}$ | 1 | $03 / 20 / 05$ | $03 / 20 / 05$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nitrate/Nitrite-N | EPA 300.0 | 5 C 20029 | 0.072 | 0.11 | 0.84 | 1 | $03 / 20 / 05$ | $03 / 20 / 05$ |
| Oil \& Grease | EPA 413.1 | 5 C 21062 | 0.94 | 5.0 | 1.3 | 1 | $03 / 21 / 05$ | $03 / 21 / 05$ |
| Sulfate | EPA 300.0 | 5 C 20029 | 0.18 | 0.50 | $\mathbf{1 1}$ | 1 | $03 / 20 / 05$ | $03 / 20 / 05$ |
| Total Dissolved Solids | SM2540C | 5 C 21073 | 10 | 10 | 160 | 1 | $03 / 21 / 05$ | $03 / 21 / 05$ |
| Total Suspended Solids | EPA 160.2 | 5 C 21068 | 10 | 10 | ND | 1 | $03 / 21 / 05$ | $03 / 21 / 05$ |

)el Mar Analytical, Irvine
Nendy Kirkeeng For Michele Harper 'roject Manager

| MDL | Reporting | Sample
 Limit | Limit | Desulion | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | | Date |
| :---: |\quad| Data |
| :---: |
| Factor Extracted |\quad Analyzed | Qualifiers |
| :---: |

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 004	
Report Number: $10 C 1563$	Sampled: $03 / 19 / 05$

Sampled: 03/19/05
Received: 03/19/05

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed	
Sample ID: Outfall 004 (IOC1563-01)-Water EPA 300.0	2	$03 / 19 / 200511: 02$	$03 / 19 / 200517: 30$	$03 / 20 / 2005$	$13: 30$	$03 / 20 / 2005$

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 004
Report Number: 10 Cl 563
Sampled: 03/19/05
Received: 03/19/05

METHOD BLANKOC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD	Data
Analyte	Resalt		MDL	Units			\%REC	Limits	RPD		Qualifiers

Batch: 5C21082 Extracted: 03/21/05
Blank Analyzed: 03/21/2005 (5C21082-BLK1)

Mercury	ND	0.20	0.063	ug/						
LCS Analyzed: 03/21/2005 (5C21082-BS1)										
Mercury	7.98	0.20	0.063	ug/l	8.00		100	85-115		
Matrix Spike Analyzed: 03/21/2005 (5C21082-MS1)			Source: 10C1561-01							
Mercury	7.93	0.20	0.063	ug/l	8.00	ND	99	70-130		
Matrix Spike Dup Analyzed: 03/21/2005 (5C21082-MSD1)			Source: IOC1561-01							
Mercury	8.07	0.20	0.063	ug/	8.00	ND	101	70-130	2	20

Batch: 5C21088 Extracted: 03/21/05

Blank Analyzed: 03/21/2005 (5C21088-BLK1)

Antimony	ND	2.0	0.18	ug/l				
Cadmium	ND	1.0	0.015	ug/l				
Copper	ND	2.0	0.49	ug/l				
Lead	ND	1.0	0.13	ug/l				
LCS Analyzed: 03/21/2005 (5C21088-BS1)								
Antimony	86.5	2.0	0.18	ug/l	80.0		108	85-115
Cadmium	84.6	1.0	0.015	$\mathrm{ug} /$	80.0		106	85-115
Copper	81.1	2.0	0.49	ug/	80.0		101	85-115
Lead	84.0	1.0	0.13	ug/1	80.0		105	85-115
Matrix Spike Analyzed: 03/21/2005 (5C21088-MS1)					Source: 10C1561-01			
Antimony	94.5	2.0	0.18	ug/l	80.0	0.45	118	70-130
Cadmium	86.9	1.0	0.015	ug/	80.0	0.025	109	70-130
Copper	78.5	2.0	0.49	ugh	80.0	1.9	96	70-130
Lead	83.6	1.0	0.13	ug/	80.0	ND	104	70-130

[^3]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 004
Report Number: 10 C 1563 Received: 03/19/05

METHOD BLANKIOC DATA

Analyte

Result

Reporting			Spike	Source	\%REC		RPD	Data	
Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5C21088 Extracted: 03/21/05

Matrix Spike Analyzed: 03/21/2005 (5C21088-MS2)				Source: 10C1563-01						
Antimony	87.6	2.0	0.18	ug/	80.0	0.68	109	70-130		
Cadmium	82.1	1.0	0.015	$\mathrm{ug} / 1$	80.0	0,094	103	70-130		
Copper	85.2	2.0	0.49	ug/	80.0	7.7	97	70-130		
Lead	82.6	1.0	0.13	ugh	80.0	0.83	102	70-130		
Matrix Spike Dup Analyzed: 03/21/2005 (5C21088-MSD1)			Source: IOC1561-01							
Antimony	88.8	2.0	0.18	ug/	80.0	0.45	110	70-130	6	20
Cadmium	83.0	1.0	0.015	ug/	80.0	0.025	104	70-130	5	20
Copper	77.9	2.0	0.49	ug/	80.0	1.9	95	70-130	1	20
Lead	81.3	1.0	0.13	ug/	80.0	ND	102	70-130	3	20

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 004
Report Number: 10 Cl 563

METHOD BLANKIOC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C20029 Extracted: 03/20/05											
Blank Analyzed: 03/20/2005 (5C20029-BLK1)											
Chloride	ND	0.50	0.26	mg / l							
Nitrate/Nitrite-N	ND	0.11	0.072	mg/							
Sulfate	ND	0.50	0.18	mg / l							
LCS Analyzed: 03/20/2005 (5C20029-BSI)											
Chloride	4.65	0.50	0.26	mg / l	5.00		93	90-110			M-3
Sulfate	9.69	0.50	0.18	mg / l	10.0		97	90-110			M-3
Batch: 5C21062 Extracted: 03/21/05											
Blank Analyzed: 03/21/2005 (5C21062-BLK1)											
Oil \& Grease	ND	5.0	0.94	$\mathrm{mg} / 1$							
LCS Analyzed:											M-NR1
Oil \& Grease	171	5.0	0.94	mg/	20.0	:	86	$65-120$		\cdots	
LCS Dup Analyzed: 03/21/2005 (5C21062-BSD1)											
Oil \& Grease	16.0	5.0	0.94	mg / l	20.0		80	65-120	7	20	

Batch: 5C21068 Extracted: 03/21/05

Blank Analyzed: 03/21/2005 (5C21068-BLK1)
Total Suspended Solids ND
LCS Analyzed: 03/21/2005 (5C21068-BS1)
Total Suspended Solids
942
$10 \quad 10 \mathrm{mg} /$
1000
$94 \quad 85-115$

MWH-Pasadena/Boeing	Project ID: Routine Outfall 004	
300 North Lake Avenue, Suite 1200		Sampled: 03/19/05
Pasadena, CA 91101	Report Number: 1OC1563	Received: $03 / 19 / 05$
Attention: Bronwyn Kelly		

MEMHOD BLANKGC DATA

INORGANICS

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 004
Report Number: 10 C 1563

Sampled: 03/19/05
Received: 03/19/05

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
10C1563-01	413.1 Oil and Grease	Oil \& Grease	mg / l	1.30	5.0	15
10C1563-01	Antimony-200.8	Antimony	ug/l	0.68	2.0	6.00
10C1563-01	Cadmium-200.8	Cadmium	ug/1	0.094	1.0	4.00
10C1563-01	Chloride - 300.0	Chloride	mg/	7.40	0.50	150
10C1563-01	Copper-200.8	Copper	ug/	7.70	2.0	14
10C1563-01	Mercury - 245.1	Mercury	ug/	0.028	0.20	0.20
10C1563-01	Nitrogen, $\mathrm{NO} 3+\mathrm{NO} 2-\mathrm{N}$	Nitrate/Nitrite-N	$\mathrm{mg} /$	0.84	0.11	10.00
1OC1563-01	Sulfate-300.0	Sulfate	mg / l	11	0.50	250
1OC1563-01	TDS - SM 2540C	Total Dissolved Solids	mg/	160	10	850

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 004
Report Number: 10 C 1563

Sampled: 03/19/05
Received: 03/19/05

DATA QUALIFIERS AND DEFINITIONS

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD
Relative Percent Difference

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 004

Report Number: $10 \mathrm{Cl} 563 \quad$| Sampled: 03/19/05 |
| ---: |
| Received: 03/19/05 |

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
EPA 160.2	Water	\mathbf{X}	\mathbf{X}
EPA 200.8	Water	\mathbf{X}	\mathbf{X}
EPA 245.1	Water	\mathbf{X}	\mathbf{X}
EPA 300.0	Water	\mathbf{X}	\mathbf{X}
EPA 413.1	Water	\mathbf{X}	\mathbf{X}
SM2540C	Water	\mathbf{X}	\mathbf{X}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical California Cert \#1640

1104 Windfield Way - El Dorado Hills, CA 95762
Analysis Performed: 1613-Dioxin-HR
Samples: 1OC1563-01
Analysis Performed: \quad EDD + Level 4
Samples: 10C1563-01

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper
Project Manager

March 28,2005

MWH-Pasadena/ Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 004
Sampled: 03/19/05
Del Mar Analytical Number: IOC1563

Dear Ms. Kelly:
Alta Analytical Laboratory performed the EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans analysis for the project referenced above. Please use the following cross-reference table when reviewing your results.

MWH ID	DEL MAR ID	ALTA ID
Routine Outfall 004	IOC1563-01	$25939-001$

Attached is the original report from the subcontract laboratory. If you have any questions or require further assistance, please do not hesitate to contact me at (949) 261-1022 at extension 215.

Sincerely yours,
DEL MAR ANALYTICAL

Project Manager

March 24, 2005
Alta Project I.D.: 25939
Ms. Michele Harper
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Dear Ms. Harper,
Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on March 22, 2005 under your Project Name "IOC1563". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

Martha M. Maier
Director of HRMS Services

Alta Analytical Laboratory Inc.

Section I: Sample Inventory Report Date Received: 3/22/2005

Client Sample ID

IOC1563-01

SECTION II

APPENDIX

DATA QUALIFIERS \& ABBREVIATIONS

B

D The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.
I
J

P
*

Conc. Concentration
DL Sample-specific estimated detection limit
MDL The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration
NA Not applicable
RL Reporting Limit - concentrations that correspond to low calibration point
ND Not Detected
TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

The control limits are "interim limits only" until in-house limits are utilized.

NELAP - (Primary AA: California, Certificate No. 02102CA)
Department of the Navy
U.S. Army Corps of Engineers

U.S. EPA Region 5

Bureau of Reclamation - Mid-Pacific Region - (MP-470, Res-1.10)
Commonwealth of Kentucky - (Certificate No. 90063)
Commonwealth of Virginia - (Certificate No. 00013)
State of Alaska, Department of Environmental Conservation - (Certificate No. OS-00197)
State of Arizona - (Certificate No. AZ0639)
State of Arkansas, Department of Health - (Approval granted through CA certification)
State of Arkansas, Department of Environmental Quality
State of California - (Certificate No. 1640)
State of Colorado
State of Connecticut - (Certificate No. PH-0182)
State of Florida - (Certificate No. 87456)
State of Louisiana, Department of Health and Hospitals - (Certificate No. LA000014)
State of Louisiana, Department of Environmental Quality
State of Maine
State of Michigan (Certificate No. 81178087)
State of Mississippi - (Approval granted through CA certification)
State of Nevada - (Certificate No. CA413)
State of New Jersey - (Certificate No. CA003)
State of New York, Department of Health - (Certificate No. 11411)
State of North Carolina - (Certification No. 06700)
State of North Dakota, Department of Health - (Certificate No. R-078)
State of New Mexico
State of Oklahoma - (D9919)
State of Oregon - (Certificate No. CA413)
State of Pennsylvania - (Certificate No. 68-490)
State of South Carolina - (Certificate No. 87002001)
State of Tennessee - (Certificate No. 02996)
State of Texas - (Certificate No. TX247-1000A
State of Utah - (Certificate No. E-201)
State of Washington - (Certification No. C091)
State of Wisconsin - (Certificate No. 998036160)
State of Wyoming - (USEPA Region 8 Ref: 8TMS-Q)

SAMPLE LOG -IN CHECKLIST

ALTA Project No.: \qquad

Comments:

ALTA Analytical Laboratory ED Dorado Hills, CA 95762

SUBCONTRACT ORDER - PROJECT \# IOC1563

259393.2°

APPENDIX G

Section 31

 March Outfall 005
AMEC Data Validation Reports

Del Mar Analytical Laboratory Reports

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA
AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
\quad Laboratory Alta
\quad Reviewer K. Shadowlight
Analysis/Method Dioxins

Package ID T711DF35

Task Order 313150010
SDG No. Multiple
No. of Analyses 6
Date: March 23, 2005

ACTION ITEMS*

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, e.g,
Qualifications were assigned for the following,

* EMPCs
* Detects below the lower method calibration level

GC/MS Tune/lnst. Performance
Calibration
Method blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and
Quantitation
System Performance

[^4]
amec ${ }^{\theta}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: DIOXINS/FURANS
 SAMPLE DELIVERY GROUPS: Multiple SDGs

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:
DATA VALIDATION REPORT	NPDES SDG No.: Multiple

1. INTRODUCTION

Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: B. McIlvaine
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 6
No. of Reanalyses/Dilutions: 0
Reviewer: K. Shadowlight
Date of Review: March 21, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:
DATA VALIDATION REPORT	NPDES

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Alta)	Matrix	COC Method
Outfall 002	IOC0447-01	$25853-001$	water	1613
Outfall 003	IOC0449-01	$25854-001$	water	1613
Outfall 004	IOC0455-01	$25855-001$	water	1613
Outfall 005	IOC0451-01	$25855-001$	water	1613
Outfall 007	IOC0453-01	$25856-001$	water	1613
Outfall 011	IOC0448-01	$25852-001$	water	1613

	Project:
DATA VALIDATION REPORT	NPDES
SDG No.:	Multiple
Analysis:	D/F

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

All of the samples in these SDGs were received at Del Mar Analytical within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The samples were shipped to Alta for dioxin/furan analyses and were received below the temperature limits at $1.3^{\circ} \mathrm{C}$ and $1.4^{\circ} \mathrm{C}$; however, as the samples were not noted to have been frozen or damaged, no qualifications were required. According to the laboratory login sheets, all samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COCs and transfer COCs were legible and signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. As the samples were couriered directly to Del Mar Analytical, custody seals were not required. The coolers received by Alta had custody seals present and intact; however, custody seals were not present on the sample containers. The EPA IDs were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and $2,3,7,8-\mathrm{TCDD}$ reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

	Project:
DATA VALIDATION REPORT	NPDES
SDG No.:	Multiple
D/F	

2.3 CALIBRATION

2.3.1 Initial Calibration

There was one initial calibration, analyzed 08/30/04. The calibration consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with $\%$ RSDs $\leq 20 \%$ for the 15 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method $Q C$ limits. A representative number of $\%$ Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standards instead of being analyzed separately, as noted in section 2.2 .1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank (6593-MB001) was extracted and analyzed with the samples in these SDGs. Total TCDF was reported at $1,4 \mathrm{pg} / \mathrm{L}$ and target compound $1,2,3,6,7,8-\mathrm{HxCDF}$ was reported as an EMPC. The results for total TCDF in samples Outfall 003 and Outfall 011 were qualified as estimated nondetects "UJ," at the levels of interference. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No further qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One Ongoing Precision Recovery (OPR) sample (6593-OPR001) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

	Project:
DATA VALIDATION REPORT	NPDES SDG No.: Multiple

2.7.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for these SDGs.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any reported EMPC was qualified as an estimated nondetect, "UJ." Any detects below the lower method calibration level (MCL) were qualified as estimated, "J." The result for total TCDF in sample Outfall 003 was flagged by the laboratory with a " D " qualifier which indicated possible diphenylether interference; however, the result was qualified as a nondetect due to method blank contamination and no qualifications were required. No further qualifications were required.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental	Package ID	T711MT47
550 South Wadsworth Boulevard	Task Order	313150010
Suite 500	SDG No.	Multiple
Lakewood, CO 80226	No. of Analyses	5
Laboratory Del Mar	Date: 03/29/0	5
Reviewer P. Meeks	Reviewer's	nature
Analysis/Method Metals	P. Meels	

ACTION ITEMS	
1.	Case Narrative Deficiencies
	2.

2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorreet Hardcopy

Deliverables
6. Deviations from

Analysis Protocol, e.g.,
Qualifications were applied for detects below the reporting limit.
Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identifica-
1
and Quantitation
System Performance \qquad

COMMENTS $^{\text {b }}$	
"Subcontracted analytical laboratory is not meeting contract andor method requirements.	
: Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.	

amec ${ }^{9}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: METALS
SAMPLE DELIVERY GROUPS: IOC0449, IOC0450, IOC0451, IOC0452 \& IOC0453

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOC0449, 1OC0450, IOC0451, IOC0452 \& IOC0453
Project Manager: B. McIlvaine
Matrix: Water
Analysis: Metals
QC Level: Level IV
No. of Samples 5
No. of Reanalyses/Dilutions: 0
Reviewer: P. Meeks
Date of Review: March 29, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the ' R ' data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

Table 1. Sample identification

Client ID	EPA DD	Laboratory DD	Matrix	COC Method
Outfall 003	Outfall 003	IOC0449-01	water	LM04
Outfall 004	Outfall 004	IOC0450-01	water	ILM04
Outfall 005	Outfall 005	IOC0451-01	water	ILM04
Outfall 006	Outfall 006	IOC0452-01	water	LLM04
Outfall 007	Outfall 007	IOC0453-01	water	ILM04

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel. The COCs accounted for the samples and analyses presented in these SDGs. Duplicate samples were submitted for all the samples in these SDGs; however, duplicate analyses were not required. No sample qualifications were required.

2.1.3 Holding Times

The dates of collection recorded on the COCs and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS metals. No qualifications were required.

2.2 ICP-MS TUNING

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. All \%RSDs were less than 5%. The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, $90-110 \%$ for ICP/MS metals. The reporting limit check standards were recovered within the AMEC control limits of 70-130\%. No sample qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2.4 BLANKS

Lead was not detected in any of the blanks associated with these SDGs. No qualifications were required due to the method and calibration blank results.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB standards were not analyzed in association with the samples in this SDG; therefore, no assessment can be made with respect to this criterion.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP/MS LCS sample was identified as 5C08106-BS1 and the LCS result on the summary forms and in the raw data was within the laboratory-established ICP/MS control limits of $85-115 \%$. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MS/MSD or laboratory duplicate analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

2.8 MATRIX SPIKE

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on the LCS result.

2.9 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

2.10 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2.11 INTERNAL STANDARDS PERFORMANCE

The ICP-MS internal standard recoveries for the site samples and associated QC sample analyses were within the $60-125 \%$ control limits and no qualifications were required.

2.12 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Lead detected below the reporting limit was qualified as estimated, "JJ." No further qualifications were required.

2.13 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.13.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site samples.

```
MWH-Pasadena/Boeing
```

300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 005
Routine Outfall 005
Report Number: 10 CO 0451

Sampled: 03/04/05
Received: 03/04/05

DRAFT: METALS

MDL Reporting Sample Dilution Date Date Data

Analyte \quad Method Batch Limit \quad Limit $\quad \underset{\text { Result }}{\text { Factor extracted }}$| Date |
| :---: |
| Analyzed Qualifiers |

Sample ID: 1OC0451-01 (DRAFT: Outfall 005 - Water) Reporting Units: aug/
Lead
EPA 200.8 5C08106
$\begin{array}{llllll}0.13 & 1.0 & \text { ND } 1 & 03 / 08 / 05 & 03 / 09 / 05\end{array}$

ALEC VALIDATED

DRAFT REPORT
 DRAFT REPORT
 DATA SUBJECT TO CHANGE

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
Project: Routine Outfall 005
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
Sampled: 03/04/05
Received: 03/04/05
Issued: 03/25/05 11:15

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117
The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
1OC0451-01

CLIENT ID

Outfall 005

MATRIX
Water

Reviewed By:

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 005
Report Number: IOC0451

Sampled: 03/04/05
Received: 03/04/05

			MET	LS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 10C0451-01 (Outfall 005 - Water)									
Reporting Units: ug/									
Antimony	EPA 200.8	$5 \mathrm{C08106}$	0.18	2.0	ND	1	03/08/05	03/09/05	
Cadmium	EPA 200.8	$5 \mathrm{C08106}$	0.015	1.0	ND	1	03/08/05	03/09/05	
Copper	EPA 200.8	$5 \mathrm{C08106}$	0.49	2.0	0.96	1	03/08/05	03/09/05	J
Lead	EPA 200.8	$5 \mathrm{C08106}$	0.13	1.0	ND	1	03/08/05	03/09/05	
Mercury	EPA 245.1	$5 \mathrm{C09049}$	0.063	0.20	ND	1	03/09/05	03/09/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 005
Report Number: 10 C 0451

Sampled: 03/04/05
Received: 03/04/05

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OC0451-01 (Outfall 005 - Water) - cont. Reporting Units: mg/t									
Chloride	EPA 300.0	5 C 04107	0.26	0.50	1.3	1	03/04/05	03/05/05	
Nitrate/Nitrite-N	EPA 300.0	5C04107	0.11	0.11	1.5	1	03/04/05	03/05/05	
Oil \& Grease	EPA 413.1	$5 \mathrm{C09091}$	0.94	5.0	2.6	1	03/09/05	03/09/05	B, J
Sulfate	EPA 300.0	$5 \mathrm{C04107}$	0.18	0.50	2.0	1	03/04/05	03/05/05	
Total Dissolved Solids	SM2540C	$5 \mathrm{C08110}$	10	10	50	1	03/08/05	03/08/05	
Total Suspended Solids	EPA 160.2	$5 \mathrm{C07073}$	10	10	ND	1	03/07/05	03/07/05	

300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 005
Sampled: 03/04/05
Received: 03/04/05

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed	
Sample ID: Outfall 005 (IOC0451-01)- Water EPA 300.0	2	$03 / 04 / 200510: 50$	$03 / 04 / 200517: 50$	$03 / 04 / 2005$	$23: 00$	$03 / 05 / 2005$

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 005
Report Number: 10 C 0451

Sampled: 03/04/05
Received: 03/04/05

MIETHOD MLANKIOC DATA

METALS

Blank Analyzed: 03/09/2005 (5C08106-BLK1)

Antimony	ND	2.0	0.18	ugh			
Cadmium	ND	1.0	0.015	ug/l			
Copper	ND	2.0	0.49	ugh			
Lead	ND	1.0	0.13	ug/			
LCS Analyzed: 03/09/2005 (5C08106-BS1)							
Antimony	90.7	2.0	0.18	ug/1	80.0	113	85-115
Cadmium	86.3	1.0	0.015	ug/	80.0	108	85-115
Copper	78.1	2.0	0.49	ug/	80.0	98	85-115
Lead	84.0	1.0	0.13	ug/	80.0	105	85-115

Matrix Spike Analyzed: 03/09/2005 (5C08106-MS1)			Source: 10C0448-01							
Antimony	92.4	2.0	0.18	ug/	80.0	0.37	115	70-130		
Cadmium	81.1	1.0	0.015	ugh	80.0	0.086	101	70-130		
Copper	79.4	2.0	0.49	ug/1	80.0	3.0	96	70-130		
Lead	79.6	1.0	0.13	ug/	80.0	0.19	99	70-130		
Matrix Spike Dup Analyzed: 03/09/2005 (5C08106-MSD1)			Source: 10C0448-01							
Antimony	91.3	2.0	0.18	ug/	80.0	0.37	114	70-130	1	20
Cadmium	80.9	1.0	0.015	ug/	80.0	0.086	101	70-130	0	20
Copper	78.7	2.0	0.49	ug/	80.0	3.0	95	70-130	1	20
Lead	78.6	1.0	0.13	ug/	80.0	0.19	98	70-130	1	20

Batch: 5C09049 Extracted: 03/09/05

Blank Analyzed: 03/09/2005 (5C09049-BLK1)

Mercury	ND	0.20	0.063	ug/l

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly	Project ID: Routine Outfall 005

METALS

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 005
Report Number: 10 C0451 Received: 03/04/05

METHOD BLANINOC DATA

INORGANICS

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 005	
300 North Lake Avenue, Suite 1200		Sampled: 03/04/05
Pasadena, CA 91101	Report Number: $10 C 0451$	Received: 03/04/05
Attention: Bronwyn Kelly		

METIOD BLANKIQC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: $5 \mathrm{C08110}$ Extracted: 03/08/05										
Duplicate Analyzed: 03/08/2005 (5C08110-DUP1)				Source: 10C0454-01						
Total Dissolved Solids 187	10	10	mg / l		180			4	10	
Batch: 5C09091. Extracted: 03/09/05										
Blank Analyzed: 03/09/2005 (5C09091-BLK1)										
Oil \& Grease 1.70	5.0	0.94	mg / l							J
LCS Analyzed: 03/09/2005 (5C09091-BS1)										M-NR1
Oil \& Grease 22.4	5.0	0.94	$\mathrm{mg} /$	20.0		112	65-120			
LCS Dup Analyzed: 03/09/2005 (5C09091-BSD1)										
Oil \& Grease - 18.8	5.0	0.94	mg / l	20.0		94	65-120	17	20	

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 005
Report Number: $10 \mathrm{CO451}$

Sampled: 03/04/05
Received: 03/04/05

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte		Compliance		
IOC0451-01	413.1 Oil and Grease	Oil \& Grease	Result	MRL	Limit	
IOC0451-01	Antimony-200.8	Antimony	mg / l	2.60	5.0	15
IOC0451-01	Cadmium-200.8	Cadmium	ug / l	0	2.0	6.00
IOC0451-01	Chloride -300.0	Chloride	ug / l	0.0060	1.0	4.00
IOC0451-01	Copper-200.8	Copper	$\mathrm{mg} / 1$	1.30	0.50	150
IOC0451-01	Mercury-245.1	Mercury	$\mathrm{ug} / 1$	0.96	2.0	14
IOC0451-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	ug / l	0.043	0.20	0.20
IOC0451-01	Sulfate-300.0	Sulfate	$\mathrm{mg} / 1$	1.50	0.11	10.00
IOC0451-01	TDS -SM 2540C	Total Dissolved Solids	mg / l	2.00	0.50	250

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 005
Report Number: 10 C 0451

Sampled: 03/04/05
Received: 03/04/05

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

Attention: Bronwyn Kelly

Project ID: Routine Outfall 005
Sampled: 03/04/05
Report Number: $10 \mathrm{C} 0451 \quad$ Received: 03/04/05

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	Callfornia
EPA 160.2	Water	\mathbf{X}	\mathbf{X}
EPA 200.8	Water	\mathbf{X}	\mathbf{X}
EPA 245.1	Water	\mathbf{X}	\mathbf{X}
EPA 300.0	Water	\mathbf{X}	\mathbf{X}
EPA 413.1	Water	\mathbf{X}	\mathbf{X}
SM2540C	Water	\mathbf{X}	\mathbf{X}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical California Cert \#1640
1104 Windfield Way - El Dorado Hills, CA 95762
Analysis Performed: 1613-Dioxin-HR
Samples: IOC0451-01
Analysis Performed: EDD + Level 4
Samples: 1OC0451-01

March 23,2005

MWH-Pasadena/ Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention: Bronwyn Kelly
Project: \quad Routine Outfall 005
Sampled: 03/04/05
Del Mar Analytical Number: IOC0451

Dear Ms. Kelly:
Alta Analytical Laboratory performed the EPA Method 1613 Dioxin analysis for the project referenced above. Please use the following cross-reference table when reviewing your results.

MWH ID	DEL MAR ID	Alta ID
Outfall 005	IOC0451-01	$25855-001$

Attached is the original report from the subcontract laboratory. If you have any questions or require further assistance, please do not hesitate to contact me at (949) 261-1022 at extension 215.

Sincerely yours,
DEL MAR ANALYTICAL

Project Manager

ALTA

March 16, 2005
Alta Project I.D.: 25855
Ms. Michele Harper
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614

Dear Ms. Harper,
Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on March 08, 2005 under your Project Name "IOC0451". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Martha M. Maier
Director of HRMS Services

Section I: Sample Inventory Report
 Date Received: 3/8/2005

Alta Lab. ID
25855-001

Client Sample ID
IOC0451-01

SECTION II

APPENDIX

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank.
D The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.
I Chemical Interference
J The amount detected is below the Lower Calibration Limit of the instrument.

* See Cover Letter

Conc. Concentration
DL Sample-specific estimated detection limit
MDL The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration
NA Not applicable
RL Reporting Limit - concentrations that corresponds to low calibration point
ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

The control limits are "interim limits only" until in-house limits are utilized.

CURRENT CERTIIICATIONS

NELAP - (Primary AA: California, Certificate No. 02102CA)
Department of the Navy
U.S. Army Corps of Engineers
U.S. EPA Region 5

Bureau of Reclamation - Mid-Pacific Region - (MP-470, Res-1.10)
Commonwealth of Kentucky - (Certificate No. 90063)
Commonwealth of Virginia - (Certificate No. 00013)
State of Alaska, Department of Environmental Conservation - (Certificate No. OS-00197)
State of Arizona - (Certificate No. AZ0639)
State of Arkansas, Department of Health - (Approval granted through CA certification)
State of Arkansas, Department of Environmental Quality
State of California - (Certificate No. 1640)
State of Colorado
State of Connecticut - (Certificate No. PH-0182)
State of Florida - (Certificate No. 87456)
State of Louisiana, Department of Health and Hospitals - (Certificate No. LA000014)
State of Louisiana, Department of Environmental Quality
State of Maine
State of Michigan (Certificate No. 81178087)
State of Mississippi - (Approval granted through CA certification)
State of Nevada - (Certificate No. CA413)
State of New Jersey - (Certificate No. CA003)
State of New York, Department of Health - (Certificate No. 11411)
State of North Carolina - (Certification No. 06700)
State of North Dakota, Department of Health - (Certificate No. R-078)
State of New Mexico
State of Oklahoma - (D9919)
State of Oregon - (Certificate No. CA413)
State of Pennsylvania - (Certificate No. 68-490)
State of South Carolina - (Certificate No. 87002001)
State of Tennessee - (Certificate No. 02996)
State of Texas - (Certificate No. TX247-1000A
State of Utah - (Certificate No. E-201)
State of Washington - (Certification No. C091)
State of Wisconsin - (Certificate No. 998036160)
State of Wyoming - (USEPA Region 8 Ref: 8TMS-Q)

SUBCONTRACT ORDER - PROJECT \# IOC0451

SENDING LABORATORY:	
Del Mar Analytical, Irvine	
17461 Dorian Avenue. Suite 100	
Irvine, CA 92614	\ddots
Phone: (949) 261-1022	\ddots
Fax: (949) 261-1228	
Project Manager: Michele Harper	

RECEIVNG LABORATORY:

Alta Analytical
1104 Winfield Way
El Dorado Hills, CA 95762
Phone: (916) 933-1640
25955

Fax: (916) 933-0940

Standard TAT is requested mules specific due date is requested \Rightarrow Due Date: \qquad Initials: \qquad

Analysis	Expiration	Comments	
Sample ID: 10C0451-01 Water	Sampled: 03/04/05 10:50	Instant Nofication	
1613-Dioxin-ER	$03 / 11 / 0510: 50$		
EDD + Level 4	$04 / 01 / 0510: 50$		J flags, 17 congeners, no TEQ, sub to Alta

Containers Supplied:

1 L Amber (IOC0451-01C)
1 L Amber ($10 \mathrm{CO451-01D} \mathrm{)}$

 SUBCONTRACT ORDER - PROJECT \# IOC0451

CEADING LABPORATORT:	(.... RECIVIVGLABORATORY:
Deil Mar Avalytical, Irvine	Alta Analytical 25055
17461 Derian Averwe. Suite 100	1104 Windfield Way 2585
Irvine, CA 92614	E Dorado Hills, CA 95762 (140
Phone: (949) 261-1022	Prant : (916) 933-1640
F=x: (949) 261-1228	Fax (916) 933-0940
Project Managce Michele Harper	
Standard TAT is requerted maless specific due date is requ	$\Rightarrow \text { Due Date: } 2 \text { wel }$
Analyst . Expiration	Comoments
Sample 1D: 10C0451-01 Water Sampled: 03/04/05 10:50	Justumi Nofication
1613-Dioxin-ER $03 / 11 / 0510: 50$	I fliggs, 17 congexers, no TEO, sub to Alts
EDD + Level 4 04/01/05 10:50	Excel EDD email to pmanolude Stailogs forLvil IV
Contathers Sappliced: -	-
12 amber (10C0451-01C)	
12. Amber (IOC0451-01D)	

$$
\text { sampler }=P \cdot P H_{1 / 100}
$$

SAMPLE LOG-IN CHECKLIST

ALTA Project No.: \qquad

Comments:

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Alta
Reviewer H. Chang
Analysis/Method Dioxin\&Furans/1613

Package ID T711DF37
Task Order 313150010
SDG No. Multiple
No. of Analyses 10
Date: April 4, 2005
Reviewer's Signature

ACTION ITEMS ${ }^{\text {a }}$

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis Detects below the calibration range were qualified "J."

Protocol, e.g.,
Holding Times
GC/MS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and
Quantitation
System Performance

* Subcontracted analytical laboratory is not meeting contract and/or method requirements.
${ }^{6}$ Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: DIOXINS/FURANS SAMPLE DELIVERY GROUPS: Multiple SDGs

Prepared by

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 10
No. of Reanalyses/Dilutions: 0
Reviewer: H. Chang
Date of Review: April 4, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:
DATA VALIDATION REPORT	SDG No.:

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Alta)	Matrix	COC Method
Outfall 002	IOC1521-01	$25935-001$	water	1613
Outfall 011	IOC1523-01	$25936-001$	water	1613
Outfall 005	IOC1524-01	$25940-001$	water	1613
Outfall 006	IOC1525-01	$25937-001$	water	1613
Outfall 011 Composite	IOC1526-01	$25938-001$	water	1613
Outfall 001	IOC1561-01	$25941-001$	water	1613
Outfall 004	$10 C 1563-01$	$25939-001$	water	1613
Outfall 008	IOC1564-01	$25942-001$	water	1613
Outfall 003	IOC1565-01	$25943-001$	water	1613
Outfall 009	IOC1566-01	$25944-001$	water	1613

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

Samples Outfall 001 , Outfall 004, and Outfall 008 were received at Del Mar Analytical outside the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. Due to non-volatile nature of the target compounds, no qualifications were required. The other samples were received with cooler temperatures within the limits. According to the laboratory login sheets, all samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COCs and transfer COCs were legible and signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. As the samples were couriered directly to Del Mar Analytical, custody seals were not required. The coolers received by Alta had custody seals present and intact. The EPA IDs were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and $2,3,7,8$-TCDD reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Mutiple

2.3 CALIBRATION

2.3.1 Initial Calibration

There was one initial calibration, analyzed $08 / 30 / 04$. The calibration consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with $\%$ RSDs $\leq 20 \%$ for the 16 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standards instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank (06624 MB001) was extracted and analyzed with the samples in these SDGs, There were no target compound detects reported in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One Ongoing Precision Recovery (OPR) sample (0_6624_OPR001) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC :

2.7.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for these SDGs.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any reported EMPC was qualified as an estimated nondetect, "UJ." Any detects below the lower method calibration level (MCL) were qualified as estimated, "J." No further qualifications were required.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer P. Meeks
Analysis/Method Metals

Package ID T711MT57
Task Order 313150010
SDG No. Multiple
No. of Analyses 5
Date: 03/30/05
RPriewer'signature

ACIION ITEMS

1. Case Narrative Deficiencies
2. Out of Scope Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Qualifications applied for detects below the reporting limit and antimony MDLs Analysis Protocol, e.g., were raised and results estimated due to CCB detects.

Holding Times:
GC/MS Tune/Inst. Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification
and Quantitation
System Performance
\qquad
\square
\square

\qquad
\qquad
\qquad

COMMENTS

${ }^{2}$ Subcontracted analytical laboratory is not meeting contract and/or method requirements.

- Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: METALS
 SAMPLE DELIVERY GROUPS: IOC1524, IOC1525, IOC1564, IOC1565, \& IOC1566

Prepared by

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOC1524, IOC1525, IOC1564, IOC1565, \& IOC1566
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Metals
QC Level: Level IV
No. of Samples: 5
No. of Reanalyses/Dilutions: 0
Reviewer: P. Meeks
Date of Review: March 30, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form 1 as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 005	Outfall 005	IOC1524-01	water	ILM04
Outfall 006	Outfall 006	IOC1525-01	water	ILM04
Outfall 008	Outfall 008	IOC1564-01	water	ILM04
Outfall 003	Outfall 003	IOC1565-01	water	ILM04
Outfall 009	Outfall 009	IOC1566-01	water	ILM04

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

Outfall 008 was received above the temperature limit at $8^{\circ} \mathrm{C}$; however, as the sample had insufficient time to cool prior to receipt at the laboratory, no qualifications were required. The remaining samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel. The COCs accounted for the samples and analyses presented in these SDGs. Duplicate samples were submitted for the samples in these SDGs; however, duplicate analyses were not required. No sample qualifications were required.

2.1.3 Holding Times

The dates of collection recorded on the COCs and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS metals and 28 days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. All \%RSDs were less than 5%. The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, $90-110 \%$ for ICP/MS metals and $80-120 \%$ for mercury. The reporting limit check standards were recovered within the AMEC control limits of 70 130%. No sample qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2.4 BLANKS

Antimony was detected in every CCB in the analytical sequence in which Outfall 008 and Outfall 009 were analyzed. The detects ranged from 0.484 to $0.551 \mu \mathrm{~g} / \mathrm{L}$ and antimony was detected in Outfall 008 and Outfall 009 at concentrations below these values. The CCB detects indicated the laboratory could not detect antimony at the reported MDL. The reviewer raised the antimony MDL for Outfall 008 and Outfall 009 to the highest level of interference reported, $0.55 \mu \mathrm{~g} / \mathrm{L}$ and qualified the result as estimated, "UJ." No further qualifications were required due to the method and calibration blank results.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were included in the raw data for the ICP-MS analyses. Results were not provided for spiked interferents sulfur, phosphorus, carbon, and chloride, and antimony and lead were not spiked into the ICSAB solution. Copper and cadmium were detected above the applicable reporting limit in the ICSA. Aluminum was recovered below the control limit in the all the ICSA and ICSAB analyses; however, as aluminum was not reported in the site samples, no qualifications were required. The validator reviewed the raw data for the site sample ICP/MS analyses for the level of reported interferents, $\mathrm{Al}, \mathrm{Ca}, \mathrm{Fe}$, and Mg , and determined that the levels of reported interferents were not high enough to cause matrix affects. No assessment could be made with respect to possible interference from sulfur, phosphorus, carbon, and chloride. No qualifications were required.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP/MS LCS samples were identified as 5C21088-BS1 and SC19038-BS1. The mercury LCS sample was identified as 5C21082-BS1. The LCS results on the summary forms and in the raw data were within the laboratory-established ICP/MS and mercury control limits of $85-115 \%$. No qualifications were required.

2.7 LABORATORY DUPLICATES

MS/MSD analyses were performed on Outfall 005 for lead only. The RPD was wthin the control limit of 20% and no qualifications were required.

2.8 MATRIX SPIKE

MS/MSD analyses were performed on Outfall 005 for lead only. Both recoveries were within the AMEC control limits of $75-125 \%$ and no qualifications were required. For the remaining analytes, method accuracy was evaluated based on LCS results.

	Project:	NPDES
DATA YALIDATION REPORT	SDG No.:	Multiple

2.9 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

2.10 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

2.11 INTERNAL STANDARDS PERFORMANCE

The ICP-MS internal standard recoveries for the site samples and associated QC sample analyses were within the $60-125 \%$ control limits and no qualifications were required.

2.12 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit were qualified as estimated, "J." No further qualifications were required.

2.13 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.13.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site samples.

MWH-Pasadena'Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Atention: Bronwyn Kelly

Project ID: Routine Outhall 005
Report Number: $10 C 1524$

Sampled: 03.18.05
Received: 031805

DRAFT: METALS

MDL Reporting Sample Dilution Date Date Data
Analyte Method Batch Limit Limit Result Factorextracted Analyzed Qualifiers

Sample ID: 1OC1524-01 (DRAFT: Outfall 005 - Water) Reporting Units: ug/
Lead
EPA 200.8
$5 C 19038 \quad 0.13$
$1.0 \quad 0.50$
1031905032105

AMEC VALIDATED

\%,
\qquad
, ?
5
\%
,
\qquad
-
,
प
,
,
\%
,
, \quad,
K,
4
,
-
+
,
,
,
Q

$\$$

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 005

Sampled: 03/18/05
Received: 03/18/05
Issued: 03/31/05 09:25

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at $4^{\circ} \mathrm{C}$, on ice and with chain of custody documentation.
HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the Del Mar Analytical Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.
QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.
COMMENTS: Results that fall between the MDL and RL are 'J' flagged.
SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
1OC1524-01

CLIENT ID
Outfall 005

MATRIX
Water

Reviewed By:

[^5]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

			MET						
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 10C1524-01 (Outfall 005 - Water)									
Reporting Units: ug/									
Antimony	EPA 200.8	5C19038	0.18	2.0	0.64	1	03/19/05	03/21/05	B, J
Cadmium	EPA 200.8	5C19038	0.015	1.0	0.034	1	03/19/05	03/21/05	B, J
Copper	EPA 200.8	5C19038	0.49	2.0	3.3	1	03/19/05	03/21/05	
Lead	EPA 200.8	$5 \mathrm{C19038}$	0.13	1.0	0.50	1	03/19/05	03/21/05	J
Mercury	EPA 245.1	5 Cl 9029	0.063	0.20	ND	1	03/19/05	03/19/05	

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper Project Manager

Project ID: Routine Outfall 005
Report Number: 10 Cl 524

Sampled: 03/18/05
Received: 03/18/05

METALS

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 005
Report Number: IOC1524

Sampled: 03/18/05
Received: 03/18/05

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OC1524-01 (Outfall 005 - Water) - cont. Reporting Units: mg/									
Chloride	EPA 300.0	5 Cl 18104	0.26	0.50	2.2	1	03/18/05	03/19/05	
Nitrate/Nitrite-N	EPA 300.0	5 C 18104	0.072	0.11	3.1	1	03/18/05	03/19/05	
Oil \& Grease	EPA 413.1	5 C 21062	0.94	5.0	ND	1	03/21/05	03/21/05	
Sulfate	EPA 300.0	5 C 18104	0.18	0.50	5.5	1	03/18/05	03/19/05	
Total Dissolved Solids	SM2540C	5 C 21073	10	10	51	1	03/21/05	03/21/05	
Total Suspended Solids	EPA 160.2	5C21068	10	10	ND	1	03/21/05	03/21/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 005
$\begin{array}{lr} & \text { Sampled: 03/18/05 } \\ \text { Report Number: } 10 \mathrm{Cl} 524 & \text { Received: 03/18/05 }\end{array}$

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 005 (10C1524-01) - Water					
EPA 300.0	2	03/18/2005 14:11	03/18/2005 20:15	03/18/2005 23:00	03/19/2005 00:14

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Bocing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 005
Report Number: IOC1524

Sampled: 03/18/05
Received: 03/18/05

METHOD BLANK/OC DATA

METALS

		Reporting			Spike	Source	\%REC		RPD	Data	
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5C19029 Extracted: 03/19/05
Blank Analyzed: 03/19/2005 (5C19029-BLK1)

Batch: 5C19038 Extracted: 03/19/05
Blank Analyzed: 03/21/2005 (5C19038-BLK1)

Antimony	125	20	0.18	ug			
Cadmium	0.0170	1.0	0.015	ug/1			
Copper	ND	2.0	0.49	ug/			
Lead	ND	1.0	0.13	ug/			
LCS Analyzed: 03/21/2005 (5C19038-BS1)							
Antimony	81.3	2.0	0.18	ug/	80.0	102	85-115
Cadmium	78.9	1.0	0.015	ugh	80.0	99	85-115
Copper	80.6	2.0	0.49	ug/	80.0	101	85-115
Lead	81.1	1.0	0.13	ug/	80.0	101	85-115

Matrix Spike Analyzed: 03/21/2005 (5C19038-MS1)

Antimony	84.1	2.0	0.18	ug / l	80.0	0.64	104	$70-130$
Cadmium	80.3	1.0	0.015	ug / l	80.0	0.034	100	$70-130$
Copper	84.0	2.0	0.49	$\mathrm{ug} /$	80.0	3.3	101	$70-130$
Lead	82.7	1.0	0.13	ug / I	80.0	0.50	103	$70-130$

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 005	
300 North Lake Avenue, Suite 1200		Sampled: 03/18/05
Pasadena, CA 91101	Report Number: 10 Cl 524	Received: 03/18/05

METHOD BLANKIOC DATA

METALS

Matrix Spike Dup Analyzed: 03/21/2005 (5C19038-MSD1)			Source: 10C1524-01							
Antimony	82.6	2.0	0.18	ug/l	80.0	0.64	102	70-130	2	20
Cadmium	78.6	1.0	0.015	ugh	80.0	0.034	98	70-130	2	20
Copper	81.9	2.0	0.49	ugl	80.0	3.3	98	70-130	3	20
Lead	81.9	1.0	0.13	$\mathrm{ug} / 1$	80.0	0.50	102	70-130	1	20

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 005
Report Number: IOC1524 Received: 03/18/05

METHOD BLANKIOC DATA

INORGANICS

Batch: 5C21062 Extracted: 03/21/05
Blank Analyzed: 03/21/2005 (5C21062-BLK1)
Oil \& Grease

LCS Analyzed: 03/21/2005 (5C21062-BS1)
Oil \& Grease 17.1
$5.0 \quad 0.94 \mathrm{mg} / \mathrm{l}$

LCS Dup Analyzed: 03/21/2005 (5C21062-BSD1)
Oil \& Grease 16.0
$5.0 \quad 0.94$

mg / l					
mg / l	20.0	86	$65-120$		
mg / l	20.0	80	$65-120$	7	20

M-NR1

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 005
Report Number: 10 Cl 524 Sampled: 03/18/05

Received: 03/18/05

METHOD BIINKKOC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C21068 Extracted: 03/21/05										
Blank Analyzed: 03/21/2005 (5C21068-BLK1)										
Total Suspended Solids ND	10	10	mg / l							
LCS Analyzed: 03/21/2005 (5C21068-BS1)										
Total Suspended Solids 942	10	10	mg / l	1000		94	85-115			
Duplicate Analyzed: 03/21/2005 (5C21068-DUP1)					ce: 10 C	566-01				
Total Suspended Solids ND	10	10	mg / l		ND				10	
Batch: 5C21073 Extracted: 03/21/05										
Blank Analyzed: 03/21/2005 (5C21073-BLK1)										
Total Dissolved Solids ND	10	10	$\mathrm{mg} /$							
LCS Analyzed: 03/21/2005 (5C21073-BS1)										
Total Dissolved Solids $\quad \therefore \quad \therefore 968$	10	10	mg / l	1000		97	90-110			
Duplicate Analyzed: 03/21/2005 (5C21073-DUP1)				Sou	e: IOC1	566-01				
Total Dissolved Solids 320	10	10	mg / l		300			6	10	

Del Mar Analytical, Irvine

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 005
Report Number: 10 C 1524

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte			Compliance	
IOC1524-01	413.1 Oil and Grease	Oil \& Grease	Units	Result	MRL	Limit
IOC1524-01	Antimony-200.8	Antimony	mg / l	0	5.0	15
IOC1524-01	Cadmium-200.8	Cadmium	ug / l	0.64	2.0	6.00
IOC1524-01	Chloride -300.0	Chloride	ug / l	0.034	1.0	4.00
IOC1524-01	Copper-200.8	Copper	mg / l	2.20	0.50	150
IOC1524-01	Mercury -245.1	Mercury	ug / l	3.30	2.0	14
IOC1524-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	ug / l	0.013	0.20	0.20
IOC1524-01	Sulfate-300.0	Sulfate	mg / l	3.10	0.11	10.00
IOC1524-01	TDS - SM 2540 C	Total Dissolved Solids	mg / l	5.50	0.50	250
			mg / l	51	10	850

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper
Project Manager

Sampled: 03/18/05
Received: 03/18/05

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 005
Report Number: $10 \mathrm{Cl} 524 \quad$ Sampled: 03/18/05
Report Number: $10 \mathrm{Cl} 524 \quad$ Received: 03/18/05

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 005
Report Number: $10 C 1524$
Sampled: 03/18/05
Received: 03/18/05

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
EPA 160.2	Water	\mathbf{X}	\mathbf{X}
EPA 200.8	Water	\mathbf{X}	\mathbf{X}
EPA 245.1	Water	\mathbf{X}	\mathbf{X}
EPA 300.0	Water	\mathbf{X}	\mathbf{X}
EPA 413.1	Water	\mathbf{X}	\mathbf{X}
SM2540C	Water	\mathbf{X}	\mathbf{X}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical California Cert \#1640

1104 Windfield Way - El Dorado Hills, CA 95762
Analysis Performed: 1613-Dioxin-HR
Samples: 1OC1524-01
Analysis Performed: EDD + Level 4
Samples: 10C1524.01

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper
Project Manager

March 28,2005

MWH-Pasadena/ Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention: Bronwyn Kelly
Project: Routine Outfall 005
Sampled: 03/18/05
Del Mar Analytical Number: IOC1524

Dear Ms. Kelly:
Alta Analytical Laboratory performed the EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans analysis for the project referenced above. Please use the following cross-reference table when reviewing your results.

MWH ID	DEL MAR ID	ALTA ID
Routine Outfall 005	IOC1524-01	$25940-001$

Attached is the original report from the subcontract laboratory. If you have any questions or require further assistance, please do not hesitate to contact me at (949) 261-1022 at extension 215.

Sincerely yours,
DEL MAR ANALYTICAL

Michele Harper
Project Manager

March 24, 2005

Alta Project I.D.: 25940

Ms. Michele Harper
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Dear Ms. Harper,
Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on March 22, 2005 under your Project Name "IOC1524". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Martha M. Maier
Director of HRMS Services

Alta Analytical Laboratory Inc.

Section I: Sample Inventory Report

Date Received: 3/22/2005

Alta Lab.ID

25940-001

Clieat Sample ID

IOC1524-01

SECTION II

APPENDIX

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank.
D The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.
I Chemical Interference
J The amount detected is below the Lower Calibration Limit of the instrument.
P Homologue totals include any coplanar PCBs detected at concentrations less than the reporting limit.
*
See Cover Letter
Conc. Concentration
DL Sample-specific estimated detection limit
MDL The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration
NA Not applicable
RL Reporting Limit - concentrations that correspond to low calibration point
ND Not Detected
TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

The control limits are "interim limits only" until in-house limits are utilized.

NELAP - (Primary AA: California, Certificate No. 02102CA)
Department of the Navy
U.S. Army Corps of Engineers
U.S. EPA Region 5

Bureau of Reclamation - Mid-Pacific Region - (MP-470, Res-1.10)
Commonwealth of Kentucky - (Certificate No. 90063)
Commonwealth of Virginia - (Certificate No. 00013)
State of Alaska, Department of Environmental Conservation - (Certificate No. OS-00197)
State of Arizona - (Certificate No. AZ0639)
State of Arkansas, Department of Health - (Approval granted through CA certification)
State of Arkansas, Department of Environmental Quality
State of California - (Certificate No. 1640)
State of Colorado
State of Connecticut - (Certificate No. PH-0182)
State of Florida - (Certificate No. 87456)
State of Louisiana, Department of Health and Hospitals - (Certificate No. LA000014)
State of Louisiana, Department of Environmental Quality
State of Maine
State of Michigan (Certificate No. 81178087)
State of Mississippi - (Approval granted through CA certification)
State of Nevada- (Certificate No. CA413)
State of New Jersey - (Certificate No, CA003)
State of New York, Department of Health - (Certificate No. 11411)
State of North Carolina - (Certification No. 06700)
State of North Dakota, Department of Health - (Certificate No. R-078)
State of New Mexico
State of Oklahoma - (D9919)
State of Oregon - (Certificate No. CA413)
State of Pennsylvania - (Certificate No. 68-490)
State of South Carolina - (Certificate No. 87002001)
State of Tennessee - (Certificate No. 02996)
State of Texas - (Certificate No. TX247-1000A
State of Utah - (Certificate No. E-201)
State of Washington - (Certification No. C091)
State of Wisconsin - (Certificate No. 998036160)
State of Wyoming - (USEPA Region 8 Ref: 8TMS-Q)

SAMPLE LOGAN CHECKLIST

ALTA Project No.:

25940

Comments:

SUBCONTRACT ORDER - PROJECT \# IOC1524

| SENDING LABORATORY: |
| :--- | :--- |
| Del Mar Analytical, Irvine |
| 17461 Derian Avenue. Suite 100 |
| Irvine, CA. 92614 |
| Phone: (949) 261-1022 |
| Fax: (949) 261-1228. |
| Project Manager: Michele Harper |

Alta Analytical
1104 Winfield Way
El Dorado Hills, CA 95762
Phone: (910) 933-1640
Fax: (916) 933-0940

Standard TAT is requested unless specific due date is requested \Rightarrow Due Date: \qquad Initials: \qquad

$25940 \quad 2.9^{\circ}$

APPENDIX G

Section 32

March Outfall 006
AMEC Data Validation Reports
Del Mar Analytical Laboratory Reports

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Alta
Reviewer K. Shadowlight
Analysis/Method Dioxins

Analysis/Method Dioxins

Package ID T711DF34
Task Order 313150010
SDG No. Multiple
No. of Analyses 4

Date: March 21, 2005
Reviayer's Signature
Shadnfat

ACTION TTEMS

1. Case Narrative

 Deficiencies2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, e.g,
Holding Times
GC/MS Tune/Inst. Performance
Calibration
Method blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and
Quantitation
System Performance
COMMENTS ${ }^{\text {b }}$

[^6]
amec ${ }^{\theta}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: DIOXINS/FURANS SAMPLE DELIVERY GROUPS: Multiple SDGs

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: B. McIlvaine
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 4
No. of Reanalyses/Dilutions: 0
Reviewer: K. Shadowlight
Date of Review: March 21, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:
DATA VALIDATION REPORT	NPDES

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Alta)	Matrix	COC Method
Alpha Outfall 012	IOC0195-01	$25837-001$	water	1613
Outfall 001	IOC0515-01	$25849-001$	water	1613
Outfall 006	IOC0452-01	$25851-001$	water	1613
Outfall 008	IOC0454-01	$25850-001$	water	1613

	Project: DATA VALIDATION REPORT

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

All of the samples in these SDGs were received at Del Mar Analytical within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The samples were shipped to Alta for dioxin/furan analyses and were received below the temperature limits at $1.3^{\circ} \mathrm{C}$ and $1.8^{\circ} \mathrm{C}$; however, as the samples were not noted to have been frozen or damaged, no qualifications were required. According to the laboratory login sheets, all samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COCs and transfer COCs were legible and signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. As the samples were couriered directly to Del Mar Analytical, custody seals were not required. The coolers received by Alta had custody seals present and intact; however, custody seals were not present on the sample containers. The EPA IDs were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and $2,3,7,8$-TCDD reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

	Project:
DATA VALIDATION REPORT	NPDES
SDG No.:	Multiple

2.3 CALIBRATION

2.3.1 Initial Calibration

There was one initial calibration, analyzed 08/30/04. The calibration consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with $\%$ RSDs $\leq 20 \%$ for the 15 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of $\%$ Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standards instead of being analyzed separately, as noted in section 2.2 . 1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank ($6593-\mathrm{MB} 001$) was extracted and analyzed with the samples in these SDGs. Total TCDF was reported at $.4 \mathrm{pg} / \mathrm{L}$ and target compound $1,2,3,6,7,8-\mathrm{HxCDF}$ was reported as an EMPC. There were no other detects reported in the method blank and neither of the target compounds reported in the method blank was reported in the associated samples. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One Ongoing Precision Recovery (OPR) sample (6593-OPR001) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2.7.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for these SDGs.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any reported EMPC was qualified as an estimated nondetect, "UJ." Any detects below the lower method calibration level (MCL) were qualified as estimated, " j ;" however, as Alta analyzed an additional calibration standard, not all results below the method calibration level were appropriately qualified by the laboratory. These results were qualified as estimated, "JJ" by the reviewer. No further qualifications were required.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental	Package ID	T711MT47
550 South Wadsworth Boulevard	Task Order	313150010
Suite 500	SDG No.	Multiple
Lakewood, CO 80226	No. of Analyses	5
Laboratory Del Mar	Date: 03/29/0	
Reviewer P. Meeks	Reviewer's S	gnature
Analysis/Method Metals	P. Mels	

ACTION ITEMS ${ }^{*}$

1. Case Narrative Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy Deliverables
6. Deviations from Analysis Protocol, e.g.,

Qualifications were applied for detects below the reporting limit.

Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identifica-
1
and Quantitation
System Performance
\qquad
\qquad
\qquad
\qquad

* Subcontracted analytical laboratory is not meeting contract and/or method requirements.
${ }^{6}$ Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: METALS
SAMPLE DELIVERY GROUPS. IOC0449, IOC0450, IOC0451, IOC0452 \& IOC0453

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOC0449, IOC0450, IOC0451, IOC0452 \& IOC0453
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Metals
QC Level Level IV
No. of Samples: 5
No. of Reanalyses/Dilutions: 0
Reviewer: P. Meeks
Date of Review: March 29, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 003	Outfall 003	IOC0449-01	water	ILM04
Outfall 004	Outfall 004	IOC0450-01	water	LLM04
Outfall 005	Outfall 005	IOC0451-01	water	ILM04
Outfall 006	Outfall 006	$10 C 0452-01$	water	ILM04
Outfall 007	Outfall 007	$10 C 0453-01$	water	ILM04

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel. The COCs accounted for the samples and analyses presented in these SDGs. Duplicate samples were submitted for all the samples in these SDGs; however, duplicate analyses were not required. No sample qualifications were required.

2.1.3 Holding Times

The dates of collection recorded on the COCs and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICPMS metals. No qualifications were required.

2.2 ICP-MS TUNING

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. All $\%$ RSDs were less than 5%. The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, $90-110 \%$ for ICP/MS metals. The reporting limit check standards were recovered within the AMEC control limits of 70-130\%. No sample qualifications were required.

2.4 BLANKS

Lead was not detected in any of the blanks associated with these SDGs. No qualifications were required due to the method and calibration blank results.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB standards were not analyzed in association with the samples in this SDG; therefore, no assessment can be made with respect to this criterion.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP/MS LCS sample was identified as 5C08106-BS1 and the LCS result on the summary forms and in the raw data was within the laboratory-established ICP/MS control limits of $85-115 \%$. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MS/MSD or laboratory duplicate analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

2.8 MATRIX SPIKE

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on the LCS result.

2.9 FURNACE ATOMIC ABSORPTION QC

Fumace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

2.10 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2.11 INTERNAL STANDARDS PERFORMANCE

The ICP-MS internal standard recoveries for the site samples and associated QC sample analyses were within the $60-125 \%$ control limits and no qualifications were required.

2.12 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Lead detected below the reporting limit was qualified as estimated, "JJ." No further qualifications were required.

2.13 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.13.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site samples.

Project ID: Routine Outfall 006

Routine Outfall 006
Report Number: 1000452

Sampled: 03,04i05
Received: 03/04/05

DRAFT: METALS

AMEC VALIDATED

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 006

Sampled: 03/04/05
Received: 03/04/05
Issued: 03/25/05 11:10

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
1OC0452-01

CLIENT ID
Outfall 006

MATRIX
Water

Reviewed By:

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 006	
300 North Lake Avenue, Suite 1200		Sampled: 03/04/05
Pasadena, CA 91101	Report Number: $10 C 0452$	Received: 03/04/05
Attention: Bronwyn Kelly		

METALS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OC0452-01 (Outfall 006 - Water)									
Reporting Units: ug/									
Antimony	EPA 200.8	$5 \mathrm{C08106}$	0.18	2.0	0.27	1	03/08/05	03/09/05	J
Cadmium	EPA 200.8	$5 \mathrm{C08106}$	0.015	1.0	0.048	1	03/08/05	03/09/05	J
Copper	EPA 200.8	$5 \mathrm{C08106}$	0.49	2.0	4.6	1	03/08/05	03/09/05	
Lead	EPA 200.8	5 C 08106	0.13	1.0	1.7	1	03/08/05	03/09/05	
Mercury	EPA 245.1	$5 \mathrm{C09049}$	0.063	0.20	ND	1	03/09/05	03/09/05	

MWH-Pasadena/Boeing	Project ID: Routine Outfall 006	
300 North Lake Avenue, Suite 1200		Sampled: 03/04/05
Pasadena, CA 91101	Report Number: $10 C 0452$	Received: 03/04/05
Attention: Bronwyn Kelly		

INORGANICS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OC0452-01 (Outfall 006 - Water) - cont. Reporting Units: mg/l									
Chloride	EPA 300.0	$5 \mathrm{C04107}$	0.26	0.50	5.0	1	03/04/05	03/05/05	
Nitrate/Nitrite-N	EPA 300.0	5 C 04107	0.11	0.11	1.9	1	03/04/05	03/05/05	
Oll \& Grease	EPA 413.1	$5 \mathrm{C09091}$	0.94	5.0	0.96	1	03/09/05	03/09/05	B, J
Sulfate	EPA 300.0	$5 \mathrm{C04107}$	0.18	0.50	7.3	1	03/04/05	03/05/05	
Total Dissolved Solids	SM2540C	$5 \mathrm{C08110}$	10	10	170	1	03/08/05	03/08/05	
Total Suspended Solids	EPA 160.2	$5 \mathrm{C07073}$	10	10	48	1	03/07/05	03/07/05	

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly	Project ID: Routine Outfall 006

MWH-Pasadena/Boeing	Project ID: Routine Outfall 006	
300 North Lake Avenue, Suite 1200		Sampled: 03/04/05
Pasadena, CA 91101	Report Number: $10 C 0452$	Received: 03/04/05
Attention: Bronwyn Kelly		

METHOD BLANKOOC DATA

METALS

		Reporting			Spike	Source	\%REC		RPD	Data	
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Blank Analyzed: 03/09/2005 (5C08106-BLK1)

Antimony	ND	2.0	0.18	ug/l			
Cadmium	ND	1.0	0.015	ug/I			
Copper	ND	2.0	0.49	ug/l			
Lead	ND	1.0	0.13	ug/l			
LCS Analyzed: 03/09/2005 (5C08106-BS1)							
Antimony	90.7	2.0	0.18	ug/l	80.0	113	85-115
Cadmium	86.3	1.0	0.015	ug/l	80.0	108	85-115
Copper	78.1	2.0	0.49	ug/l	80.0	98	85-115
Lead	84.0	1.0	0.13	ug/l	80.0	105	85-115

Matrix Spike Analyzed: 03/09/2005 (5C08106-MS1)			Source: 10C0448-01							
Antimony	92.4	2.0	0.18	ugl	80.0	0.37	115	70-130		
Cadmium	81.1	1.0	0.015	ug/	80.0	0.086	101	70-130		
Copper	79.4	2.0	0.49	ug/l	80.0	3.0	96	70-130		
Lead	79.6	1.0	0.13	ug/	80.0	0.19	99	70-130		
Matrix Spike Dup Analyzed: 03/09/2005 (5C08106-MSD1)			Source: 10C0448-01							
Antimony	91.3	2.0	0.18	ug/	80.0	0.37	114	70-130	1	20
Cadmium	80.9	1.0	0.015	ug/	80.0	0.086	101	70-130	0	20
Copper	78.7	2.0	0.49	ug/	80.0	3.0	95	70-130	1	20
Lead	78.6	1.0	0.13	ug/	80.0	0.19	98	70-130	1	20

Batch: 5C09049 Extracted: 03/09/05

Blank Analyzed: 03/09/2005 (5C09049-BLK1)

Mercury	ND	0.20	0.063	$u g / l$

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
MWH-Pasadena/Boeing Project ID: Routine Outfall 006

300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 006

Report Number: 10 CO 045

Sampled: 03/04/05
Received: 03/04/05

METHOD BLANKIOC DATA

METALS

LCS Analyzed: 03/09/2005 (5C09049-BS1)

Mercury	7.82	0.20	0.063	ug/	8.00		98	85-115	
Matrix Spike Analyzed: 03/09/2005 (5C09049-MS1)			Source: 10C0451-01						
Mercury	8.31	0.20	0.063	ug/	8.00	ND	104	70-130	
Matrix Spike Dup Analyzed: 03/09/2005 (5C09049-MSD1)			Source: 10C0451-01						
Mercury	8.23	0.20	0.063	ug/	8.00	ND	103	70-130	1

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 006
Report Number: IOC0452

Sampled: 03/04/05
Received: 03/04/05

METHOD BLANKIOC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C04107 Extracted: 03/04/05											
Blank Analyzed: 03/04/2005 (5C04107-BLK1)											
Chioride	ND	0.50	0.26	mg/							
Nitrate/Nitrite-N	ND	0.11	0.11	mg / l							
Sulfate	ND	0.50	0.18	mg / l							
LCS Analyzed: 03/04/2005 (5C04107-BS1)											
Chloride	5.16	0.50	0.26	mg / l	5.00		103	90-110			M-3
Sulfate	10.4	0.50	0.18	mg/	10.0		104	90-110			M-3

Batch: 5C07073 Extracted: 03/07/05

Blank Analyzed: 03/07/2005 (5C07073-BLK1)
Total Suspended Solids ND
LCS Analyzed, 03/07/2005 (5C07073-BS1)
Total Suspended Solids $\quad 980$
Duplicate Analyzed: 03/07/2005 (5C07073-DUP1)
Total Suspended Solids ND
Batch: 5C08110 Extracted: 03/08/05
Blank Analyzed: 03/08/2005 (5C08110-BLK1)
Total Dissolved Solids ND

LCS Analyzed: 03/08/2005 (5C08110-BS1)
Total Dissolved Solids 976
10
$10 \quad 10$
$10 \quad 10$
mg/
Source: 1OC0451-01
$\mathrm{mg} /$
1000
ND
.
$\left.\begin{array}{lll}\text { MWH-Pasadena/Boeing } & \text { Project ID: Routine Outfall } 006 & \\ \text { 300 North Lake Avenue, Suite 1200 } & & \begin{array}{l}\text { Sampled: } \\ \text { 03/04/05 } \\ \text { Rasadena, CA 91101 }\end{array} \\ \text { Received: 03/04/05 }\end{array}\right]$.

METHODBLANKIGC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers	
Batch: 5C08110 Extracted: 03/08/05											
\therefore.											
Duplicate Analyzed: 03/08/2005 (5C08110-DUP1)	Source: 1OC0454-01										
Total Dissoived Solids 187	10	10	mg / l	180				4	10		
Batch: 5C09091. Extracted; 03/09/05											
Blank Analyzed: 03/09/2005 (5C09091-BLK1)											
Oil \& Grease 1.70	5.0	0.94	mg / l								J
LCS Analyzed: 03/09/2005 (5C09091-BS1)										M-NR1	
Oil \& Grease 22.4	5.0	0.94	mg / l	20.0		112	65-120				
LCS Dup Analyzed: 03/09/2005 (5C09091-BSD1)											
Oil \& Grease 18.8	5.0	0.94	mg / l	20.0		94	65-120	17	20		

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

```
Project ID: Routine Outfall 006
Report Number: 10 C 0452
Sampled: 03/04/05
Received: 03/04/05
```


Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte			Compliance	
IOC0452-01	413.1 Oil and Grease	Oil \& Grease	mg / l	0.96	5.0	15
IOC0452-01	Antimony-200.8	Antimony	ug / l	0.27	2.0	6.00
IOC0452-01	Cadmium-200.8	Cadmium	ug / l	0.048	1.0	4.00
IOC0452-01	Chloride - 300.0	Chloride	mg / l	5.00	0.50	150
IOC0452-01	Copper-200.8	Copper	ug / l	4.60	2.0	14
IOC0452-01	Mercury -245.1	Mercury	ug / l	0.041	0.20	0.20
IOC0452-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	$\mathrm{mg} / 1$	1.90	0.11	10.00
IOC0452-01	Sulfate-300.0	Sulfate	mg / l	7.30	0.50	250
IOC0452-01	TDS - SM 2540C	Total Dissolved Solids	mg / l	170	10	850

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

```
Project ID: Routine Outfall 006
Report Number: \(10 C 0452\)
```


DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 006
Report Number: IOC0452 Received: 03/04/05

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
EPA 160.2	Water	\mathbf{X}	\mathbf{X}
EPA 200.8	Water	\mathbf{X}	\mathbf{X}
EPA 245.1	Water	\mathbf{X}	\mathbf{X}
EPA 300.0	Water	\mathbf{X}	\mathbf{X}
EPA 413.1	Water	\mathbf{X}	\mathbf{X}
SM2540C	Water	\mathbf{X}	\mathbf{X}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical California Cert \#1640

1104 Windfield Way - El Dorado Hills, CA 95762
Analysis Performed: 1613-Dioxin-HR
Samples: IOC0452-01
Analysis Performed: EDD + Level 4
Samples, IOC0452-01

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

March 23,2005

MWH-Pasadena/ Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention: Bronwyn Kelly

Project:	Routine Outfall 006
	Sampled: 03/04/05
	Del Mar Analytical Number: IOC0452

Dear Ms. Kelly:

Alta Analytical Laboratory performed the EPA Method 1613 Dioxin analysis for the project referenced above. Please use the following cross-reference table when reviewing your results.

MWH ID	DEL MAR ID	Alta ID
Outfall 006	IOC0452-01	$25851-001$

Attached is the original report from the subcontract laboratory. If you have any questions or require further assistance, please do not hesitate to contact me at (949) 261-1022 at extension 215.

Sincerely yours,
DEL MAR ANALYTICAL

Michele Harper
Project Manager

March 16, 2005

Alta Project I.D.: 25851

Ms. Michele Harper
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614

Dear Ms. Harper,
Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on March 08,2005 under your Project Name "IOC0452". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Neculle heorer

Martha M. Maier
Director of HRMS Services

Alta Analytical Laboratory Inc.

Section I: Sample Inventory Report
Date Received: 3/8/2005

Alta Lab. ID
25851-001

Client Sanule ID
IOC0452-01

SECTION II

$$
\text { Approved By: } \quad \text { Martha M. Maier } \quad \text { 16-Mar-2005 12:14 }
$$

APPENDIX

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank.
D The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.

I

J The amount detected is below the Lower Calibration Limit of the instrument.
Chemical Interference
*
See Cover Letter
Conc. Concentration
DL Sample-specific estimated detection limit
MDL The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration
NA Not applicable
RL Reporting Limit - concentrations that corresponds to low calibration point
ND Not Detected
TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

The control limits are "interim limits only" until in-house limits are utilized.

NELAP - (Primary AA: California, Certificate No. 02102CA)
Department of the Navy
U.S. Army Corps of Engineers
U.S. EPA Region 5

Bureau of Reclamation - Mid-Pacific Region - (MP-470, Res-1.10)
Commonwealth of Kentucky - (Certificate No. 90063)
Commonwealth of Virginia - (Certificate No. 00013)
State of Alaska, Department of Environmental Conservation - (Certificate No. OS-00197)
State of Arizona - (Certificate No. AZ0639)
State of Arkansas, Department of Health - (Approval granted through CA certification)
State of Arkansas, Department of Environmental Quality
State of California - (Certificate No. 1640)
State of Colorado
State of Connecticut - (Certificate No. PH-0182)
State of Florida - (Certificate No. 87456)
State of Louisiana, Department of Health and Hospitals - (Certificate No. LA000014)
State of Louisiana, Department of Environmental Quality
State of Maine
State of Michigan (Certificate No. 81178087)
State of Mississippi - (Approval granted through CA certification)
State of Nevada - (Certificate No. CA413)
State of New Jersey - (Certificate No. CA003)
State of New York, Department of Health - (Certificate No. 11411)
State of North Carolina - (Certification No. 06700)
State of North Dakota, Department of Health - (Certificate No. R-078)
State of New Mexico
State of Oklahoma - (D9919)
State of Oregon - (Certificate No. CA413)
State of Pennsylvania - (Certificate No. 68-490)
State of South Carolina - (Certificate No. 87002001)
State of Tennessee - (Certificate No. 02996)
State of Texas - (Certificate No. TX247-1000A
State of Utah - (Certificate No. E-201)
State of Washington - (Certification No. C091)
State of Wisconsin - (Certificate No. 998036160)
State of Wyoming - (USEPA Region 8 Ref: 8TMS-Q)

Puncm 264-4ter
Mn(en) 300-mat

SUBCONTRACT ORDER - PROJECT \# IOC0452

SENDNGG LABORATORY:
Del Mar Analytical, Irvine
17461 Derian Avenue: Suite 100
Irvine, CA 92614
Phone: (949) 261-1022
Fax: (949) 261-1228
Project Manager: Michele Harper

RECEIVING LABORATORY:
Alta Analytical
1104 Windfield Way
EI Dordo Hills, CA 95762
Phone: 2516) $933-1640$
Fax: (916) $933-0940$

Standard TAT is requested unless spectic due date is requested m Due Date: \qquad Initiale: \qquad

SAMPLE ENTEGRITY:								
All contriocers intect: Custody Secla Premat:	$\begin{aligned} & \square \mathrm{Y}_{\mathrm{m}} \\ & \mathbf{Y}_{\boldsymbol{m}} \end{aligned}$	$\begin{aligned} \text { No } \\ \text { No } \end{aligned}$	Smple iblediCOC aproe: Smpinof Precerved Proparty:	$\begin{array}{ll} \square \\ \mathrm{Y}_{\omega} \\ \mathrm{X}_{\omega} \end{array}$	$\begin{aligned} & \mathbf{a n o}_{\mathrm{No}} \\ & \mathrm{a}_{\mathrm{o}} \end{aligned}$	Smples Recavivo On loce: Suuple Rexelved at (comp):	0 Ya	口 No

SAMPLE LOGAN CHECKLIST

ALTA Project No:: 25851 \qquad

Comments:

(

SUBCONTRACT ORDER - PROJECT \# IOC0452

Samplor $=$ P.. .

$\mathrm{MH}_{3 / 1 / 05}$

\qquad
,
,
1
\square
\qquad
\qquad

\square

\forall

\% \qquad
\square
,
,
,
\%

V \qquad + \quad,
 \qquad

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental	Package ID	T711DF37
550 South Wadsworth Boulevard	Task Order	313150010
Suite 500	SDG No.	Multiple
Lakewood, CO 80226	No. of Analyses	10
Laboratory Alta	Date: April 4	2005
Reviewer H. Chang	Reviewer's S	gnature
Analysis/Method Dioxin\&Furans/1613	alch	

amec ${ }^{\theta}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: DIOXINS/FURANS SAMPLE DELIVERY GROUPS: Multiple SDGs

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 10
No. of Reanalyses/Dilutions: 0
Reviewer: H. Chang
Date of Review: April 4, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project: NPDES
DATA VALIDATION REPORT	SDG No.: Multiple

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Alta)	Matrix	COC Method
Outfall 002	IOC1521-01	$25935-001$	water	1613
Outfall 011	IOC1523-01	$25936-001$	water	1613
Outfall 005	IOC1524-01	$25940-001$	water	1613
Outfall 006	IOC1525-01	$25937-001$	water	1613
Outfall 011 Composite	IOC1526-01	$25938-001$	water	1613
Outfall 001	IOC1561-01	$25941-001$	water	1613
Outfall 004	IOC1563-01	$25939-001$	water	1613
Outfall 008	IOC1564-01	$25942-001$	water	1613
Outfall 003	IOC1565-01	$25943-001$	water	1613
Outfall 009	IOC1566-01	$25944-001$	water	1613

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

Samples Outfall 001, Outfall 004, and Outfall 008 were received at Del Mar Analytical outside the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. Due to non-volatile nature of the target compounds, no qualifications were required. The other samples were received with cooler temperatures within the limits. According to the laboratory login sheets, all samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COCs and transfer COCs were legible and signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. As the samples were couriered directly to Del Mar Analytical, custody seals were not required. The coolers received by Alta had custody seals present and intact. The EPA IDs were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and $2,3,7,8$-TCDD reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2.3 CALIBRATION

2.3.1 Initial Calibration

There was one initial calibration, analyzed 08/30/04. The calibration consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with $\%$ RSDs $\leq 20 \%$ for the 16 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standards instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank (06624 MB001) was extracted and analyzed with the samples in these SDGs. There were no target compound detects reported in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One Ongoing Precision Recovery (OPR) sample (0 6624_OPR001) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

	Project:
	NPDES
DATA VALIDATION REPORT	SDG No.:

2.7.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for these SDGs.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any reported EMPC was qualified as an estimated nondetect, "UJ", Any detects below the lower method calibration level (MCL) were qualified as estimated, "J." No further qualifications were required.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental	Package ID T711MT57
550 South Wadsworth Boulevard	Task Order 313150010
Suite 500	SDG No. Multiple
Lakewood, CO 80226	No. of Analyses 5
Laboratory Del Mar	Date: 03/30/05
Reviewer P. Meeks	Repiewer's Signature
Analysis/Method Metals	+10.S

ACIION ITEMS

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Qualifications applied for detects below the reporting limit and antimony MDL.s

Analysis Protocol, e.g., were raised and results estimated due to CCB detects.

Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Intermal Standard
Performance
Compound Identification and Quantitation
System Performance

COMMENTS ${ }^{\text { }}$, \quad 納

- Subcontracted analytical laboratory is not meeting contract and/or method requirements.
- Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

amec ${ }^{\theta}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: METALS
SAMPLE DELIVERY GROUPS: IOC1524, IOC1525, IOC1564, IOC1565, \& IOC1566

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOC1524, IOC1525, IOCl564, IOC1565, \& IOC1566
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Metals
QC Level: Level IV
No. of Samples: 5
No. of Reanalyses/Dilutions: 0
Reviewer: P. Meeks
Date of Review: March 30, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 005	Outfall 005	IOC1524-01	water	ILM04
Outfall 006	Outfall 006	IOC1525-01	water	ILM04
Outfall 008	Outfall 008	IOC1564-01	water	ILM04
Outfall 003	Outfall 003	IOC1565-01	water	ILM04
Outfall 009	Outfall 009	IOC1566-01	water	ILM04

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

Outfall 008 was received above the temperature limit at $8^{\circ} \mathrm{C}$; however, as the sample had insufficient time to cool prior to receipt at the laboratory, no qualifications were required. The remaining samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel. The COCs accounted for the samples and analyses presented in these SDGs. Duplicate samples were submitted for the samples in these SDGs; however, duplicate analyses were not required. No sample qualifications were required.

2.1.3 Holding Times

The dates of collection recorded on the COCs and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS metals and 28 days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. All $\%$ RSDs were less than 5%. The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, $90-110 \%$ for ICP/MS metals and $80-120 \%$ for mercury. The reporting limit check standards were recovered within the AMEC control limits of 70$130 \%$. No sample qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2.4 BLANKS

Antimony was detected in every CCB in the analytical sequence in which Outfall 008 and Outfall 009 were analyzed. The detects ranged from 0.484 to $0.551 \mu \mathrm{~g} / \mathrm{L}$ and antimony was detected in Outfall 008 and Outfall 009 at concentrations below these values. The CCB detects indicated the laboratory could not detect antimony at the reported MDL. The reviewer raised the antimony MDL for Outfall 008 and Outfall 009 to the highest level of interference reported, $0.55 \mu \mathrm{~g} / \mathrm{L}$ and qualified the result as estimated, "UJ." No further qualifications were required due to the method and calibration blank results.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were included in the raw data for the ICP-MS analyses. Results were not provided for spiked interferents sulfur, phosphorus, carbon, and chloride, and antimony and lead were not spiked into the ICSAB solution. Copper and cadmium were detected above the applicable reporting limit in the ICSA. Aluminum was recovered below the control limit in the all the ICSA and ICSAB analyses; however, as aluminum was not reported in the site samples, no qualifications were required. The validator reviewed the raw data for the site sample ICP/MS analyses for the level of reported interferents, $\mathrm{Al}, \mathrm{Ca}, \mathrm{Fe}$, and Mg , and determined that the levels of reported interferents were not high enough to cause matrix affects. No assessment could be made with respect to possible interference from sulfur, phosphorus, carbon, and chloride. No qualifications were required.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP/MS LCS samples were identified as 5 C21088-BS1 and 5C19038-BS1. The mercury LCS sample was identified as 5C21082-BS1. The LCS results on the summary forms and in the raw data were within the laboratory-established ICP/MS and mercury control limits of $85-115 \%$. No qualifications were required.

2.7 LABORATORY DUPLICATES

MS/MSD analyses were performed on Outfall 005 for lead only. The RPD was wthin the control limit of 20% and no qualifications were required.

2.8 MATRIX SPIKE

MS/MSD analyses were performed on Outfall 005 for lead only. Both recoveries were within the AMEC control limits of $75-125 \%$ and no qualifications were required. For the remaining analytes, method accuracy was evaluated based on LCS results.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2.9 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

2.10 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

2.11 INTERNAL STANDARDS PERFORMANCE

The ICP-MS internal standard recoveries for the site samples and associated QC sample analyses were within the $60-125 \%$ control limits and no qualifications were required.

2.12 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit were qualified as estimated, "J." No further qualifications were required.

2.13 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.13.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site samples.

e Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Ourfall 006
Report Vumber: $10 C 1525$

Sampled: 0318.05
Received: 031805

DRAFT: METALS

Analyte Method Batch Limit Limit Resorting Smple Dilution Date Factorextracted Analyzed Qualifiers

Sample ID: 1OC1525-01 (DRAFT: Outfall 006. Water) Reporting Units: ugA
Lead
EPA $200.8 \quad 5 C 19038 \quad 0.13$
1.0
1.2

AMEC VAMDATED

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 006

Sampled: 03/18/05
Received: 03/18/05
Issued: 03/31/05 09:26

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.
SAMPLE CROSS REFERENCE
SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
1OC1525-01

CLIENT ID
Outfall 006

MATRIX
Water

Reviewed By:

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager 9494 Chesapeake Dr., Suite 805, Sen Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South S1st St, Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. \#3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly	Project ID: Routine Outfall 006								
	Report Number:		10C1525			$\begin{array}{rr}\text { Sampled: } & 03 / 18 / 05 \\ \text { Received: } & 03 / 18 / 05\end{array}$			
METALS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOC1525-01 (Outfall 006 - Water)									
Reporting Units: ug/									
Antimony	EPA 200.8	8 5C19038	0.18	2.0	1.1	1	03/19/05	03/21/05	B, J
Cadmium	EPA 200.8	8 5C19038	0.015	1.0	0.055	1	03/19/05	03/21/05	B, J
Copper	EPA 200.8	8 5C19038	0.49	2.0	5.2	1	03/19/05	03/21/05	
Lead	EPA 200.8	8 5C19038	0.13	1.0	1.2	1	03/19/05	03/21/05	
Mercury	EPA 245.1	5C19029	0.063	0.20	ND	1	03/19/05	03/19/05	

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 006	
300 North Lake Avenue, Suite 1200		Sampled: $03 / 18 / 05$
Pasadena, CA 91101	Report Number: $10 C 1525$	Received: $03 / 18 / 05$
Attention: Bronwyn Kelly		

Attention: Bronwyn Kelly

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OC1525-01 (Outfall 006 - Water) - cont. Reporting Units: mg/									
Chloride	EPA 300.0	5C18104	0.26	0.50	3.2	1	03/18/05	03/19/05	
Nitrate/Nitrite-N	EPA 300.0	5 C 18104	0.072	0.11	1.7	1	03/18/05	03/19/05	
Oil \& Grease	EPA 413.1	5C21062	0.94	5.0	ND	1	03/21/05	03/21/05	
Sulfate	EPA 300.0	5C18104	0.18	0.50	6.8	1	03/18/05	03/19/05	
Total Dissolved Solids	SM2540C	5C21073	10	10	140	1	03/21/05	03/21/05	
Total Suspended Solids	EPA 160.2	5C21068	10	10	ND	1	03/21/05	03/21/05	

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 006
Report Number: $10 C 1525$

Sampled: 03/18/05
Received: 03/18/05

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 006 (10C1525-01) - Water EPA 300.0	2	$03 / 18 / 200514: 21$	$03 / 18 / 2005$	$20: 15$	$03 / 18 / 2005$

[^7]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

```
Project ID: Routine Outfall 006
Report Number: 10 C 1525
```

Sampled: 03/18/05
Received: 03/18/05

MITHIOD BLANKKOC DATA

METALS

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 006
Report Number: 10 Cl 1525

Sampled: 03/18/05
Received: 03/18/05

METHOD BLANKIOC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C19038 Extracted: 03/19/05											

Matrix Spike Dup Analyzed: 03/21/2005 (5C19038-MSD1)			Source: 10C1524-01							
Antimony	82.6	2.0	0.18	ug/l	80.0	0.64	102	70-130	2	20
Cadmium	78.6	1.0	0.015	ug/	80.0	0.034	98	70-130	2	20
Copper	81.9	2.0	0.49	ug/	80.0	3.3	98	70-130	3	20
Lead	81.9	1.0	0.13	ug/1	80.0	0.50	102	70-130	1	20

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 006
Report Number: IOC1525

Sampled: 03/18/05
Received: 03/18/05

MEIHOD BLANKEC DATA

INORGANICS

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 006
Report Number: IOC1525

- METHOD BLANKIQC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C21068 Extracted: 03/21/05										
Blank Analyzed: 03/21/2005 (5C21068-BLK1)										
Total Suspended Solids ND	10	10	mg/							
LCS Analyzed: 03/21/2005 (5C21068-BS1)										
Total Suspended Solids 942	10	10	mg / l	1000		94	85-115			
Duplicate Analyzed: 03/21/2005 (5C21068-DUP1)				Sou	ce: IOC1	566-01				
Total Suspended Solids ND	10	10	$\mathrm{mg} / 1$		ND				10	
Batch: 5C21073 Extracted: 03/21/05										
Blank Analyzed: 03/21/2005 (5C21073-BLK1)										
Total Dissolved Solids ND	10	10	$\mathrm{mg} / 1$							
LCS Analyzed: 03/21/2005 (5C21073-BS1)										
Total Dissolved Solids 968	10	10	mg / l	1000		97	90-110			
Duplicate Analyzed: 03/21/2005 (5C21073-DUP1)				Sour	e: 10C15	66-01				
Total Dissolved Solids 320	10	10	mg / l					6	10	

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

Sampled: 03/18/05
Received: 03/18/05

MWH-Pasadena/Boeing	Project ID: Routine Outfall 006	
300 North Lake Avenue, Suite 1200		Sampled: 03/18/05
Pasadena, CA 91101	Report Number: $10 C 1525$	Received: 03/18/05

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
IOC1525-01	413.1 Oil and Grease	Oil \& Grease	mg/l	0	5.0	15
10C1525-01	Antimony-200.8	Antimony	ug/l	1.10	2.0	6.00
10C1525-01	Cadmium-200.8	Cadmium	ug/l	0.055	1.0	4.00
10C1525-01	Chloride - 300.0	Chloride	$\mathrm{mg} / 1$	3.20	0.50	150
10C1525-01	Copper-200.8	Copper	ug/l	5.20	2.0	14
10C1525-01	Mercury - 245.1	Mercury	ug/l	0.0075	0.20	0.20
IOC1525-01	Nitrogen, $\mathrm{NO} 3+\mathrm{NO} 2-\mathrm{N}$	Nitrate/Nitrite-N	mg / l	1.70	0.11	10.00
10C1525-01	Sulfate-300.0	Sulfate	mg / l	6.80	0.50	250
1OC1525-01	TDS - SM 2540C	Total Dissolved Solids	mg / l	140	10	850

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

Attention: Bronwyn Kelly

Project ID: Routine Outfall 006
$\begin{array}{ll}\text { Report Number: } 10 \mathrm{C} 1525 & \text { Sampled: 03/18/05 } \\ \text { Received: 03/18/05 }\end{array}$

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 006
Report Number: 10 Cl 525 Received: 03/18/05

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
EPA 160.2	Water	\mathbf{X}	\mathbf{X}
EPA 200.8	Water	X	\mathbf{X}
EPA 245.1	Water	X	\mathbf{X}
EPA 300.0	Water	X	\mathbf{X}
EPA 413.1	Water	X	\mathbf{X}
SM2540C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical California Cert \#1640
1104 Windfield Way - El Dorado Hills, CA 95762
Analysis Performed: 1613-Dioxin-HR
Samples: 10C1525-01
Analysis Performed: EDD + Level 4
Samples: 10C1525-01

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

Del Mar Analytical varomon2urins CHAIN OF CUSTODY FORN

Sampled: 03/18/05
Del Mar Analytical Number: IOC1525

Dear Ms. Kelly:
Alta Analytical Laboratory performed the EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans analysis for the project referenced above. Please use the following cross-reference table when reviewing your results.

MWH ID	DEL MAR ID	ALTA ID
Routine Outfall 006	IOC1525-01	$25937-001$

Attached is the original report from the subcontract laboratory. If you have any questions or require further assistance, please do not hesitate to contact me at (949) 261-1022 at extension 215.

Sincerely yours,
DEL MAR ANALYTICAL

Michele Harper
Project Manager

Section I: Sample Inventory Report
Date Received: 3/22/2005

Alta Lab. ID
25937-001

Client Sample ID
IOC1525-01

SECTION II

OPR Results						EPA Method 1613		
Matrix: \quad Aqueous		QC Batch No.:	6624		Lab Sample: 0-OPR001	Date Analyzed DB-225:		
Sample Size: $\quad 1.000 \mathrm{~L}$		Date Extracted:	22-Mar-05		Date Analyzed DB-5: 23-Mar-05			NA
Analyte	Spike Conc.	Conc. ($\mathrm{ng} / \mathrm{mL}$)	OPR Limits		Labeled Standard	\%R	LCLUC	
2,3,7,8-TCDD	10.0	9.02	6.7-15.8	IS	13C-2,3,7,8-TCDD	86.2	25-164	
1,2,3,7,8-PeCDD	50.0	44.9	35-71		13C-1,2,3,7,8-PeCDD	83.6	25-181	
1,2,3,4,7,8-HxCDD	50.0	45.7	35-82		13C-1,2,3,4,7,8-HxCDD	83.1	32-141	
1,2,3,6,7,8-HxCDD	50.0	47.1	38-67		13C-1,2,3,6,7,8-HxCDD	90.5	28-130	
1,2,3,7,8,9-HxCDD	50.0	47.2	32-81		13C-1,2,3,4,6,7,8-HpCDD	80.1	23-140	
1,2,3,4,6,7,8-HpCDD	50.0	49.7	35-70		13C-OCDD	60.0	17-157	
OCDD	100	102	78-144		13C-2,3,7,8-TCDF	89.6	24-169	
2,3,7,8-TCDF	10.0	9.28	7.5-15.8		13C-1,2,3,7,8-PeCDF	82.2	24-185	
1,2,3,7,8-PeCDF	50.0	49.7	40-67		13C-2,3,4,7,8-PeCDF	86.0	21-178	
2,3,4,7,8-PeCDF	50.0	48.9	34-80		$13 \mathrm{C}-1,2,3,4,7,8-\mathrm{HxCDF}$	69.1	26-152	
1,2,3,4,7,8-HxCDF	50.0	52.4	36-67		13C-1,2,3,6,7,8-HxCDF	83.1	26-123	
1,2,3,6,7,8-HxCDF	50.0	51.4	42-65		13C-2,3,4,6,7,8-HxCDF	80.9	28-136	
2,3,4,6,7,8-HxCDF	50.0	51.3	35-78		13C-1,2,3,7,8,9-HxCDF	77.1	29-147	
1,2,3,7,8,9-HxCDF	50.0	51.3	39-65		13C-1,2,3,4,6,7,8-HpCDF	77.1	28-143	
1,2,3,4,6,7,8-HpCDF	50.0	54.0	41-61		13C-1,2,3,4,7,8,9-HpCDF	78.6	26-138	
1,2,3,4,7,8,9-HpCDF	50.0	53.2	39-69		13C-OCDF	65.1	17-157	
OCDF	100	103	63-170	CR	S 37Cl-2,3,7,8-TCDD	89.8	35-197	

APPENDIX

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank.
D The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.
I Chemical Interference

J The amount detected is below the Lower Calibration Limit of the instrument.
P Homologue totals include any coplanar PCBs detected at concentrations less than the reporting limit.

* See Cover Letter

Conc. Concentration
DL Sample-specific estimated detection limit
MDL The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration
NA Not applicable
RL Reporting Limit - concentrations that correspond to low calibration point
ND Not Detected
TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

The control limits are "interim limits only" until in-house limits are utilized.

CIURRENT CERTIEICATIONS

NELAP - (Primary AA: California, Certificate No. 02102CA)
Department of the Navy
U.S. Army Corps of Engineers
U.S. EPA Region 5

Bureau of Reclamation - Mid-Pacific Region - (MP-470, Res-1.10)
Commonwealth of Kentucky - (Certificate No. 90063)
Commonwealth of Virginia - (Certificate No. 00013)
State of Alaska, Department of Environmental Conservation - (Certificate No. OS-00197)
State of Arizona - (Certificate No. AZ0639)
State of Arkansas, Department of Health - (Approval granted through CA certification)
State of Arkansas, Department of Environmental Quality
State of California - (Certificate No. 1640)
State of Colorado
State of Connecticut - (Certificate No. PH-0182)
State of Florida - (Certificate No. 87456)
State of Louisiana, Department of Health and Hospitals - (Certificate No. LA000014)
State of Louisiana, Department of Environmental Quality
State of Maine
State of Michigan (Certificate No. 81178087)
State of Mississippi - (Approval granted through CA certification)
State of Nevada - (Certificate No. CA413)
State of New Jersey - (Certificate No. CA003)
State of New York, Department of Health - (Certificate No. 11411)
State of North Carolina - (Certification No. 06700)
State of North Dakota, Department of Health - (Certificate No. R-078)
State of New Mexico
State of Oklahoma - (D9919)
State of Oregon - (Certificate No. CA413)
State of Pennsylvania - (Certificate No. 68-490)
State of South Carolina - (Certificate No. 87002001)
State of Tennessee - (Certificate No. 02996)
State of Texas - (Certificate No. TX247-1000A
State of Utah - (Certificate No. E-201)
State of Washington - (Certification No. C091)
State of Wisconsin - (Certificate No. 998036160)
State of Wyoming - (USEPA Region 8 Ref: 8TMS-Q)

SAMPLE LOGIN CHECKLIST

ALTA Project No.: \qquad

Comments:
IOC|S21-01
IOCIS23-01
IOC1S25-01
IOC1S26-01
IOC1S63-01
ALTA Analytical Laboratory E Dorado File, CA 95762

SUBCONTRACT ORDER - PROJECT \# IOC1525

SENDING LABORATORY:	
Del Mar Analytical, Irvine	
17461 Derian Aveme. Suite 100	
Irvine, CA 92614	
Phone: (949) 261-1022	
Fax:'(949) 261-1228	
Project Manager. Michele Harper	

Standard TAT is requested unless specific due date is requested \Rightarrow Due Date: \square
\qquad

$25937.3 .2^{\circ}$

APPENDIX G

Section 33

March Outfall 007
AMEC Data Validation Reports
Del Mar Analytical Laboratory Reports

amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: DIOXINS/FURANS SAMPLE DELIVERY GROUPS: Multiple SDGs

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:
DATA VALIDATION REPORT	NPDES
SDG No.:	Multiple

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 6
No. of Reanalyses/Dilutions: 0
Reviewer: K. Shadowlight
Date of Review: March 21, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. I), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:
DATA VALIDATION REPORT	SDG No.:

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Alta)	Matrix	COC Method
Outfall 002	IOC0447-01	$25853-001$	water	1613
Outfall 003	IOC0449-01	$25854-001$	water	1613
Outfall 004	IOC0455-01	$25855-001$	water	1613
Outfall 005	IOC0451-01	$25855-001$	water	1613
Outfall 007	IOC0453-01	$25856-001$	water	1613
Outfall 011	IOC0448-01	$25852-001$	water	1613

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

All of the samples in these SDGs were received at Del Mar Analytical within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The samples were shipped to Alta for dioxin/furan analyses and were received below the temperature limits at $1.3^{\circ} \mathrm{C}$ and $1.4^{\circ} \mathrm{C}$; however, as the samples were not noted to have been frozen or damaged, no qualifications were required. According to the laboratory login sheets, all samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COCs and transfer COCs were legible and signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. As the samples were couriered directly to Del Mar Analytical, custody seals were not required. The coolers received by Alta had custody seals present and intact; however, custody seals were not present on the sample containers. The EPA IDs were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and $2,3,7,8-\mathrm{TCDD}$ reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2.3 CALIBRATION

2.3.1 Initial Calibration

There was one initial calibration, analyzed 08/30/04. The calibration consisted of six concentration level standards (CSO through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with $\%$ RSDs $\leq 20 \%$ for the 15 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standards instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank (6593-MB001) was extracted and analyzed with the samples in these SDGs. Total TCDF was reported at $1.4 \mathrm{pg} / \mathrm{L}$ and target compound $1,2,3,6,7,8-\mathrm{HxCDF}$ was reported as an EMPC. The results for total TCDF in samples Outfall 003 and Outfall 011 were qualified as estimated nondetects "UJ," at the levels of interference. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No further qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One Ongoing Precision Recovery (OPR) sample (6593-OPR001) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

	Project:
DATA VALIDATION REPORT	NPDES
SDG No.:	Multiple

2.7.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for these SDGs.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any reported EMPC was qualified as an estimated nondetect, "UJ." Any detects below the lower method calibration level (MCL) were qualified as estimated, "J." The result for total TCDF in sample Outfall 003 was flagged by the laboratory with a "D" qualifier which indicated possible diphenylether interference; however, the result was qualified as a nondetect due to method blank contamination and no qualifications were required. No further qualifications were required.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental

550 South Wadsworth Boulevard

Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer P. Meeks
Analysis/Method Metals

Laboratory Del Mar
Analysis/Method Metals

Package ID T711MT47
Task Order 313150010
SDG No. Multiple
No. of Analyses 5
Date: $03 / 29 / 05$
Reviewer's Signature
P. Meels

ACTION ITEMS ${ }^{-}$

1. Case Narrative Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from \quad Qualifications were applied for detects below the reporting limit.

Analysis Protocol, e.g.,
Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identifica-
1
and Quantitation
System Performance
COMMENTS ${ }^{\text {b }}$

[^8]
amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: METALS
SAMPLE DELIVERY GROUPS: IOC0449, IOC0450, IOC0451, IOC0452 \& IOC0453

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:	NPDES
DATA VALIDATION REPORT	SDG No::	Multiple

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOC0449, IOC0450, IOC0451, IOC0452 \& IOC0453
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Metals
QC Level: Level IV
No of Samples: 5
No. of Reanalyses/Dilutions: 0
Reviewer: P. Meeks
Date of Review: March 29, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form 1 as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 003	Outfall 003	IOC0449-01	water	ILM04
Outfall 004	Outfall 004	IOC0450-01	water	ILM04
Outfall 005	Outfall 005	IOC0451-01	water	ILM04
Outfall 006	Outfall 006	IOC0452-01	water	ILM04
Outfall 007	Outfall 007	IOC0453-01	water	ILM04

	Project:	NPDES
	SDG No.:	Multiple
DATA VALIDATION REPORT	Analysis:	MET

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel. The COCs accounted for the samples and analyses presented in these SDGs. Duplicate samples were submitted for all the samples in these SDGs; however, duplicate analyses were not required. No sample qualifications were required.

2.1.3 Holding Times

The dates of collection recorded on the COCs and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS metals. No qualifications were required.

2.2 ICP-MS TUNING

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. All $\%$ RSDs were less than 5%. The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, $90-110 \%$ for ICP/MS metals. The reporting limit check standards were recovered within the AMEC control limits of 70-130\%. No sample qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2.4 BLANKS

Lead was not detected in any of the blanks associated with these SDGs. No qualifications were required due to the method and calibration blank results.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB standards were not analyzed in association with the samples in this SDG; therefore, no assessment can be made with respect to this criterion.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP/MS LCS sample was identified as 5C08106-BS1 and the LCS result on the summary forms and in the raw data was within the laboratory-established ICP/MS control limits of $85-115 \%$. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MS/MSD or laboratory duplicate analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

2.8 MATRIX SPIKE

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on the LCS result.

2.9 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

2.10 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No::	Multiple

2.11 INTERNAL STANDARDS PERFORMANCE

The ICP-MS internal standard recoveries for the site samples and associated QC sample analyses were within the $60-125 \%$ control limits and no qualifications were required.

2.12 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Lead detected below the reporting limit was qualified as estimated, "J." No further qualifications were required.

2.13 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.13.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site samples.

17461Derian Ave., Suite 100., Irvine, CA 92614 (949) 26 1-1022 FAX (947) 260-3297 9484 Chesape. Cooley Dr., Sute A, Colton, CA 92324 (909) 370 -4667 FAX (943) 370-1040 9830 So th 51 st St. Suite B-120. Phoenix, AZ 85044 (858) 505-8596 FAX (853) 505-9689 2520 E. Sunset Rd. \#3 , Roenix, A2 85044 (480) 785-0043 FAX (48) 7) 785-085

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 007

Report Number: $10 \mathrm{CO453}$. Sampled: 03/04/05
Received: 03/04/05

DRAFT: METALS

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 007

Sampled: 03/04/05
Received: 03/04/05
Issued: 03/25/05 11:14

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.
This entire repart was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
 IOC0453-01

CLIENT ID

Outfall 007

MATRIX

Water

Reviewed By:

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly	Report Number:		$10 C 0453$		Sampled: 03/04/05 Received: 03/04/05				
			MET	LS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 10C0453-01 (Outfall 007 - Water)									
Antimony	EPA 200.8	$5 \mathrm{C08106}$	0.18	2.0	ND	1	03/08/05	03/09/05	
Cadmium	EPA 200.8	$5 \mathrm{C08106}$	0.015	1.0	0.069	1	03/08/05	03/09/05	J
Copper	EPA 200.8	$5 \mathrm{C08106}$	0.49	2.0	3.0	1	03/08/05	03/09/05	
Lead	EPA 200.8	$5 \mathrm{C08106}$	0.13	1.0	1.1	1	03/08/05	03/09/05	
Mercury	EPA 245.1	$5 \mathrm{C09050}$	0.063	0.20	ND	1	03/09/05	03/09/05	

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 007
Report Number: $10 C 0453$

Sampled: 03/04/05
Received: 03/04/05

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OC0453-01 (Outfall 007-Water) - cont. Reporting Units: mgl									
Chloride	EPA 300.0	5C04107	0.15	0.50	5.7	1	03/04/05	03/05/05	
Nitrate/Nitrite-N	EPA 300.0	5 C 04107	0.11	0.11	ND	1	03/04/05	03/05/05	
Oil \& Grease	EPA 413.1	5 C 09091	0.94	5.0	1.2	1	03/09/05	03/09/05	B, J
Sulfate	EPA 300.0	$5 \mathrm{C04107}$	0.45	0.50	2.1	1	03/04/05	03/05/05	
Total Dissolved Solids	SM2540C	5 C 08110	10	10	180	1	03/08/05	03/08/05	
Total Suspended Solids	EPA 160.2	$5 \mathrm{C07073}$	10	10	17	1	03/07/05	03/07/05	

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 007

Report Number: $10 C 0453$

Sampled: 03/04/05
Received: 03/04/05

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed	
Sample 1D: Outfall 007 (IOC0453-01) - Water EPA 300.0	2	$03 / 04 / 200511: 18$	$03 / 04 / 200517: 50$	$03 / 04 / 2005$	$23: 00$	$03 / 05 / 2005$

MWH-Pasadena/Boeing	Project ID: Routine Outfall 007	
300 North Lake Avenue, Suite 1200		Sampled: 03/04/05
Pasadena, CA 91101	Report Number: 10 C 0453	Received: 03/04/05
Attention: Bronwyn Kelly		

METHOD BLANKIQC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C08106 Extracted; 03/08/05											
Blank Analyzed: 03/09/2005 (5C08106-BLK1)											
Antimony	ND	2.0	0.18	ug/l							
Cadmium	ND	1.0	0.015	ug/l							
Copper	ND	2.0	0.49	ug/l							
Lead	ND	1.0	0.13	ug/l							
LCS Analyzed: 03/09/2005 (5C08106-BS1)											
Antimony	90.7	2.0	0.18	ug/l	80.0		113	85-115			
Cadmium	86.3	1.0	0.015	ug/	80.0		108	85-115			
Copper	78.1	2.0	0.49	ug/l	80.0		98	85-115			
Lead	84.0	1.0	0.13	ug/l	80.0		105	85-115			

Matrix Spike Analyzed: 03/09/2005 (5C08106-MS1)				Source: 1OC0448-01				
Antimony	92.4	2.0	0.18	ug/	80.0	0.37	115	70-130
Cadmum	81.1	1.0	0.015	ugh	80.0	0.086	101	70-130
Copper	79.4	2.0	0.49	ug/	80.0	3.0	96	70-130
Lead	79.6	1.0	0.13	ug/	80.0	0.19	99	70-130

Matrix Spike Dup Analyzed: 03/09/2005 (5C08106-MSD1)			Source: 10C0448-01							
Antimony	91.3	2.0	0.18	ug/l	80.0	0.37	114	70-130	1	20
Cadmium	80.9	1.0	0.015	ug / l	80.0	0.086	101	70-130	0	20
Copper	78.7	2.0	0.49	ug/	80.0	3.0	95	70-130	1	20
Lead	78.6	1.0	0.13	ug/l	80.0	0.19	98	70-130	1	20

Batch: 5C09050 Extracted: 03/09/05

Blank Analyzed: 03/09/2005 (5C09050-BLK1)

| Mercury | ND | 0.20 | 0.063 | $u g / l$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

[^9]MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly

Project ID: Routine Outfall 007
Report Number: $10 C 0453$

Sampled: 03/04/05
Received: 03/04/05

NETHOD BLANKIOC DATA

METALS

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 007

Report Number: $10 \mathrm{Sampled}:$	03/04/05
Received: $03 / 04 / 05$	

METHOD BLANKYC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C04107 Extracted: 03/04/05										
Blank Analyzed: 03/04/2005 (5C04107-BLK1)										
Chloride ND	0.50	0.26	mg / l							
Nitrate/Nitrite-N ND	0.11	0.11	mg/l							
Sulfate ND	0.50	0.18	mg / l							
LCS Analyzed: 03/04/2005 (5C04107-BS1)										
Chloride 5.16	0.50	0.26	mg/l	5.00		103	90-110			M-3
Sulfate 10.4	0.50	0.18	mg / l	10.0		104	$90-110$			M-3
Batch: 5C07073 Extracted: 03/07/05										
Blank Analyzed: 03/07/2005 (5C07073-BLK1)										
Total Suspended Solids ND	10	10	mg / l							
LCS Analyzed: 03/07/2005 (5C07073-BS1)										
Total Suspended Solids 980	10	10	mg / l	1000		98	85-115			
Duplicate Analyzed: 03/07/2005 (5C07073-DUP1)				Source: IOC0451-01						
Total Suspended Solids ND	10	10	mg / l		ND				10	

Batch: 5C08110 Extracted: 03/08/05

Blank Analyzed: 03/08/2005 (5C08110-BLK1)
Total Dissolved Solids ND

LCS Analyzed: 03/08/2005 (5C08110-BS1)

Total Dissolved Solids 976
$1010 \mathrm{mg} / 1 \quad 1000 \quad 98 \quad 90-110$

)el Mar Analytical, Irvine

Vendy Kirkeeng For Michele Harper roject Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 007	
300 North Lake Avenue, Suite 1200		Sampled: 03/04/05
Pasadena, CA 91101	Report Number: 10 C 0453	Received: 03/04/05
Attention: Bronwyn Kelly		

METHOD BLANKOC DATA

INORGANICS

Analyte Resalt	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5 C08110 Extracted: 03/08/05										
Daplicate Analyzed: 03/08/2005 (5C08110-DUP1)				Source: $10 C 0454$-01						
Total Dissolved Solids 187	10	10	mg / l		180			4	10	
Batch: 5C09091 Extracted: 03/09/05										
Blank Analyzed: 03/09/2005 (5C09091-BLK1)										J
Oil \& Grease 1.70	5.0	0.94	mg / l							
LCS Analyzed: 03/09/2005 (5C09091-BS1)										M-NR1
Oil \& Grease 22.4	5.0	0.94	mg / l	20.0		112	65-120			
LCS Dup Analyzed: 03/09/2005 (5C09091-BSD1)										
Oil \& Grease 18.8	5.0	0.94	mg / l	20.0		94	65-120	17	20	

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 007
Report Number: IOC0453

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte			Compliance	
IOC0453-01	413.1 Oil and Grease	Oil \& Grease	Units	Result	MRL	Limit
IOC0453-01	Antimony-200.8	Antimony	mg / l	1.20	5.0	15
IOC0453-01	Cadmium-200.8	Cadmium	ug / l	0.14	2.0	6.00
IOC0453-01	Chloride-300.0	Chloride	ug / l	0.069	1.0	4.00
IOC0453-01	Copper-200.8	Copper	mg / l	5.70	0.50	150
IOC0453-01	Mercury -245.1	Mercury	$\mathrm{ug} /$	3.00	2.0	14
IOC0453-01	Nitrogen, NO3+NO2-N	Nitrate/Nitrite-N	ug / l	0.023	0.20	0.20
IOC0453-01	Sulfate-300.0	Sulfate	mg / l	0.034	0.11	10.00
IOC0453-01	TDS - SM 2540C	Total Dissolved Solids	$\mathrm{mg} / 1$	2.10	0.50	250
			mg / l	180	10	850

[^10]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 007
Report Number: 10 CO 0453

Sampled: 03/04/05
Received: 03/04/05

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 007

Report Number: 10 C 0453
Sampled: 03/04/05
Received: 03/04/05

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac		California
EPA 160.2	Water	\mathbf{X}	.	\mathbf{X}
EPA 200.8	Water	\mathbf{X}	\mathbf{X}	
EPA 245.1	Water	\mathbf{X}	\mathbf{X}	
EPA 300.0	Water	\mathbf{X}	\mathbf{X}	
EPA 413.1	Water	\mathbf{X}	\mathbf{X}	
SM2540C	Water	\mathbf{X}	\mathbf{X}	

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical California Cert \#1640
1104 Windfield Way - El Dorado Hills, CA 95762
Analysis Performed: 1613-Dioxin-HR
Samples: IOC0453-01
Analysis Performed: \quad EDD + Level 4
Samples: 1OC0453-01

$10(0453$
Page 1 of 1

Del Mar Analytical verionontrins CHAIN OF CUSTODY FORM Client Name/Address: | Client Name/Address: | $\begin{array}{l}\text { Project: } \\ \text { MWH-Pasadena. }\end{array}$ |
| :--- | :--- |
| Boeing-SSFL NPDES | |
| Routhe Outinll 007 | |

MWH-Pasadena
300 North Lake Avenu
300 North Lake Avenue, Suite $1200 \quad$ Stomwater at Building 100
Pasadena, CA 91101
Project Manager: Bronwyn Kelly
Phone Number:
(626) 568-6691
Fax Number:
(626) $568-6515$

Sample \quad Sample Container $\begin{gathered}\text { K of } \\ \text { Cont }\end{gathered}$

 \begin{tabular}{l|l|l|l|}
\hline Outan 007 \& W \& Poly-1L \& 1

\hline

\hline Outfall 007- \& W \& Poly $1 L$ \& 1

\hline Olasse- \& 2

\hline
\end{tabular}

Glass-	2

Outfall 007	W

Outfall 007	W

Attention: Bronwyn Kelly

Project: \quad Routine Outfall 007
Sampled: 03/04/05
Del Mar Analytical Number: IOC0453

Dear Ms. Kelly:
Alta Analytical Laboratory performed the EPA Method 1613 Dioxin analysis for the project referenced above. Please use the following cross-reference table when reviewing your results.

MWH ID	DEL MAR ID	Alta ID
Outfall 007	IOC0453-01	$25856-001$

Attached is the original report from the subcontract laboratory. If you have any questions or require further assistance, please do not hesitate to contact me at (949) 261-1022 at extension 215.

Sincerely yours,
DEL MAR ANALYTICAL

March 16, 2005

Alta Project I.D.: 25856

Ms. Michele Harper
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Dear Ms. Harper,
Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on March 08, 2005 under your Project Name "IOC0453". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

Martha M. Maier
Director of HRMS Services

Alta Analytical Laboratory Inc.

Section I: Sample Inventory Report

 Date Received: 3/8/2005Alta Lab. ID
25856-001

Client Sample ID
IOC0453-01

SECTION II

APPENDIX

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank.
D The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.
1 Chemical Interference
J The amount detected is below the Lower Calibration Limit of the instrument.

* See Cover Letter

Conc. Concentration
DL Sample-specific estimated detection limit
MDL The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration
NA Not applicable
RL Reporting Limit - concentrations that corresponds to low calibration point
ND Not Detected
TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

The control limits are "interim limits only" until in-house limits are utilized.

CURRENT CERTIFICATIONS

NELAP - (Primary AA: California, Certificate No. 02102CA)
Department of the Navy

U.S. Army Corps of Engineers

U.S. EPA Region 5

Bureau of Reclamation - Mid-Pacific Region - (MP-470, Res-1.10)
Commonwealth of Kentucky - (Certificate No. 90063)
Commonwealth of Virginia - (Certificate No. 00013)
State of Alaska, Department of Environmental Conservation - (Certificate No. OS-00197)
State of Arizona - (Certificate No. AZ0639)
State of Arkansas, Department of Health - (Approval granted through CA certification)
State of Arkansas, Department of Environmental Quality
State of California - (Certificate No. 1640)
State of Colorado
State of Connecticut - (Certificate No. PH-0182)
State of Florida -- (Certificate No. 87456)
State of Louisiana, Department of Health and Hospitals - (Certificate No. LA000014)
State of Louisiana, Department of Environmental Quality
State of Maine
State of Michigan (Certificate No. 81178087)
State of Mississippi - (Approval granted through CA certification)
State of Nevada - (Certificate No. CA413)
State of New Jersey - (Certificate No. CA003)
State of New York, Department of Health - (Certificate No. 11411)
State of North Carolina - (Certification No. 06700)
State of North Dakota, Department of Health - (Certificate No. R-078)
State of New Mexico
State of Oklahoma - (D9919)
State of Oregon - (Certificate No. CA413)
State of Pennsylvania - (Certificate No. 68-490)
State of South Carolina - (Certificate No. 87002001)
State of Tennessee - (Certificate No. 02996)
State of Texas - (Certificate No. TX247-1000A
State of Utah - (Certificate No. E-201)
State of Washington - (Certification No. C091)
State of Wisconsin - (Certificate No. 998036160)
State of Wyoming - (USEPA Region 8 Ref: 8TMS-Q)

SUBCONTRACT ORDER - PROJECT \# IOC0453

SAMPLE LOGHN CHECKLST

ALTA Project No.: 25856

Comments:

SUBCONTRACT ORDER - PROJECT \# IOC0453

Contemers: Puppited:

1 L Ambur (00C0453-01C)
1 L Amber (1000453 -01D)

$$
\begin{aligned}
& \text { sampler }=P \cdot P . \\
& \\
& \mathrm{MH}_{3 / 4 / 05}
\end{aligned}
$$

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Alta
Reviewer H. Chang
Analysis/Method Dioxin\&Furans/1613

ACTION ITEMS ${ }^{*}$

Contive
Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, e.g.,
Holding Times
GC/MS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Intemal Standard Performance
Compound Identification and
Quantitation
System Performance
COMMENTS ${ }^{\text {b }}$

* Subcontracted analytical laboratory is not meeting contract and/or method requirements.
${ }^{\text {b }}$ Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

amec ${ }^{0}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: DIOXINS/FURANS
 SAMPLE DELIVERY GROUPS: IOC1817, IOC1818, IOC1819

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 3
No. of Reanalyses/Dilutions: 0
Reviewer: H. Chang
Date of Review: April 6, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Alta)	Matrix	COC Method
Outfall 010	IOC1817-01C	$25954-001$	water	1613
Outfall 007	IOC1818-01	$25955-001$	water	1613
Outfall 018	IOC1819-01	$25956-001$	water	1613

		Project:
DATA VALIDATION REPORT	NPDES SDG No.: Multiple	Analysis:

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

All samples in these SDGs were received with cooler temperatures within the QC limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. According to the laboratory login sheets, all samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COCs and transfer COCs were legible and signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. As the samples were couriered directly to Del Mar Analytical, custody seals were not required. The coolers received by Alta had custody seals present and intact. The EPA IDs were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and $2,3,7,8$-TCDD reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2.3 CALIBRATION

2.3.1 Initial Calibration

There was one initial calibration, analyzed 08/30/04. The calibration consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with $\%$ RSDs $\leq 20 \%$ for the 16 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standards instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank $(06631$ MB001) was extracted and analyzed with the samples in these SDGs. There were no target compound detects reported in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One Ongoing Precision Recovery (OPR) sample (0_6631_OPR001) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

2.7.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for these SDGs.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the lower method calibration level (MCL) were qualified as estimated, "J," however, as Alta analyzed an additional calibration standard, not all results below the lower MCL were appropriately qualified by the laboratory. These results were qualified as estimated, "J," by the reviewer. Total HpCDF in Outfall 010 was qualified as estimated since one of the total constituents was below the lower MCL even though total concentration was above the lower MCL. No further qualifications were required.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer K. Okonzak
Analysis/Method Metals

Package ID T711MT64
Task Order 313150010,313150012 SDG No. 10 Cl 1817, IOC1818
No. of Analyses 2

Date: $3 / 31 / 05$
Reviewer's Signature

ACTION ITEMS ${ }^{\prime}$

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, egg.,
Holding Times

GC/MS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and
Quantitation
System Performance

[^11]
Data Qualifier Reference Table

Qualifier	Organics

U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

J
The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
$\mathrm{N} \quad$ The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."

NJ
The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ The analyte was not deemed above the reported sample quantitation limit, However, the reported quantitation limil is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.

The associated value is an estimated quantity.

Not applicable.

Not applicable.

The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

The data are unusable. (Note: Analyte may or may not be present).

Qualification Code Reference Table

Qualifier	Organics	Inorganics
H	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
C	Calibration \%RSD or \%D were noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	$\% R$ for calibration is not within control limits.
B	Presumed contamination from preparation (method) blank.	Presumed contamination from preparation (method) or calibration blank.
L	Laboratory Blank Spike/Blank Spike Duplicate \%R was not within control limits.	Laboratory Control Sample \%R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
E	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
A	Not applicable.	ICP Serial Dilution \%D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
T	Presumed contamination from trip blank.	Not applicable.
+	False positive - reported compound was not present. Not applicable.	
-	False negative - compound was present but not reported.	Not applicable.
F	Presumed contamination from FB, or ER.	Presumed contamination from FB or ER.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.
D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
P	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The compound was detected between the MDL and the RL and, by definition, is considered an estimated value.	The compound was detected between the MDL and the RL and, by definition, is considered an estimated value.

Unusual problems found with the data that have been described in Section 2.\#, "Data Validation Findings." The number following the asterisk (*) will indicate the subsection where a description of the problem can be found (eg. *1 would indicate a sample was not within temperature limits).

Unusual problems found with the data that have been described in Section 2.\#, "Data Validation Findings." The number following the asterisk (*) will indicate the subsection where a description of the problem can be found (eg. *1 would indicate a sample was not within temperature limits).

amec ${ }^{9}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: METALS
SAMPLE DELIVERY GROUPS: IOC1817, IOC1818

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

DATA VALIDATION REPORT	Project: SDG No.: Analysis:	NPDES multiple MET

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010,313150012
SDG\#: IOC1817, 1OC1818
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Metals
QC Level: Level IV
No. of Samples: 2
No. of Reanalyses/Dilutions: 0
Reviewer: K. Okonzak-Lowry
Date of Review: March 31, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required $Q C$ criteria or where special consideration by the data user is required. Data qualifiers were placed on Form is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project: DATA VALIDATION REPORT	NDG No.:
	Analysis:	

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 010	Outfall 010	IOC1817-01	water	ILM04
Outfall 007	Outfall 007	IOC1818-01	water	ILM04

	Project: DATA VALIDATION REPORT	NPDES Multiple

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel and accounted for the samples and analyses presented in these SDGs. The COCs listed duplicate samples for both site samples; however, duplicate analyses were not required. No sample qualifications were required.

2.1.3 Holding Times

The dates of collection recorded on the COCs and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS metals and 28 days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. The laboratory performed the required tune solution analyses. The \%RSDs for the tune were all within the 5% control limit. The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	multiple
	Analysis:	MET

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, $90-110 \%$ for the ICP/MS and $80-120 \%$ for mercury. The applicable reporting limit check standards were recovered within the AMEC control limits of $70-130 \%$, with the exception of the $0.2 \mu \mathrm{~g} / \mathrm{L}$ standard for antimony, which was not detected by the instrument at the $0.18 \mu \mathrm{~g} / \mathrm{L}$ antimony MDL. Therefore, the nondetected antimony result for sample Outfall 010 was qualified as estimated, "UJ." No further qualifications were required.

2.4 BLANKS

The method blanks and bracketing ICBs/CCBs associated with the samples in these SDGs were nondetected at the laboratory MDL, with the exception of antimony for the ICP/MS method blank, 5 C 23123 -BLK1, which was reported at $-0.43 \mu \mathrm{~g} / \mathrm{L}$. Therefore, the nondetected antimony for sample Outfall 010 was qualified as estimated, "UJ." No further sample qualifications were required.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were included in the raw data for the ICP-MS analyses. Results were not provided for spiked interferents sulfur, phosphonus, carbon, and chloride, and antimony and lead were not spiked into the ICSAB solution. The result for potassium was above the calibration range of the instrument in all the ICSA analysis. The aluminum recoveries were low for the ICSA/AB analyses at 79.3% and 76.5%, respectively. The site sample matrix was low in aluminum; therefore, the low recovery for aluminum by the laboratory wouldn't have caused IEC miscalculations affecting the quantitation of the reported analytes. Copper and cadmium were detected at above the reporting limit in the ICSA analysis. The validator reviewed the raw data for the site sample ICP/MS analyses for the level of reported interferents, $\mathrm{Al}, \mathrm{Ca}, \mathrm{Fe}$, and Mg , and determined that the level of reported interferents were not high enough to cause matrix affects. No assessment could be made with respect to possible interference from sulfur, phosphorus, carbon, and chloride. No sample qualifications were required.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP/MS LCS sample was identified as 5C23123-BS1, and the mercury LCS sample was identified as 5C24056-BS1. The LCS results on the summary forms and in the raw data were within the laboratory-established ICP/MS and mercury control limits of $85-115 \%$. No qualifications were required.

2.7 LABORATORY DUPLICATES

The MS/MSD analyses were performed for the ICP/MS analysis only on sample Outfall 010, in association with the samples in these SDGs. The \%RPDs for the reported analytes were within the 20% control limit, and no sample qualifications were required.

	Project: DATA VALIDATION REPORT	NPDES multiple SDG No.:
	Analysis:	

2.8 MATRIX SPIKE

The MS/MSD analyses were performed for the ICP/MS analysis only on sample Outfall 010 , in association with the samples in these SDGs. The \%Rs were within the AMEC 75-125\% control limit, and no sample qualifications were required. The mercury method accuracy was evaluated based on the LCS result.

2.9 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

2.10 ICP/MS SERIAL DILUTION

No serial dilution analysis was performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

2.11 INTERNAL STANDARDS PERFORMANCE

The ICP-MS internal standard recoveries for the site samples and associated QC sample analyses were within the $60-125 \%$ control himits and no qualifications were required.

2.12 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit were qualified as estimated, "J." No qualifications were required.

2.13 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	multiple
		Analysis:

2.13.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site samples.

(Del Mar Analytical

MWH-Pasadena Boeing
300 North Lake Avenue, Suite 1200
$\$$ Pasadena, CA 91101
Attention: Bronwyn Kelly

Project [D: Routine Outfall 007

Report Number: 10 C18is

Sampled: 03:2305
Received: 03123.05

DRAFT: METALS

MDL. Reporting Sample Dilution Date Date Data Analyse Method Batch Limit Limit Result Factor Extracted Analyzed Qualifiers

Sample DD: 1OC1818-01 (DRAFT: Outfall 007 -Water)

 Reporting Units: ughLead

AMES VALIDATED Level IV

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 007

Sampled: 03/23/05
Received: 03/23/05
Issued: 04/05/05 12:09

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
IOC1818-01

CLIENT ID
Outfall 007

MATRIX
Water

Reviewed By:

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 007
Report Number: $10 C 1818$

Sampled: 03/23/05
Received: 03/23/05

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 10C1818-01 (Outfall 007 - Water)									
Reporting Units: ug/l									
Antimony	EPA 200.8	5 C 23123	0.18	2.0	1.2	1	03/23/05	03/24/05	
Cadmium	EPA 200.8	5C23123	0.015	1.0	0.11	1	03/23/05	03/24/05	J
Copper	EPA 200.8	5 C 23123	0.49	2.0	6.0	1	03/23/05	03/24/05	J
Lead	EPA 200.8	5 C 23123	0.13	1.0	2.5	1	03/23/05	03/24/05	
Mercury	EPA 245.1	5 C 24056	0.063	0.20	ND	1	03/24/05	03/24/05	

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 007
Report Number: 10 C 1818

Sampled: 03/23/05
Received: 03/23/05

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualfiers
Sample ID: IOC1818-01 (Outfall 007 - Water) - cont. Reporting Units: mg/									
Chloride	EPA 300.0	5 C 23116	0.15	0.50	2.0	1	03/23/05	03/24/05	
Nitrate/Nitrite-N	EPA 300.0	5C23116	0.075	0.26	1.2	1	03/23/05	03/24/05	
Oil \& Grease	EPA 413.1	5 C 25043	0.94	5.0	ND	1	03/25/05	03/25/05	
Sulfate	EPA 300.0	5C23116	0.45	0.50	2.7	1	03/23/05	03/24/05	
Total Dissolved Solids	SM2540C	5C23106	10	10	150	1	03/23/05	03/23/05	
Total Suspended Solids	EPA 160.2	5C24086	10	10	14	1	03/24/05	03/24/05	

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 007
Report Number: 10 C 1818

Sampled: 03/23/05
Received: 03/23/05

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed	
Sample ID: Outfall 007 (IOC1818-01) - Water EPA 300.0	2	$03 / 23 / 200509: 03$	$03 / 23 / 2005$	$18: 36$	$03 / 23 / 2005$	$23: 00$

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 007
Report Number: 10 Cl 1818

Sampled: 03/23/05
Received: 03/23/05

METHOD BLANKIOC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C23123 Extracted: 03/23/05											
Blank Analyzed: 03/24/2005 (5C23123-BLK1)											
Antimony	ND	2.0	0.18	ugh							
Cadmium	ND	1.0	0.015	ug/							
Copper	ND	2.0	0.49	ugh							
Lead	ND	1.0	0.13	ugh							
LCS Analyzed: 03/24/2005 (5C23123-BS1)											
Antimony	85.8	2.0	0.18	ug/l	80.0		107	85-115			
Cadmium	80.4	1.0	0.015	ug/	80.0		100	85-115			
Copper	85.9	2.0	0.49	ug/	80.0		107	85-115			
Lead	82.1	1.0	0.13	ug/	80.0		103				
Matrix Spike Analyzed: 03/24/2005 (5C23123-MS1) Source: 10C1817-01											
Antimony	81.9	2.0	0.18	ug/	80.0	ND	102	70-130			
Cadmium	78.9	10	0.015	ug/	80.0	0.086	99	70.130			
Copper	85.0	2.0	0.49	ugh	80.0	3.9	101	70.130			
Lead	84.0	1.0	0.13	ug/l	80.0	1.6	103	70-130			
Matrix Spike Dup Analyzed: 03/24/2005 (5C23123-MSD1) Source: 10C1817-01											
Antimony	83.5	2.0	0.18	ug/	80.0	ND	104	70-130	2	20	
Cadmium	80.5	1.0	0.015	ugh	80.0	0.086	101	70-130	2	20	
Copper	86.9	2.0	0.49	ug/	80.0	3.9	104	70-130	2	20	
Lead	86.4	1.0	0.13	ug/	80.0	1.6	106	70-130	3	20	

Batch: 5C24056 Extracted: 03/24/05.

Blank Analyzed: 03/24/2005 (5C24056-BLK1)

Mercury	ND	0.20	0.063	$u g / l$

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 007
Report Number: IOC1818

Sampled: 03/23/05
Received: 03/23/05

METHOD BLANIGOC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Oualliers
Batch: 5C24056 Extracted: 03/24/05											

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 007	
300 North Lake Avenue, Suite 1200		Sampled: $03 / 23 / 05$
Pasadena, CA 91101	Report Number: $10 C 1818$	Received: $03 / 23 / 05$
Attention: Bronwyn Kelly	\cdots	

METHOD BLANKIQC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Oualifiers
Batch: 5C23106 Extracted: 03/23/05										
Blank Analyzed: 03/23/2005 (5C23106-BLK1)										
Total Dissolved Solids ND	10	10	mg/							
LCS Analyzed: 03/23/2005 (5C23106-BS1)										
Total Dissolved Solids 1040	10	10	mg / l	1000		104	90-110			
Duplicate Analyzed: 03/23/2005 (5C23106-DUP1)				Source: IOC1606-03						
Total Dissolved Solids 487	10	10	$\mathrm{mg} / 1$		480			1	10	

Batch: 5C23116 Extracted: 03/23/05
Blank Analyzed: 03/23/2005 (5C23116-BLK1)

Chloride	ND	0.50	0.26	$\mathrm{mg} / 1$						
Nitrate/Nitrite-N	ND	0.26	0.075	$\mathrm{mg} /$						
Sulfate	ND	0.50	0.18	$\mathrm{mg} /$						
LCS Analyzed: 03/23/2005 (5C23116-BS1)										
Chloride	5.10	0.50	0.26	mg/	5.00		102	90-110		
Sulfate	10.2	0.50	0.18	mg / l	10.0		102	90-110		
Matrix Spike Analyzed: 03/23/2005 (5C23116-MS1)					Source: 10C1789-01					
Chloride	39.0	1.0	0.52	mg / l	5.00	34	100	80-120		
Sulfate	45.2	1.0	0.36	$\mathrm{mg} /$	10.0	35	102	80-120		
Matrix Spike Dup Analyzed: 03/23/2005 (5C23116-MSD1)					Source: 10C1789-01					
Chloride	38.7	1.0	0.52	mg / l	5.00	34	94	80-120	I	20
Sulfate	44.8	1.0	0.36	$\mathrm{mg} / 1$	10.0	35	98	80-120	1	20

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 007	
300 North Lake Avenue, Suite 1200	Report Number: IOC1818	Sampled: $03 / 23 / 05$
Pasadena, CA 91101		Received: $03 / 23 / 05$
Attention: Bronwyn Kelly		

METHOD BLANKIQC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C24086 Extracted: 03/24/05										
Blank Analyzed: 03/24/2005 (5C24086-BLK1)										
Total Suspended Solids ND	10	10	$\mathrm{mg} / 1$							
LCS Analyzed: 03/24/2005 (5C24086-BS1)										
Total Suspended Solids 967	10	10	mg / l	1000		97	85-115			
Duplicate Analyzed: 03/24/2005 (5C24086-DUP1)				Sour	ce: IOC1	873-01				
Total Suspended Solids ND	10	10	mg / l						10	
Batch: 5C25043 Extracted: 03/25/05										
Blank Analyzed: 03/25/2005 (5C25043-BLK1)										
Oil \& Grease ND	5.0	0.94	$\mathrm{mg} / 1$							
LCS Analyzed: 03/25/2005 (5C25043-BS1)										M-NR1
Oil \& Grease 15.5	5.0	0.94	mg / l	20.0		78	65-120			
LCS Dup Analyzed: 03/25/2005 (5C25043-BSD1)										
Oil \& Grease 15.8	5.0	0.94	$\mathrm{mg} / 1$	20.0		79	65-120	2	20	

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly		Project ID: Routine Report Number: 10 C 1818		Sampled: $03 / 23 / 05$Received: 03/23/05		
Compliance Check						
The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.						
LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
10C1818-01	413.1 Oil and Grease	Oil \& Grease	mg/	0.69	5.0	15
10C1818-01	Antimony-200.8	Antimony	ug/	1.20	2.0	6.00
10C1818-01	Cadmium-200.8	Cadmium	ug/l	0.11	1.0	4.00
10C1818-01	Chloride - 300.0	Chloride	$\mathrm{mg} /$	2.00	0.50	150
10C1818-01	Copper-200.8	Copper	ug/	6.00	2.0	14
10C1818-01	Mercury - 245.1	Mercury	ug/	0.048	0.20	0.20
IOC1818-01	Nitrogen, $\mathrm{NO} 3+\mathrm{NO} 2-\mathrm{N}$	Nitrate/Nitrite-N	$\mathrm{mg} / 1$	1.20	0.26	10.00
IOC1818-01	Sulfate-300.0	Sulfate	mg / l	2.70	0.50	250
1OC1818-01	TDS - SM 2540 C	Total Dissolved Solids	mg / l	150	10	850

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 007

Report Number: 10 Cl 1818

Sampled: 03/23/05
Received: 03/23/05

DATA QUALIFIERS AND DEFINITIONS

Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the
Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike
Duplicate.
ND \quad Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD \quad Relative Percent Difference

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 007
Report Number: 10 C 1818

Sampled: 03/23/05
Received: 03/23/05

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
EPA 160.2	Water	\mathbf{X}	\mathbf{X}
EPA 200.8	Water	\mathbf{X}	\mathbf{X}
EPA 245.1	Water	\mathbf{X}	\mathbf{X}
EPA 300.0	Water	\mathbf{X}	\mathbf{X}
EPA 413.1	Water	\mathbf{X}	\mathbf{X}
SM2540C	Water	\mathbf{X}	\mathbf{X}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical California Cert \#1640
1104 Windfield Way - El Dorado Hills, CA 95762
Analysis Performed: 1613-Dioxin-HR
Samples: 1OC1818-01
Analysis Performed: EDD + Level 4
Samples: IOC1818-01
8181005

Page 1 of 1

耳

$<$ Del MarAnalytical

March 31,2005

MWH-Pasadena/ Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention:	Bronwyn Kelly
Project:	Routine Outfall 007
	Sampled: 03/23/05
	Del Mar Analytical Number: 10 C 1818

Dear Ms.Kelly:
Alta Analytical performed the EPA Method 1613 for tetra-through-octa dioxins and furans for the project referenced above. Please use the cross-reference table for review your results.

MWH ID	DEL MAR ID	ALTA ID
Outfall 007	IOC1818-01	$25955-001$

Attached is the original report from the subcontract laboratory. If you have any questions or require further assistance, please do not hesitate to contact me (949) 261-1022,at extension 215.

Sincerely yours,
DEL MAR ANALYTICAL

March 28, 2005

Alta Project I.D.: 25955

Ms. Michele Harper
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Dear Ms. Harper,
Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on March 25, 2005 under your Project Name "IOC1818". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

Martha M. Maier
Director of HRMS Services

Alta Analytical Laboratory Inc.

Section I: Sample Inventory Report
Date Received: 3/25/2005

Alta Lab. ID
25955-001

Client Sample ID

IOC1818-01

SECTION II

Method Blank								EPA Method 1613		
Sample Size:	$\begin{aligned} & \text { qqueous } \\ & 1.000 \mathrm{~L} \end{aligned}$	QC Batch No.: Date Extracted:		$\begin{aligned} & 6631 \\ & 25-M a r-05 \end{aligned}$	Lab Sample: $0-\mathrm{MB} 001$ Date Analyzed DB-5: 27-Mar-05			Date Analyzed DB-225: NA		
Analyte	Conc. (pg/L)	DL ${ }^{\text {a }}$	EMPC ${ }^{\text {b }}$	Qualifiers		Labeled Stand		\%R	LCL UCL ${ }^{\text {d }}$	Oualifiers
A $2,3,7,8-\mathrm{TCDD}$ $1,2,3,7,8-\mathrm{PeCDD}$ $1,2,3,4,7,8-\mathrm{HxCDD}$ $1,2,3,6,7,8-\mathrm{HxCDD}$ $1,2,3,7,8,9-\mathrm{HxCDD}$ $1,2,3,4,6,7,8-\mathrm{HpCDD}$ OCDD 2,3,7,8-TCDF $1,2,3,7,8-\mathrm{PeCDF}$ $2,3,4,7,8-\mathrm{PeCDF}$ $1,2,3,4,7,8-\mathrm{HxCDF}$ $1,2,3,6,7,8-\mathrm{HxCDF}$ $2,3,4,6,7,8-\mathrm{HxCDF}$ $1,2,3,7,8,9-\mathrm{HxCDF}$ $1,2,3,4,6,7,8-\mathrm{HpCDF}$ $1,2,3,4,7,8,9-\mathrm{HpCDF}$ OCDF	ND	1.79			IS	13C-2,3,7,8-TC		74.3		
	ND	1.50				$13 \mathrm{C}-1,2,3,7,8-\mathrm{P}$	CDD	69.3	$25-181$	
	ND	2.62				13C-1,2,3,4,7,8	xCDD	77.5	32-141	
	ND	2.73				13C-1,2,3,6,7,8	xCDD	83.3	28-130	
	ND	2.67				13C-1,2,3,4,6,7	HpCDD	72.5	23-140	
	ND	1.65				$13 \mathrm{C}-\mathrm{OCDD}$		51.2	17-157	
	ND	5.70				13C-2,3,7,8-TC		74.8	24-169	
	ND	1.57				$13 \mathrm{C}-1,2,3,7,8-\mathrm{P}$		69.0	24-185	
	ND	2.33				13C-2,3,4,7,8-P		69.7	21-178	
	ND	2.07				13C-1, , 3, 4, 7, 8	$\times \mathrm{CDF}$	77.3	26-152	
	ND	0.597				13C-1,2,3,6,7,8	xCDF	87.1	26-123	
	ND	0.599				13C-2,3,4,6,7,8	xCDF	84.1	28-136	
	ND	0.670				13C-1,2,3,7,8,9	CDF	78.8	29-147	
	ND	1.10				13C-1,2,3,4,6,7	HpCDF	74.4	28-143	
	ND	1.23				13C-1,2,3,4,7,8,	HpCDF	82.1	26-138	
	ND	1.45				13C-OCDF		61.7	17-157	
	ND	4.20			CRS	37Cl-2,3,7,8-TC		77.8	35-197	
Totals					Footnotes					
Total TCDD	ND	1.79								
Total PeCDD	ND	1.51								
Total HxCDD	ND	2.68			a. Sam	ple specific estimated	ection limit.			
Total HpCDD	ND	1.65			b. Est	nated maximum poss	concentration.			
Total TCDF	ND	1.57			c. Me	od detection limit.				
Total PeCDF	ND	2.20				r control limit - upper	ntrol limit.			
Total HxCDF	ND	0.716								
Total HpCDF	ND	1.33								
Analyst WJL Approved By: Martha M. Maier 28-Mar-2005 07:01										

APPENDIX

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank.
D The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.
I Chemical Interference
J The amount detected is below the Lower Calibration Limit of the instrument.
P Homologue totals include any coplanar PCBs detected at concentrations less than the reporting limit.
*
See Cover Letter
Conc. Concentration
DL Sample-specific estimated detection limit
MDL The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration
NA Not applicable
RL Reporting Limit - concentrations that correspond to low calibration point
ND Not Detected
TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

The control limits are "interim limits only" until in-house limits are utilized.

CURRENT CERTIHICATIONS

NELAP - (Primary AA: California, Certificate No. 02102CA)
Department of the Navy
U.S. Army Corps of Engineers
U.S. EPA Region 5

Bureau of Reclamation - Mid-Pacific Region - (MP-470, Res-1.10)
Commonwealth of Kentucky - (Certificate No. 90063)
Commonwealth of Virginia - (Certificate No. 00013)
State of Alaska, Department of Environmental Conservation - (Certificate No. OS-00197)
State of Arizona - (Certificate No. AZ0639)
State of Arkansas, Department of Health - (Approval granted through CA certification)
State of Arkansas, Department of Enyironmental Quality
State of California - (Certificate No. 1640)
State of Colorado
State of Connecticut - (Certificate No. PH-0182)
State of Florida - (Certificate No. 87456)
State of Louisiana, Department of Health and Hospitals - (Certificate No. LA000014)
State of Louisiana, Department of Environmental Quality
State of Maine
State of Michigan (Certificate No. 81178087)
State of Mississippi - (Approval granted through CA certification)
State of Nevada - (Certificate No. CA413)
State of New Jersey - (Certificate No. CA003)
State of New York, Department of Health - (Certificate No. 11411)
State of North Carolina - (Certification No. 06700)
State of North Dakota, Department of Health - (Certificate No. R-078)
State of New Mexico
State of Oklahoma - (D9919)
State of Oregon - (Certificate No. CA413)
State of Pennsyivania - (Certificate No. 68-490)
State of South Carolina - (Certificate No. 87002001)
State of Tennessee - (Certificate No. 02996)
State of Texas - (Certificate No. TX247-1000A
State of Utah - (Certificate No. E-201)
State of Washington - (Certification No. C091)
State of Wisconsin - (Certificate No. 998036160)
State of Wyoming - (USEPA Region 8 Ref: 8TMS-Q)

SUBCONTRACT ORDER - PROJECT \# IOC1818

259554.2°

SAMPLE LOG-IN CHECKLIST
ALTA Project No.:

Comments:
initials of sampler on bottles

APPENDIX G

Section 34

March Outfall 008
AMEC Data Validation Reports
Del Mar Analytical Laboratory Reports

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental

550 South Wadsworth Boulevard
Package ID T711DF34
Task Order 313150010
Suite 500
Lakewood, CO 80226
Laboratory Alta
Reviewer K. Shadowlight

Analysis/Method Dioxins
SDG No. Multiple

No. of Analyses 4
Date: March 21, 2005
Revieqyer's Signature

ACTION ITEMS

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables \qquad
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, egg.,
Qualifications were assigned for the following:
Holding Times
GC/MS Tune/Inst. Performance
Calibration
Method blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and
Quantitation
System Performance

* Subcontracted analytical laboratory is not meeting contract andor method requirements.

Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

amec ${ }^{\theta}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: DIOXINS/FURANS SAMPLE DELIVERY GROUPS: Multiple SDGs

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple
	Analysis:	DIF

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: B. McIlvaine
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 4
No. of Reanalyses/Dilutions: 0
Reviewer: K. Shadowlight
Date of Review: March 21, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Alta)	Matrix	COC Method
Alpha Outfall 012	IOC0195-01	$25837-001$	water	1613
Outfall 001	IOC0515-01	$25849-001$	water	1613
Outfall 006	IOC0452-01	$25851-001$	water	1613
Outfall 008	IOC0454-01	$25850-001$	water	1613

	Project:
DATA VALIDATION REPORT	NPDES
	SDG No.:
Multiple	
Analysis:	

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

All of the samples in these SDGs were received at Del Mar Analytical within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The samples were shipped to Alta for dioxin/furan analyses and were received below the temperature limits at $1.3^{\circ} \mathrm{C}$ and $1.8^{\circ} \mathrm{C}$; however, as the samples were not noted to have been frozen or damaged, no qualifications were required. According to the laboratory login sheets, all samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COCs and transfer COCs were legible and signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. As the samples were couriered directly to Del Mar Analytical, custody seals were not required. The coolers received by Alta had custody seals present and intact; however, custody seals were not present on the sample containers. The EPA IDs were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and $2,3,7,8$-TCDD reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2.3 CALIBRATION

2.3.1 Initial Calibration

There was one initial calibration, analyzed 08/30/04. The calibration consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with $\%$ RSDs $\leq 20 \%$ for the 15 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standards instead of being analyzed separately, as noted in section 2.2 .1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank (6593 -MB001) was extracted and analyzed with the samples in these SDGs. Total TCDF was reported at1,4 pg / L and target compound $1,2,3,6,7,8-\mathrm{HxCDF}$ was reported as an EMPC. There were no other detects reported in the method blank and neither of the target compounds reported in the method blank was reported in the associated samples. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One Ongoing Precision Recovery (OPR) sample (6593-OPR001) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

	Project:
DATA VALIDATION REPORT	NPDES
SDG No.:	Multiple

2.7.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for these SDGs.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any reported EMPC was qualified as an estimated nondetect, "UJ." Any detects below the lower method calibration level (MCL) were qualified as estimated, "J;" however, as Alta analyzed an additional calibration standard, not all results below the method calibration level were appropriately qualified by the laboratory. These results were qualified as estimated, "J," by the reviewer. No further qualifications were required.

amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: METALS
 SAMPLE DELIVERY GROUPS: IOC0454 \& IOC0455

Prepared by

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC0454, 0455

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOC0454, IOC0455
Project Manager: B. McIlvaine
Matrix: Water
Analysis: Metals
QC Level: Level IV
No. of Samples: 2
No. of Reanalyses/Dilutions: 0
Reviewer: P. Meeks
Date of Review: March 29, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Leevels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC0454, 0455

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 008	Outfall 008	IOC0454-01	water	ILM04
Outfall 009	Outfall 009	IOC0455-01	water	ILM04

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC0454, 0455

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel. The COCs accounted for the samples and analyses presented in these SDGs. Duplicate samples were submitted for both samples in these SDGs; however, duplicate analyses were not required. No sample qualifications were required.

2.1.3 Holding Times

The dates of collection recorded on the COCs and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS metals and 28 days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. All \%RSDs were less than 5%. The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, 90-110\% for ICP/MS metals and 80-120\% for mercury. Antimony was not recovered in the 0.2 ppb reporting limit check standard and was recovered below the control limit in the 1.0 ppb reporting limit check standard; therefore, nondetected antimony in both site samples (see section 2.4)was qualified as estimated, "UJ." The remaining reporting limit check standards were recovered within the AMEC control limits of $70-130 \%$. No further sample qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC0454, 0455

2.4 BLANKS

Antimony was detected in a bracketing CCB at $0.309 \mu \mathrm{~g} / \mathrm{L}$; therefore, antimony detected in Outfall 009 was qualified as estimated, "UJ." No further qualifications were required due to the method and calibration blank results.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were analyzed in association with the samples in this SDG; therefore, no assessment can be made with respect to this criterion.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP/MS LCS sample was identified as 5C08106-BS1 and the mercury LCS sample was identified as $5 \mathrm{C} 09050-\mathrm{BS}$. The LCS results on the summary forms and in the raw data were within the laboratory-established ICP/MS and mercury control limits of $85-115 \%$. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MS/MSD or laboratory duplicate analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

2.8 MATRIX SPIKE

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on LCS results.

2.9 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

2.10 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOCO454, 0455

2.11 INTERNAL STANDARDS PERFORMANCE

The ICP-MS internal standard recoveries for the site samples and associated QC sample analyses were within the $60-125 \%$ control limits and no qualifications were required.

2.12 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit were qualified as estimated, "J."

The laboratory reported antimony in Outfall 008 as nondetected at the reporting limit. The reviewer noted that the result in the raw data was $-0.309 \mu \mathrm{~g} / \mathrm{L}$; therefore, the reviewer raised the antimony MDL for Outfall 008 to the level of interference in Outfall $008,0.31 \mu \mathrm{~g} / \mathrm{L}$, and qualified the result as estimated, "UJ." No further qualifications were required.

2.13 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.13.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site samples.

Del Mar Analytical

 9484 Chesapeake Dr., Suite 805 A. Coton, CA 92324 (909) 370-4667 FAX (945) 370-1043 3830 South 51 st St., Sulte B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (858) 505-9689 2520 E. Sunset Ral. \#3, Las Vegas. NV 89120 (702) 798-3620 FAX (702.) 798-3621MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 008
Routine Outfill 008
Report Number: 10 CO 0454

Sampled: 03/04/05
Received: 03/04/05

DRAFT: METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	$\begin{gathered} \text { Dat } \\ \text { Qualif } \end{gathered}$	ta fiers
Sample ID Repor Antimony	Outfall 008 -	ater)	0.31						$\begin{aligned} & R_{\text {w }} \\ & Q_{\text {ual }} \end{aligned}$	$\begin{aligned} & \text { Qual } \\ & \text { code } \end{aligned}$
Cadmium	EPA 200.8	$5 C 08106$	0.18	2.0	ND	1	03/08/05	03/09/05	UJ	* $3, \$_{i}$
Copper	EPA 200.8	5C08106 SC08106	0.015 0.49	1.0	0.032	1	03/08/05	03/09/05	J J	DNA
Lead	EPA 200.8	5 S 08106	0.13	1.0	3.2		03/08/05	03i09/05		
Mercury	EPA 245.1	$5 \mathrm{CO9050}$	0.063	0.20	ND		$\begin{aligned} & 03 / 08 / 05 \\ & 03 / 09 / 05 \end{aligned}$	$\begin{aligned} & 03 / 09 / 05 \\ & 03 / 09 / 05 \end{aligned}$	\cup	

AMEC VABDATED

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 008

Sampled: 03/04/05
Received: 03/04/05
Issued: 03/30/05 15:50

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
IOC0454-01

CLIENT ID
Outfall 008

MATRIX
Water

Reviewed By:

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 008
Report Number: $10 C 0454$

Sampled: 03/04/05
Received: 03/04/05

			MET	LS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 10C0454-01 (Outfall 008 - Water)									
Reporting Units: ug/									
Antimony	EPA 200.8	5 C 08106	0.18	2.0	ND	1	03/08/05	03/09/05	
Cadmium	EPA 200.8	5 C 08106	0.015	1.0	0.032	1	03/08/05	03/09/05	J
Copper	EPA 200.8	$5 \mathrm{C08106}$	0.49	2.0	3.2	1	03/08/05	03/09/05	
Lead	EPA 200.8	$5 \mathrm{C08106}$	0.13	1.0	1.4	1	03/08/05	03/09/05	
Mercury	EPA 245.1	$5 \mathrm{C09050}$	0.063	0.20	ND	1	03/09/05	03/09/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 008
Report Number: $10 C 0454$

Sampled: 03/04/05
Received: 03/04/05

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOC0454-01 (Outfall 008 - Water) - cont.Reperting Units: mg/									
Chloride	EPA 300.0	5 C 04107	0.15	0.50	9.1	1	03/04/05	03/05/05	
Nitrate/Nitrite-N	EPA 300.0	5 C 04107	0.11	0.11	0.49	1	03/04/05	03/05/05	
Oil \& Grease	EPA 413.1	5 C 09091	0.94	5.0	1.5	1	03/09/05	03/09/05	B, J
Sulfate	EPA 300.0	5 C 04107	0.45	0.50	7.3	1	03/04/05	03/05/05	
Total Dissolved Solids	SM2540C	5 C 08110	10	10	180	1	03/08/05	03/08/05	
Total Suspended Solids	EPA 160.2	$5 \mathrm{C07073}$	10	10	36	1	03/07/05	03/07/05	
Sample ID: 1OC0454-01 (Outfall 008 - Water)									
Reporting Units: ug/									
Perchlorate	EPA 314.0	5 C 08052	0.80	4.0	ND	1	03/08/05	03/08/05	

Del Mar Analytical, Irvine
Michele Harper
Project Manager 9484 Chesapeake Dr., Suite B05, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Stite B-120, Phoenix, AZZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. \#3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 008

Report Number: $10 C 0454$

Sampled: 03/04/05
Received: 03/04/05

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed	
Sample ID: Outfall 008 (IOC0454-01) - Water EPA 300.0	2	$03 / 04 / 200514: 00$	$03 / 04 / 200517: 50$	$03 / 04 / 2005$	$23: 00$	$03 / 05 / 2005$

MWH-Pasadena/Boeing	Project ID: Routine Outfall 008	
300 North Lake Avenue, Suite 1200		
Pasadena, CA 91101	Report Number: $10 C 0454$	Sampled: $03 / 04 / 05$ Attention: Bronwyn Kelly

METHOD BLANKIOC DATA

METALS											
Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers

Batch: 5C08106 Extracted: 03/08/05

Blank Analyzed: 03/09/2005 (5C08106-BLK1)

Antimony	ND	2.0	0.18	ug / l
Cadmium	ND	1.0	0.015	ug / l
Copper	ND	2.0	0.49	ug / l
Lead	ND	1.0	0.13	ug / l

LCS Analyzed: 03/09/2005 (5C08106-BS1)

Antimony	90.7	2.0	0.18	ug / l	80.0	113	$85-115$
Cadmium	86.3	1.0	0.015	ug / l	80.0	108	$85-115$
Copper	78.1	2.0	0.49	ug / l	80.0	88	$85-115$
Lead	84.0	1.0	0.13	ug / l	80.0	$85-115$	

Matrix Spike Analyzed: 03/09/2005 (5C08106-MS1)				Source: 1OC0448-01				
Antimony	92.4	2.0	0.18	ugh	80.0	0.37	115	70-130
Cadmium	81.1	1.0	0.015	ugn	80.0	0.086	101	70-130
Copper	79.4	2.0	0.49	ug/	80.0	3.0	96	70-130
Lead	79.6	1.0	0.13	ug/l	80.0	0.19	99	70-130

Matrix Spike Dup Analyzed: 03/09/2005 (5C08106-MSD1)			Source: 10C0448-01							
Antimony	91.3	2.0	0.18	ug/	80.0	0.37	114	70-130	1	20
Cadmium	80.9	1.0	0.015	ug/	80.0	0.086	101	70-130	0	20
Copper	78.7	2.0	0.49	ug/	80.0	3.0	95	70-130	1	20
Lead	78.6	1.0	0.13	ug/	80.0	0.19	98	70-130	1	20

Batch: 5C09050 Extracted: 03/09/05
Blank Analyzed: 03/09/2005 (5C09050-BLK1)

| Mercury ND | 0.20 | 0.063 | ug/ |
| :--- | :--- | :--- | :--- | :--- |

MWH-Pasadena/Boeing	Project ID: Routine Outfall 008	
300 North Lake Avenue, Suite 1200		Sampled: $03 / 04 / 05$
Pasadena, CA 91101	Report Number: 10 CO	
Attention: Bronwyn Kelly		Received: 03/04/05

METHOD BLANKIQC DATA

METALS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C09050 Extracted: 03/09/05										
LCS Analyzed: 03/09/2005 (5C09050-BS1)										
Mercury 8.21	0.20	0.063	ug/	8.00		103	85-115			
Matrix Spike Analyzed: 03/09/2005 (5C09050-MS1)	Source: 10C0456-01									
Mercury 8.33	0.20	0.063	ug/	8.00	ND	104	70-130			
Matrix Spike Dup Analyzed: 03/09/2005 (5C09050-MSD1)				Source: 10C0456-01						
Mercury 8.17	0.20	0.063	ug/	8.00	ND	102	70-130	2	20	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 008
Report Number: $10 C 0454$
Sampled: 03/04/05
Received: 03/04/05

METHOD BLANKIOCDATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C04107 Extracted: 03/04/05										
Blank Analyzed: 03/04/2005 (5C04107-BLK1)										
Chloride ND	0.50	0.26	mg / l							
Nitrate/Nitrite-N ND	0.11	0.11	mg / l							
Sulfate ND	0.50	0.18	$\mathrm{mg} /$							
LCS Analyzed: 03/04/2005 (5C04107-BS1)										
Chloride 5.16	0.50	0.26	mg / l	5.00		103	90-110			M-3
Sulfate 10.4	0.50	0.18	mg / l	10.0		104	90-110			M-3
Batch: 5C07073 Extracted: 03/07/05										
Blank Analyzed: 03/07/2005 (5C07073-BLK1)										
Total Suspended Solids ND	10	10	mg/							
LCSAnalyzed: 03/07/2005 (5C07073-BS1)										
Total Suspended Solids $\quad 980$	10	10	mg / l	1000		98	85-115			
Duplicate Analyzed: 03/07/2005 (5C07073-DUP1)				Sou	ce: IOC0	451-01				
Total Suspended Solids ND	10	10	$\mathrm{mg} /$		ND				10	

Batch: 5C08052 Extracted: 03/08/05
Blank Analyzed: 03/09/2005 (5C08052-BLK1)
Perchlorate ND
LCS Analyzed: 03/08/2005 (5C08052-BS1)
Perchlorate
50.0
$4.0 \quad 0.80$
50.0
$100 \quad 85-115$

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 008	
300 North Lake Avenue, Suite 1200		Sampled: 03/04/05
Pasadena, CA 91101	Report Number: $10 C 0454$	Received: 03/04/05

METHOD BLANKOC DATA

INORGANICS

Batch: 5C09091 Extracted: 03/09/05
Blank Analyzed: 03/09/2005 (5C09091-BLK1)

Oil \& Grease	1.70	5.0	0.94	mg / l						J
LCS Analy										M-NR1
Oil \& Grease	22.4	5.0	0.94	mg / l	20.0	112	65-120			
LCS Dup Analyzed: 03/09/2005 (5C09091-BSD1)										
Oil \& Grease	18.8	5.0	0.94	mg / l	20.0	94	65-120	17	20	

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 008

Report Number: 10 CO 045

Sampled: 03/04/05
Received: 03/04/05

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
IOC0454-01	413.1 Oil and Grease	Oil \& Grease	mg / l	1.50	5.0	15
IOC0454-01	Chloride - 300.0	Chloride	mg / l	9.10	0.50	150
IOC0454-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg / l	0.49	0.11	8.00
IOC0454-01	Perchlorate 314.0	Perchlorate	ug / l	0	4.0	6.00
IOC0454-01	Sulfate-300.0	Sulfate	mg / l	7.30	0.50	300
IOC0454-01	TDS - SM 2540C	Total Dissolved Solids	mg / l	180	10	950

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 008

Report Number: $10 C 0454$

Sampled: 03/04/05
Received: 03/04/05

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 008

Sampled: 03/04/05
Report Number: $10 C 0454$
Received: 03/04/05

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
EPA 160.2	Water	\mathbf{X}	\mathbf{X}
EPA 200.8	Water	\mathbf{X}	\mathbf{X}
EPA 245.1	Water	\mathbf{X}	\mathbf{X}
EPA 300.0	Water	\mathbf{X}	\mathbf{X}
EPA 314.0	Water	\mathbf{X}	\mathbf{X}
EPA 413.1	Water	\mathbf{X}	\mathbf{X}
SM2540C	Water	\mathbf{X}	\mathbf{X}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical California Cert \#1640
1104 Windfield Way - El Dorado Hills, CA 95762
Analysis Performed: 1613-Dioxin-HR
Samples: IOC0454-01
Analysis Performed: EDD + Level 4
Samples: IOC0454-01
CHAIN OF CUSTODY FORM

operolyoued 'N-ZON+EON 'TOS '-10				\times												
($1.6 \downarrow$ Vd킈 esean 810			\times													
6H'qd 'no 'po 'qs 	\times	\times	\therefore	\bigcirc		\%				I						

March 23,2005

MWH-Pasadena/ Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention: Bronwyn Kelly
Project: \quad Routine Outfall 008
Sampled: 03/04/05
Del Mar Analytical Number: IOC0454

Dear Ms. Kelly:
Alta Analytical Laboratory performed the EPA Method 1613 Dioxin analysis for the project referenced above. Please use the following cross-reference table when reviewing your results.

MWH ID	DEL MAR ID	Alta ID
Outfall 008	IOC0454-01	$25850-001$

Attached is the original report from the subcontract laboratory. If you have any questions or require further assistance, please do not hesitate to contact me at (949) 261-1022 at extension 215.

Sincerely yours,
DEL MAR ANALYTICAL

Michele Harper
Project Manager

March 16, 2005
Alta Project I.D.: 25850
Ms. Michele Harper
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614

Dear Ms. Harper,
Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on March 08,2005 under your Project Name "IOC0454". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

Martha M. Maier
Director of HRMS Services

Alta Analytical Laboratory Inc.

Section I: Sample Inventory Report Date Received: 3/8/2005

Alta Lab. ID
25850-001

Client Sample ID
IOC0454-01

SECTION II

APPENDIX

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank.
D The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.

I
Chemical Interference
J
The amount detected is below the Lower Calibration Limit of the instrument.
*
See Cover Letter
Conc. Concentration
DL Sample-specific estimated detection limit
MDL The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration
NA Not applicable
RL Reporting Limit - concentrations that corresponds to low calibration point
ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

The control limits are "interim limits only" until in-house limits are utilized.

NELAP - (Primary AA: California, Certificate No. 02102CA)
Department of the Navy

U.S. Army Corps of Engineers

U.S. EPA Region 5

Bureau of Reclamation - Mid-Pacific Region - (MP-470, Res-1.10)
Commonwealth of Kentucky - (Certificate No. 90063)
Commonwealth of Virginia - (Certificate No. 00013)
State of Alaska, Department of Environmental Conservation - (Certificate No. OS-00197)
State of Arizona - (Certificate No. AZ0639)
State of Arkansas, Department of Health - (Approval granted through CA certification)
State of Arkansas, Department of Environmental Quality
State of California - (Certificate No. 1640)
State of Colorado
State of Connecticut - (Certificate No. PH-0182)
State of Florida - (Certificate No. 87456)
State of Louisiana, Department of Health and Hospitals - (Certificate No. LA000014)
State of Louisiana, Department of Environmental Quality
State of Maine
State of Michigan (Certificate No. 81178087)
State of Mississippi - (Approval granted through CA certification)
State of Nevada - (Certificate No. CA413)
State of New Jersey - (Certificate No. CA003)
State of New York, Department of Health - (Certificate No. 11411)
State of North Carolina - (Certification No. 06700)
State of North Dakota, Department of Health - (Certificate No. R-078)
State of New Mexico
State of Oklahoma - (D9919)
State of Oregon - (Certificate No. CA413)
State of Pennsylvania - (Certificate No. 68-490)
State of South Carolina - (Certificate No. 87002001)
State of Tennessee - (Certificate No. 02996)
State of Texas - (Certificate No. TX247-1000A
State of Utah - (Certificate No. E-201)
State of Washington - (Certification No. C091)
State of Wisconsin - (Certificate No. 998036160)
State of Wyoming - (USEPA Region 8 Ref: 8TMS-Q)

SUBCONTRACT ORDER - PROJECT \# IOC0454

SAMPLE LOG-HN CHECKLIST

ALTA Project No.: 25850

1. Date Samples Artived. $38 / 050939$ Intils: $1 / 200$ Location: WR-2		
2. Time/ Date logged in: 1305 U/805 initam: 015		
3. Samples Antived By: (circio) FedEx Drs Word Courier Other:		
4. Shipping Promervation: (circle) Toe (alue lice D Dry loe / None Tomp ${ }^{\circ} \mathrm{C} \quad 1.3$		
6. Shipping Container(s) Custody Seals Present? Introte If not intect, daserbe condition in comment section.		
7. Shipping Documentation Present? (chrclo) Shippling Label Tracking Number $7928 \quad 6415 \quad 1912$		
8. Sample Custody Seal(e) Present? No. of Seals \qquad or Seal No. intact? "not intuct, describe condifion in comment section.		
9. Sample Container Intact? If no, Indicate sample condition in comment section.		
10. Chain of Custody (COC) or other Sample Documentation Present?		
11. COcinocumontation Acceptable? \# no, complete COC Anomaly Form.		
12. Shlpping Container (chrcle): ALTA Cliont - Retali or Retum or Disposed		
13. Container(s) and/or Bottie(s) Requestad?		
14. Drinking Water Sample? (HRMS Only) If yes, Accaptable Preservation? Yor N Preservation info From? (crrie) COC or Sample Containar or None Noted		

Comments:

mnn. t. cuvo 0: blim	ULL-MAK AFALYIICAL		3439 P.	4
			dermenere	
			mponswour	Nutpeas arozes
1 N	71	*		Faxtersersmo
			Phtuornama	rixicumreom
		mantimbay wom	manatyen	many mix

SUBCONTRACT ORDER - PROJECT \# IOC0454

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

amec ${ }^{\theta}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: DIOXINS/FURANS SAMPLE DELIVERY GROUPS: Multiple SDGs

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
Analysis: $\quad \mathrm{D} / \mathrm{F}$

1. INTRODUCTION

Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 10
No. of Reanalyses/Dilutions: 0
Reviewer: H. Chang
Date of Review: April 4, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Alta)	Matrix	COC Method
Outfall 002	IOC1521-01	$25935-001$	water	1613
Outfall 011	IOC1523-01	$25936-001$	water	1613
Outfall 005	IOC1524-01	$25940-001$	water	1613
Outfall 006	IOC1525-01	$25937-001$	water	1613
Outfall 011 Composite	IOC1526-01	$25938-001$	water	1613
Outfall 001	IOC1561-01	$25941-001$	water	1613
Outfall 004	IOC1563-01	$25939-001$	water	1613
Outfall 008	IOC1564-01	$25942-001$	water	1613
Outfall 003	IOC1565-01	$25943-001$	water	1613
Outfall 009	IOC1566-01	$25944-001$	water	1613

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

Samples Outfall 001, Outfall 004, and Outfall 008 were received at Del Mar Analytical outside the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. Due to non-volatile nature of the target compounds, no qualifications were required. The other samples were received with cooler temperatures within the limits. According to the laboratory login sheets, all samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COCs and transfer COCs were legible and signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. As the samples were couriered directly to Del Mar Analytical, custody seals were not required. The coolers received by Alta had custody seals present and intact. The EPA IDs were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and $2,3,7,8$-TCDD reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

	Project:
DATA VALIDATION REPORT	NPDES
SDG No.:	Multiple

2.3 CALIBRATION

2.3.1 Initial Calibration

There was one initial calibration, analyzed 08/30/04. The calibration consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with $\%$ RSDs $\leq 20 \%$ for the 16 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the one native and all labeled compounds (calibration by intemal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standards instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank (06624 MB001) was extracted and analyzed with the samples in these SDGs. There were no target compound detects reported in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One Ongoing Precision Recovery (OPR) sample (0_6624_OPR001) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2.7.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for these SDGs.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any reported EMPC was qualified as an estimated nondetect, "UJ." Any detects below the lower method calibration level (MCL) were qualified as estimated, "J." No further qualifications were required.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer P. Meeks
Analysis/Method Metals

Package ID T711MT57
Task Order 313150010
SDG No. Multiple
No. of Analyses 5

Date: $03 / 30 / 05$
Repienera Signature

ACIIONITEMS

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Qualifications applied for detects below the reporting limit and antimony MDLs

Analysis Protocol, e.g.,
were raised and results estimated due to CCB detects.
Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification
and Quantitation
System Performance \qquad

COMMENTS ${ }^{\text {b }}$,

* Subcontracted analytical laboratory is not meeting contract and/or method requirements.
- Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: METALS
SAMPLE DELIVERY GROUPS: IOC1524, IOC1525, IOC1564, IOC1565, \& IOC1566

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOC1524, IOC1525, IOC1564, IOC1565, \& IOC1566
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Metals
QC Level: Level IV
No. of Samples: 5
No. of Reanalyses/Dilutions: 0
Reviewer: P. Meeks
Date of Review: March 30, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 005	Outfall 005	IOC1524-01	water	ILM04
Outfall 006	Outfall 006	IOC1525-01	water	ILM04
Outfall 008	Outfall 008	IOC1564-01	water	ILM04
Outfall 003	Outfall 003	IOC1565-01	water	ILM04
Outfall 009	Outfall 009	10C1566-01	water	ILM04

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

Outfall 008 was received above the temperature limit at $8^{\circ} \mathrm{C}$; however, as the sample had insufficient time to cool prior to receipt at the laboratory, no qualifications were required. The remaining samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel. The COCs accounted for the samples and analyses presented in these SDGs. Duplicate samples were submitted for the samples in these SDGs; however, duplicate analyses were not required. No sample qualifications were required.

2.1.3 Holding Times

The dates of collection recorded on the COCs and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS metals and 28 days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. All $\%$ RSDs were less than 5%. The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, $90-110 \%$ for ICP/MS metals and $80-120 \%$ for mercury. The reporting limit check standards were recovered within the AMEC control limits of 70$130 \%$. No sample qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2.4 BLANKS

Antimony was detected in every CCB in the analytical sequence in which Outfall 008 and Outfall 009 were analyzed. The detects ranged from 0.484 to $0.551 \mu \mathrm{~g} / \mathrm{L}$ and antimony was detected in Outfall 008 and Outfall 009 at concentrations below these values. The CCB detects indicated the laboratory could not detect antimony at the reported MDL. The reviewer raised the antimony MDL for Outfall 008 and Outfall 009 to the highest level of interference reported, $0.55 \mu \mathrm{~g} / \mathrm{L}$ and qualified the result as estimated, "UJ." No further qualifications were required due to the method and calibration blank results.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were included in the raw data for the ICP-MS analyses. Results were not provided for spiked interferents sulfur, phosphorus, carbon, and chloride, and antimony and lead were not spiked into the ICSAB solution. Copper and cadmium were detected above the applicable reporting limit in the ICSA. Aluminum was recovered below the control limit in the all the ICSA and ICSAB analyses; however, as aluminum was not reported in the site samples, no qualifications were required. The validator reviewed the raw data for the site sample ICP/MS analyses for the level of reported interferents, $\mathrm{Al}, \mathrm{Ca}, \mathrm{Fe}$, and Mg , and determined that the levels of reported interferents were not high enough to cause matrix affects. No assessment could be made with respect to possible interference from sulfur, phosphorus, carbon, and chloride. No qualifications were required.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP/MS LCS samples were identified as 5 C21088-BS1 and 5C19038-BS1. The mercury LCS sample was identified as 5C21082-BS1. The LCS results on the summary forms and in the raw data were within the laboratory-established ICP/MS and mercury control limits of $85-115 \%$. No qualifications were required.

2.7 LABORATORY DUPLICATES

MS/MSD analyses were performed on Outfall 005 for lead only. The RPD was wthin the control limit of 20% and no qualifications were required.

2.8 MATRIX SPIKE

MS/MSD analyses were performed on Outfall 005 for lead only. Both recoveries were within the AMEC control limits of $75-125 \%$ and no qualifications were required. For the remaining analytes, method accuracy was evaluated based on LCS results.

	Project:	NPDES
	SDG No.:	Multiple
DATA VALIDATION REPORT	Analysis:	MET

2.9 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

2.10 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

2.11 INTERNAL STANDARDS PERFORMANCE

The ICP-MS internal standard recoveries for the site samples and associated QC sample analyses were within the $60-125 \%$ control limits and no qualifications were required.

2.12 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit were qualified as estimated, "J." No further qualifications were required.

2.13 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.13.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site samples.

DRAFT: METALS

Pm 3/30/, s

AMEC VADIDATED

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 008

Sampled: 03/19/05
Received: 03/19/05
Issued: 03/31/05 09:22

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
IOC1564-01

CLIENT ID
Outfall 008
MATRIX
Water

Reviewed By:

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 008

Report Number: 10 Cl 564

Sampled: 03/19/05
Received: 03/19/05

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 10C1564-01 (Outfall 008 - Water)									
Reporting Units: ug/									
Antimony	EPA 200.8	5C21088	0.18	2.0	0.42	1	03/21/05	03/21/05	J
Cadmium	EPA 200.8	5C21088	0.015	1.0	0.018	1	03/21/05	03/21/05	J
Copper	EPA 200.8	5 C 21088	0.49	2.0	2.9	1	03/21/05	03/21/05	
Lead	EPA 200.8	5C21088	0.13	1.0	0.18	1	03/21/05	03/21/05	J
Mercury	EPA 245.1	5C21082	0.063	0.20	ND	1	03/21/05	03/21/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 008

Report Number: $10 \mathrm{Cl} 564 \quad$| Sampled: $03 / 19 / 05$ |
| ---: |
| Received: $03 / 19 / 05$ |

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Quallfiers
Sample ID: IOC1564-01 (Outfall 008 - Water) - cont. Reporting Units: mg/									
Chloride	EPA 300.0	5C20029	0.15	0.50	11	1	03/20/05	03/20/05	
Nitrate/Nitrite-N	EPA 300.0	5 C 20029	0.072	0.11	0.28	1	03/20/05	03/20/05	
Oil \& Grease	EPA 413.1	SC21062	0.94	5.0	ND	1	03/21/05	03/21/05	
Sulfate	EPA 300.0	5C20029	0.45	0.50	4.2	1	03/20/05	03/20/05	
Total Dissolved Solids	SM2540C	5 C 21073	10	10	130	1	03/21/05	03/21/05	
Total Suspended Solids	EPA 160.2	5C21068	10	10	ND	1	03/21/05	03/21/05	
Sample ID: 10C1564-01 (Outfall 008 - Water)									
Reporting Units: ug									
Perchlorate	EPA 314.0	5C21050	0.80	4.0	ND	1	03/21/05	03/21/05	

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 008
Report Number: IOC1564 Sampled: 03/19/05
Report Number: IOC1564

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed	
Sample ID: Outfall 008 (IOC1564-01)-Water EPA 300.0	2	$03 / 19 / 200509: 48$	$03 / 19 / 200517: 30$	$03 / 20 / 2005$	$13: 30$	$03 / 20 / 2005$

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 008	
Report Number: $10 C 1564$	Sampled: 03/19/05

Sampled: 03/19/05
Received: 03/19/05

METHOD BIEANKIOC DATA

METALS

		Reporting			Spike	Source	\%REC		RPD	Data	
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5C21082 Extracted: 03/21/05
Blank Analyzed: 03/21/2005 (5C21082-BLK1)
Mercury ND
LCS Analyzed: 03/21/2005 (5C21082-BS1)

Mercury	7.98	0.20	0.063	ug/	8.00		100	85-115	
Matrix Spike Analyzed: 03/21/2005 (5C21082-MS1)			Source: 10C1561-01						
Mercury	7.93	0.20	0.063	ug/	8.00	ND	99	70-130	
Matrix Spike Dup Analyzed: 03/21/2005 (5C21082-MSD1)			Source: 10C1561-01						
Mercury	8.07	0.20	0.063	ug/	8.00	ND	101	70-130	2

Batch: 5C21088 Extracted: 03/21/05
Blank Analyzed: 03/21/2005 (5C21088-BLK1)

Antimony	ND	2.0	0.18	ug 1	
Cadmium		ND	1.0	0.015	ug 1
Copper		ND	2.0	0.49	ug $/ 2$
Lead	ND	1.0	0.13	ug $/ 1$	

LCS Analyzed: 03/21/2005 (5C21088-BS1)

Antimony	86.5	2.0	0.18	ug/l	80.0	108	$85-115$
Cadmium	84.6	1.0	0.015	ug/	80.0	106	$85-115$
Copper	81.1	2.0	0.49	ug/	80.0	101	$85-115$
Lead	84.0	1.0	0.13	ug $/$	80.0	105	$85-115$

Matrix Spike Analyzed: $\mathbf{0 3 / 2 1 / 2 0 0 5}$ (5C21088-MS1)			Source: $\mathbf{1 O C 1 5 6 1 - 0 1}$					
Antimony	94.5	2.0	0.18	ug/	80.0	0.45	118	$70-130$
Cadmium	86.9	1.0	0.015	ugh	80.0	0.025	109	$70-130$
Copper	78.5	2.0	0.49	ug/	80.0	1.9	96	$70-130$
Lead	83.6	1.0	0.13	ug/	80.0	ND	104	$70-130$

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 008

Report Number: $10 C 1564$

Sampled: 03/19/05
Received: 03/19/05

METHOD BLAANKIQC DATA

METALS

		Reporting			Spike	Source	\%REC		RPD	Data	
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5C21088 Extracted: 03/21/05
Matrix Spike Analyzed: 03/21/2005 (5C21088-MS2)

Antimony	87.6	2.0	0.18	ug/l	80.0	0.68	109	$70-130$
Cadmium	82.1	1.0	0.015	ug/	80.0	0.094	103	$70-130$
Copper	85.2	2.0	0.49	ug	80.0	7.7	97	$70-130$
Lead	82.6	1.0	0.13	ug/	80.0	0.83	102	$70-130$

Matrix Spike Dup Analyzed: $\mathbf{0 3 / 2 1 / 2 0 0 5}$ (5C21088-MSD1)	Source: IOC1561-01									
Antimony	88.8	2.0	0.18	uggl	80.0	0.45	110	$70-130$	6	20
Cadmium	83.0	1.0	0.015	ug $/ 1$	80.0	0.025	104	$70-130$	5	20
Copper	77.9	2.0	0.49	ug/l	80.0	1.9	95	$70-130$	1	20
Lead	81.3	1.0	0.13	ugg 1	80.0	ND	102	$70-130$	3	20

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

```
Project ID: Routine Outfall 008
Report Number: IOC1564
Sampled: 03/19/05
Received: 03/19/05
```


METHOD BLANKOQC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C20029 Extracted: 03/20/05											
Blank Analyzed: 03/20/2005 (5C20029-BLK1)											
Chloride	ND	0.50	0.26	mg / l							
Nitrate/Nitrite-N	ND	0.11	0.072	mg / l							
Sulfate	ND	0.50	0.18	mg / l							
LCS Analyzed: 03/20/2005 (5C20029-BS1)											
Chloride	4.65	0.50	0.26	$\mathrm{mg} / 1$	5.00		93	90-110			M-3
Sulfate	9.69	0.50	0.18	$\mathrm{mg} /$	10.0		97	90-110			M-3

Batch: 5C21050 Extracted: 03/21/05
Blank Analyzed: 03/21/2005 (5C21050-BLK1)

Batch: 5C21062 Extracted: 03/21/05
Blank Analyzed: 03/21/2005 (5C21062-BLK1)

| Oil \& Grease | ND | 5.0 | 0.94 | mg / l |
| :--- | :--- | :--- | :--- | :--- | :--- |

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 008
10 Cl 564 Sampled: 03/19/05
Report Number: $10 C 1564$

METHOD BLANKIQC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C21062 Extracted: 03/21/05										
LCS Analyzed: 03/21/2005 (5C21062-BS1)										M-NR1
Oil \& Grease 17.1	5.0	0.94	mg / l	20.0		86	65-120			
LCS Dup Analyzed: 03/21/2005 (5C21062-BSD1)										
Oil \& Grease 16.0	5.0	0.94	mg / l	20.0		80	65-120	7	20	
Batch: 5C21068 Extracted: 03/21/05										
Blank Analyzed: 03/21/2005 (5C21068-BLK1)										
Total Suspended Solids ND	10	10	mg / l							
LCS Analyzed: 03/21/2005 (5C21068-BS1)										
Total Suspended Solids 942	10	10	mg / l	1000		94	85-115			
Duplicate Analyzed: 03/21/2005 (5C21068-DUP1)				Sou	ce: 10C1	566-01				
Total Suspended Solids , H , ND	10	10	mg/		ND				10	\because
Batch: $5 C 21073$ Extracted: 03/21/05										
Blank Analyzed: 03/21/2005 (5C21073-BLK1)										
Total Dissolved Solids ND	10	10	mg/l							
LCS Analyzed: 03/21/2005 (5C21073-BS1)										
Total Dissolved Solids 968	10	10	mg / l	1000		97	90-110			
Duplicate Analyzed: 03/21/2005 (5C21073-DUP1)				Sou	e: 10C1	66-01				
Total Dissolved Solids 320	10	10	mg / l		300			6	10	

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 008
Report Number: $10 C 1564$
Sampled: 03/19/05
Received: 03/19/05

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
IOC1564-01	413.1 Oil and Grease	Oil \& Grease	$\mathrm{mg} / 1$	0.38	5.0	15
IOC1564-01	Chloride - 300.0	Chloride	$\mathrm{mg} / 1$	11	0.50	150
$1 O C 1564-01$	Nitrogen, $\mathrm{NO} 3+\mathrm{NO} 2-\mathrm{N}$	Nitrate/Nitrite-N	$\mathrm{mg} / 1$	0.28	0.11	8.00
1OC1564-01	Perchlorate 314.0	Perchlorate	ug / l	0	4.0	6.00
$10 C 1564-01$	Sulfate-300.0	Sulfate	$\mathrm{mg} / 1$	4.20	0.50	300
IOC1564-01	TDS - SM 2540C	Total Dissolved Solids	$\mathrm{mg} / 1$	130	10	950

Del Mar Analytical, Irvine

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 008
Report Number: 10 Cl 1564
Sampled: 03/19/05
Received: 03/19/05

DATA QUALIFIERS AND DEFINITIONS

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the

M-3 Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality. Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 008
Report Number: 10 C 1564
Sampled: 03/19/05
Received: 03/19/05

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
EPA 160.2	Water	\mathbf{X}	\mathbf{X}
EPA 200.8	Water	\mathbf{X}	\mathbf{X}
EPA 245.1	Water	\mathbf{X}	\mathbf{X}
EPA 300.0	Water	\mathbf{X}	\mathbf{X}
EPA 314.0	Water	\mathbf{X}	\mathbf{X}
EPA 413.1	Water	\mathbf{X}	\mathbf{X}
SM2540C	Water	\mathbf{X}	\mathbf{X}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical California Cert $\# 1640$

1104 Windfield Way - El Dorado Hills, CA 95762
Analysis Performed: 1613-Dioxin-HR
Samples: IOC1564-01
Analysis Performed: EDD + Level 4
Samples IOC1564-01

March 28,2005

MWH-Pasadena/ Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention: Bronwyn Kelly
Project: Routine Outfall 008
Sampled: 03/19/05
Del Mar Analytical Number: IOC1564

Dear Ms. Kelly:
Alta Analytical Laboratory performed the EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans analysis for the project referenced above. Please use the following cross-reference table when reviewing your results.

MWH ID	DEL MAR ID	ALTA ID
Routine Outfall 008.	IOC1564-01	$\mathbf{2 5 9 4 2 - 0 0 1}$

Attached is the original report from the subcontract laboratory. If you have any questions or require further assistance, please do not hesitate to contact me at (949) 261-1022 at extension 215.

Sincerely yours,
DEL MAR ANALYTICAL

Michele Harper
Project Manager

$\frac{\text { ALTA }}{\text { ATA }}$

March 24, 2005
Alta Project I.D.: 25942
Ms. Michele Harper
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Dear Ms. Harper,
Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on March 22, 2005 under your Project Name "IOC1564". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

Martha M. Maier
Director of HRMS Services

Alta Analytical Laboratory Inc.

Section I: Sample Inventory Report
 Date Received: 3/22/2005

Alta Lab. ID
25942-001

Client Sample ID
IOC1564-01

SECTION II

OPR Results						EPA	Method 16	
		QC Batch No.:	6624		Lab Sample: $\quad 0$-OPR001			
Sample Size: 1.000 L		Date Extracted:	22-Mar-05		Date Analyzed DB-5: 23 -Mar-05	Date Analyzed	DB-225:	NA
Analyte	Spike Conc.	Conc. ($\mathrm{ng} / \mathrm{mL}$)	OPR Limits		Labeled Standard	\%R	LCL-UCL	
2,3,7,8-TCDD	10.0	9.02	6.7-15.8	IS	13C-2,3,7,8-TCDD	86.2	25-164	
1,2,3,7,8-PeCDD	50.0	44.9	35-71		13C-1,2,3,7,8-PeCDD	83.6	$25-181$	
1,2,3,4,7,8-HxCDD	50.0	45.7	35-82		$13 \mathrm{C}-1,2,3,4,7,8-\mathrm{HxCDD}$	83.1	32-141	
1,2,3,6,7,8-HxCDD	50.0	47.1	38-67		$13 \mathrm{C}-1,2,3,6,7,8-\mathrm{HxCDD}$	90.5	28-130	
1,2,3,7,8,9-HxCDD	50.0	47.2	32-81		13C-1,2,3,4,6,7,8-HpCDD	80.1	23-140	
1,2,3,4,6,7,8-HpCDD	50.0	49.7	35-70		$13 \mathrm{C}-\mathrm{OCDD}$	60.0	17-157	
OCDD	100	102	78-144		13C-2,3,7,8-TCDF	89.6	24-169	
2,3,7,8-TCDF	10.0	9.28	7.5-15.8		13C-1,2,3,7,8-PeCDF	82.2	24-185	
1,2,3,7,8-PeCDF	50.0	49.7	40-67		13C-2,3,4,7,8-PeCDF	86.0	21-178	
2,3,4,7,8-PeCDF	50.0	48.9	34-80		13C-1,2,3,4,7,8-HxCDF	69.1	26-152	
1,2,3,4,7,8-HxCDF	50.0	52.4	36-67		13C-1,2,3,6,7,8-HxCDF	83.1	26-123	
1,2,3,6,7,8-HxCDF	50.0	51.4	42-65		13C-2,3,4,6,7,8-HxCDF	80.9	28-136	
2,3,4,6,7,8-HxCDF	50.0	51.3	35-78		13C-1,2,3,7,8,9-HxCDF	77.1	29-147	
1,2,3,7,8,9-HxCDF	50.0	51.3	39-65		13C-1,2,3,4,6,7,8-HpCDF	77.1	28-143	
1,2,3,4,6,7,8-HpCDF	50.0	54.0	41-61		13C-1,2,3,4,7,8,9-HpCDF	78.6	26-138	
1,2,3,4,7,8,9-HpCDF	50.0	53.2	39-69		13C-OCDF	65.1	17-157	
OCDF	100	103	63-170	CRS	S 37Cl-2,3,7,8-TCDD	89.8	35-197	

APPENDIX

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank.
D The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.
1 Chemical Interference
J The amount detected is below the Lower Calibration Limit of the instrument.
P Homologue totals include any coplanar PCBs detected at concentrations less than the reporting limit.
*
Conc. Concentration
DL Sample-specific estimated detection limit
MDL The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration
NA Not applicable
RL Reporting Limit - concentrations that correspond to low calibration point
ND Not Detected
TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

The control limits are "interim limits only" until in-house limits are utilized.

NELAP - (Primary AA: California, Certificate No. 02102CA)
Department of the Navy
U.S. Army Corps of Engineers
U.S. EPA Region 5

Bureau of Reclamation - Mid-Pacific Region - (MP-470, Res-1.10)
Commonwealth of Kentucky - (Certificate No. 90063)
Commonwealth of Virginia - (Certificate No. 00013)
State of Alaska, Department of Environmental Conservation - (Certificate No. OS-00197)
State of Arizona - (Certificate No. AZ0639)
State of Arkansas, Department of Health - (Approval granted through CA certification)
State of Arkansas, Department of Environmental Quality
State of California - (Certificate No. 1640)
State of Colorado
State of Connecticut - (Certificate No. PH-0182)
State of Florida - (Certificate No. 87456)
State of Louisiana, Department of Health and Hospitals - (Certificate No. LA000014)
State of Louisiana, Department of Environmental Quality
State of Maine
State of Michigan (Certificate No. 81178087)
State of Mississippi - (Approval granted through CA certification)
State of Nevada - (Certificate No. CA413)
State of New Jersey - (Certificate No. CA003)
State of New York, Department of Health - (Certificate No. 11411)
State of North Carolina - (Certification No. 06700)
State of North Dakota, Department of Health - (Certificate No. R-078)
State of New Mexico
State of Oklahoma - (D9919)
State of Oregon - (Certificate No. CA413)
State of Pennsylvania - (Certificate No. 68-490)
State of South Carolina - (Certificate No. 87002001)
State of Tennessee - (Certificate No. 02996)
State of Texas - (Certificate No. TX247-1000A
State of Utah - (Certificate No. E-201)
State of Washington - (Certification No. C091)
State of Wisconsin - (Certificate No. 998036160)
State of Wyoming - (USEPA Region 8 Ref: 8TMS-Q)

SAMPLE LOG-IN CHECKLIST

ALTA Project No.: \qquad 5942

Comments:

SUBCONTRACT ORDER - PROJECT \# IOC1564

Standard TAT is requested unless specific due date is requested \Rightarrow Due Date: \qquad Initials: \qquad

APPENDIX G

Section 35

March Outfall 009
AMEC Data Validation Reports
Del Mar Analytical Laboratory Reports

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Alta
Reviewer K. Shadowlight
Analysis/Method Dioxins

Package ID T711DF35
Task Order 313150010
SDG No. Multiple
No. of Analyses 6
Date: March 23, 2005
Reyiewer's Signature
Shadon $4 t$

ACTION ITEMS ${ }^{*}$

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, e.g.,
Holding Times
Qualifications were assigned for the following:

* EMPCs
* Detects below the lower method calibration level
GC/MS Tune/inst. Performance
Calibration
Method blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and
Quantitation
System Performance

COMMENTS ${ }^{\circ}$

* Subcontracted analytical laboratory is not meeting contract and/or method requirements.
b Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: DIOXINS/FURANS SAMPLE DELIVERY GROUPS: Multiple SDGs

Prepared by

AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:
DATA VALIDATION REPORT	NPDES
SDG No.:	Multiple
D/	Analysis:

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 6
No. of Reanalyses/Dilutions: 0
Reviewer: K. Shadowlight
Date of Review: March 21, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:
DATA VALIDATION REPORT	NPDES SDG No.: Multiple

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Alta)	Matrix	COC Method
Outfall 002	IOC0447-01	$25853-001$	water	1613
Outfall 003	IOC0449-01	$25854-001$	water	1613
Outfall 004	$10 C 0455-01$	$25855-001$	water	1613
Outfall 005	IOC0451-01	$25855-001$	water	1613
Outfall 007	IOC0453-01	$25856-001$	water	1613
Outfall 011	IOC0448-01	$25852-001$	water	1613

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

All of the samples in these SDGs were received at Del Mar Analytical within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The samples were shipped to Alta for dioxin/furan analyses and were received below the temperature limits at $1.3^{\circ} \mathrm{C}$ and $1.4^{\circ} \mathrm{C}$; however, as the samples were not noted to have been frozen or damaged, no qualifications were required. According to the laboratory login sheets, all samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COCs and transfer COCs were legible and signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. As the samples were couriered directly to Del Mar Analytical, custody seals were not required. The coolers received by Alta had custody seals present and intact; however, custody seals were not present on the sample containers. The EPA IDs were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and $2,3,7,8$-TCDD reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

	Project:
DATA VALIDATION REPORT	NPDES
SDG No.:	Multiple

2.3 CALIBRATION

2.3.1 Initial Calibration

There was one initial calibration, analyzed 08/30/04. The calibration consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with $\%$ RSDs $\leq 20 \%$ for the 15 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of $\%$ Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standards instead of being analyzed separately, as noted in section 2.2 .1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank (6593-MB001) was extracted and analyzed with the samples in these SDGs. Total TCDF was reported at $1,4 \mathrm{pgL}$ and target compound $1,2,3,6,7,8-\mathrm{HxCDF}$ was reported as an EMPC. The results for total TCDF in samples Outfall 003 and Outfall 011 were qualified as estimated nondetects "UJ," at the levels of interference. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No further qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One Ongoing Precision Recovery (OPR) sample (6593-OPR001) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

2.7.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for these SDGs.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any reported EMPC was qualified as an estimated nondetect, "UJ." Any detects below the lower method calibration level (MCL) were qualified as estimated, " J " The result for total TCDF in sample Outfall 003 was flagged by the laboratory with a " D " qualifier which indicated possible diphenylether interference; however, the result was qualified as a nondetect due to method blank contamination and no qualifications were required. No further qualifications were required.

MHC VILIDAED

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer P. Meeks
Analysis/Method Metals

Package ID T711MT44
Task Order 313150010 SDG No. IOC0454, IOC0455
No. of Analyses 2
Date: 03/29/05
Revieyer's Signature

ACTION TIEMS

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from \quad Qualifications applied for:

Analysis Protocol, e.g.,
Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification
and Quantitation
System Performance

1. CCB detect
2. Reporting limit check standard recovery outlier
3. Detects below the reporting limit
4. Antimony MDL raised and result estimated due to negative sample result
\qquad
\square

\qquad
\square
\square

COMMENTS

[^12]
amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: METALS
SAMPLE DELIVERY GROUPS: IOC0454 \& IOC0455

Prepared by
AMEC-Denver Operations
Lakewood, Colorado 80226

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC0454, 0455

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOC0454, IOC0455
Project Manager: B. McIlvaine
Matrix: Water
Analysis: Metals
QC Level: Level IV
No. of Samples: 2
No. of Reanalyses/Dilutions: 0
Reviewer: P. Meeks
Date of Review: March 29, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form 1 as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC0454, 0455

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 008	Outfall 008	IOC0454-01	water	ILM04
Outfall 009	Outfall 009	IOC0455-01	water	ILM04

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel. The COCs accounted for the samples and analyses presented in these SDGs. Duplicate samples were submitted for both samples in these SDGs; however, duplicate analyses were not required. No sample qualifications were required.

2.1.3 Holding Times

The dates of collection recorded on the COCs and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS metals and 28 days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. All \%RSDs were less than 5%. The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, $90-110 \%$ for ICP/MS metals and 80-120\% for mercury. Antimony was not recovered in the 0.2 ppb reporting limit check standard and was recovered below the control limit in the 1.0 ppb reporting limit check standard; therefore, nondetected antimony in both site samples (see section 2.4)was qualified as estimated, "UJ." The remaining reporting limit check standards were recovered within the AMEC control limits of $70-130 \%$. No further sample qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC0454, 0455

2.4 BLANKS

Antimony was detected in a bracketing CCB at $0.309 \mu \mathrm{~g} / \mathrm{L}$; therefore, antimony detected in Outfall 009 was qualified as estimated, "UJ." No further qualifications were required due to the method and calibration blank results.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were analyzed in association with the samples in this SDG; therefore, no assessment can be made with respect to this criterion.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP/MS LCS sample was identified as 5C08106-BS1 and the mercury LCS sample was identified as 5C09050-BS1. The LCS results on the summary forms and in the raw data were within the laboratory-established ICP/MS and mercury control limits of $85-115 \%$. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MS/MSD or laboratory duplicate analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

2.8 MATRIX SPIKE

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on LCS results.

2.9 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

2.10 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC0454, 0455

2.11 INTERNAL STANDARDS PERFORMANCE

The ICP-MS internal standard recoveries for the site samples and associated QC sample analyses were within the $60-125 \%$ control limits and no qualifications were required.

2.12 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit were qualified as estimated, "J."

The laboratory reported antimony in Outfall 008 as nondetected at the reporting limit. The reviewer noted that the result in the raw data was $-0.309 \mu \mathrm{~g} / \mathrm{L}$; therefore, the reviewer raised the antimony MDL for Outfall 008 to the level of interference in Outfall $008,0.31 \mu \mathrm{~g} / \mathrm{L}$, and qualified the result as estimated, "UJ." No further qualifications were required.

2.13 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.13.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site samples.

MWH-Pasadena/Boeing	Project ID: Routine Cutfall 009	Sampled: $03 / 04 / 05$
300 North Lake Avenue, Suite 1200	Report Number: $10 C 0455$	Received: $03 / 04 / 05$
Pasadena, CA 91101		

DRAFT: METALS

MDL Reporting Sample Dilution Date Date Data Analyte Method Batch Limit Limit Result FactorExtracted Analyzed Qualifiers

Sample ID: IOC0455-01 (DRAFT: Outfall 009 - Water) Reporting Units: ugh
Antimony
Cadmium
Copper
Lead
Mercury

all 0	r)							Qual	Codn
EPA 200.8	$5 \mathrm{C08106}$	0.18	2.0	1.3	1	03/08/05	03/09105	טJ 3	$B_{1} * 3$
EPA 200.8	$5 \mathrm{C08106}$	0.015	1.0	0.041	1	03/08/05	03/09/05	JJ	DNQ
EPA 200.8	$5 \mathrm{C08106}$	0.49	2.0	3.9	1	03/08/05	03/09/05		
EPA 200.8	5008106	0.13	1.0	0.62	1	03/08/05	03/09/05	$J^{\text {J }}$	$D N Q$
EPA 245.1	5009050	0.063	0.20	ND	1.	03/09/05	03i09/05	U	

ANEC VALDOATED

\qquad

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 009

Sampled: 03/04/05
Received: 03/04/05
Issued: 03/28/05 10:38

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117
The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.
SAMPLE CROSS REFERENCE
SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
1OC0455-01

CLIENT ID

Outfall 009

MATRIX
Water

Reviewed By:

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 009
Report Number: IOC0455

Sampled: 03/04/05
Received: 03/04/05

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OC0455-01 (Outfall 009 - Water)									
Reporting Units: ugh									
Antimony	EPA 200.8	$5 \mathrm{C08106}$	0.18	2.0	1.3	1	03/08/05	03/09/05	J
Cadmium	EPA 200.8	5 C 08106	0.015	1.0	0.041	1	03/08/05	03/09/05	J
Copper	EPA 200.8	$5 \mathrm{C08106}$	0.49	2.0	3.9	1	03/08/05	03/09/05	
Lead	EPA 200.8	$5 \mathrm{C08106}$	0.13	1.0	0.62	1	03/08/05	03/09/05	J
Mercury	EPA 245.1	$5 \mathrm{CO9050}$	0.063	0.20	ND	1	03/09/05	03/09/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Report Number: IOC0455

Sampled: 03/04/05
Received: 03/04/05

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Quallifers
Sample ID: 1OC0455-01 (Outfall 009 - Water) - cont. Reporting Units: mgl									
Chloride	EPA 300.0	5 C 04107	0.15	0.50	8.0	1	03/04/05	03/05/05	
Nitrate/Nitrite-N	EPA 300.0	5 C 04107	0.11	0.11	0.45	1	03/04/05	03/05/05	
Oil \& Grease	EPA 413.1	SC09091	0.94	5.0	ND	1	03/09/05	03/09/05	
Sulfate	EPA 300.0	5 C 04107	0.45	0.50	18	1	03/04/05	03/05/05	
Total Dissolved Solids	SM2540C	5C08110	10	10	130	1	03/08/05	03/08/05	
Total Suspended Solids	EPA 160.2	5C07073	10	10	ND	1	03/07/05	03/07/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention; Bronwyn Kelly

Project ID: Routine Outfall 009

Report Number: 10 C 0455 Received: 03/04/05

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 009 (10C0455-01) - Water					
EPA 300.0	2	03/04/2005 11:06	03/04/2005 17:50	03/04/2005 23:00	03/05/2005 02:20

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 009
Report Number: $10 C 0455$

Received: 03/04/05

METHOD BLANKIQC DATA

METALS

Blank Analyzed: 03/09/2005 (5C08106-BLK1)

Antimony	ND	2.0	0.18	ug $/$
Cadmium	ND	1.0	0.015	ug
Copper	ND	2.0	0.49	ugh
Lead	ND	1.0	0.13	ug 1

LCS Analyzed: 03/09/2005 (5C08106-BS1)

Antimony	90.7	2.0	0.18	ug / l	80.0	113	$85-115$
Cadmium	86.3	1.0	0.015	$\mathrm{ug} / 1$	80.0	108	$85-115$
Copper	78.1	2.0	0.49	$\mathrm{ug} / 1$	80.0	98	$85-115$
Lead	84.0	1.0	0.13	$\mathrm{ug} / 1$	80.0	105	$85-115$

Matrix Spike Analyzed: 03/09/2005 (5C08106-MS1)				Source: 1OC0448-01				
Antimony	92.4	2.0	0.18	ug/	80.0	0.37	115	70-130
Cadnium	81.1	1.0	0.015	ug/	80.0	0.086	101	70-130
Copper	79.4	2.0	0.49	ug/	80.0	3.0	96	70-130
Lead	79.6	1.0	0.13	ug/	80.0	0.19	99	70-130

Matrix Spike Dup Analyzed: 03/09/2005 (5C08106-MSD1)			Source: 10C0448-01							
Antimony	91.3	2.0	0.18	ug/1	80.0	0.37	114	70-130	1	20
Cadmium	80.9	1.0	0.015	ug/	80.0	0.086	101	70-130	0	20
Copper	78.7	2.0	0.49	ug/	80.0	3.0	95	70-130	1	20
Lead	78.6	1.0	0.13	ug/	80.0	0.19	98	70-130	1	20

Batch: 5C09050 Extracted: 03/09/05
Blank Analyzed: 03/09/2005 (5C09050-BLK1)
Mercury ND
$\mathrm{ND} \quad 0.20 \quad 0.063 \quad \mathrm{ug} / \mathrm{l}$

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 009	
300 North Lake Avenue, Suite 1200		Sampled: 03/04/05
Pasadena, CA 91101	Report Number: 10 C 0455	Received: $03 / 04 / 05$
Attention: Bronwyn Kelly		

METHOD BLANKIQC DATA

METALS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C09050 Extracted: 03/09/05										
LCS Analyzed: 03/09/2005 (5C09050-BS1)										
Mercary 8.21	0.20	0.063	ug/	8.00		103	85-115			
Matrix Spike Analyzed: 03/09/2005 (5C09050-MS1)	Source: 10C0456-01									
Mercury 8.33	0.20	0.063	ug/	8.00	ND	104	70-130			
Matrix Spike Dup Analyzed: 03/09/2005 (5C09050-MSD1)				Source: 1OC0456-01						
Mercury 8.17	0.20	0.063	ug/	8.00	ND	102	70-130	2	20	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 009
Report Number: $10 C 0455$
Sampled: 03/04/05
Received: 03/04/05

METHOD BLANKIOC DATA

INORGANICS

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 009
Report Number: $10 \mathrm{CO455}$
Sampled: 03/04/05
Received: 03/04/05

METHOD BLANKOC DATA

INORGANICS

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 009
Report Number: IOC0455

Sampled: 03/04/05
Received: 03/04/05

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance
IOC0455-01	413.1 Oil and Grease	Oil \& Grease	$\mathrm{mg} / 1$	0.57	5.0	15
$10 C 0455-01$	Chloride - 300.0	Chloride	$\mathrm{mg} / 1$	8.00	0.50	150
IOC0455-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	$\mathrm{mg} / 1$	0.45	0.11	10.00
IOC0455-01	Sulfate-300.0	Sulfate	$\mathrm{mg} / 1$	18	0.50	250
IOC0455-01	TDS - SM 2540 C	Total Dissolved Solids	$\mathrm{mg} / 1$	130	10	850

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Report Number: $10 \mathrm{C} 0455 \quad$| Sampled: 03/04/05 |
| :--- |
| Received: 03/04/05 |

DATA QUALIFIERS AND DEFINITIONS

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 009
Report Number: IOC0455

Sampled: 03/04/05
Received: 03/04/05

Certification Summary

Del Mar Analytical, Irvine

Methed	Matrix	Nelac	California
EPA 160.2	Water	\mathbf{X}	\mathbf{X}
EPA 200.8	Water	\mathbf{X}	\mathbf{X}
EPA 245.1	Water	\mathbf{X}	\mathbf{X}
EPA 300.0	Water	\mathbf{X}	\mathbf{X}
EPA 413.1	Water	\mathbf{X}	\mathbf{X}
SM2540C	Water	\mathbf{X}	\mathbf{X}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical Calfornia Cert \#1640
1104 Windfield Way - El Dorado Hills, CA 95762
Analysis Performed: 1613-Dioxin-HR
Samples: $10 \mathrm{C} 0455-01$
Analysis Performed: EDD + Level 4 Samples: 1OC0455-01

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper
Project Manager

March 23,2005

MWH-Pasadena/ Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention: Bronwyn Kelly
Project: Routine Outfall 009
Sampled: 03/04/05
Del Mar Analytical Number: IOC0455

Dear Ms. Kelly:
Alta Analytical Laboratory performed the EPA Method 1613 Dioxin analysis for the project referenced above. Please use the following cross-reference table when reviewing your results.

MWH ID	DEL MAR ID	Alta ID
Outfall 009	IOC0455-01	$25857-001$

Attached is the original report from the subcontract laboratory. If you have any questions or require further assistance, please do not hesitate to contact me at (949) 261-1022 at extension 215.

Sincerely yours,
DEL MAR ANALYTICAL

Michele Harper
Project Manager

March 16, 2005
Alta Project I.D.: 25857
Ms. Michele Harper
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614

Dear Ms. Harper,
Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on March 08,2005 under your Project Name "IOC0455". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

Martha M. Maser
Director of HRMS Services

Section I: Sample Inventory Report Date Received: 3/8/2005

Alta Lab. ID
25857-001

Client Sample ID
10C0455-01

SECTION II

Method Blank								EPA Method 1613					
Matrix: Sample Size:	Aqueous 1.000 L	QC Batch No.: Date Extracted:		$\begin{aligned} & 6593 \\ & \text { 11-Mar-05 } \end{aligned}$	Lab Sample: 0 -MB001 Date Analyzed DB-5: 14-Mar-05			Date Analyzed DB-225: NA					
Analyte	Conc. (pg/L)	DL ${ }^{\text {a }}$	EMPC ${ }^{\text {b }}$	Qualifiers		Labeled Stand		\%R	LCL-UCL ${ }^{\text {d }}$	Oualifiers			
2,3,7,8-TCDD	ND	1.27			IS	13C-2,3,7,8-TC		61.5	25-164				
1,2,3,7,8-PeCDD	ND	1.50				13C-1,2,3,7,8-P	CDD	57.2	25-181				
1,2,3,4,7,8-HxCDD	ND	2.20				13C-1,2,3,4,7,8	xCDD	67.8	32-141				
1,2,3,6,7,8-HxCDD	ND	2.32				13C-1, 2, 3,6,7,8	xCDD	76.7	28-130				
1,2,3,7,8,9-HxCDD	ND	2.26				13C-1,2,3,4,6,7	-HpCDD	56.6	23-140				
1,2,3,4,6,7,8-HpCDD	ND	3.00				13C-OCDD		26.9	17-157				
OCDD	ND	11.1				13C-2,3,7,8-TC		63.1	24-169				
2,3,7,8-TCDF	ND	1.37				13C-1, 2,3,7,8-P		54.3	24-185				
1,2,3,7,8-PeCDF	ND	2.09				13C-2,3,4,7,8-P	CDF	58.1	21-178				
2,3,4,7,8-PeCDF	ND	1.73				13C-1,2,3,4,7,8	xCDF	60.3	26-152				
1,2,3,4,7,8-HxCDF	ND	1.16				13C-1,2,3,6,7,8	xCDF	70.6	26-123				
1,2,3,6,7,8-HxCDF	ND		0.905			13C-2,3,4,6,7,8	xCDF	67.0	28-136				
2,3,4,6,7,8-HxCDF	ND	0.768				13C-1, 2, , ,7,8,9	xCDF	62.8	29-147				
1,2,3,7,8,9-HxCDF	ND	1.22				$13 \mathrm{C}-1,2,3,4,6,7$	HpCDF	53.2	28-143				
1,2,3,4,6,7,8-HpCDF	ND	1.96				13C-1, 2, 3, 4,7,8	HpCDF	57.7	26-138				
1,2,3,4,7,8,9-HpCDF	ND	1.38				13C-OCDF		32.9	17-157				
OCDF	ND	7.76			CR	37Cl-2,3,7,8-T		71.7	35-197				
Totals					Footnotes								
Total TCDD ND 1.27					a. Sample specific estimated detection limit. b. Estimated maximum possible concentration. c. Method detection limit. d. Lower control limit - upper control limit.								
Total PeCDD	ND	1.50											
Total HxCDD	ND	2.26											
Total HpCDD	ND	3.00											
Total TCDF	1.40	2.79 D											
Total PeCDF	ND	3.06											
Total HxCDF	ND	0.905											
Total HpCDF	ND	2.12											
Analyst: MAS					Approved By: Martha M.			16-Mar-2005 13:33					

APPENDIX

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank.
D The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.
1 Chemical Interference
J The amount detected is below the Lower Calibration Limit of the instrument.
*

Conc. Concentration
DL Sample-specific estimated detection limit
MDL The minimum concentration of a substance that can be measured and reported with $\mathbf{9 9 \%}$ confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration
NA Not applicable
RL Reporting Limit - concentrations that corresponds to low calibration point
ND Not Detected
TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

The control limits are "interim limits only" until in-house limits are utilized.

NELAP - (Primary AA: California, Certificate No. 02102CA)
Department of the Navy
U.S. Army Corps of Engineers

U.S. EPA Region 5

Bureau of Reclamation - Mid-Pacific Region - (MP-470, Res-1.10)
Commonwealth of Kentucky - (Certificate No. 90063)
Commonwealth of Virginia - (Certificate No. 00013)
State of Alaska, Department of Environmental Conservation - (Certificate No. OS-00197)
State of Arizona - (Certificate No. AZ0639)
State of Arkansas, Department of Health - (Approval granted through CA certification)
State of Arkansas, Department of Environmental Quality
State of California - (Certificate No. 1640)
State of Colorado
State of Connecticut - (Certificate No. PH-0182)
State of Florida - (Certificate No. 87456)
State of Louisiana, Department of Health and Hospitals - (Certificate No. LA000014)
State of Louisiana, Department of Environmental Quality
State of Maine
State of Michigan (Certificate No. 81178087)
State of Mississippi - (Approval granted through CA certification)
State of Nevada - (Certificate No. CA413)
State of New Jersey - (Certificate No. CA003)
State of New York, Department of Health - (Certificate No. 11411)
State of North Carolina - (Certification No. 06700)
State of North Dakota, Department of Health - (Certificate No. R-078)
State of New Mexico
State of Oklahoma - (D9919)
State of Oregon - (Certificate No. CA413)
State of Pennsylvania - (Certificate No. 68-490)
State of South Carolina - (Certificate No. 87002001)
State of Tennessee - (Certificate No. 02996)
State of Texas - (Certificate No. TX247-1000A
State of Utah - (Certificate No. E-201)
State of Washington - (Certification No. C091)
State of Wisconsin - (Certificate No. 998036160)
State of Wyoming - (USEPA Region 8 Ref: 8TMS-Q)

SUBCONTRACT ORDER - PROJECT \# IOC0455

SENDING LABORATORY:	RECEIVING LABORATORY:
Del Mar Analytical, Irvine	Alta Analytical
17461 Derian Avemue. Suite 100	1104 Windfield Way 2585
Irvine, CA 92614	EI Dorado Hills, CA 95762
Phone: (949) 261-1022	Phone :(916) 933-1640
Fax: (949) 261-1228	Fax: (916) 933-0940 /.
Project Manager: Michele Harper	

Standard TAT is requested unless specific due date is requested $m>$ Due Date: \qquad Initials: \qquad

Analysts		Explation	Commenta
Sinmple 1D: IOCM55-01	Water	: Sampled: 03/04/05 11:66	Intant Noflication
1613-Dioxin-HR		03/11/05 11:06	J fiags, 17 congeners, no TEQ, sub to Alta
EDD + Level 4		04/01/05 11:06	Excel EDD email to prin, Include Std logs for Lvi IV
Containers Supplled:			
1 L Amber (IOC0455-01C)			
1 L Amber (10C0455-01D			

SAMPLE INTEGRITY:

STANDARD OPERATING PROCEDURE

SAMPLE LOG-N CHECKLLST

ALTA Project No: 25857

Comments:

SUBCONTRACT ORDER - PROJECT \# IOC0455

$$
\text { sampler }=R . B .
$$

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA AMEC Earth \& Environmental

550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Alta
Reviewer H. Chang
Analysis/Method Dioxin\&Furans/1613

Package ID T711DF37
Task Order 313150010
SDG No. Multiple
No. of Analyses 10
Date: April 4, 2005
Reviewer's Signature

ACTION ITEMS ${ }^{2}$

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, e.g.,
Holding Times
GC/MS Tune/linst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and
Quantitation
System Performance
COMMENTS ${ }^{\text {b }}$
${ }^{2}$ Subcontracted analytical laboratory is not meeting contract and/or method requirements.
${ }^{6}$ Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

amec ${ }^{\theta}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: DIOXINS/FURANS
 SAMPLE DELIVERY GROUPS: Multiple SDGs

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:
DATA VALIDATION REPORT	NPDES

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 10
No. of Reanalyses/Dilutions: 0
Reviewer: H. Chang
Date of Review: April 4, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:
DATA VALIDATION REPORT	SDG No.:

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Alta)	Matrix	COC Method
Outfall 002	IOC1521-01	$25935-001$	water	1613
Outfall 011	IOC1523-01	$25936-001$	water	1613
Outfall 005	IOC1524-01	$25940-001$	water	1613
Outfall 006	IOC1525-01	$25937-001$	water	1613
Outfall 011 Composite	IOC1526-01	$25938-001$	water	1613
Outfall 001	IOC1561-01	$25941-001$	water	1613
Outfall 004	IOC1563-01	$25939-001$	water	1613
Outfall 008	IOC1564-01	$25942-001$	water	1613
Outfall 003	IOC1565-01	$25943-001$	water	1613
Outfall 009	IOC1566-01	$25944-001$	water	1613

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

Samples Outfall 001, Outfall 004, and Outfall 008 were received at Del Mar Analytical outside the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. Due to non-volatile nature of the target compounds, no qualifications were required. The other samples were received with cooler temperatures within the limits. According to the laboratory login sheets, all samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COCs and transfer COCs were legible and signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. As the samples were couriered directly to Del Mar Analytical, custody seals were not required. The coolers received by Alta had custody seals present and intact. The EPA IDs were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and $2,3,7,8-\mathrm{TCDD}$ reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2.3 CALIBRATION

2.3.1 Initial Calibration

There was one initial calibration, analyzed 08/30/04. The calibration consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with $\%$ RSDs $\leq 20 \%$ for the 16 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standards instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank $(0,6624$ MB001) was extracted and analyzed with the samples in these SDGs. There were no target compound detects reported in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One Ongoing Precision Recovery (OPR) sample (0 _6624_OPR001) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

2.7.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for these SDGs.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any reported EMPC was qualified as an estimated nondetect, "UJ." Any detects below the lower method calibration level (MCL) were qualified as estimated, "J." No further qualifications were required.

AMEC VALIDATED

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer P. Meeks
Analysis/Method Metals

Package ID T711MT57
Task Order 313150010 SDG No. Multiple
No. of Analyses 5
Date: 03/30/05
Rpiever's signature

ACTION IIEMS'	
1.	Case Narrative Deficiencies

2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy Deliverables
6. Deviations from Qualifications applied for detects below the reporting limit and antimony MDLs Analysis Protocol, e.g., were raised and results estimated due to CCB detects.

Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Intermal Standard
Performance
Compound Identification and Quantitation
System Performance \qquad
\qquad
\qquad

COMMENTS

\square
\qquad

\qquad
\qquad
$\longrightarrow \longrightarrow \longrightarrow$
\qquad
\qquad
\qquad

[^13]
amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: METALS

 SAMPLE DELIVERY GROUPS: IOC1524, IOC1525, IOC1564,

 SAMPLE DELIVERY GROUPS: IOC1524, IOC1525, IOC1564, IOC1565, \& IOC1566

 IOC1565, \& IOC1566}

Prepared by

AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOC1524, IOC1525, IOC1564, IOC1565, \& IOC1566
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Metals
QC Level: Level IV
No. of Samples: 5
No. of Reanalyses/Dilutions: 0
Reviewer: P. Meeks
Date of Review: March 30, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 005	Outfall 005	IOC1524-01	water	ILM04
Outfall 006	Outfall 006	IOC1525-01	water	ILM04
Outfall 008	Outfall 008	IOC1564-01	water	ILM04
Outfall 003	Outfall 003	IOC1565-01	water	ILM04
Outfall 009	Outfall 009	IOC1566-01	water	ILM04

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

Outfall 008 was received above the temperature limit at $8^{\circ} \mathrm{C}$; however, as the sample had insufficient time to cool prior to receipt at the laboratory, no qualifications were required. The remaining samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel. The COCs accounted for the samples and analyses presented in these SDGs. Duplicate samples were submitted for the samples in these SDGs; however, duplicate analyses were not required. No sample qualifications were required.

2.1.3 Holding Times

The dates of collection recorded on the COCs and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS metals and 28 days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. All $\%$ RSDs were less than 5%. The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, $90-110 \%$ for ICP/MS metals and $80-120 \%$ for mercury. The reporting limit check standards were recovered within the AMEC control limits of 70$130 \%$. No sample qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2.4 BLANKS

Antimony was detected in every CCB in the analytical sequence in which Outfall 008 and Outfall 009 were analyzed. The detects ranged from 0.484 to $0.551 \mu \mathrm{~g} / \mathrm{L}$ and antimony was detected in Outfall 008 and Outfall 009 at concentrations below these values. The CCB detects indicated the laboratory could not detect antimony at the reported MDL. The reviewer raised the antimony MDL for Outfall 008 and Outfall 009 to the highest level of interference reported, $0.55 \mu \mathrm{~g} / \mathrm{L}$ and qualified the result as estimated, "UJ." No further qualifications were required due to the method and calibration blank results.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were included in the raw data for the ICP-MS analyses. Results were not provided for spiked interferents sulfur, phosphorus, carbon, and chloride, and antimony and lead were not spiked into the ICSAB solution. Copper and cadmium were detected above the applicable reporting limit in the ICSA. Aluminum was recovered below the control limit in the all the ICSA and ICSAB analyses; however, as aluminum was not reported in the site samples, no qualifications were required. The validator reviewed the raw data for the site sample ICP/MS analyses for the level of reported interferents, $\mathrm{Al}, \mathrm{Ca}, \mathrm{Fe}$, and Mg , and determined that the levels of reported interferents were not high enough to cause matrix affects. No assessment could be made with respect to possible interference from sulfur, phosphorus, carbon, and chloride. No qualifications were required.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP/MS LCS samples were identified as 5 C 21088 -BS1 and SC19038-BS1. The mercury LCS sample was identified as $5 \mathrm{C} 21082-\mathrm{BS}$. The LCS results on the summary forms and in the raw data were within the laboratory-established ICP/MS and mercury control limits of $85-115 \%$. No qualifications were required.

2.7 LABORATORY DUPLICATES

MS/MSD analyses were performed on Outfall 005 for lead only. The RPD was wthin the control limit of 20% and no qualifications were required.

2.8 MATRIX SPIKE

MS/MSD analyses were performed on Outfall 005 for lead only. Both recoveries were within the AMEC control limits of $75-125 \%$ and no qualifications were required. For the remaining analytes, method accuracy was evaluated based on LCS results.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No::	Multiple

2.9 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, fumace atomic absorption QC is not applicable.

2.10 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

2.11 INTERNAL STANDARDS PERFORMANCE

The ICP-MS internal standard recoveries for the site samples and associated QC sample analyses were within the $60-125 \%$ control limits and no qualifications were required.

2.12 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit were qualified as estimated, "J." No further qualifications were required.

2.13 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.13.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site samples.

Del Mar Analytical

DRAFT: METALS

AMEG VAMDATED

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 009

Sampled: 03/19/05
Received: 03/19/05
Issued: 03/31/05 09:28

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, I page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY DD
1OC1566-01

CLIENT ID

Outfall 009

MATRIX
Water

Reviewed By:

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 009
Report Number: 10 Cl 566

Sampled: 03/19/05
Received: 03/19/05

Analyte	METALS							Date Analyzed	Data Qualifiers
	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted		
Sample ID: 1OC1566-01 (Outfall 009 - Water)									
Reporting Units: ug/									
Antimony	EPA 200.8	5C21088	0.18	2.0	0.27	1	03/21/05	03/21/05	J
Cadmium	EPA 200.8	5C21088	0.015	1.0	0.025	1	03/21/05	03/21/05	J
Copper	EPA 200.8	5C21088	0.49	2.0	1.8	1	03/21/05	03/21/05	J
Lead	EPA 200.8	5 C 21088	0.13	1.0	ND	1	03/21/05	03/21/05	
Mercury	EPA 245.1	5C21082	0.063	0.20	ND	1	03/21/05	03/21/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 009
Report Number: 10 Cl 566 Sampled: 03/19/05
Report Number: 10 C 1566

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 10C1566-01 (Outfall 009-Water) - cont. Reporting Units: mg/									
Chloride	EPA 300.0	5C20029	0.15	0.50	18	1	03/20/05	03/20/05	
Nitrate/Nitrite-N	EPA 300.0	5C20029	0.075	0.11	0.14	1	03/20/05	03/20/05	
Oil \& Grease	EPA 413.1	5C21062	0.94	5.0	ND	1	03/21/05	03/21/05	
Sulfate	EPA 300.0	5C20029	0.90	1.0	66	2	03/20/05	03/20/05	
Total Dissolved Solids	SM2540C	5C21073	10	10	300	1	03/21/05	03/21/05	
Total Suspended Solids	EPA 160.2	5C21068	10	10	ND	1	03/21/05	03/21/05	

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper
Project Manager

Received: 03/19/05

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 009
Report Number: $10 \mathrm{Cl} 1566 \quad$ Received: 03/19/05

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed	
Sample ID: Outfall 009 (IOC1566-01)-Water EPA 300.0	2	$03 / 19 / 200511: 16$	$03 / 19 / 200517: 30$	$03 / 20 / 2005$	$13: 30$	$03 / 20 / 2005$

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 009
Report Number: 10 C 1566
Sampled: 03/19/05
Received: 03/19/05

METMOD BLKNK/OCMATA

METALS

[^14]| MWH-Pasadena/Boeing | Project ID: Routine Outfall 009 | |
| :--- | :---: | ---: |
| 300 North Lake Avenue, Suite 1200 | Report Number: IOC1566 | Sampled: 03/19/05 |
| Pasadena, CA 91101 | Received: 03/19/05 | |
| Attention; Bronwyn Kelly | | |

METHOD BLANKIOC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike	Source		\%REC		RPD	Data
Analyte	Resuit		MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5C21088 Extracted: 03/21/05

| Matrix Spike Analyzed: $\mathbf{0 3 / 2 1 / 2 0 0 5}$ (5C21088-MS2) | | | Source: IOC1563-01 | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Antimony | 87.6 | 2.0 | 0.18 | ug/ | 80.0 | 0.68 | 109 | $70-130$ |
| Cadmium | 82.1 | 1.0 | 0.015 | ug $/$ | 80.0 | 0.094 | 103 | $70-130$ |
| Copper | 85.2 | 2.0 | 0.49 | ugh | 80.0 | 7.7 | 97 | $70-130$ |
| Lead | 82.6 | 1.0 | 0.13 | ug/ | 80.0 | 0.83 | 102 | $70-130$ |

Matrix Spike Dup Analyzed: 03/21/2005 (5C21088-MSD1)

| | | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Antimony | 88.8 | 2.0 | 0.18 | $\mathrm{ug} / 1$ | 80.0 | 0.45 | 110 | $70-130$ | 6 | 20 |
| Cadmium | 83.0 | 1.0 | 0.015 | ug / l | 80.0 | 0.025 | 104 | $70-130$ | 5 | 20 |
| Copper | 77.9 | 2.0 | 0.49 | $\mathrm{ug} / 1$ | 80.0 | 1.9 | 95 | $70-130$ | 1 | 20 |
| Lead | 81.3 | 1.0 | 0.13 | ug / l | 80.0 | ND | 102 | $70-130$ | 3 | 20 |

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Report Number: $10 \mathrm{Cl} 1566 \quad$| Sampled: 03/19/05 |
| ---: |
| Received: 03/19/05 |

METHOD BLANKIQC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C20029 Extracted: 03/20/05										
Blank Analyzed: 03/20/2005 (5C20029-BLK1)										
Chloride ND	0.50	0.26	mg / l							
Nitrate/Nitrite-N ND	0.11	0.072	mg / l							
Sulfate ND	0.50	0.18	mg / l							
LCS Analyzed: 03/20/2005 (5C20029-BS1)										
Chloride 4.65	0.50	0.26	mg / l	5.00		93	90-110			M-3
Sulfate 9.69	0.50	0.18	mg / l	10.0		97	90-110			M-3
Batch: 5 C 21062 Extracted: 03/21/05										
Blank Analyzed: 03/21/2005 (5C21062-BLK1)										
Oil \& Grease ND	5.0	0.94	mg / l							
LCS Analyzed: 03/21/2005 (5C21062-BS1)	\because									M-NR1
Oil \& Grease 17.1	5.0	0.94	mg / l	20.0		86	65-120			\therefore
LCS Dup Analyzed: 03/21/2005 (5C21062-BSD1)										
Oil \& Grease 16.0	5.0	0.94	mg / l	20.0		80	65-120	7	20	
Brich: 5C21068 Extracted: 03/21/05										
Blank Analyzed: 03/21/2005 (5C21068-BLK1)										
Total Suspended Solids ND	10	10	$\mathrm{mg} / 1$							
LCS Analyzed: 03/21/2005 (5C21068-BS1)										
Total Suspended Solids 942	10	10	mg / l	1000		94	85-115			

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 009
Report Number: $10 C 1566$
Sampled: 03/19/05
Received: 03/19/05

METHOD BLANKKQC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C21068 Extracted: 03/21/05											
Duplicate Analyzed: 03/21/2005 (5C21068-DUP1)					Source: 10C1566-01						
Total Suspended Solids	ND	10	10	mg / l		ND				10	

Batch: 5C21073 Extracted: 03/21/05
Blank Analyzed: 03/21/2005 (5C21073-BLK1)

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 009
Report Number: $10 \mathrm{Cl} 566 \quad$ Sampled: 03/19/05

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
IOC1566-01	413.1 Oil and Grease	Oil \& Grease	mg / l	0	5.0	15
10C1566-01	Chloride - 300.0	Chloride	mg / l	18	0.50	150
10C1566-01	Nitrogen, $\mathrm{NO}^{2}+\mathrm{NO} 2-\mathrm{N}$	Nitrate/Nitrite-N	$\mathrm{mg} / 1$	0.14	0.11	10.00
10C1566-01	Sulfate-300.0	Sulfate	$\mathrm{mg} /$	66	1.0	250
IOC1566-01	TDS - SM 2540C	Total Dissolved Solids	mg/	300	10	850

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Report Number: IOC1566

Sampled: 03/19/05
Received: 03/19/05

DATA QUALIFIERS AND DEFINITIONS

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the
M-3 Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality. Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 009
Report Number: $10 C 1566$

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	Calforaia
EPA 160.2	Water	\mathbf{X}	\mathbf{X}
EPA 200.8	Water	\mathbf{X}	\mathbf{X}
EPA 245.1	Water	\mathbf{X}	\mathbf{X}
EPA 300.0	Water	\mathbf{X}	\mathbf{X}
EPA 413.1	Water	\mathbf{X}	\mathbf{X}
SM2540C	Water	\mathbf{X}	\mathbf{X}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical California Cert \#1640
1104 Windfield Way - El Dorado Hills, CA 95762
Analysis Performed: 1613-Dioxin-HR
Samples: $10 \mathrm{Cl} 566-01$
Analysis Performed: EDD + Level 4
Samples: 1OC1566-01

[^15]

< Del MarAnalytical

March 28,2005

MWH-Pasadena/ Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention: Bronwyn Kelly
Project:
Routine Outfall 009
Sampled: 03/19/05
Del Mar Analytical Number; IOC1566

Dear Ms. Kelly:
Alta Analytical Laboratory performed the EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans analysis for the project referenced above. Please use the following cross-reference table when reviewing your results.

MWH ID	DEL MAR ID	ALTA ID
Routine Outfall 009	IOC1566-01	$25944-001$

Attached is the original report from the subcontract laboratory. If you have any questions or require further assistance, please do not hesitate to contact me at (949) 261-1022 at extension
215 . 215.

Sincerely yours,
DEL MAR ANALYTICAL

Michele Harper
Project Manager

March 24, 2005
Alta Project I.D.: 25944
Ms. Michele Harper
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Dear Ms. Harper,

Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on March 22, 2005 under your Project Name "IOC1566". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

Martha M. Maier
Director of HRMS Services

Section I: Sample Inventory Report Date Received: 3/22/2005

Alta Lab. ID

25944-001

Client Sample ID

IOC1566-01

SECTION II

Matrix: Aqueous Sample Size: 1.000 L	QC Batch No.: Date Extracted:			$\begin{array}{ll}\text { Lab Sample: } & 0 \text {-OPR001 } \\ \text { Date Analyzed DB-5: } & \text { 23-Mar-05 }\end{array}$		EPA Method 1613			
			22-Mar-05			Date Analyzed DB-225:			
			NA						
Analyte	Spike Conc. Conc. (ng/mL)			OPR Limits	Labeled Standard				
$\begin{array}{\|l\|} \hline 2,3,7,8-\text { TCDD } \\ 1,2,3,7,8-\mathrm{PeCDD} \end{array}$	10.0	9.02	\%R				LCL-UCL		
	50.0	44.9	6.7-15.8	IS $13 \mathrm{C}-2,3,7,8$-TCDD		86.2	25-164		
1,2,3,4,7,-HxCDD	50.0	45.7	$35-71$ 35.82		$13 \mathrm{C}-1,2,3,7,8$-PeCDD	83.6	25-181		
	50.0	47.1	35-82		${ }^{13 C-1,2,3,4,7,8-H x C D D}$	83.1	32-141		
	50.0	47.2	38-67		${ }^{13 C-1,2,3,6,7,8-H x C D D}$	90.5	28-130		
$\begin{aligned} & 1,2,3,7,8,9-\mathrm{HxCDD} \\ & 1,2,3,4,6,7,8-\mathrm{HpCDD} \end{aligned}$	50.0	49.7	$32-81$ $35-70$		13C-1, 2, 3,4,6,7,8-HpCDD	80.1	23-140		
$\left.\right\|_{\text {2,3.7.8-TCDF }}$	100	102	$35-70$ $78-144$		13 C -OCDD	60.0	17-157		
	10.0	9.28	78-144 $7.5-15.8$		13C-2,3,7,8-TCDF	89.6	24-169		
2,3,7,8-TCDF	50.0	49.7	7.5-15.8 $40-67$		$13 \mathrm{C}-1,2,3,7,8$-PeCDF	82.2	24-185		
2,3,4,7,8-PeCDF	50.0	48.9	34-80		${ }^{13 C-2,3,4,7,-\mathrm{PeCDF}}$	86.0	21-178		
1,2,3,4,7,-HxCDF	50.0	52.4	36-67		${ }^{13 C-1,2,3,4,7,8-H x C D F}$	69.1	26-152		
1,2,3,6,7,8-HxCDF	50.0	51.4	$36-67$ $42-65$		${ }^{13 C-1,2,3,6,7,8-H x C D F}$	83.1	26-123		
2,3,4,6,7,8-HxCDF $1,2,3,7,8,9-\mathrm{HxCDF}$	50.0	51.3	42.65 35.78		13C-2,3,4,6,7,8-HxCDF	80.9	28-136		
	50.0	51.3			13C-1,2,3,7,8,--HxCDF	77.1	29-147		
	50.0	54.0	$39-65$ $41-61$		13C-1,2,3,4,6,7,8-HpCDF	77.1	28-143		
1,2,3,4,7,8,9-HpCDF OCDF	50.0	53.2			$13 \mathrm{C}-1,2,3,4,7,8,9-\mathrm{HpCDF}$	78.6	26-138		
OCDF	100	103	$\begin{aligned} & 39-69 \\ & 63-170 \end{aligned}$		${ }^{13} \mathrm{C}-\mathrm{OCDF}$	65.1	17-157		
					37Cl-2,3,7,8-TCDD	89.8	35-197		
Analyst: JMH									

Sample ID: \quad OC1566-01

APPENDIX

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank.
D The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.
I Chemical Interference
J The amount detected is below the Lower Calibration Limit of the instrument.
P
*

Conc. Concentration
DL Sample-specific estimated detection limit
MDL The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration
NA Not applicable
RL Reporting Limit - concentrations that correspond to low calibration point
ND Not Detected
TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported
in wet weight. in wet weight.

The control limits are "interim limits only" until in-house limits are utilized.

NELAP - (Primary AA: California, Certificate No. 02102CA)
Department of the Navy
U.S. Army Corps of Engineers
U.S. EPA Region 5

Bureau of Reclamation - Mid-Pacific Region - (MP-470, Res-1.10)
Commonwealth of Kentucky - (Certificate No. 90063)
Commonwealth of Virginis - (Certificate No. 00013)
State of Alaska, Department of Environmental Conservation - (Certificate No. OS-00197)
State of Arizona - (Certificate No. AZ0639)
State of Arkansas, Department of Health - (Approval granted through CA certification)
State of Arkansas, Department of Environmental Quality
State of California - (Certificate No. 1640)
State of Colorado
State of Connecticut - (Certificate No. PH-0182)
State of Florida - (Certificate No. 87456)
State of Louisiana, Department of Health and Hospitals - (Certificate No. LA000014)
State of Louisiana, Department of Environmental Quality
State of Maine
State of Michigan (Certificate No. 81178087)
State of Mississippi - (Approval granted through CA certification)
State of Nevada - (Certificate No. CA413)
State of New Jersey - (Certificate No. CA003)
State of New York, Department of Health - (Certificate No. 11411)
State of North Carolina - (Certification No. 06700)
State of North Dakota, Department of Health - (Certificate No. R-078)
State of New Mexico
State of Oklahoma - (D9919)
State of Oregon - (Certificate No. CA413)
State of Pennsylvania - (Certificate No. 68-490)
State of South Carolina - (Certificate No. 87002001)
State of Tennessee - (Certificate No. 02996)
State of Texas - (Certificate No. TX247-1000A
State of Utah - (Certificate No. E-201)
State of Washington - (Certification No. C091)
State of Wisconsin - (Certificate No. 998036160)
State of Wyoming - (USEPA Region 8 Ref: 8TMS-Q)

SAMPLE LOG-AN CHECKLIST
ALTA Project No.: \qquad

Comments:

SUBCONTRACT ORDER - PROJECT \# IOC1566

Standard TAT is requested unless specific due date is requested $\Rightarrow \Rightarrow$ Due Date: \qquad Initials: \qquad

259442.9°

APPENDIX G

Section 36
March Outfall 010
AMEC Data Validation Reports
Del Mar Analytical Laboratory Reports

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental 550 South Wadsworth Boulevard Suite 500
Lakewood, CO 80226
Laboratory Alta
Reviewer H. Chang
Analysis/Method Dioxin\&Furans/1613

Package ID T711DF38
Task Order 313150010
SDG No. Multiple
No. of Analyses 3
Date: April 6, 2005
Reviewer's Signature

ACTION ITEMS ${ }^{\text {a }}$

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted \qquad
4. Missing Hardcopy

Deliverables \qquad
\qquad
5. Incorrect Hardcopy

Deliverables \qquad
\qquad
6. Deviations from Analysis

Detects below the calibration range were qualified "J."
Protocol, e.g., \square
Holding Times
GC/MS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and
Quantitation
System Performance

COMMENTS ${ }^{\text {b }}$

${ }^{2}$ Subcontracted analytical laboratory is not meeting contract and/or method requirements.
Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

amec ${ }^{\text {© }}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: DIOXINS/FURANS SAMPLE DELIVERY GROUPS: IOC1817, IOC1818, IOC1819

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

DATA VALIDATION REPORT	SDG No.:
	Multiple
Analysis:	

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 3
No. of Reanalyses/Dilutions: 0
Reviewer: H. Chang
Date of Review: April 6, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
		SDG No.:
DATA VALIDATION REPORT	Multiple	
Analysis:	D/F	

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Alta)	Matrix	COC Method
Outfall 010	IOC1817-01C	$25954-001$	water	1613
Outfall 007	IOC1818-01	$25955-001$	water	1613
Outfall 018	IOC1819-01	$25956-001$	water	1613

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

All samples in these SDGs were received with cooler temperatures within the QC limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. According to the laboratory login sheets, all samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COCs and transfer COCs were legible and signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. As the samples were couriered directly to Del Mar Analytical, custody seals were not required. The coolers received by Alta had custody seals present and intact. The EPA IDs were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and $2,3,7,8-\mathrm{TCDD}$ reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2.3 CALIBRATION

2.3.1 Initial Calibration

There was one initial calibration, analyzed 08/30/04. The calibration consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with $\%$ RSDs $\leq 20 \%$ for the 16 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standards instead of being analyzed separately, as noted in section 2.2 .1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank (0 6631_MB001) was extracted and analyzed with the samples in these SDGs. There were no target compound detects reported in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One Ongoing Precision Recovery (OPR) sample (0 6631_OPR001) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

	Project:
DATA VALIDATION REPORT	NPDES
	SDG No.:
Multiple	
Analysis:	D/F

2.7.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for these SDGs.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the lower method calibration level (MCL) were qualified as estimated, "I," however, as Alta analyzed an additional calibration standard, not all results below the lower MCL were appropriately qualified by the laboratory. These results were qualified as estimated, "J," by the reviewer. Total HpCDF in Outfall 010 was qualified as estimated since one of the total constituents was below the lower MCL even though total concentration was above the lower MCL. No further qualifications were required.

Data Qualifier Reference Table

Qualifier	Organics

U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
$\mathrm{N} \quad$ The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."

R
The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.

The associated value is an estimated quantity.

Not applicable.

Not applicable.

The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

The data are unusable. (Note: Analyte may or may not be present).

Qualification Code Reference Table

Unusual problems found with the data that have been described in Section 2.\#, "Data Validation Findings." The number following the asterisk (${ }^{*}$) will indicate the subsection where a description of the problem can be found (eg. *1 would indicate a sample was not within temperature limits).

Unusual problems found with the data that have been described in Section 2.\#, "Data Validation Findings." The number following the asterisk (*) will indicate the subsection where a description of the problem can be found (eg. ${ }^{*} 1$ would indicate a sample was not within temperature limits).

amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: METALS
SAMPLE DELIVERY GROUPS: IOC1817, IOC1818

Prepared by
AMEC-Denver Operations 550 South Wadsworth Boulevard, Suite 500

Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring

 Contract Task Order \#: $\quad 313150010,313150012$SDG\#: IOC1817, IOC1818
Project Manager: B. McIlvaine
Matrix: Water
Analysis: Metals
QC Level: Level IV
No. of Samples: 2
No. of Reanalyses/Dilutions: 0
Reviewer: K Okonzak-Lowry
Date of Review: March 31, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required $Q C$ criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	multiple
		Analysis:

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 010	Outfall 010	IOC1817-01	water	ILM04
Outfall 007	Outfall 007	IOC1818-01	water	ILM04

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	multiple
	Analysis:	MET

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel and accounted for the samples and analyses presented in these SDGs. The COCs listed duplicate samples for both site samples; however, duplicate analyses were not required. No sample qualifications were required.

2.1.3 Holding Times

The dates of collection recorded on the COCs and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS metals and 28 days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. The laboratory performed the required tune solution analyses. The \%RSDs for the tune were all within the 5% control limit. The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	multiple
	Analysis:	MET

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, $90-110 \%$ for the ICP/MS and $80-120 \%$ for mercury. The applicable reporting limit check standards were recovered within the AMEC control limits of $70-130 \%$, with the exception of the $0.2 \mu \mathrm{~g} / \mathrm{L}$ standard for antimony, which was not detected by the instrument at the $0.18 \mu \mathrm{~g} / \mathrm{L}$ antimony MDL. Therefore, the nondetected antimony result for sample Outfall 010 was qualified as estimated, "UJ." No further qualifications were required.

2.4 BLANKS

The method blanks and bracketing ICBs/CCBs associated with the samples in these SDGs were nondetected at the laboratory MDL, with the exception of antimony for the ICP/MS method blank, 5C23123-BLK1, which was reported at $-0.43 \mu \mathrm{~g} / \mathrm{L}$. Therefore, the nondetected antimony for sample Outfall 010 was qualified as estimated, "UJ." No further sample qualifications were required.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were included in the raw data for the ICP-MS analyses. Results were not provided for spiked interferents sulfur, phosphorus, carbon, and chloride, and antimony and lead were not spiked into the ICSAB solution. The result for potassium was above the calibration range of the instrument in all the ICSA analysis. The aluminum recoveries were low for the ICSA/AB analyses at 79.3% and 76.5%, respectively. The site sample matrix was low in aluminum; therefore, the low recovery for aluminum by the laboratory wouldn't have caused IEC miscalculations affecting the quantitation of the reported analytes. Copper and cadmium were detected at above the reporting limit in the ICSA analysis. The validator reviewed the raw data for the site sample ICP/MS analyses for the level of reported interferents, $\mathrm{Al}, \mathrm{Ca}, \mathrm{Fe}$, and Mg , and determined that the level of reported interferents were not high enough to cause matrix affects. No assessment could be made with respect to possible interference from sulfur, phosphorus, carbon, and chloride. No sample qualifications were required.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP/MS LCS sample was identified as 5C23123-BS1, and the mercury LCS sample was identified as 5C24056-BS1. The LCS results on the summary forms and in the raw data were within the laboratory-established ICP/MS and mercury control limits of $85-115 \%$. No qualifications were required.

2.7 LABORATORY DUPLICATES

The MS/MSD analyses were performed for the ICP/MS analysis only on sample Outfall 010, in association with the samples in these SDGs. The \%RPDs for the reported analytes were within the 20% control limit, and no sample qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	multiple
	Analysis:	MET

2.8 MATRIX SPIKE

The MS/MSD analyses were performed for the ICP/MS analysis only on sample Outfall 010, in association with the samples in these SDGs. The \%Rs were within the AMEC 75-125\% control limit, and no sample qualifications were required. The mercury method accuracy was evaluated based on the LCS result.

2.9 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

2.10 ICP/MS SERIAL DILUTION

No serial dilution analysis was performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

2.11 INTERNAL STANDARDS PERFORMANCE

The ICP-MS internal standard recoveries for the site samples and associated QC sample analyses were within the $60-125 \%$ control limits and no qualifications were required.

2.12 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit were qualified as estimated, "J." No qualifications were required.

2.13 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

	Project:	NPDES
DATA VALIDATION REPORT	SDGNo.:	multiple
	Analysis:	MET

2.13.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site samples.

DRAFT: METALS
Analyte
Method

Sample ID: 1OC1817-01 (DRAFT: Outfall 010 - Water) Reporting Uaits: ag/l

Antinony
Cadmium
Copper
Lead
Mercury

EPA 200.8	5	018						Rev Qual		Qual Code
EPA 200.8	5C23123	0.015	2.0	ND	1	032305	03,2405	$4 J$		*3, 8
EPA 200.8	502312	0.43	2.0	0.086	1	0323:05	032405	J	J	$D N Q$
EPA 200.8	5 C 2314 s	0.13	2.0	3.9	1	03,23:05	03.2403			
EPA 245:	$5 C 24056$	0.063	0.20	V1.6	1	0323/05	03:2405			

AMEC VALIDATED

Level IV

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 010

Sampled: 03/23/05
Received: 03/23/05
Issued: 04/05/05 12:08

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, l page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
IOC1817-01

CLIENT ID
Outfall 010

MATRIX
Water

Reviewed By:

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 010	
300 North Lake Avenue, Suite 1200		Sampled: $03 / 23 / 05$
Pasadena, CA 91101	Report Number: $10 C 1817$	Received: 03/23/05

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OC1817-01 (Outfall 010 - Water)									
Reporting Units: ug/									
Antimony	EPA 200.8	5C23123	0.18	2.0					
Cadmium	EPA 200.8	5 C 23123	0.015	1.0	${ }_{0}^{\mathrm{ND}}$	1	03/23/05	03/24/05	
Copper	EPA 200.8	5 C 23123	0.49	2.0	0.086 3.9	1	03/23/05	03/24/05	J
Lead	EPA 200.8	5 C 23123	0.13	1.0	1.6	1	03/23/05	03/24/05	
Mercury	EPA 245.1	5 C 24056	0.063	0.20	ND	1	03/23/05	03/24/05	

[^16]17461Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr.; Suite A, Cotion, CA 92324 (909) 370-4667 FAX (949) 370-1046 344 Chesapeake Dr., Suite 805, San Diego, CA.92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51 st St., Sutte B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. \#3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-362

MWH-Pasadena/Boeing	Project ID: Routine Outfall 010	
300 North Lake Avenue, Suite 1200		Sampled: 03/23/05
Pasadena, CA 91101	Report Number: 10 Cl 1817	Received: $03 / 23 / 05$

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 10C1817-01 (Outfall 010 - Water) - cont.									
Reporting Units: m									
Chloride	EPA 300.0	5 C 23116							
Nitrate/Nitrite-N	EPA 300.0	5 C 23116	0.15 0.075	0.50	6.1	1	03/23/05	03/24/05	
Oil \& Grease	EPA 413.1	5 C 25043	0.075 0.94	0.26 5.0	0.092	1	03/23/05	03/24/05	J
Sulfate	EPA 300.0	5C23116	0.94 0.45	5.0	ND	1	03/25/05	03/25/05	
Total Dissolved Solids	SM2540C	5C23106	0.45 10	0.50	2.3	1	03/23/05	03/24/05	
Total Suspended Solids	EPA 160.2	5C24086	10	10 10	79	1	03/23/05	03/23/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 010
Report Number: 10 C 1817

Sampled: 03/23/05
Received: 03/23/05

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed	
Sample ID: Outfall 010 (IOC1817-01) - Water EPA 300.0	2	$03 / 23 / 200509: 28$	$03 / 23 / 200518: 36$	$03 / 23 / 2005$	$23: 00$	$03 / 24 / 2005$

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 010
Report Number: IOC1817 Sampled: 03/23/05
Received: 03/23/05

METHOD BLANKKOC DATA

METALS

Blank Analyzed: 03/24/2005 (5C23123-BLK1)

Antimony	ND	2.0	0.18	ug/l
Cadmium	ND	1.0	0.015	ug/l
Copper	ND	2.0	0.49	ug/
Lead	ND	1.0	0.13	ug/l

LCS Analyzed: 03/24/2005 (5C23123-BS1)

Antimony	85.8	2.0	0.18	ug / l	80.0	107
Cadmium	80.4	1.0	0.015	$\mathrm{ug} / 1$	80.0	$85-115$
Copper	85.9	2.0	0.49	ug / l	80.0	100
Lead	82.1	1.0	0.13	ug / l	80.0	107
			$85-115$			
					85	

Matrix Spike Analyzed: 03/24/2005 (5C23123-MS1)			Source: 10C1817-01							
Antimony	81.9	2.0	0.18	ug/	80.0	ND	102	70-130		
Cadmum	78.9	1.0	0.015	ugh	80.0	0.086	99	70-130		
Copper	85.0	2.0	0.49	ug/1	80.0	3.9	101	70-130		
Lead	84.0	1.0	0.13	ug/	80.0	1.6	103	70-130		
Matrix Spike Dup Analyzed: 03/24/2005 (5C23123-MSD1) Source: IOC1817-01										
Antimony	83.5	2.0	0.18	ug/	80.0	ND	104	70-130	2	20
Cadmium	80.5	1.0	0.015	ug/	80.0	0.086	101	70-130	2	
Copper	86.9	2.0	0.49	ugh	80.0	3.9	104	70-130	2	20
Lead	86.4	1.0	0.13	ug/l	80.0	1.6	106	70-130	3	20

Batch: 5C24056 Extracted: 03/24/05

Blank Analyzed: 03/24/2005 (5C24056-BLK1)
Mercury
$\begin{array}{llll}\text { ND } & 0.20 & 0.063 & u g / 1\end{array}$

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

```
MWH-Pasadena/Boeing Project ID: Routine Outfall 010
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
Report Number: 1OC1817
```

Sampled: 03/23/05
Received: 03/23/05

METHOD BLIANKOC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data
Batch: 5C24056 Extracted: 03/24/05											

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 010
Report Number: 10 C 1817

Sampled: 03/23/05
Received: 03/23/05

MEIHOD BLANKIOC DATA

INORGANICS

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

```
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
```

Project ID: Routine Outfall 010
Report Number: 10 Cl 1817 Sampled: 03/23/05
Received: 03/23/05

MITIIOD BLANKIOC DATA

INORGANICS

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 010
Report Number: 10 C 1817

Sampled: 03/23/05
Received: 03/23/05

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
1OC1817-01	413.1 Oil and Grease	Oil \& Grease	mg / l	0.47	5.0	
10C1817-01	Chloride - 300.0	Chloride	$\mathrm{mg} /{ }^{\text {c }}$	0.47 6.10	5.0 0.50	15 150
10C1817-01	Nitrogen, $\mathrm{NO}_{3}+\mathrm{NO} 2-\mathrm{N}$	Nitrate/Nitrite-N	mg/l	0.092	0.26	10.00
10C1817-01	Sulfate-300.0	Sulfate	mg/l	2.30 2.30	0.26 0.50	10.00 250
10C1817-01	TDS - SM 2540C	Total Dissolved Solids	mg / l	79	10	250 850

[^17]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 010
Report Number: 10 Cl 1817 Sampled: 03/23/05

DATA QUALIFIERS AND DEFINITIONS

J

M-NR1

 Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality. There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank SpikeDuplicate.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD
Relative Percent Difference

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager 1014 E. Cooley Dr., Suite A, Cotton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Sulte B-120, Phoerix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. \#3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 010
Report Number: 10 C 1817

Sampled: 03/23/05
Received: 03/23/05

Certification Summary

Del Mar Analytical, Irvine

Methed	Matrix	Nelac	California
EPA 160.2	Water	\mathbf{X}	\mathbf{X}
EPA 200.8	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 413.1	Water	X	X
SM2540C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by
contacting the laboratory or visiting our website at wwwwalabs contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical California Cert \#1640
1104 Windfield Way - El Dorado Hills, CA 95762
Analysis Performed: 1613-Dioxin-HR
Samples: IOC1817-01
Analysis Performed: EDD + Level 4
Samples: IOC1817-01

[^18]CHAIN OF CUSTODY FORM
 Project:
Boeing-SSFL NPDES
Routine Outfall 010

N -CON +EON ' \quad OS ' 10
\qquad

$3+t l e{ }^{*}$ $\#$ $1 A$ $1 B$$\|$

$2 A, 2 B$
3A, BB
$4 \mathrm{~A}, 4 \mathrm{~B}$
SA, sB
\square
$-$
-

Project Manager: Bronwyn Kelly
sampler: 'Jo ULOCK

- block

| Sample |
| :---: | :---: | :---: |
| Description | \(\begin{gathered}Sample

Matrix\end{gathered} $$
\begin{gathered}\text { Container } \\
\text { Type }\end{gathered}
$$\)

HMO
None
HCl
None
None

-
\square
T
-
$-$
$-$
\square
\square
\square
\cdots
\rightarrow

00
Poly -1L

Outfall 010	W	$\begin{array}{l}\text { Glass- } \\ \text { Amber }\end{array}$
Outfall 010	W	$\begin{array}{l}\text { Glass- } \\ \text { Amber }\end{array}$
Outfall 010	W	$\begin{array}{l}\text { Poly-500 } \\ \text { ml }\end{array}$
Outfall 010	W	$\begin{array}{l}\text { Poly-500 } \\ \text { ml }\end{array}$

1
1
$-$
1
1
1
\square
\qquad

Client Name/Address:
MWH-Pasadena
300 North Lake Avenue
Pasadena. CA 91101

$\begin{array}{c}\text { Sample } \\ \text { Description }\end{array}$	$\begin{array}{c}\text { Sample } \\ \text { Matrix }\end{array}$
Outfall 010	W

| Outfall $010-$ W
 Dup |
| :--- | :--- |

$+$

8

Sample nategraty: (Check) Date Time: 353
$3 / 23$ 05 1535

$<$ Del MarAnalytical

March 31, 2005

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention:	Bronwyn Kelly
Projects:	Routine Outfall 010 Sampled: $03 / 23 / 05$

Dear Ms. Kelly:
Alta Analytical performed the EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans for the project referenced above. Please use the following cross-reference table for reviewing your results.

MWH ID	DEL MAR ID	ALTA ID
Outfall 010	IOC1817-01	25954-001

Attached is the original report from the subcontract laboratory. If you have any questions or require further assistance, please do not hesitate to contact me.

Sincerely yours,
DEL MAR ANALYTICAL
Michelelethy
Project Manager

March 28, 2005

Alta Project I.D.: 25954

Ms. Michele Harper
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Dear Ms. Harper,
Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on March 25, 2005 under your Project Name "IOC1817". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

Martha M. Maser
Director of HRMS Services

Section I: Sample Inventory Report

Date Received: 3/25/2005

Alta Lab. ID
25954-001

Client Sample ID

IOC1817-01C

SECTION II

Method Blank

Sample ID: IOC1817-01C

APPENDIX

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank.
D The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.
I Chemical Interference
J The amount detected is below the Lower Calibration Limit of the instrument.
P Homologue totals include any coplanar PCBs detected at concentrations less than the reporting limit.
*
Conc. Concentration
DL Sample-specific estimated detection limit
MDL The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration
NA Not applicable
RL Reporting Limit - concentrations that correspond to low calibration point
ND Not Detected
TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

The control limits are "interim limits only" until in-house limits are utilized.

CURRENT CERTIFICATIONS

NELAP - (Primary AA: California, Certificate No. 02102CA)

Department of the Navy

U.S. Army Corps of Engineers

U.S. EPA Region 5

Bureau of Reclamation - Mid-Pacific Region - (MP-470, Res-1.10)
Commonwealth of Kentucky - (Certificate No. 90063)
Commonwealth of Virginia - (Certificate No. 00013)
State of Alaska, Department of Environmental Conservation - (Certificate No. OS-00197)
State of Arizona - (Certificate No. AZ0639)
State of Arkansas, Department of Health - (Approval granted through CA certification)
State of Arkansas, Department of Environmental Quality
State of California - (Certificate No. 1640)
State of Colorado
State of Connecticut - (Certificate No. PH-0182)
State of Florida - (Certificate No. 87456)
State of Louisiana, Department of Health and Hospitals - (Certificate No. LA000014)
State of Louisiana, Department of Environmental Quality
State of Maine
State of Michigan (Certificate No. 81178087)
State of Mississippi - (Approval granted through CA certification)
State of Nevada - (Certificate No. CA413)
State of New Jersey - (Certificate No. CA003)
State of New York, Department of Health - (Certificate No. 11411)
State of North Carolina - (Certification No. 06700)
State of North Dakota, Department of Health - (Certificate No. R-078)
State of New Mexico
State of Oklahoma - (D9919)
State of Oregon - (Certificate No. CA413)
State of Pennsylvania - (Certificate No. 68-490)
State of South Carolina - (Certificate No. 87002001)
State of Tennessee - (Certificate No. 02996)
State of Texas - (Certificate No. TX247-1000A
State of Utah - (Certificate No. E-201)
State of Washington - (Certification No. C091)
State of Wisconsin - (Certificate No. 998036160)
State of Wyoming - (USEPA Region 8 Ref: 8TMS-Q)

ALTA Project No.: \qquad

Comments:

SUBCONTRACT ORDER - PROJECT \# IOC1817

APPENDIX G

Section 37

March Outfall 011
AMEC Data Validation Reports
Del Mar Analytical Laboratory Reports

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Alta
Reviewer K. Shadowlight
Analysis/Method Dioxins

ACTION ITEMS

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables.
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, e.g.
Holding Times
GC/MS TuneInst. Performance
Calibration
Method blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and
Quantitation
System Performance
COMMENTS ${ }^{\text {b }}$

[^19]
amec ${ }^{\theta}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: DIOXINS/FURANS SAMPLE DELIVERY GROUPS: Multiple SDGs

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:
DATA VALIDATION REPORT	NPDES
SDG No.:	Multiple
Analysis:	
D/F	

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: B. McIlvaine
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 6
No. of Reanalyses/Dilutions: 0
Reviewer: K. Shadowlight
Date of Review: March 21, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple
	Analysis:	D/F

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Alta)	Matrix	COC Method
Outfall 002	IOC0447-01	$25853-001$	water	1613
Outfall 003	IOC0449-01	$25854-001$	water	1613
Outfall 004	IOC0455-01	$25855-001$	water	1613
Outfall 005	IOC0451-01	$25855-001$	water	1613
Outfall 007	IOC0453-01	$25856-001$	water	1613
Outfall 011	IOC0448-01	$25852-001$	water	1613

	Project: DATA VALIDATION REPORT
	NPDES SDG No.: Multiple Analysis:

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

All of the samples in these SDGs were received at Del Mar Analytical within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The samples were shipped to Alta for dioxin/furan analyses and were received below the temperature limits at $1.3^{\circ} \mathrm{C}$ and $1.4^{\circ} \mathrm{C}$; however, as the samples were not noted to have been frozen or damaged, no qualifications were required. According to the laboratory login sheets, all samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COCs and transfer COCs were legible and signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. As the samples were couriered directly to Del Mar. Analytical, custody seals were not required. The coolers received by Alta had custody seals present and intact; however, custody seals were not present on the sample containers. The EPA IDs were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and $2,3,7,8-\mathrm{TCDD}$ reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

		Project:
DATA VALIDATION REPORT	NPDES	
2.3 CALIBRATION	Analysis:	Multiple
C/F		

2.3 CALIBRATION

2.3.1 Initial Calibration

There was one initial calibration, analyzed 08/30/04. The calibration consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with $\%$ RSDs $\leq 20 \%$ for the 15 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standards instead of being analyzed separately, as noted in section 2.2 .1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank (6593-MB001) was extracted and analyzed with the samples in these SDGs. Total TCDF was reported at $1.4 \mathrm{pg} / \mathrm{L}$ and target compound $1,2,3,6,7,8-\mathrm{HxCDF}$ was reported as an EMPC. The results for total TCDF in samples Outfall 003 and Outfall 011 were qualified as estimated nondetects "UJ," at the levels of interference. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No further qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One Ongoing Precision Recovery (OPR) sample (6593-OPR001) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple
	Analysis:	D/F

2.7.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for these SDGs.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any reported EMPC was qualified as an estimated nondetect, "UJ." Any detects below the lower method calibration level (MCL) were qualified as estimated, " J ." The result for total TCDF in sample Outfall 003 was flagged by the laboratory with a "D" qualifier which indicated possible diphenylether interference; however, the result was qualified as a nondetect due to method blank contamination and no qualifications were required. No further qualifications were required.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer P. Meeks
Analysis/Method Metals

Package ID T711MT65
Task Order 313150010
SDG No. IOC0448
No. of Analyses 1
Date: 03/31/05
Reviewefs Signature
P.Mels

ACIION TREMS

1. Case Narrative Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Condacted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from

Analysis Protocol, e.g.,
Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification
and Quantitation
System Performance

Qualifications applied for detects below the reporting limit.

COMMENTS $^{\text {b }}$,	

[^20]- Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

amec ${ }^{9}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: METALS
SAMPLE DELIVERY GROUP: IOC0448

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC0448

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOC0448
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Metals
QC Level: Level IV
No. of Samples: 1
No. of Reanalyses/Dilutions: 0
Reviewer: P. Meeks
Date of Review: March 31, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), SW-846 Method 6010B for Inductively Coupled Plasma, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC0448

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 011	Outfall 011	IOC0448-01	water	ILM04

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC0448

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel and accounted for the sample and analyses presented in this SDG. A duplicate was submitted for Outfall 011; however, duplicate analyses were not required. No sample qualifications were required.

2.1.3 Holding Times

The date of collection recorded on the COC and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS metals and 28 days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. All \%RSDs were less than 5%. The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, $90-110 \%$ for the ICP/MS metals and $80-$ 120% for mercury. The reporting limit check standards were recovered within the AMEC control limits of $70-130 \%$. No sample qualifications were required.

	Project:	NPDES
	SDG No.:	IOC0448
DATA VALIDATION REPORT	Analysis:	MET

2.4 BLANKS

There were no reported detects in the CCBs or method blanks associated with the site sample. No qualifications were required due to the method and calibration blank results.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were included in the raw data for the ICP-MS analyses. Results were not provided for spiked interferents sulfur, phosphorus, carbon, and chloride, and antimony and lead were not spiked into the ICSAB solution. Copper was detected above the reporting limit in the ICSA. The results for sodium was above the calibration range of the instrument in the ICSA and ICSAB analyses; however, as sodium was not reported in the site sample, no qualifications were required. The validator reviewed the raw data for the site sample ICP/MS analyses for the level of reported interferents, $\mathrm{Al}, \mathrm{Ca}, \mathrm{Fe}$, and Mg , and determined that the levels of reported interferents were not high enough to cause matrix affects. No assessment could be made with respect to possible interference from sulfur, phosphorus, carbon, and chloride. No qualifications were required.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP/MS LCS sample was identified as 5C08106-BS1 and the mercury LCS sample was identified as 5 C $09049-\mathrm{BS} 1$. The LCS results on the summary forms and in the raw data were within the laboratory-established ICP/MS and mercury control limits of $85-115 \%$. No qualifications were required.

2.7 LABORATORY DUPLICATES

MS/MSD analyses were performed on Outfall 011 for the ICP/MS analytes only. The RPDs were within the control limit of 20% and no qualifications were required.

2.8 MATRIX SPIKE

MS/MSD analyses were performed on Outfall 011 for the ICP/MS analytes only. The recoveries were within the AMEC control limits of $75-125 \%$ and no qualifications were required. Mercury method accuracy was evaluated based on LCS results.

2.9 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analysis of this sample; therefore, furnace atomic absorption QC is not applicable.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC0448

2.10 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.11 INTERNAL STANDARDS PERFORMANCE

The ICP-MS internal standard recoveries for the site sample and associated QC sample analyses were within the $60-125 \%$ control limits and no qualifications were required.

2.12 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Lead detected below the reporting limit was qualified as estimated, "J." No further qualifications were required.

2.13 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated sample.

2.13.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site sample.
MWH-Pasadena Beoing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011
Report Number: 10 CO 448

Sampled: 03:04/05
Received: 03i04:05

DRAFT: METALS

AMEC VALIDATED

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer L. Calvin
Analysis/Method Pesticides (a-BHC) by Method 608

Package ID T711PP26
Task Order 313150010
SDG No. $10 B 1014$
No. of Analyses 1
Date: April 6, 2005

amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: PESTICIDES

SAMPLE DELIVERY GROUP: IOB0448

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project: SDG:	$\begin{gathered} \text { NPDES } \\ \text { IOB0448 } \end{gathered}$
DATA VALIDATION REPORT	Analysis:	Pest

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOB0448
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: PCBs
QC Level: Level IV
No. of Samples: 1
No. of Reanalyses/Dilutions: 0
Reviewer: L. Calvin
Date of Review: April 6, 2005

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedures (DVP-4, Rev.2), EPA Method 608, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary form as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	Method
Outfall 011	Outfall 011	IOB2066-01	water	608

	Project:	NPDES
DATA VALIDATION REPORT	SDG:	IOB0448
Analysis:	Pest	

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. The analysis did not require preservation, and no preservation was noted in the field. The COC noted that the sample containers were received intact. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by both field and laboratory personnel. The COC accounted for the analysis presented in this SDG. As the sample was couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The water sample was extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

2.2 PESTICIDES INSTRUMENT PERFORMANCE

No resolution check standards or breakdown check standards are required by Method 608 for pesticides, and according to the raw data provided, a resolution check standard was not analyzed by the laboratory. The laboratory did analyze a breakdown check standard; however, as alpha-BHC was the only compound of interest, the breakdown check standard was not necessary. A review of the raw data indicated that the analytical run time was of sufficient length to provide adequate standard separation. The two analytical columns used in the analyses were within the guidelines specified in the methods.

According to the laboratory SOP and the initial calibration raw data, the retention time windows are ± 0.10 minutes for both surrogates and alpha-BHC calibration standards. A review of the raw data indicated that the laboratory retention time criteria were met for the surrogates and pesticide calibration standards. No qualifications were required.

2.3 CALIBRATION

2.3.1 Analytical Sequence

Based on the data provided, the analytical sequences were in accordance with the requirements of Method 608. No qualifications were required.

DATA VALIDATION REPORT	Project: SDG: Analysis:	NPDES IOB0448 Pest

2.3.2 Initial Calibration

There was one initial calibration dated 03/02/05 associated with this SDG, which consisted of six-point calibrations for alpha-BHC on two analytical columns. The laboratory provided an overlay of the sample chromatogram and the pesticide standard for identification purposes. The \%RSD was within the EPA Method 608 QC limit of $\leq 10 \%$ on channel B, and the r^{2} was ≥ 0.995 on channel A. An ICV was analyzed immediately following the initial calibration. The $\% \mathrm{D}$ for alphaBHC was within the QC limit of $\leq 15 \%$ on both analytical columns. The \%RSD, r^{2}, and ICV \%D for alpha-BHC were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.3.3 Continuing Calibration

The sample analysis of this SDG was bracketed by the daily ICV and two closing continuing calibration standards. The applicable \%Ds were within the Method QC limit of $\leq 15 \%$ for all calibrations. A representative number of \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.4 BLANKS

2.4.1 Instrument Blanks

An instrument blank was analyzed at the beginning of the analytical sequence. Crosscontamination was not evident in the sample. No qualifications were necessary.

2.4.2 Method Blanks

One water method blank (5 C 07057 -BLK1) was extracted and analyzed with this SDG. Target compound alpha-BHC was not detected in the method blank. Review of the chromatograms showed no false negative. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike/blank spike duplicate pair (5C07057-BS1/BSD1) was extracted and analyzed with this SDG. The recoveries for alpha-BHC were within the laboratory-established QC limits of $45-115 \%$ and the RPD was $\leq 30 \%$. The recoveries were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.6 SURROGATE RECOVERY

The sample and all QC samples were fortified with the surrogate compounds decachlorobiphenyl and tetrachloro-m-xylene. Surrogate recoveries for all analyses were within the laboratory-established QC limits. The recoveries were calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

DATA VALIDATION REPORT \quad\begin{tabular}{r}
Project:

SDG:

NPDES

IOBO448

Pest
\end{tabular}

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

There were no MS/MSD analyses associated with this SDG. Accuracy and precision were assessed based on the blank spike/blank spike duplicate results. No qualifications were required.

2.8 SAMPLE CLEANUP PERFORMANCE

According to the laboratory extraction benchsheet, no cleanups were performed on the water sample. No qualifications were required.

2.9 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated sample. The following are findings associated with field QC samples:

2.9.1 Field Blanks and Equipment Rinsates

There were no field QC samples associated with the sample in this SDG. No qualifications were required.

2.9.2 Field Duplicates

There were no field duplicate samples associated with the sample in this SDG.

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for alpha-BHC by EPA Method 608. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for the sample in this SDG. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification was verified for this SDG; however, as there were no reported detects, quantitation was verified by recalculating blank spike and surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibration and the laboratory MDL study. The reporting limit for alpha-BHC was not adjusted for sample amount on the result summary; however, the dilution factor listed on the summary reflected the sample volume extracted. Results were reported in ug/L (ppb). No qualifications were required.

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly

Project ID: Rourine Outfall 011
Report Number: $10 C 0448$

Sampled: 03/04:05
Received: 03/04:05

DRAFT: ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date		Data ulifier
Sample ID: IOC0448-01 (DRAFT: Outfall 011 - Water) - cont. Reporting Cnits: ug/I Sampled: 03/04/05 alpha-BHC									
Surrogate: Decachlorobiphenyl (45-120\%)				56%	0.943	03.07:05	/08/05	u	
Surrogate: Tetrachloro-m-xplene (35-120\%)				41\%					

AMEC VALIDATED

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA	
AMEC Earth \& Environmental	Package ID T711SV43
550 South Wadsworth Boulevard	Task Order 313150010
Suite 500	SDG No. IOC0448
Lakewood, CO 80226	No. of Analyses 1
Laboratory Del Mar	Date: April 6, 2005
Reviewer M. Pokorny	Revieque's Signature
Analysis/Method Semivolatiles	W.an

ACTION ITEMS*	
1. Case Narrative Deficiencies	
2. Out of Scope Analyses	
3. Analyses Not Conducted	
4. Missing Hardcopy Deliverables	
5. Incorrect Hardcopy Deliverables	
6. Deviations from Analysis Protocol, e.g., Holding Times GC/MS Tune/Inst. Perform Calibrations Blanks Surrogates Matrix Spike/Dup LCS Field QC Intemal Standard Performance Compound Identification and Quantitation System Performance	Qualifications were required for calibration and LCS outliers and for blank contamination.
COMMENTS ${ }^{\text {b }}$	
${ }^{\text {a }}$ Subcontracted analytical laboratory is not meeting contract and/or method requirements. ${ }^{\text {b }}$ Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.	

amec ${ }^{8}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: SEMIVOLATILES

SAMPLE DELIVERY GROUP: IOC0448

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:	NPDES
DATA VALIDATIONREPORT	SDG:	IOCO448
SVOC		

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOC0448
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Semivolatiles
QC Level: Level IV
No. of Samples: 1
No. of Reanalyses/Dilutions: 0
Reviewer: M. Pokorny
Date of Review: April 6, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Semivolatile Organics (DVP-3, Rev. 2), EPA Method 625, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project: SDG:	$\begin{aligned} & \text { NPDES } \\ & 10 C 0448 \end{aligned}$
DATA VALIDATION REPORT	Analysis:	SVOC

Table 1. Sample identification

Client ID	EPA ID	Lab No.	Matrix	Method
Outfall 011	Outfall 011	IOC0448-01	water	625

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The sample in this SDG was received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. The analysis did not require preservation, and no preservation was noted in the field. The COC noted that the sample was received intact. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by both field and laboratory personnel. The COC accounted for the analysis presented in this SDG. As the sample was couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The water sample was extracted within seven days of collection and analyzed within 40 days of collection. No qualifications were required.

2.2 GC/MS TUNING

The DFTPP tunes met the criteria specified in Method 625, and the sample was analyzed within 12 hours of the DFTPP injection time. No qualifications were required.

2.3 CALIBRATION

The initial calibration associated with this SDG was dated 03/15/05. The average RRFs for were ≥ 0.05 and the $\%$ RSDs were $\leq 35 \%$ or $\mathrm{r}^{2} \geq 0.995$ for all target compounds. A representative number of average RRFs and \%RSDs were checked from the raw data, and no calculation or transcription errors were noted. The continuing calibration associated with the sample analysis was analyzed $03 / 16 / 05$. The RRFs for all target compounds were ≥ 0.05, and the $\%$ Ds were ≤ 20 except for the $\% \mathrm{D}$ for bis(2-ethylhexyl)phthalate. Bis(2-ethylhexyl)phthalate was qualified as an estimated nondetect, "UJ," in the sample of this SDG. A representative number of RRFs, r^{2} values, and \%Ds were checked from the raw data, and no calculation or transcription errors were noted. No further qualifications were required.

2.4 BLANKS

One method blank (5C05021-BLK1) was extracted and analyzed with this SDG. Bis(2ethylhexyl)phthalate was reported in the method blank. The bis(2-ethylhexyl)phthalate detect for the sample was qualified as a nondetect, "U." Review of the raw data indicated no reportable false negatives or false positives. No further qualifications were required.

	Project: SDG:	NPDES IOC0448
DATA VALIDATION REPORT	Analysis:	SVOC

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike (5 C05021-BSI) was extracted and analyzed with this SDG. All percent recoveries were within the laboratory QC limits, except for the recovery below the QC limits for 2,4-dinitrotoluene. The sample of this SDG had 2,4-dinitrotoluene qualified as an estimated nondetect, "UJ." A representative number of recoveries were calculated from the raw data and no calculation or transcription errors were found. No further qualifications were required.

2.6 SURROGATE RECOVERY

The sample surrogate recoveries were within the laboratory QC limits. A representative number of recoveries were calculated from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were associated with this SDG. Evaluation of method accuracy and precision was based on blank spike/blank spike duplicate results. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples.

2.8.1 Field Blanks and Equipment Rinsates

There were no field QC samples associated with this SDG. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate samples associated with this SDG. No qualifications were required.

2.9 INTERNAL STANDARDS PERFORMANCE

The internal standard area counts and retention times were within the control limits established by the continuing calibration standards: $-50 \% /+100 \%$ for internal standard areas and ± 30 seconds for retention times. A representative number of recoveries were checked from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG:	IOC 0448
SVOC		

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for five semivolatile target compounds by EPA Method 625. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. No calculation or transcription errors were found. The reporting limits were supported by the low level of the initial and the method detection limit study. No qualifications were required.

2.12 TENTATIVELY IDENTIFIED COMPOUNDS

TICs were not reported by the laboratory for this SDG. No qualifications were required.

2.13 SYSTEM PERFORMANCE

Review of the raw data indicated no problems with system performance. No qualifications were required.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011
Report Number: $10 C 0448$

Sampled: 03/04:05
Received: 03:04:05

DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

A

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer M. Pokorny
Analysis/Method Volatiles

Package ID T711VO75
Task Order 313150010
SDG No. IOC0448
No. of Analyses 2
Date: April 6, 2005
Revieyersspnature

ACTION ITEMS ${ }^{-}$

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Qualifications were required for calibration outlier.
Protocol, e.g.,
Holding Times
GCMS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and
Quantitation
System Performance
COMMENTS ${ }^{\text {b }}$

* Subcontracted analytical laboratory is not meeting contract andor method requirements.
${ }^{\text {* }}$ Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: VOLATILES

SAMPLE DELIVERY GROUP: IOC0448

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project: SDG:	NPDES DATA VALIDATION REPORT IOCO448
VOC		

1. INTRODUCTION

Task Order Titte: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOC0448
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Volatiles
QC Level: Level IV
No. of Samples: 2
No. of Reanalyses/Dilutions: 0
Reviewer: M. Pokorny
Date of Review: April 6, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Volatile Organics (DVP-2, Rev. 2), EPA Method 624, SW846 Method 8260B, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary forms as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project: DAT: SALIDATION REPORT	NPDES IOCO448
SDG:		

Table 1. Sample identification

Client ID	EPA ID	Lab No.	Matrix	Method
Outfall 011	Outfall 011	IOB0448-01	water	624
Trip Blank	Trip Blank	IOB0448-02	water	624

	Project: DATA VALIDATION REPORT
SDG:	NPDES
IOC0448	
Analys:	VOC

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in this SDG were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. The samples were properly preserved. The COCs noted that the samples were received intact; however, information regarding absence of headspace was not provided. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by both field and laboratory personnel. The COCs accounted for the analyses presented in this SDG. As the samples were couriered directly to the laboratory from the field, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The samples were analyzed within seven days of collection. No qualifications were required.

2.2 GC/MS TUNING

The ion abundance windows shown on the quantitation reports were consistent with those specified in EPA Method 624, and all ion abundances were within the established windows. The samples and associated QC were analyzed within 12 hours of the BFB injection times. The Form Vs were verified from the raw data and no discrepancies between the summary forms and the raw data were noted. No qualifications were required.

2.3 CALIBRATION

One initial calibration dated 02/19/05 was associated with this SDG. The average RRFs were ≥ 0.05 for all compounds listed on the sample result summaries. The $\%$ RSDs were $\leq 35 \%$ for all target compounds listed on the sample result summaries. There was one continuing calibration dated 03/07/05 associated with the sample analyses in these SDGs. The RRFs were ≥ 0.05 in the continuing calibration. The $\% \mathrm{D}$ for trichlorofluoromethane exceeded 20% in the continuing calibration; therefore, the nondetect for trichloroflouromethane was qualified as estimated, "UJ," in sample Outfall 011. No qualifications were required for the Trip Blank. The \%Ds were $\leq 20 \%$ for the remaining target compounds listed on the result summaries. A representative number of \%RSDs and average RRFs from the initial calibrations, and \%Ds and RRFs from the continuing calibrations were recalculated from the raw data, and no calculation or transcription errors were found. No further qualifications were required.

	Project: DATA VALIDATION REPORT
NPDES	
IOCO448	
IDG:	

2.4 BLANKS

One water method blank (5C07026-BLK1) was associated with the sample analyses. There were no detects above the MDLs for the target compounds listed on the sample result summaries. The method blank raw data showed no evidence of false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One water blank spike ($5 \mathrm{C} 07026-\mathrm{BS} 1$) was associated with the sample analyses. All recoveries were within the laboratory-established QC limits. A representative number of recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.6 SURROGATE RECOVERY

The surrogates were recovered within the QC limits of $80-120 \%$ in the samples and associatedQC. A representative number of surrogate recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

There were no MS/MSD analyses associated with this SDG. Evaluation of method accuracy was based on blank spike results. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

2.8.1 Trip Blanks

Sample Trip Blank (IOC0448-02) was the trip blank associated with the site sample. There were no target compounds detected above the MDLs in the trip blank. No qualifications were required.

2.8.2 Field Blanks and Equipment Rinsates

There were no field QC samples associated with this SDG. No qualifications were required.

2.8.3 Field Duplicates

There were no field duplicate samples associated with this SDG. No qualifications were required.

DATA VALIDATION REPORT

2.9 INTERNAL STANDARDS PERFORMANCE

Internal standard area counts and retention times for the samples in this SDG were within the control limits established by the continuing calibration standards: $+100 \% /-50 \%$ for internal standard areas and ± 0.50 minutes for retention times. A representative number of internal standard areas and retention times were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.10 COMPOUND IDENTIFICATION

Target compound identification was verified at a Level IV data validation. The laboratory analyzed volatile target compounds by EPA Method 624. Chromatograms, retention times, and spectra for the samples and QC were examined and no target compound identification problems were noted. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. The reporting limits were supported by the lowest concentrations of the initial calibration standards and by the MDL study. Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike and surrogate recoveries from the raw data. Results were reported in $\mu \mathrm{g} / \mathrm{L}$ (ppb). No calculation or transcription errors were noted. No qualifications were required.

2.12 TENTATIVELY IDENTIFIED COMPOUNDS

The laboratory did not provide TICs for this SDG. No qualifications were required.

2.13 SYSTEM PERFORMANCE

A review of the chromatograms and other raw data showed no identifiable problems with system performance. No qualifications were required.

 9830 South 51 st St, Suite B-120, Phoenix, AZ 85044 480:785-6443 FAX (430) $785-0451$ 2520 E. Sunset Rd. \#3, Las Vegas, NV 89120 (702) $798-3620$ FAX 702 z 798-36:

MWH-Pasadena/Boaing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011
Report Number: 10 C 0448

Sampled: 03:04:05
Received: 03/04/05

DRAFT: PURGEABLES BY GC/MS (EPA 624)

DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer L. Jarusewic
Analysis/Method General Minerals

Package ID T711WC104
Task Order 313150010 SDG No. IOC0448
No. of Analyses 1
Date: 04/04/05
Reviewer's Signature

ACTION ITEMS

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from \quad Qualifications applied for detects below the reporting limit.

Analysis Protocol, egg.,
Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification
and Quantitation
System Performance

Qualifications applied for detects below the reporting limit.

\qquad
\qquad
\qquad

COMMENTS ${ }^{\text {b }}$

[^21]
amec ${ }^{9}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: GENERAL MINERALS
\section*{SAMPLE DELIVERY GROUP: IOC0448}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: IOC0448
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: General Minerals
QC Level: Level IV
No. of Samples: 1
Reviewer: L. Jarusewic
Date of Review: April 4, 2005

The samples listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 350.2, 405.1, 300.0, 335.2, 413.1, 160.2, 160.5, 120.1, and 180.1, Standard Methods for the Examination of Water and Wastewater Method SM5540-C and SM2540C, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC0448

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 011	Outfall 011	IOC0448-01	Water	General Minerals

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC0448

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel. The COC accounted for all analyses presented in this SDG. No sample qualifications were required.

2.1.3 Holding Times

The holding times were assessed by comparing the date of collection with the dates of analyses. The 28 -day analytical holding time for ammonia, chloride, sulfate, conductivity, and oil and grease, the 14 -day holding time for cyanide, the seven-day holding time for total suspended solids and total dissolved solids, and the 48 -hour holding time for turbidity, biological oxygen demand, nitrate/nitrite, surfactants, and total settleable solids were met. No qualifications were required.

2.2 CALIBRATION

For the applicable analyses, the initial calibration correlation coefficients were ≥ 0.995. Initial and continuing calibration information was acceptable with recoveries within the control limits of $90-110 \%$. For ammonia, no information regarding the standardization of the titrant was provided; however, as the LCS recovery was within the CCV control limits, no qualifications were required. For BOD, no information regarding the calibration of the oxygen meter was provided; however, as the LCS recovery was within the CCV control limits, no qualifications were required. The total cyanide reporting limit check standard was recovered within the control limits of $70-130 \%$. Calibration is not applicable to oil and grease, total dissolved solids, total suspended solids, or total settleable solids. No qualifications were required.

2.3 BLANKS

Turbidity was detected in method blank 5C05047-BLK1 at 0.050 NTU; however, the method blank result was insufficient to qualify the Outfall 011 result. Oil and grease was detected in method blank $5 C 09091-$ BLK1 at $1.70 \mathrm{mg} / \mathrm{L}$; however, as oil and grease was not detected in Outfall 011 , no qualifications were required. The remaining method blank and CCB results reported on the summary forms and in the raw data for blank analyses associated with the sample were nondetects at the reporting limit. No qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample and laboratory control sample duplicate (BOD and oil and grease only) recoveries and RPDs were within the laboratory-established control limits. The LCS is not applicable to turbidity or settleable solids. No qualifications were required.

2.5 SURROGATES RECOVERY

Surrogate recovery is not applicable to the analyses presented in this SDG.

2.6 LABORATORY DUPLICATES

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was assessed based on LCS results.

2.8 FURNACE ATOMIC ABSORPTION OC

Furnace atomic absorption was not utilized for the analyses of this sample; therefore, furnace atomic absorption QC is not applicable.

2.9 ICP SERIAL DILUTION

ICP serial dilution is not applicable to the analyses presented in this data validation report.

2.10 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. BOD and surfactant detected below the reporting limit was qualified as estimated, "J." No further qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOCO448
Analysis:	General Minerals	

2.11 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated sample. The following are findings associated with field QC samples:

2.11.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.11.2 Field Duplicates

There were no field duplicate pairs associated with this SDG.

MWH-Pasadena/Boeing	Project ID:	Routine Outfall 011	
300 North Lake Avenue, Suite 1200		Routine Outfall 011	Sampled: 03/04/05
Pasadena, CA 91101	Report Number:	IOC0448	Received: 03/04/05
Attention: Bronwyn Kelly			

DRAFT: INORGANICS

Sample ID: 1OC0448-01 (DRAFT: Outfall 011 - Water)
Reporting Units: umhos/em
Specific Conductance
$\begin{array}{llllllll}\text { EPA } 120.1 & 5 C 09097 & 1.0 & 1.0 & 250 & 1 & 03 / 09 / 05 & 03 / 09 / 05\end{array}$

AMEC VALIDAIE

 LEVEL IV> sinatyen Not Wry:

DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer L. Jarusewic
Analysis/Method Perchlorate

Package ID T711 WCl06
Task Order 313150010
SDG No. IOC0448
No. of Analyses 1
Date: 04/04/05

ACTION ITEMS ${ }^{\circ}$

1. Case Narrative Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy Deliverables
5. Incorrect Hardcopy

Deliverables

6. Deviations from Qualifications applied for CCV recovered below control limits.

Analysis Protocol, e.g.,
Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix SpikeDup LCS
Field QC
Internal Standard
Performance
Compound Identification and Quantitation
System Performance \square

[^22]
amec ${ }^{9}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: PERCHLORATE SAMPLE DELIVERY GROUP: IOC0448

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring Contract Task Order \#: . 313150010
Sample Delivery Group \#: IOC0448
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Perchlorate
QC Level: Level IV
No. of Samples: 1
Reviewer: L. Jarusewic
Date of Review: April 4, 2005

The samples listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 314.0, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
	SDG No.:	IOC0448
DATA VALIDATION REPORT	Analysis:	Perchlorate

Table 1. Sample identification

Client ID	EPA DD	Laboratory ID	Matrix	COC Method
Outfall 011	Outfall 011	IOC0448-01	Water	Perchlorate

	Project:	NPDES
	SDG No.:	IOC0448
DATA VALIDATION REPORT	Analysis:	Perchlorate

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The analysis did not require preservation and no preservation was noted in the field. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel, and accounted for the sample and analysis presented in this SDG. No qualifications were required.

2.1.3 Holding Times

The holding time was assessed by comparing the date of collection with the date of analysis. The 28day analytical holding time for perchlorate was met, and no qualifications were required.

2.2 CALIBRATION

The initial calibration correlation coefficient was ≥ 0.995. The IPC-MA recovery was within the control limits of $80-120 \%$. The ICV and IPC recoveries were within the control limits of $90-110 \%$. A bracketing CCV was recovered below the control limits of $90-110 \%$; therefore, nondetected perchlorate was qualified as estimated, "UJ." No further qualifications were required.

2.3 BLANKS

The method blank and CCB results reported on the summary forms and in the raw data for blank analyses associated with the sample were nondetects at the reporting limit. No qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample recovery was within the method control limits of $85-115 \%$. No qualifications were required.

2.5 SURROGATES RECOVERY

Surrogate recovery is not applicable to the analysis presented in this SDG.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC0448

2.6 LABORATORY DUPLICATES

No MS/MSD or duplicate analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was assessed based on LCS results.

2.8 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analysis of this sample; therefore, furnace atomic absorption QC is not applicable.

2.9 ICP SERIAL DILUTION

ICP serial dilution is not applicable to the analysis presented in this data validation report.

2.10 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample results reported on the Form I was verified against the raw data. No transcription errors or calculation errors were noted. No qualifications were required.

2.11 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated sample. The following are findings associated with field QC samples:

2.11.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.11.2 Field Duplicates

There were no field duplicate pairs associated with this SDG.

MWI-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outrall 0il
Sampled: 03/0405
Report Number: $10 C 0448$
Received: 03/0405

DRAFT: INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyz
Sample ID: 1OC0448-01 (DRA Reporting Units: mg/l	ffall 011	$\mathrm{er})-\mathrm{co}$			Sampled: 03/04/05			
Ammonia-N (Distilled)	EPA 350.2	5007070	0.30	0.50	ND		03:07/05	03/07:05
Biochemical Oxygen Demand	EPA 405.1	5 C 04095	0.59	2.0	0.76		03/04/05	03:09:05
Chloride	EPA 300.0	$5 \mathrm{C04107}$	0.26	0.50	8.8		03:04:05	03/05:05
Nitrate/Nitrite-N	EPA 300.0	$5 \mathrm{C04107}$	0.11	0.11	0.21		03/04/05	03/05:05
Oil \& Grease	EPA 413.1	$5 \mathrm{C09091}$	0.94	5.0	ND		03/09105	03/09:05
Sulfate	EPA 300.0	$5 \mathrm{C04107}$	0.18	0.50	24		03104/05	$03 / 0505$
Surfactants (MBAS)	SM5540-C	5 C 04119	0.044	0.10	0.077		03704/05	03/04:05
Total Dissolved Solids	SM2540C	5 C 09095	10	10	170		03/09/05	03/09.05
Total Suspended Solids	EPA 160.2	5007073	10	10	ND	1	03/07/05	03/07:05

Sample ID: YOC0448-01 (DRAFT: Outfall 011-Water)
Reporting Units: m//hr
$\begin{array}{lllllllllll}\text { Total Settleable Solids } & : & \text { EPA 160.5 } & 5 \mathrm{C} 04096 & 0.10 & 0.10 & \text { ND } & 1 & 03 / 04 / 05 & 03 / 04 / 05\end{array}$
Sample ID: 1OC0448-01 (DRAFT: Outfall 011 - Water) Reporting Units: NTU
Turbidity
EPA 180.1 5 C05047 0.040
$\begin{array}{lllll}1.0 & 4.5 & 1 & 03 / 05: 05 & 03: 05 / 05\end{array}$
Sample ID: 1OC0448-01 (DRAFT: Outfall 011 - Water) Reporting Uaits: ug 1
Total Cyande
Perchlorate
EPA $3352 \quad 5 C 09062 \quad 22$
Sampled: 03/04/05

Sample ID: 1OC0448-01 (DRAFT: Outfall 011 - Water) Reporting Units: umhosicm
Specific Conductance
EPA 120.1 50090971.0
Sampled: 03/04/05
Sampled: 03/04/05

世
，
K
世
\qquad
\qquad

＜
，
K
\％
世
，
世
＋
K＂ \qquad ， ，
\％
，
\％
\％
，
，
\％
，
\％

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 011

Sampled: 03/04/05
Received: 03/04/05
Issued: 04/07/05 19:22

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID

IOC0448-01
IOC0448-02

CLIENT ID
Outfall 011
Trip Blank

MATRIX
Water
Water

Reviewed By:

Del Mar Analytical, Irvine
Michele Harper
Project Manager
Project ID: Routine Outfall 011
Sampled: 03/04/05
Report Number: IOC0448
Received: 03/04/05

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

CORRECTIVE ACTION REPORT

Department: Extractions
Method: EPA 625
QC Batch: 5C05021

Identification and Definition of Problem:
Dimethylphalate, 2,4-dinitrotoluene, 2,6-dinitrotoluene, and 1,2-diphenylhydrazine/azobenzene recoveries were below acceptance limits in the Blank Spike.

Determination of the Cause of the Problem:
Less than optimal extraction technique is the likely cause for the failures.

Corrective Action Taken:

Samples could not be reextracted due to expiration of hold times. Samples were 'ND' for affected analytes. All samples and Blank Spike were flagged with 'L2' qualifier.

Del Mar Analytical, Irvine

Michele Harper
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011
Report Number: IOC0448
Sampled: 03/04/05
Received: 03/04/05

PURGEABLES BY GC/MS (EPA 624)

Analyte	Methed	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 10C0448-01 (Outfall 011 - Water)			Sampled: 03/04/05						
Reporting Units: uga									
Benzene	EPA 624	5C07026	0.28	2.0	ND	1	03/07/05	03/08/05	
Carbon tetrachloride	EPA 624	5 C 07026	0.28	5.0	ND	1	03/07/05	03/08/05	
Chloroform	EPA 624	$5 \mathrm{C07026}$	0.33	2.0	ND	1	03/07/05	03/08/05	
1,1-Dichloroethane	EPA 624	5007026	0.27	2.0	ND	1	03/07/05	03/08/05	
12.Dichloroethane	EPA 624	5C07026	0.28	2.0	ND	1	03/07/05	03/08/05	
1,1-Dichloroethene	EPA 624	5007026	0.32	3.0	ND	1	03/07/05	03/08/05	
Ethylbenzene	EPA 624	$5 \mathrm{C07026}$	0.25	2.0	ND	1	03/07/05	03/08/05	
Tetrachloroethene	EPA 624	$5 \mathrm{C07026}$	0.32	2.0	ND	1	03/07/05	03/08/05	
Toluene	EPA 624	5C07026	0.36	2.0	ND	1	03/07/05	03/08/05	
1,1,1-Trichloroethane	EPA 624	5C07026	0.30	2.0	ND	1	03/07/05	03/08/05	
1,1,2-Trichloroethane	EPA 624	5C07026	0.30	2.0	ND	1	03/07/05	03/08/05	
Trichloroethene	EPA 624	$5 \mathrm{C07026}$	0.26	5.0	ND	1	03/07/05	03/08/05	
Trichlorofluoromethane	EPA 624	5C07026	0.34	5.0	ND	1	03/07/05	03/08/05	
Vinyl chloride	EPA 624	$5 \mathrm{C07026}$	0.26	5.0	ND	1	03/07/05	03/08/05	
Xylenes, Total	EPA 624	5C07026	0.52	4.0	ND	1	03/07/05	03/08/05	
Surrogate: Dibromofluoromethane (80-120\%)					109%				
Surrogate: Toluene-d8 (80-120\%)					112\%				
Surrogate 4-Bromofluorobenzene $180-120 \%$)					106\%				
Sample 1D: 10 C0448-02 (Trip Blank - Water)					Sampled: 03/04/05				
					Reporting Units: ug/				
Benzene	EPA 624	$5 \mathrm{C07026}$	0.28	2.0	ND	1	03/07/05	03/07/05	
Carbon tetrachloride	EPA 624	5 C 07026	0.28	5.0	ND	1	03/07/05	03/07/05	
Chloroform	EPA 624	5 C 07026	0.33	2.0	ND	1	03/07/05	03/07/05	
1,1-Dichloreethane	EPA 624	$5 \mathrm{C07026}$	0.27	2.0	ND	1	03/07/05	03/07/05	
1,2-Dichloroethane	EPA 624	$5 \mathrm{C07026}$	0.28	2.0	ND	1	03/07/05	03/07/05	
1,1-Dichloroethene	EPA 624	5C07026	0.32	3.0	ND	1	03/07/05	03/07/05	
Ethylbenzene	EPA 624	$5 \mathrm{C07026}$	0.25	2.0	ND	1	03/07/05	03/07/05	
Tetrachloroethene	EPA 624	5 C 07026	0.32	2.0	ND	1	03/07/05	03/07/05	
Toluene	EPA 624	$5 \mathrm{C07026}$	0.36	2.0	ND	1	03/07/05	03/07/05	
1,1,1-Trichloroethane	EPA 624	5007026	0.30	2.0	ND	1	03/07/05	03/07/05	
1,1,2-Trichloroethane	EPA 624	$5 \mathrm{C07026}$	0.30	2.0	ND	1	03/07/05	03/07/05	
Trichloroethene	EPA 624	5C07026	0.26	5.0	ND	1	03/07/05	03/07/05	
Trichlorofluoromethane	EPA 624	5C07026	0.34	5.0	ND	1	03/07/05	03/07/05	
Vinyl chloride	EPA 624	5 C 07026	0.26	5.0	ND	1	03/07/05	03/07/05	
Xylenes, Total	EPA 624	5C07026	0.52	4.0	ND	1	03/07/05	03/07/05	
Surrogate: Dibromofluoromethane (80-120\%)					108%				
Surrogate: Toluene-d8 (80-120\%)					111\%				
Surrogate: 4-Bromofluorobenzene (80-120\%)					105%				

Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011	
Report Number: $10 C 0448$	Sampled: 03/04/05
Received: 03/04/05	

Received: 03/04/05

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

| Analyte | Method | Batch | MDL
 Limit | Reporting
 Limit | Sample
 Result | Dilution
 Factor
 Extracted | Date
 Analyzed |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Qualifiers | | | | | | | |

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011

Report Number: IOC0448

Sampled: 03/04/05
Received: 03/04/05

ORGANOCHLORINE PESTICIDES (EPA 608)

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011	
	Sampled: 03/04/05
Report Number: $10 C 0448$	Received: 03/04/05

Received: 03/04/05

INORGANICS

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011
Report Number: 10 C 0448 Received: 03/04/05

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Recefved	Date/Time Extracted	Date/Time Analyzed	
Sample ID: Outfall 011 (1OC0448-01) - Water			$03 / 04 / 200511: 44$	$03 / 04 / 200517: 50$	$03 / 04 / 200518: 30$	$03 / 04 / 200519: 30$
EPA 160.5	2	$03 / 04 / 200511: 44$	$03 / 04 / 200517: 50$	$03 / 05 / 200515: 30$	$03 / 05 / 200515: 30$	
EPA 180.1	2	$03 / 04 / 200511: 44$	$03 / 04 / 200517: 50$	$03 / 04 / 200523: 00$	$03 / 05 / 200500: 24$	
EPA 300.0	2	$03 / 04 / 200511: 44$	$03 / 04 / 200517: 50$	$03 / 04 / 200520: 31$	$03 / 09 / 200518: 40$	
EPA 405.1	2	$03 / 04 / 200511: 44$	$03 / 04 / 200517: 50$	$03 / 04 / 200519: 18$	$03 / 04 / 2005$	$22: 51$
SM5540-C						

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011
Report Number: 10 C 0448

Sampled: 03/04/05
Received: 03/04/05

MITHOL BLANKICCDATA

PURGEABLES BY GC/MS (EPA 624)

Analyte Result

Reporting			Spike	Source	\%REC		RPD	Data	
Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5C07026 Extracted: 03/07/05
Blank Analyzed: 03/07/2005 (5C07026-BLK1)

Benzene	ND
Carbon tetrachloride	ND
Chloroform	ND
1,1-Dichloroethane	ND
1,2-Dichloroethane	ND
1,1-Dichloroethene	ND
Ethylbenzene	ND
Tetrachloroethene	ND
Toluene	ND
1,1,1-Trichloroethane	ND
1,1,2-Trichloroethane	ND
Trichloroethene	ND
Trichlorofluoromethane	ND
Vinyl chloride	ND
Xylenes, Total	ND
Surrogate: Dibromofluoromethane	27.2
Surrogate: Toluene-d8	27.7
Surrogate: 4 -Bromofluorobenzene	27.0

LCS Analyzed: 03/07/2005 (5C07026-BS1)

Benzene	27.0	2.0	0.28	ug/	25.0	108	70-120	M-3
Carbon tetrachloride	28.7	5.0	0.28	ug/	25.0	115	70-140	
Chloroform	28.2	2.0	0.33	ug/	25.0	113	75-130	
1,1-Dichloroethane	28.3	2.0	0.27	ug/	25.0	113	70-135	
1,2-Dichloroethane	26.6	2.0	0.28	ug/	25.0	106	60-150	M-3
1,1-Dichloroethene	29.2	3.0	0.32	ug/	25.0	117	75-135	
Ethylbenzene	28.2	2.0	0.25	ug/	25.0	113	80-120	M-3
Tetrachloroethene	26.8	2.0	0.32	ug/	25.0	107	75-125	
Tofuene	27.4	2.0	0.36	ug/	25.0	110	75-120	M-3
1,1,1-Trichloroethane	28.4	2.0	0.30	ug/	25.0	114	75-140	
1,1,2-Trichloroethane	26.0	2.0	0.30	ug/1	25.0	104	70-125	
Trichloroethene	27.8	5.0	0.26	ug/	25.0	111	80-120	
Trichlorofluoromethane	28.7	5.0	0.34	ugh	25.0	115	65-145	
Vinyl chloride	31.8	5.0	0.26	ug/	25.0	127	50-130	
Surrogate: Dibromofluoromethane	27.2			ug/	25.0	109	80-120	
Surrogate: Toluene-d8	27.8			ug/	25.0	111	80-120	

[^23]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011
$\begin{array}{lr} & \text { Sampled: 03/04/05 } \\ \text { Report Number: } 10 \mathrm{C} 0448 & \text { Received: 03/04/05 }\end{array}$

method blankec data

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C07026 Extracted.03/07/05											

Matrix Spike Analyzed: 03/07/2005 (5C07026-MS1)					Source: 1OC0391-11						
Carbon tetrachloride	20.7	5.0	0.28	ug/	25.0	ND	83	70-145			
Chloroform	26.2	2.0	0.33	ug/l	25.0	ND	105	70-135			
1,1-Dichloroethane	25.9	2.0	0.27	ug/	25.0	ND	104	65-135			
1,1-Dichloroethene	27.6	3.0	0.32	ug/l	25.0	1.7	104	65-140			
Tetrachloroethene	30.9	2.0	0.32	ug/l	25.0	0.54	121	70-130			
1,1,1-Trichloroethane	25.0	2.0	0.30	ug/	25.0	ND	100	75-140			
1,1,2-Trichloroethane	31.6	2.0	0.30	ug/	25.0	2.1	118	60-135			
Trichloroethene	111	5.0	0.26	ug/l	25.0	94	68	70-125			M2
Trichlorofluoromethane	24.0	5.0	0.34	ug/l	25.0	ND	96	55-145			
Vinyl chloride	392	50	0.26	ugh	25.0	14	101	40.135			
Surrogate Dibromofluoromethane:	265			ug/	25.0		106	80-120			
Surrogate: Toluene-d8	27.1			$u g / l$	25.0		108	80-120			
Surrogate: 4-Bromofluorobenzene	32.1			$u g /$	25.0		128	80-120			$Z X$
Matrix Spike Dup Analyzed: 03/07/2005 (5C07026-MSD1)					Source: 10C0391-11						
Carbon tetrachloride	19.4	5.0	0.28	ug/	25.0	ND	78	70-145	6	25	
Chioroform	26.3	2.0	0.33	ugh	25.0	ND	105	70-135	0	20	
1,1-Dichloroethane	25.3	2.0	0.27	ug / l	25.0	ND	101	65-135	2	20	
1,1-Dichloroethene	28.6	3.0	0.32	ugh	25.0	1.7	108	65-140	4	20	
Tetrachloroethene	29.5	2.0	0.32	ug/l	25.0	0.54	116	70-130	5	20	
1,1,1-Trichloroethane	24.6	2.0	0.30	ug / l	25.0	ND	98	75-140	2	20	
1,1,2-Trichloroethane	30.3	2.0	0.30	ug/	25.0	2.1	113	60-135	4	25	
Trichloroethene	113	5.0	0.26	ug / l	25.0	94	76	70-125	2	20	
Trichlorofluoromethane	23.5	5.0	0.34	ug/	25.0	ND	94	55-145	2	25	
Vinyl chloride	41.2	5.0	0.26	ug/	25.0	14	109	40-135	5	30	
Surrogate: Dibromofluoromethane	26.1			ug/	25.0		104	80-120			
Surrogate: Toluene-d8	27.2			$u g /$	25.0		109	80-120			
Surrogate: 4-Bromofluorobenzene	30.2			$u g / 1$	25.0		121	80-120			ZX

MWH-Pasadena/Boeing
300 North Lake Avemue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011
Report Number: $10 C 0448$
Sampled: 03/04/05
Received: 03/04/05

METHOD BLANKIOC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL.	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C05021 Extracted: 03/05/05											
Blank Analyzed: 03/16/2005 (5C05021-BLK1)											
Bis(2-ethylhexyl)phthalate	1.56	5.0	1.1	ug/l							J
2,4-Dinitrotoluene	ND	9.0	0.23	ug/							
N-Nitrosodimethylamine	ND	8.0	0.22	ug/l							
Pentachlorophenol	ND	8.0	0.78	ug/l							
2,4,6-Trichlorophenol	ND	6.0	0.10	ug/l							
Surrogate: 2-Fluorophenol	11.2			ug/	20.0		56	30-120			
Surrogate: Phenol-d6	12.2			$u g /$	20.0		61	35-120			
Surrogate: 2,4,6-Tribromophenol	12.5			$u g /$	20.0		62	45-120			
Surrogate: Nitrobenzene-d5	6.22			ugh	10.0		62	45-120			
Surrogate: 2-Fluorobiphenyl	9.30			$u g /$	10.0		93	45-120			
Surrogate: Terphenyl-dI4	6.90			$u g /$	10.0		69	45-120			
LCSAnalyzed, 03/16/2005 (5C05021-BS1)											
Bis(2-ethylhexyl)phthalate	8.28	5.0	1.1	ugh	10.0		83	60-130			
2,4-Dinitrotoluene	5.18	9.0	0.23	ug/l	10.0		52	60-120			$L 2, J$
N -Nitrosodimethylamine	6.50	8.0	0.22	ug/l	10.0		65	40-120			J
Pentachlorophenol	7.04	8.0	0.78	ug/l	10.0		70	50-120			J
2,4,6-Trichlorophenol	7.68	6.0	0.10	ug/l	10.0		77	60-120			
Surrogate: 2-Fluorophenol	11.6			$u g /$	20.0		58	30-120			
Surrogate: Phenol-d6	12.2			$w g / l$	20.0		61	35-120			
Surrogate: 2,4,6-Tribromophenol	12.9			ug/	20.0		64	45-120			
Surragate: Nitrobenzene-d5	6.24			$u g h$	10.0		62	45-120			
Surrogate: 2-Fluorobiphenyl	7.60			$u g / 1$	10.0		76	45-120			
Surrogate: Terphenyl-d14	6.86			$u g /$	10.0		69	45-120			
Matrix Splke Analyzed: 03/16/2005 (5C05021-MS1)			Source: 10C0241-05								
Bis(2-ethylhexyl)phthalate	7.63	5.0	1.1	ug/	9.66	2.9	49	60-130			M2
2,4-Dinitrotoluene	5.70	9.0	0.23	ug/l	9.66	ND	59	60-120			M2, J
N -Nitrosodimethylamine	5.74	8.0	0.22	ug/l	9.66	ND	59	40-120			J
Pentachlorophenol	7.42	8.0	0.78	ug/	9.66	ND	77	45-130			J
2,4,6-Trichlorophenol	7.40	6.0	0.10	ug/l	9.66	ND	77	60-120			
Surrogate: 2-Fluorophenol	10.5			ug/l	19.3		54	30-120			
Surrogate: Phenol-d6	10.7			ug/l	19.3		55	35-120			
Surrogate: 2,4,6-Tribromophenol	12.3			ug/	19.3		64	45-120			
Surrogate: Nitrobenzene-d5	5.60			ugh	9.66		58	45-120			
Surrogate: 2-Fluorobiphenyl	5.49			$u g / l$	9.66		57	45-120			

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011
Report Number: 10 C 0448
Sampled: 03/04/05
Received: 03/04/05

method blankgc data

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

	Reporting			Spike	Source	\%REC		RPD	Data		
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5C05021 Extracted: 03/05/05

Matrix Spike Analyzed: 03/16/2005 (5C05021-MS1)				Source: 10C0241-05					5		M2
Surrogate; Terphenyl-d14	5.95			ug/	9.66		62	45-120			
Matrix Spike Dup Analyzed: 03/16/2005 (5C05021-MSD1)					Source: 1OC0241-05						
Bis(2-ethylhexyl)phthalate	8.04	5.0	1.1	ugh	9.71	2.9	53	60-130		20	
2,4-Dinitrotoluene	6.49	9.0	0.23	ugh	9.71	ND	67	60-120	13	25	J
N -Nitrosodimethylamine	5.94	8.0	0.22	ugh	9.71	ND	61	40-120	3	20	J
Pentachlorophenol	8.19	8.0	0.78	ugh	9.71	ND	84	45-130	10	25	
2,4,6-Trichlorophenol	8.21	6.0	0.10	ugh	9.71	ND	85	60-120	10	20	
Surrogate: 2-Fluorophenol	10.6			ug/	19.4		55	30-120			
Surrogate: Phenol-d6	11.4			ug/	19.4		59	35-120			
Surrogate: 2,4,6-Tribromophenol	13.4			ug/l	19.4		69	45-120			
Surrogate: Nitrobenzene-d5	5.84			$u g /$	9.71		60	45-120			
Surrogate: 2-Fluorobiphenyl	5.77			$4 \mathrm{~g} /$	971		59	45-120			
Surrogate: Terphenyl-d14	6.52			ugh	9.71		67	45-120			

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011
Report Number: 10 C 0448 Received: 03/04/05

METIOD BLANKGC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reperting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	$\begin{aligned} & \text { RPD } \\ & \text { Limit } \end{aligned}$	Data Qualifiers
Batch: 5C07057 Extracted: 03/07/05											
Blank Analyzed: 03/08/2005 (5C07057-BLK1)											
alpha-BHC	ND	0.010	0.0010	ug/							
Surrogate: Decachlorobiphenyl	0.420			ug/	0.500		84	45-120			
Surrogate: Tetrachloro-m-xylene	0.340			ug/	0.500		68	35-120			
LCS Analyzed: 03/08/2005 (5C07057-BS1)											M-NR1
alpha-BHC	0.392	0.010	0.0010	ug/	0.500		78	45-115			
Surrogate: Decachlorobiphenyl	0.415			ug/	0.500		83	45-120			
Surrogate: Tetrachloro-m-xylene	0.334			$u g /$	0.500		67	35-120			
LCS Dup Analyzed: 03/08/2005 (5C07057-BSD1)											
alpha-BHC	0.415	0.010	0.0010	ug/	0.500		83	45-115	6	30	
Surrogate: Decachlorobiphenyl	0.418			ug/	0.500		84	45-120			
Surrogate: Tetrachloro-m-xylene	0.351		-	$u g /$	0.500		70	35-120			

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011
Report Number: $10 C 0448$

Sampled: 03/04/05
Received: 03/04/05

METHOD BLANKIQC DATA

METALS

Blank Analyzed: 03/09/2005 (5C08106-BLK1)

Copper	ND	2.0	0.49	ug/			
Lead	ND	1.0	0.13	ug $/$			
LCS Analyzed:	$03 / 09 / 2005(5 C 08106-B S 1)$						98
Copper	78.1	2.0	0.49	ug/	80.0	$85-115$	
Lead	84.0	1.0	0.13	ug $/ 1$	80.0	105	$85-115$

Matrix	06-M					e: 10	8-0		
Copper	79.4	2.0	0.49	ug/	80.0	3.0	96	70-130	
Lead	79.6	1.0	0.13	ug/	80.0	0.19	99	70-130	
Matrix	C0810					e: 10	4-01		
Copper	78.7	2.0	0.49	ug/	80.0	3.0	95	70-130	1
Lead	78.6	10	0.13	ugh	80.0	019	98	70-130	1

Batch: 5C09049 Extracted: 03/09/05
Blank Analyzed: 03/09/2005 (5C09049-BLK1)

Mercury	ND	0.20	0.063	ug/						
LCS Analyzed: 03/09/2005 (5C09049-BS1)										
Mercury	7.82	0.20	0.063	ug/	8.00		98	85-115		
Matrix	49-M		Source: 1OC0451-01							
Mercury	8.31	0.20	0.063	ug/	8.00	ND	104	70-130		
Matrix Spike Dup Analyzed: 03/09/2005 (5C09049-MSD1)			Source: 10C0451-01							
Mercury	8.23	0.20	0.063	ug/	8.00	ND	103	70-130	1	20

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011

	Sampled: 03/04/05
Report Number: $10 C 0448$	Received: 03/04/05

MEMHOD BLANKIC MATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C04095 Extracted:03/04/05											
Blank Analyzed: 03/09/2005 (5C04095-BLK1)											
Biochemical Oxygen Demand	ND	2.0	0.59	mgl							
LCS Analyzed: 03/09/2005 (5C04095-BS1)											
Biochemical Oxygen Demand	210	100	30	$\mathrm{mg} / 1$	198		106	85-115			
LCS Dup Analyzed: 03/09/2005 (5C04095-BSD1)											
Biochemical Oxygen Demand	210	100	30	mg/l	198		106	85-115	0	20	
Batch: 5C04107 Extracted: 03/04/05											
Blank Analyzed: 03/04/2005 (5C04107-BLK1)											
Chloride	ND	0.50	0.26	mg / l							
Nitrate/Nitrite-N	ND	0.15	0.075	$\mathrm{mg} /$							
Sulfate	ND	0.50	0.18	$\mathrm{mg} / 1$							
LCS Analyzed: 03/04/2005 (5C04107-BS1)											
Chloride	5.16	0.50	0.26	mg/	5.00		103	90-110			M-3
Sulfate	10.4	0.50	0.18	mg / l	10.0		104	90-110			M-3
Batch: 5C04119 Extracted: 03/04/05											
Blank Analyzed: 03/04/2005 (5C04119-BLK1)											
Surfactants (MBAS)	ND	0.10	0.044	mg / l							
LCS Analyzed: 03/04/2005 (5C04119-BS1)											
Surfactants (MBAS)	0.259	0.10	0.044	mg / l	0.250		104	90-110			

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Sampled: 03/04/05

Attention: Bronwyn Kelly

Project ID: Routine Outfall 011
Report Number: IOC0448

Received: 03/04/05

METHOD BLANKIQC DATA

INORGANICS

Batch:5C07070 Extracteds 03/07/05

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 011	
300 North Lake Avenue, Suite 1200	Report Number: $10 C 0448$	Sampled: $03 / 04 / 05$ Pasadena, CA 91101
Received: 03/04/05		

METHOD BLANKIQC DATA

INORGANICS

Batch: 5C09062 Extracted: 03/09/05
Blank Analyzed: 03/09/2005 (5C09062-BLK1)

Total Cyanide	ND	5.0	2.2	ug/l

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 011	
300 North Lake Avenue, Suite 1200	Report Number: 10 C 0448	Sampled: $03 / 04 / 05$ Pasadena, CA 91101
Attention: Bronwyn Kelly		

METHOD BLANKOC DATA

INORGANICS

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 011	
300 North Lake Avenue, Suite 1200	Report Number: $10 \mathrm{CO448}$	Sampled: 03/04/05 Received: 03/04/05
Pasadena, CA 91101 Attention: Bronwyn Kelly		

METHOD BLANKIQC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C09095 Extracted: 03/09/05										
Duplicate Analyzed: 03/09/2005 (5C09095-DUP1)	Source: 10C0687-01									
Total Dissolved Solids 626	10	10	mg / l		630			1	10	
Batch: 5C09097 Extracted: 03/09/05									-	
Duplicate Analyzed: 03/09/2005 (5C09097-DUP1)	Source: 10C0618-01									
Specific Conductance 636	1.0	1.0	umhos/cm		610			4	5	

[^24]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Report Number: 10 C 0448
\section*{DATA QUALIFIERS AND DEFINITIONS}

Sampled: 03/04/05
Received: 03/04/05

B Analyte was detected in the associated Method Blank.
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
12 Laboratory Control Sample recovery was below method control limits.
M2 The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
ZX Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
EPA 120.1	Water	\mathbf{X}	\mathbf{X}
EPA 160.2	Water	\mathbf{X}	\mathbf{X}
ERA 160.5	Water	\mathbf{X}	\mathbf{X}
EPA 180.1	Water	\mathbf{X}	\mathbf{X}
EPA 200.8	Water	\mathbf{X}	\mathbf{X}
EPA 245.1	Water	\mathbf{X}	\mathbf{X}
EPA 300.0	Water	\mathbf{X}	\mathbf{X}
EPA 314.0	Water	\mathbf{X}	\mathbf{X}
EPA 335.2	Water	\mathbf{X}	\mathbf{X}
EPA 350.2	Water	\mathbf{X}	\mathbf{X}
EPA 405.1	Water	\mathbf{X}	\mathbf{X}
EPA 413.1	Water	\mathbf{X}	\mathbf{X}
EPA 608	Water	\mathbf{X}	\mathbf{X}
EPA 624	Water	\mathbf{X}	\mathbf{X}
EPA 625	Water	\mathbf{X}	\mathbf{X}
SM2540C	Water	\mathbf{X}	\mathbf{X}
SM5540-C	Water	\mathbf{X}	\mathbf{X}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical California Cert \#1640

1104 Windfield Way - El Dorado Hills, CA 95762
Analysis Performed: 1613-Dioxin-HR
Samples: 10 C 0448 -01
Analysis Performed: EDD + Level 4
Samples: 1OC0448-01

Del Mar Analytical, Irvine
Michele Harper
Project Manager
Page 1 of 1 Field readings:
Temp $=588$
pH =6.87
Comments

N-ZON+8ON'

< Del MarAnalytical

March 31,2005

MWH-Pasadena/ Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention:	Bronwyn Kelly
Project:	Routine Outfall 011 Sampled: 03/04/05
	Del Mar Analytical Number: IOC0448

Dear Ms. Kelly:
Alta Analytical Laboratory performed the EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans analysis for the project referenced above. Please use the following cross-reference table when reviewing your results.

MWH ID	DEL MAR ID	ALTA ID
Routine Outfall 011	IOC0448-01	$25852-001$

Attached is the original report from the subcontract laboratory. If you have any questions or require further assistance, please do not hesitate to contact me at (949) 261-1022 at extension 215.

Sincerely yours,
DEL MAR ANALYTICAL

March 16, 2005

Alta Project I.D.: 25852

Ms. Michele Harper
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Dear Ms. Harper,
Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on March 08,2005 under your Project Name "IOC0448". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

Martha M. Maier
Director of HRMS Services

Alta Analytical Laboratory Inc.

Section I: Sample Inventory Report

Date Received: 3/8/2005

Alta Lab. ID
 25852-001
 Client Sample ID
 IOC0448-01

SECTION II
Method Blank
EPA Method 1613

Sample ID: IOC	C0448-01							
Client Data			Sample Data			EPA Method 1613		
Name: Del	Del Mar Analytical, Irvine				Laboratory Data			
Project: IOC	C0448		Matrix: Sample Size:	$\begin{aligned} & \text { Aqueous } \\ & 0.975 \mathrm{~L} \end{aligned}$	Lab Sample: $25852-001$ QC Batch No.: 6593 Date Analyzed DB-5: 15-Mar-05	Date Received:		8-Mar-05
Date Collected: 4-M Time Collected: 114	4-Mar-05					Date Extrected:		8-Mar-05
Analyte		DL ${ }^{\text {a }}$				Date Analyzed DB-225: NA		
2,3,7,8-TCDD	Conc. (pg/L)		EMPC ${ }^{\text {b }}$	Qualifiers	Labeled Standard	\%R	LCL-UCL ${ }^{\text {d }}$	Oualifiers
	ND	0.847						Ouainie
1,2,3,7,8-PeCDD	ND	0.698			- 13C-2,3,7,8-TCDD	74.7	25-164	
1,2,3,4,7,8-HxCDD	ND	1.09			13C-1,2,3,7,8-PeCDD	76.3	25-181	
1,2,3,6,7,8-HxCDD	ND	1.14			$13 \mathrm{C}-1,2,3,4,7,8-\mathrm{HxCDD}$	83.4	32-141	
1,2,3,7,8,9-HxCDD	ND	1.11	\%		$13 \mathrm{C}-1,2,3,6,7,8-\mathrm{HxCDD}$	87.1	28-130	
1,2,3,4,6,7,8-HpCDD	2.64				13C-1,2,3,4,6,7,8-HpCDD	83.1	23-140	
OCDD	25.1				13C-OCDD	55.1	17-157	
2,3,7,8-TCDF	ND	0.631			13C-2,3,7,8-TCDF	76.6	24-169	
1,2,3,7,8-PeCDF	ND	1.07			13C-1,2,3,7,8-PeCDF	70.5	24-185	
2,3,4,7,8-PeCDF	ND	0.964			13C-2,3,4,7,8-PeCDF	74.1	21-178	
1,2,3,4,7,8-HxCDF	ND	0.266			13C-1, , , , 4, 7, 8-HxCDF	71.9	26-152	
1,2,3,6,7,8-HxCDF	ND	0.259			13C-1, , 3, ,6,7,8-HxCDF	77.0	26-123	
2,3,4,6,7,8-HxCDF	ND	0.293			13C-2,3,4,6,7,8-HxCDF	79.3	28-136	
1,2,3,7,8,9-HxCDF	ND	0.426			13C-1,2,3,7,8,9-HxCDF	79.5	29-147	
1,2,3,4,6,7,8-HpCDF	ND		0.694		$13 \mathrm{C}-1,2,3,4,6,7,8-\mathrm{HpCDF}$	76.5	28-143	
1,2,3,4,7,8,9-HpCDF	ND	0.598			13C-1,2,3,4,7,8,9-HpCDF	83.5	26-138	
OCDF	ND	2.38			$13 \mathrm{C}-\mathrm{OCDF}$	63.3	17-157	
Totals					37Cl-2,3,7,8-TCDD	79.6	35-197	
					Footnotes			
Total TCDD ND 0.847					a. Sample specific estimated detection limit.			
Total PeCDD	ND	0.698			b. Estimated maximum possible concentration.			
Total HxCDD	ND	1.11			c. Metbod detection limit.			
Total HpCDD	6.42				d. Lower control limat - upper control limit.			
Total TCDF	0.847		1.55 B					
Totat PeCDF	ND							
Total HxCDF	0.445							
Total HpCDF	ND		0.694					

APPENDIX

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank.
D The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.
Chemical Interference
J
The amount detected is below the Lower Calibration Limit of the instrument.
*
See Cover Letter
Conc. Concentration
DL Sample-specific estimated detection limit
MDL The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration
NA Not applicable
RL Reporting Limit - concentrations that corresponds to low calibration point
ND Not Detected
TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

The control limits are "interim limits only" until in-house limits are utilized.

NELAP - (Primary AA: California, Certificate No. 02102CA)
Department of the Navy
U.S. Army Corps of Engineers
U.S. EPA Region 5

Bureau of Reclamation - Mid-Pacific Region - (MP-470, Res-1.10)
Commonwealth of Kentucky - (Certificate No. 90063)
Commonwealth of Virginia - (Certificate No. 00013)
State of Alaska, Department of Environmental Conservation - (Certificate No. OS-00197)
State of Arizona - (Certificate No. AZ0639)
State of Arkansas, Department of Health - (Approval granted through CA certification)
State of Arkansas, Department of Environmental Quality
State of California - (Certificate No, 1640)
State of Colorado
State of Connecticut - (Certificate No. PH-0182)
State of Florida - (Certificate No. 87456)
State of Louisiana, Department of Health and Hospitals - (Certificate No. LA000014)
State of Louisiana, Department of Environmental Quality
State of Maine
State of Michigan (Certificate No. 81178087)
State of Mississippi - (Approval granted through CA certification)
State of Nevada - (Certificate No. CA413)
State of New Jersey - (Certificate No. CA003)
State of New York, Department of Health - (Certificate No. 11411)
State of North Carolina - (Certification No. 06700)
State of North Dakota, Department of Health - (Certificate No. R-078)
State of New Mexico
State of Oklahoma - (D9919)
State of Oregon - (Certificate No. CA413)
State of Pennsylvania - (Certificate No. 68-490)
State of South Carolina - (Certificate No. 87002001)
State of Tennessee - (Certificate No. 02996)
State of Texas - (Certificate No. TX247-1000A
State of Utah - (Certificate No. E-201)
State of Washington - (Certification No. C091)
State of Wisconsin - (Certificate No. 998036160)
State of Wyoming - (USEPA Region 8 Ref: 8TMS-Q)

SUBCONTRACT ORDER - PROJECT \# IOC0448

SAMPLE LOG-IN CHECKLIST

ALTA Project No.: 25852

Comments:

SUBCONTRACT ORDER - PROJECT \# 10 C 0448

SIENDNG LABORATORY: DeI Mar Analytical, Ifvige 17461 Daxisn Avenae. Surite 100 Fivine, CA. 92614 Phone: (949) 261-1022 Fax: (949) 261-1228 Project Mannge: Michelo Harper	
Standard TAT is requested rouless specficic the date is requ	
Avatysis Expiration	Coxaments
	Instant Noincation Iflage, 17 congeners, no TEQ, sub to Alta Excef RDD eminil to pminolude Std loge for L.vi IV
Containers Supplied: I I A Anber (IOC0448-01G) 1 L Amber (IOCO448-01 ${ }^{\text {I }}$)	-

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

amec ${ }^{\theta}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: DIOXINS/FURANS SAMPLE DELIVERY GROUPS: Multiple SDGs

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

DATA VALIDATION REPORT	Project: SDG No.:
NPDES	
Multiple	

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 4
No. of Reanalyses/Dilutions: 0
Reviewer: K. Shadowlight
Date of Review; March 252005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

DATA VALIDATION REPORT	Project:
SDG No.:	NPDES
Multiple	
Analysis:	D/F

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Alta)	Matrix	COC Method
Outfall 001	IOC1042-01	$25897-001$	water	1613
Outfall 002	IOC0995-01	$25899-001$	water	1613
Outfall 004	IOC0450-01	$25848-001$	water	1613
Outfall 011	IOC0996-01	$25898-001$	water	1613

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple
	Analysis:	D/F

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

All of the samples in these SDGs were received at Del Mar Analytical within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The samples were shipped to Alta for dioxin/furan analyses and were received below the temperature limits at $1.2^{\circ} \mathrm{C}$ and $1.3^{\circ} \mathrm{C}$; however, as the samples were not noted to have been frozen or damaged, no qualifications were required. According to the laboratory login sheets, all samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COCs and transfer COCs were legible and signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. As the samples were couriered directly to Del Mar Analytical, custody seals were not required. The coolers received by Alta had custody seals present and intact; however, custody seals were not present on the sample containers. The EPA IDs were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and $2,3,7,8-\mathrm{TCDD}$ reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2.3 CALIBRATION

2.3.1 Initial Calibration

There was one initial calibration, analyzed 08/30/04. The calibration consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with $\%$ RSDs $\leq 20 \%$ for the 15 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of $\%$ RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of $\%$ Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standards instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank (6613-MB001) was extracted and analyzed with the samples in these SDGs. There were no target compound detects reported in the method blank, A review of the method blank raw data and chromatograms indicated no false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One Ongoing Precision Recovery (OPR) sample (6613-OPR001) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

	Project: DATA VALIDATION REPORT
SDG No.:	Nultiple
Snalysis:	DF

2.7.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for these SDGs.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any reported EMPC was qualified as an estimated nondetect, "UJ." Any detects below the lower method calibration level (MCL) were qualified as estimated, "J." No further qualifications were required.

CONTRACT COMPLLANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer P. Meeks
Analysis/Method Metals

Package ID T711MT66
Task Order 313150010
SDG No. IOC0996
No. of Analyses 1
Date: 04/01/05
Analysis/Method Metals

ACIION ITEMS'

1. Case Narrative Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy Deliverables
6. $\begin{aligned} & \text { Deviations from } \\ & \text { Analysis Protocol, e.g., }\end{aligned}$ Qualifications were applied for detects below the reporting limit. Holding Times GC/MS Tune/Inst. Performance
Calibrations
Blanks
Surrogates
Matrix SpikeDDup LCS
Field QC
Internal Standard Performance
Compound Identification and Quantitation
System Performance
\qquad
\qquad
\qquad
\square
\square
\square
\qquad
\qquad
\qquad
\qquad
\qquad

COMMENTS ${ }^{\text { }}$

[^25]
amec ${ }^{\theta}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: METALS
SAMPLE DELIVERY GROUP: IOC0996

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOC0996
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Metals
QC Level: Level IV
No. of Samples: 1
No. of Reanalyses/Dilutions: 0
Reviewer: P. Meeks
Date of Review: April 01, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC0996

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 011	Outfall 011	IOC0996-01	water	ILM04

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC0996
	Analysis:	MET

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory above the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$, at $7^{\circ} \mathrm{C}$; however, as the sample had insufficient time to cool prior to receipt at the laboratory, no qualifications were required. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel and accounted for the sample and analyses presented in this SDG. A duplicate was submitted for Outfall 011; however, duplicate analyses were not required. No sample qualifications were required.

2.1.3 Holding Times

The date of collection recorded on the COC and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS metals and 28 days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. All \%RSDs were less than 5%. The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, $90-110 \%$ for the ICP/MS metals and 80 120% for mercury. The reporting limit check standards were recovered within the AMEC control limits of $70-130 \%$. No sample qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC0996

2.4 BLANKS

There were no reported detects in the CCBs or method blanks associated with the site sample. No qualifications were required due to the method and calibration blank results.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

Results were not provided for spiked interferents sulfur, phosphorus, carbon, and chloride, and lead was not spiked into the ICSAB solution. Copper was detected above the reporting limit in the ICSA. The validator reviewed the raw data for the site sample ICP/MS analyses for the level of reported interferents, $\mathrm{Al}, \mathrm{Ca}, \mathrm{Fe}$, and Mg , and determined that the levels of reported interferents were not high enough to cause matrix affects. No assessment could be made with respect to possible interference from sulfur, phosphorus, carbon, and chloride.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP/MS LCS sample was identified as 5C16088-BSI and the mercury LCS sample was identified as 5C14050-BS1. The LCS results on the summary forms and in the raw data were within the laboratory-established ICP/MS and mercury control limits of $85-115 \%$. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MS/MSD or laboratory duplicate analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.8 MATRIX SPIKE

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on LCS results.

2.9 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analysis of this sample; therefore, furnace atomic absorption QC is not applicable.

2.10 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC0996

2.11 INTERNAL STANDARDS PERFORMANCE

The ICP-MS internal standard recoveries for the site samples and associated QC sample analyses were within the $60-125 \%$ control limits and no qualifications were required.

2.12 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Lead detected below the reporting limit was qualified as estimated, "J." No further qualifications were required.

2.13 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated sample.

2.13.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site sample.

2. Del Mar Analytical

175610erian Ave., Suite 100, twine, CA S26:14 (949) 2is1-1022 FAX (949) 260.3297
 9830 South 51st St. Suite 8-120. Phoenix, AZ 85044 (458) $705-8506$ FAX (598) 505-9639 2520 E. Sunset Rd. \#3. Las Vegas, NV 89120 (702) 785-0043 FAX (480) 785-085

\(\begin{aligned} \& Project ID: Routine Outfall 011
\& Route Outfall 011
\& Report Number: OC09996\end{aligned}\)
Project ID: Routine Outfall 011 Route Outfall 011 Report Number:
Project ID: Routine Outfall 011 Route Outfall 011 Report Number:
Project ID: Routine Outfall 011 Route Outfall 011 Report Number:
Project ID: Routine Outfall 011 Route Outfall 011 Report Number:

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA. 91101
Attention: Bronwyn Kelly

DRAFT: METALS

AMES VALIDATED

 Level IV
CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer H. Chang
Analysis/Method Pesticides/608

Package ID T711PP27
Task Order 313150010
SDG No. $10 C 0996$
No. of Analyses 1
Date: April 6, 2005
Reviewer's Signature

ACTIONITEMS ${ }^{*}$
 1. Case Narrative
 Deficiencies

2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, e.g.,
Holding Times
GCMS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and Quantitation
System Performance

Acceptable as reviewed.

* Subcontracted analytical laboratory is not meeting contract and/or method requirements.
${ }^{6}$ Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: PESTICIDES

SAMPLE DELIVERY GROUP: IOC0996

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project: SDG:	$\begin{gathered} \text { NPDES } \\ \text { IOC0996 } \end{gathered}$
DATA VALIDATION REPORT	Analysis:	Pest

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOC0996
Project Manager: B. McIlvaine
Matrix: Water
Analysis: Pesticides
QC Level: Level IV
No. of Samples: 1
No. of Reanalyses/Dilutions: 0
Reviewer: H. Chang
Date of Review: April 6, 2005

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedures (DVP-4, Rev.2), EPA Method 608, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary form as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project: DATA VALIDATION REPORT	NPDES IOC0996
SDG:		
IOS:		

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	Method
Outfall 011	Outfall 011	IOC0996-01	water	608

DATA VALIDATION REPORT | Project: |
| :---: |
| SDG: |
| Analysis: |

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory outside the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$ at $7^{\circ} \mathrm{C}$; however, due to the nonvolatile nature of the analyte, no qualification was necessary. The analysis did not require preservation, and no preservation was noted in the field. The COC noted that the sample was received intact. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by both field and laboratory personnel. The COC accounted for the analysis presented in this SDG. As the sample was couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The water sample was extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

2.2 PESTICIDES INSTRUMENT PERFORMANCE

No resolution check standards or breakdown check standards are required by Method 608 for pesticides, and according to the raw data provided, a resolution check standard was not analyzed by the laboratory. The laboratory did analyze a breakdown check standard; however, as alpha-BHC was the only compound of interest, the breakdown check standard was not necessary. A review of the raw data indicated that the analytical run time was of sufficient length to provide adequate standard separation. The two analytical columns used in the analyses were within the guidelines specified in the methods.

According to the laboratory SOP and the initial calibration raw data, the retention time windows are ± 0.10 minutes for both surrogates and alpha-BHC calibration standards. A review of the raw data indicated that the laboratory retention time criteria were met for the surrogates and pesticide calibration standards. No qualifications were required.

2.3 CALIBRATION

2.3.1 Analytical Sequence

Based on the data provided, the analytical sequences were in accordance with the requirements of Method 608. No qualifications were required.

2.3.2 Initial Calibration

There was one initial calibration dated 03/02/05 associated with this SDG, which consisted of six-point calibrations for alpha-BHC on two analytical columns. The laboratory provided an overlay of the sample chromatogram and the pesticide standard for identification purposes. The \%RSD was within the EPA Method 608 QC limit of $\leq 10 \%$ on channel B, and the r^{2} was ≥ 0.995 on channel A. An ICV was analyzed immediately following the initial calibration. The $\% \mathrm{D}$ for alphaBHC was within the QC limit of $\leq 15 \%$ on both analytical columns. The \%RSD, r^{2}, and ICV \%D for alpha-BHC were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.3.3 Continuing Calibration

The sample analysis in this SDG was bracketed by the daily ICV and two closing continuing calibration standards. The applicable \%Ds were within the Method QC limit of $\pm 15 \%$ for both calibrations. A representative number of \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.4 BLANKS

2.4.1 Instrument Blanks

An instrument blank was analyzed at the beginning of the analytical sequence. Crosscontamination was not evident in the sample. No qualifications were necessary.

2.4.2 Method Blanks

One water method blank (5C14049-BLK1) was extracted and analyzed with this SDG. Target compound alpha-BHC was not detected in the method blank. Review of the chromatograms showed no false negative. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike/blank spike duplicate pair (5C14049-BS1/5C14049-BSD1) was extracted and analyzed with this SDG. The recoveries for alpha-BHC were within the laboratory-established QC limits of $45-115 \%$ and the RPD was $\leq 30 \%$. The recoveries were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.6 SURROGATE RECOVERY

The sample and all QC samples were fortified with the surrogate compounds decachlorobiphenyl and tetrachloro-m-xylene. Surrogate recoveries for both samples were within the laboratory-established QC limits. The recoveries were calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

There were no MS/MSD analyses associated with this SDG. Accuracy and precision were assessed based on the blank spike/blank spike duplicate results. No qualifications were required.

2.8 SAMPLE CLEANUP PERFORMANCE

According to the laboratory extraction benchsheet, no cleanups were performed on the water samples. No qualifications were required.

2.9 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.9.1 Field Blanks and Equipment Rinsates

There were no field QC samples associated with the samples in this SDG. No qualifications were required.

2.9.2 Field Duplicates

There were no field duplicate samples associated with the samples in this SDG.

2.10 COMPOUND IDENTIEICATION

The laboratory analyzed for alpha-BHC by EPA Method 608. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for the sample in this SDG. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification was verified for this SDG; however, as there were no reported detects, quantitation was verified by recalculating blank spike and surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibration and the laboratory MDL study. The reporting limit for alpha-BHC was not adjusted for sample amount on the result summary; however, the dilution factor listed on the summary reflected the sample volume extracted. Results were reported in ug/L (ppb). No qualifications were required.

Froject D : Routine Ourall 011
Routine Outfall 011
Repor: Number: 10 CO 996

Sampled: 031105
Received: 031105

DRAFT: ORGANOCHLORINE PESTICIDES (EPA 608)

AMEC VALIDATED

Level if

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer M. Pokorny
Analysis/Method Semivolatiles

ACTION TTEMS*

Package ID T711SV44
Task Order 313150010 SDG No. IOC0996
No. of Analyses 1

Date: April 8, 2005
Reviewer's Sipnature
MA- Pu

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted \qquad
4. Missing Hardcopy

Deliverables \square
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, e.g.,
Holding Times
GC/MS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and
Quantitation
System Performance
COMMENTS ${ }^{\text {b }}$
Acceptable as reviewed.

* Subcontracted analytical laboratory is not meeting contract and/or method requirements.
${ }^{6}$ Differences in protocol have been adopted by the laboratory but no action against the laboratory is required

amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: SEMIVOLATILES

SAMPLE DELIVERY GROUP: IOC0996

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOC0996
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Semivolatiles
QC Level: Level IV
No. of Samples: 1
No. of Reanalyses/Dilutions: 0
Reviewer: M. Pokorny
Date of Review: April 8, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Semivolatile Organics (DVP-3, Rev. 2), EPA Method 625, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

DATA VALIDATION REPORT	Project: SDG:
Analysis:	NPDES
IOCO996	
SVOC	

Table 1. Sample identification

Client ID	EPA ID	Lab No.	Matrix	Method
Outfall 011	Outfall 011	IOC0996-01	water	625

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The sample in this SDG was received at the laboratory above the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$ at $7^{\circ} \mathrm{C}$; however, the elevated temperature was due to insufficient time to cool before reaching the laboratory. The analysis did not require preservation, and no preservation was noted in the field. The COC noted that the sample was received intact. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by both field and laboratory personnel. The COC accounted for the analysis presented in this SDG. As the sample was couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The water sample was extracted within seven days of collection and analyzed within 40 days of collection. No qualifications were required.

2.2 GC/MS TUNING

The DFTPP tunes met the criteria specified in Method 625, and the sample was analyzed within 12 hours of the DFTPP injection time. No qualifications were required.

2.3 CALIBRATION

The initial calibration associated with this SDG was dated 03/17/05. The average RRFs for were ≥ 0.05 and the $\%$ RSDs were $\leq 35 \%$ or $r^{2} \geq 0.995$ for all target compounds listed on the sample summary form. A representative number of average RRFs and \%RSDs were checked from the raw data, and no calculation or transcription errors were noted. The continuing calibration associated with the sample analysis was analyzed $03 / 18 / 05$. The RRFs for all target compounds were ≥ 0.05, and the $\%$ Ds were $\leq 20 \%$. A representative number of RRFs, r^{2} values, and $\%$ Ds were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.4 BLANKS

One method blank (5C13017-BLK1) was extracted and analyzed with this SDG. No target compounds were reported in the method blank. Review of the raw data indicated no reportable false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike/blank spike duplicate pair (5C13017-BS1/5C13017-BSD1) was extracted and analyzed with this SDG. All percent recoveries and RPDs were within the laboratory QC limits. A representative number of recoveries and RPDs were calculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.6 SURROGATE RECOVERY

The sample surrogate recoveries were within the laboratory QC limits. A representative number of recoveries were calculated from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were associated with this SDG. Evaluation of method accuracy and precision was based on blank spike/blank spike duplicate results. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

2.8.1 Field Blanks and Equipment Rinsates

There were no field QC samples associated with this SDG. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate samples associated with this SDG. No qualifications were required.

2.9 INTERNAL STANDARDS PERFORMANCE

The internal standard area counts and retention times were within the control limits established by the continuing calibration standards: $-50 \% /+100 \%$ for internal standard areas and ± 30 seconds for retention times. A representative number of recoveries were checked from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for five semivolatile target compounds by EPA Method 625. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification. No qualifications were required.

DATA VALIDATION REPORT	Project: SDG:	
	Analysis:	SVOC

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. No calculation or transcription errors were found. The reporting limits were supported by the low level of the initial calibration and the method detection limit study. No qualifications were required.

2.12 TENTATIVELY IDENTIFIED COMPOUNDS

TICs were not reported by the laboratory for this SDG. No qualifications were required.

2.13 SYSTEM PERFORMANCE

Review of the raw data indicated no problems with system performance. No qualifications
required. were required.

MWH-Pasadena/Boeing 300 North Lake Averue, Suite 1200	Project ID: Routine Outfall 011	
Pasadera, CA 91101	Report Number: Routine Ouffall 011 $10 C 0096$	Sampled: $6311 / 05$
Attention: Bronwyn Kelly	. $10 \mathrm{CO99}$	Received: 031105

DRAFT: ACID \& BASE/NEUTRALS BY GCMS (EPA 625)

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer M. Pokorny
Analysis/Method Volatiles

Package ID T711VO76
Task Order 313150010
SDG No. IOC0996
No. of Analyses 2

| ACTION ITEMS | |
| :--- | :--- | :--- |
| 1. | Case Narrative |
| Deficiencies | |

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: VOLATILES

SAMPLE DELIVERY GROUP: IOC0996

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

DATA VALIDATION REPORT	Project: SDG:	NPDES IOCO996
Analysis:	VOC	

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOC0996
Project Manager: B. McIlvaine
Matrix: Water
Analysis: Volatiles
QC Level: Level IV
No. of Samples: 2
No. of Reanalyses/Dilutions: 0
Reviewer: M. Pokorny
Date of Review: April 8, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Volatile Organics (DVP-2, Rev. 2), EPA Method 624, EPA SW-846 Method 8260B, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary forms as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

DATA VALIDATION REPORT \begin{tabular}{c}
Project:

SDG:

NPDES

IOC0996
\end{tabular}

Table 1. Sample identification

Client ID	EPA ID	Lab No.	Matrix	Method
Outfall 011	Outfall 011	IOC0996-01	water	624
Trip Blank	Trip Blank	IOC0996-02	water	624

DATA VALIDATION REPORT	Project: SDG:	$\begin{aligned} & \text { NPDES } \\ & \text { 10C0996 } \end{aligned}$
DAIA VALIDATION REPORI		VOC

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in this SDG were received at the laboratory above the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$ at $7^{\circ} \mathrm{C}$; however, only four hours had elapsed between the time the samples were taken and when the samples were received at the laboratory. The samples did not have sufficient time to reach the required temperature, and were not qualified for the elevated sample receipt temperature. The COCs noted that the samples were received intact; however, information regarding absence of headspace was not provided. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by both field and laboratory personnel. The COCs accounted for the analyses presented in this SDG. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The samples were analyzed within 14 days of collection. No qualifications were required.

2.2 GC/MS TUNING

The ion abundance windows shown on the quantitation reports were consistent with those specified in Method 8260 B , and all ion abundances were within the established windows. The samples and associated QC were analyzed within 12 hours of the BFB injection times. The Form Vs were verified from the raw data and no discrepancies between the summary forms and the raw data were noted. No qualifications were required.

2.3 CALIBRATION

One initial calibration dated 02/01/05 was associated with this SDG. The average RRFs were ≥ 0.05 for all compounds listed on the sample result summaries. The $\%$ RSDs were $\leq 35 \%$ for the target compounds analyzed by EPA Method 624. Two continuing calibrations associated with the sample analyses were analyzed $03 / 13 / 05$ and $03 / 15 / 05$. The RRFs were ≥ 0.05 in the continuing calibrations. The $\%$ Ds for the continuing calibrations associated with the samples were all $\leq 20 \%$. A representative number of \%RSDs and average RRFs from the initial calibrations, and \%Ds and RRFs from the continuing calibrations were recalculated from the raw data, and no calculation or transcription errors were found. No qualifications were required.

	Project:	NPDES DATA VALIDATION REPORT IOC0996
VDG:		

2.4 BLANKS

Two water method blanks (5C13007-BLK1 and 5C15015-BLK1) were associated with the sample analyses. There were no detects above the MDLs for the target compounds listed on the sample result summaries. The method blank raw data showed no evidence of false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

Two water blank spikes (5C13007-BS1 and 5C15015-BS1) were associated with the sample analyses. All recoveries were within the laboratory-established QC limits. A representative number of recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.6 SURROGATE RECOVERY

The surrogates were recovered within the QC limits of $80-120 \%$ in the samples and associated QC. A representative number of surrogate recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

An MS/MSD analyses were not performed with this SDG. Evaluation of method accuracy was based on the LCS results. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

2.8.1 Trip Blanks

Sample Trip Blank (IOC0996-02) was the trip blank associated with this SDG. No target compounds were reported in the Trip Blank. No qualifications were required.

2.8.2 Field Blanks and Equipment Rinsates

There were no field QC samples associated with this SDG. No qualifications were required.

2.8.3 Field Duplicates

There were no field duplicate samples associated with this SDG. No qualifications were required.

DATA VALIDATION REPORT	Project: SDG:
NPDES	
IOC0996	

2.9 INTERNAL STANDARDS PERFORMANCE

Internal standard area counts and retention times for the samples in this SDG were within the control limits established by the continuing calibration standards: $+100 \% /-50 \%$ for internal standard areas and ± 0.50 minutes for retention times. A representative number of internal standard areas and retention times were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.10 COMPOUND IDENTIFICATION

Target compound identification was verified at a Level IV data validation. The laboratory analyzed the volatile target compounds by EPA Method 624. Chromatograms, retention times, and spectra for the samples and QC were examined and no target compound identification problems were noted. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. The reporting limits were supported by the lowest concentrations of the initial calibration standards and by the MDL study. Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike and surrogate recoveries from the raw data. Target compounds detected below the reporting limits were qualified as estimated, "J," by the laboratory. Results were reported in $\mu \mathrm{g} / \mathrm{L}(\mathrm{ppb})$. No calculation or transcription errors were noted. No further qualifications were required.

2.12 TENTATIVELY DENTIFIED COMPOUNDS

The laboratory did not provide TICs for this SDG. No qualifications were required.

2.13 SYSTEM PERFORMANCE

A review of the chromatograms and other raw data showed no identifiable problems with system performance. No qualifications were required.

300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011
Routine Outall 011
Repor: Number: IOC0996
Samplec: 0111/05
Received: 031105

DRAFT: PLRGEABLES BY GC/MS (EPA 624)

Analyte
Method B
Reporting Linits
Benzene
Carbon tetrachlonide
Chloroform
1,1-Dichloroethane
1,2-Dichloroethane
1,1-Dichloroethene
Ethlbenzene
Tettachloroethene
Toluene
1,1,1-Trichloroethane
1,1,2-Trichloroethane

Trichloroethene
Trichloronluoromethane Vinyl chloride Xylenes, Total
Surrogate: Dibromofluoromethane ($80-120 \%$)
Surrogate: Tohuene-d8 (80-120\%)
Surrogute: 4-Bromofluorobenzene ($80-120 \%$)

Reporting Cnits: ygil

)RAFT REPORT
JRAFT REPORT
ARPE VADPATED
دATA SUBJECT TO Change

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA
AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer L. Jarusewic
Analysis/Method General Minerals

ACTION ITEMS*

1. Case Narrative Deficiencies
2. Out of Scope Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis Protocol, e.g.,

Holding Times

Qualifications applied for:
1) Detects below the reporting limit
2) Method blank detects

GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification and Quantitation
System Performance

COMMENTS ${ }^{\text {b }}$
 * Subcontracted analytical laboratory is not meeting contract and/or method requirements.

"Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: GENERAL MINERALS SAMPLE DELIVERY GROUP: IOC0996

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

DATA VALIDATION REPORT	Project:	NPDES
	SDG No.:	IOC0996
	Analysis: General Minerals	

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: IOC0996
Project Manager: B. McIlvaine
Matrix: Water
Analysis: General Minerals
QC Level: Level IV
No. of Samples; 1
Reviewer: L. Jansewic
Date of Review: April 5, 2005

The samples listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 300.0, 350.2, 405.1, 335.2, 413.1, 160.2, 160.5, 120.1, and 180.1, Standard Methods for the Examination of Water and Wastewater Method SM5540-C and SM2540C, and validation guidelines Revtined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form is with the associated quifiction codes Analytes that were rejected for any reason are denoted on the Form I as havsociated qualification codes. and associated qualification code(s) denoting the reason for rejection as having only the " R " data qualifier data that may have resulted in an estimated value were not denoted by Any additional problems with the had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC0996

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 011	Outfall 011	IOC0996-01	Water	General Minerals

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC0996

2. DATA VALIDATION FINDINGS

2.1 SAMPLEMANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory above the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ at $7^{\circ} \mathrm{C}$; however, as the sample had insufficient time to cool in transit to the laboratory, no qualifications were required. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel. The COC accounted for all analyses present in this SDG. No sample qualifications were required.

2.1.3 Holding Times

The holding times were assessed by comparing the date of collection with the dates of analyses. The 28 -day analytical holding time for ammonia, conductivity, chloride, sulfate, and oil and grease, the 14-day holding time for cyanide, the seven-day holding time for total suspended solids and total dissolved solids, and the 48 -hour holding time for turbidity, biological oxygen demand, nitrate/nitrite, surfactants, and total settleable solids were met. No qualifications were required.

2.2 CALIBRATION

For the applicable analyses, the initial calibration correlation coefficients were ≥ 0.995. The initial and continuing calibration information was acceptable with recoveries within the control limits of $90-110 \%$. For ammonia, no information regarding the standardization of the titrant was provided; however, as the LCS recovery was within the CCV control limits, no qualifications were required. For BOD, no information regarding the calibration of the oxygen meter was provided; however, as the LCS recovery was within the CCV control limits, no qualifications were required. The total cyanide reporting limit check standard was recovered above the control limits at 161.6%; however, as cyanide was not detected in Outfall 011, no qualifications were required. Calibration is not applicable to oil and grease, total dissolved solids, total suspended solids, or total settleable solids. No qualifications were required.

2.3 BLANKS

Oil and grease was detected in method blank 5C14065-BLK1 at $1.60 \mathrm{mg} / \mathrm{L}$; therefore, oil and grease detected in Outfall 011 was qualified as estimated, "UJ." The remaining method blank and CCB results reported on the summary forms and in the raw data for blank analyses associated with the sample were nondetects at the reporting limit. No further qualifications were required.

	Project:	NPDES
DATA VALIDATIONREPORT	SDG No.:	IOC0996
	Analysis:	General Minerals

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample and laboratory control sample duplicate (BOD and oil and grease only) recoveries and RPDs were within the laboratory-established control limits. The LCS is not applicable to conductivity, turbidity or settleable solids. No qualifications were required.

2.5 SURROGATES RECOVERY

Surrogate recovery is not applicable to the analyses presented in this SDG.

2.6 LABORATORY DUPLICATES

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was assessed based on LCS results.

2.8 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analyses of this sample; therefore, furnace atomic absorption QC is not applicable.

2.9 ICP SERIAL DILUTION

ICP serial dilution is not applicable to the analyses presented in this data validation report.

2.10 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample results reported on the Form I were verified against the raw data. No transcription errors or calculation errors were noted. Surfactant detected below the reporting limit was qualified as estimated, "J." No further qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC0996

2.11 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated sample. The following are findings associated with field QC samples:

2.11.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.11.2 Field Duplicates

There were no field duplicate pairs associated with this SDG.

```
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, C.A 91101
Attention: Bronwyn Kelly
```

```
    Project ID: Routine Outfall 011
```

 Project ID: Routine Outfall 011
 Routine Outfall 011
 Routine Outfall 011
 Repcr Number: IOC0996
Repcr Number: IOC0996
Sampled: 03111:05
Sampled: 03111:05
Received: 03:11:05

```
Received: 03:11:05
```


DRAFT: INORGANICS

AMEC VALILAnitu

 LEVEL IVAmalyais Not Valitarat

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}
 AMEC Earth \& Environmental 550 South Wadsworth Boulevard Suite 500
 Package ID T711WC107
 Task Order 313150010
 SDG No. IOC0996
 Lakewood, CO 80226

Laboratory Del Mar Analytical
Reviewer L. Jarusewic
No. of Analyses 1

ACTION ITEMS

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from

Analysis Protocol, e.g.,
Holding Times
GC/MS Tune/nst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification and Quantitation
System Performance
\longrightarrow

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: PERCHLORATE SAMPLE DELIVERY GROUP. IOC0996

Prepared by

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC0996
	Analysis:	Perchlorate

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: IOC0996
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Perchlorate
QC Level: Level IV
No of Samples 1
Reviewer: L Jarusewic
Date of Review: Aprit 5, 2005

The samples listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 314.0, and 120.1, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC0996
	Analysis:	Perchlorate

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 011	Outfall 011	IOC0996-01	Water	Perchlorate

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC0996
Perchlorate		

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory above the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ at $7^{\circ} \mathrm{C}$; however, as the sample had insufficient time to cool in transit to the laboratory, no qualifications were required. The analysis did not required preservation and no preservation was noted in the field. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel, and accounted for the sample and analysis presented in this SDG. No qualifications were required.

2.1.3 Holding Times

The holding time was assessed by comparing the date of collection with the date of analysis. The 28day analytical holding time for perchlorate was met, and no qualifications were required.

2.2 CALIBRATION

The initial calibration correlation coefficient was ≥ 0.995. The IPC-MA recovery was within the control limits of $80-120 \%$. The ICV, CCV, and IPC recoveries were within the control limits of $90-110 \%$. No qualifications were required.

2.3 BLANKS

The method blank and CCB results reported on the summary forms and in the raw data for blank analyses associated with the sample were nondetects at the reporting limit. No qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample recovery was within the method control limits of $85-115 \%$. No qualifications were required.

2.5 SURROGATES RECOVERY

Surrogate recovery is not applicable to the analysis presented in this SDG.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC0996

2.6 LABORATORY DUPLICATES

No MS/MSD or duplicate analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was assessed based on LCS results.

2.8 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analysis of this sample; therefore, furnace atomic absorption QC is not applicable.

2.9 ICP SERIAL DILUTION

ICP serial dilution is not applicable to the analysis presented in this data validation report.

2.10 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample result reported on the Form I was verified against the raw data. No transcription errors or calculation errors were noted. No qualifications were required.

2.11 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated sample. The following are findings associated with
field field QC samples:

2.11.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.11.2 Field Duplicates

There were no field duplicate pairs associated with this SDG.

DRAFT: LNORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution	on Date	Da		
Sample ID: IOC0996-01 (DR Reporting Cnits: mg/l	Outfall 011	Water) - co					Extracted		$\begin{aligned} & \text { Reval } \\ & \text { Revt } \end{aligned}$	fiers QuAt come
Ammonia-N (Distilled)	EPA 350.2	5 Cl 15083	0.30							
Biochemical Oxygen Demand	EPA 405.1	5 C 11085	0.50 0.59	0.50 2.0	ND		03115\%05	03/15:05	*	
Chloride Total Cyanide	EPA 300.0	$5 \mathrm{Cl1052}$	2.6	2.0 5.0	2.5		03/11:05	0316165		
Nitrate/Nitrite-N	EPA 335.2	5 C 11116	0.0022	0.0050	ND		03/11/05	03:11/05		
Oil \& Grease	EPA 300.0	$5 \mathrm{Cl1052}$	0.072	0.11	ND		$03 / 1105$	0311105		
Suliate	EPA 413.1	5 C 14065	0.94	5.0	1.2		03/14/05	0314,		
Surfactants (MbAS)	EPA 300.0	$5 \mathrm{Cl1052}$	1.8	5.0	120		03.11105	03/14.05	3,	
Total Dissolved Solids	SM2540C	$5 \mathrm{Cl11105}$	0.044	0.10	0.096	1	03:11i05	0311105		
Total Suspended Solids	EPA 160.2	$5 \mathrm{SC14069}$		10	450	1	03/14/05	03/14:05		
Sample ID: 1OC0996-01 (DRA Reporting Units: mi/h	Outfall 011 -			10	ND	1	03/14/05	03:14:05		
Total Setteable Solids	EPA 160.5	$5 \mathrm{Cl1087}$	0.10	0.10						
Sample ID: 1OC0996-01 (DRA Reporting Lnits: NTL	$\text { Outfall } 011-y$				ND	1	03/1105	03:1105		
Turbidity	EPA 180.1	5 Cl 2043	0.040	1.0						
Sample DD: 1OC0996-01 (DRAF Reporting Enits: ug/I	Outfall 011 ~	ater)			8.6		03/12:05	031205		
Sample ID: 1OC0996-01 (DRAF	EPA 314.0 Outfall 011 - W	$5 C 14052$ ater)	0.80	4.0	ND		03/14/05	03114,05		
Specific Conductance	EPA 120.1	5C14070	1.0	1.0	690					

AMEC VALIDATED

DRAFT REPORT
DRAFT REPORT
Data subject To change

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 011

Sampled: 03/11/05
Received: 03/11/05
Issued: 04/05/05 12:06

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, I page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID	CLIENT ID	MATRIX
IOC0996-01	Outfall 011	Water
IOC0996-02	Trip Blank	Water

Reviewed By:

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly	Project ID: Routine Outfall 011 Report Number: 10 C 0996
	PURGEABLES BY GC/MS (EPA 624)

Analyte
Sample ID: 10C0996-01 (Outfall 011 - Water)
Reporting Units: ugh

Benzene	EPA 624	5C15015	0.28
Carbon tetrachloride	EPA 624	5C15015	0.28
Chloroform	EPA 624	5C15015	0.33
1,1-Dichloroethane	EPA 624	5C15015	0.27
1,2-Dichloroethane	EPA 624	5C15015	0.28
1,1-Dichloroethene	EPA 624	5C15015	0.32
Ethylbenzene	EPA 624	5C15015	0.25
Tetrachloroethene	EPA 624	5C15015	0.32
Toluene	EPA 624	5C15015	0.36
1,1,1-Trichloroethane	EPA 624	5C15015	0.30
1,1,2-Trichloroethane	EPA 624	5C15015	0.30
Trichloroethene	EPA 624	5C15015	0.26
Trichlorofluoromethane	EPA 624	5C15015	0.34
Vinyl chloride	EPA 624	5C15015	0.26
Xylenes, Total	EPA 624	5C15015	0.52

2.0	0.38	1	$03 / 15 / 05$	$03 / 15 / 05$
5.0	ND	1	$03 / 15 / 05$	$03 / 15 / 05$
2.0	ND	1	$03 / 15 / 05$	$03 / 15 / 05$
2.0	ND	1	$03 / 15 / 05$	$03 / 15 / 05$
2.0	ND	1	$03 / 15 / 05$	$03 / 15 / 05$
3.0	ND	1	$03 / 15 / 05$	$03 / 15 / 05$
2.0	ND	1	$03 / 15 / 05$	$03 / 15 / 05$
2.0	ND	1	$03 / 15 / 05$	$03 / 15 / 05$
2.0	ND	1	$03 / 15 / 05$	$03 / 15 / 05$
2.0	ND	1	$03 / 15 / 05$	$03 / 15 / 05$
2.0	ND	1	$03 / 15 / 05$	$03 / 15 / 05$
5.0	ND	1	$03 / 15 / 05$	$03 / 15 / 05$
5.0	ND	1	$03 / 15 / 05$	$03 / 15 / 05$
5.0	ND	1	$03 / 15 / 05$	$03 / 15 / 05$
4.0	ND	1	$03 / 15 / 05$	$03 / 15 / 05$
	97%			
	99%			
\cdots	92%	\therefore		

Surrogate: Dibromofluoromethane (80-120\%)
Surrogate: Toluene-d8 (80-120\%)
Surrogate: 4-Bromofluorobenzene ($80-120 \%$)

	MDL	Reporting	Sample Ratch	Dilution	Date
Limit	Limit	Result	Factor Extracted		

Date	Data
Analyzed	Qualifiers

Sample ID 1OC0996-02 (Trip BIank - Water)
Reporting Units: ugh

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011
Report Number: $10 \mathrm{C0996}$

Sampled: 03/11/05
Received: 03/11/05

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

| Analyte | Method | Batch | MDL
 Limit | Reporting
 Limit | Sample
 Result | Dilution
 Factor | Date
 Extracted |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Date |
| :---: |
| Analyzed | | Data |
| :---: |
| Qualifiers |

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention; Bronwyn Kelly

Project ID: Routine Outfall 011
Report Number: $10 \mathrm{C0996}$

Sampled: 03/11/05
Received: 03/11/05

ORGANOCHLORINE PESTICIDES (EPA 608)

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011

Report Number: 10 C 0996

Sampled: 03/11/05
Received: 03/11/05

METALS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOC0996-01 (Outfall 011 - Water) - cont.									
Reporting Units: ug/									
Copper	EPA 200.8	5 Cl 16088	0.49	2.0	8.5	1	03/16/05	03/17/05	
Lead	EPA 200.8	5 C 16088	0.13	1.0	0.74	1	03/16/05	03/17/05	J
Mercury	EPA 245.1	5 Cl 4050	0.063	0.20	ND	1	03/14/05	03/14/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011
Report Number: $10 \mathrm{C} 0996 \quad \begin{aligned} & \text { Sampled: 03/11/05 }\end{aligned}$

Received: 03/11/05

INORGANICS

Analyte Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OC0996-01 (Outfall 011 - Water) - cont. Reporting Units: mg/l								
Ammonia-N (Distilled) EPA 350.2	5 Cl 5088	0.30	0.50	ND	1	03/15/05	03/15/05	
Biochemical Oxygen Demand EPA 405.1	5C11085	0.59	2.0	2.5	1	03/11/05	03/16/05	
Chloride EPA 300.0	5C11052	2.6	5.0	36	10	03/11/05	03/11/05	
Total Cyanide EPA 335.2	5 C 11116	0.0022	0.0050	ND	1	03/11/05	03/11/05	
Nitrate/Nitrite-N EPA 300.0	5 C 11052	0.072	0.11	ND	1	03/11/05	03/11/05	
OH\& Grease EPA 413.1	5 Cl 4065	0.94	5.0	1.2	1	03/14/05	03/14/05	B, J
Sulfate EPA 300.0	5 Cl 1052	1.8	5.0	120	10	03/11/05	03/11/05	
Surfactants (MBAS) SM5540-C	$5 \mathrm{C11105}$	0.044	0.10	0.096	1	03/11/05	03/11/05	J
Total Dissolved Solids \quad SM2540C	5 Cl 14069	10	10	450	1	03/14/05	03/14/05	
Total Suspended Solids EPA 160.2	5 C 14073	10	10	ND	1	03/14/05	03/14/05	
Sample ID: 10C0996-01 (Outfall 011 - Water)								
Reporting Units: ml/hr								
Total Settleable Solids EPA 160.5	$5 \mathrm{Cl1} 1087$	0.10	0.10	ND	1	03/11/05	03/11/05	
Sample ID: 1OC0996-01 (Outfall 011 - Water)								
Reporting Units: NTU								
Turbidity EPA 180.1	5 Cl 2043	0.040	1.0	8.6	1	03/12/05	03/12/05	
Sample ID. 10C0996-01 (Outfall 011 - Water)								
Perchlorate EPA 314.0	5 Cl 4052	0.80	4.0	ND	1	03/14/05	03/14/05	
Sample ID: 1OC0996-01 (Outfall 011 - Water)								
Reporting Units: umhos/cm								
Specific Conductance EPA 120.1	5C14070	1.0	1.0	690	1	03/14/05	03/14/05	

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011
Sampled: 03/11/05
Report Number: $10 \mathrm{C} 0996 \quad$ Received: 03/11/05

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed	
Sample ID: Outfall 011 (IOC0996-01)- Water						
EPA 160.5	2	$03 / 11 / 200513: 25$	$03 / 11 / 200518: 30$	$03 / 11 / 2005$	$20: 00$	$03 / 11 / 200521: 00$
EPA 180.1	2	$03 / 11 / 200513: 25$	$03 / 11 / 200518: 30$	$03 / 12 / 200513: 30$	$03 / 12 / 200514: 30$	
EPA 300.0	2	$03 / 11 / 200513: 25$	$03 / 11 / 200518: 30$	$03 / 11 / 200519: 30$	$03 / 11 / 200521: 00$	
EPA 405.1	2	$03 / 11 / 200513: 25$	$03 / 11 / 200518: 30$	$03 / 11 / 200520: 00$	$03 / 16 / 200513: 30$	
SM5540-C	2	$03 / 11 / 200513: 25$	$03 / 11 / 200518: 30$	$03 / 11 / 200521: 06$	$03 / 11 / 200521: 20$	

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011
Report Number: $10 \mathrm{C0996}$

Sampled: 03/11/05
Received: 03/11/05

MIMIOB MLANKICC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte Result

Reporting			Spike	Source	\%REC		RPD	Data	
Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5C13007 Extracted: 03/13/05

Blank Analyzed: 03/13/2005 (5C13007-BLK1)
Benzene
Carbon tetrachloride
Chioroform
1,1-Dichloroethane
1,2-Dichloroethane
1,1-Dichloroethene
Ethylbenzene
Tetrachloroethene
Toluene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichloroethene
Trichlorofluoromethane
Vinyl chloride
Xylenes, Total
Surrogate: Dibromofluoromethane
Surrogate: Toluene-d8
Surrogate: 4 -Bromofluorobenzene

LCS Analyzed: 03/13/2005 (5C13007-BS1)

Benzene	25.4
Carbon tetrachloride	26.9
Chloroforn	26.4
1,1-Dichloroethane	26.3
1,2-Dichloroethane	27.1
1,1-Dichloroethene	25.5
Ethylbenzene	26.1
Tetrachloroethene	23.3
Toluene	25.0
1,1,1-Trichloroethane	27.7
1,1,2-Trichloroethane	26.4
Trichloroethene	23.8
Trichlorofluoromethane	28.6
Vinyl chloride	29.5
Surrogate: Dibromofluoromethane	26.6
Surrogate: Toluene-d8	25.2

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention; Bronwyn Kelly

Project ID: Routine Outfall 011
Report Number: 10 C 0996
Sampled: 03/11/05

METHOD BLANKIQC DATA

PURGEABLES BY GC/MS (EPA 624)

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011
Report Number: $10 \mathrm{C} 0996 \quad$ Sampled: 03/11/05
Received: 03/11/05

METHOD BLANKCCC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C13007 Extracted: 03/13/05											
Matrix Spike Dup Analyzed: 03/13/2005 (5C13007-MSD1)					Source: 10C0855-01						
Surrogate: Dibromofluoromethane	27.4			ug n	25.0		110	80-120			
Surrogate: Toluene-d8	24.8			ug/	25.0		99	80-120			
Surrogate: 4-Bromofluorobenzene	26.1			ug $/$	25.0		104	80-120			

Batch: 5C15015 Extracted: 03/15/05

Blank Analyzed: 03/15/2005 (5C15015-BLK1)

Benzene	ND
Carbon tetrachloride	ND
Chloroform	ND
1,1-Dichloroethane	ND
1,2-Dichloroethane	ND
1,-Dichlorethene	ND
Etfylbenzene	ND
Tetrachloroethene	ND
Toluene	ND
1,1,1-Trichloroethane	ND
1,1,2-Trichloroethane	ND
Trichloroethene	ND
Trichlorofluoromethane	ND
Vinyl chloride	ND
Xylenes, Total	ND
Surrogate: Dibromofluoromethane	25.4
Surrogate: Toluene-d8	25.1
Surrogate: 4 -Bromofluorobenzene	23.6

LCS Analyzed: 03/15/2005 (5C15015-BS1)

Benzene	23.2	2.0	0.28	ug/	25.0	93	$70-120$
Carbon tetrachloride	23.6	5.0	0.28	ug/	25.0	94	$70-140$
Chloroform	23.1	2.0	0.33	ug/	25.0	92	$75-130$
1,1-Dichloroethane	23.2	2.0	0.27	ug/	25.0	93	$70-135$
1,2-Dichloroethane	23.9	2.0	0.28	ug/	25.0	96	$60-150$
1,1-Dichloroethene	22.9	3.0	0.32	ug/	25.0	92	$75-135$
Ethylbenzene	24.1	2.0	0.25	ug/	25.0	96	$80-120$
Tetrachloroethene	22.1	2.0	0.32	ug/l	25.0	88	$75-125$
Toluene	22.9	2.0	0.36	ug/l	25.0	92	$75-120$

[^26]
Del Mar Analytical

244 Cnsape (1)

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011

Report Number: $10 \mathrm{C0996}$
Sampled: 03/11/05
Received: 03/11/05

METHOD BLANK@C DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source		\%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5C15015 Extracted: 03/15/05
LCS Analyzed: 03/15/2005 (5C15015-BS1)

$75-140$							
1,1,1-Trichloroethane	23.5	2.0	0.30	ug/	25.0	94	98
1,1,2-Trichloroethane	24.4	2.0	0.30	ug/	25.0	$70-125$	
Trichloroethene	23.1	5.0	0.26	ug/	25.0	92	$80-120$
Trichlorofluoromethane	23.9	5.0	0.34	ug/	25.0	96	$65-145$
Vinyl chloride	24.2	5.0	0.26	ug/l	25.0	97	$50-130$
Surrogate: Dibromofluoromethane	25.3			ug/l	25.0	101	$80-120$
Surrogate: Toluene-d8	25.1			$u g /$	25.0	100	$80-120$
Surrogate: 4-Bromofluorobenzene	25.0			$u g /$	25.0	100	$80-120$

Matrix Spike Analyzed: 03/15/2005 (5C15015-MS1)				Source: 1OC1002-05				
Benzene	24.7	2.0	0.28	ug/	25.0	0.78	96	70-120
Carbon tetrachloride	24.6	5.0	0.28	ugh	25.0	ND	98	70-145
Chloroform	23.7	2.0	0.33	ugh	25.0	ND	95	70-135
1,1-bichloroethane	23.8	2.0	0.27	ugl	25.0	ND	95	65-135
1,2-Dichloroethane	24.2	2.0	0.28	ug/	25.0	ND	97	60-150
1,1-Dichloroethene	23.2	3.0	0.32	ug/l	25.0	ND	93	65-140
Ethylbenzene	25.2	2.0	0.25	ug/	25.0	ND	101	70-130
Tetrachloroethene	23.0	2.0	0.32	ugl	25.0	ND	92	70-130
Toluene	26.7	2.0	0.36	ug/	25.0	3.0	95	70-120
1,1,1-Trichloroethane	24.3	2.0	0.30	ug/	25.0	ND	97	75-140
1,1,2-Trichloroethane	24.1	2.0	0.30	ug/	25.0	ND	96	60-135
Trichloroethene	22.9	5.0	0.26	ug/1	25.0	ND	92	70-125
Trichlorofluoromethane	24.3	5.0	0.34	ug/	25.0	ND	97	55-145
Vinyl chloride	24.9	5.0	0.26	ug/	25.0	ND	100	40-135
Surrogate: Dibromofluoromethane	25.5			$u g /$	25.0		102	80-120
Surrogate: Toluene-d8	25.3			ug/l	25.0		101	80-120
Surrogate: 4-Bromofluorobenzene	25.0			ug/	25.0		100	80-120

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011

Report Number: $10 C 0996$
Sampled: 03/11/05
Received: 03/11/05

METHOD BLANKQC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source	\%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit

Batch: 5C15015 Extracted: 03/15/05

Matrix Spike Dup Analyzed: 03/15/2005 (5C15015-MSD1)			Source: 10C1002-05							
Benzene	24.7	2.0	0.28	ugh	25.0	0.78	96	70-120	0	20
Carbon tetrachloride	24.0	5.0	0.28	$\mathrm{ug} /$	25.0	ND	96	70-145	2	25
Chloroform	23.5	2.0	0.33	ugh	25.0	ND	94	70-135	1	20
1,1-Dichloroethane	23.6	2.0	0.27	ugh	25.0	ND	94	65-135	1	20
1,2-Dichloroethane	24.4	2.0	0.28	ug / l	25.0	ND	98	60-150	1	20
1,1-Dichloroethene	23.7	3.0	0.32	ugh	25.0	ND	95	65-140	2	20
Ethylbenzene	25.0	2.0	0.25	ugh	25.0	ND	100	70-130	1	20
Tetrachloroethene	22.5	2.0	0.32	ug/l	25.0	ND	90	70-130	2	20
Toluene	26.5	2.0	0.36	ug/l	25.0	3.0	94	70-120	1	20
1,1,1-Trichloroethane	24.3	2.0	0.30	ugh	25.0	ND	97	75-140	0	20
1,1,2-Trichloroethane	25.1	2.0	0.30	ug/	25.0	ND	100	60-135	4	25
Trichloroethene	22.9	5.0	0.26	ug/	25.0	ND	92	70-125	0	20
Trichlorofluoromethane	24.1	5.0	0.34	uga	25.0	ND	96	55-145	1	25
Vinyl chitoride	24.5	5.0	0.26	ug/	250	ND	98	40-135	2	30
Surrogate: Dibromofluoromethane	25.6			ug/	25.0		102	80-120		
Surrogate: Toluene-d8	25.3			$u g /$	25.0		101	80-120		
Surrogate: 4-Bromofluorobenzene	25.2			$u g /$	25.0		101	80-120		

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011
Report Number: $10 \mathrm{C0996}$
Sampled: 03/11/05
Received: 03/11/05

METHOD BLANKIOC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source	\%REC		RPD	Data	
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5C13017 Extracted: 03/13/05
Blank Analyzed: 03/18/2005 (5C13017-BLK1)

Bis(2-ethylhexyl)phthalate	ND
2,4-Dinitrotoluene	ND
N-Nitrosodimethylamine	ND
Pentachlorophenol	ND
2,4,6-Trichlorophenol	ND
Surrogate: 2 -Fluorophenol	11.4
Surrogate: Phenol-d6	11.9
Surrogate: 2,4,6-Tribromophenol	13.8
Surrogate: Nitrobenzene-d5	6.08
Surrogate: 2 -Fluorobiphenyl	6.92
Surrogate: Terphenyl-d14	6.62

LCS Analyzed: 03/18/2005 (5C13017-BS1)
Bis (2-ethy hexy)phthalate $\quad 8.90$

2,4-Dinitrotoluene $\quad 8.00$
N -Nitrosodimethylamine
$5.0 \quad 1.1$ ug
$9.0 \quad 0.23 \quad \mathrm{ug} /$

Pentachlorophenol
2,4,6-Trichlorophenol
Surrogate: 2-Fluorophenol
Surrogate: Phenol-d6
Surrogate: 2,4,6-Tribromophenol
8.0 0.22 ug/l
$\begin{array}{lll}8.0 & 0.78 & \text { ug/ } \\ 6.0 & 0.10 & \text { ug/ }\end{array}$
$\begin{array}{lll}6.0 & 0.10 & \text { ug } / 1 \\ & & \text { ug } / l\end{array}$
Surrogate: Nitrobenzene-d5 7.48

Surrogate: 2-Fluorobiphenyl 8.08
Surrogate: Terphenyl-d14 7.90
LCS Dup Analyzed: 03/18/2005 (5C13017-BSD1)

Bis(2-ethylhexyl)phthalate	8.62
2,4-Dinitrotoluene	7.92
N-Nitrosodimethylamine	7.66
Pentachlorophenol	8.66
2,4,6-Trichlorophenol	8.76
Surrogate: 2-Fluorophenol	14.2
Surrogate: Phenol-d6	14.2
Surrogate: 2,4,6-Tribromophenol	16.6
Surrogate: Nitrobenzene-d5	7.52
Surrogate: 2-Fluorobiphenyl	7.60

[^27]Report Number: $10 \mathrm{C} 0996 \quad$| Sampled: $03 / 11 / 05$ |
| ---: |
| Received: $03 / 11 / 05$ |

METHOD BLANKIQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011
Report Number: IOC0996
Sampled: 03/11/05
Received: 03/11/05

MEHHOD BLANKIQC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C14049 Extracted: 03/14/05											
Blank Analyzed: 03/14/2005 (5C14049-BLK1)											
alpha-BHC	ND	0.010	0.0010	ug / l							
Surrogate: Decachlorobiphenyl	0.381			$u g / l$	0.500		76	45-120			
Surrogate: Tetrachloro-m-xylene	0.267			$u g /$	0.500		53	35-120			
LCS Analyzed: 03/14/2005 (5											M-NR1
alpha-BHC	0.335	0.010	0.0010	ug/	0.500		67	45-115			
Surrogate: Decachlorobiphenyl	0.367			$u g / l$	0.500		73	45-120			
Surrogate: Tetrachloro-m-xylene	0.278			$u g /$	0.500		56	35-120			
LCS Dup Analyzed: 03/14/2005 (5C14049-BSD1)											
alpha-BHC	0.353	0.010	0.0010	ug/	0.500		71	45-115	5	30	
Surrogate: Decachlorobiphenyl	0.405			$u g / 7$	0.500		81	45-120			
Surrogate: Tetrachloro-m-xylene	0.267			$u g / l$	0.500		53	35-120			

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 011	
300 North Lake Avenue, Suite 1200		Sampled: 03/11/05
Pasadena, CA 91101	Report Number: $10 C 0996$	Received: $03 / 11 / 05$
Attention: Bronwyn Kelly		

MIMHOM BHANLCCDATA

METALS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C14050 Extracted: 03/14/05										
Blank Analyzed: 03/14/2005 (5C14050-BLK1)										
Mercury ND	0.20	0.063	ug/							
LCS Analyzed: 03/14/2005 (5C14050-BS1)										
Mercury 8.04	0.20	0.063	ug/	8.00		100	85-115			
Matrix Spike Analyzed: 03/14/2005 (5C14050-MS1)					ce: 10 Ce	736-01				
Mercury 8.23	0.20	0.063	ug/l	8.00	ND	103	70-130			
Matrix Spike Dup Analyzed: 03/14/2005 (5C14050-MSD1)					ce: 10C0	736-01				
Mercury 8.19	0.20	0.063	ug/l	8.00	ND	102	70-130	1	20	
Batch: 5C16088 Extracted: 03/16/05										
Blank Analyzed; 03/16/2005 (5C16088-BLK1)										
Copper $\quad \mathrm{ND}$	2.0	0.49	ug/l	\%	-	-				
Lead ND	1.0	0.13	ug/l		\therefore	-				
LCS Analyzed: 03/16/2005 (5C16088-BS1)										
Copper 85.2	2.0	0.49	ug/l	80.0		106	85-115			
Lead 84.9	1.0	0.13	ug/l	80.0		106	85-115			
Matrix Spike Analyzed: 03/16/2005 (5C16088-MS1)					ce: 10C0	874-01				
Copper 125	2.0	0.49	ug/l	80.0	17	135	70-130			$M 1$
Lead 83.3	1.0	0.13	ug/l	80.0	0.97	103	70-130			
Matrix Spike Analyzed: 03/16/2005 (5C16088-MS2)					ce: 10C1	157-01				
Copper 74.3	2.0	0.49	ug/l	80.0	ND	93	70-130			
Lead 80.3	1.0	0.13	ug/l	80.0	ND	100	70-130			

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011

Report Number: 10 C 0996

Sampled: 03/11/05
Received: 03/11/05

METHOD BLANK/YC DATA

METALS

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011
Report Number: 10 C 0996 Sampled: 03/11/05
Report Number: 10 C 0996

Received: 03/11/05

METHOD BLANKIQC DATA

INORGANICS

Batch: 5C11085 Extracted: 03/11/05
Blank Analyzed: 03/16/2005 (5C11085-BLK1)

Biochemical Oxygen Demand	ND	2.0	0.59	$\mathrm{mg} /$					
LCS Analyzed: 03/16/2005 (5C11085-BS1)									
Biochemical Oxygen Demand	218	100	30	mg / l	198	110	85-115		
LCS Dup Analyzed: 03/16/2005 (5C11085-BSD1)									
Biochemical Oxygen Demand	212	100	30	mg/	198	107	85-115	3	20

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011
Sampled: 03/11/05
Report Number: $10 \mathrm{C0996}$
Received: 03/11/05

METHODBLANKIOC DATA

INORGANICS

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention; Bronwyn Kelly

Project ID: Routine Outfall 011
Sampled: 03/11/05
Report Number: $10 C 0996$

Received: 03/11/05

MITHOD BLANKIOC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	$\begin{gathered} \text { RPD } \\ \text { Limit } \end{gathered}$	Data Qualifiers
Batch: 5C12043 Extracted: 03/12/05										
Duplicate Analyzed: 03/12/2005 (5C12043-DUP1)	Source: 10C0995-01									
Turbidity 0.590	1.0	0.040	NTU		0.59			0	20	J
Batch: 5C14052 Extracted: 03/14/05										
Blank Analyzed: 03/14/2005 (5C14052-BLK1)										
Perchlorate ND	4.0	0.80	ug/							
LCS Analyzed: 03/14/2005 (5C14052-BS1)										
Perchlorate 45.1	4.0	0.80	ug/	50.0		90	85-115			
Matrix Spike Analyzed: 03/14/2005 (5C14052-MS1) Source: 1OC0873-02										
Perchlorate 49.1	4.0	0.80	ug/	50.0	ND	98	80-120			
Matrix Spike Dup Analyzed: 03/14/2005 (5C14052-MSD1) Source: 10C0873-02										
Perchlorate 47.5	4.0	0.80	ugh	50.0	ND	95	80-120	3	20	
Batch: 5C14065 Extracted: 03/14/05										
Blank Analyzed: 03/14/2005 (5C14065-BLK1)										
Oil \& Grease 1.60	5.0	0.94	mg / l							J
LCS Analyzed: 03/14/2005 (5C14065-BS1)										M-NR1
Oil \& Grease 23.4	5.0	0.94	$\mathrm{mg} / 1$	20.0		117	65-120			
LCS Dup Analyzed: 03/14/2005 (5C14065-BSD1)										
Oil \& Grease 23.9	5.0	0.94	$\mathrm{mg} / 1$	20.0		120	65-120	2	20	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011

Report Number: 10 C0996
Sampled: 03/11/05
Received: 03/11/05

METHOD BLLANKIQC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	$\begin{aligned} & \text { RPD } \\ & \text { Limit } \end{aligned}$	Data Qualifiers
Batch: 5C14069 Extracted: 03/14/05										
Blank Analyzed: 03/14/2005 (5C14069-BLK1)										
Total Dissolved Solids ND	10	10	mg / l							
LCS Analyzed: 03/14/2005 (5C14069-BS1)										
Total Dissolved Solids 970	10	10	mg / l	1000		97	90-110			
Duplicate Analyzed: 03/14/2005 (5C14069-DUP1)					ce: 10C1	042-01				
Total Dissolved Solids 271	10	10	$\mathrm{mg} / 1$		280			3	10	
Batch: 5C14070 Extracted: 03/14/05										
Duplicate Analyzed: 03/14/2005 (5C14070-DUP1)				Sou	ce: 10C1	042-01				
Specific Conductance 432	1.0	1.0	umhos/cm		420			3	5	
Batch: 5C14073 Extracted: 03/14/05										
Blank Analyzed: 03/14/2005 (5C14073-BLK1)										
Total Suspended Solids ND	10	10	mg / l							
LCS Analyzed: 03/14/2005 (5C14073-BS1)										
Total Suspended Solids 941	10	10	$\mathrm{mg} /$	1000		94	85-115			
Duplicate Analyzed: 03/14/2005 (5C14073-DUP1)				Sou	e: 10C0	941-01				
Total Suspended Solids ND	10	10	mg / l		ND				10	

Batch: 5C15088 Extracted: 03/15/05

Blank Analyzed: 03/15/2005 (5C15088-BLK1)

Ammonia-N (Distilled)	ND	0.50	0.30	mg / l

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper
Project Manager
MWH-Pasadena/Boeing Project ID: Routine Outfall 011

300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011
Report Number: $10 \mathrm{CO996}$

Sampled: 03/11/05
Received: 03/11/05

METHOD BLANKIOC DATA

INORGANICS

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011

Report Number: $10 \mathrm{C0996}$

Sampled: 03/11/05
Received: 03/11/05

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
M1 The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
R The RPD exceeded the method control limit due to sample matrix effects. The individual analyte QA/QC recoveries, however, were within acceptance limits.
R-3 The RPD exceeded the method control limit due to sample matrix effects.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011

Report Number: IOC0996
Sampled: 03/11/05
Received: 03/11/05

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
EPA 120.1	Water	\mathbf{X}	\mathbf{X}
EPA 160.2	Water	\mathbf{X}	\mathbf{X}
EPA 160.5	Water	\mathbf{X}	\mathbf{X}
EPA 180.1	Water	\mathbf{X}	\mathbf{X}
EPA 200.8	Water	\mathbf{X}	\mathbf{X}
EPA 245.1	Water	\mathbf{X}	\mathbf{X}
EPA 300.0	Water	\mathbf{X}	\mathbf{X}
EPA 314.0	Water	\mathbf{X}	\mathbf{X}
EPA 335.2	Water	\mathbf{X}	\mathbf{X}
EPA 350.2	Water	\mathbf{X}	\mathbf{X}
EPA 405.1	Water	\mathbf{X}	\mathbf{X}
EPA 413.1	Water	\mathbf{X}	\mathbf{X}
EPA 608	Water	\mathbf{X}	\mathbf{X}
EPA 624	Water	\mathbf{X}	\mathbf{X}
EPA 625	Water	\mathbf{X}	\mathbf{X}
SM2540C	Water	\mathbf{X}	\mathbf{X}
SM5540-C	Water	\mathbf{X}	\mathbf{X}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical California Cert \#1640
1104 Windfield Way - E1 Dorado Hills, CA 95762
Analysis Performed: \quad 1613-Dioxin-HR
Samples: $10 C 0996-01$
Analysis Performed: EDD + Level 4
Samples: $10 C 0996-01$

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper
Project Manager

April 1,2005

MWH-Pasadena/ Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention: Bronwyn Kelly
Project: \quad Routine Outfall 011
Sampled: 03/11/05
Del Mar Analytical Number: IOC0996

Dear Ms. Kelly:
Alta Analytical Laboratory performed the EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans analysis for the project referenced above. Please use the following cross-reference table when reviewing your results.

MW ID	DEL MAR ID	ALTA ID
Routine Outfall 011	IOC0996-01	$25898-001$

Attached is the original report from the subcontract laboratory. If you have any questions or require further assistance, please do not hesitate to contact me at (949) 261-1022 at extension 215.

Sincerely yours,
DEL MAR ANALYTICAL

Michele Harper
Project Manager

March 22, 2005
Alta Project I.D.: 25898
Ms. Michele Harper
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Dear Ms. Harper,
Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on March 15, 2005 under your Project Name "IOC0996". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

Martha M. Maier
Director of HRMS Services

Alta Analytical Laboratory Inc.

Section I: Sample Inventory Report

Date Recelved: 3/15/2005

Alta Lab, ID
25898-001

Client Sample ID

10 C 0996

SECTION II

OPR Results						EPA Method 1613				
Matrix: Aqueous		QC Batch No.:	6613	Lab Sample: 0-OPR001 Date Analyzed DB-5: 21-Mar-05		Date Analyzed DB-225:				
Sample Size: 1.000 L		Date Extracted:	18-Mar-05			NA				
Analyte	Spike Conc.	Conc. ($\mathrm{ng} / \mathrm{mL}$)	OPR Limits	Labeled Standard				\% \mathbf{R}	LCL-UCL	
2,3,7,8-TCDD	10.0	8.66	6.7-15.8	IS	13C-2,3,7,8-TCDD	63.0	25-164			
1,2,3,7,8-PeCDD	50.0	45.3	35-71				25-181			
1,2,3,4,7,8-HxCDD	50.0	46.2	35-82		13C-1,2,3,7,8-PeCDD	56.2	32-141			
1,2,3,6,7,8-HxCDD	50.0	47.9	38-67		13C-1,2,3,4,7,8-HxCDD	60.8	28-130			
1,2,3,7,8,9-HxCDD	50.0	46.2	32-81		$13 \mathrm{C}-1,2,3,6,7,8-\mathrm{HxCDD}$	54.6	23-140			
1,2,3,4,6,7,8-HpCDD	50.0	50.6	35-70		13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	38.2	17-157			
OCDD	100	97.1	78-144		13C-2,3,7,8-TCDF	63.7	24-169			
2,3,7,8-TCDF	10.0	9.33	7.5-15.8		13C-1,2,3,7,8-PeCDF	51.3	24-185			
1,2,3,7,8-PeCDF	50.0	50.5	40-67		13C-2,3,4,7,8-PeCDF	52.6	21-178			
2,3,4,7,8-PeCDF	50.0	50.7	34-80		13C-1,2,3,4,7,8-HxCDF	49.8	26-152			
1,2,3,4,7,8-HxCDF	50.0	51.8	+36-67		13C-1,2,3,6,7,8-HxCDF	56.3	26-123			
1,2,3,6,7,8-HxCDF	50.0	51.5	42-65		13C-2,3,4,6,7,8-HxCDF	56.1	28-136			
2,3,4,6,7,8-HxCDF	50.0	51.4	35-78		13C-1,2,3,7,8,9-HxCDF	54.3	29-147			
1,2,3,7,8,9-HxCDF	50.0	51.0	39-65		13C-1,2,3,4,6,7,8-HpCDF	52.5	28-143			
1,2,3,4,6,7,8-HpCDF	50.0	53.2	41-61		13C-1,2,3,4,7,8,9-HpCDF	56.3	26-138			
1,2,3,4,7,8,9-HpCDF	50.0	53.2	39-69		13C-OCDF	46.1	17-157			
OCDF	100	102	63-170	CRS 37Cl-2,3,7,8-TCDD		82.8	35-197			

APPENDIX

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank.
D The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.
I Chemical Interference
J The amount detected is below the Lower Calibration Limit of the instrument.

* See Cover Letter

Conc. Concentration
DL Sample-specific estimated detection limit
MDL The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration
NA Not applicable
RL Reporting Limit - concentrations that corresponds to low calibration point
ND Not Detected
TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

The control limits are "interim limits only" until in-house limits are utilized.

NELAP - (Primary AA: California, Certificate No. 02102CA)
Department of the Navy
U.S. Army Corps of Engineers
U.S. EPA Region 5

Bureau of Reclamation - Mid-Pacific Region - (MP-470, Res-1.10)
Commonwealth of Kentucky - (Certificate No. 90063)
Commonwealth of Virginia - (Certificate No. 00013)
State of Alaska, Department of Environmental Conservation - (Certificate No. OS-00197)
State of Arizona - (Certificate No. AZ0639)
State of Arkansas, Department of Health - (Approval granted through CA certification)
State of Arkonsas, Department of Environmental Quality
State of California - (Certificate No. 1640)
State of Colorado
State of Connecticut - (Certificate No. PH-0182)
State of Florida - (Certificate No. 87456)
State of Louisiana, Department of Health and Hospitals - (Certificate No. LA000014)
State of Louisiana, Department of Environmental Quality
State of Maine
State of Michigan (Certificate No. 81178087)
State of Mississippi - (Approval granted through CA certification)
State of Nevada - (Certificate No. CA413)
State of New Jersey - (Certificate No. CA003)
State of New York, Department of Health - (Certificate No. 11411)
State of North Carolina - (Certification No. 06700)
State of North Dakota, Department of Health - (Certificate No. R-078)
State of New Mexico
State of Oklahoma - (D9919)
State of Oregon - (Certificate No. CA413)
State of Pennsylvania - (Certificate No. 68-490)
State of South Carolina - (Certificate No. 87002001)
State of Tennessee - (Certificate No. 02996)
State of Texas - (Certificate No. TX247-1000A
State of Utah - (Certificate No. E-201)
State of Washington - (Certification No. C091)
State of Wisconsin - (Certificate No. 998036160)
State of Wyoming - (USEPA Region 8 Ref: 8TMS-Q)

17461 Derman Ave Stute te6, irvine, CA exs14 t014 E Cochyy Or, Suin A Cotbon CA sabe

Ph (909) 265-1022
Ph (goo) spo-4ect
Pn (ex9) 505-8506
Ph (400) 755-6043
ph(rroq minsazo

SUBCONTRACT ORDER - PROJECT \# IOC0996

SENDNG LABORATORY:	
Del Mar Analytical, Irvine	
17761 Derian Avemue. Suite 100	
Irvine, CA 92614	
Phone: (949) 261-1022	
Fax: (949) 261-1228	
Project Manager: Michele Harper	.

RECRIVING LABORATORY:
Alta Analytical
1104 Windfield Way
EI Dorado Hills, CA. 95762
Phone:(916) 933-1640
Fax: (916) 933-0940
Standard TAT is requested unless specific due date is requested \Rightarrow Due Date: \Rightarrow Expiration
Analysis \quad Comments.

Sample D: 10C0996-01 Water Sampled: 03/11/05 13:25
1613-Dioxin-HR 03/18/05 13:25
EDD + Level 4

J fiags, 17 congeners, no TEQ, sub to Alta
Excel EDD email to pm,Inchude Std logs for Lvi IV

Containers Supplied:
1 L Amber (IOC0996-01G)
1 L Amber (10C0996-01H)

SAMPLELOG-N CHECKLIST

ALTA Project No.: \qquad

Comments:
Samplers initials, pound on purple. labels

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Alta
Reviewer H Chang
Analysis/Method Dioxin\&Furans/161

Package ID T711DF37
Task Order 313150010
SDG No. Multiple
No. of Analyses 10
Date: April 4, 2005
Reviewer's Signature
acer

ACTION ITEMS*

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis Detects below the calibration range were qualified "J."

Protocol, egg.,
Holding Times
GCMS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and
Quantitation
System Performance
COMMENTS ${ }^{\text {b }}$

* Subcontracted analytical laboratory is not meeting contract and/or method requirements.
${ }^{6}$ Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: DIOXINS/FURANS SAMPLE DELIVERY GROUPS: Multiple SDGs

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 10
No. of Reanalyses/Dilutions: 0
Reviewer: H. Chang
Date of Review: April 4, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:
DATA VALIDATION REPORT	SDG No.:
	Multiple

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Alta)	Matrix	COC Method
Outfall 002	IOC1521-01	$25935-001$	water	1613
Outfall 011	IOC1523-01	$25936-001$	water	1613
Outfall 005	IOC1524-01	$25940-001$	water	1613
Outfall 006	IOC1525-01	$25937-001$	water	1613
Outfall 011 Composite	IOC1526-01	$25938-001$	water	1613
Outfall 001	IOC1561-01	$25941-001$	water	1613
Outfall 004	IOC1563-01	$25939-001$	water	1613
Outfall 008	IOC1564-01	$25942-001$	water	1613
Outfall 003	IOC1565-01	$25943-001$	water	1613
Outfall 009	IOC1566-01	$25944-001$	water	1613

Project:	NPDES
SDG No.:	Multiple
Analysis:	D/F

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

Samples Outfall 001, Outfall 004, and Outfall 008 were received at Del Mar Analytical outside the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. Due to non-volatile nature of the target compounds, no qualifications were required. The other samples were received with cooler temperatures within the limits. According to the laboratory login sheets, all samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COCs and transfer COCs were legible and signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. As the samples were couriered directly to Del Mar Analytical, custody seals were not required. The coolers received by Alta had custody seals present and intact. The EPA IDs were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and $2,3,7,8-\mathrm{TCDD}$ reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple
S/F		

2.3 CALIBRATION

2.3.1 Initial Calibration

There was one initial calibration, analyzed $08 / 30 / 04$. The calibration consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with $\%$ RSDs $\leq 20 \%$ for the 16 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of $\%$ Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standards instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank (06624 MB001) was extracted and analyzed with the samples in these SDGs. There were no target compound detects reported in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One Ongoing Precision Recovery (OPR) sample (0_6624_OPR001) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2.7.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for these SDGs.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any reported EMPC was qualified as an estimated nondetect, "UJ." Any detects below the lower method calibration level (MCL) were qualified as estimated, "J." No further qualifications were required.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer P. Meeks
Analysis/Method Metals

Package ID T711MT72
Task Order 313150010
SDG No. $10 \mathrm{Cl} 1526,10 \mathrm{Cl} 1523$
No. of Analyses 2
Date: 04/05/05
Reyiewer's Signature

ACIION IIEMS	
1.	Case Narrative Deficiencies

2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy Deliverables
6. Deviations fró

Analysis Protocol, e.g.,
Qualifications applied for:

Holding Times
GC/MS Tune/Inst.
2. Positive and negative results in the method blanks and CCBs

Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Intemal Standard
Performance
Compound Identification and Quantitation
System Performance
3. Reporting limit check standard recovery outlier
\qquad
\qquad
$\square \square$
\qquad
and Quantitation
System Performance

COMMENTS
*Subcontracted analytical laboratory is not meeting contract and/or method requirements.
bifferences in protocol have been adopted by the laboratory but no action against the laboratory is required.

amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: METALS

SAMPLE DELIVERY GROUPS: IOC1523 \& IOC1526

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOC1523, IOC1526
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Metals
QC Level: Level IV
No. of Samples: 2
No. of Reanalyses/Dilutions: 0
Reviewer: P. Meeks
Date of Review: April 05, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, SW-846 Method 6010B for Inductively Coupled Plasma, SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC1523, 1526

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 011 Grab	Outfall 011 Grab	IOC1523-01	water	ILM04
Outfall 011 Composite	Outfall 011 Composite	IOC1526-01	water	ILM04

Project:
NPDES
SDG No.
Analysis:
IOC1523, 1526
DATA VALIDATION REPORT

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel. The COCs accounted for the samples and analyses presented in these SDGs. Duplicate samples were submitted for the samples in these SDGs; however, duplicate analyses were not required. No sample qualifications were required.

2.1.3 Holding Times

The dates of collection recorded on the COCs and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP and ICPMS metals, and 28 days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. All \%RSDs were less than 5%. The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, $90-110 \%$ for ICP/MS metals and $80-120 \%$ for mercury. The 0.2 ppb reporting limit check standard for antimony was not recovered; therefore nondetected antimony in both site samples (see section 2.4) was qualified as estimated, "UJ." The remaining reporting limit check standards were recovered within the AMEC control limits of 70-130\%. No further sample qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOCI523,

2.4 BLANKS

Nickel were detected in method blank 5C19038 at $555 \mu \mathrm{~g} / \mathrm{L}$; therefore, nickel detected in both site samples was qualified as estimated, "UJ." Chromium was reported in a bracketing method blank at $0.35 \mu \mathrm{~g} / \mathrm{L}$; therefore, chromium detected in both site samples was qualified as estimated, "J."

Due to the high level of antimony found in the method blank, $1.25 \mu \mathrm{~g} / \mathrm{L}$, the reviewer raised the antimony MDLs to the level of interference, $1.3 \mu \mathrm{~g} / \mathrm{L}$ and qualified the results as estimated, "UJ." No further qualifications were required due to the method and calibration blank results.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were included in the raw data for the ICP-MS analyses. Results were not provided for spiked interferents sulfur, phosphorus, carbon, and chloride, and boron, barium, beryllium, , selenium, thallium, vanadium, antimony and lead were not spiked into the ICSAB solution. Aluminum was recovered below the control limit in all the ICSA and ICSAB analyses; however, as aluminum was found at a low level in the site sample, no qualifications were required. Manganese, cobalt copper, and cadmium were detected above the reporting limit in the ICSA. The validator reviewed the raw data for the site sample ICP/MS analyses for the level of reported interferents, Al, Ca, Fe , and Mg , and determined that the levels of reported interferents were not high enough to cause matrix affects. No assessment could be made with respect to possible interference from sulfur, phosphorus, carbon, and chloride.

ICSA and ICSAB analyses were included in the raw data for the boron ICP analyses, but were not run on the days the site samples were analyzed. The recoveries for the interferents and the other spiked analytes were within the control limits of $80-120 \%$. No qualifications were required.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP/MS LCS samples were identified as 5C21088-BSland 5C19038-BS1 and the ICP LCS sample was identified as 5C19039-BS1. The mercury LCS sample was identified as 5C19029-BS1. The LCS results on the summary forms and in the raw data were within the laboratory-established ICP, ICP/MS, and mercury control limits of $85-115 \%$. No qualifications were required.

2.7 LABORATORY DUPLICATES

MS/MSD analyses were performed on Outfall 011 Composite for boron only. The RPD was within the control limit of 20% and no qualifications were required.

2.8 MATRIX SPIKE

MS/MSD analyses were performed on Outfall 011 Composite for boron only. The recoveries were within the AMEC control limits of $75-125 \%$ and no qualifications were required. Method accuracy for the remaining analytes was evaluated based on LCS results.

2.9 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

2.10 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

2.11 INTERNAL STANDARDS PERFORMANCE

The ICP-MS internal standard recoveries for the site samples and associated QC sample analyses were within the $60-125 \%$ control limits and no qualifications were required.

2.12 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit were qualified as estimated, "J." No further qualifications were required.

2.13 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.13.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site samples.

DRAFT: METALS

MDL Reporting Sample Dilution Date Date Data
Analyse Method Batch Limit Limit Result FactorExtracted Analyzed Qualifiers

Sample ID: 1OC1523-01 (DRAFT: Outfall 011 GRAB - Water) - cont.

 Reporting Units: mg'Barium
Boron

Iron

EPA 200.8	$5 C 19038$	0.00014	0.0010	0.036
EPA 200.7	$5 C 19039$	0.0074	0.050	0.090
EPA 200.8	$5 C 19038$	0.0032	0.010	0.29

AMES VALIDATED

MWH-Pasadena Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outall 011
Report Number: $10 C 1523$

Sampled: 03.1805
Received: 0311805

DRAFT: METALS

Analyte Method Batch Limit Limit Result Factor Extracted Analyzed Qualifiers

AMEG WAMDATED

\qquad

DRAFTREPORT
 DRAFT REPORT
 DATA SUBTETTTOCHANGE

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101 Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: 10 C 1526

Sampled: 03:1805
Received: 03/18,05

DRAFT: METALS

AMEC VAMDATED

DRAFT REPORT
DRAFT REPORT
DATA SLBJECT TOCHANGE

2. Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: 10 C 1526

Sampled: 03/18:05
Received: 03/18:05

DRAFT: METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifi	fiers
Sample D: 1OC1526-01 (DRAFT: Outfall 011 Composite - Water) - cont. Reporting Units: mg/ Barium									Rew Qual	Qual Cole
Boron	EPA 200.7	5C19039	0.0074	0.050	0.090	1	03/19/05			
Iron	EPA 200.8	5C19038	0.0032	0.010	0.27	1	03/19/05	03/21/05	B-1	

AMEC VALIDATED

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA
AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500

ACTION ITEMS ${ }^{*}$

	Case Narrative Deficiencies	
2.Out of Scope Analyses		

3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables

	Deviations from Analysis	Qualifications assigned for surrogate recoveries below the QC limits.
	Protocol, e.g.,	
	Holding Times	
	GC/MS Tune/nst. Performance	
	Calibration	
	Method blanks	
	Surrogates	
	Matrix Spike/Dup LCS	
	Field QC	
	Intemal Standard Performance	
	Compound Identification	
	Quantitation	
	System Performance	
COMMENTS ${ }^{\text {b }}$		

[^28]
$a m e c^{\theta}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: PESTICIDES/PCBs

SAMPLE DELIVERY GROUP. IOB1523, IOB1526

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

DATA VALIDATION REPORT \quad| Project: |
| :---: |
| SDG: |
| IOB1523, 1526 |
| Analysis: |

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: 1OB1523, 1OB1526
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Pesticides/PCBs
QC Level: Level IV
No. of Samples: 2
No. of Reanalyses/Dilutions: 0
Reviewer: L. Calvin
Date of Review: April 11, 2005

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedures (DVP-4, Rev.2), EPA Method 608, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary form as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project: SDG:	$\begin{array}{r} \text { NPDES } \\ \text { IOB1523, } 1526 \end{array}$
DATA VALIDATION REPORT	Analysis:	Pest/PCB

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	Method
Outfall 011 Grab	Outfall 011 Grab	IOB1523-01	water	608
Outfall 011 Composite	Outfall 011 Composite	IOB1526-01	water	608

DATA VALIDATION REPORT \quad| Project: |
| ---: |
| SDG: |
| IOBIS23, |
| Analysis: |
| PestPCB |

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The analysis did not require preservation, and no preservation was noted in the field. The COCs noted that the samples were received intact. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by both field and laboratory personnel. The COCs accounted for the analyses presented in these SDGs. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The water samples were extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

2.2 PESTICIDES INSTRUMENT PERFORMANCE

No resolution check standards or breakdown check standards are required by Method 608 for pesticides, and according to the raw data provided, a resolution check standard was not analyzed by the laboratory. The laboratory did analyze a breakdown check standard with a breakdown of $\leq 20 \%$ for individual components (4,4-DDT and endrin) and $\leq 30 \%$ for the total, as suggested in the National Functional Guidelines. A review of the raw data indicated that the analytical run time was of sufficient length to provide adequate standard separation. The two analytical columns used in the analyses were within the guidelines specified in the methods.

According to the laboratory SOP and the initial calibration raw data, the retention time windows are ± 0.10 minutes for both surrogates and target compound calibration standards. A review of the raw data indicated that the laboratory retention time criteria were met for the surrogates and pesticide calibration standards. No qualifications were required.

2.3 CALIBRATION

2.3.1 Analytical Sequence

Based on the data provided, the analytical sequences were in accordance with the requirements of Method 608. No qualifications were required.

DATA VALIDATION REPORT | Project: |
| ---: |
| NPDES |
| IOBIS23, 1526 |
| PESUPCB |

2.3.2 Initial Calibration

There was one initial calibration dated 03/02/05 associated with the pesticide analyses of the samples, which consisted of six point calibrations for all pesticide target compounds on two analytical columns. The \%RSDs were within the EPA Method 608 QC limit of $\leq 10 \%$ or the r^{2} values were ≥ 0.995 on both analytical columns. There was one initial calibration dated 02/11/05 associated with the PCB analyses of the samples which consisted of five points for Aroclor 1016 and Aroclor 1260. Single point calibrations for Aroclor 1242, Aroclor 1248, and Aroclor 1254 were also analyzed. The average \%RSDs for the individual peaks of Aroclor 1016 and Aroclor 1260 were $\leq 10 \%$ or the r^{2} values were ≥ 0.995 on both analytical columns. An ICV was analyzed immediately following each of the initial calibrations. The \%Ds for all target compounds were within the QC limits of 15% on both analytical columns. A representative number of \%RSDs and ICV \%Ds were recalculated from the raw data and no calculation or transcription errors were noted. No qualifications were required.

2.3.3 Continuing Calibration

In the continuing calibrations bracketing both the pesticide and PCB analyses of the samples, all $\%$ Ds were $\leq 15 \%$. A representative number of $\%$ Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.4 BLANKS

2.4.1 Instrument Blanks

An instrument blank was analyzed at the beginning of each analytical sequence. Crosscontamination was not evident in the samples. No qualifications were necessary.

2.4.2 Method Blanks

One water method blank (5C19034-BLK1) was extracted and analyzed with these SDGs. There were no pesticide target compounds or Aroclors detected in the method blank. Review of the chromatograms showed no false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike/blank spike duplicate pair (5C19034-BS1/BSD1 for pesticides, -BS2/BSD2 for PCBs) was extracted and analyzed with these SDGs. The recoveries for all spiked pesticide target compounds and Aroclors were within the laboratory-established QC limits and the RPDs were $\leq 30 \%$. A representative number of recoveries were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.6 SURROGATE RECOVERY

The sample and all QC samples were fortified with the surrogate compounds decachlorobiphenyl and tetrachloro-m-xylene. Surrogate recoveries for the both pesticide and PCB analysis were below the QC limits but $\geq 10 \%$ in sample Outfall 011 Composite. Notations on the laboratory extraction benchsheet and sample raw data indicated an emulsion in the extract of the

	Project: SDG:	NPDES IOB1523, 1526 PestPC
DATA VALIDATION REPORT	Analysis:	Pes/PCB

sample. Results were qualified as estimated, "UJ," for nondetects and "J," for detects. All surrogate recoveries for sample Outfall 011 Grab were within the laboratory-established QC limits. The recoveries were calculated from the raw data and no transcription or calculation errors were noted. No further qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

There were no MS/MSD analyses associated with these SDGs. Method accuracy and precision were assessed based on the blank spike/blank spike duplicate results. No qualifications were required.

2.8 SAMPLE CLEANUP PERFORMANCE

According to the laboratory extraction benchsheets, no cleanups were performed on the water samples. No qualifications were required.

2.9 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.9.1 Field Blanks and Equipment Rinsates

There were no field QC samples associated with the samples in these SDGs. No qualifications were required.

2.9.2 Field Duplicates

There were no field duplicate samples associated with the sample in these SDGs.

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for pesticide target compounds and PCBs by EPA Method 608. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for the samples in these SDGs. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification was verified for these SDGs by recalculating any sample detects and a representative number of blank spike and surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibration and the laboratory MDL studies. The water reporting limits were not adjusted for sample amounts on the result summaries; however, the dilution factors listed on the summaries reflected the sample volume extracted. Results
reported above the MDL but below the reporting limit were qualified as estimated, "J," by the laboratory. Results were reported in $u g / L(p p b)$. No further qualifications were required.

D Del Mar Analytical

[^29]DRAFT: ORGANOCHLORINE PESTICIDES (EPA 608)

AMEC VALIDATED

DRAFT: TOTAL PCBS (EPA 608)

AMEC VALIDATED

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly

Sampled: 03/18/05

Received: 03/18/05

DRAFT: ORGANOCHLORINE PESTICIDES (EPA 608)
Analyte Method \quad Batch $\begin{array}{lll}\text { MDL } & \text { Reporting } & \begin{array}{l}\text { Sample } \\ \text { Limit }\end{array} \\ \text { Result } & \text { Factor Extracted }\end{array}$
Sample ID: IOC1526-01 (DRAFT: Outfall 011 Composite - Water) - cont. Reporting Units: ug/l Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane)
Chlordane
4,4'-DDD
4,4'-DDE
4,4'-DDT
Dieldrin
Endosulfan I
Endosulfan II
Endosulfan sulfate
Endrin
Endrin aldehyde
Endrin ketone
Heptachlor
Heptachlor epoxide
Methoxychlor
Toxaphene

EPA 608	5C19034	0.030	0.10
EPA 608	5C19034	0.015	0.10
EPA 608	5 C 19034	0.015	0.10
EPA 608	5C19034	0.020	0.20
EPA 608	5C19034	0.020	0.10
EPA 608	5 C 19034	0.20	1.0
EPA 608	SC19034	0.020	0.10
EPA 608	5C19034	0.025	0.10
EPA 608	5 C 19034	0.030	0.10
EPA 608	5C19034	0.015	0.10
EPA 608	5 C 19034	0.015	0.10
EPA 608	5C19034	0.040	0.10
EPA 608	SC19034	0.015	0.20
EPA 608	5C19034	0.020	0.10
EPA 608	5C19034	0.045	0.10
EPA 608	5 C 19034	0.020	0.10
EPA 608	5 C 19034	0.030	0.10
EPA 608	5 C 19034	0.020	0.10
EPA 608	5C19034	0.035	0.10
EPA 608	5C19034	1.5	5.0

Surrogate: Tetrachloro-m-xylene (35-115\%)
Surrogate: Decachlorobiphenyl (45-120\%)

Project ID: Outfall 011
Report Number: $10 C 1526$

MWH-Pasadena/Boeing	Project ID: Outfall O11	
300 North Lake Avenue, Suite 1200	Report Number: $10 C 1526$	Sampled: $03 / 18 / 05$
Pasadena, CA 91101	Received: $03 / 18 / 05$	

DRAFT: TOTAL PCBS (EPA 608)

AMEC VALIDATED

CONTRACT COMPLLANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226

Laboratory Del Mar
Reviewer M. Pokorny
Analysis/Method Semivolatiles

Laboratory Del Mar
Analysis/Method Semivolatiles

Package ID T711SV50
Task Order 313150010
SDG No. IOC1523, 1526
No. of Analyses 2
Date: April 10, 2005
Reviexver's Sjgnature

ACTION ITEMS ${ }^{-}$

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Qualifications required for calibration and LCS outliers and for blank contamination.
Protocol, e.g.,
Holding Times
GC/MS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and
Quantitation
System Performance
COMMENTS ${ }^{\text {b }}$
${ }^{2}$ Subcontracted analytical laboratory is not meeting contract and or method requirements.

* Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: SEMIVOLATILES
SAMPLE DELIVERY GROUP: IOC1523, IOC1526

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOC1523, 1OC1526
Project Manager: B. McIlvaine
Matrix: Water
Analysis: Semivolatiles
QC Level: Level IV
No. of Samples: 2
No. of Reanalyses/Dilutions: 0
Reviewer: M. Pokorny
Date of Review: April 10, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Semivolatile Organics (DVP-3, Rev. 2), EPA Method 625, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project: SDG:	$\begin{array}{r} \text { NPDES } \\ \text { IOC1523, } 1526 \end{array}$
DATA VALIDATION REPORT	Analysis:	SVOC

Table 1. Sample identification

Client ID	EPA ID	Lab No.	Matrix	Method
Outfall 011-Grab	Outfall 011-Grab	IOC1523-01	water	625
Outfall 011-Composite	Outfall 011-Composite	IOC1526-01	water	625

	Project: SDG:	$\begin{array}{r} \text { NPDES } \\ 10 C 1523,1526 \end{array}$
DATA VALIDATION REPORT	Analysis:	SVOC

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The analysis did not require preservation, and no preservation was noted in the field. The COCs noted that the samples were received intact. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by both field and laboratory personnel. The COCs accounted for the analysis presented in these SDGs. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The water samples were extracted within seven days of collection and analyzed within 40 days of collection. No qualifications were required.

2.2 GC/MS TUNING

The DFTPP tunes met the criteria specified in Method 625, and the samples were analyzed within 12 hours of the DFTPP injection time. No qualifications were required.

2.3 CALIBRATION

The initial calibration associated with this SDG was dated $03 / 17 / 05$. The average RRFs for were ≥ 0.05 and the $\%$ RSDs were $\leq 35 \%$ or $r^{2} \geq 0.995$ for all target compounds listed on the sample summary form, except for the r^{2} values for benzoic acid and 4,6 -dinitro-2-methylphenol. Benzoic acid and 4,6-dinitro-2-methylphenol were qualified as estimated nondetects, "UJ," in the samples of these SDGs. A representative number of average RRFs and \%RSDs were checked from the raw data, and no calculation or transcription errors were noted. The continuing calibration associated with the sample analysis was analyzed $03 / 22 / 05$. The RRFs for all target compounds were ≥ 0.05, and the $\%$ Ds were $\leq 20 \%$ except for the $\% \mathrm{D}$ for $3,3^{\prime}$-dichlorobenzidine. 3, 3^{\prime}-Dichlorobenzidine was qualified as an estimated nondetect, "UJ," in the samples of these SDGs. A representative number of RRFs, r^{2} values, and \%Ds were checked from the raw data, and no calculation or transcription errors were noted. No further qualifications were required.

2.4 BLANKS

One method blank (5 C 20022 -BLK1) was extracted and analyzed with this SDG. Butylbenzylphthalate and diethylphthalate were reported in the method blank and were qualified as nondetects, "U," in the samples of these SDGs. Review of the raw data indicated no reportable false negatives or false positives. No further qualifications were required.

	Project: SDG:	$\begin{array}{r} \text { NPDES } \\ \text { IOC1523, } 1526 \end{array}$
DATA VALIDATION REPORT	Analysis:	SVOC

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike/blank spike duplicate pair (5C20022-BS1/5C20022-BSD1) was extracted and analyzed with this SDG. All percent recoveries and RPDs were within the laboratory QC limits, except for benzidine which was not recovered in either the BS or BSD. Benzidine was rejected, " R ," in the samples of these SDGs. A representative number of recoveries and RPDs were calculated from the raw data and no calculation or transcription errors were found. No further qualifications were required.

2.6 SURROGATE RECOVERY

The sample surrogate recoveries were within the laboratory QC limits. A representative number of recoveries were calculated from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were associated with these SDGs. Evaluation of method accuracy and precision was based on blank spike/blank spike duplicate results. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples.

2.8.1 Field Blanks and Equipment Rinsates

There were no field QC samples associated with these SDGs. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate samples associated with these SDGs. No qualifications were required.

2.9 INTERNAL STANDARDS PERFORMANCE

The internal standard area counts and retention times were within the control limits established by the continuing calibration standards: $-50 \% /+100 \%$ for internal standard areas and ± 30 seconds for retention times. A representative number of recoveries were checked from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

	Project: SDG:	$\begin{array}{r} \text { NPDES } \\ 10 C 1523,1526 \end{array}$
DATA VALIDATION REPORT	Analysis:	SVOC

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for semivolatile target compounds by EPA Method 625. Review of the sample chromatograms, retention times, and spectra indicated no problems with target compound identification. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. No calculation or transcription errors were found. The reporting limits were supported by the low level of the initial calibration and the method detection limit study. No qualifications were required.

2.12 TENTATIVELY IDENTIFIED COMPOUNDS

TICs were not reported by the laboratory for these SDGs. No qualifications were required.

2.13 SYSTEM PERFORMANCE

Review of the raw data indicated no problems with system performance. No qualifications were required.

MWH-Pasadena Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: $10 C 1523$

Sampled: 03/18:05
Received: 03/18:05

DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: 10 Cl 1523

Sampled: 03/18:05
Received: 03/18:05

DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

DRAFT REPORT
 DRAFT REPORT
 DATA SUBJECT TO CHANGE

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasédena, CA 91101 Attention: Bronwyn Kelly

Report Number: $10 C 1526$

Sampled: 03/18/05
Received: 03/18/05

DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data ualifiers
Sample D: IOC1526-01 (DRAFT: Outfall 011 Composite - Water) Reporting Units: ug/n									
Acenaphthene	EPA 625	5C20022	0.20	1.0	ND	1.9	03:20/05	03/22/05 U	
Acenaphthylene	EPA 625	5 C 20022	0.20	1.0	ND	1.9	03/20/05	03/22/05	
Aniline	EPA 625	5C20022	5.8	20	ND	1.9	03/20/05	03/22/05	
Anthracene	EPA 625	5C20022	0.17	1.0	ND	1.9	03/20/05	03/22/05	
Benzidine	EPA 625	SC20022	4.8	10	ND	1.9	03/20105	03/22/05 R	L2L
Benzoic acid	EPA 625	5C20022	7.4	40	ND	1.9	03/20/05	03/22/05 UJ	C
Benzo(a)anthracene	EPA 625	5C20022	0.076	10	ND	1.9	03/20/05	03/22/05 C	
Benzo(a)pyrene	EPA 625	5C20022	0.28	4.0	ND	1.9	03/20/05	03/22/05	
Benzo(b)fluoranthene	EPA 625	SC20022	0.10	4.0	ND	1.9	03/20/05	03/22/05	
Benzo(g,h,i)perylene	EPA 625	5C20022	0.12	10	ND	1.9	03/20/05	03/22/05	
Benzo(k)fluoranthene	EPA 625	5C20022	0.11	1.0	ND	1.9	03/20/05	03/22/05	
Benzyl alcohol	EPA 625	5C20022	0.42	10	ND	1.9	03/20/05	03/22/05	
Bis(2-chloroethoxy)methane	EPA 625	5C20022	0.14	1.0	ND	1.9	03/20/05	03/22/05	
Bis(2-chloroethyl)ether	EPA 625	SC20022	0.17	1.0	ND	1.9	03/20/05	03/22/05	
Bis(2-chloroisopropyl)ether	EPA 625	5C20022	0.22	1.0	ND	1.9	03/20105	03/22/05	
Bis(2-ethylhexyl)phthalate	EPA 625	5C20022	2.2	10	ND	1.9	03/20/05	03/22/05	
4-Bromophenyl phenyl ether	EPA 625	5C20022	0.24	2.0	ND	1.9	03/20/05	03/22/05 \downarrow	
Butyl benzyl phithalate.	EPA 625	$5 C 20022$	0.68	10	ND1.1	1.9	03/20005	03/22/05 15	B, JB
4-Chloroaniline	EPA 625	5 C 20022	0.40	4.0	ND	1.9	03/20/05	03/22/05 U	
2-Chloronaphthalene	EPA 625	5 C 20022	0.12	1.0	ND	1.9	03/20/05	03/22/05	
4-Chloro-3-methylphenol	EPA 625	5C20022	0.68	4.0	ND	1.9	03/20/05	03/22/05	
4-Chlorophenyl phenyl ether	EPA 625	5C20022	0.11	1.0	ND	1.9	03/20/05	03/22/05	
2 -Chlorophenol	EPA 625	5C20022	0.24	2.0	ND	1.9	03/20/05	03/22/05	
Chrysene	EPA 625	5C20022	0.14	1.0	ND	1.9	03/20/05	03/22/05	
Dibenz(a,h)antbracene	EPA 625	5 C 20022	0.17	1.0	ND	1.9	03/20/05	03/22/05	
Dibenzofuran	EPA 625	5C20022	0.15	1.0	ND	1.9	03/20,05	03/22/05	
Di-n-butyl phthalate	EPA 625	SC20022	0.52	4.0	ND	1.9	03/20/05	03/22/05	
1,2-Dichlorobenzene	EPA 625	SC20022	0.22	1.0	ND	1.9	03/20/05	03/22/05	
1,3-Dichlorobenzene	EPA 625	5 C 20022	0.26	1.0	ND	1.9	03/20/05	03/22/05	
1,4-Dichlorobenzene	EPA 625	5C20022	0.10	1.0	ND	1.9	03/20/05	03/22/05 \downarrow	
3,3-Dichlorobenzidine	EPA 625	5 C 20022	1.9	10	ND	1.9	03/20/05	03/22/05 U5	C
2,4-Dichlorophenol	EPA 625	5C20022	0.42	4.0	ND	1.9	03/20/05	03/22/05 U	
Diethyl phthalate	EPA 625	SC20022	0.24	2.0 ND	DA2	1.9	03/20/05	03/22/05 U	B. ${ }^{\text {d }}$ S
2,4-Dimethylphenol	EPA 625	SC20022	0.62	4.0	ND	1.9	03/20/05	03/22/05 U	
Dimethyl phthalate	EPA 625	5C20022	0.16	1.0	ND	1.9	03/20/05	03/22/05 \cup	
4,6-Dinitro-2-methylphenol	EPA 625	5C20022	0.76	10	ND	1.9	03/20/05	03/22/05 UJ	c
2,4-Dinitrophenol	EPA 625	SC20022	5.4	10	ND	1.9	03/20/05	03/22/05 U	$\mathrm{N}-1$
2,4-Dinitrotoluene	EPA 625	SC20022	0.46	10	ND	1.9	03/20/05	03/22/05	
2,6-Dinitrotoluene	EPA 625	5C20022	0.48	10	ND	1.9	03/20/05	03/22/05	
Di-n-octyl phthalate	EPA 625	5C20022	0.34	10	ND	1.9	03/20/05	03/22/05	
1,2-Diphenylhydrazine/Azobenzene	EPA 625	5C20022	0.17	2.0	ND	1.9	03/20/05	03/22/05 \downarrow	
DRAFT REPORT MP 4.10.05 DATA SUBJECT TO CHANGE									

DRAFT REPORT
 DRAFT REPORT
 DATA SUBJECT TO CHANGE

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Pacific Analytical
Reviewer L. Calvin
Analysis/Method EFH by Method 8015B

Package ID T711TF55
Task Order 313150010
SDG No. IOC1523, IOCI526
No. of Analyses 2

Date: April 11, 2005
Reviewer's Signature $/ l$:
$i x i n$

ACTION ITEMS ${ }^{*}$
Case Narrative
Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, e.g.,
Holding Times
GCMS Tune/Inst. Performance
Calibration
Method blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification
Quantitation
System Performance
COMMENTS $^{\text {b }} \quad 1$ Acceptable as reviewed.

[^30]${ }^{6}$ Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: TPH/EXTRACTABLE
SAMPLE DELIVERY GROUP: IOC1523, 1OC1526

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOC1523, IOC1526
Project Manager: B. McIlvaine
Matrix: Water
Analysis: TPH-Extractable
QC Level: Level IV
No. of Samples: 2
No. of Reanalyses/Dilutions: 0
Reviewer: L. Calvin
Date of Review: April 11, 2005

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Extractable Total Fuel Hydrocarbons by GC (DVP-8, Rev. 2), USEPA SW-846 Method 8015M, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project: DATA VALIDATION REPORT SDG: Analysis: IOC1523, 1526 IPH

Table 1. Sample identification

Clien ID	EPA ID	Lab No.	Matrix	Method
Outfall 011 Grab	Outfall 011 Grab	IOC1523-01	water	$8015 B / E F H$
Outfall 011 Composite	Outfall 011 Composite	IOC1526-01	water	$8015 B / E F H$

DATA VALIDATION REPORT	Project: SDG: Analysis:	$\begin{array}{r} \text { NPDES } \\ \text { IOC1523, } 1526 \\ \text { TPH } \end{array}$

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at Del Mar Analytical laboratory on ice within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The Del Mar Analytical case narrative noted that the sample containers were received intact. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by both field and laboratory personnel, and accounted for the analyses presented in this SDG. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The samples were extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

2.2 CALIBRATION

The initial calibration associated with the sample analyses was analyzed on 03/11/05. The \%RSD was within the QC limit of $\leq 20 \%$. The \%Ds for the initial calibration verification (ICV) and continuing calibrations associated with the sample analysis were $\leq 15 \%$. The \%RSD and \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required

2.4 METHOD BLANKS

One method blank (5C21048-BLK1) was extracted and analyzed with the samples in these SDGs. EFH (C13-C22) was not present above the MDL in the method blank or in the instrument blank analyzed at the beginning of the analytical sequence. Review of the chromatograms showed no false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One method blank spike/blank spike duplicate pair (5C21048-BS1/BSD1) was extracted and analyzed with the samples in these SDGs. The laboratory reported recoveries of alkane range C13C 28 from spiked diesel. The recoveries were within the laboratory-established QC limits of 40 120%, and the RPD was within the QC limit of $\leq 25 \%$. The recoveries and RPD were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

	Project: SDG:	$\begin{array}{r} \text { NPDES } \\ \text { IOC1523, } 1526 \end{array}$
DATA VALIDATION REPORT	Analysis:	

2.6 SURROGATE RECOVERY

The samples were fortified with the surrogate compound n-octacosane. The sample surrogate recoveries were within the laboratory-established QC limits of $40-125 \%$. The recoveries were calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

There were no MS/MSD analyses performed on the samples of these SDGs. Evaluation of method accuracy and precision was based on the BS/BSD results. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.9.1 Field Blanks and Equipment Rinsates

There were no field blank or equipment rinsate samples associated with the site samples in these SDGs. No qualifications were required.

2.9.2 Field Duplicates

There were no field duplicate samples associated with these SDGs.

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for EFH n-alkane range C13-C22 by Method 8015B. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for these SDGs. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification was verified for these SDGs by recalculating any sample detects, blank spike recoveries, and a representative number of surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibration and by the laboratory MDL. Results were reported in mg / L (ppm). No qualifications were required.

(Del Mar Analytical

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention Bronwyn Kelly

Project ID: Outfall 011
Report Number: 10 Cl 523

Sampled: 03118:05
Received: 03/18:05

DRAFT: EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data nalifier
Sample ID: IOC1523-01 (DRAFT: Outfall 011 GRAB - Water) - cont. Reporting Units: mg/									
$\mathrm{EFH}(\mathrm{Cl} 3-\mathrm{C} 22)$ Surrogate: n-Octacosane (40-125\%)	EPA 8015B	SC21048	0.082	0.50	$\begin{aligned} & \text { ND } \\ & 91 \% \end{aligned}$	0.957	03/21/05	03,21/05	

AMEC Vinumato TEVEL IV

MWH-Pasadena/Boeing
Project ID: Outfall 011
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
Report Number: IOC1526

DRAFT: EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	$\begin{aligned} & \text { Data } \\ & \text { qlifiers } \end{aligned}$
Sample ID: IOC1526-01 (DRAFT: Outfall 011 Composite - Water) - cont. Reporting Units: mg n									
$\mathrm{EFH}(\mathrm{Cl} 3-\mathrm{C} 22)$ Surrogate: n-Octacosane (40-125\%)	EPA 8015 B	5C21048	0.082	0.50	ND 81%	0.943	03/21/05	03/21/05	

AMEC VALIDATED LEVEL IV

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Pacific Analytical
Reviewer L. Calvin
Analysis/Method GRO by Method 8015M

Package ID T711TF57
Task Order 313150010
SDG No. IOC1523, IOC1526
No. of Analyses 3
Date: April 11, 2005

ACTION ITEMS ${ }^{1}$

. Case Narrative
Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted

4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, e.g.,
Holding Times
GC/MS Tune/fnst. Performance
Calibration
Method blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification
Quantitation
System Performance

COMMENTS $^{\text {b }} \quad$	Acceptable as reviewed.

[^31]
amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: Total Petroleum Hydrocarbons: Purgeable SAMPLE DELIVERY GROUP: IOC1523, IOC1526

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:	NPDES
	SDG:	IOC1523, 1526
DATA VALIDATION REPORT	Analysis:	TPH

1. INTRODUCTION

Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010
SDG\#: IOC1523, IOC1526
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: TPH-Purgeable
QC Level: Level IV
No. of Samples: 3
No. of Reanalyses/Dilutions: 0
Reviewer: L. Calvin
Date of Review: April 11,2005

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Extractable Total Fuel Hydrocarbons by GC (DVP-8, Rev. 2), USEPA SW-846 Method 8015M, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project: SDG:	$\begin{array}{r} \text { NPDES } \\ 10 C 1523,1526 \end{array}$
DATA VALIDATION REPORT	Analysis:	TPH

Table 1. Sample identification

Client ID	EPA ID	Lab No.	Matrix	Method
Outfall 011 Grab	Outfall 011 Grab	IOC1523-01	water	$8015 M /$ GRO
Outfall 011 Composite	Outfall 011 Composite	IOC1526-01	water	$8015 \mathrm{M} /$ GRO
Trip Blank	Trip Blank	IOC1526-02	water	8015M/GRO

DATA VALIDATION REPORT	Project: SDG: SPDES IOC1523, Analysis:

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at Del Mar Analytical on ice within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The Del Mar Analytical case narrative noted that the samples were received intact, and the COCs indicated the samples were properly preserved, with the exception of the trip blank, which was an unpreserved aliquot. Information regarding lack of headspace in the VOA vials was not provided. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by both field and laboratory personnel. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The water site samples were analyzed within 14 days of collection, and the unpreserved sample (Trip Blank) was analyzed within seven days of collection. No qualifications were required.

2.2 CALIBRATION

One gasoline standard initial calibration dated 08/26/04 was associated with the sample analyses. The \%RSD for GRO ($\mathrm{C} 4-\mathrm{Cl} 2$) was within the QC limit of $\leq 20 \%$. An initial calibration verification (ICV) was not provided in the data package. The \%Ds for both CCVs bracketing the sample analyses were within the Method QC limit of $\leq 15 \%$. The \%RSD and \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required

2.4 METHOD BLANKS

One water method blank (5C21006-BLK1) was associated with the sample analyses. GRO (C4-C12) was not detected above the MDL in the method blank. Review of the raw data indicated no false negative result. No qualifications were necessary.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One water method blank spike (5C21006-BS1) was associated with the sample analyses. GRO (C4-C12) was recovered within the laboratory-established QC limits of $70-140 \%$ in the blank spike. The recovery was checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

	Project: SDG:	$\begin{array}{r} \text { NPDES } \\ \text { IOCIS23, } 1526 \end{array}$
DATA VALIDATION REPORT		

2.6 SURROGATE RECOVERY

The samples were fortified with the surrogate compound 4-bromofluorobenzene (BFB). Surrogate recoveries were within the laboratory-established QC of $65-140 \%$. Recoveries were calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were performed on site sample Outfall 011 Composite. Recoveries for GRO (C4-C12) were within the laboratory QC limits of $60-140 \%$, and the RPD was within the QC limit of $\leq 20 \%$. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.9.1 Trip Blanks, Field Blanks, and Equipment Rinsates

Sample Trip Blank was the trip blank associated with site sample Outfall 011 Composite. GRO (C4-C12) was not detected above the MDL in the trip blank. Review of the raw data indicated no false negative result. Sample Outfall 011 Grab had no associated trip blank analysis. There were no field blank or equipment rinsate samples associated with these SDGs. No qualifications were necessary.

2.9.2 Field Duplicates

There were no field duplicate samples in these SDGs.

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for GRO (C4-C12) by EPA SW-846 Method 8015M. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for the samples in these SDGs. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification was verified for these SDGs by recalculating any sample detects, blank spike recoveries, and a representative number of surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibration and by the laboratory MDL. Results were reported in units of $\mu \mathrm{g} / \mathrm{L}$ (ppb). No qualifications were required.

AMEC VALIDATED

AMEC VALIDATED

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer K. Shadowlight
Analysis/Method Volatiles by 624

Package ID T711VO85
Task Order 313150010
SDG No. IOC1523, IOC1526
No. of Analyses 4
Date April 8, 2005

ACTION ITEMS

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

GCMS Tune/nst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Intermal Standard Performance
Compound Identification and
Quantitation
System Performance
COMMENTS ${ }^{\text {b }}$

* Subcontracted analytical laboratory is not meeting contract and/or method requirements.
${ }^{6}$ Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: VOLATILES

SAMPLE DELIVERY GROUP: IOC1523, IOC1526

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	NPDES DATA VALIDATION REPORT: SDG:IOC1523, IOC1526
VOC	

1. INTRODUCTION

Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010
SDG\#: IOC1523, IOC1526
Project Manager: B. McIlvaine
Matrix: Water
Analysis: Volatiles
QC Level: Level IV
No. of Samples: 4
No. of Reanalyses/Dilutions: 0
Reviewer: K. Shadowlight
Date of Review: April 8, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Volatile Organics (DVP-2, Rev. 2), EPA Method 624, SW846 Method 8260B, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary forms as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

DATA VALIDATION REPORT	Project: SDDES SDG:IOC1523, Analysis: VOC

Table 1. Sample identification

Client ID	EPA ID	Lab No.	Matrix	Method
Outfall 011 Grab	Outfall 011 Grab	IOC1523-01	water	624
Trip Blank	Trip Blank	IOC1523-02	water	624
Outfall 011 Composite	Outfall 011 Composite	IOC1526-01	water	624
Trip Blank	Trip Blank	IOC1526-02	water	624

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The samples were properly preserved. The COCs noted that the samples were received intact; however, information regarding absence of headspace was not provided. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by both field and laboratory personnel. The COCs accounted for the analyses presented in these SDGs. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The samples were analyzed within 14 days of collection. No qualifications were required.

2.2 GC/MS TUNING

The ion abundance windows shown on the quantitation reports were consistent with those specified in EPA Method 624, and all ion abundances were within the established windows. The samples and associated QC were analyzed within 12 hours of the BFB injection times. The Form Vs were verified from the raw data and no discrepancies between the summary forms and the raw data were noted. No qualifications were required.

2.3 CALIBRATION

Two initial calibrations dated 03/04/05 and 03/16/05 (trichlorotrifluoroethane, acrolein, and acrylonitrile only) were associated with these SDGs. The average RRF for acrolein was <0.05 in the initial calibration dated $03 / 16 / 05$; therefore, the nondetect results for acrolein were rejected, "R," in all samples of these SDGs. The average RRFs were ≥ 0.05 for the remaining target compounds listed on the sample result summaries. The $\%$ RSDs were $\leq 35 \%$ for all applicable target compounds. Two continuing calibrations dated 03/19/05 and 03/20/05 were associated with the sample analyses in these SDGs. The \%Ds for bromomethane, chloromethane, chloroethane, 1,1dichloroethane, 1,2-dichloroethane, and trichlorofluoromethane exceeded 20% in the continuing calibration dated 03/19/04; therefore, the nondetect results for the aforementioned target compounds were qualified as estimated, "UJ," in sample Outfall 011 Grab. No qualifications were required for the Trip Blank. The RRF for acrolein was <0.05 in the continuing calibration $03 / 20 / 05$; therefore, the nondetect results for acrolein were rejected, "R," in all samples of these SDGs. The RRFs were ≥ 0.05 for the remaining target compounds listed on the sample result summaries. A representative
number of \%RSDs and average RRFs from the initial calibrations, and \%Ds and RRFs from the continuing calibrations were recalculated from the raw data, and no calculation or transcription errors were found. No further qualifications were required.

2.4 BLANKS

Two water method blanks (5C20002-BLK1 and 5C19004-BLK1) were associated with the sample analyses. There were no detects above the MDLs for the target compounds listed on the sample result summaries. The method blank raw data showed no evidence of false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

Two water blank spike (5C20002-BS1 and 5C19004-BS1) were associated with the sample analyses. All recoveries were within the laboratory-established QC limits. A representative number of recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.6 SURROGATE RECOVERY

The surrogates were recovered within the QC limits of $80-120 \%$ in the samples and associated QC. A representative number of surrogate recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed for these SDGs. Evaluation of method accuracy was based on blank spike results. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

2.8.1 Trip Blanks

Sample Trip Blank (IOC1523) and Trip Blank (IOC1526) were the trip blanks associated with this SDG. There were no target compounds detected above the MDLs in the trip blanks. No qualifications were required.

2.8.2 Field Blanks and Equipment Rinsates

There were no field QC samples associated with these SDGs. No qualifications were required.

DATA VALIDATION REPORT

2.8.3 Field Duplicates

There were no field duplicate samples associated with these SDGs.

2.9 INTERNAL STANDARDS PERFORMANCE

Internal standard area counts and retention times for the samples in these SDGs were within the control limits established by the continuing calibration standards: $+100 \% /-50 \%$ for internal standard areas and ± 0.50 minutes for retention times. A representative number of internal standard areas and retention times were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.10 COMPOUND IDENTIFICATION

Target compound identification was verified at a Level IV data validation. The laboratory analyzed the volatile target compounds by EPA Method 624. A TIC search was performed for requested target compounds 1,2 -dichloro-1,1,2-trifluoroethane and cyclohexane. The laboratory was calibrated for target compound 1,2-dichloro-1,1,2-trifluoroethane; however, the calibration was not used for identification. Target compound cyclohexane was not included in the calibration (see section 2.11).-Neither compound was detected as a TIC. Chromatograms, retention times, and spectra for the samples and QC were examined and no target compound identification problems were noted. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. The reporting limits were supported by the lowest concentrations of the initial calibration standards and by the MDL study. Calibration was not utilized for target compounds 1,2 -dichloro-1,1,2-trifluoroethane and cyclohexane, therefore, the laboratory performed only a TIC search for these compounds. Nondetects for both compounds were qualified as estimated, "UJ," in sample Outfall 011 Grab and 011 Composite. Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike and surrogate recoveries from the raw data. Results were reported in $\mu \mathrm{g} / \mathrm{L}(\mathrm{ppb})$. No calculation or transcription errors were noted. No further qualifications were required.

2.12 TENTATIVELY IDENTIFIED COMPOUNDS

The laboratory did not provide TICs for these SDGs. No qualifications were required.

2.13 SYSTEM PERFORMANCE

A review of the chromatograms and other raw data showed no identifiable problems with system performance. No qualifications were required.

MWH-Pasadena/Boeing	Project ID: Outfall 011	
300 North Lake Avenue, Suite 1200 Pasadena, CA 91101		Sampled: 03/18/05
Attention: Bronuyn Kelly	Number: 10 Cl	Received: 0371805

DRAFT: PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	$\begin{array}{r} \text { Da } \\ \text { d Quali } \end{array}$	
Sample D: 1OC1523-01 (DRAFT: Outfall 011 GRAB - Water) Reporting Units: ug $/$										
1,2-Dichloro-1,1,2-trifluoroethane	EPA 624 (MOD.)	5 Cl 19004	N/A	2.5	ND	1		03:19:05	45	
Cyclohexane	EPA 624 (MOD.)	5C19004	N/A	2.5	ND	1	03:19/05	03/19:05	UJ	$\begin{aligned} & * 11 \\ & * 11 \end{aligned}$
Sample ID: 1OC1523-02 (DRAFT: Trip Blank - Water) Reporting Units: ugh										
1,2-Dichloro-1,1,2-rifiuoroethane	EPA 624 (MOD.)	SC19004	N/A	2.5	ND					
Cyclohexane	EPA 624 (MOD.)	5C19004	N/A	2.5	ND		03/19/05	03:19:05	u	

AMEC VALIDATED

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly

Project ID: Outfall 011

Report Number: IOC1523

Sampled: 03/1805
Received: 03:18:05

DRAFT: PURGEABLES BY GC/MS (EPA 624)

amec validated

DRAFT REPORT

DRAFT: PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factore	n Date Extracted	Date Analyzed	Qu	
Sample 1D: 1OC1523-02 (DRA Reporting Units: ug/l	rip Blank								Rel	SuO code
Benzene	EPA 624	5 Cl 19004	0.28	1.0	ND	1	03:19:05.	03/19/05	U	
Bromodichloromethave	EPA 624	5 C 19004	0.30	2.5	ND	1	03i19/05	03:19/05		
Bromoform	EPA 624	$5 C 19004$	0.32	5.0	ND	1	03/19105	03/19:05		
Bromomethane	EPA 624	5C19004	0.34	5.0	ND	1	03/19/05	03/19105		
Carbon tetrachloride	EPA 624	5 Cl 19004	0.28	0.50	ND	1	03/19/05	03/19/05		
Chlorobenzene	EPA 624	5C19004	0.36	2.0	ND	1	03/19:05	03/19/05		
Chlorcethane	EPA 624	5 C 19004	0.33	5.0	ND	1	03/19105	03/19105		
Chloreform	EPA 624	5C19004	0.33	2.0	ND	1	03/19/05	03/19105		
Chloromethane	EPA 624	5 Cl 19004	0.30	5.0	ND	1	03/19105	03119.05		
Dibromochloromethane	EPA 624	5 C 19004	0.28	$2.1)$	ND	1	03/19/05	03/19/05		
1,2-Dichlorobenzene	EPA 624	5 Cl 19004	0.32	$2.1)$	ND	1	03/19/05	03/19/05		
1,3-Dichlorobenzene	EPA 624	5C19004	0.35	2.0	ND	1	03/19/05	03/19/05		
1,4-Dichlorobenzene	EPA 624	5 C 19004	0.37	2.0	ND]	0319105	03/19:05		
1,1-Dichloroethane	EPA 624	5 C 19004	0.27	2.0	ND	1	03/19/05	03/19.05		
1,2-Dichloroethane	EPA 624	SC19004	0.28	0.50	ND	1	03/19/05	03/19.05		
1,1-Dichloroethene	EPA 624	SC19004	0.32	5.0	ND	1	03/19/05	03:19.05		
trans-1,2-Dichloroethene	EPA 624	$5 \mathrm{C19004}$	0.27	2.0	ND	1	03/19105	03119,05		
1,2-Diohloropropane	EPA 624	$5 C 19004$	0.35	2.0	ND	1	$03 / 19105$	03/19:05		
cis-1,3-Dichloropropene	EPA 624	5 Cl 9004	0.22	2.0	ND	1	$03 / 1905$	0371905		
trans-1,3-Dichloropropene	EPA 624	5 Cl 19004	0.24	2.0	ND	1	03/19/05	03/19:05		
Ethylbenzene	EPA 624	5C19004	0.25	2.0	ND	1	03/19105	03/19,05		
Methylene chloride	EPA 624	5 Cl 19004	0.48	5.0	ND	1	03/19/05	03119105		
1,1.2,2-Tetrachloroethane	EPA 624	$5 C 19004$	0.24	2.0	ND	1	03/19705	03/19705		
Tetrachloroethene	EPA 624	$5 C 19004$	0.32	2.0	ND	1	03/19/05	03:19:05		
Toluene	EPA 624	5 C 19004	0.36	2.0	ND	1	03/19/05	03:19/05		
1,1,1-Trichloroethane	EPA 624	5 C 19004	0.30	2.0	ND	1	03/19/05	03/19/05		
1,1,2-Trichloroethanc	EPA 624	SC19004	0.30	2.0	ND	1	03/19/05	03:19\%05		
Trichloroethene	EPA 624	5C19004	0.26	2.0	ND	1	03/19/05	03/19/05		
Trichlorofluoromethane	EPA 624	5 Cl 9004	0.34	5.0	ND	1	03/19105	03/19/05		
Vinyl chloride	EPA 624	5 Cl 9004	0.26	0.50	ND	1	03:19:05	03:1905		
Xylenes, Total	EPA 624	5 C 19004	0.52	4.0	ND	1	03i19/05	03/1905		
Trichlororrifluoroethane (Frcon 113)	EPA 624	5 C 19004	1.2	5.0	ND	1	03/19/05	03/19105	2	
Surrogate: Dibromofluoromethane ($80-120 \%$) Surrogate: Toluene-d8 (80-120\%) Surrogate: 4-Bromofluorobenzene ($80-120 \%$)					111%					
					101%					
					95\%					

AMEC VALIDATED

MWH-Pasadena/Boeing
Project ID: Outfall 011

Report Number: 1OC1523
Sampled: 0311805
Pasadena, CA 91101
Attention: Bronwyn Kelly
DRAFT: PURGEABLES BY GC/MS (EPA 624)

AMEC VALIDATED

MWH-Pasadena/Boeing	Project ID: Outfall 01	
300 North Lake Avenue, Suite 1200		Sampled: 03/1805
Pasadena, CA 91101	Report Number: $10 C 1526$	Received: 03/18/0S
Attention: Bronuyn Kelly		

DRAFT: PURGEABLES BY GC/MS (EPA 624)

Analyte
Method
Batch
MDL Reporting Sample Dilution Date

Sample ID: IOC1526-01 (DRAFT: Outfall 011 Composite - Water) - cont. Reporting Units: ug/1
Benzene
Bromodichloromethane
Bromoform
Bromomethane
Carbon tetrachloride
Chlorobenzene
Chloroethane
Chloroform
Chloromethane
Dibromochloromethane
1,2-Dichlorobenzene
1,3-Dichlorobenzene
1,4-Dichlorobenzene
1,1-Dichloroethane
1,2-Dichloroethane
1,1-Dichloroethene
trans-1,2-Dichloroethene
1,2-Dichloropropane cis-1,3-Dichloropropene
trans-1,3-Dichloropropene
Ethylbenzene
Methylene chloride
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichloroethene
Trichlorofluoromethane
Vinyl chloride
Xylenes, Total
Trichlororifluoroethane (Frcon 113)
Surrogate: Dibromofluoromethane ($80-120 \%$)
Surrogate: Toluene-d8 (80-120\%)
Surrogate: 4 -Bromofluorobenzene $(80-120 \%)$

DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE

Project ID: Outfall 011
Report Number: $10 C 1526$
Sampled: 03/18/05
Received: 03/18/05

DRAFT: PURGEABLES BY GC/MS (EPA 624)

多

MWH-Pasadena/Boeing	Project ID: Outfall 011	
300 Norh Lake Avenue, Suite 1200	Report Number: 1OC1526	Sampled: 03/18/05
Pasadena, CA 91101	Received: 03/18/05	
Atention: Bronwy Kelly		

DRAFT: PURGEABLES BY GC/MS (EPA 624)

MWH-Pasadena/Boeing	Project ID: Outfall 011	
300 North Lake Avenue, Suite 1200		Sampled: 03/18/05
Pasadena, CA. 91101	Report Number: 10 Cl 526	Received: 03/18/05
Attention: Bronwyn Kelly		

DRAFT: PURGEABLES BY GC/MS, TENTATIVELY DDENTIFIED COMPOUNDS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	$\begin{array}{r} \mathrm{Da} \\ \text { Quali } \end{array}$	
Sample ID: 1OC1526-01 (DRAF Reporting Units: ugh	; Outfall 011 Com	mposite -	ater)						24.21	fiod ${ }_{\text {bde }}$
1,2-Dichloro-1,1,2-rifluoroethane	EPA 624 (MOD.)	$5 C 20002$	N/A	2.5	ND	1	03/20/05	03/20/05	45	* 11
Cyclohexane	EPA 624 (MOD.)	5 C 20002	N/A	2.5	ND	1	03/20/05	03:20/05	45	\cdots
Sample ID: IOC1526-02 (DRAFT: Trip Blank - Water) Reporting Units: ug 1										
1,2-Dichloro-1,1,2-trifluoroethane	EPA 624 (MOD.)	5C20002	N/A	2.5	ND	1	03/20/05	03/20/05	4	
Cyclohexane	EPA 624 (MOD.)	5 C 20002	N/A	2.5	ND	1	03/20/05	03i20105	4	

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: VOLATILES
SAMPLE DELIVERY GROUP: IOC1523, IOC1526

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: IOC1523, IOC1526
Project Manager: B. McIlvaine
Matrix: Water
Analysis: Volatiles (1,4-dioxane)
QC Level: Level IV
No, of Samples: 2
No. of Reanalyses/Dilutions: 0
Reviewer: K. Shadowlight
Date of Review: April 8, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Volatile Organics (DVP-2, Rev. 2), EPA Method SW-846 8260 B and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC1523, IOC1526

Table 1. Sample identification

Client ID	EPA ID	Lab No. Del Mar, CA	Lab No. Del Mar, AZ	Matrix	Method
Outfall 011 Grab	Outfall 011 Grab	IOC1523-01	POC0620-01	water	8260 B
Outfall 011 Composite	Outfall 011 Composite	IOC1526-01	POC0614-01	water	8260 B

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the Del Mar within the temperature limits of $4{ }^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The samples were subcontracted to Del Mar (Phoenix) for 1,4-dioxane analysis. The samples were properly preserved. The COCs and transfer COCs noted that the samples were received intact; however, information regarding absence of headspace was not provided. No qualifications were required.

2.1.2 Chain of Custody

The COCs and transfer COCs were signed by field and laboratory personnel. As the samples were couriered directly to the laboratory from the field, custody seals were not required. According to the transfer COCs, there were no custody seals present on the coolers received by Del Mar Analytical in Arizona. The EPA IDs were added to the sample result summary reports by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were analyzed within 14 days of collection. No qualifications were required.

2.2 GC/MS TUNING

The ion abundance windows were consistent with those specified in EPA Method 8260B. All ion abundances were within the established windows, and the samples were analyzed within 12 hours of the BFB injection time. No qualifications were required.

2.3 CALIBRATION

One initial calibration, dated $03 / 19 / 05$, was associated with these SDGs. The average RRF for $1,4-$ dioxane was ≥ 0.05 and the r^{2} value was ≥ 0.995. The laboratory reported the continuing calibration and the blank spike (P5C2203-BS1) from the same analysis. As the analysis cannot be reported as both a CCV and a blank spike, the reviewer reported P5C2203-BS1 as the continuing calibration. The RRF for 1,4 -dioxane was ≥ 0.05 and the $\% \mathrm{D}$ was $\leq 20 \%$. The r^{2} value and average RRF for 1,4 -dioxane in the initial calibration, and the $\% \mathrm{D}$ and RRF for 1,4-dioxane in the continuing calibration were recalculated from the raw data, and no calculation or transcription errors were found. No qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOCI523, IOCIS26

2.4 BLANKS

One water method blank (P5C2203-BLK1) was associated with these SDGs. Target compound 1,4dioxane was not detected in the method blank. The method blank raw data showed no evidence of a false negative. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory analyzed a blank spike/blank spike duplicate pair (P5C2203-BS1/BS1D) with these SDGs; however, P5C2203-BS1 was reported as the CCV (see section 2.3); therefore, PSC2203-BS1D was evaluated as a single blank spike. The recovery for 1,4 -dioxane was within the QC limits of $70-130 \%$. The recovery was recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.6 SURROGATE RECOVERY

The samples and QC were fortified with dibromofluoromethane. The surrogate was recovered within the laboratory QC limits of $80-125 \%$. The surrogate recoveries for the samples were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were associated with these SDGs. Evaluation of method accuracy was based on blank spike results. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

2.8.1 Trip Blanks

The samples in these SDGs had no associated trip blank. No qualifications were required.

2.8.1.1 Field Blanks and Equipment Rinsates

The site samples in these SDGs had no associated field QC samples. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate samples associated with these SDGs.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC1523,

2.9 INTERNAL STANDARDS PERFORMANCE

Internal standard area counts and retention times for the samples were within the control limits established by the continuing calibration standards: $+100 \% /-50 \%$ for internal standard areas and ± 0.50 minutes for retention times. Internal standard areas and retention times were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.10 COMPOUND IDENTIFICATION

Target compound identification was verified at a Level IV data validation. The laboratory analyzed for 1,4-dioxane by Method 8260B/SIM. Chromatograms, retention times, and spectra for the samples and QC were examined and no target compound identification problems were noted. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. The reporting limit was supported by the lowest concentration of the initial calibration standards and by the undated MDL supplied by the laboratory. Compound quantitation was verified by recalculating blank spike and surrogate recoveries from the raw data. No calculation or transcription errors were noted. No qualifications were required.

2.12 TENTATIVELY IDENTIFIED COMPOUNDS

TICs are not typically reported for SIM methods.

2.13 SYSTEM PERFORMANCE

A review of the chromatograms and other raw data showed no identifiable problems with system performance. No qualifications were required.

1,4-DIOXANE BY GC/MS (EPA 5030B/8260B)

SMEC VALIDATED Level IV

Del Mar Analytical - Phoenix
Karen Maxwell
Proper Manager
Del Mar Analytical - Irvine
17461 Derian Ave. Sute 100
Irvine, CA 92614
Allention: Michete Hamer …

Project ID: 10C1526
Renorl Number: POC0614

Sampled: 031805
Received 032205

1,4-DIOXANE BY GC/MS (EPA 5030B/8260B)

Fruect Manager

amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: GENERAL MINERALS
 SAMPLE DELIVERY GROUPS: IOC1523 \& IOC1526

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: IOC1523, IOB1526
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: General Minerals
QC Level: Level IV
No. of Samples: 2
Reviewer: L. Jarusewic
Date of Review: April 4, 2005

The samples listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 300.0, 350.2, 330.5, 405.1, 335.2, 413.1, 415.1, 418.1, 218.6, 120.1, 160.2, 160.5, and 180.1, Standard Methods for the Examination of Water and Wastewater Method SM5540-C and SM2540C, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

NPDES		
	Project:	SDG No.:
DATA VALIDATION REPORT	IOCIS23/1526	
Analysis:	General Minerals	

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 011-Grab	Outfall 011-Grab	IOC1523-01	Water	General Minerals
Outfall 011-Composite	Outfall 011-Composite	IOC1526-01	Water	General Minerals

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC1523/1526

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel. The COCs accounted for all analyses present in these SDGs except fluoride for Outfall 011-Composite. The fluoride analysis was requested in a memo from MWH personnel dated 03/21/05 Outfall 011-Composite. No sample qualifications were required.

2.1.3 Holding Times

The holding times were assessed by comparing the dates of collection with the dates of analyses. The 28 -day analytical holding time for ammonia, fluoride, chloride, sulfate, conductivity, total recoverable hydrocarbons, TOC, and oil and grease, the 14-day holding time for cyanide, the seven-day holding time for total suspended solids and total dissolved solids, the 48 -hour holding time for surfactants, turbidity, nitrate/nitrite, biological oxygen demand, and total setteable solids, and the 24 -hour hexavalent chromium and residual chlorine holding times were met. No qualifications were required.

2.2 CALIBRATION

For the applicable analyses, the initial calibration correlation coefficients were ≥ 0.995, except for cyanide. The reviewer could not reproduce the cyanide initial calibration curve. The r^{2} obtained by the reviewer was marginally less than 0.995; therefore, nondetected cyanide in samples Outfall 011 -Grab and Outfall 011-Composite were qualified as estimated, "UJ." Initial and continuing calibration information was acceptable with recoveries within the control limits of $90-110 \%$. For ammonia, no information regarding the standardization of the titrant was provided; however, as the LCS recovery was within the CCV control limits, no qualifications were required. For BOD, no information regarding the calibration of the oxygen meter was provided; however, as the LCS recovery was within the CCV control limits, no qualifications were required. Calibration is not applicable to residual chlorine, oil and grease, total dissolved solids, total suspended solids, or total settleable solids. The total cyanide reporting limit check standard was recovered within the control limits of $70-130 \%$. No further qualifications were required.

2.3 BLANKS

Turbidity was detected in method blank 5C19032-BLK1 at 0.060 NTU; however, the method blank result was insufficient to qualify the Outfall 011 -Grab and Outfall 011 -Composite results. Fluoride was

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOCI523/1526

detected in the method blank SC18104-BLK1 at $0.103 \mathrm{mg} / \mathrm{L}$; therefore, fluoride detected in Outfall 011Grab and Outfall 011-Composite was qualified as estimated, "UJ." Cyanide was reported in method blank 5C21083-BLK1 at $-0.0062 \mathrm{mg} / \mathrm{L}$; therefore, nondetected cyanide in samples Outfall 011-Grab and Outfall 011-Composite was qualified as estimated, "UJ." The remaining method blank and CCB results reported on the summary forms and in the raw data for blank analyses associated with the samples were nondetects at the reporting limit. No further qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample and laboratory control sample duplicate (BOD, oil and grease, and total recoverable hydrocarbons only) recoveries and RPDs were within the laboratory-established control limits. The LCS is not applicable to turbidity, conductivity, residual chlorine, or setteable solids. No qualifications were required.

2.5 SURROGATES RECOVERY

Surrogate recovery is not applicable to the analyses presented in these SDGs.

2.6 LABORATORY DUPLICATES

A laboratory duplicate analysis was performed on sample Outfall 011-Grab for residual chlorine. The RPD was within the control limits of $\leq 20 \%$ and no qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was assessed based on LCS results.

2.8 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analyses of these samples; therefore, furnace atomic absorption QC is not applicable.

2.9 ICP SERIAL DILUTION

ICP serial dilution is not applicable to the analyses presented in this data validation report.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOCl523/1526

2.10 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Cyanide in Outfall 011-Grab and Outfall 011-Composite was reported in the raw data at -0.0053 and $-0.0064 \mathrm{mg} / \mathrm{L}$, respectively, and the method blank associated with Outfall $011-\mathrm{Grab}$ and Outfall 011 -Composite was reported at $-0.0062 \mathrm{mg} / \mathrm{L}$. Due to these negative results, the reviewer raised the MDL and the reporting limit on the Form Is to the level of interference. BOD and surfactant in Outfall 011 -Grab and surfactant in Outfall 011 -Composite detected below the reporting limit were qualified as estimated, "J." No further qualifications were required.

2.11 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.11.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.11.2 Field Duplicates

There were no field duplicate pairs associated with these SDGs.

MWH-Pasadena/Boeing
300 North Lake Avenne, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Ouffall 011

Report Number: IOC1523

Sampled: 03/18:05
Received: 03/18:05

DRAFT: TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)

AMEC VALIDATED

Del Mar Analytical

Ag, Chesapreake Dr., Suite 805. San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9589
9830 Souty 5 ist St. Suite B-12C. Pnoenix, AZ 85044 (480) 78.5-0043 FAX (480) 785-0851 $25 \% 2$ E. Sur:set Ro. \#3, Las Vegas, NV 89120 (702) 790.3620 FAX (702) 793-3621

MWH-Pasadena/Bocing	Project ID: Outfall 011	
300 North Lake Avenue, Suite 1200		Sampled: 03/18:05
Pasadena, CA 91101	Report Number: 10 Cl 153	Received. 03/18/05

DRAFT: INORGANICS

MDL Reporting Sample Dilution Date Date Data
Analyte
Method
Batch Limit Limit Result FactorExtracted

Sample ID: 1OC1523-01 (DRAFT: Outfall 011 GRAB - Water) - cont.

Reporting Units: m//hhr
Total Settleable Solids
$\begin{array}{llllllllll}\text { EPA. } 160.5 & 5 C 19045 & 0.10 & 0.10 & N D & 1 & 03: 19: 05 & 03.19: 05 & U\end{array}$

AMEC VALIDAIIL

LEVEL IV

17461Derian Ave., Suite 1 CO, Irvine. CA $925: 4$ (949) 261-1022 FAX (9.40) 260.2207 1214 E. Cooley Or., Suite A, Coltor, CA 92324 (909) 370-4667 FAX $9491370-1026$

Del Mar Analytical

300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011

Report Number: IOCl 523

Sampled: 03/18:05
Received: 03/18/05

DRAFT: INORGANICS

AMEC VALIDATED

MWH-Pasadena Boeing	Project ID: Outfall 011	
300 North Lake Avenue, Suite 1200		Sampled: 03:18/05
Pasadena, CA 91101	Report Number: 10 Cl 523	Received 03i18:05
Attention: Bronwyn Kelly		

DRAFT: INORGANICS

Analyte			MDL Limit	Reporting Limit	Sample Result	Dilution Date Factor Extracted			Data	
	Method	Batch						Analyzed	$\begin{aligned} & \text { Qualifie } \\ & \text { REV } \\ & \text { QUAC } \end{aligned}$	QuAKL CORE
Sample D: 1OC1523 Reporting Units:	utfall 011	$A B-\text { Wat }$	- con							
Specific Conductance	EPA 120.1	5C21077	1.0	1.10	360	1	03:21/05	03:21:05		

AMEC VALIDATED

LEVEL IV

2523 E. Sunse: Rd. \#3, Las Veses. NV 89:20 (702)798-3620 FAX (702) 798-302:

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Ourfall 011
Report Number: 10 Cl 523

Sampled: 03/18:05
Received: 03:18/05

DRAFT: INORGANICS

aniec validatied

DRAFT REPORT

DRAFT REPORT
DATA SUBIECT TOCHANOE

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Project ID: Outfall 011
Sampled: 03/18/05
Report Number: IOC1526
Received: 03/18/05

DRAFT: TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)

Analyte
Method
MOL
Reporting
Sample Dilution Date
Date
Data

Batch
Limit
Limit Result Factor Extracted Analyzed Qualifiers REV GQUNL oust. QuA
CODE
Sample ID: IOC1526-01 (DRAFT: Outfall 011 Composite - Water) Reporting Units: mg/l
Total Recoverable Hydrocarbons
EPA 418.1 5 C22091 0.31
1.0

ND
1

AMES VALIDATED

LEVEL IV

D Del Mar Analytical

MWH-Pasadena/Boeing	Project 1D: Outfall 011	
300 North Lake Avenue, Suite 1200		Sampled: 03/18/05
Pasadena, CA 91101	Report Number: 10 Cl 1526	Received: 03/18/05
Attention: Bronwyn Kelly		

DRAFT: INORGANICS

AMEC VALIDAIED

LEVEL IV

DRAFT REPORT

```
MWH-Pasadena/Boeing Project ID: Outfall 011
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
```

Project ID: Outfall 011
Report Number: 10 C 1526

Sampled: 03/18/05
Received: 03/18/05

DRAFT: INORGANICS

AMEC VALIDATED

LEVEL IV

MWH-Pasadena/Boeing	Project ID: Outfall 011	
300 North Lake Avenue, Suite 1200		Sampled: 03/18/05
Pasadena, CA 91101.	Report Number: $10 C 1526$	Received: 03/18/05
Attention: Bronwry Kelly		

DRAFT: INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilutio Factor	Date xtracted	Date	Data ualifi	
Sample ID: 10C1526-01 (DRAFT: Outfall 011 Composite - Water) - cont. Reporting Units: umbos/cm										
Specific Conductance	EPA 120.1	SC21077	1.0	1.0	350	1	03/21/05	03/21/05		

AMEC VALIDATED

LEVEL IV

MWH-Pasadena Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: $10 C 1526$

Sampled: 03/18:05
Received: 0311805

DRAFT: INORGANIC

Sample D: IOC1526-01 (DRAFT: Outfall 011 Composite - Water) - cont. Reporting Units: mg/
Ammonia-N (Distilled)
Biochemical Oxygen Demand
Chloride
Chromium VI
Total Cyanide
Fluoride
Nitrate/Nitrite-N
Oil \& Grease
Residual Chlorine
Sulfate
Surfactants (MBAS)
Total Dissolved Solids
Total Organic Carbon
Total Suspended Solids

AMES VALIDATED

DRAFT REPORT
DRAFT REPORT

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

amec ${ }^{\theta}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: PERCHLORATE

SAMPLE DELIVERY GROUPS: IOC1523 \& IOC1526

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: IOC1523, IOC1526
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Perchlorate
QC Level: Level IV
No. of Samples: 2
Reviewer: L. Jarusewic
Date of Review: April 6, 2005

The samples listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev, 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 314.0, and 120.1, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
	SDG No.:	IOC1523/1526
DATA VALIDATION REPORT	Analysis: \quad Perchiorate	

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 011-Grab	Outfall 011-Grab	1OC1523-01	Water	Perchlorate
Outfall 011-Composite	Outfall 011-Composite	IOC1526-01	Water	Perchlorate

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The analysis did not required preservation and no preservation was noted in the field. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel, and accounted for the samples and analysis presented in these SDGs. No qualifications were required.

2.1.3 Holding Times

The holding time was assessed by comparing the dates of collection with the date of analysis. The 28day analytical holding time for perchlorate was met, and no qualifications were required.

2.2 CALIBRATION

The initial calibration correlation coefficient was ≥ 0.995. The IPC-MA recovery was within the control limits of $80-120 \%$. The ICV, CCV, ICCS, and IPC recoveries were within the control limits of $90-$ 110%. No qualifications were required.

2.3 BLANKS

The method blank and CCB results reported on the summary forms and in the raw data for blank analyses associated with the samples were nondetects at the reporting limit. No qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample recovery was within the method control limits of $85-115 \%$. No qualifications were required.

2.5 SURROGATES RECOVERY

Surrogate recovery is not applicable to the analysis presented in these SDGs.

	Project:	NPDES
	SDG No.:	IOC1523/1526
DATA VALID.ATION REPORT	Analysis:	Perchlorate

2.6 LABORATORY DUPLICATES

No MS/MSD or duplicate analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was assessed based on LCS results.

2.8 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

2.9 ICP SERIAL DILUTION

ICP serial dilution is not applicable to the analysis presented in this data validation report.

2.10 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. No qualifications were required.

2.11 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.11.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.11.2 Field Duplicates

There were no field duplicate pairs associated with these SDGs.

 9830 South 51 st St., Sute $8-120$, Phoenix. AZ 85044 (4001 785-0043 FAX (480) 785.085

MWH-Pasadena Boeing
300 North Lake Averue, Suite 1200 Project ID: Ouffall $011 \quad$ Sampled: $03 / 18.05$

DRAFT: INORGANICS

AMEC VALIDATED

LEVEL IV

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
Arention. Bronwyn Kelly

Project ID: Outfall 011

Report Number: 1OC1526

DRAFT: INORGANICS

AMEC VALIDATED

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: 13267 (Study 1)
Outfall 011

Sampled: 03/18/05
Received: 03/18/05
Issued: 04/12/05 19:10

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117
The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chains) of Custody, 8 pages, are included and are an integral part of this report.
This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at $6^{\circ} \mathrm{C}$, on ice and with chain of custody documentation.
HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the Del Mar Analytical Sample Acceptance Policy unless otherwise noted in the report.
PRESERVATION: Samples requiring preservation were verified prior to sample analysis.
QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers. The ICAL \%RSD failed the acceptance limit for 2,4-Dinitrophenol. Instrument sensitivity was acceptable based upon the response for 2,4-Dinitrophenol at the low ICAL level. The CCV and BS/BSD met acceptance limits for the analyte. Affected samples were ND for this analyte, without J flag detection. Therefore, since acceptable sensitivity is represented by the instrument and the extraction procedure, the analyte was flagged with ' $\mathrm{N}-1$ ' and reported.

COMMENTS: \quad Results that fall between the MDL and RL are ' J ' flagged.
SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.
LABORATORY ID
IOC1523-01
IOC1523-02
IOC1523-03
IOC1523-04

CLIENT ID	MATRIX
Outfall 011 GRAB	Water
Trip Blank	Water
Outfall 011 GRAB/filter	Water
Outfall 011 GRAB/Substrate	Water

Reviewed By:

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1)	
	Outfall 011	Sampled: 03/18/05
Report Number:	IOC1523	Received: 03/18/05

TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOC1523-01 (Outfall 011 GRAB - Water)									
Reporting Units: mg/l									
Total Recoverable Hydrocarbons	EPA 418.1	5C22091	0.31	1.0	ND	1	03/22/05	03/22/05	

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011 Sampled: 03/18/05
Received: 03/18/05

EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OC1523-01 (Outfall 011 GRAB - Water) - cont.									
Reporting Units: mg/									
EFH (C13-C22)	EPA 8015B	5C21048	0.082	0.50	ND	0.957	03/21/05	03/21/05	
Surrogate: n-Octacosane (40-125\%)					91\%				

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 9110
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011 Sampled: 03/18/05
Received: 03/18/05

VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOC1523-01 (Outfall 011 GRAB - Water) - cont.									
Reporting Units: mgh									
GRO (C4-C12)	EPA 8015 Mod.	5C21006	0.050	0.10	ND	1	03/21/05	03/21/05	
Surrogate: 4-BFB (FID) (65-140\%)					81\%				

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1)	
	Outfall 011	Sampled: 03/18/05
Report Number:	$10 C 1523$	Received: 03/18/05

$$
\text { Received: } 03 / 18 / 05
$$

PURGEABLES BY GC/MS (EPA 624)

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Sampled: 03/18/05
Report Number: 10 C 1523
Received: 03/18/05

PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OC1523-01 (Outfall 011 GRAB - Water) Reperting Units: ug/									
Benzene	EPA 624	5C19004	0.28	1.0	ND	1	03/19/05	03/19/05	
Bromodichloromethane	EPA 624	5 Cl 19004	0.30	2.0	ND	1	03/19/05	03/19/05	
Bromoform	EPA 624	5C19004	0.32	5.0	ND	1	03/19/05	03/19/05	
Bromomethane	EPA 624	5 Cl 19004	0.34	5.0	ND	1	03/19/05	03/19/05	
Carbon tetrachloride	EPA 624	5C19004	0.28	0.50	ND	1	03/19/05	03/19/05	
Chlorobenzene	EPA 624	5 C 19004	0.36	2.0	ND	1	03/19/05	03/19/05	
Chloroethane	EPA 624	5C19004	0.33	5.0	ND	1	03/19/05	03/19/05	
Chloroform	EPA 624	5C19004	0.33	2.0	ND	1	03/19/05	03/19/05	
Chloromethane	EPA 624	5C19004	0.30	5.0	ND	1	03/19/05	03/19/05	
Dibromochloromethane	EPA 624	5C19004	0.28	2.0	ND	1	03/19/05	03/19/05	
1,2-Dichlorobenzene	EPA 624	5 C 19004	0.32	2.0	ND	1	03/19/05	03/19/05	
1,3-Dichlorobenzene	EPA 624	5C19004	0.35	2.0	ND	1	03/19/05	03/19/05	
1,4-Dichlorobenzene	EPA 624	5C19004	0.37	2.0	ND	1	03/19/05	03/19/05	
1,1-Dichloroethane	EPA 624	5C19004	0.27	2.0	ND	1	03/19/05	03/19/05	
1,2-Dichloroethane	EPA 624	5 Cl 9004	0.28	0.50	ND	1	03/19/05	03/19/05	
1,1-Dichloroethene	EPA 624	5C19004	0.32	5.0	ND	1	03/19/05	03/19/05	
trans-1,2-Dichloroethene	EPA 624	5C19004	0.27	2.0	ND	1	03/19/05	03/19/05	
1,2-Dichloropropane	EPA 624	5 Cl 9004.	0.35	2.0	ND	1	03/19/05	03/19/05	
cis-1,3-Dichloropropene	EPA 624	5 Cl 9004	0.22	2.0	ND	1	03/19/05	03/19/05	
trans-1,3-Dichloropropene	EPA 624	5C19004	0.24	2.0	ND	1	03/19/05	03/19/05	
Ethylbenzene	EPA 624	5C19004	0.25	2.0	ND	1	03/19/05	03/19/05	
Methylene chloride	EPA 624	5C19004	0.48	5.0	ND	1	03/19/05	03/19/05	
1,1,2,2-Tetrachloroethane	EPA 624	5C19004	0.24	2.0	ND	1	03/19/05	03/19/05	
Tetrachloroethene	EPA 624	5 C 19004	0.32	2.0	ND	1	03/19/05	03/19/05	
Toluene	EPA 624	5C19004	0.36	2.0	ND	1	03/19/05	03/19/05	
1,1,1-Trichloroethane	EPA 624	SC19004	0.30	2.0	ND	1	03/19/05	03/19/05	
1,1,2-Trichloroethane	EPA 624	5 C 19004	0.30	2.0	ND	1	03/19/05	03/19/05	
Trichloroethene	EPA 624	5 C 19004	0.26	2.0	ND	1	03/19/05	03/19/05	
Trichlorofluoromethane	EPA 624	5C19004	0.34	5.0	ND	1	03/19/05	03/19/05	
Vinyl chloride	EPA 624	5C19004	0.26	0.50	ND	1	03/19/05	03/19/05	
Xylenes, Total	EPA 624	5 C 19004	0.52	4.0	ND	1	03/19/05	03/19/05	
Trichlorotrifluoroethane (Freon 113)	EPA 624	5C19004	1.2	5.0	ND	1	03/19/05	03/19/05	
Surrogate: Dibromofluoromethane (80-120\%)					114\%				
Surrogate: Toluene-d8 (80-120\%)					102%				
Surrogate: 4-Bromofluorobenzene (80-120\%)					94\%				

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

```
Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOC1523
Sampled: 03/18/05
Received: 03/18/05
```


PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyz
Sample ID: IOC1523-02 (Trip Blank - Water)Reporting Units: ug/								
Benzene	EPA 624	5 Cl 9004	0.28	1.0	ND	1	03/19/05	03/19/05
Bromodichloromethane	EPA 624	5C19004	0.30	2.0	ND	1	03/19/05	03/19/05
Bromoform	EPA 624	5C19004	0.32	5.0	ND	1	03/19/05	03/19/05
Bromomethane	EPA 624	5C19004	0.34	5.0	ND	1	03/19/05	03/19/05
Carbon tetrachloride	EPA 624	5C19004	0.28	0.50	ND	1	03/19/05	03/19/05
Chlorobenzene	EPA 624	5C19004	0.36	2.0	ND	1	03/19/05	03/19/05
Chloroethane	EPA 624	5C19004	0.33	5.0	ND	1	03/19/05	03/19/05
Chloroform	EPA 624	5C19004	0.33	2.0	ND	1	03/19/05	03/19/05
Chloromethane	EPA 624	5C19004	0.30	5.0	ND	1	03/19/05	03/19/05
Dibromochloromethane	EPA 624	5 C 19004	0.28	2.0	ND	1	03/19/05	03/19/05
1,2-Dichlorobenzene	EPA 624	5C19004	0.32	2.0	ND	1	03/19/05	03/19/05
1,3-Dichlorobenzene	EPA 624	5C19004	0.35	2.0	ND	1	03/19/05	03/19/05
1,4-Dichlorobenzene	EPA 624	5C19004	0.37	2.0	ND	1	03/19/05	03/19/05
1,1-Dichloroethane	EPA 624	5 Cl 9004	0.27	2.0	ND	1	03/19/05	03/19/05
1,2-Dichloroethane	EPA 624	5 Cl 9004	0.28	0.50	ND	1	03/19/05	03/19/05
1,1-Dichloroethene	EPA 624	5 Cl 9004	0.32	5.0	ND	1	03/19/05	03/19/05
trans-1,2-Dichloroethene	EPA 624	5 C 19004	0.27	2.0	ND	1	03/19/05	03/19/05
1,2-Dichloropropane	EPA 624	5C19004	0.35	2.0	ND	1	03/19/05	03/19/05
cis-1, Dichloropropene	EPA 624	5 Cl 19004	0.22	2.0	ND	1	$03 / 19 / 05$	03/19/05
trans-1,3-Dichloropropene	EPA 624	5 Cl 19004	0.24	2.0	ND	1	03/19/05	03/19/05
Ethylbenzene	EPA 624	5 Cl 19004	0.25	2.0	ND	1	03/19/05	03/19/05
Methylene chloride	EPA 624	5 Cl 9004	0.48	5.0	ND	1	03/19/05	03/19/05
1,1,2,2-Tetrachloroethane	EPA 624	5C19004	0.24	2.0	ND	1	03/19/05	03/19/05
Tetrachloroethene	EPA 624	5C19004	0.32	2.0	ND	1	03/19/05	03/19/05
Toluene	EPA 624	5 Cl 9004	0.36	2.0	ND	1	03/19/05	03/19/05
1,1,1-Trichloroethane	EPA 624	5 Cl 9004	0.30	2.0	ND	1	03/19/05	03/19/05
1,1,2-Trichloroethane	EPA 624	5C19004	0.30	2.0	ND	1	03/19/05	03/19/05
Trichloroethene	EPA 624	5C19004	0.26	2.0	ND	1	03/19/05	03/19/05
Trichlorofluoromethane	EPA 624	5C19004	0.34	5.0	ND	1	03/19/05	03/19/05
Vinyl chloride	EPA 624	5C19004	0.26	0.50	ND	1	03/19/05	03/19/05
Xylenes, Total	EPA 624	5C19004	0.52	4.0	ND	1	03/19/05	03/19/05
Trichlorotrifluoroethane (Freon 113)	EPA 624	5C19004	1.2	5.0	ND	1	03/19/05	03/19/05
Surrogate: Dibromofluoromethane (80-120\%)					111\%			
Surrogate: Toluene-d8 (80-120\%)Surrogate: 4-Bromofluorobenzene (80-120\%)					101%			
					95%			

[^32]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10 Cl 523

Sampled: 03/18/05
Received: 03/18/05

PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualfiers
Sample ID: 1OC1523-01 (Outfall 011 GRAB - Water)									
Reporting Units: ugh									
1,2-Dichloro-1,1,2-trifluoroethane	EPA 624 (MOD.)	5C19004	N/A	2.5	ND	1	03/19/05	03/19/05	
Cyclohexane	EPA 624 (MOD.)	5C19004	N/A	2.5	ND	1	03/19/05	03/19/05	
Sample ID: 1OC1523-02 (Trip Blank - Water)									
Reporting Units: ugh									
1,2-Dichloro-1,1,2-trifluoroethane	EPA 624 (MOD.)	SC19004	N/A	2.5	ND	1	03/19/05	03/19/05	
Cyclohexane	EPA 624 (MOD.)	5C19004	N/A	2.5	ND	1	03/19/05	03/19/05	

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

$\begin{array}{rlr}\text { Project ID: } & 13267 \text { (Study 1) } & \\ & \text { Outfall 011 } & \text { Sampled: 03/18/05 } \\ \text { Report Number: } & \text { IOC1523 } & \text { Received: 03/18/05 }\end{array}$

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 10C1523-01 (Outfall 011 GRAB - Water)									RL-3
Reporting Units: ug/									
Acenaphthene	EPA 625	5 C 20022	0.20	1.0	ND	1.94	03/20/05	03/22/05	
Acenaphthylene	EPA 625	5 C 20022	0.20	1.0	ND	1.94	03/20/05	03/22/05	
Aniline	EPA 625	5C20022	5.8	20	ND	1.94	03/20/05	03/22/05	
Anthracene	EPA 625	5C20022	0.17	1.0	ND	1.94	03/20/05	03/22/05	
Benzidine	EPA 625	5C20022	4.8	10	ND	1.94	03/20/05	03/22/05	L2
Benzoic acid	EPA 625	5 C 20022	7.4	40	ND	1.94	03/20/05	03/22/05	
Benzo(a)anthracene	EPA 625	5 C 20022	0.076	10	ND	1.94	03/20/05	03/22/05	
Benzo(a)pyrene	EPA 625	5C20022	0.28	4.0	ND	1.94	03/20/05	03/22/05	
Benzo(b)fluoranthene	EPA 625	5C20022	0.10	4.0	ND	1.94	03/20/05	03/22/05	
Benzo(g,h,i)perylene	EPA 625	5C20022	0.12	10	ND	1.94	03/20/05	03/22/05	
Benzo(k)fluoranthene	EPA 625	5 C 20022	0.11	1.0	ND	1.94	03/20/05	03/22/05	
Benzyl alcohol	EPA 625	5 C 20022	0.42	10	ND	1.94	03/20/05	03/22/05	
Bis(2-chloroethoxy)methane	EPA 625	5 C 20022	0.14	1.0	ND	1.94	03/20/05	03/22/05	
Bis(2-chloroethyl)ether	EPA 625	5 C 20022	0.17	1.0	ND	1.94	03/20/05	03/22/05	
Bis(2-chloroisopropyl)ether	EPA 625	5 C 20022	0.22	1.0	ND	1.94	03/20/05	03/22/05	
Bis(2-ethylhexyl)phthalate	EPA 625	5 C 20022	2.2	10	ND	1.94	03/20/05	03/22/05	
4-Bromophenyl phenyl ether	EPA 625	5 C 20022	0.24	2.0	ND	1.94	03/20/05	03/22/05	
Butyl benzyl phthalate	EPA 625	5 C 20022	0.68	10	1.1	1.94	03/20/05	03/22/05	B, J
4-Chloroaniline	EPA 625	$5 \mathrm{C2002} 2$	0.40	4.0	ND	194	03/20/05	03/22/05	
2-Chloronaphthalene	EPA 625	5 C 20022	0.12	1.0	ND	1.94	03/20/05	03/22/05	
4-Chloro-3-methylphenol	EPA 625	5C20022	0.68	4.0	ND	1.94	03/20/05	03/22/05	
4-Chlorophenyl phenyl ether	EPA 625	5 C 20022	0.11	1.0	ND	1.94	03/20/05	03/22/05	
2-Chlorophenol	EPA 625	5C20022	0.24	2.0	ND	1.94	03/20/05	03/22/05	
Chrysene	EPA 625	5 C 20022	0.14	1.0	ND	1.94	03/20/05	03/22/05	
Dibenz(a, h)anthracene	EPA 625	5 C 20022	0.17	1.0	ND	1.94	03/20/05	03/22/05	
Dibenzofuran	EPA 625	5 C 20022	0.15	1.0	ND	1.94	03/20/05	03/22/05	
Di-n-butyl phthalate	EPA 625	5 C 20022	0.52	4.0	ND	1.94	03/20/05	03/22/05	
1,2-Dichlorobenzene	EPA 625	5C20022	0.22	1.0	ND	1.94	03/20/05	03/22/05	
1,3-Dichlorobenzene	EPA 625	5 C 20022	0.26	1.0	ND	1.94	03/20/05	03/22/05	
1,4-Dichlorobenzene	EPA 625	5C20022	0.10	1.0	ND	1.94	03/20/05	03/22/05	
3,3-Dichlorobenzidine	EPA 625	5 C 20022	1.9	10	ND	1.94	03/20/05	03/22/05	
2,4-Dichlorophenol	EPA 625	5 C 20022	0.42	4.0	ND	1.94	03/20/05	03/22/05	
Diethyl phthalate	EPA 625	5 C 20022	0.24	2.0	0.43	1.94	03/20/05	03/22/05	B, ${ }^{\text {J }}$
2,4-Dimethylphenol	EPA 625	5 C 20022	0.62	4.0	ND	1.94	03/20/05	03/22/05	
Dimethyl phthalate	EPA 625	5 C 20022	0.16	1.0	ND	1.94	03/20/05	03/22/05	
4,6-Dinitro-2-methylphenol	EPA 625	5 C 20022	0.76	10	ND	1.94	03/20/05	03/22/05	
2,4-Dinitrophenol	EPA 625	5 C 20022	5.4	10	ND	1.94	03/20/05	03/22/05	
2,4-Dinitrotoluene	EPA 625	5 C 20022	0.46	10	ND	1.94	03/20/05	03/22/05	
2,6-Dinitrotoluene	EPA 625	5 C 20022	0.48	10	ND	1.94	03/20/05	03/22/05	
Di-n-octyl phthalate	EPA 625	5 C 20022	0.34	10	ND	1.94	03/20/05	03/22/05	
1,2-Diphenylhydrazine/Azobenzene	EPA 625	5 C 20022	0.17	2.0	ND	1.94	03/20/05	03/22/05	
Del Mar Analytical, Irvine Michele Harper Project Manager									

MWH-Pasadena/Boeing	Project ID:	13267 (Study 1)
300 North Lake Avenue, Suite 1200	Outfall 011	
Pasadena, CA 91101	Report Number:	IOC1523
Attention: Bronwyn Kelly		

Sampled: 03/18/05
Received: 03/18/05

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

| | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Analyte | Method | Batch | MDL
 Limit | Reporting
 Limit | Sample
 Result | Dilution
 Factor | Date
 Extracted | Date
 Analyzed |
| Qualifiers | | | | | | | | |

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10 Cl 523

Sampled: 03/18/05
Received: 03/18/05

ORGANOCHLORINE PESTICIDES (EPA 608)

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID:	13267 (Study 1)
300 North Lake Avenue, Suite 1200	Outfall 011	
Pasadena, CA 91101	Report Number:	IOC1523
Attention: Bronwyn Kelly		

TOTAL PCBS (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 10C1523-01 (Outfall 011 GRAB - Water) - cont.									
Reporting Units: ug/									
Aroclor 1016	EPA 608	5 C 19034	0.20	1.0	ND	0.952	03/19/05	03/20/05	
Aroclor 1221	EPA 608	5 C 19034	0.10	1.0	ND	0.952	03/19/05	03/20/05	
Aroclor 1232	EPA 608	5 C 19034	0.15	1.0	ND	0.952	03/19/05	03/20/05	
Aroclor 1242	EPA 608	SC19034	0.15	1.0	ND	0.952	03/19/05	03/20/05	
Aroclor 1248	EPA 608	5C19034	0.25	1.0	ND	0.952	03/19/05	03/20/05	
Aroclor 1254	EPA 608	5C19034	0.25	1.0	ND	0.952	03/19/05	03/20/05	
Aroclor 1260	EPA 608	5C19034	0.40	1.0	ND	0.952	03/19/05	03/20/05	
Surrogate: Decachlorobiphenyl (45-120\%)					64%				

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011 Sampled: 03/18/05
Report Number: 10 Cl 1523

Received: 03/18/05

METALS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OC1523-01 (Outfall 011 GRAB - Water) - cont.									
Reporting Units: mg/									
Barium	EPA 200.8	5C19038	0.00014	0.0010	0.036	1	03/19/05	03/21/05	
Boron	EPA 200.7	5 Cl 9039	0.0074	0.050	0.090	1	03/19/05	03/19/05	
Iron	EPA 200.8	5C19038	0.0032	0.010	0.29	1	03/19/05	03/21/05	B-1

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
$\begin{aligned} \text { Project ID: } & 13267 \text { (Study 1) } \\ & \text { Outfall 011 } \\ \text { Report Number: } & \text { IOC1523 }\end{aligned}$

Sampled: 03/18/05
Received: 03/18/05

			MET	LS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 10C1523-01 (Outfall 011 GRAB - Water) - cont.									
Reporting Units: ug/									
Antimony	EPA 200.8	5C19038	0.18	2.0	0.34	1	03/19/05	03/21/05	B, J
Arsenic	EPA 200.8	5C19038	0.49	1.0	2.4	1	03/19/05	03/21/05	
Beryllium	EPA 200.8	SC19038	0.037	0.50	ND	1	03/19/05	03/21/05	
Cadmium	EPA 200.8	5C19038	0.015	1.0	0.085	1	03/19/05	03/21/05	B, J
Chromium	EPA 200.8	5C19038	0.26	2.0	1.0	1	03/19/05	03/21/05	J
Cobait	EPA 200.8	5C19038	0.10	1.0	0.35	1	03/19/05	03/21/05	J
Copper	EPA 200.8	5C19038	0.49	2.0	4.0	1	03/19/05	03/21/05	
Lead	EPA 200.8	5C19038	0.13	1.0	0.30	1	03/19/05	03/21/05	J
Manganese	EPA 200.8	5C19038	0.44	1.0	65	1	03/19/05	03/21/05	B-1
Mercury	EPA 245.1	5C19029	0.063	0.20	ND	1	03/19/05	03/19/05	
Nickel	EPA 200.8	5C19038	0.15	2.0	2.5	1	03/19/05	03/21/05	B
Selenium	EPA 200.8	5C19038	0.36	2.0	0.55	1	03/19/05	03/21/05	J
Silver	EPA 200.8	5C19038	0.089	1.0	ND	1	03/19/05	03/21/05	
Thallium	EPA 200.8	5C19038	0.075	1.0	ND	1	03/19/05	03/21/05	
Vanadium	EPA 200.8	5C19038	0.86	2.0	2.0	1	03/19/05	03/21/05	
Zinc	EPA 200.8	5C19038	3.1	20	12	1	03/19/05	03/21/05	J

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

```
Project ID: 13267 (Study 1)
Outfall }01
Report Number: IOCl523
```

Sampled: 03/18/05
Received: 03/18/05

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OC1523-01 (Outfall 011 GRAB - Water) - cont. Reporting Units: mg \boldsymbol{n}									
Ammonia-N (Distilled)	EPA 350.2	5C22089	0.30	0.50	ND	1	03/22/05	03/22/05	
Biochemical Oxygen Demand	EPA 405.1	5 C 18070	0.59	2.0	1.6	1	03/18/05	03/23/05	J
Chloride	EPA 300.0	5C18104	0.26	0.50	15	1	03/18/05	03/18/05	
Fluoride	EPA 300.0	5 Cl 18104	0.10	0.50	0.36	1	03/18/05	03/18/05	B, J
Nitrate/Nitrite-N	EPA 300.0	5 C 18104	0.072	0.11	ND	1	03/18/05	03/18/05	
Oil \& Grease	EPA 413.1	5C21062	0.94	5.0	ND	1	03/21/05	03/21/05	
Residual Chlorine	EPA 330.5	5 Cl 9030	0.10	0.10	ND	1	03/19/05	03/19/05	
Sulfate	EPA 300.0	5 Cl 18104	0.18	0.50	42	1	03/18/05	03/18/05	
Surfactants (MBAS)	SM5540-C	5 C 18107	0.044	0.10	0.080	1	03/18/05	03/18/05	J
Total Dissolved Solids	SM2540C	5 C 21073	10	10	220	1	03/21/05	03/21/05	
Total Organic Carbon	EPA 415.1	5 C 22101	0.25	1.0	13	1	03/22/05	03/22/05	
Total Suspended Solids	EPA 160.2	5C21068	10	10	ND	1	03/21/05	03/21/05	

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10 Cl 523

Sampled: 03/18/05
Received: 03/18/05

INORGANICS									
Analyte	Methed	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 10C1523-01 (Outfall 011 GRAB - Water) - cont.									
Reporting Units:									
Total Settleable Solids	EPA 160.5	5C19045	0.10	0.10	ND	1	03/19/05	03/19/05	

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1) Outfall 011	Sampled: 03/18/05 Report Number: IOC1523

Received: 03/18/05

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OC1523-01 (Outfall 011 GRAB - Water) - cont.									
Repo									
Turbidity	EPA 180.1	5C19032	0.040	1.0	3.1	1	03/19/05	03/19/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention; Bronwyn Kelly

$\begin{aligned} \text { Project ID: } & 13267 \text { (Study 1) } \\ & \text { Outfall 011 } \\ \text { Report Number: } & \text { IOC1523 }\end{aligned}$
Sampled: 03/18/05
Received: 03/18/05

INORGANICS

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011
Report Number: 10 C 1523

Sampled: 03/18/05
Received: 03/18/05

INORGANICS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOC1523-01 (Outfall 011 GRAB - Water) - cont.									
Reporting Units:									
Specific Conductance	EPA 120.1	5C21077	1.0	1.0	360	1	03/21/05	03/21/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10 Cl 523

Sampled: 03/18/05
Received: 03/18/05

1,4-DIOXANE BY GC/MS (EPA 5030B/8260B)

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011 Sampled: 03/18/05
Report Number: $10 \mathrm{C} 1523 \quad$ Received: 03/18/05

SHORT HOLD TIME DETAIL REPORT

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: $\begin{aligned} & 13267 \text { (Study 1) } \\ & \text { Outfall 011 }\end{aligned}$
Report Number: 10 C 1523

Sampled: 03/18/05
Received: 03/18/05

MLIHOB BLAMIGOCDATA

TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	$\begin{aligned} & \text { RPD } \\ & \text { Limit } \end{aligned}$	Data Qualifiers
Batch: 5C22091 Extracted: 03/22/05										
Blank Analyzed: 03/22/2005 (5C22091-BLK1)										
Total Recoverable Hydrocarbons ND	1.0	0.31	$\mathrm{mg} / 1$							
LCS Analyzed: 03/22/2005 (5C22091-BS1)										M-NR1
Total Recoverable Hydrocarbons 4.49	1.0	0.31	mg/l	5.00		90	65-120			
LCS Dup Analyzed: 03/22/2005 (5C22091-BSD1)										
Total Recoverable Hydrocarbons 4.59	1.0	0.31	mg / l	5.00		92	65-120	2	20	

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID:	13267 (Study 1)	
300 North Lake Avenue, Suite 1200		Outfall 011	Sampled: 03/18/05
Pasadena, CA 91101	Report Number:	10 Cl 523	Received: 03/18/05
Attention: Bronwyn Kelly			

METHOD BLANKQC DATA

EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1)	
	Outfall 011	Sampled: 03/18/05
Report Number:	IOC1523	Received: 03/18/05

Received: 03/18/05

METHOD BLANKIOCDATA

VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)

Del Mar Analytical, Irvine
Michele Harper
Project Manager

Project ID:	13267 (Study 1)	
	Outfall 011	Sampled: $03 / 18 / 05$
Report Number:	1OC1523	Received: 03/18/05

Attention: Bronwyn Kelly

METHOD BLANKIOC DATTA

PURGEABLES BY GC/MS (EPA 624)

| | | Reporting | | | Spike | Source | \%REC | | RPD | Data | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Analyte | Result | Limit | MDL | Units | Level | Result | \%REC | Limits | RPD | Limit | Qualifiers |

Batch: 5C20002 Extracted: 03/20/05
Blank Analyzed: 03/20/2005 (5C20002-BLK1)

Acrolein	ND	50	4.6	ug/l			
Acrylonitrile	ND	50	5.1	ug/l			
2-Chloroethyl vinyl ether	ND	5.0	1.3	ug/l			
Surrogate: Dibromofluoromethane	27.7			$u g / l$	25.0	111	80-120
Surrogate: Toluene-d8	25.5			$u g /$	25.0	102	80-120
Surrogate: 4-Bromofluorobenzene	23.8			$u g /$	25.0	95	80-120
LCS Analyzed: 03/20/2005 (5C20002-BS1)							
2-Chloroethyl vinyl ether	26.5	5.0	1.3	ug/l	25.0	106	20-175
Surrogate: Dibromofluoromethane	27.8			$u g /$	25.0	111	80-120
Surrogate: Toluene-d8	25.7			$u g /$	25.0	103	80-120
Surrogate: 4-Bromofluorobenzene	25.3			$u g /$	25.0	101	80-120

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID:	13267 (Study 1)
Outfall 011	Sampled: $03 / 18 / 05$	
300 North Lake Avenue, Suite 1200	Report Number:	IOC1523

METHOD BLANKIOCDATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source	\%REC		RPD	Data	
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5C19004 Extracted: 03/19/05
Blank Analyzed: 03/19/2005 (5C19004-BLK1)

Benzene	ND	1.0	0.28
Bromodichloromethane	ND	2.0	0.30
Bromoform	ND	5.0	0.32
Bromomethane	ND	5.0	0.34
Carbon tetrachloride	ND	0.50	0.28
Chlorobenzene	ND	2.0	0.36
Chloroethane	ND	5.0	0.33
Chloroform	ND	2.0	0.33
Chloromethane	ND	5.0	0.30
Dibromochloromethane	ND	2.0	0.28
1,2-Dichlorobenzene	ND	2.0	0.32
1,3-Dichlorobenzene	ND	2.0	0.35
1.4Dichilorobenzene	ND	2.0	0.37
1, Dichloroethane	ND	2.0	0.27
1,2-Dichloroethane	ND	0.50	0.28
1,1-Dichloroethene	ND	5.0	0.32
trans-1,2-Dichloroethene	ND	2.0	0.27
1,2-Dichloropropane	ND	2.0	0.35
cis-1,3-Dichloropropene	ND	2.0	0.22
trans-1,3-Dichloropropene	ND	2.0	0.24
Ethylbenzene	ND	2.0	0.25
Methylene chioride	ND	5.0	0.48
1,1,2,2-Tetrachloroethane	ND	2.0	0.24
Tetrachloroethene	ND	2.0	0.32
Toluene	ND	2.0	0.36
1,1,1-Trichloroethane	ND	2.0	0.30
1,1,2-Trichloroethane	ND	2.0	0.30
Trichloroethene	ND	2.0	0.26
Trichlorofluoromethane	ND	5.0	0.34
Vinyl chloride	ND	0.50	0.26
Xylenes, Total	ND	4.0	0.52
Trichlorotrifluoroethane (Freon 113)	ND	5.0	1.2
Surrogate: Dibromofluoromethane	27.9		
Surrogate: Toluene-d8	25.6		
Surrogate: 4-Bromofluorobenzene	23.7		

Del Mar Analytical, Irvine
Michele Harper
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing	Project ID:	13267 (Study 1)	
300 North Lake Avenue, Suite 1200		Outfall 011	Sampled: 03/18/05
Pasadena, CA 91101	Report Number:	10 Cl 1523	Received: 03/18/05
Attention: Bronwyn Kelly			

METHODBLANKIQC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte Result

| Reporting | | | Spike | Source | \%REC | | RPD | Data | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Limit | MDL | Units | Level | Result | \%REC | Limits | RPD | Limit | Qualifiers |

Batch: 5C19004 Extracted: 03/19/05
LCS Analyzed: 03/19/2005 (5C19004-BS1)

Benzene	23.6	1.0	0.28	ugh	25.0	94	70-120
Bromodichloromethane	23.8	2.0	0.30	ug / l	25.0	95	70-140
Bromoform	23.2	5.0	0.32	ugh	25.0	93	55-135
Bromomethane	25.0	5.0	0.34	ug/	25.0	100	60-140
Carbon tetrachloride	23.1	0.50	0.28	$\mathrm{ug} / 1$	25.0	92	70-140
Chlorobenzene	22.9	2.0	0.36	ug/l	25.0	92	80-125
Chloroethane	23.6	5.0	0.33	ug/l	25.0	94	60-145
Chitoroform	26.0	2.0	0.33	ug/	25.0	104	75-130
Chloromethane	24.5	5.0	0.30	$u g / 1$	25.0	98	40-145
Dibromochloromethane	23.5	2.0	0.28	ug/	25.0	94	65-145
1,2-Dichlorobenzene	23.6	2.0	0.32	ug/l	25.0	94	80-120
1,3-Dichlorobenzene	23.1	2.0	0.35	ug/	25.0	92	80-120
1,4-Dichlorobenzene	23.4	2.0	037	ugA	25.0	94	80-120
1,10Dichloroethane	25.8	2.0	0.27	ug 1	25.0	103	70-135
1,2-Dichloroethane	27.7	0.50	0.28	ug/l	25.0	111	60-150
1,1-Dichloroethene	23.5	5.0	0.32	ug/l	25.0	94	75-135
trans-1,2-Dichloroethene	24.4	2.0	0.27	ug/l	25.0	98	70-130
1,2-Dichloropropane	24.6	2.0	0.35	ug/I	25.0	98	70-120
cis-1,3-Dichloropropene	24.2	2.0	0.22	ug/l	25.0	97	75-130
trans-1,3-Dichloropropene	24.7	2.0	0.24	ug / l	25.0	99	75-135
Ethylbenzene	23.7	2.0	0.25	ug/	25.0	95	80-120
Methylene chloride	25.4	5.0	0.48	$\mathrm{ug} /$	25.0	102	60-135
1,1,2,2-Tetrachloroethane	27.3	2.0	0.24	ug/l	25.0	109	60-135
Tetrachloroethene	21.5	2.0	0.32	ug/l	25.0	86	75-125
Toluene	23.3	2.0	0.36	ug / l	25.0	93	75-120
1,1,1-Trichloroethane	25.0	2.0	0.30	ug/	25.0	100	75-140
1,1,2-Trichloroethane	24.7	2.0	0.30	ug/l	25.0	99	70-125
Trichloroethene	22.4	2.0	0.26	ug/l	25.0	90	80-120
Trichlorofluoromethane	25.2	5.0	0.34	ugh	25.0	101	65-145
Vinyl chloride	21.3	0.50	0.26	ug/	25.0	85	50-130
Surrogate: Dibromofluoromethane	28.0			$u g / l$	25.0	112	80-120
Surrogate: Toluene-d8	25.6			$u g / l$	25.0	102	80-120
Surrogate: 4-Bromofluorobenzene	25.0			$u g / l$	25.0	100	80-120

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly	Project ID: 13267 (Study 1) Outfall 011
	Report Number: $10 \mathrm{Cl523}$

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD	Data
Batch: 5C19004 Extracted: 03/19/05											

Matrix Spike Analyzed: 03/19/2005 (5C19004-MS1)			Source: 10C1509-02						A-01
Benzene	22.4	1.0	0.28	ug/	25.0	ND	90	70-120	
Bromodichloromethane	22.8	2.0	0.30	ug/	25.0	ND	91	70-140	
Bromoform	21.2	5.0	0.32	ug/	25.0	ND	85	55-140	
Bromomethane	24.0	5.0	0.34	ug/	25.0	ND	96	50-145	
Carbon tetrachloride	37.5	0.50	0.28	ug/	25.0	16	86	70-145	
Chlorobenzene	21.9	2.0	0.36	ug/	25.0	ND	88	80-125	
Chloroethane	23.0	5.0	0.33	ug/	25.0	ND	92	50-145	
Chloroform	45.8	2.0	0.33	ug/	25.0	22	95	70-135	
Chloromethane	22.6	5.0	0.30	ug/	25.0	ND	90	35-145	
Dibromochloromethane	21.9	2.0	0.28	ug/	25.0	ND	88	65-145	
1,2-Dichlorobenzene	22.5	2.0	0.32	ugh	25.0	ND	90	75-130	
1,3-Dichlorobenzene	22.2	2.0	0.35	ug/	25.0	ND	89	75-130	
1,4-Dichlorobenzene	226	20	0.37	ugh	250	ND	90	80-120	
1,1-Dichloroethane	243	2.0	0.27	ugh	25.0	ND	97	65-135	
1,2-Dichloroethane	26.0	0.50	0.28	ug/	25.0	ND	104	60-150	
1,1-Dichloroethene	21.3	5.0	0.32	ug/	25.0	ND	85	65-140	
trans-1,2-Dichloroethene	22.6	2.0	0.27	ug/	25.0	ND	90	65-135	
1,2-Dichloropropane	23.2	2.0	0.35	ug/	25.0	ND	93	65-130	
cis-1,3-Dichloropropene	22.8	2.0	0.22	ug/	25.0	ND	91	70-140	
trans-1,3-Dichloropropene	23.2	2.0	0.24	ug/	25.0	ND	93	70-140	
Ethylbenzene	22.4	2.0	0.25	ug/l	25.0	ND	90	70-130	
Methylene chloride	23.9	5.0	0.48	ug/	25.0	ND	96	60-135	
1,1,2,2-Tetrachloroethane	25.2	2.0	0.24	ug/	25.0	ND	101	60-145	
Tetrachloroethene	21.1	2.0	0.32	ug/	25.0	0.79	81	70-130	
Toluene	22.0	2.0	0.36	ug/1	25.0	ND	88	70-120	
1,1,1-Trichloroethane	23.7	2.0	0.30	ug/	25.0	ND	95	75-140	
1,1,2-Trichloroethane	22.9	2.0	0.30	ug/	25.0	ND	92	60-135	
Trichloroethene	32.6	2.0	0.26	ug/	25.0	12	82	70-125	
Trichlorofluoromethane	60.8	5.0	0.34	ug/l	25.0	39	87	55-145	
Vinyl chloride	19.8	0.50	0.26	ug/1	25.0	ND	79	40-135	
Surrogate: Dibromofluoromethane	28.0			ug/	25.0		112	80-120	
Surrogate: Toluene-d8	25.4			ug/	25.0		102	80-120	
Surrogate: 4-Bromofluorobenzene	24.9			$u g /$	25.0		100	80-120	

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly	Project ID:13267 (Study 1) Outfall 011 Report Number: IOC1523	Sampled: Received:
PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS		

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C19004 Extracted: 03/19/05											
Blank Analyzed: 03/19/2005 (5C19004-BLK1)											
1,2-Dichloro-1,1,2-trifluoroethane	ND	2.5	N/A	ug/							
Cyclohexane	ND	2.5	N/A	ug/							

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1)	
	Outfall 011	Sampled: $03 / 18 / 05$
Report Number:	IOC1523	Received: $03 / 18 / 05$

METHOD BLANKIGC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source		\%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5C20022 Extracted: 03/20/05
Blank Analyzed: 03/22/2005 (5C20022-BLK1)

Acenaphthene	ND	0.50	0.10	ugl
Acenaphthylene	ND	0.50	0.10	ugh
Aniline	ND	10	2.9	ugh
Anthracene	ND	0.50	0.083	ugh
Benzidine	ND	5.0	2.4	ug/
Benzoic acid	ND	20	3.7	ug/
Beazo(a)anthracene	ND	5.0	0.038	ug/
Benzo(a)pyrene	ND	2.0	0.14	ug/
Benzo(b)fluoranthene	ND	2.0	0.050	ug/
Benzo(g,h,i)perylene	ND	5.0	0.059	ug/
Benzo(k)fluoranthene	ND	0.50	0.053	ug/
Benzyl alcohol	ND	5.0	0.21	ug/1
Bis 2 -chloroethoxy) methane	ND	0.50	0.072	ug/
Bis(2-chloroetty) ether	ND	050	0.084	ug/
Bis(2-chloroisopropyl)ether	ND	0.50	0.11	ug/
Bis(2-ethylhexyl)phthalate	ND	5.0	1.1	ug/
4-Bromophenyl phenyl ether	ND	1.0	0.12	ug/
Butyl benzyl phthalate	0.600	5.0	0.34	ug/
4-Chloroaniline	ND	2.0	0.20	ug/
2-Chloronaphthalene	ND	0.50	0.059	ugh
4-Chloro-3-methylphenol	ND	2.0	0.34	ug/
4-Chlorophenyl phenyl ether	ND	0.50	0.056	ug/
2-Chlorophenol	ND	1.0	0.12	ug/
Chirsene	ND	0.50	0.072	ug/
Dibenz(a,h)anthracene	ND	0.50	0.083	ug/
Dibenzofuran	ND	0.50	0.075	ugh
Di-n-butyl phthalate	ND	2.0	0.26	ug/
1,2-Dichlorobenzene	ND	0.50	0.11	ug/
1,3-Dichlorobenzene	ND	0.50	0.13	ugh
1,4-Dichlorobenzene	ND	0.50	0.050	ug/l
3,3-Dichlorobenzidine	ND	5.0	0.93	ug/
2,4-Dichlorophenol	ND	2.0	0.21	ugd
Diethyl phthalate	0.220	1.0	0.12	ug/
2,4-Dimethylphenol	ND	2.0	0.31	ug/
Dimethyl phthalate	ND	0.50	0.081	ug/

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

```
Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10 C 1523
Sampled: 03/18/05
Received: 03/18/05
```


METHOD BLANIKIQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte
Batch: 5C20022 Extracted: 03/20/05

Blank Analyzed: 03/22/2005 (5C								
4,6-Dinitro-2-methylphenol	ND	5.0	0.38	ug/				
2,4-Dinitrophenol	ND	5.0	2.7	ug/				N-1
2,4-Dinitrotoluene	ND	5.0	0.23	ug/				
2,6-Dinitrotoluene	ND	5.0	0.24	ug/				
Di-n-octyl phthalate	ND	5.0	0.17	ug/				
1,2-Diphenylhydrazine/Azobenzene	ND	1.0	0.087	ug/				
Fluoranthene	ND	0.50	0.089	ug/				
Fluorene	ND	0.50	0.075	ug/				
Hexachlorobenzene	ND	1.0	0.13	ug/				
Hexachlorobutadiene	ND	2.0	0.38	ug/				
Hexachlorocyclopentadiene	ND	5.0	1.8	ugh				
Hexachloroethane	ND	3.0	0.51	ug/				
Indeno(1,2,3-cd)pyrene	ND	2.0	0.19	ug/				
Isophorone	ND	1.0	0.059	ug/				
2-Methylnaphthalene	ND	1.0	0.13	ug/				
2-Methylphenol	ND	2.0	0.28	ug/				
4-Methylphenol	ND	5.0	0.20	ug/				
Naphthalene	ND	1.0	0.13	ug/1				
2-Nitroaniline	ND	5.0	0.18	ug/				
3-Nitroaniline	ND	5.0	0.35	ug/				
4-Nitroaniline	ND	5.0	0.49	ug/				
Nitrobenzene	ND	1.0	0.10	ug/				
2-Nitrophenol	ND	2.0	0.23	ug/				
4-Nitrophenol	ND	5.0	0.73	ug/				
N-Nitrosodimethylamine	ND	2.0	0.22	ug/l				
N-Nitroso-di-n-propylamine	ND	2.0	0.18	ug/l				
N-Nitrosodiphenylamine	ND	1.0	0.077	ug/				
Pentachlorophenol	ND	2.0	0.78	ug/				
Phenanthrene	ND	0.50	0.071	ug/				
Phenol	ND	1.0	0.14	ug/l				
Pyrene	ND	0.50	0.059	ug/				
1,2,4-Trichlorobenzene	ND	1.0	0.10	ug/				
2,4,5-Trichlorophenol	ND	2.0	0.075	ug/				
2,4,6-Trichlorophenol	ND	1.0	0.10	ug/				
Surrogate: 2-Fluorophenol	12.3			ug/	20.0	62	30-120	

Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10 Cl 523
Sampled: 03/18/05
Received: 03/18/05

METHOD BLANKJQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C20022 Extracted: 03/20/05											
Blank Analyzed: 03/22/2005 (5C20022-BLK1)											
Surrogate: Phenol-d6	12.0			ugh	20.0		60	35-120			
Surrogate: 2,4,6-Tribromophenol	15.4			ug/l	20.0		77	45-120			
Surrogate: Nitrobenzene-d5	6.34			ug A	10.0		63	45-120			
Surrogate: 2-Fluorobiphenyl	7.02			ug/l	10.0		70	45-120			
Surrogate: Terphenyl-d14	7.70			ug/	10.0		77	45-120			
LCS Analyzed: 03/22/2005 (5C											M-NR1
Acenaphthene	7.60	0.50	0.10	ug/1	10.0		76	55-120			
Acenaphthylene	7.76	0.50	0.10	ug/	10.0		78	55-120			
Aniline	7.02	10	2.9	ug/	10.0		70	35-120			J
Anthracene	7.94	0.50	0.083	ug/	10.0		79	55-120			
Benzidine	ND	5.0	2.4	ugh	10.0			20-160			L2
Benzoic acid	7.08	20	3.7	ugd	10.0		71	35-120			J
Benzo(a)anthracene	8.78	5.0	0.038	ugh	10.0	\%	88	60-120.		\%	
Benzo(a)pyrene	8.28	2.0	0.14	ug/	10.0		83	55-120			
Benzo(b)fluoranthene	7.98	2.0	0.050	ug/	10.0		80	50-120			
Benzo(g,h,i)perylene	7.68	5.0	0.059	ug/	10.0		77	40-125			
Benzo(k)fluoranthene	8.24	0.50	0.053	ug/	10.0		82	50-120			
Benzyl alcohol	7.48	5.0	0.21	ug/	10.0		75	45-120			
Bis(2-chloroethoxy)methane	7.56	0.50	0.072	ug/	10.0		76	55-120			
Bis(2-chloroethyl)ether	6.46	0.50	0.084	ug/	10.0		65	50-120			
Bis(2-chloroisopropyl)ether	6.98	0.50	0.11	ug/1	10.0		70	45-120			
Bis(2-ethylhexyl)phthalate	8.18	5.0	1.1	ug/	10.0		82	60-130			
4-Bromophenyl phenyl ether	7.30	1.0	0.12	ug/1	10.0		73	50-120			
Butyl benzyl phthalate	8.02	5.0	0.34	ug/	10.0		80	55-125			
4-Chloroaniline	6.88	2.0	0.20	ug/	10.0		69	50-120			
2-Chloronaphthalene	7.82	0.50	0.059	ug/	10.0		78	55-120			
4-Chloro-3-methylphenol	7.16	2.0	0.34	ug/	10.0		72	60-120			
4-Chlorophenyl phenyl ether	7.94	0.50	0.056	ug/	10.0		79	55-120			
2-Chlorophenol	6.82	1.0	0.12	ug/	10.0		68	45-120			
Chrysene	8.32	0.50	0.072	ugl	10.0		83	60-120			
Dibenz(a,h)anthracene	8.64	0.50	0.083	ug/	10.0		86	45-130			
Dibenzofuran	7.52	0.50	0.075	ug/	10.0		75	60-120			
Di-n-butyl phthalate	8.02	2.0	0.26	ug/	10.0		80	55-125			
1,2-Dichlorobenzene	6.12	0.50	0.11	ug/	10.0		61	35-120			
1,3-Dichlorobenzene	6.00	0.50	0.13	ug/	10.0		60	35-120			
Del Mar Analytical, Irvine Michele Harper Project Manager											

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1)	
	Outfall 011	Sampled: 03/18/05
Report Number:	IOC1523	Received: 03/18/05

Sampled: 03/18/05
Received: 03/18/05

METHOD BLANKIOCDATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte Result

Batch: 5C20022 Extracted: 03/20/05
LCS Analyzed: 03/22/2005 (5C20022-BS1)

1,4-Dichlorobenzene	5.96
3,3-Dichlorobenzidine	7.18
2,4-Dichlorophenol	7.36
Diethyl phthalate	7.40
2,4-Dimethylphenol	6.64
Dimethyl phthalate	7.78
4,6-Dinitro-2-methylphenol	8.54
2,4-Dinitrophenol	7.42
2,4-Dinitrotoluene	6.94
2,6-Dinitrotoluene	7.46
Di-n-octyl phthalate	9.76
1,2-Diphenylhydrazine/Azobenzene	7.98
Fluoranthene	8.32
Fluorene	8.12
Hexachlorobenzene	7.64
Hexachlorobutadiene	6.48
Hexachlorocyclopentadiene	6.58
Hexachloroethane	6.08
Indeno(1,2,3-cd)pyrene	8.12
Isophorone	6.94
2-Methylnaphthalene	7.42
2-Methylphenol	7.02
4-Methylphenol	7.14
Naphthalene	7.10
2-Nitroaniline	7.92
3-Nitroaniline	7.18
4-Nitroaniline	7.68
Nitrobenzene	6.56
2-Nitrophenol	7.28
4-Nitrophenol	8.18
N-Nitrosodimethylamine	6.94
N-Nitroso-di-n-propylamine	6.80
N-Nitrosodiphenylamine	7.34
Pentachlorophenol	8.06
Phenanthrene	7.82

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1)	Outfall 011
Report Number:	IOC1523	Sampled: 03/18/05

MITHIOD BLANIGOCDATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

| | | Reporting | | | Spike | Source | \%REC | | RPD | Data | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analyte | Result | Limit | MDL | Units | Level | Result | \%REC | Limits | RPD | Limit | Qualifiers |

M-NR1

Phenol	7.76	1.0	0.14	ug/	10.0	78	45-120
Pyrene	8.14	0.50	0.059	ug/	10.0	81	50-120
1,2,4-Trichlorobenzene	6.40	1.0	0.10	ug/	10.0	64	45-120
2,4,5-Trichlorophenol	8.04	2.0	0.075	ug / l	10.0	80	60-120
2,4,6-Trichlorophenol	8.04	1.0	0.10	ug/	10.0	80	60-120
Surrogate: 2-Fluorophenol	13.1			ug/l	20.0	66	30-120
Surrogate: Phenol-d6	13.0			ugh	20.0	65	35-120
Surrogate: 2,4,6-Tribromophenol	16.1			ug/	20.0	80	45-120
Surrogate: Nitrobenzene-d5	6.72			ug/	10.0	67	45-120
Surrogate: 2-Fluorobiphenyl	7.48			ugh	10.0	75	45-120
Surrogate: Terphenyl-di4	7.66			ug $/$	10.0	77	45-120

LCS Dup Analyzed: 03/22/2005 (5C20022-BSD1)

Acenaphthene	. 7.52	0.50	0.10	ugh	10.0	75	55-120	1	20
Acenaphthylene	7.54	0.50	0.10	ug/	10.0	75	55-120	3	20
Aniline	6.88	10	2.9	ug/	10.0	69	35-120	2	25
Anthracene	7.78	0.50	0.083	ug / l	10.0	78	55-120	2	20
Benzidine	ND	5.0	2.4	ug/	10.0		20-160		35
Benzoic acid	6.18	20	3.7	ug/	10.0	62	35-120	14	30
Benzo(a)anthracene	8.48	5.0	0.038	ug/	10.0	85	60-120	3	20
Benzo(a)pyrene	8.12	2.0	0.14	ug/	10.0	81	55-120	2	25
Benzo(b)fluoranthene	7.90	2.0	0.050	ug/l	10.0	79	50-120	1	25
Benzo(g, h, i) perylene	7.32	5.0	0.059	ug/	10.0	73	40-125	5	25
Benzo(k)fluoranthene	7.98	0.50	0.053	$\mathrm{ug} /$	10.0	80	50-120	3	20
Benzyl alcohol	7.26	5.0	0.21	ug/	10.0	73	45-120	3	20
Bis(2-chloroethoxy)methane	7.42	0.50	0.072	ugh	10.0	74	55-120	2	20
Bis(2-chloroethyl)ether	6.10	0.50	0.084	ug/	10.0	61	50-120	6	20
Bis(2-chloroisopropyl)ether	6.98	0.50	0.11	ug/	10.0	70	45-120	0	20
Bis(2-ethylhexyl)phthalate	8.08	5.0	1.1	ug/	10.0	81	60-130	1	20
4-Bromophenyl phenyl ether	7.30	1.0	0.12	ug/	10.0	73	50-120	0	25
Butyl benzyl phthalate	8.02	5.0	0.34	ug/	10.0	80	55-125	0	20
4-Chloroaniline	6.62	2.0	0.20	ug/	10.0	66	50-120	4	25
2-Chloronaphthalene	7.54	0.50	0.059	ug/	10.0	75	55-120	4	20
4-Chloro-3-methylphenol	6.86	2.0	0.34	ug/	10.0	69	60-120	4	25
4-Chlorophenyl phenyl ether	8.16	0.50	0.056	ug/	10.0	82	55-120	3	20
2-Chlorophenol	6.74	1.0	0.12	ug/	10.0	67	45-120	1	25

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011

Report Number: 10 C 1523
Sampled: 03/18/05
Received: 03/18/05

METHOD BLANKIOCDATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source	\%REC		RPD	Data	
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5C20022 Extracted: 03/20/05
LCS Dup Analyzed: 03/22/2005 (5C20022-BSD1)

Chrysene	8.10	0.50	0.072	ug/l	10.0	81	60-120	3	20
Dibenz(a, h) anthracene	8.08	0.50	0.083	ug/l	10.0	81	45-130	7	25
Dibenzofuran	7.54	0.50	0.075	ug/l	10.0	75	60-120	0	20
Di-n-butyl phthalate	8.10	2.0	0.26	ug/l	10.0	81	55-125	1	20
1,2-Dichlorobenzene	5.86	0.50	0.11	ug/	10.0	59	35-120	4	25
1,3-Dichlorobenzene	5.64	0.50	0.13	$u g / 1$	10.0	56	35-120	6	25
1,4-Dichlorobenzene	5.68	0.50	0.050	ug/1	10.0	57	35-120	5	25
3,3-Dichlorobenzidine	6.88	5.0	0.93	ug/	10.0	69	45-130	4	25
2,4-Dichlorophenol	7.30	2.0	0.21	ug/	10.0	73	55-120	1	20
Diethyl phthalate	7.32	1.0	0.12	ug/l	10.0	73	55-120	1	20
2,4-Dimethylphenol	6.42	2.0	0.31	ug/I	10.0	64	30-120	3	25
Dimethyl phthalate	7.70	0.50	0.081	ug/l	10.0	77	60-120	1	20
4.6-Dinitro-2-methylphenol	8.26	5.0	0.38	ug/	10.0	83	$50-120$	3	25
2,4 Dinitrophenol	7.02	5.0	2.7	ugh	10.0 :	70	40-120	6	25.
2,4-Dinitrotoluene	6.92	5.0	0.23	ugh	10.0	69	60-120	0	20
2,6-Dinitrotoluene	7.22	5.0	0.24	ug/	10.0	72	60-120	3	20
Di-n-octyl phthalate	9.76	5.0	0.17	ugh	10.0	98	60-130	0	20
1,2-Diphenylhydrazine/Azobenzene	8.02	1.0	0.087	ug/	10.0	80	60-120	1	25
Fluoranthene	8.28	0.50	0.089	ug/	10.0	83	55-120	1	20
Fluorene	8.34	0.50	0.075	ug/l	10.0	83	$60-120$	3	20
Hexachlorobenzene	7.50	1.0	0.13	ug/l	10.0	75	50-120	2	20
Hexachlorobutadiene	5.84	2.0	0.38	ug/l	10.0	58	40-120	10	25
Hexachlorocyclopentadiene	6.76	5.0	1.8	ug/	10.0	68	15-120	3	30
Hexachloroethane	5.66	3.0	0.51	ug/l	10.0	57	35-120	7	25
Indeno(1,2,3-cd)pyrene	7.86	2.0	0.19	ug/l	10.0	79	40-130	3	25
Isophorone	6.12	1.0	0.059	ug/1	10.0	61	50-120	13	20
2-Methylnaphthalene	7.12	1.0	0.13	ug/	10.0	71	50-120	4	20
2-Methylphenol	6.92	2.0	0.28	ugh	10.0	69	45-120	1	20
4-Methylphenol	7.06	5.0	0.20	ug/l	10.0	71	45-120	1	20
Naphthalene	6.86	1.0	0.13	ugh	10.0	69	50-120	3	20
2-Nitroaniline	7.94	5.0	0.18	$\mathrm{ug} / 1$	10.0	79	60-120	0	20
3-Nitroaniline	6.78	5.0	0.35	ugl	10.0	68	55-120	6	25
4-Nitroaniline	7.64	5.0	0.49	ugh	10.0	76	50-125	1	20
Nitrobenzene	6.62	1.0	0.10	ug/	10.0	66	50-120	1	25
2-Nitrophenol	7.20	2.0	0.23	ug/	10.0	72	55-120	1	25

N-1

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10 C 1523

Sampled: 03/18/05
Received: 03/18/05

METHOD BLANKIOC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

LCS Dup Analyzed: 03/22/2005 (5C20022-BSD1)

4-Nitrophenol	7.96	5.0	0.73	ug/	10.0	80	45-120	3	25
N -Nitrosodimethylamine	6.82	2.0	0.22	ug/	10.0	68	40-120	2	20
N-Nitroso-di-n-propylamine	6.68	2.0	0.18	ug/	10.0	67	45-120	2	20
N-Nitrosodiphenylamine	7.28	1.0	0.077	ug/	10.0	73	55-120	1	20
Pentachlorophenol	7.92	2.0	0.78	ug/	10.0	79	50-120	2	25
Phenanthrene	7.68	0.50	0.071	ug/	10.0	77	55-120	2	20
Phenol	7.62	1.0	0.14	ug/	10.0	76	45-120	2	25
Pyrene	7.96	0.50	0.059	ug/	10.0	80	50-120	2	25
1,2,4-Trichlorobenzene	6.06	1.0	0.10	ug/	10.0	61	45-120	5	20
2,4,5-Trichlorophenol	7.66	2.0	0.075	ug/	10.0	77	60-120	5	20
2,4,6-Trichlorophenol	7.78	1.0	0.10	ug/	10.0	78	60-120	3	20
Surrogate: 2-Fluorophenol	- 12.8			ug/	20.0	64	30-120		
Surrogate: Phenol-d6	12.9			$4 \mathrm{~g} /$	20.0	64	35-120		
Surrogate 2,4,6 Tribromophenol	16.0			ug a	20.0	80	45-120		
Surrogate: Nitrobenzene-ds	6.74			ug/	10.0	67	45-120		
Surrogate: 2-Fluorobiphenyl	7.16			ug/	10.0	72	45-120		
Surrogate: Terphenyl-dI4	7.48			ug/	10.0	75	45-120		

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10 C 1523

$$
\begin{aligned}
\text { Sampled: } & 03 / 18 / 05 \\
\text { Received: } & 03 / 18 / 05
\end{aligned}
$$

METHOD BLANK/OC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C19034 Extracted: 03/19/05											
Blank Analyzed: 03/19/2005 (5C19034-BLK1)											
Aldrin	ND	0.10	0.030	ug/							
alpha-BHC	ND	0.10	0.015	ug/1							
beta-BHC	ND	0.10	0.015	ug/							
delta-BHC	ND	0.20	0.020	ug/							
gamma-BHC (Lindane)	ND	0.10	0.020	ug/							
Chlordane	ND	1.0	0.20	ug/							
4,4 - -DDD	ND	0.10	0.020	ug/							
4,4'-DDE	ND	0.10	0.025	ug/							
4,4'-DDT	ND	0.10	0.030	ug/l							
Dieldrin	ND	0.10	0.015	ug/							
Endosulfan I	ND	0.10	0.015	ug/							
Endosulfan II	ND	0.10	0.040	ug/							
Endosulfan sulfate	ND	0.20	0.015	ug/						,	
Endrin	ND	0.10	0.020	ugl							
Endrin aldehyde	ND	0.10	0.045	ug/							
Endrin ketone	ND	0.10	0.020	ug/							
Heptachlor	ND	0.10	0.030	ug/							
Heptachlor epoxide	ND	0.10	0.020	ug/							
Methoxychlor	ND	0.10	0.035	ug/							
Toxaphene	ND	5.0	1.5	ug/							
Surrogate: Tetrachloro-m-xylene	0.320			ug/	0.500		64	35-115			
Surrogate: Decachlorobiphenyl	0.403			ug/	0.500		81	45-120			
LCS Analyzed: 03/19/2005 (5C19034-BS1)											M-NR1
Aldrin	0.340	0.10	0.030	ugd	0.500		68	40-115			
alpha-BHC	0.351	0.10	0.015	ug/	0.500		70	45-115			
beta-BHC	0.339	0.10	0.015	ugh	0.500		68	50-115			
delta-BHC	0.351	0.20	0.020	ug/l	0.500		70	55-120			
gamma-BHC (Lindane)	0.357	0.10	0.020	ugh	0.500		71	45-115			
4,4 - -DDD	0.390	0.10	0.020	ug/l	0.500		78	60-120			
4,4'-DDE	0.380	0.10	0.025	ug/l	0.500		76	55-120			
4,4'-DDT	0.402	0.10	0.030	ug/	0.500		80	60-120			
Dieldrin	0.380	0.10	0.015	ug/	0.500		76	55-120			
Endosulfan I	0.359	0.10	0.015	ug/l	0.500		72	50-115			
Endosulfan II	0.377	0.10	0.040	ug/	0.500		75	60-125			
Endosulfan sulfate	0.377	0.20	0.015	ug/	0.500		75	60-120			

Del Mar Analytical, Irvine
Michele Harper
Project Manager
Project ID: 13267 (Study 1)
Outfall 011
Sampled: 03/18/05
Report Number: 10 Cl 523
Received: 03/18/05

Pasadena, CA 91101
Attention: Bronwyn Kelly

METHOD BLANKGC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte
Result
Batch: 5C19034 Extracted: 03/19/05

LCS Analyzed: 03/19/2005 (5C19034-BS1)

Endrin	0.378
Endrin aldehyde	0.339
Endrin ketone	0.393
Heptachlor	0.357
Heptachlor epoxide	0.352
Methoxychlor	0.386
Surrogate: Tetrachloro-m-xylene	0.299
Surrogate: Decachlorobiphenyl	0.398

0.10	0.020	ugh	0.500
0.10	0.045	ugh	0.500
0.10	0.020	ugl	0.500
0.10	0.030	ugl	0.500
0.10	0.020	ug/	0.500
0.10	0.035	ug/l	0.500
		ugh	0.500
		$u g h$	0.500

76	$55-125$
68	$55-115$
79	$60-115$
71	$45-115$
70	$50-115$
77	$60-120$
60	$35-115$
80	$45-120$

LCS Dup Analyzed: 03/19/2005 (5C19034-BSD1)

Aldrin	0.380	0.10	0.030	ug/l	0.500	76	40-115	11	30
alpha-BHC	0.391	0.10	0.015	ug/	0.500	78	45-115	11	30
beta-BHC	0.375	0.10	0.015	ug/	0.500	75	50-115	10	30
delta-BHC	0.391	0.20	0.020	ugh	0.500	78	55.120	11	30
gamma-BHC (Lindane)	0.393	0.10	0.020	ug/1	0.500	79	$45+115$	10	30
4,4- DDD	0.427	0.10	0.020	ugh	0.500	85	60-120	9	30
4,4-DDE	0.423	0.10	0.025	ug/l	0.500	85	55-120	11	30
4,44-DDT	0.447	0.10	0.030	ug/	0.500	89	60-120	11	30
Dieldrin	0.416	0.10	0.015	ugl	0.500	83	55-120	9	30
Endosulfan I	0.395	0.10	0.015	ug/	0.500	79	50-115	10	30
Endosulfan II	0.409	0.10	0.040	ughl	0.500	82	60-125	8	30
Endosulfan sulfate	0.410	0.20	0.015	ug/l	0.500	82	60-120	8	30
Endrin	0.415	0.10	0.020	ug/	0.500	83	55-125	9	30
Endrin aldehyde	0.373	0.10	0.045	ug/	0.500	75	55-115	10	30
Endrin ketone	0.425	0.10	0.020	ugh	0.500	85	60-115	8	30
Heptachior	0.398	0.10	0.030	ugh	0.500	80	45-115	11	30
Heptachlor epoxide	0.389	0.10	0.020	ughl	0.500	78	50-115	10	30
Methoxychlor	0.427	0.10	0.035	ugh	0.500	85	60-120	10	30
Surrogate: Tetrachloro-m-xylene	0.309			ug/	0.500	62	35-115		
Surrogate: Decachlorobiphenyl	0.433			ugh	0.500	87	45-120		

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly	Project ID: 13267 (Study 1) Outfall 011

TOTAL PCBS (EPA 608)

		Reporting			Spike	Source		\%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5C19034 Extracted: 03/19/05
Blank Analyzed: 03/19/2005 (5C19034-BLK1)

Aroclor 1016	ND	1.0	0.20	ug/						
Aroctor 1221	ND	1.0	0.10	ug/						
Aroclor 1232	ND	1.0	0.15	ugh						
Aroclor 1242	ND	1.0	0.15	ug/l						
Aroclor 1248	ND	1.0	0.25	ug/1						
Aroclor 1254	ND	1.0	0.25	ug/						
Aroclor 1260	ND	1.0	0.40	$\mathrm{ug} /$						
Surrogate: Decachlorobiphenyl	0.356			$u g /$	0.500	71	45-120			
LCS Analyzed: 03/19/2005 (5)										M-NR1
Aroclor 1016	2.73	1.0	0.20	ug/l	4.00	68	50-115			
Aroclor 1260	2.92	1.0	0.40	ug/	4.00	73	55-115			
Surrogate: Decachlorobiphenyl	0.373			ug/	0.500	75	45-120			
LCS Dup Analyzed: 03/19/20	BSD2)									
Aroclor 1016	2.54	1.0	0.20	ug/	4.00	64	50-115	7	30	
Aroclor 1260	2.83	1.0	0.40	ug/	4.00	71	55-115	3	25	
Surrogate: Decachlorobiphenyl	0.348			$u g /$	0.500	70	45-120			

Del Mar Analytical, Irvine
Michele Harper
Project Manager
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1) Outfall 011	
Report Number:	IOC1523	Sampled: 03/18/05
		Received: 03/18/05

Received: 03/18/05

MEHIOD BLAAKIOCDATA

METALS

Analyte	Result	Reportin Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C19029 Extracted: 03/19/05											
Blank Analyzed: 03/19/2005 (5C19029-BLK1)											
Mercury	ND	0.20	0.063	ug/							
LCS Analyzed: 03/19/2005 (5C19029-BS1)											
Mercury	8.50	0.20	0.063	ug/	8.00		106	85-115			
Matrix Spike Analyzed: 03/19/2005 (5C19029-MS1) Source: 1OC1454-01											
Mercury	8.46	0.20	0.063	ug/	8.00	ND	106	70-130			
Matrix Spike Dup Analyzed: 03/19/2005 (5C19029-MSD1) Source: 10C1454-01											
Mercury	8.44	0.20	0.063	ug/	8.00	ND	106	70-130	0	20	
Batch: 5C19038 Extracted: 03/19/05											
Blank Analyzed: 03/21/2005 (5C19038-BLK1)											
Antimony	125	2.0	0.18	ug/							J
Arsenic	ND	1.0	0.49	ug/							
Barium	ND	0.0010	0.00014	mg / l							
Beryllium	ND	0.50	0.037	ug/							
Cadmium	0.0170	1.0	0.015	ug/							J
Chromium	ND	2.0	0.26	ug/							
Cobalt	ND	1.0	0.10	ugh							
Copper	ND	2.0	0.49	ugn							
Iron	0.0190	0.010	0.0032	$\mathrm{mg} /$							B-1
Lead	ND	1.0	0.13	ugh							
Manganese	6.36	1.0	0.44	ugl							B-1
Nickel	0.555	2.0	0.15	ug/l							J
Selenium	ND	2.0	0.36	ugh							
Silver	0.184	1.0	0.089	ug/l							J
Thallium	ND	1.0	0.075	ugh							
Vanadium	ND	2.0	0.86	ug/ 1							
Zinc	ND	20	3.1	ugl							

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID: 13267 (Study 1)	
300 North Lake Avenue, Suite 1200	Outfall 011	Sampled: $03 / 18 / 05$
Pasadena, CA 91101	Report Number:	IOC1523

METHID BLANHOCDATA

		Reporting			Spike	Source	\%REC		RPD	Data	
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

LCS Analyzed: 03/21/2005 (5C19038-BS1)

Antimony	81.3	2.0	0.18	ug/	80.0	102	85-115
Arsenic	86.3	1.0	0.49	ug/	80.0	108	85-115
Barium	0.0806	0.0010	0.00014	mg/	0.0800	101	85-115
Beryllium	74.7	0.50	0.037	ugh	80.0	93	85-115
Cadmium	78.9	1.0	0.015	ug/l	80.0	99	85-115
Chromium	80.8	2.0	0.26	ug/1	80.0	101	85-115
Cobalt	80.6	1.0	0.10	ug/	80.0	101	85-115
Copper	80.6	2.0	0.49	ugl	80.0	101	85-115
Iron	0.803	0.010	0.0032	$\mathrm{mg} / 1$	0.800	100	85-115
Lead	81.1	1.0	0.13	ugh	80.0	101	85-115
Manganese	82.2	1.0	0.44	ugh	80.0	103	85-115
Nickel	81.5	2.0	0.15	ug/	80.0	102	85-115
Selenium	80.8	2.0	0.36	ug/	80.0	101.	85-145
Silver	807	1.0	0.089	ugf	80.0	101	85-115
Thallium	80.8	1.0	0.075	ug/	80.0	101	85-115
Vanadium	79.6	2.0	0.86	ug/	80.0	100	85-115
Zinc	79.7	20	3.1	ugh	80.0	100	85-115

Matrix Spike Analyzed: 03/21/2005 (5C19038-MS1)				Source: 10C1524-01				
Antimony	84.1	2.0	0.18	ug/	80.0	0.64	104	70-130
Arsenic	88.5	1.0	0.49	$\mathrm{ug} / 1$	80.0	1.2	109	70-130
Barium	0.0958	0.0010	0.00014	$\mathrm{mg} / 1$	0.0800	0.013	104	70-130
Beryllium	75.0	0.50	0.037	ug/	80.0	ND	94	70-130
Cadmium	80.3	1.0	0.015	ug/	80.0	0.034	100	70-130
Chromium	81.8	2.0	0.26	ug/l	80.0	1.2	101	70-130
Cobalt	81.7	1.0	0.10	ugl	80.0	0.25	102	70-130
Copper	84.0	2.0	0.49	ugh	80.0	3.3	101	70-130
Iron	1.06	0.010	0.0032	mgl	0.800	0.15	114	70-130
Lead	82.7	1.0	0.13	ug/	80.0	0.50	103	70-130
Manganese	101	1.0	0.44	ug/1	80.0	19	102	70-130
Nickel	82.5	2.0	0.15	ug/	80.0	1.1	102	70-130
Selenium	80.9	2.0	0.36	ug/	80.0	0.39	101	70-130
Silver	80.5	1.0	0.089	ug/	80.0	ND	101	70-130
Thallium	82.7	1.0	0.075	ug/	80.0	0.13	103	70-130
Vanadium	82.7	2.0	0.86	ug/	80.0	2.7	100	70-130
Zinc	89.8	20	3.1	ug/	80.0	8.2	102	70-130

Del Mar Analytical, Irvine

Michele Harper
Project Manager

METALS

Batch: 5C19038 Extracted: 03/19/05

MWH-Pasadena/Boeing	Project ID:
13267 (Study 1) 300 North Lake Avenue, Suite 1200 Outfall 011 Pasadena, CA 91101 Report Number: IOC1523	

Sampled: 03/18/05
Received: 03/18/05

Attention: Bronwyn Kelly

METHOD BLANKIOC DATA

METALS

Batch: 5C19039 Extracted: 03/19/05
Blank Analyzed: 03/19/2005 (5C19039-BLK1)

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1)
	Outfall 011
Report Number:	IOC1523

Report Number: IOC1523
Sampled: 03/18/05
Received: 03/18/05

MUIHOD MLANKIQC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data

Batch: 5C19039 Extracted: 03/19/05

Matrix	1903					e: 10C	2-01		
Boron	0.588	0.050	0.0074	mg / l	0.500	0.090	100	70-130	1

MWH-Pasadena/Boeing	Project ID: 13267 (Study 1)		
300 North Lake Avenue, Suite 1200		Outfall 011	Sampled: 03/18/05
Pasadena, CA 91101	Report Number:	10 C 1523	Received: 03/18/05
Attention: Bronwyn Kelly			

METHOD BLANKIQC DATA

INORGANICS

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID:	13267 (Study 1)
Outfall 011		
300 North Lake Avenue, Suite 1200		Oeport Number:
IOC1523		
Pasadena, CA 91101		

Sampled: 03/18/05
Received: 03/18/05

METHOD BLANKIOC DAIA

INORGANICS

		Reporting			Spike	Source	\%REC		RPD	Data

LCS Analyzed: 03/18/2005 (5C18104-BS1)

Chloride	4.80	0.50	0.26	mg/	5.00		96	90-110	
Fluoride	4.67	0.50	0.10	mg / l	5.00		93	90-110	
Sulfate	10.0	0.50	0.18	mgl	10.0		100	90-110	
Matrix Spike Analyzed: 03/18/2005 (5C18104-MS1)			Source: 10C1500-06						
Chloride	10.3	0.50	0.26	mg/	5.00	6.1	84	80-120	
Fluoride	4.51	0.50	0.10	mg/	5.00	0.39	82	80-120	
Sulfate	12.8	0.50	0.18	mg / l	10.0	3.8	90	80-120	
Matrix Spike Dap Analyzed: 03/18/2005 (5C18104-MSD1)			Source: 10C1500-06						
Chloride	10.3	0.50	0.26	mg / l	5.00	6.1	84	80-120	0
Fluoride	4.52	0.50	0.10	mg / l	5.00	0.39	83	80-120	0
Sulfate	12.8	0.50	0.18	mg / l	10.0	3.8	90	80-120	0

Batch: 5C18107 Extracted: 03/18/05

MWH-Pasadena/Boeing	Project ID:	13267 (Study 1)	
300 North Lake Avenue, Suite 1200		Outfall 011	Sampled: 03/18/05
Pasadena, CA 91101	Report Number:	10 Cl 1523	Received: 03/18/05
Attention: Bronwyn Kelly			

METHOD BLANKOC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C18121 Extracted: 03/18/05										
Blank Analyzed: 03/19/2005 (5C18121-BLK1)										
Perchlorate ND	4.0	0.80	ug/							
LCS Analyzed: 03/19/2005 (5C18121-BS1)										
Perchlorate 52.7	4.0	0.80	ug/	50.0		105	85-115			
Matrix Spike Analyzed: 03/19/2005 (5C18121-MS1)					ce: IOC1	521-01				
Perchlorate 53.9	4.0	0.80	ug/1	50.0	ND	108	80-120			
Matrix Spike Dup Analyzed: 03/19/2005 (5C18121-MSD1)					ce: IOC1	521-01				
Perchlorate 54.1	4.0	0.80	$\mathrm{ug} / 1$	50.0	ND	108	80-120	0	20	
Batch: 5C19030 Extracted: 03/19/05										
Duplicate Analyzed: 03/19/2005 (5C19030-DUP1)					ce: 10C1	523-01				
Residual Chlorine ND	0.10	0.10	$\mathrm{mg} /$		ND				20	\cdots
Batch: 5C19032 Extracted: 03/19/05										
Blank Analyzed: 03/19/2005 (5C19032-BLK1)										
Turbidity 0.0600	1.0	0.040	NTU							J
Duplicate Analyzed: 03/19/2005 (5C19032-DUP1)					ce: 10C1	364-01				
Turbidity 0.110	1.0	0.040	NTU		0.12			9	20	J

Batch: 5C21062 Extracted: 03/21/05

Blank Analyzed: 03/21/2005 (5C21062-BLK1)

Oil \& Grease	ND	5.0	0.94	$\mathrm{mg} /$

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID:	13267 (Study 1)	
300 North Lake Avenue, Suite 1200		Outfall 011	Sampled: 03/18/05
Pasadena, CA 91101	Report Number:	10 Cl 1523	Received: 03/18/05
Attention: Bronwyn Kelly			

METHOD BLANKIQC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C21062 Extracted: 03/21/05										
LCS Analyzed: 03/21/2005 (5C21062-BS1)										M-NR1
Oil \& Grease 17.1	5.0	0.94	mg / l	20.0		86	65-120			
LCS Dup Analyzed: 03/21/2005 (5C21062-BSD1)										
Oil \& Grease 16.0	5.0	0.94	mg / l	20.0		80	65-120	7	20	
Batch: 5C21068 Extracted: 03/21/05										
Blank Analyzed: 03/21/2005 (5C21068-BLK1)										
Total Suspended Solids ND	10	10	$\mathrm{mg} / 1$							
LCS Analyzed: 03/21/2005 (5C21068-BS1)										
Total Suspended Solids 942	10	10	mg / l	1000		94	85-115			
Duplicate Analyzed: 03/21/2005 (5C21068-DUP1)					ce: 10C	566-01				
Total Suspended Solids ${ }^{\text {a }}$ ND	10	10	$\mathrm{mg} /$		ND				10	

Batch: 5C21073 Extracted: 03/21/05

Blank Analyzed: 03/21/2005 (5C21073-BLK1)
Total Dissolved Solids ND
LCS Analyzed: 03/21/2005 (5C21073-BS1)
Total Dissolved Solids 968
$10 \quad 10 \mathrm{mg} / \mathrm{l}$
1000
$97 \quad 90-110$
Duplicate Analyzed: 03/21/2005 (5C21073-DUP1)
Total Dissolved Solids 320
$10 \quad 10 \quad \mathrm{mg} /$
Source: 10C1566-01
300
10

Del Mar Analytical, Irvine
Michele Harper
Project Manager

```
    Project ID: 13267 (Study 1)
                                    Outfall 011 Sampled: 03/18/05
Report Number: IOC1523
Received: 03/18/05
```


METHOD BLANKOCDATA

INORGANICS

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID:13267 (Study 1) Outfall 011 Sampled: 03/18/05 300 North Lake Avenue, Suite 1200 Report Number: Pasadena, CA 91101 Attention: Bronwyn Kelly	Received: 03/18/05

METHOD BLANKOOC DATA

INORGANICS

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011 Sampled: 03/18/05
Report Number: 10 Cl 523

Received: 03/18/05

METHOD BLANKIOC DATA

1,4-DIOXANE BY GC/MS (EPA 5030B/8260B)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: P5C2203 Extracted: 03/22/05											
Blank Analyzed: 03/22/2005 (P5C2203-BLK1)											
1,4-Dioxane	ND	1.0	0.49	ugh							
Surrogate: Dibromofluoromethane	1.11			ug/	1.00		111	80-125			
LCS Analyzed: 03/22/2005 (P5C2203-BS1)											
1,4-Dioxane	8.06	1.0	0.49	ug/	10.0		81	70-130			
Surrogate: Dibromofluoromethane	1.12			$u g / l$	1.00		112	80-125			
LCS Dup Analyzed: 03/22/2005 (P5C2203-BSD1)											
1,4-Dioxane	10.2	1.0	0.49	ug/l	10.0		102	70-130	23	20	R-7
Surrogate: Dibromofluoromethane	1.09			ug $/$	1.00		109	80-125			
Matrix Spike Analyzed: 03/22/2005 (P5C2203-MS1)					Source: POC0388-06						
1,4-Dioxane	32.8	1.0	0.49	ug/	10.0	25	78	70-150			
Surrogate: Dibromofluoromethane,	1.06			ug/	1.00		106	80-125		
Matrix Spike Dup Analyzed: 03/22/2005 (P5C2203-MSD1)					Source: POC0388-06						
1,4-Dioxane	32.4	1.0	0.49	ug/	10.0	25	74	70-150	1	25	
Surrogate: Dibromofluoromethane	1.07			ug/	1.00		107	80-125			

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10 Cl 523

Sampled: 03/18/05
Received: 03/18/05

DATA QUALIFIERS AND DEFINITIONS

A-01	No results were reported for MSD due to the port leaking. Samples accepted
B	Analyte was detected in the associated Method Blank.
B-1	Analyte was detected in the associated method blank. Analyte concentration in the sample is greater than 10 x the concentration found in the method blank.
J	Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality
L2	Laboratory Control Sample recovery was below method control limits.
M-NR1	There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
N-1	See case narrative.
R-7	LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria.
RL-3	Reporting limit raised due to high concentrations of non-target analytes.
ND	Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD	Relative Percent Difference

ADDITIONAL COMMENTS

For TICs:

All identifications are tentative and concentrations are estimates based upon spectral comparison to the EPA/NIH library.
For 1,2-Diphenylhydrazine:
The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.
For GRO (C4-C12):
GRO (C4-C12) is quantitated against a gasoline standard. Quantitation begins immediately following the methanol peak. For Extractable Fuel Hydrocarbons (EFH, DRO, ORO) :

Unless otherwise noted, Extractable Fuel Hydrocarbons (EFH, DRO, ORO) are quantitated against a Diesel Fuel Standard.

[^33]MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10 Cl 1523
Sampled: 03/18/05

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
EPA 120.1	Water	X	X
EPA 160.2	Water	X	X
EPA 160.5	Water	X	X
EPA 180.1	Water	X	X
EPA 200.7	Water	X	X
EPA 200.8	Water	X	X
EPA 218.6	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 314.0	Water	X	X
EPA 330.5	Water	X	X
EPA 335.2	Water	X	X
EPA 350.2	Water	X	X
EPA 405.1	Water	X	X
EPA 413.1	Water	X	X
EPA 415.1	Water	X	X
EPA 608	Water	X	X
EPA 624 (MOD.)	Water	X	X X
EPA 624	Water	X	X
EPA 625	Water	X	X
EPA 8015 Mod .	Water	X	X
EPA 8015B	Water	X	X
SM2540C	Water	X	X
SM5540-C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

> Alta Analytical California Cert \#1640
> 1104 Windfield Way - El Dorado Hills, CA 95762
> Analysis Performed: 1613-Dioxin-HR
> Samples: $10 C 1523-01$
> Analysis Performed: EDD + Level 4
> Samples: $10 C 1523-01$

Aquatic Testing Laboratories-SUB Calfornia Cert \#1775 4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chrnic
Samples: IOC1523-01

Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

Per Requent:
Please make the changes listed below to the chain-of-custody analytical request form. Include this form with the final deliverables for these wmples:

Del Mar Work Oricr:	Sample 11	Date Collemed	Change(0) Requested on COC	Change(s) or MMhed (s) Now Requested
1001526	$\begin{aligned} & \text { Outionin } \\ & 13267 \\ & \text { (Composite) } \end{aligned}$	03/1805	Matale: B and B; 8015-Gas; Momonethylhydrazine; Fhuaride	B and Be Add 1,4-Dhoxame analysis: 8015-Gas amilydés for Trip Bianks; Monomethylhydrenine; Flovride
1001523	$\begin{aligned} & \text { Outalion } 011 \\ & 13267 \text { (Grab) } \end{aligned}$	03/18/03	1.4-Dioxane for Trip Hiank	1,4-Diocane not required on TBs

mH 3/21/05
The reason for these changen:
Incorrectly manked on COC form
Lack of vample volume
MWH affice persomnel negwive this change \qquad
Other: Containers mislaboled

Now COC's are attached for review.
Thankon
CHAIN OF CUSTODY FORM

April 4, 2005

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention: Bronwyn Kelly
Project: $\quad 13267$ (Study 1)/Outfall 011
Sampled: 03/18/05
Del Mar Analytical Number: IOC1523

Dear Ms. Kelly:
Aquatic Testing Laboratories performed Fathead Minnow 96 hr Percent Survival Bioassay (EPA Method 2000.0), Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002), Truesdail Laboratories tested Hydrazines by EPA 8315 M, Alta Analytical performed EPA Method 1613 by Dioxin and Eberline Services performed Gross Alpha/Gross Beta (EPA 900.0), Tritium (H-3, EPA 906.0), Strontium-90 (Sr-90, EPA 905.0), Radium 226 (EPA 903.), and Radium $228(904.0)$ for the project referenced above. Please use the following cross-reference table when reviewing your results.

MWH ID	DEL MAR ID	ATL ID	TRUESDAIL ID	ALTA ID	EBERLINE ID
Outfall 011 Grab	$10 C 1523-01$	A-05031904-001/002	$940883-1$	$25936-001$	PENDING

Attached are the original reports from the subcontract laboratories. If you have any questions or require further assistance, please do not hesitate to contact me.

Sincerely yours,
DEL MAR ANALYTICAL

Michele Harper
Project Manager

March 25, 2005
Date:
Client:
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Attn: Michele Harper

Aquatic Testing

Laboratories
*dedicated to providing quality aquatic toxicity testing *
4350 Transport Street, Unit 107
Ventura, CA 93003
(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert No.: 1775

Laboratory No.: A-05031904-001/002
Sample I.D.: IOC1523-01

Sample Control: The sample was received by ATL chilled, with the chain of custody record attached.
Date Sampled: 03/18/05
Date Received: 03/19/05
Date Tested: $\quad 03 / 19 / 05$ to $03 / 25 / 05$

Sample Analysis: The following analyses were performed on your sample:
Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0), Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

Result Summary:

Acute:	$\frac{\text { Survival }}{100 \%}$	$\frac{\text { TUa }}{0.0}$
Fathead Minnow:		
Chronic:	$\frac{\text { NOEC }}{}$	TUe
\quad Ceriodaphnia Survival:	100%	1.0
\quad Ceriodaphnia Reproduction:	100%	1.0

Quality Control: Reviewed and approved by:

Lab No.: A-05031904-001
Client/ID: Del Mar - 1OC1523-01

TEST SUMMARY
Species: Pimephales promelas.
Age: IU (1-14) days.
Regulations: NPDES.
Test solution volume: 250 ml .
Feeding: prior to renewal at $\mathbf{4 8}$ hrs.
Number of replicates: 2.
Dilution water: Moderately hard reconstituted water.
Photoperiod: $16 / 8$ hrs light/dark.

Start Date: 03/19/2005

Source: In-laboratory Culture.
Test type: Static-Renewal.
Test Protocol: EPA-821-R-02-012.
Endpoints: Percent Survival at 96 hrs.
Test chamber: $\mathbf{6 0 0} \mathrm{ml}$ beakers.
Temperature: $20+/-1^{\circ} \mathrm{C}$.
Number of fish per chamber: 10.
QA/QC Batch No.: RT-050303.

Comments:
Sample as received: Chlorine: $0 \mathrm{mg} / \mathrm{pH}: 24$; Conductivity: 310 umho; Temp: $4^{\circ} \mathrm{C}$; DO: $8.6 \mathrm{mg} / \mathrm{l}$; Alkalinity: $96 \mathrm{mg} / \mathrm{l}$; Hardness: $84 \mathrm{mg} / ; \mathrm{NH}_{3}-\mathrm{N}: 0.4 \mathrm{mg} / \mathrm{l}$. Sample aerated moderately (approx. $500 \mathrm{ml} / \mathrm{min}$) to raise or lower DO? Yes / N .
Control: Alkalinity: $54 \mathrm{mg} /$; Hardness: $90 \mathrm{mg} /$; Conductivity: 290 umho.
Test solution aerated (not to exceed 100 bubbles $/ \mathrm{min}$) to maintain DO $>4.0 \mathrm{mg} / 17$ Yes $/$.
Sample used for renewal is the original sample kept at $0-6^{\circ} \mathrm{C}$ with minimal headspace.

RESULTS

Percent Survival In: Control: 100 _ $\%$ 100\% Sample:_100 $\%$

Lab No.: A-05031904
Date Tested: 03/19/05 to 03/25/05
Client/ID: Del Mar IOC1523-01

TEST SUMMARY

Test type: Daily static-renewal.
Species: Ceriodaphnia dubia.
Age: < 24 hrs; all released within 8 hrs.
Test vessel size: 30 ml .
Number of test organisms per vessel: 1.
Temperature: $25+/-1^{\circ} \mathrm{C}$.
Dilution water: Mod. hard reconstituted (MHRW).
QA/QC Batch No.: RT-050311.
Endpoints: Survival and Reproduction.
Source: In-laboratory culture.
Food: . 1 ml YTC, algae per day.
Test solution volume: 15 ml .
Number of replicates: 10.
Photoperiod: $16 / 8$ hrs. light/dark cycle.
Test duration: 7 days.
Statistics: ToxCalc computer program.
RESULTS SUMMARY

Sample Concentration	Percent Survival	Mean Number of Young Per Female
Control	100%	22.4
6.25%	100%	25.1
12.5%	100%	25.2
25%	100%	27.8
50%	100%	23.1
100%	100%	26.4
* Statistically significantly less than control at P $=0.05$ level. ** Reproduction data from concentrations greater than survival NOEC are excluded from statistical analysis.		

CHRONIC TOXICITY

Parameter	Survival	Growth
NOEC	100%	100%
TUc	1.0	1.0

QA/QC TEST ACCEPTABILITY

Parameter	Result
Control survival 280%	Pass (100% survival)
≥ 15 young per surviving control female average	Pass (22.4 young)
260% surviving controls had 3 broods	Pass (90% with 3 broods)
PMSD $<47 \%$ for reproduction; if $>47 \%$ and no toxicity at IWC, the test must be repeated	Pass (PMSD $=18.1 \%$)
Statistically significantly different concentrations relative difference $>13 \%$	NA - No stat. sig. diff. concentrations
Concentration response relationship acceptable	Pass (slight inverse response at conc. tested)

SUBCONTRACT ORDER - PROJECT \# IOC1523

Truesidail Laboratories, Inc.

Client: Del Mar Analytical
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Attention: Michele Harper

Project Name: 1OC1523 Truesdail Project: 940883
Date Received: 03/21/05

Samples Cross-reference

Truesdail ID	Client ID	Matrix	Date Sampled	Time Sampled		Analysis Requested $940883-1$
	IOC1523-01	Water	$03 / 18 / 05$	110	Hydrazines by EPA 8315M	

Respectfully Submitted,
TRUESDAIL LABORATORIES, INC.

TruESDAIL LABORATORIES, INC.

Client: Del Mar Analytical
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Attention: Michele Harper

Project Name: $\quad 10 \mathrm{C1523}$
Truesdail Project:
940883
Date Received: 03/21/05

Case Narrative

Sample Receipt The sample was received in good condition and no anomalies were noted during check-in. The sample was kept in a locked refrigerator until analysis. Thereafter, it is being kept in ambient storage for an additional 2 months before disposal.

Analysis The analysis was perfomed as requested on the chain-of-custody.
Quality Control The analytical results for each batch of samples performed include a minimum of one set of laboratory control sample/laboratory control sample duplicate (LCS/LCSD), one matrix spike (MS) and a reagent blank (Method blank). Any exceptions or problems would be noted in the "comments" section.

Comments

The test results in this report meet all quality assurance requirements set forth by the method specification and all quality control recoveries were within the laboratory acceptance limits. No anomalies or nonconformance events occurred during the course of analysis.

The analytes were quantitated down to the Method Detection Limit (J flags) per client's request.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public,
and these laboratories, this report is submitted and accepted for the exdusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or

TRUESDAIL LABORAIORIES, INC.
Independent Testing. Forensic Science, and environmental anaiyses

$$
\begin{aligned}
\text { Client: } & \begin{array}{l}
\text { Del Mar Analytical } \\
17461 \text { Derlan Ave., Suite } 100 \\
\text { Irvine, CA } 92614
\end{array} \\
& \\
\text { Client Contact: } & \text { Michele Harper } \\
\text { Sample: } & \text { Liquid / 1 Sample } \\
\text { Sample ID: } & \text { IOC1523 } \\
\text { P.O. Number: } & 10 C 1523 \\
\text { Method Number: } & 8315 \text { (Modified) } \\
\text { Run Batch No.: } & \text { Extraction: 3017; Analysis: } 378 \\
\text { Investigation: } & \text { Hydrazines in Liquid }
\end{aligned}
$$

REPORT

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 82780-7008
(714) $730-6239 \cdot$ FAX (714) $730-6462 \cdot$ www.truesdail.com

$$
\begin{aligned}
\text { QC Lab. No.: } & 704855 \\
\text { Project Lab. No.: } & 940883 \\
\text { Splked Sample ID: } & 940884 \\
\text { Report Date: } & \text { March 25, } \\
\text { Sampling Date: } & \text { March 18, } \\
\text { Recelving Date: } & \text { March 21, } \\
\text { Extraction Date: } & \text { March 21, } \\
\text { Analysis Date: } & \text { March 23, } \\
\text { Units: } & \text { Hg/L } \\
\text { Reported By: } & \mathrm{JS}
\end{aligned}
$$

Quality Control/Quality Assurance Spikes Report

Parameter	Theoretical Value (ugh)	Measured Value (ugh)	$\%$ Roc.	Control Limits	Flag
Monomethyl Hydrazine	25.0	28.0	112	85-115	PASS
u-Dimethyl Hydrazine	25.0	24.1	96.3	85-115	PASS
Hydrazine	5.0	4.96	98.2	85-115	PASS

ICV: Intital Callibration Veritication
acs: Ouality Contror Standard
LCS: Laboratory Control Spiko
MS: Martix Spike
FD: Percent Difierence "Pass I I within Control Limits: otherwise Fair
Note: Results based on datector $1(\mathrm{UV}=365 n \mathrm{~m})$ data.
This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public,

Standard TAT is requested unless specific due date is requested $=>$ Due Date: \qquad Initials: \qquad

$$
\begin{aligned}
& \operatorname{Rec}^{\prime} d \\
& \operatorname{soc} 94 / 28 / 05 \\
& 940883
\end{aligned}
$$

Sample Integrity \& Analysis Discrepancy Form

Date Delivered: 22^{105} Time: 7140 By: aMail afield Service UClient

1. Was a Chain of Custody received and signed?
2. Does Customer require an acknowledgement of the COC?
3. Are there any special requirements or notes on the COC?
4. If a letter was sent with the COC, does it match the COC?
5. Were all requested analyses understood and acceptable?
6. Were samples received in a chilled condition?

Temperature (if yes)? $y^{\circ} \mathbf{C}$
7. Were samples received intact
(i.e. broken bottles, leaks, air bubbles, etc..)?
8. Were sample custody seals intact?
9. Does the number of samples received agree with COC?
10. Did sample labels correspond with the client ID's?
11. Did sample labels indicate proper preservation? Preserved (if yes) by: atr hesdaih Perient - II
12. Were samples $p H$ checke ph pHVA
13. Were all analyses within holding time at fim of receipt? If not, notify the Project Manager.
14. Have Project due dates been checked and accepted? Turn Around Time (TAT):RUSH © Std

aYes ano EN/A
aYes ano EN/A
ayes ano gN/A
GYes DNo DN/A
ares ano
QN/A tres ano IN/A aYes QNo UN/A GYes ano aN/A पTes ONO ON/A aYes ano an/a QYes ano anta aYes ano aN/A日Yes ano IN/A
15. Sample Matrix: QLiquid $\square D r i n k i n g$ Water $\square G r o u n d$ Water \quad Waste Water asludge asoil aWipe apaint asolid arther water
16. Comments: \qquad
17. Sample Check-In completed by Truesdail Log-In/Receiving:

Internal Chain of Custody Logbook

beer: 940883
 ame: Del Mar

L.D. ${ }_{\text {c }}^{\text {Analysis }} \begin{gathered}\text { Done }\end{gathered}$	Date Out	$\begin{array}{\|c} \text { Tine } \\ \text { Out } \end{array}$	$\begin{aligned} & \text { Data } \\ & \text { In } \end{aligned}$	$\begin{aligned} & \text { Tiḿe } \\ & \text { - In } \end{aligned}$	Amount Taken (C ormi)	Printed Name	Signature
							\checkmark
7							
2						.	
,							

$\begin{gathered} \text { Storage } \\ \text { Date } \\ \hline \end{gathered}$	Shell No. For Storage	- Printed Name	Initials		charge Date	Printed Name	Initials

March 24, 2005
Alta Project I.D.: 25936
Ms. Michele Harper
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Dear Ms. Harper,
Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on March 22, 2005 under your Project Name "IOC1523". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,
Ti(cuwice) le vo-
Martha M. Maier
Director of HRMS Services

Alta Analytical Laboratory Inc.

Section I: Sample Inventory Report Date Received: 3/22/2005

Alta Lab. ID

25936-001

Client Sample 1D
IOC1523-01

SECTION II

APPENDIX

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank.
D The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.

I

J

P Homologue totals include any coplanar PCBs detected at concentrations less than the reporting limit.
*
See Cover Letter
Conc. Concentration

DL Sample-specific estimated detection limit
MDL The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable
RL Reporting Limit - concentrations that correspond to low calibration point
ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

The control limits are "interim limits only" until in-house limits are utilized.

CURRENT CERTIFICATIONS

NELAP - (Primary AA: California, Certificate No. 02102CA)
Department of the Navy
U.S. Army Corps of Engineers

U.S. EPA Region 5

Bureau of Reciamation - Mid-Pacific Region - (MP-470, Res-1.10)
Commonwealth of Kentucky - (Certificate No. 90063)
Commonwealth of Virginia - (Certificate No. 00013)
State of Alaska, Department of Environmental Conservation - (Certificate No. OS-00197)
State of Arizona - (Certificate No. AZ0639)
State of Arkansas, Department of Health - (Approval granted through CA certification)
State of Arkansas, Department of Environmental Quality
State of California - (Certificate No. 1640)

State of Colorado

State of Connecticut - (Certificate No. PH-0182)
State of Florida - (Certificate No. 87456)
State of Louisiana, Department of Health and Hospitals - (Certificate No. LA000014)
State of Louisiana, Department of Environmental Quality
State of Maine
State of Michigan (Certificate No. 81178087)
State of Mississippi - (Approval granted through CA certification)
State of Nevada - (Certificate No. CA413)
State of New lersey - (Certificate No. CA003)
State of New York, Department of Health - (Certificate No. 11411)
State of North Carolina - (Certification No. 06700)
State of North Dakota, Department of Health - (Certificate No. R-078)
State of New Mexico
State of Oklahoma - (D9919)
State of Oregon - (Certificate No. CA413)
State of Pennsylvania - (Certificate No. 68-490)
State of South Carolina - (Certificate No. 87002001)
State of Tennessee - (Certificate No. 02996)
State of Texas - (Certificate No. TX247-1000A
State of Utah - (Certificate No. E-201)
State of Washington - (Certification No. C091)
State of Wisconsin - (Certificate No. 998036160)
State of Wyoming - (USEPA Region 8 Ref: 8TMS-Q)

STANDARD OPERATING PROCEDURE

Attechment 10.B. 1
SAMPLE LOEHN CHECKLST
Alta Propect No: 25936

Comments:

$$
\begin{aligned}
& I O C \mid S 21-01 \\
& I O C \mid S 23-01 \\
& I O C \mid S 25-01 \\
& I O C|S 26-0| \\
& I O C|S 63-0|
\end{aligned}
$$

SOPW CH1CB_R18, Pace 8 of 12

Findernther
 Du (0):

SUBCONTRACT ORDER - PROJECT \# IOC1523

SENDING LABORATORY: Del Mar Analytical, Irvine 17461 Derian Avemue. Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 261-1228 Project Manager: Michele Harper	RECHVNVG LABORATORY: Alta Analytical 1104 Windfield Way EI Dorado Hills, CA 95762 Phone:(916) 933-1640 Fax: 916) $933-0940$
Standard TAT is requested uniesu specific due date is requ	Due Date: 5 day TAT \qquad Initiala:
Analyuis Expiration	Comments
Sample Di $10 \mathrm{Cl} 523-01$ Whater Sampled: 03/18/05 11:10 EDD + Level 4 $03 / 25 / 0511: 10$ $04 / 15 / 0511: 10$	Inctait Nofication J finge, 17 congeners, no TEQ, sub to Paco-MN Excel EDD emaill to pm,Include Std loga for Lvi IV
Containers Supplied: 1 L Amber (10C1523-01J) 1 L Amber ($10 \mathrm{Cl} 523-01 \mathrm{~K}$)	

2593632°

SAMPLE NXECRITY:						
	Samplo InboidCCOC agree: Sempiplen Prenervod Propariy:	$\begin{aligned} & \square \\ & \square \\ & \mathbf{Y}_{m} \end{aligned}$	[No \square No	Semple Recoived Ou lce: Smplet Reocived at (mun)		[No
$\text { Project } 25936$						

Please review the following Information and complete the Client Authorization section. To comply with NELAC regulations, wo must recelve authorization before proceeding with sample analysis. Thank You. (Fax ${ }^{\text {ep }}$ (6-673-0106)

The following Information or Item is needed to proceed with the analysis:

\square Completed Chaln-of-Custody	\square Preservative	(Collector's Name
\square Test Method Requested	\square Sample Identification	\square Sample Type
\square Analyse List Requested	\square Sample Collection Date /Time	\square Sample Location

The following anomalies were noted. Authorkation ls needed to proceed with the analysis:
Temperature outside $\pm 2^{\circ} \mathrm{C}$ range Samples Affected: \qquad
Temp
Samples Affected: \qquad
Samples Affected: \qquad
Sample holding time missed
Custody seals broken
Insumicient Sample Size
Samples Affected: \qquad
Samples Affected: \qquad
Sample Container (s) Broken
Incorrect Container Type
Samples Affected: \qquad
Samples Affected: \qquad
Other \qquad
\qquad
\qquad

,
,
+
,
\qquad
,
\quad,

- \quad
\%

,

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: 13267 (Study 1) Outfall 011

Sampled: 03/18/05
Received: 03/18/05
Issued: 04/12/05 19:13

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chains) of Custody, 10 pages, are included and are an integral part of this report.
This entire report was reviewed and approved for release,

CASE NARRATIVE

SAMPLE RECEIPT: \quad Samples were received intact, at $3^{\circ} \mathrm{C}$, on ice and with chain of custody documentation.
HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the Del Mar Analytical Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis. Results were qualified where the sample container did not meet the method preservation requirements.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers. The ICAL \%RSD failed the acceptance limit for 2,4-Dinitrophenol, Instrument sensitivity was acceptable based upon the response for 2,4-Dinitrophenol at the low ICAL level. The CCV and BS/BSD met acceptance limits for the analyte. Affected samples were 'ND' for this analyte, without J-flag detection. Therefore, since acceptable sensitivity is represented by the instrument and the extraction procedure, the analyte was flagged with ' $\mathrm{N}-\mathbf{1}^{\prime}$ and reported.

COMMENTS: \quad Results that fall between the MDL and RL are ' J ' flagged.
SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID	CLIENT ID	MATRIX
IOC1526-01	Outfall 011 Composite	Water
1OC1526-02	Trip Blank	Water

Reviewed By:

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10 Cl 1526

Sampled: 03/18/05
Received: 03/18/05

TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOC1526-01 (Outfall 011 Composite - Water)									
Reporting Units: mgh									
Total Recoverable Hydrocarbons	EPA 418.1	5C22091	0.31	1.0	ND	1	03/22/05	03/22/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011

Report Number: $10 C 1526$

Sampled: 03/18/05
Received: 03/18/05

EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 10C1526-01 (Outfall 011 Composite - Water) - cont.									
Reporting Units: mg/									
EFH (C13-C22)	EPA 8015B	5C21048	0.082	0.50	ND	0.943	03/21/05	03/21/05	
Surrogate: n-Octacosane (40-125\%)					81\%				

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10 Cl 1526

Sampled: 03/18/05
Received: 03/18/05

VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 10C1526-01 (Outfall 011 Composite - Water) - cont.									
Reporting Units: mg/l									
GRO (C4-C12)	EPA 8015 Mod.	5C21006	0.050	0.10	ND	1	03/21/05	03/21/05	
Surrogate: 4-BFB (FID) (65-140\%)					81\%				
Sample ID: 10C1526-02 (Trip Blank - Water)									P1
Reporting Units: mg/									
GRO (C4-C12)	EPA 8015 Mod.	5C21006	0.050	0.10	ND	1	03/21/05	03/21/05	
Surrogate: 4-BFB (FID) (65-140\%)					76%				

Del Mar Analytical, Irvine

Michele Harper
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

```
Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10 Cl 526
Sampled: 03/18/05
Received: 03/18/05
```


PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyz
Sample ID: 10C1526-01 (Outfan 011 Composite - Water)								
Reporting Units: ug/								
Benzene	EPA 624	5 C 20002	0.28	1.0	ND	1	03/20/05	03/20/05
Bromodichloromethane	EPA 624	5 C 20002	0.30	2.0	ND	1	03/20/05	03/20/05
Bromoform	EPA 624	5C20002	0.32	5.0	ND	1	03/20/05	03/20/05
Bromomethane	EPA 624	SC20002	0.34	5.0	ND	1	03/20/05	03/20/05
Carbon tetrachloride	EPA 624	5 C 20002	0.28	0.50	ND	1	03/20/05	03/20/05
Chlorobenzene	EPA 624	5C20002	0.36	2.0	ND	1	03/20/05	03/20/05
Chloroethane	EPA 624	5C20002	0.33	5.0	ND	1	03/20/05	03/20/05
Chloroform	EPA 624	5C20002	0.33	2.0	ND	1	03/20/05	03/20/05
Chloromethane	EPA 624	5C20002	0.30	5.0	ND	1	03/20/05	03/20/05
Dibromochloromethane	EPA 624	5C20002	0.28	2.0	ND	1	03/20/05	03/20/05
1,2-Dichlorobenzene	EPA 624	5C20002	0.32	2.0	ND	1	03/20/05	03/20/05
1,3-Dichlorobenzene	EPA 624	5C20002	0.35	2.0	ND	1	03/20/05	03/20/05
1,4-Dichlorobenzene	EPA 624	5C20002	0.37	2.0	ND	1	03/20/05	03/20/05
1,1-Dichloroethane	EPA 624	5C20002	0.27	2.0	ND	1	03/20/05	03/20/05
1,2-Dichloroethane	EPA 624	5C20002	0.28	0.50	ND	1	03/20/05	03/20/05
1,1-Dichloroethene	EPA 624	5C20002	0.32	5.0	ND	1	03/20/05	03/20/05
trans-1,2-Dichloroethene	EPA 624	5C20002	0.27	2.0	ND	1	03/20/05	03/20/05
1,2-Dichloropropane	EPA 624	5C20002	0.35	2.0	ND	1	03/20/05	03/20/05
cis-1,3-Dichloropropene	EPA 624	5 C 20002	0.22	2.0	ND	1	03/20/05	03/2005
trans-1,3-Dichloropropene	EPA 624	5C20002	0.24	2.0	ND	1	03/20/05	03/20/05
Ethylbenzene	EPA 624	5C20002	0.25	2.0	ND	1	03/20/05	03/20/05
Methylene chloride	EPA 624	5C20002	0.48	5.0	ND	1	03/20/05	03/20/05
1,1,2,2-Tetrachloroethane	EPA 624	5C20002	0.24	2.0	ND	1	03/20/05	03/20/05
Tetrachloroethene	EPA 624	5 C 20002	0.32	2.0	ND	1	03/20/05	03/20/05
Toluene	EPA 624	5 C 20002	0.36	2.0	ND	1	03/20/05	03/20/05
1,1,1-Trichloroethane	EPA 624	5C20002	0.30	2.0	ND	1	03/20/05	03/20/05
1,1,2-Trichloroethane	EPA 624	5 C 20002	0.30	2.0	ND	1	03/20/05	03/20/05
Trichloroethene	EPA 624	5 C 20002	0.26	2.0	ND	1	03/20/05	03/20/05
Trichlorofluoromethane	EPA 624	5 C 20002	0.34	5.0	ND	1	03/20/05	03/20/05
Vinyl chloride	EPA 624	5C20002	0.26	0.50	ND	1	03/20/05	03/20/05
Xylenes, Total	EPA 624	5C20002	0.52	4.0	ND	1	03/20/05	03/20/05
Trichlorotrifluoroethane (Freon 113)	EPA 624	5C20002	1.2	5.0	ND	1	03/20/05	03/20/05
Surrogate: Dibromofluoromethane (80-120\%)					116\%			
Surrogate: Toluene-d8 (80-120\%)					103%			
Surrogate: 4-Bromofluorobenzene (80-120\%)					94%			

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10 Cl 1526
Sampled: 03/18/05
Received: 03/18/05

PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyz
Sample ID: 1OC1526-02 (Trip Blank - Water)								
Reporting Units: ugh								
Benzene	EPA 624	5C20002	0.28	1.0	ND	1	03/20/05	03/20/05
Bromodichloromethane	EPA 624	5C20002	0.30	2.0	ND	1	03/20/05	03/20/05
Bromoform	EPA 624	5C20002	0.32	5.0	ND	1	03/20/05	03/20/05
Bromomethane	EPA 624	5C20002	0.34	5.0	ND	1	03/20/05	03/20/05
Carbon tetrachloride	EPA 624	5C20002	0.28	0.50	ND	1	03/20/05	03/20/05
Chlorobenzene	EPA 624	5C20002	0.36	2.0	ND	1	03/20/05	03/20/05
Chloroethane	EPA 624	5 C 20002	0.33	5.0	ND	1	03/20/05	03/20/05
Chloroform	EPA 624	5 C 20002	0.33	2.0	ND	1	03/20/05	03/20/05
Chloromethane	EPA 624	5C20002	0.30	5.0	ND	1	03/20/05	03/20/05
Dibromochloromethane	EPA 624	5C20002	0.28	2.0	ND	1	03/20/05	03/20/05
1,2-Dichlorobenzene	EPA 624	5C20002	0.32	2.0	ND	1	03/20/05	03/20/05
1,3-Dichlorobenzene	EPA 624	5C20002	0.35	2.0	ND	1	03/20/05	03/20/05
1,4-Dichlorobenzene	EPA 624	5C20002	0.37	2.0	ND	1	03/20/05	03/20/05
1,1-Dichloroethane	EPA 624	5 C 20002	0.27	2.0	ND	1	03/20/05	03/20/05
1,2-Dichloroethane	EPA 624	5 C 20002	0.28	0.50	ND	1	03/20/05	03/20/05
1,1-Dichloroethene	EPA 624	5 C 20002	0.32	5.0	ND	1	03/20/05	03/20/05
trans-1,2-Dichloroethene	EPA 624	5 C 20002	0.27	2.0	ND	1	03/20/05	03/20/05
1,2-Dichloropropane	EPA 624	5C20002	0.35	2.0	ND	1	03/20/05	03/20/05
cis 13 - ichloropropene	EPA 624	$5 C 20002$	022	2.0	ND	1	03/20/05	03/20/05
trans-1,3-Dichloropropene	EPA 624	5 C 20002	0.24	2.0	ND	1	03/20/05	03/20/05
Ethylbenzene	EPA 624	5 C 20002	0.25	2.0	ND	1	03/20/05	03/20/05
Methylene chloride	EPA 624	5 C 20002	0.48	5.0	ND	1	03/20/05	03/20/05
1,1,2,2-Tetrachloroethane	EPA 624	5 C 20002	0.24	2.0	ND	1	03/20/05	03/20/05
Tetrachloroethene	EPA 624	5C20002	0.32	2.0	ND	1	03/20/05	03/20/05
Toluene	EPA 624	5C20002	0.36	2.0	ND	1	03/20/05	03/20/05
1,1,1-Trichloroethane	EPA 624	5C20002	0.30	2.0	ND	1	03/20/05	03/20/05
1,1,2-Trichloroethane	EPA 624	5C20002	0.30	2.0	ND	1	03/20/05	03/20/05
Trichloroethene	EPA 624	5C20002	0.26	2.0	ND	1	03/20/05	03/20/05
Trichlorofluoromethane	EPA 624	5 C 20002	0.34	5.0	ND	1	03/20/05	03/20/05
Vinyl chloride	EPA 624	5C20002	0.26	0.50	ND	1	03/20/05	03/20/05
Xylenes, Total	EPA 624	5C20002	0.52	4.0	ND	1	03/20/05	03/20/05
Trichlorotrifluoroethane (Freon 113)	EPA 624	5C20002	1.2	5.0	ND	1	03/20/05	03/20/05
Surrogate: Dibromofluoromethane (80-120\%)					112\%			
Surrogate: Toluene-d8 (80-120\%)					103%			
Surrogate: 4-Bromofluorobenzene (80-120\%)					96\%			

Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011
Report Number: IOC1526

Sampled: 03/18/05
Received: 03/18/05

PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OC1526-01 (Outfall 011 Composite - Water)									
Reporting Units: ugh									
Acrolein	EPA 624	5C20002	4.6	50	ND	1	03/20/05	03/20/05	
Acrylonitrile	EPA 624	5C20002	5.1	50	ND	1	03/20/05	03/20/05	
2-Chloroethyl vinyl ether	EPA 624	5C20002	1.3	5.0	ND	1	03/20/05	03/20/05	
Surrogate: Dibromofluoromethane (80-120\%)					116\%				
Surrogate: Toluene-d8 (80-120\%)					103%				
Surrogate: 4-Bromofluorobenzene (80-120\%)					94%				

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention; Bronwyn Kelly

PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 10C1526-01 (Outfall 011 Composite - Water) - cont.									
Reporting Units: ug/									
1,2-Dichloro-1,1,2-trifluoroethane	EPA 624 (MOD.)	5C20002	N/A	2.5	ND	1	03/20/05	03/20/05	
Cyclohexane	EPA 624 (MOD.)	5 C 20002	N/A	2.5	ND	1	03/20/05	03/20/05	
Sample ID: 1OC1526-02 (Trip Blank - Water)									
Reporting Units: ug/									
1,2-Dichloro-1,1,2-trifluoroethane	EPA 624 (MOD.)	5C20002	N/A	2.5	ND	1	03/20/05	03/20/05	
Cyclohexane	EPA 624 (MOD.)	5C20002	N/A	2.5	ND	1	03/20/05	03/20/05	

Del Mar Analytical, Irvine

Michele Harper
Project Manager

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10 Cl 1526

Sampled: 03/18/05
Received: 03/18/05

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10 Cl 1526
Sampled: 03/18/05
Received: 03/18/05

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOC1526-01 (Outfall 011 Composite - Water)									RL-3
Reporting Units: ugh									
Acenaphthene	EPA 625	5C20022	0.20	1.0	ND	1.9	03/20/05	03/22/05	
Acenaphthylene	EPA 625	5C20022	0.20	1.0	ND	1.9	03/20/05	03/22/05	
Aniline	EPA 625	5C20022	5.8	20	ND	1.9	03/20/05	03/22/05	
Anthracene	EPA 625	5C20022	0.17	1.0	ND	1.9	03/20/05	03/22/05	
Benzidine	EPA 625	5C20022	4.8	10	ND	1.9	03/20/05	03/22/05	L2
Benzoic acid	EPA 625	5C20022	7.4	40	ND	1.9	03/20/05	03/22/05	
Benzo(a)anthracene	EPA 625	5 C 20022	0.076	10	ND	1.9	03/20/05	03/22/05	
Benzo(a)pyrene	EPA 625	5C20022	0.28	4.0	ND	1.9	03/20/05	03/22/05	
Benzo(b)fluoranthene	EPA 625	5C20022	0.10	4.0	ND	1.9	03/20/05	03/22/05	
Benzo(g,h,i)perylene	EPA 625	5C20022	0.12	10	ND	1.9	03/20/05	03/22/05	
Benzo(k)fluoranthene	EPA 625	5C20022	0.11	1.0	ND	1.9	03/20/05	03/22/05	
Benzyl alcohol	EPA 625	5C20022	0.42	10	ND	1.9	03/20/05	03/22/05	
Bis(2-chloroethoxy)methane	EPA 625	5C20022	0.14	1.0	ND	1.9	03/20/05	03/22/05	
Bis(2-chloroethyl)ether	EPA 625	5C20022	0.17	1.0	ND	1.9	03/20/05	03/22/05	
Bis(2-chloroisopropyl)ether	EPA 625	5C20022	0.22	1.0	ND	1.9	03/20/05	03/22/05	
Bis(2-ethylhexyl)phthalate	EPA 625	5C20022	2.2	10	ND	1.9	03/20/05	03/22/05	
4-Bromophenyl phenyl ether	EPA 625	5 C 20022	0.24	2.0	ND	1.9	03/20/05	03/22/05	
Butyl benzyl phthalate	EPA 625	5 C 20022	0.68	10	1.1	1.9	03/20/05	03/22/05	B, J
4-Chloroaniline	EPA 625	5 C 20022	0.40	4.0	ND	1,9	03/20/05	03/22/05	
2-Chloronaphthalene	EPA 625	5 C 20022	0.12	1.0	ND	1.9	03/20/05	03/22/05	
4-Chloro-3-methylphenol	EPA 625	5C20022	0.68	4.0	ND	1.9	03/20/05	03/22/05	
4-Chlorophenyl phenyl ether	EPA 625	5C20022	0.11	1.0	ND	1.9	03/20/05	03/22/05	
2-Chlorophenol	EPA 625	5C20022	0.24	2.0	ND	1.9	03/20/05	03/22/05	
Chrysene	EPA 625	5C20022	0.14	1.0	ND	1.9	03/20/05	03/22/05	
Dibenz(a,h)anthracene	EPA 625	5C20022	0.17	1.0	ND	1.9	03/20/05	03/22/05	
Dibenzofuran	EPA 625	5C20022	0.15	1.0	ND	1.9	03/20/05	03/22/05	
Di-n-butyl phthalate	EPA 625	5C20022	0.52	4.0	ND	1.9	03/20/05	03/22/05	
1,2-Dichlorobenzene	EPA 625	5C20022	0.22	1.0	ND	1.9	03/20/05	03/22/05	
1,3-Dichlorobenzene	EPA 625	5 C 20022	0.26	1.0	ND	1.9	03/20/05	03/22/05	
1,4-Dichlorobenzene	EPA 625	5C20022	0.10	1.0	ND	1.9	03/20/05	03/22/05	
3,3-Dichlorobenzidine	EPA 625	5C20022	1.9	10	ND	1.9	03/20/05	03/22/05	
2,4-Dichlorophenol	EPA 625	5 C 20022	0.42	4.0	ND	1.9	03/20/05	03/22/05	
Diethyl phthalate	EPA 625	5C20022	0.24	2.0	0.42	1.9	03/20/05	03/22/05	B, J
2,4-Dimethylphenol	EPA 625	5C20022	0.62	4.0	ND	1.9	03/20/05	03/22/05	
Dimethyl phthalate	EPA 625	5C20022	0.16	1.0	ND	1.9	03/20/05	03/22/05	
4,6-Dinitro-2-methylphenol	EPA 625	5C20022	0.76	10	ND	1.9	03/20/05	03/22/05	
2,4-Dinitrophenol	EPA 625	5C20022	5.4	10	ND	1.9	03/20/05	03/22/05	N-1
2,4-Dinitrotoluene	EPA 625	5C20022	0.46	10	ND	1.9	03/20/05	03/22/05	
2,6-Dinitrotoluene	EPA 625	5 C 20022	0.48	10	ND	1.9	03/20/05	03/22/05	
Di-n-octyl phthalate	EPA 625	5C20022	0.34	10	ND	1.9	03/20/05	03/22/05	
1,2-Diphenylhydrazine/Azobenzene	EPA 625	5C20022	0.17	2.0	ND	1.9	03/20/05	03/22/05	

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10 Cl 526
Sampled: 03/18/05
Received: 03/18/05

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOC1526-01 (Outfall 011 Comp Reporting Units: ugh	posite - Wa	cont.							RL-3
Fluoranthene	EPA 625	5C20022	0.18	1.0	ND	1.9	03/20/05	03/22/05	
Fluorene	EPA 625	5C20022	0.15	1.0	ND	1.9	03/20/05	03/22/05	
Hexachlorobenzene	EPA 625	5C20022	0.26	2.0	ND	1.9	03/20/05	03/22/05	
Hexachlorobutadiene	EPA 625	5C20022	0.76	4.0	ND	1.9	03/20/05	03/22/05	
Hexachlorocyclopentadiene	EPA 625	5C20022	3.6	10	ND	1.9	03/20/05	03/22/05	
Hexachloroethane	EPA 625	5C20022	1.0	6.0	ND	1.9	03/20/05	03/22/05	
Indeno(1,2,3-cd)pyrene	EPA 625	5C20022	0.38	4.0	ND	1.9	03/20/05	03/22/05	
Isophorone	EPA 625	5C20022	0.12	2.0	ND	1.9	03/20/05	03/22/05	
2-Methylnaphthalene	EPA 625	5C20022	0.26	2.0	ND	1.9	03/20/05	03/22/05	
2-Methylphenol	EPA 625	5C20022	0.56	4.0	ND	1.9	03/20/05	03/22/05	
4-Methylphenol	EPA 625	5C20022	0.40	10	ND	1.9	03/20/05	03/22/05	
Naphthalene	EPA 625	5 C 20022	0.26	2.0	ND	1.9	03/20/05	03/22/05	
2-Nitroaniline	EPA 625	5C20022	0.36	10	ND	1.9	03/20/05	03/22/05	
3-Nitroaniline	EPA 625	5C20022	0.70	10	ND	1.9	03/20/05	03/22/05	
4-Nitroaniline	EPA 625	5C20022	0.98	10	ND	1.9	03/20/05	03/22/05	
Nitrobenzene	EPA 625	5C20022	0.20	2.0	ND	1.9	03/20/05	03/22/05	
2-Nitrophenol	EPA 625	5C20022	0.46	4.0	ND	1.9	03/20/05	03/22/05	
4 Nitrophenol	EPA 625	5C20022	1.5	10	ND	1.9	03/20/05	03/22/05	
N-Nitrosodimethylamine	EPA 625	SC20022	0.44	4.0	ND	1.9	03/20/05	03/22/05	
N -Nitroso-di-n-propylamine	EPA 625	5C20022	0.36	4.0	ND	1.9	03/20/05	03/22/05	
N -Nitrosodiphenylamine	EPA 625	5 C 20022	0.15	2.0	ND	1.9	03/20/05	03/22/05	
Pentachlorophenol	EPA 625	5 C 20022	1.6	4.0	ND	1.9	03/20/05	03/22/05	
Phenanthrene	EPA 625	5 C 20022	0.14	1.0	ND	1.9	03/20/05	03/22/05	
Phenol	EPA 625	5 C 20022	0.28	2.0	ND	1.9	03/20/05	03/22/05	
Pyrene	EPA 625	SC20022	0.12	1.0	ND	1.9	03/20/05	03/22/05	
1,2,4-Trichlorobenzene	EPA 625	5C20022	0.20	2.0	ND	1.9	03/20/05	03/22/05	
2,4,5-Trichlorophenol	EPA 625	5 C 20022	0.15	4.0	ND	1.9	03/20/05	03/22/05	
2,4,6-Trichlorophenol	EPA 625	5 C 20022	0.20	2.0	ND	1.9	03/20/05	03/22/05	
Surrogate: 2-Fluorophenol (30-120\%)					68\%				
Surrogate: Phenol-d6 (35-120\%)					67%				
Surrogate: 2,4,6-Tribromophenol (45-120\%)					79%				
Surrogate: Nitrobenzene-d5 (45-120\%)					68%				
Surrogate: 2-Fluorobiphenyl (45-120\%)					70\%				
Surrogate: Terphenyl-d14 (45-120\%)					78%				

[^34]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011
Report Number: 10 C 1526

Sampled: 03/18/05
Received: 03/18/05

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dillution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 10C1526-01 (Outfall 011 Composite - Water) - cont.									
Reporting Units: ug/									
Aldrin	EPA 608	5C19034	0.030	0.10	ND	0.952	03/19/05	03/19/05	
alpha-BHC	EPA 608	5C19034	0.015	0.10	ND	0.952	03/19/05	03/19/05	
beta-BHC	EPA 608	5C19034	0.015	0.10	ND	0.952	03/19/05	03/19/05	
delta-BHC	EPA 608	5C19034	0.020	0.20	ND	0.952	03/19/05	03/19/05	
gamma-BHC (Lindane)	EPA 608	5C19034	0.020	0.10	ND	0.952	03/19/05	03/19/05	
Chlordane	EPA 608	5C19034	0.20	1.0	ND	0.952	03/19/05	03/19/05	
4,4'-DDD	EPA 608	5C19034	0.020	0.10	ND	0.952	03/19/05	03/19/05	
4,4-DDE	EPA 608	5C19034	0.025	0.10	ND	0.952	03/19/05	03/19/05	
4,4-DDT	EPA 608	5C19034	0.030	0.10	0.11	0.952	03/19/05	03/19/05	
Dieldrin	EPA 608	5C19034	0.015	0.10	ND	0.952	03/19/05	03/19/05	
Endosulfan I	EPA 608	5 C 19034	0.015	0.10	ND	0.952	03/19/05	03/19/05	
Endosulfan II	EPA 608	5C19034	0.040	0.10	ND	0.952	03/19/05	03/19/05	
Endosulfan sulfate	EPA 608	5C19034	0.015	0.20	ND	0.952	03/19/05	03/19/05	
Endrin	EPA 608	5C19034	0.020	0.10	ND	0.952	03/19/05	03/19/05	
Endrin aldehyde	EPA 608	5C19034	0.045	0.10	ND	0.952	03/19/05	03/19/05	
Endrin ketone	EPA 608	5C19034	0.020	0.10	ND	0.952	03/19/05	03/19/05	
Heptachlor	EPA 608	5C19034	0.030	0.10	ND	0.952	03/19/05	03/19/05	
Heptachlor epoxide	EPA 608	5 Cl 19034	0.020	0.10	ND	0.952	03/19/05	03/19/05	
Methoxychlor	EPA 608	$5 C 19034$	0.035	0.10	ND	0.952	$03 / 19105$	03/19/05	
Toxaphene	EPA 608	5C19034	1.5	5.0	ND	0.952	03/19/05	03/19/05	
Surrogate: Tetrachloro-m-xylene (35-115\%)					31%				ZX
Surrogate: Decachlorobiphenyl (45-120\%)					39%				$Z X$

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011
Report Number: IOC1526

Sampled: 03/18/05
Received: 03/18/05

TOTAL PCBS (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample 1D: 10C1526-01 (Outfall 011 Composite - Water) - cont.									
Reporting Units: ugh									
Aroclor 1016	EPA 608	5 Cl 9034	0.20	1.0	ND	0.952	03/19/05	03/20/05	
Aroclor 1221	EPA 608	5C19034	0.10	1.0	ND	0.952	03/19/05	03/20/05	
Aroclor 1232	EPA 608	5C19034	0.15	1.0	ND	0.952	03/19/05	03/20/05	
Aroclor 1242	EPA 608	5C19034	0.15	1.0	ND	0.952	03/19/05	03/20/05	
Aroclor 1248	EPA 608	5C19034	0.25	1.0	ND	0.952	03/19/05	03/20/05	
Aroclor 1254	EPA 608	5C19034	0.25	1.0	ND	0.952	03/19/05	03/20/05	
Aroclor 1260	EPA 608	5C19034	0.40	1.0	ND	0.952	03/19/05	03/20/05	
Surrogate: Decachlorobiphenyl (45-120\%)					37%				$Z X$

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10 Cl 526

Sampled: 03/18/05
Received: 03/18/05

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Bocing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

			MET	LS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 10C1526-01 (Outfall 011 Composite - Water) - cont.									
Reporting Units: ugh									
Antimony	EPA 200.8	5 Cl 9038	0.18	2.0	0.26	1	03/19/05	03/21/05	B, J
Arsenic	EPA 200.8	5 Cl 19038	0.49	1.0	2.1	1	03/19/05	03/21/05	
Beryllium	EPA 200.8	5C19038	0.037	0.50	ND	1	03/19/05	03/21/05	
Cadmium	EPA 200.8	5C19038	0.015	1.0	0.079	1	03/19/05	03/21/05	B, J
Chromium	EPA 200.8	5 C 19038	0.26	2.0	0.93	1	03/19/05	03/21/05	J
Cobalt	EPA 200.8	5 Cl 9038	0.10	1.0	0.33	1	03/19/05	03/21/05	J
Copper	EPA 200.8	5C19038	0.49	2.0	3.0	1	03/19/05	03/21/05	
Lead	EPA 200.8	5 C 19038	0.13	1.0	0.39	1	03/19/05	03/21/05	J
Manganese	EPA 200.8	5C21088	0.44	1.0	56	1	03/21/05	03/21/05	
Mercury	EPA 245.1	5 C 19029	0.063	0.20	ND	1	03/19/05	03/19/05	
Nickel	EPA 200.8	5C19038	0.15	2.0	1.9	1	03/19/05	03/21/05	B, J
Selenium	EPA 200.8	5C19038	0.36	2.0	0.43	1	03/19/05	03/21/05	J
Silver	EPA 200.8	5C19038	0.089	1.0	ND	1	03/19/05	03/21/05	
Thallium	EPA 200.8	5C19038	0.075	1.0	ND	1	03/19/05	03/21/05	
Vanadium	EPA 200.8	5 C 19038	0.86	2.0	1.3	1	03/19/05	03/21/05	J
Zinc	EPA 200.8	5C19038	3.1	20	9.8	1	03/19/05	03/21/05	J

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011 Sampled: 03/18/05
Report Number: 10 Cl 526

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOC1526-01 (Outfall 011 Composite - Water)-cont.Reporting Units: mg / l									
Ammonia-N (Distilled)	EPA 350.2	5C22089	0.30	0.50	0.56	1	03/22/05	03/22/05	
Biochemical Oxygen Demand	EPA 405.1	5 C 18070	0.59	2.0	3.8	1	03/18/05	03/23/05	
Chloride	EPA 300.0	5 C 18104	0.26	0.50	15	1	03/18/05	03/19/05	
Fluoride	EPA 300.0	5 Cl 18104	0.10	0.50	0.36	1	03/18/05	03/19/05	B, J
Nitrate/Nitrite-N	EPA 300.0	5 Cl 18104	0.072	0.11	ND	1	03/18/05	03/19/05	
Oil \& Grease	EPA 413.1	5C21062	0.94	5.0	ND	1	03/21/05	03/21/05	
Residual Chlorine	EPA 330.5	5 Cl 19030	0.10	0.10	ND	1	03/19/05	03/19/05	
Sulfate	EPA 300.0	5 Cl 18104	0.18	0.50	41	1	03/18/05	03/19/05	
Surfactants (MBAS)	SM5540-C	5 C 18107	0.044	0.10	0.064	1	03/18/05	03/18/05	J
Total Dissolved Solids	SM2540C	5C21073	10	10	230	1	03/21/05	03/21/05	
Total Organic Carbon	EPA 415.1	5C22101	0.25	1.0	13	1	03/22/05	03/22/05	
Total Suspended Solids	EPA 160.2	5C21068	10	10	ND	1	03/21/05	03/21/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention; Bronwyn Kelly

INORGANICS

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Sampled: 03/18/05
Received: 03/18/05

INORGANICS

Analyte	Method	Batch	MDL Limit	Reperting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 10C1526-01 (Outfall 011 Composite - Water) - cont.									
Repor									
Turbidity	EPA 180.1	5C19032	0.040	1.0	2.4	1	03/19/05	03/19/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOC1526

Sampled: 03/18/05
Received: 03/18/05

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOC1526-01 (Outfall 011 Composite - Water) - cont.									
Reporting Units: ugh									
Chromium VI	EPA 218.6	5C18067	0.10	1.0	ND	1	03/18/05	03/18/05	
Total Cyanide	EPA 335.2	5C21083	2.2	5.0	ND	1	03/21/05	03/21/05	
Perchlorate	EPA 314.0	5C18121	0.80	4.0	ND	1	03/18/05	03/19/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOC1526

Sampled: 03/18/05
Received: 03/18/05

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOC1526-01 (Outfall 011 Composite - Water) - cont.									
Reporting Units: umhos/cm									
Specific Conductance	EPA 120.1	5C21077	1.0	1.0	350	1	03/21/05	03/21/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011 Sampled: 03/18/05
Report Number: 10 Cl 526

Received: 03/18/05

1,4-DIOXANE BY GC/MS (EPA 5030B/8260B)

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011 Sampled: 03/18/05
Report Number: 10 Cl 1526
Received: 03/18/05

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID; Outfall 011 Composite (IOC1526-01) - Water					

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011 Sampled: 03/18/05
Report Number: IOC1526

Received: 03/18/05

METHOD BLANKIOC DATA

TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C22091 Extracted: 03/22/05										
Blank Analyzed: 03/22/2005 (5C22091-BLK1)										
Total Recoverable Hydrocarbons ND	1.0	0.31	mg / l							
LCS Analyzed: 03/22/2005 (5C22091-BS1)										M-NR1
Total Recoverable Hydrocarbons 4.49	1.0	0.31	mg / l	5.00		90	65-120			
LCS Dup Analyzed: 03/22/2005 (5C22091-BSD1)										
Total Recoverable Hydrocarbons 4.59	1.0	0.31	mg/	5.00		92	65-120	2	20	

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10 Cl 1526

Sampled: 03/18/05
Received: 03/18/05

METHOD BLANKIQC DATA

EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

Analyte	Result	Reportin Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C21048 Extracted: 03/21/05											
Blank Analyzed: 03/21/2005 (5C21048-BLK1)											
EFH (C13-C22)	ND	0.50	0.082	mg / l							
EFH (C13-C40)	ND	0.50	0.082	mg/							
Surrogate: n-Octacosane	0.174			$m g /$	0.200		87	40-125			
LCS Analyzed: 03/21/											M-NR1
EFH (Cl3-C40)	0.738	0.50	0.082	mg / l	0.775		95	40-120			
Surrogate: n-Octacosane	0.182			$m g /$	0.200		91	40-125			
LCS Dup Analyzed: 03/21/2005 (5C21048-BSD1)											
EFH (C13-C40)	0.688	0.50	0.082	mg / l	0.775		89	40-120	7	25	
Surrogate: n-Octacosane	0.177			mg/	0.200		88	40-125			

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011 Sampled: 03/18/05
IOC1526

Received: 03/18/05

METHOD BLANKIQC DATA

VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)

		Reporting			Spike	Source	\%REC		RPD	Data	
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5C21006 Extracted: 03/21/05

Blank Analyzed: 03/21/2005 (5C21006-BLK1)

GRO (C4-C12)	ND	0.10	0.050	$\mathrm{mg} / 1$				
Surrogate: 4-BFB (FID)	0.00839			$m g /$	0.0100		84	65-140
LCS Analyzed: 03/21/2005 (5C21006-BS1)								
GRO (C4-C12)	0.650	0.10	0.050	mg / l	0.800		81	70-140
Surrogate: 4-BFB (FID)	0.0238			$m \mathrm{~g} / \mathrm{l}$	0.0300		79	65-140
Matrix Spike Analyzed: 03/21/2005 (5C21006-MS1)					Source: IOC1526-01			
GRO (C4-C12)	0.220	0.10	0.050	mg / l	0.220	ND	100	60-140
Surrogate: 4-BFB (FID)	0.00955			$m g /$	0.0100		96	65-140

Matrix Spike Dup An	C210					e 10	26-01		
GRO (C4-C12)	0.221	0.10	0.050	$\mathrm{mg} /$	0.220	ND	100	60-140	1
Surrogate: 4-BFB (FID)	0.00960			$m g /$	0.0100		96	65-140	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

```
        Project ID: }13267\mathrm{ (Study 1)
Outfall 011
Report Number: IOC1526
```

Sampled: 03/18/05
Received: 03/18/05

METHOD BLANKKOC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source	\%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit

Blank Analyzed: 03/20/2005 (5C20002-BLK1)

Benzene	ND	1.0	0.28	ug/			
Bromodichloromethane	ND	2.0	0.30	ug/l			
Bromoform	ND	5.0	0.32	ug/			
Bromomethane	ND	5.0	0.34	ug/			
Carbon tetrachloride	ND	0.50	0.28	ug/			
Chlorobenzene	ND	2.0	0.36	ug/			
Chloroethane	ND	5.0	0.33	ug/			
Chloroform	ND	2.0	0.33	ug/			
Chloromethane	ND	5.0	0.30	ug/			
Dibromochloromethane	ND	2.0	0.28	ug/			
1,2-Dichlorobenzene	ND	2.0	0.32	ug/			
1,3-Dichlorobenzene	ND	2.0	0.35	ug/			
14 -Dichlorobenzene	ND	2.0	0.37	ug/			
1, Dichloroethane	ND	2.0	0.27	ug/			
1,2-Dichloroethane	ND	0.50	0.28	ugh			
1,1-Dichloroethene	ND	5.0	0.32	ug/			
trans-1,2-Dichloroethene	ND	2.0	0.27	ug/			
1,2-Dichloropropane	ND	2.0	0.35	ug/			
cis-1,3-Dichloropropene	ND	2.0	0.22	ug/			
trans-1,3-Dichloropropene	ND	2.0	0.24	ug/			
Ethylbenzene	ND	2.0	0.25	ug/			
Methylene chloride	ND	5.0	0.48	ug/			
1,1,2,2-Tetrachloroethane	ND	2.0	0.24	ug/			
Tetrachloroethene	ND	2.0	0.32	ug/			
Toluene	ND	2.0	0.36	ug/l			
1,1,1-Trichloroethane	ND	2.0	0.30	ugh			
1,1,2-Trichloroethane	ND	2.0	0.30	ug/			
Trichloroethene	ND	2.0	0.26	ugl			
Trichlorofluoromethane	ND	5.0	0.34	ug/			
Vinyl chloride	ND	0.50	0.26	ug/			
Xylenes, Total	ND	4.0	0.52	ugh			
Trichlorotrifluoroethane (Freon 113)	ND	5.0	1.2	ug/l			
Surrogate: Dibromofluoromethane	27.7			ug/l	25.0	111	80-120
Surrogate: Toluene-d8	25.5			$u g / l$	25.0	102	80-120
Surrogate: 4-Bromofluorobenzene	23.8			ugl	25.0	95	80-120

Del Mar Analytical, Irvine
Michele Harper
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1) Outfall 11 Report Number: IOC1526

Received: 03/18/05

METHOD BLANKIOC DATA

PURGEABLES BY GC/MS (EPA 624)

| | | Reporting | | | Spike | Source | \%REC | | RPD | Data | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analyte | Result | Limit | MDL | Units | Level | Result | \%REC | Limits | RPD | Limit | Qualifiers |

LCS Analyzed: 03/20/2005 (5C20002-BS1)

Benzene	25.7	1.0	0.28	ugl	25.0	103	70-120
Bromodichloromethane	25.4	2.0	0.30	ug/	25.0	102	70-140
Bromoform	24.2	5.0	0.32	ugh	25.0	97	55-135
Bromomethane	29.2	5.0	0.34	ug/	25.0	117	60-140
Carbon tetrachloride	25.2	0.50	0.28	ugl	25.0	101	70-140
Chlorobenzene	24.0	2.0	0.36	ug/	25.0	96	80-125
Chloroethane	28.3	5.0	0.33	ug/	25.0	113	60-145
Chloroform	27.9	2.0	0.33	ug/	25.0	112	75-130
Chloromethane	29.6	5.0	0.30	ug/	25.0	118	40-145
Dibromochloromethane	24.5	2.0	0.28	ug/	25.0	98	65-145
1,2-Dichlorobenzene	24.0	2.0	0.32	ug/	25.0	96	80-120
1,3-Dichlorobenzene	23.6	2.0	0.35	ugh	25.0	94	80-120
1,4-Dichlorobenzene	23.9	2.0	0.37	ug/	25.0	96	80-120
11 Dichloroethane	28.0	2.0	0.27	ugh	25.0	112	70-135
1,2-Dichloroethane	29.5	0.50	0.28	ug/	25.0	118	60-150
1,1-Dichloroethene	26.3	5.0	0.32	ug/	25.0	105	75-135
trans-1,2-Dichloroethene	26.8	2.0	0.27	ug/	25.0	107	70-130
1,2-Dichloropropane	26.2	2.0	0.35	ug/	25.0	105	70-120
cis-1,3-Dichloropropene	26.0	2.0	0.22	ugl	25.0	104	75-130
trans-1,3-Dichloropropene	26.4	2.0	0.24	ug/	25.0	106	75-135
Ethylbenzene	25.0	2.0	0.25	ugh	25.0	100	80-120
Methylene chloride	28.0	5.0	0.48	ug/	25.0	112	60-135
1,1,2,2-Tetrachloroethane	25.9	2.0	0.24	ug/	25.0	104	60-135
Tetrachloroethene	23.1	2.0	0.32	ugh	25.0	92	75-125
Toluene	24.8	2.0	0.36	ug/	25.0	99	75-120
1,1,1-Trichloroethane	26.8	2.0	0.30	ugh	25.0	107	75-140
1,1,2-Trichloroethane	25.9	2.0	0.30	ugh	25.0	104	70-125
Trichloroethene	25.3	2.0	0.26	ugh	25.0	101	80-120
Trichlorofluoromethane	28.9	5.0	0.34	ugh	25.0	116	65-145
Vinyl chloride	25.4	0.50	0.26	ugh	25.0	102	50-130
Surrogate: Dibromoffuoromethane	27.8			ug/l	25.0	111	80-120
Surrogate: Toluene-d8	25.7			ug $/$	25.0	103	80-120
Surrogate: 4-Bromofluorobenzene	25.3			ug/l	25.0	101	80-120

Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly	Project ID: 13267 (Study 1) Outfall 011

PURGEABLES BY GC/MS (EPA 624)

		Reporting		Spike	Source	\%REC		RPD	Data	
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit
Batch: 5C20002 Extracted:03/20/05.										
Qualifiers										

Matrix Spike Analyzed: 03/20/2005 (5C20002-MS1)

Benzene	26.4	1.0	0.28	ug/	25.0	ND	106	70-120
Bromodichloromethane	25.5	2.0	0.30	ugh	25.0	ND	102	70-140
Bromoform	22.3	5.0	0.32	ug/	25.0	ND	89	55-140
Bromomethane	29.7	5.0	0.34	ug/	25.0	ND	119	50-145
Carbon tetrachloride	25.0	0.50	0.28	ug/	25.0	ND	100	70-145
Chlorobenzene	24.6	2.0	0.36	ug/	25.0	ND	98	80-125
Chloroethane	28.1	5.0	0.33	ug/	25.0	ND	112	50-145
Chloroform	27.8	2.0	0.33	ug/	25.0	ND	111	70-135
Chloromethane	30.6	5.0	0.30	ug/	25.0	ND	122	35-145
Dibromochloromethane	23.8	2.0	0.28	ug/	25.0	ND	95	65-145
1,2-Dichlorobenzene	24.5	2.0	0.32	ug/	25.0	ND	98	75-130
1,3-Dichlorobenzene	24.5	2.0	0.35	ug/	25.0	ND	98	75-130
14.Dichlorobenzenie	24.7	2.0	0.37	ugh	250	ND	99	$80-120$
1,-Dichloroethane	27.3	2.0	0.27	ugh	25.0	ND	109	65-135
1,2-Dichloroethane	29.3	0.50	0.28	ugh	25.0	ND	117	60-150
1,1-Dichloroethene	27.7	5.0	0.32	ug/	25.0	ND	111	65-140
trans-1,2-Dichloroethene	25.5	2.0	0.27	ugh	25.0	ND	102	65-135
1,2-Dichloropropane	27.0	2.0	0.35	ugh	25.0	ND	108	65-130
cis-1,3-Dichloropropene	25.7	2.0	0.22	ug/	25.0	ND	103	70-140
trans-1,3-Dichloropropene	25.7	2.0	0.24	ug/1	25.0	ND	103	70-140
Ethylbenzene	25.4	2.0	0.25	ugh	25.0	ND	102	70-130
Methylene chloride	27.8	5.0	0.48	ugh	25.0	ND	111	60-135
1,1,2,2-Tetrachloroethane	26.4	2.0	0.24	ug/	25.0	ND	106	60-145
Tetrachloroethene	23.6	2.0	0.32	ug/	25.0	ND	94	70-130
Toluene	25.3	2.0	0.36	ug/	25.0	ND	101	70-120
1,1,1-Trichloroethane	24.2	2.0	0.30	$\mathrm{ug} /$	25.0	ND	97	75-140
1,1,2-Trichloroethane	25.3	2.0	0.30	ug/	25.0	ND	101	60-135
Trichloroethene	24.6	2.0	0.26	ug/	25.0	ND	98	70-125
Trichlorofluoromethane	28.3	5.0	0.34	ugf	25.0	ND	113	55-145
Vinyl chloride	25.8	0.50	0.26	ug/	25.0	ND	103	40-135
Surrogate: Dibromofluoromethane	27.4			ug/	25.0		110	80-120
Surrogate: Toluene-d8	25.4			ug/	25.0		102	80-120
Surrogate: 4-Bromofluorobenzene	24.4			$u g /$	25.0		98	80-120

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA. 91101 Attention: Bronwyn Kelly	Project ID: 13267 (Study 1) Outfall 011
	Report Number: IOC1526

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C20002 Extracted: 03/20/05											

Matrix Spike Dup Analyzed: 03/20/2005 (5C20002-MSD1)

Benzene	25.8	1.0	0.28	ug/	25.0	ND	103	70-120	2	20
Bromodichloromethane	25.1	2.0	0.30	ug/	25.0	ND	100	70-140	2	20
Bromoform	24.1	5.0	0.32	ug/	25.0	ND	96	55-140	8	25
Bromomethane	28.4	5.0	0.34	ug/	25.0	ND	114	50-145	4	25
Carbon tetrachloride	24.7	0.50	0.28	ug/	25.0	ND	99	70-145	1	25
Chlorobenzene	24.4	2.0	0.36	ug/l	25.0	ND	98	80-125	1	20
Chloroethane	26.7	5.0	0.33	ug/	25.0	ND	107	50-145	5	25
Chloroform	27.1	2.0	0.33	ug/1	25.0	ND	108	70-135	3	20
Chloromethane	29.1	5.0	0.30	ug/l	25.0	ND	116	35-145	5	25
Dibromochloromethane	24.6	2.0	0.28	ug/	25.0	ND	98	65-145	3	25
1,2-Dichlorobenzene	24.5	2.0	0.32	ugl	25.0	ND	98	75-130	0	20
1,3-Dichlorobenzene	24.0	2.0	0.35	ug/1	25.0	ND	96	75-130	2	20
14-Dichlorobenzene	24.4	2.0	0.37	ug A	25.0	ND	98	$80-120$	1	20
1,1-Dichloroethane	26.3	2.0	0.27	ugh	25.0	ND	105	65-135	4	20
1,2-Dichloroethane	29.0	0.50	0.28	ug/	25.0	ND	116	60-150	1	20
1,1-Dichloroethene	27.1	5.0	0.32	ug/	25.0	ND	108	65-140	2	20
trans-1,2-Dichloroethene	25.2	2.0	0.27	ugh	25.0	ND	101	65-135	1	20
1,2-Dichloropropane	26.4	2.0	0.35	ug/	25.0	ND	106	65-130	2	20
cis-1,3-Dichloropropene	25.8	2.0	0.22	ug/	25.0	ND	103	70-140	0	20
trans-1,3-Dichloropropene	26.5	2.0	0.24	ug/	25.0	ND	106	70-140	3	25
Ethylbenzene	24.8	2.0	0.25	ug/	25.0	ND	99	70-130	2	20
Methylene chloride	27.1	5.0	0.48	ug/l	25.0	ND	108	60-135	3	20
1,1,2,2-Tetrachloroethane	28.9	2.0	0.24	ug/	25.0	ND	116	60-145	9	30
Tetrachloroethene	23.4	2.0	0.32	ug/	25.0	ND	94	70-130	1	20
Toluene	24.9	2.0	0.36	ug/	25.0	ND	100	70-120	2	20
1,1,1-Trichloroethane	23.0	2.0	0.30	ug/	25.0	ND	92	75-140	5	20
1,1,2-Trichloroethane	26.1	2.0	0.30	ug/	25.0	ND	104	60-135	3	25
Trichloroethene	24.2	2.0	0.26	ug/	25.0	ND	97	70-125	2	20
Trichlorofluoromethane	27.4	5.0	0.34	ug/l	25.0	ND	110	55-145	3	25
Vinyl chloride	22.4	0.50	0.26	ug/	25.0	ND	90	40-135	14	30
Surrogate: Dibromofluoromethane	27.0			$u g /$	25.0		108	80-120		
Surrogate: Toluene-d8	25.6			$u g /$	25.0		102	80-120		
Surrogate: 4-Bromofluorobenzene	24.4			$u g /$	25.0		98	80-120		

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly	Project ID: 13267 (Study 1) Outfall 011 IOC1526

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C20002 Extracted: 03/20/05											
Blank Analyzed: 03/20/2005 (5C20002-BLK1)											
Acrolein	ND	50	4.6	ug/l							
Acrylonitrile	ND	50	5.1	ug/l							
2-Chloroethyl vinyl ether	ND	5.0	1.3	ug/							
Surrogate: Dibromofluoromethane	27.7			$u g /$	25.0		111	80-120			
Surrogate: Toluene-d8	25.5			$u g / 1$	25.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	23.8			$u g / l$	25.0		95	80-120			
LCS Analyzed: 03/20/2005 (5C20002-BS1)											
2-Chloroethyl vinyl ether	26.5	5.0	1.3	ug/l	25.0		106	20-175			
Surrogate: Dibromofluoromethane	27.8			$u g / l$	25.0		111	80-120			
Surrogate: Toluene-d8	25.7			$u g /$	25.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	25.3			$u g /$	25.0		101	80-120			

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOC1526

Sampled: 03/18/05
Received: 03/18/05

MEHHOD BLANKIQC DATA

PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C20002 Extracted; 03/20/05											
Blank Analyzed: 03/20/2005 (5C20002-BLK1)											
1,2-Dichloro-1,1,2-trifluoroethane	ND	2.5	N/A	ug/							
Cyclohexane	ND	2.5	N/A	ug/							

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: $:$	13267 (Study 1)
	Outfall 011
Report Number:	IOC1526

Report Number: IOC1526
Sampled: 03/18/05
Received: 03/18/05

MUIHOD BKANKIOC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C20022 Extracted: 03/20/05											
Blank Analyzed: 03/22/2005 (5C20022-BLK1)											
Acenaphthene	ND	0.50	0.10	ugh							
Acenaphthylene	ND	0.50	0.10	ugh							
Aniline	ND	10	2.9	ug/							
Anthracene	ND	0.50	0.083	ugl							
Benzidine	ND	5.0	2.4	ug/							
Benzoic acid	ND	20	3.7	ug/							
Benzo(a)anthracene	ND	5.0	0.038	ug/							
Benzo(a)pyrene	ND	2.0	0.14	ug/							
Benzo(b)fluoranthene	ND	2.0	0.050	ug/							
Benzo(g,h,i)perylene	ND	5.0	0.059	ug/							
Benzo(k)fluoranthene	ND	0.50	0.053	ug/							
Benzyl alcohol	ND	5.0	0.21	ug/							
Bis(2-chloroethoxy)methane	ND	0.50	0.072	ug 1							
Bis(2 chloroethyl)ether	ND	0.50	0.084	ugn							
Bis (2-chloroisopropyl)ether	ND	0.50	0.11	ug 1							
Bis(2-ethylhexyl)phthalate	ND	5.0	1.1	ug/							
4-Bromophenyl phenyl ether	ND	1.0	0.12	ug/							
Butyl benzyl phthalate	0.600	5.0	0.34	ugA							J
4-Chloroaniline	ND	2.0	0.20	ugh							
2-Chloronaphthalene	ND	0.50	0.059	ug/							
4-Chloro-3-methylphenol	ND	2.0	0.34	ug/							
4.Chlorophenyl phenyl ether	ND	0.50	0.056	ug/							
2-Chlorophenol	ND	1.0	0.12	ug/							
Chrysene	ND	0.50	0.072	ug/							
Dibenz(a,h)anthracene	ND	0.50	0.083	ug/							
Dibenzofuran	ND	0.50	0.075	ughl							
Di-n-butyl phthalate	ND	2.0	0.26	ug/							
1,2-Dichlorobenzene	ND	0.50	0.11	ug/l							
1,3-Dichlorobenzene	ND	0.50	0.13	ugh							
1,4-Dichlorobenzene	ND	0.50	0.050	ugh							
3,3-Dichlorobenzidine	ND	5.0	0.93	ughl							
2,4-Dichlorophenol	ND	2.0	0.21	ug/							
Diethyl phthalate	0.220	1.0	0.12	ug/1							J
2,4-Dimethylphenol	ND	2.0	0.31	ug/							
Dimethyl phthalate	ND	0.50	0.081	ug/							

Del Mar Analytical, Irvine

Michele Harper
Project Manager

Project ID:	13267 (Study 1)	
	Outfall 011	Sampled: $03 / 18 / 05$
Report Number:	1OC1526	Received: 03/18/05

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Sampled: $03 / 18 / 05$
Received: 03/18/05

METHOD BLANKIOC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte
Batch: 5C20022 Extracted: 03/20/05

Blank Analyzed: 03/22/2005 (5C20022-BLK1)

4,6-Dinitro-2-methylphenol	ND	5.0	0.38	ug/				
2,4-Dinitrophenol	ND	5.0	2.7	ug/				N-1
2,4-Dinitrotoluene	ND	5.0	0.23	ug/1				
2,6-Dinitrotoluene	ND	5.0	0.24	ug/				
Di-n-octyl phthalate	ND	5.0	0.17	ug/1				
1,2-Diphenylhydrazine/Azobenzene	ND	1.0	0.087	ug/				
Fluoranthene	ND	0.50	0.089	ug/				
Fluorene	ND	0.50	0.075	ug/				
Hexachlorobenzene	ND	1.0	0.13	ug/				
Hexachlorobutadiene	ND	2.0	0.38	ug/				
Hexachlorocyclopentadiene	ND	5.0	1.8	ugh				
Hexachloroethane	ND	3.0	0.51	ug/l				
Indeno($1,2,3$-cd)pyrene	ND	2.0	0.19	ugh				
Lsophorone	ND	1.0	0.059	ng/				\therefore
2-Methylnaphthalene	ND	1.0	0.13	ug/				
2-Methylphenol	ND	2.0	0.28	ug/				
4-Methylphenol	ND	5.0	0.20	ug/				
Naphthalene	ND	1.0	0.13	ugh				
2-Nitroaniline	ND	5.0	0.18	ug/				
3-Nitroaniline	ND	5.0	0.35	ug/				
4-Nitroaniline	ND	5.0	0.49	ug/				
Nitrobenzene	ND	1.0	0.10	ug/				
2-Nitrophenol	ND	2.0	0.23	ug / l				
4-Nitrophenol	ND	5.0	0.73	ugh				
N -Nitrosodimethylamine	ND	2.0	0.22	ug/1				
N-Nitroso-di-n-propylamine	ND	2.0	0.18	ug/				
N -Nitrosodiphenylamine	ND	1.0	0.077	ugh				
Pentachlorophenol	ND	2.0	0.78	ugh				
Phenanthrene	ND	0.50	0.071	ug/l				
Phenol	ND	1.0	0.14	ugh				
Pyrene	ND	0.50	0.059	ugh				
1,2,4-Trichlorobenzene	ND	1.0	0.10	ug/l				
2,4,5-Trichlorophenol	ND	2.0	0.075	ug/				
2,4,6-Trichlorophenol	ND	1.0	0.10	ug/1				
Surrogate: 2-Fluorophenol	12.3			ug/	20.0	62	30-120	

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1)
	Outfall 011
Report Number:	IOC1526

Outfall 011
Report Number: 10 Cl 1526

Sampled: 03/18/05
Received: 03/18/05

METHOD BLANKIOCDATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C20022 Extracted: 03/20/05											
Blank Analyzed: 03/22/2005 (5C20022-BLK1)											
Surrogate: Phenol-d6	12.0			ug/	20.0		60	35-120			
Surrogate: 2,4,6-Tribromophenol	15.4			ug $/$	20.0		77	45-120			
Surrogate: Nitrobenzene-d5	6.34			ug/	10.0		63	45-120			
Surrogate: 2-Fluorobiphenyl	7.02			ug/ 1	10.0		70	45-120			
Surrogate: Terphenyl-d14	7.70			ug/	10.0		77	45-120			
LCS Analyzed: 03/22/2005 (5C											M-NR1
Acenaphthene	7.60	0.50	0.10	ugA	10.0		76	55-120			
Acenaphthylene	7.76	0.50	0.10	ug/	10.0		78	55-120			
Aniline	7.02	10	2.9	ug/l	10.0		70	35-120			J
Anthracene	7.94	0.50	0.083	ug/	10.0		79	55-120			
Benzidine	ND	5.0	2.4	ug/	10.0			20-160			L2
Benzoic acid	7.08	20	3.7	ug/	10.0		71	35-120			J
Benzo(a)anthracene	8.78	5.0	0.038	ug/	10.0		88	60-120			
Benzo(a)pyrene.	8.28	2.0	0.14	ug/	10.0		83	55-120			
Benzo(b)fluofanthene	7.98	2.0	0.050	ug/	10.0		80	50-120			
Benzo(g,h,i)perylene	7.68	5.0	0.059	ug/	10.0		77	40-125			
Benzo(k)fuoranthene	8.24	0.50	0.053	ug/	10.0		82	50-120			
Benzyl alcohol	7.48	5.0	0.21	ug/	10.0		75	45-120			
Bis(2-chloroethoxy)methane	7.56	0.50	0.072	ug/	10.0		76	55-120			
Bis(2-chloroethyl)ether	6.46	0.50	0.084	ug/	10.0		65	50-120			
Bis(2-chloroisopropyl)ether	6.98	0.50	0.11	ug/	10.0		70	45-120			
Bis(2-ethylhexyl)phthalate	8.18	5.0	1.1	ug/	10.0		82	60-130			
4-Bromophenyl phenyl ether	7.30	1.0	0.12	ug/	10.0		73	50-120			
Butyl benzyl phthalate	8.02	5.0	0.34	ugh	10.0		80	55-125			
4-Chloroaniline	6.88	2.0	0.20	ug/	10.0		69	50-120			
2-Chloronaphthalene	7.82	0.50	0.059	ugh	10.0		78	55-120			
4-Chloro-3-methylphenol	7.16	2.0	0.34	ug/	10.0		72	60-120			
4-Chlorophenyl phenyl ether	7.94	0.50	0.056	ug/	10.0		79	55-120			
2-Chlorophenol	6.82	1.0	0.12	ug/	10.0		68	45-120			
Chrysene	8.32	0.50	0.072	ugl	10.0		83	60-120			
Dibenz(a, h) anthracene	8.64	0.50	0.083	ug/l	10.0		86	45-130			
Dibenzofuran	7.52	0.50	0.075	ug/l	10.0		75	60-120			
Di-n-butyl phthalate	8.02	2.0	0.26	ugl	10.0		80	55-125			
1,2-Dichlorobenzene	6.12	0.50	0.11	ug/	10.0		61	35-120			
1,3-Dichlorobenzene	6.00	0.50	0.13	ug/	10.0		60	35-120			

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
$\begin{aligned} \text { Project ID: } & 13267 \text { (Study 1) } \\ & \text { Outfall 011 } \\ \text { Report Number: } & \text { IOC1526 }\end{aligned}$
Sampled: 03/18/05
Received: 03/18/05

METHOD BLANKIOC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte
Batch: 5C20022 Extracted: 03/20/05

LCS Analyzed: 03/22/2005 (5C20022-BS1)

1,4-Dichlorobenzene	5.96	0.50	0.050	ug/	10.0	60	35-120
33-Dichlorobenzidine	7.18	5.0	0.93	ug/	10.0	72	45-130
2,4-Dichlorophenol	7.36	2.0	0.21	ug/	10.0	74	55-120
Diethyl phthalate	7.40	1.0	0.12	ug/	10.0	74	55-120
2,4-Dimethylphenol	6.64	2.0	0.31	ug/	10.0	66	30-120
Dimethyl phthalate	7.78	0.50	0.081	ugh	10.0	78	60-120
4,6-Dinitro-2-methylphenol	8.54	5.0	0.38	ug/1	10.0	85	50-120
2,4-Dinitrophenol	7.42	5.0	2.7	ug/	10.0	74	40-120
2,4-Dinitrotoluene	6.94	5.0	0.23	ug/l	10.0	69	60-120
2,6-Dinitrotoluene	7.46	5.0	0.24	ug/	10.0	75	60-120
Di-n-octyl phthalate	9.76	5.0	0.17	ug/	10.0	98	60-130
1,2-Diphenylhydrazine/Azobenzene	7.98	1.0	0.087	ug/	10.0	80	60-120
Fluoranthene	8.32	0.50	0.089	ugh	10.0	83	55-120
Fluorene	8.12	0.50	0.075	ug/	10.0	81	60.120
Hexachlorobenzene	7.64	1.0	0.13	ug/	10.0	76	50-120
Hexachlorobutadiene	6.48	2.0	0.38	ug/	10.0	65	40-120
Hexachlorocyclopentadiene	6.58	5.0	1.8	ug/	10.0	66	15-120
Hexachloroethane	6.08	3.0	0.51	ug/	10.0	61	35-120
Indeno($1,2,3$-cd)pyrene	8.12	2.0	0.19	ug/	10.0	81	40-130
Isophorone	6.94	1.0	0.059	ug/	10.0	69	50-120
2-Methylnaphthalene	7.42	1.0	0.13	ug/1	10.0	74	50-120
2-Methylphenol	7.02	2.0	0.28	ug/	10.0	70	45-120
4-Methylphenol	7.14	5.0	0.20	ug/	10.0	71	45-120
Naphthalene	7.10	1.0	0.13	ug/	10.0	71	50-120
2-Nitroaniline	7.92	5.0	0.18	ug/	10.0	79	60-120
3-Nitroaniline	7.18	5.0	0.35	ug/	10.0	72	55-120
4-Nitroaniline	7.68	5.0	0.49	ug/	10.0	77	50-125
Nitrobenzene	6.56	1.0	0.10	ug/	10.0	66	50-120
2-Nitrophenol	7.28	2.0	0.23	ug/	10.0	73	55-120
4-Nitrophenol	8.18	5.0	0.73	ug/	10.0	82	45-120
N -Nitrosodimethylamine	6.94	2.0	0.22	ug/	10.0	69	40-120
N -Nitroso-di-n-propylamine	6.80	2.0	0.18	ug/	10.0	68	45-120
N -Nitrosodiphenylamine	7.34	1.0	0.077	ugl	10.0	73	55-120
Pentachlorophenol	8.06	2.0	0.78	ug/	10.0	81	50-120
Phenanthrene	7.82	0.50	0.071	ugh	10.0	78	55-120

M-NR1

N-1

Del Mar Analytical, Irvine

Michele Harper
Project Manager

Project ID:	13267 (Study 1)	
	Outfall 011	Sampled: $03 / 18 / 05$
Report Number:	IOC1526	Received: 03/18/05

Sampled: 03/18/05
Received: 03/18/05
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Report Number: 10 Cl 1526
Attention: Bronwyn Kelly

METHOD BLANKKIQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C20022 Extracted: 03/20/05											
LCS Analyzed: 03/22/2005 (5											M-NR1
Phenol	7.76	1.0	0.14	ugh	10.0		78	45-120			
Pyrene	8.14	0.50	0.059	ugh	10.0		81	50-120			
1,2,4-Trichlorobenzene	6.40	1.0	0.10	ug/	10.0		64	45-120			
2,4,5-Trichlorophenol	8.04	2.0	0.075	ugh	10.0		80	60-120			
2,4,6-Trichlorophenol	8.04	1.0	0.10	ugh	10.0		80	60-120			
Surrogate: 2-Fluorophenol	13.1			ugh	20.0		66	30-120			
Surrogate: Phenol-d6	13.0			ug/	20.0		65	35-120			
Surrogate: 2,4,6-Tribromophenol	16.1			ug $/$	20.0		80	45-120			
Surrogate: Nitrobenzene-d5	6.72			ug $/$	10.0		67	45-120			
Surrogate: 2-Fluorobiphenyl	7.48			ug $/$	10.0		75	45-120			
Surrogate: Terphemyl-d14	7.66			ug n	10.0		77	45-120			
LCS Dup Analyzed: 03/22/2005 (5C20022-BSD1)											
Acenaphthene	7.52	0.50	0.10	ugh	10.0		75	55-120	1	20	
Acenaphthylene	7.54	0.50	0.10	ugA	10.0		75	55-120	3	20	
Aniline	6.88	10	2.9	ug/	10.0		69	35-120	2	25	J
Anthracene	7.78	0.50	0.083	ug/	10.0		78	55-120	2	20	
Benzidine	ND	5.0	2.4	ug/	10.0			20-160		35	$L 2$
Benzoic acid	6.18	20	3.7	ug/	10.0		62	35-120	14	30	J
Benzo(a)anthracene	8.48	5.0	0.038	ug/	10.0		85	60-120	3	20	
Benzo(a)pyrene	8.12	2.0	0.14	ug/	10.0		81	55-120	2	25	
Benzo(b)fluoranthene	7.90	2.0	0.050	ug/	10.0		79	50-120	1	25	
Benzo(g,h,i)perylene	7.32	5.0	0.059	ug/	10.0		73	40-125	5	25	
Benzo(k)fluoranthene	7.98	0.50	0.053	ug/l	10.0		80	50-120	3	20	
Benzyl alcohol	7.26	5.0	0.21	ug/	10.0		73	45-120	3	20	
Bis(2-chloroethoxy)methane	7.42	0.50	0.072	ug/l	10.0		74	55-120	2	20	
Bis(2-chloroethyl)ether	6.10	0.50	0.084	ug/	10.0		61	50-120	6	20	
Bis(2-chloroisopropyl)ether	6.98	0.50	0.11	ugl	10.0		70	45-120	0	20	
Bis(2-ethylhexyl)phthalate	8.08	5.0	1.1	ug/	10.0		81	60-130	1	20	
4-Bromophenyl phenyl ether	7.30	1.0	0.12	ug/l	10.0		73	50-120	0	25	
Butyl benzyl phthalate	8.02	5.0	0.34	ughl	10.0		80	55-125	0	20	
4-Chloroaniline	6.62	2.0	0.20	ug/1	10.0		66	50-120	4	25	
2-Chloronaphthalene	7.54	0.50	0.059	ug/l	10.0		75	55-120	4	20	
4-Chloro-3-methylphenol	6.86	2.0	0.34	ugl	10.0		69	60-120	4	25	
4-Chlorophenyl phenyl ether	8.16	0.50	0.056	ug/1	10.0		82	55-120	3	20	
2-Chlorophenol	6.74	1.0	0.12	ug/l	10.0		67	45-120	1	25	

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
$\begin{aligned} \text { Project ID: } & 13267 \text { (Study 1) } \\ & \text { Outfall 011 } \\ \text { Report Number: } & \text { IOC1526 }\end{aligned}$
Sampled: 03/18/05
Received: 03/18/05

METHOD BLANKKOC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

| | | | | Reporting | | | Spike | Source | \%REC | | RPD | Data |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Analyte | Result | Limit | MDL | Units | Level | Result \%REC | Limits | RPD | Limit | Qualifiers | | |

LCS Dup Analyzed: 03/22/2005 (5C20022-BSD1)

Chrysene	8.10	0.50	0.072	ug/	10.0	81	60-120	3	20
Dibenz(a, h) anthracene	8.08	0.50	0.083	ug/	10.0	81	45-130	7	25
Dibenzofuran	7.54	0.50	0.075	ug 1	10.0	75	60-120	0	20
Di-n-butyl phthalate	8.10	2.0	0.26	ug/	10.0	81	55-125	1	20
1,2-Dichlorobenzene	5.86	0.50	0.11	ug/	10.0	59	35-120	4	25
1,3-Dichlorobenzene	5.64	0.50	0.13	ug/	10.0	56	35-120	6	25
1,4-Dichlorobenzene	5.68	0.50	0.050	ug/	10.0	57	35-120	5	25
3,3-Dichlorobenzidine	6.88	5.0	0.93	ug/	10.0	69	45-130	4	25
2,4-Dichlorophenol	7.30	2.0	0.21	ug/	10.0	73	55-120	1	20
Diethyl phthalate	7.32	1.0	0.12	ug/	10.0	73	55-120	1	20
2,4-Dimethylphenol	6.42	2.0	0.31	ug/	10.0	64	30-120	3	25
Dimethyl phthalate	7.70	0.50	0.081	ug/	10.0	77	60-120	1	20
466-Dinitro-2-methylphenol	8.26	5.0	0.38	ugh	10.0	83	50-120	3	25
2,4 Dinitrophenol	7.02	50	2.7	ugh	10.0	70	$40-120$	6	25
2,4-Dinitrotoluene	6.92	5.0	0.23	ugn	10.0	69	60-120	0	20
2,6-Dinitrotoluene	7.22	5.0	0.24	ug/l	10.0	72	60-120	3	20
Di-n-octyl phthalate	9.76	5.0	0.17	ug/	10.0	98	60-130	0	20
1,2-Diphenylhydrazine/Azobenzene	8.02	1.0	0.087	ugl	10.0	80	60-120	1	25
Fluoranthene	8.28	0.50	0.089	ugh	10.0	83	55-120	1	20
Fluorene	8.34	0.50	0.075	ug/	10.0	83	60-120	3	20
Hexachlorobenzene	7.50	1.0	0.13	ugh	10.0	75	50-120	2	20
Hexachlorobutadiene	5.84	2.0	0.38	ug/	10.0	58	40-120	10	25
Hexachlorocyclopentadiene	6.76	5.0	1.8	ug/	10.0	68	15-120	3	30
Hexachloroethane	5.66	3.0	0.51	ug/l	10.0	57	35-120	7	25
Indeno($1,2,3-\mathrm{cd}$) pyrene	7.86	2.0	0.19	ug/	10.0	79	40-130	3	25
Isophorone	6.12	1.0	0.059	ug/	10.0	61	50-120	13	20
2-Methyinaphthalene	7.12	1.0	0.13	ugh	10.0	71	50-120	4	20
2-Methylphenol	6.92	2.0	0.28	ugh	10.0	69	45-120	1	20
4-Methylphenol	7.06	5.0	0.20	ug/l	10.0	71	45-120	1	20
Naphthalene	6.86	1.0	0.13	ug/	10.0	69	50-120	3	20
2-Nitroaniline	7.94	5.0	0.18	ugh	10.0	79	60-120	0	20
3-Nitroaniline	6.78	5.0	0.35	ug/	10.0	68	55-120	6	25
4-Nitroaniline	7.64	5.0	0.49	ug/	10.0	76	50-125	1	20
Nitrobenzene	6.62	1.0	0.10	ug/	10.0	66	50-120	1	25
2-Nitrophenol	7.20	2.0	0.23	ug/	10.0	72	55-120	1	25

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1)
	Outfall 011
Report Number:	10 Cl 526

Outfall 011
Sampled: 03/18/05
Received: 03/18/05

METHOD BLANKIQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

| | | Reporting | | | Spike | Source | \%REC | | RPD | Data |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Analyte | Result | Limit | MDL | Units | Level | Result $\%$ REC | Limits | RPD | Limit | Qualifiers |

LCS Dup Analyzed: 03/22/2005 (5C20022-BSD1)

4-Nitrophenol	7.96	5.0	0.73	ug/	10.0	80	45-120	3	25
N-Nitrosodimethylamine	6.82	2.0	0.22	ught	10.0	68	40-120	2	20
N-Nitroso-di-n-propylamine	6.68	2.0	0.18	ug/	10.0	67	45-120	2	20
N -Nitrosodiphenylamine	7.28	1.0	0.077	ug/l	10.0	73	55-120	1	20
Pentachlorophenol	7.92	2.0	0.78	ug/	10.0	79	50-120	2	25
Phenanthrene	7.68	0.50	0.071	ug/	10.0	77	55-120	2	20
Phenol	7.62	1.0	0.14	ug/	10.0	76	45-120	2	25
Pyrene	7.96	0.50	0.059	ug/	10.0	80	50-120	2	25
1,2,4-Trichlorobenzene	6.06	1.0	0.10	ug/	10.0	61	45-120	5	20
2,4,5-Trichlorophenol	7.66	2.0	0.075	ug/	10.0	77	60-120	5	20
2,4,6-Trichlorophenol	7.78	1.0	0.10	ug/	10.0	78	60-120	3	20
Surrogate: 2-Fluorophenol	12.8			ug/	20.0	64	30-120		
Surrogate: Phenol-d6	12.9			ugh	20.0	64	35-120		
Surrogate: 2,4,6-Tribromophenol	16.0			ug n	20.0	80	45-120		
Surrogate: Nitrobenzene-d5	6.74			$u g /$	10.0	67	$45-120$		
Surrogate: 2-Fluorobiphenyl	7.16			$u g /$	10.0	72	45-120		
Surrogate: Terphenyl-d14	7.48			$u g /$	10.0	75	45-120		

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

```
Project ID: 13267 (Study 1) Outfall 011
Report Number: 10 C 1526
Sampled: 03/18/05
Received: 03/18/05
```


METHOD BLANKGOC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C19034 Extracted; 03/19/05											
Blank Analyzed: 03/19/2005 (5C19034-BLK1)											
Aldrin	ND	0.10	0.030	ug/							
alpha-BHC	ND	0.10	0.015	ug/							
beta-BHC	ND	0.10	0.015	ug/							
delta-BHC	ND	0.20	0.020	ug/							
gamma-BHC (Lindane)	ND	0.10	0.020	ug/							
Chlordane	ND	1.0	0.20	ug/							
4,4'-DDD	ND	0.10	0.020	ug/							
4,4-DDE	ND	0.10	0.025	ug/							
4,4-DDT	ND	0.10	0.030	ugh							
Dieldrin	ND	0.10	0.015	ug/							
Endosulfan I	ND	0.10	0.015	ug/							
Endosulfan II	ND	0.10	0.040	ugh							
Endosulfan sulfate	ND	0.20	0.015	ug/							
Endria	ND	0.10	0.020	ug/							
Endrin aldehyde	ND	0.10	0.045	ug/							
Endrin ketone	ND	0.10	0.020	ug/							
Heptachlor	ND	0.10	0.030	ug/							
Heptachlor epoxide	ND	0.10	0.020	ug/							
Methoxychlor	ND	0.10	0.035	ug/							
Toxaphene	ND	5.0	1.5	ug/l							
Surrogate: Tetrachloro-m-xylene	0.320			ug/	0.500		64	35-115			
Surrogate: Decachlorobiphenyl	0.403			ug $/$	0.500		81	45-120			
LCS Analyzed: 03/19/2005 (5C19034-BS1)											M-NR1
Aldrin	0.340	0.10	0.030	ug/	0.500		68	40-115			
alpha-BHC	0.351	0.10	0.015	ug/	0.500		70	45-115			
beta-BHC	0.339	0.10	0.015	ug/	0.500		68	50-115			
delta-BHC	0.351	0.20	0.020	ug/	0.500		70	55-120			
gamma-BHC (Lindane)	0.357	0.10	0.020	ugh	0.500		71	45-115			
4,4-DDD	0.390	0.10	0.020	ugh	0.500		78	60-120			
4,4-DDE	0.380	0.10	0.025	ug/1	0.500		76	55-120			
4,4'-DDT	0.402	0.10	0.030	ug/	0.500		80	60-120			
Dieldrin	0.380	0.10	0.015	ugl	0.500		76	55-120			
Endosulfan I	0.359	0.10	0.015	ugl	0.500		72	50-115			
Endosulfan II	0.377	0.10	0.040	ug/	0.500		75	60-125			
Endosulfan sulfate	0.377	0.20	0.015	ugh	0.500		75	60-120			

Del Mar Analytical, Irvine
Michele Harper
Project Manager
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1)	
	Outfall 011	Sampled: 03/18/05
Report Number:	IOC1526	Received: 03/18/05

MEHHOD BIEANKIOC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)
Analyte
Batch: 5 C 19034 Extracted: $03 / 19 / 05$

LCS Analyzed: 03/19/2005 (5C19034-BS1)

Endrin	0.378
Endrin aldehyde	0.339
Endrin ketone	0.393
Heptachlor	0.357
Heptachlor epoxide	0.352
Methoxychlor	0.386
Surrogate: Tetrachloro-m-xylene	0.299
Surrogate: Decachlorobiphenyl	0.398

LCS Dup Analyzed: 03/19/2005 (5C19034-BSD1)

Aldrin	0.380	0.10	0.030	ug/	0.500	76	40-115	11	30
alpha-BHC	0.391	0.10	0.015	ug/	0.500	78	45-115	11	30
beta-BHC	0.375	0.10	0.015	ug/l	0.500	75	50-115	10	30
delta- BHC	0.391	0.20	0.020	-ga	0.500	78	55-120	11	30
gamma-BHC (Lindane)	0.393	0.10	0.020	ugh	0.500	79	45-115	10	30
4,4-DDD	0.427	0.10	0.020	ug/l	0.500	85	60-120	9	30
4,4-DDE	0.423	0.10	0.025	ugh	0.500	85	55-120	11	30
4,4-DDT	0.447	0.10	0.030	ug/	0.500	89	60-120	11	30
Dieldrin	0.416	0.10	0.015	ug 1	0.500	83	55-120	9	30
Endosulfan I	0.395	0.10	0.015	ug/	0.500	79	50-115	10	30
Endosulfan II	0.409	0.10	0.040	ug/	0.500	82	60-125	8	30
Endosulfan sulfate	0.410	0.20	0.015	ug/	0.500	82	60-120	8	30
Endrin	0.415	0.10	0.020	ug/	0.500	83	55-125	9	30
Endrin aldehyde	0.373	0.10	0.045	ug/	0.500	75	55-115	10	30
Endrin ketone	0.425	0.10	0.020	ug/	0.500	85	60-115	8	30
Heptachior	0.398	0.10	0.030	ug/	0.500	80	45-115	11	30
Heptachlor epoxide	0.389	0.10	0.020	ug/	0.500	78	50-115	10	30
Methoxychlor	0.427	0.10	0.035	ug/	0.500	85	60-120	10	30
Surrogate: Tetrachloro-m-xylene	0.309			$u g /$	0.500	62	35-115		
Surrogate: Decachlorobiphenyl	0.433			$u g /$	0.500	87	45-120		

MWH-Pasadena/Boeing	Project ID: 13267 (Study 1)		
300 North Lake Avenue, Suite 1200		Outfall 011	Sampled: 03/18/05
Pasadena, CA 91101	Report Number:	10 Cl 1526	Received: 03/18/05
Attention: Bronwyn Kelly			

METHOD BLANK/QC DATA

TOTAL PCBS (EPA 608)

		Reporting			Spike	Source	\%REC		RPD	Data	
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5C19034 Extracted: 03/19/05

Blank Analyzed: 03/19/2005 (5C19034-BLK1)

Aroclor 1016	ND	1.0	0.20	ug/l						
Aroclor 1221	ND	1.0	0.10	ug/l						
Aroclor 1232	ND	1.0	0.15	ug/l						
Aroclor 1242	ND	1.0	0.15	ug/						
Aroclor 1248	ND	1.0	0.25	ug/						
Aroclor 1254	ND	1.0	0.25	ug/l						
Aroclor 1260	ND	1.0	0.40	ugh						
Surrogate: Decachlorobiphenyl	0.356			$u g / l$	0.500	71	45-120			
LCS Analyzed: 03/19/2005 (M-NR1
Aroclor 1016	2.73	1.0	0.20	ug / l	4.00	68	50-115			
Aroclor 1260	2.92	1.0	0.40	ug/l	4.00	73	55-115			
Stirrogate: Decachlorobiphenyl	0.373			$u g /$	0.500	75	45-120			
LCS Dup Analyzed, 03/19/2	BSD2)								\because	
Aroclor 1016	2.54	1.0	0.20	ug/	4.00	64	50-115	7	30	
Aroclor 1260	2.83	1.0	0.40	ug/l	4.00	71	55-115	3	25	
Surrogate: Decachlorobiphenyl	0.348			$u g / l$	0.500	70	45-120			

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1)
	Outfall 011
Report Number:	IOC1526

Outfall 011
Report Number: 10 C 1526

Sampled: 03/18/05
Received: 03/18/05

METHOD BLANKIQC DATA

METALS

| | | Reporting | | | Spike | Source | \%REC | | RPD | Data | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analyte | Result | Limit | MDL | Units | Level | Result | \%REC | Limits | RPD | Limit | Qualifiers |

Batch: 5C19029 Extracted: 03/19/05
Blank Analyzed: 03/19/2005 (5C19029-BLK1)

Batch: 5C19038 Extracted: 03/19/05

Blank Analyzed: 03/21/2005 (5C19038-BLK1)

Antimony	1.25	2.0	0.18	ugA	J
Arsenic	ND	1.0	0.49	ugh	
Barium	ND	0.0010	0.00014	mg / l	
Beryllium	ND	0.50	0.037	ug/l	
Cadmium	0.0170	1.0	0.015	ug/l	J
Chromium	ND	2.0	0.26	ug/	
Cobalt	ND	1.0	0.10	ug/l	
Copper	ND	2.0	0.49	ug/l	
Iron	0.0190	0.010	0.0032	mg/	$B \sim 1$
Lead	ND	1.0	0.13	ug/l	
Nickel	0.555	2.0	0.15	ug/	J
Selenium	ND	2.0	0.36	ug/l	
Silver	0.184	1.0	0.089	ug/l	J
Thallium	ND	1.0	0.075	ugh	
Vanadium	ND	2.0	0.86	ug/l	
Zinc	ND	20	3.1	ug/l	

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
$\begin{aligned} \text { Project ID: } & 13267 \text { (Study 1) } \\ & \text { Outfall 011 } \\ \text { Report Number: } & \text { IOC1526 }\end{aligned}$
Sampled: 03/18/05
Received: 03/18/05

MIETHOD BLANKIOC DATA

METALS

LCS Analyzed: 03/21/2005 (5C19038-BS1)

Antimony	81.3	2.0	0.18	$\mathrm{ug} /$	80.0	102	85-115
Arsenic	86.3	1.0	0.49	ug/	80.0	108	85-115
Barium	0.0806	0.0010	0.00014	mg / l	0.0800	101	85-115
Beryllium	74.7	0.50	0.037	ugl	80.0	93	85-115
Cadmium	78.9	1.0	0.015	ug/	80.0	99	85-115
Chromium	80.8	2.0	0.26	ug/	80.0	101	85-115
Cobalt	80.6	1.0	0.10	ugh	80.0	101	85-115
Copper	80.6	2.0	0.49	ug/	80.0	101	85-115
Iron	0.803	0.010	0.0032	mg / l	0.800	100	85-115
Lead	81.1	1.0	0.13	ug/	80.0	101	85-115
Nickel	81.5	2.0	0.15	ug/l	80.0	102	85-115
Selenium	80.8	2.0	0.36	$\mathrm{ug} / 1$	80.0	101	85-115
Silver	807	10	0.089	ugh	800	101	85115
Thallium	808	10	0.075	ugt	80.0	101	85-115
Vanadium	79.6	2.0	0.86	ugh	80.0	100	85-115
Zinc	79.7	20	3.1	ug/	80.0	100	85-115

Matrix Spike Analyzed: 03/21/2005 (5C19038-MS1)

Antimony	84.1	2.0	0.18	ug / l	80.0	0.64	104	$70-130$
Arsenic	88.5	1.0	0.49	ug / l	80.0	1.2	109	$70-130$
Barium	0.0958	0.0010	0.00014	mg / l	0.0800	0.013	104	$70-130$
Beryllium	75.0	0.50	0.037	ug / l	80.0	ND	94	$70-130$
Cadmium	80.3	1.0	0.015	$\mathrm{ug} /$	80.0	0.034	100	$70-130$
Chromium	81.8	2.0	0.26	ug / l	80.0	1.2	101	$70-130$
Cobalt	81.7	1.0	0.10	ug / l	80.0	0.25	102	$70-130$
Copper	84.0	2.0	0.49	$\mathrm{ug} /$	80.0	3.3	101	$70-130$
Iron	1.06	0.010	0.0032	mg / l	0.800	0.15	114	$70-130$
Lead	82.7	1.0	0.13	ug / l	80.0	0.50	103	$70-130$
Nickel	82.5	2.0	0.15	ug / l	80.0	1.1	102	$70-130$
Selenium	80.9	2.0	0.36	ug / l	80.0	0.39	101	$70-130$
Silver	80.5	1.0	0.089	ug / l	80.0	ND	101	$70-130$
Thallium	82.7	1.0	0.075	ug / l	80.0	0.13	103	$70-130$
Vanadium	82.7	2.0	0.86	ug / l	80.0	2.7	100	$70-130$
Zinc	89.8	20	3.1	ug / l	80.0	8.2	102	$70-130$

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID:	13267 (Study 1)
Outfall 011		
Pasadena, CA 91101	OUne, Suite 1200	Report Number:
IOC1526	Sampled: 03/18/05	
Attention: Bronwyn Kelly		Received: 03/18/05

METHOD BLANKIOC DATA

METALS

Matrix Sp	5C1903					e: IOC	24-0			
Antimony	82.6	2.0	0.18	ug/l	80.0	0.64	102	70-130	2	20
Arsenic	85.5	1.0	0.49	ug/l	80.0	1.2	105	70-130	3	20
Barium	0.0950	0.0010	0.00014	mg/	0.0800	0.013	102	70-130	1	20
Beryllium	73.6	0.50	0.037	ugh	80.0	ND	92	70-130	2	20
Cadmium	78.6	1.0	0.015	ug/	80.0	0.034	98	70-130	2	20
Chromium	79.9	2.0	0.26	ug/	80.0	1.2	98	70-130	2	20
Cobalt	79.3	1.0	0.10	$\mathrm{ug} / 1$	80.0	0.25	99	70-130	3	20
Copper	81.9	2.0	0.49	ug/	80.0	3.3	98	70-130	3	20
Iron	0.905	0.010	0.0032	mg / l	0.800	0.15	94	70-130	16	20
Lead	81.9	1.0	0.13	ug/	80.0	0.50	102	70-130	1	20
Nickel	79.8	2.0	0.15	ug/	80.0	1.1	98	70-130	3	20
Selenium	80.4	2.0	0.36	ug/	80.0	0.39	100	70-130	1	20
Silver	79.2	1.0	0.089	ugh	80.0	ND	99	70-130	2	20
Thallium	81.2	1.0	0.075	ugl	80.0	0.13	101	70-130	2	20
Vanadium	81.6	2.0	0.86	ug/l	80.0	2.7	99	70-130	1	20
Zinc	84.2	20	3.1	ug/	80.0	8.2	95	70-130	6	20

Batch: 5C19039. Extracted: 03/19/05
Blank Analyzed: 03/19/2005 (5C19039-BLK1)

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID:	13267 (Study 1) Outall 011
300 North Lake Avenue, Suite 1200 Report Number: Pasadena, CA 91101 Sampled: 03/18/05 Attention: Bronwyn Kelly Received: 03/18/05		

METHOD BLANKIQC DATA

METALS

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID:	13267 (Study 1)	
300 North Lake Avenue, Suite 1200		Outfall 011	Sampled: 03/18/05
Pasadena, CA 91101	Report Number:	IOC1526	Received: 03/18/05
Attention: Bronwyn Kelly			

METHCD BLAMKIOC DATA

INORGANICS

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID: 13267 (Study 1)	
300 North Lake Avenue, Suite 1200	Outfall 011	Sampled: $03 / 18 / 05$
Pasadena, CA 91101	Report Number:	1OC1526

METHOD BLANKIQC DATA

INORGANICS

		Reporting			Spike	Source	\%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit

Batch: 5C18104 Extracted: 03/18/05

LCS Analyzed: 03/18/2005 (5C18104-BS1)

Chloride	4.80	0.50	0.26	mg / l	5.00		96	90-110	
Fluoride	4.67	0.50	0.10	mg / l	5.00		93	90-110	
Sulfate	10.0	0.50	0.18	mg / l	10.0		100	90-110	
Matrix Spike Analyzed: 03/18/2005 (5C18104-MS1)			Source: 10C1500-06						
Chloride	10.3	0.50	0.26	mg / l	5.00	6.1	84	80-120	
Fluoride	4.51	0.50	0.10	$\mathrm{mg} / 1$	5.00	0.39	82	80-120	
Sulfate	12.8	0.50	0.18	$\mathrm{mg} / 1$	10.0	3.8	90	80-120	
Matrix Spike Dup Analyzed: 03/18/2005 (5C18104-MSD1)			Source: 10C1500-06						
Chloride	10.3	0.50	0.26	mg / l	5.00	6.1	84	80-120	0
Fluoride	4.52	0.50	0.10	$\mathrm{mg} /$	5.00	0.39	83	80-120	0
Sulfate	12.8	0.50	0.18	mg / l	10.0	3.8	90	80-120	0

Batch: 5C18107. Extracted: 03/18/05

Blank Analyzed: 03/18/2005 (5C18107-BLK1)

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10 C 1526

Sampled: 03/18/05
Received: 03/18/05

method blankec data

INORGANICS

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1)	
	Outfall 011	Sampled: 03/18/05
Report Number:	IOC1526	Received: 03/18/05

Sampled: 03/18/05
Received: 03/18/05

METHOD BLANKIOC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C21062 Extracted: 03/21/05										
LCS Analyzed: 03/21/2005 (5C21062-BS1)										M-NR1
Oil \& Grease 17.1	5.0	0.94	$\mathrm{mg} /$	20.0		86	65-120			
LCS Dup Analyzed: 03/21/2005 (5C21062-BSD1)										
Oil \& Grease 16.0	5.0	0.94	mg 1	20.0		80	65-120	7	20	
Batch: 5C21068 Extracted: 03/21/05										
Blank Analyzed: 03/21/2005 (5C21068-BLK1)										
Total Suspended Solids ND	10	10	mg/l							
LCS Analyzed: 03/21/2005 (5C21068-BS1)										
Total Suspended Solids 942	10	10	mg / l	1000		94	85-115			
Duplicate Analyzed: 03/21/2005 (5C21068-DUP1)				Sour	ce: 10C1	566-01				
Total Suspended Solids ${ }^{\text {a }}$, ND	10	10	mgn		ND				10	
Batch: 5 C 21073 Extracted: $03 / 21 / 05$										
Blank Analyzed: 03/21/2005 (5C21073-BLK1)										
Total Dissolved Solids ND	10	10	mg / l							
LCS Analyzed: 03/21/2005 (5C21073-BS1)										
Total Dissolved Solids 968	10	10	$\mathrm{mg} / 1$	1000		97	90-110			
Duplicate Analyzed: 03/21/2005 (5C21073-DUP1)				Sour	e: 1OC15	566-01				
Total Dissolved Solids 320	10	10	mg /		300			6	10	

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID:	13267 (Study 1)
Outfall 011		

METHOD BLANKIQC DATA

INORGANICS

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID:	13267 (Study 1)	
300 North Lake Avenue, Suite 1200		Outfall 011	Sampled: 03/18/05
Pasadena, CA 91101	Report Number:	10 Cl 526	Received: 03/18/05
Attention: Bronwyn Kelly			

METHOD BLANK/QC DATA

INORGANICS

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1)	
	Outfall 011	Sampled: 03/18/05
Report Number:	IOC1526	Received: 03/18/05

Sampled: 03/18/05
Received: 03/18/05

METHOD BLANKIOC DATA

1,4-DIOXANE BY GC/MS (EPA 5030B/8260B)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	$\mathbf{R P D}$ Limit	Data Quallfiers
Batch: P5C2203 Extracted: 03/22/05											
Blank Analyzed: 03/22/2005 (P5C2203-BLK1)											
1,4-Dioxane	ND	1.0	0.49	ug/							
Surrogate: Dibromofluoromethane	1.11			ug/	1.00		111	80-125			
LCS Analyzed: 03/22/2005 (P5C2203-BS1)											
1,4-Dioxane	8.06	1.0	0.49	ug/l	10.0		81	70-130			
Surrogate: Dibromofluoromethane	1.12			$u g /$	1.00		112	80-125			
LCS Dup Analyzed: 03/22/2005 (P5C2203-BSD1)											
1,4-Dioxane	10.2	1.0	0.49	ug/l	10.0		102	70-130	23	20	R-7
Surrogate: Dibromofluoromethane	1.09			$u g / l$	1.00		109	$80-125$			
Matrix Spike Analyzed: 03/22/2005 (P5C2203-MS1)					Source: POC0388-06						
1,4-Dioxane	32.8	1.0	0.49	ug/l	10.0	25	78	70-150			
Surrogate Dibromofluoromethane	1.06			ugh	1.00		106	80-125	:		$\because \quad$.
Matrix Spike Dup Analyzed: 03/22/2005 (P5C2203-MSD1)					Source: POC0388-06						:
1,4-Dioxane	32.4	1.0	0.49	ug/	10.0	25	74	70-150	1	25	
Surrogate: Dibromofluoromethane	1.07			$u g / l$	1.00		107	80-125			

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011
Report Number: 10 C 1526

Sampled: 03/18/05
Received: 03/18/05

DATA QUALIFIERS AND DEFINITIONS

B	Analyte was detected in the associated Method Blank.
B-1	Analyte was detected in the associated method blank. Analyte concentration in the sample is greater than $10 x$ the concentration found in the method blank.
J	Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
L2	Laboratory Control Sample recovery was below method control limits.
M-NR1	There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
N-1	See case narrative.
P1	Sample received and analyzed without chemical preservation.
R-7	LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria.
RL-3	Reporting limit raised due to high concentrations of non-target analytes.
ZX	Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.
ND	Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD	Relative Percent Difference

ADDITIONAL COMMENTS

For TICs:

All identifications are tentative and concentrations are estimates based upon spectral comparison to the EPA/NIH library. For 1,2-Diphenylhydrazine

The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.
For GRO (C4-C12):
GRO (C4-C12) is quantitated against a gasoline standard. Quantitation begins immediately following the methanol peak.
For Extractable Fuel Hydrocarbons (EFH, DRO, ORO) :
Unless otherwise noted, Extractable Fuel Hydrocarbons (EFH, DRO, ORO) are quantitated against a Diesel Fuel Standard.

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011 Sampled: 03/18/05
Report Number: 10 Cl 526
Received: 03/18/05

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	Callfornia
EPA 120.1	Water	\mathbf{X}	\mathbf{X}
EPA 160.2	Water	\mathbf{X}	\mathbf{X}
EPA 160.5	Water	\mathbf{X}	\mathbf{X}
EPA 180.1	Water	\mathbf{X}	\mathbf{X}
EPA 200.7	Water	\mathbf{X}	\mathbf{X}
EPA 200.8	Water	\mathbf{X}	\mathbf{X}
EPA 218.6	Water	\mathbf{X}	\mathbf{X}
EPA 245.1	Water	\mathbf{X}	\mathbf{X}
EPA 300.0	Water	\mathbf{X}	\mathbf{X}
EPA 314.0	Water	\mathbf{X}	\mathbf{X}
EPA 330.5	Water	\mathbf{X}	\mathbf{X}
EPA 335.2	Water	\mathbf{X}	\mathbf{X}
EPA 350.2	Water	\mathbf{X}	\mathbf{X}
EPA 405.1	Water	\mathbf{X}	\mathbf{X}
EPA 413.1	Water	\mathbf{X}	\mathbf{X}
EPA 415.1	Water	\mathbf{X}	\mathbf{X}
EPA 418.1	Water	\mathbf{X}	\mathbf{X}
EPA 608.	Water	\mathbf{X}	\mathbf{X}
EPA 624 (MOD.)	Water	\mathbf{X}	\mathbf{X}
EPA 624	Water	\mathbf{X}	\mathbf{X}
EPA 625	Water	\mathbf{X}	\mathbf{X}
EPA 8015 Mod.	Water	\mathbf{X}	\mathbf{X}
EPA 8015B	Water	\mathbf{X}	\mathbf{X}
SM2540C	Water	\mathbf{X}	\mathbf{X}
SM5540-C	Water	\mathbf{X}	\mathbf{X}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

```
Alta Analytical California Cert \#1640
1104 Windfield Way - El Dorado Hills, CA 95762
Analysis Performed: 1613-Dioxin-HR
Samples: 10C1526-01
Analysis Performed: EDD + Level 4
Samples: 1OC1526-01
Aquatic Testing Laboratories-SUB California Cert \#1775
4350 Transport Street, Unit 107 - Ventura, CA 93003
```

Analysis Performed: Bioassay-7 dy Chmic
Samples: 10 Cl 1526 -01
Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011 Sampled: 03/18/05
Report Number: 10 Cl 526 Received: 03/18/05

Aquatic Testing Laboratories-SUB California Cert \#1775
4350 Transport Street, Unit 107 - Ventura, CA 93003
Analysis Performed: Bioassay-Acute 96hr
Samples: 1OC1526-01
Del Mar Analytical - Phoenix NELAC Cert \#01109CA, California Cert \#2446
9830 S. 51st Street, Suite B-120 - Phoenix, AZ 85044
Method Performed: EPA 8260B
Samples: 1OC1526-01

Eberline Services - SUB

2030 Wright Avenue - Richmond, CA 94804
Analysis Performed: EDD + Level 4
Samples: 10C1526-01
Analysis Performed: Gross Alpha
Samples: IOC1526-01
Analysis Performed: Gross Beta
Samples: IOC1526-01
Analysis Performed: Radium, Combined
Samples: $10 \mathrm{Cl} 1526-01$
Analysis Performed: Strontium 90
Samples: 1OC1526-01
Analysis Performed: Tritium
Samples: 1OC1526-01
Truesdail Laboratories-SUB California Cert \#1237
14201 Franklin Avenue - Tustin, CA 92680
Analysis Performed: Hydrazine
Samples: IOC1526-01
Analysis Performed: Level 4 Data Package
Samples: 1OC1526-01

Del Mar Analytical, Irvine
Michele Harper
Project Manager

CHAIN OF CUSTODY FORM
Del Mar Analytical version 02/23/05

Client Name/Address:	Project:
Boeing-SSFL NPDES	
Outfall 011 - 13267	

MWH-Pasadena
300 North Lake Avenue, Suite 1200
Pasadena, CA' 91101
Flow-weight Composite Phone Number:
(626) $568-6691$
Fax Number:
(626) 568-6515

Sample	$\begin{array}{c}\text { Sampla } \\ \text { Description } \\ \text { Matrix }\end{array}$	$\begin{array}{c}\text { Container } \\ \text { Type }\end{array}$	$\begin{array}{c}\text { of } \\ \text { Cont. }\end{array}$	$\begin{array}{c}\text { Sampling } \\ \text { Dateltime }\end{array}$	Preservative

ed
Project Manager: Bronwyn Kelly
Sampler: $P 10 c 4$

Sample	$\begin{array}{c}\text { Sampla } \\ \text { Description } \\ \text { Matrix }\end{array}$	$\begin{array}{c}\text { Container } \\ \text { Type }\end{array}$	$\begin{array}{c}\text { of } \\ \text { Cont. }\end{array}$	$\begin{array}{c}\text { Sampling } \\ \text { Dateltime }\end{array}$	Preservative

None
None
None
None
None
$\frac{8}{8}$
None
None
None Received By
\times
$F A x$
(i) MWH

Bute: 03/21/10s

To: \quad Michele Hesper / Dual Mar Analytical
Kris Mcliveman / MWH
To. Michelixper DUM

300 N. Lake Ave., Suite 1200
Pasadena, California 91101
Tel: 626-56\#-6691
Fax 626.568 .6515

Fax No:
949-260-3297
925-975-3412

From: Branding Kelly

Per Request:
Please make the changes listed below to the chain-of-cuatody analytical request form. Include that form with the final deliverables for these wimples

mi 3/2105
The reason for theme changer:
Incorrectly marked on COC form
Lack of ample volume
MWH office personnel regitive this change
Other: Containers mislabeled

New COC's are attached for review.
Thank you
Bronayu

Del Mar Analytical vemomoznsos CHAN OF CUSTODY FORM
Page 2 of 2

April 4, 2005

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention:	Bronwyn Kelly
Project:	13267 (Study 1)/Outfall 011
	Sampled: 03/18/05
	Del Mar Analytical Number: IOC1526

Dear Ms. Kelly:
Aquatic Testing Laboratories performed Fathead Minnow 96 hr Percent Survival Bioassay (EPA Method 2000.0), Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002), Truesdail Laboratories tested Hydrazines by EPA 8315 M, Alta Analytical performed EPA Method 1613 by Dioxin and Eberline Services performed Gross Alpha/Gross Beta (EPA 900.0), Tritium (H-3, EPA 906.0), Strontium-90 (Sr-90, EPA 905.0), Radium 226 (EPA 903.1), and Radium 228 (904.0) for the project referenced above. Please use the following cross-reference table when reviewing your results.

KWH ID	DEL MAR ID	AIL ID	TRUESDAIL ID	ALTA ID	ESERINE M
Outfall 011 Composite	IOC1526-01	A-05031905-001/002	9408841	$25938-001$	PENDING

Attached are the original reports from the subcontract laboratories. If you have any questions or require further assistance, please do not hesitate to contact me.

Sincerely yours, DEL MAR ANALYTICAL

Michele Harper
Project Manager

LABORATORY REPORT

Date: March 25, 2005
Client: Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Attn: Michele Harper

Aquatic Testing

Laboratories

"dedicated to providing quality aquatic toxicity testing"
4350 Transport Street, Unit 107
Ventura, CA 93003
(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.: A-05031905-001/002
Sample I.D.: IOC1526-01

Sample Control: The sample was received by ATL chilled, with the chain of custody record attached.

Date Sampled:	$03 / 18 / 05$
Date Received:	$03 / 19 / 05$
Date Tested:	$03 / 19 / 05$ to 03/25/05

Sample Analysis: The following analyses were performed on your sample:
Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0), Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

Result Summary:

Acute:	$\frac{\text { Survival }}{}$	$\frac{\text { TUa }}{}$
Fathead Minnow:	100%	0.0
Chronic:		
\quad NOEC	TUe	
\quad Ceriodaphnia Survival:	100%	1.0
Ceriodaphnia Reproduction:	100%	1.0

Quality Control: Reviewed and approved by:

Lab No.: A-05031905-001
Client/ID: Del Mar - IOC1526-01

Species: Pimephales promelas.
Age: 10 (1-14) days.
Regulations: NPDES.
Test solution volume: 250 ml .
Feeding: prior to renewal at $\mathbf{4 8}$ hrs.
Number of replicates: 2.
Dilution water: Moderately hard reconstituted water.
Photoperiod: 16/8 hrs light/dark.

Start Date: 03/19/2005

TEST SUMMARY
Source: In-laboratory Culture.
Test type: Static-Renewal.
Test Protocol: EPA-821-R-02-012.
Endpoints: Percent Survival at 96 hrs.
Test chamber: 600 ml beakers.
Temperature: $20+/-1^{\circ} \mathrm{C}$.
Number of fish per chamber: 10.
QA/QC Batch No.: RT-050303.

TEST DATA

Comments:

Sample as received: Chlorine: $0 \mathrm{mgl} ; \mathrm{pH}: 2.5$; Conductivity: 310 umho; Temp: $4^{\circ} \mathrm{C}$;
DO: $10.1 \mathrm{mg} / ;$ Alkalinity: $95 \mathrm{mg} / ;$ Hardness: $132 \mathrm{mg} / ; \mathrm{NH}_{3}-\mathrm{N}: 0.4 \mathrm{mg} / \mathrm{l}$.
Sample aerated moderately (approx. $500 \mathrm{ml} / \mathrm{min}$) to raise or lower DO? Yes $/$ No.
Control: Alkalinity: $54 \mathrm{mg} /$; Hardness: $90 \mathrm{mg} /$; Conductivity: 290 umho.
Test solution aerated (not to exceed 100 bubbles $/ \mathrm{min}$) to maintain D $0>4.0 \mathrm{mg} / 17$ Yes $/ \mathrm{Nd}$.
Sample used for renewal is the original sample kept at $0-6^{\circ} \mathrm{C}$ with minimal headspace.

RESULTS
\qquad \% 100\% Sample: \qquad \%

Lab No.: A-05031905
Client/ID: Del Mar 1OC1526-01
Date Tested: 03/19/05 to 03/25/05

TEST SUMMARY

Test type: Daily static-renewal. Species: Ceriodaphnia dubia.
Age: $<24 \mathrm{hrs}$; all released within 8 hrs.
Test vessel size: 30 ml .
Number of test organisms per vessel: 1.
Temperature: $25+/-1^{\circ} \mathrm{C}$.
Dilution water: Mod. hard reconstituted (MHRW).
QA/QC Batch No.: RT-050311.

Endpoints: Survival and Reproduction.
Source: In-laboratory culture.
Food: . 1 ml YTC, algae per day.
Test solution volume: 15 ml .
Number of replicates: 10.
Photoperiod: $16 / 8 \mathrm{hrs}$. light/dark cycle.
Test duration: 7 days.
Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Survival	Mean Number of Young Per Female
Control	100%	21.9
6.25%	100%	23.7
12.5%	100%	24.4
25%	100%	26.8
50%	100%	28.6
100%	100%	26.6
* Statis,		

* Statistically significantly less than control at $P=0.05$ level.
** Reproduction data from concentrations greater than survival NOEC are excluded from statistical analysis.

CHRONIC TOXICITY

Parameter	Survival	Growth
NOEC	100%	100%
TUc	1.0	1.0

QA/QC TEST ACCEPTABILITY
$\left.\begin{array}{|c|c|}\hline \text { Parameter } & \text { Result } \\ \hline \text { Control survival } 280 \% & \text { Pass (100\% survival) } \\ \hline \geq 15 \text { young per surviving control female average } & \text { Pass (21.9 young) } \\ \hline \geq 60 \% \text { surviving controls had } 3 \text { broods } & \text { Pass (} 90 \% \text { with } 3 \text { broods) } \\ \hline \text { PMSD }<47 \% \text { for reproduction; if }>47 \% \text { and no toxicity } \\ \text { at IWC, the test must be repeated }\end{array}\right]$ Pass (PMSD $=20.6 \%$).

SUBCONTRACT ORDER - PROJECT \# IOC1526

SENDING LABORATORY: Del Mar Analytical, Irvine 17461 Derian Avenue. Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 261-1228 Project Manager: Michele Harper	RECEIVING LABORATORY: Aquatic Testing Laboratories-SUB 4350 Transport Street, Unit 107 Ventura, CA 93003 Phone :(805) 650-0546 Fax: (805) 650-0756
Standard TAT is requested unless specific due date is requ	D Due Date:
Analysis Expiration	Comments
Sample ID: IOC1526-01 Water \quad Sampled: $03 / 18 / 0514: 40$ Bioassay- 7 dy Chrnic $03 / 20 / 0502: 40$ Bioassay-Acute 96 hr $03 / 20 / 0502: 40$	Instant Nofication ceriodaphnia, 13267 fathead minnow, 13267
Containers Supplied: 1 gal Poly (IOC1526-01AR) 1 gal Poly (1OC1526-01AS)	

Truesdail Laboratories, Inc.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES
March 25,2005

Client:	Del Mar Analytical 17461 Derian Avenue, Suite 100 Irvine, CA 92614
Attention:	Michele Harper

Project Name: 10 Cl 1526
Truesdail Project: 940884
Date Received: 03/21/05

Samples Cross-reference

Truestail ID	Client ID	Matrix	Date Sampled		Time Sampled	
$940884-1$	IOC1526-01	Water	$03 / 18 / 05$	1440	Hydrazines by EPA 8315M	

Respectfully Submitted,
TRUESDAIL LABORATORIES, INC.
K.R.p. gyour
K.R.P. lyer

Quality Control/Quality Assurance Officer

Truesdail laboratories, Inc.

Client: Del Mar Analytical
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Attention: Michele Harper

Project Name: 10 Cl 1526
Truesdail Project:
940884
Date Received: 03/21/05

Case Narrative

Sample Receipt The sample was received in good condition and no anomalies were noted during check-in. The sample was kept in a locked refrigerator until analysis. Thereafter, it is being kept in ambient storage for an additional 2 months before disposal.

Analysis \quad The analysis was performed as requested on the chain-of-custody.
Quality Control The analytical results for each batch of samples performed include a minimum of one set of laboratory control sample/laboratory control sample duplicate (LCS/LCSD), one matrix spike (MS) and a reagent blank (Method blank). Any exceptions or problems would be noted in the "comments" section.

Comments

The test results in this report meet all quality assurance requirements set forth by the method specification and all quality control recoveries were within the laboratory acceptance limits. No anomalies or nonconformance events occurred during the course of analysis.

The analytes were quantitated down to the Method Detection Limit (J flags) per client's request.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Truesdall. Laboratories, Inc.

REPORT
Analytical Results

TRUESDAIL LABORATORIES, INC.
independent testing. Forensic science, and environmental analyses

$$
\begin{aligned}
& \text { Det Mar Analytical } \\
& \text { 17461 Derlan Ave., Suite } 100 \\
& \text { Irvine, CA } 92614 \\
& \text { Michele Harper } \\
& \text { Liquid / S Sample } \\
& \text { IOC1526 } \\
& 1061526 \\
& 83515 \text { (Modified) } \\
& \text { Extraction: } 3017 \text {; Analysis: } 378 \\
& \text { Hydrazines in Llquid } \\
& \text { Quality }
\end{aligned}
$$

REPORT

Quality Control/Quality Assurance Spikes Report
ICV: Inltal Callbration Vertication
QCS: Quality Control Standard
LCS: Laboratory Control Spike
MS: Matrix Spika
\%D: Percent Difference
Flag: "Pass" If within Cont
Fleg: "Pass" If within Controd Limits; otherwise "Fail"
Note: Results based on detector $\% 1(\mathrm{UV}=365 \mathrm{~nm})$ data.

SENDING LABORATORY:
Del Mar Analytical, Irvine
17461 Derian Avenue. Suite 100
Irvine, CA 92614
Phone: (949)
261-1022
Fax: (949) 261-1228
Project Manager: Michele Harper

RECEIVING LABORATORY:
Truesdail Laboratories-SUB
14201 Frankin Avenue
Tustin, CA 92680
Phone :(714) 730-6239
Fax: (714) 730-6462

Standard TAT is requested unless specific due date is requested $\Rightarrow>$ Due Date: \qquad Initials: \qquad

Analysis		Expiration	Comments
Sample ID: 10C1526-01	Water	S Sampled: 03/18/05 14:40	Instant Nofication
Hydrazine-OUT	03/21/05 14:40		J flags, Sub Truesdail for Monomethylhydrazine
Level 4 Data Package		04/15/05 14:40	
Containers Supplied: 1 L Amber (IOC1526-01 AMM) BB			

Sample Integrity \& Analysis Discrepancy Form

Client:

Lab\# 940884
Date Delivered: $321 / 05$ Time: 740 By: aMail \quad afield Service 日Cfient

1. Was a Chain of Custody received and signed?
2. Does Customer require an acknowledgement of the COC?
3. Are there any special requirements or notes on the COC?
4. If a letter was sent with the $C O C$, does it match the $C O C$?
5. Were all requested analyses understood and acceptable?
6. Were samples received in a chilled condition?

Temperature (if yes)? LPC
7. Were samples received intact
(i.e. broken bottles, leaks, air bubbles, etc..)?
8. Were sample custody seals intact?
9. Does the number of samples received agree with COC?
10. Did sample labels correspond with the client ID's?
 Preserved (if yes) by: ロTrusspait DClent
12. Were samples $p H$ checked 1 pAEVEI IT
13. Were all analyses within holding time at time of receipt? If not, notify the Project Manager.
14. Have Project due dates been checked and accepted? Tum Around Time (TAT): D RUSH [] Std
ares aNo DN/A
aYes ano GN/A
ayes ano aña
ayes ano conva
dYes ano $\square N / A$
DFes DNo DN/A

GYes ano an/A

QYes $\square N O$ IN/A QYes aNo DN/A GTes QNO UN/A םYes aNo IN/A aYes ano GN/A aYes aNo aN/A GYes DNo DN/A
15. Sample Matrix: DLiquid aDrinking Water GGround Water aWaste Water asludge asoil aWipe apaint asolid ubther water
16. Comments: \qquad
17. Sample Check-In completed by Truesdail Log-In/Receiving:

| ab Number: |
| :--- | :--- |
| $\frac{948884}{}$ |
| Del Mar Name |

March 24, 2005
Alta Project I.D.: 25938
Ms. Michele Harper
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614

Dear Ms. Harper,
Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on March 22, 2005 under your Project Name "IOC1526". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

Martha M. Maier Director of HRMS Services

Alta Analytical Laboratory Inc.

Section I: Sample Inventory Report

Date Received: 3/22/2005

Alta Lab. ID

25938-001

Client Sample ID
IOC1526-01

SECTION II

Method Blank								EPA Method 1613		
$\begin{aligned} & \text { Matrix: } \\ & \text { Sample Size: } \end{aligned}$	Aqueous 1.000 L	QC Batch No.: Date Extracted:			Lab Sample: $0-\mathrm{MB} 001$ Date Analyzed DB-5: 23-Mar-05			Date Analyzed DB-225:		
				Mar-05						
Analyte	Conc. (pg/L)	DL ${ }^{\text {a }}$	EMPC ${ }^{\text {b }}$	Qualifiers	Labeled Standard			\%R	LCL-UCL ${ }^{\text {d }}$ Oualifiers	
2,3,7,8-TCDD	ND	0.841			IS	13C-2,3,7,8-TCDD		79.3	25-164	
1,2,3,7,8-PeCDD	ND	0.749				$13 \mathrm{C}-1,2,3,7,8$-P	CDD	75.2	25-181	
1,2,3,4,7,8-HxCDD	ND	1.49				13C-1,2,3,4,7,8	xCDD	74.0	32-141	
1,2,3,6,7,8-HxCDD	ND	1.52				13C-1,2,3,6,7,8	XCDD	80.9	28-130	
1,2,3,7,8,9-HxCDD	ND	1.50				13C-1,2,3,4,6,7,	HpCDD	72.5	23-140	
1,2,3,4,6,7,8-HpCDD	ND	1.17				13C-OCDD		55.5	17-157	
OCDD	ND	3.33				13C-2,3,7,8-TC		82.1	24-169	
2,3,7,8-TCDF	ND	0.795				13C-1,2,3,7,8-P	CDF	74.6	24-185	
1,2,3,7,8-PeCDF	ND	1.67				13C-2,3,4,7,8-P	CDF	77.9	21-178	
2,3,4,7,8-PeCDF	ND	1.39				13C-1,2,3,4,7,8	XCDF	62.7	26-152	
1,2,3,4,7,8-HxCDF	ND	0.474				13C-1,2,3,6,7,8-	xCDF	73.0	26-123	
1,2,3,6,7,8-HxCDF	ND	0.442				13C-2,3,4,6,7,8	xCDF	71.1	28-136	
2,3,4,6,7,8-HxCDF	ND	0.510				13C-1,2,3,7,8,9	XCDF	67.2	29-147	
1,2,3,7,8,9-HxCDF	ND	0.820				13C-1,2,3,4,6,7,	HpCDF	67.8	28-143	
1,2,3,4,6,7,8-HpCDF	ND	0.929				13C-1,2,3,4,7,8,	HpCDF	71.3	26-138	
1,2,3,4,7,8,9-HpCDF	ND	1.13				13C-OCDF		58.9	17-157	
OCDF	ND	2.74			CR	37Cl-2,3,7,8-TC		83.9	35-197	
Totals					Foot	notes				
Total TCDD	ND	0.841			a. Sar	ple specific estimated	tection limit.			
Total PeCDD	ND	0.749			b. Est	nated maximum possi	e concentration.			
Total HxCDD	ND	1.51			c. Me	ood detection limit.				
Total HpCDD	ND	1.17				er control limit - upper	ontrol limit.			
Total TCDF	ND	0.795								
Total PeCDF ${ }^{-}$	ND	1.52			 - .n........				
Total HxCDF	ND	0.545								
Total HpCDF	ND	1.02								
Analyst: JMH						Approved By;	Martha M.	24-1	ar-2005 09:41	

APPENDIX

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank.
D The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.
I Chemical Interference
J The amount detected is below the Lower Calibration Limit of the instrument.
P Homologue totals include any coplanar PCBs detected at concentrations less than the reporting limit.

* See Cover Letter

Conc. Concentration
DL Sample-specific estimated detection limit
MDL. The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration
NA Not applicable
RL Reporting Limit - concentrations that correspond to low calibration point
ND Not Detected
TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

The control limits are "interim limits only" until in-house limits are utilized.

NELAP - (Primary AA: California, Certificate No. 02102CA)
Department of the Navy
U.S. Army Corps of Engineers
U.S. EPA Region 5

Bureau of Reclamation - Mid-Pacific Region - (MP-470, Res-1.10)
Commonwealth of Kentucky - (Certificate No. 90063)
Commonwealth of Virginia - (Certificate No. 00013)
State of Alaska, Department of Environmental Conservation - (Certificate No. OS-00197)
State of Arizona - (Certificate No. AZ0639)
State of Arkansas, Department of Health - (Approval granted through CA certification)
State of Arkansas, Department of Environmental Quality
State of California - (Certificate No. 1640)
State of Colorado
State of Connecticut - (Certificate No. PH-0182)
State of Florida - (Certificate No. 87456)
State of Louisiana, Department of Health and Hospitals - (Certificate No. LA000014)
State of Louisiana, Department of Environmental Quality
State of Maine
State of Michigan (Certificate No. 81178087)
State of Mississippi - (Approval granted through CA certification)
State of Nevada - (Certificate No, CA413)
State of New Jersey - (Certificate No. CA003)
State of New York, Department of Health - (Certificate No. 11411)
State of North Carolina - (Certification No. 06700)
State of North Dakota, Department of Health - (Certificate No. R-078)
State of New Mexico
State of Oklahoma - (D9919)
State of Oregon - (Certificate No. CA413)
State of Pennsylvania - (Certificate No. 68-490)
State of South Carolina - (Certificate No. 87002001)
State of Tennessee - (Certificate No. 02996)
State of Texas - (Certificate No. TX247-1000A
State of Utah - (Certificate No. E-201)
State of Washington - (Certification No. C091)
State of Wisconsin - (Certificate No. 998036160)
State of Wyoming - (USEPA Region 8 Ref: 8TMS-Q)

Commentas:

$$
\begin{aligned}
& \text { IOC } 1521-01 \\
& \text { IOC } 1523-01 \\
& \text { IOC } 1525-01 \\
& \text { IOC } 1526-01 \\
& \text { IOC } 1563-01
\end{aligned}
$$

SOP卷CH108_R18, Puge 8 of 12

SUBCONTRACT ORDER - PROJECT \# IOC1526

259383.2°

Contact Michele taper Fax Number: $(9+1) 260-3297$

Please review the following Information and complete the Client Authorization section. To comply with NEL AC regulations, we must receive authortantion before proceeding with sample analysis. Thank You. (Fax we16-673-0106)

The following Information or item is needed to proceed with the analysis:

\square Completed Chain-of-Custody	\square Preservative	$区$ (Collector's Name
\square Test Method Requested	\square Sample Identification	\square Sample Type
\square Analyte List Requested	\square Sample Collection Date Time	\square Sample Location

The following anomalies were noted. Authorization is needed to proceed with the analysis:

Other \qquad
\qquad
\qquad

\qquad
\quad－
＋
0
世，
，
\％
18
＋
，
\％
， 2
K，
4 +
世
世

प \quad ，

2
，
＋
\％

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Alta
Reviewer H. Chang
Analysis/Method Dioxins \& Furans /1613

Laboratory Alta
Analysis/Method Dioxins \& Furans /1613

Package ID T711DF40
Task Order 313150010
SDG No. Multiple
No. of Analyses 5

Date: April 7, 2005
Reviewer's Signature
A.

ACTION ITEMS ${ }^{-}$

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables.
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, e.g.,
Detects below the method calibration level were qualified "J."
Holding Times
GCMS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Intemal Standard Performance
Compound Identification and
Quantitation
System Performance
COMMENTS ${ }^{\text {b }}$

[^35]
amec ${ }^{\theta}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: DIOXINS/FURANS

SAMPLE DELIVERY GROUPS: IOC0871, IOC2062, IOC2063, IOC2064, IOC2093

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Muttiple

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: IOC0871, IOC2062, IOC2063, IOC2064, IOC2093
Project Manager: B. McIlvaine
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 5
No. of Reanalyses/Dilutions: 0
Reviewer: H. Chang
Date of Review: April 7, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project: NPDES
DATA VALIDATION REPORT	SDG No.:

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Alta)	Matrix	COC Method
Outfall 018	IOC0871-01	$25975-001$	water	1613
Outfall 002	IOC2062-01	$25969-001$	water	1613
Outfall 011	IOC2063-01	$25967-001$	water	1613
Outfall 011 Composite	IOC2064-01	$25968-001$	water	1613
Outfall 001	IOC2093-01	$25970-001$	water	1613

	Project:
DATA VALIDATION REPORT	NPDES
SDG No.:	Multiple

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

All samples in these SDGs were received at Del Mar with cooler temperatures within the QC limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ with the exception of sample Outfall 002 which was received at $8^{\circ} \mathrm{C}$. The samples were received at $0.4^{\circ} \mathrm{C}$ at Alta. According to the laboratory login sheets, all samples were received intact and in good condition at both laboratories. Due to non-volatile nature of the target compounds and since all samples were received intact, no qualifications were required.

2.1.2 Chain of Custody

The COCs and transfer COCs were legible and signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. As the samples were couriered directly to Del Mar Analytical, custody seals were not required. The coolers received by Alta had custody seals present and intact. The EPA IDs were added to the sample result summaries by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and $2,3,7,8-\mathrm{TCDD}$ reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

	Project:
DATA VALIDATTON REPORT	NPDES SDG No.: Multiple S/F

2.3 CALIBRATION

2.3.1 Initial Calibration

There was one initial calibration, analyzed $01 / 21 / 05$. The calibration consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with $\%$ RSDs $\leq 20 \%$ for the 16 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning and end of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standards instead of being analyzed separately, as noted in section 2.2.1 of this report. No adverse effect was observed with this practice.

2.4 BLANKS

One method blank $(06653$ MB001) was extracted and analyzed with the samples in these SDGs. There were no target compound detects reported in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One Ongoing Precision Recovery (OPR) sample (0 6653_OPR001) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2.7.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for these SDGs.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any results reported as Estimated Maximum Possible Concentration (EMPC) were qualified as estimated nondetects, "UJ." Any detects below the lower method calibration level (MCL) were qualified as estimated, "J;" however, as Alta analyzed an additional calibration standard, the results below the lower MCL but above the lower calibration level were flagged with "A" laboratory qualifier. These results were qualified as estimated, " J ," by the reviewer.

2,3,7,8-TCDF was detected in sample Outfall 018; however, no confirmation was performed since the level of the detect was below the calibration range. This compound was qualified as estimated, "J."

The Total TCDF result in sample Outfall 011 was reported with "D" laboratory qualifier due to the presence of ether. Total TCDF was qualified as "J" in this sample. No further qualifications were required.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental	Package ID	T711HZ11
550 South Wadsworth Boulevard	Task Order	313150010
Suite 500	SDG No.	10C2063, 10
Lakewood, CO 80226	No. of Analyses	2
Laboratory Truesdail	Date: $04 / 11$	
Reviewer P. Meeks	Prujewek	gnature
Analysis/Method Hydrazines	P.Mes	

amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: HYDRAZINES SAMPLE DELIVERY GROUPS: IOC2063 \& IOC2064

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC2063, 2064

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: IOC2063, IOC2064
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Hydrazines
QC Level: Level IV
No. of Samples:
2
Reviewer: P. Meeks
Date of Review: April 11, 2005

The samples listed in Table 1 were validated based on the general guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (2/94), and USEPA SW-846 Method 8315. Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
	SDG No.:	IOC2063, 2064
DATA VALIDATION REPORT	Analysis:	Hydrazines

Table 1. Sample identification

EPA ID	Del Mar ID	Laboratory ID	Matrix	COC Method
Outfall 011 Grab	IOC2063-01	941100	water	Hydrazines by 8315
Outfall 011 Composite	IOC2064-01	941101	water	Hydrazines by 8315

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at Del Mar Analytical and the subcontract laboratory, Truesdail Laboratories, within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The analysis did not require preservation, and no preservation was noted in the field. The case narratives for these SDGs noted that the samples were received intact at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COCs from the field to Del Mar were signed and dated by field and laboratory personnel, and the transfer COCs from Del Mar to Truesdail Laboratories were signed and dated by personnel from both laboratories. Both the original COCs and transfer COCs requested only monomethyl hydrazine analysis; however, unsymmetrical dimethyl hydrazine and hydrazine were also reported. As the samples were transported to Del Mar and then to Truesdail by courier, no custody seals were required. Truesdail Laboratories did not list the Outfall 011 IDs on the Form Is; therefore, the reviewer hand-corrected the Form Is to include this information. No qualifications were required.

2.1.3 Holding Times

The holding times were assessed by comparing the date of collection with the dates of analysis. The samples were extraction within the three-day holding time and analyzed within three days of extraction. No qualifications were required.

2.2 CALIBRATION

The five-point initial calibration were analyzed $03 / 29 / 05$, with correlation coefficients of ≥ 0.995 for the hydrazines. The ICV and CCV bracketing the sample analyses had recoveries for the hydrazines within the QC limits of $85-115 \%$. No qualifications were required.

2.3 BLANKS

One method blank was analyzed with these SDGs. The results reported on the method blank summary form and in the raw data for the instrument and method blank analyses associated with the samples were nondetects at the reporting limit. No qualifications were required.

Project:
NPDES
SDG No.: IOC2063, 2064

DATA VALIDATION REPORT

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One laboratory control sample/laboratory control sample duplicate was analyzed with these SDGs. The hydrazines were recovered within the laboratory-established control limits of $70 \%-130 \%$, and the RPDs were within the control limit of $\leq 20 \%$. No qualifications were required.

2.5 SURROGATES RECOVERY

Surrogates were not utilized in this analysis. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MSD/MSD analyses were performed on Outfall 011 Composite. The hydrazines were recovered within the laboratory-established control limits of $0 \%-150 \%$; however, both recoveries were $\geq 10 \%$. The RPDs were within the control limit of $\leq 20 \%$. No qualifications were required.

2.7 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

2.71 Field Blanks and Equipment Rinsates

The site samples in these SDGs had no associated field QC. No qualifications were required.

2.7.2 Field Duplicates

There were no field duplicate samples in these SDGs.

2.8 COMPOUND IDENTIFICATION

The samples were analyzed by HPLC for monomethyl hydrazine, unsymmetrical dimethyl hydrazine, and hydrazine by Method 8315. Compound identification was verified, and review of the raw data indicated no compound identification errors. No qualifications were required.

2.9 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification was verified from the raw data at a Level IV data validation by recalculating LCS/LCSD and MS/MSD detects, as there were no sample detects. No compound quantitation problems were noted. The hydrazine reporting limits were supported by the lower levels of the initial calibration. No qualifications were required.
Truesdail Laboratories, inc.
INDEPENDENT TESTUG, FORENSIC SCIENCE, AND ENVIAONMENTAL ANAYSES

REPORT

Analytical Results

pur t/ulos
Note: Results based on detector \#1 (UV=365nm) data.
Truesdail Laboratories, Inc.
INDEPENOENT TESTHNG, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

$$
\begin{aligned}
\text { Client: } & \begin{array}{l}
\text { Del Mar Analytical } \\
\text { 17461 Derian Ave., Suite } 100 \\
\text { Irvine, CA 92614 }
\end{array} \\
& \\
\text { Attention: } & \text { Michele Harper } \\
\text { Sample: } & \text { Liquid / 1 Sample } \\
\text { Prolect Name: } & \text { IOC2064 } \\
\text { P.O. Number: } & \text { 10c2064 } \\
\text { Method Number: } & \mathbf{8 3 1 5} \text { (Modified) } \\
\text { Investigation: } & \text { Hydrazines in Liquid }
\end{aligned}
$$

REPORT
Analytical Results
Page 1 of 1

MDL: Method Detection Limit, ug/L
PQL: Practical Quantitation Limit, ugh. ND: Not Detected at or above the MDL value. N/A: Not Applicable

Note: Results based on detector \#1 (UV=365nm) data.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer P. Meeks
Analysis/Method Metals

Package ID
T711MT74
Task Order 313150010
SDG No. IOC2063, IOC2064
No. of Analyses 2
Date: 04/11/05
Reyiewer's Signature

ACHION ITEMS

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy Deliverables
6. Deviations from

Analysis Protocol, e.g.,
Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification
and Quantitation
System Performance

Qualifications were applied for:

1. Detects in the method blank and CCBs
2. ICSAB recovery outlier
3. Reporting limit check standard recovery outlier
4. Detects below the reporting limit
\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

COMMENIS*
${ }^{2}$ Subcontracted analytical laboratory is not meeting contract and/or method requirements.
bifferences in protocol have been adopted by the laboratory but no action against the laboratory is required.

amec ${ }^{9}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: METALS
SAMPLE DELIVERY GROUPS: IOC2063 \& IOC2064

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOC2063, IOC2064
Project Manager: B. McIlvaine
Matrix: Water
Analysis: Metals
QC Level: Level IV
No of Samples: 2
No. of Reanalyses/Dilutions: 0
Reviewer: P. Meeks
Date of Review: April 11, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, SW-846 Method 6010B for Inductively Coupled Plasma, SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC2063, 2064

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 011 Grab	Outfall 011 Grab	IOC2063-01	water	ILM04
Outfall 011 Composite	Outfall 011 Composite	1OC2064-01	water	ILM04

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel. The COCs accounted for the samples and analyses presented in these SDGs. Duplicate samples were submitted for the samples in these SDGs; however, duplicate analyses were not required. No sample qualifications were required.

2.1.3 Holding Times

The dates of collection recorded on the COCs and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP and ICP/MS metals, and 28 days for mercury No qualifications were required.

2.2 ICP-MS TUNING

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. All $\%$ RSDs were less than 5%. The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, $90-110 \%$ for ICP/MS metals and $80-120 \%$ for mercury. Antimony and nickel were not recovered in the 0.2 ppb reporting limit check standard; therefore nondetected antimony in both site samples (see section 2.4) was qualified as estimated, "UJ." As nickel was detected in both samples above the $2.0 \mu \mathrm{~g} / \mathrm{L}$ reporting limit and was recovered within the control limits in the 2.0 ppb reporting limit check standard, no qualifications were required. The remaining reporting limit check standards were recovered within the AMEC control limits of 70-130\%. No further sample qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC2063, 2064

2.4 BLANKS

Antimony, boron and thallium were detected in bracketing CCBs at $0.422 \mu \mathrm{~g} / \mathrm{L}, 0.0207 \mathrm{mg} / \mathrm{L}$, and $0.0895 \mu \mathrm{~g} / \mathrm{L}$, respectively; therefore, antimony and boron detected in both site samples and thallium detected in Outfall 011 Grab were qualified as estimated, "UJ." Chromium was detected in method blank 5C25116-BLK1 at $0.516 \mu \mathrm{~g} / \mathrm{L}$; therefore, chromium detected in both site samples was qualified as estimated, "UJ." No further qualifications were required due to the method and calibration blank results.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were included in the raw data for the ICP-MS analyses. Results were not provided for spiked interferents sulfur, phosphorus, carbon, and chloride, and barium, beryllium, selenium, thallium, vanadium, antimony and lead were not spiked into the ICSAB solution. Arsenic was recovered below the control limit in the ICSAB, therefore, arsenic detected in both site samples was qualified as estimated, "J." Manganese, cobalt copper, zinc, and cadmium were detected above the reporting limit in the ICSA. The validator reviewed the raw data for the site sample ICP/MS analyses for the level of reported interferents, $\mathrm{Al}, \mathrm{Ca}, \mathrm{Fe}$, and Mg , and determined that the levels of reported interferents were not high enough to cause matrix affects. No assessment could be made with respect to possible interference from sulfur, phosphorus, carbon, and chloride.

ICSA and ICSAB analyses were included in the raw data for the boron ICP analyses, but were not run on the days the site samples were analyzed. The recoveries for the interferents and the other spiked analytes were within the control limits of $80-120 \%$. No further qualifications were required.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP/MS LCS sample was identified as 5C25116-BSland the ICP LCS sample was identified as 5C25111-BS1. The mercury LCS sample was identified as 5C26033-BS1. The LCS results on the summary forms and in the raw data were within the laboratory-established ICP, ICP/MS, and mercury control limits of $85-115 \%$. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MS/MSD analyses were performed in association with the samples in these SDG; therefore, no assessment was made with respect to this criterion.

2.8 MATRIX SPIKE

No MS/MSD analyses were performed in association with the samples in these SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on LCS results. No qualifications were required.

	Project:
DATA VALIDATION REPORT	SDG No.:
IOC2063, 2064	

2.9 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

2.10 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

2.11 INTERNAL STANDARDS PERFORMANCE

The ICP-MS internal standard recoveries for the site samples and associated QC sample analyses were within the $60-125 \%$ control limits and no qualifications were required.

2.12 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit were qualified as estimated, "J." No further qualifications were required.

2.13 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.13.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site samples.

DRAFT: METALS

MDL Reporting Sample Dilution Date Date Data Batch Limit Limit Result FactorExtracted Analyzed Qualifiers

Method

Batch Limit

- Water)-cont.

Sample ID: IOC2063-01 Reporting Units: mg/l

Barium

Boron
Iron

EPA 200.8	SC25116	0.00014	0.0010
EPA 200.7	SC25111	0.0074	0.050

0.023	1	$03 / 25 / 05$	$03 / 28 / 05$
0.092	1	$03 / 25 / 05$	$03 / 27 / 05$
0.43	1	$03 / 25 / 05$	$03 / 28 / 05$

1
EPA 200.
EPA $200.8 \quad 5 C 25116 \quad 0.0032$

AMEC VALIDATE?

MWH-Pasadena/Boeing	Project ID: 13267 (Study 1)	
300 North Lake Avenue, Suite 1200	Outfall 011	
Pasadena, CA 91101	Report Number: $10 C 2063$	Sampled: $03 / 25.05$
Attention: Bronwyn Kelly		Received: 032505

Atention: Bronwyn Kelly

DRAFT: METALS

Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	n Date Extracted	$\begin{gathered} \text { Date } \\ \text { Analyze } \end{gathered}$	$\begin{array}{r} \text { Data } \\ \text { ed Qualifit } \end{array}$	
Sample ID: Report	DRA	Outfall 011 C	- Water)	cont.						Rev Qual	$\left\lvert\, \begin{aligned} & \text { Qual } \\ & \text { Code } \end{aligned}\right.$
Antimony		EPA 200.8	5 C 25116	0.18	2.0	0.34	1	03:25/05	03/28:05	UJ J	*3, B
Arsenic		EPA 200.8	5 C 25116	0.49	1.0	2.7	1	03/25/05	03:28/05	J	
Beryltium		EPA 200.8	SC25116	0.037	0.50	0.041	1	03/25/05	03i28/05	JJ	DNQ
Cadmium		EPA 200.8	5 C 25116	0.015	1.0	0.22	1	03/25/05	03/2805	J J	DNa
Chromium		EPA 200.8	SC25116	0.26	2.0	1.2	1	03i25/05	03/28:05	UJB,	
Cobalt		EPA 200.8	SC25116	0.10	1.0	0.29	1.	0332505	03/28:05	J j	
Copper		ERA 200.8	5 C 25116	0.49	2.0	3.9	1	03/25\%05	03/28:05		
Lead		EPA 200.8	5 C 25116	0.13	1.0	0.46	1	03/25/05	03/28/05	J J	DNQ
Manganese		EPA 200.8	5 C 25116	0.44	1.0	36	1	03:25/05	03/28:05		
Mercury		EPA 245.1	5 C 26033	0.063	0.20	ND	1	03.26/05	03/26/05	u	
Nickel		EPA 200.8	5 C 25116	0.15	2.0	3.4	1	03/25/05	03/28.05	U	
Selenium		EPA 200.8	5 C 25116	0.36	2.0	ND	1	03:25/05	03/2805	u	
Silver		EPA 200.8	SC25116	0.089	1.0	ND	1	03/25/05	03/28/05	u	
Thallium		EPA 200.8	5 C 25116	0.075	1.0	0.21	1	03/25/05	03/28105	UJ	B
Vanadium		EPA 200.8	5 C 25116	0.86	2.0	ND	1	03/25/05	03/28:05		
Zinc		EPA 200.8	$5 C 25116$	3.1	20	13	1	03/25/05	0ミ128/05	J J	DNQ

AMEC VALIDATLD LEVETIT

DRAFT REPORT

DRAFT REPORT
DATA SUBIECT TO CHANGE

DRAFT: METALS

MDL Reporting Sample Dilution Date Date Data

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	d Qu:	ata lifiers
Sample ID: IOC2064-01 (DRAFT: Outfall 011 Composite - Water) - cont. Reporting Units: mg/l								Rev Qual Code		
Barium	EPA 200.8	5 C 25116	0.00014	0.0010	0.024	1	0325:05	03/28/05		
Boron	EPA 200.7	5 C 25111	0.0074	0.050	0.095	1	03/25/05	03i2705	UJ	B
Iron	EPA 200.8	5 C 25116	0.0032	0.010	0.43	1	03:25:05	03.28:05		

AMEC VALIDATED

LPWer H

\%MWH-Pasadena/Bocing	Project ID:	13267 (Study 1)	
300 North Lake Avenue, Suite 1200		Outfall 011	Sampled: 03:2505
${ }^{\text {Pasadena, CA } 91101}$	Report Number:	10C2064	Received: 03:25:05
Attention: Bronwyn Kelly			Received. 032505

DRAFT: METALS

Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifi	
Sample ID: 1OC2064-01 (DRAFT: Outfall 011 Composite - Water) - cont. Reporting Units: ugh										Rev Qual	Quad cod
Antimony		EPA 200.3	5 C 25116	0.18	2.0	0.29	1	03:2505	03/28.05	UT J	73, B
Arsenic		EPA 200.8	5 C 25116	0.49	1.0	2.6	1	03/25/05	03/28:05	J	I
Beryllium		EPA 200.8	5 C 25116	0.037	0.50	ND	1	03/25/05	03:28:05	\cup	
Cadmium		EPA 200.8	5 C 25116	0.015	1.0	0.20	1	03/25/05	03:28/05	J J	ONQ
Chromium		EPA 200.8	5 C 25116	0.26	2.0	1.4	1	03/25:05	03/28.05	UTB, 1	8
Cobalt		EPA 200.8	5 C 25116	0.10	1.0	0.29	1	03/25/05	03/28/05	Ј J	DNQ
Copper		EPA 200.8	5 C 25116	0.49	2.0	3.7	1	03/25:05	03/28/05		
Lead		EPA 200.8	5 C 25116	0.13	1.0	0.43	1	03/25/05	03/28/05	J J	ONQ
Manganese		EPA 200.8	5 C 25116	0.44	1.0	41	1	03/25/05	03/28/05		
Mercury		EPA 245.1	5C26033	0.063	0.20	ND	1	03/26:05	03/26i05	U	
Nickel		EPA 200.8	5C25116	0.15	2.0	3.5	1	03/25/05	03/28:05		
Selenium	\cdots	EPA 200.8	5C25116	0.36	2.0	ND	1	03/25:05	03/28/05	U	
Silver		EPA 200.8	5C25116	0.089	1.0	ND	1	03/25/05	03/28/05	1	
Thallium		EPA 200.8	5 C 25116	0.075	1.0	ND	1	03/25/05	03/28/05		
Vanadium		EPA 200.8	5C25116	0.86	2.0	1.2	1	03/25/05	03/28/05	J.	DNQ
Zinc		EPA 200.8	5C25116	3.1	20	13	1	03/25/05	03/2805	J J	$D N Q$

AMEC VALIDATED

DRAFT REPORT

DRAFT REPORT
DATA SUBJECT TO CHANGE

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer H. Chang
Analysis/Method Pesticides \& PCBs/608

Package ID T711PP34
Task Order 313150010
SDG No. IOC2063, IOC2064
No. of Analyses 2
Date: April 10, 2005
Reviewer's Signature

ACTION ITEMS

7

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables

	Deviations from Analysis	Samples were qualified "UJ" for low surrogate recoveries.
	Protocol, e.g.	
	Holding Times	
	GCMS Tune/Inst. Perform	
	Calibrations	
	Blanks	
	Surrogates	
	Matrix Spike/Dup LCS	
	Field QC	
	Internal Standard Performance	
	Compound Identification and	
	Quantitation	
	System Performance	
COM	MMENTS ${ }^{\text {b }}$	

[^36]
amec ${ }^{\theta}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: PESTICIDES

SAMPLE DELIVERY GROUP: IOC2063, IOC2064

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project: SDG:	$\begin{array}{r} \text { NPDES } \\ \text { IOC2063, } 2064 \end{array}$
DATA VALIDATION REPORT	Analysis:	Pest/PCB

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOC2063, IOC2064
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Pesticides/PCBs
QC Level: Level IV
No. of Samples: 2
No. of Reanalyses/Dilutions: 0
Reviewer: H. Chang
Date of Review. April 10, 2005

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedures (DVP-4, Rev.2), EPA Method 608, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary form as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

DATA VALIDATION REPORT \quad| Project: $\left.\begin{array}{r}\text { NPDES } \\ \text { SDG: } \\ \text { IOC2063, } \\ \text { Analysis: } \\ \hline\end{array}\right]$ Pest/PCB |
| ---: |

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	Method
Outfall 011 Grab	Outfall 011 Grab	IOC2063-01	water	608
Outfall 011 Composite	Outfall 011 Composite	IOC2064-01	water	608

DATA VALIDATION REPORT	Project: SDG: Analysis: IOC2063, 2064 Pest/PCB

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The analysis did not require preservation, and no preservation was noted in the field. The COCs noted that the samples were received intact. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by both field and laboratory personnel. The COCs accounted for the analyses presented in these SDGs. As the sample was couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The water samples were extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

2.2 PESTICIDES INSTRUMENT PERFORMANCE

No resolution check standards or breakdown check standards are required by Method 608 for pesticides, and according to the raw data provided, a resolution check standard was not analyzed by the laboratory. The laboratory did analyze a breakdown check standard with a breakdown of $\leq 20 \%$ for individual components (4,4-DDT and endrin) and $\leq 30 \%$ for the total, as suggested in the National Functional Guidelines. A review of the raw data indicated that the analytical run time was of sufficient length to provide adequate standard separation. The two analytical columns used in the analyses were within the guidelines specified in the methods.

According to the laboratory SOP and the initial calibration raw data, the retention time windows are ± 0.10 minutes for both surrogates and target compound calibration standards. A review of the raw data indicated that the laboratory retention time criteria were met for the surrogates and pesticide calibration standards. No qualifications were required.

2.3 CALIBRATION

2.3.1 Analytical Sequence

Based on the data provided, the analytical sequences were in accordance with the requirements of Method 608. No qualifications were required.

		$\begin{array}{r} \text { NPDES } \\ \text { OC2063, } 2064 \end{array}$
data validation report	Analysis:	Pest/PCB

2.3.2 Initial Calibration

There was one initial calibration dated $03 / 24 / 05$ associated with the pesticide analysis of the sample, which consisted of six point calibrations for all pesticide target compounds on two analytical columns. The \%RSDs were within the EPA Method 608 QC limit of $\leq 10 \%$ or the r^{2} values were ≥ 0.995 on both analytical columns. There was one initial calibration dated 03/28/05 associated with the PCB analysis of the samples which consisted of five points for Aroclor 1016 and Aroclor 1260. The average \%RSDs for the individual peaks of Aroclor 1016 and Aroclor 1260 were $\leq 10 \%$ or the r^{2} values were ≥ 0.995 on both analytical columns. An ICV was analyzed immediately following each of the initial calibrations. The \%Ds for all target compounds were within the QC limits of 15% on both analytical columns. A representative number of \%RSDs and ICV \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.3.3 Continuing Calibration

In the continuing calibrations bracketing the pesticide analysis of the sample, all \%Ds were $\leq 15 \%$ with the exception of \%Ds for alpha-BHC, gamma-chlordane, dieldrin, and 4,4'DDD on channel B for one of the closing CCVs. No qualifications were required since channel A was used as the primary column and there were no detects on the primary column. Of the continuing calibrations associated with the PCB analysis of the sample, all \%Ds were $\leq 15 \%$ for Aroclor 1016 and Aroclor 1260. A representative number of \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.4 BLANKS

2.4. Instrument Blanks

An instrument blank was analyzed at the beginning of each analytical sequence. Crosscontamination was not evident in the samples. No qualifications were necessary.

2.4.2 Method Blanks

Two water method blanks, one for pesticides (5C28048-BLK1) and one for PCBs (5C28048BLK2) were extracted and analyzed with these SDG. There were no pesticide target compounds or Aroclors detected in the corresponding method blank. Review of the chromatograms showed no false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

Two pairs of blank spike and blank spike duplicate, one for pesticides (5C28048-BS1/BSD1) and one for PCBs (5C28048-BS2/BSD2) was extracted and analyzed with this SDG. The recoveries for all spiked pesticide target compounds and Aroclors were within the laboratoryestablished QC limits and the RPDs were $\leq 30 \%$ for pesticides. RPDs for Aroclors 1016 and 1260 were above the QC limits of 30% and 25%, respectively. No qualifications were required since there were no detects for Aroclors in the samples.

The laboratory indicated that the PCB blank spike was double spiked and was reanalyzed at $2 \times$ dilution. The original analysis of the BS was not provided. The $2 \times$ dilution showed comparable

	Project:
DATA VALIDATION REPORT	NPDES
SDG:	Analysis:

levels to the BSD analysis. A representative number of recoveries were checked from the raw data, and no calculation or transcription errors were noted.

2.6 SURROGATE RECOVERY

The sample and all QC samples were fortified with the surrogate compounds decachlorobiphenyl and tetrachloro-m-xylene. Surrogate recoveries for the pesticide and PCB analyses of both samples were below the laboratory-established QC limits. In sample Outfall 011 Composite, the surrogate recovery was reported as acceptable, however, the raw data indicated that it was slightly below the QC limits. All pesticides and PCBs were qualified as estimated nondetects, "UJ," in both samples. The recoveries were calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

There were no MS/MSD analyses performed on the sample in this SDG. Method accuracy was assessed based on the blank spike results. No qualifications were required.

2.8 SAMPLE CLEANUP PERFORMANCE

According to the laboratory extraction benchsheets, no cleanups were performed on the extracts for pesticides. The extracts for PCBs were acid washed. No qualifications were required.

2.9 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated sample. The following are findings associated with field QC samples:

2.9.1 Field Blanks and Equipment Rinsates

There were no field QC samples associated with the sample in this SDG. No qualifications were required.

2.9.2 Field Duplicates

There were no field duplicate samples associated with the sample in this SDG.

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for pesticides and PCBs by EPA Method 608. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for the sample in this SDG. No qualifications were required.

	Project: DATA VALIDATION REPORT	NPDES SDG:
IOC2063,		
2064		
PesuPCB		

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification was verified for these SDGs by recalculating any sample detects, and a representative number of blank spike and surrogate recoveries. Reporting limits were supported by the low level standards of the initial calibrations and the laboratory MDL studies. The water reporting limits were not adjusted for sample amount on the result summaries; however, the dilution factor listed on the summaries reflected the sample volume extracted. No qualifications were required.

```
MWH-Pasadena/Boeing
Project ID: 13267 (Study 1)
Outfall 011
Sampled: 03/25:05
Repor Number: 1OC2063
Received: 0325:05
```


DRAFT: ORGANOCHLORINE PESTICIDES (EPA 608)

AMEC VALIDATED

DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Project ID: 13267 (Study 1)
Outfall 011 Sampled: 03/25i05
Report Number: IOC2063
Received: 03:25:05

DRAFT: TOTAL PCBS (EPA 608)

AMEC VALIDATED

DRAFT REPORT
 DRAFT REPORT
 DATA SUBIECT TO CHANGE

 $48+$ Chesapeake Dr., Suite 805, San Diego, CA 92123 (658, 305-8:96 FAX (858) 505-90: 9830 5outh 57 sl SL, 5ute B-120, Phoenix, AZ 85044 (480):85-0043 FAX 4800 785-0851 2520 E. Sunset Rd. \#3, Las Vegas. NV 89120 (7C2) 798-3620 FAX (702) 798-3621MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOC2064
Attention: Bronwyn Kelly

Sampled: 03/25/05
Received: 03/25:05

DRAFT: ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte
Method

MDL Reporting Sample Dilution Date

Sample ID: IOC2064-01 (DRAFT: Outfall 011 Composite - Water) - cont. Reporting Units: ug/I
Aldrin
alpha-BHC
beta-BHC
delta-BHC
gamma-BHC (Lindane)
Chlordane
4,4-DDD
4,4'-DDE
4,4-DDT
Dieldrin
Endosulfan I
Endosulfan II
Endosulfan sulfate
Endrin
Endrin aldehyde
Endrin ketone
Heptachlor
Heptachlor epoxide
Methoxychlor
Toxaphene

EPA 608	5C28048	0.030	0.10
EPA 608	5C28048	0.015	0.10
EPA 608	5C28048	0.015	0.10
EPA 608	5C28048.	0.020	0.20
EPA 608	5C28048	0.020	0.10
EPA 608	5C28048	0.20	1.0
EPA 608	5 C 28048	0.020	0.10
EPA 608	5C28048	0.025	0.10
EPA 608	5C28048	0.030	0.10
EPA 608	5C28048	0.015	0.10
EPA 608	5C28048	0.015	0.10
EPA 608	5 C 28048	0.040	0.10
EPA 608	5C28048	0.015	0.20
EPA 608	5C28048	0.020	0.10
EPA 608	5C28048	0.045	0.10
EPA 608	5C28048	0.020	0.10
EPA 608	5C28048	0.030	0.10
EPA 608	5 C 28048	0.020	0.10
EPA 608	5C28048	0.035	0.10
EPA 608	5C28048	1.5	5.0

Surrogate: Tetrachloro-m-xylene (35-115\%)
Surrogate: Decachlorobiphenyl (45-120\%)

AMEC VALIDATED

DRAFT REPORT
 DRAFT REPORT
 DATA SUBJECT TO CHANGE

MWH-Pasadena Boeing	Project ID: 13267 (Study 1)	
300 North Lake Avenue, Suite $1200 \ldots$	Outfall 011	Sampled: $03 / 25 / 05$
Pasadena, CA 91101	Report Number: $10 C 2064$	Received: $03 / 25 / 05$

Attention: Bronwyn Kelly
DRAFT: TOTAL PCBS (EPA 608)

AMEC VALIDATED

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: SEMIVOLATILES

SAMPLE DELIVERY GROUP: IOC2063, IOC2064

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOC2063, IOC2064
Project Manager: B. Mcllvaine Matrix: Water
Analysis: Semivolatiles
QC Level: Level IV
No. of Samples: 2
No. of Reanalyses/Dilutions: 0
Reviewer: M. Pokorny
Date of Review: April 11, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Semivolatile Organics (DVP-3, Rev. 2), EPA Method 625, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project: NPDES DATA VALIDATION REPORT
SDG:	
IOC2063,	2064
SVOC	

Table 1. Sample identification

Client ID	EPA ID	Lab No.	Matrix	Method
Outfall 011-Grab	Outfall 011-Grab	IOC2063-01	water	625
Outfall 011-Composite	Outfall 011-Composite	1OC2064-01	water	625

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The analysis did not require preservation, and no preservation was noted in the field. The COCs noted that the samples were received intact. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by both field and laboratory personnel. The COCs accounted for the analysis presented in these SDGs. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The water samples were extracted within seven days of collection and analyzed within 40 days of collection. No qualifications were required.

2.2 GC/MS TUNING

The DFTPP tunes met the criteria specified in Method 625, and the samples were analyzed within 12 hours of the DFTPP injection time. No qualifications were required.

2.3 CALIBRATION

The initial calibration associated with this SDG was dated $03 / 17 / 05$. The average RRFs for were ≥ 0.05 and the \%RSDs were $\leq 35 \%$ or $r^{2} \geq 0.995$ for all target compounds listed on the sample summary form, except for the r^{2} values for benzoic acid and 4,6-dinitro-2-methylphenol. Benzoic acid and 4,6-dinitro-2-methylphenol were qualified as estimated nondetects, "UJ," in the samples of these SDGs. The laboratory used more stringent \%RSD criteria than required by Method 625, and provided reanalyses of both samples for 2,4-dinitrophenol only; however, as the original data met criteria, the reanalysis results, both nondetects, were rejected, " R," in favor of the original analysis results for 2,4 -dinitrophenol. A representative number of average RRFs and $\%$ RSDs were checked from the raw data, and no calculation or transcription errors were noted. The continuing calibration associated with the sample analysis was analyzed $03 / 31 / 05$. The RRFs for all target compounds were ≥ 0.05, and the $\%$ Ds were $\leq 20 \%$ except for the $\%$ Ds for hexachlorocyclopentadiene and benzidine. Hexachlorocyclopentadiene was qualified as an estimated nondetect, "UJ," in the samples of these SDGs. Benzidine was rejected for other reasons (see Section 2.5) and was not further qualified. A representative number of RRFs, r^{2} values, and \%Ds were checked from the raw data, and no calculation or transcription errors were noted. No further qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG:	
	Analysis:	SVOC

2.4 BLANKS

One method blank (5C28041-BLK1) was extracted and analyzed with this SDG. Butylbenzylphthalate, di-n-butylphthalate, and diethylphthalate were reported in the method blank and were qualified as nondetects, "U," in the samples of these SDGs. Review of the raw data indicated no reportable false negatives or false positives. No further qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike/blank spike duplicate pair (5C28041-BS1/5C28041-BSD1) was extracted and analyzed with this SDG. All percent recoveries and RPDs were within the laboratory QC limits, except for benzidine which was not recovered in either the BS or BSD. Benzidine was rejected, " R ," in the samples of these SDGs. A representative number of recoveries and RPDs were calculated from the raw data and no calculation or transcription errors were found. No further qualifications were required.

2.6 SURROGATE RECOVERY

The sample surrogate recoveries were within the laboratory QC limits. A representative number of recoveries were calculated from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were associated with these SDGs. Evaluation of method accuracy and precision was based on blank spike/blank spike duplicate results. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

2.8.1 Field Blanks and Equipment Rinsates

There were no field QC samples associated with these SDGs. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate samples associated with these SDGs. No qualifications were required.

	Project: DPDES DATA VALIDATION REPORT	SDG: IOC2063, SVO4
SVOC		

2.9 INTERNAL STANDARDS PERFORMANCE

The internal standard area counts and retention times were within the control limits established by the continuing calibration standards: $-50 \% /+100 \%$ for internal standard areas and ± 30 seconds for retention times. A representative number of recoveries were checked from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for semivolatile target compounds by EPA Method 625. Review of the sample chromatograms, retention times, and spectra indicated no problems with target compound identification. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. No calculation or transcription errors were found. The reporting limits were supported by the low level of the initial calibration and the method detection limit study. No qualifications were required.

2.12 TENTATIVELY IDENTIFIED COMPOUNDS

TICs were not reported by the laboratory for these SDGs. No qualifications were required.

2.13 SYSTEM PERFORMANCE

Review of the raw data indicated no problems with system performance. No qualifications were required.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011
Report Number: IOC2063

Sampled: 03/25/05
Received: 03/25/05

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

AMEC VALIDATED LEVEL IV

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena Boeing
300 North Lake Avenue, Suite 1200
Pasadena. CA 91101
Attention: Bronwyn Kelly

$$
\begin{array}{rr}
\text { Project ID: } & 13267(\text { Study 1) } \\
\text { Outfall 011 } & \\
\text { Report Number: } 10 C 2063 & \text { Rampled: } 03: 25: 05 \\
\text { Received: } 03: 2505
\end{array}
$$

DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

AGES MMDATM

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Project ID: 13267 (Study 1)
Outfall 011
Sampled: 03:25:05
Report Number: IOC2063
Received: 03:25:05

DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte
$\begin{array}{lcccc} & \text { MDL Reporting Sample Dilution Date } \\ \text { Method } & \text { Batch Limit Limit } & \begin{array}{c}\text { Result } \\ \text { Factor Extracted }\end{array}\end{array}$
Date Data Analyzed Qualifiers

Sample ID: IOC2063-01 (DRAFT: Outfall 011 Grab - Water) Reporting Units: ug/h

Reporting Units: ugh									QUAL	$\triangle C D E$
Acenaphthene	EPA 625	5C28041	0.10	0.50	ND	0.971	03:28/05	03.31/05	U	
Acenaphthylene	EPA 625	5C28041	0.10	0.50	ND	0.971	03/28/05	03.31/05		
Aniline	EPA 625	SC28041	2.9	10	ND	0.971	03/28/05	03.31/05		
Anthracene	EPA 625	5C28041	0.083	0.50	ND	0.971	03/28/05	03/31,05	\downarrow	
Benzidine	EPA 625	5 C 28041	2.4	5.0	ND	0.971	03/28/05	03/31/05	R L2	2
Benzoic acid	EPA 625	5C28041	3.7	20	ND	0.971	03/28/05	03.31/05	05	C
Benzo(a)anthracene	EPA 625	5C28041	0.038	5.0	ND	0.971	03/28/05	03.31/05	\cup	
Benzo(a)pyrene	EPA 625	5 C 28041	0.14	2.0	ND	0.971	03/28/05	03.31/05		
Benzo(b)fluoranthene	EPA 625	5C28041	0.050	2.0	ND	0.971	03/28/05	03/31/05		
Benzo(g,h,i)perylene	EPA 625	5 C 28041	0.059	5.0	ND	0.971	03/28/05	03.31/05		
Benzo(k)fluoranthene	EPA 625	5C28041	0.053	0.50	ND	0.971	03/28/05	03.31/05		
Benzyl alcohol	EPA 625	5C28041	0.21	5.0	ND	0.971	03/28/05	03.31/05		
Bis(2-chloroethoxy)methane	EPA 625	5 C 28041	0.072	0.50	ND	0.971	03/28/05	03/31/05		
Bis(2-chloroethyl)ether	EPA 625	5 C 28041	0.084	0.50	ND	0.971	03/28/05	03.31/05		
Bis(2-chloroisopropyl)ether	EPA 625	5C28041	0.11	0.50	ND	0.971	03/28/05	03.31/05		
Bis(2-ethylhexyl)phthalate	EPA 625	5C28041	1.1	5.0	ND	0.971	03/28/05	03.31/05		
4-Bromophenyl phenyl ether	EPA 625	5C28041	0.12	1.0	ND	0.971	03/28/05	03.31/05	\checkmark	
Buty benzyl phthalate	EPA 625	5 C 28041	0.34	5.0	NDSE8:	0.971	03/28/05	03.31105	15	B
4 Chloroaniline	EPA 625	5 C 28041	020	20	ND	0.971	03/28/05	03/31/05	U	
2-Chloronaphthalene	EPA 625	5 C 28041	0.059	0.50	ND	0.971	03/28/05	03/31/05		
4-Chloro-3-methylphenol	EPA 625	5C28041	0.34	2.0	ND	0.971	03/28/05	03.31/05		
4-Chlorophenyl phenyl ether	EPA 625	5 C 28041	0.056	0.50	ND	0.971	03/28/05	03.31/05		
2-Chlorophenol	EPA 625	5C28041	0.12	1.0	ND	0.971	03/28/05	03:31/05		
Chrysene	EPA 625	5 C 28041	0.072	0.50	ND	0.971	03/28/05	03.31/05		
Dibenz(a,h)anthracene	EPA 625	5 C 28041	0.083	0.50	ND	0.971	03/28.05	03/31/05		
Dibenzofuran	EPA 625	5 C 28041	0.075	0.50	ND	0.971	03/28/05	03.31/05	,	
Di-n-butyl phthalate	EPA 625	5 C 28041	0.26	2.0	ND 981	0.971	03/28/05	03,31/05	15	B
1,2-Dichlorobenzene	EPA 625	5 C 28041	0.11	0.50	ND	0.971	03/28/05	03.31/05	\cup	
1,3-Dichlorobenzene	EPA 625	5 C 28041	0.13	0.50	ND	0.971	03/28/05	03.31/05		
1,4-Dichlorobenzene	EPA 625	5 C 28041	0.050	0.50	ND	0.971	03/28/05	03.31/05		
3,3-Dichlorobenzidine	EPA 625	5 C 28041	0.93	5.0	ND	0.971	03/28/05	03.31/05		
2,4-Dichlorophenol	EPA 625	5 C 28041	0.21	2.0	ND	0.971	03/28.05	03.31/05		
Diethyl phthalate	EPA 625	5 C 28041	0.12	1.0	ND 023	0.971	03/28/05	03.31/05	41	tr
2,4-Dimethylphenol	EPA 625	5C28041	0.31	2.0	ND	0.971	03/28/05	03.31/05	U	
Dimethyl phthalate	EPA 625	5C28041	0.081	0.50	ND	0.971	03/28/05	03.31/05	\cup	
4,6-Dinitro-2-methylphenol	EPA 625	5 C 28041	0.38	5.0	ND	0.971	03/28/05	03/31/05	05	C
2,4-Dinitrophenol	EPA 625	5C28041	2.7	5.0	ND	0.971	03/28/05	03.31/05	$\cup \mathrm{N}-1$	
2,4-Dinitrotoluene	EPA 625	5C28041	0.23	5.0	ND	0.971	03/28/05	03.31/05		
2,6-Dinitrotoluene	EPA 625	5 C 28041	0.24	5.0	ND	0.971	03/28/05	03.31/05		
Di-n-octyl phthalate	EPA 625	5C28041	0.17	5.0	ND	0.971	03/28/05	03.31/05		
1,2-Diphenylhydrazine/Azobenzene	EPA 625	5C28041	0.087	1.0	ND	0.971	03/28/05	03/31/05	∇	
DRAFT REPORT DRAFT REPORT				R			ding	0		

DRAFT REPORT

DATA SUBJECT TO CHANGE

[^37]MWH-Pasadena:Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOC2064

Samplec: 03/25/05
Received: 03/25/05

DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

DRAFT REPORT
DRAFT REPORT

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly
$\begin{array}{ll}\text { Project ID: } & 13267 \text { (Study 1) } \\ \text { Outfall 011 }\end{array}$
Report Number: 1OC2064

Sampled: 03/25/05
Received: 03/25/05

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

AMEC VALIDATED LEVEL IV

Del Mar Analytical, Irvine

Michele Harper
Project Manager

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Pacific Analytical
Reviewer L. Calvin
Analysis/Method EFH by Method 8015B

Package ID T711TF60
Task Order 313150010
SDG No. IOC2063, 1OC2064
No. of Analyses 2
Date: April 12, 2005

amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: TPH/EXTRACTABLE

SAMPLE DELIVERY GROUP: IOC2063, IOC2064

Prepared by

AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:
DATA VALIDATION REPORT	NPDES
SDG:	IOC2063, 2064
IPH	

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOC2063, IOC2064
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: TPH-Extractable
QC Level: Level IV
No. of Samples: 2
No. of Reanalyses/Dilutions: 0
Reviewer: L. Calvin
Date of Review: April 12, 2005

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Extractable Total Fuel Hydrocarbons by GC (DVP-8, Rev. 2), USEPA SW-846 Method 8015M, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

DATA VALIDATION REPORT	Project: SDG: Analysis: IOC2063,
TPH	

Table 1. Sample identification

Client ID	EPA ID	Lab No.	Matrix	Method
Outfall 011 Grab	Outfall 011 Grab	IOC2063-01	water	8015B/EFH
Outfall 011 Composite	Outfall 011 Composite	IOC2064-01	water	8015B/EFH

	Project: SDG:	$\begin{array}{r} \text { NPDES } \\ 10 C 2063,2064 \end{array}$
DATA VALIDATION REPORT	Analysis:	

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at Del Mar Analytical laboratory on ice within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The Del Mar Analytical case narrative noted that the sample containers were received intact. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by both field and laboratory personnel, and accounted for the analyses presented in this SDG. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The samples were extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

2.2 CALIBRATION

The initial calibration associated with the sample analyses was analyzed on $03 / 11 / 05$. The $\%$ RSD was within the QC limit of $\leq 20 \%$. The \%Ds for the initial calibration verification (ICV) and continuing calibrations associated with the sample analysis were $\leq 15 \%$. The \%RSD and \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required

2.4 METHOD BLANKS

One method blank (5C26001-BLK1) was extracted and analyzed with the samples in these SDGs. EFH (C13-C22) was not present above the MDL in the method blank or in the instrument blank analyzed at the beginning of the analytical sequence. Review of the chromatograms showed no false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One method blank spike/blank spike duplicate pair (5C26001-BS1/BSD1) was extracted and analyzed with the samples in these SDGs. The laboratory reported recoveries of alkane range C13C 28 from spiked diesel. The recoveries were within the laboratory-established QC limits of $40-$ 120%, and the RPD was within the QC limit of $\leq 25 \%$. The recoveries and RPD were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

	Project: SDG:	$\begin{array}{r} \text { NPDES } \\ \text { IOC2063, } 2064 \end{array}$
DATA VALIDATION REPORT	Analysis:	TPH

2.6 SURROGATE RECOVERY

The samples were fortified with the surrogate compound n-octacosane. The sample surrogate recoveries were within the laboratory-established QC limits of $40-125 \%$. The recoveries were calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

There were no MS/MSD analyses performed on the samples of these SDGs. Evaluation of method accuracy and precision was based on the BS/BSD results. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.9.1 Field Blanks and Equipment Rinsates

There were no field blank or equipment rinsate samples associated with the site samples in these SDGs. No qualifications were required.

2.9.2 Field Duplicates

There were no field duplicate samples associated with these SDGs.

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for EFH n-alkane range C13-C22 by Method 8015B. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for these SDGs. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification was verified for these SDGs by recalculating any sample detects, blank spike recoveries, and a representative number of surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibration and by the laboratory MDL. Results were reported in mg / L (ppm). No qualifications were required.

MWH-Pasadena/Boeing	Project ID: 13267 (Study 1)	Outfall 011
300 North Lake Avenue, Suite 1200		Sampled: 0325.05
Pasadena, CA 91101	Report Number: $10 C 2063$	Received: $03: 25.05$
Attention: Bronwyn Kelly		

DRAFT: EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

AMEC VALIDATED

 2520 E. Sunset Rd. \#3, Las Vegas, NV 89120 (702) $798-3620$ FAX FO2 $793-36.2$

```
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwry Kelly
```

Project ID: 1326? (Study 1)
Outfall 011
Report Number: 1OC2064

Sampled: 03:25/05
Received: 03/25/05

DRAFT: EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Date Factor Extracted	Date Analyzed	Data palifiers
Sample D: 1OC2064-01 (DRAFT: Outfall 011 Composite - Water) - cont. Reporting Units: mg/								
EFH (C13-C22) Surrogate: n-Octacosane (40-125\%)	EPA 8015B	5C26001	0.082	0.50	$\begin{aligned} & \mathrm{ND} \\ & 65 \% \end{aligned}$	0.943 03:2605	03:28:05	

AMEC VALIDATED

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental	Package ID T711TF61
550 South Wadsworth Boulevard	Task Order 313150010
Suite 500	SDG No. IOC2063, IOC2064
Lakewood, CO 80226	No. of Analyses 4
Laboratory Pacific Analytical	Date: April 12, 2005
Reviewer L. Calvin	Reviewer's gignature
Analysis/Method GRO by Method 8015M	Ux cran

amec

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: TPH/Purgeable

SAMPLE DELIVERY GROUP: IOC2063, IOC2064

Prepared by

AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOC2063, 1OC2064
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: TPH-Purgeable
QC Level: Level IV
No. of Samples: 4
No. of Reanalyses/Dilutions: 0
Reviewer: L. Calvin
Date of Review: April 12, 2005

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Extractable Total Fuel Hydrocarbons by GC (DVP-8, Rev. 2), USEPA SW-846 Method 8015 M , and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

DATA VALIDATION REPORT \quad| Project: |
| ---: |
| SDG: |
| IOC2063, 2064 |
| Analysis: |

Table 1. Sample identification

Client ID	EPA ID	Lab No.	Matrix	Method
Outfall 011 Grab	Outfall 011 Grab	IOC2063-01	water	$8015 \mathrm{M} / \mathrm{GRO}$
Trip Blank	Trip Blank	IOC2063-02	water	$8015 \mathrm{M} / \mathrm{GRO}$
Outfall 011 Composite	Outfall 011 Composite	IOC2064-01	water	$8015 \mathrm{M} / \mathrm{GRO}$
Trip Blank	Trip Blank	IOC2064-02	water	$8015 M /$ GRO

	Project: SDG: Analusis:	$\begin{array}{r} \text { NPDES } \\ \text { IOC2063, } 2064 \\ \text { TPH } \end{array}$
DATA VALIDATION REPORT	Analysis:	\square TPH

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at Del Mar Analytical on ice within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The Del Mar Analytical case narrative noted that the samples were received intact, and the COCs indicated the samples were properly preserved. Information regarding lack of headspace in the VOA vials was not provided. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by both field and laboratory personnel. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The water samples were analyzed within 14 days of collection. No qualifications were required.

2.2 CALIBRATION

One gasoline standard initial calibration dated 08/15/04 was associated with the sample analyses. The \%RSD for GRO (C4-C12) was within the QC limit of $\leq 20 \%$. An initial calibration verification (ICV) was not provided in the data package. The \%Ds for both CCVs bracketing the sample analyses were within the Method QC limit of $\leq 15 \%$. The \%RSD and \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required

2.4 METHOD BLANKS

One water method blank (5C26026-BLK1) was associated with the sample analyses. GRO (C4-C12) was not detected above the MDL in the method blank. Review of the raw data indicated no false negative result. No qualifications were necessary.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One water method blank spike (5C26026-BS1) was associated with the sample analyses. GRO (C4-C12) was recovered within the laboratory-established QC limits of $70-140 \%$ in the blank spike. The recovery was checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

	Project: SDG:	$\begin{array}{r} \text { NPDES } \\ \text { IOC2063, } 2064 \end{array}$
DATA VALIDATION REPORT	Analysis:	TPH

2.6 SURROGATE RECOVERY

The samples were fortified with the surrogate compound 4-bromofluorobenzene (BFB). Surrogate recoveries were within the laboratory-established QC limits of $65-140 \%$. Recoveries were calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed on the site samples of these SDGs. Evaluation of method accuracy was based on the blank spike results. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.9.1 Trip Blanks, Field Blanks, and Equipment Rinsates

Samples Trip Blank (IOC2063-02) and Trip Blank (IOC2064-02) were the trip blanks associated with site samples Outfall 011 Grab and Outfall 011 Composite, respectively. GRO (C4C 12) was not detected above the MDL in either trip blank. Review of the raw data indicated no false negative results. There were no field blank or equipment rinsate samples associated with these SDGs. No qualifications were necessary.

2.9.2 Field Duplicates

There were no field duplicate samples in these SDGs.

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for GRO (C4-C12) by EPA SW-846 Method 8015M. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for the samples in these SDGs. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification was verified for these SDGs by recalculating any sample detects, blank spike recoveries, and a representative number of surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibration and by the laboratory MDL. Results were reported in units of mg / L (ppt). No qualifications were required.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention:- Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: $10 C 2063$

Sampled: 03:25:05
Received: 03:25:05

DRAFT: VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyze		Data aplifiers
Sample ID: 1OC2063-01 (DRAFT: Outfall 011 Grab - Water) - cont. Reporting Units: mg/										
GRO (C4-C12)	EPA 8015 Mod .	5C26026	0.050	0.10	ND	1	03/2605	0328.05	い	
Surrogate: 4-BFB (FID) (65-140\%)					104%					
Sample ID: IOC2063-02 (DRAFT: Trip Blank - Water) Reporting Lnits: mgh										
GRO (C4-Cl2)	EPA 8015 Mod .	SC26026	0.050	0.10	ND	1	03/26/05	03/27/05	u	
Surrogate: 4-BFB (FID) (65-140\%)					103%					

AMEC VALIDATED

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Sampled: 03:25:05
Report Number: IOC2064
Received: 03/25/05

Analyse
Method
Batch
MDL Reporting
Sample Dilution Date Date Data
Analyzed
Qualifier
Sample ID: IOC2064-01 (DRAFT: Outfall 011 Composite - Water) - cont. Reporting Units: mg/l
GRO (C4-C12)
EPA 8015 Mod. 5 C 260260.050
0.10

ND
1
03:26/05 03:28:05

DRAFT: VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)

Surrogate: 4-BFB (FID) (65-140\%)

Limit Result Factor Extracted

Sample ID: 1OC2064-02 (DRAFT: Trip Blank - Water)
Reporting Units: gl

Surrogate: 4-BFB (FID) (65-140\%)
88%

AMEC VALIDATED

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: VOLATILES

SAMPLE DELIVERY GROUPS: IOC2063, IOC2064

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:	NPDES Data Validation Report

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOC2063, IOC2064
Project Manager: B. McIlvaine
Matrix: Water
Analysis: Volatiles
QC Level: Level IV
No. of Samples: 4
No. of Reanalyses/Dilutions: 0
Reviewer: H. Chang
Date of Review: April 11, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Volatile Organics (DVP-2, Rev. 2), EPA Method 624, EPA SW-846 Method 8260B, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary forms as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
Data Validation Report	SDG:	IOC2063, 2064

Table 1. Sample identification

Client ID	EPA ID	Lab No.	Matrix	Method
Outfall 011 Grab	Outfall 011 Grab	IOC2063-01	water	624
Trip Blank	Trip Blank	IOC2063-02	water	624
Outfall 011 Composite	Outfall 011 Composite	IOC2064-01	water	624
Trip Blank	Trip Blank	IOC2064-02	water	624

	Project:	NPDES
Data Validation Report	SDG:	IOC2063, 2064

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The samples were properly preserved. The COC noted that the samples were received intact; however, information regarding absence of headspace was not provided. No qualifications were required.

2.1.2Chain of Custody

The COCs were signed and dated by both field and laboratory personnel. The COCs accounted for the analysis presented in these SDGs. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3Holding Times

The samples were analyzed within 14 days of collection. No qualifications were required.

2.2 GC/MS TUNING

All ion abundances were within the limits specified in the EPA Method 624. The samples and associated QC were analyzed within 12 hours of the BFB injection times. The Form Vs were verified from the raw data and no discrepancies between the summary forms and the raw data were noted. No qualifications were required.

2.3 CALIBRATION

Two initial calibrations dated 03/04/05 and 03/16/05 (1,1,2-trichloro-1,2,2-trifluoroethane, acrolein, and acrylonitrile only) were associated with these SDGs. The average RRF for acrolein was <0.05 in the initial calibration dated $03 / 16 / 05$; therefore, the nondetect results for acrolein were rejected, "R," in all samples of these SDGs. The average RRFs were ≥ 0.05 for the remaining target compounds listed on the sample result summaries. The \%RSDs were $\leq 35 \%$ for all applicable target compounds.

Two continuing calibrations dated 03/27/05 at 09:39 and at 10:11 (1,1,2-trichloro-1,2,2trifluoroethane, acrolein, and acrylonitrile only) were associated with the sample analyses in these SDGs. The RRF for acrolein was <0.05 in the continuing calibration; therefore, the nondetect results for acrolein were rejected, "R," in all samples of these SDGs. All other RRFs were ≥ 0.05 for the remaining target compounds. All \%Ds were within $\pm 20 \%$ with the exception of acrolein which had a $\% \mathrm{D}$ greater than 20%. No additional qualification was necessary since acrolein was already rejected due to low RRFs. A representative number of \%RSDs and average RRFs from the

	Project:	NPDES
Data Validation Report	SDG:	IOC2063, 2064

initial calibrations, and \%Ds and RRFs from the continuing calibrations were recalculated from the raw data, and no calculation or transcription errors were found. No further qualifications were required.

2.4 BLANKS

One water method blank (5C27003-BLK1) was associated with the sample analyses. There were no detects above the MDLs for the target compounds listed on the sample result summary. The method blank raw data showed no evidence of false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One water blank spike (5C27003-BS1) was associated with the sample analyses. All recoveries were within the laboratory-established QC limits. A representative number of recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.6 SURROGATE RECOVERY

The surrogates were recovered within the QC limits of $80-120 \%$ in the samples and associated QC. A representative number of surrogate recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were performed on sample Outfall 011 Grab . All recoveries and RPDs were within the laboratory-established QC limits. A representative number of recoveries and RPDs were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

2.8.1Trip Blanks

Sample Trip Blank (IOC2063) and Trip Blank (IOC2064) were the trip blanks associated with these SDGs. There were no target compounds detected above the MDLs in the trip blanks. No qualifications were required.

2.8.2Field Blanks and Equipment Rinsates

There were no field QC samples associated with these SDGs. No qualifications were required.

2.8.3Field Duplicates

There were no field duplicate samples associated with these SDGs. No qualifications were required.

2.9 INTERNAL STANDARDS PERFORMANCE

Internal standard area counts and retention times for the samples in this SDG were within the control limits established by the continuing calibration standards: $+100 \% /-50 \%$ for internal standard areas and ± 0.50 minutes for retention times. A representative number of internal standard areas and retention times were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.10 COMPOUND IDENTIFICATION

Target compound identification was verified at a Level IV data validation. The laboratory analyzed for volatile target compounds by EPA Method 624. A TIC search was performed for requested target compounds 1,2 -dichloro-1,1,2-trifluoroethane and cyclohexane. The laboratory calibrated for target compound 1,2-dichloro-1,1,2-trifluoroethane; however, the calibration was not used for identification. Target compound cyclohexane was not included in the calibration (see section 2.11). TIC scan did not identifiy neither compound. Chromatograms, retention times, and spectra for the samples and QC were examined and no target compound identification problems were noted. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. The reporting limits were supported by the lowest concentrations of the initial calibration standards and by the MDL study. Calibration was not utilized for target compounds 1,2-dichloro-1,1,2-trifluoroethane and cyclohexane; therefore, the laboratory performed only a TIC search for these compounds. Nondetects for both compounds were qualified as estimated, "UJ," in the samples Outfall 011 Grab and Outfall 011 Composite. Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike and surrogate recoveries from the raw data. Results were reported in $\mu \mathrm{g} / \mathrm{L}$ (ppb). No calculation or transcription errors were noted. No further qualifications were required.

2.12 TENTATIVELY IDENTIFIED COMPOUNDS

The laboratory did not report TICs for these SDGs other than two target compounds reported using a TIC scan (see Section 2.10). Reporting of TICs is not required by EPA Method 624. No qualifications were required.

	Project: SDG:
Data Validation Report	IOC2063, 2064

2.13 SYSTEM PERFORMANCE

A review of the chromatograms and other raw data showed no identifiable problems with system performance. No qualifications were required.

MWIT-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly

```
                Project 1D: 13267 (Study 1)
                                    Outfall 011
Report Number: 10 C 2063
Sampied: 032505
Received: 03:25:05
```


DRAFT: PURGEABLES BY GC/MS (EPA 624)

AMEC VALIDATED LEVELII

MWH-Pasadena/Boeing	Project ID	13267 (Study 1)	
300 North Lake Avenue, Suite 1200		Outfall 011	Sampled: 0325:05
Pasadena, CA 91101	Report Number:	1OC2063	Received: 03:25:05
Attention: Bronwy Kelly			

DRAFT: PURGEABLES BY GC/MS (EPA 624)

AMEC VALIDATED LEVEL IV

DRAFT REPORT

DRAFT REPORT

DRAFT: PURGEABLES BY GC/MS (EPA 624)

AMEC VALIDATED LEVEL IV

DRAFT: PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution FactorE	D Date Extracted	Date Analyzed		ata lifiers
Sample ID: IOC2063-01 (DRAFT Reporting Units: ugh	T: Outfall 011 Gra	b - Water)							Ren Qual	Qual Code
1,2-Dichloro-1,1,2-trifluoroethane	EPA 624 (MOD.)	$5 C 27003$	N/A	2.5	ND	1	03/27/05	03:27.05	45	- +11
Cyclohexane	EPA 624 (MOD.)	5 C 27003	N/A	2.5	ND	1	03,27/05	03/27/05	UJ	* 11
Sample ID; IOC2063-02 (DRAFT: Trip Blank - Water) Reporting Units: ug/l										
1,2-Dichloro-1,1,2-tritluoroethane	EPA 624 (MOD.)	5 C 27003	N/A	2.5	ND	1	03/27/05	03/27/05	u	
Cyclohexane	EPA 624 (MOD.)	5 C 27003	N/A	2.5	ND	1	03/27/05	03/27/05	u	

AMEC VALIDATED

LEVEL IV

[^38]Project ID: 13267 (Study 1)
Outfall 011
Report Number: 1OC2064
Sampled: 03:25/05
Received: 03/25:05

DRAFT: PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	D Date Extracted	Da Anal	d	fiers
Sample ID: IOC2064-01 (DRA Reporting Units: ug/l	utfall 011	mposite -							Rev Quar	Qual Code
Benzene	EPA 624	5 C 27003	0.28	1.0	ND	1				
Bromodichloromethane	EPA 624	5C27003	0.30	2.0	ND	1	03/27/05			
Bromoform	EPA 624	5 C 27003	0.32	5.0	ND	1	03/27/05	03/27/05		
Bromomethane	EPA 624	5 C 27003	0.34	5.0	ND	1	03/27/05	03/27/05		
Carbon tetrachloride	EPA 624	5 C 27003	0.28	0.50	ND	1	03/27/05	03/27/05		
Chlorobenzene	EPA 624	5 C 27003	0.36	2.0	ND	1	03/27/05	03/27/05		
Chioroethane	EPA 624	5 C 27003	0.33	5.0	ND	1	03/27/05	03/27/05		
Chloroform	EPA 624	5C27003	0.33	2.0	ND	1	03/27/05	03/27/05		
Chloromethane	EPA 624	5 C 27003	0.30	5.0	ND	1	03/27/05	03/27/05		
Dibromochloromethane	EPA 624	5C27003	0.28	2.0	ND	1	03/27/05	03/27/05		
1,2-Dichlorobenzene	EPA 624	5 C 27003	0.32	2.0	ND	1	03/27/05	03/27/05		
1,3-Dichlorobenzene	EPA 624	5C27003	0.35	2.0	ND	1	03/27/05	03/27/05		
1,4-Dichlorobenzene	EPA 624	5 C 27003	0.37	2.0	ND	1	03/27/05	03/27/05		
1,1-Dichloroethane	EPA 624	5 C 27003	0.27	2.0	ND	1	03/27/05	03/27/05		
1,2-Dichloroethane	EPA 624	5 C 27003	0.28	0.50	ND	1	03/27/05	03/27/05		
1,1-Dichloroethene	EPA 624	5 C 27003	0.32	5.0	ND	1	03/27/05	03/27/05		
trans-1,2-Dichloroethene	EPA 624	5 C 27003	0.27	2.0	ND	1	03/27/05	03/27/05		
1,2-Dichloropropane	EPA 624	5 C 27003	0.35	2.0	ND	1	03/27/05	03/27/05		
cis-1,3-Dichloropropene	EPA 624	5 C 27003	0.22	2.0	ND	1	03/27/05	03\%27/05		
trans-1,3-Dichloropropene	EPA 624	5 C 27003	0.24	2.0	ND	1	03/27/05	03/27/05		
Ethylbenzene Methylene chloride	EPA 624	5 C 27003	0.25	2.0	ND	1	03/27/05	03/27/05		
Methylene chloride 1,1,2,2-Tetrachloroethan	EPA 624	5 C 27003	0.48	5.0	ND	1	03/27/05	03/27/05		
Tetrachloroethene	EPA 624	5C27003	0.24	2.0	ND	1	03/27/05	03/27:05		
Toluene	EPA 624 EPA 624	5 C 27003 5 C 27003	0.32	2.0	ND	1	03/27/05	03/27/05		
1,1,1-Trichloroethane	EPA 624	5 C 27003	0.36	2.0	ND	1	03/27:05	03/27/05		
1,1,2-Trichloroethane	EPA 624	5C27003	0.30	2.0	ND	1	03/27/05	03/27/05		
Trichloroethene	EPA 624	5 C 27003	0.26	2.0	ND	1	03/27/05	$03 / 27 / 05$ $03 / 27 / 05$		
Trichlorofluoromethane	EPA 624	5C27003	0.34	5.0	ND	1	03:27/05	03/27/05		
Vinyl chloride	EPA 624	5C27003	0.26	0.50	ND	1	03/27/05	03/27/05		
Xylenes, Total	EPA 624	5 C 27003	0.52	4.0	ND	1	03/27/05	03/27/05		
Trichlorotrifluoroethane (Freon 113)	EPA 624	5 C 27003	1.2	5.0	ND	1	03/27/05	$03 / 27 / 05$	\checkmark	
Surrogate: Dibromofluoromethane (80-120\%\% Surrogate: Toluene-d8 (80-120\%) Surrogate: 4-Bromofluorobenzene (80-120\%)					105%					
					100%					
					94%					

AMEC VALIDATED
 LEVEL I/

DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE

MWH-Pasadena-Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

```
                Project ID: 13267 (Study 1)
                                    Outfall 011
Report Number: 10C2064
```

Sampled: 03/25/05
Received: 032505

DRAFT: PURGEABLES BY GC/MS (EPA 624)

AMEC VALIDATED

DRAFT REPORT
 DRAFT REPORT
 DATA SUBJECT TO CHANGE

AMEC VALIDATED

LEVEL IV

DRAFT REPORT
 DRAFT REPORT
 DATA SUBJECT TO CHANGE

AMEC VALIDATED

LEVEL I/

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
\quad Laboratory Del Mar Analytical
\quad Reviewer L. Jarusewic
Analysis/Method General Minerals

Package ID T711WC131

Task Order 313150010
SDG No. IOC2063, IOC2064
No. of Analyses 2

ACTION ITEMS

1. Case Narrative Deficiencies
2. Out of Scope Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis Protocol, e.g.,

Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification
and Quantitation
System Performance
Qualifications were applied for:

1) Detects below the reporting limit
2) Negative method blank results
3) Reviewer change of cyanide MDL to level of interference

COMMENTS ${ }^{6}$

[^39]
amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: GENERAL MINERALS

SAMPLE DELIVERY GROUPS: IOC2063 \& IOC2064

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010
Sample Delivery Group \#: IOC2063, IOC2064
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: General Minerals
QC Level: Level IV
No. of Samples: 2
Reviewer: L. Jarusewic
Date of Review: April 8, 2005

The sample listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 300.0, 350.2, 330.5, 405.1, 335.2, 413.1, 415.1, 418.1, 425.1, 218.6, 120.1, 160.2, 160.5, 180.1, and 120.1, Standard Methods for the Examination of Water and Wastewater Method SM5540-C and SM2540C, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC2063/2064

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 011-Grab	Outfall 011-Grab	IOC2063-01	Water	General Minerals
Outfall 011-Composite	Outfall 011-Composite	IOC2064-01	Water	General Minerals
Outfall 011-Grab	Outfall 011-Grab	IOC2063-01RE	Water	EPA 413.1
Outfall 011-Composite	Outfall 011-Composite	IOC2064-01RE	Water	EPA 413.1

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC2063/2064

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel. The COCs accounted for all analyses presented in these SDGs. No sample qualifications were required.

2.1.3 Holding Times

The holding times were assessed by comparing the date of collection with the dates of analyses. The 28 -day analytical holding time for ammonia, fluoride, chloride, sulfate, conductivity, total recoverable hydrocarbons, TOC, and oil and grease, the 14-day analytical holding time for cyanide, the seven-day holding time for total suspended solids and total dissolved solids, the 48 -hour holding time for surfactants, turbidity, nitrate/nitrite, biological oxygen demand, and total settleable solids, and the 24 -hour hexavalent chromium and residual chlorine holding times were met. No qualifications were required.

2.2 CALIBRATION

For the applicable analyses, the initial calibration correlation coefficients were ≥ 0.995. Initial and continuing calibration information was acceptable with recoveries within the control limits of $90-110 \%$. For ammonia, no information regarding the standardization of the titrant was provided; however, as the LCS recovery was within the CCV control limits, no qualifications were required. For BOD, no information regarding the calibration of the oxygen meter was provided; however, as the LCS recovery was within the CCV control limits, no qualifications were required. The total cyanide reporting limit check standard was recovered within the control limits of $70-130 \%$. Calibration is not applicable to residual chlorine, oil and grease, total dissolved solids, total suspended solids, or total settleable solids. No qualifications were required.

2.3 BLANKS

Turbidity was detected in the method blank (5C26056-BLK1) associated with Outfall 011-Grab and Outfall 011-Composite; however, the method blank result was insufficient to qualify the Outfall 011-Grab or Outfall 011 -Composite results. Cyanide was reported in the method blank (5C25119-BLK1) associated with Outfall 011-Grab and Outfall 011-Composite at $-3.8 \mu \mathrm{~g} / \mathrm{L}$; therefore, nondetected cyanide in Outfall 011-Grab and Outfall 011-Composite was qualified as estimated, "UJ." The remaining method blank and

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC2063/2064

CCB results reported on the summary forms and in the raw data for blank analyses associated with the samples were nondetects at the reporting limit. No further qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample and laboratory control sample duplicate (BOD, oil and grease, and total recoverable hydrocarbons only) recoveries and RPDs were within the laboratory-established control limits. The LCS is not applicable to turbidity, conductivity, residual chlorine, or settleable solids. The original LCS/LCSD results for oil and grease associated with Outfall 011-Grab and Outfall 011-Composite were recovered below laboratory-established QC limits. The laboratory re-extracted the samples and the LCS/LCSD and reported all oil and grease results from the reanalysis. No qualifications were required.

2.5 SURROGATES RECOVERY

Surrogate recovery is not applicable to the analyses presented in these SDGs.

2.6 LABORATORY DUPLICATES

Laboratory duplicate analyses were performed on Outfall 011-Grab for residual chlorine and total suspended solids. The RPDs were within the laboratory-established control limits and no qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

There were no MS/MSD analyses performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was assessed based on LCS results.

2.8 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analyses of these samples; therefore, furnace atomic absorption QC is not applicable.

2.9 ICP SERIAL DILUTION

ICP serial dilution is not applicable to the analyses presented in this data validation report.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC2063/2064

2.10 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Cyanide was reported in the raw data for Outfall 011-Grab and Outfall 011Composite at -5.2 and $-5.6 \mu \mathrm{~g} / \mathrm{L}$, respectively, and the associated method blank was reported at $-3.8 \mu \mathrm{~g} / \mathrm{L}$. Due to these negative results, the reviewer changed the MDL and the reporting limit on the Form Is to the level of interference. BOD and fluoride in Outfall 011-Grab and Outfall 011-Composite and oil and grease in Outfall 011 -Grab detected below the reporting limit were qualified as estimated, "J." No further qualifications were required.

2.11 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.11.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.11.2 Field Duplicates

There were no field duplicate pairs associated with these SDGs.

AMEC VALIDATED

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Project ID: 13267 (Study 1)
Outfall 011
Pasadena, CA 91101

DRAFT: INORGANICS

AMEC VALIDATED

LEVEL IV

MWH-Pasadena/Boeing	Project ID: 13267 (Study 1)	Outfall 011
Mo0 North Lake Avenue, Suite 1200		Report Number: 1002063

DRAFT: INORGANICS

MDL Reporting Sample Dilution Date
Date Data

Sample ID: 10C2063-01 (DRAFT: Outfall 011 Grab - Water) - cont. Reporting Units: m/l/hr
Total Settleable Solids

AMEC VALIDATEO

2 Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOC2063
Sampled: 03:2505
Received: 03/2505

DRAFT: INORGANICS

AMEC VALIDATED

DRAFT: INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted			fier
Sample ID: IOC2063-01 (DRAFT: Outfall 011 Grab - Water) - cont. Reporting Units: ug/										
Chromium VI	EPA 218.6	5C25058	0.10	1.0	ND	1	03/25:05	03	u	
Total Cyanide	EPA 335.2	5C25119	25	25.45	2 ND	1	03/25/05	03/25	$u J$	B. $\$$
Perchlorate	EPA 314.0	5C25061	0.80	4.0	ND	1	03/25/05	03/26:05		

AMEC VALIDATIED

LEVEL IZ

 2520 E. Sunce Rd. \#3. Las Vegas, NV 89120 ;702) $798-3620$ FAX $702,798-302-$

MWH-Pasadena/Boeing	Project ID: 13267 (Study 1)	Outfall 011

DRAFT: INORGANICS

AMEC VALIDATLu


```
MWH-Pasadena'Boeing
300 North Lake Avenue, Suite }120
Pasadena, CA. }9110
Attention: Bronwyn Kelly
```

Project ID: 13267 (Study 1)
Outfall 011
Repor Number: IOC2063

Sampled: 03/25:05
Received: 03/25:05

DRAFT: INORGANICS

AMEC VALIDAn=u

LEVEL IV

DRAFT REPORT

DRAFT REPORT
DATA SUBJECT TO CHANGE

D Del Mar Analytical

MWH-Pasadena/Boeing300 North Lake Avenue, Suite 1200

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10 C 2064

Sampled: 03/25,05
Received: 03/25/05

DRAFT: TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)

AMEC VALIDATED

MWH-Pasadena/Boeing	Project ID: 13267 (Study 1)	
Outfall 011		
300 North Lake Avenue, Suite 1200	Report Number:	IOC2064

DRAFT: INORGANICS

amec Validated

Project ID: 13267 (Sudy 1)
Outfall 011
Sampled: 03/25/05
Report Number: 10 C 2064
Received: 03:2505

DRAFT: INORGANICS

AMEC VALIDATED

Project ID: 13267 (Study 1)
Outfall 011
Report Number: $10 C 2064$

Sampled: 03:25:05
Received: 0325:05

DRAFT: INORGANICS

Analyte	Method	Batch	$\begin{aligned} & \text { MDL } \\ & \text { Limit } \end{aligned}$	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OC2064-01 (DRAFT: Outfall 011 Composite - Water) - cont. Reporting Units: NTU									
Turbidity	EPA 180.1	5C26056	0.040	1.0	4.2	1	03:2605	03:26:05	

AMEC VALIDATED

LEVEL IV

Del Mar Analytical

MWH-Pasadena Bocing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronuyn Kelly

Project ID: 13267 (Study 1)
Outfall 011 Sampled: 032505
Report Number: 10 C 2064

Received: 03/25:05

DRAFT: INORGANIC

Analyse
Method
MDL Reporting Sample Dilution Date
Date Data

Sample ID: IOC2064-01 (DRAFT: Outfall 011 Composite - Water) - cont. Reporting Units: ugh/
Chromium VI
Total Cyanide
Perchlorate

AMES VALIDAILU

LEVEL IV

*ansis Not Validated

MWH-Pasadena Boeing	Project ID: 13267 (Study 1)		
300 North Lake Avenue, Suite 1200		Outfall 011	Sampled: 03:2505
Pasadena, CA 91101	Report Number:	JOC2064	Received: 0325:05
Attention: Bronwyn Kelly		10 C 206	Received: 0325:05

DRAFT: INORGANICS

AMEC VALIDATED

DRAFT: INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyz		ifiers
Sample ID: IOC2064-01 (DR Reporting Units: mg/l	utfall 011	posite -	ter)	cont.						gut $1 C O Q E$
Ammonia-N (Distilled)	EPA 350.2	5C28067	0.30	0.50	ND	1	03/28/05	03:2805	L	
Biochemical Oxygen Demand	EPA 405.1	5 C 25093	0.59	2.0	1.1	1	03/25:05	03/30/05		Q
Chloride	EPA 300.0	SC25048	0.26	0.50	9.2	1	03/25/05	03:25:05		
Fluoride	EPA 300.0	5 C 25048	0.10	0.50	0.25	1	03:25105	03/25:05	J	
Nitrate/Nitrite-N	EPA 300.0	5C25048	0.072	0.11	0.15	1	03/25/05	03/25/05		
Residual Chlorine	EPA 330.5	5 C 25118	0.10	0.10	ND	1	03/25/05	03/25/05		
Sulfate	EPA 3000	5 C 25048	0.18	0.50	22	1	03/25/05	03/25/05		
Surfactants (MBAS)	SMS540-C	5C25096	0.044	0.10	ND	1	03/25:05	03/25:05	U	
Total Dissolved Solids	SM2540C	5C28078	10	10	140	1	03:28:05	03:28/05		
Total Organic Carbon	EPA 415.1	5 C 28077	0.25	1.0	10	1	03:28:05	03/28:05		
Total Suspended Solids	EPA 160.2	5 C 25117	10	10	ND	1	03/25i05	03:25:05		

amec validatio

DRAFT REPORT
 DRAFT REPORT
 DATA SUBJECT TO CHANGE

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer L. Jarusewic
Analysis/Method Perchlorate

Package ID T711WC132
Task Order 313150010
SDG No. IOC2063, IOC2064
No. of Analyses 2

ACTION ITEMS

1. Case Narrative Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from

Analysis Protocol, e.g.,
Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification and Quantitation
System Performance
COMMENTS ${ }^{\text {b }} \quad$ Acceptable as reviewed.

[^40]
amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: PERCHLORATE SAMPLE DELIVERY GROUPS: IOC2063 \& IOC2064

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: IOC2063, IOC2064
Project Manager: B. McIlvaine
Matrix: Water
Analysis: Perchlorate
QC Level: Level IV
No. of Samples: 2
Reviewer: L. Jarusewic
Date of Review: April 8, 2005

The samples listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 314.0, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOC2063/2064

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 011-Grab	Outfall 011-Grab	IOC2063-01	Water	Perchlorate
Outfall 011-Composite	Outfall 011-Composite	IOC2064-01	Water	Perchlorate

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The analysis did not required preservation and no preservation was noted in the field. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel, and accounted for the samples and analysis presented in these SDGs. No qualifications were required.

2.1.3 Holding Times

The holding time was assessed by comparing the dates of collection with the date of analysis. The 28day analytical holding time for perchlorate was met, and no qualifications were required.

2.2 CALIBRATION

The initial calibration correlation coefficient was ≥ 0.995. The IPC-MA recovery was within the control limits of $80-120 \%$. The ICV, CCV, ICCS, and IPC recoveries were within the control limits of $90-$ 110%. No qualifications were required.

2.3 BLANKS

The method blank and CCB results reported on the summary forms and in the raw data for blank analyses associated with the samples were nondetects at the reporting limit. No qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample recovery was within the method control limits of $85-115 \%$. No qualifications were required.

2.5 SURROGATES RECOVERY

Surrogate recovery is not applicable to the analysis presented in these SDGs.

2.6 LABORATORY DUPLICATES

No MS/MSD or duplicate analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was assessed based on LCS results.

2.8 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

2.9 ICP SERIAL DILUTION

ICP serial dilution is not applicable to the analysis presented in this data validation report.

2.10 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. No qualifications were required.

2.11 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.11.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.11.2 Field Duplicates

There were no field duplicate pairs associated with these SDGs.

Project ID: 13267 (Sudy 1)
Outfall 011
Report Number: IOC2063

Sampled: 03/25:05
Received: 03:25:05

DRAFT: INORGANICS

AMEC VALIDATIED

LEVEL IV

> "Anolyuis Not Vers oce

DRAFT: INORGANICS

AMEC VALIDATED

LEVEL IV

Anelyois Not VoUln.

आ Q ,

Y
,
-
\%
\%
\%
,
\%
\%
,
\%

K, \quad -

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: 13267 (Study 1)
Outfall 011

Sampled: 03/25/05
Received: 03/25/05
Issued: 04/13/05 16:23

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain(s) of Custody, 4 pages, are included and are an integral part of this report.
This entire report was reviewed and approved for release.

SAMPLE RECEIPT:

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the Del Mar Analytical Sample Acceptance Policy unless otherwise noted in the report.
PRESERVATION:
QA/QC CRITERIA:

COMMENTS:
SUBCONTRACTED:
Samples requiring preservation were verified prior to sample analysis.
All analyses met method criteria, except as noted in the report with data qualifiers. The percent recovery for benzidine in the BS/BSD was below method acceptance limits. Benzidine is known to be a problematic compound and according to the EPA, it can be subject to oxidative losses during solvent extraction and its chromatographic behavior is poor. All results reported for benzidine are potentially biased low and can be considered estimates only. Results for benzidine are reported with 'L2' qualifier. The ICAL \%RSD failed the acceptance limit for 2,4-Dinitrophenol. Instrument sensitivity was acceptable based upon the response for 2,4-Dinitrophenol at the low ICAL level. The CCV and BS/BSD met acceptance limits for the analyte. Affected samples were 'ND' for this analyte, without J-flag detection. Therefore, since acceptable sensitivity is represented by the instrument and the extraction procedure, the analyte was flagged with ' $\mathrm{N}-1$ ' and reported. The sample was then reanalyzed for 2,4-Dinitrophenol and the results are reported as an RE1. Also, there was a low BSD recovery for the original batch for Oil \& Grease and the lab re-extracted and re-analyzed the sample.
Results that fall between the MDL and RL are 'J' flagged.
Refer to the last page for specific subcontract laboratory information included in this report.

CASE NARRATIVE

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
LABORATORY ID

IOC2063-01
1OC2063-02
IOC2063-03
IOC2063-04

LABORATORY ID

Project ID: 13267 (Study 1) Outfall 011 Sampled: 03/25/05
Report Number: $10 \mathrm{C} 2063 \quad$ Received: 03/25/05

CLIENT ID

Outfall 011 Grab
Trip Blank
Outfall 011 Grab/filter
Outfall 011-Grab/Substrate

MATRIX
Water
Water
Water
Water

Reviewed By:

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011
Report Number: IOC2063

CORRECTIVE ACTION REPORT

Department: Extractions
Method: EPA 625
QC Batch: 5C28041

Date: 03/31/2005
Matrix: Water

Identification and Definition of Problem:
The percent recovery for benzidine in the LCS was below method acceptance limits.

Determination of the Cause of the Problem:
Benzidine is known to be a problematic compound. According to the EPA, it can be subject to oxidative losses during solvent extraction and its chromatographic behavior is poor.

Corrective Action Taken:

All results reported for benzidine are potentially biased low and can be considered estimates only.

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10 C 2063

Sampled: 03/25/05
Received: 03/25/05

TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OC2063-01 (Outfall 011 Grab - Water)									
Reporting Units: mg/									
Total Recoverable Hydrocarbons	EPA 418.1	5C26002	0.31	1.0	ND	1	03/26/05	03/26/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)

 Outfall 011Report Number: IOC2063

Sampled: 03/25/05
Received: 03/25/05

EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOC2063-01 (Outfall 011 Grab - Water) - cont.									
Reporting Units: mg/									
EFH (C13-C22)	EPA 8015B	5C26001	0.082	0.50	ND	0.952	03/26/05	03/29/05	
Surrogate: n-Octacosane (40-125\%)					95%			03/290s	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:		13267 (Study 1)
	Outfall 011	
Report Number:	IOC2063	Sampled: $03 / 25 / 05$
	Received: $03 / 25 / 05$	

Received: 03/25/05

VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOC2063-01 (Outfall Reporting Units: mgl	rab - Water) - co								
GRO (C4-C12) Surrogate: 4-BFB (FID) (65-140\%)	EPA 8015 Mod .	5C26026	0.050	0.10	$\begin{aligned} & \text { ND } \\ & 104 \% \end{aligned}$	1	03/26/05	03/28/05	
Sample ID: 1OC2063-02 (Trip Blan Reporting Units: mg/	Water)								
GRO (C4-C12) Surrogate: 4-BFB (FID) (65-140\%)	EPA 8015 Mod.	5C26026	0.050	0.10	$\begin{aligned} & \text { ND } \\ & 103 \% \end{aligned}$	1	03/26/05	03/27/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOC2063
Sampled: 03/25/05
Received: 03/25/05

PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualfiers
Sample ID: IOC2063-01 (Outfall 011 Grab - Water)Reporting Units: ugh									
Benzene	EPA 624	5C27003	0.28	1.0	ND	1	03/27/05	03/27/05	
Bromodichloromethane	EPA 624	5 C 27003	0.30	2.0	ND	1	03/27/05	03/27/05	
Bromoform	EPA 624	5 C 27003	0.32	5.0	ND	1	03/27/05	03/27/05	
Bromomethane	EPA 624	5 C 27003	0.34	5.0	ND	1	03/27/05	03/27/05	
Carbon tetrachloride	EPA 624	5C27003	0.28	0.50	ND	1	03/27/05	03/27/05	
Chlorobenzene	EPA 624	5 C 27003	0.36	2.0	ND	1	03/27/05	03/27/05	
Chloroethane	EPA 624	5C27003	0.33	5.0	ND	1	03/27/05	03/27/05	
Chloroform	EPA 624	5 C 27003	0.33	2.0	ND	1	03/27/05	03/27/05	
Chloromethane	EPA 624	5C27003	0.30	5.0	ND	1	03/27/05	03/27/05	
Dibromochloromethane	EPA 624	5C27003	0.28	2.0	ND	1	03/27/05	03/27/05	
1,2-Dichlorobenzene	EPA 624	5C27003	0.32	2.0	ND	1	03/27/05	03/27/05	
1,3-Dichlorobenzene	EPA 624	5 C 27003	0.35	2.0	ND	1	03/27/05	03/27/05	
1,4-Dichlorobenzene	EPA 624	5C27003	0.37	2.0	ND	1	03/27/05	03/27/05	
1,1-Dichloroethane	EPA 624	5 C 27003	0.27	2.0	ND	1	03/27/05	03/27/05	
1,2-Dichloroethane	EPA 624	5C27003	0.28	0.50	ND	1	03/27/05	03/27/05	
1,1-Dichloroethene	EPA 624	5 C 27003	0.32	5.0	ND	1	03/27/05	03/27/05	
trans-1,2-Dichloroethene	EPA 624	5 C 27003	0.27	2.0	ND	1	03/27/05	03/27/05	
1,2-Dichloropropane	EPA 624	5 C 27003	0.35	2.0	ND	1	03/27/05	03/27/05	
cis 1,3-Dichloropropene	EPA 624	5 C 27003	0.22	2.0	ND	1	03/27/05	03/27/05	
trans-1,3-Dichloropropene	EPA 624	5C27003	0.24	2.0	ND	1	03/27/05	03/27/05	
Ethylbenzene	EPA 624	5C27003	0.25	2.0	ND	1	03/27/05	03/27/05	
Methylene chloride	EPA 624	5C27003	0.48	5.0	ND	1	03/27/05	03/27/05	
1,1,2,2-Tetrachloroethane	EPA 624	5C27003	0.24	2.0	ND	1	03/27/05	03/27/05	
Tetrachloroethene	EPA 624	5 C 27003	0.32	2.0	ND	1	03/27/05	03/27/05	
Toluene	EPA 624	5C27003	0.36	2.0	ND	1	03/27/05	03/27/05	
1,1,1-Trichloroethane	EPA 624	5 C 27003	0.30	2.0	ND	1	03/27/05	03/27/05	
1,1,2-Trichloroethane	EPA 624	5C27003	0.30	2.0	ND	1	03/27/05	03/27/05	
Trichloroethene	EPA 624	5C27003	0.26	2.0	ND	1	03/27/05	03/27/05	
Trichlorofluoromethane	EPA 624	5C27003	0.34	5.0	ND	1	03/27/05	03/27/05	
Vinyl chloride	EPA 624	5C27003	0.26	0.50	ND	1	03/27/05	03/27/05	
Xylenes, Total	EPA 624	5C27003	0.52	4.0	ND	1	03/27/05	03/27/05	
Trichlorotrifiuoroethane (Freon 113)	EPA 624	5C27003	1.2	5.0	ND	1	03/27/05	03/27/05	
Surrogate: Dibromofluoromethane (80-120\%)					108%				
Surrogate: Toluene-d8 (80-120\%)					101\%				
Surrogate: 4-Bromofluorobenzene (80-120\%)					94\%				

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1)	
	Outfall 011	Sampled: $03 / 25 / 05$
Report Number:	IOC2063	Received: $03 / 25 / 05$

Sampled: 03/25/05
Received: 03/25/05

PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyze
Sample ID: IOC2063-02 (Trip Biank - Water)Reporting Units: ugh								
Benzene	EPA 624	SC27003	0.28	1.0	ND	1	03/27/05	03/27/05
Bromodichloromethane	EPA 624	5 C 27003	0.30	2.0	ND	1	03/27/05	03/27/05
Bromoform	EPA 624	5 C 27003	0.32	5.0	ND	1	03/27/05	03/27/05
Bromomethane	EPA 624	5 C 27003	0.34	5.0	ND	1	03/27/05	03/27/05
Carbon tetrachloride	EPA 624	5 C 27003	0.28	0.50	ND	1	03/27/05	03/27/05
Chlorobenzene	EPA 624	5C27003	0.36	2.0	ND	1	03/27/05	03/27/05
Chloroethane	EPA 624	5 C 27003	0.33	5.0	ND	1	03/27/05	03/27/05
Chloroform	EPA 624	5 C 27003	0.33	2.0	ND	1	03/27/05	03/27/05
Chloromethane	EPA 624	5 C 27003	0.30	5.0	ND	1	03/27/05	03/27/05
Dibromochloromethane	EPA 624	5C27003	0.28	2.0	ND	1	03/27/05	03/27/05
1,2-Dichlorobenzene	EPA 624	5C27003	0.32	2.0	ND	1	03/27/05	03/27/05
1,3-Dichlorobenzene	EPA 624	5 C 27003	0.35	2.0	ND	1	03/27/05	03/27/05
1,4-Dichlorobenzene	EPA 624	5C27003	0.37	2.0	ND	1	03/27/05	03/27/05
1,1-Dichloroethane	EPA 624	5 C 27003	0.27	2.0	ND	1	03/27/05	03/27/05
1,2-Dichloroethane	EPA 624	5 C 27003	0.28	0.50	ND	1	03/27/05	03/27/05
1,1-Dichloroethene	EPA 624	5C27003	0.32	5.0	ND	1	03/27/05	03/27/05
trans-1,2-Dichloroethene	EPA 624	5C27003	0.27	2.0	ND	1	03/27/05	03/27/05
1,2-Dichloropropane	EPA 624	5C27003	0.35	2.0	ND	1	03/27/05	03/27/05
cis-1,3-Dichloropropene	EPA 624	5 C 27003	0.22	2.0	ND	1	03/27/05	03/27/05
trans-1,3-Dichloropropene	EPA 624	$5 C 27003$	0.24	2.0	ND	1	03/27/05	03/27/05
Ethylbenzene	EPA 624	5C27003	0.25	2.0	ND	1	03/27/05	03/27/05
Methylene chloride	EPA 624	5C27003	0.48	5.0	ND	1	03/27/05	03/27/05
1,1,2,2-Tetrachloroethane	EPA 624	5C27003	0.24	2.0	ND	1	03/27/05	03/27/05
Tetrachloroethene	EPA 624	5C27003	0.32	2.0	ND	1	03/27/05	03/27/05
Toluene	EPA 624	5C27003	0.36	2.0	ND	1	03/27/05	03/27/05
1,1,1-Trichloroethane	EPA 624	5C27003	0.30	2.0	ND	1	03/27/05	03/27/05
1,1,2-Trichloroethane	EPA 624	5C27003	0.30	2.0	ND	1	03/27/05	03/27/05
Trichloroethene	EPA 624	5 C 27003	0.26	2.0	ND	1	03/27/05	03/27/05
Trichlorofluoromethane	EPA 624	5C27003	0.34	5.0	ND	1	03/27/05	03/27/05
Vinyl chloride	EPA 624	5C27003	0.26	0.50	ND	1	03/27/05	03/27/05
Xylenes, Total	EPA 624	5 C 27003	0.52	4.0	ND	1	03/27/05	03/27/05
Trichlorotrifluoroethane (Freon 113)	EPA 624	5C27003	1.2	5.0	ND	1	03/27/05	03/27/05
Surrogate: Dibromofluoromethane (80-120\%)					108\%			
Surrogate: Toluene-d8 (80-120\%)					100\%			
Surrogate: 4-Bromofluorobenzene (80-120\%)					92\%			

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOC2063

Sampled: 03/25/05
Received: 03/25/05

PURGEABLES BY GC/MS (EPA 624)

Analyte Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOC2063-01 (Outfall 011 Grab - Water)								
Reporting Units: ug/								
Acrolein EPA 624	5 C 27003	4.6	50	ND	1	03/27/05	03/27/05	
Acrylonitrile EPA 624	5C27003	5.1	50	ND	1	03/27/05	03/27/05	
2-Chloroethyl vinyl ether EPA 624	5C27003	1.3	5.0	ND	1	03/27/05	03/27/05	
Surrogate: Dibromofluoromethane (80-120\%)				108\%				
Surrogate: Toluene-d8 (80-120\%)				101\%				
Surrogate: 4-Bromofluorobenzene (80-120\%)				94\%				
Sample ID: IOC2063-02 (Trip Blank - Water)								
Reporting Units: ug/								
Acrolein EPA 624	5 C 27003	4.6	50	ND	1	03/27/05	03/27/05	
Acrylonitrile EPA 624	5C27003	5.1	50	ND	1	03/27/05	03/27/05	
2-Chloroethyl vinyl ether EPA 624	5 C 27003	1.3	5.0	ND	1	03/27/05	03/27/05	
Surrogate: Dibromofluoromethane (80-120\%)				108%		03/2705	03/2705	
Surrogate: Toluene-d8 (80-120\%)				100\%				
Surrogate: 4-Bromofluorobenzene (80-120\%)				92\%				

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOC2063

Sampled: 03/25/05
Received: 03/25/05

PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dllution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 10C2063-01 (Outfall 011 Grab - Water)									
Reporting Units: ug/									
1,2-Dichloro-1,1,2-trifluoroethane	EPA 624 (MOD.)	5C27003	N/A	2.5	ND	1	03/27/05	03/27/05	
Cyclohexane	EPA 624 (MOD.)	5C27003	N/A	2.5	ND	1	03/27/05	03/27/05	
Sample ID: IOC2063-02 (Trip Blank - Water)									
Reporting Units: ug/									
1,2-Dichloro-1,1,2-trifluoroethane	EPA 624 (MOD.)	5C27003	N/A	2.5	ND	1	03/27/05	03/27/05	
Cyclohexane	EPA 624 (MOD.)	5C27003	N/A	2.5	ND	1	03/27/05	03/27/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
$\begin{array}{rlr}\text { Project ID: } & 13267 \text { (Study 1) } & \\ & \text { Outfall 011 } & \text { Sampled: 03/25/05 } \\ \text { Report Number: } & \text { IOC2063 } & \text { Received: 03/25/05 }\end{array}$

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OC2063-01 (Outfall 011 Grab - Water)									
Reporting Units: ugh									
Acenaphthene	EPA 625	5C28041	0.10	0.50	ND	0.971	03/28/05	03/31/05	
Acenaphthylene	EPA 625	5 C 28041	0.10	0.50	ND	0.971	03/28/05	03/31/05	
Aniline	EPA 625	5 C 28041	2.9	10	ND	0.971	03/28/05	03/31/05	
Anthracene	EPA 625	5 C 28041	0.083	0.50	ND	0.971	03/28/05	03/31/05	
Benzidine	EPA 625	5 C 28041	2.4	5.0	ND	0.971	03/28/05	03/31/05	L2
Benzoic acid	EPA 625	5 C 28041	3.7	20	ND	0.971	03/28/05	03/31/05	L2
Benzo(a)anthracene	EPA 625	5 C 28041	0.038	5.0	ND	0.971	03/28/05	03/31/05	
Benzo(a)pyrene	EPA 625	5 C 28041	0.14	2.0	ND	0.971	03/28/05	03/31/05	
Benzo(b)fluoranthene	EPA 625	5 C 28041	0.050	2.0	ND	0.971	03/28/05	03/31/05	
Benzo(g,h,i)perylene	EPA 625	5 C 28041	0.059	5.0	ND	0.971	03/28/05	03/31/05	
Benzo(k)fluoranthene	EPA 625	5C28041	0.053	0.50	ND	0.971	03/28/05	03/31/05	
Benzyl alcohol	EPA 625	5C28041	0.21	5.0	ND	0.971	03/28/05	03/31/05	
Bis(2-chloroethoxy)methane	EPA 625	5C28041	0.072	0.50	ND	0.971	03/28/05	03/31/05	
Bis(2-chloroethyl)ether	EPA 625	5 C 28041	0.084	0.50	ND	0.971	03/28/05	03/31/05	
Bis(2-chloroisopropyl)ether	EPA 625	5C28041	0.11	0.50	ND	0.971	03/28/05	03/31/05	
Bis(2-ethylhexyl)phthalate	EPA 625	5C28041	1.1	5.0	ND	0.971	03/28/05	03/31/05	
4-Bromophenyl phenyl ether	EPA 625	5 C 28041	0.12	1.0	ND	0.971	03/28/05	03/31/05	
Butyl benzyl phthalate	EPA 625	5 C 28041	0.34	50	0.68	0.971	03/28/05	03/31/05	J
4. Chloroaniline	EPA 625	5 C 28041	020	2.0	ND	0.971	03/28/05	03/31/05	
2-Chloronaphthalene	EPA 625	5C28041	0.059	0.50	ND	0.971	03/28/05	03/31/05	
4-Chloro-3-methylphenol	EPA 625	5 C 28041	0.34	2.0	ND	0.971	03/28/05	03/31/05	
4-Chlorophenyl phenyl ether	EPA 625	5C28041	0.056	0.50	ND	0.971	03/28/05	03/31/05	
$2 . \mathrm{Chlorophenol}$	EPA 625	5C28041	0.12	1.0	ND	0.971	03/28/05	03/31/05	
Chrysene	EPA 625	5 C 28041	0.072	0.50	ND	0.971	03/28/05	03/31/05	
Dibenz(a,h)anthracene	EPA 625	5 C 28041	0.083	0.50	ND	0.971	03/28/05	03/31/05	
Dibenzofuran	EPA 625	5 C 28041	0.075	0.50	ND	0.971	03/28/05	03/31/05	
Di-a-butyl phthalate	EPA 625	5 C 28041	0.26	2.0	0.87	0.971	03/28/05	03/31/05	J
1,2-Dichlorobenzene	EPA 625	5 C 28041	0.11	0.50	ND	0.971	03/28/05	03/31/05	
1,3-Dichlorobenzene	EPA 625	5 C 28041	0.13	0.50	ND	0.971	03/28/05	03/31/05	
1,4-Dichlorobenzene	EPA 625	5 C 28041	0.050	0.50	ND	0.971	03/28/05	03/31/05	
3,3-Dichlorobenzidine	EPA 625	5 C 28041	0.93	5.0	ND	0.971	03/28/05	03/31/05	
2,4-Dichlorophenol	EPA 625	5 C 28041	0.21	2.0	ND	0.971	03/28/05	03/31/05	
Diethyl phthalate	EPA 625	5C28041	0.12	1.0	0.23	0.971	03/28/05	03/31/05	J
2,4-Dimethylphenol	EPA 625	5 C 28041	0.31	2.0	ND	0.971	03/28/05	03/31/05	
Dimethyl phthalate	EPA 625	5C28041	0.081	0.50	ND	0.971	03/28/05	03/31/05	
4,6-Dinitro-2-methylphenol	EPA 625	5C28041	0.38	5.0	ND	0.971	03/28/05	03/31/05	
2,4-Dinitrophenol	EPA 625	5C28041	2.7	5.0	ND	0.971	03/28/05	03/31/05	N-1
2,4-Dinitrotoluene	EPA 625	5C28041	0.23	5.0	ND	0.971	03/28/05	03/31/05	
2,6-Dinitrotoluene	EPA 625	5 C 28041	0.24	5.0	ND	0.971	03/28/05	03/31/05	
Di-n-octyl phthalate	EPA 625	5C28041	0.17	5.0	ND	0.971	03/28/05	03/31/05	
1,2-Diphenylhydrazine/Azobenzene	EPA 625	5C28041	0.087	1.0	ND	0.971	03/28/05	03/31/05	
Del Mar Analytical, Irvine Michele Harper Project Manager									

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOC2063
Sampled: 03/25/05
Received: 03/25/05

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dllution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOC2063-01 (Outfall 011 Gral Reporting Units: ug/	- Water)								\%
Fluoranthene	EPA 625	5C28041	0.089	0.50	ND	0.971	03/28/05	03/31/05	
Fluorene	EPA 625	5 C 28041	0.075	0.50	ND	0.971	03/28/05	03/31/05	
Hexachlorobenzene	EPA 625	5C28041	0.13	1.0	ND	0.971	03/28/05	03/31/05	
Hexachlorobutadiene	EPA 625	5 C 28041	0.38	2.0	ND	0.971	03/28/05	03/31/05	
Hexachlorocyclopentadiene	EPA 625	5 C 28041	1.8	5.0	ND	0.971	03/28/05	03/31/05	
Hexachloroethane	EPA 625	5 C 28041	0.51	3.0	ND	0.971	03/28/05	03/31/05	
Indeno(1,2,3-cd)pyrene	EPA 625	5 C 28041	0.19	2.0	ND	0.971	03/28/05	03/31/05	
Isophorone	EPA 625	5 C 28041	0.059	1.0	ND	0.971	03/28/05	03/31/05	
2-Methylnaphthalene	EPA 625	5 C 28041	0.13	1.0	ND	0.971	03/28/05	03/31/05	
2-Methylphenol	EPA 625	5 C 28041	0.28	2.0	ND	0.971	03/28/05	03/31/05	
4-Methylphenol	EPA 625	5 C 28041	0.20	5.0	ND	0.971	03/28/05	03/31/05	
Naphthalene	EPA 625	5C28041	0.13	1.0	ND	0.971	03/28/05	03/31/05	
2-Nitroaniline	EPA 625	5 C 28041	0.18	5.0	ND	0.971	03/28/05	03/31/05	
3-Nitroaniline	EPA 625	5 C 28041	0.35	5.0	ND	0.971	03/28/05	03/31/05	
4-Nitroaniline	EPA 625	5C28041	0.49	5.0	ND	0.971	03/28/05	03/31/05	
Nitrobenzene	EPA 625	5 C 28041	0.10	1.0	ND	0.971	03/28/05	03/31/05	
2-Nitrophenol	EPA 625	5 C 28041	0.23	2.0	ND	0.971	03/28/05	03/31/05	
4-Nitrophenol	EPA 625	5 C 28041	0.73	5.0	ND	0.971	03/28/05	03/31/05	
N-Nitrosodimethylamine	EPA 625	$5 C 28041$	0.22	2.0	ND	0.971	03/28/05	$03 / 31 / 05$	
N-Nitroso-di-n-propylamine	EPA 625	5C28041	0.18	2.0	ND	0.971	03/28/05	03/31/05	
N -Nitrosodiphenylamine	EPA 625	5C28041	0.077	1.0	ND	0.971	03/28/05	03/31/05	
Pentachlorophenol	EPA 625	5C28041	0.78	2.0	ND	0.971	03/28/05	03/31/05	
Phenanthrene	EPA 625	5 C 28041	0.071	0.50	ND	0.971	03/28/05	03/31/05	
Phenol	EPA 625	5C28041	0.14	1.0	ND	0.971	03/28/05	03/31/05	
Pyrene	EPA 625	5C28041	0.059	0.50	ND	0.971	03/28/05	03/31/05	
1,2,4-Trichlorobenzene	EPA 625	5C28041	0.10	1.0	ND	0.971	03/28/05	03/31/05	
2,4,5-Trichlorophenol	EPA 625	5C28041	0.075	2.0	ND	0.971	03/28/05	03/31/05	
2,4,6-Trichlorophenol	EPA 625	5C28041	0.10	1.0	ND	0.971	03/28/05	03/31/05	
Surrogate: 2-Fluorophenol (30-120\%)					64%				
Surrogate: Phenol-d6 (35-120\%)					65%				
Surrogate: 2,4,6-Tribromophenol (45-120\%)					85\%				
Surrogate: Nitrobenzene-d5 (45-120\%)					64%				
Surrogate: 2-Fluorobiphenyl (45-120\%)					69%				
Surrogate: Terphenyl-d14 (45-120\%)					84%				

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)

 Outfall 011Report Number: IOC2063

Sampled: 03/25/05
Received: 03/25/05

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOC2063-01RE1 (Outfall 011 Grab - Water) - cont.									
2,4-Dinitrophenol	EPA 625	5C28041	2.7	5.0	ND	0.971	03/28/05	04/11/05	
Surrogate: 2-Fluorophenol (30-120\%)					60%				
Surrogate: Phenol-d6 (35-120\%)					63\%				
Surrogate: 2,4,6-Tribromophenol (45-120\%)					84%				
Surrogate Nitrobenzene-d5 (45-120\%)					62\%				
Surrogate: 2-Fluorobiphenyl (45-120\%)					66\%				
Surrogate: Terphenyl-d14 (45-120\%)					79%				

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:		13267 (Study 1)
	Outfall 011	
Report Number:	IOC2063	Sampled: 03/25/05
		Received: $03 / 25 / 05$

Sampled: 03/25/05
Received: 03/25/05

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dllution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 10C2063-01 (Outfall 011 Grab - Water) - cont. Reporting Units: ug/									
Aldrin	EPA 608	5C28048	0.030	0.10	ND	0.971	03/28/05	03/29/05	
alpha-BHC	EPA 608	5 C 28048	0.015	0.10	ND	0.971	03/28/05	03/29/05	
beta-BHC	EPA 608	5 C 28048	0.015	0.10	ND	0.971	03/28/05	03/29/05	
delta-BHC	EPA 608	5C28048	0.020	0.20	ND	0.971	03/28/05	03/29/05	
gamma-BHC (Lindane)	EPA 608	5 C 28048	0.020	0.10	ND	0.971	03/28/05	03/29/05	
Chlordane	EPA 608	5 C 28048	0.20	1.0	ND	0.971	03/28/05	03/29/05	
4,4-DDD	EPA 608	5C28048	0.020	0.10	ND	0.971	03/28/05	03/29/05	
4,4-DDE	EPA 608	5 C 28048	0.025	0.10	ND	0.971	03/28/05	03/29/05	
4,4-DDT	EPA 608	5C28048	0.030	0.10	ND	0.971	03/28/05	03/29/05	
Dieldrin	EPA 608	5C28048	0.015	0.10	ND	0.971	03/28/05	03/29/05	
Endosulfan I	EPA 608	5C28048	0.015	0.10	ND	0.971	03/28/05	03/29/05	
Endosulfan II	EPA 608	5 C 28048	0.040	0.10	ND	0.971	03/28/05	03/29/05	
Endosulfan sulfate	EPA 608	5C28048	0.015	0.20	ND	0.971	03/28/05	03/29/05	
Endrin	EPA 608	5 C 28048	0.020	0.10	ND	0.971	03/28/05	03/29/05	
Endrin aldehyde	EPA 608	5 C 28048	0.045	0.10	ND	0.971	03/28/05	03/29/05	
Endrin ketone	EPA 608	5C28048	0.020	0.10	ND	0.971	03/28/05	03/29/05	
Heptachlor	EPA 608	5C28048	0.030	0.10	ND	0.971	03/28/05	03/29/05	
Heptachlor epoxide	EPA 608	5 C 28048	0.020	0.10	ND	0.971	03/28/05	03/29/05	
Methoxychlor	EPA 608	$5 C 28048$	0.035	0,10	ND	0.971	03/28/05	03/29/05	
Toxaphene	EPA 608	5 C 28048	1.5	5.0	ND	0.971	03/28/05	03/29/05	
Surrogate: Tetrachloro-m-xylene (35-115\%) Surrogate: Decachlorobiphenyl (45-120\%)					31\%				ZX
					36%				$Z X$

[^41]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1)	
	Outfall 011	Sampled: $03 / 25 / 05$
Report Number:	IOC2063	Received: 03/25/05

Received: 03/25/05

TOTAL PCBS (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualiffers
Sample ID: 1OC2063-01 (Outfall 011 Grab - Water) - cont.									
Reporting Units: ug/									
Aroclor 1016	EPA 608	5C28048	0.20	1.0	ND	0.971	03/28/05	03/30/05	
Aroclor 1221	EPA 608	5C28048	0.10	1.0	ND	0.971	03/28/05	03/30/05	
Aroclor 1232	EPA 608	5C28048	0.15	1.0	ND	0.971	03/28/05	03/30/05	
Aroclor 1242	EPA 608	5C28048	0.15	1.0	ND	0.971	03/28/05	03/30/05	
Aroclor 1248	EPA 608	5C28048	0.25	1.0	ND	0.971	03/28/05	03/30/05	
Aroclor 1254	EPA 608	5C28048	0.25	1.0	ND	0.971	03/28/05	03/30/05	
Aroclor 1260	EPA 608	5C28048	0.40	1.0	ND	0.971	03/28/05	03/30/05	
Surrogate: Decachlorobiphenyl (45-120\%)					40\%				ZX

[^42]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1)	
Outfall 011	Sampled: $03 / 25 / 05$	
Report Number:	IOC2063	Received: 03/25/05

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OC2063-01 (Outfall 011 Grab - Water) - cont. Reporting Units: mg/									
Barium	EPA 200.8	5C25116	0.00014	0.0010	0.023	1	03/25/05	03/28/05	
Boron	EPA 200.7	5 C 25111	0.0074	0.050	0.092	1	03/25/05	03/27/05	
Iron	EPA 200.8	5 C 25116	0.0032	0.010	0.43	1	03/25/05	03/28/05	

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)

Outfall 011
Report Number: IOC2063

Sampled: 03/25/05
Received: 03/25/05

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOC2063-01 (Outfall 011 Grab - Water) - cont. Reporting Units: ug/									
Antimony	EPA 200.8	5C25116	0.18	2.0	0.34	1	03/25/05	03/28/05	J
Arsenic	EPA 200.8	5C25116	0.49	1.0	2.7	1	03/25/05	03/28/05	
Berylium	EPA 200.8	5C25116	0.037	0.50	0.041	1	03/25/05	03/28/05	J
Cadmium	EPA 200.8	5C25116	0.015	1.0	0.22	1	03/25/05	03/28/05	J
Chromium	EPA 200.8	5C25116	0.26	2.0	1.2	1	03/25/05	03/28/05	B, J
Cobalt	EPA 200.8	5 C 25116	0.10	1.0	0.29	1	03/25/05	03/28/05	J
Copper	EPA 200.8	5C25116	0.49	2.0	3.9	1	03/25/05	03/28/05	
Lead	EPA 200.8	5C25116	0.13	1.0	0.46	1	03/25/05	03/28/05	J
Manganese	EPA 200.8	5C25116	0.44	1.0	36	1	03/25/05	03/28/05	
Mercury	EPA 245.1	5C26033	0.063	0.20	ND	1	03/26/05	03/26/05	
Nickel	EPA 200.8	5C25116	0.15	2.0	3.4	1	03/25/05	03/28/05	
Selenium	EPA 200.8	5 C 25116	0.36	2.0	ND	1	03/25/05	03/28/05	
Silver	EPA 200.8	5 C 25116	0.089	1.0	ND	1	03/25/05	03/28/05	
Thallium	EPA 200.8	5 C 25116	0.075	1.0	0.21	1	03/25/05	03/28/05	J
Vanadium	EPA 200.8	5 C 25116	0.86	2.0	ND	1	03/25/05	03/28/05	
Zinc	EPA 200.8	5C25116	3.1	20	13	1	03/25/05	03/28/05	J

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1)		
	Outfall 011		
Report Number:	IOC2063	\quad	Sampled: 03/25/05
---:			
Received: 03/25/05			

Received: 03/25/05

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dllution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OC2063-01 (Outfall 011 Grab - Water) - cont. Reporting Units: mg/l									
Ammonia-N (Distilled)	EPA 350.2	5C28067	0.30	0.50	0.56	1	03/28/05	03/28/05	
Biochemical Oxygen Demand	EPA 405.1	5C25093	0.59	2.0	0.91	1	03/25/05	03/30/05	J
Chloride	EPA 300.0	5C25048	0.26	0.50	8.4	1	03/25/05	03/25/05	
Fuoride	EPA 300.0	5C25048	0.10	0.50	0.25	1	03/25/05	03/25/05	J
Nitrate/Nitrite-N	EPA 300.0	5 C 25048	0.072	0.11	0.14	1	03/25/05	03/25/05	
Residual Chlorine	EPA 330.5	5 C 25118	0.10	0.10	ND	1	03/25/05	03/25/05	
Sulfate	EPA 300.0	5 C 25048	0.18	0.50	20	1	03/25/05	03/25/05	
Surfactants (MBAS)	SM5540-C	5 C 25096	0.044	0.10	ND	1	03/25/05	03/25/05	
Total Dissolved Solids	SM2540C	5C28078	10	10	120	1	03/28/05	03/28/05	
Total Organic Carbon	EPA 415.1	5C29079	0.25	1.0	11	1	03/29/05	03/29/05	
Total Suspended Solids	EPA 160.2	5C25117	10	10	ND	,	03/25/05	03/25/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)

Outfall 011 Sampled: 03/25/05
Received: 03/25/05

INORGANICS

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10 C 2063

Sampled: 03/25/05
Received: 03/25/05

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OC2063-01 (Ontfall 011 Grab - Water) - cont.									
Reporting Units: m//hr									
Total Settleable Solids	EPA 160.5	5C25105	0.10	0.10	ND	1	03/25/05	03/25/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011 Sampled: 03/25/05
Report Number: IOC2063

Received: 03/25/05

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOC2063-01 (Outfall 011 Grab - Water) - cont. Reporting Units: NTU									
Turbidity	EPA 180.1	5C26056	0.040	1.0	4.4	1	03/26/05	03/26/05	

[^43] 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785- $\mathbf{0 0 4 3}$ FAX (480) 785-0851 2520 E. Sunset Rd. *3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)

 Outfall 011Report Number: 10 C 2063

Sampled: 03/25/05
Received: 03/25/05

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dllution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OC2063-01 (Outfall 011 Grab - Water) - cont.									
Reporting Units: ug/									
Chromium VI	EPA 218.6	5C25058	0.10	1.0	ND	1	03/25/05	03/25/05	
Total Cyanide	EPA 335.2	5C25119	2.2	5.0	ND	1	03/25/05	03/25/05	
Perchlorate	EPA 314.0	5C25061	0.80	4.0	ND	1	03/25/05	03/26/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011 Sampled: 03/25/05
Report Number: IOC2063

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOC2063-01 (Outfall 011 Grab - Water) - cont. Reporting Units: umhos/cm									
Specific Conductance	EPA 120.1	5C28081	1.0	1.0	210	1	03/28/05	03/28/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOC2063

Sampled: 03/25/05
Received: 03/25/05

1,4-DIOXANE BY GC/MS (EPA 5030B/8260B)

[^44]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011

Report Number: 10 C 2063

Sampled: 03/25/05
Received: 03/25/05

SHORT HOLD TIME DETAIL REPORT

| | Hold Time
 (in days) | Date/Time
 Sampled | Date/Time
 Received | Date/Time
 Extracted | Date/Time
 Analyzed |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID: Outfall 011 Grab (IOC2063-01) | Water | | | | |

[^45]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011
Report Number: IOC2063

METHOD BLANKIOCDATA

TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011
Report Number: 10 C 2063
Sampled: 03/25/05
Received: 03/25/05

METHOD BLANKIOC DATA

EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

```
            Project ID: 13267 (Study 1)
                                    Outfall 011
Report Number: IOC2063
```

Sampled: 03/25/05
Received: 03/25/05

METHOD BLANKIQC DATA

VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)

Analyte	Result	Reportin Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C26026 Extracted: 03/26/05											
Blank Analyzed: 03/26/2005 (5C26026-BLK1)											
GRO (C4-C12)	ND	0.10	0.050	$\mathrm{mg} / 1$							
Surrogate: 4-BFB (FID)	0.0103			$m g /$	0.0100		103	65-140			
LCS Analyzed: 03/26/2005 (5C26026-BS1)											
GRO (C4-C12)	0.742	0.10	0.050	mg/l	0.800		93	70-140			
Surrogate: 4-BFB (FID)	0.0301			$m g /$	0.0300		100	65-140			
Matrix Spike Analyzed: 03/26/2005 (5C26026-MS1)		Source: 10C1437-01									
GRO (C4-C12)	101	20	10	$\mathrm{mg} / 1$	44.0	49	118	60-140			
Surrogate: 4-BFB (FID)	2.71			$m g /$	2.00		136	65-140			
Matrix Spike Dup Analyzed: 03/26/2005 (5C26026-MSD1)					Source: 10C1437-01						
GRO (C4-C12)	100	20	10	mg / l	44.0	49	116	60-140	1	20	
Surrogate: 4-BFB (FID)	2.69			mg / l	2.00		134	65-140			

[^46]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)

 Outfall 011Report Number: IOC2063

Sampled: 03/25/05
Received: 03/25/05

METHOD BLANK/OC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	$\begin{aligned} & \text { \%REC } \\ & \text { Limits } \end{aligned}$	RPD	RPD Limit	Data Qualifiers
Batch: 5C27003 Extracted: 03/27/05											
Blank Analyzed: 03/27/2005 (5C27003-BLK1)											
Benzene	ND	1.0	0.28	ug/							
Bromodichloromethane	ND	2.0	0.30	ugh							
Bromoform	ND	5.0	0.32	ug/							
Bromomethane	ND	5.0	0.34	ug/							
Carbon tetrachloride	ND	0.50	0.28	ugh							
Chlorobenzene	ND	2.0	0.36	ugn							
Chloroethane	ND	5.0	0.33	ug/							
Chloroform	ND	2.0	0.33	ugh							
Chloromethane	ND	5.0	0.30	ug/							
Dibromochloromethane	ND	2.0	0.28	ug/							
1,2-Dichlorobenzene	ND	2.0	0.32	ugh							
1,3-Dichlorobenzene	ND	2.0	0.35	ug 1							
14 Dichlorobenzene	ND	20	0.37	ugh	¢		\%				
11 Dichloroethane	ND	2.0	0.27	ugh	c...		\%				
1,2-Dichloroethane	ND	0.50	0.28	ug/							
1,1-Dichloroethene	ND	5.0	0.32	ug/							
trans-1,2-Dichloroethene	ND	2.0	0.27	ug/							
1,2-Dichloropropane	ND	2.0	0.35	ug/							
cis-1,3-Dichloropropene	ND	2.0	0.22	ug/							
trans-1,3-Dichloropropene	ND	2.0	0.24	ug/							
Ethylbenzene	ND	2.0	0.25	ug/							
Methylene chloride	ND	5.0	0.48	ugh							
1,1,2,2-Tetrachloroethane	ND	2.0	0.24	ug/							
Tetrachloroethene	ND	2.0	0.32	ugn							
Toluene	ND	2.0	0.36	ugh							
1,1,1-Trichloroethane	ND	2.0	0.30	ug/							
1,1,2-Trichloroethane	ND	2.0	0.30	ugh							
Trichloroethene	ND	2.0	0.26	ugl							
Trichlorofluoromethane	ND	5.0	0.34	ug/l							
Vinyl chloride	ND	0.50	0.26	ugh							
Xylenes, Total	ND	4.0	0.52	ugh							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	1.2	ug/l							
Surrogate: Dibromofluoromethane	26.2			ugh	25.0		1058	80-120			
Surrogate: Toluene-d8	25.2			ugh	25.0		1018	80-120			
Surrogate: 4-Bromofluorobenzene	22.8			$u g h$	25.0		918	80-120			

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011
Report Number: 10 C 2063

Sampled: 03/25/05
Received: 03/25/05

METHOD BLANKIOC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte
Batch: 5C27003 Extracted: 03/27/05

LCS Analyzed: 03/27/2005 (5C27003-BS1)

Benzene	24.0
Bromodichloromethane	23.4
Bromoform	22.6
Bromomethane	25.8
Carbon tetrachloride	24.2
Chlorobenzene	23.6
Chloroethane	24.1
Chloroform	25.1
Chloromethane	25.4
Dibromochloromethane	23.2
1,2-Dichlorobenzene	23.8
1,3-Dichlorobenzene	23.6
1,4-Dichlorobenzene	23.6
1,-Dichloroethane	25.2
1,2-Dichloroethane	26.3
1,1-Dichloroethene	24.2
trans-1,2-Dichloroethene	24.8
1,2-Dichloropropane	24.4
cis-1,3-Dichloropropene	23.8
trans-1,3-Dichloropropene	23.5
Ethylbenzene	24.2
Methylene chloride	25.3
1,1,2,2-Tetrachloroethane	23.2
Tetrachloroethene	23.4
Toluene	23.8
1,1,1-Trichloreethane	24.6
1,1,2-Trichloroethane	23.4
Trichloroethene	23.9
Trichlorofluoromethane	25.9
Vinyl chloride	21.4
Surrogate: Dibromofluoromethane	26.6
Surrogate: Toluene-d8	25.3
Surrogate: 4-Bromofluorobenzene	24.8

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10 C 2063

Sampled: 03/25/05
Received: 03/25/05

METHOD BLANKIOC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C27003 Extracted: 03/27/05											
Matrix Spike Analyzed: 03/27/2005 (5C27003-MS1)		Source: IOC2063-01									
Benzene	22.4	1.0	0.28	ug/	25.0	ND	90	70-120			
Bromodichloromethane	22.6	2.0	0.30	ug/	25.0	ND	90	70-140			
Bromoform	23.6	5.0	0.32	ugh	25.0	ND	94	55-140			
Bromomethane	23.5	5.0	0.34	ug/	25.0	ND	94	50-145			
Carbon tetrachloride	22.0	0.50	0.28	ug/	25.0	ND	88	70-145			
Chlorobenzene	22.2	2.0	0.36	ug/1	25.0	ND	89	80-125			
Chloroethane	21.3	5.0	0.33	ug/	25.0	ND	85	50-145			
Chloroform	23.4	2.0	0.33	ug/	25.0	ND	94	70-135			
Chloromethane	22.6	5.0	0.30	ugh	25.0	ND	90	35-145			
Dibromochloromethane	23.3	2.0	0.28	ug/	25.0	ND	93	65-145			
1,2-Dichlorobenzene	22.9	2.0	0.32	ug/	25.0	ND	92	75-130			
1,3-Dichlorobenzene	22.0	2.0	0.35	ug/	25.0	ND	88	75-130			
1,4 Dichlorobenzene	22.4	2.0	0.37	ug/	25.0	ND	90	80-120			
1,1-Dichloroethane	23.3	2.0	0.27	ug/	25.0	ND	93	65-135			
1,2-Dichloroethane	25.8	0.50	0.28	ug/1	25.0	ND	103	60-150			
1,1-Dichloroethene	22.6	5.0	0.32	ug/	25.0	ND	90	65-140			
trans-1,2-Dichloroethene	23.0	2.0	0.27	ug/	25.0	ND	92	65-135			
1,2-Dichloropropane	23.5	2.0	0.35	ug/	25.0	ND	94	65-130			
cis-1,3-Dichloropropene	23.2	2.0	0.22	ug/	25.0	ND	93	70-140			
trans-1,3-Dichloropropene	23.6	2.0	0.24	ug/	25.0	ND	94	70-140			
Ethylbenzene	21.8	2.0	0.25	ugh	25.0	ND	87	70-130			
Methylene chloride	24.4	5.0	0.48	ugl	25.0	ND	98	60-135			
1,1,2,2-Tetrachloroethane	25.4	2.0	0.24	ug/l	25.0	ND	102	60-145			
Tetrachloroethene	21.2	2.0	0.32	ugl	25.0	ND	85	70-130			
Toluene	22.3	2.0	0.36	ugh	25.0	ND	89	70-120			
1,1,1-Trichloroethane	22.1	2.0	0.30	ugh	25.0	ND	88	75-140			
1,1,2-Trichloroethane	24.3	2.0	0.30	ugh	25.0	ND	97	60-135			
Trichloroethene	22.2	2.0	0.26	ugh	25.0	ND	89	70-125			
Trichlorofluoromethane	23.4	5.0	0.34	ughl	25.0	ND	94	55-145			
Vinyl chloride	19.0	0.50	0.26	ug / l	25.0	ND	76	40-135			
Surrogate: Dibromofluoromethane	26.6			ug 1	25.0		106	80-120			
Surrogate: Toluene-d8	25.1			ug/	25.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	24.2			ug n	25.0		978	80-120			

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly

$$
\begin{array}{rrr}
\text { Project ID: } & 13267 \text { (Study 1) } & \\
& \text { Outfall 011 } & \text { Sampled: } 03 / 25 / 05 \\
\text { Report Number: } & \text { IOC2063 } & \text { Received: 03/25/05 }
\end{array}
$$

METHOD BLANKIQC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD	Data
Batch: 5C27003 Extracted: 03/27/05											

Matrix Spike Dap Analyzed: 03/27/2005 (5C27003-MSD1)			Source: IOC2063-01							
Benzene	23.1	1.0	0.28	ug/	25.0	ND	92	70-120	3	20
Bromodichloromethane	23.6	2.0	0.30	ug/t	25.0	ND	94	70-140	4	20
Bromoform	25.2	5.0	0.32	ugh	25.0	ND	101	55-140	7	25
Bromomethane	23.9	5.0	0.34	ug/	25.0	ND	96	50-145	2	25
Carbon tetrachloride	23.0	0.50	0.28	ugh	25.0	ND	92	70-145	4	25
Chlorobenzene	23.0	2.0	0.36	ug/	25.0	ND	92	80-125	4	20
Chloroethane	22.3	5.0	0.33	ug/	25.0	ND	89	50-145	5	25
Chloroform	24.0	2.0	0.33	ug/	25.0	ND	96	70-135	3	20
Chloromethane	23.0	5.0	0.30	ug/	25.0	ND	92	35-145	2	25
Dibromochloromethane	24.4	2.0	0.28	ug/1	25.0	ND	98	65-145	5	25
1,2-Dichlorobenzene	23.5	2.0	0.32	ug/	25.0	ND	94	75-130	3	20
1,3-Dichlorobenzene	22.7	2.0	0.35	ug/	25.0	ND	91	75-130	3	20
1,4-Bichlorobenzene	23.1	2.0	0.37	ugh	25.0	ND	92	80-120	3	20
1,-Dichloroethane	23.9	2.0	0.27	ugh	25.0	ND	96	65-135	3	20
1,2-Dichloroethane	26.6	0.50	0.28	ug/	25.0	ND	106	60-150	3	20
1,1-Dichloroethene	23.4	5.0	0.32	ug/1	25.0	ND	94	65-140	3	20
trans-1,2-Dichloroethene	23.7	2.0	0.27	ug/	25.0	ND	95	65-135	3	20
1,2-Dichloropropane	24.1	2.0	0.35	$u g / t$	25.0	ND	96	65-130	3	20
cis-1,3-Dichloropropene	23.9	2.0	0.22	ugh	25.0	ND	96	70-140	3	20
trans-1,3-Dichloropropene	24.4	2.0	0.24	ug/	25.0	ND	98	70-140	3	25
Ethylbenzene	22.6	2.0	0.25	ug/	25.0	ND	90	70-130	4	20
Methylene chloride	25.4	5.0	0.48	ug/	25.0	ND	102	60-135	4	20
1,1,2,2-Tetrachloroethane	26.3	2.0	0.24	ugh	25.0	ND	105	60-145	3	30
Tetrachloroethene	22.2	2.0	0.32	ugh	25.0	ND	89	70-130	5	20
Toluene	22.9	2.0	0.36	ug/	25.0	ND	92	70-120	3	20
1,1,1-Trichloroethane	22.7	2.0	0.30	ugl	25.0	ND	91	75-140	3	20
1,1,2-Trichloroethane Trichloroethene	24.9	2.0	0.30	ugh	25.0	ND	100	60-135	2	25
Trichlorofluoromethane	22.9 23.9	2.0 50	0.26	ug/	25.0	ND	92	70-125	3	20
Vinyl chloride	19.2	5.0	0.34	ug/	25.0	ND	96	55-145	2	25
Surrogate: Dibromofluoromethane	26.7	0.50	0.26	ugl	25.0	ND	77	40-135	1	30
Surrogate: Toluene-d8	25.0			ug/l	25.0		107 100	80-120		
Surrogate: 4-Bromofluorobenzene	24.5			ug/t	25.0		98	80-120		

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011
Report Number: 10 C 2063

Sampled: 03/25/05
Received: 03/25/05

METHOD BLANKIOC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C27003 Extracted: 03/27/05											
Blank Analyzed: 03/27/2005 (5C27003-BLK1)											
Acrolein	ND	50	4.6	ug/							
Acrylonitrile	ND	50	5.1	ug/							
2 -Chloroethyl vinyl ether	ND	5.0	1.3	ug/							
Surrogate: Dibromofluoromethane	26.2			ug/	25.0		105	80-120			
Surrogate: Toluene-d8	25.2			$u g /$	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	22.8			ug $/$	25.0		91	80-120			
LCS Analyzed: 03/27/2005 (5C27003-BS1)											
2 -Chloroethyl vinyl ether	24.8	5.0	1.3	ug/	25.0		99	20-175			
Surrogate: Dibromofluoromethane	26.6			$u g /$	25.0		106	80-120			
Surrogate: Toluene-d8	25.3			ug/	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	24.8			ug/	25.0		99	80-120			
Matrix Spike Analyzed, 03/27/2005 (5C27003-MS1) Source: $10 C 2063-01$											
2 Chloroethyl vinyl ether	26.6	5.0	1.3	ug/l	25.0	ND	106	20-175			
Surrogate: Dibromofluoromethane	26.6			$u g /$	25.0		106	80-120			
Surrogate: Toluene-d8	25.1			ug/l	25.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	24.2			$u g / 1$	25.0		97	80-120			
Matrix Spike Dup Analyzed: 03/27/2005 (5C27003-MSD1) Source: 10C2063-01											
2 -Chloroethyl vinyl ether	27.1	5.0	1.3	ug/l	25.0	ND	108	20-175	2	25	
Surrogate: Dibromoffuoromethane	26.7			$u g h$	25.0		107	80-120			
Surrogate: Toluene-d8	25.0			ugh	25.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	24.5			$u g /$	25.0		98	80-120			

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011
Report Number: 1OC2063

Sampled: 03/25/05
Received: 03/25/05

METHOD BLANKOC DATA

PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C27003 Extracted: 03/27/05											
Blank Analyzed: 03/27/2005 (5C27003-BLK1)											
Cyclohexane	ND	2.5	N/A	ug/							
1,2-Dichloro-1,1,2-trifluoroethane	ND	2.5	N/A	ug/1							

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1)	
	Outfall 011	Sampled: $03 / 25 / 05$
Report Number:	IOC2063	Received: $03 / 25 / 05$

Sampled: 03/25/05
Received: 03/25/05

MITMOU BLLANHGCDATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data
Batch: 5C28041 Extracted; 03/28/05											

Blank Analyzed: 03/31/2005 (5C28041-BLK1)

Acenaphthene	ND	0.50	0.10	ugn
Acenaphthylene	ND	0.50	0.10	ugh
Aniline	ND	10	2.9	ugl
Anthracene	ND	0.50	0.083	ug/1
Benzidine	ND	5.0	2.4	ug/
Benzoic acid	ND	20	3.7	ug/
Benzo(a)anthracene	ND	5.0	0.038	ug/
Benzo(a)pyrene	ND	2.0	0.14	ug/
Benzo(b)fluoranthene	ND	2.0	0.050	ug/
Benzo(g,h,i)perylene	ND	5.0	0.059	ug/
Benzo(k)fluoranthene	ND	0.50	0.053	ug/1
Benzyl alcohol	ND	5.0	0.21	ug/
Bis(2-chloroethoxy)methane	ND	0.50	0.072	ug/
Bis(2-chloroethyl)ether	ND	0.50	0.084	ug/
Bis(2-chloroisopropyl)ether	ND	0.50	0.11	ug/
Bis(2-ethylhexyl)phthalate	ND	5.0	1.1	ug/
4-Bromophenyl phenyl ether	ND	1.0	0.12	ug/t
Butyl benzyl phthalate	0.760	5.0	0.34	ug/
4-Chloroaniline	ND	2.0	0.20	ug/
2-Chloronaphthalene	ND	0.50	0.059	ug/
4-Chloro-3-methylphenol	ND	2.0	0.34	ug/
4-Chlorophenyl phenyl ether	ND	0.50	0.056	ug/
2-Chlorophenol	ND	1.0	0.12	ug/
Chrysene	ND	0.50	0.072	ug/
Dibenz(a,h)anthracene	ND	0.50	0.083	ug/
Dibenzofuran	ND	0.50	0.075	ugl
Di-n-butyl phthalate	0.300	2.0	0.26	ug/
1,2-Dichlorobenzene	ND	0.50	0.11	ug/
1,3-Dichlorobenzene	ND	0.50	0.13	ugh
1,4-Dichlorobenzene	ND	0.50	0.050	ug/
3,3-Dichlorobenzidine	ND	5.0	0.93	ug/
2,4-Dichlorophenol	ND	2.0	0.21	ug/
Diethyl phthalate	0.220	1.0	0.12	ugh
2,4-Dimethylphenol	ND	2.0	0.31	ugh
Dimethyl phthalate	ND	0.50	0.081	ug/l

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10 C 2063

Sampled: 03/25/05
Received: 03/25/05

METHOD BLANKIQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C28041 Extracted: 03/28/05											
Blank Analyzed: 03/31/2005 (5C28041-BLK1)											
4,6-Dinitro-2-methylphenol	ND	5.0	0.38	ug/							
2,4-Dinitrophenol	ND	5.0	2.7	ugA							N-1
2,4 Dinitrotoluene	ND	5.0	0.23	ug/							
2,6-Dinitrotoluene	ND	5.0	0.24	ug/							
Di-n-octyl phthalate	ND	5.0	0.17	ug/							
1,2-Diphenylhydrazine/Azobenzene	ND	1.0	0.087	ug/							
Fluoranthene	ND	0.50	0.089	ugh							
Fluorene	ND	0.50	0.075	ugh							
Hexachlorobenzene	ND	1.0	0.13	ugh							
Hexachlorobutadiene	ND	2.0	0.38	ug/							
Hexachlorocyclopentadiene	ND	5.0	1.8	ug/l							
Hexachloroethane	ND	3.0	0.51	ug/							
Indeno(1, 2,3-cd)pyrene	ND	20	0.19	ugn				. $\%$			
Isophorone	ND	10	0.059	ugA							
2-Methylnaphthalene	ND	1.0	0.13	ug/							
2-Methylphenol	ND	2.0	0.28	ug/							
4-Methylphenol	ND	5.0	0.20	ug/							
Naphthalene	ND	1.0	0.13	ug/							
2-Nitroaniline	ND	5.0	0.18	ug/							
3-Nitroaniline	ND	5.0	0.35	ug/							
4-Nitroaniline	ND	5.0	0.49	ug/l							
Nitrobenzene	ND	1.0	0.10	ug/							
2-Nitrophenol	ND	2.0	0.23	ugh							
4-Nitrophenol	ND	5.0	0.73	ug/							
N -Nitrosodimethylamine	ND	2.0	0.22	ugh							
N -Nitroso-di-n-propylamine	ND	2.0	0.18	ug/							
N -Nitrosodiphenylamine	ND	1.0	0.077	ugh							
Pentachlorophenol	ND	2.0	0.78	ug/							
Phenanthrene	ND	0.50	0.071	ug/1							
Phenol	ND	1.0	0.14	ugh							
Pyrene	ND	0.50	0.059	ug/l							
1,2,4-Trichlorobenzene	ND	1.0	0.10	ugh							
2,4,5-Trichlorophenol	ND	2.0	0.075	ug/							
2,4,6-Trichlorophenol	ND	1.0	0.10	ugh 1							
Surrogate: 2-Fluorophenol	13.6			$u g h$	20.0		68	30-120			

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10 C 2063

Sampled: 03/25/05
Received: 03/25/05

METHOD BLANKOC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C28041 Extracted: 03/28/05											
Blank Analyzed: 03/31/2005 (5C28041-BLK1)											
Surrogate: Phenol-d6	13.7			ug/	20.0		68	35-120			
Surrogate: 2,4,6-Tribromophenol	16.5			ug/	20.0		82	45-120			
Surrogate: Nitrobenzene-ds	6.94			ug/l	10.0		69	45-120			
Surrogate: 2-Fluorobiphenyl	7.28			ug/	10.0		73	45-120			
Surrogate: Terphenyl-d/4	8.40			ug/	10.0		84	45-120			
Blank Analyzed: 04/11/2005 (5C28041-BLK2)											
2,4-Dinitrophenol	ND	5.0	2.7	ug/							
Surrogate: 2-Fluorophenol	12.9			ug/	20.0		64	30-120			
Surrogate: Phenol-d6	13.6			ug/	20.0		68	35-120			
Surrogate: 2,4,6-Tribromophenol	17.1			ug/	20.0		86	45-120			
Surrogate: Nitrobenzene-d5	6.98			ug/	10.0		70	45-120			
Surrogate: 2-Fhuorobiphenyl	7.68			ug/	10.0		77	45-120			
Surrogate Terphenyl-d14	8.10			ug/l	10.0		81	45-120			
LCS Analyzed: 03/31/2005 (5C											M-NR1
Acenaphthene	8.28	0.50	0.10	ug/	10.0		83	55-120			
Acenaphthylene	8.44	0.50	0.10	ug/	10.0		84	55-120			
Aniline	7.32	10	2.9	ug/1	10.0		73	35-120			J
Anthracene	8.48	0.50	0.083	ug/	10.0		85	55-120			
Benzidine	ND	5.0	2.4	ug/l	10.0			20-160			L2
Benzoic acid	6.74	20	3.7	ug/1	10.0		67	35-120			J
Benzo(a)anthracene	9.52	5.0	0.038	ug/	10.0		95	60-120			
Benzo(a)pyrene	8.70	2.0	0.14	ug/	10.0		87	55-120			
Benzo(b)fluoranthene	9.32	2.0	0.050	ug/	10.0		93	50-120			
Benzo(g,h,i)perylene	8.16	5.0	0.059	ug/	10.0		82	40-125			
Benzo(k)fluoranthene	9.24	0.50	0.053	ug/1	10.0		92	50-120			
Benzyl alcohol	7.62	5.0	0.21	ug/	10.0		76	45-120			
Bis(2-chloroethoxy)methane	7.98	0.50	0.072	ug/	10.0		80	55-120			
Bis(2-chloroethyl)ether	6.98	0.50	0.084	ugl	10.0		70	50-120			
Bis(2-chloroisopropyl)ether	7.26	0.50	0.11	ug/	10.0		73	45-120			
Bis(2-ethylhexyl)phthalate	9.16	5.0	1.1	ugh	10.0		92	60-130			
4-Bromophenyl phenyl ether	8.10	1.0	0.12	ugh	10.0		81	50-120			
Butyl benzyl phthalate	9.66	5.0	0.34	ug/	10.0		97	55-125			
4-Chloroaniline	6.60	2.0	0.20	ugh	10.0		66	50-120			
2-Chloronaphthalene	8.52	0.50	0.059	ug/	10.0		85	55-120			
Del Mar Analytical, Irvine Michele Harper Project Manager											

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10 C 2063
Sampled: $03 / 25 / 05$
Received: $03 / 25 / 05$

METHOD BLANKIQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte
Batch: 5C28041 Extracted: 03/28/05

LCS Analyzed: 03/31/2005 (5C28041-BS1)

1205								
4-Chloro-3-methylphenol	7.18	2.0	0.34	ugh	10.0	72	60-120	-NR
4-Chlorophenyl phenyl ether	8.88	0.50	0.056	ug/	10.0	89	55-120	
2 -Chlorophenol	7.12	1.0	0.12	ug/	10.0	71	45-120	
Chrysene	9.14	0.50	0.072	ug/	10.0	91	60-120	
Dibenz(a, h)anthracene	7.06	0.50	0.083	ug/	10.0	71	45-130	
Dibenzofuran	8.18	0.50	0.075	ug/l	10.0	82	60-120	
Di-n-butyl phthalate	9.02	2.0	0.26	ug/	10.0	90	55-125	
1,2-Dichlorobenzene	6.26	0.50	0.11	ug/	10.0	63	35-120	
1,3-Dichlorobenzene	6.26	0.50	0.13	ug/	10.0	63	35-120	
1,4-Dichlorabenzene	6.18	0.50	0.050	ug/	10.0	62	35-120	
3,3-Dichlorobenzidine	6.98	5.0	0.93	ug/	10.0	70	45-130	
2,4-Dichlorophenol	7.68	2.0	0.21	ug/	10.0	77	55-120	
Diethyl phathatate	8.18	1.0	0.12	ugh	100	82	55120	
2,4Dimethylphenol	5.28	2.0	0.31	ug/	10.0	53	30-120	
Dimethyl phthalate	8.76	0.50	0.081	ug/	10.0	88	60-120	
4,6-Dinitro-2-methylphenol	9.40	5.0	0.38	ug/	10.0	94	50-120	
2,4-Dinitrophenol	8.70	5.0	2.7	ug/	10.0	87	40-120	N-1
2,4 Dinitrotoluene	8.00	5.0	0.23	ug/	10.0	80	60-120	
2,6-Dinitrotoluene	8.28	5.0	0.24	uga	10.0	83	60-120	
Di-n-octyl phthalate	9.46	5.0	0.17	ug/	10.0	95	60-130	
1,2-Diphenylhydrazine/Azobenzene	8.78	1.0	0.087	ug/	10.0	88	60-120	
Fluoranthene	9.26	0.50	0.089	ug/	10.0	93	55-120	
Fluorene	9.18	0.50	0.075	ug1	10.0	92	60-120	
Hexachlorobenzene	8.42	1.0	0.13	ug/	10.0	84	50-120	
Hexachlorobutadiene	6.40	2.0	0.38	ug/l	10.0	64	40-120	
Hexachlorocyclopentadiene	7.30	5.0	1.8	ug/l	10.0	73	15-120	
Hexachloroethane	6.26	3.0	0.51	ugh	10.0	63	35-120	
Indeno($1,2,3$-cd)pyrene	7.72	2.0	0.19	$u g /$	10.0	77	40-130	
Isophorone	7.42	1.0	0.059	ug/	10.0	74	50-120	
2-Methyinaphthalene	7.88	1.0	0.13	ug/	10.0	79	50-120	
2-Methylphenol	6.98	2.0	0.28	ug/	10.0	70	45-120	
4-Methylphenol	7.12	5.0	0.20	ug/l	10.0	71	45-120	
Naphthalene	7.36	1.0	0.13	ug/	10.0	74	50-120	
2-Nitroaniline	8.62	5.0	0.18	ug/	10.0	86	60-120	
3-Nitroaniline	7.82	5.0	0.35	ug/l	10.0	78	55-120	

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1)	
	Outfall 011	Sampled: $03 / 25 / 05$
Report Number:	IOC2063	Received: 03/25/05

Sampled: 03/25/05
Received: 03/25/05

METIIOD BLANKKOC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C28041 Extracted: 03/28/05											
LCS Analyzed: 03/31/2005 (5											M-NR1
4.Nitroaniline	8.16	5.0	0.49	ug/	10.0		82	50-125			
Nitrobenzene	6.90	1.0	0.10	ug/	10.0		69	50-120			
2-Nitrophenol	7.58	2.0	0.23	ug/	10.0		76	55-120			
4-Nitrophenol	7.60	5.0	0.73	ug/1	10.0		76	45-120			
N-Nitrosodimethylamine	7.40	2.0	0.22	ug/	10.0		74	40-120			
N-Nitroso-di-n-propylamine	7.22	2.0	0.18	ug/1	10.0		72	45-120			
N -Nitrosodiphenylamine	7.98	1.0	0.077	ug/	10.0		80	55-120			
Pentachlorophenol	8.86	2.0	0.78	ug/1	10.0		89	50-120			
Phenanthrene	8.56	0.50	0.071	ug/	10.0		86	55-120			
Phenol	8.12	1.0	0.14	ug/	10.0		81	45-120			
Pyrene	9.44	0.50	0.059	ug/	10.0		94	50-120			
1,2,4-Trichlorobenzene	6.52	1.0	0.10	ug/	10.0		65	45-120			
2,45-Trichlorophenol	8.30	2.0	0.075	ugh	10.0		83	60-120			
24,6-Trichlorophenol	8.76	1.0	0.10	ug A	10.0		88	60.120			
Surrogate: 2-Fluorophenol	13.3			$u g /$	20.0		66	30-120			
Surrogate: Phenol-d6	13.1			ug/l	20.0		66	35-120			
Surrogate: 2,4,6-Tribromophenol	16.0			$u g /$	20.0		80	45-120			
Surrogate: Nitrobenzene-d5	6.70			ug $/$	10.0		67	45-120			
Surrogate: 2-Fluorobiphenyl	7.58			$u g / l$	10.0		76	45-120			
Surrogate: Terphenyl-d14	8.10			$u g h$	10.0		81	45-120			
LCS Analyzed: 04/11/2005 (5C28041-BS2)											
2,4-Dinitrophenol	8.72	5.0	2.7	ug/l	10.0		87	40-120			
Surrogate: 2-Fluorophenol	13.0			ugh	20.0		65	30-120			
Surrogate: Phenol-d6	13.4			ug $/$	20.0		67	35-120			
Surrogate: 2,4,6-Tribromophenol	16.7			ug/	20.0		84	45-120			
Surrogate: Nitrobenzene-d5	6.72			ug/	10.0		67	45-120			
Surrogate: 2-Fluorobiphenyl	7.14			ug/l	10.0		71	45-120			
Surrogate: Terphenyl-d14	7.92			ug/	10.0		79	45-120			

Del Mar Analytical, Irvine

Michele Harper
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
$\begin{array}{rlr}\text { Project ID: } & 13267 \text { (Study 1) } & \\ & \text { Outfall 011 } & \text { Sampled: 03/25/05 } \\ \text { Report Number: } & 10 C 2063\end{array}$

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

```
        Project ID: 13267 (Study 1)
        Outfall 011
Report Number: 10 C 2063
```

Sampled: 03/25/05
Received: 03/25/05

METIIOD BLANKIQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte
Batch: 5C28041 Extracted: 03/28/05

LCS Dup Analyzed: 03/31/2005 (5C28041-BSD1)

4,6-Dinitro-2-methylphenol	9.54	5.0	0.38	ug/1	10.0	95	50-120	1	25	
2,4-Dinitrophenol	8.94	5.0	2.7	ug/	10.0	89	40-120	3	25	
2,4-Dinitrotoluene	8.46	5.0	0.23	ug/	10.0	85	60-120	6	20	N-I
2,6-Dinitrotoluene	8.62	5.0	0.24	ugh	10.0	86	60-120	6	20	
Di-n-octyl phthalate	10.0	5.0	0.17	ug/	10.0	100	60-130	6	20	
1,2-Diphenylhydrazine/Azobenzene	9.68	1.0	0.087	ug/	10.0	97	60-120	10	25	
Fluoranthene	9.68	0.50	0.089	ug/	10.0	97	55-120	4	20	
Fluorene	9.80	0.50	0.075	ug/	10.0	98	60-120	7	20	
Hexachlorobenzene	8.88	1.0	0.13	ug/1	10.0	89	50-120	5	20	
Hexachlorobutadiene	6.94	2.0	0.38	ug/	10.0	69	40-120	8	25	
Hexachlorocyclopentadiene	8.62	5.0	1.8	ugh	10.0	86	15-120	17	30	
Hexachloroethane	6.78	3.0	0.51	ug/	10.0	68	35-120	8	25	
Indeno(1,2,3-cd)pyrene	8.56	2.0	0.19	ug/	10.0	86	40.130	10	25	
Isophorone	752	1.0	0.059	ugh	10.0	75	50-120	1	20	
2-Methyinaphthalene	8.46	1.0	0.13	ug/	10.0	85	50-120	7	20	
2-Methylphenol	7.30	2.0	0.28	ug/	10.0	73	45-120	4	20	
4-Methylphenol	7.48	5.0	0.20	ug/	10.0	75	45-120	5	20	
Naphthalene	7.94	1.0	0.13	ug/	10.0	79	50-120	8	20	
2-Nitroaniline	9.28	5.0	0.18	ug/	10.0	93	60-120	7	20	
3-Nitroaniline	8.46	5.0	0.35	ug/	10.0	85	55-120	8	25	
4-Nitroaniline	8.60	5.0	0.49	ug/	10.0	86	50-125	5	20	
Nitrobenzene	7.28	1.0	0.10	ug/	10.0	73	50-120	5	25	
2-Nitrophenol	7.92	2.0	0.23	ug/	10.0	79	55-120	4	25	
4-Nitrophenol	8.70	5.0	0.73	ugh	10.0	87	45-120	13	25	
N -Nitrosodimethylamine	7.56	2.0	0.22	ug/	10.0	76	40-120	2	20	
N -Nitroso-di-n-propylamine	7.68	2.0	0.18	ug/	10.0	77	45-120	6	20	
N-Nitrosodiphenylamine	8.36	1.0	0.077	ug/l	10.0	84	55-120	5	20	
Pentachlorophenol	9.04	2.0	0.78	ugl	10.0	90	50-120	2	25	
Phenanthrene	9.06	0.50	0.071	ug/	10.0	91	55-120	6	20	
Phenol	8.62	1.0	0.14	ugh	10.0	86	45-120	6	25	
Pyrene	9.74	0.50	0.059	ug/	10.0	97	50-120	3	25	
1,2,4-Trichlorobenzene	7.02	1.0	0.10	ug/1	10.0	70	45-120	7	20	
2,4,5-Trichlorophenol	8.36	2.0	0.075	ug/l	10.0	84	60-120	1	20	
2,4,6-Trichlorophenol	9.06	1.0	0.10	ug/	10.0	91	60-120	3	20	
Surrogate: 2-Fluorophenol	13.5			ug/	20.0	68	30-120			

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1)	
	Outfall 011	Sampled: $03 / 25 / 05$
Report Number:	IOC2063	Received: $03 / 25 / 05$

Sampled: $03 / 25 / 05$
Received: $03 / 25 / 05$
Received: 03/25/05

METHOD BLANKIOC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

LCS Dup Analyzed: 03/31/2005 (5C28041-BSD1)

Surrogate: Phenol-d6	13.7
Surrogate: $2,4,6$-Tribromophenol	16.7
Surrogate: Nitrobenzene-d5	7.00
Surrogate: 2 -Fluorobiphenyl	7.96
Surrogate: Terphenyl-d14	8.22

LCS Dup Analyzed: 04/11/2005 (5C28041-BSD2)									
2,4-Dinitrophenol	8.86	5.0	2.7	ug/l	10.0	89	40-120	2	25
Surrogate: 2-Fluorophenol	13.2			ug/	20.0	66	30-120		
Surrogate: Phenol-d6	14.3			ug/	20.0	72	35-120		
Surrogate: 2,4,6-Tribromophenol	17.2			ug/	20.0	86	45-120		
Surrogate: Nitrobenzene-d5	7.02			ugh	10.0	70	45-120		
Surrogate: 2-Fluorobiphenyl	7.52			ug n	10.0	75	45-120		
Surrogate: Terphenyl-d14	7.66	\%		ugh	10.0	77	45-120		

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

```
            Project ID: 13267 (Study 1)
                Outfall }01
Report Number: 10 C 2063
```

Sampled: 03/25/05
Received: 03/25/05

METHOD BLANKIOC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C28048 Extracted: 03/28/05.											
Blank Analyzed: 03/29/2005-03/30/2005 (5C28048-BLK1)											
Aldrin	ND	0.10	0.030	ug/							
alpha-BHC	ND	0.10	0.015	ug/1							
beta-BHC	ND	0.10	0.015	ug/							
delta-BHC	ND	0.20	0.020	ug/							
gamma-BHC (Lindane)	ND	0.10	0.020	ug/							
Chlordane	ND	1.0	0.20	ug/							
4,4 - DDD	ND	0.10	0.020	ug/l							
4,4-DDE	ND	0.10	0.025	ug/							
4,4-DDT	ND	0.10	0.030	ug/							
Dieldrin	ND	0.10	0.015	ug/							
Endosulfan I	ND	0.10	0.015	ug/							
Endosulfan II	ND	0.10	0.040	ug/1							
Endosulfan sulfate	ND	0.20	0.015	ugn	:						
Endrin	ND	0.10	0.020	ugh			\therefore				
Endrin aldehyde	ND	0.10	0.045	ug/							
Endrin ketone	ND	0.10	0.020	ug/							
Heptachlor	ND	0.10	0.030	ug/							
Heptachlor epoxide	ND	0.10	0.020	ug/							
Methoxychlor	ND	0.10	0.035	ugh							
Toxaphene	ND	5.0	1.5	ug/							
Surrogate; Tetrachloro-m-xylene	0.350			ugh	0.500		70	35-115			
Surrogate: Decachlorobiphenyl	0.383			ug $/ 1$	0.500		77				
LCS Analyzed: 03/29/2005 (5C28048-BS1)											
Aldrin	0.347	0.10	0.030	ug/1	0.500		69	40-115			M-NR1
alpha-BHC	0.372	0.10	0.015	ug/	0.500		74	45-115			
beta-BHC	0.377	0.10	0.015	ug/	0.500		75	50-115			
delta-BHC	0.382	0.20	0.020	ugh	0.500		76	55-120			
gamma-BHC (Lindane)	0.373	0.10	0.020	ug/l	0.500		75	45-115			
4,4'-DDD	0.420	0.10	0.020	ug/	0.500		84	60-120			
4,4*-DDE	0.417	0.10	0.025	ug/l	0.500		83	55-120			
4,4'-DDT	0.437	0.10	0.030	ug/1	0.500		87	60-120			
Dieldrin	0.405	0.10	0.015	ug / l	0.500		81	55-120			
Endosulfan I	0.388	0.10	0.015	ugh	0.500		785	50-115			
Endosulfan II	0.396	0.10	0.040	ug/1	0.500		$79 \quad 6$	60-125			
Endosulfan sulfate	0.396	0.20	0.015	ug/	0.500		796	60-120			

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: $10 C 2063$

Sampled: 03/25/05
Received: 03/25/05

METHOD BLANKIOC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C28048 Extracted: 03/28/05											
LCS Analyzed: 03/29/2005 (5C28048-BS1)											M-NR1
Endrin	0.420	0.10	0.020	ug/	0.500		84	55-125			
Endrin aldehyde	0.382	0.10	0.045	ug/	0.500		76	55-115			
Endrin ketone	0.402	0.10	0.020	ug/	0.500		80	60-115			
Heptachlor	0.371	0.10	0.030	ug/l	0.500		74	45-115			
Heptachlor epoxide	0.388	0.10	0.020	ug/l	0.500		78	50-115			
Methoxychlor	0.399	0.10	0.035	ug/	0.500		80	60-120			
Surrogate: Tetrachloro-m-xylene	0.337	.		ug n	0.500		67	35-115			
Surrogate: Decachlorobiphenyl	0.372			$u g /$	0.500		74	45-120			
LCS Dup Analyzed: 03/29/2005 (5C28048-BSD1)											
Aldrin	0.291	0.10	0.030	ug/	0.500		58	40-115	18	30	
alpha-BHC	0.322	0.10	0.015	ug/	0.500		64	45-115	14	30	
beta-BHC	0.345	0.10	0.015	ug/	0.500		69	50-115	9	30	
delta-BHC	0.352	0.20	0.020	ug/	0.500		70	55-120	8	30	
gamma-BHC (Lindane)	0.328	0.10	0.020	ug/	0.500		66	45-115	13	30	
4,4'-DDD	0.397	0.10	0.020	ug/	0.500		79	60-120	6	30	
4,4'-DDE	0.378	0.10	0.025	ug/	0.500		76	55-120	10	30	
4,4'-DDT	0.531	0.10	0.030	ug/	0.500		106	60-120	19	30	
Dieldrin	0.368	0.10	0.015	ug/	0.500		74	55-120	10	30	
Endosulfan I	0.351	0.10	0.015	ug/	0.500		70	50-115	10	30	
Endosulfan II	0.368	0.10	0.040	ug/l	0.500		74	60-125	7	30	
Endosulfan sulfate	0.373	0.20	0.015	$\mathrm{ug} / 1$	0.500		75	60-120	6	30	
Endrin	0.383	0.10	0.020	ug/l	0.500		77	55-125	9	30	
Endrin aldehyde	0.369	0.10	0.045	ug/	0.500		74	55-115	3	30	
Endrin ketone	0.377	0.10	0.020	ug/l	0.500		75	60-115	6	30	
Heptachlor	0.320	0.10	0.030	ug/	0.500		64	45-115	15	30	
Heptachlor epoxide	0.349	0.10	0.020	ug/	0.500		70	50-115	11	30	
Methoxychlor	0.375	0.10	0.035	ug/	0.500		75	60-120	6	30	
Surrogate: Tetrachloro-m-xylene	0.289			ug/	0.500		58	35-115			
Surrogate: Decachlorobiphenyl	0.344			ug/	0.500		69	45-120			

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011
Report Number: 10 C 2063

METHOD BLANKIOC DATA

TOTAL PCBS (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C28048 Extracted: 03/28/05											

Biank Analyzed: 03/29/2005-03/30/2005 (5C28048-BLK1)

Aroclor 1016	ND	1.0	0.20	ug/l						
Aroclor 1221	ND	1.0	0.10	ug/1						
Aroclor 1232	ND	1.0	0.15	ug/l						
Aroclor 1242	ND	1.0	0.15	ugh						
Aroclor 1248	ND	1.0	0.25	ug/l						
Aroclor 1254	ND	1.0	0.25	ug/l						
Aroclor 1260	ND	1.0	0.40	ug/l						
Sutrogate: Decachlorobiphenyl	0.407			ug/l	0.500	81	45-120			
LCS Analyzed: 03/31/2005 (NR1
Aroclor 1016	6.06	2.0	0.40	ug/l	8.00	76	50-115			-NR
Aroclor 1260	5.96	2.0	0.80	ug/l	8.00	74	55-115			
Surrogate: Decachlorobiphenyl	0.769			$u g h$	1.00	77	45-120			
LCS Dup Analyzed: 03/30/20	BSD 2)									
Aroclor 1016	3.08	1.0	0.20	ug/l	4.00	77	50-115	65	30	
Aroclor 1260	3.30	1.0	0.40	ug / l	4.00	82	55-115	57	25	R-7
Surrogate: Decachlorobiphenyl	0.431			ug/l	0.500	86	$45-120$	57	25	R-7

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\qquad Project ID:	13267 (Study 1)	
	Outfall 011	Sampled: $03 / 25 / 05$
Report Number:	IOC2063	Received: 03/25/05

METHOD BLANKIQC DATA

METALS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	$\begin{aligned} & \text { RPD } \\ & \text { Limit } \end{aligned}$	Data Qualifiers
Batch: 5C25111 Extracted; 03/25/05										
Blank Analyzed: 03/26/2005 (5C25111-BLK1)										
Boron ND	0.050	0.0074	mg/							
LCS Analyzed: 03/26/2005 (5C25111-BS1)										
Boron 0.450	0.050	0.0074	mg/l	0.500		90	85-115			
Matrix Spike Analyzed: 03/26/2005 (5C25111-MS1)				Sour	ce: 10C1	861-01				
Boron 0.612	0.050	0.0074	mg/	0.500	0.13	96	70-130			
Matrix Spike Dup Analyzed: 03/26/2005 (5C25111-MSD1)				Sour	ce: IOC1	861-01				
Boron 0.642	0.050	0.0074	mg / l	0.500	0.13	102	70-130	5	20	

Blank Analyzed: 03/28/2005 (5C25116-BLK1)

Antimony	ND	2.0	0.18	ugh
Arsenic	ND	1.0	0.49	ug/
Barium	ND	0.0010	0.00014	mg / l
Beryllium	ND	0.50	0.037	ug/1
Cadmium	ND	1.0	0.015	ug/
Chromium	0.507	2.0	0.26	ug/
Cobalt	ND	1.0	0.10	ug/
Copper	ND	2.0	0.49	ug/
Iron	0.00735	0.010	0.0032	$\mathrm{mg} /$
Lead	ND	1.0	0.13	ug/
Manganese	ND	1.0	0.44	ug/
Nickel	ND	2.0	0.15	ug/
Selenium	ND	2.0	0.36	ugh
Silver	ND	1.0	0.089	ug/
Thallium	ND	1.0	0.075	ug/l
Vanadium	ND	2.0	0.86	ug/
Zinc	ND	20	3.1	ug/

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID: 13267 (Study 1)	
Outfall 011		
300 North Lake Avenue, Suite 1200	Report Number: $10 C 2063$	Sampled: $03 / 25 / 05$ Pasadena, CA 91101
Received: $03 / 25 / 05$		

method blankgc data

METALS

		Reporting			Spike	Source	\%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit
Batch: 5 C 25116	Extracted: $03 / 25 / 05$									
Qualifiers										

LCS Analyzed: 03/28/2005 (5C25116-BS1)

Antimony	80.9	2.0	0.18	ug/l	80.0		101	85-115		
Arsenic	84.0	1.0	0.49	ug/	80.0		105	85-115		
Barium	0.0810	0.0010	0.00014	mg / l	0.0800		101	85-115		
Beryllium	82.8	0.50	0.037	ug/	80.0		104	85-115		
Cadmium	78.6	1.0	0.015	ug/l	80.0		98	85-115		
Chromium	79.4	2.0	0.26	ug/	80.0		99	85-115		
Cobalt	78.3	1.0	0.10	ugh	80.0		98	85-115		
Copper	75.2	2.0	0.49	ug/l	80.0		94	85-115		
Iron	0.796	0.010	0.0032	mg / l	0.800		100	85-115		
Lead	88.6	1.0	0.13	ug/l	80.0		111	85-115		
Manganese	80.3	1.0	0.44	ug/l	80.0		100	85-115		
Nickel	78.1	2.0	0.15	ug/l	80.0		98	85-115		
Selenium	80.6	20	036	ug/	80.0		101	85-115		
Silver	87.8	10	0.089	ug/l	80.0		110	85115	\because	
Thallium	79.3	1.0	0.075	ug/l	80.0		99	85-115		
Vanadium	79.1	2.0	0.86	ug/l	80.0		99	85-115		
Zinc	75.9	20	3.1	ug/	80.0		95	85-115		
Matrix Spil	116 MMS				Son	e: 10C	62-01			
Antimony	83.2	2.0	0.18	ug/l	80.0	0.29	104	70-130		
Arsenic	85.1	1.0	0.49	ugl	80.0	1.2	105	70-130		
Barium	0.121	0.0010	0.00014	$\mathrm{mg} /$	0.0800	0.036	106	70-130		
Beryllium	85.1	0.50	0.037	ug/	80.0	ND	106	70-130		
Cadnium	79.5	1.0	0.015	ug / l	80.0	0.072	99	70-130		
Chromium	81.2	2.0	0.26	ug/	80.0	2.2	99	70-130		
Cobalt	79.4	1.0	0.10	ug/	80.0	0.58	99	70-130		
Copper	77.2	2.0	0.49	ug / l	80.0	3.0	93	70-130		
Iron	1.44	0.010	0.0032	mg / l	0.800	0.67	96	70-130		
Lead	86.8	1.0	0.13	ug/	80.0	0.55	108	70-130		
Manganese	208	1.0	0.44	ug/l	80.0	100	135	70-130		Ml
Nickel	79.1	2.0	0.15	ug/l	80.0	2.8	95	70-130		
Selenium	80.4	2.0	0.36	ug/l	80.0	ND	100	70-130		
Silver	85.1	1.0	0.089	ug/l	80.0	0.10	106	70-130		
Thallium	81.9	1.0	0.075	ug/l	80.0	0.15	102	70-130		
Vanadium	81.3	2.0	0.86	ug/l	80.0	1.5	100	70-130		
Zinc	84.8	20	3.1	ug/	80.0	14	88	70-130		

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011
Report Number: $10 C 2063$

Sampled: 03/25/05
Received: 03/25/05

METHOD BLANKIQC DATA

METALS

| | | Reporting | | | Spike | Source | \%REC | | RPD | Data | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Analyte | Result | Limit | MDL | Units | Level | Result | \%REC | Limits | RPD | Limit | Qualifiers |

Matrix Spike Dup Analyzed: 03/28/2005 (5C25116-MSD1)			Source: 10C2062-01							
Antimony	81.5	2.0	0.18	ug/	80.0	0.29	102	70-130	2	20
Arsenic	84.9	1.0	0.49	ug/	80.0	1.2	105	70-130	0	20
Barium	0.119	0.0010	0.00014	mg / l	0.0800	0.036	104	70-130	2	20
Beryllium	81.9	0.50	0.037	ugh	80.0	ND	102	70-130	4	20
Cadmium	78.0	1.0	0.015	ug/	80.0	0.072	97	70-130	2	20
Chromium	79.8	2.0	0.26	ug/	80.0	2.2	97	70-130	2	20
Cobalt	78.3	1.0	0.10	ug/	80.0	0.58	97	70-130	1	20
Copper	75.6	2.0	0.49	ug/	80.0	3.0	91	70-130	2	20
Iron	1.40	0.010	0.0032	$\mathrm{mg} /$	0.800	0.67	91	70-130	3	20
Lead	87.0	1.0	0.13	ug/	80.0	0.55	108	70-130	0	20
Manganese	203	1.0	0.44	ugh	80.0	100	129	70-130	2	20
Nickel	78.1	2.0	0.15	ug/l	80.0	2.8	94	70-130	1	20
Selenium	79.7	2.0	0.36	ug/	80.0	ND	100	70-130	1	20
Silver	85.1	1.0	0.089	ug/	80.0	0.10	106	70-130	0	20
Thallium	80.9	1.0	0.075	ug/1	80.0	0.15	101	70-130	1	20
Vanadium	81.2	2.0	0.86	ug/	80.0	1.5	100	70-130	0	20
Zinc	83.4	20	3.1	ug/	80.0	14	87	70-130	2	20

Batch: 5C26033 Extracted: 03/26/05
Blank Analyzed: 03/26/2005 (5C26033-BLK1)

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011
Report Number: 10 C 2063

Sampled: 03/25/05
Received: 03/25/05

METHOD BLANKIQC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Oualifiers
Batch: 5C26033 Extracted: 03/26/05											

Matrix Spike Dup Analyzed: 03/26/2005 (5C26033-MSD1)
Source: IOC2062-01

Mercury	7.61	0.20	0.063							
		0.20	0.063	ug/	8.00	ND	95	70-130	1	20

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011 Sampled: 03/25/05
Report Number: IOC2063 Received: 03/25/05

METHOD BLANKIQC DATA

INORGANICS

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011
Report Number: 10 C 2063

METHOD BLANKIQC DATA

INORGANICS

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 1OC2063

Sampled: 03/25/05
Received: 03/25/05

METHOD BLANKKQC DATA

INORGANICS

Batch: 5C25118 Extracted: 03/25/05
Duplicate Analyzed: 03/25/2005 (5C25118-DUP1)
Residual Chlorine ND
0.10
0.10
mg / l
Source: 1OC2063-01
ND
20

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
 Outfall 011
 Report Number: IOC2063

Sampled: 03/25/05
Received: 03/25/05

METHOD BLANKIGC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Oualifiers
Batch: 5C25119 Extracted: 03/25/05										
Blank Analyzed: 03/25/2005 (5C25119-BLK1)										
Total Cyanide ND	5.0	2.2	ug/							
LCS Analyzed: 03/25/2005 (5C25119-BS1)										
Total Cyanide 194	5.0	2.2	ug/1	200		97	90-110			
Matrix Spike Analyzed: 03/25/2005 (5C25119-MS1) Source: 1OC2062-01										
Total Cyanide 191	5.0	2.2	ug/	200	ND	96	70-115			
Matrix Spike Dup Analyzed: 03/25/2005 (5C25119-MSD1) Source: IOC2062-01										
Total Cyanide 195	5.0	2.2	ug/	200	ND	98	70-115	2	15	
Batch: 5C26056 Extracted: 03/26/05										
Blank Analyzed: 03/26/2005 (5C26056-BLK1)										
Turbidity $\quad 0.0500$	1.0	0.040	NTU							J
Duplicate Analyzed: 03/26/2005 (5C26056-DUP1)				Source: IOC2062-01						
Turbidity 11.9	1.0	0.040	NTU		12			1	20	

Batch: 5C28067 Extracted: 03/28/05

Blank Analyzed: 03/28/2005 (5C28067-BLK1)

| Ammonia-N (Distilled) | ND | 0.50 | 0.30 | mg / l |
| :--- | :--- | :--- | :--- | :--- | :--- |

LCS Analyzed: 03/28/2005 (5C28067-BS1)

| Ammonia-N (Distilled) | 9.80 | 0.50 | 0.30 | mg / l | 10.0 | 98 | $80-115$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^47]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOC2063
Sampled: 03/25/05
Received: 03/25/05

METHOD BLANKOC DATA

INORGANICS

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result \& Reporting Limit \& MDL \& Units \& \begin{tabular}{l}
Spike \\
Level
\end{tabular} \& \begin{tabular}{l}
Source \\
Result
\end{tabular} \& \%REC \& \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} \& RPD \& \begin{tabular}{l}
RPD \\
Limit
\end{tabular} \& Data Qualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5C28067 Extracted: 03/28/05} \\
\hline Matrix Spike Analyzed: 03/28/2005 (5C28067-MSI) \& \multicolumn{10}{|c|}{Source: 10C2120-01} \\
\hline Ammonia-N (Distilled) 9.80 \& 0.50 \& 0.30 \& mg/ \& 10.0 \& ND \& 98 \& 70-120 \& \& \& \\
\hline Matrix Spike Dup Analyzed: 03/28/2005 (5C28067-M \& \& \& \& \multicolumn{3}{|l|}{Source: 1OC2120-01} \& \& \& \& \\
\hline Ammonia-N (Distilled) 8.96 \& 0.50 \& 0.30 \& \(\mathrm{mg} / \mathrm{l}\) \& 10.0 \& ND \& 90 \& 70-120 \& 9 \& 15 \& \\
\hline \multicolumn{11}{|l|}{Batch: 5C28069 Extracted: 03/28/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 03/28/2005 (5C28069-BLK1)} \\
\hline Oil \& Grease ND \& 5.0 \& 0.94 \& \(\mathrm{mg} /\) \& \& \& \& \& \& \& \\
\hline \multicolumn{10}{|l|}{LCS Analyzed: 03/28/2005 (5C28069-BS1)} \& \multirow[t]{2}{*}{M-NR1} \\
\hline Oil \& Grease 19.7 \& 5.0 \& 0.94 \& \(\mathrm{mg} / 1\) \& 20.0 \& \& 98 \& 65-120 \& \& \& \\
\hline \multicolumn{11}{|l|}{\multirow[t]{2}{*}{LCS Dup Analyzed: \(03 / 28 / 2005\) (5C28069-BSD1)
Oll Grease

(91)}}

\hline \& \& \& \& \& \& 96 \& 65-120 \& 3 \& 20 \&

\hline \multicolumn{11}{|l|}{Batch: 5C28078 Extracted: 03/28/05}

\hline \multicolumn{11}{|l|}{Blank Analyzed: 03/28/2005 (5C28078-BLK1)}

\hline Total Dissolved Solids ND \& 10 \& 10 \& $\mathrm{mg} / 1$ \& * \& \& \& \& \& \&

\hline \multicolumn{11}{|l|}{LCS Analyzed: 03/28/2005 (5C28078-BS1)}

\hline Total Dissolved Solids 956 \& 10 \& 10 \& $\mathrm{mg} / 1$ \& 1000 \& \& 96 \& 90-110 \& \& \&

\hline \multicolumn{4}{|l|}{Duplicate Analyzed: 03/28/2005 (5C28078-DUP1)} \& \multicolumn{7}{|l|}{Source: 10C1740-01}

\hline Total Dissolved Solids 288 \& 10 \& 10 \& mg 1 \& \& 280 \& \& \& 3 \& 10 \&

\hline
\end{tabular}

[^48]| MWH-Pasadena/Boeing | Project ID: | 13267 (Study 1) | |
| :---: | :---: | :---: | :---: |
| 300 North Lake Avenue, Suite 1200 | | Outfall 011 | Sampled: 03/25/05 |
| Pasadena, CA 91101 | Report Number: | IOC2063 | Received: 03/25/05 |
| Attention: Bronwyn Kelly | | | |

METHOD DLANKIOC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C28081 Extracted: 03/28/05										
Duplicate Analyzed: 03/28/2005 (5C28081-DUP1)	Source: IOC1740-01									
Specific Conductance 507	1.0	1.0	umhos/cm		500			1	5	
Batch: 5C29079 Extracted: 03/29/05										
Blank Analyzed: 03/29/2005 (5C29079-BLK1)										
Total Organic Carbon ND	1.0	0.25	mg / l							
LCS Analyzed: 03/29/2005 (5C29079-BS1)										
Total Organic Carbon 10.4	1.0	0.25	mg / l	10.0		104	90-110			
Matrix Spike Analyzed: 03/29/2005 (5C29079-MS1)	Source: 1OC2115-02									
Total Organic Carbon 9.84	1.0	0.25	mg / l	5.00	5.3	91	80-120			
Matrix Spike Dup Analyzed: 03/29/2005 (5C29079-MSD1)				Source: 1OC2115-62						
Total Organic Carbon 10.0	1.0	0.25	mg/	5.00	5.3	94	80-120	2	20	

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011 Sampled: 03/25/05
Report Number: IOC2063

Received: 03/25/05

METHOD BLANKIQCDATA

1,4-DIOXANE BY GC/MS (EPA 5030B/8260B)

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)

 Outfall 011Report Number: IOC2063

Sampled: 03/25/05
Received: 03/25/05

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.

Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality. Laboratory Control Sample recovery was below method control limits.

The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).

M-3

M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike
Duplicate.
N-1 See case narrative.
R-7 LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria.
$\mathbf{Z X}$ Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD
Relative Percent Difference

ADDITIONAL COMMENTS

For TICs:

All identifications are tentative and concentrations are estimates based upon spectral comparison to the EPANIH library. For 1,2-Diphenylhydrazine:

The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.
For GRO (C4-C12):
GRO (C4-C12) is quantitated against a gasoline standard. Quantitation begins immediately following the methanol peak. For Extractable Fuel Hydrocarbons (EFH, DRO, ORO) :

Unless otherwise noted, Extractable Fuel Hydrocarbons (EFH, DRO, ORO) are quantitated against a Diesel Fuel Standard.

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

```
            Project ID: 13267 (Study 1)
                Outfall 011 Sampled: 03/25/05
                    Report Number: 1OC2063 Received: 03/25/05
```


Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
EPA 120.1	Water	\mathbf{X}	\mathbf{X}
EPA 160.2	Water	\mathbf{X}	\mathbf{X}
EPA 160.5	Water	\mathbf{X}	\mathbf{X}
EPA 180.1	Water	\mathbf{X}	\mathbf{X}
EPA 200.7.	Water	\mathbf{X}	\mathbf{X}
EPA 200.8	Water	\mathbf{X}	\mathbf{X}
EPA 218.6	Water	\mathbf{X}	\mathbf{X}
EPA 245.1	Water	\mathbf{X}	\mathbf{X}
EPA 300.0	Water	\mathbf{X}	\mathbf{X}
EPA 314.0	Water	\mathbf{X}	\mathbf{X}
EPA 330.5	Water	\mathbf{X}	\mathbf{X}
EPA 335.2	Water	\mathbf{X}	\mathbf{X}
EPA 350.2	Water	\mathbf{X}	\mathbf{X}
EPA 405.1	Water	\mathbf{X}	\mathbf{X}
EPA 413.1	Water	\mathbf{X}	\mathbf{X}
EPA 415.1	Water	\mathbf{X}	\mathbf{X}
EPA 418.1	Water	\mathbf{X}	\mathbf{X}
EPA 608.	Water	\mathbf{X}	\mathbf{X}
EPA 624 (MOD.	Water	\mathbf{X}	\mathbf{X}
EPA 624	Water	\mathbf{X}	\mathbf{X}
EPA 625	Water	\mathbf{X}	\mathbf{X}
EPA 8015 Mod.	Water	\mathbf{X}	\mathbf{X}
EPA 8015B	Water	\mathbf{X}	\mathbf{X}
SM2540C	Water	\mathbf{X}	\mathbf{X}
SM5540-C	Water	\mathbf{X}	\mathbf{X}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical California Cert \#1640
1104 Windfield Way - El Dorado Hills, CA 95762
Analysis Performed: 1613-Dioxin-HR
Samples: IOC2063-01
Analysis Performed: EDD + Level 4
Samples: IOC2063-01

Aquatic Testing Laboratories-SUB Calfornia Cert \#1775 4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chrnic
Samples: IOC2063-01
Del Mar Analytical, Irvine
Michele Harper
Project Manager
MWH-Pasadena/Boeing300 North Lake Avenue, Suite 1200Pasadena, CA 91101Attention: Bronwyn Kelly
Project ID: 13267 (Study 1)
Aquatic Testing Laboratories-SUB California Cert \#1775
4350 Transport Street, Unit 107 - Ventura, CA 93003
Analysis Performed: Bioassay-Acute 96 hrSamples: 1OC2063-01
Del Mar Analytical - Phoenix NELAC Cert \#01109CA, Calfornia Cert \#2446
9830 S. 51st Street, Suite B-120 - Phoenix, AZ 85044
Method Performed: EPA 8260BSamples: 1OC2063-01
Eberline Services - SUB
2030 Wright Avenue - Richmond, CA 94804
Analysis Performed: EDD + Level 4
Samples: IOC2063-01
Analysis Performed: Gamma Scan
Samples: 1OC2063-04
Analysis Performed: Gross Alpha
Samples: 1OC2063-01, OC2063-03
Analysis Performed: Gross BetaSamples: IOC2063-01, 1OC2063-03
Analysis Performed: Radium, Combined
Samples: IOC2063-01, IOC2063-03
Analysis Performed: Strontium 90
Samples: $10 \mathrm{C} 2063-01$, OC2063-03
Analysis Performed: TritiumSamples 10C206301, 10C206303
Truesdail Laboratories-SUB California Cert \#1237
14201 Franklin Avenue - Tustin, CA 92680
Analysis Performed: Hydrazine
Samples: IOC2063-01
Analysis Performed: Level 4 Data Package
Outfall 011
Report Number: 1OC2063
Sampled: 03/25/05Del Mar Analytical, Irvine
Michele Harper
Project Manager

 dd + (809) OHE B4d ANALYSIS REQUIRED

```
पоиuk
(z.0se) 411 N-епuоuни
```


Client Name/Address: MWH-Pasadena 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101				Project: Boeing-SSFL NPDES Outfill 011 - 13267 Perimeter Pond		
Project Manager: Bronwyn Kelly Sampler: tand thys.				Phone Num (626) 568 Fax Numb (626) 568	nber: 6691 er: 6515	
Sample Description	Sampla Matrix	Container Type	$\begin{aligned} & \text { Tof } \\ & \text { cont. } \end{aligned}$	$\begin{aligned} & \text { Sempling } \\ & \text { Deferine } \end{aligned}$	Preservati	Bottle
Outifill 011	W	Poly-1L	1		HNO3	1 A
$\begin{aligned} & \text { Outfili } 011 \text { - } \\ & \text { Dup } \end{aligned}$	W	Poly-1L.	1	7	HNO3	18
Outifill 011	w	Poly-1L	1		None	2
Outfill 011	W	VOAs	3		HCl	$\begin{gathered} 3 A_{i} 3 B_{i} \\ 3 C \end{gathered}$
Outfoll 011	W	1L. Amber	2	\cdots	None	4A, 4B
Outfell 011	w	11. Amber	2		HCl	5A, 5B
Outfell 011	W	$\begin{aligned} & \text { Poly- } 500 \\ & \mathrm{ml} \end{aligned}$	1		NaOH	6
Outfall 019	w	Poly-1L	1		None	7
Outtalt 011	W		2		None	8A, 88
Outfall 011	W	$\begin{aligned} & \text { Poly-500 } \\ & \mathrm{ml} \end{aligned}$	2		None	9A, 88
Outfell 011	W	$\begin{aligned} & \text { Poly-600 } \\ & \text { ml } \end{aligned}$	2		None	$10 \mathrm{~A}$
Outtall 011	W	$\begin{aligned} & \mathrm{Poly}-600 \\ & \mathrm{ml} \end{aligned}$	1		$\mathrm{H} 2 \mathrm{SO}_{4}$	11
Outfall 011	W	1L. Amber	2		None.	$\begin{aligned} & 12 A, \\ & 12 B \\ & \hline \end{aligned}$
Outfall 011	W	1L Amber	2	± 1	None	138 138
Trip Biank	W	VOAs	3		HCl	14 A, 148, 14 C
					Recelved 7	

April 7, 2005

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention: Bronwyn Kelly
Project: $\quad 13267$ (Study 1)/Outfall 011
Sampled: 03/25/05
Del Mar Analytical Number: IOC2063

Dear Ms. Kelly:
Aquatic Testing Laboratories performed Fathead Minnow 96 hr Percent Survival Bioassay (EPA Method 2000.0), Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002), Truesdail Laboratories tested Hydrazines by EPA 8315 M, Alta Analytical performed EPA Method 1613 by Dioxin and Eberline Services performed Gross Alpha/Gross Beta (EPA 900.0), Tritium (H-3, EPA 906.0), Strontium-90 (Sr-90, EPA 905.0), Radium 226 (EPA 903.1), and Radium 228 (904.0) for the project referenced above. Please use the following cross-reference table when reviewing your results.

MWH ID	DEL MAR D	ATL ID	TRUESDAL ID	ALTA ID	EBERLINE ID
Outfall 011 Grab	1OC2063-01	A-05032601-001/002	$941100-1$	$25967-001$	PENDING

Attached are the original reports from the subcontract laboratories. If you have any questions or require further assistance, please do not hesitate to contact me.

Sincerely yours,
DEL MAR ANALYTICAL

Michele Harper
Project Manager

LABORATORY REPORT

Date:
Client: Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Attn: Michele Harper

Aquatic Testing Laboratories
"dedicated to providing quality aquatic toxicity testing".
4350 Transport Street, Unit 107
Ventura, CA 93003
(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.: A-05032601-001/002
Sample I.D.: \quad IOC2063-01

Sample Control: The sample was received by ATL chilled, with the chain of custody record attached.

$$
\begin{array}{ll}
\text { Date Sampled: } & 03 / 25 / 05 \\
\text { Date Received: } & 03 / 26 / 05 \\
\text { Date Tested: } & 03 / 26 / 05 \text { to 04/01/05 }
\end{array}
$$

Sample Analysis: The following analyses were performed on your sample:
Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0), Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

Result Summary:

Acute:	$\frac{\text { Survival }}{100 \%}$	$\frac{\text { TU }}{0.0}$
Fathead Minnow:		
Chronic:	$\frac{\text { NOES }}{}$	TUE
\quad Ceriodaphnia Survival:	100%	1.0
\quad Ceriodaphnia Reproduction:	100%	1.0

Quality Control: Reviewed and approved by:

FATHEAD MINNOW PERCENT SURVIVAL TEST

Lab No.: A-05032601-001
Client/ID: Del Mar - IOC2063-01

TEST SUMMARY

Species: Pimephales promelas.
Age: 8 (1-14) days.
Regulations: NPDES.
Test solution volume: 250 ml .
Feeding: prior to renewal at 48 hrs.
Number of replicates: 2.
Dilution water: Moderately hard reconstituted water.
Photoperiod: $16 / 8$ hrs light/dark.

Start Date: 03/26/2005

Source: In-laboratory Culture.
Test type: Static-Renewal.
Test Protocol: EPA-821-R-02-012.
Endpoints: Percent Survival at 96 hrs.
Test chamber: 600 ml beakers.
Temperature: $20+/-1^{\circ} \mathrm{C}$.
Number of fish per chamber: 10.
QA/QC Batch No.: RT-050303.

TEST DATA

Comments:
Sample as received: Chlorine: \qquad $\mathrm{mg} / \mathrm{l} ; \mathrm{pH}: 7.8 ;$ Conductivity: 155 mho; Temp: $4^{\circ} \mathrm{C}$; DO: $5.4 \mathrm{mg} /$; Alkalinity: $12 \mathrm{mg} /$; Hardness: $77 \mathrm{mg} / ; \mathrm{NH}_{3}-\mathrm{N}: 0.4 \mathrm{mg} / \mathrm{l}$.
Sample aerated moderately (approx. $500 \mathrm{ml} / \mathrm{min}$) to raise or lower DO? Yes $/ 40$.
Control: Alkalinity: $57 \mathrm{mg} /$; Hardness: $95 \mathrm{mg} / \mathrm{l}$; Conductivity: 3 co. umho.
Test solution aerated (not to exceed 100 bubbles $/ \mathrm{min}$) to maintain DO $>4.0 \mathrm{mg} / 1$? Yes / No
Sample used for renewal is the original sample kept at $0-6^{\circ} \mathrm{C}$ with minimal headspace.

RESULTS

Percent Survival In: Control: \qquad $\% \quad 100 \%$ Sample: \qquad $\%$

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

Lab No.: A-05032601
Client/ID: Del Mar IOC2063-01

TEST SUMMARY

Test type: Daily static-renewal.
Species: Ceriodaphnia dubia.
Age: < 24 hrs; all released within 8 hrs.
Test vessel size: 30 ml .
Number of test organisms per vessel: 1.
Temperature: $25+/-1^{\circ} \mathrm{C}$.
Dilution water: Mod. hard reconstituted (MHRW).
QA/QC Batch No.: RT-050326.

Date Tested: 03/26/05 to 04/01/05

Source: In-laboratory culture.
Food: . 1 ml YTC, algae per day.
Test solution volume: 15 ml .
Number of replicates: 10.
Photoperiod: $16 / 8 \mathrm{hrs}$. light/dark cycle.
Test duration: 7 days.
Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Survival	Mean Number of Young Per Female
Control	100\%	31.4
6.25\%	100\%	31.2
12.5\%	100\%	33.5
25\%	100\%	30.9
50\%	100\%	33.1
100\%	100\%	33.6
* Statistically significantly less than control at $\mathbf{P}=0.05$ level. ** Reproduction data from concentrations greater than survival NOEC are excluded from statistical analysis.		

CHRONIC TOXICITY

Parameter	Survival	Growth
NOEC	100%	100%
TUc	1.0	1.0

QA/QC TEST ACCEPTABHLITY

Parameter	Result
Control survival 280%	Pass (100% survival)
215 young per surviving control female average	Pass (31.4 young)
260% surviving controls had 3 broods	Pass (100% with 3 broods)
PMSD < 47% for reproduction if $>47 \%$ and no toxicity at IWC, the test must be repeated	Pass (PMSD $=11.3 \%$)
Statistically significantly different concentrations relative difference $>13 \%$	NA - No stat. sig. diff. concentrations
Concentration response relationship acceptable	Pass (slight inverse response at conc. tested)

SUBCONTRACT ORDER - PROJECT \# IOC2063

SENDING LABORATORY: Del Mar Analytical, Irvine 17461 Derian Avenue. Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 261-1228 Project Manager: Michele Harper	RECEIVING LABORATORY: Aquatic Testing Laboratories-SUB 4350 Transport Street, Unit 107 Ventura, CA 93003 Phone :(805) 650-0546 Fax: (805) 650-0756
Standard TAT is requested unless specific due date is requ Analysis Expiration	=> Due Date: 5 day \qquad Initials: Comments
Sample ID: $10 \mathrm{Cl2063-01}$ Water Sioassay-7 dy Chmic $03 / 27 / 0500: 00$ Bioassay-Acute 96 hr $03 / 27 / 0500: 00$	Instant Nofication ceriodaphnia, 13267 fathead minnow, 13267
Containers Supplied: 1 gal Poly (IOC2063-01AR) 1 gal Poly (IOC2063-01AS)	

TRUESDAIL LABORATORIES, INC.

Client: Del Mar Analytical
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Attention: Michele Harper

Project Name: 1OC2063
Truesdail Project: 941100
Date Received: 03/28/05

Samples Cross-reference

Truestail ID	Clien ID	Matrix	Date Sampled	Time Sampled		Analvsis Requested
$941100-1$	IOC2063-01	Water	$03 / 25 / 05$	1200	Hydrazines by EPA 8315M	

Respectfully Submitted,
TRUESDAIL LABORATORIES, INC.

Truesdail Laboratories, Inc.

Client: Del Mar Analytical
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Attention: Michele Harper
Project Name: IOC2063
Truesdail Project:
941100
Date Received: 03/28/05

Case Narrative

Sample Receipt The sample was received in good condition and no anomalies were noted during check-in. The sample was kept in a locked refrigerator until analysis. Thereafter, it is being kept in ambient storage for an additional 2 months before disposal.

Analysis The analysis was perfomed as requested on the chain-of-custody.
Quality Control The analytical results for each batch of samples performed include a minimum of one set of laboratory control sample/laboratory control sample duplicate (LCS/LCSD), one matrix spike (MS) and a reagent blank (Method blank). Any exceptions or problems would be noted in the "comments" section.

Comments The test results in this report meet all quality assurance requirements set forth by the method specification and all quality control recoveries were within the laboratory acceptance limits. No anomalies or nonconformance events occurred during the course of analysis.

The analytes were quantitated down to the Method Detection Limit (J flags) per client's request.

Respectfully Submitted,
TRUESDAIL LABORATORIES, INC.
K.R.P. gyen
K.R.P. Iyer

Quality Control/Quality Assurance Officer

Truesdail Laboratories, inc.
REPORT

$$
\begin{aligned}
\text { Client: } & \begin{array}{l}
\text { Del Mar Analytical } \\
\text { 17461 Derian Ave., Suite } 100 \\
\text { Irvine, CA 92614 }
\end{array} \\
& \\
\text { Attention: } & \text { Michele Harper } \\
\text { Sample: } & \text { Liquid / 1 Sample } \\
\text { Project Name: } & \text { IOC2063 } \\
\text { P.O. Number: } & \text { IOC2063 } \\
\text { Method Number: } & 8315 \text { (Modified) } \\
\text { Investigation: } & \text { Hydrazines in Liquid }
\end{aligned}
$$

$$
\text { Page } 1 \text { of } 1
$$

MDL: Method Detection Limit, ug/L. PQL: Practical Quantitation Limit, ug/L
ND: Not Detected at or above the MDL value.
N/A: Not Applicable
ND: Not Detected at or above the MDL value.
N/A: Not Applicable
Note: Results based on detector \#1 (UV $=\mathbf{3 6 5 n m})$ data.
Analytical Results

MDL: Method Detection Limit, ug/L.

Truesdail Laboratories, Inc.
INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENYIRONMENTAL ANALYSES

Quality Control/Quality Assurance Spikes Report

Parameter	Spliked Conc. uq/L	Recovered Concentration			PercentRecovery (\%)		$\begin{gathered} \text { LCSI } \\ \text { LCSD } \\ \% D \end{gathered}$	Flag	Control Limits		Spiked Conc. ugh	Recovered Concentration			PercentRecovery (\%)		$\begin{aligned} & \text { MSI } \\ & \text { MSD } \\ & \% D \end{aligned}$	Flag	AccuracyControl Limits	
		LCS	LCSD	MB	LCS	LCSD			\%D	\% Rec.		MS	MSD	Sample	MS	MSD			\% D	\% Rec.
Monomethyl Hydrazine	50.0	45.8	47.0	0.0	91.7	94.0	2.52\%	PASS	20	70-130	50.0	45.0	40.4	0.0	90.0	80.8	10.7\%	PASS	20	0-150
U-Dimethyl Hydrazine	50.0	46.1	46.8	0.0	92.2	93.6	1.49\%	PASS	20	70-130	50.0	44.5	41.1	0.0	88.9	82.1	7.94\%	PASS	20	$0-150$
Hydrazine	10.0	9.39	8.96	0.0	93.9	89.6	4.74\%	PASS	20	70-130	10.0	7.90	7.65	0.0	79.0	76.5	3.24\%	PASS	20	0-150

ICV: Initial Callbration Verification
OCS: Quality Control Standard
LCS: Laboratory Control Spike
MS: Matrix Spike
\%D: Percent Differ
\%D: Percent Difference
Flag: "Pass" If within Con
Flag: "Pass" If within Control Limits; otherwise "Fail"
Note: Results based on detector $1(U N=365 \mathrm{~mm})$ data.

SUBCONTRACT ORDER - PROJECT \# IOC2063

SENDING LABORATORY:
Del Mar Analytical, Irvine 17461 Derian Avenue. Suite 100 Irvine, CA 92614 Phone: (949) 261 -1022 Fax: (949) 261-1228 Project Manager: Michele Harper \mathbf{l}

```
RECEIVING LABORATORY:
Truesdail Laboratories-SUB
14201 Franklin Avenue
Tustin, CA"92680
Phone:(714) 730-6239
Fax: (714) 730-6462
```

INGEABORATORY:
14201 Franklin Avenue
Phone :(714) 730-6239
Fax: (714) 730-6462

Rec'd
$03 / 2105$ sTd

```
941100
```

SENDING LABORATORY:

Del Mar Analytical, Irvine
17461 Derian Avenue. Suite 100
Irvine, CA 92614
Phone: (949) 261-1022
Fax: (949) 261-1228
Project Manager: Michele Harper

Standard TAT is requested unless specific due date is requested \Rightarrow Due Date: \square Initials: \qquad Analysis Expiration

Comments

Instant Nofication
J flags, Sub Truesdail for Monomethylhydrazine

Sample ID: 10C2063-01 Water Sampled: 03/25/05 12:00
Hydrazine-OUT
Level 4 Data Package
03/28/05 12:00
04/22/05 12:00
 $-$

Containers Supplied:

1 L Amber (IOC2063-01 AM)
1 L Amber (IOC2063-01AN)

14

For Sample Conditions See Form Attached

Truesdall Laboratories, Inc.

Sample Integrity \& Analysis Discrepancy Form

Date Delivered: $33 / 18 / 05$ Time: $91 / 2$ By: eMail \square Field Service Client

1. Was a Chain of Custody received and signed?
2. Does Customer require an acknowledgement of the COC? dyes ONo INA
aYes a no dNA
3. Are there any special requirements or notes on the COC?
4. If a letter was sent with the COC, does it match the COC?
5. Were all requested analyses understood and adoptable?
aYes aN diNA
aYes aNN ENA dYes ono DNA
6. Were samples received in a chilled condition? Temperature (if yes)? $Y^{\circ} \mathbf{C}$
7. Were samples received intact (i.e. broken bottles, leaks, air bubbles, etc..)?
8. Were sample custody seals intact?
9. Does the number of samples received agree with COC?
10. Did sample labels correspond with the client ID's?
11. Did sample labels indicate proper" preservation?
Preserved (if yes) by: DTruesdail Client
12. Did sample labels indicate proper" preservation
Preserved (if yes) by: QTruesdail Client
13. Were samples pH checked? $\mathrm{pH}=$ \qquad arles a no antA
14. Were all analyses within holding time at time of receipt? If not, notify the Project
15. Have Project due dates beef check a il jested?

Tum Around Time (TAT): 1 RUSH

\qquaddYes ONo aNTAaYes ano IN/AaYes an UN/A dives ONo aNA dyes an DNA
15. Sample Matrix: Liquid Drinking Water sludge - Q Soil sWipe Paint Solid \qquad
16. Comments:
17. Sample Check-In completed by Truesdail Log-In/Receiving:

Internal Chain of Custody Logbook

Storage Temparature: 40 CR

April 02, 2005

Alta Project I.D.: 25967

Ms. Michele Harper
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Dear Ms. Harper,

Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on March 29, 2005 under your Project Name "IOC2063". These samples were extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

Results qualified with an " A " are lower than the EPA Method 1613 Minimum Level, and above the lower calibration limit.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,
Maullue Never
Martha M. Mayer
Director of HRMS Services

Alta Analytical Laboratory Inc.

Section I: Sample Inventory Report

Date Received: 3/29/2005

Alta Lab. ID
25967-001

Client Sample ID
1OC2063-01

SECTION II

Method Blank							EPA Method 1613				
Matrix: Sample Size:	queous$1.000 \mathrm{~L}$	QC Batch No.: Date Extracted:	$\begin{aligned} & 6653 \\ & 30-\mathrm{Mar}-05 \end{aligned}$		Lab Sample: 0 -MB001 Date Analyzed DB-5: 31-Mar-05		Date Analyzed DB-225:				
					: NA						
Analyte	Conc. (ug/L)	DL ${ }^{\text {a }}$	EMPC ${ }^{\text {b }}$	Qualifiers			Labeled Standard		\%R	LCL-UCL ${ }^{\text {d }}$ Oualifiers	
2,3,7,8-TCDD	ND	0.000000554			IS	13C-2,3,7,8-TCDD	85.8	25-164			
1,2,3,7,8-PeCDD	ND	0.000000438				13C-1,2,3,7,8-PeCDD	89.3	25-181			
1,2,3,4,7,8-HxCDD	ND	0.000000693				13C-1, 2, 3, 4, 7, 8-HxCDD	78.7	32-141			
1,2,3,6,7,8-HxCDD	ND	0.000000669				13C-1,2,3,6,7,8-HxCDD	92.3	28-130			
1,2,3,7,8,9-HxCDD	ND	0.000000673				13C-1,2,3,4,6,7,8-HpCDD	77.2	23-140			
1,2,3,4,6,7,8-HpCDD	ND	0.000000795				$13 \mathrm{C}-\mathrm{OCDD}$	50.0	17-157			
OCDD	ND	0.00000232				13C-2,3,7,8-TCDF	91.1	24-169			
2,3,7,8-TCDF	ND	0.000000436				13C-1,2,3,7,8-PeCDF	89.9	24-185			
1,2,3,7,8-PeCDF	ND	0.000000695				13C-2,3,4,7,8-PeCDF	96.8	21-178			
2,3,4,7,8-PeCDF	ND	0.000000592				13C-1,2,3,4,7,8-HxCDF	77.8	26-152			
1,2,3,4,7,8-HxCDF	ND	0.000000264				13C-1,2,3,6,7,8-HxCDF	87.0	26-123			
1,2,3,6,7,8-HxCDF	ND	0.000000253				13C-2,3,4,6,7,8-HxCDF	84.8	28-136			
2,3,4,6,7,8-HxCDF	ND	0.000000263				13C-1,2,3,7,8,9-HxCDF	80.9	29-147			
1,2,3,7,8,9-HxCDF	ND	0.000000408				13C-1,2,3,4,6,7,8-HpCDF	72.1	28-143			
1,2,3,4,6,7,8-HpCDF	ND	0.000000381				13C-1,2,3,4,7,8,9-HpCDF	76.9	26-138			
1,2,3,4,7,8,9-HpCDF	ND	0.000000359				$13 \mathrm{C}-\mathrm{OCDF}$	57.9	17-157			
OCDF	ND	0.00000147				37Cl-2,3,7,8-TCDD	90.5	35-197			
Totals						notes					
Total TCDD	ND	0.000000554									
Total PeCDD	ND	0.000000438									
Total HxCDD	ND	0.000000677				ple specific estimated detection limit.					
Total HpCDD	ND	0.000000795				nated maximum possible concentration.					
Total TCDF	ND	0.000000436				ood detection limit.					
Total PeCDF	ND	0.000000642				er control limit - upper control limit.					
Total HxCDF	ND	0.000000291									
Total HpCDF	ND	0.000000450									

OPR Resuls						EPA Method 1613	
Matrix: \quad Aqueous		QC Batch No.:	6653	Lab Sample: $\quad 0$-OPR001		Date Analyzed DB-225:	
Sample Size: $\quad 1.000 \mathrm{~L}$		Date Extracted:	30-Mar-05		Date Analyzed DB-5: 31-Mar-05		
Analyte	Spike Conc.	Conc. (ng/mL)	OPR Limits	Labeled Standard		\%R	LCL-UCL
2,3,7,8-TCDD	10.0	10.9	6.7-15.8	IS	13C-2,3,7,8-TCDD	68.5	25-164
1,2,3,7,8-PeCDD	50.0	53.3	35-71		13C-1,2,3,7,8-PeCDD	68.2	25-181
1,2,3,4,7,8-HxCDD	50.0	52.0	35-82		$13 \mathrm{C}-1,2,3,4,7,8-\mathrm{HxCDD}$	88.5	32-141
1,2,3,6,7,8-HxCDD	50.0	53.5	38-67		$13 \mathrm{C}-1,2,3,6,7,8-\mathrm{HxCDD}$	101	28-130
1,2,3,7,8,9-HxCDD	50.0	41.0	32-81		13C-1, 2, 3,4,6,7,8-HpCDD	70.5	23-140
1,2,3,4,6,7,8-HpCDD	50.0	52.7	35-70		13 C -OCDD	38.0	17-157
OCDD	100	111	78-144		13C-2,3,7,8-TCDF	75.2	24-169
2,3,7,8-TCDF	10.0	10.4	75-15.8		13C-1,2,3,7,8-PeCDF	66.3	24-185
1,2,3,7,8-PeCDF	50.0	50.2	40-67		13C-2,3,4,7,8-PeCDF	72.3	21-178
2,3,4,7,8-PeCDF	50.0	50.4	34-80		$13 \mathrm{C}-1,2,3,4,7,8-\mathrm{HxCDF}$	88.8	26-152
1,2,3,4,7,8-HxCDF	50.0	49.9	36-67		13C-1,2,3,6,7,8-HxCDF	97.3	26-123
1,2,3,6,7,8-HxCDF	50.0	50.1	42-65		13C-2,3,4,6,7,8-HxCDF	86.3	28-136
2,3,4,6,7,8-HxCDF	50.0	50.5	35-78		13C-1, 2, 3,7,8,9-HxCDF	84.2	29-147
1,2,3,7,8,9-HxCDF	50.0	49.3	39-65		13C-1,2,3,4,6,7,8-HpCDF	69.1	28-143
1,2,3,4,6,7,8-HpCDF	50.0	50.3	41-61		13C-1,2,3,4,7,8,9-HpCDF	76.9	26-138
1,2,3,4,7,8,9-HpCDF	50.0	48.9	39-69		13C-OCDF	49.3	17-157
OCDF	100	99.5	63-170	CRS 37Cl-2,3,7,8-TCDD		74.7	35-197
Analyst: RAS					Approved By: William J. Lu	emburg 01	r-2005 13:47

APPENDIX

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank.
D The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.
I Chemical Interference
J The amount detected is below the Lower Calibration Limit of the instrument.
P Homologue totals include any coplanar PCBs detected at concentrations less than the reporting limit.

* See Cover Letter

Conc. Concentration
DL Sample-specific estimated detection limit
MDL The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration
NA Not applicable
RL Reporting Limit - concentrations that correspond to low calibration point
ND Not Detected
TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

The control limits are "interim limits only" until in-house limits are utilized.

NELAP - (Primary AA: California, Certificate No. 02102CA)
Department of the Navy

U.S. Army Corps of Engineers

U.S. EPA Region 5

Bureau of Reclamation - Mid-Pacific Region - (MP-470, Res-1.10)
Commonwealth of Kentucky - (Certificate No. 90063)
Commonwealth of Virginia - (Certificate No. 00013)
State of Alaska, Department of Environmental Conservation - (Certificate No. OS-00197)
State of Arizona - (Certificate No. AZ0639)
State of Arkansas, Department of Health - (Approval granted through CA certification)
State of Arkansas, Department of Environmental Quality
State of California - (Certificate No. 1640)
State of Colorado
State of Connecticut - (Certificate No. PH-0182)
State of Florida - (Certificate No. 87456)
State of Louisiana, Department of Health and Hospitals - (Certificate No. LA000014)
State of Louisiana, Department of Environmental Quality
State of Maine
State of Michigan (Certificate No. 81178087)
State of Mississippi - (Approval granted through CA certification)
State of Nevada - (Certificate No. CA413)
State of New Jersey - (Certificate No. CA003)
State of New York, Department of Health - (Certificate No. 11411)
State of North Carolina - (Certification No. 06700)
State of North Dakota, Department of Health - (Certificate No. R-078)
State of New Mexico
State of Okiahoma - (D9919)
State of Oregon - (Certificate No. CA413)
State of Pennsylvania - (Certificate No. 68-490)
State of South Carolina - (Certificate No. 87002001)
State of Tennessee - (Certificate No. 02996)
State of Texas - (Certificate No. TX247-1000A
State of Utah - (Certificate No. E-201)
State of Washington - (Certification No. C091)
State of Wisconsin - (Certificate No. 998036160)
State of Wyoming - (USEPA Region 8 Ref: 8TMS-Q)

SUBCONTRACT ORDER - PROJECT \# IOC2063

STANDARD OPERATING PROCEDURE

Attachment 10.B. 1

SAMPLE LOG-IN CHECKLIST

ALTA Project No.: 25967

comment yumplers initial fund on sample label.

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: 13267 (Study 1)
Outfall 011

Sampled: 03/25/05
Received: 03/25/05
Issued: 04/13/05 17:34

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain(s) of Custody, 5 pages, are included and are an integral part of this report.
This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT:
HOLDING TIMES:

PRESERVATION:
QA/QC CRITERIA:

COMMENTS:
SUBCONTRACTED:

Samples were received intact, at $2^{\circ} \mathrm{C}$, on ice and with chain of custody documentation.
All samples were analyzed within prescribed holding times and/or in accordance with the Del Mar Analytical Sample Acceptance Policy unless otherwise noted in the report.
Samples requiring preservation were verified prior to sample analysis.
All analyses met method criteria, except as noted in the report with data qualifiers. The percent recovery for benzidine in the BS/BSD was below method acceptance limits. Benzidine is known to be a problematic compouind and according to the EPA, it can be subject to oxidative losses during solvent extraction and its chromatographic behavior is poor. All results reported for benzidine are potentially biased low and can be considered estimates only. Results for benzidine are reported with 'L2' qualifier. The ICAL \%RSD failed the acceptance limit for 2,4-Dinitrophenol. Instrument sensitivity was acceptable based upon the response for 2,4-Dinitrophenol at the low ICAL level. The CCV and BS/BSD met acceptance limits for the analyte. Affected samples were 'ND' for this analyte, without J-flag detection. Therefore, since acceptable sensitivity is represented by the instrument and the extraction procedure, the analyte was flagged with ' $\mathrm{N}-1$ ' and reported. The sample was then reanalyzed for 2,4-Dinitrophenol and the results are reported as an RE1. Also, there was a low BSD recovery for the original batch for Oil \& Grease and the lab re-extracted and re-analyzed the sample.
Results that fall between the MDL and RL are ' J ' flagged.
Refer to the last page for specific subcontract laboratory information included in this report.

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1)	
	Outfall 011	Sampled: $03 / 25 / 05$
Report Number:	IOC2064	Received: $03 / 25 / 05$

LABORATORY ID

IOC2064-01
IOC2064-02

CLIENT ID
Outfall 011 Composite
Trip Blank

MATRIX
Water
Water

Reviewed By:

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011
Report Number: 10 C 2064
Sampled: 03/25/05
Received: 03/25/05

CORRECTIVE ACTION REPORT

Department: Extractions
Method: EPA 625
QC Batch: 5C28041

Date: 03/31/2005
Matrix: Water

Identification and Definition of Problem:
The percent recovery for benzidine in the LCS was below method acceptance limits.

Determination of the Cause of the Problem:
Benzidine is known to be a problematic compound. According to the EPA, it can be subject to oxidative losses during solvent extraction and its chromatographic behavior is poor.

Corrective Action Taken:

All results reported for benzidine are potentially biased low and can be considered estimates only.

Quality Assurance Approval:

Date: 04/08/2005 03:42 PM

[^49]
Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011
Report Number: IOC2064

Received: 03/25/05

TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)

Analyte

Method

	MDL	Reporting
Batch	Limit	Limit

Sample ID: 1OC2064-01 (Outfall 011 Composite - Water)

 Reporting Units: mglTotal Recoverable Hydrocarbon

Sample Dilution Date
Result Factor Extracted
Resuit

Date
Data

Date	Data
Analyzed	Qualifiers

EPA 418.1 5C26002 0.3
$1.0 \quad \mathrm{ND} \quad 1 \quad 03 / 26 / 05 \quad 03 / 26 / 05$

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1) Outfall 011		
Report Number:	lOC2064		Sampled: 03/25/05
---:			
Received: 03/25/05			

EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 10C2064-01 (Outfall 011 Composite - Water) - cont.									
Reporting Units: mgl									
EFH (C13-C22)	EPA 8015B	5C26001	0.082	0.50	ND	0.943	03/26/05	03/28/05	
Surrogate: n-Octacosane (40-125\%)					65\%				

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOC2064

Sampled: 03/25/05
Received: 03/25/05

VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OC2064-01 (Outfall 01 Reporting Units: mgh	omposite - Water								
GRO (C4-C12) Surrogate: 4-BFB (FID) (65-140\%)	EPA 8015 Mod .	5C26026	0.050	0.10	$\begin{aligned} & \text { ND } \\ & 102 \% \end{aligned}$	1	03/26/05	03/28/05	
Sample ID: 1OC2064-02 (Trip Blan Reporting Units: mgl	Water)								
GRO (C4-C12) Surrogate: 4-BFB (FID) (65-140\%)	EPA 8015 Mod.	5C26026	0.050	0.10	$\begin{aligned} & \text { ND } \\ & 88 \% \end{aligned}$	1	03/26/05	03/27/05	

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
 Outfall 011
 Report Number: 10 C 2064
 Sampled: 03/25/05
 Received: 03/25/05

PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OC2064-01 (Outfall 011 Composite - Water) Reporting Units: ugh									
Benzene	EPA 624	5C27003	0.28	1.0	ND	1	03/27/05	03/27/05	
Bromodichloromethane	EPA 624	5C27003	0.30	2.0	ND	1	03/27/05	03/27/05	
Bromoform	EPA 624	5C27003	0.32	5.0	ND	1	03/27/05	03/27/05	
Bromomethane	EPA 624	5C27003	0.34	5.0	ND	1	03/27/05	03/27/05	
Carbon tetrachloride	EPA 624	$5 \mathrm{C27003}$	0.28	0.50	ND	1	03/27/05	03/27/05	
Chlorobenzene	EPA 624	5 C 27003	0.36	2.0	ND	1	03/27/05	03/27/05	
Chloroethane	EPA 624	5 C 27003	0.33	5.0	ND	1	03/27/05	03/27/05	
Chloroform	EPA 624	SC27003	0.33	2.0	ND	1	03/27/05	03/27/05	
Chloromethane	EPA 624	5 C 27003	0.30	5.0	ND	1	03/27/05	03/27/05	
Dibromochloromethane	EPA 624	5C27003	0.28	2.0	ND	1	03/27/05	03/27/05	
1,2-Dichlorobenzene	EPA 624	5C27003	0.32	2.0	ND	1	03/27/05	03/27/05	
1,3-Dichlorobenzene	EPA 624	5 C 27003	0.35	2.0	ND	1	03/27/05	03/27/05	
1,4-Dichlorobenzene	EPA 624	5 C 27003	0.37	2.0	ND	1	03/27/05	03/27/05	
1,1-Dichloroethane	EPA 624	5 C 27003	0.27	2.0	ND	1	03/27/05	03/27/05	
1,2-Dichloroethane	EPA 624	5 C 27003	0.28	0.50	ND	1	03/27/05	03/27/05	
1,1-Dichloroethene	EPA 624	5C27003	0.32	5.0	ND	1	03/27/05	03/27/05	
trans-1,2-Dichloroethene	EPA 624	5 C 27003	0.27	2.0	ND	1	03/27/05	03/27/05	
1,2-Dichloropropane	EPA 624	5 C 27003	0.35	2.0	ND	1	$03 / 27105$	03/27/05	
cis 1,3 Dichloropropene	EPA 624	5 C 27003	0.22	20	ND	1	03/27/05	03/27/05	
trans-1,3-Dichloropropene	EPA 624	5 C 27003	0.24	2.0	ND	1	03/27/05	03/27/05	
Ethylbenzene	EPA 624	5 C 27003	0.25	2.0	ND	1	03/27/05	03/27/05	
Methylene chloride	EPA 624	5C27003	0.48	5.0	ND	1	03/27/05	03/27/05	
1,1,2,2-Tetrachloroethane	EPA 624	5 C 27003	0.24	2.0	ND	1	03/27/05	03/27/05	
Tetrachloroethene	EPA 624	5 C 27003	0.32	2.0	ND	1	03/27/05	03/27/05	
Toluene	EPA 624	5 C 27003	0.36	2.0	ND	1	03/27/05	03/27/05	
1,1,1-Trichloroethane	EPA 624	5 C 27003	0.30	2.0	ND	1	03/27/05	03/27/05	
1,1,2-Trichloroethane	EPA 624	5 C 27003	0.30	2.0	ND	1	03/27/05	03/27/05	
Trichloroethene	EPA 624	5C27003	0.26	2.0	ND	1	03/27/05	03/27/05	
Trichlorofluoromethane	EPA 624	5 C 27003	0.34	5.0	ND	1	03/27/05	03/27/05	
Vinyl chloride	EPA 624	5 C 27003	0.26	0.50	ND	1	03/27/05	03/27/05	
Xylenes, Total	EPA 624	5 C 27003	0.52	4.0	ND	1	03/27/05	03/27/05	
Trichlorotrifluoroethane (Freon 113)	EPA 624	5C27003	1.2	5.0	ND	,	03/27/05	03/27/05	
Surrogate: Dibromofluoromethane (80-120\%)					105\%				
Surrogate: Toluene-d8 (80-120\%)					100\%				
Surrogate: 4-Bromofluorobenzene (80-120\%)					94\%				

[^50]MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

| Project ID: | 13267 (Study 1) | |
| ---: | :--- | ---: | :--- |
| | Outfall 011 | Sampled: $03 / 25 / 05$ |
| Report Number: | IOC2064 | Received: $03 / 25 / 05$ |

Sampled: 03/25/05
Received: 03/25/05

PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyze
Sample ID: IOC2064-02 (Trip Blank - Water)								
Reporting Units: ugh								
Benzene	EPA 624	5 C 27003	0.28	1.0	ND	1	03/27/05	
Bromodichloromethane	EPA 624	5C27003	0.30	2.0	ND	1	03/27/05	03/27/05
Bromoform	EPA 624	5C27003	0.32	5.0	ND	1	03/27105	03/27/05
Bromomethane	EPA 624	5 C 27003	0.34	5.0	ND	1	03/27/05	03/27/05
Carbon tetrachloride	EPA 624	5 C 27003	0.28	0.50	ND	1	03/27/05	03/27/05
Chlorobenzene	EPA 624	5C27003	0.36	2.0	ND	1	03/27/05	03/27/05
Chloroethane	EPA 624	5 C 27003	0.33	5.0	ND	1	03/27/05	03/27/05
Chloroform	EPA 624	5 C 27003	0.33	2.0	ND	1	03/27/05	03/27/05
Chloromethane	EPA 624	5 C 27003	0.30	5.0	ND	1	03/27/05	03/27/05
Dibromochloromethane	EPA 624	5 C 27003	0.28	2.0	ND	1	03/27/05	03/27/05
1,2-Dichlorobenzene	EPA 624	5 C 27003	0.32	2.0	ND	1	03/27/05	03/27/05
1,3-Dichlorobenzene	EPA 624	5 C 27003	0.35	2.0	ND	1	03/27/05	03/27/05
1,4-Dichlorobenzene	EPA 624	5C27003	0.37	2.0	ND	1	03/27/05	03/27/05
1,1-Dichloroethane	EPA 624	5C27003	0.27	2.0	ND	1	03/27/05	03/27/05
1,2-Dichloroethane	EPA 624	5C27003	0.28	0.50	ND	1	03/27/05	03/27/05
1,1-Dichloroethene	EPA 624	5 C 27003	0.32	5.0	ND	1	03/27/05	03/27/05
trans-1,2-Dichloroethene	EPA 624	5C27003	0.27	2.0	ND	1	03/27/05	03/27/05
1,2-Dichloropropane	EPA 624	5 C 27003	0.35	2.0	ND	1	03/27/05	03/27/05
cis-1,3 Dichloropropene	EPA 624	5027003	0.22	2.0	ND	1	03/27/05	03/27/05
trans-1,3-Dichloropropene	EPA 624	$5 C 27003$	0.24	2.0	ND	1	03/27/05	03/27/05
Ethylbenzene	EPA 624	5 C 27003	0.25	2.0	ND	1	03/27/05	03/27/05
Methylene chloride	EPA 624	5 C 27003	0.48	5.0	ND	1	03/27/05	03/27/05
1,1,2,2-Tetrachloroethane	EPA 624	5 C 27003	0.24	2.0	ND	1	03/27/05	03/27/05
Tetrachloroethene	EPA 624	5 C 27003	0.32	2.0	ND	1	03/27/05	03/27/05
Toluene	EPA 624	5C27003	0.36	2.0	ND	1	03/27/05	03/27/05
1,1,1-Trichloroethane	EPA 624	5C27003	0.30	2.0	ND	1	03/27/05	03/27/05
1,1,2-Trichloroethane	EPA 624	5C27003	0.30	2.0	ND	1	03/27/05	03/27/05
Trichloroethene	EPA 624	5 C 27003	0.26	2.0	ND	1	03/27/05	03/27/05
Trichlorofluoromethane	EPA 624	5 C 27003	0.34	5.0	ND	1	03/27/05	03/27/05
Vinyl chloride	EPA 624	5 C 27003	0.26	0.50	ND	1	03/27/05	03/27/05
Xylenes, Total	EPA 624	5 C 27003	0.52	4.0	ND	1	03/27/05	03/27/05
Trichlorotrifluoroethane (Freon 113)	EPA 624	5C27003	1.2	5.0	ND	1 1	03/27/05	
Surrogate: Dibromofluoromethane (80-120\%)					105\%			03/2705
Surrogate: Toluene-d8 (80-120\%)					100\%			
Surrogate: 4-Bromofluorobenzene (80-120\%)					93\%			

[^51]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1) Outfall 011	
Report Number:	IOC2064	

PURGEABLES BY GC/MS (EPA 624)

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1)		
	Outfall 011	\quad	Sampled: $03 / 25 / 05$
:---			
Report Number:			
IOC2064			

Received: 03/25/05

PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OC2064-01 (Outfall 011 Composite - Water)									
Reporting Units: ug/									
1,2-Dichloro-1,1,2-trifluoroethane	EPA 624 (MOD.)	5C27003	N/A	2.5	ND	1	03/27/05	03/27/05	
Cyclohexane	EPA 624 (MOD.)	5C27003	N/A	2.5	ND	1	03/27/05	03/27/05	
Sample ID: 10C2064-02 (Trip Blank - Water)									
Reporting Units: ug/l									
1,2-Dichloro-1,1,2-trifluoroethane	EPA 624 (MOD.)	5C27003	N/A	2.5	ND	1	03/27/05	03/27/05	
Cyclohexane	EPA 624 (MOD.)	5C27003	N/A	2.5	ND	1	03/27/05	03/27/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Sampled: 03/25/05
Received: 03/25/05

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OC2064-01 (Outfall 011 Composite - Water)Reporting Units: ugh									
Acenaphthene	EPA 625	5 C 28041	0.10	0.50	ND	0.943	03/28/05	03/31/05	
Acenaphthylene	EPA 625	5C28041	0.10	0.50	ND	0.943	03/28/05	03/31/05	
Aniline	EPA 625	5C28041	2.9	10	ND	0.943	03/28/05	03/31/05	
Anthracene	EPA 625	5 C 28041	0.083	0.50	ND	0.943	03/28/05	03/31/05	
Benzidine	EPA 625	5 C 28041	2.4	5.0	ND	0.943	03/28/05	03/31/05	L2
Benzoic acid	EPA 625	5 C 28041	3.7	20	ND	0.943	03/28/05	03/31/05	
Benzo(a)anthracene	EPA 625	5 C 28041	0.038	5.0	ND	0.943	03/28/05	03/31/05	
Benzo(a)pyrene	EPA 625	5 C 28041	0.14	2.0	ND	0.943	03/28/05	03/31/05	
Benzo(b)fluoranthene	EPA 625	5C28041	0.050	2.0	ND	0.943	03/28/05	03/31/05	
Benzo(g,h,i)perylene	EPA 625	5 C 28041	0.059	5.0	ND	0.943	03/28/05	03/31/05	
Benzo(k)fluoranthene	EPA 625	5 C 28041	0.053	0.50	ND	0.943	03/28/05	03/31/05	
Benzyl alcohol	EPA 625	5 C 28041	0.21	5.0	ND	0.943	03/28/05	03/31/05	
Bis(2-chloroethoxy)methane	EPA 625	5 C 28041	0.072	0.50	ND	0.943	03/28/05	03/31/05	
Bis(2-chloroethyl)ether	EPA 625	5C28041	0.084	0.50	ND	0.943	03/28/05	03/31/05	
Bis(2-chloroisopropyl)ether	EPA 625	5 C 28041	0.11	0.50	ND	0.943	03/28/05	03/31/05	
Bis(2-ethylhexyl)phthalate	EPA 625	5C28041	1.1	5.0	ND	0.943	03/28/05	03/31/05	
4-Bromophenyl phenyl ether	EPA 625	5 C 28041	0.12	1.0	ND	0.943	03/28/05	03/31/05	
Butyl benzyl phthalate	EPA 625	5 C 28041	0.34	5.0	0.70	0.943	03/28/05	03/31/05	J
4 Chloroaniline	EPA 625	5 C 28041	020	2.0	ND	0.943	03/28/05	03/31/05	
2-Chloronaphthalene	EPA 625	5 C 28041	0.059	0.50	ND	0.943	03/28/05	03/31/05	
4-Chloro-3-methylphenol	EPA 625	5C28041	0.34	2.0	ND	0.943	03/28/05	03/31/05	
4-Chlorophenyl phenyl ether	EPA 625	5 C 28041	0.056	0.50	ND	0.943	03/28/05	03/31/05	
2 -Chlorophenol	EPA 625	5 C 28041	0.12	1.0	ND	0.943	03/28/05	03/31/05	
Chrysene	EPA 625	5 C 28041	0.072	0.50	ND	0.943	03/28/05	03/31/05	
Dibenz(a,h)anthracene	EPA 625	5 C 28041	0.083	0.50	ND	0.943	03/28/05	03/31/05	
Dibenzofuran	EPA 625	5 C 28041	0.075	0.50	ND	0.943	03/28/05	03/31/05	
Di-n-butyl phthalate	EPA 625	5C28041	0.26	2.0	ND	0.943	03/28/05	03/31/05	
1,2-Dichlorobenzene	EPA 625	5 C 28041	0.11	0.50	ND	0.943	03/28/05	03/31/05	
1,3-Dichlorobenzene	EPA 625	5 C 28041	0.13	0.50	ND	0.943	03/28/05	03/31/05	
1,4-Dichlorobenzene	EPA 625	5 C 28041	0.050	0.50	ND	0.943	03/28/05	03/31/05	
3,3-Dichlorobenzidine	EPA 625	5C28041	0.93	5.0	ND	0.943	03/28/05	03/31/05	
2,4-Dichlorophenol	EPA 625	5 C 28041	0.21	2.0	ND	0.943	03/28/05	03/31/05	
Diethyl phthalate	EPA 625	5 C 28041	0.12	1.0	0.26	0.943	03/28/05	03/31/05	J
2,4-Dimethylphenol	EPA 625	5 C 28041	0.31	2.0	ND	0.943	03/28/05	03/31/05	
Dimethyl phthalate	EPA 625	5 C 28041	0.081	0.50	ND	0.943	03/28/05	03/31/05	
4,6-Dinitro-2-methylphenol	EPA 625	5 C 28041	0.38	5.0	ND	0.943	03/28/05	03/31/05	
2,4-Dinitrophenol	EPA 625	5C28041	2.7	5.0	ND	0.943	03/28/05	03/31/05	N-1
2,4-Dinitrotoluene	EPA 625	5C28041	0.23	5.0	ND	0.943	03/28/05	03/31/05	
2,6-Dinitrotoluene	EPA 625	5 C 28041	0.24	5.0	ND	0.943	03/28/05	03/31/05	
Di-n-octyl phthalate	EPA 625	5C28041	0.17	5.0	ND	0.943	03/28/05	03/31/05	
1,2-Diphenylhydrazine/Azobenzene	EPA 625	5C28041	0.087	1.0	ND	0.943	03/28/05	03/31/05	
Del Mar Analytical, Irvine Michele Harper Project Manager									

Del Mar Analytical

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dllution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOC2064-01 (Outfall 011 Composite - Water) - cont.Reporting Units: ugd									
Fluoranthene	EPA 625	5C28041	0.089	0.50	ND	0.943	03/28/05	03/31/05	
Fluorene	EPA 625	5C28041	0.075	0.50	ND	0.943	03/28/05	03/31/05	
Hexachlorobenzene	EPA 625	5C28041	0.13	1.0	ND	0.943	03/28/05	03/31/05	
Hexachlorobutadiene	EPA 625	5C28041	0.38	2.0	ND	0.943	03/28/05	03/31/05	
Hexachlorocyclopentadiene	EPA 625	5 C 28041	1.8	5.0	ND	0.943	03/28/05	03/31/05	
Hexachloroethane	EPA 625	5C28041	0.51	3.0	ND	0.943	03/28/05	03/31/05	
Indeno(1,2,3-cd)pyrene	EPA 625	5 C 28041	0.19	2.0	ND	0.943	03/28/05	03/31/05	
Isophorone	EPA 625	5 C 28041	0.059	1.0	ND	0.943	03/28/05	03/31/05	
2-Methylnaphthalene	EPA 625	5C28041	0.13	1.0	ND	0.943	03/28/05	03/31/05	
2-Methylphenol	EPA 625	5 C 28041	0.28	2.0	ND	0.943	03/28/05	03/31/05	
4-Methylphenol	EPA 625	5C28041	0.20	5.0	ND	0.943	03/28/05	03/31/05	
Naphthalene	EPA 625	5 C 28041	0.13	1.0	ND	0.943	03/28/05	03/31/05	
2-Nitroaniline	EPA 625	5 C 28041	0.18	5.0	ND	0.943	03/28/05	03/31/05	
3-Nitroaniline	EPA 625	5C28041	0.35	5.0	ND	0.943	03/28/05	03/31/05	
4-Nitroaniline	EPA 625	5C28041	0.49	5.0	ND	0.943	03/28/05	03/31/05	
Nitrobenzene	EPA 625	5 C 28041	0.10	1.0	ND	0.943	03/28/05	03/31/05	
2-Nitrophenol	EPA 625	5 C 28041	0.23	2.0	ND	0.943	03/28/05	03/31/05	
4Witrophenol	EPA 625	$5 \mathrm{C28041}$.	0.73	5.0	ND	0.943	03/28/05	03/31/05	
N-Nitrosodimethylamine	EPA 625	$5 C 28041$	0.22	2.0	ND	0.943	03/28/05	03/31/05	
N-Nitroso-di-n-propylamine	EPA 625	5 C 28041	0.18	2.0	ND	0.943	03/28/05	03/31/05	
N -Nitrosodiphenylamine	EPA 625	5C28041	0.077	1.0	ND	0.943	03/28/05	03/31/05	
Pentachlorophenol	EPA 625	5 C 28041	0.78	2.0	ND	0.943	03/28/05	03/31/05	
Phenanthrene	EPA 625	5 C 28041	0.071	0.50	ND	0.943	03/28/05	03/31/05	
Phenol	EPA 625	5 C 28041	0.14	1.0	ND	0.943	03/28/05	03/31/05	
Pyrene	EPA 625	5 C 28041	0.059	0.50	ND	0.943	03/28/05	03/31/05	
1,2,4-Trichlorobenzene	EPA 625	5 C 28041	0.10	1.0	ND	0.943	03/28/05	03/31/05	
2,4,5-Trichlorophenol	EPA 625	5 C 28041	0.075	2.0	ND	0.943	03/28/05	03/31/05	
2,4,6-Trichlorophenol	EPA 625	5C28041	0.10	1.0	ND	0.943	03/28/05	03/31/05	
Surrogate: 2-Fluorophenol (30-120\%)					63%				
Surrogate: Phenol-d6 (35-120\%)					66\%				
Surrogate: 2,4,6-Tribromophenol (45-120\%)					87\%				
Surrogate: Nitrobenzene-d5 (45-120\%)					67%				
Surrogate: 2-Fluorobiphenyl (45-120\%)					70%				
Surrogate: Terphenyl-d14 (45-120\%)					83%				

Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 1OC2064

Sampled: 03/25/05
Received: 03/25/05

ORGANOCHLORINE PESTICIDES (EPA 608)

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1)	
	Outfall 011	Sampled: 03/25/05
Report Number:	IOC2064	Received: 03/25/05

TOTAL PCBS (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOC2064-01 (Outfall 011 Composite - Water) - cont.Reporting Units: ugh									
Aroclor 1016	EPA 608	5C28048	0.20	1.0	ND	0.952	03/28/05	03/30/05	
Aroclor 1221	EPA 608	5C28048	0.10	1.0	ND	0.952	03/28/05	03/30/05	
Aroclor 1232	EPA 608	5C28048	0.15	1.0	ND	0.952	03/28/05	03/30/05	
Aroclor 1242	EPA 608	5C28048	0.15	1.0	ND	0.952	03/28/05	03/30/05	
Aroclor 1248	EPA 608	5C28048	0.25	1.0	ND	0.952	03/28/05	03/30/05	
Aroclor 1254	EPA 608	5C28048	0.25	1.0	ND	0.952	03/28/05	03/30/05	
Aroclor 1260	EPA 608	5C28048	0.40	1.0	ND	0.952	03/28/05	03/30/05	
Surrogate: Decachlorobiphenyl (45-120\%)					45%				

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1)	
	Outfall 011	
Report Number:	IOC2064	Sampled: $03 / 25 / 05$
	Received: $03 / 25 / 05$	

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOC2064-01 (Outfall 011 Composite - Water) - cont.									
Reperting Units: mg/									
Barium	EPA 200.8	5C25116	0.00014	0.0010	0.024	1	03/25/05	03/28/05	
Boron	EPA 200.7	5 C 25111	0.0074	0.050	0.095	1	03/25/05	03/27/05	
Iron	EPA 200.8	5C25116	0.0032	0.010	0.43	1	03/25/05	03/28/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

```
Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOC2064
```

Sampled: 03/25/05
Received: 03/25/05

METALS

			MDL	Reporting	Sample	Dilution Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor Extracted	Analyzed Qualifiers	

Sample ID: IOC2064-01 (Outfall 011 Composite - Water) - cont.
Reporting Units: ug/l

Antimony	EPA 200.8	5C25116	0.18	2.0	0.29	1	03/25/05	03/28/05	J
Arsenic	EPA 200.8	5 C 25116	0.49	1.0	2.6	1	03/25/05	03/28/05	
Berylium	EPA 200.8	5 C 25116	0.037	0.50	ND	1	03/25/05	03/28/05	
Cadmium	EPA 200.8	5 C 25116	0.015	1.0	0.20	1	03/25/05	03/28/05	J
Chromium	ERA 200.8	5 C 25116	0.26	2.0	1.4	1	03/25/05	03/28/05	B, J
Cobalt	EPA 200.8	5C25116	0.10	1.0	0.29	1	03/25/05	03/28/05	J
Copper	EPA 200.8	5C25116	0.49	2.0	3.7	1	03/25/05	03/28/05	
Lead	EPA 200.8	5C25116	0.13	1.0	0.43	1	03/25/05	03/28/05	J
Manganese	EPA 200.8	5C25116	0.44	1.0	41	1	03/25/05	03/28/05	
Mercury	EPA 245.1	5C26033	0.063	0.20	ND	1	03/26/05	03/26/05	
Nickel	EPA 200.8	5 C 25116	0.15	2.0	3.5	1	03/25/05	03/28/05	
Selenium	EPA 200.8	5 C 25116	0.36	2.0	ND	1	03/25/05	03/28/05	
Silver	EPA 200.8	5 C 25116	0.089	1.0	ND	1	03/25/05	03/28/05	
Thallium	EPA 200.8	5 C 25116	0.075	1.0	ND	1	03/25/05	03/28/05	
Vanadium	EPA 200.8	5 C 25116	0.86	2.0	1.2	1	03/25/05	03/28/05	J
Zine	EPA 200.8	5C25116	3.1	20	13	1	03/25/05	03/28/05	J

Del Mar Analytical, Irvine
Michele Harper
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing	Project ID:	13267 (Study 1) Outfall 011
300 North Lake Avenue, Suite 1200		Report Number:
Pasadena, CA 91101	IOC2064	
Attention: Bronwyn Kelly		

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifers
Sample ID: IOC2064-01 (Outfall 011 Composite - Water)-cont.Reporting Units: mg/									
Ammonia- N (Distilled)	EPA 350.2	5C28067	0.30	0.50	ND	1	03/28/05	03/28/05	
Biochemical Oxygen Demand	EPA 405.1	5C25093	0.59	2.0	1.1	1	03/25/05	03/30/05	J
Chloride	EPA 300.0	5C25048	0.26	0.50	9.2	1	03/25/05	03/25/05	
Fluoride	EPA 300.0	5C25048	0.10	0.50	0.25	1	03/25/05	03/25/05	J
Nitrate/Nitrite-N	EPA 300.0	5C25048	0.072	0.11	0.15	1	03/25/05	03/25/05	
Residual Chlorine	EPA 330.5	5C25118	0.10	0.10	ND	1	03/25/05	03/25/05	
Sulfate	EPA 300.0	5C25048	0.18	0.50	22	1	03/25/05	03/25/05	
Surfactants (MBAS)	SM5540-C	5 C 25096	0.044	0.10	ND	1	03/25/05	03/25/05	
Total Dissolved Solids	SM2540C	5C28078	10	10	140	1	03/28/05	03/28/05	
Total Organic Carbon	EPA 415.1	5C28077	0.25	1.0	10	1	03/28/05	03/28/05	
Total Suspended Solids	EPA 160.2	5C25117	10	10	ND	1	03/25/05	03/25/05	

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly	Project ID: $:$ 13267 (Study 1) Outfall 011				Sampled: 03/25/05 Received: 03/25/05				
INORGANICS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample 1D: IOC2064-01RE1 (Outfall 011 Composite - Water) - cont.									
Oil \& Grease	EPA 413.1	5C28069	0.94	5.0	ND	1	03/28/05	03/28/05	

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly	Report Number:		13267 Outfall IOC206	Study 1)	$\begin{array}{rr}\text { Sampled: } & 03 / 25 / 05 \\ \text { Received: } & 03 / 25 / 05\end{array}$				
INORGANICS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OC2064-01 (Outfall 011 Composite - Water) - cont.									
Reporting Units: m//hr									
Total Settleable Solids	EPA 160.5	5C25105	0.10	0.10	ND	1	03/25/05	03/25/05	

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1)		
Outfall 011		\quad	Sampled: 03/25/05
---:			
Report Number:			
IOC2064			

$$
\text { Received: } 03 / 25 / 05
$$

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dillution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOC2064-01 (Outfall 011 Composite - Water) - cont.									
Reporting Units: NTU									
Turbidity	EPA 180.1	5C26056	0.040	1.0	4.2	1	03/26/05	03/26/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1) Outfall 011	Sampled: 03/25/05 Report Number: 1OC2064

Received: 03/25/05

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOC2064-01 (Outfall 011 Composite - Water) - cont.									
Reporting Units: ug/									
Chromium VI	EPA 218.6	5C25058	0.10	1.0	ND	1	03/25/05	03/25/05	
Total Cyanide	EPA 335.2	SC25119	2.2	5.0	ND	1	03/25/05	03/25/05	
Perchlorate	EPA 314.0	5C25061	0.80	4.0	ND	1	03/25/05	03/26/05	

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011 Sampled: 03/25/05
Report Number: IOC2064
Received: 03/25/05

1,4-DIOXANE BY GC/MS (EPA 5030B/8260B)

Del Mar Analytical

 9494 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St. Sutite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. \#3, Las Veggs, NV 89120 (702) 798-3620 FAX (702) 798-3621MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1)	
	Outfall 011	Sampled:
Report Number:	03/25/05	
		Received: $03 / 25 / 05$

Received: 03/25/05

SHORT HOLD TIME DETAIL REPORT

| | Hold Time
 (in days) | Date/Time
 Sampled | Date/Time
 Received | Date/Time
 Extracted | Date/Time
 Analyzed |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID: Outfall 011 Composite (IOC2064-01) - Water | | | | | |

[^52]

TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C26002 Extracted: 03/26/05										
Blank Analyzed: 03/26/2005 (5C26002-BLK1)										
Total Recoverable Hydrocarbons ND	1.0	0.31	mg/							
LCS Analyzed: 03/26/2005 (5C26002-BS1)										M-NR1
Total Recoverable Hydrocarbons 4.72	1.0	0.31	mgl	5.00		94	65-120			
LCS Dup Analyzed: 03/26/2005 (5C26002-BSD1)										
Total Recoverable Hydrocarbons 4.84	1.0	0.31	$\mathrm{mg} / 1$	5.00		97	65-120	3	20	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 1OC2064
R N

Sampled: 03/25/05
Received: 03/25/05

MEIHOD BLAANKIOC DATA

EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C26001 Extracted: 03/26/05										
Blank Analyzed: 03/28/2005 (5C26001-BLK1)										
EFH (C13-C22) ND	0.50	0.082	$\mathrm{mg} / 1$							
EFH (C13-C40) ND	0.50	0.082	$\mathrm{mg} / 1$							
Surrogate: n-Octacosane 0.123			mg / l	0.200		62	40-125			
LCS Analyzed: 03/28/2005 (5C26001-BS1) M-NR1										
EFH (C13-C40) 0.348	0.50	0.082	mg / l	0.775						
Surrogate: n-Octacosane 0.0990			$m g / l$	0.200		50	40-120			
LCS Dup Analyzed: 03/28/2005 (5C26001-BSD1)										
EFH (C13-C40) 0.332	0.50	0.082	mg / l	0.775		43		5	25	J
Surrogate: n-Octacosane 0.0940			$m g /$	0.200		47	40-125			J

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID:
13267 (Study 1) 300 North Lake Avenue, Suite 1200 Outfall 011 Pasadena, CA 91101 Report Number: IOC2064	
Attention: Bronwyn Kelly	

Sampled: 03/25/05
Received: 03/25/05

METHOD BLANKIQC DATA

VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

```
Project ID: 13267 (Study 1) Outfall 011
Report Number: IOC2064
Sampled: 03/25/05
Received: 03/25/05
```


METHOD BLANKIOC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Bateh: 5C27003 Extracted: 03/27/05											
Blank Analyzed: 03/27/2005 (5C27003-BLK1)											
Benzene	ND	1.0	0.28	ug/							
Bromodichloromethane	ND	2.0	0.30	ug/							
Bromoform	ND	5.0	0.32	ug/							
Bromomethane	ND	5.0	0.34	ug/							
Carbon tetrachloride	ND	0.50	0.28	ug/							
Chlorobenzene	ND	2.0	0.36	ugh							
Chloroethane	ND	5.0	0.33	ug/							
Chloroform	ND	2.0	0.33	ug/							
Chloromethane	ND	5.0	0.30	ug/l							
Dibromochloromethane	ND	2.0	0.28	ug/							
1,2-Dichlorobenzene	ND	2.0	0.32	ug/							
1,3-Dichlorobenzene	ND	2.0	0.35	ug/							
1,4-Dichlorobenzene	ND	2.0	0.37	ugh	\%	\cdots		-			
1,1 Dichloroethane	ND	2.0	0.27	ug/				\%			-
1,2-Dichloroethane	ND	0.50	0.28	ug/							
1,1-Dichloroethene	ND	5.0	0.32	ug/1							
trans-1,2-Dichloroethene	ND	2.0	0.27	ug/							
1,2-Dichloropropane	ND	2.0	0.35	ug/		,					
cis-1,3-Dichloropropene	ND	2.0	0.22	ugd							
trans-1,3-Dichloropropene	ND	2.0	0.24	ug/							
Ethylbenzene	ND	2.0	0.25	ug/							
Methylene chloride	ND	5.0	0.48	ug/							
1,1,2,2-Tetrachloroethane	ND	2.0	0.24	ugh							
Tetrachloroethene	ND	2.0	0.32	ugh							
Toluene	ND	2.0	0.36	ugh							
1,1,1-Trichloroethane	ND	2.0	0.30	ugh							
1,1,2-Trichloroethane	ND	2.0	0.30	ugh							
Trichloroethene	ND	2.0	0.26	ugh							
Trichlorofuoromethane	ND	5.0	0.34	ugh							
Vinyl chloride	ND	0.50	0.26	ug/l							
Xylenes, Total	ND	4.0	0.52	ug/							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	1.2	ug/l							
Surrogate: Dibromofluoromethane	26.2			ugh	25.0		105	80-120			
Surrogate: Toluene-d8	25.2			ug/	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	22.8			$u g /$	25.0		91	80-120			

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10 C 2064
Sampled: 03/25/05
Received: 03/25/05

METHOD BLANKIQC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C27003 Extracted: 03/27/05											

LCS Analyzed: 03/27/2005 (5C27003-BS1)

Benzene	24.0	1.0	0.28	ugh	25.0	96	70-120
Bromodichloromethane	23.4	2.0	0.30	ug/	25.0	94	70-140
Bromoform	22.6	5.0	0.32	ug/	25.0	90	55-135
Bromomethane	25.8	5.0	0.34	ug/	25.0	103	60-140
Carbon tetrachloride	24.2	0.50	0.28	ug/	25.0	97	70-140
Chlorobenzene	23.6	2.0	0.36	ug/	25.0	94	80-125
Chloroethane	24.1	5.0	0.33	ug/	25.0	96	60-145
Chloroform	25.1	2.0	0.33	ugh	25.0	100	75-130
Chloromethane	25.4	5.0	0.30	ug/l	25.0	102	40-145
Dibromochloromethane	23.2	2.0	0.28	ug/	25.0	93	65-145
1,2-Dichlorobenzene	23.8	2.0	0.32	ug/	25.0	95	80-120
1,3-Dichlorobenzene	23.6	2.0	0.35	ug/	25.0	94	80-120
1,4 Dichlorobenzene	23.6	2.0	0.37	ugA	25.0	94	80-120
1,1-Dichloroethane	25.2	2.0	0.27	ugn	25.0	101	70-135
1,2-Dichloroethane	26.3	0.50	0.28	ug/	25.0	105	60-150
1,1-Dichloroethene	24.2	5.0	0.32	ug/	25.0	97	75-135
trans-1,2-Dichloroethene	24.8	2.0	0.27	ug/	25.0	99	70-130
1,2-Dichloropropane	24.4	2.0	0.35	ug/l	25.0	98	70-120
cis-1,3-Dichloropropene	23.8	2.0	0.22	ugh	25.0	95	75-130
trans-1,3-Dichloropropene	23.5	2.0	0.24	ugh	25.0	94	75-135
Ethylbenzene	24.2	2.0	0.25	ugh	25.0	97	80-120
Methylene chloride	25.3	5.0	0.48	ug/	25.0	101	60-135
1,1,2,2-Tetrachloroethane	23.2	2.0	0.24	ug/	25.0	93	60-135
Tetrachloroethene	23.4	2.0	0.32	ug/	25.0	94	75-125
Toluene	23.8	2.0	0.36	ug/l	25.0	95	75-120
1,1,1-Trichloroethane	24.6	2.0	0.30	ug/	25.0	98	75-140
1,1,2-Trichloroethane	23.4	2.0	0.30	ug/	25.0	94	70-125
Trichloroethene	23.9	2.0	0.26	ug/	25.0	96	80-120
Trichlorofluoromethane	25.9	5.0	0.34	ug/l	25.0	104	65-145
Vinyl chloride	21.4	0.50	0.26	ug/	25.0	86	50-130
Surrogate: Dibromofluoromethane	26.6			ug/	25.0	106	80-120
Surrogate: Toluene-d8	25.3			ug n	25.0	101	80-120
Surrogate: 4-Eromofluorobenzene	24.8			ugh	25.0	99	80-120

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOC2064
Sampled: 03/25/05
Received: 03/25/05

METHOD BLANKIOC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data
Batch: 5C27003 Extracted: 03/27/05											

Matrix Spike Analyzed: 03/27/2005 (5C27003-MS1)					Source: 1OC2063-01			
Benzene	22.4	1.0	0.28	ug/	25.0	ND	90	70-120
Bromodichloromethane	22.6	2.0	0.30	ug/	25.0	ND	90	70-140
Bromoform	23.6	5.0	0.32	ugl	25.0	ND	94	55-140
Bromomethane	23.5	5.0	0.34	ug/	25.0	ND	94	50-145
Carbon tetrachloride	22.0	0.50	0.28	ug/	25.0	ND	88	70-145
Chlorobenzene	22.2	2.0	0.36	ug/	25.0	ND	89	80-125
Chloroethane	21.3	5.0	0.33	ug/	25.0	ND	85	50-145
Chloroform	23.4	2.0	0.33	ug/1	25.0	ND	94	70-135
Chloromethane	22.6	5.0	0.30	ug/	25.0	ND	90	35-145
Dibromochloromethane	23.3	2.0	0.28	ug/	25.0	ND	93	65-145
1,2-Dichlorobenzene	22.9	2.0	0.32	ug/	25.0	ND	92	75-130
1,3-Dichlorobenzene	22.0	2.0	0.35	ugh	25.0	ND	88	75-130
14-Dichlorobenzene	22.4	2.0	0.37	ug/	25.0	ND	90	80.120
1, Dichloroethane	23.3	2.0	0.27	ugh	250	ND	93	65-135
1,2-Dichloroethane	25.8	0.50	0.28	ug/	25.0	ND	103	60-150
1,1-Dichloroethene	22.6	5.0	0.32	ug/	25.0	ND	90	65-140
trans-1,2-Dichloroethene	23.0	2.0	0.27	ug/	25.0	ND	92	65-135
1,2-Dichloropropane	23.5	2.0	0.35	ug/	25.0	ND	94	65-130
cis-1,3-Dichloropropene	23.2	2.0	0.22	ug/	25.0	ND	93	70-140
trans-1,3-Dichloropropene	23.6	2.0	0.24	ug/l	25.0	ND	94	70-140
Ethylbenzene	21.8	2.0	0.25	ug/	25.0	ND	87	70-130
Methylene chloride	24.4	5.0	0.48	ugl	25.0	ND	98	60-135
1,1,2,2-Tetrachloroethane	25.4	2.0	0.24	ug/	25.0	ND	102	60-145
Tetrachloroethene	21.2	2.0	0.32	ug/l	25.0	ND	85	70-130
Toluene	22.3	2.0	0.36	ug/	25.0	ND	89	70-120
1,1,1-Trichloroethane	22.1	2.0	0.30	ug/l	25.0	ND	88	75-140
1,1,2-Trichloroethane	24.3	2.0	0.30	ugh	25.0	ND	97	60-135
Trichloroethene	22.2	2.0	0.26	ug/	25.0	ND	89	70-125
Trichlorofluoromethane	23.4	5.0	0.34	ug/	25.0	ND	94	55-145
Vinyl chloride	19.0	0.50	0.26	ug/	25.0	ND	76	40-135
Surrogate: Dibromofluoromethane	26.6			ug/	25.0		106	80-120
Surrogate: Toluene-d8	25.1			$u g /$	25.0		100	80-120
Surrogate: 4-Bromofluorobenzene	24.2			ug $/$	25.0		97	80-120

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

```
                Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOC2064 Received: 03/25/05
```


MEIHOD BLANIOOC DATA

PURGEABLES BY GC/MS (EPA 624)

| | | | Reporting | | | Spike | Source | \%REC | | RPD | Data |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Analyte | Result | Limit | MDL | Units | Level | Result | \%REC | Limits | RPD | Limit | Qualifiers |

Matrix Spike Dup Analyzed: 03/27/2005 (5C27003-MSD1)

Matix	C2003-MSD1 Source: 1OC2063-01									
Benzene	23.1	1.0	0.28	ug/l	25.0	ND	92	70-120	3	20
Bromodichloromethane	23.6	2.0	0.30	ug/	25.0	ND	94	70-140	4	20
Bromoform	25.2	5.0	0.32	ug/l	25.0	ND	101	55-140	7	25
Bromomethane	23.9	5.0	0.34	ug/l	25.0	ND	96	50-145	2	25
Carbon tetrachloride	23.0	0.50	0.28	ug/l	25.0	ND	92	70-145	4	25
Chlorobenzene	23.0	2.0	0.36	ug/	25.0	ND	92	80-125	4	20
Chloroethane	22.3	5.0	0.33	ug/	25.0	ND	89	50-145	5	25
Chloroform	24.0	2.0	0.33	ug/l	25.0	ND	96	70-135	3	20
Chloromethane	23.0	5.0	0.30	ug/l	25.0	ND	92	35-145	2	25
Dibromochloromethane	24.4	2.0	0.28	ugh	25.0	ND	98	65-145	5	25
1,2-Dichlorobenzene	23.5	2.0	0.32	ug/l	25.0	ND	94	75-130	3	20
1,3-Dichlorobenzene	22.7	2.0	0.35	ug/l	25.0	ND	91	75-130	3	20
1,4-Dichlorobenzene	23.1	2.0	0.37	uga	25.0	ND	92	$80-120$	3	20
1,-Dichloroethane	23.9	2.0	0.27	ugn	25.0	ND	96	65-135	3	20
1,2-Dichloroethane	26.6	0.50	0.28	ug/l	25.0	ND	106	60-150	3	20
1,1-Dichloroethene	23.4	5.0	0.32	ug/l	25.0	ND	94	65-140	3	20
trans-1,2-Dichloroethene	23.7	2.0	0.27	ug/l	25.0	ND	95	65-135	3	20
1,2-Dichloropropane	24.1	2.0	0.35	ug/l	25.0	ND	96	65-130	3	20
cis-1,3-Dichloropropene	23.9	2.0	0.22	ug/l	25.0	ND	96	70-140	3	20
trans-1,3-Dichloropropene	24.4	2.0	0.24	ug/	25.0	ND	98	70-140	3	25
Ethylbenzene	22.6	2.0	0.25	ug/	25.0	ND	90	70-130	4	20
Methylene chloride	25.4	5.0	0.48	ug/	25.0	ND	102	60-135	4	20
1,1,2,2-Tetrachloroethane	26.3	2.0	0.24	ug/	25.0	ND	105	60-145	3	30
Tetrachloroethene	22.2	2.0	0.32	ug/	25.0	ND	89	70-130	5	20
Toluene	22.9	2.0	0.36	ug/l	25.0	ND	92	70-120	3	20
1,1,1-Trichloroethane	22.7	2.0	0.30	ug/l	25.0	ND	91	75-140	3	20
1,1,2-Trichloroethane	24.9	2.0	0.30	ug/	25.0	ND	100	60-135	2	25
Trichloroethene	22.9	2.0	0.26	ugh	25.0	ND	92	70-125	3	20
Trichlorofluoromethane	23.9	5.0	0.34	ugh	25.0	ND	96	55-145	2	25
Vinyl chloride	19.2	0.50	0.26	ug/l	25.0	ND	77	40-135	I	30
Surrogate: Dibromofluoromethane	26.7			ug/	25.0		107	80-120		
Surrogate: Toluene-d8	25.0			ug/l	25.0		100	80-120		
Surrogate: 4-Bromofluorobenzene	24.5			$u g / l$	25.0		98	80-120		

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1)		
Outfall 011			
Report Number:	IOC2064	\quad	Sampled: $03 / 25 / 05$
:---			

Received: 03/25/05

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C27003 Extracted: 03/27/05											
Blank Analyzed: 03/27/2005 (5C27003-BLK1)											
Acrolein	ND	50	4.6	ug/l							
Acrylonitrile	ND	50	5.1	ug/							
2 -Chloroethyl vinyl ether	ND	5.0	1.3	ug/							
Surrogate: Dibromofluoromethane	26.2			ug/	25.0		105	80-120			
Surrogate: Toluene-d8	25.2			ug $/$	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	22.8			ug $/$	25.0		91	80-120			
LCS Analyzed: 03/27/2005 (5C27003-BS1)											
2 -Chloroethyl vinyl ether	24.8	5.0	1.3	ug/	25.0		99	20-175			
Surrogate: Dibromofluoromethane	26.6			ug/	25.0		106	80-120			
Surrogate: Toluene-d8	25.3			$u g /$	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	24.8			ug/	25.0		99	80-120			
Matrix Spike Analyzed; 03/27/2005 (5C27003-MS1)					Source: 1OC2063-01						
2-Chloroethyl vinyl ether	- 26.6	5.0	1.3	ug/	25.0	ND	106	20:175			
Surrogate: Dibromofluoromethane	26.6			$u g /$	25.0		106	80-120			
Surrogate: Toluene-d8	25.1			ug/l	25.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	24.2			$u g /$	25.0		97	80-120			
Matrix Spike Dup Analyzed: 03/27/2005 (5C27003-MSD1)					Source: 1OC2063-01						
${ }^{2}$-Chloroethyl vinyl ether	27.1	5.0	1.3	ugh	25.0	ND	108	20-175	2	25	
Surrogate: Dibromofuoromethane	26.7			$u g /$	25.0		107	80-120			
Surrogate: Toluene-d8	25.0			ugh	25.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	24.5			$u g / 1$	25.0		98	80-120			

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011
Report Number: 10 C 2064

Sampled: 03/25/05
Received: 03/25/05

METHOD BLANKIOC DATA

PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	$\begin{aligned} & \text { RPD } \\ & \text { Limit } \end{aligned}$	Data Qualifiers
Batch: 5C27003 Extracted: 03/27/05											
Blank Analyzed: 03/27/2005 (5C27003-BLK1)											
Cyclohexane	ND	2.5	N/A	ug/							
1,2-Dichloro-1,1,2-trifluoroethane	ND	2.5	N/A	ug/							

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10 C 2064
Sampled: 03/25/05
Received: 03/25/05

MITHHOD BLANHOC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data
Batch: 5C28041 Extracted: 03/28/05											

Blank Analyzed: 03/31/2005 (5C28041-BLK1)

Acenaphthene	ND	0.50	0.10	ug/
Acenaphthylene	ND	0.50	0.10	ug/
Aniline	ND	10	2.9	ug/
Anthracene	ND	0.50	0.083	ug/1
Benzidine	ND	5.0	2.4	ug/
Benzoic acid	ND	20	3.7	ug/
Benzo(a)anthracene	ND	5.0	0.038	ug/
Benzo(a)pyrene	ND	2.0	0.14	ug/
Benzo(b)fluoranthene	ND	2.0	0.050	ug/
Benzo(g,h,i)perylene	ND	5.0	0.059	ug/
Benzo(k)fluoranthene	ND	0.50	0.053	ug/
Benzyl alcohol	ND	5.0	0.21	ug/
Bis(2-ctloroethoxy)methane	ND	0.50	0.072	ugh
Bis(2-chloroethyl)ether	ND	0.50	0.084	ugd
Bis(2-chloroisopropyl)ether	ND	0.50	0.11	ug/
Bis(2-ethylhexyl)phthalate	ND	5.0	1.1	ug/
4-Bromophenyl phenyl ether	ND	1.0	0.12	ug/
Butyl benzyl phthalate	0.760	5.0	0.34	ug/
4 Chloroaniline	ND	2.0	0.20	ug/
2-Chloronaphthalene	ND	0.50	0.059	ug/1
4-Chloro-3-methylphenol	ND	2.0	0.34	ugh
4-Chlorophenyl phenyl ether	ND	0.50	0.056	ug/
2-Chlorophenol	ND	1.0	0.12	ug/
Chrysene	ND	0.50	0.072	ug/
Dibenz (a,h)anthracene	ND	0.50	0.083	ug/
Dibenzofuran	ND	0.50	0.075	ug/
Di-a-butyl phthalate	0.300	2.0	0.26	ug/
1,2-Dichlorobenzene	ND	0.50	0.11	ug/
1,3-Dichlorobenzene	ND	0.50	0.13	ug/
1,4-Dichlorobenzene	ND	0.50	0.050	ug/
3,3-Dichlorobenzidine	ND	5.0	0.93	ug/
2,4-Dichlorophenol	ND	2.0	0.21	ug/
Diethyl phthalate	0.220	1.0	0.12	ug/l
2,4-Dimethylphenol	ND	2.0	0.31	ug/
Dimethyl phthalate	ND	0.50	0.081	ug/l

[^53]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOC2064
Sampled: 03/25/05
Received: 03/25/05

MEILIOD BLANKKIOC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Oualifiers
Batch: 5C28041 Extracted: 03/28/05											

Blank Analyzed: 03/31/2005 (5C28041-BLK1)							
4,6-Dinitro-2-methylphenol	ND	5.0	0.38	ug/			
2,4-Dinitrophenol	ND	5.0	2.7	ug/			$N-1$
2,4-Dinitrotoluene	ND	5.0	0.23	ug/			N-1
2,6-Dinitrotoluene	ND	5.0	0.24	ugh			
Di-n-octyl phthalate	ND	5.0	0.17	ug/			
1,2-Diphenylhydrazine/Azobenzene	ND	1.0	0.087	ug/			
Fluoranthene	ND	0.50	0.089	ug/			
Fluorene	ND	0.50	0.075	ug/			
Hexachlorobenzene	ND	1.0	0.13	ug/l			
Hexachlorobutadiene	ND	2.0	0.38	ugl			
Hexachlorocyclopentadiene	ND	5.0	1.8	ug/			
Hexachloroethane	ND	3.0	0.51	ug/1			
Indeno(1,2,3-cd)pyrene	ND	2.0	0.19	uga			
Is ophorone	ND	1.0	0.059	ugh			
2-Methylnaphthalene	ND	1.0	0.13	ug/l			
2-Methylphenol	ND	2.0	0.28	ug/			
4-Methylphenol	ND	5.0	0.20	ug/l			
Naphthalene	ND	1.0	0.13	ug/			
2-Nitroaniline	ND	5.0	0.18	ug/1			
3-Nitroaniline	ND	5.0	0.35	ug/1			
4-Nitroaniline	ND	5.0	0.49	ug/			
Nitrobenzene	ND	1.0	0.10	ug/			
2-Nitrophenol	ND	2.0	0.23	ug/			
4-Nitrophenol	ND	5.0	0.73	ug/			
N -Nitrosodimethylamine	ND	2.0	0.22	ug/			
N -Nitroso-di-n-propylamine	ND	2.0	0.18	ug/			
N -Nitrosodiphenylamine	ND	1.0	0.077	ug/			
Pentachlorophenol	ND	2.0	0.78	ug/			
Phenantirene	ND	0.50	0.071	ug/			
Phenol	ND	1.0	0.14	ug/l			
Pyrene	ND	0.50	0.059	ugh			
1,2,4-Trichlorobenzene	ND	1.0	0.10	ug/l			
2,4,5-Trichlorophenol	ND	2.0	0.075	ug/l			
2,4,6-Trichlorophenol	ND	1.0	0.10	ug/			
Surrogate: 2-Fluorophenol	13.6			ug/	20.0	68	

Del Mar Analytical, Irvine

Michele Harper

Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)

Outfall 011
Report Number: 1OC2064
Sampled: 03/25/05
Received: 03/25/05

METHOD BLANIEQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C28041 Extracted: 03/28/05											
Blank Analyzed: 03/31/2005 (5C28041-BLK1)											
Surrogate: Phenol-d6	13.7			ug/l	20.0		68	35-120			
Surrogate: 2,4,6-Tribromophenol	16.5			ug/	20.0		82	45-120			
Surrogate: Nitrobenzene-d5	6.94			ug/	10.0		69	45-120			
Surrogate: 2-Fluorobiphenyl	7.28			ug/l	10.0		73	45-120			
Surrogate: Terphenyl-d14	8.40			ug $/$	10.0		84	45-120			
Blank Analyzed: 04/11/2005 (5C28041-BLK2)											
2,4-Dinitrophenol	ND	5.0	2.7	ug/							
Surrogate: 2-Fluorophenol	12.9			ug/	20.0		64	30-120			
Surrogate: Phenol-d6	13.6			ug/l	20.0		68	35-120			
Surrogate: 2,4,6-Tribromophenol	17.1			ug/l	20.0		86	45-120			
Surrogate: Nitrobenzene-d5	6.98			$u g /$	10.0		70	45-120			
Surrogate: 2-Fluorobiphenyl	7.68			ug/	10.0		77	45-120			
Surrogate Terphenyl-d14	8.10			$u g h$	10.0		81	45-120			
LCS Analyzed: 03/31/2005 (5C											M-NR1
Acenaphthene	8.28	0.50	0.10	ug/	10.0		83	55-120			
Acenaphthylene	8.44	0.50	0.10	ug/	10.0		84	55-120			
Aniline	7.32	10	2.9	ug/	10.0		73	35-120			J
Anthracene	8.48	0.50	0.083	ug/	10.0		85	55-120			
Beazidine	ND	5.0	2.4	ug/	10.0			20-160			$L 2$
Benzoic acid	6.74	20	3.7	ug/	10.0		67	35-120			J
Benzo(a)anthracene	9.52	5.0	0.038	ug/	10.0		95	60-120			
Benzo(a)pyrene	8.70	2.0	0.14	ug/	10.0		87	55-120			
Benzo(b)fluoranthene	9.32	2.0	0.050	ug/	10.0		93	50-120			
Benzo(g,h,i)perylene	8.16	5.0	0.059	ug/	10.0		82	40-125			
Benzo(k)fluoranthene	9.24	0.50	0.053	ug/	10.0		92	50-120			
Benzyl alcohol	7.62	5.0	0.21	ug/	10.0		76	45-120			
Bis(2-chloroethoxy)methane	7.98	0.50	0.072	ug/	10.0		80	55-120			
Bis(2-chloroethyl)ether	6.98	0.50	0.084	ug/l	10.0		70	50-120			
Bis(2-chloroisopropyl)ether	7.26	0.50	0.11	ug/	10.0		73	45-120			
Bis(2-ethylhexyl)phthalate	9.16	5.0	1.1	ug/	10.0		92	60-130			
4-Bromophenyl phenyl ether	8.10	1.0	0.12	ug/	10.0		81	50-120			
Butyl benzyl phthalate	9.66	5.0	0.34	ugl	10.0		97	55-125			
4-Chloroaniline	6.60	2.0	0.20	ug/	10.0		66	50-120			
2-Chloronaphthalene	8.52	0.50	0.059	ugl	10.0		85	55-120			
Del Mar Analytical, Irvine Michele Harper Project Manager											

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOC2064
Sampled: 03/25/05

Project ID:	13267 (Study 1)		
Outfall 011		\quad	Sampled: 03/25/05
---:			
Report Number:			
IOC2064			

METHOD BLANKIOC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte
Batch: 5C28041 Extracted: 03/28/05

LCS Analyzed: 03/31/2005 (5C28041-BS1)								M-NR1
4-Chloro-3-methylphenol	7.18	2.0	0.34	ug/	10.0	72	60-120	
4 Chlorophenyl phenyl ether	8.88	0.50	0.056	ugh	10.0	89	55-120	
2-Chlorophenol	7.12	1.0	0.12	ugh	10.0	71	45-120	
Chrysene	9.14	0.50	0.072	ugh	10.0	91	60-120	
Dibenz(a, h)anthracene	7.06	0.50	0.083	ug/	10.0	71	45-130	
Dibenzofuran	8.18	0.50	0.075	ug/	10.0	82	60-120	
Di-n-butyl phthalate	9.02	2.0	0.26	ug/	10.0	90	55-125	
1,2-Dichlorobenzene	6.26	0.50	0.11	ug/	10.0	63	35-120	
1,3-Dichlorobenzene	6.26	0.50	0.13	ug/	10.0	63	35-120	
1,4-Dichlorobenzene	6.18	0.50	0.050	ug/	10.0	62	35-120	
3,3-Dichlorobenzidine	6.98	5.0	0.93	ug/	10.0	70	45-130	
2,4-Dichlorophenol	7.68	2.0	0.21	ug/	10.0	77	55.120	
Diethyl phthalate	818	10	0.12	$\mathrm{ug} A$	10.	82	55120	
2,4-Pimethylphenol	528	2.0	0.31	ugh	10.0	53	30-120	
Dimethyl phthalate	8.76	0.50	0.081	ug/	10.0	88	60-120	
4,6-Dinitro-2-methylphenol	9.40	5.0	0.38	ug/	10.0	94	50-120	
2,4-Dinitrophenol	8.70	5.0	2.7	ugh	10.0	87	40-120	
2,4-Dinitrotoluene	8.00	5.0	0.23	ugl	10.0	80	$60-120$	
2,6-Dinitrotoluene	8.28	5.0	0.24	ugh	10.0	83	60-120	
Di-i-octyl phthalate	9.46	5.0	0.17	ug/l	10.0	95	60-130	
1,2-Diphenylhydrazine/Azobenzene	8.78	1.0	0.087	ughl	10.0	88	60-120	
Fluoranthene	9.26	0.50	0.089	ugl	10.0	93	55-120	
Fluorene	9.18	0.50	0.075	ugh	10.0	92	60-120	
Hexachlorobenzene	8.42	1.0	0.13	ug/	10.0	84	50-120	
Hexachlorobutadiene	6.40	2.0	0.38	ugh	10.0	64	40-120	
Hexachlorocyclopentadiene	7.30	5.0	1.8	ugh	10.0	73	15-120	
Hexachloroethane	6.26	3.0	0.51	$\mathrm{ug} /$	10.0	63	35-120	
Indeno($1,2,3$-cd)pyrene	7.72	2.0	0.19	ug/	10.0	77	40-130	
Isophorone	7.42	1.0	0.059	ug/	10.0	74	50-120	
2-Methylnaphthalene	7.88	1.0	0.13	ug/	10.0	79	50-120	
2-Methylphenol	6.98	2.0	0.28	ug/	10.0	70	45-120	
4-Methylphenol	7.12	5.0	0.20	ugh	10.0	71	45-120	
Naphthalene	7.36	1.0	0.13	ug/	10.0	74	50-120	
2-Nitroaniline	8.62	5.0	0.18	ug/	10.0	86	60-120	
3-Nitroaniline	7.82	5.0	0.35	ug/	10.0	78	55-120	

Del Mar Analytical, Irvine
 Michele Harper

Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOC2064
Sampled: 03/25/05
Received: 03/25/05

MITHOD BIANLIOC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

LCS Analyzed: 03/31/2005 (5C28041-BS1)

4-Nitroaniline	8.16
Nitrobenzene	6.90
2-Nitrophenol	7.58
4-Nitrophenol	7.60
N-Nitrosodimethylamine	7.40
N-Nitroso-di-n-propylamine	7.22
N-Nitrosodiphenylamine	7.98
Pentachlorophenol	8.86
Phenanthrene	8.56
Phenol	8.12
Pyrene	9.44
1,2,4-Trichlorobenzene	6.52
2,4,5-Trichlorophenol	8.30
2,4,6-Trichlorophenol	8.76
Surrogate: 2 2-Fluorophenol	13.3
Surrogate: Phenol-d6	13.1
Surrogate: 2,4,6-Tribromophenol	16.0
Surrogate: Nitrobenzene-d5	6.70
Surrogate: 2 2-Fluorobiphenyl	7.58
Surrogate: Terphenyl-d14	8.10

LCS Analyzed: 04/11/2005 (5C28041-BS2)

2,4-Dinitrophenol	8.72
Surrogate: 2-Fhuorophenol	13.0
Surrogate: Phenol-d6	13.4
Surrogate: $2,4,6$-Tribromophenol	16.7
Surrogate: Nitrobenzene-ds	6.72
Surrogate: 2-Fluorobiphenyl	7.14
Surrogate: Terphenyl-d14	7.92

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOC2064

Sampled: 03/25/05
Received: 03/25/05

METIOO BLANKIOC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte Result

Reporting			Spike	Source	\%REC		RPD	Data	
Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

LCS Dup Analyzed: 03/31/2005 (5C28041-BSD1)

Acenaphthene	8.72
Acenaphthylene	8.94
Aniline	7.42
Anthracene	9.00
Benzidine	ND
Benzoic acid	7.72
Benzo(a)anthracene	10.0
Benzo(a)pyrene	9.12
Benzo(b)fluoranthene	9.82
Benzo(g,h,i)perylene	8.40
Benzo(k)fluoranthene	9.86
Benzyl alcohol	8.10
Bis (2-chloroethoxy)methane	8.56
Bis (2-chloroethyl)ether	7.40
Bis(2-chloroisopropyl)ether	7.66
Bis(2-ethylhexyl)phthalate	9.30
4-Bromophenyl phenyl ether	8.54
Butyl benzyl phthalate	9.60
4-Chloroaniline	7.20
2-Chloronaphthalene	8.94
4-Chloro-3-methylphenol	7.48
4-Chlorophenyl phenyl ether	9.62
2-Chlorophenol	7.62
Chrysene	9.44
Dibenz(a,h)anthracene	8.20
Dibenzofuran	8.70
Di-n-butyl phthalate	9.38
1,2-Dichlorobenzene	6.86
1,3-Dichlorobenzene	6.68
1,4-Dichlorobenzene	6.62
3,3-Dichlorobenzidine	8.16
2,4-Dichlorophenol	7.94
Diethyl phthalate	8.76
2,4-Dimethylphenol	5.42
Dimethyl phthalate	9.26

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

$\begin{array}{rrr}\text { Project ID: } & \begin{array}{l}13267 \text { (Study 1) } \\ \\ \text { Outfall 011 }\end{array} & \text { Sampled: 03/25/05 } \\ \text { Report Number: } & \text { IOC2064 } & \text { Received: 03/25/05 }\end{array}$

NHMHOD BHANKOC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte
Batch: 5C28041 Extracted: 03/28/05

LCS Dup Analyzed: 03/31/2005	-BSD1									
4,6-Dinitro-2-methylphenol	9.54	5.0	0.38	ug/	10.0	95	50-120	1	25	
2,4-Dinitrophenol	8.94	5.0	2.7	ug/1	10.0	89	40-120	3	25	$N-1$
2,4-Dinitrotoluene	8.46	5.0	0.23	ug/	10.0	85	60-120	6	20	
2,6-Dinitrotoluene	8.62	5.0	0.24	ug/	10.0	86	60-120	4	20	
Di-n-octyl phthalate	10.0	5.0	0.17	ugh	10.0	100	60-130	6	20	
1,2-Diphenylhydrazine/Azobenzene	9.68	1.0	0.087	ug/	10.0	97	60-120	10	25	
Fluoranthene	9.68	0.50	0.089	ug/	10.0	97	55-120	4	20	
Fluorene	9.80	0.50	0.075	ug/	10.0	98	60-120	7	20	
Hexachlorobenzene	8.88	1.0	0.13	ugl	10.0	89	50-120	5	20	
Hexachlorobutadiene	6.94	2.0	0.38	ug/	10.0	69	40-120	8	25	
Hexachlorocyclopentadiene	8.62	5.0	1.8	ug/	10.0	86	15-120	17	30	
Hexachloroethane	6.78	3.0	0.51	ug!	10.0	68	35-120	8	25	
Indeno($1,2,3, \mathrm{~cd}$) pyrene	856	2.0	0.19	ugl	10.0	86	40.130	10	25	
Isophorone	7.52	1.0	0059	ugh	10.0	75	50-120.	1.	20	
2-Methylnaphthalene	8.46	1.0	0.13	ug/	10.0	85	50-120	7	20	
2-Methylphenol	7.30	2.0	0.28	ug/	10.0	73	45-120	4	20	
4-Methylphenol	7.48	5.0	0.20	ug/	10.0	75	45-120	5	20	
Naphthalene	7.94	1.0	0.13	ug/	10.0	79	50-120	8	20	
2-Nitroaniline 3-Nitroaniline	9.28	5.0	0.18	ug/	10.0	93	60-120	7	20	
3-Nitroaniline	8.46	5.0	0.35	ugA	10.0	85	55-120	8	25	
4-Nitroaniline	8.60	5.0	0.49	ug/	10.0	86	50-125	5	20	
Nitrobenzene	7.28	1.0	0.10	ug/	10.0	73	50-120	5	25	
2-Nitrophenol	7.92	2.0	0.23	ug/	10.0	79	55-120	4	25	
N-Nitrosodimethylamine	8.70	5.0	0.73	ug/l	10.0	87	45-120	13	25	
N-Nitroso-di-n-propylamine	7.56	2.0	0.22	ug/1	10.0	76	40-120	2	20	
N-Nitrosodiphenylamine	7.68 8.36	2.0	0.18	ug/1	10.0	77	45-120	6	20	
Pentachlorophenol	9.04	1.0 2.0	0.077	ug/	10.0	84	55-120	5	20	
Phenanthrene	9.06	0.50	0.78	ug/	10.0	90	50-120	2	25	
Phenol	8.62	1.0		ugh	10.0	91	55-120	6	20	
Pyrene	9.74	1.0 0.50	0.14 0.059	ug/ ug/l	10.0 10.0	86	45-120	6	25	
1,2,4-Trichlorobenzene	7.02	1.0	0.10	ug/	10.0	70	45-120	7	25	
2,4,5-Trichlorophenol	8.36	2.0	0.075	ug/	10.0	84	60-120	1	20	
2,4,6-Trichlorophenol	9.06	1.0	0.10	ug/	10.0	91	60-120	3	20	
Surrogate: 2-Fluorophenol	13.5			$u g /$	20.0	68	30-120			

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 1OC2064
Sampled: 03/25/05
Received: 03/25/05

METHOD BLANKIQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data
Batch: 5C28041 Extracted: 03/28/05											

LCS Dup Analyzed: 03/31/2005 (5C28041-BSD1)
Surrogate: Phenol-d6 13.7
Surrogate: 2,4,6-Tribromophenol 16.7
Surrogate: Nitrobenzene-d5 $\quad 7.00$
Surrogate: 2-Fluorobiphenyl 7.96
Surrogate: Terphenyl-d14 8.22
LCS Dup Analyzed: 04/11/2005 (5C28041-BSD2)

2,4-Dinitrophenol	8.86	5.0	2.7	ug/	10.0	89	40-120	2
Surrogate: 2-Fluorophenol	13.2			$u \mathrm{~g} / \mathrm{l}$	20.0	66	30-120	
Surrogate: Phenol-d6	14.3			ugh	20.0	72	35-120	
Surrogate: 2,4,6-Tribromophenol	17.2			ugh	20.0	86	45-120	
Surrogate: Nitrobenzene-d5	7.02			ug/l	10.0	70	45-120	
Surrogate: 2-Fluorobiphenyl	7.52			ug/l	10.0	75	45-120	
Surrogate: Terphenild 14	7.66			ugh	10.0	77	45-120	

Del Mar Analytical, Irvine

Michele Harper

Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOC2064

Sampled: 03/25/05
Received: 03/25/05

METHOD BLANKIQC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

bel Mar Analytical, Irvine
fichele Harper
roject Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)

Outfall 011
Report Number: IOC2064

Sampled: 03/25/05
Received: 03/25/05

METHOD BLANKIOC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte
Batch: 5C28048 Extracted: 03/28/05

Result

Reporting			Spike	Source	\%REC		RPD	Data	
Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Endrin	0.420
Endrin aldehyde	0.382
Endrin ketone	0.402
Heptachlor	0.371
Heptachlor epoxide	0.388
Methoxychlor	0.399
Surrogate: Tetrachloro-m-xylene	0.337
Surrogate: Decachlorobiphenyl	0.372

LCS Dup Analyzed: 03/29/2005 (5C28048-BSD1)

Aldrin	0.291
alpha-BHC	0.322
beta-BHC	0.345
delta-BHC	0.352
gamma-BHC (Lindane)	0.328
4,4'-DDD	0.397
4,4-DDE	0.378
4,4--DDT	0.531
Dieldrin	0.368
Endosulfan I	0.351
Endosulfan II	0.368
Endosulfan sulfate	0.373
Endrin	0.383
Endrin aldehyde	0.369
Endrin ketone	0.377
Heptachlor	0.320
Heptachlor epoxide	0.349
Methoxychlor	0.375
Surrogate: Tetrachloro-m-xylene	0.289
Surrogate: Decachlorobiphenyl	0.344

[^54]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:		13267 (Study 1)
	Outfall 011	
Report Number:	IOC2064	Sampled: $03 / 25 / 05$
		Received: $03 / 25 / 05$

METHOD BLANKIQC DATA

TOTAL PCBS (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C28048 Extracted: 03/28/05											
Blank Analyzed: 03/29/2005-03/30/2005 (5C28048-BLK1)											
Aroclor 1016	ND	1.0	0.20	ug/							
Aroclor 1221	ND	1.0	0.10	ug/							
Aroclor 1232	ND	1.0	0.15	ugh							
Aroclor 1242	ND	1.0	0.15	ug/							
Aroclor 1248	ND	1.0	0.25	ug/l							
Aroclor 1254	ND	1.0	0.25	ug/							
Aroclor 1260	ND	1.0	0.40	ug/							
Surrogate: Decachlorobiphenyl	0.407			$u g h$	0.500		81	45-120			
LCS Analyzed: 03/31/2005 (5C28048-BS2) M-NR1											
Aroclor 1016	6.06	2.0	0.40	ug/	8.00		76	50-115			M-NRI
Aroclor 1260	5.96	2.0	0.80	ug/l	8.00		74	55-115			
Surrogate: Decachlorobiphenyl	0.769	\cdots		$u g /$	1.00		77	45-120			
LCS Dup Analyzed, 03/30/2005 (5C28048-BSD2)											
Aroclor 1016	3.08	1.0	0.20	ug/l	4.00		77	50-115	65		
Aroclor 1260	3.30	1.0	0.40	ug/	4.00		82	55-115	57	25	R-7 $R-7$
Surrogate: Decachlorobiphenyl	0.431			ug $/$	0.500		86	45-120		2	R-7

Del Mar Analytical, Irvine
Michele Harper
Project Manager
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOC2064

METHOD BLANKOC DATA

METALS

	Result	Reportin Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C25111 Extracted; 03/25/05											
Blank Analyzed: 03/26/2005 (5C25111-BLK1)											
Boron	ND	0.050	0.0074	mg / l							
LCS Analyzed: 03/26/2005 (5C25111-BS1)											
Boron	0.450	0.050	0.0074	mg / l	0.500		90	85-115			
Matrix Spike Analyzed: 03/26/2005 (5C25111-MS1) Source: 10C1861-01											
Boron	0.612	0.050	0.0074	mg / l	0.500	0.13	96	70-130			
Matrix Spike Dup Analyzed: 03/26/2005 (5C25111-MSD1) Source: 10C1861-01											
Boron	0.642	0.050	0.0074	mg / l	0.500	0.13	102	70-130	5	20	
Batch: 5C25116 Extracted: 03/25/05											
Blank Analyzed: 03/28/2005 (5C25116-BLK1)											
Antimony	ND	2.0	0.18	ug/l							
Arsenic	ND	1.0	0.49	ug/l							
Barium	ND	0.0010	0.00014	mg/l							
Beryllium	ND	0.50	0.037	ug/l							
Cadmium	ND	1.0	0.015	ug/							
Chromium	0.507	2.0	0.26	ug/l							
Cobalt	ND	1.0	0.10	ug/l							J
Copper	ND	2.0	0.49	ug/l							
Iron	0.00735	0.010	0.0032	mg / l							J
Lead	ND	1.0	0.13	ug/l							J
Manganese	ND	1.0	0.44	ug/l							
Nickel	ND	2.0	0.15	ug/							
Selenium	ND	2.0	0.36	ug/l							
Silver	ND	1.0	0.089	$u g / 1$							
Thallium	ND	1.0	0.075	ug/l							
Vanadium	ND	2.0	0.86	ug/l							
Zinc	ND	20	3.1	ug/l							

Del Mar Analytical, Irvine

Aichele Harper
roject Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1)
Outfall 011	
Report Number:	IOC2064

Sampled: 03/25/05
Received: 03/25/05

METHOD BLANKIOC DATA

METALS

Analyte
Batch: 5C25116 Extracted: 03/25/05

Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data

LCS Analyzed: 03/28/2005 (5C25116-BS1)

Antimony	80.9	2.0	0.18	ug/l	80.0		101	85-115	
Arsenic	84.0	1.0	0.49	ug/	80.0		105	85-115	
Barium	0.0810	0.0010	0.00014	mg / l	0.0800		101	$85-115$	
Beryllium	82.8	0.50	0.037	ug/l	80.0		104	85-115	
Cadmium	78.6	1.0	0.015	ug/l	80.0		98	85-115	
Chromium	79.4	2.0	0.26	ug/l	80.0		99	85-115	
Cobalt	78.3	1.0	0.10	ug/l	80.0		98	85-115	
Copper	75.2	2.0	0.49	ug/l	80.0		94	85-115	
Iron	0.796	0.010	0.0032	mg / l	0.800		100	85-115	
Lead	88.6	1.0	0.13	ug/l	80.0		111	85-115	
Manganese	80.3	1.0	0.44	ug/l	80.0		100	85-115	
Nickel	78.1	2.0	0.15	ug/	80.0		98	85-115	
Selenium	80.6	20	0.36	ugh	800		101	85-115	
Silyer	87.8	1.0	0.089	ug/	80.0		110	85-115	
Thallium	79.3	1.0	0.075	ug/l	80.0		99	85-115	
Vanadium	79.1	2.0	0.86	ug/l	80.0		99	85-115	
Zine	75.9	20	3.1	ug/	80.0		95	85-115	
Matrix Spi	16-MS					ce: IOC	062-01		
Antimony	83.2	2.0	0.18	ug/	80.0	0.29	104	70-130	
Arsenic	85.1	1.0	0.49	ug/l	80.0	1.2	105	70-130	
Barium	0.121	0.0010	0.00014	mg/	0.0800	0.036	106	70-130	
Berylium	85.1	0.50	0.037	ug/l	80.0	ND	106	70-130	
Cadmium	79.5	1.0	0.015	ug/l	80.0	0.072	99	70-130	
Chromium	81.2	2.0	0.26	ug/l	80.0	2.2	99	70-130	
Cobalt	79.4	1.0	0.10	ug/l	80.0	0.58	99	70-130	
Copper	77.2	2.0	0.49	ug/	80.0	3.0	93	70-130	
Iron	1.44	0.010	0.0032	mg/l	0.800	0.67	96	70-130	
Lead	86.8	1.0	0.13	ug/l	80.0	0.55	108	70-130	
Manganese	208	1.0	0.44	ug/	80.0	100	135	70-130	MI
Nickel	79.1	2.0	0.15	ugh	80.0	2.8	95	70-130	M
Selenium	80.4	2.0	0.36	ug/	80.0	ND	100	70-130	
Silver	85.1	1.0	0.089	ug/l	80.0	0.10	106	70-130	
Thallium	81.9	1.0	0.075	ug/	80.0	0.15	102	70-130	
Vanadium	81.3	2.0	0.86	ug/l	80.0	1.5	100	70-130	
Zinc	84.8	20	3.1	ug/l	80.0	14	88	70-130	

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)

Outfall 011
Report Number: 10 C 2064

Sampled: 03/25/05
Received: 03/25/05

METHOD BLANK/QC DATA

METALS

Batch: 5C25116 Extracted: 03/25/05
Matrix Spike Dup Analyzed: 03/28/2005 (5C25116-MSD1)

Matrx	C251		. 01							
Antimony	81.5	2.0	0.18	ug/	80.0	0.29	102	70-130	2	20
Arsenic	84.9	1.0	0.49	ug/	80.0	1.2	105	70-130	0	20
Barium	0.119	0.0010	0.00014	mg / l	0.0800	0.036	104	70-130	2	20
Beryllium	81.9	0.50	0.037	ug/l	80.0	ND	102	70-130	4	20
Cadmium	78.0	1.0	0.015	ug/	80.0	0.072	97	70-130	2	20
Chromium	79.8	2.0	0.26	ug/	80.0	2.2	97	70-130	2	20
Cobalt	78.3	1.0	0.10	ug/1	80.0	0.58	97	70-130	1	20
Copper	75.6	2.0	0.49	ug/	80.0	3.0	91	70-130	2	20
Iron	1.40	0.010	0.0032	$\mathrm{mg} / 1$	0.800	0.67	91	70-130	3	20
Lead	87.0	1.0	0.13	ug/	80.0	0.55	108	70-130	0	20
Manganese	203	1.0	0.44	ug/	80.0	100	129	70-130	2	20
Nickel	78.1	2.0	0.15	ug/	80.0	2.8	94	70-130	1	20
Selenium	79.7	2.0	0.36	ugh	80.0	ND	100	70-130	1	20
Silver	85.1	1.0	0.089	ugh	80.0	0.10	106	70-130	0	20
Thallium	80.9	1.0	0.075	ug/	80.0	0.15	101	70-130	1	20
Vanadium	81.2	2.0	0.86	ug/	80.0	1.5	100	70-130	0	20
Zinc	83.4	20	3.1	ug/	80.0	14	87	70-130	2	20

Batch: 5C26033 Extracted: 03/26/05

Blank Analyzed: 03/26/2005 (5C26033-BLK1)

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOC2064

Sampled: 03/25/05
Received: 03/25/05

METHOD BLANKIOC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C26033 Extracted: 03/26/05											

Matrix Spike Dup Analyzed: 03/26/2005 (5C26033-MSD1)
Source: 1OC2062-01

Mercury	7.61	0.20

0.063 ugh $8.00 \quad$ ND $\quad 95 \quad 70-130 \quad 1$

20

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10 C 2064

Sampled: 03/25/05
Received: 03/25/05

METHOD BLANKIOC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C25048 Extracted: 03/25/05										
Blank Analyzed: 03/25/2005 (5C25048-BLK1)										
Chloride ND	0.50	0.26	mg/							
Flueride ND	0.50	0.10	mg/							
Nitrate/Nitrite-N ND	0.11	0.072	mg 月							
Sulfate ND	0.50	0.18	mg/							
LCS Analyzed: 03/25/2005 (5C25048-BS1)										
Chloride 4.97	0.50	0.26	mg / l	5.00		99	90-110			
Fluoride 4.81	0.50	0.10	mg / l	5.00		96	90-110			
Sulfate 10.3	0.50	0.18	$\mathrm{mg} /$	10.0		103				M-3
Matrix Spike Analyzed: 03/25/2005 (5C25048-MS1)	Source: 10C2038-01									
Fluoride 5.70	0.50	0.10	$\mathrm{mg} / 1$	5.00	0.88	96	80-120			
Matrix Spike Dup Analyzed: 03/25/2005 (5C25048-MSD1)				Source: 10C2038-01						
Fluoride $\%$, 570	0.50	0.10	mg/	5.00	0.88	96	80-120	0	20	
Batch: 5C25058 Extracted: 03/25/05										
Blank Analyzed: 03/25/2005 (5C25058-BLK1)										
Chromium VI ND	1.0	0.10	ugl							
LCS Analyzed: 03/25/2005 (5C25058-BS1)										
Chromium VI 52.4	1.0	0.10	ug/	50.0		105	90-110			
Matrix Spike Analyzed: 03/25/2005 (5C25058-MS1)				Source: IOC2023-03						
Chromium VI 45.3	1.0	0.10	ug/	50.0	ND	91	90-110			

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011
Report Number: 1OC2064

Sampled: 03/25/05
Received: 03/25/05

METHOD BLANKIQCDATA

INORGANICS

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011
Report Number: 1OC2064

Sampled: 03/25/05
Received: 03/25/05

MIELIOL DEANKVOC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C25096 Extracted: 03/25/05										
Blank Analyzed: 03/25/2005 (5C25096-BLK1)										
Surfactants (MBAS) ND	0.10	0.044	mg/							
LCS Analyzed: 03/25/2005 (5C25096-BS1)										
Surfactants (MBAS) 0.266	0.10	0.044	mg/	0.250		106	90-110			
Matrix Spike Analyzed: 03/25/2005 (5C25096-MS1) Source: IOC1920-01										
Surfactants (MBAS) 0.245	0.10	0.044	mg / l	0.250	ND	98	50-125			
Matrix Spike Dup Analyzed: $03 / 25 / 2005$ (5C25096-MSD1) Source: 10 Cl (1920-01Surfactants (MBAS)										
Surfactants (MBAS) 0.260	0.10	0.044	mg / l	0.250	ND	104	50-125	6	20	
Batch: 5C25117 Extracted: 03/25/05										
Blank Analyzed: 03/25/2005 (5C25117-BLK1)										
Total Suspended Solids \quad ND	10	10	mg/		\therefore					
LCS Analyzed: 03/25/2005 (5C25117-BS1)										
Total Suspended Solids 949	10	10	mg / l	1000		95	85-115			
Duplicate Analyzed: 03/25/2005 (5C25117-DUP1)				Sour	$\text { e: } 10 C 2$					
Total Suspended Solids ND	10	10	mg / l		ND				10	
Batch: 5C25118 Extracted: 03/25/05										
Duplicate Analyzed: 03/25/2005 (5C25118-DUP1)				Source: 10C2063-01						
Residual Chlorine ND	0.10	0.10	mg / l		ND				20	

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011
Report Number: IOC2064

Sampled: 03/25/05
Received: 03/25/05

METHOD BLANKOC DATA

INORGANICS

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID:	13267 (Study 1)
300 North Lake Avenue, Suite 1200	Outfall 011	
Pasadena, CA 91101	Report Number:	IOC2064
Attention: Bronwyn Kelly		

Sampled: 03/25/05
Received: 03/25/05

METHOD BLANKGC DATA

INORGANICS

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: $10 C 2064$

Sampled: 03/25/05
Received: 03/25/05

MEIHOD BIEANKIQC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5C28077 Extracted; 03/28/05										
Matrix Spike Dup Analyzed: 03/28/2005 (5C28077-MSD1)				Source: 1OC2045-02						
Total Organic Carbon 10.1	1.0	0.25	mg / l	5.00	4.8	106	80-120	1	20	
Batch: 5C28078 Extracted: 03/28/05										
Blank Analyzed: 03/28/2005 (5C28078-BLK1)										
Total Dissolved Solids ND	10	10	$\mathrm{mg} / 1$							
LCS Analyzed: 03/28/2005 (5C28078-BS1)										
Total Dissolved Solids 956	10	10	mg / l	1000		96	90-110			
Duplicate Analyzed: 03/28/2005 (5C28078-DUP1)				Sour	e: IOC1	740-01				
Total Dissolved Solids 288	10	10	$\mathrm{mg} / 1$		280			3	10	
Batch: 5C28081 Extracted: 03/28/05										
Duplicate Analyzed: 03/28/2005 (5C28081-DUP1)				Sour	e: 10C1	740-01				
Specific Conductance 507	1.0	1.0	umhos/cm		500			1	5	

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011 Sampled: 03/25/05
Report Number: 10 C 2064 Received: 03/25/05

MEIHOD BLANKIQC DATA

1,4-DIOXANE BY GC/MS (EPA 5030B/8260B)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: P5D0112 Extracted; 04/01/05											
Blank Analyzed: 04/01/2005 (P5D0112-BLK1)											
1,4-Dioxane	ND	1.0	0.49	ug/							
Surrogate: Dibromofluoromethane	1.18			ug/l	1.00		118	80-125			
LCS Analyzed: 04/01/2005 (P5D0112-BS1)											
1,4-Dioxane	9.20	1.0	0.49	ug/	10.0		92	70-130			
Surrogate: Dibromofluoromethane	1.16			ug $/$	1.00		116	80-125			
LCS Dup Analyzed: 04/01/2005 (P5D0112-BSD1)											
1,4-Dioxane	9.55	1.0	0.49	ug/	10.0		96	70-130	4	20	
Surrogate: Dibromofluoromethane	1.17			$u g l$	1.00		117	80-125			
Matrix Spike Analyzed: 04/01/2005 (P5D0112-MS1)					Source: POC0730-06						
1,4-Dioxane	12.6	1.0	0.49	ugh	10.0	3.4	92	70-150			
Surrogat Dibromofuoromethane	122			ugh	1.00		122	$80-125$			\%
Matrix Spike Dup Analyzed: 04/01/2005 (P5D0112-MSD1)					Source: POC0730-06						
1,4-Dioxane	12.9	1.0	0.49	ug/l	10.0	3.4	95	70-150	2	25	
Surrogate: Dibromofluoromethane	1.18			ug/	1.00		118	80-125			

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1) Outfall 011		
Report Number:			
IOC2064		\quad	Sampled: 03/25/05
---:			
Received: 03/25/05			

Received: 03/25/05

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
L2 Laboratory Control Sample recovery was below method control limits.
M1 The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
M2 The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike
Duplicate.
N-1 See case narrative.
R-7 LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria.
ZX Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

ADDITIONAL COMMENTS

For TICs:

All identifications are tentative and concentrations are estimates based upon spectral comparison to the EPANIH library.

For 1,2-Diphenylhydrazine:

The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.

For GRO (C4-C12):

GRO (C4-C12) is quantitated against a gasoline standard. Quantitation begins immediately following the methanol peak.

For Extractable Fuel Hydrocarbons (EFH, DRO, ORO) :

Unless otherwise noted, Extractable Fuel Hydrocarbons (EFH, DRO, ORO) are quantitated against a Diesel Fuel Standard.

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

| Project ID: | 13267 (Study 1) |
| :--- | :--- | :--- |
| Outfall 011 | |
| Report Number: | |
| IOC2064 | |

Received: 03/25/05

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	Callfornia
EPA 120.1	Water	\mathbf{X}	\mathbf{X}
EPA 160.2	Water	\mathbf{X}	\mathbf{X}
EPA 160.5	Water	\mathbf{X}	\mathbf{X}
EPA 180.1	Water	\mathbf{X}	\mathbf{X}
EPA 200.7	Water	\mathbf{X}	\mathbf{X}
EPA 200.8	Water	\mathbf{X}	\mathbf{X}
EPA 218.6	Water	\mathbf{X}	\mathbf{X}
EPA 245.1	Water	\mathbf{X}	\mathbf{X}
EPA 300.0	Water	\mathbf{X}	\mathbf{X}
EPA 314.0	Water	\mathbf{X}	\mathbf{X}
EPA 330.5	Water	\mathbf{X}	\mathbf{X}
EPA 335.2	Water	\mathbf{X}	\mathbf{X}
EPA 350.2	Water	\mathbf{X}	\mathbf{X}
EPA 405.1	Water	\mathbf{X}	\mathbf{X}
EPA 413.1	Water	\mathbf{X}	\mathbf{X}
EPA 415.1	Water	\mathbf{X}	\mathbf{X}
EPA 418.1	Water	\mathbf{X}	\mathbf{X}
EPA 608.	Water.	\mathbf{X}	
EPA 624 (M0D.)	Water	\mathbf{X}	\mathbf{X}
EPA 624	Water	\mathbf{X}	\mathbf{X}
EPA 625	Water	\mathbf{X}	\mathbf{X}
EPA 8015 Mod.	Water	\mathbf{X}	\mathbf{X}
EPA 8015B	Water	\mathbf{X}	\mathbf{X}
SM2540C	Water	\mathbf{X}	\mathbf{X}
SM5540-C	Water	\mathbf{X}	\mathbf{X}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical California Cert \#1640
1104 Windfield Way - El Dorado Hills, CA 95762
Analysis Performed: 1613 -Dioxin-HR
Samples: $10 C 2064-01$
Analysis Performed: EDD + Level 4
Samples: $10 C 2064-01$
Aquatic Testing Laboratories-SUB California Cert \#1775
4350 Transport Street, Unit 107 - Ventura, CA 93003
Analysis Performed: Bioassay-7 dy Chrnic
Samples: IOC2064-01
Del Mar Analytical, Irvine
Michele Harper
Project Manager

Client Name/Address: MWH-Pasadena 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101				Project: Boeing-SSFL NPDES Outfall 011-13267 Perimeter Pond Flow Weight Composite								ANALYSIS REQUIRED							
														281pm (z'OSE) mi ' N -equounv			Field readings: $\begin{aligned} & \mathrm{Temp}=59,7 \\ & \mathrm{pH}=6.7 \end{aligned}$ Comments *Continued Analyale required on Page 2 of 2		
Project M Sampler:	nager:	romwyn																Phone Number: (626) 568-6691 Fax Number: (626) 568-6515	
Sample Description	$\begin{aligned} & \text { Sample } \\ & \text { Matrix } \end{aligned}$	Container Type	$\begin{gathered} \text { Kof } \\ \text { Cont. } \end{gathered}$															Sampling Deterime	Preacrivative
Outinll 011	w	16 Poly	2	$\begin{gathered} 32700 \\ 2.00 \end{gathered}$	None	X	X	X	X	X	X	x	X	X	X	X	X	X	$\begin{aligned} & \text { Tolal Flow (gam)=3y7rix } \\ & \text { Fiow (gpm)= } / / / \\ & \hline \end{aligned}$
Outtall 011	W	16 Poly	2	$\begin{aligned} & 125: 20 \\ & 20 \end{aligned}$	None	x	X	X	X	X	X	X	X	X	X	X	X	X	Total Fow (gan) -374125 Flow ((gpm) 10 ,
Outfall 011	w	16 Poly	2	$\begin{aligned} & x=10 \\ & x=10 \end{aligned}$	None	X	X	X	X	X	X	X	X	X	X	X	X	X	
Outsilil 011	w	16 Poly	2	$\begin{aligned} & 5 / 460 \\ & \hline \end{aligned}$	None	X	X	x	X	X	X	X	X	X	X	X	X	X	$\begin{aligned} & \text { Total Flow (gati) }=5.3 \geqslant 8 \\ & \text { Fiow (gpm) } N 3 \\ & \hline \end{aligned}$
Outfall 011	W	IG Poly	2	$\begin{gathered} 3 / 286 \\ 1: 20 \\ \hline \end{gathered}$	None	X	X	X	X	X	X	X	X	X	X	X	X	X	$\begin{aligned} & \text { Total Flow (gati) } 3 y / 3, \\ & \text { Fiow (gpm) } / 3 y \end{aligned}$
Outfoll 011	W	16 Poly	2	$\begin{gathered} 3 / 25105 \\ 1040 \\ \hline \end{gathered}$	None	X	X	X	X	X	X	X	X	X	X	X	X	X	$\begin{aligned} & \hline \text { Total Fiow (gaik)= } 378 \sqrt{8} \\ & \text { Fiow (gpm) } / 10 \\ & \hline \end{aligned}$
Outisill 019	W	1G Poly	2	$3 / 25 / 105$	None	X	X	x	X	X	X	X	X	X	X	X	X	X	$\begin{aligned} & \text { Total flow (gain) } 37576 \\ & \text { flow (oppm) } 28 \end{aligned}$
Outfolll 011	W	16 Poly	2	$\text { F/ } \frac{5}{2} \cdot \sqrt{25}$	None	X	X	X	X	X	X	X	x	X	X	X	X		
Outtall 011	W	16 Poly	2	$\begin{gathered} 3 / 251-5 \\ 230 \end{gathered}$	None	X	X	X	X	X	X	X	X	X	X	X	X	X	$\begin{aligned} & \text { Toul Flow (gomp)" } 87<1 \\ & \text { Fiow (gpm)= } 102 \end{aligned}$
Trip Biank	W	VOAs	3	$\underline{\square}$	HCL			x											
$T \times P$	W	NTs	3		NONE														
			32	$\begin{aligned} & \text { nofime: } \\ & \text { /a- } / 9: 28 \\ & \text { atime: } \\ & \text { N3 } \end{aligned}$															
Relinquithe	By			detrime:															

CHAIN OF CUSTODY FORM
Page 2 of 2

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention: Bronwyn Kelly
Project: $\quad 13267$ (Study 1)/Outfall 011
Sampled: 03/25/05
Del Mar Analytical Number: IOC2064

Dear Ms. Kelly:
Aquatic Testing Laboratories performed Fathead Minnow 96 hr Percent Survival Bioassay (EPA Method 2000.0), Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002), Truesdail Laboratories tested Hydrazines by EPA 8315 M, Alta Analytical performed EPA Method 1613 by Dioxin and Eberline Services performed Gross Alpha/Gross Beta|(EPA 900.0), Tritium (H-3, EPA 906.0), Strontium-90 (Sr-90, EPA 905.0), Radium 226 (EPA 903.1), and Radium 228 (904.0) for the project referenced above. Please use the following cross-reference table when reviewing your results.

MW ID	DEL MAR ID	ATC D	TRUESDAIL ID	ALTA ID	EBERLINE ID
Outfall O11 Composite	$10 C 2064-01$	A-05032602-001/002	$941101-1$	$25968-001$	PENDING

Attached are the original reports from the subcontract laboratories. If you have any questions or require further assistance, please do not hesitate to contact me.

Sincerely yours,
DEL MAR ANALYTICAL

Michele Harper
Project Manager

LABORATORY REPORT

Aquatic Testing

Date:

Client:

April 2, 2005
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Attn: Michele Harper

Laboratories
"dedicated to providing quality aquatic toxicity testing*
4350 Transport Street, Unit 107
Ventura, CA 93003
(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.: A-05032602-001/002
Sample I.D.: IOC2064-01

Sample Control: The sample was received by ATL chilled, with the chain of custody record attached.
Date Sampled: 03/25/05
Date Received: 03/26/05
Date Tested: $\quad 03 / 26 / 05$ to 04/01/05

Sample Analysis: The following analyses were performed on your sample:
Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0), Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

Result Summary:

Acute:	Survival	TUG
Fathead Minnow:	100%	0.0
Chronic:	NOES	TUe
\quad Ceriodaphnia Survival:	100%	1.0
\quad Ceriodaphnia Reproduction:	100%	1.0

Quality Control: Reviewed and approved by:

Lab No.: A-05032602-001
Client/ID: Del Mar - IOC2064-01

TEST SUMMARY

Species: Pimephales promelas.
Age: 8 (1-14) days.
Regulations: NPDES.
Test solution volume: 250 ml .
Feeding: prior to renewal at $\mathbf{4 8}$ hrs.
Number of replicates: 2.
Dilution water: Moderately hard reconstituted water.
Photoperiod: $16 / 8$ hrs light/dark.

Start Date: 03/26/2005

Source: In-laboratory Culture.
Test type: Static-Renewal.
Test Protocol: EPA-821-R-02-012.
Endpoints: Percent Survival at 96 hrs.
Test chamber: 600 ml beakers.
Temperature: $\mathbf{2 0 + / - 1} 1^{\circ} \mathrm{C}$.
Number of fish per chamber: 10.
QA/QC Batch No.: RT-050303.

TEST DATA

		${ }^{\circ} \mathrm{C}$	DO	pH	\# Dead		Analyst \& Time of Readings
					A	B	
INITIAL	Control	20.0	9.1	8.1	0	0	On 1000
	100\%	19.4	10.1	27	0	0	
24 Hr	Control	19.4	7.2	7.9	C	C	10
	100\%	19.4	7.4	7.5	C	0	
48 Hr	Control	19.5	6.0	7.7	0	Δ	$\frac{2}{1000}$
	100\%	14.7	20	1) 5	0	0	
Renewal	Control	20.1	8.4	7.7	0	a	$\begin{aligned} & \text { love } \\ & \end{aligned}$
	100\%	20.0	9.3	27	c	0	
72 Hr	Control	19.12	20	2.8	0	0	$\frac{13 n}{1030}$
	100\%	19.7	8.5	8.0	0	0	
96 Hr	Control	19.8	2.4	7.8	0	0	$2 \ln _{1030}$
	100\%	19.9	7.9	7.9	0	0	

Comments:

Sample as received: Chlorine: () mg/l $\mathrm{pH}: 27$; Conductivity: 200 umho; Temp: $4^{\circ} \mathrm{C}$; DO: $10.1 \mathrm{mg} /$; Alkalinity: $67 \mathrm{mg} / \mathrm{f} ;$ Hardness: $85 \mathrm{mg} / \mathrm{l} \mathrm{NH}_{3}-\mathrm{N}: 0.4 \mathrm{mg} / \mathrm{l}$.
Sample aerated moderately (approx. $500 \mathrm{ml} / \mathrm{min}$) to raise or lower DO? Yes / No.)
Control: Alkalinity: $57 \mathrm{mg} /$; Hardness: $95 \mathrm{mg} /$; Conductivity: 3 ar umho.
Test solution aerated (not to exceed 100 bubbles/min) to maintain DO $>4.0 \mathrm{mg} / 1$? Yes / 6 .
Sample used for renewal is the original sample kept at $0-6^{\circ} \mathrm{C}$ with minimal headspace.

RESULTS

\qquad \%

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

Lab No.: A-05032602
Client/ID: Del Mar IOC2064-01

Test type: Daily static-renewal.
Species: Ceriodaphnia dubia.
Age: < 24 hrs; all released within 8 hrs .
Test vessel size: 30 ml .
Number of test organisms per vessel: 1 .
Temperature: $25+/-1^{\circ} \mathrm{C}$.
Dilution water: Mod. hard reconstituted (MHRW).
QA/QC Batch No.: RT-050326.

Date Tested: 03/26/05 to 04/01/05

TEST SUMMARY

Endpoints: Survival and Reproduction.
Source: In-laboratory culture.
Food: . 1 ml YTC, algae per day.
Test solution volume: 15 ml .
Number of replicates: 10.
Photoperiod: $16 / 8 \mathrm{hrs}$. light/dark cycle.
Test duration: 7 days.
Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Survival	Mean Number of Young Per Female
Control	100%	30.8
6.25%	100%	33.7
12.5%	100%	33.8
25%	100%	33.3
50%	100%	35.1
100%	100%	33.2

* Statistically significantly less than control at $\mathrm{P}=0.05$ level.
** Reproduction data from concentrations greater than survival NOEC are excluded from statistical analysis.

CHRONIC TOXICITY

CHRONIC TOXICITY		
Parameter	Survival	Growth
NOEC	100%	100%
TUc	1.0	1.0

QAVOC TEST ACCEPTABILITY
$\left.\begin{array}{|c|c|}\hline \text { Parameter } & \text { Result } \\ \hline \text { Control survival } 280 \% & \text { Pass (} 100 \% \text { survival) } \\ \hline \geq 15 \text { young per surviving control female average } & \text { Pass (30.8 young) } \\ \hline \geq 60 \% \text { surviving controls had } 3 \text { broods } & \text { Pass (} 100 \% \text { with } 3 \text { broods) } \\ \hline \text { PMSD }<47 \% \text { for reproduction; if }>47 \% \text { and no toxicity } \\ \text { at IWC, the test must be repeated }\end{array}\right]$ Pass (PMSD $=10.9 \%$).

SUBCONTRACT ORDER - PROJECT \# IOC2064

Truesdail Laboratories, Inc.

Client:	Del Mar Analytical 17461 Derian Avenue, Suite 100 Irvine, CA 92614
Attention:	Michele Harper

Project Name: 1OC2064 Truesdail Project: 941101
Date Received: 03/28/05

Samples Cross-reference

| Truesdail 1D | Client ID | Matrix | Date Sampled | Time Sampled | Analysis Requested |
| :--- | :--- | :--- | :---: | :---: | :---: | :--- |
| $941101-1$ | IOC2064-01 | Water | $03 / 25 / 05$ | 1440 | Hydrazines by EPA 8315M |

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

K.R.P. lIfer

Quality Control/Quality Assurance Officer

TRUESDAIL LABORATORIES, INC.

Client: Del Mar Analytical
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Attention: Michele Harper

Project Name: IOC2064
Truesdail Project:
941101
Date Received: 03/28/05

Case Narrative

Sample Receipt The sample was received in good condition and no anomalies were noted during check-in. The sample was kept in a locked refrigerator until analysis. Thereafter, it is being kept in ambient storage for an additional 2 months before disposal.

Analysis The analysis was perfomed as requested on the chain-of-custody.
Quality Control
The analytical results for each batch of samples performed include a minimum of one set of laboratory control sample/laboratory control sample duplicate (LCS/LCSD), one matrix spike (MS) and a reagent blank (Method blank). Any exceptions or problems would be noted in the "comments" section.

The test results in this report meet all quality assurance requirements set forth by the method specification and all quality control recoveries were within the laboratory acceptance limits. No anomalies or nonconformance events occurred during the course of analysis.

The analytes were quantitated down to the Method Detection Limit (J flags) per client's request.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Truesdail Laboratories, Inc.
INDEPENDENT TESTING, FORENSEC SCIENCE, AND ENVIRONMENTAL ANALYSES

REPORT

$$
\begin{aligned}
\text { Client: } & \begin{array}{l}
\text { Del Mar Analytical } \\
\text { 17461 Derian Ave., Suite 100 } \\
\text { Irvine, CA 92614 }
\end{array} \\
& \\
\text { Attention: } & \text { Michele Harper } \\
\text { Sample: } & \text { Liquid / 1 Sample } \\
\text { Project Name: } & \text { 10c2064 } \\
\text { P.O. Number: } & 10 c 2064 \\
\text { Method Number: } & \mathbf{8 3 1 5} \text { (Modified) } \\
\text { Investigation: } & \text { Hydrazines in Liquid }
\end{aligned}
$$

Analytical Resuits

Truesdail Laboratories. Inc.

Client: Del Mar Analytical 100

REPORT

Quality Control/Quality Assurance Calibration Report
Quality Control/Quality Assurance Spikes Report

LCS/LCSD											MS/MSD									
	Spiked Conc.	Recovered Concentration			PercentRecovery (\%)		$\begin{aligned} & \text { LCSI } \\ & \text { LCSD } \\ & \% D \end{aligned}$	Fiag	Control Limits		Spiked Conc. ug/L	Recovered Concentration			PercentRecovery (\%)		$\begin{aligned} & \text { MSI } \\ & \text { MSD } \\ & \text { \%D } \end{aligned}$	Fiag	AccuracyControl Limits	
Parameter	ugh	LCS	LCSD	MB	LCS	LCSD			\%D	\% Rec.		MS	MSD	Sample	MS	MSD			\%D	\% Rec.
Monomethyl Hydrazine	50.0	45.8	47.0	0.0	91.7	94.0	2.52\%	PASS	20	70-130	50.0	45.0	40.4	0.0	90.0	80.8	10.7\%	PASS	20	0-150
u-Dimethyl Hydrazine	50.0	46.1	46.8	0.0	92.2	93.6	1.49\%	PASS	20	70-130	50.0	44.5	41.1	0.0	88.9	82.1	7.94\%	PASS	20	O-150
Hydrazine	10.0	9.39	8.96	0.0	93.9	89.6	4.71\%	PASS	20	70-130	10.0	7.90	7.65	00	79.0	76.5	3.24\%	PASS	20	0.150

ICV: Initial Calitration Verfication
QCS: Quality Control Standerd LCS: Laboratory Control Spilike
MS: Matrix Spike
\%D: Percent Difference
Flag: "Pass" II wilhin Control Limits; otherwise "Fall"
Note: Results based on detector $\% 1(\mathrm{UV}=365 \mathrm{~nm})$ diata.

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public,
and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or
publicity matter without prior written authorization from these laboratories.

Fax(949) $254-1200$ Fmx (909) 370-1045 Fux (618) 505-9ces Fax (460) 7t5-025 Fax frey 7es-3021

SENDING LABORATORY:
Del Mar Analytical, Irvine
17461 Derian Avenue. Suite 100
Irvine, CA 92614
Phone: (949) 261-1022
Fax: (949) 261-1228
Project Manager: Michele Harper

Standard TAT is requested unless specific due date is requested \Rightarrow Due Date:
Analysis

Expiration

Initials: \qquad Truesdail Laboratories-SUB
14201 Franklin Avenue
Tustin, CA 92680
Phone :(714) 730-6239
Fax: (714) 730-6462

Sample D: 1OC2064-01 Wat
Hydrazine-OUT
Level 4 Data Package
Containers Súpplied:
1 L Amber (IOC2064-01AM)
1 L Amber (IOC2064-01AN)

For Sample Conditions See Form Attached

Sample Integrity \& Analysis Discrepancy Form

Client:

Lab\# $94 / 101$ Date DeliveredDZ12P/05 Time: Qi/2 By: eMail aField Service Eclient

1. Was a Chain of Custody received and signed?
2. Does Customer require an acknowledgement of the COC?
3. Are there any special requirements or notes on the COC?
4. If a letter was sent with the COC, does it match the COC?
5. Were all requested analyses understood and acceptable?
6. Were samples receive of a chilled condition? Temperature (if yes)? Y
7. Were samples received intact (ie. broken bottles, leaks, air bubbles, etc..
8. Were sample custody seals intact?
9. Does the number of samples received agree with COC?
10. Did sample labels correspond with the client ID's?
11. Did sample labels indicate proper preservation?

Preserved (if yes) by: OTruesdail \square Client
12. Were samples pH checked? $\mathrm{pH}=$ \qquad
 ayes ono aNTA yves an dNA dYes oNo DN/A aYes ONo UN/A aYes ane alva aYes and $\mathbb{Q}^{2} / N / A$ ares ono aNTA

Internal Chain of Custody Logbook

April 02, 2005

Alta Project I.D.: 25968

Ms. Michele Harper
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Dear Ms. Harper,
Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on March 29, 2005 under your Project Name "IOC2064". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

Results qualified with an " A " are lower than the EPA Method 1613 Minimum Level, and above the lower calibration limit.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

Martha M. Mater
Director of HRMS Services

Alta Analytical Laboratory Inc.

Section I: Sample Inventory Report

Date Received: 3/29/2005

Alta Lab. ID

25968-001

Client Sample ID

IOC2064-01

SECTION II

OPR Results						EPA Method 1613	
Matrix: Aqueous		QC Batch No.:	6653	Lab Sample: $\quad 0$-OPR001		Date Analyzed DB-225:	
Sample Size: $\quad 1.000 \mathrm{~L}$		Date Extracted:	30-Mar-05		Date Analyzed DB-5: 31-Mar-05		
Analyte	Spike Conc.	Conc. ($\mathrm{ng} / \mathrm{mL}$)	OPR Limits	Labeled Standard		\%R	LCL-UCL
2,3,7,8-TCDD	10.0	10.9	6.7-15.8	IS	13C-2,3,7,8-TCDD	68.5	25-164
1,2,3,7,8-PeCDD	50.0	53.3	35-71		13C-1,2,3,7,8-PeCDD	68.2	25-181
1,2,3,4,7,8-HxCDD	50.0	52.0	35-82		13C-1,2,3,4,7,8-HxCDD	88.5	32-141
1,2,3,6,7,8-HxCDD	50.0	53.5	38-67		13C-1,2,3,6,7,8-HxCDD	101	28-130
1,2,3,7,8,9-HxCDD	50.0	41.0	32-81		13C-1,2,3,4,6,7,8-HpCDD	70.5	23-140
1,2,3,4,6,7,8-HpCDD	50.0	52.7	35-70		13C-OCDD	38.0	17-157
OCDD	100	111	78-144		13C-2,3,7,8-TCDF	75.2	24-169
2,3,7,8-TCDF	10.0	10.4	7.5-15.8		$13 \mathrm{C}-1,2,3,7,8-\mathrm{PeCDF}$	66.3	24-185
1,2,3,7,8-PeCDF	50.0	50.2	40-67		13C-2,3,4,7,8-PeCDF	72.3	21-178
2,3,4,7,8-PeCDF	50.0	50.4	34-80		13C-1, 2, 3,4,7,8-HxCDF	88.8	26-152
1,2,3,4,7,8-HxCDF	50.0	49.9	36-67		$13 \mathrm{C}-1,2,3,6,7,8$-HxCDF	97.3	26-123
1,2,3,6,7,8-HxCDF	50.0	50.1	42-65		13C-2,3,4,6,7,8-HxCDF	86.3	28-136
2,3,4,6,7,8-HxCDF	50.0	50.5	35-78		13C-1,2,3,7,8,9-HxCDF	84.2	29-147
1,2,3,7,8,9-HxCDF	50.0	49.3	39-65		13C-1,2,3,4,6,7,8-HpCDF	69.1	28-143
1,2,3,4,6,7,8-HpCDF	50.0	50.3	41-61		13C-1,2,3,4,7,8,9-HpCDF	76.9	26-138
1,2,3,4,7,8,9-HpCDF	50.0	48.9	39-69		$13 \mathrm{C}-\mathrm{OCDF}$	49.3	17-157
OCDF	100	99.5	63-170		S 37Cl-2,3,7,8-TCDD	74.7	35-197

APPENDIX

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank.
D The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.
I Chemical Interference
J The amount detected is below the Lower Calibration Limit of the instrument.
P Homologue totals include any coplanar PCBs detected at concentrations less than the reporting limit.

* See Cover Letter

Conc. Concentration
DL Sample-specific estimated detection limit
MDL The minimum concentration of a substance that can be measured and reported with $\mathbf{9 9 \%}$ confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration
NA Not applicable
RL Reporting Limit - concentrations that correspond to low calibration point
ND Not Detected
TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

The control limits are "interim limits only" until in-house limits are utilized.

NELAP - (Primary AA: California, Certificate No. 02102CA)
Department of the Navy
U.S. Army Corps of Engineers
U.S. EPA Region 5

Bureau of Reclamation - Mid-Pacific Region - (MP-470, Res-1.10)
Commonwealth of Kentucky - (Certificate No. 90063)
Commonwealth of Virginia - (Certificate No. 00013)
State of Alaska, Department of Environmental Conservation - (Certificate No. OS-00197)
State of Arizona - (Certificate No. AZ0639)
State of Arkansas, Department of Health - (Approval granted through CA certification)
State of Arkansas, Department of Environmental Quality
State of California - (Certificate No. 1640)
State of Colorado
State of Connecticut - (Certificate No. PH-0182)
State of Florida - (Certificate No. 87456)
State of Louisiana, Department of Health and Hospitals - (Certificate No. LA000014)
State of Louisiana, Department of Environmental Quality
State of Maine
State of Michigan (Certificate No. 81178087)
State of Mississippi - (Approval granted through CA certification)
State of Nevada - (Certificate No. CA413)
State of New Jersey - (Certificate No. CA003)
State of New York, Department of Health - (Certificate No. 11411)
State of North Carolina - (Certification No. 06700)
State of North Dakota, Department of Health - (Certificate No. R-078)
State of New Mexico
State of Oklahoma - (D9919)
State of Oregon - (Certificate No. CA413)
State of Pennsylvania - (Certificate No. 68-490)
State of South Carolina - (Certificate No. 87002001)
State of Tennessee - (Certificate No. 02996)
State of Texas - (Certificate No. TX247-1000A
State of Utah - (Certificate No. E-201)
State of Washington - (Certification No. C091)
State of Wisconsin - (Certificate No. 998036160)
State of Wyoming - (USEPA Region 8 Ref: 8TMS-Q)

SUBCONTRACT ORDER - PROJECT \# IOC2064

SENDING LABORATORY: Del Mar Analytical, Irvine 17461 Derian Avenue. Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 261-1228 Project Manager: Michele Harper	RECEIVING LABORATORY: Alta Analytical 1104 Windfield Way El Dorado Hills, CA. 95762 Phone: :(916) 933-1640 Fax: (916) 933-0940	
Standard TAT is requested unless specific due date is reque Analysis Expiration	\Rightarrow Due Date: 5 day. \qquad Initials: Comments	.
Sample W: 1OC2064-01 Water Sampled: 03/25/05 14:40 1613-Dioxin-HR $04 / 01 / 05$ 14:40 EDD + Level 4 $04 / 22 / 0514: 40$	Instant Nofication J flags, 17 congeners, no TEQ, sub to Pace-MN Excel EDD email to pm,Include Std loge for LviIV	
Containers Supplied: 1 L Amber (IOC2064-01G) 12 Amber (IOC2064-01H)		

SAMPLE INTEGRITY:

SAMPLE INTEGRITY:										
All containers intact:	\square	Yes	\square	No	Sample labels/COC agree:	- $\mathrm{Yes}^{\text {a }}$	\square No	Samples Received On Leer:	$\square \mathrm{Yes}$	\square No
Custody Seals Present:	\square	Yes	\square	No	Samples Preserved Properiy:	\square Yes	\square No	Sumples Received at (temp):		

Released By
Released By
Project 25968

SAMPLE LOGIN CHECKLIST

ALTA Project No.: \qquad

Comments:

Client \qquad Contact: Michele Harper Fax Number: $949 \quad 260-3297$

Project Number: \qquad 25968

Date Received: $0 / 29 / 05$

Documented by/date:

Please review the following information and complete the Client Authorization section. To comply with NELAC regulations, we must receive authorization before proceeding with sample analysis. Thank You. (Fax \#916-673-0106)

The following information or item Is needed to proceed with the analysis:
\square Completed Chain-of-Custody
\square Test Method Requested
\square Analyse List Requested

The following anomalies were noted. Authorization is needed to proceed with the analysis:

Temperature outside $\pm 2^{\circ} \mathrm{C}$ range Samples Affected:
\square PreservativeSample Identification
Collector's Name
\square Sample TypeSample Collection Date /Time

Temp \qquad ${ }^{\circ} \mathrm{C}$

Sample ID Discrepancy
Sample holding time missed
Custody seals broken
Insufficient Sample Size
Sample Containers) Broken Incorrect Container Type
\qquad
ice Present? Yes No
Samples Affected: \qquad

Other \qquad
\qquad

[^0]: * Subcontracted analytical laboratory is not meeting contract and/or method requirements.
 - Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

[^1]: ${ }^{2}$ Subcontracted analytical laboratory is not meeting contract and/or method requirements.

 - Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

[^2]: ${ }^{\text {a }}$ Subcontracted analytical laboratory is not meeting contract and/or method requirements.

 - Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

[^3]: Del Mar Analytical, Irvine
 Wendy Kirkeeng For Michele Harper Project Manager

[^4]: - Subcontracted analytical laboratory is not meeting contract andor method requirements.
 *Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

[^5]: Del Mar Analytical, Irvine
 Wendy Kirkeeng For Michele Harper
 Project Manager

[^6]: * Subcontracted analytical laboratory is not meeting contract andor method requirements.
 b Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

[^7]: Del Mar Analytical, Irvine
 Wendy Kirkeeng For Michele Harper
 Project Manager

[^8]: * Subcontracted analytical laboratory is not meeting contract and/or method requirements.
 - Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

[^9]: Del Mar Analytical, Irvine
 Wendy Kirkeeng For Michele Harper
 Project Manager

[^10]: Del Mar Analytical, Irvine
 Wendy Kirkeeng For Michele Harper Project Manager

[^11]: * Subcontracted analytical laboratory is not meeting contract and/or method requirements.
 ${ }^{6}$ Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

[^12]: * Subcontracted analytical laboratory is not meeting contract and/or method requirements.
 bifferences in protocol have been adopted by the laboratory but no action against the laboratory is required.

[^13]: - Subcontracted analytical laboratory is not meeting contract and/or method requirements.

 Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

[^14]: Del Mar Analytical, Irvine
 Wendy Kirkeeng For Michele Harper Project Manager

[^15]: Del Mar Analytical, Irvine
 Wendy Kirkeeng For Michele Harper
 Project Manager

[^16]: Del Mar Analytical, Irvine
 Wendy Kirkeeng For Michele Harper Project Manager

[^17]: Del Mar Analytical, Irvine
 Wendy Kirkeeng For Michele Harper
 Project Manager

[^18]: Del Mar Analytical, Irvine
 Wendy Kirkeeng For Michele Harper Project Manager

[^19]: Subcontracted analytical laboratory is not meeting contract and/or method requirements.

 - Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

[^20]: * Subcontracted analytical laboratory is not meeting contract and/or method requirements.

[^21]: ${ }^{2}$ Subcontracted analytical laboratory is not meeting contract and/or method requirements.
 Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

[^22]: * Subcontracted analytical laboratory is not meeting contract and/or method requirements.
 " Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

[^23]: Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

[^24]: Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

[^25]: - Subcontracted analytical laboratory is not meeting contract and/or method requirements.
 b Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

[^26]: Del Mar Analytical, Irvine
 Wendy Kirkeeng For Michele Harper
 Project Manager

[^27]: Del Mar Analytical, Irvine
 Wendy Kirkeeng For Michele Harper
 Project Manager

[^28]: * Subcontracted analytical laboratory is not meeting contract and/or method requirements.

 Differences in protocol have been adopted by the laboratory but no action against the laboratory is reguired.

[^29]: MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly

 Project ID: Ourfall 011
 Report Number: IOCl 523

 Sampled: 03:18:05
 Received: 03/18:05

[^30]: ${ }^{2}$ Subcontracted analytical laboratory is not meeting contract and/or method requirements.

[^31]: ${ }^{2}$ Subcontracted analytical laboratory is not meeting contract and/or method requirements.
 ${ }^{6}$ Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

[^32]: Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

[^33]: Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

[^34]: Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

[^35]: * Subcontracted analytical laboratory is not meeting contract and/or method requirements.
 ${ }^{6}$ Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

[^36]: ${ }^{2}$ Subcontracted analytical laboratory is not meeting contract and/or method requirements.
 ${ }^{\text {b }}$ Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

[^37]: $M \mathrm{H} \cdot \| \cdot 0$ The resuls pertain only to the samples tested in the laboratory. This report shall not be reproduced. except in full, without written permission from Del Mar Analytical.

 IOC2063 <Page 10 a)66>

[^38]: MWH-Pasadena/Boeing
 300 North Lake Avenue, Suite 1200
 Pasadena, CA 91101 Attention: Bronwyn Kelly

[^39]: * Subcontracted analytical laboratory is not meeting contract and/or method requirements.
 b Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

[^40]: * Subcontracted analytical laboratory is not meeting contract and/or method requirements.
 ${ }^{\text {b }}$ Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

[^41]: Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

[^42]: Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

[^43]: Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

[^44]: Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

[^45]: Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

[^46]: Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

[^47]: Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

[^48]: Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

[^49]: Dave Dawes

[^50]: Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

[^51]: Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

[^52]: Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

[^53]: Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

[^54]: Del Mar Analytical, Irvine
 Nichele Harper
 'roject Manager

