APPENDIX G - VOLUME 5 (Part 4 of 7)
 TABLE OF CONTENTS

Section No.

20 February Outfall 006 - AMEC Data Validation Reports, Del Mar Analytical Laboratory Reports

21 February Outfall 007 - AMEC Data Validation Reports, Del Mar Analytical Laboratory Reports

February Outfall 009 - AMEC Data Validation Reports, Del Mar Analytical Laboratory Reports
24 February Outfall 010 - AMEC Data Validation Reports, Del Mar Analytical Laboratory Reports
25 February Outfall 011 - AMEC Data Validation Reports, Del Mar Analytical Laboratory Reports

APPENDIX G

Section 20

February Outfall 006
AMEC Data Validation Reports
Del Mar Analytical Laboratory Reports

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental 550 South Wadsworth Boulevard Suite 500
Lakewood, CO 80226
Laboratory Alta Analytical Perspective
Reviewer H. Chang
Analysis/Method Dioxin\&Furans/1613

Laboratory Alta Analytical Perspective
Analysis/Method Dioxin\&Furans/1613

ACTION ITEMS ${ }^{2}$

Package ID T711DF30
Task Order 313150010
SDG No. Multi
No. of Analyses 13
Date: March 18,2005
Reviewer's Signature

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables

6. Deviations from Analysis

Detects below the calibration range were qualifed "J."
Protocol, e.g.,
False negative and false positives noted.
Holding Times
GC/MS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and
Quantitation
System Performance
COMMENTS $^{\text {b }}$

[^0]
amec ${ }^{\theta}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: DIOXINS/FURANS SAMPLE DELIVERY GROUPS: Multiple SDGs

Prepared by

AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple SDGs
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 13
No. of Reanalyses/Dilutions: 0
Reviewer: H. Chang
Date of Review: March 18, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project: DAT.A VALIDATION REPORT

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Alta AP)	Matrix	COC Method
Outfall 001	IOB0980-01	P5072_2989_007	water	1613 B
Outfall 002	IOB0981-01	P5072_2989_013	water	1613 B
Outfall 003	IOB0988-01	P5072_2989_012	water	1613 B
Outfall 004	IOB1002-01	P5072_2989_009	water	1613 B
Outfall 005	IOB0990-01	P5072_2989_006	water	1613 B
Outfall 006	IOB0992-01	P5072_2989_010	water	1613 B
Outfall 007	IOB0993-01	P5072_2989_002	water	1613 B
Outfall 008	IOB0997-01	P5072_2989_004	water	1613 B
Outfall009	IOB0996-01	P5072_2989_003	water	1613 B
Outfall 010	IOB1001-01	P5072_2989_001	water	1613 B
Outfall 011 Composite	IOB1004-01	P5072_2989_011	water	1613 B
Outfall 011	IOB1014-01	P5072_2989_005	water	1613 B
Outfall 018	IOB1008-01	P5072_2989_008	water	1613 B

	Project: DATA VALIDATION REPORT
	NPDES
SDG No.:	Multiple
Analysis:	D/F

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

All of the samples in these SDGs were received at Del Mar Analytical within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ except sample Outfall 009 which was at $8^{\circ} \mathrm{C}$. Due to non-volatile nature of the analytes, no qualifications were necessary for the elevated cooler temperature. The samples were received at Pace Analytical with cooler temperatures of $1.6^{\circ} \mathrm{C}, 2.3^{\circ} \mathrm{C}$, and $3^{\circ} \mathrm{C}$. The samples were received at Alta Analytical Perspectives with cooler temperatures of $1^{\circ} \mathrm{C}$ and $3^{\circ} \mathrm{C}$. According to the laboratory login sheets, all samples were received intact and in good condition at Del Mar and Alta AP. No sample conditions were available for review for the sample receipt at Pace. No qualifications were required.

2.1.2 Chain of Custody

It appears that the samples were initially sent from Del Mar Analytical to Pace Analytical then subsequently shipped to Alta Analytical Perspectives. The COCs from the field to Del Mar, Del Mar to Pace, and Pace to Alta were available for review. The COCs were legible and signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. The custody seals were not present on the coolers upon receipt at either Del Mar or Alta. No custody seal information was available for Pace. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Column Performance Check Standard (CPSM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed prior to initial calibration analysis. A separate CPSM was not analyzed for daily analytical sequence; instead, CPSM compounds were added to OPR analysis. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and $2,3,7,8$-TCDD reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

	Project: NPDES
DATA YALIDATION REPORT	SDG No.: Multiple

2.3 CALIBRATION

2.3.1 Initial Calibration

There was one initial calibrations, analyzed 08/12/04. The calibrations each consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with \%RSDs $\leq 20 \%$ for the native compounds and $\leq 35 \%$ for the labeled compounds. The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of $\%$ Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.4 BLANKS

One method blank (0 _2989_MB001) was extracted and analyzed with the samples in these SDGs. There were no detects reported in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One Ongoing Precision Recovery (OPR) sample (0 2989_OPR001) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of the Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

2.7.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for these SDGs.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data. The laboratory reported total PeCDFs detects in samples Outfall 005, Outfall 006, Oufall 007 , and Outfall 011 . The reviewer deemed the signals used to be below the signal-to-noise ratio of 2.5 and the results were changed to nondetects. A false negative for total HxCDD was noted in sample Outfall 001 and was changed to a detect. No further qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the lower method calibration level (MCL) were qualified as estimated, "J." The laboratory did not flag OCDD in samples Outfall 002 and Outfall 003 although the reported concentrations were below the lower MCL. OCDD in these samples was qualified as estimated, "J." In addition, Alta analyzed an additional calibration standard at concentrations below the level specified in the method. Not all results below the lower MCLs were flagged as estimated by the laboratory. These results were qualified as estimated, "J," by the reviewer. The laboratory also did not flag detects below the lower MCL for totals as estimated. These totals were qualified as estimated, "J." The "DNQ" qualification code was applied only if all components of the totals were below the lower MCL. Total HpCDF in samples Outfall 001 and Outfall 010 had one of the components below the lower MCL but one within the MCL. Total HpCDF in these samples were qualified as estimated, "J."

The laboratory indicated that one of the non- $2,3,7,8$ substituted HxCDD detect, present in majority of the samples, was due to recovery standard ($13 \mathrm{C}-1,2,3,4,6,7-\mathrm{HxCDD}$) contribution. This compound was also present in the method blank. This compound was not included in the total HxCDD concentration. Several total HxCDD results could not be reproduced from the raw data by the reviewer and were hand-corrected on the Form I. No further qualifications were required.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA	
AMEC Earth \& Environmental	Package ID T711MT43
550 South Wadsworth Boulevard	Task Order 313150010
Suite 500	SDG No. IOB0988, 0990, 0992
Lakewood, CO 80226	No. of Analyses 3
Laboratory Del Mar	Date: 03/21/05
Reviewer P. Meeks	Reviewer's Signature
Analysis/Method Metals	P.Me0

ACIIONTIEMS
 1. Case Narrative Deficiencies

2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from

Analysis Protocol, e.g.,
Qualifications applied for detects below the reporting limit.

Internal Standard
Performance
Compound Identification
and Quantitation
System Performance \square
\qquad
\qquad
\qquad

```
COMMMENTS
```

[^1]
amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: METALS
SAMPLE DELIVERY GROUPS: IOB0988, IOB0990, \& IOB0992

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOB0988, IOB0990, IOB0992
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Metals
QC Level: Level IV
No. of Samples: 3
No. of Reanalyses/Dilutions: 0
Reviewer: P. Meeks
Date of Review: March 21, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, SW-846 Method 6010B for Inductively Coupled Plasma, SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

Table 1. Sample identification

	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 003	Outfall 003	IOB0988-01	water	ILM04
Outfall 005	Outfall 005	IOB0990-01	water	ILM04
Outfall 006	Outfall 006	IOB0992-01	water	ILM04

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel. The metals analyte list was changed per a memo from MWH personnel dated 02/17/05. Duplicate samples were submitted for all samples in these SDGs; however, duplicate analyses were not required. No sample qualifications were required.

2.1.3 Holding Times

The dates of collection recorded on the COCs and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS metals. No qualifications were required.

2.2 ICP-MS TUNING

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. All $\%$ RSDs were less than 5%. The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, $90-110 \%$ for ICP/MS metals. The reporting limit check standards were recovered within the AMEC control limits of $70-130 \%$. No sample qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2.4 BLANKS

Lead was not detected in the method blank or associated CCBs. No qualifications were required due to the method and calibration blank results.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were included in the raw data for the ICP-MS analyses. Results were not provided for spiked interferents sulfur, phosphorus, carbon, and chloride, and antimony, selenium thallium, and lead were not spiked into the ICSAB solution. The results for sodium and potassium were above the calibration range of the instrument in the ICSA and ICSAB analyses; however, as these analytes were not reported in the site sample, no qualifications were required. The result for aluminum was above the calibration range in the ICSA and was recovered below the control limit in the ICSAB analysis associated with Outfall 003 and Outfall 005 ; however, as aluminum was not reported for these samples, no qualifications were required. No assessment could be made with respect to possible interference from sulfur, phosphorus, carbon, and chloride. No qualifications were required.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP/MS LCS sample was identified as 5B17099-BS1. The LCS result on the summary forms and in the raw data were within the laboratory-established ICP/MS control limits of $85-115 \%$. No qualifications were required.

2.7 LABORATORY DUPLICATES

MS/MSD analyses were performed on Outfall 005 in association with the samples in these SDGs. The RPD was less than the control limit of 20%. No qualifications were required.

2.8 MATRIX SPIKE

MS/MSD analyses were performed on Outfall 005 in association with the samples in these SDGs. The recoveries were within the AMEC control limits of $75-125 \%$. No qualifications were required.

2.9 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2.10 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

2.11 INTERNAL STANDARDS PERFORMANCE

The ICP-MS internal standard recoveries for the site samples and associated QC sample analyses were within the $60-125 \%$ control limits and no qualifications were required.

2.12 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Lead detected below the reporting limit in Outfall 003 and Outfall 005 was qualified as estimated, "J." No further qualifications were required.

2.13 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.13.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site samples.

Del Mar Analytical

17461Derian Ave., Suite 100, Invine, CA 92614 1949)261-1022 EXX (949; $260-3297$

 8830 south 51 st St., Sute B-120. Phoemx, 1285044 (480) 785-0043 FiX (143C) 785-045 2520 E. Sunset Rd. *3, Las Vegas, NV 89120 (702) 798-3620 FAX (7C2) r98-362

1 MWH-Pasadena/Boeing	Project ID: Routine Outfall 006	
1300 North Lake Avenue, Suite 1200		Sampled: 02:11:05
Pasadena, CA 91101	Report Number IOB0992	Received: $02 / 11105$
Attention: Bronwyn Kelly	Reponwaber. IOB092	Received. 02, 11,05

DRAFT: METALS

AMEC VALIDATED

 Leveliv

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 006

Sampled: 02/11/05
Received: 02/11/05
Issued: 03/23/05 18:23

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chains) of Custody, 4 pages, are included and are an integral part of this report.
This entire report was reviewed and approved for release.
SAMPLE CROSS REFERENCE
SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
IOB0992-01

CLIENT ID

Outfall 006

MATRIX
Water

Reviewed By:

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 006
Report Number: $10 B 0992 \quad$ Received: 02/11/05

			MET	LS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OB0992-01 (Outfall 006-Water)									
Reporting Units: ug/l									
Antimony	EPA 200.8	5B17098	0.18	2.0	ND	1	02/17/05	02/18/05	
Cadmium	EPA 200.8	5B17098	0.015	1.0	0.098	1	02/17/05	02/18/05	J
Copper	EPA 200.8	5B17098	0.49	2.0	4.7	1	02/17/05	02/18/05	
Lead	EPA 200.8	5B17098	0.13	1.0	2.5	1	02/17/05	02/18/05	
Mercury	EPA 245.1	5B15070	0.063	0.20	0.18	1	02/15/05	02/15/05	J

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 006
Report Number: $10 B 0992 \quad$ Received: 02/11/05

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dillution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB0992-01 (Outfall 006 - Water) - cont. Reporting Units: mg/									
Chloride	EPA 300.0	5B11120	0.26	0.50	2.2	1	02/11/05	02/12/05	
Nitrate/Nitrite-N	EPA 300.0	5B11120	0.072	0.26	0.40	1	02/11/05	02/12/05	
Oil \& Grease	EPA 413.1	5B16097	0.94	5.0	ND	1	02/16/05	02/16/05	
Sulfate	EPA 300.0	5B11120	0.18	0.50	1.3	1	02/11/05	02/12/05	
Total Dissolved Solids	SM2540C	5B16118	10	10	100	1	02/16/05	02/16/05	
Total Suspended Solids	EPA 160.2	5B17069	10	10	100	1	02/17/05	02/17/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 006
Sampled: 02/11/05
Report Number: IOB0992

Received: 02/11/05

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 006 (IOB0992-01) - Water EPA 300.0	2	$02 / 11 / 200510: 15$	$02 / 11 / 200518: 15$	$02 / 11 / 2005$	$23: 00$

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 006	
300 North Lake Avenue, Suite 1200		Sampled: $02 / 11 / 05$
Pasadena, CA 91101	Report Number: $10 B 0992$	Received: $02 / 11 / 05$
Attention: Bronwyn Kelly		

MEIHOD DLANKIOCDATA

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5B15070 Extracted: 02/15/05										
Blank Analyzed: 02/15/2005 (5B15070-BLK1)										
Mercury ND	0.20	0.063	ug/							
LCS Analyzed: 02/15/2005 (5B15070-BS1)										
Mercury 8.18	0.20	0.063	ug/1	8.00		102	85-115			
Matrix Spike Analyzed: 02/15/2005 (5B15070-MS1)	Source: IOB1088-01									
Mercury 8.26	0.20	0.063	ugh	8.00	ND	103	70-130			
Matrix Spike Dup Analyzed: 02/15/2005 (5B15070-MSD1)				Source: IOB1088-01						
Mercury 8.26	0.20	0.063	ug/	8.00	ND	103	70-130	0	20	

Batch: 5B17098 Extracted: 02/17/05
Blank Analyzed: 02/17/2005 (5B17098-BLK1)

Antimony	ND	2.0	0.18	ug/			
Cadmium	ND	1.0	0.015	ug/l			
Copper	ND	2.0	0.49	ugh			
Lead	ND	1.0	0.13	ughl			
LCS Analyzed: 02/17/2005 (5B17098-BS1)							
Antimony	87.4	2.0	0.18	ug/l	80.0	109	85-115
Cadmium	75.2	1.0	0.015	ug/	80.0	94	85-115
Copper	85.2	2.0	0.49	$\mathrm{ug} /$	80.0	106	85-115
Lead	86.3	1.0	0.13	ug/l	80.0	108	85-115

Matrix Spike Analyzed: $\mathbf{0 2 / 1 7 / 2 0 0 5}$ (5B17098-MS1)			Source: IOB0960-01					
Antimony	87.5	2.0	0.18	ug/	80.0	ND	109	$70-130$
Cadmium	71.6	1.0	0.015	ug/	80.0	0.031	89	$70-130$
Copper	93.8	2.0	0.49	ug/	80.0	15	98	$70-130$
Lead	80.5	1.0	0.13	ug/l	80.0	0.21	100	$70-130$

MWH-Pasadena/Boeing	Project ID: Routine Outfall 006	
300 North Lake Avenue, Suite 1200		Sampled: $02 / 11 / 05$
Pasadena, CA 91101	Report Number: $10 B 0992$	Received: $02 / 11 / 05$

Attention: Bronwyn Kelly

METHOD BLANKIOC DATA

METALS

		Reporting			Spike	Source	\%REC		RPD	Data	
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5B17098 Extracted: 02/17/05

	Matrix Spike Analyzed: $\mathbf{0 2 / 1 7 / 2 0 0 5}$ (5B17098-MS2)			Source: 1OB1052-01				
Antimony	92.7	2.0	0.18	ugh	80.0	ND	116	$70-130$
Cadmium	72.4	1.0	0.015	ugh	80.0	0.24	90	$70-130$
Copper	80.9	2.0	0.49	ugh	80.0	6.0	94	$70-130$
Lead	78.8	1.0	0.13	ugh	80.0	ND	98	$70-130$

Matrix Spike Dup Analyzed: 02/17/2005 (5B17098-MSD1)			Source: 10B0960-01							
Antimony	86.6	2.0	0.18	ug/	80.0	ND	108	70-130	1	20
Cadmium	71.5	1.0	0.015	ug/	80.0	0.031	89	70-130	0	20
Copper	93.3	2.0	0.49	ugl	80.0	15	98	70-130	1	20
Lead	83.5	1.0	0.13	ug/	80.0	0.21	104	70-130	4	20

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 006	
300 North Lake Avenue, Suite 1200		Sampled: $02 / 11 / 05$
Pasadena, CA 91101	Report Number: $10 B 0992$	Received: 02/11/05
Attention: Bronwyn Kelly		

METHOD BLANKIOC DATA

INORGANICS

Analyte	Result	Reportin Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5B11120 Extracted: 02/11/05											
Blank Analyzed: 02/11/2005 (5B11120-BLK1)											
Chloride	ND	0.50	0.26	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.072	mg / l							
Sulfate	ND	0.50	0.18	mg / l							
LCS Analyzed: 02/11/2005 (5B11120-BS1)											
Chloride	4.84	0.50	0.26	mg/l	5.00		97	90-110			
Sulfate	10.0	0.50	0.18	$\mathrm{mg} /$	10.0		100	90-110			
Matrix Spike Analyzed: 02/12/2005 (5B11120-MS1)					Source: IOB0980-01						
Chloride	15.6	0.50	0.26	$\mathrm{mg} / 1$	5.00	11	92	80-120			
Sulfate	38.7	0.50	0.18	mg / l	10.0	29	97	80-120			
Matrix Spike Dup Analyzed: 02/12/2005 (5B11120-MSD1)					Source: IOB0980-01						
Chioride	158	0.50	0.26	mg / l	5.00	11	96	80-120	1	20	\%
Sulfate	39.3	0.50	0.18	mg / l	10.0	29	103	80-120	2	20	

Batch: 5B16097 Extracted: 02/16/05
Blank Analyzed: 02/16/2005 (5B16097-BLK1)

Oil \& Grease	ND	5.0	0.94	mg / l					
LCS Analyzed: 02/16/2005 (5B16097-BS1)									
Oll \& Grease	16.2	5.0	0.94	mg / l	20.0	81	65-120		
LCS Dup Analyzed: 02/16/2005 (5B16097-BSD1)									
Oil \& Grease	18.3	5.0	0.94	mg / l	20.0	92	65-120	12	20

M-NR1

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID: Routine Outfall 006	
300 North Lake Avenue, Suite 1200		Sampled: $02 / 11 / 05$
Pasadena, CA 91101	Report Number: $10 B 0992$	Received: $02 / 11 / 05$
Attention: Bronwyn Kelly		

MEIHOD BLANKIOC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5B16118 Extracted: 02/16/05										
Blank Analyzed: 02/16/2005 (5B16118-BLK1)										
Total Dissolved Solids ND	10	10	mg / l							
LCS Analyzed: 02/16/2005 (5B16118-BS1)										
Total Dissolved Solids 1050	10	10	mg / l	1000		105	90-110			
Duplicate Analyzed: 02/16/2005 (5B16118-DUP1)				Sour	ce: 1OB1	205-06				
Total Dissolved Solids 756	10	10	$\mathrm{mg} /$		750			1	10	
Batch: 5817069 Extracted: 02/17/05										
Blank Analyzed: 02/17/2005 (5B17069-BLK1)										
Total Suspended Solids ND	10	10	mgl							
LCS Analyzed: 02/17/2005 (5B17069-BS1)										
Total Suspended Solids - 977	10	10	mg/	1000		98	85-115			
Duplicate Analyzed: 02/17/2005 (5B17069-DUP1)				Sour	ce: IOB0	990-01				
Total Suspended Solids ND	10	10	mg / l		ND				10	

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 006
Report Number: $10 B 0992 \quad$ Received: 02/11/05

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
10B0992-01	413.1 Oil and Grease	Oil \& Grease	mg / l	0	5.0	15
10B0992-01	Antimony-200.8	Antimony	ug/	0.084	2.0	6.00
1OB0992-01	Cadmium-200.8	Cadmium	ug/l	0.098	1.0	4.00
1OB0992-01	Chloride - 300.0	Chloride	mg/	2.20	0.50	150
1OB0992-01	Copper-200.8	Copper	ug/l	4.70	2.0	14
IOB0992-01	Mercury - 245:1	Mercury	ug/1	0.18	0.20	0.20
IOB0992-01	Nitrogen, $\mathrm{NO} 3+\mathrm{NO} 2-\mathrm{N}$	Nitrate/Nitrite-N	mg / l	0.40	0.26	10.00
10B0992-01	Sulfate-300.0	Sulfate	$\mathrm{mg} / 1$	1.30	0.50	250
1OB0992-01	TDS - SM 2540C	Total Dissolved Solids	mg / l	100	10	850

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 006
Report Number: IOB0992 Received: 02/11/05

Sampled: 02/11/05

DATA QUALIFIERS AND DEFINITIONS

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD
Relative Percent Difference

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 006
Report Number: $10 B 0992 \quad$ Received: 02/11/05

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
EPA 160.2	Water	\mathbf{X}	\mathbf{X}
EPA 200.8	Water	\mathbf{X}	\mathbf{X}
EPA 245.1	Water	\mathbf{X}	\mathbf{X}
EPA 300.0	Water	\mathbf{X}	\mathbf{X}
EPA 413.1	Water	\mathbf{X}	\mathbf{X}
SM2540C	Water	\mathbf{X}	\mathbf{X}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical Perspectives

Analysis Performed: 1613-Dioxin-HR
Samples: IOB0992-01
Analysis Performed: EDD + Level 4
Samples: IOB0992-01
$+n$
Pace 1 of 1

$F A x$

Fan No:
949-260-3297

Patij Meeks / AMEC
303-935-6575

Krissi Mcilvenna / MWH

From: Bronwyn K. Kelly

Subject:

No. of Pages: 2 (iecluding cover)

Per Roquost:
「leas make the changes listed below to the chain-ni-custody anulytival request form. Include this form with the final deliverables for these samples.

Del Mar Work Order*	Smaple ID	Dute Collected	Change(s) Rcquested, Not Completed	Change(s) and Method (a) Now Requested
10B0988	Ontfall 003	02/11/15	Annuml Constituents per 2004 NPDES Permit - Total Recoverable Metals: $\mathrm{Sb}_{\text {, }}$ $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{Hg} . \mathrm{B}, \mathrm{V}_{2} \mathrm{~N}+\mathrm{PP} ; \mathrm{TCDD}$ (and all congeners); Oil und Grease (EPA 413.1), Cl-, $\mathrm{SO} 4, \mathrm{~N}$) $3+\mathrm{NO} 2-\mathrm{N}$, Penchlorme: TDS, TSS VOCs (624): VOCs, A+A+2CVE, NPDES + PP PenticidenfCB P PF, Gross Alphe, Gross Beta, Tritium (906.0), Sr-90, Totsil Combined Radium 226e228; SVOCs - PP, Acute toxicity, Cyanide.	Routine Constinuents per 2004 NPDES Permit - Total Recoveruble Metals: $\mathrm{Sb}, \mathrm{Cd}, \mathrm{Cu}$, $\mathrm{Pb}, \mathrm{Hg}, \mathrm{TCDD}$ (and all congeners); Oil und Greasc (FPA 413.1), TDS, TSS.
10 BI 102	Outfll 004	02/11/05	Annual Constinients par 2004 NPDES Pcrinit-Total Recoveruble Metals: \$b, $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{Hg}, \mathrm{B}, \mathrm{V}, \mathrm{A},+\mathrm{PP}, \mathrm{TCDD}$ (and all congeners); Oil und Orease (EPA413.1), $\mathrm{Cl}, \mathrm{SO}, \mathrm{N}) 3+\mathrm{NO}-\mathrm{N}$, Perchlorate; TDS, TSS VOCS (624); VOCs, $\wedge+A+2 C V E$, NPDES + Pr; Pcsticides/CHs.PP, Gross Alpha, Gross Bcta, Tritium (906.0) $\mathrm{Sr}-90$, Total Combined Radium 226e228: SVOCs - PP. Acute toxicity, Cyanide.	Routinc Constiments per 2004 NPDES Permit - Total Recoverible Metalk: $\mathrm{Sb}, \mathrm{Cd}, \mathrm{Cu}$, $\mathrm{Pb} . \mathrm{Hg}$: TCDD (and all congeners); Oil and Grease (EPA 413.1); TDS, TSS.
10810990	Outall 005	02/11/05	Aumul Constituents per 2004 NPDFS Pernit - Total Recoverible Metals: Sb , $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{It}, \mathrm{B}, \mathrm{V}, \mathrm{AL}$, +PP, TCDD (and all congeners), Oil and Grease (EPA 413.1 , $\mathrm{Cl}-\mathrm{SO}, \mathrm{N}) 3+\mathrm{NO} 2-\mathrm{N}$ Perchlorate; TDS, TSS VCCs (624); VOCs, $1+A+2 C V F ;$ NPDES + PP; Pesticides/PCBs-PP; Gross Alpha, Gross Beta, Tritium (906.0 , $\mathrm{Sr}-90$, Total Combined Rodium 2268228; SVOCIs - IPP, Acutc toxicity, Cyanide.	Routine Constituents per 2004 NPDES Permit - Total Recoverable Metals $\mathrm{Sb}, \mathrm{Cd}, \mathrm{Cu}$, Pb, Hg, TCDD (and all congeners); Oil and Grease (EPA 413.1); TDS, TSS.

The reason for these changes:
Incorrectly marked on COC form
l.zck of :ample voitinte \qquad
Other: Containers mislabeled

This Change Order supersedes all previous change orders submitted.

Thank you

$<$ Del MarAnalytical

March 23,2005

MWH-Pasadena/ Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention:	Bronwyn Kelly
Project:	Routine Outfall 006
	Sampled: 02/11/05
	Del Mar Analytical Number: IOB0992

Dear Ms.Kelly:
Alta Analytical Perspectives performed the EPA Method 1613 Dioxin analysis for the project referenced above. Please use the following cross-reference table when reviewing your results.

MWH ID	Del Mar ID	Alta ID
Outfall 006	IOB0992-01	P5072 2989 010

Attached is the original report from the subcontract laboratory. If you have any questions or require further assistance, please do not hesitate to contact me at (949) 261-1022, extension 215.

Sincerely yours, DEL MAR ANALYTICAL

Alta analytical Perspectives

3 March 2005

Scott Unze

Pace Analytical Services
1700 Elm Street
Minneapolis, MN 55414
$\mathrm{Ph}:$ 612-607-1700
Fax: 612-607-6444
Subject: Certificate of Results
Dear Scott;
Attached to this narrative are the analytical results you requested on the samples submitted for the determination of polychlorinated dibenzo-p-dioxins and dibenzofurans. The insert below summarizes the relevant information pertaining to your project. In particular, the QC annotations bring to your attention specific analytical observations and assessments made during the sample handling and data interpretation phases. A brief description of the report's components is provided on the next page.

Project Information Summary	
Client Project No.	
AAP Project No.	
Analytical Protocol	
No, Samples Submited	
No. Samples Analyzed	
No. Laboratory Method Blanks	
No. OpRs / Batch Cs3	
No. Outstanding Samples	
Date Recoived	
Condition Received	
Temperature upon Receipt (C)	
Extraction within Holding Time	
Analysis within Holding Time	
Data meet QAQC Requirements	
Exceptions	
Analytical Difficulties	

[^2]
QC Annotations:

1. A " J " data qualifier is used for analytes with a concentration below the reporting limit.

Alta Analytical Perspectives remains committed to serving you in the most effective manner. Should you have any questions or need additional information and technical support, please, do not hesitate to contact us. We wanted to thank you for choosing Alta Analytical Perspectives as part of your analytical support team.

Sincerely,

Amy J. Boehm
Project Manager

Sample 1	0_2989_MBO	01		Method 1613							
Client Data		Sample Data		Laboratory Data							
Name: Project ID: Date Collected:	Pace inc. Genorat Anaytical hruds na	Matrix: WeightVolume: pH	$\begin{gathered} \text { Aqueous } \\ 1.00 \mathrm{~L} \\ 6 \\ \hline \end{gathered}$	Project No.: Sample ID: QC Batch No.:	$\begin{gathered} \text { P5072 } \\ \text { O_2S89_MB001 } \\ 2989 \end{gathered}$	Date Received: Date Extracted: Date Analyzed:	n/a 01 Mar 05 02 Mar 05				
Analyte	Conc. pg/L	DL. pgh	$\begin{aligned} & \text { EMPC } \\ & \text { pgh } \end{aligned}$	Quallifer	Recoverias						
					ES	CS					
2,3,7,8-1600	ND	1.65			75.2	80.6					
$1.2,3,7,8-\mathrm{PaCDO}$	ND	1.55			70.5	83.7					
1, $1.23,4,4,7,8-4 \times \mathrm{COOD}$	ND	257			80	88.4					
$1,23,7,8,8+4 \times 600$	ND	2.4			91.5	86.4					
1,2,3,4,6,7,8+ipCDD	ND	2.88			66	66.4					
OCDO	ND	4.78			74.9 87.4	69.8					
2,3,7,8-TCOF	ND	1.04									
1,2,3,7,8-PeCDF	ND	1.91			81.1	80.6					
2,3,4,7,8-PCOF	ND	1.98			85.1 76.6	82.9					
$1,2,3,4,7,8-4 \times C D F$ $1,2,3,6,7,4+\mathrm{CDF}$	NO	0.812			79.6 79.4	82.9					
1,2, $3,6,7,8-4 \times C D F$	ND	0.764			88.7	86.4 86.4					
2,3,4,6,7,8-HxCDF	ND	1.01			77.8	86.4					
$1,2,3,7,8,9-H \times C D F$ $1,2,3,4,6,7,8-H p C D F$	ND	1.42 1.78			75.6	86.4					
$1.2,3,4,7,8,8-\mathrm{HpCDF}$	ND	1.78 2.67			64.7	69.8					
OCDF	ND	1.67 11.1			65.1 67.2	$\begin{array}{r} 69.8 \\ 69.8 \end{array}$					
TCDDs	ND	1.65			Alta A	alytical p	-ECTIVE				
PaCOD	ND	1.55			$\underline{\square}$	(
HxCDOs	ND	2.59									
tpCDDs	ND	2.59 1.98				14 Exchange Driv Wilmington					
TCOFs	ND	1.04				rth Carolina 284					
PeCDFs	ND	1.94				USA					
HxCDFs HpCDFs	ND	0.974				el: 910 794-1613					
Total PCDD/Fs	ND	2.19	0			ax: 910 794-3919					
			0		$\begin{aligned} & \text { ema } \\ & \text { wab: } \end{aligned}$	il: yteltultratrace.c www.ultratrace.c					
Cherkcode: 3385											
\because	$\because \because$					Revie					
						\therefore Date	fros				

P5072 - TEQ

Project ID: General Analytical HRMS

$1=0$
1" EMPC

P5072 - Totals
Project ID: General Analytical HRMS

P5072 - Others
Project ID: General Analytical HRMS

Totals
Project ID: General Analytical HRMS
P5072

a Total PCDD/Fs ($\mathrm{ND}=0$; EMPC=0)
- Total PCDD/Fs ($\mathrm{ND}=0$; EMPC=EMPC)
Q Total PCDD/Fs (2378 -X ND=DL; EMPC=EMPC)

Mean Recoveries of Clean-Up Standards ($N=14$) Project ID: General Analytical HRMS P5072

Fax (909) 370-1046 Fax (619) 505-9689 Fax (480) 785-0051 Fax (70x) 780-3ez1

SUBCONTRACT ORDER - PROJECT \# IOB0992

SENDING LABORATORY:

Del Mar Analytical, Irvine
17461 Derian Avenue. Suite 100
lrvine, CA 92614
Phone: (949) 261-1022
Fax: (949) 261-1228
Project Manager: Michele Harper

RECEIVING LABORATORY:

Pace Analytical, MN- SUB
1700 Elm Street, Ste 200
Minneapolis, MN 55414
Phone :(612) 607-1700
Fax: (612) 607-6444

Standard TAT is requested unless specific due date is requested \Rightarrow Due Date: \qquad Initials: \qquad
Analysis
Expiration
Sample ID; 1OB0992-01 Water Sampled: 02/11/05 10:15

1613-Dioxin-HR
02/18/05 10:15
03/11/05 10:15

Comments

J flags, 17 congeners, no TEQ, sub to Pace-MN Excel EDD email to pm,Include Std logs for Lvi IV
E. .

Containers Supplied:

1 L Amber (1OB0992-01C)
1 L Amber (1OB0992-01D)

CHAIN-OF-CUSTODY / Analytical Request Document The Chein-of-Cuatody is a LEGAL DOCUMENT. All relovant fildds must be comploted accuratoly.
CHAIN-OF-CUSTODY I Analytical Request Document

为为
\qquad
, ,
\square
<
Q
\square

, \quad,
,
e

amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: DIOXINS/FURANS
SAMPLE DELIVERY GROUPS: Multiple SDGs

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple SDGs
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 6
No. of Reanalyses/Dilutions: 0
Reviewer: K. Shadowlight
Date of Review: March 9, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

DATA VALIDATHON REPORT	Project: SDG No.:
NPDES Multiple	

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Alta)	Matrix	COC Method
Outall 001	IOB1560-01	$25788-001$	water	1613
Outfall 004	IOB1556-01	$25786-001$	water	1613
Outfall 005	IOB1557-01	$25787-001$	water	1613
Outfall 006	IOB1559-01	$25784-001$	water	1613
Outfall 009	IOB1574-01	$25789-001$	water	1613
Outfall 010	IOB1575-01	$25785-001$	water	1613

DATA YALIDATION REPORT	Projeci: SDG No.:
	NuDES
Mnalysis:	DF

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

All of the samples in these SDGs were received at Del Mar Analytical within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The samples were shipped to Alta for dioxin/furan analyses and were received below the temperature limits at $0.8^{\circ} \mathrm{C}$ and $1.6^{\circ} \mathrm{C}$; however, as none of the samples were noted to have been frozen or damaged, no qualifications were required. According to the laboratory login sheets, all samples were received intact and in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COCs and transfer COCs were legible and signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. As the samples were couriered directly to Del Mar Analytical, custody seals were not required. The coolers received by Alta had custody seals present and intact; however, custody seals were not present on the sample containers. The EPA IDs were added to the sample result summary report by the reviewer. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and $2,3,7,8$-TCDD reported as less than 25%. No qualifications were required.

DATA VAIIDATION REPORT	Project: SDG No.: Nultiple

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

2.3 CALIBRATION

2.3.1 Initial Calibration

There were two initial calibrations, analyzed 08/30/04 and 10/04/04. The calibrations each consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibrations were acceptable with $\%$ RSDs $\leq 20 \%$ for the 15 native compounds (calibration by isotope dilution) and 535% for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method $Q C$ limits. A representative number of $\%$ Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standards instead of being analyzed separately, as noted in section 2.2 .1 of this report No adverse effect was observed with this practice.

2.4 BLANKS

One method blank ($6543-\mathrm{MB} 001$) was extracted and analyzed with the samples in these SDGs. There were no detects reported in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One Ongoing Precision Recovery (OPR) sample (6543-OPR001) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of the Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

DATA VALIDATION REPORT	Project: SDG No.: Nultes Malys:

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

2.7.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for these SDGs.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LMMIS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Compounds flagged by the laboratory with a "D" qualifier indicated possible diphenylether interference and were qualified as estimated, "JJ." Any reported EMPC was qualified as an estimated nondetect, "UJ." Any detects below the lower method calibration level (MCL) were qualified as estimated, "J;" however, as Alta analyzed an additional calibration standard, not all results below the method calibration level were appropriately qualified by the laboratory. These results were qualified as estimated, "J," by the reviewer. No further qualifications were required.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental	Package ID T711MT68
550 South Wadsworth Boulevard	Task Order 313150010
Suite 500	SDG No. IOB157, 59,65
Lakewood, CO 80226	No. of Analyses 3
Laboratory Del Mar	Date: 03/31/05
Reviewer P. Meeks	Reviewer's Signature
Analysis/Method Metals	V. MOS

ACMION ITEMS'

1. Case Narrative Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Qualifications applied for:

Analysis Protocol, e.g., 1. Positive and negative CCB and method blank results
Holding Times \quad 2. Reporting limit check standard recovery outliers
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification and Quantitation
System Performance
3. Detects below the reporting limit
4. Antimony MDL raised due to detects in the CCBs
\qquad

COMMENTS

${ }^{2}$ Subcontracted analytical laboratory is not meeting contract and/or method requirements.

- Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: METALS
SAMPLE DELIVERY GROUPS: IOB1557, IOB1559, \& IOB1565

Prepared by

AMEC-Denver Operations
Lakewood, Colorado 80226

	Project: DATA VALIDATION REPORT	NPDES Multiple

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOB1557, IOB1559,, IOB1565
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Metals
QC Level: Level IV
No. of Samples: 3
No. of Reanalyses/Dilutions: 0
Reviewer: P. Meeks
Date of Review: March 31, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 005	Outfall 005	IOB1557-01	water	ILM04
Outfall 006	Outfall 006	IOB1559-01	water	ILM04
Outfall 011	Outfall 011	IOB1565-01	water	ILM04

	Project:	NPDES
DATA VALIDATION REPORT	SDG No::	Multiple

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel. The COCs accounted for the samples and analyses presented in these SDGs. Duplicate samples were submitted for the samples in these SDGs; however, duplicate analyses were not required. No sample qualifications were required.

2.1.3 Holding Times

The dates of collection recorded on the COCs and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP and ICPMS metals, and 28 days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. All \%RSDs were less than 5%. The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, $90-110 \%$ for ICP/MS metals and $80-120 \%$ for mercury. The reporting limit check standards for silver were recovered below the control limit at 51% and 54%; therefore nondetected silver in Outfall 005 (see section 2.4) and Outfall 006 was qualified as estimated, "UJ." The reporting limit check standard for arsenic associated with the analysis of Outfall 005 was recovered below the control limit at 61%; therefore, nondetected arsenic in Outfall 005 was qualified as estimated, "UJ." The reporting limit check standard for selenium associated with the analysis of Outfall 006 was recovered above the control limit at 133%; therefore, selenium detected in

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

Outfall 006 was qualified as estimated, "J." The remaining reporting limit check standards were recovered within the AMEC control limits of $70-130 \%$. No further sample qualifications were required.

2.4 BLANKS

Silver was detected in a CCB bracketing Outfall 005 at $0.0017 \mathrm{mg} / \mathrm{L}$; therefore, silver detected in Outfall 005 was qualified as estimated, "UJ." Silver was reported in a CCB bracketing Outfall 006 at $3.0 \mu \mathrm{~g} / \mathrm{L}$; therefore, nondetected silver in Outfall 006 was qualified as estimated, "UJ." Zinc was detected in method blank5B24093-BLK1 at $0.0078 \mathrm{mg} / \mathrm{L}$; therefore, zinc detected in Outfall 005 was qualified as estimated, "UJ."

Antimony was detected in every CCB in the analytical sequence in which Outfall 006 was analyzed. The detects ranged from 0.523 to $1.26 \mu \mathrm{~g} / \mathrm{L}$ and antimony was detected in Outfall 006 at a concentration well below these values, $0.31 \mu \mathrm{~g} / \mathrm{L}$. The CCB detects indicated the laboratory could not detect antimony at the reported MDL. The reviewer raised the antimony MDL for Outfall 006 to the highest level of interference reported, $1.3 \mu \mathrm{~g} / \mathrm{L}$ and qualified the result as estimated, "UJ." No further qualifications were required due to the method and calibration blank results.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were included in the raw data for the ICP-MS analyses. Results were not provided for spiked interferents sulfur, phosphorus, carbon, and chloride, and antimony and lead were not spiked into the ICSAB solution. Copper was detected above the reporting limit in the ICSA. The results for sodium and potassium were above the calibration range of the instrument in the ICSA and ICSAB analyses; however, as sodium and potassium were not reported in the site samples, no qualifications were required. Aluminum was recovered below the control limit in the ICSA at 78% and above the calibration range in the ICSAB analyses. As aluminum in the site samples was not reported from the ICP/MS analyses, no qualifications were required. The validator reviewed the raw data for the site sample ICP/MS analyses for the level of reported interferents, $\mathrm{Al}, \mathrm{Ca}, \mathrm{Fe}$, and Mg , and determined that the levels of reported interferents were not high enough to cause matrix affects. No assessment could be made with respect to possible interference from sulfur, phosphorus, carbon, and chloride.

ICSA and ICSAB analyses were included in the raw data for the ICP analyses, but were not run on the days the site samples were analyzed. The recoveries for the interferents and the other spiked analytes were within the control limits of $80-120 \%$. In the ICSA analyses there were negative results for chromium and positive results for arsenic and zinc, the absolute values for which were above the applicable reporting limits. The validator reviewed the raw data for the site sample ICP analyses for the level of reported interferents, $\mathrm{Al}, \mathrm{Ca}, \mathrm{Fe}$, and Mg , and determined that the level of reported interferents were not high enough to cause matrix affects. No qualifications were required.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP/MS LCS sample was identified as 5B24099-BS1 and the mercury LCS sample was identified as 5B22063-BS1. The ICP LCS samples were identified as 5B28119-BS1 and 5B24093-BS1.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

The LCS results on the summary forms and in the raw data were within the laboratory-established ICP, ICP/MS, and mercury control limits of $85-115 \%$. No qualifications were required.

2.7 LABORATORY DUPLICATES

MS/MSD analyses were performed on Outfall 005 for the ICP/MS analytes only. The RPDs were within the control limit of 20% and no qualifications were required.

2.8 MATRIX SPIKE

MS/MSD analyses were performed on Outfall 005 for the ICP/MS analytes only. The recoveries were within the AMEC control limits of $75-125 \%$ and no qualifications were required. Method accuracy for the remaining analytes was evaluated based on LCS results.

2.9 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

2.10 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

2.11 INTERNAL STANDARDS PERFORMANCE

Scandium was recovered above the control limit in Outfall 006 and Outfall 011; however, as scandium was not the internal standard associated with the reported analytes, no qualifications were required. The remaining ICP-MS internal standard recoveries for the site samples and associated QC sample analyses were within the $60-125 \%$ control limits and no qualifications were required.

2.12 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit were qualified as estimated, "J." No further qualifications were required.

2.13 FIELD QC SAMPLES

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2.13.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site samples.

174E1Derian Ave.. Suite 100. Irvine. CA 92514 (949) 261-1022 FAX (949) 260-3297 9484 Ch 1014 E. Cooley Dr., Suite A. Cotton. CA 92324 (909) 370-4667 FAX (549) 370-1040 9830 South 51 st St . Suite 8.120 . San Diego. CA $92: 23$ (858) 505-8590 FAX (858) 505-9389 2520 E. Sunset Rd. 33 , Las Vegas, NV $89: 20$ (702) $798-3040$ FAX (480) 7E5-C85

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
Project ID: Annual Outfall 006
Report Number: IOB1559 ... Sampled: 02i1805
Received: 02i18:05

DRAFT: METALS

Batch Limit Reporting Sample Dilution Date \begin{tabular}{c}
Limit

Result

DactorExtracted

Data

Analyzed Qualifiers
\end{tabular}

Sample ID: IOB1559-01 (DRAFT: Outfall 006 - Water) - cont. Reporting Units: uglI

Aluminum

Antimony
Arsenic
Beryllium
Lead
Nickel
Selenium
Silver
Vanadium
Zinc

EPA 200.7	$5 B 28119$	47	50	9100	1	$02 / 28 / 05$	$03 / 01 / 05$
EPA 200.8	$5 B 24099$	0.181 .3	2.0	0.371 .3	1	$02 / 24 / 05$	$02 / 25 / 05$
EPA 200.7	$5 B 28119$	3.8	5.0	ND	1	$02 / 28 / 05$	$03 / 01 / 05$
EPA 200.7	$5 B 28119$	0.62	2.0	ND	1	$02 / 28 / 05$	$03 / 01 / 05$
EPA 200.8	$5 B 24099$	0.13	1.0	4.5	1	$02 / 24 / 05$	$02 / 25 / 05$
EPA 200.7	$5 B 28119$	2.0	10	8.3	1	$02 / 28 / 05$	$03 / 01 / 05$
EPA 200.7	$5 B 28119$	4.6	10	4.7	1	$02 / 28 / 05$	$03 / 01 / 05$
EPA 200.7	$5 B 28119$	1.3	10	ND	1	$02 / 28 / 05$	$03 / 01 / 05$
EPA 200.7	$5 B 28119$	1.4	10	23	1	$02 / 28 / 0503 / 01 / 05$	
EPA 200.7	$5 B 28119$	3.7	20	29	1	$02 / 28 / 05$	$03 / 01 / 05$

AMES VALIDATED

PM 3/3/05

CONTRACT COMPLLANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer K. Shadowlight
Analysis/Method Pesticides

Package ID T711PP29
Task Order 313150010 SDG No. Multiple
No. of Analyses 3

Date April 4, 2005
Reviewer's Signature
R $1 / 1 / 21 /$

ACTION ITEMS

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, e.g.
Qualifications were assigned for \%D continuing calibration outliers
Holding Times
GC/MS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and
Quantitation
System Performance

COMMENTS ${ }^{\text {b }}$

Acceptable as reviewed.

[^3]
amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: PESTICIDES/PCBs
SAMPLE DELIVERY GROUP: IOB1557, IOB1559, IOB1565

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

DATA VALIDATION RERORT	Project: SDG:
NPDES	
Multiple	

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOB1557, IOB1559, IOB1565
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Pesticides/PCBs
QC Level: Level IV
No. of Samples: 3
No. of Reanalyses/Dilutions: 0
Reviewer: K. Shadowlight
Date of Review: April 4, 2005

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedures (DVP-4, Rev.2), EPA Method 608, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary form as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	Method
Outfall 005	Outfall 005	IOB1557-01	water	608
Outfall 006	Outfall 006	IOB1559-01	water	608
Outfall 011	Outfall 011	IOB1565-01	water	608

DATA VALIDATION REPORT | Project: |
| :---: |
| SDG: |
| MuDES |
| Multiple |
| Analysis: PestiPCB |

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The coolers were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The analysis did not require preservation, and no preservation was noted in the field. The COCs noted that the samples were received intact. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by both field and laboratory personnel. The COCs accounted for the analyses presented in these SDGs. As the samples were couriered directly to the laboratory, custody seals were not required, No qualifications were required.

2.1.3 Holding Times

The water samples were extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

2.2 PESTICIDES INSTRUMENT PERFORMANCE

No resolution check standards or breakdown check standards are required by Method 608 for pesticides, and according to the raw data provided, a resolution check standard was not analyzed by the laboratory. The laboratory did analyze a breakdown check standard with a breakdown of $\leq 20 \%$ for individual components (4,4-DDT and endrin) and $\leq 30 \%$ for the total, as suggested in the National Functional Guidelines. A review of the raw data indicated that the analytical run time was of sufficient length to provide adequate standard separation. The two analytical columns used in the analyses were within the guidelines specified in the methods.

According to the laboratory SOP and the initial calibration raw data, the retention time windows are ± 0.10 minutes for both surrogates and target compound calibration standards. A review of the raw data indicated that the laboratory retention time criteria were met for the surrogates and pesticide calibration standards. No qualifications were required.

2.3 CALIBRATION

2.3.1 Analytical Sequence

Based on the data provided, the analytical sequences were in accordance with the requirements of Method 608. No qualifications were required.

There were two initial calibrations dated 02/12/05 and 02/22/05 associated with the pesticide analyses of the samples in these SDGs, which consisted of six point calibrations for all pesticide target compounds on two analytical columns. The \%RSDs were within the EPA Method 608 QC limit of $\leq 10 \%$ or the r^{2} values were ≥ 0.995 on both analytical columns. There was one initial calibration dated 02/11/05 associated with the PCB analyses of the samples in these SDGs which consisted of five points for Aroclor 1016 and Aroclor 1260. Single point calibrations for Aroclor 1242, Aroclor 1248, and Aroclor 1254 were also analyzed. The average \%RSDs for the individual peaks of Aroclor 1016 and Aroclor 1260 were $\leq 10 \%$ or the r^{2} values were ≥ 0.995 on both analytical columns. An ICV was analyzed immediately following each of the initial calibrations. The \%Ds for all target compounds were within the QC limits of 15% on both analytical columns. A representative number of $\%$ RSDs and ICV $\%$ Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.3.3 Continuing Calibration

Of the continuing calibrations associated with the pesticide analyses for the samples in these SDGs there were several \%D outliers. The \%Ds for heptachlor, endrin, and 4,4'-DDD in the continuing calibration analyzed 02/23/05 (GC54) exceeded 15% on the primary channel; therefore, the aforementioned target compounds were qualified as estimated, "UJ," in samples Outfall 005 and Outfall 006. The remaining applicable \%Ds were within the Method QC limit of $\pm 15 \%$ for the remaining calibrations. Each of the PCB analyses for the samples in these SDGs were bracketed by two CCVs and the \%Ds for Aroclor 1016 and Aroclor 1260 were $\leq 15 \%$. A representative number of \%Ds were recalculated from the raw data and no transcription or calculation errors were noted.

No further qualifications were required.

2.4 BLANKS

2.4.1 Instrument Blanks

An instrument blank was analyzed at the beginning of each analytical sequence. Crosscontamination was not evident in the samples. No qualifications were necessary.

2.4.2 Method Blanks

One water method blank (5B22041-BLK1) was extracted and analyzed with these SDGs. There were no pesticide target compounds or Aroclors detected in the method blank. Review of the chromatograms showed no false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike/blank spike duplicate pair (5B22041-BS1/BSD1) were extracted and analyzed with these SDGs. The recoveries for all spiked pesticide target compounds and Aroclors were within the laboratory-established QC limits and the RPDs were $\leq 30 \%$. A representative number of recoveries were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

	Project: DATA VALIDATION REPORT	NPDES Multiple
SDG:	Analysis:	Pest/PCB

2.6 SURROGATE RECOVERY

The sample and all QC samples were fortified with the surrogate compounds decachlorobiphenyl and tetrachloro-m-xylene. Surrogate recoveries for the pesticide and PCB analyses of the samples were within the laboratory-established. The recoveries were calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

There were no MS/MSD analyses associated with these SDGs. Method accuracy and precision were assessed based on the blank spike/blank spike duplicate results. No qualifications were required.

2.8 SAMPLE CLEANUP PERFORMANCE

According to the laboratory extraction benchsheets, no cleanups were performed on the water samples. No qualifications were required.

2.9 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.9.1 Field Blanks and Equipment Rinsates

There were no field QC samples associated with the samples in these SDGs. No qualifications were required.

2.9.2 Field Duplicates

There were no field duplicate samples associated with the sample in these SDGs.

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for pesticide target compounds and PCBs by EPA Method 608. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for the samples in these SDGs. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification was verified for these SDGs; however, as there were no detects reported in the samples, quantitation was verified by recalculating a representative number of

DATA VALIDATION REPORT	Project: SDG:	NPDES Multiple
DALA VALIDATION REPORT	Analysis:	Pest/PCB

blank spike and surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibration and the laboratory MDL studies. The water reporting limits were not adjusted for sample amounts on the result summaries; however, the dilution factors listed on the summaries reflected the sample volumes extracted. Results were reported in ug/L (ppb). No qualifications were required.

(D) Del Mar Analytical

MWH-PasadeaalBoeing
300 North Lake Avenue, Suite 1200
Pasedena, CA91101
Attention: Bronwyn Kely

Frojet II: Anmai Outal Oob
Report Number: IORISs9 Sampled: 021305
Received: 02/18/05

DRAFT: ORGA VOCHLORINE PESTICIDES (EPA 608)

DRAFTREPORT
DRATREPORT
MATA SUBMETGOCHANOL

amec validated LEVEL IV

 P4S4 Weane

2521 E. Stuse fut

DRAFT: TOTAL PCBS (EPA 608)

AMEC VALIDATED

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA AMEC Earth \& Environmental

550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Eberline
Reviewer P. Meeks
Analysis/Method Radionuclides

Reviewer P. Meeks

Package ID T711RAS
Task Order 313150010
SDG No. Multiple
No. of Analyses 8
Date: 03/28/05
Reviewer's Signature
P. Meeles

ACTION ITEMS

1. Case Narrative Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from

Analysis Protocol, e.g.,
Holding Times
Qualifications applied for:

1. Detector efficiency outliers.
2. Exceeded holding imtes.

GC/MS Tune/Inst. Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Intemal Standard
Performance
Compound Identification and Quantitation
System Performance

COMMENTS

[^4]
Data Qualifier Reference Table

Qualifier Organics Inorganics

U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

N

NJ \quad The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ The analyte was not deemed above the reported sample quantitation limit, However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.

The associated value is an estimated quantity.

Not applicable.

Not applicable.

The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

The data are unusable. (Note: Analyte may or may not be present).

Qualification Code Reference Table

Qualifier	Organics	Inorganics
H	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
C	Calibration \%RSD or \%D were noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	$\% \mathrm{R}$ for calibration is not within control limits.
B	Presumed contamination from preparation (method) blank.	Presumed contamination from preparation (method) or calibration blank.
L	Laboratory Blank Spike/Blank Spike Duplicate \%R was not within control limits.	Laboratory Control Sample \%R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
E	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
A	Not applicable.	ICP Serial Dilution \%D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
T	Presumed contamination from trip blank.	Not applicable.
$+$	False positive - reported compound was not present. Not applicable.	
-	False negative - compound was present but not reported.	Not applicable.
F	Presumed contamination from FB, or ER.	Presumed contamination from FB or ER.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.
D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
P	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The compound was detected between the MDL and the RL and, by definition, is considered an estimated value.	The compound was detected between the MDL and the RL and, by definition, is considered an estimated value.

*\#
Unusual problems found with the data that have been described in Section 2.\#, "Data Validation Findings." The number following the asterisk (*) will indicate the subsection where a description of the problem can be found (eg. ${ }^{*} 1$ would indicate a sample was not within temperature limits).

Unusual problems found with the data that have been described in Section 2.\#, "Data Validation Findings." The number following the asterisk (*) will indicate the subsection where a description of the problem can be found (eg. ${ }^{*}$ l would indicate a sample was not within temperature limits).

amec ${ }^{\theta}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: RADIONUCLIDES

SAMPLE DELIVERY GROUPS:
IOB1556, IOB1557, IOB1559, IOB1570, IOB1571, IOB1576

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

Table 1. Sample identification

Client ID	Del Mar ID	Eberline ID	Matrix	COC Method
Outfall 004	IOB1556-01	$8289-001$	water	$900.0,905.0,906.0$
Outfall 005	IOB1557-01	$8290-001$	water	$900.0,905.0,906.0$
Outfall 006	IOB1559-01	$8291-001$	water	$900.0,905.0,906.0$
Outfall 018	IOB1570-01	$8292-001$	water	$900.0,905.0,906.0$
Outfall 003	IOB1571-01	$8293-001$	water	$900.0,905.0,906.0$
Outfall 003 Filtered	IOB1576-01	$8294-001$	water	$900.0,905.0,906.0$
Outfall 003 Unfiltered	$10 B 1576-02$	$8294-002$	water	$900.0,905.0,906.0$
Outfall 003 Substrate	IOB1576-03	$8295-001$	solid	

1. INTRODUCTION

Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010
SDG\#: IOB1556, IOB1557, IOB1559, IOB1570, IOB1571, IOB1576
Project Manager: B. McIlvaine
Matrix: Water
Analysis: Radionuclides
QC Level: Level IV
No. of Samples: 8
No. of Reanalyses/Dilutions: 0
Reviewer P. Meeks
Date of Review: March 24, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the EPA Prescribed Procedures for Measurements of Radioactivity in Drinking Water, Methods 900.0, 905.0, and 906.0, and validation procedures outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:
DATA VALIDATION REPORT	SDG No.:
	Analysis:

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

All the samples in these SDGs were received at Del Mar Analytical within the temperature limits of $4 \pm 2^{\circ} \mathrm{C}$. No temperature information was provided by Eberline, the subcontract laboratory; however, as it is not necessary to chill radiological samples, no qualifications were required. The samples were noted to have been received intact and in good condition. All tritium samples were received unpreserved in glass containers. All gross alpha, gross beta, and strontium samples were preserved, except for the Outfall 003 samples in SDG IOB1556. Outfall 003 Filtered, was filtered by Eberline and then preserved. Outfall 003 Unfiltered was not preserved. According to the Los Angeles Water Quality Control Board (LARWQCB) guidance letter dated 01/12/05, unfiltered samples should not be preserved. No qualifications were required.

2.1.2 Chain of Custody

The original COCs were signed and dated by field and laboratory personnel. The transfer COCs were signed by personnel from both laboratories, except for the COC listing Outfall 003 in SDG IOB1571, which was not signed as received by Eberline. Eberline did not list the MWH IDs on the Form Is; therefore, the reviewer edited the Form Is to reflect these IDs. No qualifications were required.

2.1.3 Holding Times

The tritium and preserved gross alpha, gross beta, and strontium samples were analyzed within 180 days of collection. The Outfall 003 Unfiltered gross alpha and gross beta samples were analyzed beyond the five day holding time for unpreserved samples; therefore, these gross alpha and gross beta results were qualified as estimated, "J." No further qualifications were necessary.

2.2 CALIBRATION

The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

Gross Alpha and Gross Beta

The initial calibration included with the data was performed in February 2003. The detector efficiencies for Outfall 006, Outfall 018, Outfall 003, Outfall 003 Filtered, and Outfall 003 Unfiltered were less than 20%; therefore, these results were qualified as estimated, "UJ," for nondetects and, "J," for detects. The remaining detector efficiencies were above 20%.

Tritium

No calibration standards were analyzed for this method. According to the laboratory, every sample was spiked for efficiency determination; therefore, no calibration is necessary. All detector efficiencies in the samples were at least 20% and were considered acceptable. All internal spike efficiency to default efficiency ratios were near 1 , indicating that quenching did not occur.

	Project:
DATA VALIDATION REPORT	SDG No.:

Strontium-90

The initial calibrations were performed in June 1995. All strontium chemical yields were at least 80% and were considered acceptable. The strontium continuing calibration results were within the laboratory control limits. No qualifications were necessary.

Cesium

The reviewer confirmed that the 662 KeV peak was used for quantitation, with a branch efficiency of 85%. No qualifications were necessary.

2.3 BLANKS

No measurable activities were detected in the method blanks; therefore, no qualifications were necessary.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

Two blank spikes (8294-002 and 8295-002) were analyzed in association with the samples in these SDGs. All blank spike results were within the 3 -sigma limits. No qualifications were necessary.

2.5 LABORATORY DUPLICATES

The laboratory performed duplicate analysis on Outfall 003 Filtered and Outfall 003 Substrate. All results were within the 3 -sigma limits and all RPDs were $\leq 20 \%$. No qualifications were necessary.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

The laboratory performed matrix spike analyses on Outfall 003 Unfiltered for gross alpha, gross beta, and tritium. The recovery for gross alpha was above 3-sigma; however, as the recovery of 118% was considered acceptable, no qualifications were required. The remaining recoveries were within the 3sigma limits. No qualifications were necessary.

2.7 SAMPLE RESULT VERIFICATION

An EPA Level IV review was performed for the samples in these data packages. Sample results and MDAs reported on the sample result forms were verified against the raw data and no calculation or transcription errors were noted. No qualifications were necessary.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2.8.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate samples in these SDGs.

Eberline Services

ANALYSIS RESULTS

AMEC Valldateo

amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: SEMIVOLATILES

SAMPLE DELIVERY GROUP: IOB1557, IOB1559, IOB1565

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: \quad NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOB1557, IOB1559, IOB1565
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Semivolatiles
QC Level: Level IV
No. of Samples: 3
No. of Reanalyses/Dilutions: 0
Reviewer: M. Pokorny
Date of Review: April 4, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Semivolatile Organics (DVP-3, Rev. 2), EPA Method 625, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

DATA VALIDATION REPORT \quad| Project: |
| :---: |
| SDG: |
| Analysis: |

Table 1. Sample identification

Client ID	EPA ID	Lab No.	Matrix	Method
Outfall 005	Outfall 005	IOB1557-01	water	625
Outfall 006	Outfall 006	IOB1559-01	water	625
Outfall 011	Outfall 011	IOB1565-01	water	625

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The analysis did not require preservation, and no preservation was noted in the field. The COCs noted that the samples were received intact. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by both field and laboratory personnel. The COCs accounted for the analyses presented in these SDGs. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The water samples were extracted within seven days of collection and analyzed within 40 days of collection. No qualifications were required.

2.2 GC/MS TUNING

The DFTPP tunes met the criteria specified in Method 625, and the samples were analyzed within 12 hours of the DFTPP injection time. No qualifications were required.

2.3 CALIBRATION

The initial calibrations associated with this SDG were dated $02 / 24 / 05$ and $02 / 25 / 05$. For the initial calibration dated $02 / 25 / 05$, the average RRFs for were ≥ 0.05 and the $\%$ RSDs were $\leq 35 \%$ or $\mathrm{r}^{2} \geq 0.995$ for all target compounds except for the r^{2} value for benzoic acid. Benzoic acid was qualified as an estimated nondetect, "UJ," in samples Outfall 005 and Outfall 006. For the initial calibration dated $02 / 24 / 05$, the average RRFs for were ≥ 0.05 and the $\%$ RSDs were $\leq 35 \%$ or r^{2} ≥ 0.995 for all target compounds. A representative number of average RRFs and \%RSDs were checked from the raw data, and no calculation or transcription errors were noted.

The continuing calibration associated with the sample analyses were analyzed 02/24/05 and $02 / 25 / 05$. For the continuing calibration dated $02 / 25 / 05$, the RRFs for all target compounds were ≥ 0.05, and the $\% \mathrm{D}$ s were $\leq 20 \%$, except for the $\% \mathrm{Ds}$ for 2,4 -dinitrophenol and 4,6 -dinitro-2methylphenol. 2,4-dinitrophenol and 4,6-dinitro-2-methylphenol were qualified as estimated nondetects, "UJ," in samples Outfall 005 and Outfall 006. For the continuing calibration dated $02 / 24 / 05$, the RRFs for all target compounds were ≥ 0.05, and the $\%$ Ds were $\leq 20 \%$. A representative number of RRFs and \%Ds were checked from the raw data, and no calculation or transcription errors were noted. No further qualifications were required.

2.4 BLANKS

Two method blanks (5B22042-BLK1 and 5B22043-BLK1) were extracted and analyzed with these SDGs. No target compounds were detected in the method blanks. Review of the raw data indicated no reportable false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

Two blank spike/ blank spike duplicate pairs (5B22042-BS1/BSD1 and 5B22043-BS1/BSD1) were extracted and analyzed with these SDGs. For blank spike/blank spike duplicate pairs, qualifications are applied, if necessary, to the associated samples based on those recoveries consistently outside of the laboratory-established QC limits in both the blank spike and blank spike duplicate. Results for those compounds with recoveries not consistent within the pair, with RPDs above the QC limit, are qualified as estimated, "UJ" for nondetects and " J " for detects, in the associated samples.

For the 5B22042-BS1/BSD1 pair, all percent recoveries and RPDs were within the laboratory QC limits except for the RPD for NDMA. Sample Outfall 011 had NDMA qualified as an estimated nondetect, "UJ."

For the 5B22043-BS1/BSD1 pair, all percent recoveries and RPDs were within the laboratory QC limits except for benzidine which was not recovered in the BSD and the RPD for benzidine. Samples Outfall 005 and Outfall 006 had benzidine qualified as estimated nondetects, "UJ."

A representative number of recoveries and RPDs were calculated from the raw data and no calculation or transcription errors were found. No further qualifications were required.

2.6 SURROGATE RECOVERY

The sample surrogate recoveries were within the laboratory QC limits. A representative number of recoveries were calculated from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were associated with these SDGs. Evaluation of method accuracy and precision was based on blank spike/blank spike duplicate results. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples.

	Project: DATA VALIDATION REPORT	NPDES SDG:
Multiple		

2.8.1 Field Blanks and Equipment Rinsates

There were no field QC samples associated with these SDGs. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate samples associated with these SDGs. No qualifications were required.

2.9 INTERNAL STANDARDS PERFORMANCE

The internal standard area counts and retention times were within the control limits established by the continuing calibration standards: $-50 \% /+100 \%$ for internal standard areas and ± 30 seconds for retention times except for the area counts for perylene-d12 for samples Outfall 005 and Outfall 006. Samples Outfall 005 and Outfall 006 had the target compounds associated with perylene-d12 qualified as estimated nondetects, "UJ." A representative number of recoveries were checked from the raw data, and no transcription or calculation errors were noted. No further qualifications were required.

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for the semivolatile target compounds by EPA Method 625. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. No calculation or transcription errors were found. The reporting limits were supported by the low level of the initial calibration and the method detection limit study. No qualifications were required.

2.12 TENTATIVELY IDENTIFIED COMPOUNDS

TICs were not reported by the laboratory for these SDGs. No qualifications were required.

2.13 SYSTEM PERFORMANCE

Review of the raw data indicated no problems with system performance. No qualifications
required. were required.

300 Noirh Lake Avenue, Suite 1200 Fasadena, CA 91101
Attention: Bronwyn Kelly

Froper in: Amal Outalloog
Repori Nimber: 10B1559

Sampled: 02:1805 Received: 02:18:05

DRAFT: ACID \& BASENEUTRALS BY GC/AS (EPA 625)

 MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200

Projectin: Animai Outalloog
Repan Number: 10 B 1559
Sampled: 021805
Received: 021805

DRAFT: ACID \& BASENELTRALS BY GCMS (EPA 625)

Analyte

Reporting Units: ugd Fhorene
Hexachiorobenzene

Hexachlorobutadiene

Hexachlorocyclopentadiene

Hexachloroethane
Indeno(1,2,3-cd)pyrene Isophorone 2-Methyinaphthaiene
2-Methylphenol
4-Methylphenol
Naphthalene
$2-$ Nitroaniline
3-Nitroaniline
4-Nitroaniline
Nitroberzene
2-Nitrophenol
4.Nicrophenol

N-Nitrosodiphenylamine
N-Aitroso-di-n-propylamine
Pentachlorophenol
Phenanthrene
Phenol
Pyrene
1,2,4-Trichlorobenzene
2,4,5-Trichlorophenol
2.4,6-Trichlorophenol

1,2-DiphenylhydrazineiAzobenzene
N-Nitrosodimethylamine
Surrogate: 2-Fluorophenol (35-120\%)
Surrogate: Phenol-d6 ($45-120 \%$)
Surrogate: 2,4,6-Tribromophenol (50-125\%)
Surrogate: Nitrobenzene-d $(45-120 \%)$
Surrogate: 2-Fuorobiphenyl ($45-120 \%$)
Eurrogate: Terphenvt-d14 (4S-1350)

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer K. Shadowlight
Analysis/Method Volatiles by 624

Package ID T711VO78
Task Order 313150010
SDG No. Multiple
No. of Analyses 3
Date April 4, 2005

ACTION ITEMS

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

GC/MS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and
Quantitation
System Performance
COMMENTS ${ }^{\text {b }}$

[^5]
amec ${ }^{8}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: VOLATILES

SAMPLE DELIVERY GROUP: IOC1557, IOC1559, \& IOC1565

Prepared by

AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

DATA VALIDATION REPORT	Project: SDG:	NPDES Multiple
VOC		

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOC1557, IOC1559, IOC1565
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Volatiles
QC Level: Level IV
No. of Samples: 6
No. of Reanalyses/Dilutions: 0
Reviewer: K. Shadowlight
Date of Review: April 2, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Volatile Organics (DVP-2, Rev. 2), EPA Method 624, SW846 Method 8260B, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary forms as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

DATA VALIDATION REPORT	Project: SDG:	NPDES Multiple
Analysis:	VOC	

Table 1. Sample identification

Client ID	EPA ID	Lab No.	Matrix	Method
Outfall 005	Outfall 005	IOB1557-01	water	624
Trip Blank	Trip Blank	IOB1557-02	water	624
Outfall 006	Outfall 006	IOB1559-01	water	624
Trip Blank	Trip Blank	IOB1559-02	water	624
Outfall 001	Outfall 011	IOB1565-01	water	624
Trip Blank	Trip Blank	IOB1565-02	water	624

		Project:
DATA VALIDATION REPORT	SDG:	NPDES
Multiple		

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$, at $4^{\circ} \mathrm{C}$. The samples were properly preserved. The COCs noted that the samples were received intact; however, information regarding absence of headspace was not provided. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by both field and laboratory personnel. The COCs accounted for the analyses presented in these SDGs. As the samples were couriered directly to the laboratory from the field, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The samples were analyzed within seven days of collection. No qualifications were required.

2.2 GC/MS TUNING

The ion abundance windows shown on the quantitation reports were consistent with those specified in EPA Method 624, and all ion abundances were within the established windows. The samples and associated QC were analyzed within 12 hours of the BFB injection times. The Form Vs were verified from the raw data and no discrepancies between the summary forms and the raw data were noted. No qualifications were required.

2.3 CALIBRATION

Three initial calibrations dated 10/14/04 (acrolein and acrylonitrile only), 11/16/04, and $02 / 07 / 05$ were associated with these SDGs. The average RRF for acrolein was <0.05 in the initial calibration dated 10/14/04; therefore, the nondetect results for acrolein were rejected, " R," in all associated samples. The average RRFs were ≥ 0.05 for all remaining compounds listed on the sample result summaries. The \%RSDs were $\leq 35 \%$ for all target compounds listed on the sample result summaries. There were three continuing calibrations dated 02/19/05, 02/21/05, and 02/22/05 associated with the sample analyses in these SDGs. The RRF for acrolein was <0.05 in all the continuing calibrations; therefore, the nondetect results for acrolein were rejected, " R," in all associated samples. The remaining RRFs were ≥ 0.05 in the continuing calibrations. The \%Ds for acrolein and $1,1,1$-trichloroethane exceeded 20% in the continuing calibration analyzed $02 / 19 / 05$; therefore, the nondetects for acrolein and $1,1,1$-trichloroethane were qualified as estimated, "UJ," in samples Outfall 005 and Outfall 006 , unless otherwise rejected (see above). No qualifications were required for the Trip blank. The \%D for 2-chloroethyl vinyl ether exceeded 20% in the continuing

calibration dated 02/22/05; however, associated sample Trip Blank (IOB1557) was not qualified for $\% \mathrm{D}$ calibration outliers. The $\%$ Ds were $\leq 20 \%$ for the remaining target compounds listed on the result summaries. A representative number of \%RSDs and average RRFs from the initial calibrations, and \%Ds and RRFs from the continuing calibrations were recalculated from the raw data, and no calculation or transcription errors were found. No further qualifications were required.

2.4 BLANKS

Three water method blanks (5B19020-BLK1, 5B21001-BLK1, and 5B22027-BLK1) were associated with the sample analyses. There were no detects above the MDLs for the target compounds listed on the sample result summaries. The method blank raw data showed no evidence of false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

Three water blank spikes (5B19020-BS1, 5B21001-BS1, and 5B22027-BS1) were associated with the sample analyses. All recoveries were within the laboratory-established QC limits. A representative number of recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.6 SURROGATE RECOVERY

The surrogates were recovered within the QC limits of $80-120 \%$ in the samples and associated QC. A representative number of surrogate recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

There were no MS/MSD analyses associated with these SDGs. Evaluation of method accuracy was based on blank spike results. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

2.8.1 Trip Blanks

Sample Trip Blank (IOB1557), Trip Blank (IOB1559), and Trip Blank (IOB1565) were the trip blanks associated with site samples Outfall 005 , Outfall 006 , and Outfall 011 , respectively. Target compound methylene chloride was detected in Trip Blank (IOB1559) at 1.3ug/L and Outfall 006 at $1.3 \mathrm{ug} / \mathrm{L}$; therefore, the result for methylene chloride was qualified as a nondetect, " U," at the reporting limit in sample Outfall 006. It should also be noted that methylene chloride was reported

DATA VALIDATION REPORT	Project: SDG:	NPDES Multiple
VOC		

below the MDL in Trip Blank IOB1557. There were no other target compounds detected above the MDLs in the trip blanks. No further qualifications were required.

2.8.2 Field Blanks and Equipment Rinsates

There were no field QC samples associated with these SDGs. No qualifications were required.

2.8.3 Field Duplicates

There were no field duplicate samples associated with these SDGs.

2.9 INTERNAL STANDARDS PERFORMANCE

Internal standard area counts and retention times for the samples in these SDGs were within the control limits established by the continuing calibration standards: $+100 \% /-50 \%$ for internal standard areas and ± 0.50 minutes for retention times. A representative number of internal standard areas and retention times were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.10 COMPOUND IDENTIFICATION

Target compound identification was verified at a Level IV data validation. The laboratory analyzed volatile target compounds by EPA Method 624. Chromatograms, retention times, and spectra for the samples and QC were examined and no target compound identification problems were noted. Detects reported between the MDL and the reporting limit were qualified as estimated, " J," by the laboratory. No further qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. The reporting limits were supported by the lowest concentrations of the initial calibration standards and by the MDL study. Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike and surrogate recoveries from the raw data. Results were reported in $\mu \mathrm{g} / \mathrm{L}$ (ppb). No calculation or transcription errors were noted. No qualifications were required.

2.12 TENTATIVELY IDENTIFIED COMPOUNDS

The laboratory did not provide TICs for these SDGs. No qualifications were required.

2.13 SYSTEM PERFORMANCE

A review of the chromatograms and other raw data showed no identifiable problems with system performance. No qualifications were required.

[^6]
DRAFT: PURGEABLES BY GC/MS (EPA 624)

DRATEREPORT
DRAET REPORT
DATA GUTMECTO CMAME

$\theta+10315$

MWH-Fasadenaroemg 300 North Lake Aveate, Suite 1200
Pasadena, CA 91101
Attention: Bronwy Kelly

Froeet In AmmalOutall 006
Report Number: 1015559

Sampled: 021805
Received: 021805

DRAFT: PURGEABLES BY GCMS (EPA 624)

DRAFTMEPORT
Amec validated

DRAMT RIPORT
DATA SUBIECT TOGENED

MWI-PasadenakBoeing 300 North Lake Avenue Suite	Project M. Ammal Outall 006	
Pasadena, Cal 9101	Repon Number: 1081559	Sampled: 021805
Attention: Bronwyn Kelly		Received: 02:805

DRAFT: PURGEABLES BY GC/MS (EPA 624)

amec Validated

DRAET REPOFT
DEAET REXORT
DATA SUBECS TOCHAVOE

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer L. Jarusewic
Analysis/Method General Minerals

Package ID T711WC110
Task Order 313150010
SDG No. IOB1557/1559/1565
No. of Analyses 3
Date: 04/01/05

ACTION ITEMS ${ }^{1}$

1. Case Narrative Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Qualifications applied for:

Analysis Protocol, e.g., 1) Negative method blank result
Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification
and Quantitation
System Performance
\square
\qquad
\qquad
\qquad
\qquad

COMMENTS ${ }^{\text {b }}$

[^7]
amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: GENERAL MINERALS
 SAMPLE DELIVERY GROUPS: IOB1557, IOB1559, \& IOB1565

Prepared by

Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#:
Project Manager:
IOB1557, IOB1559, IOB1565
B. McIlvaine
Water
Analysis: General Minerals
QC Level: Level IV
No. of Samples: 3
Reviewer: L. Jarusewic
Date of Review: April 1, 2005

The samples listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 300.0, 405.1, 335.2, 160.2, 350.2, 160.5, 120.1, 413.1, and 180.1. Standard Methods for the Examination of Water and Wastewater Method SM5540-C and SM2540C, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.: IOB1557/I559/I565	
	Analysis:	General Minerals

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 005	Outfall 005	IOB1557-01	Water	General Minerals
Outfall 006	Outfall 006	IOB1559-01	Water	General Minerals
Outfall 011	Outfall 011	IOB1565-01	Water	General Minerals

	Project:
DATA VALIDATION REPORT	SDG No.: IOB1557/1559/1565
	Analysis:

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel. The COCs accounted for the analyses and samples presented in these SDGs. No qualifications were required.

2.1.3 Holding Times

The holding times were assessed by comparing the date of collection with the dates of analyses. The 28 -day analytical holding time for ammonia, chloride, sulfate, oil and grease, and conductivity, the 14-day holding time for cyanide, the seven-day holding time for total suspended solids and total dissolved solids, the 48 -hour holding time for turbidity, total settleable solids, nitrate/nitrite, surfactants, and biological oxygen demand were met. No qualifications were required.

2.2 CALIBRATION

For the applicable analyses, the initial calibration correlation coefficients were ≥ 0.995. The initial and continuing calibration verification information was acceptable with recoveries within the control limits of $90-110 \%$. For BOD, no information regarding the calibration of the oxygen meter was provided; however, as the LCS recovery was within the CCV control limits, no qualifications were required. For ammonia, no information regarding the standardization of the titrant was provided; however, as the LCS recovery was within the CCV control limits, no qualifications were required. The cyanide, chloride, nitrate/nitrite, and sulfate reporting limit check standards were recovered within the control limits of $70-130 \%$. Calibration is not applicable to total suspended solids, total dissolved solids, total settleable solids, or oil and grease. No qualifications were required.

2.3 BLANKS

Cyanide was reported in method blank 5B22061-BLK1 at $-0.0039 \mathrm{mg} / \mathrm{L}$; therefore, nondetected cyanide in sample Outfall 005 was qualified as estimated, "UJ." Turbidity was detected in method blank 5B19043-BLK1 at 0.050 NTU; however, the method blank result was insufficient to qualify the sample Outfall 011 result. Sulfate was detected in a bracketing CCB associated with Outfall 011 at $0.33 \mathrm{mg} / \mathrm{L}$; however, the CCB result was insufficient to qualify the sample Outfall 011 result. The remaining method blank and CCB results reported on the summary forms and in the raw data for blank analyses associated with the samples were nondetects at the reporting limit. No further qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample and laboratory control sample duplicate (BOD and oil and grease only) recoveries were within the laboratory-established control limits. The LCS is not applicable to turbidity, conductivity, or total settleable solids. No qualifications were required.

2.5 SURROGATES RECOVERY

Surrogate recovery is not applicable to the analyses presented in these SDGs.

2.6 LABORATORY DUPLICATES

MS/MSD analyses were performed on sample Outfall 005 for cyanide with an RPD within the control limits of $\leq 15 \%$. No qualifications were required.

Laboratory duplicates were performed on samples Outfall 005 for total suspended solids and Outfall 011 for total dissolved solids and conductivity. RPDs were within method control limits and no qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were performed on sample Outfall 005 for cyanide with recoveries within the laboratory-established control limits. No qualifications were required.

2.8 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analyses of these samples; therefore, furnace atomic absorption QC is not applicable.

2.9 ICP SERIAL DILUTION

ICP serial dilution is not applicable to the analyses presented in this data validation report.

2.10 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. No qualifications were required.

2.11 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.11.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.11.2 Field Duplicates

There were no field duplicate pairs associated with these SDGs.

[^8]
DRAFT: NORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilutio Factor	Date	Date		
Sample D: IOB1559-01 (DRAFT: Outfall 006 - Water) - cont. Reporting Units: mg/l										
Total Cyanide	EPA 335.2	5B23086	0.002							
Total Suspended Solids	EPA 160.2	SB23109	10	0.0050 10	$\begin{aligned} & \mathrm{ND} \\ & 160 \end{aligned}$	1	0223:05	02/2505	u	

AMEC VALIDATED

LEVEL IV

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Annual Outfall 006

Sampled: 02/18/05
Received: 02/18/05
Issued: 04/05/05 12:04

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
1OB1559-01
1OB1559-02

CLIENT ID
Outfall 006
Trip Blanks
Trip Blanks

MATRIX
Water
Water

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 006
Report Number: IOB1559

Sampled: 02/18/05
Received: 02/18/05

CORRECTIVE ACTION REPORT

Department: Extractions
Method: EPA 625
QC Batch: 5B22043

Identification and Definition of Problem:
The percent recovery for benzidine in the BSD was below method acceptance limits.

Determination of the Cause of the Problem:
Benzidine is known to be a problematic compound. According to the EPA, it can be subject to oxidative losses during solvent extraction and its chromatographic behavior is poor.

Corrective Action Taken:

The percent recovery in the BS was within the acceptance limits. All results reported for benzidine are potentially biased low and can be considered estimates only.

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 006
Report Number: $10 B 1559$

Sampled: 02/18/05
Received: 02/18/05

PURGEABLES BY GC/MS (EPA 624)

Analyte Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB1559-01 (Outfall 006 - Water)								
Reporting Units: ug/								
Acrolein EPA 624	5B19020	4.6	50	ND	1	02/19/05		
Acrylonitrile EPA 624	5B19020	5.1	50	ND	1	02/19/05	02/19/05	
2-Chloroethyl vinyl ether EPA 624	5B19020	1.3	5.0	ND	1	02/19/05	02/19/05	
Surrogate: Dibromofluoromethane (80-120\%)				104\%		02/9/05		
Surrogate: Toluene-d8 (80-120\%)				104%				
Surrogate: 4-Bromofluorobenzene (80-120\%)				98%				
Sample ID: IOB1559-02 (Trip Blanks - Water) Reporting Units: ug/								
Acrolein EPA 624	5B19020	4.6	50	ND	1	02/19/05	02/19/05	
Acrylonitrile EPA 624	5B19020	5.1	50	ND	1	02/19/05	$02 / 19 / 05$ $02 / 19 / 05$	
2 -Chloroethyl vinyl ether EPA 624	5B19020	1.3	5.0	ND	1	02/19/05	02/19/05	
Surrogate: Dibromofluoromethane (80-120\%)				101\%	1	02/9/05	02/19/05	
Surrogate: Toluene-d8 (80-120\%)				103\%				
Surrogate: 4-Bromofluorobenzene (80-120\%)				96\%				

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

$$
\begin{array}{cr}
\text { Project ID: Annual Outfall } 006 & \\
& \text { Sampled: } 02 / 18 / 05 \\
\text { Report Number: } 10 B 1559 & \text { Received: } 02 / 18 / 05
\end{array}
$$

PURGEABLES BY GC/MS (EPA 624)

| | | | MDL | Reporting | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Analyte | Method | Batch | Simit
 Limit | Result | Dilution
 Factor
 Extracted | Date
 Analyzed |
| Qualifiers | | | | | | |

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 006
Report Number: 10 B 1559

Sampled: 02/18/05
Received: 02/18/05

PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	
Sample ID: IOB1559-02 (Trip Blanks - Water)								
Reporting Units: ugh								
Benzene	EPA 624	5B19020	0.28	1.0	ND	1	02/19/05	02/19/05
Bromodichloromethane	EPA 624	5B19020	0.30	2.0	ND	1	02/19/05	02/19/05
Bromoform	EPA 624	5B19020	0.32	5.0	ND	1	02/19/05	02/19/05
Bromomethane	EPA 624	5B19020	0.34	5.0	ND	1	02/19/05	02/19/05
Carbon tetrachloride	EPA 624	5B19020	0.28	0.50	ND	1	02/19/05	02/19/05
Chlorobenzene	EPA 624	5819020	0.36	2.0	ND	1	02/19/05	02/19/05
Chloroethane	EPA 624	5B19020	0.33	5.0	ND	1	02/19/05	02/19/05
Chloroform	EPA 624	5B19020	0.33	2.0	ND	1	02/19/05	02/19/05
Chloromethane	EPA 624	5B19020	0.30	5.0	ND	1	02/19/05	02/19/05
Dibromochloromethane	EPA 624	5B19020	0.28	2.0	ND	1	02/19/05	02/19/05
1,2-Dichlorobenzene	EPA 624	5B19020	0.32	2.0	ND	1	02/19/05	02/19/05
1,3-Dichlorobenzene	EPA 624	5B19020	0.35	2.0	ND	1	02/19/05	02/19/05
1,4-Dichlorobenzene	EPA 624	5B19020	0.37	2.0	ND	1	02/19/05	02/19/05
1,1-Dichloroethane	EPA 624	5B19020	0.27	2.0	ND	1	02/19/05	02/19/05
1,2-Dichloroethane	EPA 624	5B19020	0.28	0.50	ND	1	02/19/05	02/19/05
1,1-Dichloroethene	EPA 624	5B19020	0.32	5.0	ND	1	02/19/05	02/19/05
trans-1,2-Dichloroethene	EPA 624	5 B 19020	0.27	2.0	ND	1	02/19/05	02/19/05
1,2-Dichloropropane	EPA 624	5B19020	0.35	2.0	ND	1	02/19/05	02/19/05
cis-1,3-Dichloropropene	EPA 624	5B19020	0.22	2.0	ND	1	02/19/05	02/19/05
trans-1,3-Dichloropropene	EPA 624	5B19020	0.24	2.0	ND	1	02/19/05	02/19/05
Ethylbenzene	EPA 624	5B19020	0.25	2.0	ND	1	02/19/05	02/19/05
Methylene chloride	EPA 624	5B19020	0.48	5.0	1.3	1	02/19/05	02/19/05
1,1;2,2-Tetrachloroethane	EPA 624	5B19020	0.24	2.0	ND	1	02/19/05	02/19/05
Tetrachloroethene	EPA 624	5B19020	0.32	2.0	ND	1	02/19/05	02/19/05
Toluene	EPA 624	5B19020	0.36	2.0	ND		02/19/05	02/19/05
1,1,1-Trichloroethane	EPA 624	5B19020	0.30	2.0	ND	1	02/19/05	02/19/05
1,1,2-Trichloroethane	EPA 624	5B19020	0.30	2.0	ND	1	02/19/05	02/19/05
Trichloroethene	EPA 624	5B19020	0.26	2.0	ND	1	02/19/05	02/19/05
Trichlorofluoromethane	EPA 624	5B19020	0.34	5.0	ND	1	02/19/05	02/19/05
Vinyl chloride	EPA 624	5B19020	0.26	0.50	ND	1	02/19/05	02/19/05
Xylenes, Total	EPA 624	5B19020	0.52	4.0	ND	,	02/19/05	02/19/05
Surrogate: Dibromofluoromethane (80-120\%)					101%			
Surrogate: Toluene-d8 (80-120\%)					103\%			
Surrogate: 4-Bromofluorobenzene (80-120\%)					96\%			

J

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 006
Report Number: IOB1559
Sampled: 02/18/05
Received: 02/18/05

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB1559-01 (Outfall 006 - Water)Reporting Units: ugh									
Acenaphthene	EPA 625	5B22043	4.3	10	ND	0.957	02/22/05	02/25/05	
Acenaphthylene	EPA 625	5B22043	3.2	10	ND	0.957	02/22/05	02/25/05	
Aniline	EPA 625	5B22043	2.9	10	ND	0.957	02/22/05	02/25/05	
Anthracene	EPA 625	5B22043	3.2	10	ND	0.957	02/22/05	02/25/05	
Benzidine	EPA 625	5B22043	5.2	20	ND	0.957	02/22/05	02/25/05	L2
Benzoic acid	EPA 625	5B22043	2.6	20	ND	0.957	02/22/05	02/25/05	
Benzo(a)anthracene	EPA 625	$5 \mathrm{B22043}$	3.7	10	ND	0.957	02/22/05	02/25/05	
Benzo(b)fluoranthene	EPA 625	5B22043	2.7	10	ND	0.957	02/22/05	02/25/05	
Benzo(k)fluoranthene	EPA 625	5B22043	3.4	10	ND	0.957	02/22/05	02/25/05	
Benzo(g,h,i)perylene	EPA 625	5B22043	5.3	10	ND	0.957	02/22/05	02/25/05	
Benzo(a)pyrene	EPA 625	5B22043	3.5	10	ND	0.957	02/22/05	02/25/05	
Benzyl alcohol	EPA 625	5B22043	2.5	20	ND	0.957	02/22/05	02/25/05	
Bis(2-chloroethoxy)methane	EPA 625	5B22043	3.9	10	ND	0.957	02/22/05	02/25/05	
Bis(2-chloroethyl)ether	EPA 625	5B22043	4.4	10	ND	0.957	02/22/05	02/25/05	
Bis(2-chloroisopropyl)ether	EPA 625	5B22043	4.6	10	ND	0.957	02/22/05	02/25/05	
Bis(2-ethylhexyl)phthalate	EPA 625	5B22043	5.2	50	ND	0.957	02/22/05	02/25/05	
4-Bromophenyl phenyl ether	EPA 625	5B22043	4.6	10	ND	0.957	02/22/05	02/25/05	
Butyl benzyl phthalate	EPA 625	5 B 22043	3.5	20	ND	0.957	02/22/05	02/25/05	
4-Chloroaniline	EPA 625	SB22043	60	10	ND	0.957	02/22/05	02/25/05	
2-Chloronaphthalene	EPA 625	5B22043	4.0	10	ND	0.957	02/22/05	02/25/05	
4-Chloro-3-methylphenol	EPA 625	5B22043	3.5	20	ND	0.957	02/22/05	02/25/05	
2-Chlorophenol	EPA 625	5B22043	4.2	10	ND	0.957	02/22/05	02/25/05	
4-Chlorophenyl phenyl ether	EPA 625	5B22043	3.0	10	ND	0.957	02/22/05	02/25/05	
Chrysene	EPA 625	5B22043	2.8	10	ND	0.957	02/22/05	02/25/05	
Dibenz(a,h)anthracene	EPA 625	5B22043	4.7	20	ND	0.957	02/22/05	02/25/05	
Dibenzofuran	EPA 625	5B22043	2.6	10	ND	0.957	02/22/05	02/25/05	
Di-n-butyl phthalate	EPA 625	5B22043	2.8	20	ND	0.957	02/22/05	02/25/05	
1,3-Dichlorobenzene	EPA 625	5B22043	4.1	10	ND	0.957	02/22/05	02/25/05	
1,4-Dichlorobenzene	EPA 625	5B22043	3.9	10	ND	0.957	02/22/05	02/25/05	
1,2-Dichlorobenzene	EPA 625	5B22043	4.5	10	ND	0.957	02/22/05	02/25/05	
3,3-Dichlorobenzidine	EPA 625	5B22043	11	20	ND	0.957	02/22/05	02/25/05	
2,4-Dichlorophenol	EPA 625	5B22043	4.1	10	ND	0.957	02/22/05	02/25/05	
Diethyl phthalate	EPA 625	5B22043	3.1	10	ND	0.957	02/22/05	02/25/05	
2,4-Dimethylphenol	EPA 625	5B22043	4.4	20	ND	0.957	02/22/05	02/25/05	
Dimethyl phthalate	EPA 625	5B22043	3.6	10	ND	0.957	02/22/05	02/25/05	
4,6-Dinitro-2-methylphenol	EPA 625	5B22043	5.1	20	ND	0.957	02/22/05	02/25/05	
2,4-Dinitrophenol	EPA 625	5B22043	5.3	20	ND	0.957	02/22/05	02/25/05	
2,4-Dinitrotoluene	EPA 625	5B22043	4.2	10	ND	0.957	02/22/05	02/25/05	
2,6-Dinitrotoluene	EPA 625	5B22043	3.2	10	ND	0.957	02/22/05	02/25/05	
Di-n-octyl phthalate	EPA 625	5B22043	4.7	20	ND	0.957	02/22/05	02/25/05	
Fluoranthene	EPA 625	5B22043	4.2	10	ND	0.957	02/22/05	02/25/05	
Del Mar Analytical, Irvine Wendy Kirkeeng For Michele Harper Project Manager									

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 006
Report Number: $10 B 1559 \quad$ Sampled: 02/18/05
Report Number: 1OB1559
Received: 02/18/05

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyze
Sample ID: IOB1559-01 (Outfall 006 - Water) - cont. Reporting Units: ugh								
Fluorene	EPA 625	5B22043	3.9	10	ND	0.957	02/22/05	02/25/05
Hexachlorobenzene	EPA 625	5B22043	4.8	10	ND	0.957	02/22/05	02/25/05
Hexachlorobutadiene	EPA 625	5B22043	4.2	10	ND	0.957	02/22/05	02/25/05
Hexachlorocyclopentadiene	EPA 625	5B22043	3.4	20	ND	0.957	02/22/05	02/25/05
Hexachloroethane	EPA 625	5B22043	4.2	10	ND	0.957	02/22/05	02/25/05
Indeno(1,2,3-cd)pyrene	EPA 625	5B22043	5.4	20	ND	0.957	02/22/05	02/25/05
Isophorone	EPA 625	5 B 22043	3.7	10	ND	0.957	02/22/05	02/25/05
2-Methylnaphthalene	EPA 625	5B22043	3.0	10	ND	0.957	02/22/05	02/25/05
2-Methylphenol	EPA 625	5B22043	3.7	10	ND	0.957	02/22/05	02/25/05
4-Methylphenol	EPA 625	5B22043	3.8	10	ND	0.957	02/22/05	02/25/05
Naphthalene	EPA 625	5B22043	4.5	10	ND	0.957	02/22/05	02/25/05
2-Nitroaniline	EPA 625	5B22043	3.9	20	ND	0.957	02/22/05	02/25/05
3-Nitroaniline	EPA 625	5B22043	4.5	20	ND	0.957	02/22/05	02/25/05
4-Nitroaniline	EPA 625	5B22043	4.9	20	ND	0.957	02/22/05	02/25/05
Nitrobenzene	EPA 625	5B22043	4.2	20	ND	0.957	02/22/05	02/25/05
2-Nitrophenol	EPA 625	5B22043	4.2	10	ND	0.957	02/22/05	02/25/05
4-Nitrophenol	EPA 625	5B22043	6.6	20	ND	0.957	02/22/05	02/25/05
N-Nitrosodiphenylamine	EPA 625	SB22043	4.0	10	ND	0.957	02/22/05	02/25/05
N-Nitroso-di-n-propylamine	EPA 625	5B22043	3.6	10	ND	0.957	02/22/05	02/25/05
Pentachlorophenol	EPA 625	5B22043	4.0	20	ND	0.957	02/22/05	02/25/05
Phenanthrene	EPA 625	5B22043	3.3	10	ND	0.957	02/22/05	02/25/05
Phenol	EPA 625	5B22043	4.0	10	ND	0.957	02/22/05	02/25/05
Pyrene	EPA 625	5B22043	3.9	10	ND	0.957	02/22/05	02/25/05
1,2,4-Trichlorobenzene	EPA 625	5B22043	4.4	10	ND	0.957	02/22/05	02/25/05
2,4,5-Trichlorophenol	EPA 625	5B22043	3.6	20	ND	0.957	02/22/05	02/25/05
2,4,6-Trichlorophenol	EPA 625	5B22043	4.1	20	ND	0.957	02/22/05	02/25/05
1,2-Diphenylhydrazine/Azobenzene	EPA 625	5B22043	5.0	20	ND	0.957	02/22/05	02/25/05
N -Nitrosodimethylamine	EPA 625	5B22043	3.7	20	ND	0.957	02/22/05	02/25/05
Surrogate: 2-Fluorophenol (35-120\%)					66\%			02/25/05
Surrogate: Phenol-d6 (45-120\%)					73%			
Surrogate: 2,4,6-Tribromophenol (50-125\%)					82\%			
Surrogate: Nitrobenzene-d5 (45-120\%)					74\%			
Surrogate: 2-Fluorobiphenyl (45-120\%)					76\%			
Surrogate: Terphemyl-d14 (45-135\%)					124%			

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 006
Report Number: IOB1559
Sampled: 02/18/05
Received: 02/18/05

ORGANOCHLORINE PESTICIDES (EPA 608)

[^9]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 006
Report Number: IOB1559

Sampled: 02/18/05
Received: 02/18/05

TOTAL PCBS (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OB1559-01 (Outfall 006 - Water) - cont.									
Reporting Units: ugh									
Aroclor 1016	EPA 608	5B22041	0.20	1.0	ND	0.962	02/22/05	02/23/05	
Aroclor 1221	EPA 608	5B22041	0.10	1.0	ND	0.962	02/22/05	02/23/05	
Aroclor 1232	EPA 608	5B22041	0.15	1.0	ND	0.962	02/22/05	02/23/05	
Aroclor 1242	EPA 608	5B22041	0.15	1.0	ND	0.962	02/22/05	02/23/05	
Aroclor 1248	EPA 608	5B22041	0.25	1.0	ND	0.962	02/22/05	02/23/05	
Aroclor 1254	EPA 608	5B22041	0.25	1.0	ND	0.962	02/22/05	02/23/05	
Aroclor 1260	EPA 608	5B22041	0.40	1.0	ND	0.962	02/22/05	02/23/05	
Surrogate: Decachlorobipheml (45-120\%)							02/2205	02/23/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 006
Report Number: $10 B 1559$

Sampled: 02/18/05
Received: 02/18/05

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB1559-01 (Outfall 006 - Water) - cont.									
Reporting Units: mg/									
Boron	EPA 200.7	5B28119	0.0074	0.050	0.042	1	02/28/05	03/01/05	B, J

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 006
Report Number: IOB1559

Sampled: 02/18/05
Received: 02/18/05

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB1559-01 (Outfall 006 - Water) - cont. Reporting Units: ugh									
Aluminum	EPA 200.7	5B28119	47	50	9100	1	02/28/05		
Antimony	EPA 200.8	5B24099	0.18	2.0	0.31	1	02/24/05	03/01/05	
Arsenic	EPA 200.7	5B28119	3.8	5.0	ND	1	02/24/05	02/25/05	J
Beryllium	EPA 200.7	5B28119	0.62	2.0	ND	1	02/28/05	$03 / 01 / 05$ $03 / 01 / 05$	
Cadmium	EPA 200.8	5B24099	0.015	1.0	0.13	1	02/24/05	02/25/05	
Chromium	EPA 200.7	5B28119	0.68	5.0	13	1	02/28/05	02/25/05	J
Copper	EPA 200.8	5B24099	0.49	2.0	12	1	02/24/05	02/25/05	
Lead	EPA 200.8	5B24099	0.13	1.0	4.5	1	02/24/205	02/25/05	
Mercury	EPA 245.1	5B22063	0.063	0.20	0.079	1	02/22/05	02/22/05	
Nickel	EPA 200.7	5B28119	2.0	10	8.3	1	02/28/05	02/01/05	
Selenium	EPA 200.7	5B28119	4.6	10	4.7	1	02/28/05	03/01/05	J
Silver	EPA 200.7	5B28119	1.3	10	ND	1	02/28/05	03/01/05	J
Thallium	EPA 200.8	5B24099	0.075	1.0	0.13	1	02/24/05	02/25/05	J
Vanadium	EPA 200.7	5B28119	1.4	10	23	1	02/28/05	03/01/05	J
Zinc	EPA 200.7	5B28119	3.7	20	29	1	02/28/05	03/01/05	

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper Project Manager 9484 Chen (909) 370-4667 FAX (949) 370-1046 (805) 505-8596 FAX (858) 505-9689 9830 South 51st St., Sutte B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. \#3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA. 91101 Attention: Bronwyn Kelly	Project ID: Annual Outfall 006
	Report Number: IOB1559
INORGANICS	

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OB1559-01 (Outfall 006 - Water) - cont. Reporting Units: mg/l									
Chloride	EPA 300.0	5B18129	0.26	0.50	0.96	1	02/18/05		
Total Cyanide	EPA 335.2	5B23086	0.0022	0.0050	ND	1	02/23/05	$02 / 25 / 05$	
Nitrate/Nitrite-N	EPA 300.0	5B18129	0.072	0.11	0.37	1	02/18/05	02/19/05	
Oil \& Grease	EPA 413.1	5B23082	0.94	5.0	ND	1	02/23/05	02/23/05	
Sulfate	EPA 300.0	5B18129	0.18	0.50	0.60	1	02/18/05	02/19/05	
Total Dissolved Solids	SM2540C	5B23077	10	10	110	1	02/23/05	02/23/05	
Total Suspended Solids	EPA 160.2	5B23109	10	10	160	1	02/23/05	02/23/05	

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

Sampled: 02/18/05
Received: 02/18/05

INORGANICS

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 006
Report Number: 1OB1559

Sampled: 02/18/05
Received: 02/18/05

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OB1559-01 (Outfall 006 - Water) - cont.									
Repor									
Perchlorate	EPA 314.0	5B26001	0.80	4.0	ND	1	02/26/05	02/26/05	

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 006
Report Number: IOB1559

Sampled: 02/18/05
Received: 02/18/05

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 006 (IOB1559-01) - Water Extracted Analyzed					
EPA 300.0	2	02/18/2005 09:00	02/18/2005 18:30	02/18/2005 22:00	02/19/2005 00:00
EPA 624	3	02/18/2005 09:00	02/18/2005 18:30	02/19/2005 00:00	02/19/2005 17:58
Sample ID: Trip Blanks (IOB1559-02) - Water 19/ 02/19/2005 17:58					
EPA 624	3	02/18/2005 14:50	02/18/2005 18:30	02/19/2005 00:00	02/19/2005 15:55

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 006
Report Number: IOB1559

Sampled: 02/18/05
Received: 02/18/05

METHOD BLANKIOC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5B19020 Extracted: 02/19/05											
Blank Analyzed: 02/19/2005 (5B19020-BLK1)											
Acrolein	ND	50	4.6	ug/							
Acrylonitrile	ND	50	5.1	ug/							
2-Chloroethyl vinyl ether	ND	5.0	1.3	ug/							
Surrogate: Dibromofluoromethane	24.9			ug $/$	25.0		100	80-120			
Surrogate: Toluene-d8	26.8			ug $/$	25.0		107	80-120			
Surrogate: 4-Bromofluorobenzene	25.2			ug/	25.0		101	80-120			
LCS Analyzed: 02/19/2005 (5B19020-BS1)											
2-Chloroethyl vinyl ether	28.8	5.0	1.3	ug/	25.0		115	20-175			
Surrogate: Dibromofluoromethane	25.2			ug $/$	25.0		101	80-120			
Surrogate: Toluene-d8	27.1			ug/	25.0		108	80-120			
Surrogate: 4-Bromofluorobenzene	25.9			ug/	25.0		104				
Matrix Spike Analyzed: $02 / 19 / 2005$ (5819020-MS1) Source: $1081556-01$											
2 -Chloroethyl vinyl ether	21.2	5.0	1.3	ug/l	25.0	ND	85	20-175			
Surrogate: Dibromofluoromethane	24.1			ug/	25.0		96	80-120			
Surrogate: Toluene-d8	25.9			ug/	25.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	24.6			$u g / 1$	25.0		98	80-120			
Matrix Spike Dup Analyzed: 02/19/2005 (5B19020-MSD1) Source: 1OB1556-01											
2-Chloroethyl vinyl ether	24.9	5.0	1.3	ug/l	25.0	ND	100	20-175	16	25	
Surrogate: Dibromofluoromethane	24.1			$u g h$	25.0		96	80-120			
Surrogate: Toluene-d8	25.8			ug/	25.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	24.9			$u g /$	25.0		100	80-120			

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 006
Report Number IOB1559 Sampled: 02/18/05

Sampled: 02/18/05
Received: 02/18/05

METHOD BL ANKIQC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5B19020 Extracted: 02/19/05											
Blank Analyzed: 02/19/2005 (5B19020-BLK1)											
Benzene	ND	1.0	0.28	ug/							
Bromodichloromethane	ND	2.0	0.30	ug/							
Bromoform	ND	5.0	0.32	ug/							
Bromomethane	ND	5.0	0.34	ug/							
Carbon tetrachloride	ND	0.50	0.28	ug/							
Chlorobenzene	ND	2.0	0.36	ug/l							
Chloroethane	ND	5.0	0.33	ug/1							
Chloroform	ND	2.0	0.33	ug/1							
Chloromethane	ND	5.0	0.30	ug/							
Dibromochloromethane	ND	2.0	0.28	ug/							
1,2-Dichlorobenzene	ND	2.0	0.32	ug/							
1,3-Dichlorobenzene	ND	2.0	0.35	ugh							
14. Dichlorobenzene	ND	2.0	0.37	ugA							
1,1-Dichloroethane	ND	2.0	0.27	ug/							
1,2-Dichloroethane	ND	0.50	0.28	ug/l							
1,1-Dichloroethene	ND	5.0	0.32	ug/							
trans-1,2-Dichloroethene	ND	2.0	0.27	ug/							
1,2-Dichloropropane	ND	2.0	0.35	ug/							
cis-1,3-Dichloropropene	ND	2.0	0.22	ug/							
trans-1,3-Dichloropropene	ND	2.0	0.24	ug/							
Ethylbenzene	ND	2.0	0.25	ug/							
Methylene chloride	ND	5.0	0.48	ug/							
1,1,2,2-Tetrachloroethane	ND	2.0	0.24	ug/1							
Tetrachloroethene	ND	2.0	0.32	ug/1							
Toluene	ND	2.0	0.36	ug/							
1,1,1-Trichloroethane	ND	2.0	0.30	ug/							
1,1,2-Trichloroethane	ND	2.0	0.30	ug/							
Trichloroethene	ND	2.0	0.26	ug/1							
Trichlorofluoromethane	ND	5.0	0.34	ug/l							
Vinyl chloride	ND	0.50	0.26	ug/l							
Xylenes, Total	ND	4.0	0.52	ug/							
Surrogate: Dibromofluoromethane	24.9			ugh	25.0		100	80-120			
Surrogate: Toluene-d8	26.8			ugh	25.0		1078	80-120			
Surrogate: 4-Bromofluorobenzene	25.2			ug/	25.0		1018	80-120			

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 006
Report Number: $10 B 1559$

Sampled: 02/18/05
Received: 02/18/05

METHOD BLANKIQC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte
Batch: 5B19020 Extracted: 02/19/05

| | Reporting | | | Spike | Source | \%REC | | RPD | Data |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Result | Limit | MDL | Units | Level
 Result | \%REC | Limits | RPD | Limit | Qualifiers |

LCS Analyzed: 02/19/2005 (5B19020-BS1)

Benzene	25.3	1.0	0.28	ug/	25.0	101	70-120
Bromodichloromethane	22.8	2.0	0.30	ug/	25.0	91	70-140
Bromoform	24.9	5.0	0.32	ug/l	25.0	100	55-135
Bromomethane	26.0	5.0	0.34	ug/l	25.0	104	60-140
Carbon tetrachloride	22.7	0.50	0.28	ug/l	25.0	91	70-140
Chlorobenzene	24.2	2.0	0.36	ug/	25.0	97	80-125
Chloroethane	25.4	5.0	0.33	ug/l	25.0	102	60-145
Chloroform	23.2	2.0	0.33	ug/l	25.0	93	75-130
Chloromethane	25.1	5.0	0.30	ug/	25.0	100	40-145
Dibromochloromethane	24.2	2.0	0.28	ug/	25.0	97	65-145
1,2-Dichlorobenzene	24.5	2.0	0.32	ug/	25.0	98	80-120
1,3-Dichlorobenzene	23.7	2.0	0.35	ug/	25.0	95	$80-120$
1,4-Dichlorobenzene	23.9	2.0	0.37	ug/	25.0	96	80-120
1,1-Dichloroethane	23.4	2.0	0.27	ug/1	25.0	94	70-135
1,2-Dichloroethane	22.7	0.50	0.28	ug/	25.0	91	60-150
1,1-Dichloroethene	25.6	5.0	0.32	ug/	25.0	102	75-135
trans-1,2-Dichloroethene	24.9	2.0	0.27	ug/	25.0	100	70-130
1,2-Dichloropropane	25.2	2.0	0.35	ug/	25.0	101	70-120
cis-1,3-Dichloropropene	25.2	2.0	0.22	ug/	25.0	101	75-130
trans-1,3-Dichloropropene	25.6	2.0	0.24	ug/	25.0	102	75-135
Ethylbenzene	25.2	2.0	0.25	ug/1	25.0	101	80-120
Methylene chloride	24.7	5.0	0.48	ug/	25.0	99	60-135
1,1,2,2-Tetrachloroethane	27.6	2.0	0.24	ugh	25.0	110	60-135
Tetrachloroethene	23.8	2.0	0.32	ugl	25.0	95	75-125
Toluene	25.0	2.0	0.36	ug/l	25.0	100	75-120
1,1,1-Trichloroethane	21.8	2.0	0.30	ug/l	25.0	87	75-140
1,1,2-Trichloroethane	25.2	2.0	0.30	ug/	25.0	101	70-125
Trichloroethene	24.4	2.0	0.26	ug/	25.0	98	80-120
Irichlorofluoromethane	21.9	5.0	0.34	ug/	25.0	88	65-145
$V i n y l ~ c h l o r i d e ~$	24.1	0.50	0.26	ug/	25.0	96	50-130
Surrogate: Dibromofluoromethane	25.2			ug $/$	25.0	101	80-120
iurrogate: Toluene-d8	27.1			ug λ	25.0	108	80-120
Iurrogate: 4-Bromofluorobenzene	25.9			$u g /$	25.0	104	80-120

[^10]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 006
Report Number: $10 B 1559 \quad \begin{array}{r}\text { Sampled: } 02 / 18 / 05 \\ \text { Received: } 02 / 18 / 05\end{array}$

METHOD BLANKIQC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5819020 Extracted: 02/19/05											
Matrix Spike Analyzed: 02/19/2005 (5B19020-MS1)					Source: IOB1556-01						
Benzene	22.7	1.0	0.28	ug/	25.0	ND	91	70-120			
Bromodichloromethane	20.2	2.0	0.30	ug/	25.0	ND	81	70-140			
Bromoform	20.2	5.0	0.32	ug/1	25.0	ND	81	55-140			
Bromomethane	23.0	5.0	0.34	ug/	25.0	ND	92	50-145			
Carbon tetrachloride	20.8	0.50	0.28	ug/	25.0	ND	83	70-145			
Chlorobenzene	21.9	2.0	0.36	ug/	25.0	ND	88	80-125			
Chloroethane	22.3	5.0	0.33	ug/	25.0	ND	89	50-145			
Chloroform	21.0	2.0	0.33	ug/t	25.0	ND	84	70-135			
Chloromethane	21.8	5.0	0.30	ug/l	25.0	ND	87	35-145			
Dibromochloromethane	21.0	2.0	0.28	ug/	25.0	ND	84	65-145			
1,2-Dichlorobenzene	22.2	2.0	0.32	ug/	25.0	ND	89	75-130			
1,3-Dichlorobenzene	22.0	2.0	0.35	ug/1	25.0	ND	88	75-130			
1,4-Dichlorobenzene	22.0	2.0	0.37	ug/	25.0	ND	88	80-120			
1,1-Dichloroethane	21.3	2.0	0.27	ug/1	25.0	ND	85	65-135			
1,2-Dichloroethane	19.6	0.50	0.28	ug/1	25.0	ND	78	60-150			
1,1-Dichloroethene	22.6	5.0	0.32	ug/	25.0	ND	90	65-140			
trans-1,2-Dichloroethene	22.5	2.0	0.27	ug/	25.0	ND	90	65-135			
1,2-Dichloropropane	22.1	2.0	0.35	ug/	25.0	ND	88	65-130			
cis-1,3-Dichloropropene	22.2	2.0	0.22	ugl	25.0	ND	89	70-140			
trans-1,3-Dichloropropene	21.7	2.0	0.24	ugh	25.0	ND	87	70-140			
Ethylbenzene	23.3	2.0	0.25	ug/	25.0	ND	93	70-130			
Methylene chloride	22.7	5.0	0.48	ug/	25.0	0.95	87	60-135			
1,1,2,2-Tetrachloroethane	22.8	2.0	0.24	ug/l	25.0	ND	91	60-145			
Tetrachloroethene	21.3	2.0	0.32	ugh	25.0	ND	85	70-130			
Toluene	22.5	2.0	0.36	ug/	25.0	ND	90	70-120			
1,1,1-Trichloroethane	20.3	2.0	0.30	ug/	25.0	0.76	78	75-140			
1,1,2-Trichloroethane	20.9	2.0	0.30	ug/1	25.0	ND	84	60-135			
Trichloroethene	22.1	2.0	0.26	ug/	25.0	0.66	86	70-125			
Trichlorofluoromethane	19.6	5.0	0.34	ugh	25.0	ND	78	55-145			
Vinyl chloride	21.6	0.50	0.26	ug/	25.0	ND	86	40-135			
Surrogate: Dibromofluoromethane	24.1			ug/	25.0		96	80-120			
Surrogate: Toluene-d8	25.9			ug/	25.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	24.6			$u g /$	25.0		98	80-120			

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 006
Report Number: $10 B 1559$
Report Number: 1OB1559
Sampled: 02/18/05
Received: 02/18/05

METHOD BLANKIOC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data
Batch: 5B19020 Extracted: 02/19/05											

Matrix Spike Dup Analyzed: 02/19/2005 (5B19020-MSD1)			Source: IOB1556-01							
Benzene	24.4	1.0	0.28	ug/	25.0	ND	98	70-120	7	20
Bromodichloromethane	21.5	2.0	0.30	ug/	25.0	ND	86	70-140	6	20
Bromoform	22.7	5.0	0.32	ug/	25.0	ND	91	55-140	12	25
Bromomethane	24.8	5.0	0.34	ug/	25.0	ND	99	50-145	8	25
Carbon tetrachloride	22.1	0.50	0.28	ug/	25.0	ND	88	70-145	6	25
Chlorobenzene	23.4	2.0	0.36	ug/	25.0	ND	94	80-125	7	20
Chloroethane	23.8	5.0	0.33	ug/	25.0	ND	95	50-145	7	25
Chloroform	22.2	2.0	0.33	ug/	25.0	ND	89	70-135	6	20
Chloromethane	23.2	5.0	0.30	ug/	25.0	ND	93	35-145	6	25
Dibromochloromethane	22.8	2.0	0.28	ug/	25.0	ND	91	65-145	8	25
1,2-Dichlorobenzene	23.3	2.0	0.32	ug/	25.0	ND	93	75-130	5	20
1,3-Dichlorobenzene	22.9	2.0	0.35	ugh	25.0	ND	92	75-130	4	20
1,4 Dichlorobenzene	23.0	2.0	0.37	ugh	25.0	ND	92	80-120	4	20
1,1-Dichloroethane	22.5	2.0	0.27	ug/	25.0	ND	90	65-135	5	20
1,2-Dichloroethane	23.3	0.50	0.28	ug/	25.0	ND	93	60-150	17	20
1,1-Dichloroethene	24.3	5.0	0.32	ug/	25.0	ND	97	65-140	7	20
trans-1,2-Dichloroethene	24.0	2.0	0.27	ug/	25.0	ND	96	65-135	6	20
1,2-Dichloropropane	23.7	2.0	0.35	ugh	25.0	ND	95	65-130	7	20
cis-1,3-Dichloropropene	23.9	2.0	0.22	ug/	25.0	ND	96	70-140	7	20
trans-1,3-Dichloropropene	23.7	2.0	0.24	ug/	25.0	ND	95	70-140	9	25
Ethylbenzene	24.8	2.0	0.25	ug/	25.0	ND	99	70-130	6	20
Methylene chloride	24.2	5.0	0.48	ugh	25.0	0.95	93	60-135	6	20
1,1,2,2-Tetrachloroethane	25.3	2.0	0.24	ug/	25.0	ND	101	60-145	10	30
Tetrachloroethene	23.0	2.0	0.32	ug/	25.0	ND	92	70-130	8	20
Toluene	24.0	2.0	0.36	ugh	25.0	ND	96	70-120	6	20
1,1,1-Trichloroethane	21.7	2.0	0.30	ug/	25.0	0.76	84	75-140	7	20
1,1,2-Trichloroethane	23.3	2.0	0.30	ug/l	25.0	ND	93	60-135	11	25
Trichloroethene	23.0	2.0	0.26	ug/	25.0	0.66	89	70-125	4	20
Trichlorofluoromethane	20.7	5.0	0.34	ug/	25.0	ND	83	55-145	5	25
Vinyl chloride	22.8	0.50	0.26	ug/	25.0	ND	91	40-135	5	30
Surrogate: Dibromofluoromethane	24.1			ug/	25.0		96	80-120		
Surrogate: Toluene-d8	25.8			ug/	25.0		103	80-120		
Surrogate: 4-Bromofluorobenzene	24.9			$u g /$	25.0		100	80-120		

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 006
Report Number: IOB1559

Sampled: 02/18/05
Received: 02/18/05

METHOD BLANKIQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5B22043 Extracted; 02/22/05											
Blank Analyzed: 02/25/2005 (5B22043-BLK1)											
Acenaphthene	ND	10	4.3	ug/							
Acenaphthylene	ND	10	3.2	ug/							
Aniline	ND	10	2.9	ug/							
Anthracene	ND	10	3.2	ug/							
Benzidine	ND	20	5.2	ug/							
Benzoic acid	ND	20	2.6	ug/							
Benzo(a)anthracene	ND	10	3.7	ug/							
Benzo(b)fluoranthene	ND	10	2.7	ugh							
Benzo(k)fluoranthene	ND	10	3.4	ug/							
- Benzo(g,h,i)perylene	ND	10	5.3	ug/l							
Benzo(a)pyrene	ND	10	3.5	ug/l							
Benzyl alcohol	ND	20	2.5	ug/							
Bis(2-chloroethoxy)methane	ND	10	3.9	ug/							
Bis(2-chloroethyl)ether	ND	10	4.4	ug/							
Bis(2-chloroisopropyl)ether	ND	10	4.6	ug/l							
Bis(2-ethylhexyl)phthalate	ND	50	5.2	ug/l							
4-Bromophenyl phenyl ether	ND	10	4.6	ug/							
Butyl benzyl phthalate	ND	20	3.5	ug/							
4-Chloroaniline	ND	10	6.0	ug/							
2-Chloronaphthalene	ND	10	4.0	ug/							
4-Chloro-3-methylphenol	ND	20	3.5	ug/							
2 -Chlorophenol	ND	10	4.2	ugl							
4-Chlorophenyl phenyl ether	ND	10	3.0	ug/							
Chrysene	ND	10	2.8	ug/							
Dibenz(a,h)anthracene	ND	20	4.7	ugh							
Dibenzofuran	ND	10	2.6	ug/							
Di-n-butyl phthalate	ND	20	2.8	ug/l							
1,3-Dichlorobenzene	ND	10	4.1	ugh							
1,4-Dichlorobenzene	ND	10	3.9	ug/							
1,2-Dichlorobenzene	ND	10	4.5	ug/							
3,3-Dichlorobenzidine	ND	20	11	ugl							
2,4-Dichlorophenol	ND	10	4.1	ugh							
Diethyl phthalate	ND	10	3.1	ug / l							
2,4-Dimethylphenol	ND	20	4.4	ug/l							
Dimethyl phthalate	ND	10	3.6	ug/							

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 006
Report Number: $10 B 1559$ Sampled: 02/18/05
Report Number: $10 B 1559$
Received: 02/18/05

METHOD BLLANKIQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte
Batch: 5B22043 Extracted: 02/22/05

Reporting			Spike	Source	\%REC		RPD	Data	
Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Blank Analyzed: 02/25/2005 (5B22043-BLK1)

4,6-Dinitro-2-methylphenol	ND	20	5.1	ug/
2,4-Dinitrophenol	ND	20	5.3	ug/
2,4-Dinitrotoluene	ND	10	4.2	ugh
2,6-Dinitrotoluene	ND	10	3.2	ug/
Di-n-octyl phthalate	ND	20	4.7	ug/
Fluoranthene	ND	10	4.2	ug/
Fluorene	ND	10	3.9	ug/
Hexachlorobenzene	ND	10	4.8	ug/
Hexachlorobutadiene	ND	10	4.2	ug/
Hexachlorocyclopentadiene	ND	20	3.4	ug/l
Hexachloroethane	ND	10	4.2	ug/
Indeno(1,2,3-cd)pyrene	ND	20	5.4	ug/l
Isophorone	ND	10	3.7	ugh
2-Methylnaphthalene	ND	10	3.0	ug/
2-Methylphenol	ND	10	3.7	ug/
4-Methylphenol	ND	10	3.8	ug/
Naphthalene	ND	10	4.5	ug 1
2-Nitroaniline	ND	20	3.9	ug/
3-Nitroaniline	ND	20	4.5	ug/
4-Nitroaniline	ND	20	4.9	ug/
Nitrobenzene	ND	20	4.2	ug/
2-Nitrophenol	ND	10	4.2	ug/
4-Nitrophenol	ND	20	6.6	ug/
N-Nitrosodiphenylamine	ND	10	4.0	ug/
N -Nitroso-di-n-propylamine	ND	10	3.6	ug/
Pentachlorophenol	ND	20	4.0	ug/
Phenanthrene	ND	10	3.3	ugl
Phenol	ND	10	4.0	ugd
Pyrene	ND	10	3.9	ug/l
1,2,4-Trichlorobenzene	ND	10	4.4	ugl
2,4,5-Trichlorophenol	ND	20	3.6	ugh
2,4,6-Trichlorophenol	ND	20	4.1	ug/
1,2-Diphenylhydrazine/Azobenzene	ND	20	5.0	ug/
N -Nitrosodimethylamine	ND	20	3.7	ug/
Surrogate: 2-Fluorophenol	138			ug/

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 006
Report Number: $10 B 1559$
Sampled: 02/18/05
Received: 02/18/05

METHOD BLANKIQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 006
Report Number: $10 B 1559$ Sampled: 02/18/05
Received: 02/18/05

METHOD BLANKIQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5B22043 Extracted: 02/22/05											
LCS Analyzed: 02/25/2005 (5B22043-BS1)											
1,2-Dichlorobenzene	66.6	10	4.5	ug/l	100		67	40-120			M-NR1
3,3-Dichlorobenzidine	85.5	20	11	ug/l	100		86	50-170			
2,4-Dichlorophenol	80.7	10	4.1	ug/l	100		81	55-120			
Diethyl phthalate	78.4	10	3.1	ug/l	100		78	60-120			
2,4-Dimethylphenol	71.1	20	4.4	ug/l	100		71	35-120			
Dimethyl phthalate	78.0	10	3.6	ug/l	100		78	60-120			
4,6-Dinitro-2-methylphenol	77.3	20	5.1	ug/l	100		77	55-120			
2,4-Dinitrophenol	75.1	20	5.3	ug/l	100		75	40-140			
2,4-Dinitrotoluene	81.1	10	4.2	ug/l	100		81	60-140			
2,6-Dinitrotoluene	77.9	10	3.2	ug/l	100		78	65-125			
Di-n-octyl phthalate	68.3	20	4.7	ug/l	100		68	60-130			
Fluoranthene	86.3	10	4.2	ug/l	100		86	50-130			
Fluorene	83.9	10	3.9	ug/	100		84	$55-125$ $60-120$			
Hexachlorobenzene	84.1	10	4.8	ug/l	100		84	50-120			
Hexachlorobutadiene	70.9	10	4.2	ug/	100		71	45-120			
Hexachlorocyclopentadiene	69.3	20	3.4	ug/	100		69	10-130			
Hexachloroethane	64.4	10	4.2	ug/l	100		64	40-120			
Indeno(1,2,3-cd)pyrene	71.9	20	5.4	ug/l	100		72	35-150			
Isophorone	75.7	10	3.7	ug/l	100		76	55-120			
2-Methylnaphthalene	80.5	10	3.0	ug/l	100		80	50-120			
2-Methylphenol	72.7	10	3.7	ug/l	100		73	45-120			
4-Methylphenol	75.3	10	3.8	ug/l	100		75	-45-120			
Naphthalene	78.3	10	4.5	ug/l	100		78	50-120			
2-Nitroaniline	84.0	20	3.9	ug/l	100		84	60-130			
3-Nitroaniline	87.2	20	4.5	ug/l	100		87	50-140			
4-Nitroaniline	89.5	20	4.9	ug/l	100		90	45-160			
Nitrobenzene	72.3	20	4.2	ug/l	100		72	$50-120$			
2-Nitrophenol	79.1	10	4.2	ug/l	100		79	55-120			
4-Nitrophenol	74.9	20	6.6	ug/l	100		75	50-135			
N -Nitrosodiphenylamine	77.6	10	4.0	ug/l	100		78	60-120			
N -Nitroso-di-n-propylamine	73.9	10	3.6	ug/l	100		74	$50-120$			
Pentachlorophenol	88.3	20	4.0	ug/l	100		88	50-125			
Phenanthrene	84.1	10	3.3	ug/l	100		84	$55-120$			
Phenol	72.3	10	4.0	ug/l	100		72	45-120			
Pyrene	81.6	10	3.9	ug/l	100		82	50-120			

Del Mar Analytical, Irvine
 Wendy Kirkeeng For Michele Harper
 Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 006
Report Number: $10 B 1559$
Sampled: 02/18/05
Received: 02/18/05

METHOD BLANKIQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5B22043 Extracted; 02/22/05											
LCS Analyzed: 02/25/2005 (5B22043-BS1)											M-NR1
1,2,4-Trichlorobenzene	70.3	10	4.4	ug/	100		70	50-120			
2,4,5-Trichlorophenol	83.4	20	3.6	ug/	100		83	60-120			
2,4,6-Trichlorophenol	81.7	20	4.1	ug/1	100		82	60-120			
1,2-Diphenylhydrazine/Azobenzene	84.6	20	5.0	ug/	100		85	60-120			
N-Nitrosodimethylamine	73.1	20	3.7	ug/	100		73	40-120			
Surrogate: 2-Fluorophenol	132			ug/	200		66	35-120			
Surrogate: Phenol-d6	142			ug/	200		71	45-120			
Surrogate: 2,4,6-Tribromophenol	166			ug/	200		83	50-125			
Surrogate: Nitrobenzene-d5	75.9			ug/	100		76	45-120			
Surrogate: 2-Fluorobiphenyl	77.6			ug/	100		78	45-120			
Surrogate: Terphenyl-d14	76.0			ug $/$	100		76	45-135			
LCS Dup Analyzed: 02/25/2005 (5B22043-BSD1)											
Acenaphthene	77.9	10	4.3	ug/l	100		78	55-120	6	20	
Acenaphthylene	78.7	10	3.2	ug/	100		79	55-120	4	20	
Aniline	62.7	10	2.9	ug/	100		63	30-120	22	25	
Anthracene	83.5	10	3.2	ug/	100		84	60-120	3	20	
Benzidine	ND	20	5.2	ug/	100			20-180		35	$L 2$
Benzoic acid	61.0	20	2.6	ug/1	100		61	30-125	11	30	
Benzo(a)anthracene	80.9	10	3.7	ug/	100		81	65-120	2	20	
Benzo(b)fluoranthene	80.1	10	2.7	ug/	100		80	50-125	5	25	
Benzo(k)fluoranthene	80.7	10	3.4	ug/	100		81	50-125	10	20	
Benzo(g,h,i)perylene	86.3	10	5.3	ug/	100		86	35-160	15	25	
Benzo(a)pyrene	80.9	10	3.5	ug/	100		81	55-125	6	25	
Benzyl alcohol	78.0	20	2.5	ug/	100		78	40-130	2	20	
Bis(2-chloroethoxy)methane	78.3	10	3.9	ug/	100		78	55-120	5	20	
Bis(2-chloroethyl)ether	66.9	10	4.4	ug/	100		67	50-120	3	20	
Bis(2-chloroisopropyl)ether	76.3	10	4.6	ug/	100		76	50-120	1	20	
Bis(2-ethylhexyl)phthalate	69.6	50	5.2	ug/	100		70	65-125	7	20	
4-Bromophenyl phenyl ether	75.9	10	4.6	ug/	100		76	55-125	3	25	
Butyl benzyl phthalate	85.0	20	3.5	ug/l	100		85	60-125	7	20	
4-Chloroaniline	73.7	10	6.0	ug/	100		74	55-120	9	25	
2-Chloronaphthalene	78.3	10	4.0	ug/	100		78	60-120	3	20	
4-Chloro-3-methylphenol	75.8	20	3.5	ug/	100		76	60-120	10	25	
2 -Chlorophenol	70.2	10	4.2	ug/1	100		70	45-120	3	25	
4-Chlorophenyl phenyl ether	79.3	10	3.0	ug/	100		79	55-120	2	20	
Del Mar Analytical, Irvine Wendy Kirkeeng For Michele Harper Project Manager											

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 006
Report Number: IOB1559 \quad Sampled: 02/18/05
Received: 02/18/05

METHOD BLANK/QC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte
Batch: 5B22043 Extracted: 02/22/05

Result	Reporting Limit	MDL	Units	Spike Level	Source Result		\%REC Limits		RPD	Data
			Units			\%REC	Limits	RPD		Qualifiers

LCS Dup Analyzed: 02/25/2005 (5B22043-BSD1)

Chrysene	81.6
Dibenz(a,h)anthracene	86.3
Dibenzofuran	77.5
Di-n-butyl phthalate	80.8
1,3-Dichlorobenzene	64.4
1,4-Dichlorobenzene	63.4
1,2-Dichlorobenzene	65.7
3,3-Dichlorobenzidine	76.3
2,4-Dichlorophenol	75.1
Diethyl phthalate	76.4
2,4-Dimethylphenol	67.0
Dimethyl phthalate	75.1
4,6-Dinitro-2-methylphenol	76.9
2,4-Dinitrophenol	70.5
2,4-Dinitrotoluene	77.8
2,6-Dinitrotoluene	75.3
Di-n-octyl phthalate	64.0
Fluoranthene	80.3
Fluorene	80.1
Hexachlorobenzene	79.9
Hexachlorobutadiene	67.7
Hexachlorocyclopentadiene	66.0
Hexachloroethane	63.8
Indeno(1,2,3-cd)pyrene	81.8
Isophorone	71.9
2-Methylnaphthalene	74.5
2-Methylphenol	71.4
4-Methylphenol	73.1
Naphthalene	75.6
2-Nitroaniline	80.5
3-Nitroaniline	81.1
4-Nitroaniline	79.5
Nitrobenzene	70.4
2-Nitrophenol	75.4
4-Nitrophenol	65.8

Del Mar Analytical, Irvine
 Wendy Kirkeeng For Michele Harper
 Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 006
Report Number: IOB1559

Sampled: 02/18/05
Received: 02/18/05

METHOD BLANKIOC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

| | | Reporting | | | Spike | Source | \%REC | | RPD | Data | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Analyte | Result | Limit | MDL | Units | Level | Result | \%REC | Limits | RPD | Limit | Qualifiers |

LCS Dup Analyzed: 02/25/2005 (5B22043-BSD1)

N-Nitrosodiphenylamine	76.4	10	4.0	ug/	100	76	60.120	2	20
N-Nitroso-di-n-propylamine	70.3	10	3.6	ugh	100	70	50-120	5	20
Pentachlorophenol	83.9	20	4.0	ug/l	100	84	50-125	5	25
Phenanthrene	80.8	10	3.3	ug/	100	81	55-120	4	20
Phenol	70.0	10	4.0	$\mathrm{ug} /$	100	70	45-120	3	25
Pyrene	98.6	10	3.9	ug/	100	99	50-120	19	25
1,2,4-Trichlorobenzene	66.9	10	4.4	ug/l	100	67	50-120	5	20
2,4,5-Trichlorophenol	76.7	20	3.6	ug / l	100	77	60-120	8	20
2,4,6-Trichlorophenol	77.8	20	4.1	$\mathrm{ug} / 1$	100	78	60-120	5	20
1,2-Diphenylhydrazine/Azobenzene	81.0	20	5.0	ug/	100	81	60-120	4	25
$\mathrm{N}-$ Nitrosodimethylamine	70.7	20	3.7	ug/	100	71	40-120	3	20
Surrogate: 2-Fluorophenol	126			ug h	200	63	35-120		
Surrogate: Phenol-d6	137			ugh	200	68	45-120		
Surrogate: 2,4,6-Tribromophenol	162			ug/	200	81	50-125		
Surrogate: Nitrobenzene-d5	71.8			ug/	100	72	45-120		
Surrogate: 2-Fluorobiphenyl	75.7			$u g /$	100	76	45-120		
Surrogate: Terphenyl-dI4	87.9			ug/	100	88	45-135		

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing	Project ID: Annual Outfall 006	
300 North Lake Avenue, Suite 1200		Sampled: $02 / 18 / 05$
Pasadena, CA 91101	Report Number: $10 B 1559$	Received: $02 / 18 / 05$
Attention: Bronwyn Kelly		

METHOD BLANKIQC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 006
Report Number: $10 B 1559$

Sampled: 02/18/05
Received: 02/18/05

METHOD BIANKIOC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5B22041 Extracted: 02/22/05											
LCS Analyzed: 02/23/2005 (5											M-NR1
Endrin	0.518	0.10	0.015	ug/	0.500		104	55-125			
Endrin aldehyde	0.444	0.10	0.045	ug/	0.500		89	55-115			
Endrin ketone	0.457	0.10	0.020	$\mathrm{ug} /$	0.500		91	60-120			
Heptachlor	0.443	0.10	0.030	ug/1	0.500		89	45-115			
Heptachlor epoxide	0.425	0.10	0.020	ug/	0.500		85	50-120			
Methoxychlor	0.525	0.10	0.035	ug/	0.500		105	60-135			
Surrogate: Tetrachloro-m-xylene	0.381			ug/	0.500		76	35-120			
Surrogate: Decachlorobiphenyl	0.440			ug/	0.500		88	45-120			
LCS Dup Analyzed: 02/23/2005 (5B22041-BSD1)											
Aldrin	0.371	0.10	0.030	ug/	0.500		74	45-115	11	30	
alpha-BHC	0.449	0.10	0.015	ug/	0.500		90	45-115	0	30	
beta-BHC	0.419	0.10	0.015	ug/	0.500		84	$50-115$	0	30	
delta- BHC	0.432	0.20	0.020	ugf	0.500		86	55-120	1	30	
gamma-BHC (Lindane)	0.452	0.10	0.015	ug/	0.500		90	45-115	0	30	
4,4'-DDD	0.496	0.10	0.015	ugh	0.500		99	60-120	2	30	
4,4'-DDE	0.472	0.10	0.020	ug/	0.500		94	55-120	1	30	
4,4'-DDT	0.481	0.10	0.030	ug/	0.500		96	60-130	0	30	
Dieldrin	0.459	0.10	0.015	ug/	0.500		92	55-120	2	30	
Endosulfan I	0.436	0.10	0.015	ug/	0.500		87	50-115	0	30	
Endosulfan II	0.443	0.10	0.040	ug/	0.500		89	60-125	4	30	
Endosulfan sulfate	0.461	0.20	0.015	ug/l	0.500		92	60-120	1	30	
Endrin	0.509	0.10	0.015	ug/l	0.500		102	55-125	2	30	
Endrin aldehyde	0.440	0.10	0.045	ug/l	0.500		88	55-115	1	30	
Endrin ketone	0.450	0.10	0.020	ugh	0.500		90	60-120	2	30	
Heptachlor	0.446	0.10	0.030	ug/	0.500		89	45-115	1	30	
Heptachlor epoxide	0.431	0.10	0.020	ugh	0.500		86	50-120	1	30	
Methoxychlor	0.533	0.10	0.035	ug/l	0.500		107	60-135	2	30	
Surrogate: Tetrachloro-m-xylene	0.384			ug $/$	0.500		77	35-120			
Surrogate: Decachlorobiphenyl	0.442			ug/t	0.500		88	45-120			

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID: Annual Outfall 006	
300 North Lake Avenue, Suite 1200		Sampled: $02 / 18 / 05$
Pasadena, CA 91101	Report Number: 1 IOB1559	Received: 02/18/05
Attention: Bronwyn Kelly		

METHOD BLANKIQC DATA

TOTAL PCBS (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5B22041. Extracted: 02/22/05											
Blank Analyzed: 02/23/2005 (5822041-BLK1)											
Aroclor 1016	ND	1.0	0.20	ug/l							
Aroclor 1221	ND	1.0	0.10	ug/l							
Aroclor 1232	ND	1.0	0.15	ug/							
Aroclor 1242	ND	1.0	0.15	ug/l							
Aroclor 1248	ND	1.0	0.25	ug/l							
Aroclor 1254	ND	1.0	0.25	ug/l							
Aroclor 1260	ND	1.0	0.40	ug/l							
Surrogate: Decachlorobiphenyl	0.340			$u g h$	0.500		68	45-120			
LCS Analyzed: 02/23/2005											M-NR1
Aroclor 1016	2.62	1.0	0.20	ug/l	4.00		66	50-115			
Aroclor 1260	2.49	1.0	0.40	ug/l	4.00		62	60-115			
Surrogate: Decachlorobiphenyl	0.312	-		$u g h$	0.500		62	45-120			
LCS Dup Analyzed: 02/23/2005 (5B22041-BSD2)											
Aroclor 1016	2.91	1.0	0.20	ug/l	4.00		73	50-115	10	30	
Aroclor 1260	2.67	1.0	0.40	ug/	4.00		67	60-115	7	25	
Surrogate: Decachlorobiphenyl	0.418			$u g /$	0.500		84	45-120			

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

```
Project ID: Annual Outfall 006
Report Number: \(10 B 1559\) Sampled: 02/18/05
Report Number: \(10 B 1559 \quad\) Received: 02/18/05
```


METHOD BLANKIOC DATA

METALS

Blank Analyzed: 02/25/2005-02/26/2005 (5B24099-BLK1)

Antimony	ND	2.0	0.18	ug/l
Cadmium	ND	1.0	0.015	ug/l
Copper	ND	2.0	0.49	ug $/$
Lead	ND	1.0	0.13	ug/l
Thallium	ND	1.0	0.075	ug $/ l$

LCS Analyzed: 02/25/2005 (5B24099-BS1)

Antimony	85.6	2.0	0.18	$\mathrm{ug} /$	80.0	107	$85-115$
Cadmium	76.4	1.0	0.015	$\mathrm{ug} / 1$	80.0	96	$85-115$
Copper	84.0	2.0	0.49	ug / l	80.0	105	$85-115$
Lead	80.3	1.0	0.13	$\mathrm{ug} / 1$	80.0	100	$85-115$
Thallium	78.5	1.0	0.075	$\mathrm{ug} / 1$	80.0	98	$85-115$

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 006
Report Number: IOB1559

Sampled: 02/18/05
Received: 02/18/05

METHOD BLANKIOC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5B24099 Extracted: 02/24/05											
Matrix Spike Analyzed: 02/25/2005 (5B24099-MS1)					Source: 1OB1490-01						
Antimony	85.7	2.0	0.18	ug/	80.0	0.50	106	70-130			
Cadmium	75.1	1.0	0.015	ug/	80.0	0.016	94	70-130			
Copper	82.5	2.0	0.49	ug/	80.0	1.0	102	70-130			
Lead	77.6	1.0	0.13	ug/	80.0	ND	97	70-130			
Thallium	76.5	1.0	0.075	ug/	80.0	0.17	95	70-130			
Matrix Spike Analyzed: 02/25/2005 (5B24099-MS2)					Source: 1081557-01						
Antimony	83.8	2.0	0.18	ug/							
Cadmium	74.6	1.0	0.015	ug/	80.0	ND	93	70-130			
Copper	83.9	2.0	0.49	ug/l	80.0	ND	105	70-130			
Lead	77.7	1.0	0.13	ug/	80.0	0.15	97	70-130			
Thallium	76.7	1.0	0.075	ug/l	80.0	0.19	96	70-130			
Matrix Spike Dup Analyzed: $02 / 25 / 2005$ (5324099-MSDI)					Source: 1OB1490-01						
Antimony	85.0	2.0	0.18	ug/	80.0	0.50	106	70-130	1	20	
Cadmium	75.2	1.0	0.015	ug/	80.0	0.016	94	70-130	0	20	
Copper	81.2	2.0	0.49	ugl	80.0	1.0	100	70-130	2	20	
Lead	76.3	1.0	0.13	ug/1	80.0	ND	95	70-130	2	20	
Thallium	75.2	1.0	0.075	ug/	80.0	0.17	94	70-130	2	20	

Batch: 5B28119 Extracted: 02/28/05

Blank Analyzed: 03/01/2005 (5B28119-BLK1)

Aluminum	ND	50	47	ug/l
Arsenic	ND	5.0	3.8	ug/l
Beryllium	ND	2.0	0.62	ug $/$
Boron	0.0302	0.050	0.0074	$\mathrm{mg} /$
Chromium	1.20	5.0	0.68	ug/
Nickel	ND	10	2.0	ug
Selenium	ND	10	4.6	ug $/$
Silver	ND	10	1.3	ug $/ 1$
Vanadium	ND	10	1.4	ug $/ l$
Zinc	ND	20	3.7	ug $/$

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

```
Project ID: Annual Outfall 006
Report Number: IOB1559
Sampled: 02/18/05
Project ID: Annual Outfall 006
Received: 02/18/05
```


METHOD BLANKUC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Oualifier
Batch: 5B28119 Extracted: 02/28/05											

LCS Analyzed: 03/01/2005 (5B28119-BS1)

Aluminum	489	50	47	$\mathrm{ug} /$	500	98	$85-115$
Arsenic	493	5.0	3.8	$\mathrm{ug} /$	500	99	$85-115$
Beryllium	495	2.0	0.62	$\mathrm{ug} / 1$	500	99	$85-115$
Boron	0.512	0.050	0.0074	mg / l	0.500	102	$85-115$
Chromium	488	5.0	0.68	$\mathrm{ug} /$	500	98	$85-115$
Nickel	485	10	2.0	$\mathrm{ug} /$	500	97	$85-115$
Selenium	491	10	4.6	ug / l	500	98	$85-115$
Silver	248	10	1.3	ug / l	250	99	$85-115$
Vanadium	500	10	1.4	ug / l	500	100	$85-115$
Zinc	478	20	3.7	$\mathrm{ug} /$	500	96	$85-115$

Matrix Spike Analyzed: 03/01/2005 (5B28119-MS1)				Source: IOB1933-01				
Aluminum	551	50	47	ug/l	500	56	99	70-130
Arsente	500	5.0	3.8	ugh	500	ND	100	70-130
Beryllium	494	2.0	0.62	ug/l	500	ND	99	70-130
Boron	0.678	0.050	0.0074	mg / l	0.500	0.20	96	70-130
Chromium	488	5.0	0.68	ug/	500	6.8	96	70-130
Nickel	481	10	2.0	$\mathrm{ug} / 1$	500	3.9	95	70-130
Selenium	483	10	4.6	ug/l	500	ND	97	70-130
Silver	252	10	1.3	ug/	250	3.2	100	70-130
Vanadium	507	10	1.4	ug/	500	2.2	101	70-130
Zinc	590	20	3.7	ug/	500	110	96	70-130

Matrix Spike Dup Analyzed: 03/01/2005 (5B28119-MSD1) Source: 1OB1933-01

Aluminum	577	50	47	ug / l	500	56	104	$70-130$	5	20
Arsenic	519	5.0	3.8	ug / l	500	ND	104	$70-130$	4	20
Berylium	513	2.0	0.62	ug / l	500	ND	103	$70-130$	4	20
Boron	0.688	0.050	0.0074	mg / l	0.500	0.20	98	$70-130$	1	20
Chromium	512	5.0	0.68	ug / l	500	6.8	101	$70-130$	5	20
Nickel	501	10	2.0	ug / l	500	3.9	99	$70-130$	4	20
Selenium	502	10	4.6	ug / l	500	ND	100	$70-130$	4	20
Silver	261	10	1.3	ug / l	250	3.2	103	$70-130$	4	20
Vanadium	527	10	1.4	$u g / l$	500	2.2	105	$70-130$	4	20
Zinc	609	20	3.7	$u g / l$	500	110	100	$70-130$	3	20

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID: Annual Outfall 006	
300 North Lake Avenue, Suite 1200		
Pasadena, CA 91101	Report Number: $10 B 1559$	Sampled: 02/18/05
Attention: Bronwyn Kelly		Received: 02/18/05

METHOD BLANKIQC DATA

INORGANICS

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 006
Report Number: IOB1559 Sampled: 02/18/05
Received: 02/18/05

METHOD BLANK/QC DATA

INORGANICS

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 006

Report Number: IOB1559
Sampled: 02/18/05
Received: 02/18/05

METIOD DLANIIOC DATA

INORGANICS

| | | Reporting | | | Spike | Source | \%REC | | RPD | Data | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Analyte | Result | Limit | MDL | Units | Level | Result | \%REC | Limits | RPD | Limit | Qualifiers |

LCS Analyzed: 02/23/2005 (5B23109-BS1)

Total Suspended Solids	991	10	10	mg / l	1000	99	$85-115$
Duplicate Analyzed:	02/23/2005 (5B23109-DUP1)				Source: $\mathbf{\text { IOB1557-01 }}$		
Total Suspended Solids	ND	10	10	mg / l	ND		

Batch: 5B26001 Extracted: 02/26/05
Blank Analyzed: 02/26/2005 (5B26001-BLK1)

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 006
Report Number: IOB1559 Sampled: 02/18/05
Report Number: $10 B 1559$

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
IOB1559-01	413.1 Oil and Grease	Oil \& Grease	mg / l	0.38	5.0	
IOB1559-01	Antimony-200.8	Antimony	ug/1	0.31	5.0 2.0	15 6.00
IOB1559-01	Boron-200.7	Boron	mg / l	0.042	0.050	1.00
1OB1559-01	Cadmium-200.8	Cadmium	ug/1	0.13	0.050 1.0	1.00 4.00
IOB1559-01	Chloride - 300.0	Chloride		0.96	0.0	4.00
1OB1559-01	Copper-200.8	Copper	mg/1	0.96 12	0.50 2.0	150
IOB1559-01	Mercury - 245.1	Mercury	ug/	12 0.079	2.0 0.20	14 0.20
IOB1559-01	Nitrogen, $\mathrm{NO} 3+\mathrm{NO} 2-\mathrm{N}$	Nitrate/Nitrite-N	mg / l	0.079 0.37	0.20	0.20 10.00
IOB1559-01	Perchlorate 314.0	Perchlorate	mg / l	0.37 0	0.11 4.0	10.00
IOB1559-01	Sulfate-300.0	Sulfate	$\mathrm{mg} / 1$	0.60	4.0 0.50	6.00 250
IOB1559-01	TDS - SM 2540 C	Total Dissolved Solids	$\mathrm{mg} / 1$	110	0.50 10	250
IOB1559-01	Thallium-200.8	Thallium	ug/l	110 0.13	10 1.0	850 2.00

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper
Project Manager

Received: 02/18/05

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

```
            Project ID: Annual Outfall 006
Report Number: IOB1559 Sampled: 02/18/05
Report Number: IOB1559 Received: 02/18/05
```


DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the
L2 Laboratory Control Sample recovery was below data should be aware that this data is of unknown quality.
M-NR1
M-NRI There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike
Duplicate.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

ADDITIONAL COMMENTS

For 1,2-Diphenylhydrazine:

The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly	Project ID: Annual Outfall 006

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
EPA 160.2	Water	\mathbf{X}	\mathbf{X}
EPA 200.7	Water	\mathbf{X}	\mathbf{X}
EPA 200.8	Water	\mathbf{X}	\mathbf{X}
EPA 245.1	Water	\mathbf{X}	\mathbf{X}
EPA 300.0	Water	\mathbf{X}	\mathbf{X}
EPA 314.0	Water	\mathbf{X}	\mathbf{X}
EPA 335.2	Water	\mathbf{X}	\mathbf{X}
EPA 413.1	Water	\mathbf{X}	\mathbf{X}
EPA 608	Water	\mathbf{X}	\mathbf{X}
EPA 624	Water	\mathbf{X}	\mathbf{X}
EPA 625	Water	\mathbf{X}	\mathbf{X}
SM2540C	Water	\mathbf{X}	\mathbf{X}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical California Cert \#1640
1104 Windfield Way - El Dorado Hills, CA 95762
Analysis Performed: \quad 1613-Dioxin-HR
Samples: $10 B 1559-01$
Analysis Performed: EDD + Level 4
Samples: IOB1559-01
Aquatic Testing Laboratories-SUB California Cert \#1775
4350 Transport Street, Unit 107 - Ventura, CA 93003
Analysis Performed: Bioassay-Acute 96 hr
Samples: IOB1559-01
Eberline Services - SUB
2030 Wright Avenue - Richmond, CA 94804
Analysis Performed: EDD + Level 4
Samples: 1OB1559-01
Analysis Performed: Gross Alpha
Samples: 1OB1559-01
Analysis Performed: Gross Beta
Samples: 1OB1559-01
Analysis Performed: Radium, Combined
Samples: 1OB1559-01
Analysis Performed: Strontium 90
Samples: 1OB1559-01
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
Eberline Services - SUB
2030 Wright Avenue - Richmond, CA 94804

Project ID: Annual Outfall 006
$\begin{array}{lr} & \begin{array}{l}\text { Sampled: } \\ \text { Report Number: } \\ \text { 02/18/05 }\end{array} \\ \text { Received: } 02 / 18 / 05\end{array}$

Analysis Performed: Tritium
Samples: 1OB1559-01

April 1,2005

MWH-Pasadena/ Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention: Bronwyn Kelly
Project: Annual Outfall 006
Sampled: 02/18/05
Del Mar Analytical Number: IOB1559

Dear Ms. Kelly:
Alta Analytical Laboratory performed EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans, Aquatic Testing Laboratories tested the Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0) and Eberline Services performed gross alpha/gross beta (EPA 900.0), tritium (H-3, EPA 906.0), and strontium90 (Sr-90, EPA 905.0) for the project referenced above. Please use the following cross-reference table when reviewing your results.

MWH DD	DEL MAR ID	ALTA ID	AQUATIC ID	EBERLINE ID
Outfall 006	IOB1559-01	$25784-001$	A-0502906-001	R502212-8291

Attached are the original reports from the subcontract laboratories. If you have any questions or require further assistance, please do not hesitate to contact me at (949) 261-1022 at extension 215.

Sincerely yours,
DEL MAR ANALYTICAL

MINCll HM

Michele Harper
Project Manager

March 01, 2005
Alta Project I.D.: 25784
Ms. Michele Harper
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614

Dear Ms. Harper,

Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on February 24, 2005 under your Project Name "IOB1559". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

Alta Analytical Laboratory Inc.

Section I: Sample Inventory Report Date Received: 2/24/2005

Alta Lab. ID
25784-001

Client Sample ID
IOB1559-01

SECTION II

OPR Results						EPA Method 1613		
Matrix: Aqueous Sample Size: 1.000 L		QC Batch No.: Date Extracted:	$\begin{aligned} & 6543 \\ & 25-\mathrm{Feb}-05 \end{aligned}$	Lab Sample: 0-OPR001 Date Analyzed DB-5: 28-Feb-05		Date Analyzed DB-225:		NA
Analyte	Spike Conc. Conc. (ng/mL)		OPR Limits	Labeled Standard		\%R	LCL-U	
2,3,7,8-TCDD	10.0	8.67	$\begin{gathered} 6.7-15.8 \\ 35-71 \end{gathered}$	IS	13C-2,3,7,8-TCDD	67.4		
1,2,3,7,8-PeCDD	50.0	43.8				67.4	$25-164$	
1,2,3,4,7,8-HxCDD	50.0	42.5	$35-71$ $\because 35-82$	13C-1,2,3,7,8-PeCDD		64.0 58.2	25-181	
1,2,3,6,7,8-HxCDD	50.0	43.5	38-67	13C-1,2,3,4,7,8-HxCDD		58.2	32-141	
1,2,3,7,8,9-HxCDD	50.0	43.7	32-81	13C-1,2,3,6,7,8-HxCDD			$28-130$ $23-140$	
1,2,3,4,6,7,8-HpCDD	50.0	42.5	35-70	13C-1,2,3,4,6,7,8HpCDD		57.2 51.4	$23-140$	
OCDD	100	87.0	78-144	13C-OCDD		51.4 72.5	$17-157$ $24-169$	
2,3,7,8-TCDF	10.0	7.98	7.5-15.8	13C-2,3,7,8-TCDF		72.5 59.4	$24-185$	
1,2,3,7,8-PeCDF	50.0	41.4	40-67	13C-2,3,4,7,8-PeCDF			$24-185$	
2,3,4,7,8-PeCDF	50.0	42.3	34-80			64.8 49.4	$\begin{array}{r} 21 \\ 26-178 \\ 26-152 \end{array}$	
1,2,3,4,7,8-HxCDF	50.0	42.0	36-67	13C-1,2,3,6,7,8-HxCDF		49.4 52.7	$26-123$	
1,2,3,6,7,8-HxCDF	50.0	43.0	42-65			52.7	$28-136$	
2,3,4,6,7,8-HxCDF	50.0	42.3	35-78	13C-1,2,3,7,8,9-HxCDF		53.2	$29-147$	
1,2,3,7,8,9-HxCDF	50.0	43.5	39-65	13C-1,2,3,4,6,7,8-HpCDF			29-147	
1,2,3,4,6,7,8-HpCDF	50.0	41.8	41-61			45.6	28-143	
1,2,3,4,7,8,9-HpCDF	50.0	42.7		13C-1,2,3,4,7,8,9-HpCDF		49.6	26-138	
OCDF	100		39-69	13C-OCDF		49.0	17-157	
	100	88.8	63-170	CRS 37Cl-2,3,7,8-TCDD		76.2	35-197	

[^11]APPENDIX

DATA QUALIFIERS \& ABBREVIATIONS

B	This compound was also detected in the method blank.
D	The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.
H	The signal-to-noise ratio is greater than 10:1.
I	Chemical Interference
J	The amount detected is below the Lower Calibration Limit of the instrument. See Cover Letter
Conc.	Concentration
DL	Sample-specific estimated detection limit
MDL	The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.
EMPC	Estimated Maximum Possible Concentration
NA	Not applicable
RL	Reporting Limit - concentrations that corresponds to low calibration point
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

The control limits are "interim limits only" until in-house limits are utilized.

NELAP - (Primary AA: California, Certificate No. 02102CA)
Department of the Navy
U.S. Army Corps of Engineers
U.S. EPA Region 5

Bureau of Reclamation - Mid-Pacific Region - (MP-470, Res-1.10)
Commonwealth of Kentucky - (Certificate No. 90063)
Commonwealth of Virginia - (Certificate No. 00013)
State of Alaska, Department of Environmental Conservation - (Certificate No. OS-00197)
State of Arizona - (Certificate No. AZ0639)
State of Arkansas, Department of Health - (Approval granted through CA certification)
State of Arkansas, Department of Environmental Quality
State of California - (Certificate No. 1640)
State of Colorado
State of Connecticut - (Certificate No. PH-0182)
State of Florida - (Certificate No. 87456)
State of Louisiana, Department of Health and Hospitals - (Certificate No. LA000014)
State of Louisiana, Department of Environmental Quality
State of Maine
State of Michigan (Certificate No. 81178087)
State of Mississippi - (Approval granted through CA certification)
State of Nevada - (Certificate No.CA413)
State of New Jersey - (Certificate No. CA003)
State of New York, Department of Health - (Certificate No. 11411)
State of North Carolina - (Certification No. 06700)
State of North Dakota, Department of Health - (Certificate No. R-078)
State of New Mexico
State of Oklahoma - (D9919)
State of Oregon - (Certificate No. CA413)
State of Pennsylvania - (Certificate No. 68-490)
State of South Carolina - (Certificate No. 87002001)
State of Tennessee - (Certificate No. 02996)
State of Texas - (Certificate No. TX247-1000A
State of Utah - (Certificate No. E-201)
State of Washington - (Certification No. C091)
State of Wisconsin - (Certificate No. 998036160)
State of Wyoming - (USEPA Region 8 Ref: 8TMS-Q)

SUBCONTRACT ORDER - PROJECT \# IOB1559

SAMPLE LOG-IN CHECKLIST

ALTA Project No.: 25784

camplisis

ALTA Analytical Laboratory El Dorado Hills, CA 95762

LABORATORY REPORT

Date:
Client:

February 23, 2005
Del Mar Analytical, Irvine 17461 Derian Avenue, Suite 100 Irvine, CA 92614 Attn: Michele Harper

Aquatic
Testing

4350 Transport Street, Unit 107 Ventura, CA 93003
(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.: A-05021906-001
Sample ID.: IOB1559-01

FATHEAD MINNOW PERCENT SURVIVAL TEST

Lab No.: A-05021906-001
Client/ID: Del Mar 1OB1559-01
TEST SUMMARY
Species: Pimephales promelas.
Age: 12 (1-14) days.
Regulations: NPDES.
Test solution volume: 250 ml .
Feeding: prior to renewal at $\mathbf{4 8} \mathrm{hrs}$.
Number of replicates: 2.
Dilution water: Moderately hard reconstituted water.
Photoperiod: $16 / 8$ hrs light/dark.

Start Date: 02/19/2005

Source: In-laboratory Culture.
Test type: Static-Renewal.
Test Protocol: EPA-821-R-02-012.
Endpoints: Percent Survival at 96 hrs.
Test chamber: $\mathbf{6 0 0} \mathrm{ml}$ beakers.
Temperature: $20+/-1^{\circ} \mathrm{C}$.
Number of fish per chamber: 10.
QA/QC Batch No.: RT-050208.

		TEST DATA						
		${ }^{\circ} \mathrm{C}$	DO	pH	\# Dead		Analyst \& Time of Readings	
		A			B			
InITIAL	Control		20.0	8.8	2.9	0	0	e_{1330}
	100\%	20.0	9.7	6.9	0	0		
24 Hr	Control	19.3	≥ 0	2.5	0	0	$\frac{8}{1330}$	
	100\%	19.4	6.7	7.3	C	0		
48 Hr	Control	19.4	4.8	2.7	0	0	$\frac{8}{13 a}$	
	100\%	19.2	S.S	2.1	c	0		
Renewal	Control	15.4	2.7	8.0	a	0	130	
	100\%	19.7	8.2	7.3	0	0		
72 Hr	Control	19.1	10.8	7.6	0	0	e_{1200}^{e}	
	100\%	19.0	2.5	7.3	0	0		
96 Hr	Control	19.2	2.5	7.5	0	0	Pn	
	100\%	14.1	7.9	7.1	0	0	1200	

Comments:
Sample as received: Chlorine: $0 \mathrm{mg} / 1 ; \mathrm{pH}: 6.9$; Conductivity: 93 umho; Temp: $4^{\circ} \mathrm{C}$;
DO: $9.2 \mathrm{mg} / \mathrm{l}$; Alkalinity: $41 \mathrm{mg} /$; Hardness: $5 \mathrm{O} \mathrm{mg} / ; \mathrm{NH}_{3}-\mathrm{N}: 0.4 \mathrm{mg} / \mathrm{l}$.
Sample aerated moderately (approx. $500 \mathrm{ml} / \mathrm{min}$) to raise or lower DO? Yes / Jd
Control: Alkalinity: $54 \mathrm{mg} / \mathrm{l}$; Hardness: $92 \mathrm{mg} /$; Conductivity: 240 umho.
Test solution aerated (not to exceed 100 bubbles $/ \mathrm{min}$) to maintain DO $>4.0 \mathrm{mg} / \mathrm{l}$ Yes $/ \mathrm{Td}$.
Sample used for renewal is the original sample kept at $0-6^{\circ} \mathrm{C}$ with minimal headspace.

RESULTS

Percent Survival In: Control: $\quad 100 \%$ 100\% Sample: $\quad 100 \%$

SUBCONTRACT ORDER - PROJECT \# IOB1559

March 15, 2005

Ms. Michele Harper
Project Manager
Del Mar Analytical
17461 Derian Avenue, Suite 100
Irvinc. CA 92614
Reference: Del Mar Analytical Project No. IOB1559
Eberline Services NELAP Cert \#01120CA (exp. 01/31/06)
Eberline Services Report R502212-8291
Dear Ms. Harper:
Enclosed are results from the analyses of one water sample received at Eberline Services on February 23, 2005. The sample was analyzed according to the accompanying Del Mar Analytical Subcontract Order Form. The requested analyses were gross alpha/gross beta (EPA900.0), tritium (H-3, EPA906.0), and strontium-90 (Sr-90, EPA905.0). The QC LCS, blank analyses, sample duplicates, and matrix spike results for the analyses were within the limits detined in Eberline Services Quality Control Procedures Manual. Analyses that involve the yielding of an analytical tracer or carrier, such as $\mathrm{Sr}-90$, do not require matrix spike analyses to be performed.

Please call me if you have any questions concerning this report.
Regards,
mee Mam
Melissa Mannion
Senior Program Manager
$M C M / n j v$
Enclosure: Report
Suhcontract Form
Receipt checklist
Invoice

Eberline Services
ANALYSIS RESULTS
SDG 8291
Work Order R502212-01
Client DEL MAR ANAL
Contract PROJECT\# 1081559
Received Date 02/23/05
Matrix MATER

Client Sample 10	Lab Samole 10						
		collected	Analyzed	Nuclide	Results ± 20	Units	MDA
1081559-01	8291-001	02/18/05	03/08/05	GrossAlpha	3.92 ± 1.5	pCi/L	1.34
			03/08/05	Gross Beta	9.00 ± 1.6	pCi/L	1.82
			03/12/05	H3	14.2 ± 150	pCi/L	259
			03/12/05	Sr90	-0.081 ± 0.29	pCi/L	0.335

Eberline Services

QC RESULTS

$\begin{gathered} \text { Lab } \\ \text { Sample ID } \\ \hline \end{gathered}$	Nuclide	Results	Units	Amount Added	MDA	Evaluation
LCS						
8294-003	GrossAlpha	10.9 ± 1.2	$\mathrm{pCi} / \mathrm{Smpl}$	10.2	0.313	107\% recovery
	Gross Beta	9.49 ± 0.74	$\mathrm{pCi} / \mathrm{Smpl}$	10.1	0.546	94\% recovery
	H3	214 ± 23	pCi/Smpl	235	25.4	91\% recovery
	Sr90	9.75 ± 0.32	pCi/Smpl	10.1	0.145	97\% recovery

BLANK

8294-004

GrossAlpha	-0.034	± 0.23	$\mathrm{pCi} / \mathrm{Smpl}$	NA	0.415	<MDA
Gross Beta	-0.236	± 0.29	$\mathrm{pCi} / \mathrm{Smpl}$	NA	0.551	<MDA
$\mathrm{H3}$	9.66	± 15	$\mathrm{pCi} / \mathrm{Smpl}$	NA	25.1	<MDA
Sr 90	-0.064	± 0.098	$\mathrm{pCi} / \mathrm{Smpl}$	NA	0.140	<MDA

DUPLICATES				originals				
Sample ID	Nuclide	Results ± 20	MDA	Sample ID	Results $\pm 2 \sigma$	MDA		3σ
8294-005	GrossAlpha	0.399 ± 0.53	0.874	8294-001	0.904 ± 0.74	$\frac{1.00}{1.00}$	RPD	0 satis.
	Gross Beta	2.91 ± 1.2	1.78		3.32 ± 1.2	1.79	13	88 satis.
	H3	76.8 ± 150	254		-41.9 ± 150	254	-	0 satis.
	Sr90	0.884 ± 0.24	0.281		0.901 ± 0.24	0.280	2	61 satis.

SPIKED SAMPLE				ORIGINAL SAMPLE			Added	\%Recv
Sample 10	Nuclide	Results $\pm 2 \sigma$	MDA	Sample 10	Results $\pm 2 \sigma$	MDA		
8294-006	GrossAlpha	86.0 ± 5.3	0.881	8294-002	1.42 ± 0.93	1.19	71.5	118
	Gross Beta	72.1 ± 3.5	1.79		3.75 ± 1.2	1.78	67.2	102
	H3	22300 ± 580	252		-77.0 ± 140	255	23600	95

Certified by \quad Report Date $03 / 15 / 05$
Page 2
 1014 E. Coovey Dr., Suite A, Coliton, CA 82302 9484 Chempeate Drive, Sulte 805, Smin Diega, CA 92123 9830 South 5ist Straet, Sulte B-120. Phoenic. AZ 85044

SUBCONTRACT ORDER - PROJECT \# IOB1559

SENDING LABORATORY: Del Mar Analytical, Irvine 17461 Derian Avenue. Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 261-1228 Project Manager: Michele Harper	Eberline Services 2030 Wright Avenue Richmond, CA 94804 Phone :(510) 235-2633 Fax: (510) 235-0438
Analysis Expiration	Comments
Sample 1D: IOB1559-01 Water Sampled: 02/18/05 09:00	Instant Noffcation
EDD + Level 4 - 03/18/05 09:00	
Gross Alpha-O 02/18/06 09:00	900.0, IF RESULT>15 pCi/L, run Radium 226 \& 228
Gross Beta-O 02/18/06 09:00	900.0, IF RESULT $>50 \mathrm{pCi} / \mathrm{L}$, run Radium 226 \& 228
$\begin{array}{ll}\text { Radium, Combined-O } & 02 / 18 / 0609: 00 \\ \text { Strontium 90-0 } & 02 / 18 / 0609: 00\end{array}$	HOLD for Gross A\&B results; EPA 903.1 \& 904.0
Strontium 90-0 02/18/06 09:00	EPA 905.0 (9
Tritium-O 02/18/06 09:00.	EPA 906.0
Containers Supplied:	
1 gal Poly (1OB1559-01S) $\mathrm{W} / \mathrm{HOO}_{2}$	
40 ml Voa Vial (1OB1559-01T)	

BEFLINE

SAMPLE FECTIFT CHECXLUTT
ciumt IEL MAR ANALYT Catr IRVIVE _ stran CA Drra/tume reaived $2 / 23 / 0510: 00 \mathrm{CoC} \mathrm{Na}$. IOB 1559

11. Sampies are: in goud eandition [1 Leaking $[1$ Eraken Comzainar [] Missing i 1

13. Desuribe any anomailes:
14. Was F.M. nutifiec of any anomalies?
15. inapacted by fe

Custamar Sampie

Ion Chamber Ser. Na. \qquad

Beta/Garnma Merer Ser. No. \qquad
Customar Sample
 -

Alpha Merer Sar. No.

APPENDIX G

Section 21

February Outfall 007

AMEC Data Validation Reports

Del Mar Analytical Laboratory Reports

amec ${ }^{\theta}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: DIOXINS/FURANS SAMPLE DELIVERY GROUPS: Multiple SDGs

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple
VALIDATON Report	Analysis:	D/F

1. INTRODUCTION

Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple SDGs
Project Manager: B. McIlvaine
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 13
No. of Reanalyses/Dilutions: 0
Reviewer: H. Chang
Date of Review: March 18, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:
DATA VALIDATION REPORT	NPDES
	SDG No.:
Multiple	
Analysis:	D/F

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Alta AP)	Matrix	COC Method
Outfall 001	IOB0980-01	P5072_2989_007	water	1613 B
Outfall 002	IOB0981-01	P5072_2989_013	water	1613 B
Outfall 003	IOB0988-01	P5072_2989_012	water	1613 B
Outfall 004	IOB1002-01	P5072_2989_009	water	1613 B
Outfall 005	IOB0990-01	P5072_2989_006	water	1613 B
Outfall 006	IOB0992-01	P5072_2989_010	water	1613 B
Outfall 007	IOB0993-01	P5072_2989_002	water	1613 B
Outfall 008	IOB0997-01	P5072_2989_004	water	1613 B
Outfall 009	IOB0996-01	P5072_2989_003	water	1613 B
Outfall 010	IOB1001-01	P5072_2989_001	water	1613 B
Outfall 011 Composite	IOB1004-01	P5072_2989_011	water	1613 B
Outfall 011	IOB1014-01	P5072_2989_005	water	1613 B
Outfall 018	IOB1008-01	P5072_2989_008	water	1613 B

	Project:
DATA VALIDATION REPORT	NPDES
SDG No.:	Multiple

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

All of the samples in these SDGs were received at Del Mar Analytical within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ except sample Outfall 009 which was at $8^{\circ} \mathrm{C}$. Due to non-volatile nature of the analytes, no qualifications were necessary for the elevated cooler temperature. The samples were received at Pace Analytical with cooler temperatures of $1.6^{\circ} \mathrm{C}, 2.3^{\circ} \mathrm{C}$, and $3^{\circ} \mathrm{C}$. The samples were received at Alta Analytical Perspectives with cooler temperatures of $1^{\circ} \mathrm{C}$ and $3^{\circ} \mathrm{C}$. According to the laboratory login sheets, all samples were received intact and in good condition at Del Mar and Alta AP. No sample conditions were available for review for the sample receipt at Pace. No qualifications were required.

2.1.2 Chain of Custody

It appears that the samples were initially sent from Del Mar Analytical to Pace Analytical then subsequently shipped to Alta Analytical Perspectives. The COCs from the field to Del Mar, Del Mar to Pace, and Pace to Alta were available for review. The COCs were legible and signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. The custody seals were not present on the coolers upon receipt at either Del Mar or Alta. No custody seal information was available for Pace. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A Column Performance Check Standard (CPSM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed prior to initial calibration analysis. A separate CPSM was not analyzed for daily analytical sequence; instead, CPSM compounds were added to OPR analysis. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and $2,3,7,8$-TCDD reported as less than 25%. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple
	Analysis:	D/F

2.3 CALIBRATION

2.3.1 Initial Calibration

There was one initial calibrations, analyzed 08/12/04. The calibrations each consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with \%RSDs $\leq 20 \%$ for the native compounds and $\leq 35 \%$ for the labeled compounds. The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.4 BLANKS

One method blank (0_2989_MB001) was extracted and analyzed with the samples in these SDGs. There were no detects reported in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One Ongoing Precision Recovery (OPR) sample (0_2989_OPR001) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of the Method 1613. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

2.7.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

	Project: DATA VALIDATION REPORT	NPDES SDG No.: Multiple
2.7.2 Field Duplicates	Analysis:	
D/F		

No field duplicate samples were identified for these SDGs.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data. The laboratory reported total PeCDFs detects in samples Outfall 005 , Outfall 006, Oufall 007 , and Outfall 011 . The reviewer deemed the signals used to be below the signal-to-noise ratio of 2.5 and the results were changed to nondetects. A false negative for total HxCDD was noted in sample Outfall 001 and was changed to a detect. No further qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the lower method calibration level (MCL) were qualified as estimated, "J." The laboratory did not flag OCDD in samples Outfall 002 and Outfall 003 although the reported concentrations were below the lower MCL. OCDD in these samples was qualified as estimated, "J." The laboratory did not notate detects below the lower MCL for totals. These totals were qualified as estimated, "J." The "DNQ" qualification code was applied only if all components of the totals were below the lower MCL.

The laboratory indicated that one of the non-2,3,7,8 substituted HxCDD detect, present in majority of the samples, was due to recovery standard ($13 \mathrm{C}-1,2,3,4,6,7-\mathrm{HxCDD}$) contribution. This compound was also present in the method blank. This compound was not included in the total HxCDD concentration. Several total HxCDD results could not be reproduced from the raw data by the reviewer and were hand-corrected on the Form I. No further qualifications were required.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
\quad Laboratory Del Mar Analytical
\quad Reviewer L. Jarusewic
Analysis/Method Metals

Package ID T711MT52
Task Order 313150010/313150012
SDG No. IOB0993/IOB0996
No. of Analyses 2

ACTION ITEMS*

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from

Analysis Protocol, e.g.,
Holding Times
GC/MS Tune/Inst.

Qualifications were applied for:

1) Detects below the reporting limit
2) Reporting limit check standards low recoveries
3) Change of reporting limit and sample result by reviewer

Performance
Calibrations
Blanks
Surrogates
Matrix SpikeDup LCS
Field QC
Internal Standard
Performance
Compound Identification and Quantitation
System Performance
\qquad
\qquad
\square
\square
\longrightarrow
\qquad \longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad
COMMENTS ${ }^{\text {b }}$

[^12]
amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: METALS
SAMPLE DELIVERY GROUPS: IOB0993 \& IOB0996

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOB0993/IOB0996
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Metals
QC Level: Level IV
No. of Samples: 2
No. of Reanalyses/Dilutions:
Reviewer: L. Jarusewic
Date of Review: March 23, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, SW-846 Method 6010B for Inductively Coupled Plasma, SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Forn Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 007	Outfall 007	IOB0993-01	Water	ILM04
Outfall 009	Outfall 009	IOB0996-01	Water	ILM04

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOB0993/IOB0996

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

Sample Outfall 007 was received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ and sample Outfall 009 was received above the temperature limits at $8^{\circ} \mathrm{C}$; however, as the sample had insufficient time to cool in transit to the laboratory, no qualifications were required. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel. The COCs accounted for all samples and analyses presented in these SDGs. No sample qualifications were required.

2.1.3 Holding Times

The dates of collection recorded on the COCs and the dates of analysis recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP and ICP/MS metals and 28 days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. The laboratory performed the required tune solution analyses. The \%RSDs for the tune were all within the 5% control limit. The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, $90-110 \%$ for the ICP and ICP/MS and 80 120% for mercury. The ICP reporting limit check standard for silver was recovered below the control limits at 48%; therefore, nondetected silver in samples Outfall 007 and Outfall 009 was qualified as estimated, "UJ." The remaining reporting limit check standards were recovered within the AMEC control limits of $70-130 \%$. No further qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDGNo.:	IOB0993/IOB0996

2.4 BLANKS

There were detects and negative results reported for the method blanks and bracketing CCBs associated with the samples in these SDGs; however, the blank results were insufficient to qualify either sample. No qualifications were required due to the method and calibration blank results.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

Results were not provided for the ICP/MS spiked interferents phosphorus, sulfur, carbon, chloride, and titanium. The reviewer noted that positive results for cadmium and copper above the reporting limit were reported in the ICSA analyses. The results for potassium and sodium were above the calibration range of the instrument in both the ICSA and ICSAB analyses. The results for aluminum exceeded the calibration range of the instrument in the ICSA analysis and were low with a recovery of 78.3% in the ICSAB analysis; however, as aluminum was not reported from the ICP/MS, no qualifications were required. Antimony and lead were not spiked into the ICSAB solution; therefore, the ICSAB recoveries could not be assessed. The validator reviewed the raw data for the site sample ICS/MS analyses for the level of reported interferents, $\mathrm{Al}, \mathrm{Ca}, \mathrm{Fe}$, and Mg , and determined that the concentration of interferents was not high enough to cause matrix effects. No assessment could be made with respect to possible interference from phosphorus, sulfur, carbon, chloride, and titanium. No qualifications were required.

The ICSA/AB analyses were not run on the same day as the site samples except for selenium in sample Outfall 007. The recoveries for the interferents and spiked analytes were within the control limits of $80-120 \%$ for the ICP analyses. Detects for zinc and negative results for chromium that were greater than the applicable reporting limits were reported in the ICSA analyses; however, the validator reviewed the raw data for the site sample ICP analysis for the level of reported interferents, $\mathrm{Al}, \mathrm{Ca}, \mathrm{Fe}$, and Mg , and determined that the concentration of interferents was not high enough to cause matrix affects. No sample qualifications were required due to the ICP ICS analysis.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP LCS sample was identified as 5B17097-BSI and the ICP/MS LCS sample was identified as 5B17099-BS1. The mercury LCS sample was identified as 5B15070-BS1. The LCS results on the summary forms and in the raw data were within the laboratory-established ICP, ICP/MS, and mercury control limits of $85-115 \%$. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MS/MSD or duplicate analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOB0993/IOB0996

2.8 MATRIX SPIKE

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on LCS results.

2.9 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

2.10 ICP/MS SERIAL DILUTION

No serial dilution analysis was performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

2.11 INTERNAL STANDARDS PERFORMANCE

The ICP and ICP/MS internal standard recoveries for the site samples and associated QC sample analyses were within the $60-125 \%$ control limits except for scandium; however, scandium was not associated with the site samples and no qualifications were required.

2.12 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit were qualified as estimated, "J." A negative value greater than the reporting limit for selenium was reported at $-0.0088 \mathrm{mg} / \mathrm{L}$ for sample Outfall 007, indicating the ICP/MS could not effectively detect selenium at the level reported; therefore, the reviewer raised the reporting limit and the MDL for selenium to the level of interference for Outfall 007. No further qualifications were required.

2.13 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.13.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOB0993/IOB0996

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site samples.

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101 Attention: Bronwyn Kelly

Project ID: Annual Outfall 007
Report Number: IOB0993

Sampled: 0211/05
Received: 02/11/05

DRAFT: METALS

Analyte
Method
$\begin{array}{llll} & \text { Mat } & \text { Reporting } & \begin{array}{l}\text { Sample } \\ \text { Limit } \\ \text { Limit }\end{array}\end{array} \begin{aligned} & \text { Desult }\end{aligned}$ FactorExtracted
Date Data
Sample ID: 1OB0993-01 (DRAFT: Outfall 007 - Water) - cont. Reporting Units: mg/l
Arsenic
Beryllium
Chromium
Nicke!
Selenium
Silver
Zinc

EPA 200.7	$5 B 17097$	0.0038	0.0050	ND	1	$02 / 17 / 05$	$02.17 / 05$	U
EPA 200.7	$5 B 17097$	0.00062	0.0020	ND	1	$02 / 17 / 05$	$02 / 17 / 05$	\downarrow
EPA 200.7	$5 B 17097$	0.00068	0.0050	0.0073	1	$02 / 17 / 05$	$02 / 17 / 05$	
EPA 200.7	$5 B 17097$	0.0020	0.010	0.0055	1	$02 / 17 / 05$	$02 / 17 / 05$	J
EPA 200.7	$5 B 17097$	0.00450 .00	50050	009 SD	1	$02 / 17 / 05$	$02 / 22 / 05$	U
EPA 200.7	$5 B 17097$	0.0013	0.010	ND	1	$02 / 17 / 05$	$02 / 17 / 05$	UJ
EPA 200.7	$5 B 17097$	0.0037	0.020	0.038	1	$02 / 17 / 05$	$02 / 17 / 05$	

AMEC VALIDATLU

LEVEL IV

2. Del Mar Analytical

MWH-Pasaderia/Boeing	Project ID: Annual Outfall 007	
300 North Lake Avenue, Suite 1200		Sampled: 02/1105
Pasadena, CA. 91101	Report Number: IOB0993	Received: 02/11/05
Attention: Bronwyn Kelly		Received: 02/1105

DRAFT: METALS

MDL Reporting Sample Dilution Date Date Data
Analyte Method Batch Limit Limit Result FactorExtracted Analyzed Qualifiers

Sample ID: 1OB0993-01 (DRAFT: Outfall 007 - Water) - cont. Reporting Units: ug $/$

Aluminum	EPA 200.7	$5 B 17697$	47	50	5300	1	$02 / 17 / 05$	$02 / 17 / 05$
Lead	EPA 200.8	$5 B 17099$	0.13	1.0	4.4	1	$02 / 17 / 05$	$02 / 17 / 05$
Vanadium	EPA 200.7	$5 B 17097$	1.4	10	14	1	$02 / 17 / 05$	$02 / 17 / 05$

AMEC VAliUmias

LEVEL IV

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

 AMEC Earth \& Environmental 550 South Wadsworth Boulevard Suite 500Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer K. Shadowlight
Package ID T711PP16
Task Order 313150010
SDG No. IOB0993, IOB996
No. of Analyses 2

Date March 23,2005
Reviewer's Sjnature
Anshadn

ACTION ITEMS ${ }^{*}$

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy Deliverables
6. Deviations from Analysis Protocol, eg.
Holding Times
GC/MS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and
Quantitation
System Performance
COMMENTS ${ }^{b}$
Acceptable as reviewed.

[^13]
$a m e c^{\theta}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: PESTICIDES/PCBs

SAMPLE DELIVERY GROUP: IOB0993, IOB0996

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOB0993, IOB0996
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Pesticides/PCBs
QC Level: Level IV
No. of Samples: 2
No. of Reanalyses/Dilutions: 0
Reviewer: K. Shadowlight
Date of Review: March 23, 2005

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedures (DVP-4, Rev.2), EPA Method 608, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary form as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	Method
Outfall 007	Outfall 007	IOB0993-01	water	608
Outfall 009	Outfall 009	IOB0996-01	water	608

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The cooler for sample Outfall 009 was received above the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$, at $8^{\circ} \mathrm{C}$; however, the sample was transported directly to the laboratory and had not completely cooled in transit. The cooler for sample Outfall 007 was received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The analysis did not require preservation, and no preservation was noted in the field. The COCs noted that the samples were received intact. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by both field and laboratory personnel. The COCs accounted for the analyses presented in these SDGs. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The water samples were extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

2.2 PESTICIDES INSTRUMENT PERFORMANCE

No resolution check standards or breakdown check standards are required by Method 608 for pesticides, and according to the raw data provided, a resolution check standard was not analyzed by the laboratory. The laboratory did analyze a breakdown check standard with a breakdown of $\leq 20 \%$ for individual components (4,4-DDT and endrin) and $\leq 30 \%$ for the total, as suggested in the National Functional Guidelines. A review of the raw data indicated that the analytical run time was of sufficient length to provide adequate standard separation. The two analytical columns used in the analyses were within the guidelines specified in the methods.

According to the laboratory SOP and the initial calibration raw data, the retention time windows are ± 0.10 minutes for both surrogates and target compound calibration standards. A review of the raw data indicated that the laboratory retention time criteria were met for the surrogates and pesticide calibration standards. No qualifications were required.

2.3 CALIBRATION

2.3.1 Analytical Sequence

Based on the data provided, the analytical sequences were in accordance with the requirements of Method 608. No qualifications were required.

DATA VALIDATION REPORT	Project: SDG:IOB0993, NPDES
Analysis:	Pest/PCB

2.3.2 Initial Calibration

There was one initial calibration dated 02/15/05 associated with the pesticide analyses of the samples, which consisted of six point calibrations for all pesticide target compounds on two analytical columns. The \%RSDs were within the EPA Method 608 QC limit of $\leq 10 \%$ or the r^{2} values were ≥ 0.995 on both analytical columns. There was one initial calibration dated 02/11/05 associated with the PCB analyses of samples Outfall 007 and Outfall 009 , consisting of five points for Aroclor 1016 and Aroclor 1260. Single point calibrations for Aroclor 1242 were also analyzed. The average \%RSDs for the individual peaks of Aroclor 1016 and Aroclor 1260 were $\leq 10 \%$ or the r^{2} values were ≥ 0.995 on both analytical columns. An ICV was analyzed immediately following each of the initial calibrations. The \%Ds for all target compounds were within the QC limits of 15% on both analytical columns. A representative number of \%RSDs and ICV \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No further qualifications were required.

2.3.3 Continuing Calibration

The pesticide analyses for samples Outfall 007 and Outfall 009 were bracketed by four continuing calibrations, two preceding and two following the analyses. The \%Ds for target compound $4,4^{\prime}$-DDD (02/16/05 at 08:59) and for delta-BHC, aldrin, and 4,4'-DDT (02/16/05 at $09: 28$) exceeded 15% on Channel B. The \%Ds for numerous target compounds exceeded 15% on Channel A in the bracketing calibration standard analyzed 02/16/05 (08:59 and 09:28); however, as all results for these samples were reported from channel B, only the nondetect results for the aforementioned \%D outliers were qualified as estimated, "UJ," in samples Outfall 007 and Outfall 009 . The remaining $\%$ Ds were within the Method QC limit of $\pm 15 \%$ for the remaining calibrations. The PCB analyses of these samples were bracketed by two CCVs and the \%Ds for Aroclor 1016 and Aroclor 1260 were $\leq 15 \%$. A representative number of \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No further qualifications were required.

2.4 BLANKS

2.4.1 Instrument Blanks

An instrument blank was analyzed at the beginning of each analytical sequence. Crosscontamination was not evident in the samples. No qualifications were necessary.

2.4.2 Method Blanks

One water method blank (5B15038-BLK1) was extracted and analyzed with these SDGs. There were no pesticide target compounds or Aroclors detected in the method blank. Review of the chromatograms showed no false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike/blank spike duplicate pair (5B15038-BS1/BSD1) was extracted and analyzed with these SDGs. The recoveries for all spiked pesticide target compounds and Aroclors were within the laboratory-established QC limits and the RPDs were $\leq 30 \%$. A representative number of recoveries were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

DATA VALIDATION REPORT | Project: |
| ---: |
| SDG:IOB0993, |
| NPDES |
| Analysis: |
| Pest/PCB |

2.6 SURROGATE RECOVERY

The sample and all QC samples were fortified with the surrogate compounds decachlorobiphenyl and tetrachloro-m-xylene. Surrogate recoveries for the pesticide and PCB analyses of the samples were within the laboratory-established. The recoveries were calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

There were no MS/MSD analyses associated with these SDGs. Method accuracy and precision were assessed based on the blank spike/blank spike duplicate results. No qualifications were required.

2.8 SAMPLE CLEANUP PERFORMANCE

According to the laboratory extraction benchsheets, no cleanups were performed on the water samples. No qualifications were required.

2.9 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.9.1 Field Blanks and Equipment Rinsates

There were no field QC samples associated with the samples in these SDGs. No qualifications were required.

2.9.2 Field Duplicates

There were no field duplicate samples associated with the sample in these SDGs.

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for pesticide target compounds and PCBs by EPA Method 608. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for the samples in these SDGs. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification was verified for these SDGs; however, as there were no detects reported in the samples, quantitation was verified by recalculating a representative number of

Project: NPDES

 SDG:IOB0993, IOB0996blank spike and surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibration and the laboratory MDL studies. No qualifications were required.

[^14]
DRAFT: ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilutio Factor	Date Extracted	Date Analyzed	Data ualifiers
Sample ID: 1OB0993-01 (DRAFT: Outfall 007 - Water) - cont. Reporting Units: ug/I									
alpha-BHC	EPA 608	5B15038	0.015	0.10	ND	0.971	02/15/05	02/16,0545	
beta-BHC	EPA 608	5B15038	0.015	0.10	ND	0.971	02/15/05	$\begin{aligned} & 02 / 16 / 05 u \\ & 02 / 16 / 05 u \end{aligned}$	
delta-BHC	EPA 608	SB15038	0.020	0.20	ND	0.971	02/15/05	02116/05 $\mathrm{U}^{\text {a }}$	c
Chamma-BHC (Lindane)	EPA 608	5B15038	0.015	0.10	ND	0.971	02/15/05	02/16/05 4	
Chlordane	EPA 608	SB15038	0.20	1.0	ND	0.971	02/15/05	02/16/05 U	
4,4-DDE	EPA 608	5B15038	0.015	0.10	ND	0.971	02/15/05	02/16/05 UJ	c
4,4-DDT	EPA 608	5B15038	0.020 0.030	0.10	ND	0.971	02/15/05	02/16/05 U	
Dieldrin	EPA 608	5B15038	0.015	0.10	ND	0.971	02/15/05	02/16/05 45	c
Endosulfan I	EPA 608			0.10	ND	0.971	02/15/05	02/16/05 U	
Endosulfan II	EPA 608	5B15038	0.040	0.10 0.10	ND	0.971	02/15/05	02/16/05	
Endosulfan sulfate	EPA 608	5B15038	0.015	0.10	ND	0.971	02/15/05	02/16/05	
Endrin	EPA 608	SB15038	0.015	0.20	ND	0.971 0.971	02/15/05	02/16/65	
Endrin aldehyde	EPA 608	5B15038	0.045	0.10	ND	0.971	02/15/05	02.1605 0216105	
Endrin ketone	EPA 608	5B15038	0.020	0.10	ND	0.971	02/15/05	02216005	
Heptachlor	EPA 608	5B15038	0.030	0.10	ND	0.971	02/15/05	02/16/05	
Heptachlor epoxide	EPA 608	5B15038	0.020	0.10	ND	0.971	02/15/05	02/16/05	
Methoxychlor	EPA 608	SB15038	0.035	0.10	ND	0.971	02/15/05	02716/05	
Surrogate: Tetrachloro-m-rylene (35-120\%) 5.0					ND	0.971	02/15/05	02/16/05	
					68% 82%				

amec valicated LEVEL IV

DRAFT REPORT
 DRAFT REPORT
 DATA SUBJECT TO CHANGE

17461 Derian Ave, Suite 100, tvine. CA 92614 \{9.991 261 - 1022 FAX $19491250-3297$ 1014 E. Cooley Or., Suite A_{i} Colton, CA 92324 (909) $370-4067$ F4X 9949.370 .1046 9484 Chesapeake Or., Suite 805, San Diego, CA 92123 1858) 505-8.996 FaX $1833 ; 505.5640$ 9430 South 51 st St., Suite 8-120, Phoenix, AZ 85044 (480; 785-(1943 FAX 4430 ; 785-0851 2520 E. Sunset Rd. *3, Las Vegas, NV 89120 (702) $798-31520$ FAX 1702) 798.3027

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly

Sampled: 02/11/05
Received: 02/11/05

DRAFT: TOTAL PCBS (EPA 608)

amec ${ }^{\theta}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: RADIONUCLIDES
SAMPLE DELIVERY GROUPS:
IOB0418, IOB0980, IOB0993, IOB0996, IOB0997, IOB1001, IOB1004, IOB1014, \& IOB1069

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project: DATA VALIDATION REPORT

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOB0418, IOB0980, IOB0993, IOB0996, IOB0997, IOB1001, IOB1004, IOB1014, \& IOB1069
Project Manager. B. Mcilvaine
Matrix: Water
Analysis: Radionuclides
QC Level: Level IV
No. of Samples: 11
No. of Reanalyses/Dilutions: 0
Reviewer: P. Meeks
Date of Review: March 23, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the EPA Prescribed Procedures for Measurements of Radioactivity in Drinking Water, Methods 900.0, 905.0, and 906.0, and validation procedures outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification codes(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:
DATA VALIDATION REPORT	SDG No::
	Analysis:

Table 1. Sample identification

Client ID	Del Mar ID	Eberline ID	Matrix	COC Method
Outfall 002	IOB0418-01	$8237-001$	water	$900.0,905.0,906.0$
Outfall 001	IOB0980-01	$8265-001$	water	$900.0,905.0,906.0$
Outfall 001RE1	IOB0980-01RE1	$8265-001$	water	900.0
Outfall 007	IOB0993-01	$8261-001$	water	$900.0,905.0,906.0$
Outfall 009	IOB0996-01	$8262-001$	water	$900.0,905.0,906.0$
Outfall 008	IOB0997-01	$8266-001$	water	$900.0,905.0,906.0$
Outfall 010	IOB1001-01	$8267-001$	water	$900.0,905.0,906.0$
Outfall 011	IOB1004-01	$8263-001$	water	$900.0,905.0,906.0$
Outfall 011	IOB1014-01	$8264-001$	water	$900.0,905.0,906.0$
Outfall 003 Filtered	IOB1069-01	$8268-001$	water	$900.0,905.0,906.0$
Outfall 003 Unfiltered	IOB1069-02	$8268-002$	water	$900.0,905.0,906.0$
Outfall 003 Substrate	IOB1069-03	$8269-001$	water	
IO				901.1

	Project:
DATA VALIDATION REPORT	SDGES

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

Most samples in these SDGs were received at Del Mar Analytical within the temperature limits of $4 \pm 2^{\circ} \mathrm{C}$. After the analyses were complet, Del Mar Analytical sent extra volume of Outfall 001 to Eberline for gross alpha reanalysis. No temperature information was provided by Eberline, the subcontract laboratory; however, as it is not necessary to chill radiological samples, no qualifications were required. All samples were received intact and in good condition.

According to the Eberline login sheet, Outfall 002 was received unpreserved. It was confirmed in correspondence with Eberline dated $01 / 31 / 05$, that the gross alpha, gross beta, and strontium samples were not preserved upon receipt; therefore, the nondetected strontium result for Outfall 002 was qualified as estimated, "UJ." According to the Los Angeles Water Quality Control Board (LARWQCB) guidance letter dated $01 / 12 / 05$, unfiltered samples should not be preserved and filtered aliquots should be preserved after filtration.

Eberline noted on their login sheets that Outfall 007, Outfall 008, Outfall 009 and Outfall 010 were received preserved, in plastic containers. Per the method, tritium samples should not be preserved. Per a telephone conversation with M. Mannion of Eberline, the pH of these samples was adjusted back to about 7 upon receipt at Eberline. Due to the improper pH adjustments, the tritium results for Outfall 007, Outfall 008, Outfall 009, and Outfall 010 were rejected, "R". Additional, unpreserved aliquots of Outfall 007, Outfall 008, Outfall 009, and Outfall 010 were sent from Del Mar to Eberline for tritium reanalysis: These results were not available at the time of this report.

Additionally, according to the 01/12/05 LARWQCB guidance letter, samples collected for tritium analysis should be submitted in glass containers to avoid potential loss of tritium by sorption onto the plastic container. As the Outfall 007, Outfall 008, Outfall 009 and Outfall 010 tritium samples were previously rejected, no further qualifications were required.

2.1.2 Chain of Custody

The original COCs were signed and dated by field and laboratory personnel and the transfer COCs were signed by personnel from both laboratories. Filtered, unfiltered, and substrate analyses were requested for Outfall 011 (IOB1014) on the original COC from the field to Del Mar. There instructions did not appear on the transfer COC to Eberline and subsequently only filtered unanalyses were preformed. The remaining original and transfer COCs accounted for the samples and analyses presented in this data package. Eberline did not list the MWH IDs on the Form Is; therefore, the reviewer edited the Form Is to reflect these IDs. A reanalyses for gross alpha was requested for Outfall 001. To distinguish between the two results, the reviewer added an "RE1," suffix to the Outfall 001 and Del Mar Analytical IDs. No qualifications were required.

	Project:
DATA VALIDATION REPORT	SDG No.:
	Analysis:

2.1.3 Holding Times

The tritium and strontium samples were analyzed within 180 days of collection. The Outfall 002 and Outfall 003 Unfiltered gross alpha and gross beta samples were analyzed beyond the five day holding time for unpreserved samples; therefore, these gross alpha and gross beta results were qualified as estimated, "J," for detects and, "UJ," for nondetects. No further qualifications were necessary.

2.2 CALIBRATION

The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

Gross Alpha

The initial calibration included with the data was performed in February 2003. All detector efficiencies were below 20%; therefore, the gross alpha results were qualified as estimated, "UJ," for nondetects and, "I," for detects, unless otherwise rejected (see section 2.10).

Tritium

No calibration standards were analyzed for this method. According to the laboratory, every sample was spiked for efficiency determination; therefore, no calibration is necessary. All detector efficiencies in the samples were at least 20% and were considered acceptable. All internal spike efficiency to default efficiency ratios were near 1 , indicating that quenching did not occur.

Gross Beta and Strontium-90

The initial calibrations were performed in June 1997. All gross beta detector efficiencies were at least 20% and were considered acceptable. All strontium chemical yields were at least 65% and were considered acceptable and the strontium continuing calibration results were within the laboratory control limits. No qualifications were necessary.

Cesium

The reviewer confirmed that the 662 KeV peak was used for quantitation, with an efficiency of 85%. No qualifications were necessary.

2.3 BLANKS

No measurable activities were detected in the method blanks; therefore, no qualifications were necessary.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

Three blank spikes (8261-002, 8237-002, 8269-002) were analyzed in association with the samples in these SDGs. The gross alpha, gross beta, and strontium recoveries for 8261-002 were outside of the 3sigma limits, but all had acceptable recoveries of $80 \%, 88 \%$, and 108%, respectively. The remaining blank spike results were within the 3 -sigma limits. No qualifications were necessary.

	Project:
DATA VALIDATION REPORT	SDG No.:

2.5 LABORATORY DUPLICATES

The laboratory performed duplicate analysis on Outfall 002, Outfall 007, and Outfall 003 Substrate. The gross alpha and tritium RPDs were greater than 20% for Outfall 007 . The gross alpha results were within 3 -sigma and were considered acceptable, but the tritium result was just above 3-sigma; however, as no tritium detects were retained (see section 2.1.1), no qualifications were required. The remaining RPD were $\leq 20 \%$. No further qualifications were necessary.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

The laboratory performed matrix spike analyses on Outfall 002 and Outfall 007 for gross alpha, gross beta, and tritium. The Outfall 002 recovery for gross alpha was below 3 -sigma; therefore, the gross alpha results in all samples except Outfall 007 were qualified as estimated, " J ," for detects and, "UJ," for nondetects. As Outfall 007 had an acceptable recovery for gross alpha, no qualifications were applied. The remaining recoveries were within the 3 -sigma limits. No further qualifications were necessary.

2.7 SAMPLE RESULT VERIFICATION

An EPA Level IV review was performed for the samples in these data packages. Sample results and MDAs reported on the sample result forms were verified against the raw data and no calculation or transcription errors were noted.

The original planchet for gross alpha in Outfall 001 was recounted once per a request from MWH personnel. The recount yielded an equivalent result as the original count and was not reported. The sample was later reanalyzed from extra sample volume provided by Del Mar Analytical, and was reported as Outfall 001 RE1. As the two gross alpha results were similar, the reviewer rejected, " R," the reanalysis, Outfall 001 REI , in favor of the original result, Outfall 001 . No further qualifications were necessary.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.8.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate samples in these SDGs.

Eberline Services
 ANALYSIS RESULTS

Client
Sample ID Outfall 007 1080993-01

Sample ro	Collected	Analyzed	Nuclide	Results - 20	Unies
8261-001	02/21/05	03/01/05	Grossalpha	1.64 ± 1.0	pCi/L
		03/01/05	Gross Beta	5.18 ± 1.3	pCi/L
		03/02/05	H3	71.9 ± 150	pCi/L
		02/25/05	\$590	-0.077 ± 0.25	pci/L

AMEG VALIDATEO

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical.
Reviewer L. Calvin
Analysis/Method Semivolatiles by Method 625

Package ID T711SV31
Task Order 313150010
SDG No. IOB0993, IOB0996
No. of Analyses 2
Date: March 23, 2005

ACTION ITEMS

-	Case Narrative Deficiencies

2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables

6. Deviations from Analysis	Qualification was assigned for the following:
Protocol, e.g.,	--initial calibration $\%$ RSD $>15 \%$ and r^{2} values <0.995
Holding Times	-continuing calibration $\%$ Ds $>15 \%$
GC/MS Tune/nst. Performance	
Calibration	
Method blanks	
Surrogates	
Matrix Spike/Dup LCS	
Field QC	
Intermal Standard Performance	
Compound Identification	
Quantitation	
System Performance	
COMMENTS ${ }^{\text {b }}$	

* Subcontracted analytical laboratory is not meeting contract and/or method requirements.
${ }^{6}$ Differences in protocol have been adopted by the laboratory but no action against the laboratory is reguired.

amec ${ }^{\text {d }}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: SEMIVOLATILES
SAMPLE DELIVERY GROUP: IOB0993, IOB0996

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: $\quad 313150010$
SDG\#: IOB0993, IOB0996
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Semivolatiles
QC Level: Level IV
No. of Samples: 4
No. of Reanalyses/Dilutions: 0
Reviewer: L. Calvin
Date of Review: March 23, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Semivolatile Organics (DVP-3, Rev. 2), EPA Method 625, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Project:	NPDES
DATA VALIDATION REPORT	SDG:
IOB0993, 996	
Analysis;	

Table 1. Sample identification

Client ID	EPA ID	Lab No.	Matrix	Method
Outfall 007	Outfall 007	IOB0993-01	water	625
Outfall 009	Outfall 009	IOB0996-01	water	625

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Sample Outfall 007 was received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. Sample Outfall 009 was received above the temperature limits at $8^{\circ} \mathrm{C}$; however, as the sample was couriered directly to the laboratory, it had not completely cooled in transit. The analysis did not require preservation, and no preservation was noted in the field. The COCs noted that the samples were received intact. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by both field and laboratory personnel. The COCs accounted for the analyses presented in these SDGs. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

Both the original extraction and reextraction of the water samples were performed within seven days of collection. The samples analyzed within 40 days of extraction. No qualifications were required.

2.2 GC/MS TUNING

The DFTPP tune met the ion abundance criteria specified in Method 625. No qualifications were required.

2.3 CALIBRATION

The initial calibrations associated with these SDGs were dated $02 / 15 / 05$ and $02 / 17 / 05$ (benzidine only). The average RRFs for were ≥ 0.05 for all applicable target compounds. The $\%$ RSDs were $\leq 35 \%$ or $r^{2} \geq 0.995$ with the exception of the $\%$ RSD for pentachlorophenol, and the r^{2} for benzoic acid, hexachlorocyclopentadiene, and 2,4-dinitrophenol. The nondetect results for the aforementioned compounds were qualified as estimated, "UJ," in both site samples. The continuing calibrations associated with the sample analyses were analyzed $02 / 15 / 05$ and $02 / 17 / 05$. The RRFs for all target compounds were ≥ 0.05, and the $\%$ Ds were $\leq 20 \%$. A representative number of average RRFs, \%RSDs, and r^{2} s for the initial calibration and RRFs and \%Ds for the continuing calibration were checked from the raw data, and no calculation or transcription errors were noted. No further qualifications were required.

2.4 BLANKS

Two method blanks (5B13024-BLK1 and 5B17041-BLK1/benzidine only) were extracted and analyzed with these SDGs. There were no detects above the MDLs for any target compounds. Review of the raw data indicated no false negatives. No qualifications were required.

DATA VALIDATION REPORT	Project: SDG:	NPDES IOB0993, I96
SVOC		

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike/ blank spike duplicate pair (5A13024-BS1/BSD1) was originally extracted and analyzed with these SDGs. For blank spike/blank spike duplicate pairs, qualifications are applied, if necessary, to the associated samples based on those recoveries consistently outside of the laboratory-established QC limits in both the blank spike and blank spike duplicate. Results for those compounds with recoveries not consistent within the pair, with RPDs above the QC limit, are qualified as estimated, "UJ" for nondetects and " J " for detects, in the associated samples.

In 5A13024-BS1 benzidine was recovered below the QC limits but $\geq 10 \%$, and in 5A12027BSD1, benzidine was recovered above the QC limits. The RPD for benzidine exceeded the laboratory QC limit. The laboratory reextracted both samples for benzidine only with 5B17041BS1/BSD1 with recoveries and the RPD for benzidine within the laboratory-established QC limits. The remaining recoveries and RPDs for 5A13024-BS1/BSDI were within the QC limits. A representative number of recoveries and RPDs were calculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.6 SURROGATE RECOVERY

The sample surrogate recoveries for both samples were within the laboratory QC limits. A representative number of recoveries were calculated from the raw data, and no transcription or calculation errors were noted. No further qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were associated with these SDGs. Evaluation of method accuracy and precision was based on blank spike/blank spike duplicate results. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

2.8.1 Field Blanks and Equipment Rinsates

There were no field QC samples associated with these SDGs. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate samples associated with these SDGs.

2.9 INTERNAL STANDARDS PERFORMANCE

The internal standard area counts and retention times were within the control limits established by the continuing calibration standards: $-50 \% /+100 \%$ for internal standard areas and

	Project: DATA VALIDATION REPORT	NPDES SDG:
IOB0993,	996	
SVOC		

± 30 seconds for retention times. A representative number of recoveries were checked from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for semivolatile target compounds by EPA Method 625. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. No calculation or transcription errors were found. The reporting limits were supported by the low level of the initial and the method detection limit study. The reporting limits were not adjusted for sample amount; however, the dilution factors on the sample result summaries reflected the sample amount extracted. Results were reported in $\mu \mathrm{g} / \mathrm{L}$ (ppb). No qualifications were required.

2.12 TENTATIVELY IDENTIFIED COMPOUNDS

TICs were not reported by the laboratory for these SDGs. No qualifications were required.

2.13 SYSTEM PERFORMANCE

Review of the raw data indicated no problems with system performance. No qualifications
required. were required.

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly

Report Number: IOB0993

Sampled: 02/11/05
Received: 02/11/05

DRAFT: ACID \& BASENEUTRALS BY GC/MS (EPA 625)

Del Mar Analytical

Project ID: Annual Ourfall 007
Report Number: IOB0993
Sampled: 02/1105
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
Received: 02/11/05

DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

DRAFT REPORT
DRAFT REPORT

DATA SUBIECT TO CHANGE
MWH-Pasadena/Boeing

	Project ID: Annual Outfall 007	
300 North Lake Avenue, Suite 1200		Sampled: $02 / 11 / 05$
Pasadena, CA 91101	Report Number: IOB0993	Received: $02 / 11 / 05$
Attention: Bronwyn Kelly		

DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental	Package ID T711VO60
550 South Wadsworth Boulevard	Task Order 313150010
Suite 500	SDG No. IOB0993, IOB0996
Lakewood, CO 80226	No. of Analyses 4
Laboratory Del Mar Analytical	Date March 23, 2005
Reviewer K. Shadowlight	Revjewer's Signature,
Analysis/Method Volatiles	4Shadowlet

ACTION ITEMS ${ }^{\text {t }}$

1. Case Narrative
2. Out of Scope

Analyses

3. Analyses Not Conducted	
4. Missing Hardcopy Deliverables	
5. Incorrect Hardcopy Deliverables	
6. Deviations from Analysis	Qualifications were assigned for the following.
GCMMS Tune/nst Perform	* Initial calibration average RRF<0.05 and cont. calibration RRF<0.05
Calibrations	* Continuing calibration \% D outliers
Blanks	
Surrogates	
Matrix Spike/Dup LCS	
Field QC	
Intemal Standard Performance	
Compound Identification and	
Quantitation	
System Performance	
COMMENTS ${ }^{\text {b }}$	
* Subcontracted analytical laboratory is - Differences in protocol have been adop	eting contract and/or method requirements. the laboratory but no action against the laboratory is required.

amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: VOLATILES

SAMPLE DELIVERY GROUP: IOB0993, IOB0996

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

DATA VALIDATION REPORT	Project: SDG:	NPDES Multiple
VOC		

1. INTRODUCTION

Task Order Title:	NPDES Monitoring
Contract Task Order \#:	313150010
SDG\#:	IOB0993, IOB0996
Project Manager:	B. Mcllvaine
Matrix:	Water
Analysis:	Volatiles
QC Level:	Level IV
No. of Samples:	4
Reviewer:	K. Shadowlight
Rate of Review:	March 23, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Volatile Organics (DVP-2, Rev. 2), EPA Method 624, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary forms as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the
data had already been rejected.

DATA VALIDATION REPORT	Project: SDG:	NPDES Multiple
Analysis:	VOC	

Table 1. Sample identification

Client ID	EPA ID	Lab No.	Matrix	Method
Outfall 007	Outfall 007	IOB0993-01	water	624
Trip Blank	Trip Blank	IOB0993-02	water	624
Outfall 009	Outfall 009	IOB0996-01	water	624
Trip Blank	Trip Blank	IOB0996-02	water	624

	Project: DATA VALIDATIONREPORT	NPDES SDG: Multiple
VOC		

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The cooler for samples Outfall 009 and Trip Blank (IOB0996) was received above the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$, at $8^{\circ} \mathrm{C}$; however, the samples were transported directly to the laboratory and had not completely cooled in transit. The remaining samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The samples were properly preserved. The COC noted that the samples were received intact; however, information regarding absence of headspace was not provided. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by both field and laboratory personnel. The COCs accounted for the analyses presented in these SDGs. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The samples were analyzed within 14 days of collection. No qualifications were required.

2.2 GC/MS TUNING

The ion abundance windows shown on the quantitation report were consistent with those specified in the EPA Method 624, and all ion abundances were within the established windows. The samples and associated QC were analyzed within 12 hours of the BFB injection times. The Form Vs were verified from the raw data and no discrepancies between the summary forms and the raw data were noted. No qualifications were required.

2.3 CALIBRATION

Two initial calibrations dated 10/14/04 (acrolein and acrylonitrile only) and 02/07/05, were associated with these SDGs. The average RRF for acrolein was <0.05; therefore, the nondetect results for acrolein were rejected, "R," in all samples. The remaining average RRFs were ≥ 0.05 and all $\%$ RSDs were $\leq 35 \%$ for the target compounds listed on the sample result summaries. Two continuing calibrations analyzed 02/12/05 and 02/17/05 were associated with the sample analyses. The RRF for acrolein was <0.05 in the continuing calibration dated $02 / 12 / 05$; therefore, the nondetect results for acrolein were rejected, "R," in all samples. The \%Ds for acrolein and acrylonitrile exceeded 20%; therefore, nondetect results for acrolein and acrylonitrile were qualified as estimated, "UJ," in samples Outfall 007 and Outfall 009 , unless otherwise rejected. The trip blanks were not qualified for \%D calibration outliers. For all remaining target compounds the \%Ds were $\leq 20 \%$ and the RRFs were ≥ 0.05. A representative number of $\%$ RSDs and average RRFs from

	Project: DATA VALIDATION REPORT	NPDES SDG:
Multiple		

the initial calibration, and \%Ds and RRFs from the continuing calibration were recalculated from the raw data, and no calculation or transcription errors were found. No further qualifications were required.

2.4 BLANKS

Two water method blanks (5B17020-BLK1 and 5B12011-BLK1) were associated with these SDGs. There were no detects above the MDLs for the target compounds listed on the sample result summaries. The method blank raw data showed no evidence of false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

Two water blank spikes (5B17020-BS1 and 5B12011-BS1) were associated with these SDGs. All recoveries were within the laboratory-established QC limits. A representative number of recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.6 SURROGATE RECOVERY

The surrogates were recovered within the QC limits of $80-120 \%$ in the samples and associated QC. A representative number of surrogate recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed on the site samples in these SDGs. Method accuracy was assessed based on the LCS results. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

2.8.1 Trip Blanks

Sample Trip Blank (IOB0993) and Trip Blank (IOB0996) were the trip blanks associated with the site samples in these SDGs. There were no target compounds detected above the MDLs in either of the trip blanks. No qualifications were required.

2.8.2 Field Blanks and Equipment Rinsates

There were no field QC samples associated with these SDGs. No qualifications were required.

	Project: DATA VALIDATION REPORT
SDG:	NPDES
Multiple	

2.8.3 Field Duplicates

There were no field duplicate samples associated with these SDGs.

2.9 INTERNAL STANDARDS PERFORMANCE

Internal standard area counts and retention times for the samples in these SDGs were within the control limits established by the continuing calibration standards, of $+100 \% /-50 \%$ for internal standard areas and ± 0.50 minutes for retention times. A representative number of internal standard areas and retention times were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.10 COMPOUND IDENTIFICATION

Target compound identification was verified at a Level IV data validation. The laboratory analyzed for volatile target compounds by EPA Method 624. Chromatograms, retention times, and spectra for the samples and QC were examined and no target compound identification problems were noted. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. The reporting limits were supported by the lowest concentrations of the initial calibration standards and by the MDL study. Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike and surrogate recoveries from the raw data. Results were reported in ug/L (ppb). No calculation or transcription errors were noted. No qualifications were required.

2.12 TENTATIVELY IDENTIFIED COMPOUNDS

The laboratory did not provide TICs for these SDGs. No qualifications were required.

2.13 SYSTEM PERFORMANCE

A review of the chromatograms and other raw data showed no identifiable problems with system performance. No qualifications were required.

Project ID: Annual Outfall 007
Report Number: 10 BO 093
Sampled: 02:1105
Received: 02i11/05

DRAFT: PURGEABLES BY GC/MS (EPA 624)

DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE

The recults perain onty the sunintis cesid in the latoratory. This repor: shatl not be reproducet.

17461Derian Ave., Sute 100, Irvine, CA 22074 9040: 261-1022 FAX $94+1$ 260.3x97
1014 E . Cooley Dt., Suite A. Colton, CA 92324 (909: 370-466; FAX 944) $370-1046$
548.4 Chesapeake Or., Suite 805, San Diego, CA 92123 (858) $505-8596$ FAX $16531505-008 y$
9830 South 51 st St. Suite B-120, Phoenix, AZ 85044 (480) 755-0043 fAx $14817785-0857$
2520 E. Sunset Rd. \#3, Las Vegas, NV 89120 (702! $798-3620$ F.4X (70 17708.3621

[^15]DRAFT: PURGEABLES BY GC/MS (EPA 624)

DRAFT REPORT
DRAFT REPORT

7461 Derian Ave., Suite 100, Inine, CA 92614 (949) 261.1029 FAX $0411260-320$

MWH-Pasadena/Boeing	Project ID: Annual Outfall 007	
300 North Lake Avenue, Suite 1200	Report Number: $10 B 0993$	Sarnpled: $02 / 11 / 05$
Pasadena, CA 9101		Received: $02 / 1105$

DRAFT: PURGEABLES BY GC/MS (EPA 624)

ACTION ITEMS ${ }^{2}$

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from

Analysis Protocol, e.g.,
Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification
and Quantitation
System Performance \qquad

COMMENTS $^{\text {b }}$	Acceptable as reviewed.
: Subcontracted analytical laboratory is not meeting contract and/or method requirements. b Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.	

$a m e c^{9}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: GENERAL MINERALS SAMPLE DELIVERY GROUPS: IOB0993 \& IOB0996

Prepared by
AMEC-Denver Operations 550 South Wadsworth Boulevard, Suite 500

Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: IOB0993/IOB0996
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: General Minerals
QC Level: Level IV
No. of Samples: 2
Reviewer: L. Jarusewic
Date of Review: March 23, 2005

The sample listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 335.2 and 160.2. Standard Methods for the Examination of Water and Wastewater Method SM2540C, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:
DATA VALIDATION REPORT	SDG No.: IOB0993/IOB0996

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 007	Outfall 007	IOB0993-01	Water	General Minerals
Outfall 009	Outfall 009	1OB0996-01	Water	General Minerals

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

Sample Annual Outfall 007 was received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ and sample Annual Outfall 009 was received above the temperature limits at $8^{\circ} \mathrm{C}$; however, as the sample had insufficient time to cool in transit to the laboratory, no qualifications were required. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel. The COCs accounted for all analyses and samples present in these SDGs. No sample qualifications were required.

2.1.3 Holding Times

The holding times were assessed by comparing the dates of collection with the dates of analyses. The 14-day analytical holding time for cyanide and the 7-day holding time for total suspended solids were met. No qualifications were required.

2.2 CALIBRATION

For cyanide, the initial calibration correlation coefficient was ≥ 0.995. Initial and continuing calibration information was acceptable with \%Rs within the control limits of $90-110 \%$ for cyanide. Initial and continuing calibrations are not applicable to the total suspended solid analysis. No qualifications were required.

The total cyanide reporting limit check standard was recovered above AMEC control limits of 70$130 \%$ at 137.9%; however, as cyanide was not detected in either sample, no qualifications were required.

2.3 BLANKS

The method blank and CCB results reported on the summary forms and in the raw data for blank analyses associated with the samples were nondetects at the reporting limit. No qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample recoveries were within the laboratory-established control limits. No qualifications were required.

2.5 SURROGATES RECOVERY

Surrogate recovery is not applicable to the analyses presented in these SDGs.

2.6 LABORATORY DUPLICATES

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were performed in associations with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

2.8 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analyses of these samples; therefore, furnace atomic absorption QC is not applicable.

2.9 ICP SERIAL DILUTION

1CP senal dilution is not applicable to the analyses presented in this data validation report.

2.10 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. No qualifications were required.

2.11 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field $Q C$ samples:

2.11.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.11.2 Field Duplicates

There were no field duplicate pairs associated with these SDGs. 3484 Chesapeake Dr., Suite 805 San Diego. CA 92123 \{858: $505-8396$ FAx 853505.2069
 2520 E. Sunser Rd. \#3, Las Vegas, NV 89120 (702) 798-3520 FAX (702) 798.3621

MWH-Pasadena/Boeing	Project ID: Annual Outfall 007	
300 North Lake Avenue, Suite 1200		Report Number: 1OB0993

DRAFT: INORGANICS

AMEC VALIDATED

LEVEL IV

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Annual Outfall 007

Sampled: 02/11/05
Received: 02/11/05
Issued: 03/28/05 10:00

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
IOB0993-01
1OB0993-02

CLIENT ID

Outfall 007
Trip Blanks

MATRIX
Water
Water

Reviewed By:

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 007
Report Number: IOB0993 Received: 02/11/05

CORRECTIVE ACTION REPORT

Department: Extractions
Method: EPA 625
QC Batch: 5B13024

Identification and Definition of Problem:

The percent recovery for benzidine in the BS was below method acceptance limits.

Determination of the Cause of the Problem:
Benzidine is known to be a problematic compound. According to the EPA, it can be subject to oxidative losses during solvent extraction and its chromatographic behavior is poor.

Corrective Action Taken:

The percent recovery in BSD was within the acceptance limits. All results reported for benzidine are potentially biased low and can be considered estimates only.

Quality Assurance Approval:

anas
Date: 02/18/2005 04:36 PM
Dave Dawes

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID: Annual Outfall 007	
300 North Lake Avenue, Suite 1200	Report Number: IOB0993	Sampled: $02 / 11 / 05$ Pasadena, CA 91101
Received: 02/11/05		
Attention: Bronwyn Kelly		

PURGEABLES BY GC/MS (EPA 624)

Analyte Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 10B0993-01 (Outfall 007 - Water)								
Reporting Units: ugh								
Acrolein EPA 624	5B12011	4.6	50	ND	1	02/12/05	02/12/05	
Acrylonitrile EPA 624	5B12011	5.1	50	ND	1	02/12/05	02/12/05	
2-Chloroethyl vinyl ether EPA 624	5B12011	1.3	5.0	ND	1	02/12/05	02/12/05	
Surrogate: Dibromofluoromethane (80-120\%)				92\%				
Surrogate: Toluene-d8 (80-120\%)				105\%				
Surrogate: 4-Bromofluorobenzene (80-120\%)				100%				
Sample ID: IOB0993-02 (Trip Blanks - Water)								
Reporting Units: ug/l								
Acrolein EPA 624	5 B 12011	4.6	50	ND	1	02/12/05	02/12/05	
Acrylonitrile EPA 624	5B12011	5.1	50	ND	1	02/12/05	02/12/05	
2-Chloroethyl vinyl ether EPA 624	5B12011	1.3	5.0	ND	1	02/12/05	02/12/05	
Surrogate: Dibromofluoromethane (80-120\%)				87\%				
Surrogate: Toluene-d8 (80-120\%)				105%				
Surrogate: 4-Bromofluorobenzene (80-120\%)				98\%				

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
Project ID: Annual Outfall 007
Report Number: IOB0993
Sampled: 02/11/05
Received: 02/11/05

PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB0993-01 (Outfall 007 - Water)Reporting Units: ug/									
Benzene	EPA 624	5B17020	0.28	1.0	ND	1	02/17/05	02/18/05	
Bromodichloromethane	EPA 624	5B17020	0.30	2.0	ND	1	02/17/05	02/18/05	
Bromoform	EPA 624	5B17020	0.32	5.0	ND	1	02/17/05	02/18/05	
Bromomethane	EPA 624	5B17020	0.34	5.0	ND	1	02/17/05	02/18/05	
Carbon tetrachloride	EPA 624	5B17020	0.28	0.50	ND	1	02/17/05	02/18/05	
Chlorabenzene	EPA 624	5B17020	0.36	2.0	ND	1	02/17/05	02/18/05	
Chloroethane	EPA 624	5B17020	0.33	5.0	ND	1	02/17/05	02/18/05	
Chloroform	EPA 624	5B17020	0.33	2.0	ND	1	02/17/05	02/18/05	
Chloromethane	EPA 624	5B17020	0.30	5.0	ND	1	02/17/05	02/18/05	
Dibromochloromethane	EPA 624	5B17020	0.28	2.0	ND	1	02/17/05	02/18/05	
1,2-Díchlorobenzene	EPA 624	5B17020	0.32	2.0	ND	1	02/17/05	02/18/05	
1,3-Dichlorobenzene	EPA 624	5B17020	0.35	2.0	ND	1	02/17/05	02/18/05	
1,4-Dichlorobenzene	EPA 624	5B17020	0.37	2.0	ND	1	02/17/05	02/18/05	
1,1-Dichloroethane	EPA 624	5B17020	0.27	2.0	ND	1	02/17/05	02/18/05	
1,2-Dichloroethane	EPA 624	5B17020	0.28	0.50	ND	1	02/17/05	02/18/05	
1,1-Dichloroethene	EPA 624	5B17020	0.32	5.0	ND	1	02/17/05	02/18/05	
trans-1,2-Dichloroethene	EPA 624	5B17020	0.27	2.0	ND	1	02/17/05	02/18/05	
1,2-Dichloropropane	EPA 624	5B17020	0.35	2.0	ND	1	02/17/05	02/18/05	
cis-1,3-Dichloropropene	EPA 624	5B17020	0.22	2.0	ND	1	02/17/0s	02/18/05	
trans-1,3-Dichloropropene	EPA 624	5B17020	0.24	2.0	ND	1	02/17/05	02/18/05	
Ethylbenzene	EPA 624	5B17020	0.25	2.0	ND	1	02/17/05	02/18/05	
Methylene chloride	EPA 624	5B17020	0.48	5.0	ND	1	02/17/05	02/18/05	
1,1,2,2-Tetrachloroethane	EPA 624	5B17020	0.24	2.0	ND	1	02/17/05	02/18/05	
Tetrachloroethene	EPA 624	5B17020	0.32	2.0	ND	1	02/17/05	02/18/05	
Toluene	EPA 624	5B17020	0.36	2.0	ND	1	02/17/05	02/18/05	
1,1,1-Trichloroethane	EPA 624	5B17020	0.30	2.0	ND	1	02/17/05	02/18/05	
1,1,2-Trichloroethane	EPA 624	5B17020	0.30	2.0	ND	1	02/17/05	02/18/05	
Trichloroethene	EPA 624	5B17020	0.26	2.0	ND	,	02/17/05	02/18/05	
Trichlorofluoromethane	EPA 624	5B17020	0.34	5.0	ND	1	02/17/05	02/18/05	
Vinyl chloride	EPA 624	5B17020	0.26	0.50	ND	1	02/17/05	02/18/05	
Xylenes, Total	EPA 624	5B17020	0.52	4.0	ND	1	02/17/05	02/18/05	
Surrogate: Dibromofluoromethane (80-120\%)					112\%				
Surrogate: Toluene-d8 (80-120\%)					106\%				
Surrogate: 4-Bromofluorobenzene (80-120\%)					102%				

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 007
Report Number: IOB0993 Received: 02/11/05

PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyz
Sample ID: IOB0993-02 (Trip Blanks - Water)Reporting Units: ug/l								
Benzene	EPA 624	5B17020	0.28	1.0	ND	1	02/17/05	02/17/05
Bromodichloromethane	EPA 624	5B17020	0.30	2.0	ND	1	02/17/05	02/17/05
Bromoform	EPA 624	5B17020	0.32	5.0	ND	1	02/17/05	02/17/05
Bromomethane	EPA 624	5B17020	0.34	5.0	ND	1	02/17/05	02/17/05
Carbon tetrachloride	EPA 624	5B17020	0.28	0.50	ND	1	02/17/05	02/17/05
Chlorobenzene	EPA 624	5B17020	0.36	2.0	ND	1	02/17/05	02/17/05
Chloroethane	EPA 624	5B17020	0.33	5.0	ND	1	02/17/05	02/17/05
Chloroform	EPA 624	5B17020	0.33	2.0	ND	1	02/17/05	02/17/05
Chloromethane	EPA 624	5B17020	0.30	5.0	ND	1	02/17/05	02/17/05
Dibromochloromethane	EPA 624	5B17020	0.28	2.0	ND	1	02/17/05	02/17/05
1,2-Dichlorobenzene	EPA 624	5B17020	0.32	2.0	ND	1	02/17/05	02/17/05
1,3-Dichlorobenzene	EPA 624	5B17020	0.35	2.0	ND	1	02/17/05	02/17/05
1,4-Dichlorobenzene	EPA 624	5B17020	0.37	2.0	ND	1	02/17/05	02/17/05
1,1-Dichloroethane	EPA 624	5B17020	0.27	2.0	ND	1	02/17/05	02/17/05
1,2-Dichloroethane	EPA 624	5B17020	0.28	0.50	ND	1	02/17/05	02/17/05
1,1-Dichloroethene	EPA 624	5B17020	0.32	5.0	ND	1	02/17/05	02/17/05
trans-1,2-Dichloroethene	EPA 624	5B17020	0.27	2.0	ND	1	02/17/05	02/17/05
1,2-Dichloropropane	EPA 624	5B17020	035	2.0	ND	1	02/17/05	02/17/05
cis-1,3-Dichloropropene	EPA 624	5B17020	0.22	2.0	ND	1	02/17105	02/17/05
trans-1,3-Dichloropropene	EPA 624	5B17020	0.24	2.0	ND	1	02/17/05	02/17/05
Ethylbenzene	EPA 624	5B17020	0.25	2.0	ND	1	02/17/05	02/17/05
Methylene chloride	EPA 624	5B17020	0.48	5.0	ND	1	02/17/05	02/17/05
1,1,2,2-Tetrachloroethane	EPA 624	5B17020	0.24	2.0	ND	1	02/17/05	02/17/05
Tetrachloroethene	EPA 624	5B17020	0.32	2.0	ND	1	02/17/05	02/17/05
Toluene	EPA 624	5B17020	0.36	2.0	ND	1	02/17/05	02/17/05
1,1,1-Trichloroethane	EPA 624	5B17020	0.30	2.0	ND	1	02/17/05	02/17/05
1,1,2-Trichloroethane	EPA 624	5B17020	0.30	2.0	ND	1	02/17/05	02/17/05
Trichloroethene	EPA 624	5B17020	0.26	2.0	ND	1	02/17/05	02/17/05
Trichlorofluoromethane	EPA 624	5B17020	0.34	5.0	ND	1	02/17/05	02/17/05
Vinyl chloride	EPA 624	5B17020	0.26	0.50	ND	1	02/17/05	02/17/05
Xylenes, Total	EPA 624	5B17020	0.52	4.0	ND	1	02/17/05	02/17/05
Surrogate: Dibromofluoromethane (80-120\%)					106\%			
Surrogate: Toluene-d8 (80-120\%)Surrogate: 4 -Bromofluorobenzene (80-120\%)					110\%			
					103%			

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 007
Report Number: IOB0993
Sampled: 02/11/05
Received: 02/11/05

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

| | | | MDL | Reporting | Sample | Dilution | Date | Date |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Analyte | Method | Batch | Limit | Limit | Result | Factor | Extracted | Analyzed |
| Qualifiers | | | | | | | | |

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 007

Report Number: IOB0993

Sampled: 02/11/05
Received: 02/11/05

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyz
Sample ID: 1OB0993-01 (Outfall 007 - Water) - cont. Reporting Units: ug/l								
Hexachlorobenzene	EPA 625	5B13024	4.8	10	ND	0.971	02/13/05	02/16/05
Hexachlorobutadiene	EPA 625	5B13024	4.2	10	ND	0.971	02/13/05	02/16/05
Hexachlorocyclopentadiene	EPA 625	5B13024	3.4	20	ND	0.971	02/13/05	02/16/05
Hexachloroethane	EPA 625	5B13024	4.2	10	ND	0.971	02/13/05	02/16/05
Indeno(1,2,3-cd)pyrene	EPA 625	5B13024	5.4	20	ND	0.971	02/13/05	02/16/05
Isophorone	EPA 625	5B13024	3.7	10	ND	0.971	02/13/05	02/16/05
2-Methylnaphthalene	EPA 625	5B13024	3.0	10	ND	0.971	02/13/05	02/16/05
2-Methylphenol	EPA 625	5B13024	3.7	10	ND	0.971	02/13/05	02/16/05
4-Methylphenol	EPA 625	5B13024	3.8	10	ND	0.971	02/13/05	02/16/05
Naphthalene	EPA 625	5B13024	4.5	10	ND	0.971	02/13/05	02/16/05
2-Nitroaniline	EPA 625	5B13024	3.9	20	ND	0.971	02/13/05	02/16/05
3-Nitroaniline	EPA 625	5B13024	4.5	20	ND	0.971	02/13/05	02/16/05
4-Nitroaniline	EPA 625	5B13024	4.9	20	ND	0.971	02/13/05	02/16/05
Nitrobenzene	EPA 625	5B13024	4.2	20	ND	0.971	02/13/05	02/16/05
2-Nitrophenol	EPA 625	5B13024	4.2	10	ND	0.971	02/13/05	02/16/05
4-Nitrophenol	EPA 625	5B13024	6.6	20	ND	0.971	02/13/05	02/16/05
N -Nitrosodiphenylamine	EPA 625	5B13024	4.0	10	ND	0.971	02/13/05	02/16/05
N-Nitroso-di-n-propylamine	EPA 625	5B13024	3.6	10	ND	0.971	02/13/05	02/16/05
Pentachlorophenol	EPA 625	5B13024	4.0	20	ND	0.971	02/13/05	02/16/05
Phenanthrene	EPA 625	5B13024	3.3	10	ND	0.971	02/13/05	02/16/05
Phenol	EPA 625	5B13024	4.0	10	ND	0.971	02/13/05	02/16/05
Pyrene	EPA 625	5B13024	3.9	10	ND	0.971	02/13/05	02/16/05
1,2,4-Trichlorobenzene	EPA 625	5B13024	4.4	10	ND	0.971	02/13/05	02/16/05
2,4,5-Trichlorophenol	EPA 625	5 B 13024	3.6	20	ND	0.971	02/13/05	02/16/05
2,4,6-Trichlorophenol	EPA 625	5B13024	4.1	20	ND	0.971	02/13/05	02/16/05
1,2-Diphenylhydrazine/Azobenzene	EPA 625	5B13024	5.0	20	ND	0.971	02/13/05	02/16/05
N-Nitrosodimethylamine	EPA 625	5B13024	3.7	20	ND	0.971	02/13/05	02/16/05
Surrogate: 2-Fluorophenol (35-120\%)					61\%			
Surrogate: Phenol-d6 (45-120\%)					67%			
Surrogate: 2,4,6-Tribromophenol (50-125\%)					88\%			
Surrogate: Nitrobenzene-d5 (45-120\%)					72%			
Surrogate: 2-Fluorobiphenyl (45-120\%)					78%			
Surrogate: Terphenyl-d14 (45-135\%)					90\%			

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 007
Sampled: 02/11/05
Report Number: 1OB0993

Received: 02/11/05

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB0993-01RE1 (Outfall 007 - Water) - cont. Reporting Units: ug/									
Benzidine	EPA 625	5B17041	5.2	20	ND	0.962	02/17/05	02/22/05	
Surrogate: 2-Fluorophenol (35-120\%)					59\%				
Surrogate: Phenol-d6 (45-120\%)					64 \%				
Surrogate: 2,4,6-Tribromophenol (50-125\%)					80\%				
Surrogate: Nitrobenzene-d5 (45-120\%)					73%				
Surrogate: 2-Fluorobiphenyl (45-120\%)					76\%				
Surrogate: Terphenyl-d14 (45-135\%)					75%				

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 007
Report Number: IOB0993 Received: 02/11/05

ORGANOCHLORINE PESTICIDES (EPA 608)

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 007
Report Number: IOB0993

Sampled: 02/11/05
Received: 02/11/05

TOTAL PCBS (EPA 608)

Analyte	Methed	Batch	MDL Limit	Reporting Limit	Sample Result	Dillation Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OB0993-01 (Outfall 007 - Water) - cont.									
Reporting Units: ugh									
Aroclor 1016	EPA 608	5B15038	0.20	1.0	ND	0.971	02/15/05	02/15/05	
Aroclor 1221	EPA 608	5B15038	0.10	1.0	ND	0.971	02/15/05	02/15/05	
Aroclor 1232	EPA 608	5B15038	0.15	1.0	ND	0.971	02/15/05	02/15/05	
Aroclor 1242	EPA 608	5B15038	0.15	1.0	ND	0.971	02/15/05	02/15/05	
Aroclor 1248	EPA 608	5B15038	0.25	1.0	ND	0.971	02/15/05	02/15/05	
Aroclor 1254	EPA 608	5B15038	0.25	1.0	ND	0.971	02/15/05	02/15/05	
Aroclor 1260	EPA 608	5B15038	0.40	1.0	ND	0.971	02/15/05	02/15/05	
Surrogate: Decachlorobiphenyl (45-120\%)					93%				

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID: Annual Outfall 007	
300 North Lake Avenue, Suite 1200	Report Number: IOB0993	Sampled: 02/11/05 Pasadena, CA 91101
Received: 02/11/05		
Attention: Bronwyn Kelly		

			METALS						
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OB0993-01 (Outfall 007 - Water) - cont.									
Boron	EPA 200.7	5B17097	0.0074	0.050	0.034	1	02/17/05	02/17/05	J

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 007
Report Number: 1OB0993 Received: 02/11/05

			MET	LS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 10B0993-01 (Outfall 007 - Water) - cont.									
Reporting Units: ug/									
Aluminum	EPA 200.7	5B17097	47	50	5300	1	02/17/05	02/17/05	
Antimony	EPA 200.8	5B17099	0.18	2.0	2.7	1	02/17/05	02/17/05	B
Arsenic	EPA 200.7	5B17097	3.8	5.0	ND	1	02/17/05	02/17/05	
Beryllium	EPA 200.7	5B17097	0.62	2.0	ND	1	02/17/05	02/17/05	
Cadmium	EPA 200.8	SB17099	0.015	1.0	0.19	1	02/17/05	02/17/05	J
Chromium	EPA 200.7	5B17097	0.68	5.0	7.3	1	02/17/05	02/17/05	
Copper	EPA 200.8	5B17099	0.49	2.0	7.4	1	02/17/05	02/17/05	
Lead	EPA 200.8	5B17099	0.13	1.0	4.4	1	02/17/05	02/17/05	
Mercury	EPA 245.1	5B15070	0.063	0.20	0.19	1	02/15/05	02/15/05	J
Nickel	EPA 200.7	5B17097	2.0	10	5.5	1	02/17/05	02/17/05	J
Selenium	EPA 200.7	5B17097	4.6	5.0	ND	1	02/17/05	02/22/05	
Silver	EPA 200.7	5B17097	1.3	10	ND	1	02/17/05	02/17/05	
Thallium	EPA 200.8	5B17099	0.075	1.0	0.087	1	02/17/05	02/17/05	J
Vanadium	EPA 200.7	5817097	1.4	10	14	1	02/17/05	02/17/05	
Zinc	EPA 200.7	5B17097	3.7	20	38	1	02/17/05	02/17/05	

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 007
Report Number: IOB0993 Received: 02/11/05

Sampled: 02/11/05

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB0993-01 (Outfall 007-Water) - cont. Reporting Units: mg/									
Chloride	EPA 300.0	5811120	0.26	0.50	1.9	1	02/11/05	02/12/05	
Total Cyanide	EPA 335.2	5B14107	0.0022	0.0050	ND	1	02/14/05	02/14/05	
Nitrate/Nitrite-N	EPA 300.0	5B11120	0.072	0.26	0.49	1	02/11/05	02/12/05	
Oil \& Grease	EPA 413.1	5817117	0.94	5.0	ND	1	02/17/05	02/17/05	
Sulfate	EPA 300.0	5B11120	0.18	0.50	0.97	1	02/11/05	02/12/05	
Total Dissolved Solids	SM2540C	5B16118	10	10	110	1	02/16/05	02/16/05	
Total Suspended Solids	EPA 160.2	5B17069	10	10	70	1	02/17/05	02/17/05	

Del Mar Analytical, Irvine

Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 007

Report Number: IOB0993

Received: 02/11/05

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOB0993-01 (Outfall 007 - Water) - cont.									
Repor									
Perchlorate	EPA 314.0	5B16069	0.80	4.0	ND	1	02/16/05	02/16/05	

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly	Project ID: Annual Outfall 007			Sampled: 02/11/05	
	Report Number: 1OB0993			Received: 02/11/05	
SHORT HOLD TIME DETAIL REPORT					
	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 007 (IOB0993-01) - Water					
EPA 300.0	2	02/11/2005 10:50	02/11/2005 18:15	02/11/2005 23:00	02/12/2005 05:29
EPA 624	3	02/11/2005 10:50	02/11/2005 18:15	02/12/2005 00:00	02/12/2005 15:21
Sample ID: Trip Blanks (10B0993-02) - Water					
EPA 624	3	02/11/2005 14:20	02/11/2005 18:15	02/12/2005 00:00	02/12/2005 12:17

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 007
Report Number: 1OB0993 \quad Received: 02/11/05

METHOD BLANKIOC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source	\%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit

Blank Analyzed: 02/12/2005 (5B12011-BLK1)

Acrolein	ND	50	4.6	ug/l			
Acrylonitrile	ND	50	5.1	ug/l			
2-Chloroethyl vinyl ether	ND	5.0	1.3	ug/l			
Surrogate: Dibromofluoromethane	21.9			ug/	25.0	88	80-120
Surrogate: Toluene-d8	26.4			ug/l	25.0	106	80-120
Surrogate: 4-Bromofluorobenzene	24.3			ug/	25.0	97	80-120
LCS Analyzed: 02/12/2005 (5B12011-BS1)							
2-Chloroethyl vinyl ether	26.8	5.0	1.3	ug/l	25.0	107	20-175
Surrogate: Dibromofluoromethane	21.8			$u g /$	25.0	87	80-120
Surrogate: Toluene-d8	26.6			$u g / 7$	25.0	106	80-120
Surrogate; 4-Bromofluorobenzene	24.8			$u \mathrm{~g} / \mathrm{l}$	25.0	99	80-120

Matrix Splke Analyzed: $02 / 12 / 2005$ (5B12011-MS1)			Source: 10B0980-01							
2-Chloroethyl vinyl ether	27.2	5.0	1.3	ugh	25.0	ND	109	20-175		
Surrogate: Dibromofluoromethane	22.6			$u g /$	25.0		90	80-120		
Surrogate: Toluene-d8	26.3			ugh	25.0		105	80-120		
Surrogate: 4-Bromofluorobenzene	25.1			$u g /$	25.0		100	80-120		
Matrix Spike Dup Analyzed: 02/12/2005 (5B12011-MSD1)			Source: IOB0980-01							
2-Chloroethyl vinyl ether	27.5	5.0	1.3	ug/	25.0	ND	110	20-175	1	25
Surrogate: Dibromofluoromethane	22.7			ug/l	25.0		91	80-120		
Surrogate: Toluene-d8	26.4			ug/l	25.0		106	80-120		
Surrogate: 4-Bromofluorobenzene	24.8			ug/	25.0		99	80-120		

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID: Annual Outfall 007	
300 North Lake Avenue, Suite 1200	Report Number: IOB0993	Sampled: 02/11/05
Pasadena, CA 91101		Received: 02/11/05
Attention: Brenwyn Kelly		

METHOD BLANKIQC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte Result

Reporting			Spike	Source	\%REC		RPD	Data	
Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5B17020 Extracted: 02/17/05

Blank Analyzed: 02/17/2005 (5B17020-BLK1)

Benzene	ND
Bromodichloromethane	ND

Bromoform ND

Bromomethane ND
Chlorobenzene
Chtoroform
Chloromethane
Dibromochloromethane
1,2-Dichlorobenzene
1,3-Dichlorobenzene
1,4-Dichlorobenzene
1,1-Dichloroethane
1,2-Dichloroethane
1,1-Dichloroethene
trans-1,2-Dichloroethene
1,2-Dichloropropane
cis-1,3-Dichloropropene
trans-1,3-Dichloropropene
Ethylbenzene
Methylene chloride
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichloroethene
Trichlorofluoromethane
Vinyl chloride

1.0	0.28
2.0	0.30
5.0	0.32
5.0	0.34
0.50	0.28
2.0	0.36
5.0	0.33
2.0	0.33
5.0	0.30
2.0	0.28
2.0	0.32
2.0	0.35
2.0	0.37
2.0	0.27
0.50	0.28
5.0	0.32
2.0	0.27
2.0	0.35
2.0	0.22
2.0	0.24
2.0	0.25
5.0	0.48
2.0	0.24
2.0	0.32
2.0	0.36
2.0	0.30
2.0	0.30
2.0	0.26
5.0	0.34
0.50	0.26
4.0	0.52

ug/
ug/l
ug/l
ug/
ug/
ND
D

ND
27.0

Surrogate: Dibromofluoromethane
26.8

Surrogate: 4-Bromofluorobenzene

[^16]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 007
Report Number: $10 B 0993 \quad$ Received: 02/11/05

METHOD BLANKIOC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte Result

Reporting			Spike	Source	\%REC		RPD	Data	
Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5B17020 Extracted: 02/17/05
LCS Analyzed: 02/17/2005 (5B17020-BS1)

Benzene	24.5	1.0	0.28	ug/l	25.0	98	70-120
Bromodichloromethane	24.6	2.0	0.30	ugh	25.0	98	70-140
Bromoform	25.2	5.0	0.32	ugn	25.0	101	55-135
Bromomethane	26.6	5.0	0.34	ug/	25.0	106	60-140
Carbon tetrachloride	24.4	0.50	0.28	ug/	25.0	98	70-140
Chlorobenzene	24.2	2.0	0.36	ug/l	25.0	97	80-125
Chloroethane	25.7	5.0	0.33	ug/	25.0	103	60-145
Chloroform	25.0	2.0	0.33	ugh	25.0	100	75-130
Chloromethane	24.1	5.0	0.30	ug/	25.0	96	40-145
Dibromochloromethane	25.0	2.0	0.28	ug/	25.0	100	65-145
1,2-Dichlorobenzene	24.4	2.0	0.32	ug/	25.0	98	80-120
1,3-Dichlorobenzene	23.6	2.0	0.35	ug/	25.0	94	80-120
1,4-Dichlorobenzene	23.8	2.0	0.37	ug/	25.0	95	$80-120$
1,1-Dichloroethane	24.1	2.0	0.27	ugh	25.0	96	70-135
1,2-Dichloroethane	26.6	0.50	0.28	ug/	25.0	106	60-150
1,1-Dichloroethene	24.8	5.0	0.32	ug/	25.0	99	75-135
trans-1,2-Dichloroethene	24.5	2.0	0.27	ug/	25.0	98	70-130
1,2-Dichloropropane	24.2	2.0	0.35	ug/l	25.0	97	70-120
cis-1,3-Dichloropropene	25.3	2.0	0.22	ug/1	25.0	101	75-130
trans-1,3-Dichloropropene	26.2	2.0	0.24	$\mathrm{ug} / 1$	25.0	105	75-135
Ethylbenzene	25.7	2.0	0.25	ug/	25.0	103	80-120
Methylene chloride	25.2	5.0	0.48	ug/	25.0	101	60-135
1,1,2,2-Tetrachloroethane	26.7	2.0	0.24	ug/	25.0	107	60-135
Tetrachloroethene	23.0	2.0	0.32	ug/	25.0	92	75-125
Toluene	25.0	2.0	0.36	ug/	25.0	100	75-120
1,1,1-Trichloroethane	23.8	2.0	0.30	ug/	25.0	95	75-140
1,1,2-Trichloroethane	25.6	2.0	0.30	ug/	25.0	102	70-125
Trichloroethene	24.0	2.0	0.26	ug/	25.0	96	80-120
Trichlorofluoromethane	24.1	5.0	0.34	ug/	25.0	96	65-145
Vinyl chloride	25.3	0.50	0.26	ug/l	25.0	101	50-130
Surrogate: Dibromofluoromethane	27.1			ug/	25.0	108	80-120
Surrogate: Toluene-d8	27.1			$u g /$	25.0	108	80-120
Surrogate: 4-Bromofluorobenzene	27.3			$u g /$	25.0	109	80-120

[^17]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 007

Report Number: 1OB0993

Sampled: 02/11/05
Received: 02/11/05

METHOD BLANKIQC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte Batch: 5B17020 Extracted: 02/17/05 Matrix Spike Analyzed: 02/17/2005 (5B17020-MS1)

Reporting			Spike	Source	\%REC		RPD	Data	
Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Benzene	26.8	1.0	0.28	ugh	25.0	ND	107	70-120
Bromodichloromethane	27.4	2.0	0.30	ugh	25.0	ND	110	70-140
Bromoform	28.7	5.0	0.32	ug/	25.0	ND	115	55-140
Bromomethane	29.8	5.0	0.34	ug/	25.0	ND	119	50-145
Carbon tetrachloride	27.2	0.50	0.28	ugd	25.0	ND	109	70-145
Chlorobenzene	26.5	2.0	0.36	ugh	25.0	ND	106	80-125
Chloroethane	28.9	5.0	0.33	ugh	25.0	ND	116	50-145
Chloroform	27.9	2.0	0.33	ug/	25.0	ND	112	70-135
Chloromethane	26.2	5.0	0.30	ug/	25.0	ND	105	35-145
Dibromochloromethane	28.2	2.0	0.28	ug/	25.0	ND	113	65-145
1,2-Dichlorobenzene	27.0	2.0	0.32	ug/	25.0	ND	108	75-130
1,3-Dichlorobenzene	25.9	2.0	0.35	ug/	25.0	ND	104	75-130
14-Dichlorobenzene	26.1	2.0	0.37	ugn	25.0	ND	104	80-120
1,1-Dichloroethane	27.0	2.0	0.27	ug/	25.0	ND	108	65-135
1,2-Dichloroethane	27.5	0.50	0.28	ug/	25.0	ND	110	60-150
1,1-Dichloroethene	27.7	5.0	0.32	ug/	25.0	ND	111	65-140
trans-1,2-Dichloroethene	27.1	2.0	0.27	ugh	25.0	ND	108	65-135
1,2-Dichloropropane	26.6	2.0	0.35	ug/l	25.0	ND	106	65-130
cis-1,3-Dichloropropene	27.2	2.0	0.22	ug/	25.0	ND	109	70-140
trans-1,3-Dichloropropene	28.2	2.0	0.24	ug/	25.0	ND	113	70-140
Ethylbenzene	28.4	2.0	0.25	ugh	25.0	ND	114	70-130
Methylene chloride	27.7	5.0	0.48	ugh	25.0	ND	111	60-135
1,1,2,2-Tetrachloroethane	29.2	2.0	0.24	ug/	25.0	ND	117	60-145
Tetrachloroethene	25.2	2.0	0.32	ugh	25.0	ND	101	70-130
Toluene	27.1	2.0	0.36	ug/	25.0	ND	108	70-120
1,1,1-Trichloroethane	26.7	2.0	0.30	ug/	25.0	ND	107	75-140
1,1,2-Trichloroethane	27.8	2.0	0.30	ug/	25.0	ND	111	60-135
Trichloroethene	26.1	2.0	0.26	ug/	25.0	ND	104	70-125
Trichlorofluoromethane	27.8	5.0	0.34	ug/	25.0	ND	111	55-145
Vinyl chloride	28.6	0.50	0.26	ug/	25.0	ND	114	40-135
Surrogate: Dibromofluoromethane	28.2			ug/	25.0		113	80-120
Surrogate: Toluene-d8	27.3			ug/	25.0		109	80-120
Surrogate: 4-Bromofluorobenzene	28.2			$u g /$	25.0		113	80-120

[^18]MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 007
Report Number: IOB0993
Sampled: 02/11/05
Received: 02/11/05

METHOD BLANKIOC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source	\%REC		RPD	Data	
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5817020 Extracted: 02/17/05
Matrix Spike Dup Analyzed: 02/17/2005 (5B17020-MSD1)

Benzene	26.0	1.0	0.28	ug/l	25.0	ND	104	70-120	3	20
Bromodichloromethane	26.1	2.0	0.30	ug/l	25.0	ND	104	70-140	5	20
Bromoform	25.4	5.0	0.32	ug/l	25.0	ND	102	55-140	12	25
Bromomethane	28.7	5.0	0.34	ug/l	25.0	ND	115	50-145	4	25
Carbon tetrachloride	25.6	0.50	0.28	ug/l	25.0	ND	102	70-145	6	25
Chlorobenzene	25.1	2.0	0.36	ug/l	25.0	ND	100	80-125	5	20
Chloroethane	27.9	5.0	0.33	ug/l	25.0	ND	112	50-145	4	25
Chloroform	26.0	2.0	0.33	ug/l	25.0	ND	104	70-135	7	20
Chloromethane	26.0	5.0	0.30	ug/l	25.0	ND	104	35-145	1	25
Dibromochloromethane	25.4	2.0	0.28	ug/l	25.0	ND	102	65-145	10	25
1,2-Dichlorobenzene	25.7	2.0	0.32	ug/l	25.0	ND	103	75-130	5	20
1,3-Dichlorobenzene	24.9	2.0	0.35	ug/l	25.0	ND	100	$75-130$	4	20
1,4-Dichlorobenzene	24.9	2.0	0.37	ug/l	25.0	ND	100	80-120	5	20.
1,1-Dichloroethane	25.4	2.0	0.27	ug/l	25.0	ND	102	65-135	6	20
1,2-Dichloroethane	25.0	0.50	0.28	ug/l	25.0	ND	100	60-150	10	20
1,1-Dichloroethene	26.9	5.0	0.32	ug/	25.0	ND	108	65-140	3	20
trans-1,2-Dichloroethene	26.3	2.0	0.27	ug / l	25.0	ND	105	65-135	3	20
1,2-Dichloropropane	25.8	2.0	0.35	ug/l	25.0	ND	103	65-130	3	20
cis-1,3-Dichloropropene	25.9	2.0	0.22	ug/	25.0	ND	104	70-140	5	20
trans-1,3-Dichloropropene	26.5	2.0	0.24	ug/l	25.0	ND	106	70-140	6	25
Ethylbenzene	26.3	2.0	0.25	$u g / 1$	25.0	ND	105	70-130	8	20
Methylene chloride	26.4	5.0	0.48	ug/l	25.0	ND	106	60-135	5	20
1,1,2,2-Tetrachloroethane	27.2	2.0	0.24	ug/	25.0	ND	109	60-145	7	30
Tetrachloroethene	23.9	2.0	0.32	ug/l	25.0	ND	96	70-130	5	20
Toluene	26.3	2.0	0.36	ug/l	25.0	ND	105	70-120	3	20
1,1,1-Trichloroethane	24.6	2.0	0.30	ug/l	25.0	ND	98	75-140	8	20
1,1,2-Trichloroethane	25.8	2.0	0.30	ug/	25.0	ND	103	60-135	7	25
Trichloroethene	25.0	2.0	0.26	ug/	25.0	ND	100	70-125	4	20
Trichlorofluoromethane	25.7	5.0	0.34	ug/l	25.0	ND	103	55-145	8	25
Vinyl chloride	27.6	0.50	0.26	ug/	25.0	ND	110	40-135	4	30
Surrogate: Dibromofluoromethane	27.1			$u g / 7$	25.0		108	80-120		
Surrogate: Toluene-d8	27.2			ug/l	25.0		109	80-120		
Surrogate: 4-Bromofluorobenzene	26.9			$u g /$	25.0		108	80-120		

[^19]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 007
$\begin{array}{lr} & \text { Sampled: 02/11/05 } \\ \text { Report Number: } 10 B 0993 & \text { Received: 02/11/05 }\end{array}$

METHOD BLANKIOC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	$\begin{aligned} & \text { RPD } \\ & \text { Limit } \end{aligned}$	Data Qualifiers
Batch: 5B13024 Extracted: 02/13/05											

Blank Analyzed: 02/15/2005 (5B13024-BLK1)

Acenaphthene	ND	10	4.3	ug/
Acenaphthylene	ND	10	3.2	ug/
Aniline	ND	10	2.9	ug/
Anthracene	ND	10	3.2	ug/
Benzidine	ND	20	5.2	ugh
Benzoic acid	ND	20	2.6	ug/
Benzo(a)anthracene	ND	10	3.7	ug/
Benzo(b)fluoranthene	ND	10	2.7	ug/1
Benzo(k)fluoranthene	ND	10	3.4	ug/
Benzo(g,h,i)perylene	ND	10	5.3	ug/
Benzo(a)pyrene	ND	10	3.5	ug/
Benzyl alcohol	ND	20	2.5	ug/
Bis(2-chloroethoxy)methane	ND	10	3.9	ag1
Bis(2-chloroethyl)ether	ND	10	4.4	ug/
Bis(2-chloroisopropyl)ether	ND	10	4.6	ug/
Bis(2-ethylhexyl)phthalate	ND	50	5.2	ug/
4-Bromophenyl phenyl ether	ND	10	4.6	ug/
Butyl benzyl phthalate	ND	20	3.5	ug/
4-Chloroaniline	ND	10	6.0	ug/
2-Chioronaphthalene	ND	10	4.0	ug/
4-Chloro-3-methylphenol	ND	20	3.5	ug/
2-Chlorophenol	ND	10	4.2	ug/
4-Chlorophenyl phenyl ether	ND	10	3.0	ug/
Chrysene	ND	10	2.8	ug/
Dibenz(a,h)anthracene	ND	20	4.7	ug/
Dibenzofuran	ND	10	2.6	ug/1
Di-n-butyl phthalate	ND	20	2.8	ug/
1,3-Dichlorobenzene	ND	10	4.1	ug/
1,4-Dichlorobenzene	ND	10	3.9	ug/
1,2-Dichlorobenzene	ND	10	4.5	ug/
3,3-Dichlorobenzidine	ND	20	11	ug/
2,4-Dichlorophenol	ND	10	4.1	ug/
Diethyl phthalate	ND	10	3.1	ug/
2,4-Dimethylphenol	ND	20	4.4	ug/
Dimethyl phthalate	ND	10	3.6	ug/

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 007

Report Number: 1OB0993 Received: 02/11/05

METHOD BLANKIQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)
Analyte
Batch: 5B13024 Extracted: 02/13/05

Blank Analyzed: 02/15/2005 (5B13024-BLK1)

4,6-Dinitro-2-methylphenol	ND	20	5.1
2,4-Dinitrophenol	ND	20	5.3
2,4-Dinitrotoluene	ND	10	4.2
2,6-Dinitrotoluene	ND	10	3.2
Di-n-octyl phthalate	ND	20	4.7
Fluoranthene	ND	10	4.2
Fluorene	ND	10	3.9
Hexachlorobenzene	ND	10	4.8
Hexachlorobutadiene	ND	10	4.2
Hexachlorocyclopentadiene	ND	20	3.4
Hexachloroethane	ND	10	4.2
Indeno(1,2,3-cd)pyrene	ND	20	5.4
Isoplorone	ND	10	3.7
2-Methylnaphthalene	ND	10	3.0
2-Methylphenol	ND	10	3.7
4-Methylphenol	ND	10	3.8
Naphthalene	ND	10	4.5
2-Nitroaniline	ND	20	3.9
3-Nitroaniline	ND	20	4.5
4-Nitroaniline	ND	20	4.9
Nitrobenzene	ND	20	4.2
2-Nitrophenol	ND	10	4.2
4-Nitrophenol	ND	20	6.6
N -Nitrosodiphenylamine	ND	10	4.0
N-Nitroso-di-n-propylamine	ND	10	3.6
Pentachlorophenol	ND	20	4.0
Phenanthrene	ND	10	3.3
Phenol	ND	10	4.0
Pyrene	ND	10	3.9
1,2,4-Trichlorobenzene	ND	10	4.4
2,4,5-Trichlorophenol	ND	20	3.6
2,4,6-Trichlorophenol	ND	20	4.1
1,2-Diphenylhydrazine/Azobenzene	ND	20	5.0
N-Nitrosodimethylamine	ND	20	3.7
Surrogate: 2-Fluorophenol	141		

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager
Reporting
Limit

MDL Units | Spike |
| :--- |

Source		\%REC		RPD
Result	\%REC	Limits	RPD	Limit

Data
Qualifiers

Result \%REC Limits RPD

Batch: 5B13024 Extracted: 02/13/05

Result
Limit

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 007
Report Number: $10 B 0993 \quad$ Received: 02/11/05

MIUIOD BHANKIQCDATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

| | | Reporting | | | | Spike | Source | \%REC | | RPD | Data |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Analyte | Result | Limit | MDL | Units | Level | Result | \%REC | Limits | RPD | Limit | Qualifiers |

Batch: 5B13024 Extracted: 02/13/05

Blank Analyzed: 02/15/2005 (5B13024-BLK1)

Surrogate: Phenol-d6	152
Surrogate: $2,4,6$-Tribromophenol	189
Surrogate: Nitrobenzene-d5	82.2
Surrogate: 2 -Fluorobiphenyl	86.8
Surrogate: Terphenyl-d14	87.1

LCS Analyzed: 02/15/2005 (5B13024-BS1)
Acenaphthene
Acenaphthylene
Aniline
Anthracene
Benzidine
Benzoicacid
Benzo(a)anthracene
Benzo(b)fluoranthene
Benzo(k)fluoranthene
Benzo(g,h,i)perylene
Benzo(a)pyrene
Benzyl alcohol
Bis(2-chloroethoxy)methane
Bis(2-chloroethyl)ether

Bis(2-chloroisopropyl)ether
Bis(2-ethylhexyl)phthalate
4-Bromophenyl phenyl ether
Butyl benzyl phthalate
4-Chloroaniline
2-Chloronaphthalene
4-Chloro-3-methylphenol
2-Chlorophenol
4-Chlorophenyl phenyl ether
Chrysene
Dibenz(a,h)anthracene
Dibenzofuran
Di-n-butyl phthalate
1,3-Dichlorobenzene
1,4-Dichlorobenzene

```
87.1
```152189

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 007
Report Number: \(10 B 0993\)

Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKIQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Oualifiers \\
\hline
\end{tabular}

LCS Analyzed: 02/15/2005 (5B13024-BS1)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1,2-Dichlorobenzene & 63.4 & 10 & 4.5 & ug/l & 100 & 63 & 40-120 \\
\hline 3,3-Dichlorobenzidine & 101 & 20 & 11 & ug/l & 100 & 101 & 50-170 \\
\hline 2,4-Dichlorophenol & 81.8 & 10 & 4.1 & ug/l & 100 & 82 & 55-120 \\
\hline Diethyl phthalate & 76.5 & 10 & 3.1 & ug/l & 100 & 76 & 60-120 \\
\hline 2,4-Dimethylphenol & 65.9 & 20 & 4.4 & ug/l & 100 & 66 & 35-120 \\
\hline Dimethyl phthalate & 80.9 & 10 & 3.6 & ug/l & 100 & 81 & 60-120 \\
\hline 4,6-Dinitro-2-methylphenol & 80.0 & 20 & 5.1 & ug/l & 100 & 80 & \(55-120\) \\
\hline 2,4-Dinitrophenol & 77.4 & 20 & 5.3 & ug/l & 100 & 77 & 40-140 \\
\hline 2,4-Dinitrotoluene & 81.4 & 10 & 4.2 & ug/ & 100 & 81 & 60-140 \\
\hline 2,6-Dinitrotoluene & 77.3 & 10 & 3.2 & ugl & 100 & 77 & 65-125 \\
\hline Di-n-octyl phthalate & 86.1 & 20 & 4.7 & ug/l & 100 & 86 & 60-130 \\
\hline Fluoranthene & 91.5 & 10 & 4.2 & \(\mathrm{ug} / 1\) & 100 & 92 & 55-125 \\
\hline Fluorene & 87.4 & 10 & 3.9 & ug/ & 100 & 87 & 60-120 \\
\hline Hexachlorobenzene & 83.3 & - 10 & 4.8 & ugl & 100 & 83 & 50-120 \\
\hline Hexachlorobutadiene & 71.6 & 10 & 4.2 & ug/l & 100 & 72 & 45-120 \\
\hline Hexachlorocyclopentadiene & 63.9 & 20 & 3.4 & ug/l & 100 & 64 & 10-130 \\
\hline Hexachloroethane & 60.9 & 10 & 4.2 & ug/l & 100 & 61 & 40-120 \\
\hline Indeno(1,2,3-cd)pyrene & 85.2 & 20 & 5.4 & \(\mathrm{ug} / \mathrm{l}\) & 100 & 85 & 35-150 \\
\hline Isophorone & 77.0 & 10 & 3.7 & ug/l & 100 & 77 & 55-120 \\
\hline 2-Methylnaphthalene & 82.7 & 10 & 3.0 & ug/l & 100 & 83 & 50-120 \\
\hline 2-Methylphenol & 72.5 & 10 & 3.7 & ug/l & 100 & 72 & 45-120 \\
\hline 4-Methylphenol & 74.6 & 10 & 3.8 & ug/l & 100 & 75 & 45-120 \\
\hline Naphthalene & 80.2 & 10 & 4.5 & ug/l & 100 & 80 & 50-120 \\
\hline 2-Nitroaniline & 88.9 & 20 & 3.9 & ug/l & 100 & 89 & 60-130 \\
\hline 3-Nitroaniline & 83.1 & 20 & 4.5 & ug/l & 100 & 83 & 50-140 \\
\hline 4-Nitroaniline & 85.5 & 20 & 4.9 & ug/ & 100 & 86 & 45-160 \\
\hline Nitrobenzene & 72.2 & 20 & 4.2 & ug/l & 100 & 72 & 50-120 \\
\hline 2-Nitrophenol & 80.7 & 10 & 4.2 & ug/ & 100 & 81 & 55-120 \\
\hline 4-Nitrophenol & 78.9 & 20 & 6.6 & ug/ & 100 & 79 & 50-135 \\
\hline N -Nitrosodiphenylamine & 76.0 & 10 & 4.0 & ug/l & 100 & 76 & 60-120 \\
\hline N-Nitroso-di-n-propylamine & 71.2 & 10 & 3.6 & ug/l & 100 & 71 & 50-120 \\
\hline Pentachlorophenol & 88.6 & 20 & 4.0 & ug/ & 100 & 89 & 50-125 \\
\hline Phenanthrene & 80.8 & 10 & 3.3 & ug/l & 100 & 81 & 55-120 \\
\hline Phenol & 74.0 & 10 & 4.0 & ug/l & 100 & 74 & 45-120 \\
\hline Pyrene & 85.3 & 10 & 3.9 & ug/1 & 100 & 85 & 50-120 \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 007
Report Number: IOB0993
Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKIQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
Analyte Result

Batch: 5B13024 Extracted: 02/13/05
LCS Analyzed: 02/15/2005 (5B13024-BS1)
\begin{tabular}{lc}
1,2,4-Trichlorobenzene & 72.0 \\
2,4,5-Trichlorophenol & 85.4 \\
2,4,6-Trichlorophenol & 87.6 \\
1,2-Diphenylhydrazine/Azobenzene & 85.6 \\
N-Nitrosodimethylamine & 71.1 \\
Surrogate: 2-Fluorophenol & 133 \\
Surrogate: Phenol-d6 & 143 \\
Surrogate: 2,4,6-Tribromophenol & 177 \\
Surrogate: Nitrobenzene-d5 & 75.4 \\
Surrogate: 2-Fluorobiphenyl & 79.5 \\
Surrogate: Terphenyl-dl4 & 78.6
\end{tabular}

LCS Dup Analyzed: 02/15/2005 (5B13024-BSD1)
Acenaphthene
86.2

Acenaphthylene
Aniline
Anthracene
Benzidine
Benzoic acid
Benzo(a)anthracene
Benzo(b)fluoranthene
Benzo(k)fluoranthene
Benzo(g,h,i)perylene
Benzo(a)pyrene
Benzyl alcohol
Bis(2-chloroethoxy)methane
Bis(2-chloroethyl)ether
Bis(2-chloroisopropyl)ether
Bis(2-ethythexyl)phthalate
4-Bromophenyl phenyl ether
Butyl benzyl phthalate
4-Chloroaniline
2-Chloronaphthalene
4-Chloro-3-methylphenol
90.7

2-Chlorophenol
4-Chlorophenyl phenyl ether
Result
\begin{tabular}{cccccccccc}
Reporting & & & \begin{tabular}{l}
Spike \\
Limit
\end{tabular} & MDL & Source & \%REC & & RPD & Data \\
Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 007
Report Number: IOB0993
Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKIQC DATA}

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)
\begin{tabular}{lllllllllll}
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit
\end{tabular} Qualifiers

LCS Dup Analyzed: 02/15/2005 (5B13024-BSD1)
\begin{tabular}{lr}
Chrysene & 90.6 \\
Dibenz(a,h)anthracene & 103 \\
Dibenzofuran & 87.2 \\
Di-n-butyl phthalate & 86.8 \\
1,3-Dichlorobenzene & 59.7 \\
1,4-Dichlorobenzene & 63.0 \\
1,2-Dichlorobenzene & 62.9 \\
3,3-Dichlorobenzidine & 114 \\
2,4-Dichlorophenol & 84.2 \\
Diethyl phthalate & 80.6 \\
2,4-Dimethylphenol & 72.1 \\
Dimethyl phthalate & 84.3 \\
4, 6 -Dinitr-2-methylphenol & 84.0 \\
2,4-Dinitrophenol & 80.3 \\
2,4-Dinitrotoluene & 86.3 \\
2,6-Dinitrotoluene & 80.3 \\
Di-tu-ctyl phthatate & 96.4 \\
Fluoranthene & 96.3 \\
Fluorene & 91.9 \\
Hexachlorobenzene & 87.5 \\
Hexachlorobutadiene & 73.2 \\
Hexachlorocyclopentadiene & 66.5 \\
Hexachloroethane & 60.4 \\
Indeno(1,2,3-cd)pyrene & 98.6 \\
Isophorone & 81.3 \\
2-Methyinaphthalene & 86.1 \\
2-Methylphenol & 75.6 \\
4-Methylphenol & 78.2 \\
Naphthalene & 83.1 \\
2-Nitroaniline & 91.5 \\
3-Nitroaniline & 88.6 \\
4-Nitroaniline & 94.4 \\
Nitrobenzene & 74.6 \\
2-Nitrophenol & 83.0 \\
4-Nitrophenol & 81.6 \\
& \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\section*{Project ID: Annual Outfall 007}

Report Number: \(10 B 0993\) Received: 02/11/05

\section*{METHOD BLANKIQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
Analyte Result

\section*{Batch: 5B13024 Extracted: 02/13/05}

LCS Dup Analyzed: 02/15/2005 (5B13024-BSD1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline N -Nitrosodiphenylamine & 80.6 & 10 & 4.0 & ugl & 100 & 81 & 60-120 & 6 & 20 \\
\hline N -Nitroso-di-n-propylamine & 75.1 & 10 & 3.6 & ug/l & 100 & 75 & 50-120 & 5 & 20 \\
\hline Pentachlorophenol & 92.7 & 20 & 4.0 & ughl & 100 & 93 & 50-125 & 5 & 25 \\
\hline Phenanthrene & 86.6 & 10 & 3.3 & ugl & 100 & 87 & 55-120 & 7 & 20 \\
\hline Phenol & 75.1 & 10 & 4.0 & ug/ & 100 & 75 & 45-120 & 1 & 25 \\
\hline Pyrene & 88.4 & 10 & 3.9 & ug/ & 100 & 88 & 50-120 & 4 & 25 \\
\hline 1,2,4-Trichlorobenzene & 73.0 & 10 & 4.4 & ug/l & 100 & 73 & 50-120 & 1 & 20 \\
\hline 2,4,5-Trichlorophenol & 88.6 & 20 & 3.6 & ugh & 100 & 89 & 60-120 & 4 & 20 \\
\hline 2,4,6-Trichlorophenol & 89.5 & 20 & 4.1 & ug/ & 100 & 90 & 60-120 & 2 & 20 \\
\hline 1,2-Diphenylhydrazine/Azobenzene & 90.2 & 20 & 5.0 & ug/ & 100 & 90 & 60-120 & 5 & 25 \\
\hline N -Nitrosedimethylamine & 71.1 & 20 & 3.7 & ug/1 & 100 & 71 & 40-120 & 0 & 20 \\
\hline Surrogate: 2-Fluorophenol & 128 & & & ugh & 200 & 64 & 35-120 & & \\
\hline Surrogate: Phenol-do & 141 & & & ugh & 200 & 70 & 45-120 & & \\
\hline Surrogate: 2,4,6-Tribromophenol & 185 & & & ugh & 200 & 92 & 50-125 & & \\
\hline Surrogate: Nitrobenzene-d5 & 76.5 & & & ug/ & 100 & 76 & 45-120 & & \\
\hline Surrogate: 2-Fluorobiphenyl & 79.4 & & & ug/ & 100 & 79 & 45-120 & & \\
\hline Surrogate: Terphenyl-d14 & 82.3 & & & ug/ & 100 & 82 & 45-135 & & \\
\hline
\end{tabular}

Batch: 5B17041 Extracted: 02/17/05
Blank Analyzed: 02/22/2005 (5B17041-BLK1)
\begin{tabular}{lc}
Benzidine & ND \\
Surrogate: 2-Fluorophenol & 110 \\
Surrogate: Phenol-d6 & 121 \\
Surrogate: \(2,4,6\)-Tribromophenol & 144 \\
Surrogate: Nitrobenzene-d5 & 66.4 \\
Surrogate: 2 -Fluorobiphenyl & 70.0 \\
Surrogate: Terphenyl-d14 & 67.5
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager
\begin{tabular}{cccccccccc}
Reperting & & & Spike & Source & \%REC & & RPD & Data \\
Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

\title{
Del Mar Analytical
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 007
Report Number: IOB0993

Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKIQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & \begin{tabular}{l}
Data \\
Qualifiers
\end{tabular} \\
\hline \multicolumn{12}{|l|}{Batch: 5817041 Extracted: 02/17/05} \\
\hline LCS Analyzed: 02/22/2005 (51 & & & & & & & & & & & M-NR1 \\
\hline Benzidine & 145 & 20 & 5.2 & ug/1 & 100 & & 145 & 20-180 & & & \\
\hline Surrogate: 2-Fluorophenol & 120 & & & \(u g /\) & 200 & & 60 & 35-120 & & & \\
\hline Surrogate: Phenol-d6 & 138 & & & \(u g /\) & 200 & & 69 & 45-120 & & & \\
\hline Surrogate: 2,4,6-Tribromophenol & 164 & & & \(u g / l\) & 200 & & 82 & 50-125 & & & \\
\hline Surrogate: Nitrobenzene-d5 & 74.1 & & & \(u g / l\) & 100 & & 74 & 45-120 & & & \\
\hline Surrogate: 2-Fluorobiphenyl & 73.0 & & & \(u g / 1\) & 100 & & 73 & 45-120 & & & \\
\hline Surrogate: Terphenyl-d14 & 85.2 & & & \(u g /\) & 100 & & 85 & 45-135 & & & \\
\hline \multicolumn{12}{|l|}{LCS Dup Analyzed: 02/22/2005 (5B17041-BSD1)} \\
\hline Benzidine & 149 & 20 & 5.2 & ug/ & 100 & & 149 & 20-180 & 3 & 35 & \\
\hline Surrogate: 2-Fluorophenol & 120 & & & \(u g /\) & 200 & & 60 & 35-120 & & & \\
\hline Surrogate: Phenol-d6 & 132 & & & \(u g /\) & 200 & & 66 & 45-120 & & & \\
\hline Surrogate: 2,4,6-Tribromophenol & 163 & \(\cdots\) & & \(u g /\) & 200 & & 82 & 50-125 & & - & - \\
\hline Surrogate Nitrabenzene-d5 & 76.0 & & & \(u g h\) & 100 & & 76 & 45-120 & & & \\
\hline Surrogate: 2-Fluorobiphenyl & 74.0 & & & \(u g / 1\) & 100 & & 74 & 45-120 & & & \\
\hline Surrogate: Terphenyl-d14 & 84.4 & & & \(u g /\) & 100 & & 84 & 45-135 & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\title{
Del Mar Analytical
}

\section*{MWH-Pasadena/Boeing}

300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 007
Sampled: 02/11/05
Report Number: IOB0993 Received: 02/11/05

\section*{METHOD BLANKIQC DATA}

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & \begin{tabular}{l}
Data \\
Qualifiers
\end{tabular} \\
\hline \multicolumn{12}{|l|}{Batch: 5B15038 Extracted: 02/15/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 02/15/2005-02/16/2005 (5B15038-BLK1)} \\
\hline Aldrin & ND & 0.10 & 0.030 & ug/ & & & & & & & \\
\hline alpha-BHC & ND & 0.10 & 0.015 & ug/ & & & & & & & \\
\hline beta-BHC & ND & 0.10 & 0.015 & ug/ & & & & & & & \\
\hline delta-BHC & ND & 0.20 & 0.020 & ug/ & & & & & & & \\
\hline gamma-BHC (Lindane) & ND & 0.10 & 0.015 & ug/ & & & & & & & \\
\hline Chlordane & ND & 1.0 & 0.20 & ug/ & & & & & & & \\
\hline 4,4'-DDD & ND & 0.10 & 0.015 & ugh & & & & & & & \\
\hline 4,4-DDE & ND & 0.10 & 0.020 & ug/ & & & & & & & \\
\hline 4,4'-DDT & ND & 0.10 & 0.030 & ug/ & & & & & & & \\
\hline Dieldrin & ND & 0.10 & 0.015 & ug/ & & & & & & & \\
\hline Endosulfan I & ND & 0.10 & 0.015 & ug/ & & & & & & & \\
\hline Endosulfan II & ND & 0.10 & 0.040 & ug/ & & & & & & & \\
\hline Endosulfan sulfate & ND & 0.20 & 0.015 & ugh & & & & & & & \\
\hline Endin & ND & 0.10 & 0.015 & ugh & & & & & & & \\
\hline Endrin aldehyde & ND & 0.10 & 0.045 & ug/ & & & & & & & \\
\hline Endrin ketone & ND & 0.10 & 0.020 & ugh & & & & & & & \\
\hline Heptachlor & ND & 0.10 & 0.030 & ug/ & & & & & & & \\
\hline Heptachlor epoxide & ND & 0.10 & 0.020 & ug/ & & & & & & & \\
\hline Methoxychlor & ND & 0.10 & 0.035 & ug/1 & & & & & & & \\
\hline Toxaphene & ND & 5.0 & 1.5 & ug/ & & & & & & & \\
\hline Surrogate: Tetrachloro-mxxylene & 0.329 & & & ug/ & 0.500 & & 66 & 35-120 & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.459 & & & ug/ & 0.500 & & 92 & 45-120 & & & \\
\hline LCS Analyzed: 02/16/2005 (5B15038-BS1) & & & & & & & & & & & M-NR1 \\
\hline Aldrin & 0.248 & 0.10 & 0.030 & ug/ & 0.500 & & 50 & 45-115 & & & \\
\hline alpha-BHC & 0.267 & 0.10 & 0.015 & ug/ & 0.500 & & 53 & 45-115 & & & \\
\hline beta-BHC & 0.328 & 0.10 & 0.015 & ug/ & 0.500 & & 66 & 50-115 & & & \\
\hline delta-BHC & 0.322 & 0.20 & 0.020 & ug/1 & 0.500 & & 64 & 55-120 & & & \\
\hline gamma-BHC (Lindane) & 0.283 & 0.10 & 0.015 & ug/ & 0.500 & & 57 & 45-115 & & & \\
\hline 4,4'-DDD & 0.346 & 0.10 & 0.015 & ug/ & 0.500 & & 69 & 60-120 & & & \\
\hline 4,4'-DDE & 0.331 & 0.10 & 0.020 & ug/1 & 0.500 & & 66 & 55-120 & & & \\
\hline 4,4'-DDT & 0.328 & 0.10 & 0.030 & ug/ & 0.500 & & 66 & 60-130 & & & \\
\hline Dieldrin & 0.330 & 0.10 & 0.015 & ug/ & 0.500 & & 66 & 55-120 & & & \\
\hline Endosulfan I & 0.319 & 0.10 & 0.015 & ug/ & 0.500 & & 64 & 50-115 & & & \\
\hline Endosulfan II & 0.337 & 0.10 & 0.040 & ug/ & 0.500 & & 67 & 60-125 & & & \\
\hline Endosulfan sulfate & 0.354 & 0.20 & 0.015 & ug/ & 0.500 & & 71 & 60-120 & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

\title{
Del Mar Analytical
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\section*{Project ID: Annual Outfall 007}

Report Number: 1OB0993 Received: 02/11/05

\section*{METHOD BLANKIQC DATA}

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5B15038 Extracted: 02/15/05} \\
\hline LCS Analyzed: 02/16/2005 (5) & & & & & & & & & & & M-NR1 \\
\hline Endrin & 0.329 & 0.10 & 0.015 & ug/ & 0.500 & & 66 & 55-125 & & & \\
\hline Endrin aldehyde & 0.346 & 0.10 & 0.045 & ug/ & 0.500 & & 69 & 55-115 & & & \\
\hline Endrin ketone & 0.364 & 0.10 & 0.020 & ug/ & 0.500 & & 73 & 60-120 & & & \\
\hline Heptachlor & 0.278 & 0.10 & 0.030 & ug/ & 0.500 & & 56 & 45-115 & & & \\
\hline Heptachlor epoxide & 0.315 & 0.10 & 0.020 & ug/ & 0.500 & & 63 & 50-120 & & & \\
\hline Methoxychlor & 0.365 & 0.10 & 0.035 & ug/l & 0.500 & & 73 & 60-135 & & & \\
\hline Surrogate: Tetrachloro-m-xylene & 0.241 & & & ug/ & 0.500 & & 48 & 35-120 & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.337 & & & ug/ & 0.500 & & 67 & 45-120 & & & \\
\hline \multicolumn{12}{|l|}{LCS Dup Analyzed: 02/16/2005 (5B15038-BSD1)} \\
\hline Aldrin & 0.288 & 0.10 & 0.030 & ug/ & 0.500 & & 58 & 45-115 & 15 & 30 & \\
\hline alpha-BHC & 0.282 & 0.10 & 0.015 & ug/ & 0.500 & & 56 & 45-115 & 5 & 30 & \\
\hline beta BHC & 0.395 & 0.10 & 0.015 & ug/ & 0.500 & & 79 & 50.115 & 19 & 30 & \% \\
\hline delta-BHC & 0395 & 0.20 & 0.020 & ugn & 0.500 & & 79 & 55-120 & 20 & 30 & \\
\hline gamma-BHC (Lindane) & 0.320 & 0.10 & 0.015 & ug/ & 0.500 & & 64 & 45-115 & 12 & 30 & \\
\hline 4,4*-DDD & 0.435 & 0.10 & 0.015 & ug/ & 0.500 & & 87 & 60-120 & 23 & 30 & \\
\hline 4,4'-DDE & 0.413 & 0.10 & 0.020 & ug/1 & 0.500 & & 83 & 55-120 & 22 & 30 & \\
\hline 4,4-DDT & 0.411 & 0.10 & 0.030 & ug/l & 0.500 & & 82 & 60-130 & 22 & 30 & \\
\hline Dieldrin & 0.407 & 0.10 & 0.015 & ug/ & 0.500 & & 81 & 55-120 & 21 & 30 & \\
\hline Endosulfan I & 0.387 & 0.10 & 0.015 & ug/ & 0.500 & & 77 & 50-115 & 19 & 30 & \\
\hline Endosulfan II & 0.420 & 0.10 & 0.040 & ug/ & 0.500 & & 84 & 60-125 & 22 & 30 & \\
\hline Endosulfan sulfate & 0.437 & 0.20 & 0.015 & ug/ & 0.500 & & 87 & 60-120 & 21 & 30 & \\
\hline Endrin & 0.407 & 0.10 & 0.015 & ug/ & 0.500 & & 81 & 55-125 & 21 & 30 & \\
\hline Endrin aldehyde & 0.420 & 0.10 & 0.045 & ug/1 & 0.500 & & 84 & 55-115 & 19 & 30 & \\
\hline Endrin ketone & 0.452 & 0.10 & 0.020 & ug/ & 0.500 & & 90 & 60-120 & 22 & 30 & \\
\hline Heptachlor & 0.311 & 0.10 & 0.030 & ugl & 0.500 & & 62 & 45-115 & 11 & 30 & \\
\hline Heptachlor epoxide & 0.377 & 0.10 & 0.020 & ug/ & 0.500 & & 75 & 50-120 & 18 & 30 & \\
\hline Methoxychlor & 0.455 & 0.10 & 0.035 & ugh & 0.500 & & 91 & 60-135 & 22 & 30 & \\
\hline Surrogate: Tetrachloro-m-xylene & 0.190 & & & \(u g /\) & 0.500 & & 38 & 35-120 & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.412 & & & ug/l & 0.500 & & 82 & 45-120 & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 007
Report Number: IOB0993 Received: 02/11/05
METHOD BLANKIQC DATA

TOTAL PCBS (EPA 608)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & Reporting & & & Spike & Source & & \%REC & & RPD & Data \\
\hline Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers \\
\hline
\end{tabular}

\section*{Batch: 5815038 Extracted: 02/15/05}

Blank Analyzed: 02/15/2005-02/16/2005 (5B15038-BLK1)
\begin{tabular}{lclll}
Aroclor 1016 & ND & 1.0 & 0.20 & \(\mathrm{ug} /\) \\
Aroclor 1221 & ND & 1.0 & 0.10 & \(\mathrm{ug} /\) \\
Aroclor 1232 & ND & 1.0 & 0.15 & \(\mathrm{ug} /\) \\
Aroclor 1242 & ND & 1.0 & 0.15 & \(\mathrm{ug} /\) \\
Arocior 1248 & ND & 1.0 & 0.25 & \(\mathrm{ug} / \mathrm{l}\) \\
Aroclor 1254 & ND & 1.0 & 0.25 & \(\mathrm{ug} /\) \\
Aroclor 1260 & ND & 1.0 & 0.40 & \(\mathrm{ug} /\) \\
Surrogate: Decachlorobiphenyl & 0.410 & & & \(\mathrm{ug} / l\)
\end{tabular}

LCS Analyzed: 02/15/2005 (5B15038-BS2)
\begin{tabular}{lccc}
Aroclor 1016 & 2.88 & 1.0 & 0.20 \\
Aroclor 1260 & 3.29 & 1.0 & 0.40 \\
Surrogate: Decachlorobiphenyl & 0.444 & & \(\ddots\)
\end{tabular}

LCS Dup Analyzed: 02/15/2005 (5B15038-BSD2)
\begin{tabular}{llllllllll}
Aroclor 1016 & 2.51 & 1.0 & 0.20 & \(\mathrm{ug} / 1\) & 4.00 & 63 & \(50-115\) & 14 & 30 \\
Aroclor 1260 & 2.99 & 1.0 & 0.40 & \(\mathrm{ug} /\) & 4.00 & 75 & \(60-115\) & 10 & 25 \\
Surrogate: Decachlorobiphenyl & 0.404 & & & ug \(/ 1\) & 0.500 & 81 & \(45-120\) & &
\end{tabular}

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 007
Report Number: \(10 B 0993 \quad \begin{gathered}\text { Sampled: } 02 / 11 / 05 \\ \text { Received: } 02 / 11 / 05\end{gathered}\)

\section*{METHOD BLANKIQC DATA}

\section*{METALS}

Batch: 5B17097 Extracted: 02/17/05
Blank Analyzed: 02/17/2005 (5B17097-BLK1)
\begin{tabular}{|c|c|c|c|}
\hline Aluminum & ND & 50 & 47 \\
\hline Arsenic & ND & 5.0 & 3.8 \\
\hline Beryllium & ND & 2.0 & 0.62 \\
\hline Boron & ND & 0.050 & 0.0074 \\
\hline Chromium & ND & 5.0 & 0.68 \\
\hline Nickel & ND & 10 & 2.0 \\
\hline Selenium & ND & 5.0 & 4.6 \\
\hline Silver & ND & 10 & 1.3 \\
\hline Vanadium & ND & 10 & 1.4 \\
\hline Zinc & ND & 20 & 3.7 \\
\hline
\end{tabular}

LCS Analyzed: 02/17/2005 (5B17097-BS1)
\begin{tabular}{lccccccc}
Aluminum & 464 & 50 & 47 & \(\mathrm{ug} /\) & 500 & 93 & \(85-115\) \\
Arsenic & 514 & 5.0 & 3.8 & \(\mathrm{ug} /\) & 500 & 103 & \(85-115\) \\
Beryllium & 502 & 2.0 & 0.62 & \(\mathrm{ug} / \mathrm{l}\) & 500 & 100 & \(85-115\) \\
Boron & 0.474 & 0.050 & 0.0074 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 95 & \(85-115\) \\
Chromium & 517 & 5.0 & 0.68 & \(\mathrm{ug} / \mathrm{l}\) & 500 & 103 & \(85-115\) \\
Nickel & 508 & 10 & 2.0 & \(\mathrm{ug} /\) & 500 & 102 & \(85-115\) \\
Selenium & 514 & 5.0 & 4.6 & \(\mathrm{ug} /\) & 500 & 103 & \(85-115\) \\
Silver & 258 & 10 & 1.3 & \(\mathrm{ug} / \mathrm{l}\) & 250 & 103 & \(85-115\) \\
Vanadium & 512 & 10 & 1.4 & \(\mathrm{ug} / \mathrm{l}\) & 500 & 102 & \(85-115\) \\
Zinc & 503 & 20 & 3.7 & \(\mathrm{ug} / 1\) & 500 & 101 & \(85-115\)
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

17461Derian Ave., Sulte 100, ivine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Sulte A, Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Sulte B-120, Phoerix, AZ 85044 (480) 785-0043 FAX (480) 785-085 2520 E. Sunset Rc. *3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 007
Report Number: IOB0993
Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKKOC DATA}

\section*{METALS}

Batch: 5B17097 Extracted: 02/17/05

Matrix Spike Analyzed: 02/17/2005 (5B17097-MS1)
\begin{tabular}{lcccccccc}
Aluminum & 1690 & 50 & 47 & ug/ & 500 & 880 & 162 & \(70-130\) \\
Arsenic & 516 & 5.0 & 3.8 & ug/ & 500 & ND & 103 & \(70-130\) \\
Beryllium & 506 & 2.0 & 0.62 & ug/ & 500 & ND & 101 & \(70-130\) \\
Boron & 0.499 & 0.050 & 0.0074 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.017 & 96 & \(70-130\) \\
Chromium & 522 & 5.0 & 0.68 & ugh & 500 & 3.4 & 104 & \(70-130\) \\
Nickel & 526 & 10 & 2.0 & ugh & 500 & 2.9 & 105 & \(70-130\) \\
Selenium & 509 & 5.0 & 4.6 & ug \(/\) & 500 & 4.7 & 101 & \(70-130\) \\
Silver & 262 & 10 & 1.3 & ug/ & 250 & ND & 105 & \(70-130\) \\
Vanadium & 524 & 10 & 1.4 & ug/l & 500 & 3.1 & 104 & \(70-130\) \\
Zinc & 640 & 20 & 3.7 & ug \(/\) & 500 & 120 & 104 & \(70-130\)
\end{tabular}

Matrix Spike Dup Analyzed: 02/17/2005 (5B17097-MSD1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Aluminum & 1590 & 50 & 47 & ugh & 500 & 880 & 142 & 70-130 & 6 & 20 & M1 \\
\hline Arsenic & 515 & 5.0 & 3.8 & ug/ & 500 & ND & 103 & \(70-130\) & 0 & 20 & \\
\hline Beryllium & 504 & 2.0 & 0.62 & ug/ & 500 & ND & 101 & 70-130 & 0 & 20 & \\
\hline Boron & 0.495 & 0.050 & 0.0074 & \(\mathrm{mg} / 1\) & 0.500 & 0.017 & 96 & 70-130 & 1 & 20 & \\
\hline Chromium & 519 & 5.0 & 0.68 & ug/ & 500 & 3.4 & 103 & 70-130 & 1 & 20 & \\
\hline Nickel & 514 & 10 & 2.0 & ug/1 & 500 & 2.9 & 102 & 70-130 & 2 & 20 & \\
\hline Selenium & 512 & 5.0 & 4.6 & ug/1 & 500 & 4.7 & 101 & 70-130 & 1 & 20 & \\
\hline Silver & 260 & 10 & 1.3 & ug/ & 250 & ND & 104 & 70-130 & 1 & 20 & \\
\hline Vanadium & 520 & 10 & 1.4 & ugh & 500 & 3.1 & 103 & 70-130 & 1 & 20 & \\
\hline Zinc & 630 & 20 & 3.7 & ug/ & 500 & 120 & 102 & 70-130 & 2 & 20 & \\
\hline
\end{tabular}

Batch: 5B17099 Extracted: 02/17/05
Blank Analyzed: 02/17/2005 (5B17099-BLK1)
\begin{tabular}{lcccc}
Antimony & 0.511 & 2.0 & 0.18 & \(\mathrm{ug} / \mathrm{l}\) \\
Cadmium & ND & 1.0 & 0.015 & \(\mathrm{ug} / \mathrm{l}\) \\
Copper & ND & 2.0 & 0.49 & \(\mathrm{ug} / 1\) \\
Lead & ND & 1.0 & 0.13 & \(\mathrm{ug} / \mathrm{l}\) \\
Thallium & ND & 1.0 & 0.075 & \(\mathrm{ug} / \mathrm{l}\)
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
\begin{tabular}{|c|c|c|}
\hline MWH-Pasadena/Boeing & Project ID: Annual Outfall 007 & \\
\hline 300 North Lake Avenue, Suite 1200 & & Sampled: 02/11/05 \\
\hline Pasadena, CA 91101 & Report Number: 1OB0993 & Received: 02/11/05 \\
\hline Attention: Bronwyn Kelly & & \\
\hline
\end{tabular}

\section*{METHOD BLANKIQC DATA}

\section*{METALS}
\begin{tabular}{llllllllllll}
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

\section*{Batch: 5B17099 Extracted: 02/17/05}

LCS Analyzed: 02/17/2005 (5B17099-BS1)
\begin{tabular}{lccccccc}
Antimony & 87.8 & 2.0 & 0.18 & \(\mathrm{ug} / \mathrm{l}\) & 80.0 & 110 & \(85-115\) \\
Cadmium & 75.9 & 1.0 & 0.015 & \(\mathrm{ug} / \mathrm{l}\) & 80.0 & 95 & \(85-115\) \\
Copper & 78.0 & 2.0 & 0.49 & \(\mathrm{ug} / \mathrm{l}\) & 80.0 & 98 & \(85-115\) \\
Lead & 79.9 & 1.0 & 0.13 & \(\mathrm{ug} / 1\) & 80.0 & \(85-115\) \\
Thallium & 80.0 & 1.0 & 0.075 & \(\mathrm{ug} / 1\) & 80.0 & 100 & 8 \\
& & & & & & 100 & \(85-115\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Matrix Spike Analyzed: 02/17/2005 (5B17099-MS1)} & \multicolumn{8}{|c|}{Source: IOB0990-01} \\
\hline Antimony & 85.8 & 2.0 & 0.18 & ug/l & 80.0 & 0.44 & 107 & 70-130 & & \\
\hline Cadmium & 75.3 & 1.0 & 0.015 & ugh & 80.0 & 0.020 & 94 & 70-130 & & \\
\hline Copper & 79.3 & 2.0 & 0.49 & ug/ & 80.0 & 0.66 & 98 & 70-130 & & \\
\hline Lead & 81.6 & 1.0 & 0.13 & ug/ & 80.0 & 0.33 & 102 & 70-130 & & \\
\hline Thallium & 81.5 & 1.0 & 0.075 & ug/l & 80.0 & 0.15 & 102 & 70-130 & & \\
\hline \multicolumn{3}{|l|}{Matrix Spike Dup Analyzed: 02/17/2005 (5B17099-MSD1)} & \multicolumn{8}{|c|}{Source: 1OB0990-01} \\
\hline Antimony & 84.3 & 2.0 & 0.18 & ughl & 80.0 & 0.44 & 105 & 70-130 & 2 & 20 \\
\hline Cadmium & 75.1 & 1.0 & 0.015 & ug/ & 80.0 & 0.020 & 94 & 70-130 & 0 & 20 \\
\hline Copper & 79.1 & 2.0 & 0.49 & ug/ & 80.0 & 0.66 & 98 & 70-130 & 0 & 20 \\
\hline Lead & 81.1 & 1.0 & 0.13 & \(\mathrm{ug} / 1\) & 80.0 & 0.33 & 101 & 70-130 & 1 & 20 \\
\hline Thallium & 81.3 & 1.0 & 0.075 & ug/ & 80.0 & 0.15 & 101 & 70-130 & 0 & 20 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 007
Report Number: IOB0993 Received: 02/11/05

\section*{METHOD BLANKOC DATA}

\section*{INORGANICS}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 007
Report Number: \(10 B 0993\)

Received: 02/11/05

\section*{METHOD BLANKIOC DATA}

\section*{INORGANICS}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 007
Report Number: IOB0993

Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKGQC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5B17069 Extracted: 02/17/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 02/17/2005 (5B17069-BLK1)} \\
\hline Total Suspended Solids ND & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 02/17/2005 (5B17069-BS1)} \\
\hline Total Suspended Solids 977 & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & 1000 & & 98 & 85-115 & & & \\
\hline Duplicate Analyzed: 02/17/2005 (5B17069-DUP1) & & & & & ce: 108 & 990-01 & & & & \\
\hline Total Suspended Solids . ND & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & & ND & & & & 10 & \\
\hline \multicolumn{11}{|l|}{Batch: 5B17117 Extracted: 02/17/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 02/17/2005 (5B17117-BLK1)} \\
\hline Oil \& Grease ND & 5.0 & 0.94 & mg/l & & & & & & & \\
\hline \multicolumn{11}{|l|}{LCSAnalyzed: \(02 / 1712005\) (5317117BS1) M-NR1} \\
\hline Oll Grease 17.6 & 5.0 & 0.94 & \(\mathrm{mg} / 1\) & 20.0 & & 88 & 65-120 & & & \\
\hline \multicolumn{11}{|l|}{LCS Dup Analyzed: 02/17/2005 (5817117-BSD1)} \\
\hline Oil \& Grease 16.4 & 5.0 & 0.94 & \(\mathrm{mg} / 1\) & 20.0 & & 82 & 65-120 & 7 & 20 & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 007
Sampled: 02/11/05
Received: 02/11/05
Report Number: IOB0993 Received: 02/11/05

\section*{Compliance Check}

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.
\begin{tabular}{lllcccc}
& & & & Compliance \\
LabNumber & Analysis & Analyte & Units & Result & MRL & Limit \\
\hline IOB0993-01 & 413.1 Oil and Grease & Oil \& Grease & \(\mathrm{mg} / \mathrm{l}\) & 0.20 & 5.0 & 15 \\
IOB0993-01 & Antimony-200.8 & Antimony & \(\mathrm{ug} / \mathrm{l}\) & 2.70 & 2.0 & 6.00 \\
IOB0993-01 & Boron-200.7 & Boron & \(\mathrm{mg} / \mathrm{l}\) & 0.034 & 0.050 & 1.00 \\
IOB0993-01 & Cadmium-200.8 & Cadmium & \(\mathrm{ug} / \mathrm{l}\) & 0.19 & 1.0 & 4.00 \\
IOB0993-01 & Chloride -300.0 & Chloride & \(\mathrm{mg} / \mathrm{l}\) & 1.90 & 0.50 & 150 \\
IOB0993-01 & Copper-200.8 & Copper & \(\mathrm{ug} / l\) & 7.40 & 2.0 & 14 \\
IOB0993-01 & Mercury-245.1 & Mercury & \(\mathrm{ug} / \mathrm{l}\) & 0.19 & 0.20 & 0.20 \\
IOB0993-01 & Nitrogen, NO3+NO2 -N & Nitrate/Nitrite-N & \(\mathrm{mg} / 1\) & 0.49 & 0.26 & 10.00 \\
IOB0993-01 & Perchlorate 314.0 & Perchlorate & \(\mathrm{ug} / \mathrm{l}\) & 0 & 4.0 & 6.00 \\
IOB0993-01 & Sulfate-300.0 & Sulfate & \(\mathrm{mg} / 1\) & 0.97 & 0.50 & 250 \\
IOB0993-01 & TDS -SM 2540C & Total Dissolved Solids & \(\mathrm{mg} / l\) & 110 & 10 & 850 \\
IOB0993-01 & Thallium-200.8 & Thallium & \(\mathrm{ug} / \mathrm{l}\) & 0.087 & 1.0 & 2.00
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 007
Report Number: IOB0993 Received: 02/11/05

\section*{DATA QUALIFIERS AND DEFINITIONS}
B Analyte was detected in the associated Method Blank.
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the
Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
L2 \(\quad\) Laboratory Control Sample recovery was below method control limits.
M1
M-NR1 The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).

R-2 \(\quad\) Duplicate.
ND
RPD RPD exceeded the method control limit.
Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

\section*{ADDITIONAL COMMENTS}

\section*{For 1,2-Diphenylhydrazine:}

The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 007
Report Number: \(10 B 0993 \quad \begin{aligned} \text { Sampled: } 02 / 11 / 05 \\ \text { Received: 02/11/05 }\end{aligned}\)

\section*{Certification Summary}

\section*{Del Mar Analytical, Irvine}
\begin{tabular}{|c|c|c|c|}
\hline Method & Matrix & Nelac & California \\
\hline EPA 160.2 & Water & X & X \\
\hline EPA 200.7 & Water & X & X \\
\hline EPA 200.8 & Water & X & X \\
\hline EPA 245.1 & Water & X & X \\
\hline EPA 300.0 & Water & X & X \\
\hline EPA 314.0 & Water & X & X \\
\hline EPA 335.2 & Water & X & X \\
\hline EPA 413.1 & Water & X & X \\
\hline EPA 608 & Water & X & X \\
\hline EPA 624 & Water & X & X \\
\hline EPA 625 & Water & X & X \\
\hline SM2540C & Water & X & X \\
\hline
\end{tabular}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

\section*{Subcontracted Laboratories}

\section*{Alta Analytical Perspectives}

Analysis Performed. 1613-Dioxin-HR
Samples: 1OB0993-01
Analysis Performed: EDD + Level 4
Samples: 10B0993-01
Aquatic Testing Laboratories-SUB California Cert \#1775
4350 Transport Street, Unit 107 - Ventura, CA 93003
Analysis Performed: Bioassay-Acute 96 hr
Samples: 1OB0993-01

\section*{Eberline Services - SUB}

2030 Wright Avenue - Richmond, CA 94804
Analysis Performed: EDD + Level 4
Samples: 1OB0993-01
Analysis Performed: Gross Alpha
Samples: 1OB0993-01
Analysis Performed: Gross Beta
Samples: IOB0993-01
Analysis Performed: Strontium 90
Samples: 10B0993-01
Analysis Performed: Tritium
Samples: 1OB0993-01

\author{
Del Mar Analytical, Irvine \\ Wendy Kirkeeng For Michele Harper \\ Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

March 25,2005

MWH-Pasadena/ Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention: Bronwyn Kelly
Project:
Annual Outfall 007
Sampled: 02/11/05
Del Mar Analytical Number: IOB0993

Dear Ms. Kelly:
Aquatic Testing Laboratories performed the Fathead Minnow 96 hr Percent Survival Bioassay (EPA Method 2000.0), Eberline Services tested gross alpha/gross beta (EPA 900.0), tritium (H-3, EPA 906.0), and strontium-90 (Sr-90, EPA 905.0) and Alta Analytical Perspectives performed the EPA Method 1613B Dioxin analysis for the project referenced above. Please use the following cross-reference table when reviewing your results.
\begin{tabular}{|c|c|c|c|c|}
\hline MW ID & DEL MAR ID & AtlI ID & Eberline ID & Alta ID \\
\hline Outfall 007 & IOB0993-01 & A-05021204-001 & R502132-01/8261-001 & P5072_2989_002 \\
\hline
\end{tabular}

Attached are the original reports from the subcontract laboratories. If you have any questions or require further assistance, please do not hesitate to contact me at (949) 261-1022 at extension 215.

Sincerely yours,
DEL MAR ANALYTICAL

\title{
LABORATORY REPORT
}

\author{
Date: February 16, 2005 \\ Client: \(\quad\) Del Mar Analytical, Irvine \\ Client: 17461 Derian Avenue, Suite 100 \\ Irvine, CA 92614 \\ Attn: Michele Harper
}

4350 Transport Street, Unit 107
Ventura, CA 93003
(805) 650-0546 FAX (805) 650-0756

CA DOHIS ELAP Cert. No.: 1775

Laboratory No.: A-05021204-001
Sample ID.: IOB0993-01

Sample Control: The samples were received by ATL in a chilled state, with the chain of custody record attached.

Date Sampled: \(\quad 02 / 11 / 05\)
Date Received: 02/12/05
Date Tested: \(\quad 02 / 12 / 05\) to \(02 / 16 / 05\)

Sample Analysis: The following analyses were performed on your sample:
Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0).
Attached are the test data generated from the analysis of your sample.

\section*{Result Summary:}
\(\frac{\text { Sample ID. }}{\text { IOB0993-01 }} \quad \frac{\text { Results }}{100 \% \text { Survival }(\mathrm{TUa}=0.0)}\)

Quality Control: Reviewed and approved by:

\section*{FATHEAD MINNOW PERCENT SURVIVAL TEST}

Lab No.: A-05021204-001
Client/ID: Del Mar IOB0993-01

\section*{TEST SUMMARY}

Species: Pimephales promelas.
Age: 13 (1-14) days.
Regulations: NPDES.
Test solution volume: 250 ml .
Feeding: prior to renewal at \(\mathbf{4 8}\) hrs.
Number of replicates: 2.
Dilution water: Moderately hard reconstituted water.
Photoperiod: 16/8 hrs light/dark.

Aquatic
Teating Laboratories

Start Date: 02/12/2005

Source: In-laboratory Culture.
Test type: Static-Renewal.
Test Protocol: EPA-821-R-02-012. Endpoints: Percent Survival at 96 hrs. Test chamber: \(\mathbf{6 0 0} \mathrm{ml}\) beakers.
Temperature: \(20+/-1^{\circ} \mathrm{C}\).
Number of fish per chamber: 10. QA/QC Batch No.: RT-0S0208.

TEST DATA
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & \multirow{2}{*}{\({ }^{\circ} \mathrm{C}\)} & \multirow{2}{*}{DO} & \multirow{2}{*}{pH} & \multicolumn{2}{|r|}{\# Dead} & \multirow[t]{2}{*}{Analyst \& Time of Readings} \\
\hline & & & & & A & B & \\
\hline \multirow[t]{2}{*}{INITIAL} & Control & 20.2 & 8.1 & 28 & 0 & 0 & \multirow[t]{2}{*}{\[
\ln _{1200}
\]} \\
\hline & 100\% & 20.2 & 8.4 & 6.5 & 0 & 0 & \\
\hline \multirow[t]{2}{*}{24 Hr} & Control & 20.3 & C-S & 2-2 & 0 & 0 & \multirow[t]{2}{*}{\[
2
\]} \\
\hline & 100\% & 20.2 & 6.3 & 7.3 & \(C\) & 0 & \\
\hline \multirow[t]{2}{*}{48 Hr} & Control & 20.4 & 2.4 & 2.5 & 0 & 0 & \multirow[t]{2}{*}{\[
\frac{2}{1200}
\]} \\
\hline & 100\% & 24.4 & 72 & 71 & 0 & 0 & \\
\hline \multirow[t]{2}{*}{Renewal} & Control & 20.4 & 8.0 & 27 & \(C\) & 0 & \multirow[t]{2}{*}{\[
\ell_{1200}
\]} \\
\hline & 100\% & 20.2 & 8.4 & 70 & \(C\) & \(\sigma\) & \\
\hline \multirow[t]{2}{*}{72 Hr} & Control & 19.8 & 28 & 74 & 0 & \(\checkmark\) & \multirow[t]{2}{*}{Now} \\
\hline & 100\% & 19.6 & 27 & 7.0 & 0 & 0 & \\
\hline \multirow[t]{2}{*}{96 Hr} & Control & 20.7 & 28 & 2.4 & 0 & 0 & Rm \\
\hline & 100\% & 20.5 & 7.7 & 7.0 & 0 & 0 & 1100 \\
\hline
\end{tabular}

\section*{Comments:}

Sample as received: Chlorine: \(0 \mathrm{mg} / \mathrm{l} ; \mathrm{pH}: 6.5\); Conductivity: 79 umho; Temp: \(4^{\circ} \mathrm{C}\); DO: \(8.4 \mathrm{mg} / \mathrm{l}\); Alkalinity: \(67 \mathrm{mg} /\); Hardness: \(42 \mathrm{mg} /\); \(\mathrm{NH}_{3}-\mathrm{N}: 0.7 \mathrm{mg} /\).
Sample aerated moderately (approx. \(500 \mathrm{ml} / \mathrm{min}\)) to raise or lower DO? Yes / No
Control: Alkalinity: \(54 \mathrm{mg} /\); Hardness: \(87 \mathrm{mg} /\); Conductivity: 285 umho.
Test solution aerated (not to exceed \(100 \mathrm{bubbles} / \mathrm{min}\)) to maintain DO \(>4.0 \mathrm{mg} / 17\) Yes / ॠo.
Sample used for renewal is the original sample kept at \(0-6^{\circ} \mathrm{C}\) with minimal headspace.

\section*{RESULTS}
\(\qquad\) \(\%\) \(\qquad\) \(\%\)
 1014 E. Coolay Dr., Suthe A. Colmon, CA 92324 \(94 B 4\) Cherrpoakte Drive, Sute 805, San Diego, CA 92123 9830 South 51st Strect, Suta 8.120. Phoonix, AZ 85044

\section*{SUBCONTRACT ORDER - PROJECT \# IOB0993}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ SENDING LABORATORY: } \\
\hline \multicolumn{1}{|c|}{\begin{tabular}{l}
RECEIVING LABORATORY: \\
Del Mar Analytical, Irvine \\
17461 Derian Avenue. Suite 100 \\
Irvine, CA 92614 \\
Phone: (949) 261-1022 \\
Fax: (949) 261-1228 \\
Project Manager: Michele Harper
\end{tabular}} & \begin{tabular}{l}
\multicolumn{1}{c|}{} \\
Aquatic Testing Laboratories-SUB \\
4350 Transport Street, Unit 107 \\
Ventura, CA 93003 \\
Phone :(805) \(650-0546\) \\
Fax: (805) 650-0756
\end{tabular} \\
\hline
\end{tabular}

Standard TAT is requested unless specific due date is requested \(\Rightarrow\) Due Date: \(\qquad\) Initials: \(\qquad\)
Analysis
Expiration
Comments
Sample ID: 1OB0993-01 Water
Sampled: 02/11/05 10:50
Bioassay-Acute 96 hr
02/12/05 22:50
FH minnow, EPA/821-R02-012, Sub to AqTox Labs

\section*{Containers Supplied:}

1 gal Poly (IOB0993-01X) S

\section*{EBERLINE}

March 8. 2005

Ms. Michele Harper
Project Manager
Del Mar Analytical
17461 Derian Avenue, Suite 100
Irvine. CA 92614
Reference: Del Mar Analytical Project No. IOB0993
Eberline Services NELAP Cert \#01120CA (exp. 01/31/06)
Eberline Services Report R502132-8261
Dear Ms. Harper:
Enclosed are results from the analyses of one water sample received at Eberline Services on February 15, 2005. The sample was analyzed according to the accompanying Del Mar Analytical Subcontract Order Form. The requested analyses were gross alpha/gross beta (EPA900.0), tritium (H-3. EPA906.0), and strontium-90 (Sr-90, EPA905.0). The QC LCS, blank analyses, sample duplicates, and matrix spike results for the analyses were within the limits defined in Eberline Services Quality Control Procedures Manual. Analyses that involve the yielding of an analytical tracer or carrier, such as \(\mathrm{Sr}-90\), do not require matrix spike analyses to be performed.

Please call me if you have any questions concerning this report.
Regards.

Melissa Mannion
Senior Program Manager

MCMiniv
Enclovure: \begin{tabular}{rl}
Report \\
& Subcontract Form \\
& Receipt checklist \\
& Invoice
\end{tabular}

Analytical Services
2030 Wright Avenue
P.O. Box 4040

Richmond, Callfornia 94804-0040

Eberline services
ANALYSIS RESULTS

\footnotetext{
Certified by \(\quad, i) x^{2}=\cdots+{ }^{\circ} c\)
Report Date 03/08/85
Page 1
}

\section*{Eberline Services}

\section*{QC RESULTS}

Certified by \(2,03 / 08 / 05\)
Report pate 03
Page 2

\section*{SUBCONTRACT ORDER - PROJECT \# IOB0993}
\begin{tabular}{|c|c|}
\hline - SENDING LABORATORY: & RECEIVING LABORATORY: \\
\hline Del Mar Analytical, Irvine & Eberline Services \\
\hline 17461 Derian Avenue. Suite 100 & 2030 Wright Avenue \\
\hline Irvine, CA 92614 & Richmond, CA 94804 \\
\hline Phone: (949) 261-1022 & Phone :(510) 235-2633 \\
\hline Fax: (949) 261-1228 & Fax: (510) 235-0438 \\
\hline Project Manager: Michele Harper & \\
\hline
\end{tabular}

Standard TAT is requested unless specific due date is requested \(\Rightarrow\) Due Date: \(\qquad\)

\section*{Initials:}
\(\qquad\)
Analysis Expiration Comments
\begin{tabular}{|c|c|c|}
\hline Sample ID: 1080993-01 & Water Sampled: 02/11/05 10:50 & \\
\hline EDD + Level 4-OUT & 03/11/05 10:50 & \\
\hline Gross Alpha-O & 02/11/06 10:50 & 900.0, IF RESULT \(>15 \mathrm{pCi} / \mathrm{L}\), nun Radium 226 \& 228 \\
\hline Gross Beta-O & 02/11/06 10:50 & 900.0, IF RESULT \(>50 \mathrm{pCi} / \mathrm{L}\), run Radium 226 \& 228 \\
\hline Radium, Combined-O & 02/11/06 10:50 & HOLD for Gross A\&B results; EPA 903.1 \& 904.0 \\
\hline Strontium 90-0 & 02/11/06 10:50 & EPA 905.0 \\
\hline Tritium-O & 02/11/06 10:50 & EPA 906.0 \\
\hline
\end{tabular}

\section*{Containers Supplied:}

1 gal Poly (10B0993-01S) \(\mathrm{W} / \mathrm{HNO}_{3}\)

Customer Sample
Alpha Merer Ser. No. \(\quad\) Cexa/Gamma Metar Ser. No.

\section*{Alta analytical Perspectives}

3 March 2005

\section*{Scott Unze}

Pace Analytical Services
1700 Elm Street
Minneapolis, MN 55414
Ph.: 612-607-1700
Fax: 612-607-6444

\section*{Subject: Certificate of Results}

\section*{Dear Scott;}

Attached to this narrative are the analytical results you requested on the samples submitted for the determination of polychlorinated dibenzo-p-dioxins and dibenzofurans. The insert below summarizes the relevant information pertaining to your project. In particular, the QC annotations bring to your attention specific analytical observations and assessments made during the sample handling and data interpretation phases. A brief description of the report's components is provided on the next page.

\footnotetext{
2714 EXCHANGE DRIVE WILMINGTON
NORTH CAROLINA 2B405
TEL: 910-794-1613 FAX 910-794-3919
}

\section*{QC Annotations:}
1. A "J" data qualifier is used for analytes with a concentration below the reporting limit.

Alta Analytical Perspectives remains committed to serving you in the most effective manner. Should you have any questions or need additional information and technical support, please, do not hesitate to contact us. We wanted to thank you for choosing Alta Analytical Perspectives as part of your analytical support team.

Sincerely,

Amy J. Boehm
Project Manager
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Sample II & 1080993-01 & & & \multicolumn{4}{|r|}{Method 1613} \\
\hline \multicolumn{2}{|l|}{client Data} & \multicolumn{2}{|l|}{Sample Datin} & \multicolumn{4}{|l|}{Laboratony Dati} \\
\hline \begin{tabular}{l}
Name: \\
Project ID: \\
Date Collected:
\end{tabular} & Pace inc. Gement Aneytical HRems 11 Feb 05 & Matrix: WeightVolume: pH & \[
\begin{gathered}
\text { Aqueous } \\
1.03 \mathrm{~L} \\
6
\end{gathered}
\] & Project No.: Sample ID: ac Batch No.: & \[
\begin{gathered}
\text { P5072 } \\
\text { P5072_2989_002 } \\
2989
\end{gathered}
\] & Date Recelved: Date Extracted: Date Analyzed: & 01 Mar 05 01 Mar 05 03 Mar 05 \\
\hline \multirow[t]{2}{*}{Analyte} & \multirow[t]{2}{*}{Conc. \(\mathrm{pg} / \mathrm{L}\)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{DL} \\
\mathrm{poh}
\end{gathered}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
EMPC \\
pgh
\end{tabular}} & \multirow[t]{2}{*}{Quallier} & \multicolumn{3}{|c|}{Recoverion} \\
\hline & & & & & ES & cs & \\
\hline 2,3,7,-TCDD & ND & 2.06 & & & 76.2 & 84.9 & \\
\hline 7,2,3,7,8-PeCOD & ND & 1.79 & & & 72.7 & 88.3 & \\
\hline 12,2,4,4,7,8+4CD0 & NO & 2.55 & & & 74.4 & 84.1 & \\
\hline 1,2,3,8,7,8+46CDD & ND & 2.57 & & & 79.8 & 84.1 & \\
\hline 1,2,3,7, \(8,9.4+\mathrm{xCDD}\) & ND & 3.13 & & & 77.8 & 84.1 & \\
\hline 1,2,3,4,6,7,8+pCDD & 31.5 & 3.87 & & & 65.6 & 68 & \\
\hline OCDD & 267 & 9.8 & & & 53.6 & 68 & \\
\hline 2,3,7,-TCDF & ND & 1.34 & & & 7 & 84.9 & \\
\hline 1,2,3,7,8-PeCDF & ND & 2.75 & & & 83.3 & 87.4 & \\
\hline 23,4,7,4.PeCDF & ND & 2.8 & & & 74.2 & 87.1 & \\
\hline ¢,2,3,4,7,8-HxCDF & ND & 0.9 & & & 69.6 & 84.1 & \\
\hline 1,2,3,6,7,8\% \(\mathrm{H} \times \mathrm{CDF}\) & ND & 0.827 & & & 78, 4 & 84.1 & \\
\hline 2,3,4,6.7, \(8 .+\mathrm{HCDFF}\) & ND & 1.04 & & & 69 & 84.1 & \\
\hline 4, \(1,3.3,7,8,9,4 \times C D F\) & ND & 1.58 & & & 65.6 & 84.1 & \\
\hline & ND & 1.88 & & & 54 & 68 & \\
\hline \[
\begin{aligned}
& 1,2,3,4,8,9-1 \mathrm{HCDF} \\
& \text { OCDF }
\end{aligned}
\] & ND & 2.95 & & \(\cdots\) & 54.7 & 88
68 & \\
\hline Totals \& TEQ & & & & & & & \\
\hline TCODs & ND & 2.06 & & & - Alta A & halytical fer & -matives \\
\hline PeCDds & ND & 1.79 & & & \(\underline{\square}\) & & \\
\hline HxCDD & 4.44 & 2.76 & 8.57 & & & 714 Exchange Dri & \\
\hline HpCDDs & 65.1 & 3.87 & & & & Wilmington North Carolina 284 & \\
\hline TCDFs & ND & 1.64 & & & & USA & \\
\hline PeCDFs & 0.858 & 2.77 & & & & & \\
\hline HxCDFs
HOCOFs & ND & 1.05 & - & & & Tet: 910 794-1643 & \\
\hline HeCOFs & ND
338 & 2.38 & & & & Fax: 910 794-3919 & \\
\hline Total PCDD/Fs & 338 & & 342 & & & nail: yt(Guitratrace b: www,ultratrace & \\
\hline & & & & & & & AAP 2005 Rev. B \\
\hline Creckoode: 4881 & & & & & & & \\
\hline
\end{tabular}

Sample ID: 0_2989_MB001
Method 1613

() \(=O L\)
IIEMPC

P5072 - Totals
Project ID: General Analytical HRMS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|l|}{} \\
\hline Analyte & 0,2008_macot & \(108160 \pm-01\) & 100082x-34 & TOB0980-01 & 1080097.4t & 1081094-4 & 1080909-04 & 108098th-0s & & H094032-01 & 1080092-01 & :O84004-91 & 10amam-4t & tosamet.04 \\
\hline & [8/2. & pot & P\% & p\%A & Pr/4 & Dat & 20/4 & polt & pol & P4. & 902 & & 004 & P0/ \\
\hline Tatwo & & & & & & & & & . & & & & & \\
\hline FCSOE & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4.77 & 0 & 0 & 0 & 0 & 0 \\
\hline Pucpos & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 15.5 & 0 & 0 & 0 & 0 & 0 \\
\hline HxCOOS & 0 & 7.38 & 4.44 & 0 & 0 & 0 & 0 & 0 & 38.8 & 0 & 0 & 0 & 0 & 0 \\
\hline Hipens: & 0 & 453 & 65.1 & 25.2 & 9.48 & 28.6 & 0 & 101 & 445 & 12.1 & 0 & 43.1 & 12.2 & 0 \\
\hline 10000 & 0 & 883 & 267 & 134 & 70.4 & 457 & 58.1 & 471 & 2120 & 183 & 70.2 & 213 & 50.3 & 50 \\
\hline TCDF\% & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 6.53 & 0 & 0 & 0 & 0 & 0 \\
\hline PuCDF & 0 & 0 & 0.858 & 0 & 0 & 0.76 & 0.256 & 0 & 2.57 & 0 & 0.456 & 0 & 0 & 0 \\
\hline \(\mathrm{Hx}^{\text {Cobr }}\) & 0 & 2.88 & 0 & 0 & 0 & 0 & 0 & 4.13 & 32.8 & 0 & 0 & 0 & 0 & 0 \\
\hline HPCOF & 0 & 82.9 & 0 & 0 & 0 & 10.2 & 0 & 36.5 & 98.7 & 5.98 & 0 & 0 & 0 & 0 \\
\hline OCOF & 0 & 155 & 0 & 0 & 0 & 0 & 0 & 34.9 & 87.1 & 0 & 0 & 0 & 0 & 0 \\
\hline Totul PCDOPF (NDW\% EMPCion & 0.00 & 1,290 & 338 & 138 & 78.8 & 497 & 50.4 & \(64{ }^{\text {c }}\) & 2.8008 & 182 & 70.7 & 258 & 62.8 & 50 \\
\hline Tota PCOOMF (NDMO; SMPCwEMPC) & 0.00 & 1,300 & 342 & 160 & 78.8 & 197 & 58.4 & 663 & 2.030 & 193 & 70.7 & 258 & 82. & 50 \\
\hline Tetal PCDOIFs (237B-X NO=DL; EMAC-EAPC) & 42.2 & 1,330 & 381. & 215 & 128 & 238 & 119 & 694 & 2,949 & 229 & 444 & 370 & 121 & 114 \\
\hline & 0.08 & 1,130 & 209 & 144 & 70.4 & 173 & 58.1 & 507 & 2,440 & 178 & 70.2 & 234 & 50.3 & 50 \\
\hline & 24.1 & 1,140 & 319 & 172 & 84.6 & 198 & 87.6 & 581 & 2.450 & 193 & 107 & 291 & 79.5 & 咀 \\
\hline & 42.2 & 1.188 & 338 & 200 & 119 & 214 & 1.18 & 598 & 2,450 & 211 & 44 & 346 & 109 & 114 \\
\hline & 0.00 & 1.130 & 299 & 144 & 70.4 & 473 & 56.1 & 567 & 2,440 & 178 & 70.2 & 234 & 50.3 & 50 \\
\hline & 21.1 & 1,140 & 318 & 172 & 94.6 & 193 & 87.5 & 581 & 2,450 & 493 & 107 & 291 & 79,5 & 82 \\
\hline & 42.2 & 1.180 & 338 & 200 & 118 & 214 & 119 & 595 & 2,450 & 214 & 146 & 348 & 109 & 114 \\
\hline Chackeore & 3385 & 4361 & 4881 & 4985 & 5230 & 5537 & 5797 & 0067 & 0335 & 0812 & 3929 & 4355 & 4822 & 4800 \\
\hline
\end{tabular}

Project ID: General Analytical HRMS

Totals
Project ID: General Analytical HRMS P5072
```

a Total PCDO/Fs (ND=0; EMPC=0)
\squareTotal PCDD/Fs (ND=0; EMPC=EMPC)
\$ Total PCDD/Fs (2378-X ND=DL; EMPC=EMPC)

```


7461 Derien Ave. Sufte 100, Irvine, CA 92614

\section*{SUBCONTRACT ORDER - PROJECT \# IOB0993}

CHAIN-OF-CUSTODY / Analytical Request Document The chain-ot-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurataly.
Pace Analytical \({ }^{\circ}\)
P5072

\section*{Page: 1 of 2}
814593
Section C
(1)
皆

 ssion 3ildwvs
Somple 2061002 -01 of IO8 0988-01
ore both dated 02/10/05
Email to:

\section*{Scott un \\ Scott. Unze e pacelabs.com}
/Parererer

5
CHAIN-OF-CUSTODY / Analytical Request Document The Chain-on-Custody is a LEGAL DOCUMENT. All relovant flelds must be completed accuratoly.

\begin{tabular}{|l|l|l|}
\hline\(\square \mathrm{DC}\) DC DAPDES DGROUND WATEA DOATMKMGWATER \\
\(\square\) OHer \\
\hline
\end{tabular}
Required Cliont informalion:
hequired Client information
compary lace
Surfe 200
pepls. AnN
Section A
nodreis 1700 El M strunt
Requirnd Clien intiomnation: Section B
\(\operatorname{copy}^{\mathrm{T} \text { T: }} \frac{\text { Sort Unze }}{1}\)

\section*{Page: 2 of 2}

\section*{ \\ Mapuestad Due Data: \\ \\ Tun Avound Tume (CAT) in calendarar deye.}

\(T T_{13}^{2} 0509: 2111 \times 1+\)

CONTRACT COMPLLANCE SCREENING FORM FOR HARDCOPY DATA
AMEC Earth \& Environmental 550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Alta
Reviewer K Shadowlight
Analysis/Method Dioxins

Analysis/Method Dioxins

\section*{ACTION ITEMS \({ }^{2}\)}
1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted

\section*{4. Missing Hardcopy \\ Deliverables}
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocole e.
Holding Times
GCMS Tune/Inst. Performance
Calibration
Method blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and
Quantitation
System Perfonnance

\section*{COMAENTS \({ }^{b}\)}

\footnotetext{
\({ }^{3}\) Subconracted analytical laboratory is not meeting contract andor method requirements.
\({ }^{3}\) Differences in protocol have been adopted by the laborton, but no action against the laborntory is required.
}

\title{
amec \({ }^{\theta}\)
}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES \\ Monitoring
}

\section*{ANALYSIS: DIOXINS/FURANS}

SAMPLE DELIVERY GROUPS: Multiple SDGs

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: Multiple SDGs \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Dioxins/Furans \\ QC Level: Level IV \\ No. of Samples: 6 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: K. Shadowlight \\ Date of Review: March 4, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{ll}
& Project: \\
DATA VALIDATION REPORT & \begin{tabular}{r}
NPDES \\
SDG No.: \\
Multiple
\end{tabular} \\
\hline
\end{tabular}

Table 1. Sample Identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & \begin{tabular}{c}
Laboratory ID \\
(Del Mar)
\end{tabular} & \begin{tabular}{c}
Laboratory ID \\
(Alta)
\end{tabular} & Matrix & COC Method \\
\hline Outfall 002 & IOB1562-01 & \(25779-001\) & water & 1613 \\
\hline Outfall 003 & IOB1571-01 & \(25780-001\) & water & 1613 \\
\hline Outfall 007 & IOB1572-01 & \(25782-001\) & water & 1613 \\
\hline Outfall 008 & IOB1573-01 & \(25783-001\) & water & 1613 \\
\hline Outfall 011 & IOB1565-01 & \(25781-001\) & water & 1613 \\
\hline Outfall 018 & IOB1570-01 & \(25778-001\) & water & 1613 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & Project: & NPDES \\
\hline & SDG No.: & Multiple \\
\hline DATA VALIDATION REPORT & Analysis: & D/F \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

All of the samples in these SDGs were received at Del Mar Analytical within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). The samples were shipped to Alta for dioxin/furan analyses and were received below the temperature limits at \(0.8^{\circ} \mathrm{C}\); however, as none of the samples were noted to have been frozen or damaged, no qualifications were required. According to the laboratory login sheets, all samples were received intact and in good condition at both laboratories. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs and transfer COCs were legible and signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. As the samples were couriered directly to Del Mar Analytical, custody seals were not required. The coolers received by Alta had custody seals present and intact; however, custody seals were not present on the sample containers. The EPA IDs were added to the sample result summary report by the reviewer. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The samples were extracted and analyzed within a year of collection. No qualifications were required.

\subsection*{2.2 INSTRUMENT PERFORMANCE}

Following are findings associated with instrument performance:

\subsection*{2.2.1 GC Column Performance}

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and \(2,3,7,8\)-TCDD reported as less than \(25 \%\). No qualifications were required.
\begin{tabular}{ll}
DATA VALIDATION REPORT & \begin{tabular}{l}
Project: \\
SDG No.:
\end{tabular} \\
\hline
\end{tabular}

\subsection*{2.2.2 Mass Spectrometer Performance}

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

\subsection*{2.3 CALIBRATION}

\subsection*{2.3.1 Initial Calibration}

There were two initial calibrations, analyzed 08/30/04 and 10/04/04. The calibrations each consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibrations were acceptable with \(\%\) RSDs \(\leq 20 \%\) for the 15 native compounds (calibration by isotope dilution) and \(\leq 35 \%\) for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted, No qualifications were required.

\subsection*{2.3.2 Continuing Calibration}

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standards instead of being analyzed separately, as noted in section 2.2 .1 of this report. No adverse effect was observed with this practice.

\subsection*{2.4 BLANKS}

One method blank (\(6543-\mathrm{MB} 001\)) was extracted and analyzed with the samples in these SDGs. There were no detects reported in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One Ongoing Precision Recovery (OPR) sample (6543-OPR001) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of the Method 1613. No qualifications were required.

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy was based on the OPR results. No qualifications were required.
\begin{tabular}{lrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\subsection*{2.7 FIELD QC SAMPLES}

Following are findings associated with field QC:

\subsection*{2.7.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.7.2 Field Duplicates}

No field duplicate samples were identified for these SDGs.

\subsection*{2.8 INTERNAL STANDARDS}

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

\subsection*{2.9 COMPOUND IDENTIFICATION}

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

\subsection*{2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Compounds flagged by the laboratory with a "D" qualifier indicated possible diphenylether interference and were qualified as estimated, "J." Any reported EMPC was qualified as an estimated nondetect, "UJ." Any detects below the lower method calibration level (MCL) were qualified as estimated, " J ;" however, as Alta analyzed an additional calibration standard, not all results below the method calibration level were appropriately qualified by the laboratory. These results were qualified as estimated, " \(J\)," by the reviewer. No further qualifications were required.

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer P. Meeks
Analysis/Method Metals

Package ID T711MT45
Task Order 313150010
SDG No. IOB1572, IOB1573
No. of Analyses 2
Date: 03/29/05
Reviewer's Signature

\section*{ACIION ITEMS:}
1. Case Narrative Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Qualifications applied for:

Analysis Protocol, e.g.,
Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification and Quantitation
System Performance
1. Detects below the reporting limit.
2. Antimony detects in the CCBs resulting in raised MDL.
\(\qquad\)
COMMENTS \({ }^{\dagger}\),

\footnotetext{
* Subcontracted analytical taboratory is not meeting contract and/or method requirements.
\({ }^{\text {b }}\) Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.
}

\title{
amec \({ }^{\text {® }}\)
}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES \\ Monitoring
}

\author{
ANALYSIS: METALS \\ SAMPLE DELIVERY GROUPS: IOB1572 \& IOB1573
}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: IOB1572, IOB1573 \\ Project Manager: B. McIlvaine \\ Matrix: Water \\ Analysis: Metals \\ QC Level: Level IV \\ No. of Samples: 2 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: P. Meeks \\ Date of Review: March 29, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{lrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOB1572, 1573 \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 008 & Outfall 008 & IOB1573-01 & water & ILM04 \\
\hline Outfall 007 & Outfall 007 & IOB1572-01 & water & ILM04 \\
\hline
\end{tabular}
\begin{tabular}{lrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOBI572, 1573 \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C}\) \(\pm 2^{\circ} \mathrm{C}\). No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by field and laboratory personnel. The COCs accounted for the samples and analyses presented in these SDGs. Duplicate samples were submitted for both samples in these SDGs; however, duplicate analyses were not required. No sample qualifications were required.

\subsection*{2.1.3 Holding Times}

The dates of collection recorded on the COCs and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS metals and 28 days for mercury. No qualifications were required.

\subsection*{2.2 ICP-MS TUNING}

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. All \(\%\) RSDs were less than \(5 \%\). The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

\subsection*{2.3 CALIBRATION}

The ICV and CCV results showed acceptable recoveries, \(90-110 \%\) for ICP/MS metals and 80-120\% for mercury. The reporting limit check standards were recovered within the AMEC control limits of 70 \(130 \%\). No sample qualifications were required.
\begin{tabular}{lrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOB1572, 1573 \\
\hline
\end{tabular}

\subsection*{2.4 BLANKS}

Antimony was detected in every CCB in the analytical sequence in which Outfall 008 was analyzed and in an unreported method blank analysis. The detects ranged from 0.716 to \(2.50 \mu \mathrm{~g} / \mathrm{L}\) and antimony was detected in Outfall 008 at a concentration well below these values, \(0.34 \mu \mathrm{~g} / \mathrm{L}\). The CCB detects indicated the laboratory could not detect antimony at the reported MDL or RL. The reviewer raised the antimony MDL and RL for Outfall 008 MDL to the highest level of interference reported, \(2.5 \mu \mathrm{~g} / \mathrm{L}\) and qualified the result as estimated, "UJ." No further qualifications were required due to the method and calibration blank results.

\subsection*{2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)}

ICSA and ICSAB analyses were included in the raw data for the ICP-MS analyses. Results were not provided for spiked interferents sulfur, phosphorus, carbon, and chloride, and antimony and lead were not spiked into the ICSAB solution. Copper and cadmium were detected above the applicable reporting limit in the ICSA. The results for sodium and potassium were above the calibration range of the instrument in the ICSA and ICSAB analyses. Aluminum was recovered below the control limit in the ICSA at \(78 \%\) and above the calibration range in the ICSAB analyses. As aluminum, sodium, and potassium were not reported in the site samples, no qualifications were required. The validator reviewed the raw data for the site sample ICP/MS analyses for the level of reported interferents, \(\mathrm{Al}, \mathrm{Ca}, \mathrm{Fe}\), and Mg , and determined that the levels of reported interferents were not high enough to cause matrix affects. No assessment could be made with respect to possible interference from sulfur, phosphorus, carbon, and chloride. No qualifications were required.

\subsection*{2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The ICP/MS LCS sample was identified as 5B24099-BS1 and the mercury LCS sample was identified as 5B22063-BS1. The LCS results on the summary forms and in the raw data were within the laboratory-established ICP/MS and mercury control limits of \(85-115 \%\). No qualifications were required.

\subsection*{2.7 LABORATORY DUPLICATES}

No MS/MSD or laboratory duplicate analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.8 MATRIX SPIKE}

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on LCS results.
\begin{tabular}{lrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOBI572, 1573 \\
\hline
\end{tabular}

\subsection*{2.9 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.10 ICP/MS AND ICP SERIAL DILUTION}

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.11 INTERNAL STANDARDS PERFORMANCE}

Scandium was recovered above the control limit in Outfall 008; however, as scandium was not the internal standard associated with the reported analytes, no qualifications were required. The remaining ICP-MS internal standard recoveries for the site samples and associated QC sample analyses were within the \(60-125 \%\) control limits and no qualifications were required.

\subsection*{2.12 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit were qualified as estimated, "J." No further qualifications were required.

\subsection*{2.13 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

\subsection*{2.13.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.13.2 Field Duplicates}

There were no field duplicate analyses performed in association with the site samples.

17461Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1622 FAX (949) 260-3297

\section*{Del Mar Analytical} 1014 E. Cooley Dr., Suite A, Cotton, CA 92324 (909) 370-4867 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805. San Diego, CA 92123 (858) 505-8596 FAX (853) 505-9689 9830 South Sist St. Suite B-12C. Phoenix, AZ 85044 (480) 785-0C43 FAX (480) \(785-0851\) 2520 E. Sunset Rd. *3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 790-3621

\section*{DRAFT: METALS}

\section*{AMEG V~TDATED}

\section*{DRAFT REPORT}

DRAFT REPORT

\section*{LABORATORY REPORT}

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 007

Sampled: 02/18/05
Received: 02/18/05
Issued: 03/25/05 11:05

\section*{NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117}

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, I page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

\section*{SAMPLE CROSS REFERENCE}

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

\section*{LABORATORY ID}

1OB1572-01

CLIENT ID
Outfall 007

MATRIX
Water

Reviewed By:

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 007
Report Number: IOB1572

Sampled: 02/18/05
Received: 02/18/05

\section*{METALS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{Sample ID: 10B1572-01 (Outfall 007 - Water)} \\
\hline \multicolumn{10}{|c|}{Reporting Units: ug/} \\
\hline Antimony & EPA 200.8 & 5B24099 & 0.18 & 2.0 & 1.3 & 1 & 02/24/05 & 02/25/05 & J \\
\hline Cadmium & EPA 200.8 & 5B24099 & 0.015 & 1.0 & 0.17 & 1 & 02/24/05 & 02/25/05 & J \\
\hline Copper & EPA 200.8 & 5B24099 & 0.49 & 2.0 & 8.4 & 1 & 02/24/05 & 02/25/05 & \\
\hline Lead & EPA 200.8 & 5B24099 & 0.13 & 1.0 & 6.3 & 1 & 02/24/05 & 02/25/05 & \\
\hline Mercury & EPA 245.1 & 5B22063 & 0.063 & 0.20 & 0.070 & 1 & 02/22/05 & 02/22/05 & J \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}
\begin{tabular}{lrr}
MWH-Pasadena/Boeing & Project ID: Routine Outfall 007 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(02 / 18 / 05\) \\
Pasadena, CA 91101 & Report Number: \(10 B 1572\) & Received: \(02 / 18 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

INORGANICS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{Sample ID: IOB1572-01 (Outfall 007 - Water) - cont. Reporting Units: mg/l}} \\
\hline & & & & & & & & & \\
\hline Chloride & EPA 300.0 & 5B18129 & 0.15 & 0.50 & 1.7 & 1 & 02/18/05 & 02/19/05 & \\
\hline Nitrate/Nitrite-N & EPA 300.0 & 5818129 & 0.075 & 0.11 & 0.54 & 1 & 02/18/05 & 02/19/05 & \\
\hline Oil \& Grease & EPA 413.1 & 5B23082 & 0.94 & 5.0 & 2.0 & 1 & 02/23/05 & 02/23/05 & J \\
\hline Sulfate & EPA 300.0 & 5B18129 & 0.25 & 0.50 & 1.2 & 1 & 02/18/05 & 02/19/05 & \\
\hline Total Dissolved Solids & SM2540C & 5B24111 & 10 & 10 & 120 & 1 & 02/24/05 & 02/24/05 & \\
\hline Total Suspended Solids & EPA 160.2 & 5B25089 & 10 & 10 & 160 & 1 & 02/25/05 & 02/25/05 & \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Nendy Kirkeeng For Michele Harper ?roject Manager
}

MWH-Pasadena/Bocing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 007
Report Number: IOB1572 \(\quad \begin{array}{r}\text { Sampled: 02/18/05 } \\ \text { Received: } 02 / 18 / 05\end{array}\)

\section*{SHORT HOLD TIME DETAIL REPORT}
\begin{tabular}{lcccccc}
& \begin{tabular}{c}
Hold Time \\
(in days)
\end{tabular} & \begin{tabular}{c}
Date/Time \\
Sampled
\end{tabular} & \begin{tabular}{c}
Date/Time \\
Received
\end{tabular} & \begin{tabular}{c}
Date/Time \\
Extracted
\end{tabular} & \begin{tabular}{c}
Date/Time \\
Analyzed
\end{tabular} \\
\begin{tabular}{lllll}
Sample ID: Outfall 007 (IOB1572-01)-Water \\
EPA 300.0
\end{tabular} & 2 & \(02 / 18 / 200512: 04\) & \(02 / 18 / 200518: 30\) & \(02 / 18 / 2005\) & \(22: 00\) & \(02 / 19 / 200501: 21\)
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 007
Report Number: IOB1572

Sampled: 02/18/05
Received: 02/18/05

\section*{METHOD BLANKIQC DATA}

\section*{METALS}
\begin{tabular}{lllllllllll}
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{Blank Analyzed: 02/22/2005 (5B22063-BLK1)} \\
\hline Mercury & ND & 0.20 & 0.063 & ug/ & & & & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 02/22/2005 (5B22063-BS1)} \\
\hline Mercury & 8.32 & 0.20 & 0.063 & ug/ & 8.00 & & 104 & 85-115 & & \\
\hline \multicolumn{3}{|l|}{Matrix Spike Analyzed: 02/22/2005 (5B22063-MS1)} & \multicolumn{8}{|c|}{Source: IOB1443-01} \\
\hline Mercury & 8.36 & 0.20 & 0.063 & ug/ & 8.00 & 0.074 & 104 & 70-130 & & \\
\hline \multicolumn{3}{|l|}{Matrix Spike Dup Analyzed: 02/22/2005 (5B22063-MSD1)} & \multicolumn{8}{|c|}{Source: IOB1443-01} \\
\hline Mercury & 8.38 & 0.20 & 0.063 & ug/ & 8.00 & 0.074 & 104 & 70-130 & 0 & 20 \\
\hline
\end{tabular}

\section*{Batch: 5B24099 Extracted: 02/24/05}

Blank Analyzed: 02/25/2005-02/26/2005 (5B24099-BLK1)
\begin{tabular}{lllll}
Antimony & ND & 2.0 & 0.18 & ugh \\
Cadmium & ND & 1.0 & 0.015 & ug/ \\
Copper & ND & 2.0 & 0.49 & ug/t \\
Lead & ND & 1.0 & 0.13 & ug \(/ 1\)
\end{tabular}

LCS Analyzed: 02/25/2005 (5B24099-BS1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Antimony & 85.6 & 2.0 & 0.18 & ug/l & 80.0 & & 107 & 85-115 \\
\hline Cadmium & 76.4 & 1.0 & 0.015 & ug/ & 80.0 & & 96 & 85-115 \\
\hline Copper & 84.0 & 2.0 & 0.49 & ugh & 80.0 & & 105 & 85-115 \\
\hline Lead & 80.3 & 1.0 & 0.13 & ug/ & 80.0 & & 100 & 85-115 \\
\hline \multicolumn{5}{|l|}{Matrix Spike Analyzed: 02/25/2005 (5B24099-MS1)} & \multicolumn{4}{|c|}{Source: IOB1490-01} \\
\hline Antimony & 85.7 & 2.0 & 0.18 & ug/ & 80.0 & 0.50 & 106 & 70-130 \\
\hline Cadmium & 75.1 & 1.0 & 0.015 & ug/1 & 80.0 & 0.016 & 94 & 70-130 \\
\hline Copper & 82.5 & 2.0 & 0.49 & ug/ & 80.0 & 1.0 & - 102 & 70-130 \\
\hline Lead & 77.6 & 1.0 & 0.13 & ug/ & 80.0 & ND & 97 & 70-130 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 007
Report Number: IOB1572

Sampled: 02/18/05
Received: 02/18/05

\section*{METHOD BLANK/QC DATA}

\section*{METALS}
\begin{tabular}{lllllllllllll}
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

\section*{Batch: 5B24099 Extracted: 02/24/05}

Matrix Spike Analyzed: 02/25/2005 (5B24099-MS2)
\begin{tabular}{lcccccccc}
Antimony & 83.8 & 2.0 & 0.18 & ug/l & 80.0 & 0.20 & 104 & \(70-130\) \\
Cadmium & 74.6 & 1.0 & 0.015 & ug/ & 80.0 & ND & 93 & \(70-130\) \\
Copper & 83.9 & 2.0 & 0.49 & \(u g / 1\) & 80.0 & ND & 105 & \(70-130\) \\
Lead & 77.7 & 1.0 & 0.13 & \(u g /\) & 80.0 & 0.15 & 97 & \(70-130\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Matrix Spike Dup Analyzed: 02/25/2005 (5B24099-MSD1)} & \multicolumn{8}{|c|}{Source: 1OB1490-01} \\
\hline Antimony & 85.0 & 2.0 & 0.18 & ug/ & 80.0 & 0.50 & 106 & 70-130 & 1 & 20 \\
\hline Cadmium & 75.2 & 1.0 & 0.015 & ug/ & 80.0 & 0.016 & 94 & 70-130 & 0 & 20 \\
\hline Copper & 81.2 & 2.0 & 0.49 & ug/ & 80.0 & 1.0 & 100 & 70-130 & 2 & 20 \\
\hline Lead & 76.3 & 1.0 & 0.13 & ugh & 80.0 & ND & 95 & 70-130 & 2 & 20 \\
\hline
\end{tabular}

17461Derian Ave., Sulte 100, Irvine, CA 92614 (949) 261~1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Sutte B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. \#3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621
\begin{tabular}{lcr}
\hline MWH-Pasadena/Boeing & Project ID: Routine Outfall 007 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(02 / 18 / 05\) \\
Pasadena, CA 91101 & Report Number: IOB1572 & Received: 02/18/05 \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{METHOD BLANKIQC DATA}

\section*{INORGANICS}

Batch: 5B23082 Extracted: 02/23/05

Blank Analyzed: 02/23/2005 (5B23082-BLK1)

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 007
Repor Number: \(10 B 1572\) Sampled: 02/18/05
Report Number: IOB1572
Received: 02/18/05

\section*{METHOD BLANKIQC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifier \\
\hline \multicolumn{11}{|l|}{Batch: 5824111 Extracted: 02/24/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 02/24/2005 (5B24111-BLK1)} \\
\hline Total Dissolved Solids ND & 10 & 10 & mg/ & & & & & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 02/24/2005 (5B24111-BS1)} \\
\hline Total Dissolved Solids 976 & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & 1000 & & 98 & 90-110 & & & \\
\hline Duplicate Analyzed: 02/24/2005 (5B24111-DUP1) & & & & & ce: IOB1 & 821-01 & & & & \\
\hline Total Dissolved Solids 374 & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & & 380 & & & 2 & 10 & \\
\hline \multicolumn{11}{|l|}{Batch: 5825089 Extracted: 02/25/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 02/25/2005 (5B25089-BLK1)} \\
\hline Total Suspended Solids ND & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 02/25/2005 (5B25089-BS1)} \\
\hline Total Suspended Solids 956 & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & 1000 & & 96 & 85-115 & & & \\
\hline Duplicate Analyzed: 02/25/2005 (5B25089-DUP1) & & & & Sou & e: IOB1 & 979-01 & & & & \\
\hline Total Suspended Solids ND & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & & ND & & & & 10 & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 007
Report Number: \(10 B 1572\)
Sampled: 02/18/05
Received: 02/18/05

\section*{Compliance Check}

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.
\begin{tabular}{lllcccc}
LabNumber & Analysis & Analyte & & Compliance \\
\hline IOB1572-01 & 413.1 Oil and Grease & Oil \& Grease & Result & MRL & Limit \\
IOB1572-01 & Antimony-200.8 & Antimony & \(\mathrm{mg} / \mathrm{l}\) & 2.00 & 5.0 & 15 \\
IOB1572-01 & Cadmium-200.8 & Cadmium & \(\mathrm{ug} / \mathrm{l}\) & 1.30 & 2.0 & 6.00 \\
IOB1572-01 & Chloride -300.0 & Chloride & \(\mathrm{ug} / \mathrm{l}\) & 0.17 & 1.0 & 4.00 \\
IOB1572-01 & Copper-200.8 & Copper & \(\mathrm{mg} / 1\) & 1.70 & 0.50 & 150 \\
IOB1572-01 & Mercury -245.1 & Mercury & \(\mathrm{ug} / \mathrm{l}\) & 8.40 & 2.0 & 14 \\
IOB1572-01 & Nitrogen, NO3+NO2 -N & Nitrate/Nitrite-N & \(\mathrm{ug} / \mathrm{l}\) & 0.070 & 0.20 & 0.20 \\
IOB1572-01 & Sulfate-300.0 & Sulfate & \(\mathrm{mg} / \mathrm{l}\) & 0.54 & 0.11 & 10.00 \\
IOB1572-01 & TDS - SM 2540C & Total Dissolved Solids & \(\mathrm{mg} / \mathrm{l}\) & 1.20 & 0.50 & 250 \\
& & & \(\mathrm{mg} / \mathrm{l}\) & 120 & 10 & 850
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 007
Report Number: IOB1572

Sampled: 02/18/05
Received: 02/18/05

\section*{DATA QUALIFIERS AND DEFINITIONS}

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 007
Sampled: 02/18/05
Report Number: IOB1572

Received: 02/18/05

\section*{Certification Summary}

\section*{Del Mar Analytical, Irvine}
\begin{tabular}{cccc}
Method & Matrix & Nelac & Callfornia \\
EPA 160.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 200.8 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 245.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 300.0 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 413.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
SM2540C & Water & \(\mathbf{X}\) & \(\mathbf{X}\)
\end{tabular}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

\section*{Subcontracted Laboratories}

Alta Analytical California Cert \#1640
1104 Windfield Way - El Dorado Hills, CA 95762
Analysis Performed: 1613-Dioxin-HR
Samples: IOB1572-01
Analysis Performed: EDD + Level 4
Samples: IOB1572-01

March 23，2005

MWH－Pasadena／Boeing
300 North Lake Avenue，Suite 1200
Pasadena，CA 91101
\begin{tabular}{ll}
Attention： & Bronwyn Kelly \\
Project： & Routine Outfall 007 \\
& Sampled：02／18／05 \\
& Del Mar Analytical Number：IOB1572
\end{tabular}

Dear Ms．Kelly：
Alta Analytical Laboratory performed the EPA Method 1613 Dioxin analysis for the project referenced above．Please use the following cross－reference table when reviewing your results．
\begin{tabular}{|c|c|c|}
\hline MWH ID & DEL MAR ID & Alta ID \\
\hline Outfall 007 & IOB1572－01 & 25782－001 \\
\hline
\end{tabular}

Attached is the original report from the subcontract laboratory．If you have any questions or require further assistance，please do not hesitate to contact me at（949）261－1022 at extension 215.

Sincerely yours，
DEL MAR ANALYTICAL

Michele Harper
Project Manager

March 01, 2005
Alta Project I.D.: 25782
Ms. Michele Harper
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614

\section*{Dear Ms. Harper,}

Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on February 24, 2005 under your Project Name "IOB1572". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

Alta Analytical Laboratory Inc.

\section*{Section I: Sample Inventory Report}

Date Received: \(\quad 2 / 24 / 2005\)

\section*{Alta Lab. ID}

Client Sample ID
25782-001
IOB1572-01

SECTION II

APPENDIX

\section*{DATA QUALIFIERS \& ABBREVIATIONS}

B This compound was also detected in the method blank.
D The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.
I Chemical Interference
J The amount detected is below the Lower Calibration Limit of the instrument.
* See Cover Letter

Conc. Concentration
DL Sample-specific estimated detection limit
MDL The minimum concentration of a substance that can be measured and reported with \(99 \%\) confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration
NA Not applicable
RL Reporting Limit - concentrations that corresponds to low calibration point
ND Not Detected
TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

The control limits are "interim limits only" until in-house limits are utilized.

NELAP - (Primary AA: California, Certificate No. 02102CA)
Department of the Navy
U.S. Army Corps of Engineers

\section*{U.S. EPA Region 5}

Bureau of Reclamation - Mid-Pacific Region - (MP-470, Res-1.10)
Commonwealth of Kentucky - (Certificate No. 90063)
Commonwealth of Virginia - (Certificate No. 00013)
State of Alaska, Department of Environmental Conservation - (Certificate No. OS-00197)
State of Arizona - (Certificate No. AZ0639)
State of Arkansas, Department of Health - (Approval granted through CA certification)
State of Arkansas, Department of Environmental Quality
State of Callfornia - (Certificate No. 1640)
State of Colorado
State of Connecticut - (Certificate No. PH-0182)
State of Florida - (Certificate No. 87456)
State of Louisiana, Department of Health and Hospitals - (Certificate No. LA000014)
State of Louisiana, Department of Environmental Quality
State of Maine
State of Michigan (Certificate No. 81178087)
State of Mississippi - (Approval granted through CA certification)
State of Nevada - (Certificate No. CA413)
State of New Jersey - (Certificate No. CA003)
State of New York, Department of Health - (Certificate No. 11411)
State of North Carolina - (Certification No. 06700)
State of North Dakota, Department of Health - (Certificate No. R-078)
State of New Mexico
State of Oklahoma - (D9919)
State of Oregon - (Certificate No. CA413)
State of Pennsylvania - (Certificate No. 68-490)
State of South Carolina - (Certificate No. 87002001)
State of Tennessee - (Certificate No. 02996)
State of Texas - (Certificate No. TX247-1000A
State of Utah - (Certificate No. E-201)
State of Washington - (Certification No. C091)
State of Wisconsin - (Certificate No. 998036160)
State of Wyoming - (USEPA Region 8 Ref: 8TMS-Q)

\section*{SUBCONTRACT ORDER-PROJECT \#IOB1572}

\section*{SAMPLE LOG-IN CHECKLIST}

ALTA Project No.: \(\quad 25782\)

\section*{Comments:}

\(\qquad\)

\section*{APPENDIX G}

\section*{Section 22}

February Outfall 008
AMEC Data Validation Reports
Del Mar Analytical Laboratory Reports

\section*{amec \({ }^{\theta}\)}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES \\ Monitoring
}

\author{
ANALYSIS: DIOXINS/FURANS \\ SAMPLE DELIVERY GROUPS: Multiple SDGs
}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: Multiple SDGs \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Dioxins/Furans \\ QC Level: Level IV \\ No. of Samples: 13 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: H. Chang \\ Date of Review: March 18, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{lrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

Table 1. Sample Identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & \begin{tabular}{c}
Laboratory ID \\
(Del Mar)
\end{tabular} & \begin{tabular}{c}
Laboratory ID \\
(Alta AP)
\end{tabular} & Matrix & COC Method \\
\hline Outfall 001 & IOB0980-01 & P5072_2989_007 & water & 1613 B \\
\hline Outfall 002 & IOB0981-01 & P5072_2989_013 & water & 1613 B \\
\hline Outfall 003 & IOB0988-01 & P5072_2989_012 & water & 1613 B \\
\hline Outfall 004 & IOB1002-01 & P5072_2989_009 & water & 1613 B \\
\hline Outfall 005 & IOB0990-01 & P5072_2989_006 & water & 1613 B \\
\hline Outfall 006 & IOB0992-01 & P5072_2989_010 & water & 1613 B \\
\hline Outfall 007 & IOB0993-01 & P5072_2989_002 & water & 1613 B \\
\hline Outfall 008 & IOB0997-01 & P5072_2989_004 & water & 1613 B \\
\hline Outfall 009 & IOB0996-01 & P5072_2989_003 & water & 1613 B \\
\hline Outfall 010 & IOB1001-01 & P5072_2989_001 & water & 1613 B \\
\hline Outfall 011 Composite & IOB1004-01 & P5072_2989_011 & water & \(1613 B\) \\
\hline Outfall 011 & IOB1014-01 & P5072_2989_005 & water & 1613B \\
\hline Outfall 018 & IOB1008-01 & P5072_2989_008 & water & \(1613 B\) \\
\hline
\end{tabular}
\begin{tabular}{lrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

All of the samples in these SDGs were received at Del Mar Analytical within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\) except sample Outfall 009 which was at \(8^{\circ} \mathrm{C}\). Due to non-volatile nature of the analytes, no qualifications were necessary for the elevated cooler temperature. The samples were received at Pace Analytical with cooler temperatures of \(1.6^{\circ} \mathrm{C}, 2.3^{\circ} \mathrm{C}\), and \(3^{\circ} \mathrm{C}\). The samples were received at Alta Analytical Perspectives with cooler temperatures of \(1^{\circ} \mathrm{C}\) and \(3^{\circ} \mathrm{C}\). According to the laboratory login sheets, all samples were received intact and in good condition at Del Mar and Alta AP. No sample conditions were available for review for the sample receipt at Pace. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

It appears that the samples were initially sent from Del Mar Analytical to Pace Analytical then subsequently shipped to Alta Analytical Perspectives. The COCs from the field to Del Mar, Del Mar to Pace, and Pace to Alta were available for review. The COCs were legible and signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. The custody seals were not present on the coolers upon receipt at either Del Mar or Alta. No custody seal information was available for Pace. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The samples were extracted and analyzed within a year of collection. No qualifications were required.

\subsection*{2.2 INSTRUMENT PERFORMANCE}

Following are findings associated with instrument performance:

\subsection*{2.2.1 GC Column Performance}

A Column Performance Check Standard (CPSM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed prior to initial calibration analysis. A separate CPSM was not analyzed for daily analytical sequence; instead, CPSM compounds were added to OPR analysis. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and \(2,3,7,8\)-TCDD reported as less than \(25 \%\). No qualifications were required.

\subsection*{2.2.2 Mass Spectrometer Performance}

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.
\begin{tabular}{llr}
& Project: & NPDES \\
DATA VALIDATTON REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\subsection*{2.3 CALIBRATION}

\subsection*{2.3.1 Initial Calibration}

There was one initial calibrations, analyzed 08/12/04. The calibrations each consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with \%RSDs \(\leq 20 \%\) for the native compounds and \(\leq 35 \%\) for the labeled compounds. The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.3.2 Continuing Calibration}

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.4 BLANKS}

One method blank (0_2989_MB001) was extracted and analyzed with the samples in these SDGs. There were no detects reported in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One Ongoing Precision Recovery (OPR) sample (0_2989_OPR001) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of the Method 1613. No qualifications were required.

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

\subsection*{2.7 FIELD QC SAMPLES}

Following are findings associated with field QC:

\subsection*{2.7.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.
\begin{tabular}{lll}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\subsection*{2.7.2 Field Duplicates}

No field duplicate samples were identified for these SDGs.

\subsection*{2.8 INTERNAL STANDARDS}

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

\subsection*{2.9 COMPOUND IDENTIFICATION}

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data. The laboratory reported total PeCDFs detects in samples Outfall 005, Outfall 006, Oufall 007, and Outfall 011 . The reviewer deemed the signals used to be below the signal-to-noise ratio of 2.5 and the results were changed to nondetects. A false negative for total HxCDD was noted in sample Outfall 001 and was changed to a detect. No further qualifications were required.

\subsection*{2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the lower method calibration level (MCL) were qualified as estimated, "J." The laboratory did not flag OCDD in samples Outfall 002 and Outfall 003 although the reported concentrations were below the lower MCL. OCDD in these samples was qualified as estimated, "I" The laboratory did not notate detects below the lower MCL for totals. These totals were qualified as estimated, "J." The "DNQ" qualification code was applied only if all components of the totals were below the lower MCL.

The laboratory indicated that one of the non- \(2,3,7,8\) substituted HxCDD detect, present in majority of the samples, was due to recovery standard (\(13 \mathrm{C}-1,2,3,4,6,7-\mathrm{HxCDD}\)) contribution. This compound was also present in the method blank. This compound was not included in the total HxCDD concentration. Several total HxCDD results could not be reproduced from the raw data by the reviewer and were hand-corrected on the Form I. No further qualifications were required.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer P. Meeks
Analysis/Method Metals

\section*{ACTION TEMS}
1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from

Analysis Protocol, e.g.,
Holding Times
GC/MS Tune/Inst. Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Intemal Standard
Performance
Compound Identification
and Quantitation
System Performance

Package ID T711MT53
Task Order 313150010
SDG No. IOB0997, 1001, 1008
No. of Analyses 3
Date: 03/28/05
Reviewer's Signature
p. Meetes
m e.g.,

Qualifications applied for:
1. Detects below the reporting limit.
2. Negative results and detected in the blanks.
3. Antimony MDLs raised.
4. Reporting limit check standard recovery outliers.
\(\qquad\)
\(\square\)
\(\square\)
\(\square\)
\(\qquad\)

\section*{COMMENTS}

\footnotetext{
\({ }^{\text {a }}\) Subcontracted analytical laboratory is not meeting contract and/or method requirements.
- Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.
}

\title{
amec \({ }^{9}\)
}

\section*{DATA VALIDATION REPORT}

NPDES
Monitoring

\author{
ANALYSIS: METALS SAMPLE DELIVERY GROUPS: IOB0997, IOB1001, \& IOB1008
}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: IOB0997, IOB1001, IOB1008 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Metals \\ QC Level: Level IV \\ No. of Samples: 3 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: P. Meeks \\ Date of Review: March 28, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, SW-846 Method 6010B for Inductively Coupled Plasma, SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form \(I\) as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{lrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 008 & Outfall 008 & IOB0997-01 & water & ILM04 \\
\hline Outfall 010 & Outfall 010 & IOB1001-01 & water & ILM04 \\
\hline Outfall 018 & Outfall 018 & IOB1008-01 & water & ILM04 \\
\hline
\end{tabular}
\begin{tabular}{lrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C}\) \(\pm 2^{\circ} \mathrm{C}\). No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by field and laboratory personnel. The requested analytes for Outfall 018 were changed in a memo from MWH personnel dated \(02 / 17 / 05\). The COCs accounted for the remaining samples and analyses presented in these SDGs. Duplicate samples were submitted for all samples in these SDGs; however, duplicate analyses were not required. No sample qualifications were required.

\subsection*{2.1.3 Holding Times}

The dates of collection recorded on the COCs and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP and ICP/MS metals and 28 days for mercury. No qualifications were required.

\subsection*{2.2 ICP-MS TUNING}

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. All \%RSDs were less than \(5 \%\). The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

\subsection*{2.3 CALIBRATION}

The ICV and CCV results showed acceptable recoveries, \(90-110 \%\) for ICP/MS metals and 80-120\% for mercury. Silver was recovered below the control limit in the ICP reporting limit check standard associated with Outfall 008 and Outfall 010 ; therefore, nondetected silver in these samples was qualified as estimated, "UJ." Antimony was recovered below the control limit in the ICP/MS 0.2 ppb reporting limit check standard associated with Outfall 010; therefore, nondetected antimony in Outfall 010 (see
\begin{tabular}{lrr}
& Project: & NPDES \\
& SDG No.: & Multiple \\
DATA VALIDATION REPORT & Analysis: & MET \\
\hline
\end{tabular}
section 2.4) was qualified as estimated, "UJ." Copper was not recovered in the ICP/MS 1.0 ppb reporting limit check standard and was recovered below the control limit in the ICP/MS 2.0 ppb reporting limit check standard; however, as copper was detected in the associated sample, Outfall 018, at \(\geq 3 \times\) RL, no qualifications were required. The remaining reporting limit check standards were recovered within the AMEC control limits of \(70-130 \%\). No further sample qualifications were required.

\subsection*{2.4 BLANKS}

Arsenic was reported in method blank 5B17127 at \(-0.0071 \mathrm{mg} / \mathrm{L}\); therefore, nondetected arsenic in Outfall 010 was qualified as estimated, "UJ." Antimony was detected in the CCBs bracketing Outfall 008 and Outfall 010 at approximately 0.95 and \(0.50 \mu \mathrm{~g} / \mathrm{L}\), respectively and antimony was detected in Outfall 008 and Outfall 010 at concentrations below the level reported in the CCBs. The CCB detects indicated the laboratory could not detect antimony at the reported MDL. The reviewer raised the MDLs in the site samples to the level reported in the respective CCBs and qualified the results as estimated, "UJ." No further qualifications were required due to the method and calibration blank results.

\subsection*{2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)}

ICSA and ICSAB analyses were included in the raw data for the ICP-MS analyses. Results were not provided for spiked interferents sulfur, phosphorus, carbon, and chloride, and antimony and lead were not spiked into the ICSAB solution. Copper and cadmium were detected above the applicable reporting limit in the ICSA. The results for sodium and potassium were above the calibration range of the instrument in all the ICSA and ICSAB analyses and aluminum was above the calibration range in the ICSA and ICSAB analyses associated with Outfall 010, however, as these analytes were not reported in the site samples, no qualifications were required. The validator reviewed the raw data for the site sample ICP/MS analyses for the level of reported interferents, \(\mathrm{Al}, \mathrm{Ca}, \mathrm{Fe}\), and Mg , and determined that the level of reported interferents were not high enough to cause matrix affects. No assessment could be made with respect to possible interference from sulfur, phosphorus, carbon, and chloride.

ICSA and ICSAB analyses were included in the raw data for the ICP analyses, but were not run on the days the site samples were analyzed. The recoveries for the interferents and the other spiked analytes were within the control limits of \(80-120 \%\). In the ICSA analyses there were negative results for chromium and positive results for thallium and zinc that were above the applicable reporting limits. The validator reviewed the raw data for the site sample ICP analyses for the level of reported interferents, Al , \(\mathrm{Ca}, \mathrm{Fe}\), and Mg , and determined that the level of reported interferents were not high enough to cause matrix affects. No qualifications were required.

\subsection*{2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The ICP/MS LCS samples were identified as 5B12041-BS1, 5B17098-BS1, and 5B17129-BS1 and the ICP LCS samples were identified as 5B17097-BS1 and 5B17127-BS1. The mercury LCS samples were identified as 5B12033-BS1 and 5B15070-BS1. The LCS results on the summary forms and in the raw data were within the laboratory-established ICP, ICP/MS, and mercury control limits of \(85-115 \%\). No qualifications were required.
\begin{tabular}{lrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\subsection*{2.7 LABORATORY DUPLICATES}

No MS/MSD or laboratory duplicate analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.8 MATRIX SPIKE}

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on LCS results.

\subsection*{2.9 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.10 ICP/MS AND ICP SERIAL DILUTION}

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.11 INTERNAI STANDARDS PERFORMANCE}

The ICP-MS internal standard recoveries for the site samples and associated QC sample analyses were within the \(60-125 \%\) control limits and no qualifications were required.

\subsection*{2.12 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit were qualified as estimated, "J." No further qualifications were required.

\subsection*{2.13 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

\subsection*{2.13.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.
\begin{tabular}{lrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\subsection*{2.13.2 Field Duplicates}

There were no field duplicate analyses performed in association with the site samples.

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\section*{Project ID: Annual Outfall 008}

Report Number: IOBOS97

Sampled: 02/11/05
Received: 02/11/05

\section*{DRAFT: METALS}

MDL Reporting Sample Dilution Date Date Data
Analyse Method Batch Limit Limit Result FactorExtracted Analyzed Qualifiers

Sample ID: 1OB0997-01 (DRAFT: Outfall 008 - Water) - cont. Reporting Lints: mg n
Arsenic
Beryllium
Chromium
Nickel
Selenium
Silver
Thallium
Zinc

DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 008
Report Number: IOBOS97

Sampled: 02/11:05
Received: 02/11/05

\section*{DRAFT: METALS}

MDL Reporting Sample Dilution Date Date Data
Analyse Method Batch Limit Limit Result Factor Extracted Analyzed Qualifiers

Sample ID: IOB0997-01 (DRAFT: Outfall 008 - W'ater) - cont.
Reporting Units: ugh/

An 3/20/0s

AMES VALIDATED

\section*{DRAFT REPORT}

DRAFT REPORT

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer K. Shadowlight
Analysis/Method Pesticides

Package ID T711PP17
Task Order 313150010
SDG No. Multiple
No. of Analyses 3
Date March 28, 2005

\section*{ACTION ITEMS \({ }^{*}\)}
1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis Qualifications were assigned for \(\% \mathrm{D}\) continuing calibration outliers Protocol, e.g. \(\square\)
Acceptable as reviewed.
* Subcontracted analytical laboratory is not meeting contract and/or method requirements.
- Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

\title{
amec \({ }^{\text {® }}\)
}

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\author{
ANALYSIS: PESTICIDES/PCBs SAMPLE DELIVERY GROUP: Multiple SDGs
}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{|c|c|c|}
\hline & Project:
SDG:
Andus & NPDES Multiple \\
\hline DATA VALIDATION REPORT & Analysis: & Pest PCB \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: Multiple SDGs \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Pesticides/PCBs \\ QC Level: Level IV \\ No. of Samples: 3 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: K. Shadowlight \\ Date of Review: March 25, 2005
}

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedures (DVP-4, Rev 2), EPA Method 608, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary form as having only the " \(R\) " data qualifier and associated qualification codess) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{cc}
\\
DATA VALIDATION REPORT & \begin{tabular}{c}
Project: \\
SDG:
\end{tabular} \\
\begin{tabular}{c}
NPDES \\
Multiple
\end{tabular} \\
PestPCB
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & Method \\
\hline Outfall 008 & Outfall 008 & IOB0997-01 & water & 608 \\
\hline Outfall 010 & Outfall 010 & IOB1001-01 & water & 608 \\
\hline Outfall 018 & Outfall 018 & IOB1008-01 & water & 608 \\
\hline
\end{tabular}
\begin{tabular}{cc}
& Project: \\
DATA VALIDATION REPORT & SDG: \\
Multiple \\
PesuPCB
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The coolers were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). The analysis did not require preservation, and no preservation was noted in the field. The COCs noted that the samples were received intact. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by both field and laboratory personnel. The COCs accounted for the analyses presented in these SDGs. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The water samples were extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

\subsection*{2.2 PESTICIDES INSTRUMENT PERFORMANCE}

No resolution check standards or breakdown check standards are required by Method 608 for pesticides, and according to the raw data provided, a resolution check standard was not analyzed by the laboratory. The laboratory did analyze a breakdown check standard with a breakdown of \(\leq 20 \%\) for individual components (\(4,4-\) DDT and endrin) and \(\leq 30 \%\) for the total, as suggested in the National Functional Guidelines. A review of the raw data indicated that the analytical run time was of sufficient length to provide adequate standard separation. The two analytical columns used in the analyses were within the guidelines specified in the methods.

According to the laboratory SOP and the initial calibration raw data, the retention time windows are \(\pm 0.10\) minutes for both surrogates and target compound calibration standards. A review of the raw data indicated that the laboratory retention time criteria were met for the surrogates and pesticide calibration standards. No qualifications were required.

\subsection*{2.3 CALIBRATION}

\subsection*{2.3.1 Analytical Sequence}

Based on the data provided, the analytical sequences were in accordance with the requirements of Method 608. No qualifications were required.
\begin{tabular}{cc}
DATA VALIDATION REPORT & \begin{tabular}{c}
Project: \\
SDG:
\end{tabular} \\
\begin{tabular}{c}
NPDES \\
Multiple
\end{tabular} \\
PestPCB
\end{tabular}

\subsection*{2.3.2 Initial Calibration}

There were two initial calibrations dated \(02 / 15 / 05\) and \(02 / 17 / 05\) associated with the pesticide analyses of the samples in these SDGs, which consisted of six point calibrations for all pesticide target compounds on two analytical columns. The \%RSDs were within the EPA Method 608 QC limit of \(\leq 10 \%\) or the \(\mathrm{r}^{2}\) values were \(\geq 0.995\) on both analytical columns. There was one initial calibration dated 02/11/05 associated with the PCB analyses of the samples in these SDGs which consisted of five points for Aroclor 1016 and Aroclor 1260. Single point calibrations for Aroclor 1242 and Aroclor 1254 were also analyzed. The average \(\%\) RSDs for the individual peaks of Aroclor 1016 and Aroclor 1260 were \(\leq 10 \%\) or the \(r^{2}\) values were \(\geq 0.995\) on both analytical columns. An ICV was analyzed immediately following each of the initial calibrations. The \%Ds for all target compounds were within the QC limits of \(15 \%\) on both analytical columns. A representative number of \%RSDs and ICV \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.3.3 Continuing Calibration}

Of the continuing calibrations associated with the pesticide analyses for the samples in these SDGs there were several \%D outliers. The \%Ds for beta-BHC, endosulfan II, endrin aldehyde, and endrin ketone exceeded \(15 \%\) in one of the three calibrations standards bracketing sample Outfall 008 ; therefore, the aforementioned target compounds were qualified as estimated, "UJ," in Outfall 008.

The continuing calibrations associated with sample Outfall 010 were bracketed by four continuing calibrations, two preceding and two following the analyses. The \%Ds for target compounds endrin aldehyde (\(02 / 17 / 05\)), 4,4 \({ }^{\prime}\)-DDT and methoxyclor (\(02 / 18 / 05\) at \(03: 14\) a.m. and 03:41 a.m.) and heptachlor, endrin aldehyde, and endrin ketone (\(02 / 18 / 05\) at \(03: 41 \mathrm{a} . \mathrm{m}\).) exceeded \(15 \%\) on the primary channel, therefore, the aforementioned target compounds were qualified as estimated, "UJ," in sample Outfall 010.

The remaining \%Ds were within the Method QC limit of \(\pm 15 \%\) for the remaining calibrations. Each of the PCB analyses for the samples in these SDGs were bracketed by two CCVs and the \%Ds for Aroclor 1016 and Aroclor 1260 were \(\leq 15 \%\). A representative number of \(\%\) Ds were recalculated from the raw data and no transcription or calculation errors were noted.

No further qualifications were required.

\subsection*{2.4 BLANKS}

\subsection*{2.4.1 Instrument Blanks}

An instrument blank was analyzed at the beginning of each analytical sequence. Crosscontamination was not evident in the samples. No qualifications were necessary.

\subsection*{2.4.2 Method Blanks}

Three water method blanks (5B15038-BLK1, 5B17042-BLK1, and 5B13028-BLK1) were extracted and analyzed with these SDGs. There were no pesticide target compounds or Aroclors detected in any of the method blanks. Review of the chromatograms showed no false negatives. No qualifications were required.

\section*{\(\begin{array}{cc} & \begin{array}{c}\text { Project: } \\ \text { DATA VALIDATION REPORT }\end{array} \\ \text { SDDES } \\ \text { Multiple }\end{array}\)}

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

Three blank spike/blank spike duplicate pairs (5B15038-BS1/BSD1, 5B17042-BS1/BSD, and 5B13028-BS1/BSD) were extracted and analyzed with these SDGs. The recoveries for all spiked pesticide target compounds and Aroclors were within the laboratory-established QC limits and the RPDs were \(\leq 30 \%\). A representative number of recoveries were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.6 SURROGATE RECOVERY}

The sample and all QC samples were fortified with the surrogate compounds decachlorobiphenyl and tetrachloro-m-xylene. Surrogate recoveries for the pesticide and PCB analyses of the samples were within the laboratory-established. The recoveries were calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

There were no MS/MSD analyses associated with these SDGs. Method accuracy and precision were assessed based on the blank spike/blank spike duplicate results. No qualifications were required.

\subsection*{2.8 SAMPLE CLEANUP PERFORMANCE}

According to the laboratory extraction benchsheets, no cleanups were performed on the water samples. No qualifications were required.

\subsection*{2.9 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.9.1 Field Blanks and Equipment Rinsates}

There were no field QC samples associated with the samples in these SDGs. No qualifications were required.

\subsection*{2.9.2 Field Duplicates}

There were no field duplicate samples associated with the sample in these SDGs.

\subsection*{2.10 COMPOUND IDENTIFICATION}

The laboratory analyzed for pesticide target compounds and PCBs by EPA Method 608. Compound identification is verified at a Level IV validation. Review of chromatograms and
\begin{tabular}{cc}
DATA VALIDATION REPORT & \begin{tabular}{c}
Project: \\
NPDES \\
Multiple
\end{tabular} \\
SDG: & Analysis: \\
PestPCB
\end{tabular}
retention times indicated no problems with compound identification for the samples in these SDGs. No qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification was verified for these SDGs; however, as there were no detects reported in the samples, quantitation was verified by recalculating a representative number of blank spike and surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibration and the laboratory MDL studies. The water reporting limits were not adjusted for sample amounts on the result summaries; however, the dilution factors listed on the summaries reflected the sample volumes extracted. Results were reported in \(u g / \mathrm{L}\) (ppb). No qualifications were required.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 008
Report Number: 1OBOS97

Sampled: 122/1105
Received: 02/11/05

\section*{DRAFT: ORGANOCHLORINE PESTICIDES (EPA 608)}

\section*{DRAFT REPORT}

DRAFT REPORT
DATA SUBJECT TO CHANGE

 G) Chesapeave Dr., Suite 80S, San Diego. CA 92123 (858) 505-8596 FAX 3858) 505.9089
 2520 E. Sunser Rd. \#3, Las Vezas, NV 89120 (702) 798-3620 FAX \(7027798-3621\)
```

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

```

Project ID: Annual Outfall 008
Report Number: IOBOS97

Sampled: 02/11/05
Received: 02/11/05

\section*{DRAFT: TOTAL PCBS (EPA 608)}

\title{
AMEC Validated LEVEL IV
}

CONTRACT COMPLLANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental 550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer P. Meeks
Analysis/Method Radionuclides

Package ID
T711RA4
Task Order 313150010
SDG No. Multiple
No. of Analyses 11
Date: 03/24/05
Reyiewer's Signature
P. Mees

ACHON ITEMS
1. Case Narrative Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy Deliverables
5. Incorrect Hardcopy Deliverables
6. Deviations from Qualifications applied for: Analysis Protocol, e.g.,

Holding Times GC/MS Tune/Inst. Performance Calibrations Blanks Surrogates Matrix Spike/Dup LCS Field QC
Intemal Standard
Performance
Compound Identification and Quantitation
System Performance
1. Exceeded holding times.
2. Matrix spike recovery outlier.
3. Laboratory duplicate RPD outlier.
4. Incorrect sample container.
5. Detector efficiency outliers.
6. Incorrect sample preservation.
7. Reanalysis rejected in faver of originai cesult

Three tritium results rejected due to incorrect sample preservation.

\section*{COMMENTS \({ }^{\text {b }}\)}

\footnotetext{
\({ }^{3}\) Subcontracted analytical laboratory is not meeting contract and/or method requirements.
\({ }^{6}\) Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.
}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES \\ Monitoring
}

\author{
ANALYSIS: RADIONUCLIDES
}

SAMPLE DELIVERY GROUPS:
IOB0418, IOB0980, IOB0993, IOB0996, IOB0997, IOB1001, IOB1004, IOB1014, \& IOB1069

\author{
Prepared by \\ AMEC-Denver Operations \\ 550 South Wadsworth Boulevard, Suite 500 \\ Lakewood, Colorado 80226
}
\begin{tabular}{cc}
& \begin{tabular}{c}
Project: \\
DATA VALIDATION REPORT
\end{tabular} \\
SDG No.: & NPDES \\
Multiple \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: IOB0418, IOB0980, IOB0993, IOB0996, IOB0997, IOB1001, IOB1004, IOB1014, \& IOB1069 \\ Project Manager. B. Mcllvaine \\ Matrix: Water \\ Analysis: Radionuclides \\ QC Level: Level IV \\ No. of Samples: 11 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: P. Meeks \\ Date of Review: March 23, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the EPA Prescribed Procedures for Measurements of Radioactivity in Drinking Water, Methods 900.0, 905.0, and 906.0, and validation procedures outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{rrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & Del Mar ID & Eberline ID & Matrix & COC Method \\
\hline Outfall 002 & IOB0418-01 & \(8237-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 001 & IOB0980-01 & \(8265-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 001REI & IOB0980-01RE1 & \(8265-001\) & water & 900.0 \\
\hline Outfall 007 & IOB0993-01 & \(8261-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 009 & IOB0996-01 & \(8262-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 008 & IOB0997-01 & \(8266-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 010 & IOB1001-01 & \(8267-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 011 & IOB1004-01 & \(8263-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 011 & IOB1014-01 & \(8264-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 003 Filtered & IOB1069-01 & \(8268-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 003 Unfiltered & IOB1069-02 & \(8268-002\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 003 Substrate & IOB1069-03 & \(8269-001\) & water & \\
\hline
\end{tabular}
\begin{tabular}{lcc}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline & Analysis: & RAD \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

Most samples in these SDGs were received at Del Mar Analytical within the temperature limits of \(4 \pm 2^{\circ} \mathrm{C}\). After the analyses were complet, Del Mar Analytical sent extra volume of Outfall 001 to Eberline for gross alpha reanalysis. No temperature information was provided by Eberline, the subcontract laboratory; however, as it is not necessary to chill radiological samples, no qualifications were required. All samples were received intact and in good condition.

According to the Eberline login sheet, Outfall 002 was received unpreserved. It was confirmed in correspondence with Eberline dated 01/31/05, that the gross alpha, gross beta, and strontium samples were not preserved upon receipt; therefore, the nondetected strontium result for Outfall 002 was qualified as estimated, "UJ." According to the Los Angeles Water Quality Control Board (LARWQCB) guidance letter dated 01/12/05, unfiltered samples should not be preserved and filtered aliquots should be preserved after filtration.

Eberline noted on their login sheets that Outfall 007, Outfall 008, Outfall 009 and Outfall 010 were received preserved, in plastic containers. Per the method, tritium samples should not be preserved. Per a telephone conversation with M. Mannion of Eberline, the pH of these samples was adjusted back to about 7 upon receipt at Eberline. Due to the improper pH adjustments, the tritium results for Outfall 007, Outfall 008, Outfall 009, and Outfall 010 were rejected, "R". Additional, unpreserved aliquots of Outfall 007 , Outfall 008, Outfall 009 , and Outfall 010 were sent from Del Mar to Eberline for tritium reanalysis. These results were not available at the time of this report.

Additionally, according to the 01/12/05 LARWQCB guidance letter, samples collected for tritium analysis should be submitted in glass containers to avoid potential loss of tritium by sorption onto the plastic container. As the Outfall 007, Outfall 008 , Outfall 009 and Outfall 010 tritium samples were previously rejected, no further qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The original COCs were signed and dated by field and laboratory personnel and the transfer COCs were signed by personnel from both laboratories. Filtered, unfiltered, and substrate analyses were requested for Outfall 011 (IOB1014) on the original COC from the field to Del Mar. There instructions did not appear on the transfer COC to Eberline and subsequently only filtered unanalyses were preformed. The remaining original and transfer COCs accounted for the samples and analyses presented in this data package. Eberline did not list the MWH IDs on the Form Is; therefore, the reviewer edited the Form Is to reflect these IDs. A reanalyses for gross alpha was requested for Outfall 001. To distinguish between the two results, the reviewer added an "RE1," suffix to the Outfall 001 and Del Mar Analytical IDs. No qualifications were required.
\begin{tabular}{ccc}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\subsection*{2.1.3 Holding Times}

The tritium and strontium samples were analyzed within 180 days of collection. The Outfall 002 and Outfall 003 Unfiltered gross alpha and gross beta samples were analyzed beyond the five day holding time for unpreserved samples; therefore, these gross alpha and gross beta results were qualified as estimated, "JJ" for detects and, "UJ," for nondetects. No further qualifications were necessary.

\subsection*{2.2 CALIBRATION}

The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

\section*{Gross Alpha}

The initial calibration included with the data was performed in February 2003. All detector efficiencies were below \(20 \%\); therefore, the gross alpha results were qualified as estimated, "UJ," for nondetects and, "JJ" for detects, unless otherwise rejected (see section 2.10).

\section*{Tritium}

No calibration standards were analyzed for this method. According to the laboratory, every sample was spiked for efficiency determination; therefore, no calibration is necessary. All detector efficiencies in the samples were at least \(20 \%\) and were considered acceptable. All internal spike efficiency to default efficiency ratios were near 1 , indicating that quenching did not occur.

\section*{Gross Beta and Strontium-90}

The initial calibrations were performed in June 1997. All gross beta detector efficiencies were at least \(20 \%\) and were considered acceptable. All strontium chemical yields were at least \(65 \%\) and were considered acceptable and the strontium continuing calibration results were within the laboratory control limits. No qualifications were necessary.

\section*{Cesium}

The reviewer confirmed that the 662 KeV peak was used for quantitation, with an efficiency of \(85 \%\). No qualifications were necessary.

\subsection*{2.3 BLANKS}

No measurable activities were detected in the method blanks; therefore, no qualifications were necessary.

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

Three blank spikes (\(8261-002,8237-002,8269-002\)) were analyzed in association with the samples in these SDGs. The gross alpha, gross beta, and strontium recoveries for \(8261-002\) were outside of the 3sigma limits, but all had acceptable recoveries of \(80 \%, 88 \%\), and \(108 \%\), respectively. The remaining blank spike results were within the 3 -sigma limits. No qualifications were necessary.
\begin{tabular}{lr}
& Project: \\
DATA VALIDATION REPORT & SDG No.: \\
\hline
\end{tabular}

\subsection*{2.5 LABORATORY DUPLICATES}

The laboratory performed duplicate analysis on Outfall 002, Outfall 007, and Outfall 003 Substrate. The gross alpha and tritium RPDs were greater than \(20 \%\) for Outfall 007 . The gross alpha results were within 3 -sigma and were considered acceptable, but the tritium result was just above 3 -sigma; however, as no tritium detects were retained (see section 2.1.1), no qualifications were required. The remaining RPD were \(\leq 20 \%\). No further qualifications were necessary.

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

The laboratory performed matrix spike analyses on Outfall 002 and Outfall 007 for gross alpha, gross beta, and tritium. The Outfall 002 recovery for gross alpha was below 3 -sigma; therefore, the gross alpha results in all samples except Outfall 007 were qualified as estimated, "J," for detects and, "UJ," for nondetects. As Outfall 007 had an acceptable recovery for gross alpha, no qualifications were applied. The remaining recoveries were within the 3 -sigma limits. No further qualifications were necessary.

\subsection*{2.7 SAMPLE RESULT VERIFICATION}

An EPA Level IV review was performed for the samples in these data packages. Sample results and MDAs reported on the sample result forms were verified against the raw data and no calculation or transcription errors were noted.

The original planchet for gross alpha in Outfall 001 was recounted once per a request from MWH personnel. The recount yielded an equivalent result as the original count and was not reported. The sample was later reanalyzed from extra sample volume provided by Del Mar Analytical, and was reported as Outfall 001 RE1, As the two gross alpha results were similar, the reviewer rejected, " \(R\) ", the reanalysis, Outfall 001 RE1, in favor of the original result, Outfall 001 . No further qualifications were necessary.

\subsection*{2.8 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

\subsection*{2.8.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.8.2 Field Duplicates}

There were no field duplicate samples in these SDGs.

\section*{Gberline Services}

ANALYSIS RESULTS

\section*{AMEC VALIDATED}

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}
\begin{tabular}{|c|c|c|}
\hline AMEC Earth \& Environmental & Package ID & T711SV32 \\
\hline 550 South Wadsworth Boulevard & Task Order & 313150010 \\
\hline Suite 500 & SDG No. & IOB0997, 10 \\
\hline Lakewood, CO 80226 & No. of Analyses & 3 \\
\hline Laboratory Del Mar & Date: March & 0, 2005 \\
\hline Reviewer M. Pokomy & Reviewer's & nature \\
\hline Analysis/Method Semivolatiles & & \(\sim\) \\
\hline
\end{tabular}

\section*{ACTION ITEMS*}

\section*{1. Case Narrative \\ Deficiencies}
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Qualifications were required for calibration and RPD outliers.
Protocol, e.g.,
Holding Times
GC/MS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and
Quantitation
System Performance
COMMENTS \({ }^{\text {b }}\)

\footnotetext{
\({ }^{\text {a }}\) Subcontracted analytical laboratory is not meeting contract and/or method requirements.
\({ }^{\text {b }}\) Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.
}

\section*{amec \({ }^{\theta}\)}

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\section*{ANALYSIS: SEMIVOLATILES}

\author{
SAMPLE DELIVERY GROUP: IOB0997, IOB1001, IOB1008
}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500

Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: IOB0997, IOB1001, IOB1008 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Semivolatiles \\ QC Level: Level IV \\ No. of Samples: 3 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: L. Calvin \\ Date of Review: March 30, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Semivolatile Organics (DVP-3, Rev. 2), EPA Method 625, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{lc}
& \begin{tabular}{c}
Project: \\
DATA VALIDATION REPORT
\end{tabular} \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Lab No. & Matrix & Method \\
\hline Outfall 008 & Outfall 008 & IOB0997-01 & water & 625 \\
\hline Outfall 010 & Outfall 010 & IOB1001-01 & water & 625 \\
\hline Outfall 018 & Outfall 018 & IOB1008-01 & water & 625 \\
\hline
\end{tabular}
\begin{tabular}{ccc}
DATA VALIDATION REPORT & \begin{tabular}{c}
Project: \\
SDG:
\end{tabular} & \begin{tabular}{c}
NPDES \\
Multiple
\end{tabular} \\
SVOC
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by both field and laboratory personnel. The COCs accounted for the analyses presented in these SDGs. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

Extraction of the water samples was performed within seven days of collection. The samples were analyzed within 40 days of extraction. No qualifications were required.

\subsection*{2.2 GC/MS TUNING}

The DFTPP tune met the ion abundance criteria specified in Method 625. No qualifications were required.

\subsection*{2.3 CALIBRATION}

The initial calibrations associated with these SDGs were dated \(02 / 15 / 05\) and \(02 / 17 / 05\). The average RRFs for were \(\geq 0.05\) for all applicable target compounds. The \(\%\) RSDs were \(\leq 35 \%\) or \(\mathrm{r}^{2}\) \(\geq 0.995\) with the exception of the \(\mathrm{r}^{2}\) values for benzoic acid, hexachlorocyclopentadiene, and 2,4dinitrophenol. The nondetect results for the aforementioned compounds were qualified as estimated, "UJ," in site samples Outfall 008 and Outfall 010. The continuing calibrations associated with the sample analyses were analyzed \(02 / 15 / 05,02 / 17 / 05\), and \(02 / 22 / 05\). The RRFs for all target compounds were \(\geq 0.05\), and the \(\%\) Ds were \(\leq 20 \%\) except for the \(\%\) D for NDMA in the calibration dated \(02 / 17 / 05\). The nondetect for NDMA was qualified as estimated, "UJ," for sample Outfall 018. A representative number of average RRFs, \%RSDs, and \(\mathrm{r}^{2} \mathrm{~s}\) for the initial calibration and RRFs and \%Ds for the continuing calibration were checked from the raw data, and no calculation or transcription errors were noted. No further qualifications were required.

\subsection*{2.4 BLANKS}

Two method blanks (5B13024-BLK1, 5B17041-BLK1/benzidine only, and 5B14010-BLK1) were extracted and analyzed with these SDGs. There were no detects above the MDLs for any target compounds. Review of the raw data indicated no false negatives. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

Three blank spike/ blank spike duplicate pairs (5B13024-BS1/BSD1, 5B17041-BS1/BSD1, and 5B14010-BS1/BSD1) were extracted and analyzed with these SDGs. For blank spike/blank spike duplicate pairs, qualifications are applied, if necessary, to the associated samples based on those recoveries consistently outside of the laboratory-established QC limits in both the blank spike and blank spike duplicate. Results for those compounds with recoveries not consistent within the pair, with RPDs above the QC limit, are qualified as estimated, "UJ" for nondetects and " J " for detects, in the associated samples.

For 5B13024-BS1/BSD1 and 5B17041-BS1/BSD1, all applicable target compounds were recovered within the QC limits and all RPDs were below the QC limits.

For 5B14010-BS1/BSD1, all percent recoveries were within the QC limits and all RPDs were below the QC limits except for the RPD for n-nitrosodimethylamine (NDMA). The nondetect for NDMA was qualified as estimated, "UJ," for sample Outfall 018.

A representative number of recoveries and RPDs were calculated from the raw data and no calculation or transeription errors were found. No further qualifications were required.

\subsection*{2.6 SURROGATE RECOVERY}

The sample surrogate recoveries for all samples were within the laboratory QC limits. A representative number of recoveries were calculated from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

No MS/MSD analyses were associated with these SDGs. Evaluation of method accuracy and precision was based on blank spike/blank spike duplicate results. No qualifications were required.

\subsection*{2.8 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

\subsection*{2.8.1 Field Blanks and Equipment Rinsates}

There were no field QC samples associated with these SDGs. No qualifications were required.

\subsection*{2.8.2 Field Duplicates}

There were no field duplicate samples associated with these SDGs.
\begin{tabular}{ccc}
& \begin{tabular}{c}
Project: \\
DATA VALIDATION REPORT
\end{tabular} & \begin{tabular}{c}
NPDES \\
Multiple
\end{tabular} \\
SDG:
\end{tabular}

\subsection*{2.9 INTERNAL STANDARDS PERFORMANCE}

The internal standard area counts and retention times were within the control limits established by the continuing calibration standards: \(-50 \% /+100 \%\) for internal standard areas and \(\pm 30\) seconds for retention times. A representative number of recoveries were checked from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.10 COMPOUND IDENTIFICATION}

The laboratory analyzed for semivolatile target compounds by EPA Method 625. Review of the sample chromatograms, retention times, and spectra indicated no problems with target compound identification. No qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification is verified at a Level IV data validation. No calculation or transcription errors were found. The reporting limits were supported by the low level of the initial and the method detection limit study. The reporting limits were not adjusted for sample amount; however, the dilution factors on the sample result summaries reflected the sample amount extracted. Results were reported in \(\mu \mathrm{g} / \mathrm{L}(\mathrm{ppb})\). No qualifications were required.

\subsection*{2.12 TENTATIVELY IDENTIFIED COMPOUNDS}

TICs were not reported by the laboratory for these SDGs. No qualifications were required.

\subsection*{2.13 SYSTEM PERFORMANCE}

Review of the raw data indicated no problems with system performance. No qualifications were required.

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 008
Report Number: 10B0997

Sampled: 02/1/05
Received: 02:11/05

DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

\section*{DRAFT REPORT}

DRAFT REPORT
DATA SUBJECT TO CHANGE

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Annual Outfall 008

Sampled: 02/11/05
Report Number: 10B0997

Received: 02/1105

DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE

 9484 Chesmpeake Dr, Suite 805, San Diego, CA 92123 t8581 505-8590 FAX in385 505.9689 9830 South 51 st St, Sute B-120, Phounix, AZ 85044 (480) \(785-6043\) FAX 460 y 785-ie5:

\begin{tabular}{lll}
MWH-Pasadena/Boeing & Project ID: Annual Outfall 008 & Sampled: \(02 / 11 / 05\) \\
300 Noth Lake Avenue, Suite 1200 & Report Number: \(10 B 0597\) & Received: \(02 / 11 / 05\) \\
Pasadena, CA 91101
\end{tabular}

DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}

\section*{amec}

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\author{
ANALYSIS: VOLATILES \\ SAMPLE DELIVERY GROUPs: IOB0997, IOB1001, IOB1008
}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{ccc}
& \begin{tabular}{c}
Project: \\
DATA VALIDATIONREPORT
\end{tabular} & \begin{tabular}{c}
NPDES \\
Multiple
\end{tabular} \\
SDG: & Analysis: & VOC \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ SDG\#: IOB0997, IOB1001, IOB1008 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Volatiles \\ QC Level: Level IV \\ No. of Samples: 6 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: M. Pokorny \\ Date of Review: March 30, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Volatile Organics (DVP-2, Rev. 2), EPA Method 624, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary forms as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{ccc}
& \begin{tabular}{c}
Project: \\
DATA VALIDATION REPORT
\end{tabular} & \begin{tabular}{c}
NPDES \\
NuG:
\end{tabular} \\
Multiple
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Lab No. & Matrix & Method \\
\hline Outfall 008 & Outfall 008 & IOB0997-01 & water & 624 \\
\hline Trip Blank & Trip Blank & IOB0997-02 & water & 624 \\
\hline Outfall 010 & Outfall 010 & IOB1001-01 & water & 624 \\
\hline Trip Blank & Trip Blank & IOB1001-02 & water & 624 \\
\hline Outfall 018 & Outfall 018 & IOB1008-01 & water & 624 \\
\hline Trip Blank & Trip Blank & IOB1008-02 & water & 624 \\
\hline
\end{tabular}
\begin{tabular}{lc}
& \begin{tabular}{c}
Project: \\
DATA VALIDATION REPORT
\end{tabular} \\
SDG: & NPDES \\
Multiple
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). The samples were properly preserved. The COC noted that the samples were received intact; however, information regarding absence of headspace was not provided. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by both field and laboratory personnel. The COCs accounted for the analyses presented in these SDGs. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The samples were analyzed within 14 days of collection. No qualifications were required.

\subsection*{2.2 GC/MS TUNING}

The ion abundance windows shown on the quantitation report were consistent with those specified in the EPA Method 624, and all ion abundances were within the established windows. The samples and associated QC were analyzed within 12 hours of the BFB injection times. The Form Vs were verified from the raw data and no discrepancies between the summary forms and the raw data were noted. No qualifications were required.

\subsection*{2.3 CALIBRATION}

Three initial calibrations dated 10/14/04 (acrolein and acrylonitrile only), 02/01/05, and \(02 / 07 / 05\), were associated with these SDGs. The average RRF for acrolein was \(<0.05\); therefore, the nondetect results for acrolein were rejected, "R," in samples Outfall 008, Trip Blank (IOB 099702), Outfall 010, and Trip blank (IOB 1001-02). The remaining average RRFs were \(\geq 0.05\) and all \(\%\) RSDs were \(\leq 35 \%\) for the target compounds listed on the sample result summaries. Three continuing calibrations analyzed 02/17/05 and 02/18/05 (08:37 and 17:45) were associated with the sample analyses. The RRF for acrolein was \(<0.05\) in the continuing calibration dated \(02 / 17 / 05\); therefore, the nondetect results for acrolein were rejected, " \(R\)," in samples Outfall 008, Trip Blank (IOB 0997-02), Outfall 010, and Trip blank (IOB 1001-02). The \%Ds for acrolein and acrylonitrile exceeded \(20 \%\); therefore, nondetect results for acrolein and acrylonitrile were qualified as estimated, "UJ," in samples Outfall 008 and Outfall 010, unless otherwise rejected. The trip blanks were not qualified for \%D calibration outliers. For all remaining target compounds the \%Ds were \(\leq 20 \%\) and the RRFs were \(\geq 0.05\). A representative number of \(\%\) RSDs and average RRFs from the
\begin{tabular}{ccc}
& \begin{tabular}{c}
Project: \\
DATA VALIDATION REPORT
\end{tabular} & \begin{tabular}{c}
NPDES \\
Multiple
\end{tabular} \\
SDG:
\end{tabular}
initial calibration, and \%Ds and RRFs from the continuing calibration were recalculated from the raw data, and no calculation or transcription errors were found. No further qualifications were required.

\subsection*{2.4 BLANKS}

Three water method blanks (5B17014-BLK1, 5B18008-BLK1, and 5B12011-BLK1) were associated with these SDGs. There were no detects above the MDLs for the target compounds listed on the sample result summaries. The method blank raw data showed no evidence of false negatives. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

Three water blank spikes (5B17014-BS1, 5B18008-BS1, and 5B12011-BS1) were associated with these SDGs. All recoveries were within the laboratory-established QC limits. A representative number of recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.6 SURROGATE RECOVERY}

The surrogates were recovered within the QC limits of \(80-120 \%\) in the samples and associated QC. A representative number of surrogate recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

Sample Outfall 010 was the MS/MSD analyses performed with the site samples in these SDGs. All recoveries and RPDs were within the laboratory-established QC limits. No qualifications were required.

\subsection*{2.8 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

\subsection*{2.8.1 Trip Blanks}

Sample Trip Blank (IOB0997), Trip Blank (IOB1001), and Trip Blank (IOB1008) were the trip blanks associated with the site samples in these SDGs. There were no target compounds detected above the MDLs in any of the trip blanks. No qualifications were required.
\begin{tabular}{ccc}
& \begin{tabular}{c}
Project: \\
DATA VALIDATION REPORT
\end{tabular} & \begin{tabular}{c}
NPDES \\
Multiple
\end{tabular} \\
SDG: & Analysis:- & VOC \\
\hline
\end{tabular}

\subsection*{2.8.2 Field Blanks and Equipment Rinsates}

There were no field QC samples associated with these SDGs. No qualifications were required.

\subsection*{2.8.3 Field Duplicates}

There were no field duplicate samples associated with these SDGs.

\subsection*{2.9 INTERNAL STANDARDS PERFORMANCE}

Internal standard area counts and retention times for the samples in these SDGs were within the control limits established by the continuing calibration standards, of \(+100 \% /-50 \%\) for internal standard areas and \(\pm 0.50\) minutes for retention times. A representative number of internal standard areas and retention times were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.10 COMPOUND IDENTIFICATION}

Target compound identification was verified at a Level IV data validation. The laboratory analyzed for volatile target compounds by EPA Method 624. Chromatograms, retention times, and spectra for the samples and QC were examined and no target compound identification problems were noted. No qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification is verified at a Level IV data validation. The reporting limits were supported by the lowest concentrations of the initial calibration standards and by the MDL study. Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike and surrogate recoveries from the raw data. Results were reported in ug/L (ppb). No calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.12 TENTATIVELY IDENTIFIED COMPOUNDS}

The laboratory did not provide TICs for these SDGs. No qualifications were required.

\subsection*{2.13 SYSTEM PERFORMANCE}

A review of the chromatograms and other raw data showed no identifiable problems with system performance. No qualifications were required.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\section*{Project ID: Annual Outfall 008}

Report Number: IOBOC97

Sampled: 02:1105
Received: 02/1105

\section*{DRAFT: PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & Dilution Factor & \[
\begin{aligned}
& \text { Date } \\
& \text { Extracted }
\end{aligned}
\] & \[
\begin{gathered}
\text { Date } \\
\text { Analyze }
\end{gathered}
\] & \[
\underset{\text { Qual }}{D_{2}}
\] & \\
\hline \multicolumn{3}{|l|}{Sample ID: 1OB0997-01 (DRAFT: Outfall 008 - Water) Reporting Units: ug/I} & & & & & & \multicolumn{2}{|l|}{Analyzed Qual REV QUAL} & \[
\begin{aligned}
& \text { QUAL } \\
& \operatorname{CODE}
\end{aligned}
\] \\
\hline Benzene & EPA 624 & 5B18008 & 0.28 & 1.0 & ND & 1 & 02/18/05 & 02118105 & \(U\) & \\
\hline Bromodichloromethane & EPA 624 & 5B18008 & 0.30 & 2.0 & ND & 1 & 02/18/05 & 02/18/05 & & \\
\hline Bromoform & EPA 624 & 5B18008 & 0.32 & 5.0 & ND & 1 & 02/18/05 & 02/1805 & & \\
\hline Bromomethane & EPA 624 & 5B18008 & 0.34 & 5.0 & ND & 1 & 0218105 & 02/18/05 & & \\
\hline Carbon tetrachloride & EPA 624 & 5B18008 & 0.28 & 0.50 & ND & 1 & 02/18/05 & 02/18105 & & \\
\hline Chlorobenzene & EPA 624 & 5B18008 & 0.36 & 2.0 & ND & 1 & 02/18/05 & 02/18/05 & & \\
\hline Chloroethane & EPA 624 & 5B18008 & 0.33 & 5.0 & ND & 1 & 02/18/05 & 02/18/05 & & \\
\hline Chloroform & EPA 624 & 5B18008 & 0.33 & 2.0 & ND & 1 & 02/18/05 & 02/18/05 & & \\
\hline Chloromethane & EPA 624 & 5B18008 & 0.30 & 5.0 & ND & 1 & 02/18/05 & 02/18/05 & & \\
\hline Dibromochloromethane & EPA 624 & 5318008 & 0.28 & 2.0 & ND & 1 & 02/18:05 & 02/18/05 & & \\
\hline 1,2-Dichlorobenzene & EPA 624 & 5B18008 & 0.32 & 2.0 & ND & 1 & 02/18/05 & 02/18/05 & & \\
\hline 1,3-Dichlorobenzene & EPA 624 & 5B18008 & 0.35 & 2.0 & ND & 1 & 02/18/05 & 02/18/05 & & \\
\hline 1,4-Dichlorobenzene & EPA 624 & 5B18008 & 0.37 & 2.0 & ND & 1 & 02/18/05 & 02/18:05 & & \\
\hline 1,1-Dichloroethane & EPA 624 & 5B18008 & 0.27 & 2.0 & ND & 1 & 02/18:05 & 02/18005 & & \\
\hline 1,2-Dichloroethane & EPA 624 & 5B18008 & 0.28 & 0.50 & ND & 1 & 02/18105 & 0218005 & & \\
\hline 1,1-Dichloroethene & EPA 624 & 5B18008 & 0.32 & 5.0 & ND & 1 & 02/18/05 & 02/18/05 & & \\
\hline trans-1,2-Dichloroethene & EPA 624 & 5B18008 & 0.27 & 2.0 & ND & 1 & \(02 / 18 / 05\) & 02/18:05 & & \\
\hline 1,2-Dichloropropane & EPA 624 & 5318008 & 0.35 & 2.0 & ND & 1 & 02/18/05 & 02/18/05 & & \\
\hline cis-1,3-Dichloropropene & EPA 624 & 5B18008 & 0.22 & 2.0 & ND & 1 & 02/18/05 & 0211805 & & \\
\hline trans-1,3-Dichloropropene & EPA 624 & \(5 \mathrm{Bl3008}\) & 0.24 & 2.0 & ND & 1 & 02/18/05 & 02/18705 & & \\
\hline Ethylbenzene & EPA 624 & 5B18008 & 0.25 & 2.0 & ND & 1 & 02/18:05 & 02/18i05 & & \\
\hline Methylene chloride & EPA 624 & 5B18008 & 0.48 & 5.0 & ND & 1 & 02/18/05 & 02118/0.5 & & \\
\hline 1,1,2,2-Tetrachloroethane & EPA 624 & 5B18008 & 0.24 & 2.0 & ND & 1 & 02/18/05 & 02118/05 & & \\
\hline Tetrachlorocthene & EPA 624 & 5B18008 & 0.32 & 2.0 & ND & 1 & 02181805 & 02:18/05 & & \\
\hline Toluene & EPA 624 & 5B18008 & 0.36 & 2.0 & ND & 1 & 02/18/05 & 02,18/05 & & \\
\hline 1,1,1-Trichloroethane & EPA 624 & 5B18008 & 0.30 & 2.0 & ND & 1 & \(0218 / 05\) & 02:18105 & & \\
\hline 1,1,2-Trichloroethane & EPA 624 & 5B18008 & 0.30 & 2.0 & ND & & 0218105 & 02:18105 & & \\
\hline Trichloroethene & EPA 624 & 5B18008 & 0.26 & 2.0 & ND & , & 02/18:05 & 02:18/05 & & \\
\hline Trichlorofluoromethane & EPA 624 & 5B18008 & 0.34 & 5.0 & ND & 1 & 02118105 & 02:18/05 & & \\
\hline Vinyl chloride & EPA 624 & 53i8008 & 0.26 & 0.50 & ND & 1 & 02/18.05 & 02:18/05 & & \\
\hline Xylenes, Total & EPA 624 & 5318008 & 0.52 & 4.0 & ND & 1 & 0218105 & 02:18/05 & & \\
\hline \multicolumn{3}{|l|}{Surrogate: Dibromofluoromethane (80-120\%)} & & & 106\% & & & & & \\
\hline \multicolumn{3}{|l|}{Surrogate: Toluene-d8 (80-120\%)} & & & 105\% & & & & & \\
\hline \multicolumn{3}{|l|}{Surrogate: 4-Bromofluorobenzene (80-120\%)} & & & 98\% & & & & & \\
\hline
\end{tabular}

DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE

Project ID: Annual Outfall 008

Report Number: [OB0997

Sampled: 02:11105
Received: 02/11/05

DRAFT: PURGEABLES BY GC/MS (EPA 624)

DRAFT REPORT
DRAFT REPORT
DATA SLBJECT TO CHANGE

MWH-Pasadena:Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Project ID: Annual Outtall 008
Report Number: \(10 B 0997\)

Sampled: 02:11/05
Received: 02/11/05

DRAFT: PURGEABLES BY GC/MS (EPA 624)

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}

AMEC Earth \& Environmental 550 South Wadsworth Boulevard Suite 500
Lakewood, CO 80226
\begin{tabular}{l}
Laboratory Del Mar Analytical \\
Reviewer L. Jarusewic \\
Analysis/Method General Minerals \\
\hline
\end{tabular}

Reviewer L. Janusewic
Analysis/Method General Minerals

\section*{ACTION ITEMS*}
1. Case Narrative Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis Protocol, e.g.,

Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification and Quantitation
System Performance

\section*{COMMENTS \({ }^{\text {b }}\)}

\footnotetext{
* Subcontracted analytical laboratory is not meeting contract and/or method requirements.
\({ }^{6}\) Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.
}

\title{
amec \({ }^{\theta}\)
}

\title{
DATA VALIDATION REPORT
}

\section*{NPDES Monitoring}

\section*{ANALYSIS: GENERAL MINERALS}

SAMPLE DELIVERY GROUP: IOB0997, IOB1001, \& IOB1008

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: IOB0997, IOB1001, IOB1008 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: General Minerals \\ QC Level: Level IV \\ No. of Samples: 3 \\ Reviewer: L. Jarusewic \\ Date of Review: March 24, 2005
}

The sample listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 300.0, 350.2, 405.1, 335.2, 413.1, 425.1, 218.6, 120.1, 160.2, 160.5, 180.1, and 160.1, Standard Methods for the Examination of Water and Wastewater Method SM2540C, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 008 & Outfall 008 & IOB0997-01 & Water & General Minerals \\
\hline Outfall 010 & Outfall 010 & IOB1001-01 & Water & General Minerals \\
\hline Outfall 018 & Outfall 018 & IOB1008-01 & Water & General Minerals \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). No preservation problems were noted by the laboratory. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by field and laboratory personnel. The COCs accounted for all analyses present in these SDGs. A memo from MWH personnel dated \(02 / 17 / 05\) requested a change of analysis for sample Outfall 018 from annual to routine constituent analysis. No sample qualifications were required.

\subsection*{2.1.3 Holding Times}

The holding times were assessed by comparing the date of collection with the dates of analyses. The 28 -day analytical holding time for ammonia, chloride, sulfate, conductivity, and oil and grease, the 14 -day analytical holding time for cyanide, the seven-day holding time for total suspended solids and total dissolved solids, the 48 -hour holding time for surfactants, turbidity, nitrate/nitrite, biological oxygen demand, and total settleable solids were met. No qualifications were required.

\subsection*{2.2 CALIBRATION}

For the applicable analyses, the initial calibration correlation coefficients were \(\geq 0.995\). Initial and continuing calibration information was acceptable with \(\%\) Rs within the control limits of \(90-110 \%\) for all analytes. For ammonia, no information regarding the standardization of the titrant was provided; however, as the LCS recovery was within the CCV control limits, no qualifications were required. For BOD, no information regarding the calibration of the oxygen meter was provided; however, as the LCS recovery was within the CCV control limits, no qualifications were required. Calibration is not applicable to total settleable solids. No qualifications were required.

The total cyanide reporting limit check standards were recovered above the control limits of 70-130\% at \(137.9 \%\) and \(155.9 \%\); however, as cyanide was not detected in any of the samples, no qualifications were required.

\subsection*{2.3 BLANKS}

Turbidity was detected in the associated method blank for Outfall 018 at 0.040 NTU; however, the result was insufficient to qualify the Outfall 018 result. The remaining method blank and CCB results
\begin{tabular}{llr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No:: & IOB0997/1001/1008 \\
\hline
\end{tabular}
reported on the summary forms and in the raw data for blank analyses associated with the samples were nondetects at the reporting limit. No qualifications were required.

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The laboratory control sample and laboratory control sample duplicate (BOD and oil and grease only) recoveries and RPDs were within the laboratory-established control limits. The LCS is not applicable to turbidity, conductivity, or total settleable solids. No qualifications were required.

\subsection*{2.5 SURROGATES RECOVERY}

Surrogate recovery is not applicable to the analyses presented in these SDGs.

\subsection*{2.6 LABORATORY DUPLICATES}

No MS/MSD or duplicate analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

No MSMSD analyses were performed in association with the samples in these SDGs, therefore, no assessment was made with respect to this criterion.

\subsection*{2.8 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analyses of these samples; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.9 ICP SERIAL DILUTION}

ICP serial dilution is not applicable to the analyses presented in this data validation report.

\subsection*{2.10 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Surfactant detected below the reporting limit in Outfall 018 was qualified as estimated, "J." No further qualifications were required.
\begin{tabular}{llr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & 1OB0997/1001/1008 \\
\hline
\end{tabular}

\subsection*{2.11 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.11.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.11.2 Field Duplicates}

There were no field duplicate pairs associated with these SDGs.
\begin{tabular}{lcr}
MWH-Pasadena/Boeing & Project ID: Annual Outfall 008 & \\
300 North Lake Avenue, Suite 1200 & Report Number: IOBOS97 & \begin{tabular}{l}
Sampled: 02/1/105
\end{tabular} \\
Pasadena, CA 91101 & Received: 02/11/05
\end{tabular}

\section*{DRAFT: INORGANICS}

\title{
AMEC VALIDATED
}

LEVEL IV

\section*{LABORATORY REPORT}

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Annual Outfall 008

Sampled: 02/11/05
Received: 02/11/05
Issued: 03/28/05 10:21

\section*{NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117}

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

\section*{SAMPLE CROSS REFERENCE}

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
IOB0997-01
1OB0997-02
\begin{tabular}{lc}
CLIENT ID & MATRIX \\
Outfall 008 & Water \\
Trip Blanks & Water
\end{tabular}

Reviewed By:

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 008
Report Number: 1OB0997

Sampled: 02/11/05
Received: 02/11/05

\section*{CORRECTIVE ACTION REPORT}

Department: Extractions
Method: EPA 625
QC Batch: 5B13024

Identification and Definition of Problem:
The percent recovery for benzidine in the BS was below method acceptance limits.

Determination of the Cause of the Problem:
Benzidine is known to be a problematic compound. According to the EPA, it can be subject to oxidative losses during solvent extraction and its chromatographic behavior is poor.

Corrective Action Taken:
The percent recovery in BSD was within the acceptance limits. All results reported for benzidine are potentially biased low and can be considered estimates only.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 008

Report Number: 1OB0997

Sampled: 02/11/05
Received: 02/11/05

PURGEABLES BY GC/MS (EPA 624)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & \begin{tabular}{l}
Date \\
Analyzed
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{9}{|l|}{Sample ID: 10B0997-01 (Outfall 008 - Water)} \\
\hline \multicolumn{9}{|l|}{Reporting Units: ugh} \\
\hline Acrolein EPA 624 & 5B12011 & 4.6 & 50 & ND & 1 & 02/12/05 & 02/12/05 & \\
\hline Acrylonitrile EPA 624 & 5B12011 & 5.1 & 50 & ND & 1 & 02/12/05 & 02/12/05 & \\
\hline 2-Chloroethyl vinyl ether EPA 624 & 5B12011 & 1.3 & 5.0 & ND & 1 & 02/12/05 & 02/12/05 & \\
\hline Surrogate: Dibromofluoromethane (80-120\%) & & & & 93\% & & & & \\
\hline Surrogate: Toluene-d8 (80-120\%) & & & & \(104 \%\) & & & & \\
\hline Surrogate: 4-Bromofluorobenzene (80-120\%) & & & & 98\% & & & & \\
\hline \multicolumn{9}{|l|}{Sample ID: IOB0997-02 (Trip Blanks - Water)} \\
\hline Acrolein EPA 624 & 5B12011 & 4.6 & 50 & ND & 1 & 02/12/05 & 02/12/05 & \\
\hline Acrylonitrile EPA 624 & 5B12011 & 5.1 & 50 & ND & 1 & 02/12/05 & 02/12/05 & \\
\hline 2-Chloroethyl vinyl ether EPA 624 & 5B12011 & 1.3 & 5.0 & ND & 1 & 02/12/05 & 02/12/05 & \\
\hline Surrogate: Dibromofluoromethane (80-120\%) & & & & \(93 \%\) & & & & \\
\hline Surrogate: Toluene-d8 (80-120\%) & & & & 106\% & & & & \\
\hline Surrogate: 4-Bromofluorobenzene (80-120\%) & & & & 99\% & & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\author{
Project ID: Annual Outfall 008 \\ Report Number: IOB0997 \\ Sampled: 02/11/05 \\ Received: 02/11/05
}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & \begin{tabular}{l}
Date \\
Analyz
\end{tabular} \\
\hline \multicolumn{9}{|l|}{Sample ID: 1OB0997-01 (Outfall 008 - Water)} \\
\hline \multicolumn{9}{|l|}{Reporting Units: ug/} \\
\hline Benzene & EPA 624 & 5B18008 & 0.28 & 1.0 & ND & 1 & 02/18/05 & 02/18/05 \\
\hline Bromodichloromethane & EPA 624 & 5B18008 & 0.30 & 2.0 & ND & 1 & 02/18/05 & 02/18/05 \\
\hline Bromoform & EPA 624 & 5B18008 & 0.32 & 5.0 & ND & 1 & 02/18/05 & 02/18/05 \\
\hline Bromomethane & EPA 624 & 5B18008 & 0.34 & 5.0 & ND & 1 & 02/18/05 & 02/18/05 \\
\hline Carbon tetrachloride & EPA 624 & 5B18008 & 0.28 & 0.50 & ND & 1 & 02/18/05 & 02/18/05 \\
\hline Chlorobenzene & EPA 624 & 5B18008 & 0.36 & 2.0 & ND & 1 & 02/18/05 & 02/18/05 \\
\hline Chloroethane & EPA 624 & \(5 \mathrm{B1} 18008\) & 0.33 & 5.0 & ND & 1 & 02/18/05 & 02/18/05 \\
\hline Chloroform & EPA 624 & 5B18008 & 0.33 & 2.0 & ND & 1 & 02/18/05 & 02/18/05 \\
\hline Chloromethane & EPA 624 & 5B18008 & 0.30 & 5.0 & ND & 1 & 02/18/05 & 02/18/05 \\
\hline Dibromochloromethane & EPA 624 & 5B18008 & 0.28 & 2.0 & ND & 1 & 02/18/05 & 02/18/05 \\
\hline 1,2-Dichlorobenzene & EPA 624 & 5B18008 & 0.32 & 2.0 & ND & 1 & 02/18/05 & 02/18/05 \\
\hline 1,3-Dichlorobenzene & EPA 624 & 5B18008 & 0.35 & 2.0 & ND & 1 & 02/18/05 & 02/18/05 \\
\hline 1,4-Dichlorobenzene & EPA 624 & 5B18008 & 0.37 & 2.0 & ND & 1 & 02/18/05 & 02/18/05 \\
\hline 1,1-Dichloroethane & EPA 624 & 5B18008 & 0.27 & 2.0 & ND & 1 & 02/18/05 & 02/18/05 \\
\hline 1,2-Dichloroethane & EPA 624 & 5B18008 & 0.28 & 0.50 & ND & 1 & 02/18/05 & 02/18/05 \\
\hline 1,1-Dichloroethene & EPA 624 & 5B18008 & 0.32 & 5.0 & ND & 1 & 02/18/05 & 02/18/05 \\
\hline trans-1,2-Dichloroethene & EPA 624 & 5B18008 & 0.27 & 2.0 & ND & 1 & 02/18/05 & 02/18/05 \\
\hline 1,2-Dichloropropane & EPA 624 & 5B18008 & 0.35 & 2.0 & ND & 1 & 02/18/05 & 02/18/05 \\
\hline cis-1,3-Dichloropropene & EPA 624 & 5818008 & 0.22 & 2.0 & ND & 1 & \(02 / 18105\) & 02/18/05 \\
\hline trans-1,3-Dichloropropene & EPA 624 & 5B18008 & 0.24 & 2.0 & ND & 1 & 02/18/05 & 02/18/05 \\
\hline Ethylbenzene & EPA 624 & 5B18008 & 0.25 & 2.0 & ND & 1 & 02/18/05 & 02/18/05 \\
\hline Methylene chloride & EPA 624 & 5B18008 & 0.48 & 5.0 & ND & 1 & 02/18/05 & 02/18/05 \\
\hline 1,1,2,2-Tetrachloroethane & EPA 624 & 5B18008 & 0.24 & 2.0 & ND & 1 & 02/18/05 & 02/18/05 \\
\hline Tetrachloroethene & EPA 624 & 5B18008 & 0.32 & 2.0 & ND & 1 & 02/18/05 & 02/18/05 \\
\hline Toluene & EPA 624 & 5B18008 & 0.36 & 2.0 & ND & 1 & 02/18/05 & 02/18/05 \\
\hline 1,1,1-Trichloroethane & EPA 624 & 5B18008 & 0.30 & 2.0 & ND & 1 & 02/18/05 & 02/18/05 \\
\hline 1,1,2-Trichloroethane & EPA 624 & 5B18008 & 0.30 & 2.0 & ND & 1 & 02/18/05 & 02/18/05 \\
\hline Trichloroethene & EPA 624 & 5B18008 & 0.26 & 2.0 & ND & 1 & 02/18/05 & 02/18/05 \\
\hline Trichlorofluoromethane & EPA 624 & 5B18008 & 0.34 & 5.0 & ND & 1 & 02/18/05 & 02/18/05 \\
\hline Vinyl chloride & EPA 624 & 5B18008 & 0.26 & 0.50 & ND & 1 & 02/18/05 & 02/18/05 \\
\hline Xylenes, Total & EPA 624 & 5B18008 & 0.52 & 4.0 & ND & 1 & 02/18/05 & 02/18/05 \\
\hline \multicolumn{2}{|l|}{Surrogate: Dibromofluoromethane (80-120\%)} & & & & 106\% & & & \\
\hline \multicolumn{2}{|l|}{Surrogate: Toluene-d8 (80-120\%)} & & & & 105\% & & & \\
\hline \multicolumn{2}{|l|}{Surrogate: 4-Bromofluorobenzene (80-120\%)} & & & & 98\% & & & \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

Del Mar Analytical

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 9110 \\ Attention: Bronwyn Kelly
}

Project ID: Annual Outfall 008

Report Number: IOB0997

Sampled: 02/11/05
Received: 02/11/05

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyz \\
\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{Sample ID: IOB0997-02 (Trip Blanks - Water)
Reporting Units: ug/}} \\
\hline & & & & & & & & \\
\hline Benzene & EPA 624 & 5B17014 & 0.28 & 1.0 & ND & 1 & 02/17/05 & 02/18/05 \\
\hline Bromodichloromethane & EPA 624 & 5B17014 & 0.30 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 \\
\hline Bromoform & EPA 624 & 5B17014 & 0.32 & 5.0 & ND & 1 & 02/17/05 & 02/18/05 \\
\hline Bromomethane & EPA 624 & 5B17014 & 0.34 & 5.0 & ND & 1 & 02/17/05 & 02/18/05 \\
\hline Carbon tetrachloride & EPA 624 & 5B17014 & 0.28 & 0.50 & ND & 1 & 02/17/05 & 02/18/05 \\
\hline Chlorobenzene & EPA 624 & 5B17014 & 0.36 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 \\
\hline Chloroethane & EPA 624 & 5B17014 & 0.33 & 5.0 & ND & 1 & 02/17/05 & 02/18/05 \\
\hline Chioroform & EPA 624 & 5B17014 & 0.33 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 \\
\hline Chloromethane & EPA 624 & 5B17014 & 0.30 & 5.0 & ND & 1 & 02/17/05 & 02/18/05 \\
\hline Dibromochloromethane & EPA 624 & 5B17014 & 0.28 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 \\
\hline 1,2-Dichlorobenzene & EPA 624 & 5B17014 & 0.32 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 \\
\hline 1,3-Dichlorobenzene & EPA 624 & 5B17014 & 0.35 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 \\
\hline 1,4-Dichlorobenzene & EPA 624 & 5B17014 & 0.37 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 \\
\hline 1,1-Dichloroethane & EPA 624 & 5B17014 & 0.27 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 \\
\hline 1,2-Dichloroethane & EPA 624 & 5B17014 & 0.28 & 0.50 & ND & 1 & 02/17/05 & 02/18/05 \\
\hline 1,1-Dichloroethene & EPA 624 & 5B17014 & 0.32 & 5.0 & ND & 1 & 02/17/05 & 02/18/05 \\
\hline trans-1,2-Dichloroethene & EPA 624 & 5B17014 & 0.27 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 \\
\hline 1,2-Dichloropropane & EPA 624 & 5B17014 & 0.35 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 \\
\hline cis-1,3-Dichloropropene & EPA 624 & 5817014 & 0.22 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 \\
\hline trans-1,3-Dichloropropene & EPA 624 & 5B17014 & 0.24 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 \\
\hline Ethylbenzene & EPA 624 & 5B17014 & 0.25 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 \\
\hline Methylene chloride & EPA 624 & 5B17014 & 0.48 & 5.0 & ND & 1 & 02/17/05 & 02/18/05 \\
\hline 1,1,2,2-Tetrachloroethane & EPA 624 & 5B17014 & 0.24 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 \\
\hline Tetrachloroethene & EPA 624 & 5B17014 & 0.32 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 \\
\hline Toluene & EPA 624 & 5B17014 & 0.36 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 \\
\hline 1,1,1-Trichloroethane & EPA 624 & 5B17014 & 0.30 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 \\
\hline 1,1,2-Trichloroethane & EPA 624 & 5B17014 & 0.30 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 \\
\hline Trichloroethene & EPA 624 & 5B17014 & 0.26 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 \\
\hline Trichlorofluoromethane & EPA 624 & 5B17014 & 0.34 & 5.0 & ND & 1 & 02/17/05 & 02/18/05 \\
\hline Vinyl chloride & EPA 624 & 5B17014 & 0.26 & 0.50 & ND & 1 & 02/17/05 & 02/18/05 \\
\hline Xylenes, Total & EPA 624 & 5B17014 & 0.52 & 4.0 & ND & 1 & 02/17/05 & 02/18/05 \\
\hline \multicolumn{2}{|l|}{Surrogate: Dibromofluoromethane (80-120\%)} & & & & \(112 \%\) & & & \\
\hline \multicolumn{2}{|l|}{Surrogate: Toluene-d8 (80-120\%)} & & & & \(103 \%\) & & & \\
\hline \multicolumn{2}{|l|}{Surrogate: 4-Bromofluorobenzene (80-120\%)} & & & & 96\% & & & \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

Del Mar Analytical

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Annual Outfall 008

Report Number: IOB0997

Sampled: 02/11/05
Received: 02/11/05

\title{
ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dillution \\
Factor
\end{tabular} & Date Extracted & \[
\begin{gathered}
\text { Date } \\
\text { Analyz }
\end{gathered}
\] \\
\hline \multicolumn{9}{|l|}{Sample ID: 10B0997-01 (Outfall 008 - Water)} \\
\hline \multicolumn{9}{|l|}{Reparting Units: ug/} \\
\hline Acenaphthene & EPA 625 & 5B13024 & 4.3 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Acenaphthylene & EPA 625 & 5B13024 & 3.2 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Aniline & EPA 625 & 5 B 13024 & 2.9 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Anthracene & EPA 625 & SB13024 & 3.2 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Benzoic acid & EPA 625 & 5B13024 & 2.6 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Benzo(a)anthracene & EPA 625 & 5B13024 & 3.7 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Benzo(b)fluoranthene & EPA 625 & \(5 \mathrm{B13024}\) & 2.7 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Benzo(k)fluoranthene & EPA 625 & 5B13024 & 3.4 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Benzo(g,h,i)perylene & EPA 625 & 5B13024 & 5.3 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Benzo(a)pyrene & EPA 625 & 5B13024 & 3.5 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Benzyl alcohol & EPA 625 & 5B13024 & 2.5 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Bis(2-chloroethoxy)methane & EPA 625 & 5B13024 & 3.9 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Bis(2-chloroethyl)ether & EPA 625 & 5B13024 & 4.4 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Bis(2-chloroisopropyl)ether & EPA 625 & 5B13024 & 4.6 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Bis(2-ethylhexyl)phthalate & EPA 625 & 5B13024 & 5.2 & 50 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 4-Bromophenyl phenyl ether & EPA 625 & 5B13024 & 4.6 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Butyl benzyl phthalate & EPA 625 & 5B13024 & 3.5 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 4-Chloroaniline & EPA 625 & 5 B 13024 & 6.0 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 2-Chloronaphthalene & EPA 625 & 5B13024 & 4.0 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 4-Chloro-3-methylphenol & EPA 625 & 5B13024 & 3.5 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 2-Chlorophenol & EPA 625 & 5B13024 & 4.2 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 4-Chlorophenyl phenyl ether & EPA 625 & 5B13024 & 3.0 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Chrysene & EPA 625 & 5B13024 & 2.8 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Dibenz(a,h)anthracene & EPA 625 & 5B13024 & 4.7 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Dibenzofuran & EPA 625 & 5B13024 & 2.6 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Di-n-butyl phthalate & EPA 625 & 5B13024 & 2.8 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 1,3-Dichlorobenzene & EPA 625 & 5B13024 & 4.1 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 1,4-Dichlorobenzene & EPA 625 & 5B13024 & 3.9 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 1,2-Dichlorobenzene & EPA 625 & 5B13024 & 4.5 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 3,3-Dichlorobenzidine & EPA 625 & 5B13024 & 11 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 2,4-Dichlorophenol & EPA 625 & 5B13024 & 4.1 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Diethyl phthalate & EPA 625 & 5B13024 & 3.1 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 2,4-Dimethylphenol & EPA 625 & 5B13024 & 4.4 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Dimethyl phthalate & EPA 625 & 5B13024 & 3.6 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 4,6-Dinitro-2-methylphenol & EPA 625 & 5B13024 & 5.1 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 2,4-Dinitrophenol & EPA 625 & 5B13024 & 5.3 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 2,4-Dinitrotoluene & EPA 625 & 5B13024 & 4.2 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 2,6-Dinitrotoluene & EPA 625 & 5B13024 & 3.2 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Di-n-octyl phthalate & EPA 625 & 5B13024 & 4.7 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Fluoranthene & EPA 625 & 5B13024 & 4.2 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Fluorene & EPA 625 & 5B13024 & 3.9 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 008
Report Number: IOB0997

Sampled: 02/11/05
Received: 02/11/05

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & Dilution Factor & Date Extracted & \\
\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{Sample ID: 1OB0997-01 (Outfall 008 - Water) - cont. Reporting Units: ugh}} \\
\hline & & & & & & & & \\
\hline Hexachlorobenzene & EPA 625 & 5B13024 & 4.8 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Hexachlorobutadiene & EPA 625 & 5B13024 & 4.2 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Hexachlorocyclopentadiene & EPA 625 & 5B13024 & 3.4 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Hexachloroethane & EPA 625 & 5B13024 & 4.2 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Indeno(1,2,3-cd)pyrene & EPA 625 & 5B13024 & 5.4 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Isophorone & EPA 625 & 5B13024 & 3.7 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 2-Methylnaphthalene & EPA 625 & 5B13024 & 3.0 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 2-Methylphenol & EPA 625 & 5B13024 & 3.7 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 4-Methylphenol & EPA 625 & 5B13024 & 3.8 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Naphthalene & EPA 625 & 5B13024 & 4.5 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 2-Nitroaniline & EPA 625 & 5B13024 & 3.9 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 3-Nitroaniline & EPA 625 & 5B13024 & 4.5 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 4-Nitroaniline & EPA 625 & 5B13024 & 4.9 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Nitrobenzene & EPA 625 & 5B13024 & 4.2 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 2-Nitrophenol & EPA 625 & 5B13024 & 4.2 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 4-Nitrophenol & EPA 625 & 5B13024 & 6.6 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline N -Nitrosodiphenylamine & EPA 625 & 5B13024 & 4.0 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline N-Nitroso-di-n-propylamine & EPA 625 & 5B13024 & 3.6 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Pentachlorophenol & EPA 625 & 5B13024 & 4.0 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Phenanthrene & EPA 625 & 5B13024 & 3.3 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Phenol & EPA 625 & 5B13024 & 4.0 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Pyrene & EPA 625 & 5B13024 & 3.9 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 1,2,4-Trichlorobenzene & EPA 625 & 5B13024 & 4.4 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 2,4,5-Trichlorophenol & EPA 625 & 5B13024 & 3.6 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 2,4,6-Trichlorophenol & EPA 625 & 5B13024 & 4.1 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 1,2-Diphenylhydrazine/Azobenzene & EPA 625 & 5B13024 & 5.0 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline N -Nitrosodimethylamine & EPA 625 & 5B13024 & 3.7 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline \multicolumn{2}{|l|}{Surrogate: 2-Fluorophenol (35-120\%)} & & & & 66\% & & & \\
\hline \multicolumn{2}{|l|}{Surrogate: Phenol-d6 (45-120\%)} & & & & \(70 \%\) & & & \\
\hline \multicolumn{2}{|l|}{Surrogate: 2,4,6-Tribromophenol (50-125\%)} & & & & \(88 \%\) & & & \\
\hline \multicolumn{2}{|l|}{Surrogate: Nitrobenzene-d5 (45-120\%)} & & & & 77 \% & & & \\
\hline \multicolumn{2}{|l|}{Surrogate: 2-Fluorobiphenyl (45-120\%)} & & & & 80\% & & & \\
\hline \multicolumn{2}{|l|}{Surrogate: Terphenyl-d14 (45-135\%)} & & & & \(93 \%\) & & & \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
\begin{tabular}{cr}
Project ID: Annual Outfall 008 & \\
Report Number: \(10 B 0997\) & \begin{tabular}{r}
Sampled: \\
Received:
\end{tabular} \\
\end{tabular}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & Dillution Factor & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{Sample ID: IOB0997-01RE1 (Outfall 008 - Water) - cont.} \\
\hline \multicolumn{10}{|l|}{Reporting Units: ug/} \\
\hline Benzidine & EPA 625 & 5B17041 & 5.2 & 20 & ND & 0.966 & 02/17/05 & 02/22/05 & \\
\hline Surrogate: 2-Fluorophenol (35-120\%) & & & & & \(62 \%\) & & & & \\
\hline Surrogate: Phenol-d6 (45-120\%) & & & & & \(66 \%\) & & & & \\
\hline Surrogate: 2,4,6-Tribromophenol (50-125\%) & & & & & \(87 \%\) & & & & \\
\hline Surrogate: Nitrobenzene-d5 (45-120\%) & & & & & \(74 \%\) & & & & \\
\hline Surrogate: 2-Fluorobiphenyl (45-120\%) & & & & & \(79 \%\) & & & & \\
\hline Surrogate: Terphenyl-d14 (45-135\%) & & & & & 80\% & & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\title{
Del Mar Analytical
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\section*{Project ID: Annual Outfall 008}

Report Number: 1OB0997

Sampled: 02/11/05
Received: 02/11/05

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}
\begin{tabular}{llllllllll}
Analyte & Method & Batch & MDL & Limit & \begin{tabular}{c}
Reporting \\
Limit
\end{tabular} & \begin{tabular}{c}
Sample \\
Result
\end{tabular} & \begin{tabular}{c}
Dilution \\
Factor
\end{tabular} & \begin{tabular}{c}
Date \\
Extracted
\end{tabular} & \begin{tabular}{c}
Date \\
Analyzed
\end{tabular} \\
Qualifiers
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 008
Report Number: IOB0997

Sampled: 02/11/05
Received: 02/11/05

\section*{TOTAL PCBS (EPA 608)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{Sample ID: 1OB0997-01 (Outfall 008 - Water) - cont.} \\
\hline \multicolumn{10}{|l|}{Reporting Units: ug/} \\
\hline Aroclor 1016 & EPA 608 & 5B15038 & 0.20 & 1.0 & ND & 0.962 & 02/15/05 & 02/15/05 & \\
\hline Aroclor 1221 & EPA 608 & 5B15038 & 0.10 & 1.0 & ND & 0.962 & 02/15/05 & 02/15/05 & \\
\hline Aroclor 1232 & EPA 608 & 5B15038 & 0.15 & 1.0 & ND & 0.962 & 02/15/05 & 02/15/05 & \\
\hline Aroclor 1242 & EPA 608 & 5B15038 & 0.15 & 1.0 & ND & 0.962 & 02/15/05 & 02/15/05 & \\
\hline Aroclor 1248 & EPA 608 & 5B15038 & 0.25 & 1.0 & ND & 0.962 & 02/15/05 & 02/15/05 & \\
\hline Aroclor 1254 & EPA 608 & 5B15038 & 0.25 & 1.0 & ND & 0.962 & 02/15/05 & 02/15/05 & \\
\hline Aroclor 1260 & EPA 608 & 5B15038 & 0.40 & 1.0 & ND & 0.962 & 02/15/05 & 02/15/05 & \\
\hline Surrogate: Decachlorobiphenyl (45-120\%) & & & & & \(67 \%\) & & & & \\
\hline
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 008
Report Number: IOB0997

Sampled: 02/11/05
Received: 02/11/05
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{METALS} \\
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{Sample ID: IOB0997-01 (Outfall 008 - Water) - cont.} \\
\hline \multicolumn{10}{|c|}{Reporting Units: mgh} \\
\hline Boron & EPA 200.7 & 5B17097 & 0.0074 & 0.050 & 0.051 & 1 & 02/17/05 & 02/17/05 & \\
\hline
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 008
Report Number: 1OB0997

Sampled: 02/11/05
Received: 02/11/05
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{METALS} \\
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{Sample ID: 1OB0997-01 (Outfall 008 - Water) - cont. Reporting Units: ugh}} \\
\hline & & & & & & & & & \\
\hline Aluminum & EPA 200.7 & 5B17097 & 47 & 50 & 6500 & 1 & 02/17/05 & 02/17/05 & \\
\hline Antimony & EPA 200.8 & 5B17098 & 0.18 & 2.0 & 0.26 & 1 & 02/17/05 & 02/20/05 & J \\
\hline Arsenic & EPA 200.7 & 5B17097 & 3.8 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline Beryllium & EPA 200.7 & 5B17097 & 0.62 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline Cadmium & EPA 200.8 & 5B17098 & 0.015 & 1.0 & 0.087 & 1 & 02/17/05 & 02/20/05 & J \\
\hline Chromium & EPA 200.7 & 5B17097 & 0.68 & 5.0 & 9.5 & 1 & 02/17/05 & 02/17/05 & \\
\hline Copper & EPA 200.8 & 5B17098 & 0.49 & 2.0 & 5.5 & 1 & 02/17/05 & 02/20/05 & \\
\hline Lead & EPA 200.8 & 5B17098 & 0.13 & 1.0 & 3.7 & 1 & 02/17/05 & 02/20/05 & \\
\hline Mercury & EPA 245.1 & 5B15070 & 0.063 & 0.20 & 0.17 & 1 & 02/15/05 & 02/15/05 & J \\
\hline Nickel & EPA 200.7 & 5B17097 & 2.0 & 10 & 7.8 & 1 & 02/17/05 & 02/17/05 & J \\
\hline Selenium & EPA 200.7 & 5B17097 & 4.6 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline Silver & EPA 200.7 & 5B17097 & 1.3 & 10 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline Thallium & EPA 200.7 & 5B17097 & 3.1 & 5.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline Vanadium & EPA 200.7 & 5B17097 & 1.4 & 10 & 17 & 1 & 02/17/05 & 02/17/05 & \\
\hline Zinc & EPA 200.7 & 5B17097 & 3.7 & 20 & 22 & 1 & 02/17/05 & 02/17/05 & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 008
Report Number: IOB0997

Sampled: 02/11/05
Received: 02/11/05

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{Sample ID: 1OB0997-01 (Outfall 008 - Water) - cont. Reporting Units: mg/}} \\
\hline & & & & & & & & & \\
\hline Chloride & EPA 300.0 & 5B11120 & 0.26 & 0.50 & 5.4 & 1 & 02/11/05 & 02/12/05 & \\
\hline Total Cyanide & EPA 335.2 & 5B14107 & 0.0022 & 0.0050 & ND & 1 & 02/14/05 & 02/14/05 & \\
\hline Nitrate/Nitrite-N & EPA 300.0 & 5B11120 & 0.072 & 0.26 & 1.9 & 1 & 02/11/05 & 02/12/05 & \\
\hline Oil \& Grease & EPA 413.1 & 5B17117 & 0.94 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline Sulfate & EPA 300.0 & 5B11120 & 0.18 & 0.50 & 4.2 & 1 & 02/11/05 & 02/12/05 & \\
\hline Total Dissolved Solids & SM2540C & 5B17104 & 10 & 10 & 130 & 1 & 02/17/05 & 02/17/05 & \\
\hline Total Suspended Solids & EPA 160.2 & 5B17069 & 10 & 10 & 150 & 1 & 02/17/05 & 02/17/05 & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager
\begin{tabular}{l}
\begin{tabular}{lllllll}
MWH-Pasadena/Boeing \\
300 North Lake Avenue, Suite 1200 \\
Pasadena, CA 91101 \\
Attention: Bronwyn Kelly
\end{tabular} \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 008

Report Number: IOB0997

Sampled: 02/11/05
Received: 02/11/05

\section*{SHORT HOLD TIME DETAIL REPORT}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Hold Time (in days) & \begin{tabular}{l}
Date/Time \\
Sampled
\end{tabular} & Date/Time Received & \begin{tabular}{l}
Date/Time \\
Extracted
\end{tabular} & \begin{tabular}{l}
Date/Time \\
Analyzed
\end{tabular} \\
\hline \multicolumn{6}{|l|}{Sample ID: Outfall 008 (IOB0997-01) - Water} \\
\hline EPA 300.0 & 2 & 02/11/2005 15:16 & 02/11/2005 20:30 & 02/11/2005 23:00 & 02/12/2005 05:55 \\
\hline EPA 624 & 3 & 02/11/2005 15:16 & 02/11/2005 20:30 & 02/12/2005 00:00 & 02/12/2005 16:23 \\
\hline \multicolumn{6}{|l|}{Sample ID: Trip Blanks (IOB0997-02) - Water} \\
\hline EPA 624 & 3 & 02/11/2005 17:00 & 02/11/2005 20:30 & 02/12/2005 00:00 & 02/12/2005 16:54 \\
\hline
\end{tabular}

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Annual Outfall 008

Report Number: 1OB0997
Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKGC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{lllllllllll}
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit
\end{tabular}

Batch: 5B12011 Extracted: 02/12/05
Blank Analyzed: 02/12/2005 (5B12011-BLK1)
\begin{tabular}{ll}
Acrolein & ND \\
Acrylonitrile & ND \\
2-Chloroethyl vinyl ether & ND \\
Surrogate: Dibromofluoromethane & 21.9 \\
Surrogate: Toluene-d8 & 26.4 \\
Surrogate: 4-Bromofluorobenzene & 24.3
\end{tabular}

LCS Analyzed: 02/12/2005 (5B12011-BS1)
Surrogate: 4-Bromofluorobenzene 24.8

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 008
Report Number: 10B0997
Sampled: 02/11/05
Received: 02/11/05

\section*{MEIHOD BLANKOC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
Analyte

Result
\begin{tabular}{ccccccccccc}
Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

Batch: 5B17014 Extracted: 02/17/05
Blank Analyzed: 02/17/2005 (5B17014-BLK1)
\begin{tabular}{|c|c|c|c|}
\hline Benzene & ND & 1.0 & 0.28 \\
\hline Bromodichloromethane & ND & 2.0 & 0.30 \\
\hline Bromoform & ND & 5.0 & 0.32 \\
\hline Bromomethane & ND & 5.0 & 0.34 \\
\hline Carbon tetrachloride & ND & 0.50 & 0.28 \\
\hline Chlorobenzene & ND & 2.0 & 0.36 \\
\hline Chloroethane & ND & 5.0 & 0.33 \\
\hline Chloroform & ND & 2.0 & 0.33 \\
\hline Chloromethane & ND & 5.0 & 0.30 \\
\hline Dibromochloromethane & ND & 2.0 & 0.28 \\
\hline 1,2-Dichlorabenzene & ND & 2.0 & 0.32 \\
\hline 1,3-Dichlorobenzene & ND & 2.0 & 0.35 \\
\hline 1,4-Dichlorobenzene & ND & 2.0 & 0.37 \\
\hline 1,1-Dichloroethane & ND & 2.0 & 0.27 \\
\hline 1,2-Dichloroethane & ND & 0.50 & 0.28 \\
\hline 1,1-Dichloroethene & ND & 5.0 & 0.32 \\
\hline trans-1,2-Dichloroethene & ND & 2.0 & 0.27 \\
\hline 1,2-Dichloropropane & ND & 2.0 & 0.35 \\
\hline cis-1,3-Dichloropropene & ND & 2.0 & 0.22 \\
\hline trans-1,3-Dichloropropene & ND & 2.0 & 0.24 \\
\hline Ethylbenzene & ND & 2.0 & 0.25 \\
\hline Methylene chloride & ND & 5.0 & 0.48 \\
\hline 1,1,2,2-Tetrachloroethane & ND & 2.0 & 0.24 \\
\hline Tetrachloroethene & ND & 2.0 & 0.32 \\
\hline Toluene & ND & 2.0 & 0.36 \\
\hline 1,1,1-Trichloroethane & ND & 2.0 & 0.30 \\
\hline 1,1,2-Trichloroethane & ND & 2.0 & 0.30 \\
\hline Trichloroethene & ND & 2.0 & 0.26 \\
\hline Trichlorofluoromethane & ND & 5.0 & 0.34 \\
\hline Vinyl chloride & ND & 0.50 & 0.26 \\
\hline Xylenes, Total & ND & 4.0 & 0.52 \\
\hline Surrogate: Dibromofluoromethane & 26.4 & & \\
\hline Surrogate: Toluene-d8 & 25.1 & & \\
\hline Surrogate: 4-Bromofluorobenzene & 24.2 & & \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 008
Report Number: 1OB0997
Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKIOC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{llllllllllll}
& & & & & Reporting & & & Spike & Source & \%REC & \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Data \\
Qualifiers
\end{tabular}

\section*{Batch: 5B17014 Extracted: 02/17/05}

LCS Analyzed: 02/17/2005 (5B17014-BS1)
\begin{tabular}{lr}
Benzene & 24.9 \\
Bromodichloromethane & 25.7 \\
Bromoform & 24.2 \\
Bromomethane & 29.1 \\
Carbon tetrachloride & 26.2 \\
Chlorobenzene & 23.4 \\
Chloroethane & 27.4 \\
Chloroform & 26.2 \\
Chloromethane & 25.8 \\
Dibromochloromethane & 24.7 \\
1,2-Dichlorobenzene & 23.3 \\
1,3-Dichlorobenzene & 23.6 \\
1,4 Dichloroberizene & 23.0 \\
1,1-Dichloroethane & 25.5 \\
1,2-Dichloroethane & 25.9 \\
1,1-Dichloroethene & 24.6 \\
trans-1,2-Dichloroethene & 25.4 \\
1,2-Dichloropropane & 24.8 \\
cis-1,3-Dichloropropene & 25.6 \\
trans-1,3-Dichloropropene & 25.7 \\
Ethylbenzene & 26.4 \\
Methylene chloride & 25.4 \\
1,1,2,2-Tetrachloroethane & 23.2 \\
Tetrachloroethene & 23.2 \\
Toluene & 24.6 \\
1,1,1-Trichloroethane & 27.1 \\
1,1,2-Trichloroethane & 24.9 \\
Trichloroethene & 23.4 \\
Trichlorofluoromethane & 28.0 \\
Vinyl chloride & 27.7 \\
Surrogate: Dibromofluoromethane & 26.4 \\
Surrogate: Toluene-d8 & 25.3 \\
Surrogate: 4-Bromofluorobenzene & 26.9 \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 008
Report Number: 1OB0997
Sampled: 02/11/05
Received: 02/11/05

METHOD BEANKIOC DATA

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyt & Result & Reporting & MDI & Units & Spike & Source & & \%REC & & RPD & Data \\
\hline Analyte & Result & & MDL & Units & & & \%REC & Limits & RPD & Limit & Qualifier \\
\hline
\end{tabular}

Batch: 5817014 Extracted: 02/17/05
Matrix Spike Analyzed: 02/17/2005 (5B17014-MS1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Benzene & 25.2 & 1.0 & 0.28 & ug/l & 25.0 & ND & 101 & 70-120 \\
\hline Bromodichloromethane & 26.3 & 2.0 & 0.30 & ug/1 & 25.0 & ND & 105 & 70-140 \\
\hline Bromoform & 23.7 & 5.0 & 0.32 & ughl & 25.0 & ND & 95 & 55-140 \\
\hline Bromomethane & 28.7 & 5.0 & 0.34 & ug/l & 25.0 & ND & 115 & 50-145 \\
\hline Carbon tetrachloride & 26.8 & 0.50 & 0.28 & ug/ & 25.0 & ND & 107 & 70-145 \\
\hline Chlorobenzene & 23.0 & 2.0 & 0.36 & ug/l & 25.0 & ND & 92 & 80-125 \\
\hline Chloroethane & 26.4 & 5.0 & 0.33 & ug/l & 25.0 & ND & 106 & 50-145 \\
\hline Chloroform & 26.9 & 2.0 & 0.33 & ug/l & 25.0 & ND & 108 & 70-135 \\
\hline Chloromethane & 24.7 & 5.0 & 0.30 & \(\mathrm{ug} / \mathrm{l}\) & 25.0 & ND & 99 & 35-145 \\
\hline Dibromochloromethane & 24.8 & 2.0 & 0.28 & ug/l & 25.0 & ND & 99 & 65-145 \\
\hline 1,2-Dichlorobenzene & 23.4 & 2.0 & 0.32 & ug/l & 25.0 & ND & 94 & 75-130 \\
\hline 1,3-Dichlorobenzene & 23.4 & 2.0 & 0.35 & ug/ & 25.0 & ND & 94 & 75-130 \\
\hline 1,4-Dichloroberzene & 23.0 & 2.0 & 0.37 & ug/l & 250 & ND & 92 & 80-120 \\
\hline 1,1-Dichloroethane & 26.4 & 2.0 & 0.27 & ug/l & 25.0 & ND & 106 & 65-135 \\
\hline 1,2-Dichloroethane & 27.2 & 0.50 & 0.28 & ug/l & 25.0 & ND & 109 & 60-150 \\
\hline 1,1-Dichloroethene & 25.2 & 5.0 & 0.32 & ug/l & 25.0 & ND & 101 & 65-140 \\
\hline trans-1,2-Dichloroethene & 25.9 & 2.0 & 0.27 & ug/ & 25.0 & ND & 104 & 65-135 \\
\hline 1,2-Dichloropropane & 24.9 & 2.0 & 0.35 & ug/l & 25.0 & ND & 100 & 65-130 \\
\hline cis-1,3-Dichloropropene & 26.0 & 2.0 & 0.22 & ug/l & 25.0 & ND & 104 & 70-140 \\
\hline trans-1,3-Dichloropropene & 26.3 & 2.0 & 0.24 & ug/l & 25.0 & ND & 105 & 70-140 \\
\hline Ethylbenzene & 26.1 & 2.0 & 0.25 & ug/l & 25.0 & ND & 104 & 70-130 \\
\hline Methylene chloride & 26.0 & 5.0 & 0.48 & ug/l & 25.0 & ND & 104 & 60-135 \\
\hline 1,1,2,2-Tetrachloroethane & 23.1 & 2.0 & 0.24 & \(u g / 1\) & 25.0 & ND & 92 & 60-145 \\
\hline Tetrachloroethene & 22.7 & 2.0 & 0.32 & ug/l & 25.0 & ND & 91 & 70-130 \\
\hline Toluene & 25.2 & 2.0 & 0.36 & ug/l & 25.0 & ND & 101 & \(70-120\) \\
\hline 1,1,1-Trichloroethane & 28.0 & 2.0 & 0.30 & ug/l & 25.0 & ND & 112 & 75-140 \\
\hline 1,1,2-Trichloroethane & 25.1 & 2.0 & 0.30 & ug/l & 25.0 & ND & 100 & 60-135 \\
\hline Trichloroethene & 23.5 & 2.0 & 0.26 & ug/ & 25.0 & ND & 94 & 70-125 \\
\hline Trichlorofluoromethane & 28.7 & 5.0 & 0.34 & ug/l & 25.0 & ND & 115 & 55-145 \\
\hline Vinyl chloride & 26.3 & 0.50 & 0.26 & ug/l & 25.0 & ND & 105 & 40-135 \\
\hline Surrogate: Dibromofluoromethane & 27.5 & & & \(u g / l\) & 25.0 & & 110 & 80-120 \\
\hline Surrogate: Toluene-d8 & 25.7 & & & \(u g /\) & 25.0 & & 103 & 80-120 \\
\hline Surrogate: 4-Bromofluorobenzene & 26.5 & & & \(u g /\) & 25.0 & & 106 & 80-120 \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager
}

\title{
Del Mar Analytical
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 008
Report Number: 1OB0997

Sampled: 02/11/05
Received: 02/11/05

\section*{MHIHOD BLAMKOC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{lllllllllll}
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit
\end{tabular}

Batch: 5B17014 Extracted: 02/17/05
Matrix Spike Dup Analyzed: 02/17/2005 (5B17014-MSD1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Benzene & 25.1 & 1.0 & 0.28 & ug/l & 25.0 & ND & 100 & 70-120 & 0 & 20 \\
\hline Bromodichloromethane & 25.4 & 2.0 & 0.30 & ug/l & 25.0 & ND & 102 & 70-140 & 3 & 20 \\
\hline Bromoform & 21.6 & 5.0 & 0.32 & ug/l & 25.0 & ND & 86 & 55-140 & 9 & 25 \\
\hline Bromomethane & 31.0 & 5.0 & 0.34 & ug/l & 25.0 & ND & 124 & 50-145 & 8 & 25 \\
\hline Carbon tetrachloride & 26.5 & 0.50 & 0.28 & ug/l & 25.0 & ND & 106 & 70-145 & 1 & 25 \\
\hline Chlorobenzene & 23.9 & 2.0 & 0.36 & ug/l & 25.0 & ND & 96 & 80-125 & 4 & 20 \\
\hline Chloroethane & 29.6 & 5.0 & 0.33 & ug/ & 25.0 & ND & 118 & 50-145 & 11 & 25 \\
\hline Chloroform & 26.4 & 2.0 & 0.33 & ug/l & 25.0 & ND & 106 & 70-135 & 2 & 20 \\
\hline Chloromethane & 28.0 & 5.0 & 0.30 & ug/ & 25.0 & ND & 112 & 35-145 & 13 & 25 \\
\hline Dibromochloromethane & 23.4 & 2.0 & 0.28 & ug/ & 25.0 & ND & 94 & 65-145 & 6 & 25 \\
\hline 1,2-Dichlorobenzene & 23.4 & 2.0 & 0.32 & ug/ & 25.0 & ND & 94 & 75-130 & 0 & 20 \\
\hline 1,3-Dichlorobenzene & 24.0 & 2.0 & 0.35 & ug/l & 25.0 & ND & 96 & 75-130 & 3 & 20 \\
\hline 1,4Dichlorobenzene & 23.6 & 2.0 & 0.37 & ugh & 25.0 & ND & 94 & 80120 & 3 & 20 \\
\hline 1,1-Dichloroethane & 26.1 & 2.0 & 0.27 & ug/ & 25.0 & ND & 104 & 65-135 & 1 & 20 \\
\hline 1,2-Dichloroethane & 24.5 & 0.50 & 0.28 & ug/ & 25.0 & ND & 98 & 60-150 & 10 & 20 \\
\hline 1,1-Dichloroethene & 24.9 & 5.0 & 0.32 & \(\mathrm{ug} / \mathrm{l}\) & 25.0 & ND & 100 & 65-140 & 1 & 20 \\
\hline trans-1,2-Dichloroethene & 25.9 & 2.0 & 0.27 & ug/ & 25.0 & ND & 104 & 65-135 & 0 & 20 \\
\hline 1,2-Dichloropropane & 24.3 & 2.0 & 0.35 & ug/l & 25.0 & ND & 97 & 65-130 & 2 & 20 \\
\hline cis-1,3-Dichloropropene & 25.2 & 2.0 & 0.22 & ug/l & 25.0 & ND & 101 & 70-140 & 3 & 20 \\
\hline trans-1,3-Dichloropropene & 24.4 & 2.0 & 0.24 & ug/l & 25.0 & ND & 98 & 70-140 & 7 & 25 \\
\hline Ethylbenzene & 27.0 & 2.0 & 0.25 & ug/ 1 & 25.0 & ND & 108 & 70-130 & 3 & 20 \\
\hline Methylene chloride & 25.4 & 5.0 & 0.48 & ugh & 25.0 & ND & 102 & 60-135 & 2 & 20 \\
\hline 1,1,2,2-Tetrachloroethane & 20.8 & 2.0 & 0.24 & ug/l & 25.0 & ND & 83 & 60-145 & 10 & 30 \\
\hline Tetrachloroethene & 23.9 & 2.0 & 0.32 & ug/ & 25.0 & ND & 96 & \(70-130\) & 5 & 20 \\
\hline Toluene & 24.9 & 2.0 & 0.36 & \(u g / 1\) & 25.0 & ND & 100 & 70-120 & 1 & 20 \\
\hline 1,1,1-Trichloroethane & 27.8 & 2.0 & 0.30 & ug/l & 25.0 & ND & 111 & 75-140 & 1 & 20 \\
\hline 1,1,2-Trichlorcethane & 22.8 & 2.0 & 0.30 & ug/l & 25.0 & ND & 91 & 60-135 & 10 & 25 \\
\hline Trichloroethene & 23.5 & 2.0 & 0.26 & ug/l & 25.0 & ND & 94 & 70-125 & 0 & 20 \\
\hline Trichlorofluoromethane & 28.5 & 5.0 & 0.34 & ug/l & 25.0 & ND & 114 & 55-145 & 1 & 25 \\
\hline Vinyl chloride & 30.0 & 0.50 & 0.26 & ug/l & 25.0 & ND & 120 & 40-135 & 13 & 30 \\
\hline Surrogate: Dibromofluoromethane & 26.5 & & & \(u g / l\) & 25.0 & & 106 & 80-120 & & \\
\hline Surrogate: Toluene-d8 & 25.2 & & & \(u g / l\) & 25.0 & & 101 & 80-120 & & \\
\hline Surrogate: 4-Bromofluorobenzene & 26.4 & & & \(u \mathrm{~g} /\) & 25.0 & & 106 & 80-120 & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 008
Report Number: IOB0997

Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKQC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualffers \\
\hline \multicolumn{12}{|l|}{Batch: 5B18008 Extracted: 02/18/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 02/18/2005 (5B18008-BLK1)} \\
\hline Benzene & ND & 1.0 & 0.28 & ug/l & & & & & & & \\
\hline Bromodichloromethane & ND & 2.0 & 0.30 & ug/l & & & & & & & \\
\hline Bromoform & ND & 5.0 & 0.32 & ug/l & & & & & & & \\
\hline Bromomethane & ND & 5.0 & 0.34 & ug/l & & & & & & & \\
\hline Carbon tetrachloride & ND & 0.50 & 0.28 & ug/l & & & & & & & \\
\hline Chlorobenzene & ND & 2.0 & 0.36 & ug/l & & & & & & & \\
\hline Chloroethane & ND & 5.0 & 0.33 & ug/l & & & & & & & \\
\hline Chloroform & ND & 2.0 & 0.33 & ug/l & & & & & & & \\
\hline Chloromethane & ND & 5.0 & 0.30 & ug/l & & & & & & & \\
\hline Dibromochloromethane & ND & 2.0 & 0.28 & ug/ & & & & & & & \\
\hline 1,2-Dichlorobenzene & ND & 2.0 & 0.32 & ug/l & & & & & & & \\
\hline 1,3-Dichlorobenzene & ND & 2.0 & 0.35 & ug/l & & & & & & & \\
\hline 1,4 Dichlorobenzene & ND & 2.0 & 0.37 & ugd & & & . & \(\therefore\) & \(\cdots\) & \(\cdots\) & \(\therefore\) \\
\hline 11-Dichloroethane & ND & 2.0 & 0.27 & ug/ & & & & & & & \\
\hline 1,2-Dichloroethane & ND & 0.50 & 0.28 & ug/l & & & & & & & \\
\hline 1,1-Dichloroethene & ND & 5.0 & 0.32 & ug/l & & & & & & & \\
\hline trans-1,2-Dichloroethene & ND & 2.0 & 0.27 & ug/l & & & & & & & \\
\hline 1,2-Dichloropropane & ND & 2.0 & 0.35 & ug/ & & & & & & & \\
\hline cis-1,3-Dichloropropene & ND & 2.0 & 0.22 & ug/l & & & & & & & \\
\hline trans-1,3-Dichloropropene & ND & 2.0 & 0.24 & ug/l & & & & & & & \\
\hline Ethylbenzene & ND & 2.0 & 0.25 & ug/l & & & & & & & \\
\hline Methylene chloride & ND & 5.0 & 0.48 & ug/l & & & & & & & \\
\hline 1,1,2,2-Tetrachloroethane & ND & 2.0 & 0.24 & ug/ & & & & & & & \\
\hline Tetrachloroethene & ND & 2.0 & 0.32 & ug/l & & & & & & & \\
\hline Toluene & ND & 2.0 & 0.36 & ug/ & & & & & & & \\
\hline 1,1,1-Trichloroethane & ND & 2.0 & 0.30 & ug/l & & & & & & & \\
\hline 1,1,2-Trichloroethane & ND & 2.0 & 0.30 & ug/l & & & & & & & \\
\hline Trichloroethene & ND & 2.0 & 0.26 & ug/ & & & & & & & \\
\hline Trichlorofluoromethane & ND & 5.0 & 0.34 & ug/ & & & & & & & \\
\hline Vinyl chloride & ND & 0.50 & 0.26 & ug/ & & & & & & & \\
\hline Xylenes, Total & ND & 4.0 & 0.52 & ugh & & & & & & & \\
\hline Surrogate: Dibromofluoromethane & 27.5 & & & ug/l & 25.0 & & 110 & 80-120 & & & \\
\hline Surrogate: Toluene-d8 & 27.1 & & & ugh & 25.0 & & 108 & 80-120 & & & \\
\hline Surrogate: 4-Bromofluorobenzene & 25.9 & & & ug/l & 25.0 & & 104 & 80-120 & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Bocing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 008
Report Number: IOB0997
Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKIQC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{llllllllllll}
& & & & & Reporting & & & Spike & Source & \%REC & \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Data \\
& & & Qualfiers
\end{tabular}

LCS Analyzed: 02/18/2005 (5B18008-BS1)
\begin{tabular}{lr}
Benzene & 23.4 \\
Bromodichloromethane & 23.6 \\
Bromoform & 23.1 \\
Bromomethane & 26.0 \\
Carbon tetrachloride & 23.4 \\
Chlorobenzene & 23.2 \\
Chloroethane & 24.5 \\
Chloroform & 24.1 \\
Chloromethane & 22.3 \\
Dibromochloromethane & 23.4 \\
1,2-Dichlorobenzene & 22.9 \\
1,3-Dichlorobenzene & 22.9 \\
1,4-Dichlorobenzene & 22.9 \\
1,1-Dichloroethane & 23.4 \\
1,2-Dichloroethane & 24.9 \\
1,1-Dichloroethene & 23.8 \\
trans-1,2-Dichloroethene & 23.5 \\
1,2-Dichloropropane & 23.2 \\
cis-1,3-Dichloropropene & 23.6 \\
trans-1,3-Dichloropropene & 24.0 \\
Ethylbenzene & 24.7 \\
Methylene chloride & 24.0 \\
1,1,2,2-Tetrachloroethane & 22.3 \\
Tetrachloroethene & 22.3 \\
Toluene & 23.8 \\
1,1,1-Trichloroethane & 23.6 \\
1,1,2-Trichloroethane & 23.0 \\
Trichloroethene & 23.4 \\
Trichlorofluoromethane & 23.6 \\
Vinyl chloride & 24.3 \\
Surrogate: Dibromofluoromethane & 26.3 \\
Surrogate: Toluene-d8 & 26.2 \\
Surrogate: 4-Bromofluorobenzene & 26.0 \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\author{
Project ID: Annual Outfall 008 \\ Report Number: IOB0997 \\ Sampled: 02/11/05 \\ Received: 02/11/05
}

\section*{METHOD BLANKIQC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
Analyte \(\quad\) Result
Batch: 5B18008 Extracted: 02/18/05
Matrix Spike Analyzed: 02/18/2005 (5B18008-MS1)
\begin{tabular}{cccccccccc}
Reporting \\
Limit & & & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & Limits & RPD
\end{tabular}\(\quad\)\begin{tabular}{c}
RPD \\
Limit
\end{tabular}\(\quad\)\begin{tabular}{c}
Data \\
Qualifiers
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Matrix Spike Analyzed: 02/18/2005 (5818008-MS1)} & \multicolumn{5}{|c|}{Source: 1OB1255-02} \\
\hline Benzene & 22.2 & 1.0 & 0.28 & ug/l & 25.0 & ND & 89 & 70-120 \\
\hline Bromodichloromethane & 23.0 & 2.0 & 0.30 & ug/ & 25.0 & ND & 92 & 70-140 \\
\hline Bromoform & 24.0 & 5.0 & 0.32 & ug/1 & 25.0 & ND & 96 & 55-140 \\
\hline Bromomethane & 23.6 & 5.0 & 0.34 & ugh & 25.0 & ND & 94 & 50-145 \\
\hline Carbon tetrachloride & 22.0 & 0.50 & 0.28 & ug/ & 25.0 & ND & 88 & 70-145 \\
\hline Chlorobenzene & 22.2 & 2.0 & 0.36 & ug/ & 25.0 & ND & 89 & 80-125 \\
\hline Chloroethane & 22.9 & 5.0 & 0.33 & ug/ & 25.0 & ND & 92 & 50-145 \\
\hline Chloroform & 23.0 & 2.0 & 0.33 & ug/ & 25.0 & ND & 92 & 70-135 \\
\hline Chloromethane & 19.4 & 5.0 & 0.30 & ugh & 25.0 & ND & 78 & 35-145 \\
\hline Dibromochloromethane & 23.4 & 2.0 & 0.28 & ug/ & 25.0 & ND & 94 & 65-145 \\
\hline 1,2-Dichlorobenzene & 22.4 & 2.0 & 0.32 & ug/ & 25.0 & ND & 90 & 75-130 \\
\hline 1,3-Dichlorobenzene & 21.7 & 2.0 & 0.35 & ug/ & 25.0 & ND & 87 & 75-130 \\
\hline 1,4 Dichlorobenzene & 22.0 & 2.0 & 037 & ugd & 25.0 & ND & 88 & \(80-120\) \\
\hline 1,1-Dichloroethane & 21.9 & 2.0 & 0.27 & ug/ & 25.0 & ND & 88 & 65-135 \\
\hline 1,2-Dichloroethane & 24.6 & 0.50 & 0.28 & ug/ & 25.0 & ND & 98 & 60-150 \\
\hline 1,1-Dichloroethene & 22.4 & 5.0 & 0.32 & ug/ & 25.0 & ND & 90 & 65-140 \\
\hline trans-1,2-Dichloroethene & 22.2 & 2.0 & 0.27 & ug/ & 25.0 & ND & 89 & 65-135 \\
\hline 1,2-Dichloropropane & 22.3 & 2.0 & 0.35 & ug/ & 25.0 & ND & 89 & 65-130 \\
\hline cis-1,3-Dichloropropene & 23.0 & 2.0 & 0.22 & ug/ & 25.0 & ND & 92 & 70-140 \\
\hline trans-1,3-Dichloropropene & 24.4 & 2.0 & 0.24 & ug/ & 25.0 & ND & 98 & 70-140 \\
\hline Ethylbenzene & 23.5 & 2.0 & 0.25 & ug/ & 25.0 & ND & 94 & 70-130 \\
\hline Methilene chloride & 24.5 & 5.0 & 0.48 & ug/ & 25.0 & 2.1 & 90 & 60-135 \\
\hline 1,1,2,2-Tetrachloroethane & 25.6 & 2.0 & 0.24 & ug/ & 25.0 & ND & 102 & 60-145 \\
\hline Tetrachloroethene & 20.6 & 2.0 & 0.32 & ug/ & 25.0 & ND & 82 & 70-130 \\
\hline Toluene & 22.8 & 2.0 & 0.36 & ugh & 25.0 & ND & 91 & 70-120 \\
\hline 1,1,1-Trichloroethane & 21.7 & 2.0 & 0.30 & ug/ & 25.0 & ND & 87 & 75-140 \\
\hline 1,1,2-Trichloroethane & 23.8 & 2.0 & 0.30 & \(\mathrm{ug} /\) & 25.0 & ND & 95 & 60-135 \\
\hline Trickloroethene & 21.7 & 2.0 & 0.26 & ug/ & 25.0 & ND & 87 & 70-125 \\
\hline Trichlorofluoromethane & 21.3 & 5.0 & 0.34 & ug/ & 25.0 & ND & 85 & 55-145 \\
\hline Vinyl chloride & 21.9 & 0.50 & 0.26 & ugh & 25.0 & ND & 88 & 40-135 \\
\hline Surrogate: Dibromofuoromethane & 26.4 & & & ugh & 25.0 & & 106 & 80-120 \\
\hline Surrogate: Toluene-d8 & 26.0 & & & ugh & 25.0 & & 104 & 80-120 \\
\hline Surrogate: 4-Bromofluorobenzene & 26.1 & & & ugh & 25.0 & & 104 & 80-120 \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 008
Report Number: IOB0997
Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKIQC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline Batch: 5B18008 Extracted: 02/18/05 & & & & & & & & & & & \\
\hline
\end{tabular}

Matrix Spike Dup Analyzed: 02/18/2005 (5B18008-MSD1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Benzene & 23.2 & 1.0 & 0.28 & ug/ & 25.0 & ND & 93 & 70-120 & 4 & 20 \\
\hline Bromodichloromethane & 23.0 & 2.0 & 0.30 & ug / 1 & 25.0 & ND & 92 & 70-140 & 0 & 20 \\
\hline Bromoform & 24.2 & 5.0 & 0.32 & ug/ & 25.0 & ND & 97 & 55-140 & 1 & 25 \\
\hline Bromomethane & 24.8 & 5.0 & 0.34 & ug/ & 25.0 & ND & 99 & 50-145 & 5 & 25 \\
\hline Carbon tetrachloride & 22.4 & 0.50 & 0.28 & ug/ & 25.0 & ND & 90 & 70-145 & 2 & 25 \\
\hline Chlorobenzene & 23.2 & 2.0 & 0.36 & ug/ & 25.0 & ND & 93 & 80-125 & 4 & 20 \\
\hline Chloroethane & 24.3 & 5.0 & 0.33 & ug/ & 25.0 & ND & 97 & 50-145 & 6 & 25 \\
\hline Chloroform & 23.3 & 2.0 & 0.33 & ugh & 25.0 & ND & 93 & 70-135 & 1 & 20 \\
\hline Chloromethane & 21.3 & 5.0 & 0.30 & ug/ & 25.0 & ND & 85 & 35-145 & 9 & 25 \\
\hline Dibromochloromethane & 23.5 & 2.0 & 0.28 & ug/ & 25.0 & ND & 94 & 65-145 & 0 & 25 \\
\hline 1,2-Dichlorobenzene & 23.2 & 2.0 & 0.32 & ug/ & 25.0 & ND & 93 & 75-130 & 4 & 20 \\
\hline 1,3-Dichlorobenzene & 22.7 & 2.0 & 0.35 & ug/ & 25.0 & ND & 91 & 75-130 & 5 & 20 \\
\hline 1,4 Dichlorobenzene & 22.7 & 20 & 0.37 & ug/l & 25.0 & ND & 91 & 80-120 & 3 & 20 \\
\hline 1, Dichloroethane & 22.6 & 2.0 & 0.27 & ug/ & 25.0 & ND & 90 & 65-135 & 3 & 20 \\
\hline 1,2-Dichloroethane & 22.4 & 0.50 & 0.28 & ugh & 25.0 & ND & 90 & 60-150 & 9 & 20 \\
\hline 1,1-Dichloroethene & 23.5 & 5.0 & 0.32 & ug/ & 25.0 & ND & 94 & 65-140 & 5 & 20 \\
\hline trans-1,2-Dichloroethene & 23.2 & 2.0 & 0.27 & ug/ & 25.0 & ND & 93 & 65-135 & 4 & 20 \\
\hline 1,2-Dichloropropane & 22.9 & 2.0 & 0.35 & ug/l & 25.0 & ND & 92 & 65-130 & 3 & 20 \\
\hline cis-1,3-Dichloropropene & 23.5 & 2.0 & 0.22 & ug/ & 25.0 & ND & 94 & 70-140 & 2 & 20 \\
\hline trans-1,3-Dichloropropene & 24.2 & 2.0 & 0.24 & ug/l & 25.0 & ND & 97 & 70-140 & 1 & 25 \\
\hline Ethylbenzene & 24.6 & 2.0 & 0.25 & ug/ & 25.0 & ND & 98 & 70-130 & 5 & 20 \\
\hline Methylene chloride & 25.7 & 5.0 & 0.48 & ug/ & 25.0 & 2.1 & 94 & 60-135 & 5 & 20 \\
\hline 1,1,2,2-Tetrachloroethane & 25.1 & 2.0 & 0.24 & ug/ & 25.0 & ND & 100 & 60-145 & 2 & 30 \\
\hline Tetrachloroethene & 21.8 & 2.0 & 0.32 & ugl & 25.0 & ND & 87 & 70-130 & 6 & 20 \\
\hline Toluene & 23.4 & 2.0 & 0.36 & ug/ & 25.0 & ND & 94 & 70-120 & 3 & 20 \\
\hline 1,1,1-Trichloroethane & 21.9 & 2.0 & 0.30 & ug/ & 25.0 & ND & 88 & 75-140 & 1 & 20 \\
\hline 1,1,2-Trichloroethane & 23.6 & 2.0 & 0.30 & ug/ & 25.0 & ND & 94 & 60-135 & 1 & 25 \\
\hline Trichloroethene & 22.3 & 2.0 & 0.26 & ug/ & 25.0 & ND & 89 & 70-125 & 3 & 20 \\
\hline Trichlorofluoromethane & 21.9 & 5.0 & 0.34 & ug/ & 25.0 & ND & 88 & 55-145 & 3 & 25 \\
\hline Vinyl chloride & 23.2 & 0.50 & 0.26 & ug/l & 25.0 & ND & 93 & 40-135 & 6 & 30 \\
\hline Surrogate: Dibromofluoromethane & 26.0 & & & \(u g /\) & 25.0 & & 104 & 80-120 & & \\
\hline Surrogate: Toluene-d8 & 26.1 & & & ug/ & 25.0 & & 104 & 80-120 & & \\
\hline Surrogate: 4-Bromofluorobenzene & 26.1 & & & \(u g / 1\) & 25.0 & & 104 & 80-120 & & \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 008
Report Number: 1OB0997
Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKIOC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
Analyte
Batch: 5B13024 Extracted: 02/13/05

\section*{Blank Analyzed: 02/15/2005 (5B13024-BLK1)}
\begin{tabular}{|c|c|c|c|c|}
\hline Acenaphthene & ND & 10 & 4.3 & ug/ \\
\hline Acenaphthylene & ND & 10 & 3.2 & \(\mathrm{ug} /\) \\
\hline Aniline & ND & 10 & 2.9 & ug/ \\
\hline Anthracene & ND & 10 & 3.2 & ugh \\
\hline Benzidine & ND & 20 & 5.2 & ugh \\
\hline Benzoic acid & ND & 20 & 2.6 & ug/ \\
\hline Benzo(a)anthracene & ND & 10 & 3.7 & ug/1 \\
\hline Benzo(b)fluoranthene & ND & 10 & 2.7 & ug/ \\
\hline Benzo(k)fluoranthene & ND & 10 & 3.4 & ug/ \\
\hline Benzo(g,h,i)perylene & ND & 10 & 5.3 & ug/ \\
\hline Benzo(a)pyrene & ND & 10 & 3.5 & ug \(/\) \\
\hline Benzyl alcohol & ND & 20 & 2.5 & ug/ \\
\hline Bis(2-chloroethoxy)methane & ND & 10 & 3.9 & ugh \\
\hline Bis(2 -chloroethyl)ether & ND & 10 & 4.4 & ugh \\
\hline Bis(2-chloroisopropyl)ether & ND & 10 & 4.6 & ug/ \\
\hline Bis(2-ethythexyl)phthalate & ND & 50 & 5.2 & ug/ \\
\hline 4-Bromophenyl phenyl ether & ND & 10 & 4.6 & ug/ \\
\hline Butyl benzyl phthalate & ND & 20 & 3.5 & ug/ \\
\hline 4-Chloroaniline & ND & 10 & 6.0 & ug/ \\
\hline 2-Chloronaphthalene & ND & 10 & 4.0 & ug/ \\
\hline 4.Chloro-3-methylphenol & ND & 20 & 3.5 & ug/ \\
\hline 2-Chlorophenol & ND & 10 & 4.2 & ug/ \\
\hline 4-Chlorophenyl phenyl ether & ND & 10 & 3.0 & ugh \\
\hline Chrysene & ND & 10 & 2.8 & ug/ \\
\hline Dibenz(\(\mathrm{a}, \mathrm{h}\))anthracene & ND & 20 & 4.7 & ug/ \\
\hline Dibenzofuran & ND & 10 & 2.6 & ug/ \\
\hline Di-n-butyl phthalate & ND & 20 & 2.8 & ug/ \\
\hline 1,3-Dichlorobenzene & ND & 10 & 4.1 & ug/ \\
\hline 1,4-Dichlorobenzene & ND & 10 & 3.9 & ug/ \\
\hline 1,2-Dichlorobenzene & ND & 10 & 4.5 & ug/ \\
\hline 3,3-Dichlorobenzidine & ND & 20 & 11 & ug/l \\
\hline 2,4-Dichlorophenol & ND & 10 & 4.1 & ugl \\
\hline Diethyl phthalate & ND & 10 & 3.1 & ug/ \\
\hline 2,4-Dimethylphenol & ND & 20 & 4.4 & ug/ \\
\hline Dimethyl phthalate & ND & 10 & 3.6 & ug/ \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}
\begin{tabular}{cccccccccc}
Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 008
Report Number: IOB0997

Sampled: 02/11/05
Received: 02/11/05

\section*{MITIHOD BLANKIOC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{lllllllllll}
& & Reporting & & & Spike & Source & \%REC & RPD \\
Analyte & Result & Limit & MDL & Units & Level \\
Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\section*{Project ID: Annual Outfall 008}

Report Number: 1OB0997

Sampled: 02/11/05
Received: 02/11/05

\section*{MEIMOD BIANHIOC DAIA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{lccccccccccc}
& & & & Reporting & & & Spike & Source & \%REC & & RPD
\end{tabular} Data

Batch: 5B13024 Extracted: 02/13/05
Blank Analyzed: 02/15/2005 (5B13024-BLK1)
\begin{tabular}{lc}
Surrogate: Phenol-d6 & 152 \\
Surrogate: \(2,4,6\)-Tribromophenol & 189 \\
Surrogate: Nitrobenzene-d5 & 82.2 \\
Surrogate: 2 -Fluorobiphenyl & 86.8 \\
Surrogate: Terphenyl-d14 & 87.1
\end{tabular}

LCS Analyzed: 02/15/2005 (5B13024-BS1)
\begin{tabular}{lr}
Acenaphthene & 83.0 \\
Acenaphthylene & 88.0 \\
Aniline & 67.5 \\
Anthracene & 82.9 \\
Benzidine & 11.3 \\
Benzoic acid & 72.6 \\
Benzo(a)anthracene & 89.4 \\
Benzo(b)fluoranthene & 84.9 \\
Benzo(k)fluoranthene & 84.1 \\
Benzo(g,h,i)perylene & 83.3 \\
Benzo(a)pyrene & 87.3 \\
Benzyl alcohol & 77.6 \\
Bis(2-chloroethoxy)methane & 83.2 \\
Bis(2-chloroethyl)ether & 68.3 \\
Bis(2-chloroisopropyl)ether & 73.7 \\
Bis(2-ethylhexyl)phthalate & 77.2 \\
4-Bromophenyl phenyl ether & 79.7 \\
Butyl benzyl phthalate & 77.4 \\
4-Chloroaniline & 80.1 \\
2-Chloronaphthalene & 81.0 \\
4-Chloro-3-methylphenol & 83.6 \\
2-Chlorophenol & 71.0 \\
4-Chlorophenyl phenyl ether & 84.8 \\
Chrysene & 85.3 \\
Dibenz(a,h)anthracene & 88.7 \\
Dibenzofuran & 83.4 \\
Di-n-butyl phhalate & 81.1 \\
1,3-Dichlorobenzene & 63.4 \\
1,4-Dichlorobenzene & 61.8 \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine Wendy Kirkeeng For Michele Harper Project Manager
}

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 008
Report Number: \(10 B 0997 \quad \begin{aligned} & \text { Sampled: 02/11/05 } \\ & \text { Received: 02/11/05 }\end{aligned}\)

\section*{METHOD BLANKUQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & RPD & Data \\
\hline & Result & & MDL & Units & & & \%RLC & & RPD & & Qualifiers \\
\hline
\end{tabular}

\section*{Batch: 5B13024 Extracted: 02/13/05}

LCS Analyzed: 02/15/2005 (5B13024-BS1)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1,2-Dichlorobenzene & 63.4 & 10 & 4.5 & ug/ & 100 & 63 & 40-120 \\
\hline 3,3-Dichlorobenzidine & 101 & 20 & 11 & ug/ & 100 & 101 & 50-170 \\
\hline 2,4-Dichlorophenol & 81.8 & 10 & 4.1 & ug/ & 100 & 82 & 55-120 \\
\hline Diethyl phthalate & 76.5 & 10 & 3.1 & ug/ & 100 & 76 & 60-120 \\
\hline 2,4-Dimethylphenol & 65.9 & 20 & 4.4 & ug/ & 100 & 66 & 35-120 \\
\hline Dimethyl phthalate & 80.9 & 10 & 3.6 & ug/ & 100 & 81 & 60-120 \\
\hline 4,6-Dinitro-2-methylphenol & 80.0 & 20 & 5.1 & ug/ & 100 & 80 & 55-120 \\
\hline 2,4-Dinitrophenol & 77.4 & 20 & 5.3 & ug/ & 100 & 77 & 40-140 \\
\hline 2,4-Dinitrotoluene & 81.4 & 10 & 4.2 & ug/ & 100 & 81 & 60-140 \\
\hline 2,6-Dinitrotoluene & 77.3 & 10 & 3.2 & ug/ & 100 & 77 & 65-125 \\
\hline Di-n-octyl phthalate & 86.1 & 20 & 4.7 & ug/ & 100 & 86 & 60-130 \\
\hline Fluoranthene & 91.5 & 10 & 4.2 & ug/1 & 100 & 92 & 55-125 \\
\hline Fluorene & 87.4 & 10 & 3.9 & ugh & 100. & 87 & 60-120 \\
\hline Hexachlorobenzene & 83.3 & 10 & 4.8 & uga & 100 & 83 & 50-120 \\
\hline Hexachlorobutadiene & 71.6 & 10 & 4.2 & ug/1 & 100 & 72 & 45-120 \\
\hline Hexachlorocyclopentadiene & 63.9 & 20 & 3.4 & ug/ & 100 & 64 & 10-130 \\
\hline Hexachloroethane & 60.9 & 10 & 4.2 & ug/ & 100 & 61 & 40-120 \\
\hline Indeno(\(1,2,3-\mathrm{cd}\)) pyrene & 85.2 & 20 & 5.4 & ug/ & 100 & 85 & 35-150 \\
\hline Isophorone & 77.0 & 10 & 3.7 & ug/ & 100 & 77 & 55-120 \\
\hline 2-Methylnaphthalene & 82.7 & 10 & 3.0 & ugh & 100 & 83 & 50-120 \\
\hline 2-Methylphenol & 72.5 & 10 & 3.7 & ughl & 100 & 72 & 45-120 \\
\hline 4-Methylphenol & 74.6 & 10 & 3.8 & ugh & 100 & 75 & 45-120 \\
\hline Naphthalene & 80.2 & 10 & 4.5 & ugh & 100 & 80 & 50-120 \\
\hline 2-Nitroaniline & 88.9 & 20 & 3.9 & ugh & 100 & 89 & 60-130 \\
\hline 3-Nitroaniline & 83.1 & 20 & 4.5 & ug/ & 100 & 83 & 50-140 \\
\hline 4-Nitroaniline & 85.5 & 20 & 4.9 & ug/ & 100 & 86 & 45-160 \\
\hline Nitrobenzene & 72.2 & 20 & 4.2 & ugh & 100 & 72 & 50-120 \\
\hline 2-Nitrophenol & 80.7 & 10 & 4.2 & ugh & 100 & 81 & 55-120 \\
\hline 4-Nitrophenol & 78.9 & 20 & 6.6 & ugh & 100 & 79 & 50-135 \\
\hline N -Nitrosodiphenylamine & 76.0 & 10 & 4.0 & ugh & 100 & 76 & 60-120 \\
\hline N-Nitroso-di-n-propylamine & 71.2 & 10 & 3.6 & ugh & 100 & 71 & 50-120 \\
\hline Pentachlorophenol & 88.6 & 20 & 4.0 & ug/ & 100 & 89 & 50-125 \\
\hline Phenanthrene & 80.8 & 10 & 3.3 & ug/ & 100 & 81 & 55-120 \\
\hline Phenol & 74.0 & 10 & 4.0 & ug/ & 100 & 74 & 45-120 \\
\hline Pyrene & 85.3 & 10 & 3.9 & ug/ & 100 & 85 & 50-120 \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

\title{
Del Mar Analytical
}

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Annual Outfall 008
Report Number: 1OB0997
Sampled: 02/11/05

\section*{METHOD BILANKIOC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline An & Pesult & Reporting & MDI & Units & Spike & Source & & \%REC & & RPD & Data \\
\hline Analyte & Resuit & & MDL & Units & & Result & \%REC & Limits & RPD & Limit & Qualifiers \\
\hline
\end{tabular}

Batch: 5B13024 Extracted: 02/13/05
LCS Analyzed: 02/15/2005 (5B13024-BS1)
\begin{tabular}{lc}
1,2,4-Trichlorobenzene & 72.0 \\
2,4,5-Trichlorophenol & 85.4 \\
2,4,6-Trichlorophenol & 87.6 \\
1,2-Diphenylhydrazine/Azobenzene & 85.6 \\
N-Nitrosodimethylamine & 71.1 \\
Surrogate: 2 -Flworophenol & 133 \\
Surrogate: Phenol-d6 & 143 \\
Surrogate: 2,4,6-Tribromophenol & 177 \\
Surrogate: Nitrobenzene-d5 & 75.4 \\
Surrogate: 2-Fluorobiphenyl & 79.5 \\
Surrogate: Terphenyl-dl4 & 78.6
\end{tabular}

LCS Dup Analyzed: 02/15/2005 (5B13024-BSD1)
\begin{tabular}{lr}
Acenaphthene & 86.2 \\
Acenaphthylene & 90.7 \\
Aniline & 81.2 \\
Anthracene & 88.7 \\
Benzidine & 137 \\
Benzoic acid & 66.6 \\
Benzo(a)anthracene & 95.6 \\
Benzo(b)fluoranthene & 92.5 \\
Benzo(k)fluoranthene & 88.6 \\
Benzo(g,h,i)perylene & 97.4 \\
Benzo(a)pyrene & 93.6 \\
Benzyl alcohol & 80.5 \\
Bis(2-chloroethoxy)methane & 85.9 \\
Bis(2-chloroethyl)ether & 70.9 \\
Bis(2-chloroisopropyl)ether & 76.8 \\
Bis(2-ethylhexyl)phthalate & 84.3 \\
4-Bromophenyl phenyl ether & 85.8 \\
Butyl benzyl phthalate & 82.9 \\
4-Chloroaniline & 84.5 \\
2-Chloronaphthalene & 83.6 \\
4-Chloro-3-methylphenol & 87.2 \\
2-Chlorophenol & 72.1 \\
4-Chlorophenyl phenyl ether & 90.4
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 008
Report Number: IOB0997
Sampled: 02/11/05
Received: 02/11/05

METHOD BLANKOC DATA

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{lllllllllll}
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit
\end{tabular} Qualifiers

\section*{Batch: 5B13024 Extracted: 02/13/05}

LCS Dup Analyzed: 02/15/2005 (5B13024-BSD1)
\begin{tabular}{lr}
Chrysene & 90.6 \\
Dibenz(a,h)anthracene & 103 \\
Dibenzofuran & 87.2 \\
Di-n-butyl phthalate & 86.8 \\
1,3-Dichlorobenzene & 59.7 \\
1,4-Dichlorobenzene & 63.0 \\
1,2-Dichlorobenzene & 62.9 \\
3,3-Dichlorobenzidine & 114 \\
2,4-Dichlorophenol & 84.2 \\
Diethyl phthalate & 80.6 \\
2,4-Dimethylphenol & 72.1 \\
Dimethyl phthalate & 84.3 \\
4,6-Dinitro-2-methylphenol & 84.0 \\
2,4-Dinitrophenol & 80.3 \\
2,4-Dinitrotoluene & 86.3 \\
2,6-Dinitrotoluene & 80.3 \\
Di-n-octyl phthalate & 96.4 \\
Fluoranthene & 96.3 \\
Fluorene & 91.9 \\
Hexachlorobenzene & 87.5 \\
Hexachlorobutadiene & 73.2 \\
Hexachlorocyclopentadiene & 66.5 \\
Hexachloroethane & 60.4 \\
Indeno(1,2,3-cd)pyrene & 98.6 \\
Isophorone & 81.3 \\
2-Methylnaphthalene & 86.1 \\
2-Methylphenol & 75.6 \\
4-Methylphenol & 78.2 \\
Naphthalene & 83.1 \\
2-Nitroaniline & 91.5 \\
3-Nitroaniline & 88.6 \\
4-Nitroaniline & 94.4 \\
Nitrobenzene & 74.6 \\
2-Nitrophenol & 83.0 \\
4-Nitrophenol & 81.6 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

\title{
Del Mar Analytical
}

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

\author{
Project ID: Annual Outfall 008 \\ Report Number: IOB0997 \\ Sampled: 02/11/05 \\ Received: 02/11/05
}

\section*{METHOD BLANKIQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5B13024 Extracted: 02/13/05} \\
\hline \multicolumn{12}{|l|}{LCS Dup Analyzed: 02/15/2005 (5B13024-BSD1)} \\
\hline N -Nitrosodiphenylamine & 80.6 & 10 & 4.0 & ug/1 & 100 & & 81 & 60-120 & 6 & 20 & \\
\hline N-Nitroso-di-n-propylamine & 75.1 & 10 & 3.6 & ug/ & 100 & & 75 & 50-120 & 5 & 20 & \\
\hline Pentachlorophenol & 92.7 & 20 & 4.0 & ug/ & 100 & & 93 & 50-125 & 5 & 25 & \\
\hline Phenanthrene & 86.6 & 10 & 3.3 & ug/ & 100 & & 87 & 55-120 & 7 & 20 & \\
\hline Phenol & 75.1 & 10 & 4.0 & ug/1 & 100 & & 75 & 45-120 & 1 & 25 & \\
\hline Pyrene & 88.4 & 10 & 3.9 & ug/1 & 100 & & 88 & 50-120 & 4 & 25 & \\
\hline 1,2,4-Trichlorobenzene & 73.0 & 10 & 4.4 & ug/ & 100 & & 73 & 50-120 & 1 & 20 & \\
\hline 2,4,5-Trichlorophenol & 88.6 & 20 & 3.6 & ug/ & 100 & & 89 & 60-120 & 4 & 20 & \\
\hline 2,4,6-Trichlorophenol & 89.5 & 20 & 4.1 & ug/1 & 100 & & 90 & 60-120 & 2 & 20 & \\
\hline 1,2-Diphenylhydrazine/Azobenzene & 90.2 & 20 & 5.0 & ug/ & 100 & & 90 & 60-120 & 5 & 25 & \\
\hline N -Nitrosodimethylamine & 71.1 & 20 & 3.7 & ug/ & 100 & & 71 & 40-120 & 0 & 20 & \\
\hline Surrogate: 2-Fluorophenol & 128 & & & ug/l & 200 & & 64 & 35-120 & & & \\
\hline Surrogate: Phenol-d6 & 141 & & & ugh & 200 & & 70 & 45120 & & & \\
\hline Surrogate 2, 4,6-Tribromophenol & 185 & & & ugh & 200 & & 92 & 50-125 & & & \\
\hline Surrogate: Nitrobenzene-d5 & 76.5 & & & ug \(/\) & 100 & & 76 & 45-120 & & & \\
\hline Surrogate: 2-Fluorobiphenyl & 79.4 & & & \(u g h\) & 100 & & 79 & 45-120 & & & \\
\hline Surrogate: Terphenyl-dI4 & 82.3 & & & \(u g /\) & 100 & & 82 & 45-135 & & & \\
\hline
\end{tabular}

Batch: 5B17041 Extracted: 02/17/05
Blank Analyzed: 02/22/2005 (5B17041-BLK1)
\begin{tabular}{ll}
Benzidine & ND \\
Surrogate: 2 -Fluorophenol & 110 \\
Surrogate: Phenol-d6 & 121 \\
Surrogate: \(2,4,6-\) Tribromophenol & 144 \\
Surrogate: Nitrobenzene-d 5 & 66.4 \\
Surrogate: 2 Fluorobiphenyl & 70.0 \\
Surrogate: Terphenyl-d14 & 67.5
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 008
Report Number: IOB0997

Sampled: 02/11/05
Received: 02/11/05

\section*{MEIMOD BLANKIQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualiffers \\
\hline \multicolumn{12}{|l|}{Batch: 5B17041 Extracted: 02/17/05} \\
\hline LCS Analyzed: 02/22/2005 (51 & & & & & & & & & & & M-NR1 \\
\hline Benzidine & 145 & 20 & 5.2 & ug/ & 100 & & 145 & 20-180 & & & \\
\hline Surrogate: 2-Fhuorophenol & 120 & & & \(u g / 1\) & 200 & & 60 & 35-120 & & & \\
\hline Surrogate: Phenol-d6 & 138 & & & ug/l & 200 & & 69 & 45-120 & & & \\
\hline Surrogate: 2,4,6-Tribromophenol & 164 & & & \(u g / l\) & 200 & & 82 & 50-125 & & & \\
\hline Surrogate: Nitrobenzene-d5 & 74.1 & & & \(u g / l\) & 100 & & 74 & 45-120 & & & \\
\hline Surrogate: 2-Fluorobiphenyl & 73.0 & & & \(u g / 1\) & 100 & & 73 & 45-120 & & & \\
\hline Surrogate: Terphenyl-d14 & 85.2 & & & \(u g /\) & 100 & & 85 & 45-135 & & & \\
\hline \multicolumn{12}{|l|}{LCS Dup Analyzed: 02/22/2005 (5B17041-BSD1)} \\
\hline Benzidine & 149 & 20 & 5.2 & ug/l & 100 & & 149 & 20-180 & 3 & 35 & \\
\hline Surrogate: 2-Fluorophenol & 120 & & & \(u g /\) & 200 & & 60 & 35-120 & & & \\
\hline Surrogate: Phenol-d6 & 132 & & & \(u g / l\) & 200 & & 66 & 45-120 & & & \\
\hline Surrogate: 2,4,6-Tribromophenol & 163 & & & \(u \mathrm{~g} / \mathrm{l}\) & 200 & & 82 & 50-125 & & & \\
\hline Surrogate Nitrobenzene-dS & 76.0 & & & \(u g /\) & 100 & & 76 & 45-120 & & & \\
\hline Surrogate: 2-Fluorobiphenyl & 74.0 & & & \(u g / l\) & 100 & & 74 & 45-120 & & & \\
\hline Surrogate: Terphenyl-d14 & 84.4 & & & \(u g /\) & 100 & & 84 & 45-135 & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 008
Report Number: IOB0997

Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKIQC DATA}

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5B15038 Extracted: 02/15/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 02/15/2005-02/16/2005 (5B15038-BLK1)} \\
\hline Aldrin & ND & 0.10 & 0.030 & ug/ & & & & & & & \\
\hline alpha-BHC & ND & 0.10 & 0.015 & ug/ & & & & & & & \\
\hline beta-BHC & ND & 0.10 & 0.015 & ug/ & & & & & & & \\
\hline delta-BHC & ND & 0.20 & 0.020 & ug/ & & & & & & & \\
\hline gamma-BHC (Lindane) & ND & 0.10 & 0.015 & ug/ & & & & & & & \\
\hline Chiordane & ND & 1.0 & 0.20 & ug/ & & & & & & & \\
\hline 4,4--DDD & ND & 0.10 & 0.015 & ug/ & & & & & & & \\
\hline 4,4'-DDE & ND & 0.10 & 0.020 & ug/ & & & & & & & \\
\hline 4,4'-DDT & ND & 0.10 & 0.030 & ug/ & & & & & & & \\
\hline Dieldrin & ND & 0.10 & 0.015 & ug/ & & & & & & & \\
\hline Endosulfan I & ND & 0.10 & 0.015 & ug/ & & & & & & & \\
\hline Endosulfan II & ND & 0.10 & 0.040 & ug/ & & & & & & & \\
\hline Endosulfan sulfate & ND & 020 & 0015 & ugh & & & & & & \% & \\
\hline Endrin & ND & 0.10 & 0.015 & ugn & & & & & & & \\
\hline Endrin aldehyde & ND & 0.10 & 0.045 & ug/ & & & & & & & \\
\hline Endrin ketone & ND & 0.10 & 0.020 & ug/ & & & & & & & \\
\hline Heptachlor & ND & 0.10 & 0.030 & ug/ & & & & & & & \\
\hline Heptachlor epoxide & ND & 0.10 & 0.020 & ug/ & & & & & & & \\
\hline Methoxychlor & ND & 0.10 & 0.035 & ug/ & & & & & & & \\
\hline Toxaphene & ND & 5.0 & 1.5 & ug/ & & & & & & & \\
\hline Surrogate: Tetrachloro-m-xylene & 0.329 & & & ug/ & 0.500 & & 66 & 35-120 & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.459 & & & ug/ & 0.500 & & 92 & 45-120 & & & \\
\hline LCS Analyzed: 02/16/2005 (5B15038-BS1) & & & & & & & & & & & M-NR1 \\
\hline Aldrin & 0.248 & 0.10 & 0.030 & ug/1 & 0.500 & & 50 & 45-115 & & & \\
\hline alpha-BHC & 0.267 & 0.10 & 0.015 & ug/ & 0.500 & & 53 & 45-115 & & & \\
\hline beta-BHC & 0.328 & 0.10 & 0.015 & ug/ & 0.500 & & 66 & 50-115 & & & \\
\hline delta-BHC & 0.322 & 0.20 & 0.020 & ug/ & 0.500 & & 64 & 55-120 & & & \\
\hline gamma-BHC (Lindane) & 0.283 & 0.10 & 0.015 & ug/ & 0.500 & & 57 & 45-115 & & & \\
\hline 4,4-DDD & 0.346 & 0.10 & 0.015 & ug/l & 0.500 & & 69 & 60-120 & & & \\
\hline 4,4-DDE & 0.331 & 0.10 & 0.020 & ug/ & 0.500 & & 66 & 55-120 & & & \\
\hline 4,4'-DDT & 0.328 & 0.10 & 0.030 & ug/ & 0.500 & & 66 & 60-130 & & & \\
\hline Dieldrin & 0.330 & 0.10 & 0.015 & ugh & 0.500 & & 66 & 55-120 & & & \\
\hline Endosulfan I & 0.319 & 0.10 & 0.015 & ug/ & 0.500 & & 64 & 50-115 & & & \\
\hline Endosulfan II & 0.337 & 0.10 & 0.040 & ug/ & 0.500 & & 67 & 60-125 & & & \\
\hline Endosulfan sulfate & 0.354 & 0.20 & 0.015 & ugh & 0.500 & & 71 & 60-120 & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 008
Report Number: 1OB0997

Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANK/QC DATA}

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}
\begin{tabular}{llllllllllll}
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualfiers
\end{tabular}

Batch: 5B15038 Extracted: 02/15/05
LCS Analyzed: 02/16/2005 (5B15038-BS1)
\begin{tabular}{ll}
Endrin & 0.329 \\
Endrin aldehyde & 0.346 \\
Endrin ketone & 0.364 \\
Heptachlor & 0.278 \\
Heptachlor epoxide & 0.315 \\
Methoxychlor & 0.365 \\
Surrogate: Tetrachloro-m-xylene & 0.241 \\
Surrogate: Decachlorobiphenyl & 0.337
\end{tabular}

LCS Dup Analyzed: 02/16/2005 (5B15038-BSD1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Aldrin & 0.288 & 0.10 & 0.030 & ug/l & 0.500 & 58 & 45-115 & 15 & 30 \\
\hline alpha-BHC & 0.282 & 0.10 & 0.015 & ugh & 0.500 & 56 & 45-115 & 5 & 30 \\
\hline beta-BHC & 0.395 & 0.10 & 0.015 & ugh & 0.500 & 79 & 50-115 & 19 & 30 \\
\hline delta BHC & 0.395 & 0.20 & 0.020 & ugh & 0.500 & 79 & 55-120 & 20 & 30 \\
\hline gamma-BHC (Lindane) & 0.320 & 0.10 & 0.015 & ugh & 0.500 & 64 & 45-115 & 12 & 30 \\
\hline 4,4'-DDD & 0.435 & 0.10 & 0.015 & \(\mathrm{ug} / 1\) & 0.500 & 87 & 60-120 & 23 & 30 \\
\hline 4,4'-DDE & 0.413 & 0.10 & 0.020 & ug/ & 0.500 & 83 & 55-120 & 22 & 30 \\
\hline 4,4-DDT & 0.411 & 0.10 & 0.030 & ugh & 0.500 & 82 & 60-130 & 22 & 30 \\
\hline Dieldrin & 0.407 & 0.10 & 0.015 & ug/ & 0.500 & 81 & 55-120 & 21 & 30 \\
\hline Endosulfan I & 0.387 & 0.10 & 0.015 & ug/ & 0.500 & 77 & 50-115 & 19 & 30 \\
\hline Endosulfan II & 0.420 & 0.10 & 0.040 & ug/ & 0.500 & 84 & 60-125 & 22 & 30 \\
\hline Endosulfan sulfate & 0.437 & 0.20 & 0.015 & ug/ & 0.500 & 87 & 60-120 & 21 & 30 \\
\hline Endrin & 0.407 & 0.10 & 0.015 & ug/ & 0.500 & 81 & 55-125 & 21 & 30 \\
\hline Endrin aldehyde & 0.420 & 0.10 & 0.045 & ug/ & 0.500 & 84 & 55-115 & 19 & 30 \\
\hline Endrin ketone & 0.452 & 0.10 & 0.020 & ug/1 & 0.500 & 90 & 60-120 & 22 & 30 \\
\hline Heptachlor & 0.311 & 0.10 & 0.030 & ug/ & 0.500 & 62 & 45-115 & 11 & 30 \\
\hline Heptachlor epoxide & 0.377 & 0.10 & 0.020 & ug/ & 0.500 & 75 & 50-120 & 18 & 30 \\
\hline Methoxychlor & 0.455 & 0.10 & 0.035 & ug/ & 0.500 & 91 & 60-135 & 22 & 30 \\
\hline Surrogate: Tetrachloro-m-xylene & 0.190 & & & \(u g /\) & 0.500 & 38 & 35-120 & & \\
\hline Surrogate: Decachlorobiphenyl & 0.412 & & & \(u g /\) & 0.500 & 82 & 45-120 & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Annual Outfall 008
Report Number: IOB0997

Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKQC DATA}

TOTAL PCBS (EPA 608)
\begin{tabular}{lllllllllll}
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit
\end{tabular}

Batch: 5B15038 Extracted: 02/15/05

Blank Analyzed: 02/15/2005-02/16/2005 (5B15038-BLK1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Aroclor 1016 & ND & 1.0 & 0.20 & ug/l & & & & & \\
\hline Aroclor 1221 & ND & 1.0 & 0.10 & ug/ & & & & & \\
\hline Aroclor 1232 & ND & 1.0 & 0.15 & ug/ & & & & & \\
\hline Aroclor 1242 & ND & 1.0 & 0.15 & ug/l & & & & & \\
\hline Aroclor 1248 & ND & 1.0 & 0.25 & ug/l & & & & & \\
\hline Aroclor 1254 & ND & 1.0 & 0.25 & ug/ & & & & & \\
\hline Aroclor 1260 & ND & 1.0 & 0.40 & \(\mathrm{ug} / \mathrm{l}\) & & & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.410 & & & \(u g / l\) & 0.500 & 82 & 45-120 & & \\
\hline \multicolumn{10}{|l|}{LCS Analyzed: 02/15/2005 (5B15038-BS2)} \\
\hline Aroclor 1016 & 2.88 & 1.0 & 0.20 & \(\mathrm{ug} / \mathrm{l}\) & 4.00 & 72 & 50-115 & & \\
\hline Aroclor 1260 & 3.29 & 1.0 & 0.40 & ug/l & 4.00 & 82 & 60-115 & & \\
\hline Surrogate: Decachlorobiphenyl & 0.444 & & & \(u g / l\) & 0.500 & 89 & 45-120 & & \\
\hline \multicolumn{10}{|l|}{LCS Dup Analyzed; 02/15/2005 (5B15038-BSD2)} \\
\hline Aroclor 1016 & 2.51 & 1.0 & 0.20 & ug/l & 4.00 & 63 & 50-115 & 14 & 30 \\
\hline Aroclor 1260 & 2.99 & 1.0 & 0.40 & ug/l & 4.00 & 75 & 60-115 & 10 & 25 \\
\hline Surrogate: Decachlorobiphenyl & 0.404 & & & \(u g / l\) & 0.500 & 81 & 45-120 & & \\
\hline
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 008
Report Number: \(10 B 0997 \quad \begin{array}{r}\text { Sampled: } 02 / 11 / 05 \\ \text { Received: } 02 / 11 / 05\end{array}\)

\section*{METHOD BLANKIQC DATA}

\section*{METALS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & Reporting Limit & MDL & Units & Spike Level & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & \begin{tabular}{l}
Data \\
Qualifiers
\end{tabular} \\
\hline \multicolumn{11}{|l|}{Batch: 5B15070 Extracted: 02/15/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 02/15/2005 (5B15070-BLK1)} \\
\hline Mercury ND & 0.20 & 0.063 & ug/l & & & & & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 02/15/2005 (5B15070-BS1)} \\
\hline Mercury 8.18 & 0.20 & 0.063 & \(\mathrm{ug} / \mathrm{l}\) & 8.00 & & 102 & 85-115 & & & \\
\hline Matrix Spike Analyzed: 02/15/2005 (5B15070-MS1) & & & & & ce: IOB1 & 088-01 & & & & \\
\hline \(\begin{array}{ll}\text { Mercury } & 8.26\end{array}\) & 0.20 & 0.063 & ug/ & 8.00 & ND & 103 & 70-130 & & & \\
\hline \multicolumn{2}{|l|}{Matrix Spike Dup Analyzed: 02/15/2005 (5B15070-MSD1)} & & & Soa & ce: IOB1 & 088-01 & & & & \\
\hline \(\begin{array}{ll}\text { Mercury } & 8.26\end{array}\) & 0.20 & 0.063 & \(\mathrm{ug} / \mathrm{l}\) & 8.00 & ND & 103 & 70-130 & 0 & 20 & \\
\hline
\end{tabular}

\section*{Batch: 5B17097 Extracted: 02/17/05}

Blank Analyzed: 02/17/2005-02/18/2005 (5B17097-BLK1)
\begin{tabular}{lccccc}
Aluminum & ND & 50 & 47 & \(\mathrm{ug} / \mathrm{l}\) \\
Arsenic & ND & 5.0 & 3.8 & \(\mathrm{ug} /\) \\
Beryllium & ND & 2.0 & 0.62 & \(\mathrm{ug} / \mathrm{l}\) \\
Boron & ND & ND & 0.050 & 0.0074 & \(\mathrm{mg} / \mathrm{l}\) \\
Chromium & ND & 5.0 & 0.68 & \(\mathrm{ug} /\) \\
Nickel & ND & 10 & 2.0 & \(\mathrm{ug} / \mathrm{l}\) \\
Selenium & ND & 5.0 & 4.6 & \(\mathrm{ug} /\) \\
Silver & ND & 10 & 1.3 & \(\mathrm{ug} / \mathrm{l}\) \\
Thallium & & ND & 5.0 & 3.1 & \(\mathrm{ug} / 1\) \\
Vanadium & ND & 10 & 1.4 & \(\mathrm{ug} / \mathrm{l}\) \\
Zinc & & ND & 20 & 3.7 & \(\mathrm{ug} / \mathrm{l}\)
\end{tabular}

LCS Analyzed: 02/17/2005-02/18/2005 (5B17097-BS1)
\begin{tabular}{lcccccc}
Aluminum & 464 & 50 & 47 & \(\mathrm{ug} / \mathrm{l}\) & 500 & \(85-115\) \\
Arsenic & 514 & 5.0 & 3.8 & \(\mathrm{ug} / \mathrm{l}\) & 500 & 83 \\
Beryllium & 502 & 2.0 & 0.62 & \(\mathrm{ug} / \mathrm{l}\) & 500 & 103 \\
Boron & 0.474 & 0.050 & 0.0074 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 100 \\
Chromium & 517 & 5.0 & 0.68 & \(\mathrm{ug} / \mathrm{l}\) & 500 & \(95-115\) \\
Nickel & 508 & 10 & 2.0 & \(\mathrm{ug} / \mathrm{l}\) & 500 & \(85-115\) \\
Selenium & 514 & 5.0 & 4.6 & \(\mathrm{ug} / \mathrm{l}\) & 500 & 103 \\
Silver & 258 & 10 & 1.3 & \(\mathrm{ug} / \mathrm{l}\) & \(25-115\) \\
Thallium & 523 & 5.0 & 3.1 & \(\mathrm{ug} / \mathrm{l}\) & 50 & 102 \\
Vanadium & 512 & 10 & 1.4 & \(\mathrm{ug} / \mathrm{l}\) & 500 & 103 \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Project ID: Annual Outfall 008

Report Number: 1OB0997
Sampled: 02/11/05
Attention: Bronwyn Kelly
Received: 02/11/05

\section*{METHOD BLANKIOC DATA}

Analyte
Result
\begin{tabular}{cccccccccc}
Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

Batch: 5B17097 Extracted: 02/17/05
LCS Analyzed: 02/17/2005-02/18/2005 (5B17097-BS1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Zinc & 503 & 20 & 3.7 & ug/l & 500 & & 101 & 85-115 \\
\hline \multicolumn{5}{|l|}{Matrix Spike Analyzed: 02/17/2005-02/18/2005 (5B17097-MS1)} & \multicolumn{4}{|c|}{Source: 10B1000-01} \\
\hline Aluminum & 1690 & 50 & 47 & ug/1 & 500 & 880 & 162 & 70-130 \\
\hline Arsenic & 516 & 5.0 & 3.8 & ug/ & 500 & ND & 103 & 70-130 \\
\hline Beryllium & 506 & 2.0 & 0.62 & ug/ & 500 & ND & 101 & 70-130 \\
\hline Boron & 0.499 & 0.050 & 0.0074 & \(\mathrm{mg} /\) & 0.500 & 0.017 & 96 & 70-130 \\
\hline Chromium & 522 & 5.0 & 0.68 & ug/ & 500 & 3.4 & 104 & 70-130 \\
\hline Nickel & 526 & 10 & 2.0 & ug/ & 500 & 2.9 & 105 & 70-130 \\
\hline Selenium & 509 & 5.0 & 4.6 & ug/ & 500 & 4.7 & 101 & 70-130 \\
\hline Silver & 262 & 10 & 1.3 & ug/ & 250 & ND & 105 & 70-130 \\
\hline Thallium & 525 & 5.0 & 3.1 & ug/ & 500 & ND & 105 & 70-130 \\
\hline Vanadium & 524 & 10 & 1.4 & ug/ & 500 & 3.1 & 104 & 70-130 \\
\hline Zinc & 640 & 20 & 3.7 & ug/ & 500 & 120 & 104 & \(70-130\) \\
\hline
\end{tabular}

Matrix Spike Dup Analyzed: 02/17/2005-02/18/2005 (5B17097-MSD1) Source: 1OB1000-01
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Aluminum & 1590 & 50 & 47 & \(u g / 1\) & 500 & 880 & 142 & 70-130 & 6 & 20 & MI \\
\hline Arsenic & 515 & 5.0 & 3.8 & ug/ & 500 & ND & 103 & 70-130 & 0 & 20 & \\
\hline Beryllium & 504 & 2.0 & 0.62 & ugh & 500 & ND & 101 & 70-130 & 0 & 20 & \\
\hline Boron & 0.495 & 0.050 & 0.0074 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.017 & 96 & 70-130 & 1 & 20 & \\
\hline Chromium & 519 & 5.0 & 0.68 & ug/1 & 500 & 3.4 & 103 & 70-130 & 1 & 20 & \\
\hline Nickel & 514 & 10 & 2.0 & ug/ & 500 & 2.9 & 102 & 70-130 & 2 & 20 & \\
\hline Selenium & 512 & 5.0 & 4.6 & ug/ & 500 & 4.7 & 101 & 70-130 & 1 & 20 & \\
\hline Silver & 260 & 10 & 1.3 & ug/1 & 250 & ND & 104 & 70-130 & 1 & 20 & \\
\hline Thallium & 516 & 5.0 & 3.1 & ug/1 & 500 & ND & 103 & 70-130 & 2 & 20 & \\
\hline Vanadium & 520 & 10 & 1.4 & ug/ & 500 & 3.1 & 103 & 70-130 & 1 & 20 & \\
\hline Zinc & 630 & 20 & 3.7 & ug/ & 500 & 120 & 102 & 70-130 & 2 & 20 & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 008

Report Number: 1OB0997

Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKOC DATA}

\section*{METALS}
\begin{tabular}{lllllllllll}
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & \begin{tabular}{l}
Level \\
Result
\end{tabular} & \%REC & Limits & RPD & Limit & Qualifiers \\
Batch: 5B17098 Extracted: 02/17/05 & & & & & & & & & & \\
\hline
\end{tabular}

Blank Analyzed: 02/17/2005 (5B17098-BLK1)
\begin{tabular}{llccc}
Antimony & ND & 2.0 & 0.18 & \(\mathrm{ug} / \mathrm{l}\) \\
Cadmium & ND & 1.0 & 0.015 & \(\mathrm{ug} / \mathrm{l}\) \\
Copper & ND & 2.0 & 0.49 & \(\mathrm{ug} /\) \\
Lead & ND & 1.0 & 0.13 & \(\mathrm{ug} / \mathrm{l}\)
\end{tabular}

LCS Analyzed: 02/17/2005 (5B17098-BS1)
\begin{tabular}{lccccccc}
Antimony & 87.4 & 2.0 & 0.18 & ug \(/\) & 80.0 & 109 & \(85-115\) \\
Cadmium & 75.2 & 1.0 & 0.015 & ug/ & 80.0 & 94 & \(85-115\) \\
Copper & 85.2 & 2.0 & 0.49 & ug/ & 80.0 & 106 & \(85-115\) \\
Lead & 86.3 & 1.0 & 0.13 & ug/l & 80.0 & 108 & \(85-115\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Matrix Spike Analyzed: 02/17/2005 (5B17098-MS1)} & \multicolumn{5}{|c|}{Source: 1OB0960-01} \\
\hline Antimony & 87.5 & 2.0 & 0.18 & ug/ & 80.0 & ND & 109 & 70-130 \\
\hline Cadmum & 71.6 & 1.0 & 0.015 & ug/l & 80.0 & 0.031 & 89 & 70-130 \\
\hline Copper & 93.8 & 2.0 & 0.49 & ug/ & 80.0 & 15 & 98 & 70-130 \\
\hline Lead & 80.5 & 1.0 & 0.13 & ug/ & 80.0 & 0.21 & 100 & 70-130 \\
\hline
\end{tabular}
\begin{tabular}{lcccccccc}
Matrix Spike Analyzed: \(\mathbf{0 2 / 1 7 / 2 0 0 5}\) (5B17098-MS2) & & & \multicolumn{4}{c}{ Source: IOB1052-01 } \\
Antimony & 92.7 & 2.0 & 0.18 & ug/ & 80.0 & ND & 116 & \(70-130\) \\
Cadmium & 72.4 & 1.0 & 0.015 & ug/l & 80.0 & 0.24 & 90 & \(70-130\) \\
Copper & 80.9 & 2.0 & 0.49 & ug/ & 80.0 & 6.0 & 94 & \(70-130\) \\
Lead & 78.8 & 1.0 & 0.13 & ug/l & 80.0 & ND & 98 & \(70-130\)
\end{tabular}
Matrix Spike Dup Analyzed: 02/17/2005 (5B17098-MSD1) Source: 1OB0960-01
\begin{tabular}{lcccccccccc}
Antimony & 86.6 & 2.0 & 0.18 & \(\mathrm{ug} /\) & 80.0 & ND & 108 & \(70-130\) & 1 & 20 \\
Cadmium & 71.5 & 1.0 & 0.015 & \(\mathrm{ug} /\) & 80.0 & 0.031 & 89 & \(70-130\) & 0 & 20 \\
Copper & 93.3 & 2.0 & 0.49 & \(\mathrm{ug} /\) & 80.0 & 15 & 98 & \(70-130\) & 1 & 20 \\
Lead & 83.5 & 1.0 & 0.13 & \(\mathrm{ug} /\) & 80.0 & 0.21 & 104 & \(70-130\) & 4 & 20
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager
\begin{tabular}{|lll}
\hline MWH-Pasadena/Boeing & Project ID: Annual Outfall 008 & \\
\(\mathbf{3 0 0}\) North Lake Avenue, Suite 1200 & Report Number: \(10 B 0997\) & \begin{tabular}{l}
Sampled: \(02 / 11 / 05\) \\
Pasadena, CA 91101
\end{tabular} \\
Received: \(02 / 11 / 05\)
\end{tabular}

\section*{METHOD BLANKIQC DATA}

\section*{INORGANICS}

Batch: 5B14107 Extracted: 02/14/05
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Blank Analyzed: 02/14/2005 (5B14107-BLK1)} \\
\hline Total Cyanide ND & 0.0050 & 0.0022 & \(\mathrm{mg} /\) & & & & \\
\hline \multicolumn{8}{|l|}{LCS Analyzed: 02/14/2005 (5B14107-BS1)} \\
\hline Total Cyanide 0.200 & 0.0050 & 0.0022 & \(\mathrm{mg} / 1\) & 0.200 & & 100 & 90-110 \\
\hline Matrix Spike Analyzed: 02/14/2005 (5B14107-MS1) & & & \multicolumn{5}{|c|}{Source: 10B0888-01} \\
\hline Total Cyanide 0.167 & 0.0050 & 0.0022 & mg/ & 0.200 & ND & 84 & 70-115 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

\title{
Del Mar Analytical
}

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Annual Outfall 008
Report Number: IOB0997
Sampled: 02/11/05
\begin{tabular}{cr}
Project ID: Annual Outfall 008 & \\
Report Number: \(10 B 0997\) & \begin{tabular}{r}
Sampled: \(02 / 11 / 05\) \\
Received: 02/11/05
\end{tabular}
\end{tabular}

\section*{METHOD BLANKIOC DATA}

\section*{INORGANICS}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
\begin{tabular}{lcr}
MWH-Pasadena/Boeing & Project ID: Annual Outfall 008 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(02 / 11 / 05\) \\
Pasadena, CA 91101 & Report Number: IOB0997 & Received: \(02 / 11 / 05\) \\
Attention: Bronwyn Kelly &
\end{tabular}

\section*{METHOD BLANKIQC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5817104 Extracted: 02/17/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 02/17/2005 (5B17104-BLK1)} \\
\hline Total Dissolved Solids ND & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 02/17/2005 (5B17104-BS1)} \\
\hline Total Dissolved Solids 1050 & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & 1000 & & 105 & 90-110 & & & \\
\hline Duplicate Analyzed: 02/17/2005 (5817104-DUP1) & & & & & ce: IOB1 & 273-03 & & & & \\
\hline Total Dissolved Solids 483 & 10 & 10 & mg/ & & 490 & & & 1 & 10 & \\
\hline \multicolumn{11}{|l|}{Batch: 5B17117 Extracted: 02/17/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 02/17/2005 (5B17117-BLK1)} \\
\hline Oil \& Grease ND & 5.0 & 0.94 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline LCS Analyzed: 02/17/2005 (5B17117-BS1) & & & & \(\ldots\) & & & & & & M-NR1 \\
\hline Oil\& Grease 17.6 & 5.0 & 0.94 & \(\mathrm{mg} / \mathrm{l}\) & 20.0 & \(\because\) & 88 & 65-120 & & & \\
\hline \multicolumn{11}{|l|}{LCS Dup Analyzed; 02/17/2005 (5B17117-BSD1)} \\
\hline Oil \& Grease 16.4 & 5.0 & 0.94 & \(\mathrm{mg} / \mathrm{l}\) & 20.0 & & 82 & 65-120 & 7 & 20 & \\
\hline
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 008
Report Number: IOB0997

\section*{Compliance Check}

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.
\begin{tabular}{lllcccc}
LabNumber & Analysis & Analyte & Units & Result & MRL & Compliance \\
\hline IOB0997-01 & 413.1 Oil and Grease & Oil \& Grease & \(\mathrm{mg} / \mathrm{l}\) & 0 & 5.0 & 15 \\
IOB0997-01 & Boron-200.7 & Boron & \(\mathrm{mg} / \mathrm{l}\) & 0.051 & 0.050 \\
IOB0997-01 & Chloride - 300.0 & Chloride & \(\mathrm{mg} / 1\) & 5.40 & 0.50 & 1.00 \\
IOB0997-01 & Nitrogen, NO3+NO2-N & Nitrate/Nitrite-N & \(\mathrm{mg} / \mathrm{l}\) & 1.90 & 0.26 & 8.00 \\
IOB0997-01 & Perchlorate 314.0 & Perchlorate & \(\mathrm{ug} / \mathrm{l}\) & 0 & 4.0 & 6.00 \\
IOB0997-01 & Sulfate-300.0 & Sulfate & \(\mathrm{mg} / \mathrm{l}\) & 4.20 & 0.50 & 300 \\
IOB0997-01 & TDS - SM 2540 C & Total Dissolved Solids & \(\mathrm{mg} / \mathrm{l}\) & 130 & 10 & 950
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

Sampled: 02/11/05
Received: 02/11/05

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 008
Report Number: IOB0997

Sampled: 02/11/05
Received: 02/11/05

\section*{DATA QUALIFIERS AND DEFINITIONS}

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
L2 Laboratory Control Sample recovery was below method control limits.
M1 The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
R-2 The RPD exceeded the method control limit.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

\section*{ADDITIONAL COMMENTS}

\section*{For 1,2-Diphenylhydrazine:}

The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Annual Outfall 008
Report Number: 1OB0997
Sampled: 02/11/05
Received: 02/11/05

\section*{Certification Summary}

\section*{Del Mar Analytical, Irvine}
\begin{tabular}{clcc}
Method & Matrix & Nelac & California \\
EPA 160.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 200.7 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 200.8 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 245.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 300.0 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 314.0 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 335.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 413.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 608 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 624 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 625 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
SM2540C & Water & \(\mathbf{X}\) & \(\mathbf{X}\)
\end{tabular}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

\section*{Subcontracted Laboratories}

\section*{Ata Analytical Perspectives}

Analysis Performed: 1613-Dioxin-HR Samples: \(10 B 0997-01\)
Analysis Performed: EDD + Level 4 Samples: 1OB0997-01
Aquatic Testing Laboratories-SUB California Cert \#1775
4350 Transport Street, Unit 107 - Ventura, CA 93003
Analysis Performed: Bioassay-Acute 96 hr
Samples: 1OB0997-01
Eberline Services - SUB
2030 Wright Avenue - Richmond, CA 94804
Analysis Performed: EDD + Level 4
Samples: IOB0997-01
Analysis Performed: Gross Alpha
Samples: IOB0997-01
Analysis Performed: Gross Beta
Samples: IOB0997-01
Analysis Performed: Strontium 90
Samples: IOB0997-01
Analysis Performed: Tritium
Samples: 1OB0997-01

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

17461Derian Ave., Sult 100, Ivine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cootey Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Sulte 805. San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51 st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. 3 3; Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 008

Report Number: 1OB0997

Sampled: 02/11/05
Received: 02/11/05

March 25,2005

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention: Bronwyn Kelly
Project: Annual Outfall 008
Sampled: 02/11/05
Del Mar Analytical Number: IOB0997

Dear Ms. Kelly:
Aquatic Testing Laboratories performed the Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0), Eberline Services tested gross/alpha gross beta (EPA 900.0), tritium (H-3, EPA 906.0), and strontium-90 (Sr-90, EPA 905.0) and Alta Analytical Perspectives performed Method 1613 Dioxin analysis for the project referenced above. Please use the following cross-reference table when reviewing your results.
\begin{tabular}{|c|c|c|c|c|}
\hline MWH ID & DEL MAR ID & ATL ID & EBERLINE ID & ALTA ID \\
\hline Outfall 008 & IOB0997-01 & A-05021206-001 & R502137-8266-001 & P5072 2989 004 \\
\hline
\end{tabular}

Attached are the original reports from the subcontract laboratories. If you have any questions or require further assistance, please do not hesitate to contact me at (949) 261-1022 at extension 215.

Sincerely yours, DEL MAR ANALYTICAL

\section*{LABORATORY REPORT}

Aquatic Testing

Date: \(\quad\) February 16, 2005
Client: Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Attn: Michele Harper

Laboratory No.: A-05021206-001
Sample ID.: IOB0997-01

Sample Control: The samples were received by ATL in a chilled state, with the chain of custody record attached.

Date Sampled: \(\quad 02 / 11 / 05\)
Date Received: 02/12/05
Date Tested: \(\quad 02 / 12 / 05\) to \(02 / 16 / 05\)

Sample Analysis: The following analyses were performed on your sample:
Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0).

Attached are the test data generated from the analysis of your sample.

\section*{Result Summary:}
\(\frac{\text { Sample ID. }}{\text { IOB0997-01 }} \quad \frac{\text { Results }}{100 \% \text { Survival }(T U a=0.0)}\)

Quality Control: Reviewed and approved by:

\section*{FATHEAD MINNOW PERCENT SURVIVAL TEST}

\section*{Start Date: 02/12/2005}

Aquatic
Toeting Laboratories

Lab No.: A-05021206-001
Client/ID: Del Mar IOB0997-01

\section*{TEST SUMMARY}

Species: Pimephales promelas.
Age: 13 (1-14) days.
Regulations: NPDES.
Test solution volume: \(\mathbf{2 5 0 \mathrm { ml }}\).
Feeding: prior to renewal at 48 hrs.
Number of replicates: 2.
Dilution water: Moderately hard reconstituted water.
Photoperiod: \(16 / 8\) hrs light/dark.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{5}{|c|}{TEST DATA} & \\
\hline & & \multirow{2}{*}{\({ }^{\circ} \mathrm{C}\)} & \multirow{2}{*}{DO} & \multirow{2}{*}{pH} & \multicolumn{2}{|r|}{\# Dead} & \multirow[t]{2}{*}{Analyst \& Time of Readings} \\
\hline & & & & & A & B & \\
\hline \multirow[t]{2}{*}{INITIAL} & Control & 20.2 & 8.1 & 2.8 & 0 & 0 & \multirow[t]{2}{*}{\[
\frac{2}{1200}
\]} \\
\hline & 100\% & 20.9 & 9.9 & 6.6 & 0 & 0 & \\
\hline \multirow[t]{2}{*}{24 Hr} & Control & 20.3 & 6.5 & 2.7 & 0 & 0 & \multirow[t]{2}{*}{\[
\sqrt[2]{1100}
\]} \\
\hline & 100\% & 20.3 & 6.3 & 7.2 & 0 & 0 & \\
\hline 48 Hr & Control & 20.4 & 2.4 & 7.5 & C & 0 & \multirow[t]{2}{*}{\[
20
\]} \\
\hline 48 Hr & 100\%. & 20.1 & 7-3 & 71 & \(\bigcirc\) & 0 & \\
\hline \multirow[b]{2}{*}{Renewal} & Control & 20.4 & 8.0 & 7.7 & \(\sigma\) & 0 & \multirow[t]{2}{*}{\[
1200
\]} \\
\hline & 100\% & 20.2 & 8.3 & 7.0 & \(c\) & \(C\) & \\
\hline \multirow[t]{2}{*}{72 Hr} & Control & 19.8 & 2.8 & 7.4 & 0 & 0 & \multirow[t]{2}{*}{on} \\
\hline & 100\% & 19.6 & 7.9 & 70 & 0 & 0 & \\
\hline \multirow[t]{2}{*}{96 Hr} & Control & 20.7 & 2.8 & 7.4 & 0 & 0 & \multirow[t]{2}{*}{\[
\frac{p_{2}}{1 / 00}
\]} \\
\hline & 100\% & 20.5 & 7.3 & 2.0 & 0 & 0 & \\
\hline
\end{tabular}

Comments:
Sample as received: Chlorine: \(0 \mathrm{mg} / \mathrm{pHH}: 6.4\) Conductivity: 97 umho; Temp: \(4^{\circ} \mathrm{C}\); DO: \(9.9 \mathrm{mg} /\); Alkalinity: \(32 \mathrm{mg} / \mathrm{l}\); Hardness: \(52 \mathrm{mg} / ; \mathrm{NH}_{3}-\mathrm{N}: 0_{1} .6 \mathrm{mg} / \mathrm{l}\).
Sample aerated moderately (approx. \(500 \mathrm{ml} / \mathrm{min}\)) to raise or lower DO? Yes / 10.
Control: Alkalinity: \(54 \mathrm{mg} /\); Hardness: \(87 \mathrm{mg} / \mathrm{l}\); Conductivity: 295 umho.
Test solution aerated (not to exceed 100 bubbles \(/ \mathrm{min}\)) to maintain DO \(>4.0 \mathrm{mg} / 1 ?\) Yes / Co.
Sample used for renewal is the original sample kept at \(0-6^{\circ} \mathrm{C}\) with minimal headspace.

\section*{RESULTS}
\(\qquad\) \% 100\% Sample: \(\qquad\) 100 \%

\section*{SUBCONTRACT ORDER - PROJECT \# IOB0997}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
SENDING LABORATORY: \\
Del Mar Analytical, Irvine
\end{tabular} & RECEIVING LABORATORY:
Aquatic Testing Laboratories-SUB \\
\hline 17461 Derian Avenue. Suite 100 & 4350 Transport Street, Unit 107 \\
\hline Irvine, CA 92614 & Ventura, CA 93003 \\
\hline Phone: (949) 261-1022 & Phone :(805) 650-0546 \\
\hline Fax: (949) 261-1228 & Fax: (805) 650-0756 \\
\hline Project Manager: Michele Harper & \\
\hline \multicolumn{2}{|l|}{Standard TAT is requested unless specific due date is requested \(\Rightarrow>\) Due Date:} \\
\hline Analysis Expiration & comments \\
\hline Sample ID: 1OB0997-01 Water Sampled: 02/11/05 15:16 & \\
\hline Bioassay-Acute 96hr 02/13/05 03:16 & H minnow, EPA/821-R02-012, Sub to AgTox Labs \\
\hline Containers Supplied: & \\
\hline 1 gal Poly (1OB0997-01X) & \\
\hline
\end{tabular}

\section*{EBERLINE \\ SERVICES}

March 8. 2005

Ms. Michele Harper
Project Manager
Del Mar Analytical
17461 Derian Avenue, Suite 100
Irvine. CA 92614
Reference: Del Mar Analytical Project No. IOB0997
Eberline Services NELAP Cert \#01120CA (exp. 01/31/06)
Eberline Services Report R502137-8266
Dear Ms. Harper:
Enclosed are results from the analyses of one water sample received at Eberline Services on February 15.2005. The sample was analyzed according to the accompanying Del Mar Analytical Subcontract Order Form. The requested analyses were gross alpha/gross beta (EPA900.0). tritium (H-3, EPA906.0), and strontium-90 (Sr-90, EPA905.0). The QC LCS, blank analyses, sample duplicates, and matrix spike results for the analyses were within the limits defined in Eberline Services Quality Control Procedures Manual. Analyses that involve the yielding of an analytical tracer or carrier, such as \(\mathrm{Sr}-90\), do not require matrix spike analyses to be performed.

Please call me if you have any questions concerning this report.
Regards,

\section*{murmar-}

\author{
Melissa Mannion \\ Senior Program Manager
}

MCMiniv
Enclosure: Report
Subcontract Form
Receipt checklist
Invoice

\section*{Eberline Services}

\section*{ANALYSIS RESULTS}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Client } \\
& \text { Sample ID }
\end{aligned}
\] & \begin{tabular}{l}
Lab \\
Sample ID
\end{tabular} & Collected & Analyzed & Nuclide & Results \(\pm 20\) & Onits & NMA \\
\hline 1080997-01 & 8266-001 & 02/11/05 & 03/01/05 & GrosaAlpha & \(6.07 \pm 1.7\) & pCi/L & 1.06 \\
\hline & & & 03/01/05 & Gross Beta & \(7.48 \pm 1.5\) & pci/L & 1.88 \\
\hline & & & 03/03/05 & H3 & \(110 \pm 250\) & pCi/L & 242 \\
\hline & & & 02/25/05 & Sr90 & \(-0.107 \pm 0.22\) & pCi/L & 0.458 \\
\hline
\end{tabular}

\section*{sberline services}

QC RESULTS

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample ID & Nuclide & Results & Onits & Amount Adided & MDA & Evaluation \\
\hline \multicolumn{7}{|l|}{LCS} \\
\hline 8261-002 & GrossAlpha & \(8.92 \pm 1.1\) & pci/Smpl & 11.2 & 0.403 & 80\% recovery \\
\hline & Grosa Beta & \(10.6 \pm 0.77\) & pCi/Smpl & 12.1 & 0.556 & 88\% recovery \\
\hline & H3 & \(281 \pm 24\) & pCi/Smpl & 259 & 23.4 & 108\% recovery \\
\hline & Sr90 & \(12.0 \pm 0.59\) & pCi/Smpl & 11.1 & 0.238 & 108\% recovery \\
\hline \multicolumn{7}{|l|}{BLANK} \\
\hline \multirow[t]{4}{*}{8261-003} & GrossAlpha & \(-0.032 \pm 0.15\) & pCi/Smpl & NA & 0.374 & <MDA \\
\hline & Gross Beta & \(-0.073 \pm 0.30\) & pci/Smpl & NA & 0.554 & \(\angle \mathrm{MDA}\) \\
\hline & H3 & \(13.6 \pm 15\) & pCi/Smpl & NA & 23.9 & <MDA \\
\hline & Sr90 & \(-0.091 \pm 0.10\) & pCi/Smpl & NA. & 0.234 & \(<\mathrm{MDA}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{DUPLTCATES} & & \multicolumn{3}{|c|}{ORIGINALS} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{\[
30
\]}} \\
\hline Sample ID & Nuclide & Results \(\pm 2 \sigma\) & MDA & Sample ID & Results \(\pm 20\) & MDA & RPD & \\
\hline 8261-004 & GrossAlpha & \(3.40 \pm 1.4\) & 0.926 & 8261-001 & \(1.64 \pm 1.0\) & 0.936 & 70 & 112 satis. \\
\hline & Gross Beta & \(6.02 \pm 1.4\) & 1.80 & & \(5.18 \pm 2.3\) & 1.80 & 15 & 60 satis. \\
\hline & H3 & \(393 \pm 160\) & 242 & & \(71.9 \pm 150\) & 246 & 138 & 144 satis. \\
\hline & Sr90 & -0.186 \(\div 0.19\) & 0.431 & & \(-0.077 \pm 0.25\) & 0.499 & - & O satis. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{SPIKED SAMPLE} & & \multicolumn{3}{|c|}{ORIGINAL SAMPLE} & \multirow[b]{2}{*}{Added} & \multirow[b]{2}{*}{FRecy} \\
\hline Sample ID & Nuclide & Results \(\pm 20\) & MDA & Sample ID & Results 520 & MDA & & \\
\hline 8.261-005 & GrossAlpha & \(82.8 \pm 5.3\) & 2.04 & 8261-001 & \(1.64 \pm 1.0\) & 0.936 & 76.6 & 105 \\
\hline & Gross Beta & \(82.0 \pm 3.7\) & 1.81 & & \(5.18 \pm 1.3\) & 1.80 & 73.9 & 104 \\
\hline & H3 & \(17800 \pm 520\) & 243 & & \(71.9 \pm 150\) & 246 & 18900 & 94 \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { Certified by } 76 \times \lll \ll \\
& \text { Report Date } 03 / 08465 \\
& \text { Page } 2
\end{aligned}
\]

\section*{SUBCONTRACT ORDER - PROJECT \# IOB0997}
\begin{tabular}{|c|c|}
\hline SENDING LABORATORY: & RECEIVING LABORATORY: \\
\hline Del Mar Analytical, Invine & Eberline Services \\
\hline 17461 Derian Avenue. Suite 100 & 2030 Wright Avenue \\
\hline Irvine, CA 92614 & Richmond, CA 94804 \\
\hline Phone: (949) 261-1022 & Phone :(510) 235-2633 \\
\hline Fax: (949) 261-1228 & Fax: (510) 235-0438 \\
\hline Project Manager: Michele Harper & \\
\hline
\end{tabular}

Standard TAT is requested unless specific due date is requested \(\Rightarrow\) Due Date: \(\qquad\) Initials: \(\qquad\)

Analysis
Expiration
Comments

Sample ID: 1OB0997-01 Water
Sampled: 02/11/05 15:16
\begin{tabular}{ll}
EDD + Level 4-OUT & \(03 / 11 / 0515: 16\) \\
Gross Alpha-O & \(02 / 11 / 0615: 16\) \\
Gross Beta-O & \(02 / 11 / 0615: 16\) \\
Radium, Combined-O & \(02 / 11 / 0615: 16\) \\
Strontium 90-O & \(02 / 11 / 0615: 16\) \\
Tritium-O & \(02 / 11 / 0615: 16\)
\end{tabular}
900.0, IF RESULT>15 pCi/L, run Radium 226 \& 228 900.0 , IF RESULT \(>50\) pCi/L, run Radium \(226 \& 228\)

HOLD for Gross A\&B results; EPA 903.1 \& 904.0
EPA 905.0
EPA 906.0

\section*{Containers Supplied:}

1 gal Poly (10B0997-01S) \(w /+1 \mathrm{NO}\)

SAMPLE RECEITT CHECXLUST

\section*{Alta analytical Perspectives}

March 2005
Scott Unze
Pace Analytical Services
1700 Elm Street
Minneapolis, MN 55414
Ph.: 612-607-1700
Fax: 612-607-6444
Subject: Certificate of Results
Dear Scott;
Attached to this narrative are the analytical results you requested on the samples submitted for the determination of polychlorinated dibenzo-p-dioxins and dibenzofurans. The insert below summarizes the relevant information pertaining to your project. In particular, the QC annotations bring to your attention specific analytical observations and assessments made during the sample handling and data interpretation phases. A brief description of the report's components is provided on the next page.
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Project Information Summary } & When applicable, see \(Q C\) Annotations for details \\
\hline & \\
Client Project No. & P5072 \\
AAP Project No. & Method \(1613 B\) \\
Analytical Protocol & \\
& \\
No. Samples Submitted & 13 \\
No. Samples Analyzed & 13 \\
No. Laboratory Method Blanks & 1 \\
No. OPRs / Batch Cs3 & 1 \\
No. Outstanding Samples & 0 \\
& \\
Date Received & 1 Mar-2005 \\
Condition Received & good \\
Temperature upon Receipt (C) & \(1-3\) \\
Extraction within Holding Time & yes \\
Analysis within Holding Time & yes \\
& \\
Data meet QALQC Requirements & yes \\
Exceptions & none \\
Analytical Difficulties & none \\
\hline
\end{tabular}

\footnotetext{
2714 ExChange Drive
Wilmington
NORTH Carolina 28405
TEL: 910-794-1613 FAX 910-794-3919
}

\section*{QC Annotations:}
1. A " J " data qualifier is used for analytes with a concentration below the reporting limit.

Alta Analytical Perspectives remains committed to serving you in the most effective manner. Should you have any questions or need additional information and technical support, please, do not hesitate to contact us. We wanted to thank you for choosing Alta Analytical Perspectives as part of your analytical support team.

Sincerely,

Amy J. Boehm
Project Manager

P5072 - TEQ
Project ID: General Analytical HRMS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|r|}{Wethod 1613} \\
\hline Anuatis & & 60atactet & 1080803-41 & NOBdest-01 & & 10890t401 & 1030349-64
cext. & 5000404-64 & & & Wemene.01 & \begin{tabular}{c}
\(1081094-94\) \\
\hline 1804 \\
\hline
\end{tabular} & \(\qquad\) & rowasist \\
\hline 2, \(1.38,7600\) & (1.05) & (2.29) & (2.06) & (2.03) & (1.34) & (1.74) & (2.20) & (2.35) & (1,01) & (1.44) & & & & \\
\hline 1,2174.4.400 & (1.53) & (1.45) & (9.70) & (2.00) & (211) & (1.73) & (3.2) & (1.ta) & (1.8.8) & (2.06) & (2.3) & (1.29) & (3.18) & (3.01) \\
\hline 1:2,4,38.46500 & (2.57) & (3.45) & (2.58) & (2.71) & (2, 40) & (338) & (4.19) & (242) & (1.6.7) & (274) & (5.9.1) & (12.2) & (2.18) & (4.56) \\
\hline & (2.4) & (3.21) & (2.37) & (2.7) & (2.34) & (3.8) & (4.11) & (241) & 8.47 & (2, 3) & (5.80) & (42) & (6.84) & (6) \\
\hline 1 & (2.) & (3.45) & (3.43) & (\$.33) & (2.as) & (4.68) & (4.36) & (2.85) & 5.27 & (a, 13) & (7.12) & (62) & (5.54) & (5) \\
\hline -12.3.4.2.7. & (4.98) & 75.4 & 31.4 & 10 & (0.30) & 12.2 & (3.34) & 49.8 & 207 & \$2.1 & (10, 0) & 20.8 & (3.10) & (e.s) \\
\hline Ocmo & (4.76) & 883 & 267 & 434 & 70.4 & 157 & 50.1 & 474 & 2120 & 183 & 70.2 & 213 & 50.3 & 50 \\
\hline & (1.04) & (1.24) & (1.64) & (1.85) & (0.408) & (2.08) & (1.37) & (1.64) & 17.48) & (1.03) & (2.56) & (2.74) & (2.39) & (2.61) \\
\hline & (1.91) & (1.70) & (2.75) & (1.44) & (2.33) & (1.84) & (3.74) & (1.89) & (2.35) & (2.11) & (4.02) & (2.52) & (2.98) & (2.46) \\
\hline 1,23,4.5, 3 , & (10.812) & (1.88) & (2.0) & (1.48) & \begin{tabular}{l}
(2.42) \\
\(0.043)\) \\
\hline 0.071
\end{tabular} & (1.898) & (3.70) & (2.03) & [231) & (1.35) & (3.57) & (2.33) & (3) & (2.49) \\
\hline & (0.764) & (0.4.4) & (0.827) & (0.700) & (0.871) & (1.31) & (13) & (19.21) & (0.098) & \(10.848)\)
(0.7a) & \((1,35)\) & (6.65)
\((8.24)\) & (1.62) & (1.43) \\
\hline & (1.01) & (1,72) & (1.05) & (0.933) & (1.12) & (1.65) & (175) & (19.9) & (2.) & (0,8) & (1.42) & (e.24)
(0.23) & (5.38) & (1.) 1)
\[
(1,48)
\] \\
\hline & (1.42) & (1.67) & (1,58) & (4.47) & (1.73) & (2.4) & (250) & (285) & (4.7) & (1.51) & (2.01) & (124) & (2.74) & (2,65) \\
\hline 1.3.3.4,7, & (1.78) & 76. \({ }^{\text {che }}\) & (1,89] & (4.57) & (19) & 4.04 & (3.28) & 20.8 & 27.2 & (1.08) & (4.35) & (3.42) & (2,05) & (3.20) \\
\hline OCDF & (11.1) & (3.48) & (2.85)
(19) & (7.47)
(22.4) & \((3.25)\)
\((12.4)\) & \[
\begin{aligned}
& (2.55) \\
& (8.53) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& (4.39) \\
& (14.5) \\
& \hline
\end{aligned}
\] & (2.55) & \(14.43)\)
0.1 & (2.59)
(t0.1) & (7.3) & (26.49) & (33.04) & (4.8.89) \\
\hline & & & & & & & & & & & & & & \\
\hline Crmencoone & 33, 5 & 4364 & 4884 & \(4{ }^{4} 85\) & 5239 & 5527 & 5797 & 0087 & 0335 & 0612 & 3075 & 4355 & 4822 & 4800 \\
\hline
\end{tabular}
() \(=1 \mathrm{DL}\)

P5072 - Totals
Project ID: Genaral Analytical HRMS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|l|}{} \\
\hline Analyte & & 1081004-01 & 10800935-01 & 15809064 & 1080997.04 & 1081014-0t & 1080909-01 & 1080900-91 & 10810es-41 & Vatoank 01 & 1080982.01 & 108te0401 & 1030036-4t & cosoester \\
\hline Fotain & pot & ph & ge/L & pon & pgit & p 2 & pot & 29f & Pet. & Prat & Po4 & 20/2 & pent & pol \\
\hline TCOC\% & 0 & 0 & 0 & 0 & & & & & & & & & & \\
\hline Pacods & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4.77 & 0 & 0 & & 0 & 0 \\
\hline Hixcoms & 0 & 7.38 & 4.44 & 0 & 0 & 0 & 0 & 0 & 15.5 & 0 & 0 & 0 & 0 & 0 \\
\hline Hecobs & 0 & 153 & 65.1 & 25.2 & 9.46 & 29.8 & 0 & 104 & 48.8 & 12.1 & 0 & 43, & 0 & 0 \\
\hline 0000 & 0 & 883 & 267 & 134 & 70.4 & 157 & 56.1 & 471 & 2420 & 123 & 70.2 & 43.1 & 12.2
50.3 & \({ }_{50}^{0}\) \\
\hline TCOFs, & 0 & 0 & 0 & & & & & & & & & & & \\
\hline PaCDF\% & 0 & 0 & 0.858 & 0 & 0 & 0.78 & 0.258 & 0 & 6.53
2.57 & 0 & 0.458 & 0 & 0 & 0 \\
\hline HxCof: & 0 & 2.68 & 0 & 0 & 0 & 0 & 0.250 & 4.13 & 3.57 & 0 & 0.458
0 & 0 & 0 & 0 \\
\hline Hipcom: & 0 & 92.9 & 0 & 0 & 0 & 10.2 & 0 & 36.5 & 98.7 & 5.98 & 0 & 0 & 0 & 0 \\
\hline & 0 & 155 & 0 & 0 & 0 & 0 & 0 & 34.9 & 67.1 & 0 & 0 & 0 & 0 & 0 \\
\hline & 0.00 & 1,290 & 338 & 158 & 79.8 & 197 & 56.4 & 648 & 2,800 & 182 & 70.7 & & & \\
\hline Total PCDONF (NDO\%; EMPC.EEMPC) & 0.00 & 1,300 & 342 & 160 & 79.6 & 197 & 56.4 & 663 & 2,830 & 483 & 70.7 & 256 & 62.6 & 50 \\
\hline & 42.2 & 1,330 & 381 & 215 & 128 & 238 & 149 & 691 & 2,840 & 229 & 144 & 370 & 121 & 114 \\
\hline & 0.00 & 1,130 & 299 & 144 & 70.4 & 473 & 58.4 & 587 & & & & & & \\
\hline & 21.1 & 1,140 & 319 & 172 & 94.6 & 193 & 87.5 & 501 & 2,440 & 176 & 107 & 234 & 50.3
79.5 & 50
82
81 \\
\hline & 42.2 & 1,180 & 338 & 200 & 119 & 214 & 419 & 595 & 2,450 & 211 & 144 & 348 & 108 & 144 \\
\hline Total 297Es (ND=0; EMPC=1) & 0.00 & 1,130 & 299 & 144 & 70.4 & 173 & 58.1 & 567 & 2,440 & 178 & 70.2 & 234 & & \\
\hline & 21.1 & 1,140 & 318 & 172 & 94.8 & 193 & 87.5 & 581 & 2,450 & 193 & 107 & 291 & & \[
\begin{aligned}
& 50 \\
& 82
\end{aligned}
\] \\
\hline & 42.2 & \$180 & 338 & 200 & 140 & 214 & 119 & 505 & 2,430 & 211 & 144 & 348 & 79.5
109 & \[
\begin{gathered}
82 \\
114
\end{gathered}
\] \\
\hline Checreade & 3385 & 4361 & 4881 & 4965 & 5239 & 5527 & 5797 & 0067 & 0835 & 0612 & 3928 & 4355 & 4822 & 4900 \\
\hline
\end{tabular}

Tow 237
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|l|}{Part 3 In¢mannmen ranemerwer Method 1613} \\
\hline Analye & _pat & \begin{tabular}{l}
1081001.04 \\
\(p p 1\)
\end{tabular} & 1080903-9 Pght. & IOPDPDESAt pgh & \[
\begin{gathered}
\text { 10a0097.01 } \\
\text { pon } \\
\hline
\end{gathered}
\] & \[
\left\lvert\, \begin{gathered}
109104401 \\
\text { pan }
\end{gathered}\right.
\] & \[
\left\lvert\, \begin{gathered}
10 \mathrm{Bope0} 0 \cdot 1 \\
\mathrm{goh}
\end{gathered}\right.
\] & \[
\left.\begin{gathered}
108010001 \\
\mathrm{get}
\end{gathered} \right\rvert\,
\] & & \[
\begin{gathered}
1081002001 \\
\text { por } \\
\hline
\end{gathered}
\] & \[
\left|\begin{array}{c}
108092081 \\
\mathrm{p} 2 \mathrm{~L}
\end{array}\right|
\] & \(\left|\begin{array}{c}108100601 \\ \text { ppl }\end{array}\right|\) & & 1080951.0 pgh \\
\hline & \[
\begin{aligned}
& a \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & 0
0
7.38
77.2 & \[
\begin{gathered}
0 \\
0 \\
0.44 \\
33.6
\end{gathered}
\] & \[
\begin{gathered}
0 \\
0 \\
0 \\
15.2
\end{gathered}
\] & \[
\begin{gathered}
0 \\
0 \\
0 \\
0.46
\end{gathered}
\] & \[
\begin{gathered}
0 \\
0 \\
0 \\
0 \\
17.4
\end{gathered}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{gathered}
0 \\
0 \\
0 \\
0 \\
51.5
\end{gathered}
\] & \[
\begin{aligned}
& 4.77 \\
& 15.5 \\
& 22.5 \\
& 208
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{gathered}
0 \\
0 \\
0 \\
02.3
\end{gathered}
\] & \[
\begin{gathered}
0 \\
0 \\
0 \\
12.2
\end{gathered}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] \\
\hline Omer tcon Onires Other HpCDF & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & 0
0
2.88
78.1 & \[
\begin{gathered}
0 \\
0.858 \\
0 \\
0
\end{gathered}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{gathered}
0 \\
0.76 \\
0 \\
0.48
\end{gathered}
\] & \[
\begin{gathered}
0 \\
0.256 \\
0 \\
0
\end{gathered}
\] & \[
\begin{gathered}
0 \\
0 \\
4.13 \\
25.7
\end{gathered}
\] & 6.53
2.57
32.8
74.8 & \[
\begin{gathered}
0 \\
0 \\
0 \\
0.88
\end{gathered}
\] & 0
0.456
0
0 & 0
0
0
0 & 0
0
0
0 & 0
0
0
0 \\
\hline & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & 0
0
7.38
7.2 & 0
0
0.57
33.6 & \[
\begin{gathered}
0 \\
0 \\
0 \\
15.2
\end{gathered}
\] & \[
\begin{gathered}
0 \\
0 \\
0 \\
0.48
\end{gathered}
\] & 0
0
0
17.4
0 & 0
0
0
0 & & \begin{tabular}{l}
4.77 \\
\hline 15.5 \\
47.7 \\
208
\end{tabular} & \[
\begin{gathered}
0 \\
0 \\
0 \\
0 \\
11.3
\end{gathered}
\] & 0
0
0
0 & \[
\begin{gathered}
0 \\
0 \\
0 \\
22.3
\end{gathered}
\] & \[
\begin{gathered}
0 \\
0 \\
0 \\
12.2
\end{gathered}
\] & 0
0
0
0 \\
\hline onetcor OU HxCOF OUner HipCof & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & 0
0
9.88
76.1 & 0
0.858
0
0 & \[
\begin{gathered}
0 \\
0.213 \\
0 \\
0
\end{gathered}
\] & O & \[
\begin{gathered}
0 \\
0.76 \\
0 \\
0.16
\end{gathered}
\] & \[
\begin{gathered}
0 \\
0.256 \\
0 \\
0
\end{gathered}
\] & \[
\begin{aligned}
& 2.21 \\
& 0.368 \\
& 7.22 \\
& 25.7
\end{aligned}
\] & \[
\begin{aligned}
& 0.53 \\
& 2.57 \\
& 32.8 \\
& 71.8
\end{aligned}
\] & \[
\begin{gathered}
0 \\
0 \\
0 \\
5.96
\end{gathered}
\] & 0
0.458
0
0 & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & 0
0
0
0 & 0
0
0
0 \\
\hline criekcase & 3385 & 4361 & 4881 & 4865 & 5238 & 5527 & 5787 & 0067 & 0335 & 0612 & 3829 & 4355 & 4622 & 4800 \\
\hline
\end{tabular}

Mean Recoveries of Extraction Standards (\(\mathrm{N}=14\)) Project ID: General Analytical HRMS P5072

Mean Recoveries of Clean-Up Standards (\(\mathrm{N}=14\)) Project ID: General Analytical HRMS

P5072

OMean DStd. Dev.

Fax (949) 261-1228 Fax (509) 370-1046 Fax \(\{619) 505-9689\) Fax (480) 785-085 Fax (70a) 7903 3821

\section*{SUBCONTRACT ORDER - PROJECT \# IOB0997}

\section*{SENDING LABORATORY:}

Del Mar Analytical, Irvine
17461 Derian Avenue. Suite 100
Irvine, CA 92614
Phone: (949) 261-1022
Fax: (949) 261-1228
Project Manager: Michele Harper

\section*{RECEIVING LABORATORY:}

Pace Analytical, MN- SUB
1700 Elm Street, Ste 200
Minneapolis, MN 55414
Phone :(612) 607-1700
Fax: (612) 607-6444

Standard TAT is requested unless specific due date is requested \(\Rightarrow\) Due Date: \(\qquad\) Initials: \(\qquad\)
Analysis Expiration Comments
\begin{tabular}{lll}
Sample ID: lOB 0997-01 & Water & Sampled: 02/11/05 15:16 \\
1613-Dioxin-HR & \(02 / 18 / 0515: 16\) \\
EDD + Level 4 & \(03 / 11 / 0515: 16\)
\end{tabular}

\section*{Containers Supplied:}

1 L Amber (1OB0997-01C)
1 L Amber (IOB0997-01D)

CHAIN-OF-CUSTODY / Analytical Request Document
PaceAnalytical
Page: 1 of 2
To Be compluted by Paco Anamplicut And Remarks / Lab ID
 (है A

 Buarh Turmanound Surretwige.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1040 & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline a costen & & & & & & & & & & & & \\
\hline \(\bigcirc\) \% \({ }^{3}\) & & & & & & & & & & & & \\
\hline 5 -10H & & & & & & & & & & & & \\
\hline \% OONH & & & & & & & & & & & & \\
\hline Q \(\square^{\circ} \mathrm{Os}^{2} \mathrm{H}\) & & & & & & & & & & & & \\
\hline pamasardin & \(x\) & & & & & & & & & & & \(\rightarrow\) \\
\hline suchymuos & - & & & & & & & & & & & \\
\hline & - & \[
\begin{gathered}
8 \\
6 \\
0
\end{gathered}
\] & \[
\begin{aligned}
& b \\
& N
\end{aligned}
\] & \[
6
\] & \[
\begin{aligned}
& \hline \mathrm{O} \\
& \mathrm{~N} \\
& \mathrm{~N}
\end{aligned}
\] & \[
\begin{gathered}
\bar{n} \\
8 \\
8
\end{gathered}
\] & \[
\begin{gathered}
6 \\
-6
\end{gathered}
\] & \[
\left[\begin{array}{c}
n \\
m \\
m \\
m
\end{array}\right.
\] & 4
\(\vdots\)
\(\$\) & \(n\)
\(\vdots\)
0 & O & \begin{tabular}{l}
7 \\
3 \\
\hdashline
\end{tabular} \\
\hline \begin{tabular}{cc}
\begin{tabular}{c}
a3103T10 \\
3ivo
\end{tabular} & \(\frac{3}{8}\) \\
&
\end{tabular} & \[
\frac{6}{3}
\] & & & & & & & & & & & \\
\hline \(\int^{3000 x^{\text {xHIVW }}}\) & 5 & & & & & & & & & & & \(\rightarrow\) \\
\hline
\end{tabular}
Section \(B\)

Moquired Client intormation:
wwo.ppestaba.com
Required Cllent intormation: Section A COMpeny PACE
nodiose 1700 ElM st.
Suite 200 Required Chens hlomation:
\({ }^{\text {Raporit To: }}<\) COTT UNZE Copy ro: Con LN 2

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custady is a LEGAL DOCUMENT. All ratevant fields must be completed accurutely.

\title{
DATA VALIDATION REPORT
}

\author{
NPDES \\ Monitoring
}

\author{
ANALYSIS: DIOXINS/FURANS SAMPLE DELIVERY GROUPS: Multiple SDGs
}

Prepared by
AMEC--Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{ll}
DATA VALIDATION REPORT & \begin{tabular}{l}
Project: \\
SDG No.:
\end{tabular} \\
NPDES \\
Multiple
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: ...NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: Muitiple SDGs \\ Project Manager: B. McIlvaine \\ Matrix: Water \\ Analysis: Dioxins/Furans \\ QC Level: Level IV \\ No. of Samples: 6 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: K. Shadowlight \\ Date of Review: March 4, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{ll}
DATA VALIDATION REPORT & \begin{tabular}{c}
Project: \\
SDG No.: \\
NPDES \\
Multiple
\end{tabular} \\
DF \\
\hline
\end{tabular}

Table 1. Sample Identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & \begin{tabular}{c}
Laboratory ID \\
(Del Mar)
\end{tabular} & \begin{tabular}{c}
Laboratory ID \\
(Alta)
\end{tabular} & Matrix & COC Method \\
\hline Outfall 002 & IOB1562-01 & \(25779-001\) & water & 1613 \\
\hline Outfall 003 & IOB1571-01 & \(25780-001\) & water & 1613 \\
\hline Outfall 007 & IOB1572-01 & \(25782-001\) & water & 1613 \\
\hline Outfall 008 & IOB1573-01 & \(25783-001\) & water & 1613 \\
\hline Outfall 011 & IOB1565-01 & \(25781-001\) & water & 1513 \\
\hline Outfall 018 & IOB1570-01 & \(25778-001\) & water & 1613 \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

All of the samples in these SDGs were received at Del Mar Analytical within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). The samples were shipped to Alta for dioxin/furan analyses and were received below the temperature limits at \(0.8^{\circ} \mathrm{C}\); however, as none of the samples were noted to have been frozen or damaged, no qualifications were required. According to the laboratory login sheets, all samples were received intact and in good condition at both laboratories. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs and transfer COCs were legible and signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. As the samples were couriered directly to Del Mar Analytical, custody seals were not required. The coolers received by Alta had custody seals present and intact; however, custody seais were not present on the sample containers. The EPA IDs were added to the sample result summary report by the reviewer. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The samples were extracted and analyzed within a year of collection. No qualifications were required.

\subsection*{2.2 INSTRUMENT PERFORMANCE}

Following are findings associated with instrument performance:

\subsection*{2.2.1 GC Column Performance}

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence, however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and \(2,3,7,8\)-TCDD reported as less than \(25 \%\). No qualifications were required.
DATA YALIDATION REPORT \begin{tabular}{l}
Project: \\
SDG No.:
\end{tabular} \begin{tabular}{c}
NPDES \\
Multiple
\end{tabular}

\subsection*{2.2.2 Mass Spectrometer Performance}

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

\subsection*{2.3 CALIBRATION}

\subsection*{2.3.1 Initial Calibration}

There were two initial calibrations, analyzed 08/30/04 and 10/04/04. The calibrations each consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibrations were acceptable with \(\%\) RSDs \(\leq 20 \%\) for the 15 native compounds (calibration by isotope dilution) and \(\leq 35 \%\) for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.3.2 Continuing Calibration}

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standards instead of being analyzed separately, as noted in section 2.2 .1 of this report. No adverse effect was observed with this practice.

\subsection*{2.4 BLANKS}

One method blank (6543-MB001) was extracted and analyzed with the samples in these SDGs. There were no detects reported in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One Ongoing Precision Recovery (OPR) sample (6543-OPR001) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of the Method 1613. No qualifications were required.

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy was based on the OPR results. No qualifications were required.
\begin{tabular}{|c|c|c|}
\hline DATA VILIDATION PEPORT & Project: SDG No. Analysis: & \begin{tabular}{l}
NPDES \\
Multiple DF
\end{tabular} \\
\hline
\end{tabular}

\subsection*{2.7 FIELD QC SAMPLES}

Following are findings associated with field QC:

\subsection*{2.7.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.7.2 Field Duplicates}

No field duplicate samples were identified for these SDGs.

\subsection*{2.8 NTERNAL STANDARDS}

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

\subsection*{2.9 COMPOUND IDENTIFICATION}

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

\subsection*{2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Compounds flagged by the laboratory with a "D" qualifier indicated possible diphenylether interference and were qualified as estimated, "J." Any reported EMPC was qualified as an estimated nondetect, "UJ." Any detects below the lower method calibration level (MCL) were qualified as estimated, "J;" however, as Alta analyzed an additional calibration standard, not all results below the method calibration level were appropriately qualified by the laboratory. These results were qualified as estimated, " \(J\)," by the reviewer. No further qualifications were required.

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}

AMEC Earth \& Environmental 550 South Wadsworth Boulevard Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer P. Meeks
Analysis/Method Metals

Package ID T711MT45
Task Order 313150010
SDG No. IOB1572, IOB1573
No. of Analyses 2
Date: 03/29/05
Reviewe's Signature
P. Mele

\title{
amec \({ }^{\text {® }}\)
}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES \\ Monitoring
}

\section*{ANALYSIS: METALS}

\section*{SAMPLE DELIVERY GROUPS: IOB1572 \& IOB1573}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: IOB1572, IOB1573 \\ Project Manager: B. McIlvaine \\ Matrix: Water \\ Analysis: Metals \\ QC Level: Level IV \\ No. of Samples: 2 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: P. Meeks \\ Date of Review: March 29, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{|c|c|c|}
\hline & Project: & NPDES \\
\hline & SDG No.: & IOB1572, 1573 \\
\hline DATA VALIDATION REPORT & Analysis: & MET \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 008 & Outfall 008 & IOB1573-01 & water & ILM04 \\
\hline Outfall 007 & Outfall 007 & IOB1572-01 & water & ILM04 \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C}\) \(\pm 2^{\circ} \mathrm{C}\). No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by field and laboratory personnel. The COCs accounted for the samples and analyses presented in these SDGs. Duplicate samples were submitted for both samples in these SDGs; however, duplicate analyses were not required. No sample qualifications were required.

\subsection*{2.1.3 Holding Times}

The dates of collection recorded on the COCs and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS metals and 28 days for mercury. No qualifications were required.

\subsection*{2.2 ICP-MS TUNING}

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. All \%RSDs were less than \(5 \%\). The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

\subsection*{2.3 CALIBRATION}

The ICV and CCV results showed acceptable recoveries, \(90-110 \%\) for ICP/MS metals and \(80-120 \%\) for mercury. The reporting limit check standards were recovered within the AMEC control limits of 70\(130 \%\). No sample qualifications were required.
\begin{tabular}{rrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOBI572, 1573 \\
\hline
\end{tabular}

\subsection*{2.4 BLANKS}

Antimony was detected in every CCB in the analytical sequence in which Outfall 008 was analyzed and in an unreported method blank analysis. The detects ranged from 0.716 to \(2.50 \mu \mathrm{~g} / \mathrm{L}\) and antimony was detected in Outfall 008 at a concentration well below these values, \(0.34 \mu \mathrm{~g} / \mathrm{L}\). The CCB detects indicated the laboratory could not detect antimony at the reported MDL or RL. The reviewer raised the antimony MDL and RL for Outfall 008 MDL to the highest level of interference reported, \(2.5 \mu \mathrm{~g} / \mathrm{L}\) and qualified the result as estimated, "UJ." No further qualifications were required due to the method and calibration blank results.

\subsection*{2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)}

ICSA and ICSAB analyses were included in the raw data for the ICP-MS analyses. Results were not provided for spiked interferents sulfur, phosphorus, carbon, and chloride, and antimony and lead were not spiked into the ICSAB solution. Copper and cadmium were detected above the applicable reporting limit in the ICSA. The results for sodium and potassium were above the calibration range of the instrument in the ICSA and ICSAB analyses. Aluminum was recovered below the control limit in the ICSA at \(78 \%\) and above the calibration range in the ICSAB analyses. As aluminum, sodium, and potassium were not reported in the site samples, no qualifications were required. The validator reviewed the raw data for the site sample ICP/MS analyses for the level of reported interferents, \(\mathrm{Al}, \mathrm{Ca}, \mathrm{Fe}\), and Mg , and determined that the levels of reported interferents were not high enough to cause matrix affects. No assessment could be made with respect to possible interference from sulfur, phosphorus, carbon, and chloride. No qualifications were required.

\subsection*{2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The ICP/MS LCS sample was identified as 5B24099-BS1 and the mercury LCS sample was identified as 5B22063-BS1. The LCS results on the summary forms and in the raw data were within the laboratory-established ICP/MS and mercury control limits of \(85-115 \%\). No qualifications were required.

\subsection*{2.7 LABORATORY DUPLICATES}

No MS/MSD or laboratory duplicate analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.8 MATRIX SPIKE}

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on LCS results.
\begin{tabular}{lrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOB1572, 1573 \\
\hline
\end{tabular}

\subsection*{2.9 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.10 ICP/MS AND ICP SERIAL DILUTION}

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.11 INTERNAL STANDARDS PERFORMANCE}

Scandium was recovered above the control limit in Outfall 008; however, as scandium was not the internal standard associated with the reported analytes, no qualifications were required. The remaining ICP-MS internal standard recoveries for the site samples and associated QC sample analyses were within the \(60-125 \%\) control limits and no qualifications were required.

\subsection*{2.12 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit were qualified as estimated, "J." No further qualifications were required.

\subsection*{2.13 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

\subsection*{2.13.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.13.2 Field Duplicates}

There were no field duplicate analyses performed in association with the site samples.

\section*{e Del Mar Analytical}

DRAFT: METALS

\section*{AMEC VRLIDATED}

DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHIANGE

\title{
LABORATORY REPORT
}

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 008

Sampled: 02/18/05
Received: 02/18/05
Issued: 03/25/05 11:04

\section*{NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117}

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.
SAMPLE CROSS REFERENCE
SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
1OB1573-01

\section*{CLIENT ID \\ Outfall 008}

MATRIX
Water

Reviewed By:

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 008
Report Number: IOB1573 \(\quad \begin{array}{r}\text { Sampled: 02/18/05 } \\ \text { Received: } 02 / 18 / 05\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & & MET & LS & & & & & \\
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{Sample ID: IOB1573-01 (Outfall 008 - Water)} \\
\hline \multicolumn{10}{|l|}{Reporting Units: ug/} \\
\hline Antimony & EPA 200.8 & 5B24099 & 0.18 & 2.0 & 0.34 & 1 & 02/24/05 & 02/25/05 & J \\
\hline Cadmium & EPA 200.8 & 5B24099 & 0.015 & 1.0 & 0.25 & 1 & 02/24/05 & 02/25/05 & J \\
\hline Copper & EPA 200.8 & 5B24099 & 0.49 & 2.0 & 15 & 1 & 02/24/05 & 02/25/05 & \\
\hline Lead & EPA 200.8 & 5B24099 & 0.13 & 1.0 & 13 & 1 & 02/24/05 & 02/25/05 & \\
\hline Mercury & EPA 245.1 & 5B22063 & 0.063 & 0.20 & 0.066 & 1 & 02/22/05 & 02/22/05 & J \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 008
Report Number: IOB1573

Sampled: 02/18/05
Received: 02/18/05
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{INORGANICS} \\
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{Sample ID: IOB1573-01 (Outfall 008 - Water) - cont. Reperting Units: mgh}} \\
\hline & & & & & & & & & \\
\hline Chloride & EPA 300.0 & 5B18129 & 0.15 & 0.50 & 2.8 & 1 & 02/18/05 & 02/19/05 & \\
\hline Nitrate/Nitrite-N & EPA 300.0 & 5B18129 & 0.072 & 0.11 & 1.1 & 1 & 02/18/05 & 02/19/05 & \\
\hline Oil \& Grease & EPA 413.1 & 5B28071 & 0.94 & 5.0 & ND & 1 & 02/28/05 & 02/28/05 & \\
\hline Sulfate & EPA 300.0 & 5B18129 & 0.25 & 0.50 & 2.4 & 1 & 02/18/05 & 02/19/05 & \\
\hline Total Dissolved Solids & SM2540C & 5B24111 & 10 & 10 & 96 & 1 & 02/24/05 & 02/24/05 & \\
\hline Total Suspended Solids & EPA 160.2 & 5B25089 & 10 & 10 & 760 & 1 & 02/25/05 & 02/25/05 & \\
\hline \multicolumn{10}{|l|}{Sample ID: 1OB1573-01 (Outfall 008 - Water)} \\
\hline Reporting Units: ug & & & & & & & & & \\
\hline Perchlorate & EPA 314.0 & 5B25064 & 0.80 & 4.0 & ND & 1 & 02/25/05 & 02/26/05 & \\
\hline
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 008
Report Number: IOB1573

Sampled: 02/18/05
Received: 02/18/05

\section*{SHORT HOLD TIME DETAIL REPORT}
\begin{tabular}{lccccc}
& \begin{tabular}{c}
Hold Time \\
(in days)
\end{tabular} & \begin{tabular}{c}
Date/Time \\
Sampled
\end{tabular} & \begin{tabular}{c}
Date/Time \\
Received
\end{tabular} & \begin{tabular}{c}
Date/Time \\
Extracted
\end{tabular} & \begin{tabular}{c}
Date/Time \\
Analyzed
\end{tabular} \\
\begin{tabular}{lllll}
Sample ID: Outfall 008 (IOB1573-01) - Water \\
EPA 300.0
\end{tabular} & 2 & \(02 / 18 / 200513: 35\) & \(02 / 18 / 200518: 30\) & \(02 / 18 / 2005\) & \(22: 00\)
\end{tabular}

\title{
Del Mar Analytical
}
\begin{tabular}{lcr}
MWH-Pasadena/Boeing & Project ID: Routine Outfall 008 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(02 / 18 / 05\) \\
Pasadena, CA 91101 & Report Number: \(10 B 1573\) & Received: \(02 / 18 / 05\) \\
Attention: Bronwyn Kelly & \(\ldots\) & \(\ldots\)
\end{tabular}

\section*{METHOD BLANKIOC DATA}

\section*{METALS}
\begin{tabular}{lllllllllll}
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit \\
Batch: 5B22063 Extracted: \(02 / 22 / 05\) & & & & & & & & & & \\
Qualifiers
\end{tabular}

Blank Analyzed: 02/22/2005 (5B22063-BLK1)

Blank Analyzed: 02/25/2005-02/26/2005 (5B24099-BLK1)

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\title{
Del Mar Analytical
}
\begin{tabular}{|lcr|}
\hline MWH-Pasadena/Boeing & Project ID: Routine Outfall 008 & \\
300 North Lake Avenue, Suite 1200 & Report Number: \(10 B 1573\) & \begin{tabular}{l}
Sampled: \(02 / 18 / 05\) \\
Received: \(02 / 18 / 05\)
\end{tabular} \\
Pasadena, CA 91101 & &
\end{tabular}

\section*{METIOJ BLANKQC BATA}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 008

Report Number: \(10 B 1573\)

Sampled: 02/18/05
Received: 02/18/05

\section*{METHOD BLANKIQC DATA}

\section*{INORGANICS}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Routine Outfall 008

\title{
Report Number: IOB1573 \\ Sampled: 02/18/05 \\ Sampled: 02/18/05
}

\section*{METHOD BLANKIOC DATA}

\section*{INORGANICS}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

\section*{METHOD BLANKIQC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5828071 Extracted: 02/28/05} \\
\hline LCS Analyzed: 02/28/2005 (5B28071-BS1) & & & & & & & & & & M-NR1 \\
\hline Oil \& Grease 16.7 & 5.0 & 0.94 & \(\mathrm{mg} / \mathrm{l}\) & 20.0 & & 84 & 65-120 & & & \\
\hline \multicolumn{11}{|l|}{LCS Dup Analyzed: 02/28/2005 (5828071-BSD1)} \\
\hline Oil \& Grease 17.7 & 5.0 & 0.94 & \(\mathrm{mg} / \mathrm{l}\) & 20.0 & & 88 & 65-120 & 6 & 20 & \\
\hline
\end{tabular}

\title{
Del Mar Analytical
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 008
Report Number: 1OB1573 Received: 02/18/05

\section*{Compliance Check}

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline LabNumber & Analysis & Analyte & Units & Result & MRL & Compliance Limit \\
\hline IOB1573-01 & 413.1 Oil and Grease & Oil \& Grease & mg/l & 0.48 & 5.0 & 15 \\
\hline 1OB1573-01 & Chloride - 300.0 & Chloride & \(\mathrm{mg} / 1\) & 2.80 & 0.50 & 150 \\
\hline 1OB1573-01 & Nitrogen, \(\mathrm{NO} 3+\mathrm{NO} 2-\mathrm{N}^{\text {a }}\) & Nitrate/Nitrite-N & \(\mathrm{mg} / 1\) & 1.10 & 0.11 & 8.00 \\
\hline IOB1573-01 & Perchlorate 314.0 & Perchlorate & ug/1 & 0 & 4.0 & 6.00 \\
\hline 1OB1573-01 & Sulfate-300.0 & Sulfate & \(\mathrm{mg} / 1\) & 2.40 & 0.50 & 300 \\
\hline 1OB1573-01 & TDS - SM 2540C & Total Dissolved Solids & mg/ & 96 & 10 & 950 \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 008
Report Number: IOB1573 Received: 02/18/05

\section*{DATA QUALIFIERS AND DEFINITIONS}

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD
Relative Percent Difference

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 008
Report Number: IOB1573

Received: 02/18/05

\section*{Certification Summary}

\section*{Del Mar Analytical, Irvine}
\begin{tabular}{cccc}
Method & Matrix & Nelac & California \\
EPA 160.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 200.8 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 245.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 300.0 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 314.0 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 413.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
SM2540C & Water & \(\mathbf{X}\) & \(\mathbf{X}\)
\end{tabular}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

\section*{Subcontracted Laboratories}

\section*{Alta Analytical California Cert \#1640}

1104 Windfield Way - El Dorado Hills, CA 95762
Analysis Performed: 1613-Dioxin-HR
Samples: IOB1573-01
Analysis Performed: EDD + Level 4 Samples. 10B1573-01

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\title{
< Del MarAnalytical
}

March 23,2005

MWH-Pasadena/ Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 008
Sampled: 02/18/05
Del Mar Analytical Number: IOB1573

Dear Ms. Kelly:
Alta Analytical Laboratory performed the EPA Method 1613 Dioxin analysis for the project referenced above. Please use the following cross-reference table when reviewing your results.
\begin{tabular}{|c|c|c|}
\hline MWH ID & DEL MAR ID & Alta ID \\
\hline Outfall 008 & IOB1573-01 & \(25783-001\) \\
\hline
\end{tabular}

Attached is the original report from the subcontract laboratory. If you have any questions or require further assistance, please do not hesitate to contact me at (949) 261-1022 at extension 215.

Sincerely yours,
DEL MAR ANALYTICAL

Project Manager

March 07, 2005
Alta Project I.D.: 25783
Ms. Michele Harper
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614

Dear Ms. Harper,
Enclosed are the amended results for the one aqueous sample received at Alta Analytical Laboratory on February 24, 2005 under your Project Name "IOB1573". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The original report gave a positive result for \(1,2,3,4,7,8-\mathrm{HxCDD}\). This compound was not detected in the sample.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

HRMS Services Director

Alta Analytical Laboratory Inc.

\title{
Section I: Sample Inventory Report Date Received: 2/24/2005
}

Alta Lab. ID
25783-001

\section*{Client Sample ID}

IOB1573-01

\section*{SECTION II}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Sample ID: IOB1573-01} & \multicolumn{3}{|l|}{EPA Method 1613} \\
\hline \multicolumn{3}{|l|}{Clicat Data} & \multicolumn{2}{|l|}{Sample Data} & Laboratory Data & \multicolumn{3}{|l|}{} \\
\hline Name: Del & Del Mar Analytical, Irvine & & \multirow[t]{3}{*}{Matrix:} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Aqueous } \\
& 1.036 \mathrm{~L}
\end{aligned}
\]} & \multirow[t]{3}{*}{\begin{tabular}{l}
Lab Sample: \\
QC Batch No.: \\
Date Analyzed DB-5:
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Date Received:}} & 24-Feb-05 \\
\hline Date Collected: 18- & \multicolumn{2}{|l|}{18-Feb-05} & & & & & & \\
\hline Time Collected: 133 & & & & & & \multicolumn{3}{|l|}{Date Analyzed DB-225: NA} \\
\hline & & & & & & & & \\
\hline Analyte & Conc. (pg/L) & DL \({ }^{\text {a }}\) & EMPC \({ }^{\text {b }}\) & Qualifiers & Labeled Standard & \%R & LCL-UCL \({ }^{\text {d }}\) & Oualifiers \\
\hline 2,3,7,8-TCDD & ND & 1.03 & & & IS 13C-2,3,7,8-TCDD & 72.0 & 25-164 & \\
\hline 1,2,3,7,8-PeCDD & ND & 1.57 & & & 13C-1,2,3,7,8-PeCDD & 73.2 & 25-181 & \\
\hline 1,2,3,4,7,8-HxCDD & ND & 1.17 & & & 13C-1,2,3,4,7,8-HxCDD & 73.9 & 32-141 & \\
\hline 1,2,3,6,7,8-HxCDD & 1.75 & & & J & 13C-1,2,3,6,7,8-HxCDD & 69.8 & 28-130 & \\
\hline 1,2,3,7,8,9-HxCDD & ND & & 1.52 & & 13C-1,2,3,4,6,7,8-HpCDD & 69.7 & 23-140 & \\
\hline 1,2,3,4,6,7,8-HpCDD & 28.5 & & & & \(13 \mathrm{C}-\mathrm{OCDD}\) & 59.9 & 17-157 & \\
\hline OCDD & 446 & & & & 13C-2,3,7,8-TCDF & 73.4 & 24-169 & \\
\hline 2,3,7,8-TCDF & ND & 0.952 & & & 13C-1,2,3,7,8-PeCDF & 66.6 & 24-185 & \\
\hline 1,2,3,7,8-PeCDF & ND & 2.14 & & & 13C-2,3,4,7,8-PeCDF & 68.6 & 21-178 & \\
\hline 2,3,4,7,8-PeCDF & ND & 2.07 & & & \(13 \mathrm{C}-1,2,3,4,7,8-\mathrm{HxCDF}\) & 64.5 & 26-152 & \\
\hline 1,2,3,4,7,8-HxCDF & 1.53 & & & J & 13C-1,2,3,6,7,8-HxCDF & 66.1 & 26-123 & \\
\hline 1,2,3,6,7,8-HxCDF & 1.26 & & & J & 13C-2,3,4,6,7,8-HxCDF & 63.9 & 28-136 & \\
\hline 2,3,4,6,7,8-HxCDF & ND & 1.20 & & & 13C-1,2,3,7,8,9-HxCDF & 69.3 & 29-147 & \\
\hline 1,2,3,7,8,9-HxCDF & ND & 0.840 & & & 13C-1,2,3,4,6,7,8-HpCDF & 58.8 & 28-143 & \\
\hline 1,2,3,4,6,7,8-HpCDF & 8.00 & & & J & 13C-1,2,3,4,7,8,9-HpCDF & 64.4 & 26-138 & \\
\hline 1,2,3,4,7,8,9-HpCDF & ND & 1.28 & & & 13C-OCDF & 59.5 & 17-157 & \\
\hline OCDF & 20.9 & & & J & CRS 37Cl-2,3,7,8-TCDD & 86.1 & 35-197 & \\
\hline \multicolumn{5}{|l|}{Totals} & \multicolumn{4}{|l|}{Footnotes} \\
\hline \multicolumn{5}{|l|}{Total TCDD ND 1.03} & \multicolumn{4}{|l|}{\multirow[t]{6}{*}{\begin{tabular}{l}
a. Sample specific estimated detection limit. \\
b. Estimated maximum possible concentration. \\
c. Method detection limit. \\
d. Lower control limit - upper control limit.
\end{tabular}}} \\
\hline Total PeCDD & ND & 1.57 & \multicolumn{2}{|l|}{\multirow[t]{5}{*}{9.04}} & & & & \\
\hline Total HxCDD & 5.51 & & & & & & & \\
\hline Total HpCDD & 82.1 & & & & & & & \\
\hline Total TCDF & 1.67 & & & & & & & \\
\hline Total PeCDF- & 1.61 & & & & & & & \\
\hline Total HxCDF & 10.9 & & & & & & & \\
\hline Total HpCDF & 17.9 & & & & & & & \\
\hline Analyst: MS & & & & & Approved By: William J L & & & \\
\hline
\end{tabular}

APPENDIX

\section*{DATA QUALIFIERS \& ABBREVIATIONS}

B This compound was also detected in the method blank.
D The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.
I Chemical Interference
J The amount detected is below the Lower Calibration Limit of the instrument.
* See Cover Letter

Conc. Concentration
DL Sample-specific estimated detection limit
MDL The minimum concentration of a substance that can be measured and reported with \(99 \%\) confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration
NA Not applicable
RL Reporting Limit - concentrations that corresponds to low calibration point
ND Not Detected
TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

The control limits are "interim limits only" until in-house limits are utilized.

\section*{CURRENT CERTIEICATIONS}

NELAP - (Primary AA: California, Certificate No. 02102CA)
Department of the Navy
U.S. Army Corps of Engineers
U.S. EPA Region 5

Bureau of Reclamation - Mid-Pacific Region - (MP-470, Res-1.10)
Commonwealth of Kentucky - (Certificate No. 90063)
Commonwealth of Virginia - (Certificate No. 00013)
State of Alaska, Department of Environmental Conservation - (Certificate No. OS-00197)
State of Arizona - (Certificate No. AZ0639)
State of Arkansas, Department of Health - (Approval granted through CA certification)
State of Arkansas, Department of Environmental Quality
State of California - (Certificate No. 1640)
State of Colorado
State of Connecticut - (Certificate No. PH-0182)
State of Florida - (Certificate No. 87456)
State of Louisiana, Department of Health and Hospitals - (Certificate No. LA000014)
State of Louisiana, Department of Environmental Quality
State of Maine
State of Michigan (Certificate No. 81178087)
State of Mississippi - (Approval granted through CA certification)
State of Nevada - (Certificate No. CA413)
State of New Jersey - (Certificate No. CA003)
State of New York, Department of Health - (Certificate No. 11411)
State of North Carolina - (Certification No. 06700)
State of North Dakota, Department of Health - (Certificate No. R-078)
State of New Mexico
State of Oklahoma - (D9919)
State of Oregon - (Certificate No. CA413)
State of Pennsylvania - (Certificate No. 68-490)
State of South Carolina - (Certificate No. 87002001)
State of Tennessee - (Certificate No. 02996)
State of Texas - (Certificate No. TX247-1000A
State of Utah - (Certificate No. E-201)
State of Washington - (Certification No. C091)
State of Wisconsin - (Certificate No. 998036160)
State of Wyoming - (USEPA Region 8 Ref: 8 TMS-Q)
(4 (984)251-1022

SUBCONTRACT ORDER - PROJECT \# IOB1573

\section*{SAMPLE LOG-IN CHECKLIST}

\section*{ALTA Project No.: 25783}

\section*{comments: Ampler's initial found on sample label}

\section*{20 24 电}

\section*{SENDING LABORATORY:}

Del Mar Analytical, Irvine
17461 Derian Avenue. Suite 100
Irvine, CA 92614
Phone: (949) 261-1022
Fax: (949) 261-1228
Project Manager: Michele Harper

\section*{RECEIVING LABORATORY:}

Alta Analytical
1104 Windfield Way
25783

El Dorado Hills, CA 95762
Phone :(916) 933-1640
Fax: (916) 933-0940

Standard TAT is requested unless specific due date is requested \(\Rightarrow\) Due Date \(\qquad\) Initials: \(\qquad\)

\section*{Containers Supplied:}

1 L Amber (1OB1573-011)
1 L. Amber (IOB1573-01J)

\section*{APPENDIX G}

\section*{Section 23}

\section*{February Outfall 009}

\section*{AMEC Data Validation Reports}

Del Mar Analytical Laboratory Reports

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}

AMEC Earth \& Environmental 550 South Wadsworth Boulevard Suite 500
Lakewood, CO 80226
Laboratory Alta Analytical Perspective
Reviewer H. Chang
Analysis/Method Dioxin\&Furans/1613

Package ID T711DF30
Task Order 313150010
SDG No. Multi
No. of Analyses 13
Date: March 18, 2005
Reviewer's Signature

\section*{ACTION ITEMS}
1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables \(\square\)
\(\qquad\)
5. Incorrect Hardcopy

Deliverables \(\qquad\)

6. Deviations from Analysis

Detects below the calibration range were qualified "J."
Protocol, e.g.,
Holding Times
GCMS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Intemal Standard Performance
Compound Identification and
Quantitation
System Performance

\section*{COMMENTS \({ }^{\text {b }}\)}
* Subcontracted analytical taboratory is not meeting contract and/or method requirements.
\({ }^{6}\) Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

\section*{amec \({ }^{\theta}\)}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES \\ Monitoring
}

\author{
ANALYSIS: DIOXINS/FURANS SAMPLE DELIVERY GROUPS: Multiple SDGs
}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: Multiple SDGs \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Dioxins/Furans \\ QC Level: Level IV \\ No. of Samples: 13 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: H. Chang \\ Date of Review: March 18, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{llr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

Table 1. Sample Identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & \begin{tabular}{c}
Laboratory ID \\
(Del Mar)
\end{tabular} & \begin{tabular}{c}
Laboratory ID \\
(Alta AP)
\end{tabular} & Matrix & COC Method \\
\hline Outfall 001 & IOB0980-01 & P5072_2989_007 & water & 1613 B \\
\hline Outfall 002 & IOB0981-01 & P5072_2989_013 & water & 1613 B \\
\hline Outfall 003 & IOB0988-01 & P5072_2989_012 & water & 1613 B \\
\hline Outfall 004 & IOB1002-01 & P5072_2989_009 & water & 1613 B \\
\hline Outfall 005 & IOB0992-01 & P5072_2989_010 & water & 1613 B \\
\hline Outfall 006 & IOB0993-01 & P5072_2989_002 & water & 1613 B \\
\hline Outfall 007 & IOB0997-01 & P5072_2989_004 & water & 1613 B \\
\hline Outfall 008 & IOB0996-01 & P5072_2989_003 & water & 1613 B \\
\hline Outfall 009 & IOB1001-01 & P5072_2989_001 & water & 1613 BB \\
\hline Outfall 010 & IOB1004-01 & P5072_2989_011 & water & 1613 B \\
\hline Outfall 011 Composite & IOB1014-01 & P5072_2989_005 & water & 1613B \\
\hline Outfall 011 & IOB1008-01 & P5072_2989_008 & water & \(1613 B\) \\
\hline Outfall 018 & & & \\
\hline
\end{tabular}
\begin{tabular}{llr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

All of the samples in these SDGs were received at Del Mar Analytical within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\) except sample Outfall 009 which was at \(8^{\circ} \mathrm{C}\). Due to non-volatile nature of the analytes, no qualifications were necessary for the elevated cooler temperature. The samples were received at Pace Analytical with cooler temperatures of \(1.6^{\circ} \mathrm{C}, 2.3^{\circ} \mathrm{C}\), and \(3^{\circ} \mathrm{C}\). The samples were received at Alta Analytical Perspectives with cooler temperatures of \(1^{\circ} \mathrm{C}\) and \(3^{\circ} \mathrm{C}\). According to the laboratory login sheets, all samples were received intact and in good condition at Del Mar and Alta AP. No sample conditions were available for review for the sample receipt at Pace. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

It appears that the samples were initially sent from Del Mar Analytical to Pace Analytical then subsequently shipped to Alta Analytical Perspectives. The COCs from the field to Del Mar, Del Mar to Pace, and Pace to Alta were available for review. The COCs were legible and signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. The custody seals were not present on the coolers upon receipt at either Del Mar or Alta. No custody seal information was available for Pace. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The samples were extracted and analyzed within a year of collection. No qualifications were required.

\subsection*{2.2 INSTRUMENT PERFORMANCE}

Following are findings associated with instrument performance:

\subsection*{2.2.1 GC Column Performance}

A Column Performance Check Standard (CPSM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed prior to initial calibration analysis. A separate CPSM was not analyzed for daily analytical sequence; instead, CPSM compounds were added to OPR analysis. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and \(2,3,7,8-\mathrm{TCDD}\) reported as less than \(25 \%\). No qualifications were required.

\subsection*{2.2.2 Mass Spectrometer Performance}

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.
\begin{tabular}{llr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\subsection*{2.3 CALIBRATION}

\subsection*{2.3.1 Initial Calibration}

There was one initial calibrations, analyzed \(08 / 12 / 04\). The calibrations each consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with \(\%\) RSDs \(\leq 20 \%\) for the native compounds and \(\leq 35 \%\) for the labeled compounds. The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.3.2 Continuing Calibration}

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.4 BLANKS}

One method blank (\(0 _2989\) MB001) was extracted and analyzed with the samples in these SDGs. There were no detects reported in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One Ongoing Precision Recovery (OPR) sample (0_2989_OPR001) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of the Method 1613. No qualifications were required.

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

\subsection*{2.7 FIELD QC SAMPLES}

Following are findings associated with field QC :

\subsection*{2.7.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.
\begin{tabular}{llr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\subsection*{2.7.2 Field Duplicates}

No field duplicate samples were identified for these SDGs.

\subsection*{2.8 INTERNAL STANDARDS}

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

\subsection*{2.9 COMPOUND IDENTIFICATION}

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data. The laboratory reported total PeCDFs detects in samples Outfall 005 , Outfall 006, Oufall 007, and Outfall 011 . The reviewer deemed the signals used to be below the signal-to-noise ratio of 2.5 and the results were changed to nondetects. A false negative for total HxCDD was noted in sample Outfall 001 and was changed to a detect. No further qualifications were required.

\subsection*{2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the lower method calibration level (MCL) were qualified as estimated, "JJ." The laboratory did not flag OCDD in samples Outfall 002 and Outfall 003 although the reported concentrations were below the lower MCL. OCDD in these samples was qualified as estimated, "IT" The laboratory did not notate detects below the lower MCL for totals. These totals were qualified as estimated, "J." The "DNQ" qualification code was applied only if all components of the totals were below the lower MCL.

The laboratory indicated that one of the non- \(2,3,7,8\) substituted HxCDD detect, present in majority of the samples, was due to recovery standard (\(13 \mathrm{C}-1,2,3,4,6,7-\mathrm{HxCDD}\)) contribution. This compound was also present in the method blank. This compound was not included in the total HxCDD concentration. Several total HxCDD results could not be reproduced from the raw data by the reviewer and were hand-corrected on the Form I. No further qualifications were required.

\(\qquad\)

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}

\section*{amec \({ }^{\text {® }}\)}

\section*{DATA VALIDATION REPORT}

\author{
NPDES \\ Monitoring
}

\author{
ANALYSIS: METALS \\ SAMPLE DELIVERY GROUPS: IOB0993 \& IOB0996
}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: IOB0993/IOB0996 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Metals \\ QC Level: Level IV \\ No. of Samples: 2 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: L. Jarusewic \\ Date of Review: March 23,2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, SW-846 Method 6010B for Inductively Coupled Plasma, SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 007 & Outfall 007 & IOB0993-01 & Water & ILM04 \\
\hline Outfall 009 & Outfall 009 & IOB0996-01 & Water & ILM04 \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

Sample Outfall 007 was received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\) and sample Outfall 009 was received above the temperature limits at \(8^{\circ} \mathrm{C}\); however, as the sample had insufficient time to cool in transit to the laboratory, no qualifications were required. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by field and laboratory personnel. The COCs accounted for all samples and analyses presented in these SDGs. No sample qualifications were required.

\subsection*{2.1.3 Holding Times}

The dates of collection recorded on the COCs and the dates of analysis recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP and ICP/MS metals and 28 days for mercury. No qualifications were required.

\subsection*{2.2 ICP-MS TUNING}

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. The laboratory performed the required tune solution analyses. The \%RSDs for the tune were all within the \(5 \%\) control limit. The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

\subsection*{2.3 CALIBRATION}

The ICV and CCV results showed acceptable recoveries, \(90-110 \%\) for the ICP and ICP/MS and 80 \(120 \%\) for mercury. The ICP reporting limit check standard for silver was recovered below the control limits at \(48 \%\); therefore, nondetected silver in samples Outfall 007 and Outfall 009 was qualified as estimated, "UJ." The remaining reporting limit check standards were recovered within the AMEC control limits of \(70-130 \%\). No further qualifications were required.
\begin{tabular}{lrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOB0993/IOB0996 \\
\hline
\end{tabular}

\subsection*{2.4 BLANKS}

There were detects and negative results reported for the method blanks and bracketing CCBs associated with the samples in these SDGs; however, the blank results were insufficient to qualify either sample. No qualifications were required due to the method and calibration blank results.

\subsection*{2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)}

Results were not provided for the ICP/MS spiked interferents phosphorus, sulfur, carbon, chloride, and titanium. The reviewer noted that positive results for cadmium and copper above the reporting limit were reported in the ICSA analyses. The results for potassium and sodium were above the calibration range of the instrument in both the ICSA and ICSAB analyses. The results for aluminum exceeded the calibration range of the instrument in the ICSA analysis and were low with a recovery of \(78.3 \%\) in the ICSAB analysis; however, as aluminum was not reported from the ICP/MS, no qualifications were required. Antimony and lead were not spiked into the ICSAB solution; therefore, the ICSAB recoveries could not be assessed. The validator reviewed the raw data for the site sample ICS/MS analyses for the level of reported interferents, \(\mathrm{Al}, \mathrm{Ca}, \mathrm{Fe}\), and Mg , and determined that the concentration of interferents was not high enough to cause matrix effects. No assessment could be made with respect to possible interference from phosphorus, sulfur, carbon, chloride, and titanium. No qualifications were required.

The ICSA/AB analyses were not run on the same day as the site samples except for selenium in sample Outfall 007. The recoveries for the interferents and spiked analytes were within the control limits of \(80-120 \%\) for the ICP analyses. Detects for zinc and negative results for chromium that were greater than the applicable reporting limits were reported in the ICSA analyses; however, the validator reviewed the raw data for the site sample ICP analysis for the level of reported interferents, \(\mathrm{Al}, \mathrm{Ca}, \mathrm{Fe}\), and Mg , and determined that the concentration of interferents was not high enough to cause matrix affects. No sample qualifications were required due to the ICP ICS analysis.

\subsection*{2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The ICP LCS sample was identified as 5B17097-BS1 and the ICP/MS LCS sample was identified as 5B17099-BS1. The mercury LCS sample was identified as 5B15070-BS1. The LCS results on the summary forms and in the raw data were within the laboratory-established ICP, ICP/MS, and mercury control limits of \(85-115 \%\). No qualifications were required.

\subsection*{2.7 LABORATORY DUPLICATES}

No MS/MSD or duplicate analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.
\begin{tabular}{lll}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOB0993/IOB0996 \\
\hline
\end{tabular}

\subsection*{2.8 MATRIX SPIKE}

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on LCS results.

\subsection*{2.9 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.10 ICP/MS SERIAL DILUTION}

No serial dilution analysis was performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.11 INTERNAL STANDARDS PERFORMANCE}

The ICP and ICP/MS internal standard recoveries for the site samples and associated QC sample analyses were within the \(60-125 \%\) control limits except for scandium; however, scandium was not associated with the site samples and no qualifications were required.

\subsection*{2.12 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit were qualified as estimated, "J." A negative value greater than the reporting limit for selenium was reported at \(-0.0088 \mathrm{mg} / \mathrm{L}\) for sample Outfall 007, indicating the ICP/MS could not effectively detect selenium at the level reported; therefore, the reviewer raised the reporting limit and the MDL for selenium to the level of interference for Outfall 007. No further qualifications were required.

\subsection*{2.13 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

\subsection*{2.13.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.
\begin{tabular}{lll}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOB0993/IOB0996 \\
\hline
\end{tabular}

\subsection*{2.13.2 Field Duplicates}

There were no field duplicate analyses performed in association with the site samples.
```

MWH-Pasadena/Boeing Project ID: Arnual Outfall }00
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Artention: Bronwyn Kelly

```

Project ID: Arnual Outfall 009
Report Number: \(10 \mathrm{B0996}\) Sampled: 0211105

\section*{DRAFT: METALS}

\title{
MDL Reporting Sample Dilution Date Date Cata
} Batch Limit Limit Result FactorExtracted Analyzed Quelifier

\section*{Sample ID: 1OB0996-01 (DRAFT: Outfall 009 - Water) - cont.} Reporting Units: mg/l

\section*{Arsenic}

Beryllium
Chromium
Nickel
Selenium
Silver
Thallium
Zinc
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & & \begin{tabular}{l}
ata \\
lifiers
\end{tabular} \\
\hline Sample ID: Report & tfall 009 & er) - con & & & & & & & del & \\
\hline Arsenic & EPA 200.7 & 5B17097 & 0.0038 & 0.0050 & ND & & & & & \\
\hline Beryllium & EPA 200.7 & 5B17097 & 0.00062 & 0.0020 & ND & & & & & \\
\hline Chromium & EPA 200.7 & 5B1709? & 0.00068 & 0.0050 & 0.0011 & & 02/17/05 & & & \\
\hline Nickel & EPA 200.7 & 5B1709? & 0.0020 & 0.010 & 0.0020 & & & \(02 / 7\) & & \\
\hline Selenium & EPA 200.7 & 5B17097 & 0.00 .46 & 0.0050 & ND & 1 & 02i1705 & 02/17/05 & & Q \\
\hline Silver & EPA 200.7 & SB17097 & 0.0013 & 0.010 & ND & 1 & 0241705 & 05 & & 3 \\
\hline Thallium & EPA 200.7 & 5817097 & 0.0031 & 0.0050 & ND & & 02i1705 & 05 & & \\
\hline Zinc & EPA 200.7 & 5B17097 & 0.0037 & 0.020 & 0.0063 & 1 & 02/17/05 & 02/17105 & J & DNQ \\
\hline
\end{tabular}

\section*{AMEC VALIDATIED} LEVEL IV

\section*{DRAFT REPORT \\ DRAFT REPORT \\ data subject to change}
\begin{tabular}{lll}
MWH-Pasadena/Boeing & Project ID: Arnual Outfall 009 & Sampled: \(0211 / 05\) \\
300 North Lake Avenue, Suite 1200 & Report Number: \(10 B 6996\) & Received: 021105 \\
Pasadena, CA 91101 &
\end{tabular}

\section*{DRAFT: METALS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & MDL Limit & Reporting Limit & Sample Dilution Date Result FactorExtracted & \multicolumn{2}{|l|}{Dilution Date Factor Extracted} & \multicolumn{3}{|l|}{Date \(\left.\begin{array}{c}\text { Data } \\ \text { Analyzed }\end{array}\right)=\) ualifier} \\
\hline Sample ID: Report & Outfall 009 . & ater) - cont & & & & & & & El & Loxts \\
\hline Aluminum & EPA 200.7 & 5B17097 & 47 & 50 & 370 & 1 & 0217/05 & 02/1705 & & \\
\hline Antimony & EPA 200.8 & 5B17099 & 0.18 & 2.0 & ND & 1 & 02/17/05 & 02,1705 & U & \\
\hline Cadmium & EPA 200.8 & 5B17099 & 0.015 & 1.0 & 0.035 & 1 & 02/17/05 & 02/17/05 & & DNQ \\
\hline Copper & EPA 200.8 & 5B17099 & 0.49 & 2.0 & 2.2 & & 0217/05 & 0217105 & & \\
\hline Lead & EPA 200.8 & 5B17099 & 0.13 & 1.0 & 0.83 & & 02/17/05 & & & Q \\
\hline Mercury & EPA 245.1 & 5B15070 & 0.063 & 0.20 & 0.13 & & 02/15/05 & 02/15/05 & J & Q \\
\hline Vanadium & EPA 200.7 & 5B17097 & 1.4 & 10 & 1.4 & & 02117/05 & 02/17/05 & & \(\downarrow\) \\
\hline
\end{tabular}

\section*{amec validaito}
LEVEL IV

\section*{DRAFT REPORT}

DRAFT REPORT
DATA SUBJECT TO CHANGE

\section*{amec \({ }^{\circ}\)}

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\section*{ANALYSIS: PESTICIDES/PCBs}

\section*{SAMPLE DELIVERY GROUP: IOB0993, IOB0996}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: IOB0993, IOB0996 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Pesticides/PCBs \\ QC Level: Level IV \\ No. of Samples: 2 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: K. Shadowlight \\ Date of Review: March 23, 2005
}

The samples listed in Table 1 were validated based on the general guidelines outined in the AMEC Data Validation Procedures (DVP-4, Rev.2), EPA Method 608, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary form as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & Method \\
\hline Outfall 007 & Outfall 007 & IOB0993-01 & water & 608 \\
\hline Outfall 009 & Outfall 009 & IOB0996-01 & water & 608 \\
\hline
\end{tabular}
\begin{tabular}{lr}
& \begin{tabular}{c}
Project: \\
DPDES \\
DATA VALIDATION REPORT
\end{tabular} \\
SDG:IOB0993, IOB0996 \\
Analysis: & PesUPCB
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The cooler for sample Outfall 009 was received above the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\), at \(8^{\circ} \mathrm{C}\); however, the sample was transported directly to the laboratory and had not completely cooled in transit. The cooler for sample Outfall 007 was received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). The analysis did not require preservation, and no preservation was noted in the field. The COCs noted that the samples were received intact. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by both field and laboratory personnel. The COCs accounted for the analyses presented in these SDGs. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The water samples were extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

\subsection*{2.2 PESTICIDES INSTRUMENT PERFORMANCE}

No resolution check standards or breakdown check standards are required by Method 608 for pesticides, and according to the raw data provided, a resolution check standard was not analyzed by the laboratory. The laboratory did analyze a breakdown check standard with a breakdown of \(\leq 20 \%\) for individual components (4,4-DDT and endrin) and \(\leq 30 \%\) for the total, as suggested in the National Functional Guidelines. A review of the raw data indicated that the analytical run time was of sufficient length to provide adequate standard separation. The two analytical columns used in the analyses were within the guidelines specified in the methods.

According to the laboratory SOP and the initial calibration raw data, the retention time windows are \(\pm 0.10\) minutes for both surrogates and target compound calibration standards. A review of the raw data indicated that the laboratory retention time criteria were met for the surrogates and pesticide calibration standards. No qualifications were required.

\subsection*{2.3 CALIBRATION}

\subsection*{2.3.1 Analytical Sequence}

Based on the data provided, the analytical sequences were in accordance with the requirements of Method 608. No qualifications were required.
\begin{tabular}{|c|c|}
\hline & Project: NPDES \\
\hline & SDG:IOB0993, IOB0996 \\
\hline DATA VALIDATION REPORT & Analysis: Pest/PCB \\
\hline
\end{tabular}

\subsection*{2.3.2 Initial Calibration}

There was one initial calibration dated 02/15/05 associated with the pesticide analyses of the samples, which consisted of six point calibrations for all pesticide target compounds on two analytical columns. The \%RSDs were within the EPA Method 608 QC limit of \(\leq 10 \%\) or the \(r^{2}\) values were \(\geq 0.995\) on both analytical columns. There was one initial calibration dated 02/11/05 associated with the PCB analyses of samples Outfall 007 and Outfall 009, consisting of five points for Aroclor 1016 and Aroclor 1260. Single point calibrations for Aroclor 1242 were also analyzed. The average \%RSDs for the individual peaks of Aroclor 1016 and Aroclor 1260 were \(\leq 10 \%\) or the \(r^{2}\) values were \(\geq 0.995\) on both analytical columns. An ICV was analyzed immediately following each of the initial calibrations. The \%Ds for all target compounds were within the QC limits of \(15 \%\) on both analytical columns. A representative number of \%RSDs and ICV \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No further qualifications were required.

\subsection*{2.3.3 Continuing Calibration}

The pesticide analyses for samples Outfall 007 and Outfall 009 were bracketed by four continuing calibrations, two preceding and two following the analyses. The \%Ds for target compound 4,4'-DDD (02/16/05 at 08:59) and for delta-BHC, aldrin, and 4,4'-DDT (02/16/05 at \(09: 28\)) exceeded \(15 \%\) on Channel B. The \%Ds for numerous target compounds exceeded \(15 \%\) on Channel A in the bracketing calibration standard analyzed 02/16/05 (08:59 and 09:28); however, as all results for these samples were reported from channel B, only the nondetect results for the aforementioned \%D outliers were qualified as estimated, "UJ," in samples Outfall 007 and Outfall 009 . The remaining \%Ds were within the Method QC limit of \(\pm 15 \%\) for the remaining calibrations. The PCB analyses of these samples were bracketed by two CCVs and the \%Ds for Aroclor 1016 and Aroclor 1260 were \(\leq 15 \%\). A representative number of \(\%\) Ds were recalculated from the raw data and no transcription or calculation errors were noted. No further qualifications were required.

\subsection*{2.4 BLANKS}

\subsection*{2.4.1 Instrument Blanks}

An instrument blank was analyzed at the beginning of each analytical sequence. Crosscontamination was not evident in the samples. No qualifications were necessary.

\subsection*{2.4.2 Method Blanks}

One water method blank (5B15038-BLK1) was extracted and analyzed with these SDGs. There were no pesticide target compounds or Aroclors detected in the method blank. Review of the chromatograms showed no false negatives. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One blank spike/blank spike duplicate pair (5B15038-BS1/BSD1) was extracted and analyzed with these SDGs. The recoveries for all spiked pesticide target compounds and Aroclors were within the laboratory-established QC limits and the RPDs were \(\leq 30 \%\). A representative number of recoveries were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.6 SURROGATE RECOVERY}

The sample and all QC samples were fortified with the surrogate compounds decachlorobiphenyl and tetrachloro-m-xylene. Surrogate recoveries for the pesticide and PCB analyses of the samples were within the laboratory-established. The recoveries were calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

There were no MS/MSD analyses associated with these SDGs. Method accuracy and precision were assessed based on the blank spike/blank spike duplicate results. No qualifications were required.

\subsection*{2.8 SAMPLE CLEANUP PERFORMANCE}

According to the laboratory extraction benchsheets, no cleanups were performed on the water samples. No qualifications were required.

\subsection*{2.9 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.9.1 Field Blanks and Equipment Rinsates}

There were no field QC samples associated with the samples in these SDGs. No qualifications were required.

\subsection*{2.9.2 Field Duplicates}

There were no field duplicate samples associated with the sample in these SDGs.

\subsection*{2.10 COMPOUND IDENTIFICATION}

The laboratory analyzed for pesticide target compounds and PCBs by EPA Method 608. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for the samples in these SDGs. No qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification was verified for these SDGs; however, as there were no detects reported in the samples, quantitation was verified by recalculating a representative number of

Project: NPDES SDG:IOB0993, IOB0996 Analysis: Pest/PCB
blank spike and surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibration and the laboratory MDL studies. No qualifications were required.
, 26014 FAX \(9649: 260320\)

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Arnual Outfall 009
Report Number: IOB0996

Sampled: 02/1/05
Received: 02/1105

DRAFT: ORGANOCHLORINE PESTICIDES (EPA 608)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & Dilutio Factor & n Date Extracted & \begin{tabular}{l}
Date \\
Analyzed
\end{tabular} & ata lifiers \\
\hline \multicolumn{11}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Sample ID: 1OB0996-01 (DRAFT: Outfall 009 - Water) - cont. \\
Reporting Units: ug/ \\
Aldrin
\end{tabular}}} \\
\hline & & & & & & & & & & \\
\hline alpha-BHC & & EPA 608 & SB15038 & 0.050
0.015 & 0.10
0.10 & ND & 0.962 & 02/15/05 & 02/1605 115 & \(C\) \\
\hline beta-BHC & & EPA 608 & 5 B 15038 & 0.015 & 0.10
0.10 & ND & 0.962 & 02/15105 & 021605 4 & \\
\hline delta-BHC & & EPA 608 & 5 B 15038 & 0.015 & 0.10
0.20 & ND & 0.962 & 02115/05 & 02/16/05 & \\
\hline gamma-BHC (Lindane) & & EPA 608 & 5 BI 5038 & 0.015 & 0.20
0.10 & ND & 0.962 & 02/15/05 & 0211605 115 & \(c\) \\
\hline Chlordane & & EPA 608 & SB15038 & 0.20 & 0.10
1.0 & ND & 0.962 & 02/15/05 & 02/16/054 & \\
\hline 4,4'-DOD & & EPA 608 & 5B15038 & 0.015 & 1.0
0.10 & ND & 0.962 & 02/15/05 & 02/16/05 & \\
\hline 4,4'-DDE & & EPA 608 & 5B15038 & 0.020 & 0.10
0.10 & ND & 0.962 & 02/15/05 & 02/1605 U & \\
\hline 4,4*-DDT & & EPA 608 & 5B15038 & 0.050 & 0.10 & ND & 0.962 & 02il15/05 & 02/1605 4 & \\
\hline Dieldrin & & EPA 608 & 5B15038 & 0.015 & 0.1 & ND & 0.962 & 02/15/05 & 02/16/05 4 & \(C\) \\
\hline Endosulfan I & & EPA 608 & SB15038 & 0.015 & 0. & ND & 0.962 & 02/15/05 & 02/1605 l & \\
\hline Endosulfan II & & EPA 608 & SB15038 & 0.040 & 0 & ND & 0.962 & 02/15/05 & 02i16/05 & \\
\hline Endosulfan sulfate & & EPA 608 & 5 B 15038 & 0.015 & 0.2 & ND & 0.962 & 02/15/05 & 02/1605 & \\
\hline Endrin & & EPA 608 & 5B15038 & 0.015 & 0.1 & ND & 0.962 & 02/15/05 & 02/1605 & \\
\hline Endrin aldehyde & & EPA 608 & 5B15038 & 0.045 & 0.10 & ND & 0.962 & 02,15:05 & \(02 / 1605\) & \\
\hline Endrin ketone
Heptachlor & & EPA 608 & 5 B 150138 & 0.020 & 0.10 & ND & 0.962 & 02/1505 & 0216105 & \\
\hline Heptachlor
Heptachlor epoxide & & EPA 608 & 5B15038 & 0.030 & 0.10 & ND & 0.962 & 02/15:05 & 02/16!05 & \\
\hline Heptachlor epoxide
Methoxychlor & & EPA 608 & 5B15038 & 0.020 & 0.10 & ND & 0.962 & 02.15/05 & 02/1605 & \\
\hline Methoxychlor
Toxaphene & & EPA 608 & 5 B 5038 & 0.035 & 0.10 & N & 0.962 & 02/15:05 & \(02 / 1605\) & \\
\hline Toxaphene
Surrogate Tetrachlorom & & EPA 608 & 5B15038 & 1.5 & 0.10
50 & & & \[
02 / 15 / 05
\] & 02/1605 & \\
\hline Surrogate: Tetrachloro-m
Surrogate: Decachlorobipher & lone & 0\%) & & & 5.0 & \[
\begin{aligned}
& \text { ND } \\
& 58 \%
\end{aligned}
\] & 0.962 & 02/15/05 & 02/16/05 V & \\
\hline Surrogate: Decachlorobip & nyl & & & & & \(50 \%\)
\(77 \%\) & & & & \\
\hline
\end{tabular}

DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE 4,4 , 41 I

DRAFT: TOTAL PCBS (EPA 608)

\section*{AMES VALIDATED}

DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE

\title{
CONTRACT COMPLLANCE SCREENING FORM FOR HARDCOPY DATA
}

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer P. Meeks
Analysis/Method Radionuclides

Laboratory Del Mar
Reviewer P. Meeks
Analysis/Method Radionuclides

Package ID T711RA4
Task Order 313150010
SDG No. Multiple
No. of Analyses 11
Date: \(03 / 24 / 05\)
Reyiewer's Signature
P. Mes

\section*{ACIION ITEMS*}
1. Case Narrative Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Qualifications applied for

Analysis Protocol, e.g.,
Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification
and Quantitation
System Performance
1. Exceeded holding times.
2. Matrix spike recovery outlier.
3. Laboratory duplicate RPD outlier.
4. Incorrect sample container.
5. Detector efficiency outliers.
6. Incorrect sample preservation.
7. Reanalysis rejacted in favor of origimai rcsulf Three tritium results rejected due to incorrect sample preservation.
\(\qquad\)
\(\square\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{COMMENTS \({ }^{\circ}\)}
* Subcontracted analytical laboratory is not meeting contract and/or method requirements.
- Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

\title{
amec \({ }^{\theta}\)
}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES \\ Monitoring
}

\author{
ANALYSIS: RADIONUCLIDES \\ SAMPLE DELIVERY GROUPS: IOB0418, IOB0980, IOB0993, IOB0996, IOB0997, IOB1001, IOB1004, IOB1014, \& IOB1069
}

\author{
Prepared by \\ AMEC-Denver Operations \\ 550 South Wadsworth Boulevard, Suite 500 \\ Lakewood, Colorado 80226
}
\begin{tabular}{lr}
& Project: \\
DATA VALIDATION REPORT & SDG No.:
\end{tabular} MPDES

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: IOB0418, IOB0980, IOB0993, IOB0996, IOB0997, IOB1001, IOB1004, IOB1014, \& IOB1069 \\ Project Manager: B. McIlvaine \\ Matrix: Water \\ Analysis: Radionuclides \\ QC Level: Level IV \\ No. of Samples: 11 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: P. Meeks \\ Date of Review: March 23, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the EPA Prescribed Procedures for Measurements of Radioactivity in Drinking Water, Methods 900.0, 905.0, and 906.0, and validation procedures outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{lr}
& Project: \\
DATA VALIDATION REPORT & SDG No.:
\end{tabular} Multiple

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & Del Mar ID & Eberline ID & Matrix & COC Method \\
\hline Outfall 002 & IOB0418-01 & \(8237-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 001 & IOB0980-01 & \(8265-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 001RE1 & IOB0980-01RE1 & \(8265-001\) & water & 900.0 \\
\hline Outfall 007 & IOB0993-01 & \(8261-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 009 & IOB0996-01 & \(8262-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 008 & IOB0997-01 & \(8266-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 010 & IOB1001-01 & \(8267-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 011 & IOB1004-01 & \(8263-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 011 & IOB1014-01 & \(8264-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 003 Filtered & IOB1069-01 & \(8268-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 003 Unfiltered & IOB1069-02 & \(8268-002\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 003 Substrate & IOB1069-03 & \(8269-001\) & water & \\
\hline P & & & 901.1 \\
\hline
\end{tabular}
\begin{tabular}{lr}
& Project: \\
DATA VALIDATION REPORT & SDG No.: \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

Most samples in these SDGs were received at Del Mar Analytical within the temperature limits of \(4 \pm 2^{\circ} \mathrm{C}\). After the analyses were complet, Del Mar Analytical sent extra volume of Outfall 001 to Eberline for gross alpha reanalysis. No temperature information was provided by Eberline, the subcontract laboratory; however, as it is not necessary to chill radiological samples, no qualifications were required. All samples were received intact and in good condition.

According to the Eberline login sheet, Outfall 002 was received unpreserved. It was confirmed in correspondence with Eberline dated \(01 / 31 / 05\), that the gross alpha, gross beta, and strontium samples were not preserved upon receipt; therefore, the nondetected strontium result for Outfall 002 was qualified as estimated, "UJ." According to the Los Angeles Water Quality Control Board (LARWQCB) guidance letter dated \(01 / 12 / 05\), unfiltered samples should not be preserved and filtered aliquots should be preserved after filtration.

Eberline noted on their login sheets that Outfall 007, Outfall 008, Outfall 009 and Outfall 010 were received preserved, in plastic containers. Per the method, tritium samples should not be preserved. Per a telephone conversation with M. Mannion of Eberline, the pH of these samples was adjusted back to about 7 upon receipt at Eberline. Due to the improper pH adjustments, the tritium results for Outfall 007, Outfall 008, Outfall 009 , and Outfall 010 were rejected, " \(R\) " Additional, unpreserved aliquots of Outfall 007 , Ouffall 008, Outfall 009 , and Outfall 010 were sent from Del Mar to Eberline for tritium reanalysis. These results were not available at the time of this report.

Additionally, according to the 01/12/05 LARWQCB guidance letter, samples collected for tritium analysis should be submitted in glass containers to avoid potential loss of tritium by sorption onto the plastic container. As the Outfall 007, Outfall 008, Outfall 009 and Outfall 010 tritium samples were previously rejected, no further qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The original COCs were signed and dated by field and laboratory personnel and the transfer COCs were signed by personnel from both laboratories. Filtered, unfiltered, and substrate analyses were requested for Outfall 011 (IOB1014) on the original COC from the field to Del Mar. There instructions did not appear on the transfer COC to Eberline and subsequently only filtered unanalyses were preformed. The remaining original and transfer COCs accounted for the samples and analyses presented in this data package. Eberline did not list the MWH IDs on the Form Is; therefore, the reviewer edited the Form Is to reflect these IDs. A reanalyses for gross alpha was requested for Outfall 001. To distinguish between the two results, the reviewer added an "RE1," suffix to the Outfall 001 and Del Mar Analytical IDs. No qualifications were required.
\begin{tabular}{cc}
& Project: \\
DATA VALIDATION REPORT & SDG No.:
\end{tabular} MPDES

\subsection*{2.1.3 Holding Times}

The tritium and strontium samples were analyzed within 180 days of collection. The Outfall 002 and Outfall 003 Unfiltered gross alpha and gross beta samples were analyzed beyond the five day holding time for unpreserved samples; therefore, these gross alpha and gross beta results were qualified as estimated, "J," for detects and, "UJ," for nondetects. No further qualifications were necessary.

\subsection*{2.2 CALIBRATION}

The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

\section*{Gross Alpha}

The initial calibration included with the data was performed in February 2003. All detector efficiencies were below \(20 \%\); therefore, the gross alpha results were qualified as estimated, "UJ," for nondetects and, "JJ" for detects, unless otherwise rejected (see section 2.10).

\section*{Tritium}

No calibration standards were analyzed for this method. According to the laboratory, every sample was spiked for efficiency determination; therefore, no calibration is necessary. All detector efficiencies in the samples were at least \(20 \%\) and were considered acceptable. All internal spike efficiency to default efficiency ratios were near 1 , indicating that quenching did not occur.

\section*{Gross Beta and Strontium-90}

The initial calibrations were performed in June 1997. All gross beta detector efficiencies were at least \(20 \%\) and were considered acceptable. All strontium chemical yields were at least \(65 \%\) and were considered acceptable and the strontium continuing calibration results were within the laboratory control limits. No qualifications were necessary.

\section*{Cesium}

The reviewer confirmed that the 662 KeV peak was used for quantitation, with an efficiency of \(85 \%\). No qualifications were necessary.

\subsection*{2.3 BLANKS}

No measurable activities were detected in the method blanks; therefore, no qualifications were necessary.

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

Three blank spikes (\(8261-002,8237-002,8269-002\)) were analyzed in association with the samples in these SDGs. The gross alpha, gross beta, and strontium recoveries for 8261-002 were outside of the 3sigma limits, but all had acceptable recoveries of \(80 \%, 88 \%\), and \(108 \%\), respectively. The remaining blank spike results were within the 3 -sigma limits. No qualifications were necessary.
\begin{tabular}{lrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\subsection*{2.5 LABORATORY DUPLICATES}

The laboratory performed duplicate analysis on Outfall 002, Outfall 007, and Outfall 003 Substrate. The gross alpha and tritium RPDs were greater than \(20 \%\) for Outfall 007. The gross alpha results were within 3-sigma and were considered acceptable, but the tritium result was just above 3 -sigma; however, as no tritium detects were retained (see section 2.1.1), no qualifications were required. The remaining RPD were \(\leq 20 \%\). No further qualifications were necessary.

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

The laboratory performed matrix spike analyses on Outfall 002 and Outfall 007 for gross alpha, gross beta, and tritium. The Outfall 002 recovery for gross alpha was below 3 -sigma; therefore, the gross alpha results in all samples except Outfall 007 were qualified as estimated, "J," for detects and, "UJ," for nondetects. As Outfall 007 had an acceptable recovery for gross alpha, no qualifications were applied. The remaining recoveries were within the 3 -sigma limits. No further qualifications were necessary.

\subsection*{2.7 SAMPLE RESULT VERIFICATION}

An EPA Level IV review was performed for the samples in these data packages. Sample results and MDAs reported on the sample result forms were verified against the raw data and no calculation or transcription errors were noted.

The original planchet for gross alpha in Outfall 001 was recounted once per a request from MWH personnel. The recount yielded an equivalent result as the original count and was not reported. The sample was later reanalyzed from extra sample volume provided by Del Mar Analytical, and was reported as Outfall 001 RE1. As the two gross alpha results were similar, the reviewer rejected, " \(R\)," the reanalysis, Outfall \(001 \mathrm{RE1}\), in favor of the original result, Outfall 001 . No further qualifications were necessary.

\subsection*{2.8 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

\subsection*{2.8.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.8.2 Field Duplicates}

There were no field duplicate samples in these SDGs.

\section*{AMES VALIDATED}

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}

AMEC Earth \& Environmental

\section*{550 South Wadsworth Boulevard}

Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical.
Reviewer L. Calvin
Analysis/Method Semivolatiles by Method 625

Package ID T711SV31
Task Order 313150010
SDG No. IOB0993, IOB0996
No. of Analyses 2
Date: March 23, 2005

\section*{ACTION ITEMS \({ }^{\boldsymbol{*}}\)}

Case Narrative
Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, e.g.,
Qualification was assigned for the following:
Holding Times
GCMMS Tune/Inst. Performance
Calibration
Method blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Intemal Standard Performance
Compound Identification
Quantitation
System Performance
COMMENTS \({ }^{\text {b }}\)
* Subcontracted analytical faboratory is not meeting contract and/or method requirements.
b Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

\section*{amec \({ }^{\text {d }}\)}

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\author{
ANALYSIS: SEMIVOLATILES \\ \section*{SAMPLE DELIVERY GROUP: IOB0993, IOB0996}
}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ SDG\#: IOB0993, IOB0996 \\ Project Manager: B. McIlvaine \\ Matrix: Water \\ Analysis: Semivolatiles \\ QC Level: Level IV \\ No. of Samples: 4 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: L. Calvin \\ Date of Review: March 23, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Semivolatile Organics (DVP-3, Rev. 2), EPA Method 625, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{rrr}
& \begin{tabular}{r}
Project: \\
DATA VALIDATION REPORT
\end{tabular} & \begin{tabular}{r}
NPDES \\
SDG: \\
IOB0993, 996
\end{tabular} \\
SVOC
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Lab No. & Matrix & Method \\
\hline Outfall 007 & Outfall 007 & IOB0993-01 & water & 625 \\
\hline Outfall 009 & Outfall 009 & IOB0996-01 & water & 625 \\
\hline
\end{tabular}
\begin{tabular}{ll}
& Project: \\
DATA VALIDATION REPORT & \begin{tabular}{c}
NPDES \\
SDG:
\end{tabular} \\
IOB0993, 996 \\
SVOC
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Sample Outfall 007 was received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). Sample Outfall 009 was received above the temperature limits at \(8^{\circ} \mathrm{C}\); however, as the sample was couriered directly to the laboratory, it had not completely cooled in transit. The analysis did not require preservation, and no preservation was noted in the field. The COCs noted that the samples were received intact. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by both field and laboratory personnel. The COCs accounted for the analyses presented in these SDGs. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

Both the original extraction and reextraction of the water samples were performed within seven days of collection. The samples analyzed within 40 days of extraction. No qualifications were required.

\subsection*{2.2 GC/MS TUNING}

The DFTPP tune met the ion abundance criteria specified in Method 625. No qualifications were required.

\subsection*{2.3 CALIBRATION}

The initial calibrations associated with these SDGs were dated \(02 / 15 / 05\) and \(02 / 17 / 05\) (benzidine only). The average RRFs for were \(\geq 0.05\) for all applicable target compounds. The \(\%\) RSDs were \(\leq 35 \%\) or \(r^{2} \geq 0.995\) with the exception of the \(\%\) RSD for pentachlorophenol, and the \(r^{2}\) for benzoic acid, hexachlorocyclopentadiene, and 2,4-dinitrophenol. The nondetect results for the aforementioned compounds were qualified as estimated, "UJ," in both site samples. The continuing calibrations associated with the sample analyses were analyzed \(02 / 15 / 05\) and \(02 / 17 / 05\). The RRFs for all target compounds were \(\geq 0.05\), and the \(\% \mathrm{Ds}\) were \(\leq 20 \%\). A representative number of average RRFs, \%RSDs, and \({ }^{2}\) s for the initial calibration and RRFs and \%Ds for the continuing calibration were checked from the raw data, and no calculation or transcription errors were noted. No further qualifications were required.

\subsection*{2.4 BLANKS}

Two method blanks (5B13024-BLK1 and 5B17041-BLK1/benzidine only) were extracted and analyzed with these SDGs. There were no detects above the MDLs for any target compounds. Review of the raw data indicated no false negatives. No qualifications were required.
\begin{tabular}{|c|c|c|}
\hline & & \[
\begin{array}{r}
\text { NPDES } \\
\text { IOB0993, } 996
\end{array}
\] \\
\hline DATA VALIDATION REPORT & Analysis: & \\
\hline
\end{tabular}

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One blank spike/ blank spike duplicate pair (5A13024-BS1/BSD1) was originally extracted and analyzed with these SDGs. For blank spike/blank spike duplicate pairs, qualifications are applied, if necessary, to the associated samples based on those recoveries consistently outside of the laboratory-established QC limits in both the blank spike and blank spike duplicate. Results for those compounds with recoveries not consistent within the pair, with RPDs above the QC limit, are qualified as estimated, "UJ" for nondetects and " J " for detects, in the associated samples.

In 5A13024-BSI benzidine was recovered below the QC limits but \(\geq 10 \%\), and in 5A12027BSDI, benzidine was recovered above the QC limits. The RPD for benzidine exceeded the laboratory QC limit. The laboratory reextracted both samples for benzidine only with 5B17041BS1/BSD1 with recoveries and the RPD for benzidine within the laboratory-established QC limits. The remaining recoveries and RPDs for 5A13024-BS1/BSD1 were within the QC limits. A representative number of recoveries and RPDs were calculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.6 SURROGATE RECOVERY}

The sample surrogate recoveries for both samples were within the laboratory QC limits. A representative number of recoveries were calculated from the raw data, and no transcription or calculation errors were noted. No further qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

No MS/MSD analyses were associated with these SDGs. Evaluation of method accuracy and precision was based on blank spike/blank spike duplicate results. No qualifications were required.

\subsection*{2.8 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

\subsection*{2.8.1 Field Blanks and Equipment Rinsates}

There were no field QC samples associated with these SDGs. No qualifications were required.

\subsection*{2.8.2 Field Duplicates}

There were no field duplicate samples associated with these SDGs.

\subsection*{2.9 INTERNAL STANDARDS PERFORMANCE}

The internal standard area counts and retention times were within the control limits established by the continuing calibration standards: \(-50 \% /+100 \%\) for internal standard areas and
\begin{tabular}{|c|c|c|}
\hline DATA VALIDATION REPORT & Project: SDG: & \[
\begin{array}{r}
\text { NPDES } \\
\text { IOB0993, } 996
\end{array}
\] \\
\hline data validaton report & Analysis: & SVOC \\
\hline
\end{tabular}
\(\pm 30\) seconds for retention times. A representative number of recoveries were checked from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.10 COMPOUND IDENTIFICATION}

The laboratory analyzed for semivolatile target compounds by EPA Method 625. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification. No qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification is verified at a Level IV data validation. No calculation or transcription errors were found. The reporting limits were supported by the low level of the initial and the method detection limit study. The reporting limits were not adjusted for sample amount; however, the dilution factors on the sample result summaries reflected the sample amount extracted. Results were reported in \(\mu \mathrm{g} / \mathrm{L}(\mathrm{pbb})\). No qualifications were required.

\subsection*{2.12 TENTATIVELY IDENTIFIED COMPOUNDS}

TICs were not reported by the laboratory for these SDGs. No qualifications were required.

\subsection*{2.13 SYSTEM PERFORMANCE}

Review of the raw data indicated no problems with system performance. No qualifications were required.

Prcject ID: Annual Outfall 009
Report Number: 10B0996

Sampled: 0211/05
Received: 02/1105

\section*{DRAFT: ACID \& BASE/AEUTRALS BY GC/MS (EPA 625)}

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly \\ Project ID: Annual Outfall 009 \\ Report Number: 1OB0996 \\ Sampled: 0211/05 \\ Received: 02:1105
}

DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Project ID: Annual Outfall 009
Pasadena, CA 91101

\section*{DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}

\section*{AMEC VALIDATED}

\section*{DRAFT REPORT}

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

\section*{amec \({ }^{\text {® }}\)}

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\author{
ANALYSIS: VOLATILES
}

\section*{SAMPLE DELIVERY GROUP: IOB0993, IOB0996}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{ccc}
& \begin{tabular}{c}
Project: \\
DATA YALIDATION REPORT
\end{tabular} & \begin{tabular}{c}
NPDES \\
Multiple
\end{tabular} \\
SDG: & Analysis: & VOC \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: IOB0993, IOB0996 \\ Project Manager: B. McIlvaine \\ Matrix: Water \\ Analysis: Volatiles \\ QC Level: Level IV \\ No. of Samples: 4 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: K. Shadowlight \\ Date of Review: March 23, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Volatile Organics (DVP-2, Rev. 2), EPA Method 624, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary forms as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{ccc}
\\
DATA VALIDATION REPORT & \begin{tabular}{c}
Project: \\
SDG:
\end{tabular} & \begin{tabular}{c}
NPDES \\
Multiple
\end{tabular} \\
VOC
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Lab No. & Matrix & Method \\
\hline Outfall 007 & Outfall 007 & IOB0993-01 & water & 624 \\
\hline Trip Blank & Trip Blank & IOB0993-02 & water & 624 \\
\hline Outfall 009 & Outfall 009 & IOB0996-01 & water & 624 \\
\hline Trip Blank & Trip Blank & IOB0996-02 & water & 624 \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The cooler for samples Outfall 009 and Trip Blank (IOB0996) was received above the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\), at \(8^{\circ} \mathrm{C}\); however, the samples were transported directly to the laboratory and had not completely cooled in transit. The remaining samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). The samples were properly preserved. The COC noted that the samples were received intact; however, information regarding absence of headspace was not provided. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by both field and laboratory personnel. The COCs accounted for the analyses presented in these SDGs. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The samples were analyzed within 14 days of collection. No qualifications were required.

\subsection*{2.2 GC/MS TUNING}

The ion abundance windows shown on the quantitation report were consistent with those specified in the EPA Method 624, and all ion abundances were within the established windows. The samples and associated QC were analyzed within 12 hours of the BFB injection times. The Form Vs were verified from the raw data and no discrepancies between the summary forms and the raw data were noted. No qualifications were required.

\subsection*{2.3 CALIBRATION}

Two initial calibrations dated 10/14/04 (acrolein and acrylonitrile only) and 02/07/05, were associated with these SDGs. The average RRF for acrolein was \(<0.05\); therefore, the nondetect results for acrolein were rejected, "R," in all samples. The remaining average RRFs were \(\geq 0.05\) and all \(\%\) RSDs were \(\leq 35 \%\) for the target compounds listed on the sample result summaries. Two continuing calibrations analyzed \(02 / 12 / 05\) and \(02 / 17 / 05\) were associated with the sample analyses. The RRF for acrolein was \(<0.05\) in the continuing calibration dated \(02 / 12 / 05\); therefore, the nondetect results for acrolein were rejected, "R," in all samples. The \%Ds for acrolein and acrylonitrile exceeded \(20 \%\); therefore, nondetect results for acrolein and acrylonitrile were qualified as estimated, "UJ," in samples Outfall 007 and Outfall 009 , unless otherwise rejected. The trip blanks were not qualified for \%D calibration outliers. For all remaining target compounds the \%Ds were \(\leq 20 \%\) and the RRFs were \(\geq 0.05\). A representative number of \(\%\) RSDs and average RRFs from
\begin{tabular}{cc}
DATA VALIDATION REPORT & \begin{tabular}{c}
Project: \\
SDG:
\end{tabular} \\
NPDES \\
Muttiple
\end{tabular}
the initial calibration, and \%Ds and RRFs from the continuing calibration were recalculated from the raw data, and no calculation or transcription errors were found. No further qualifications were required.

\subsection*{2.4 BLANKS}

Two water method blanks (5B17020-BLK1 and 5B12011-BLK1) were associated with these SDGs. There were no detects above the MDLs for the target compounds listed on the sample result summaries. The method blank raw data showed no evidence of false negatives. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

Two water blank spikes (5B17020-BS1 and 5B12011-BS1) were associated with these SDGs. All recoveries were within the laboratory-established QC limits. A representative number of recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.6 SURROGATE RECOVERY}

The surrogates were recovered within the QC limits of \(80-120 \%\) in the samples and associated QC. A representative number of surrogate recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

MS/MSD analyses were not performed on the site samples in these SDGs. Method accuracy was assessed based on the LCS results. No qualifications were required.

\subsection*{2.8 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

\subsection*{2.8.1 Trip Blanks}

Sample Trip Blank (IOB0993) and Trip Blank (IOB0996) were the trip blanks associated with the site samples in these SDGs. There were no target compounds detected above the MDLs in either of the trip blanks. No qualifications were required.

\subsection*{2.8.2 Field Blanks and Equipment Rinsates}

There were no field QC samples associated with these SDGs. No qualifications were required.
\begin{tabular}{ccc}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG: & Multiple \\
Analysis: & VOC
\end{tabular}

\subsection*{2.8.3 Field Duplicates}

There were no field duplicate samples associated with these SDGs.

\subsection*{2.9 INTERNAL STANDARDS PERFORMANCE}

Internal standard area counts and retention times for the samples in these SDGs were within the control limits established by the continuing calibration standards, of \(+100 \% /-50 \%\) for internal standard areas and \(\pm 0.50\) minutes for retention times. A representative number of internal standard areas and retention times were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.10 COMPOUND IDENTIFICATION}

Target compound identification was verified at a Level IV data validation. The laboratory analyzed for volatile target compounds by EPA Method 624. Chromatograms, retention times, and spectra for the samples and QC were examined and no target compound identification problems were noted. No qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification is verified at a Level IV data validation. The reporting limits were supported by the lowest concentrations of the initial calibration standards and by the MDL study. Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike and surrogate recoveries from the raw data. Results were reported in ug/L (ppb). No calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.12 TENTATIVELY IDENTIFIED COMPOUNDS}

The laboratory did not provide TICs for these SDGs. No qualifications were required.

\subsection*{2.13 SYSTEM PERFORMANCE}

A review of the chromatograms and other raw data showed no identifiable problems with system performance. No qualifications were required.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annaal Outfall 009
Report Number: \(10 B 0996\)
Sampled: 02:1105
Received: 0211/05

\section*{DRAFT: PURGEABLES BY GC/MS (EPA 624)}

DRAFT REPORT
DRAFTREPORT

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronuyn Kelly

Project ID: Annual Outfall 009
Report Nuriber: 1OB0906

Sampled: 02:1105
Received: 02:11/05

\section*{DRAFT: PURGEABLES BY GC/MS (EPA 624)}

DRAFT REPORT
DRAFT REPORT
DATA SUBIECT TO CHANGE

\footnotetext{
MWH-Pasadena Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly

Project ID: Amnual Outfall 009
Report Number: \(1 \mathrm{CB0996}\)

Sampled: 02:11:05
Received: 0211105
}

DRAFT: PURGEABLES BY GC/MS (EPA 624)

居多

DRAFT REPORT
DRAFT REPORT
DATA SUBIECT TO CHANGE
4TMH

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer L. Jarusewic
Analysis/Method General Minerals

Package ID T711 WC85
Task Order \(313150010 / 313150012\)
SDG No. IOB0993/IOB0996
No. of Analyses 2
Date: 03/23/05
Reviewes signature

\section*{ACTION ITEMS}
1. Case Narrative Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from

Analysis Protocol, e.g.,
Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification
and Quantitation
System Performance
\(\qquad\)
\(\square\)
\(\square\)
\(\square\)

\(\square\)
\(\longrightarrow\) C
\(\qquad\)
\(\qquad\)
\(\longrightarrow\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

COMMENTS \({ }^{\text {b }} \quad\) Acceptable as reviewed.

\footnotetext{
* Subcontracted analytical laboratory is not meeting contract and/or method requirements.
\({ }^{6}\) Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.
}

\section*{amec \({ }^{\text {® }}\)}

\title{
DATA VALIDATION REPORT
}

\section*{NPDES Monitoring}

\author{
ANALYSIS: GENERAL MINERALS \\ SAMPLE DELIVERY GROUPS: IOB0993 \& IOB0996
}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: IOB0993/IOB0996 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: General Minerals \\ QC Level: Level IV \\ No. of Samples: 2 \\ Reviewer: L. Jarusewic \\ Date of Review: March 23, 2005
}

The sample listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 335.2 and 160.2. Standard Methods for the Examination of Water and Wastewater Method SM2540C, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 007 & Outfall 007 & IOB0993-01 & Water & General Minerals \\
\hline Outfall 009 & Outfall 009 & IOB0996-01 & Water & General Minerals \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

Sample Annual Outfall 007 was received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\) and sample Annual Outfall 009 was received above the temperature limits at \(8^{\circ} \mathrm{C}\); however, as the sample had insufficient time to cool in transit to the laboratory, no qualifications were required. No preservation problems were noted by the laboratory. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by field and laboratory personnel. The COCs accounted for all analyses and samples present in these SDGs. No sample qualifications were required.

\subsection*{2.1.3 Holding Times}

The holding times were assessed by comparing the dates of collection with the dates of analyses. The 14-day analytical holding time for cyanide and the 7-day holding time for total suspended solids were met. No qualifications were required.

\subsection*{2.2 CALIBRATION}

For cyanide, the initial calibration correlation coefficient was \(\geq 0.995\). Initial and continuing calibration information was acceptable with \%Rs within the control limits of \(90-110 \%\) for cyanide. Initial and continuing calibrations are not applicable to the total suspended solid analysis. No qualifications were required.

The total cyanide reporting limit check standard was recovered above AMEC control limits of 70 \(130 \%\) at \(137.9 \%\); however, as cyanide was not detected in either sample, no qualifications were required.

\subsection*{2.3 BLANKS}

The method blank and CCB results reported on the summary forms and in the raw data for blank analyses associated with the samples were nondetects at the reporting limit. No qualifications were required.

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The laboratory control sample recoveries were within the laboratory-established control limits. No qualifications were required.

\subsection*{2.5 SURROGATES RECOVERY}

Surrogate recovery is not applicable to the analyses presented in these SDGs.

\subsection*{2.6 LABORATORY DUPLICATES}

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

No MS/MSD analyses were performed in associations with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.8 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analyses of these samples; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.9 ICP SERIAL DILUTION}

ICP serial dilution is not applicable to the analyses presented in this data validation report.

\subsection*{2.10 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. No qualifications were required.

\subsection*{2.11 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.11.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.11.2 Field Duplicates}

There were no field duplicate pairs associated with these SDGs.

\section*{DRAFT: INORGANICS}

\section*{AMEC VALIDATEL}

\section*{LEVEL IV}

\section*{DRAFT REPORT}

DRAFT REPORT

\section*{LABORATORY REPORT}

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Annual Outfall 009

Sampled: 02/11/05
Received: 02/11/05
Issued: 03/28/05 10:03

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117
The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis umless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

\section*{SAMPLE CROSS REFERENCE}

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
IOB0996-01
1OB0996-02
\begin{tabular}{lc}
CLIENT ID & MATRIX \\
Outfall 009 & Water \\
Trip Blanks & Water
\end{tabular}

Reviewed By:

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

Attention: Bronwyn Kelly

Project ID: Annual Outfall 009
Report Number: IOB0996

Sampled: 02/11/05
Received: 02/11/05

\section*{CORRECTIVE ACTION REPORT}

Department: Extractions
Method: EPA 625
QC Batch: 5B13024

Date: 02/16/2005
Matrix: Water

Identification and Definition of Problem:
The percent recovery for benzidine in the BS was below method acceptance limits.

Determination of the Cause of the Problem:
Benzidine is known to be a problematic compound. According to the EPA, it can be subject to oxidative losses during solvent extraction and its chromatographic behavior is poor.

\section*{Corrective Action Taken:}

The percent recovery in BSD was within the acceptance limits. All results reported for benzidine are potentially biased low and can be considered estimates only.

\author{
Del Mar Analytical, Irvine \\ Wendy Kirkeeng For Michele Harper \\ Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 009

Report Number: IOB0996

Sampled: 02/11/05
Received: 02/11/05

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{9}{|l|}{Sample ID: 1OB0996-01 (Outfall 009-Water)} \\
\hline \multicolumn{9}{|l|}{Reporting Units: ugh} \\
\hline Acrolein EPA 624 & 5B12011 & 4.6 & 50 & ND & 1 & 02/12/05 & 02/12/05 & \\
\hline Acrylonitrile EPA 624 & 5B12011 & 5.1 & 50 & ND & 1 & 02/12/05 & 02/12/05 & \\
\hline 2-Chloroethyl vinyl ether EPA 624 & 5B12011 & 1.3 & 5.0 & ND & 1 & 02/12/05 & 02/12/05 & \\
\hline Surrogate: Dibromofluoromethane (80-120\%) & & & & 92\% & & & & \\
\hline Surrogate: Toluene-d8 (80-120\%) & & & & 106\% & & & & \\
\hline Surrogate: 4-Bromofluorobenzene (80-120\%) & & & & 100\% & & & & \\
\hline \multicolumn{9}{|l|}{Sample ID: 1OB0996-02 (Trip Blanks - Water)} \\
\hline \multicolumn{9}{|l|}{Reporting Units: ug/} \\
\hline Acrolein EPA 624 & 5B12011 & 4.6 & 50 & ND & 1 & 02/12/05 & 02/12/05 & \\
\hline Acrylonitrile EPA 624 & 5B12011 & 5.1 & 50 & ND & 1 & 02/12/05 & 02/12/05 & \\
\hline 2-Chloroethyl vinyl ether EPA 624 & 5B12011 & 1.3 & 5.0 & ND & 1 & 02/12/05 & 02/12/05 & \\
\hline Surrogate: Dibromofluoromethane (80-120\%) & & & & 88\% & & & & \\
\hline Surrogate: Toluene-d8 (80-120\%) & & & & 106\% & & & & \\
\hline Surrogate: 4-Bromofluorobenzene (80-120\%) & & & & 98\% & & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper Project Manager

\title{
Del Mar Analytical
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\author{
Project ID: Annual Outfall 009 \\ Report Number: IOB0996 Received: 02/11/05
}

PURGEABLES BY GC/MS (EPA 624)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & Dilution Factor & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{Sample ID: IOB0996-01 (Outfall 009 - Water)} \\
\hline \multicolumn{10}{|l|}{Reporting Units: ug/} \\
\hline Benzene & EPA 624 & 5B17020 & 0.28 & 1.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline Bromodichloromethane & EPA 624 & 5B17020 & 0.30 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline Bromoform & EPA 624 & 5B17020 & 0.32 & 5.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline Bromomethane & EPA 624 & 5B17020 & 0.34 & 5.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline Carbon tetrachloride & EPA 624 & 5B17020 & 0.28 & 0.50 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline Chlorobenzene & EPA 624 & 5B17020 & 0.36 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline Chloroethane & EPA 624 & SB17020 & 0.33 & 5.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline Chloroform & EPA 624 & 5B17020 & 0.33 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline Chloromethane & EPA 624 & 5B17020 & 0.30 & 5.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline Dibromochloromethane & EPA 624 & 5B17020 & 0.28 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline 1,2-Dichlorobenzene & EPA 624 & 5B17020 & 0.32 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline 1,3-Dichlorobenzene & EPA 624 & 5B17020 & 0.35 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline 1,4-Dichlorobenzene & EPA 624 & 5B17020 & 0.37 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline 1,1-Dichloroethane & EPA 624 & 5B17020 & 0.27 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline 1,2-Dichloroethane & EPA 624 & 5B17020 & 0.28 & 0.50 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline 1,1-Dichloroethene & EPA 624 & 5B17020 & 0.32 & 5.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline trans-1,2-Dichloroethene & EPA 624 & 5B17020 & 0.27 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline 1,2-Dichloropropane & EPA 624 & 5B17020 & 0.35 & 2.0 & ND & 1 & 02/17105 & 02/18/05 & \\
\hline cis-1,3-Dichloropropene & EPA 624 & 5B17020 & 0.22 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline trans-1,3-Dichloropropene & EPA 624 & 5B17020 & 0.24 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline Ethylbenzene & EPA 624 & 5B17020 & 0.25 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline Methylene chloride & EPA 624 & 5B17020 & 0.48 & 5.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline 1,1,2,2-Tetrachloroethane & EPA 624 & 5B17020 & 0.24 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline Tetrachloroethene & EPA 624 & 5B17020 & 0.32 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline Toluene & EPA 624 & 5B17020 & 0.36 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline 1,1,1-Trichloroethane & EPA 624 & 5B17020 & 0.30 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline 1,1,2-Trichloroethane & EPA 624 & 5B17020 & 0.30 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline Trichloroethene & EPA 624 & 5B17020 & 0.26 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline Trichlorofluoromethane & EPA 624 & 5B17020 & 0.34 & 5.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline Vinyl chloride & EPA 624 & 5B17020 & 0.26 & 0.50 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline Xylenes, Total & EPA 624 & \(5 \mathrm{B17020}\) & 0.52 & 4.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline \multicolumn{2}{|l|}{Surrogate: Dibromofluoromethane (80-120\%)} & & & & 114\% & & & & \\
\hline \multicolumn{2}{|l|}{Surrogate: Toluene-d8 (80-120\%)} & & & & 108\% & & & & \\
\hline \multicolumn{2}{|l|}{Surrogate: 4-Bromofluorobenzene (80-120\%)} & & & & \(104 \%\) & & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\title{
Del Mar Analytical
}
\begin{tabular}{lcr}
MWH-Pasadena/Boeing & Project ID: Annual Outfall 009 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(02 / 1 / 1 / 05\) \\
Pasadena, CA 91101 & Report Number: \(10 B 0996\) & Received: \(02 / 11 / 05\) \\
Attention; Bronwyn Kelly &
\end{tabular}

PURGEABLES BY GC/MS (EPA 624)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyze \\
\hline \multicolumn{9}{|l|}{Sample ID: IOB0996-02 (Trip Blanks - Water)} \\
\hline \multicolumn{9}{|l|}{Reporting Units: ug/} \\
\hline Benzene & EPA 624 & 5B17020 & 0.28 & 1.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Bromodichloromethane & EPA 624 & 5B17020 & 0.30 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Bromoform & EPA 624 & 5B17020 & 0.32 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Bromomethane & EPA 624 & 5B17020 & 0.34 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Carbon tetrachloride & EPA 624 & 5B17020 & 0.28 & 0.50 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Chlorobenzene & EPA 624 & 5B17020 & 0.36 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Chloroethane & EPA 624 & 5B17020 & 0.33 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Chloroform & EPA 624 & 5B17020 & 0.33 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Chloromethane & EPA 624 & 5B17020 & 0.30 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Dibromochloromethane & EPA 624 & 5B17020 & 0.28 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline 1,2-Dichlorobenzene & EPA 624 & 5817020 & 0.32 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline 1,3-Dichlorobenzene & EPA 624 & 5B17020 & 0.35 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline 1,4-Dichlorobenzene & EPA 624 & 5B17020 & 0.37 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline 1,1-Dichloroethane & EPA 624 & 5B17020 & 0.27 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline 1,2-Dichloroethane & EPA 624 & 5B17020 & 0.28 & 0.50 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline 1,1-Dichloroethene & EPA 624 & 5B17020 & 0.32 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline trans-1,2-Dichloroethene & EPA 624 & 5B17020 & 0.27 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline 12-Dichloropropane & EPA 624 & 5B17020 & 0.35 & 2.0 & ND & 1 & 02/17/05 & 02/17105 \\
\hline cis-1,3-Dichloropropene & EPA 624 & 5B17020 & 0.22 & 2.0 & ND & 1 & 02/17/05 & 02/17105 \\
\hline trans-1,3-Dichloropropene & EPA 624 & 5B17020 & 0.24 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Ethylbenzene & EPA 624 & 5B17020 & 0.25 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Methylene chloride & EPA 624 & 5B17020 & 0.48 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline 1,1,2,2-Tetrachloroethane & EPA 624 & 5B17020 & 0.24 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Tetrachloroethene & EPA 624 & 5B17020 & 0.32 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Toluene & EPA 624 & 5B17020 & 0.36 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline 1,1,1-Trichloroethane & EPA 624 & 5 B 17020 & 0.30 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline 1,1,2-Trichloroethane & EPA 624 & 5B17020 & 0.30 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Trichloroethene & EPA 624 & 5B17020 & 0.26 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Trichlorofluoromethane & EPA 624 & 5B17020 & 0.34 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Vinyl chloride & EPA 624 & 5 B 17020 & 0.26 & 0.50 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Xylenes, Total & EPA 624 & \(5 \mathrm{B17020}\) & 0.52 & 4.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline \multicolumn{2}{|l|}{Surrogate: Dibromofluoromethane (80-120\%)} & & & & 107\% & & & \\
\hline \multicolumn{2}{|l|}{Surrogate: Toluene-d8 (80-120\%)} & & & & 109\% & & & \\
\hline \multicolumn{2}{|l|}{Surrogate: 4-Bromofluorobenzene (80-120\%)} & & & & 101\% & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\section*{Project ID: Annual Outfall 009}
\(\begin{array}{lr} & \text { Sampled: } 02 / 11 / 05 \\ \text { Report Number: } 10 B 0996 & \text { Received: } 02 / 11 / 05\end{array}\)

\title{
ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)
}
Analyte
Sample ID: 1OB0996-01 (Outfall 009 - Water)
Reporting Units: ugl
Acenaphthene
Acenaphthylene
Aniline
Anthracene
Benzoic acid
Benzo(a)anthracene
Benzo(b)fluoranthene
Benzo(k)fluoranthene
Benzo(g,h,i)perylene
Benzo(a)pyrene
Benzyl alcohol
Bis(2-chloroethoxy)methane

Bis(2-chloroethyl)ether
Bis(2-chloroisopropyl)ether
Bis(2-ethylhexyl)phthalate
4-Bromophenyl phenyl ether
Butyl benzyl phthalate
4-Chloroaniline
2-Chloronaphthalene
4-Chloro-3-methylphenol
2-Chlorophenol
4-Chlorophenyl phenyl ether
Chrysene
Dibenz(a,h)anthracene
Dibenzofuran
Di-n-butyl phthalate
1,3-Dichlorobenzene
1,4-Dichlorobenzene
1,2-Dichlorobenzene
3,3-Dichlorobenzidine
2,4-Dichlorophenol
Diethyl phthalate
2,4-Dimethylphenol
Dimethyl phthalate
4,6-Dinitro-2-methylphenol
2,4-Dinitrophenol
2,4-Dinitrotoluene
2,6-Dinitrotoluene
Di-n-octyl phthalate
Fluoranthene
Fluorene
\begin{tabular}{|c|c|c|}
\hline EPA 625 & 5B13024 & 4.3 \\
\hline EPA 625 & 5B13024 & 3.2 \\
\hline EPA 625 & 5B13024 & 2.9 \\
\hline EPA 625 & 5B13024 & 3.2 \\
\hline EPA 625 & 5B13024 & 2.6 \\
\hline EPA 625 & 5B13024 & 3.7 \\
\hline EPA 625 & 5B13024 & 2.7 \\
\hline EPA 625 & 5B13024 & 3.4 \\
\hline EPA 625 & 5B13024 & 5.3 \\
\hline EPA 625 & 5B13024 & 3.5 \\
\hline EPA 625 & 5B13024 & 2.5 \\
\hline EPA 625 & 5B13024 & 3.9 \\
\hline EPA 625 & 5B13024 & 4.4 \\
\hline EPA 625 & 5B13024 & 4.6 \\
\hline EPA 625 & 5B13024 & 5.2 \\
\hline EPA 625 & 5B13024 & 4.6 \\
\hline EPA 625 & 5B13024 & 3.5 \\
\hline EPA 625 & 5B13024 & 6.0 \\
\hline EPA 625 & 5B13024 & 4.0 \\
\hline EPA 625 & 5B13024 & 3.5 \\
\hline EPA 625 & 5B13024 & 4.2 \\
\hline EPA 625 & 5B13024 & 3.0 \\
\hline EPA 625 & 5B13024 & 2.8 \\
\hline EPA 625 & 5B13024 & 4.7 \\
\hline EPA 625 & 5B13024 & 2.6 \\
\hline EPA 625 & 5B13024 & 2.8 \\
\hline EPA 625 & 5B13024 & 4.1 \\
\hline EPA 625 & 5B13024 & 3.9 \\
\hline EPA 625 & 5B13024 & 4.5 \\
\hline EPA 625 & 5B13024 & 11 \\
\hline EPA 625 & 5B13024 & 4.1 \\
\hline EPA 625 & 5B13024 & 3.1 \\
\hline EPA 625 & 5B13024 & 4.4 \\
\hline EPA 625 & 5B13024 & 3.6 \\
\hline EPA 625 & 5B13024 & 5.1 \\
\hline EPA 625 & 5B13024 & 5.3 \\
\hline EPA 625 & 5B13024 & 4.2 \\
\hline EPA 625 & 5B13024 & 3.2 \\
\hline EPA 625 & 5B13024 & 4.7 \\
\hline EPA 625 & 5B13024 & 4.2 \\
\hline EPA 625 & 5B13024 & 3.9 \\
\hline
\end{tabular}
10
10
10
10
20
10
10
10
10
10
20
10
10
10
50
10
20
10
10
20
10
10
10
20
10
20
10
10
10
20
10
10
20
10
20
20
10
10
20
10
10

10
\begin{tabular}{crrr}
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
ND & 0.962 & \(02 / 13 / 05\) & \(02 / 16 / 05\) \\
& & &
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager
\begin{tabular}{lcr}
MWH-Pasadena/Boeing & Project ID: Annual Outfall 009 & \\
300 North Lake Avenue, Suite 1200 & & \\
Pasadena, CA 91101 & Report Number: \(10 B 0996\) & Sampled: \(02 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\title{
ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyz \\
\hline \multicolumn{9}{|l|}{Sample ID: IOB0996-01 (Outfall 009 - Water) - cont. Reporting Units: ugh} \\
\hline Hexachlorobenzene & EPA 625 & 5B13024 & 4.8 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Hexachlorobutadiene & EPA 625 & 5B13024 & 4.2 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Hexachlorocyclopentadiene & EPA 625 & 5B13024 & 3.4 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Hexachloroethane & EPA 625 & 5B13024 & 4.2 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Indeno(1,2,3-cd)pyrene & EPA 625 & 5B13024 & 5.4 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Isophorone & EPA 625 & 5B13024 & 3.7 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 2-Methylnaphthalene & EPA 625 & 5B13024 & 3.0 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 2-Methylphenol & EPA 625 & 5B13024 & 3.7 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 4-Methylphenol & EPA 625 & 5B13024 & 3.8 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Naphthalene & EPA 625 & 5B13024 & 4.5 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 2-Nitroaniline & EPA 625 & 5B13024 & 3.9 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 3-Nitroaniline & EPA 625 & 5B13024 & 4.5 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 4-Nitroaniline & EPA 625 & 5B13024 & 4.9 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Nitrobenzene & EPA 625 & 5B13024 & 4.2 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 2-Nitrophenol & EPA 625 & 5B13024 & 4.2 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 4-Nitrophenol & EPA 625 & 5B13024 & 6.6 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline N -Nitrosodiphenylamine & EPA 625 & 5B13024 & 4.0 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline N-Nitroso-di-n-propylamine & EPA 625 & SB13024 & 3.6 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Pentachlorophenol & EPA 625 & \(5 \mathrm{B13024}\) & 4.0 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Phenanthrene & EPA 625 & 5B13024 & 3.3 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Phenol & EPA 625 & 5B13024 & 4.0 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Pyrene & EPA 625 & 5B13024 & 3.9 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 1,2,4-Trichlorobenzene & EPA 625 & 5 B 13024 & 4.4 & 10 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 2,4,5-Trichlorophenol & EPA 625 & 5B13024 & 3.6 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 2,4,6-Trichlorophenol & EPA 625 & 5 B 13024 & 4.1 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline 1,2-Diphenylhydrazine/Azobenzene & EPA 625 & 5B13024 & 5.0 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline N -Nitrosodimethylamine & EPA 625 & 5B13024 & 3.7 & 20 & ND & 0.962 & 02/13/05 & 02/16/05 \\
\hline Surrogate: 2-Fluorophenol (35-120\%) & & & & & 66\% & & & \\
\hline Surrogate: Phenol-d6 (45-120\%) & & & & & 70\% & & & \\
\hline Surrogate: 2,4,6-Tribromophenol (50-125\%) & & & & & 89\% & & & \\
\hline Surrogate: Nitrobenzene-d5 (45-120\%) & & & & & \(78 \%\) & & & \\
\hline Surrogate: 2-Fluorobiphenyl (45-120\%) & & & & & 83\% & & & \\
\hline Surrogate: Terphenyl-d14 (45-135\%) & & & & & 97\% & & & \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 009
Report Number: IOB0996

Sampled: 02/11/05
Received: 02/11/05

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & Dilution Factor & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{Sample ID: IOB0996-01RE1 (Outfall 009 - Water) - cont. Reporting Units: ug/} \\
\hline Benzidine & EPA 625 & 5B17041 & 5.2 & 20 & ND & 0.962 & 02/17/05 & 02/22/05 & \\
\hline Surrogate: 2-Fhuorophenol (35-120\%) & & & & & 49\% & & & & \\
\hline Surrogate: Phenol-d6 (45-120\%) & & & & & \(50 \%\) & & & & \\
\hline Surrogate: 2,4,6-Tribromophenol (50-125\%) & & & & & 68\% & & & & \\
\hline Surrogate: Nitrobenzene-d5 (45-120\%) & & & & & \(76 \%\) & & & & \\
\hline Surrogate: 2-Fluorobiphenyl (45-120\%) & & & & & \(79 \%\) & & & & \\
\hline Surrogate: Terphenyl-d14 (45-135\%) & & & & & \(77 \%\) & & & & \\
\hline
\end{tabular}

\author{
Del Mar Analytical, Irvine \\ Wendy Kirkeeng For Michele Harper \\ Project Manager
}
\begin{tabular}{lcr}
\hline MWH-Pasadena/Boeing & Project ID: Annual Outfall 009 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(02 / 11 / 05\) \\
Pasadena, CA 91101 & Report Number: \(10 B 0996\) & Received: \(02 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}
\begin{tabular}{lllllllll}
& & & MDL & Reporting & Sample & Dilution \begin{tabular}{cc}
Date & Date
\end{tabular} \begin{tabular}{c}
Data
\end{tabular} \\
Analyte & Method & Batch & Limit & Limit & Result & Factor Extracted & Analyzed Qualifiers
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{Reporting Units: ug/} \\
\hline Aldrin & EPA 608 & 5B15038 & 0.030 & 0.10 & ND & 0.962 & 02/15/05 & 02/16/05 \\
\hline alpha-BHC & EPA 608 & 5B15038 & 0.015 & 0.10 & ND & 0.962 & 02/15/05 & 02/16/05 \\
\hline beta-BHC & EPA 608 & 5B15038 & 0.015 & 0.10 & ND & 0.962 & 02/15/05 & 02/16/05 \\
\hline delta-BHC & EPA 608 & 5B15038 & 0.020 & 0.20 & ND & 0.962 & 02/15/05 & 02/16/05 \\
\hline gamma-BHC (Lindane) & EPA 608 & 5B15038 & 0.015 & 0.10 & ND & 0.962 & 02/15/05 & 02/16/05 \\
\hline Chlordane & EPA 608 & 5B15038 & 0.20 & 1.0 & ND & 0.962 & 02/15/05 & 02/16/05 \\
\hline 4,4'-DDD & EPA 608 & 5B15038 & 0.015 & 0.10 & ND & 0.962 & 02/15/05 & 02/16/05 \\
\hline 4,4*-DDE & EPA 608 & 5B15038 & 0.020 & 0.10 & ND & 0.962 & 02/45/05 & 02/16/05 \\
\hline 4,4'-DDT & EPA 608 & 5B15038 & 0.030 & 0.10 & ND & 0.962 & 02/15/05 & 02/16/05 \\
\hline Dieldrin & EPA 608 & 5B15038 & 0.015 & 0.10 & ND & 0.962 & 02/15/05 & 02/16/05 \\
\hline Endosulfan I & EPA 608 & 5B15038 & 0.015 & 0.10 & ND & 0.962 & 02/15/05 & 02/16/05 \\
\hline Endosulfan II & EPA 608 & 5B15038 & 0.040 & 0.10 & ND & 0.962 & 02/15/05 & 02/16/05 \\
\hline Endosulfan sulfate & EPA 608 & 5B15038 & 0.015 & 0.20 & ND & 0.962 & 02/15/05 & 02/16/05 \\
\hline Endrin & EPA 608 & 5B15038 & 0.015 & 0.10 & ND & 0.962 & 02/15/05 & 02/16/05 \\
\hline Endrin aldehyde & EPA 608 & 5B15038 & 0.045 & 0.10 & ND & 0.962 & 02/15/05 & 02/16/05 \\
\hline Endrin ketone & EPA 608 & 5B15038 & 0.020 & 0.10 & ND & 0.962 & 02/15/05 & 02/16/05 \\
\hline Heptachlor & EPA 608 & 5B15038 & 0.030 & 0.10 & ND & 0.962 & 02/15/05 & 02/16/05 \\
\hline Heptachlor epoxide & EPA 608 & 5B15038. & 0.020 & 0.10 & ND & 0.962 & 02/15/05 & 02/16/05 \\
\hline Methoxychlor & EPA 608 & 5B15038 & 0.035 & 0.10 & ND & 0.962 & 02/15/05 & 02/16/05 \\
\hline Toxaphene & EPA 608 & 5B15038 & 1.5 & 5.0 & ND & 0.962 & 02/15/05 & 02/16/05 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Surrogate: Tetrachloro-m-xylene (35-120\%)
Surrogate: Decachlorobiphenyl (45-120\%)}} & & & & \multicolumn{4}{|l|}{\(58 \%\)} \\
\hline & & & & & 77\% & & & \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 009
Report Number: IOB0996

Sampled: 02/11/05
Received: \(02 / 11 / 05\)

TOTAL PCBS (EPA 608)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{Sample ID: IOB0996-01 (Outfall 009 - Water) - cont. Reporting Units: ugl}} \\
\hline & & & & & & & & & \\
\hline Aroclor 1016 & EPA 608 & 5B15038 & 0.20 & 1.0 & ND & 0.962 & 02/15/05 & 02/15/05 & \\
\hline Aroclor 1221 & EPA 608 & 5B15038 & 0.10 & 1.0 & ND & 0.962 & 02/15/05 & 02/15/05 & \\
\hline Aroclor 1232 & EPA 608 & 5B15038 & 0.15 & 1.0 & ND & 0.962 & 02/15/05 & 02/15/05 & \\
\hline Aroclor 1242 & EPA 608 & 5B15038 & 0.15 & 1.0 & ND & 0.962 & 02/15/05 & 02/15/05 & \\
\hline Aroclor 1248 & EPA 608 & 5B15038 & 0.25 & 1.0 & ND & 0.962 & 02/15/05 & 02/15/05 & \\
\hline Aroclor 1254 & EPA 608 & 5B15038 & 0.25 & 1.0 & ND & 0.962 & 02/15/05 & 02/15/05 & \\
\hline Aroclor 1260 & EPA 608 & 5B15038 & 0.40 & 1.0 & ND & 0.962 & 02/15/05 & 02/15/05 & \\
\hline Surrogate: Decachlorobiphenyl (45-120\%) & & & & & \(87 \%\) & & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 009
Report Number: \(10 B 0996\)

\section*{METALS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualfiers \\
\hline \multicolumn{10}{|l|}{Sample ID: 1OB0996-01 (Outfall 009 - Water) - cont.} \\
\hline \multicolumn{10}{|c|}{Reporting Units: mg/} \\
\hline Boron & EPA 200.7 & 5B17097 & 0.0074 & 0.050 & 0.047 & 1 & 02/17/05 & 02/17/05 & J \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 009
\(\begin{array}{lr} & \\ \text { Report Number: } & \text { SOBpled: } 0996 \\ \text { Received: } 02 / 11 / 05\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{METALS} \\
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & Dilution Factor & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{Sample ID: IOB0996-01 (Outfall 009 - Water) - cont. Reperting Units: ag/} \\
\hline Aluminum & EPA 200.7 & 5B17097 & 47 & 50 & 370 & 1 & 02/17/05 & 02/17/05 & \\
\hline Antimony & EPA 200.8 & 5B17099 & 0.18 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline Arsenic & EPA 200.7 & 5B17097 & 3.8 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline Beryllium & EPA 200.7 & 5B17097 & 0.62 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline Cadmium & EPA 200.8 & 5B17099 & 0.015 & 1.0 & 0.035 & 1 & 02/17/05 & 02/17/05 & J \\
\hline Chromium & EPA 200.7 & 5B17097 & 0.68 & 5.0 & 1.1 & 1 & 02/17/05 & 02/17/05 & J \\
\hline Copper & EPA 200.8 & 5B17099 & 0.49 & 2.0 & 2.2 & 1 & 02/17/05 & 02/17/05 & \\
\hline Lead & EPA 200.8 & 5B17099 & 0.13 & 1.0 & 0.83 & 1 & 02/17/05 & 02/17/05 & J \\
\hline Mercury & EPA 245.1 & 5B15070 & 0.063 & 0.20 & 0.13 & 1 & 02/15/05 & 02/15/05 & J \\
\hline Nickel & EPA 200.7 & 5B17097 & 2.0 & 10 & 2.0 & 1 & 02/17/05 & 02/17/05 & J \\
\hline Selenium & EPA 200.7 & 5B17097 & 4.6 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline Silver & EPA 200.7 & 5B17097 & 1.3 & 10 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline Thallium & EPA 200.7 & 5B17097 & 3.1 & 5.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline Vanadium & EPA 200.7 & 5 B 17097 & 1.4 & 10 & 1.4 & 1 & 02/17/05 & 02/17/05 & J \\
\hline Zinc & EPA 200.7 & 5B17097 & 3.7 & 20 & 6.3 & 1 & 02/17/05 & 02/17/05 & J \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 009
Report Number: \(10 B 0996 \quad\) Received: 02/11/05
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{INORGANICS} \\
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{Sample ID: 1OB0996-01 (Outfall 009 - Water) - cont. Reporting Units: mg/l}} \\
\hline & & & & & & & & & \\
\hline Chloride & EPA 300.0 & 5B11120 & 0.26 & 0.50 & 6.2 & 1 & 02/11/05 & 02/12/05 & \\
\hline Total Cyanide & EPA 335.2 & 5B14107 & 0.0022 & 0.0050 & ND & 1 & 02/14/05 & 02/14/05 & \\
\hline Nitrate/Nitrite-N & EPA 300.0 & 5B11120 & 0.072 & 0.26 & 0.95 & 1 & 02/11/05 & 02/12/05 & \\
\hline Oil \& Grease & ERA 413.1 & 5B17117 & 0.94 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline Sulfate & EPA 300.0 & 5811120 & 0.18 & 0.50 & 13 & 1 & 02/11/05 & 02/12/05 & \\
\hline Total Dissolved Solids & SM2540C & 5B16118 & 10 & 10 & 86 & 1 & 02/16/05 & 02/16/05 & \\
\hline Total Suspended Solids & EPA 160.2 & 5B17069 & 10 & 10 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
MWH-Pasadena/Boeing \\
300 North Lake Avenue, Suite 1200 \\
Pasadena, CA 91101 \\
Attention: Bronwyn Kelly
\end{tabular} & \multicolumn{2}{|r|}{Report Number:} & \multicolumn{2}{|l|}{IOB0996} & \multicolumn{5}{|c|}{\begin{tabular}{l}
Sampled: 02/11/05 \\
Received: 02/11/05
\end{tabular}} \\
\hline \multicolumn{10}{|c|}{INORGANICS} \\
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & \begin{tabular}{l}
Date \\
Analyzed
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{Sample ID: IOB0996-01 (Outfall 009 - Water) - cont. Reporting Units: ug/} \\
\hline Perchlorate & EPA 314.0 & 5B16069 & 0.80 & 4.0 & ND & 1 & 02/16/05 & 02/16/05 & \\
\hline
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 009

Report Number: 10B0996

Sampled: 02/11/05
Received: 02/11/05

\section*{SHORT HOLD TIME DETAIL REPORT}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Hold Time (in days) & \begin{tabular}{l}
Date/Time \\
Sampled
\end{tabular} & Date/Time Received & Date/Time Extracted & Date/Time Analyzed \\
\hline \multicolumn{6}{|l|}{Sample ID: Outfall 009 (IOB0996-01) - Water} \\
\hline EPA 300.0 & 2 & 02/11/2005 12:15 & 02/11/2005 18:15 & 02/11/2005 23:00 & 02/12/2005 05:42 \\
\hline EPA 624 & 3 & 02/11/2005 12:15 & 02/11/2005 18:15 & 02/12/2005 00:00 & 02/12/2005 15:52 \\
\hline \multicolumn{6}{|l|}{Sample ID: Trip Blanks (1OB0996-02) - Water} \\
\hline EPA 624 & 3 & 02/11/2005 14:20 & 02/11/2005 18:15 & 02/12/2005 00:00 & 02/12/2005 12:48 \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Annual Outfall 009

Report Number: IOB0996
Sampled: 02/11/05

\section*{METHOD BLANKIQC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5B12011 Extracted: 02/12/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 02/12/2005 (5B12011-BLK1)} \\
\hline Acrolein & ND & 50 & 4.6 & ug/ & & & & & & & \\
\hline Acrylonitrile & ND & 50 & 5.1 & ug/ & & & & & & & \\
\hline 2-Chloroethyl vinyl ether & ND & 5.0 & 1.3 & ug/ & & & & & & & \\
\hline Surrogate: Dibromofluoromethane & 21.9 & & & ug/ & 25.0 & & 88 & 80-120 & & & \\
\hline Surrogate: Toluene-d8 & 26.4 & & & ug/ & 25.0 & & 106 & 80-120 & & & \\
\hline Surrogate: 4-Bromofluorobenzene & 24.3 & & & ug & 25.0 & & 97 & 80-120 & & & \\
\hline \multicolumn{12}{|l|}{LCS Analyzed: 02/12/2005 (5B12011-BS1)} \\
\hline 2-Chloroethyl vinyl ether & 26.8 & 5.0 & 1.3 & ug/ & 25.0 & & 107 & 20-175 & & & \\
\hline Surrogate: Dibromofluoromethane & 21.8 & & & ug/ & 25.0 & & 87 & 80-120 & & & \\
\hline Surrogate: Toluene-d8 & 26.6 & & & ug/l & 25.0 & & 106 & 80-120 & & & \\
\hline Surrogate: 4-Bromofluorobenzene & 24.8 & & & \(u g h\) & 25.0 & & 99 & 80-120 & & & \\
\hline \multicolumn{12}{|l|}{Matrix Spike Analyzed: 02/12/2005 (5B12011-MS1) Source: \(1080980-01\)} \\
\hline 2 -Chloroethyl vinyl ether & 27.2 & 5.0 & 1.3 & ug/ & 25.0 & ND & 109 & 20-175 & & & \\
\hline Surrogate: Dibromofluoromethane & 22.6 & & & ug \(/\) & 25.0 & & 90 & 80-120 & & & \\
\hline Surrogate: Toluene-d8 & 26.3 & & & ug/ & 25.0 & & 105 & 80-120 & & & \\
\hline Surrogate: 4-Bromofluorobenzene & 25.1 & & & \(u g /\) & 25.0 & & 100 & 80-120 & & & \\
\hline \multicolumn{12}{|l|}{Matrix Spike Dup Analyzed: 02/12/2005 (5B12011-MSD1) Source: 1OB0980-01} \\
\hline 2-Chloroethyl vinyl ether & 27.5 & 5.0 & 1.3 & ug/ & 25.0 & ND & 110 & 20-175 & 1 & 25 & \\
\hline Surrogate: Dibromofluoromethane & 22.7 & & & ug/ & 25.0 & & 91 & 80-120 & & & \\
\hline Surrogate: Toluene-d8 & 26.4 & & & ug/l & 25.0 & & 106 & 80-120 & & & \\
\hline Surrogate: 4-Bromofluorobenzene & 24.8 & & & ug/ & 25.0 & & 99 & 80-120 & & & \\
\hline
\end{tabular}

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Annual Outfall 009

\author{
Sampled: 02/11/05 \\ Received: 02/11/05 \\ Report Number: \(10 B 0996 \quad\) Received: 02/11/05
}

\section*{MEITHOD BLANKQCDATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5B17020 Extracted: 02/17/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 02/17/2005 (5B17020-BLK1)} \\
\hline Benzene & ND & 1.0 & 0.28 & ug 1 & & & & & & & \\
\hline Bromodichloromethane & ND & 2.0 & 0.30 & ug/ & & & & & & & \\
\hline Bromoform & ND & 5.0 & 0.32 & ug/ & & & & & & & \\
\hline Bromomethane & ND & 5.0 & 0.34 & ug/ & & & & & & & \\
\hline Carbon tetrachloride & ND & 0.50 & 0.28 & ug/ & & & & & & & \\
\hline Chlorobenzene & ND & 2.0 & 0.36 & ug/ & & & & & & & \\
\hline Chloroethane & ND & 5.0 & 0.33 & ug/ & & & & & & & \\
\hline Chloroform & ND & 2.0 & 0.33 & ug/ & & & & & & & \\
\hline Chloromethane & ND & 5.0 & 0.30 & ug/ & & & & & & & \\
\hline Dibromochloromethane & ND & 2.0 & 0.28 & ug/ & & & & & & & \\
\hline 1,2-Dichlorobenzene & ND & 2.0 & 0.32 & ug/ & & & & & & & \\
\hline 1,3-Dichlorobenzene & ND & 2.0 & 0.35 & ug/ & & & & & & & \\
\hline 1,4-Dichlorobenzene & ND & 2.0 & 0.37 & ug/ & & & & & & & \\
\hline 1,1-Dichloroethane & ND & 2.0 & 0.27 & ugh & & & & & & & \\
\hline 1,2-Dichloroethane & ND & 0.50 & 0.28 & ug/1 & & & & & & & \\
\hline 1,1-Dichloroethene & ND & 5.0 & 0.32 & ug/ & & & & & & & \\
\hline trans-1,2-Dichloroethene & ND & 2.0 & 0.27 & ug/ & & & & & & & \\
\hline 1,2-Dichloropropane & ND & 2.0 & 0.35 & ug/l & & & & & & & \\
\hline cis-1,3-Dichloropropene & ND & 2.0 & 0.22 & ug/ & & & & & & & \\
\hline trans-1,3-Dichloropropene & ND & 2.0 & 0.24 & ug/1 & & & & & & & \\
\hline Ethylbenzene & ND & 2.0 & 0.25 & ug/1 & & & & & & & \\
\hline Methylene chloride & ND & 5.0 & 0.48 & ug/ & & & & & & & \\
\hline 1,1,2,2-Tetrachloroethane & ND & 2.0 & 0.24 & ug/ & & & & & & & \\
\hline Tetrachloroethene & ND & 2.0 & 0.32 & ug/ & & & & & & & \\
\hline Toluene & ND & 2.0 & 0.36 & ug/ & & & & & & & \\
\hline 1,1,1-Trichloroethane & ND & 2.0 & 0.30 & ug/ & & & & & & & \\
\hline 1,1,2-Trichloroethane & ND & 2.0 & 0.30 & ug/ & & & & & & & \\
\hline Trichloroethene & ND & 2.0 & 0.26 & ug/ & & & & & & & \\
\hline Trichlorofluoromethane & ND & 5.0 & 0.34 & ug/l & & & & & & & \\
\hline Vinyl chloride & ND & 0.50 & 0.26 & ug/l & & & & & & & \\
\hline Xylenes, Total & ND & 4.0 & 0.52 & ug/ & & & & & & & \\
\hline Surrogate: Dibromofluoromethane & 27.0 & & & \(u g /\) & 25.0 & & 108 & 80-120 & & & \\
\hline Surrogate: Toluene-d8 & 26.8 & & & ug \(/\) & 25.0 & & 107 & 80-120 & & & \\
\hline Surrogate: 4-Bromofluorobenzene & 26.0 & & & \(u g / 1\) & 25.0 & & 104 & 80-120 & & & \\
\hline \multicolumn{12}{|l|}{Del Mar Analytical, Irvine Wendy Kirkeeng For Michele Harper Project Manager} \\
\hline
\end{tabular}

\title{
Del Mar Analytical
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 009
Report Number: IOB0996
Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKIOC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
Analyte
Batch: 5B17020 Extracted: 02/17/05

LCS Analyzed: 02/17/2005 (5B17020-BS1)
\begin{tabular}{|c|c|}
\hline Benzene & 24.5 \\
\hline Bromodichloromethane & 24.6 \\
\hline Bromoform & 25.2 \\
\hline Bromomethane & 26.6 \\
\hline Carbon tetrachloride & 24.4 \\
\hline Chlorobenzene & 24.2 \\
\hline Chloroethane & 25.7 \\
\hline Chloroform & 25.0 \\
\hline Chloromethane & 24.1 \\
\hline Dibromochloromethane & 25.0 \\
\hline 1,2-Dichlorobenzene & 24.4 \\
\hline 1,3-Dichlorobenzene & 23.6 \\
\hline 1,4-Dichlorobenzene & 23.8 \\
\hline 1,1-Dichloroethane & 24.1 \\
\hline 1,2-Dichloroethane & 26.6 \\
\hline 1,1-Dichloroethene & 24.8 \\
\hline trans-1,2-Dichloroethene & 24.5 \\
\hline 1,2-Dichloropropane & 24.2 \\
\hline cis-1,3-Dichloropropene & 25.3 \\
\hline trans-1,3-Dichloropropene & 26.2 \\
\hline Ethylbenzene & 25.7 \\
\hline Methylene chloride & 25.2 \\
\hline 1,1,2,2-Tetrachloroethane & 26.7 \\
\hline Tetrachloroethene & 23.0 \\
\hline Toluene & 25.0 \\
\hline 1,1,1-Trichloroethane & 23.8 \\
\hline 1,1,2-Trichloroethane & 25.6 \\
\hline Trichloroethene & 24.0 \\
\hline Trichlorofluoromethane & 24.1 \\
\hline Vinyl chloride & 25.3 \\
\hline Surrogate: Dibromofluoromethane & 27.1 \\
\hline Surrogate: Toluene-d8 & 27.1 \\
\hline Surrogate: 4-Bromofluorobenzene & 27.3 \\
\hline
\end{tabular}
\begin{tabular}{cccccccccc}
Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1.0 & 0.28 & ug/l & 25.0 & 98 & 70-120 \\
\hline 2.0 & 0.30 & ug/ & 25.0 & 98 & 70-140 \\
\hline 5.0 & 0.32 & ugh & 25.0 & 101 & 55-135 \\
\hline 5.0 & 0.34 & ugh & 25.0 & 106 & 60-140 \\
\hline 0.50 & 0.28 & ug/ & 25.0 & 98 & 70-140 \\
\hline 2.0 & 0.36 & ug/ & 25.0 & 97 & 80-125 \\
\hline 5.0 & 0.33 & ug/ & 25.0 & 103 & 60-145 \\
\hline 2.0 & 0.33 & ug/ & 25.0 & 100 & 75-130 \\
\hline 5.0 & 0.30 & ug/ & 25.0 & 96 & 40-145 \\
\hline 2.0 & 0.28 & ug/ & 25.0 & 100 & 65-145 \\
\hline 2.0 & 0.32 & ug/1 & 25.0 & 98 & 80-120 \\
\hline 2.0 & 0.35 & ug/ & 25.0 & 94 & 80-120 \\
\hline 2.0 & 0.37 & ugh & 25.0 & 95 & 80-120 \\
\hline 2.0 & 0.27 & ugh & 25.0 & 96. & 70-135 \\
\hline 0.50 & 0.28 & ug/l & 25.0 & 106 & 60-150 \\
\hline 5.0 & 0.32 & ug/ & 25.0 & 99 & 75-135 \\
\hline 2.0 & 0.27 & ug/ & 25.0 & 98 & 70-130 \\
\hline 2.0 & 0.35 & ug/ & 25.0 & 97 & 70-120 \\
\hline 2.0 & 0.22 & ug/ & 25.0 & 101 & 75-130 \\
\hline 2.0 & 0.24 & ug/ & 25.0 & 105 & 75-135 \\
\hline 2.0 & 0.25 & ug/ & 25.0 & 103 & 80-120 \\
\hline 5.0 & 0.48 & ug/ & 25.0 & 101 & 60-135 \\
\hline 2.0 & 0.24 & ug/ & 25.0 & 107 & 60-135 \\
\hline 2.0 & 0.32 & ug/ & 25.0 & 92 & 75-125 \\
\hline 2.0 & 0.36 & \(\mathrm{ug} / \mathrm{l}\) & 25.0 & 100 & 75-120 \\
\hline 2.0 & 0.30 & \(\mathrm{ug} /\) & 25.0 & 95 & 75-140 \\
\hline 2.0 & 0.30 & ug/1 & 25.0 & 102 & 70-125 \\
\hline 2.0 & 0.26 & ug/ & 25.0 & 96 & 80-120 \\
\hline 5.0 & 0.34 & ug/ & 25.0 & 96 & 65-145 \\
\hline \multirow[t]{4}{*}{0.50} & 0.26 & ug/ & 25.0 & 101 & 50-130 \\
\hline & & \(u g /\) & 25.0 & 108 & 80-120 \\
\hline & & ug/l & 25.0 & 108 & 80-120 \\
\hline & & \(u g /\) & 25.0 & 109 & 80-120 \\
\hline
\end{tabular}

\author{
Del Mar Analytical, Irvine \\ Wendy Kirkeeng For Michele Harper \\ Project Manager
}

\title{
Del Mar Analytical
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 009
Report Number: IOB0996
Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKIOC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline Batch: 5B17020 Extracted: 02/17/05 & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Matrix Spike Analyzed: 02/17/2005 (5B17020-MS1)} & \multicolumn{5}{|c|}{Source: IOB0980-01} \\
\hline Benzene & 26.8 & 1.0 & 0.28 & ug/ & 25.0 & ND & 107 & 70-120 \\
\hline Bromodichloromethane & 27.4 & 2.0 & 0.30 & ug/ & 25.0 & ND & 110 & 70-140 \\
\hline Bromoform & 28.7 & 5.0 & 0.32 & ug/ & 25.0 & ND & 115 & 55-140 \\
\hline Bromomethane & 29.8 & 5.0 & 0.34 & ug/ & 25.0 & ND & 119 & 50-145 \\
\hline Carbon tetrachloride & 27.2 & 0.50 & 0.28 & ug/ & 25.0 & ND & 109 & 70-145 \\
\hline Chlorobenzene & 26.5 & 2.0 & 0.36 & ug/l & 25.0 & ND & 106 & 80-125 \\
\hline Chloroethane & 28.9 & 5.0 & 0.33 & ug/l & 25.0 & ND & 116 & 50-145 \\
\hline Chloroform & 27.9 & 2.0 & 0.33 & ug/ & 25.0 & ND & 112 & 70-135 \\
\hline Chloromethane & 26.2 & 5.0 & 0.30 & ug/t & 25.0 & ND & 105 & 35-145 \\
\hline Dibromochloromethane & 28.2 & 2.0 & 0.28 & ug/ & 25.0 & ND & 113 & 65-145 \\
\hline 1,2-Dichlorobenzene & 27.0 & 2.0 & 0.32 & ug/l & 25.0 & ND & 108 & 75-130 \\
\hline 1,3-Dichlorobenzene & 25.9 & 2.0 & 0.35 & ug/ & 25.0 & ND & 104 & 75-130 \\
\hline 1,4 Dichlorobenzene & 26.1 & 2.0 & 0.37 & ug/ & 25.0 & ND & 104 & 80-120 \\
\hline 1,1-Dichloroethane & 27.0 & 2.0 & 0.27 & ug/ & 25.0 & ND & 108 & 65-135 \\
\hline 1,2-Dichloroethane & 27.5 & 0.50 & 0.28 & ug/1 & 25.0 & ND & 110 & 60-150 \\
\hline 1,1-Dichloroethene & 27.7 & 5.0 & 0.32 & ugh & 25.0 & ND & 111 & 65-140 \\
\hline trans-1,2-Dichloroethene & 27.1 & 2.0 & 0.27 & ug/ & 25.0 & ND & 108 & 65-135 \\
\hline 1,2-Dichloropropane & 26.6 & 2.0 & 0.35 & ug/l & 25.0 & ND & 106 & 65-130 \\
\hline cis-1,3-Dichloropropene & 27.2 & 2.0 & 0.22 & ugh & 25.0 & ND & 109 & 70-140 \\
\hline trans-1,3-Dichloropropene & 28.2 & 2.0 & 0.24 & ug/ & 25.0 & ND & 113 & 70-140 \\
\hline Ethylbenzene & 28.4 & 2.0 & 0.25 & \(\mathrm{ug} /\) & 25.0 & ND & 114 & 70-130 \\
\hline Methylene chloride & 27.7 & 5.0 & 0.48 & ugh & 25.0 & ND & 111 & 60-135 \\
\hline 1,1,2,2-Tetrachloroethane & 29.2 & 2.0 & 0.24 & ug/l & 25.0 & ND & 117 & 60-145 \\
\hline Tetrachloroethene & 25.2 & 2.0 & 0.32 & ug/ & 25.0 & ND & 101 & 70-130 \\
\hline Toluene & 27.1 & 2.0 & 0.36 & ug/ & 25.0 & ND & 108 & 70-120 \\
\hline 1,1,1-Trichloroethane & 26.7 & 2.0 & 0.30 & ug/ & 25.0 & ND & 107 & 75-140 \\
\hline 1,1,2-Trichloroethane & 27.8 & 2.0 & 0.30 & ug/ & 25.0 & ND & 111 & 60-135 \\
\hline Trichloroethene & 26.1 & 2.0 & 0.26 & ug/ & 25.0 & ND & 104 & 70-125 \\
\hline Trichlorofluoromethane & 27.8 & 5.0 & 0.34 & ug/ & 25.0 & ND & 111 & 55-145 \\
\hline Vinyl chloride & 28.6 & 0.50 & 0.26 & ug/ & 25.0 & ND & 114 & 40-135 \\
\hline Surrogate: Dibromofluoromethane & 28.2 & & & \(u g /\) & 25.0 & & 113 & 80-120 \\
\hline Surrogate: Toluene-d8 & 27.3 & & & ug/ & 25.0 & & 109 & 80-120 \\
\hline Surrogate: 4-Bromofluorobenzene & 28.2 & & & ug/ & 25.0 & & 113 & 80-120 \\
\hline
\end{tabular}

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 009
Report Number: IOB0996 \(\quad \begin{aligned} & \text { Sampled: 02/11/05 } \\ & \text { Received: 02/11/05 }\end{aligned}\)
Received: 02/11/05

\section*{METHOD BLANKIQC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & RPD Limit & Data \\
\hline
\end{tabular}

\section*{Batch: 5B17020 Extracted: 02/17/05}

Matrix Spike Dup Analyzed: 02/17/2005 (5B17020-MSD1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Matrix Spike Dup Analyzed & \multicolumn{10}{|l|}{(Source: 1OB0980-01} \\
\hline Benzene & 26.0 & 1.0 & 0.28 & ug/ & 25.0 & ND & 104 & 70-120 & 3 & 20 \\
\hline Bromodichloromethane & 26.1 & 2.0 & 0.30 & ug/ & 25.0 & ND & 104 & 70-140 & 5 & 20 \\
\hline Bromoform & 25.4 & 5.0 & 0.32 & ug/ & 25.0 & ND & 102 & 55-140 & 12 & 25 \\
\hline Bromomethane & 28.7 & 5.0 & 0.34 & ug/ & 25.0 & ND & 115 & 50-145 & 4 & 25 \\
\hline Carbon tetrachloride & 25.6 & 0.50 & 0.28 & ug/ & 25.0 & ND & 102 & 70-145 & 6 & 25 \\
\hline Chlorobenzene & 25.1 & 2.0 & 0.36 & ug/ & 25.0 & ND & 100 & 80-125 & 5 & 20 \\
\hline Chloroethane & 27.9 & 5.0 & 0.33 & ug/ & 25.0 & ND & 112 & 50-145 & 4 & 25 \\
\hline Chloroform & 26.0 & 2.0 & 0.33 & ug/ & 25.0 & ND & 104 & 70-135 & 7 & 20 \\
\hline Chloromethane & 26.0 & 5.0 & 0.30 & ug/ & 25.0 & ND & 104 & 35-145 & 1 & 25 \\
\hline Dibromochloromethane & 25.4 & 2.0 & 0.28 & ug/ & 25.0 & ND & 102 & 65-145 & 10 & 25 \\
\hline 1,2-Dichlorobenzene & 25.7 & 2.0 & 0.32 & ugh & 25.0 & ND & 103 & 75-130 & 5 & 20 \\
\hline 1,3-Dichlorobenzene & 24.9 & 2.0 & 0.35 & ug/ & 25.0 & ND & 100 & 75-130 & 4 & 20 \\
\hline 1,4-Dichlorobenzene & 24.9 & 2.0 & 0.37 & ugh & 25.0 & ND & 100 & 80-120 & 5 & 20. \\
\hline 1,1-Dichloroethane & 25.4 & 2.0 & 0.27 & uga & 25.0 & ND & 102 & 65.135 & 6 & 20 \\
\hline 1,2-Dichloroethane & 25.0 & 0.50 & 0.28 & ugh & 25.0 & ND & 100 & 60-150 & 10 & 20 \\
\hline 1,1-Dichloroethene & 26.9 & 5.0 & 0.32 & ugh & 25.0 & ND & 108 & 65-140 & 3 & 20 \\
\hline trans-1,2-Dichloroethene & 26.3 & 2.0 & 0.27 & ug/ & 25.0 & ND & 105 & 65-135 & 3 & 20 \\
\hline 1,2-Dichloropropane & 25.8 & 2.0 & 0.35 & ug/ & 25.0 & ND & 103 & 65-130 & 3 & 20 \\
\hline cis-1,3-Dichloropropene & 25.9 & 2.0 & 0.22 & ug/ & 25.0 & ND & 104 & 70-140 & 5 & 20 \\
\hline trans-1,3-Dichloropropene & 26.5 & 2.0 & 0.24 & ugh & 25.0 & ND & 106 & 70-140 & 6 & 25 \\
\hline Ethylbenzene & 26.3 & 2.0 & 0.25 & ug/1 & 25.0 & ND & 105 & 70-130 & 8 & 20 \\
\hline Methylene chloride & 26.4 & 5.0 & 0.48 & ug/ & 25.0 & ND & 106 & 60-135 & 5 & 20 \\
\hline 1,1,2,2-Tetrachloroethane & 27.2 & 2.0 & 0.24 & ug/l & 25.0 & ND & 109 & 60-145 & 7 & 30 \\
\hline Tetrachloroethene & 23.9 & 2.0 & 0.32 & ug/ & 25.0 & ND & 96 & 70-130 & 5 & 20 \\
\hline Toluene & 26.3 & 2.0 & 0.36 & ug/l & 25.0 & ND & 105 & 70-120 & 3 & 20 \\
\hline 1,1,1-Trichloroethane & 24.6 & 2.0 & 0.30 & ug/ & 25.0 & ND & 98 & 75-140 & 8 & 20 \\
\hline 1,1,2-Trichloroethane & 25.8 & 2.0 & 0.30 & ugh & 25.0 & ND & 103 & 60-135 & 7 & 25 \\
\hline Trichloroethene & 25.0 & 2.0 & 0.26 & ug/l & 25.0 & ND & 100 & 70-125 & 4 & 20 \\
\hline Trichlorofluoromethane & 25.7 & 5.0 & 0.34 & ug/ & 25.0 & ND & 103 & 55-145 & 8 & 25 \\
\hline Vinyl chloride & 27.6 & 0.50 & 0.26 & ug/ & 25.0 & ND & 110 & 40-135 & 4 & 30 \\
\hline Surrogate: Dibromoftuoromethane & 27.1 & & & ug/ & 25.0 & & 108 & 80-120 & & \\
\hline Surrogate: Toluene-d8 & 27.2 & & & ug/l & 25.0 & & 109 & 80-120 & & \\
\hline Surrogate: 4-Bromofluorobenzene & 26.9 & & & ug/ & 25.0 & & 108 & 80-120 & & \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

\section*{MWH-Pasadena/Boeing}

300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention; Bronwyn Kelly

Project ID: Annual Outfall 009
Report Number: 1OB0996
Sampled: 02/11/05
Received: 02/11/05

\section*{MEIIOD BI ANKIOC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{llllllllllll}
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

Batch: 5B13024 Extracted: 02/13/05
Blank Analyzed: 02/15/2005 (5B13024-BLK1)
\begin{tabular}{|c|c|c|c|}
\hline Acenaphthene & ND & 10 & 4.3 \\
\hline Acenaphthylene & ND & 10 & 3.2 \\
\hline Aniline & ND & 10 & 2.9 \\
\hline Antiracene & ND & 10 & 3.2 \\
\hline Benzidine & ND & 20 & 5.2 \\
\hline Benzoic acid & ND & 20 & 2.6 \\
\hline Benzo(a)anthracene & ND & 10 & 3.7 \\
\hline Benzo(b)fluoranthene & ND & 10 & 2.7 \\
\hline Benzo(k)fluoranthene & ND & 10 & 3.4 \\
\hline Benzo(g, h , i)perylene & ND & 10 & 5.3 \\
\hline Benzo(a)pyrene & ND & 10 & 3.5 \\
\hline Benzyl alcohol & ND & 20 & 2.5 \\
\hline Bis(2-chloreethoxy)methane & ND & 10 & 39 \\
\hline Bis(2-chloroethy y)ether & ND & 10 & 4.4 \\
\hline Bis(2-chloroisopropyl)ether & ND & 10 & 4.6 \\
\hline Bis(2-ethylhexyl)phthalate & ND & 50 & 5.2 \\
\hline 4-Bromophenyl phenyl ether & ND & 10 & 4.6 \\
\hline Butyl benzyl phthalate & ND & 20 & 3.5 \\
\hline 4-Chloroaniline & ND & 10 & 6.0 \\
\hline 2-Chloronaphthalene & ND & 10 & 4.0 \\
\hline 4-Chloro-3-methylphenol & ND & 20 & 3.5 \\
\hline 2-Chlorophenol & ND & 10 & 4.2 \\
\hline 4-Chlorophenyl phenyl ether & ND & 10 & 3.0 \\
\hline Chrysene & ND & 10 & 2.8 \\
\hline Dibenz(a,h)anthracene & ND & 20 & 4.7 \\
\hline Dibenzofuran & ND & 10 & 2.6 \\
\hline Di-12-butyl phthatate & ND & 20 & 2.8 \\
\hline 1,3-Dichlorobenzene & ND & 10 & 4.1 \\
\hline 1,4-Dichlorobenzene & ND & 10 & 3.9 \\
\hline 1,2-Dichlorobenzene & ND & 10 & 4.5 \\
\hline 3,3-Dichlorobenzidine & ND & 20 & 11 \\
\hline 2,4-Dichlorophenol & ND & 10 & 4.1 \\
\hline Diethyl phthalate & ND & 10 & 3.1 \\
\hline 2,4-Dimethylphenol & ND & 20 & 4.4 \\
\hline Dimethyl phthalate & ND & 10 & 3.6 \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Annual Outfall 009
Report Number: IOB0996

\section*{METHOD BLANKIQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5B13024 Extracted: 02/13/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 02/15/2005 (5B13024-BLK1)} \\
\hline 4,6-Dinitro-2-methylphenol & ND & 20 & 5.1 & ug/ & & & & & & & \\
\hline 2,4-Dinitrophenol & ND & 20 & 5.3 & ug/1 & & & & & & & \\
\hline 2,4-Dinitrotoluene & ND & 10 & 4.2 & ug/ & & & & & & & \\
\hline 2,6-Dinitrotoluene & ND & 10 & 3.2 & ug/ & & & & & & & \\
\hline Di-n-octyl phthalate & ND & 20 & 4.7 & ug/ & & & & & & & \\
\hline Fluoranthene & ND & 10 & 4.2 & ug/ & & & & & & & \\
\hline Fluorene & ND & 10 & 3.9 & ug/ & & & & & & & \\
\hline Hexachlorobenzene & ND & 10 & 4.8 & ug/ & & & & & & & \\
\hline Hexachlorobutadiene & ND & 10 & 4.2 & ug/ & & & & & & & \\
\hline Hexachlorocyclopentadiene & ND & 20 & 3.4 & ug/ & & & & & & & \\
\hline Hexachloroethane & ND & 10 & 4.2 & ug/ & & & & & & & \\
\hline Indeno(1,2,3-cd)pyrene & ND & 20 & 5.4 & ug/ & & & & & & & \\
\hline Isophorone & ND & 10 & 3.7 & ugh & & & & & & & \\
\hline 2-Methylnaphthalene & ND & 10 & 3.0 & ugh & & & & & & & \\
\hline 2-Methylphenol & ND & 10 & 3.7 & ug/ & & & & & & & \\
\hline 4-Methylphenol & ND & 10 & 3.8 & ug/ & & & & & & & \\
\hline Naphthalene & ND & 10 & 4.5 & ug/ & & & & & & & \\
\hline 2-Nitroaniline & ND & 20 & 3.9 & ug/ & & & & & & & \\
\hline 3-Nitroaniline & ND & 20 & 4.5 & ug/t & & & & & & & \\
\hline 4-Nitroaniline & ND & 20 & 4.9 & ug/ & & & & & & & \\
\hline Nitrobenzene & ND & 20 & 4.2 & ug/ & & & & & & & \\
\hline 2-Nitrophenol & ND & 10 & 4.2 & ug/ & & & & & & & \\
\hline 4-Nitrophenol & ND & 20 & 6.6 & ug/l & & & & & & & \\
\hline N -Nitrosodiphenylamine & ND & 10 & 4.0 & ug/l & & & & & & & \\
\hline N -Nitroso-di-n-propylamine & ND & 10 & 3.6 & ugh & & & & & & & \\
\hline Pentachlorophenol & ND & 20 & 4.0 & ug/l & & & & & & & \\
\hline Phenanthrene & ND & 10 & 3.3 & ugl & & & & & & & \\
\hline Phenol & ND & 10 & 4.0 & ug/l & & & & & & & \\
\hline Pyrene & ND & 10 & 3.9 & ugh & & & & & & & \\
\hline 1,2,4-Trichlorobenzene & ND & 10 & 4.4 & ug/ & & & & & & & \\
\hline 2,4,5-Trichlorophenol & ND & 20 & 3.6 & ug/1 & & & & & & & \\
\hline 2,4,6-Trichlorophenol & ND & 20 & 4.1 & ug/ & & & & & & & \\
\hline 1,2-Diphenylhydrazine/Azobenzene & ND & 20 & 5.0 & ug/ & & & & & & & \\
\hline N -Nitrosodimethylamine & ND & 20 & 3.7 & ug/ & & & & & & & \\
\hline Surrogate: 2-Fluorophenol & 141 & & & \(u g h\) & 200 & & 70 3 & 35-120 & & & \\
\hline Del Mar Analytical, Irvine Wendy Kirkeeng For Michele Project Manager & & & & & & & & & & & \\
\hline
\end{tabular}

\title{
Del Mar Analytical
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\section*{Project ID: Annual Outfall 009}

Report Number: IOB0996
Sampled: 02/11/05
Received: 02/11/05

\section*{MHTHOD BLANKIQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5B13024 Extracted: 02/13/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 02/15/2005 (5B13024-BLK1)} \\
\hline Surrogate: Phenol-d6 & 152 & & & ug \(/\) l & 200 & & 76 & 45-120 & & & \\
\hline Surrogate: 2,4,6-Tribromophenol & 189 & & & ug/t & 200 & & 94 & 50-125 & & & \\
\hline Surrogate: Nitrobenzene-d5 & 82.2 & & & ug/ & 100 & & 82 & 45-120 & & & \\
\hline Surrogate: 2-Fluorobiphenyl & 86.8 & & & \(u g /\) & 100 & & 87 & 45-120 & & & \\
\hline Surrogate: Terphenyl-dI4 & 87.1 & & & ug/ & 100 & & 87 & 45-135 & & & \\
\hline LCS Analyzed: 02/15/2005 (5B & & & & & & & & & & & M-NR1 \\
\hline Acenaphthene & 83.0 & 10 & 4.3 & ug/ & 100 & & 83 & 55-120 & & & \\
\hline Acenaphthylene & 88.0 & 10 & 3.2 & ug/ & 100 & & 88 & 55-120 & & & \\
\hline Aniline & 67.5 & 10 & 2.9 & ug/1 & 100 & & 68 & 30-120 & & & \\
\hline Anthracene & 82.9 & 10 & 3.2 & ug/ & 100 & & 83 & 60-120 & & & \\
\hline Benzidine & 11.3 & 20 & 5.2 & ug/ & 100 & & 11 & 20-180 & & & L2, J \\
\hline Benzoic acid & 72.6 & 20 & 2.6 & ugh & 100 & & 73 & 30-125 & & & \\
\hline Benzo(a)anthracene & 89.4 & 10 & 3.7 & ugh & 100 & & 89 & 65-120 & & & \\
\hline Benzo(b)fluoranthene & 84.9 & 10 & 2.7 & ugh & 100 & & 85 & 50-125 & & & \\
\hline Benzo(k)fluoranthene & 84.1 & 10 & 3.4 & ug/ & 100 & & 84 & 50-125 & & & \\
\hline Benzo(g,h,i)perylene & 83.3 & 10 & 5.3 & ug/ & 100 & & 83 & 35-160 & & & \\
\hline Benzo(a)pyrene & 87.3 & 10 & 3.5 & ug/ & 100 & & 87 & 55-125 & & & \\
\hline Beazyl alcohol & 77.6 & 20 & 2.5 & ugh & 100 & & 78 & 40-130 & & & \\
\hline Bis(2-chloroethoxy)methane & 83.2 & 10 & 3.9 & ug/ & 100 & & 83 & 55-120 & & & \\
\hline Bis(2-chloroethyl)ether & 68.3 & 10 & 4.4 & ugh & 100 & & 68 & 50-120 & & & \\
\hline Bis(2-chloroisopropyl)ether & 73.7 & 10 & 4.6 & ug/ & 100 & & 74 & 50-120 & & & \\
\hline Bis(2-ethythexyl)phthalate & 77.2 & 50 & 5.2 & ug/ & 100 & & 77 & 65-125 & & & \\
\hline 4-Bromophenyl phenyl ether & 79.7 & 10 & 4.6 & ugh & 100 & & 80 & 55-125 & & & \\
\hline Butyl benzyl phthalate & 77.4 & 20 & 3.5 & ug/ & 100 & & 77 & 60-125 & & & \\
\hline 4-Chloroaniline & 80.1 & 10 & 6.0 & ug/ & 100 & & 80 & 55-120 & & & \\
\hline 2-Chloronaphthalene & 81.0 & 10 & 4.0 & ug/ & 100 & & 81 & 60-120 & & & \\
\hline 4-Chioro-3-methyiphenol & 83.6 & 20 & 3.5 & ug/ & 100 & & 84 & 60-120 & & & \\
\hline 2-Chlorophenol & 71.0 & 10 & 4.2 & ug/l & 100 & & 71 & 45-120 & & & \\
\hline 4-Chlorophenyl phenyl ether & 84.8 & 10 & 3.0 & ug/ & 100 & & 85 & 55-120 & & & \\
\hline Chrysene & 85.3 & 10 & 2.8 & ug/ & 100 & & 85 & 65-120 & & & \\
\hline Dibenz(a,h)anthracene & 88.7 & 20 & 4.7 & ug/1 & 100 & & 89 & 40-160 & & & \\
\hline Dibenzofuran & 83.4 & 10 & 2.6 & ug/l & 100 & & 83 & 60-120 & & & \\
\hline Di-n-butyl phthalate & 81.1 & 20 & 2.8 & ugh & 100 & & 81 & 65-125 & & & \\
\hline 1,3-Dichlorobenzene & 63.4 & 10 & 4.1 & ugl & 100 & & 63 & 40-120 & & & \\
\hline 1,4-Dichlorobenzene & 61.8 & 10 & 3.9 & ugl & 100 & & 62 & 40-120 & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine \\ Wendy Kirkeeng For Michele Harper Project Manager}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 009
Report Number: 1OB0996

Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKIQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
Analyte
Batch: 5B13024 Extracted: 02/13/05

LCS Analyzed: 02/15/2005 (5B13024-BS1)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1,2-Dichlorobenzene & 63.4 & 10 & 4.5 & ug/l & 100 & 63 & 40-120 \\
\hline 3,3-Dichlorobenzidine & 101 & 20 & 11 & ug/l & 100 & 101 & 50-170 \\
\hline 2,4-Dichlorophenol & 81.8 & 10 & 4.1 & ug/l & 100 & 82 & 55-120 \\
\hline Diethyl phthalate & 76.5 & 10 & 3.1 & ug/l & 100 & 76 & 60-120 \\
\hline 2,4-Dimethylphenol & 65.9 & 20 & 4.4 & ug/l & 100 & 66 & 35-120 \\
\hline Dimethyl phthalate & 80.9 & 10 & 3.6 & ug/ & 100 & 81 & 60-120 \\
\hline 4,6-Dinitro-2-methylphenol & 80.0 & 20 & 5.1 & ug/l & 100 & 80 & 55-120 \\
\hline 2,4-Dinitrophenol & 77.4 & 20 & 5.3 & ug/l & 100 & 77 & 40-140 \\
\hline 2,4-Dinitrotoluene & 81.4 & 10 & 4.2 & ug/1 & 100 & 81 & 60-140 \\
\hline 2,6-Dinitrotoluene & 77.3 & 10 & 3.2 & ug/l & 100 & 77 & 65-125 \\
\hline Di-n-octyl phthalate & 86.1 & 20 & 4.7 & ug/l & 100 & 86 & 60-130 \\
\hline Fluoranthene & 91.5 & 10 & 4.2 & ug/l & 100 & 92 & 55-125 \\
\hline Eluorene & 87.4 & 10 & 3.9 & ugh & 100 & 87 & 60-120 \\
\hline Hexachlorobenzene & 83.3 & 10 & 4.8 & ug/ & 100 & 83 & 50-120 \\
\hline Hexachlorobutadiene & 71.6 & 10 & 4.2 & ug/l & 100 & 72 & 45-120 \\
\hline Hexachlorocyclopentadiene & 63.9 & 20 & 3.4 & ug/l & 100 & 64 & 10-130 \\
\hline Hexachloroethane & 60.9 & 10 & 4.2 & ug/ & 100 & 61 & 40-120 \\
\hline Indeno(1,2,3-cd)pyrene & 85.2 & 20 & 5.4 & ug/l & 100 & 85 & 35-150 \\
\hline Isophorone & 77.0 & 10 & 3.7 & ug/ & 100 & 77 & 55-120 \\
\hline 2-Methylnaphthalene & 82.7 & 10 & 3.0 & ug/l & 100 & 83 & 50-120 \\
\hline 2-Methylphenol & 72.5 & 10 & 3.7 & ug/1 & 100 & 72 & 45-120 \\
\hline 4-Methylphenol & 74.6 & 10 & 3.8 & ug/l & 100 & 75 & 45-120 \\
\hline Naphthalene & 80.2 & 10 & 4.5 & ug/l & 100 & 80 & 50-120 \\
\hline 2-Nitroaniline & 88.9 & 20 & 3.9 & ug/l & 100 & 89 & 60-130 \\
\hline 3-Nitroaniline & 83.1 & 20 & 4.5 & ug/l & 100 & 83 & 50-140 \\
\hline 4-Nitroaniline & 85.5 & 20 & 4.9 & ug/l & 100 & 86 & 45-160 \\
\hline Nitrobenzene & 72.2 & 20 & 4.2 & ug/ & 100 & 72 & 50-120 \\
\hline 2-Nitrophenol & 80.7 & 10 & 4.2 & \(\mathrm{ug} / 1\) & 100 & 81 & 55-120 \\
\hline 4-Nitrophenol & 78.9 & 20 & 6.6 & ug/ & 100 & 79 & 50-135 \\
\hline N -Nitrosodiphenylamine & 76.0 & 10 & 4.0 & ug/l & 100 & 76 & 60-120 \\
\hline N-Nitroso-di-n-propylamine & 71.2 & 10 & 3.6 & ug/l & 100 & 71 & 50-120 \\
\hline Pentachlorophenol & 88.6 & 20 & 4.0 & ug/ & 100 & 89 & 50-125 \\
\hline Phenanthrene & 80.8 & 10 & 3.3 & ug/l & 100 & 81 & 55-120 \\
\hline Phenol & 74.0 & 10 & 4.0 & ug/l & 100 & 74 & 45-120 \\
\hline Pyrene & 85.3 & 10 & 3.9 & ug/l & 100 & 85 & 50-120 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 009
Report Number: \(10 B 0996\) Sampled: 02/11/05

\section*{METHOD BLANK/QC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5B13024 Extracted: 02/13/05} \\
\hline LCS Analyzed: 02/15/2005 (5813024-BS1) & & & & & & & & & & & M-NR1 \\
\hline 1,2,4-Trichlorobenzene & 72.0 & 10 & 4.4 & ug/ & 100 & & 72 & 50-120 & & & \\
\hline 2,4,5-Trichlorophenol & 85.4 & 20 & 3.6 & ug/l & 100 & & 85 & 60-120 & & & \\
\hline 2,4,6-Trichlorophenol & 87.6 & 20 & 4.1 & ug/l & 100 & & 88 & 60-120 & & & \\
\hline 1,2-Diphenylhydrazine/Azobenzene & 85.6 & 20 & 5.0 & ug/l & 100 & & 86 & 60-120 & & & \\
\hline N -Nitrosodimethylamine & 71.1 & 20 & 3.7 & ug/l & 100 & & 71 & 40-120 & & & \\
\hline Surrogate: 2-Fluorophenol & 133 & & & \(u g / 1\) & 200 & & 66 & 35-120 & & & \\
\hline Surrogate: Phenol-d6 & 143 & & & \(u \mathrm{~g} /\) & 200 & & 72 & 45-120 & & & \\
\hline Surrogate: 2,4,6-Tribromophenol & 177 & & & \(u g / l\) & 200 & & 88 & 50-125 & & & \\
\hline Surrogate: Nitrobenzene-d5 & 75.4 & & & ug/l & 100 & & 75 & 45-120 & & & \\
\hline Surrogate: 2-Fluorobiphenyl & 79.5 & & & \(u g / l\) & 100 & & 80 & 45-120 & & & \\
\hline Surrogate: Terphenyl-dl4 & 78.6 & & & \(u g / l\) & 100 & & 79 & 45-135 & & & \\
\hline
\end{tabular}

LCS Dup Analyzed: 02/15/2005 (5B13024-BSD1)
\begin{tabular}{lr}
Acenaphthene & 86.2 \\
Acenaphthylene & 90.7 \\
Aniline & 81.2 \\
Anthracene & 88.7 \\
Benzidine & 137 \\
Benzoic acid & 66.6 \\
Benzo(a)anthracene & 95.6 \\
Benzo(b)fluoranthene & 92.5 \\
Benzo(k)fluoranthene & 88.6 \\
Benzo(g,h,i)perylene & 97.4 \\
Benzo(a)pyrene & 93.6 \\
Benzyl alcohol & 80.5 \\
Bis(2-chloroethoxy)methane & 85.9 \\
Bis(2-chloroethyl)ether & 70.9 \\
Bis(2-chloroisopropyl)ether & 76.8 \\
Bis(2-ethylhexyl)phthalate & 84.3 \\
4-Bromophenyl phenyl ether & 85.8 \\
Butyl benzyl phthalate & 82.9 \\
4-Chloroaniline & 84.5 \\
2-Chloronaphthalene & 83.6 \\
4-Chloro-3-methylphenol & 87.2 \\
2-Chlorophenol & 72.1 \\
4-Chlorophenyl phenyl ether & 90.4
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

\author{
Project ID: Annual Outfall 009 \\ Sampled: 02/11/05 \\ Report Number: \(10 B 0996 \quad\) Received: 02/11/05
}

\section*{METIOD BLANKIQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
Analyte
Batch: 5B13024 Extracted: 02/13/05

LCS Dup Analyzed: 02/15/2005 (5B13024-BSD1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Chrysene & 90.6 & 10 & 2.8 & ug/l & 100 & 91 & 65-120 & 6 & 20 \\
\hline Dibenz(\(\mathbf{a}, \mathrm{h}\)) anthracene & 103 & 20 & 4.7 & ug/I & 100 & 103 & 40-160 & 15 & 25 \\
\hline Dibenzofuran & 87.2 & 10 & 2.6 & ug/l & 100 & 87 & 60-120 & 4 & 20 \\
\hline Di-n-butyl phthalate & 86.8 & 20 & 2.8 & ug/l & 100 & 87 & 65-125 & 7 & 20 \\
\hline 1,3-Dichlorobenzene & 59.7 & 10 & 4.1 & ug/l & 100 & 60 & 40-120 & 6 & 25 \\
\hline 1,4-Dichlorobenzene & 63.0 & 10 & 3.9 & ug/l & 100 & 63 & 40-120 & 2 & 25 \\
\hline 1,2-Dichlorobenzene & 62.9 & 10 & 4.5 & ug/l & 100 & 63 & 40-120 & 1 & 25 \\
\hline 3,3-Dichlorobenzidine & 114 & 20 & 11 & ug/l & 100 & 114 & 50-170 & 12 & 25 \\
\hline 2,4-Dichlorophenol & 84.2 & 10 & 4.1 & ug/ & 100 & 84 & 55-120 & 3 & 20 \\
\hline Diethyl phthalate & 80.6 & 10 & 3.1 & ug/1 & 100 & 81 & 60-120 & 5 & 20 \\
\hline 2,4-Dimethylphenol & 72.1 & 20 & 4.4 & ug/ & 100 & 72 & 35-120 & 9 & 25 \\
\hline Dimethyl phthalate & 84.3 & 10 & 3.6 & ug/l & 100 & 84 & 60-120 & 4 & 20 \\
\hline 4,6-Dinitro-2-methylphenol & 84,9 & 20 & 5.1 & ugh & 100 & 84 & 55-120 & 5 & 25 \\
\hline 2,4. Dinitrophenol & 80.3 & 20 & 53 & ugh & 100 & 80 & 40-140 & 4 & 25 \\
\hline 2,4-Dinitrotoluene & 86.3 & 10 & 4.2 & ug/l & 100 & 86 & 60-140 & 6 & 20 \\
\hline 2,6-Dinitrotoluene & 80.3 & 10 & 3.2 & ug/ & 100 & 80 & 65-125 & 4 & 20 \\
\hline Di-n-actyl phthalate & 96.4 & 20 & 4.7 & ug/l & 100 & 96 & 60-130 & 11 & 20 \\
\hline Fluoranthene & 96.3 & 10 & 4.2 & ug/l & 100 & 96 & 55-125 & 5 & 20 \\
\hline Fluorene & 91.9 & 10 & 3.9 & ughl & 100 & 92 & 60-120 & 5 & 20 \\
\hline Hexachlorobenzene & 87.5 & 10 & 4.8 & ug/l & 100 & 88 & 50-120 & 5 & 20 \\
\hline Hexachlorobutadiene & 73.2 & 10 & 4.2 & ug/l & 100 & 73 & 45-120 & 2 & 25 \\
\hline Hexachlorocyclopentadiene & 66.5 & 20 & 3.4 & ug/ & 100 & 66 & 10-130 & 4 & 30 \\
\hline Hexachloroethane & 60.4 & 10 & 4.2 & ug/l & 100 & 60 & 40-120 & 1 & 25 \\
\hline Indeno(1,2,3-cd)pyrene & 98.6 & 20 & 5.4 & ug/l & 100 & 99 & 35-150 & 15 & 25 \\
\hline Isophorone & 81.3 & 10 & 3.7 & ug/l & 100 & 81 & 55-120 & 5 & 20 \\
\hline 2-Methylnaphthalene & 86.1 & 10 & 3.0 & ug/l & 100 & 86 & 50-120 & 4 & 20 \\
\hline 2-Methylphenol & 75.6 & 10 & 3.7 & ug/l & 100 & 76 & 45-120 & 4 & 20 \\
\hline 4-Methylphenol & 78.2 & 10 & 3.8 & ug/t & 100 & 78 & 45-120 & 5 & 20 \\
\hline Naphthalene & 83.1 & 10 & 4.5 & ug/ & 100 & 83 & 50-120 & 4 & 20 \\
\hline 2-Nitroaniline & 91.5 & 20 & 3.9 & ug/l & 100 & 92 & 60-130 & 3 & 20 \\
\hline 3-Nitroaniline & 88.6 & 20 & 4.5 & ug/ & 100 & 89 & 50-140 & 6 & 25 \\
\hline 4-Nitroaniline & 94.4 & 20 & 4.9 & ug/ & 100 & 94 & 45-160 & 10 & 20 \\
\hline Nitrobenzene & 74.6 & 20 & 4.2 & \(\mathrm{ug} / \mathrm{l}\) & 100 & 75 & 50-120 & 3 & 25 \\
\hline 2-Nitrophenol & 83.0 & 10 & 4.2 & ug/l & 100 & 83 & 55-120 & 3 & 25 \\
\hline 4-Nitrophenol & 81.6 & 20 & 6.6 & ug/l & 100 & 82 & 50-135 & 3 & 25 \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 009
Report Number: IOB0996
Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKIOC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5B13024 Extracted: 02/13/05} \\
\hline \multicolumn{12}{|l|}{LCS Dup Analyzed: 02/15/2005 (5B13024-BSD1)} \\
\hline N -Nitrosodiphenylamine & 80.6 & 10 & 4.0 & ug/ & 100 & & 81 & 60-120 & 6 & 20 & \\
\hline N -Nitroso-di-n-propylamine & 75.1 & 10 & 3.6 & ug/ & 100 & & 75 & 50-120 & 5 & 20 & \\
\hline Pentachlorophenol & 92.7 & 20 & 4.0 & ug/ & 100 & & 93 & 50-125 & 5 & 25 & \\
\hline Phenanthrene & 86.6 & 10 & 3.3 & ug/ & 100 & & 87 & 55-120 & 7 & 20 & \\
\hline Phenol & 75.1 & 10 & 4.0 & ug/ & 100 & & 75 & 45-120 & 1 & 25 & \\
\hline Pyrene & 88.4 & 10 & 3.9 & ugd & 100 & & 88 & 50-120 & 4 & 25 & \\
\hline 1,2,4-Trichlorobenzene & 73.0 & 10 & 4.4 & ug/l & 100 & & 73 & 50-120 & 1 & 20 & \\
\hline 2,4,5-Trichlorophenol & 88.6 & 20 & 3.6 & ug/ & 100 & & 89 & 60-120 & 4 & 20 & \\
\hline 2,4,6-Trichlorophenol & 89.5 & 20 & 4.1 & ug/ & 100 & & 90 & 60-120 & 2 & 20 & \\
\hline 1,2-Diphenylhydrazine/Azobenzene & 90.2 & 20 & 5.0 & ug/ & 100 & & 90 & 60-120 & 5 & 25 & \\
\hline N -Nitrosodimethylamine & 71.1 & 20 & 3.7 & ug/ & 100 & & 71 & 40-120 & 0 & 20 & \\
\hline Surrogate: 2-Fluorophenol & 128 & & & \(u g /\) & 200 & & 64 & 35-120 & & & \\
\hline Shrrogate Phenol do & 141 & & & ugh & 200 & & 70 & \(45-120\) & & & \\
\hline Surrogate 2,4,6-Tribromophenol & 185 & & & ugh & 200 & & 92 & 50-125 & & & \\
\hline Surrogate: Nitrobenzene-d5 & 76.5 & & & \(u g h\) & 100 & & 76 & 45-120 & & & \\
\hline Surrogate: 2-Fluorobiphenyl & 79.4 & & & \(u g /\) & 100 & & 79 & 45-120 & & & \\
\hline Surrogate: Terphenyl-d14 & 82.3 & & & \(u g h\) & 100 & & 82 & 45-135 & & & \\
\hline
\end{tabular}

\section*{Batch: 5B17041 Extracted: 02/17/05}

Blank Analyzed: 02/22/2005 (5B17041-BLK1)
Benzidine ND

Surrogate: 2-Fluorophenol 110
Surrogate: Phenol-d6
Surrogate: 2,4,6-Tribromophenol
121
144

Surrogate:
Surrogate: Terphenyl-d14 67.5
\(20 \quad 5.2\)
\begin{tabular}{|c|c|c|c|}
\hline \(u g /\) & 200 & 55 & 35-120 \\
\hline \(u g /\) & 200 & 60 & 45-120 \\
\hline ug/t & 200 & 72 & 50-125 \\
\hline \(u g / l\) & 100 & 66 & 45-120 \\
\hline ug/l & 100 & 70 & 45-120 \\
\hline \(u g /\) & 100 & 68 & 45-135 \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 009
Report Number: IOB0996

Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKIOC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \[
\begin{aligned}
& \text { RPD } \\
& \text { Limit }
\end{aligned}
\] & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5B17041 Extracted: 02/17/05} \\
\hline LCS Analyzed: 02/22/2005 (5 & & & & & & & & & & & M-NR1 \\
\hline Benzidine & 145 & 20 & 5.2 & ug/ & 100 & & 145 & 20-180 & & & \\
\hline Surrogate: 2-Fluorophenol & 120 & & & \(u g / 1\) & 200 & & 60 & 35-120 & & & \\
\hline Surrogate: Phenol-d6 & 138 & & & ug/ & 200 & & 69 & 45-120 & & & \\
\hline Surrogate: 2,4,6-Tribromophenol & 164 & & & ug/ & 200 & & 82 & 50-125 & & & \\
\hline Surrogate: Nitrobenzene-d5 & 74.1 & & & ug/ & 100 & & 74 & 45-120 & & & \\
\hline Surrogate: 2-Fluorobiphenyl & 73.0 & & & ug \(/\) & 100 & & 73 & 45-120 & & & \\
\hline Surrogate: Terphenyl-d14 & 85.2 & & & ug/ & 100 & & 85 & 45-135 & & & \\
\hline \multicolumn{12}{|l|}{LCS Dup Analyzed: 02/22/2005 (5B17041-BSD1)} \\
\hline Benzidine & 149 & 20 & 5.2 & ug/ & 100 & & 149 & 20-180 & 3 & 35 & \\
\hline Surrogate: 2-Fluorophenol & 120 & & & ug/ & 200 & & 60 & 35-120 & & & \\
\hline Surrogate: Phenol-d6 & 132 & & & \(u g /\) & 200 & & 66 & 45-120 & & & \\
\hline Surrogate: 2,4,6-Tribromophenol & 163 & & & ug/ & 200. & & 82 & 50-125 & & & \\
\hline Surrogate: Nitrobenzene-d5 & 76.0 & & & ug/l & 100 & & 76 & 45-120 & & & \\
\hline Surrogate: 2-Fluorobiphenyl & 74.0 & & & ugh & 100 & & 74 & 45-120 & & & \\
\hline Surrogate: Terphenyl-d14 & 84.4 & & & \(u g / /\) & 100 & & 84 & 45-135 & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\author{
Project ID: Annual Outfall 009 \\ Report Number: IOB0996 \\ Sampled: 02/11/05 \\ Received: 02/11/05
}

\section*{METHOD BLANKIQC DATA}

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}
\begin{tabular}{lllllllllllll}
& & & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & . & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

Batch: 5B15038 Extracted: 02/15/05
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Blank Analyzed: 02/15/2005-02/16/2005 (5B15038-BLK1)} \\
\hline Aldrin & ND & 0.10 & 0.030 \\
\hline alpha-BHC & ND & 0.10 & 0.015 \\
\hline beta-BHC & ND & 0.10 & 0.015 \\
\hline delta-BHC & ND & 0.20 & 0.020 \\
\hline gamma-BHC (Lindane) & ND & 0.10 & 0.015 \\
\hline Chlordane & ND & 1.0 & 0.20 \\
\hline 4,4-DDD & ND & 0.10 & 0.015 \\
\hline 4,4'-DDE & ND & 0.10 & 0.020 \\
\hline 4,4'-DDT & ND & 0.10 & 0.030 \\
\hline Dieldrin & ND & 0.10 & 0.015 \\
\hline Endosulfan I & ND & 0.10 & 0.015 \\
\hline Endosulfan II & ND & 0.10 & 0.040 \\
\hline Endosulfan sulfate & ND & 0.20 & 0.015 \\
\hline Endrin & ND & 0.10 & 0.015 \\
\hline Endrin aldehyde & ND & 0.10 & 0.045 \\
\hline Endrin ketone & ND & 0.10 & 0.020 \\
\hline Heptachlor & ND & 0.10 & 0.030 \\
\hline Heptachlor epoxide & ND & 0.10 & 0.020 \\
\hline Methoxychlor & ND & 0.10 & 0.035 \\
\hline Toxaphene & ND & 5.0 & 1.5 \\
\hline Surrogate: Tetrachloro-m-xylene & 0.329 & & \\
\hline Surrogate: Decachlorobiphenyl & 0.459 & & \\
\hline
\end{tabular}
\begin{tabular}{lll}
0.500 & 66 & \(35-120\) \\
0.500 & 92 & \(45-120\)
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 009
Sampled: 02/11/05
Report Number: IOB0996
Received: 02/11/05

\section*{METHOD BLANKIQC DATA}

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}

\(\begin{array}{lr}\text { LCS Dup Analyzed: } 02 / 16 / 2005 & \text { (5B15038-BSD1) } \\ \text { Aldrin } & 0.288\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Aldrin & 0.288 & 0.10 & 0.030 & ug/ & 0.500 & 58 & 45-115 & 15 & 30 \\
\hline alpha-BHC & 0.282 & 0.10 & 0.015 & ug/ & 0.500 & 56 & 45-115 & 5 & 30 \\
\hline beta-BHC & 0.395 & 0.10 & 0.015 & ug/ & 0.500 & 79 & 50-115 & 19 & 30 \\
\hline delta-BHC & 0.395 & 0.20 & 0.020 & ugd & 0.500 & 79 & 55-120 & 20 & 30 \\
\hline gamma-BHC (Lindane) & 0.320 & 0.10 & 0.015 & ug/ & 0.500 & 64 & 45-115 & 12 & 30 \\
\hline 4,4'-DDD & 0.435 & 0.10 & 0.015 & ug/ & 0.500 & 87 & 60-120 & 23 & 30 \\
\hline 4,4'-DDE & 0.413 & 0.10 & 0.020 & ug/ & 0.500 & 83 & 55-120 & 22 & 30 \\
\hline 4,4-DDT & 0.411 & 0.10 & 0.030 & ugh & 0.500 & 82 & 60-130 & 22 & 30 \\
\hline Dieldrin & 0.407 & 0.10 & 0.015 & ugh & 0.500 & 81 & 55-120 & 21 & 30 \\
\hline Endosulfan I & 0.387 & 0.10 & 0.015 & ug/ & 0.500 & 77 & 50-115 & 19 & 30 \\
\hline Endosulfan II & 0.420 & 0.10 & 0.040 & ugh & 0.500 & 84 & 60-125 & 22 & 30 \\
\hline Endosulfan sulfate & 0.437 & 0.20 & 0.015 & ugh & 0.500 & 87 & 60-120 & 21 & 30 \\
\hline Endrin & 0.407 & 0.10 & 0.015 & ug/ & 0.500 & 81 & 55-125 & 21 & 30 \\
\hline Endrin aldehyde & 0.420 & 0.10 & 0.045 & ug/ & 0.500 & 84 & 55-115 & 19 & 30 \\
\hline Endrin ketone & 0.452 & 0.10 & 0.020 & ug/ & 0.500 & 90 & 60-120 & 22 & 30 \\
\hline Heptachlor & 0.311 & 0.10 & 0.030 & ug/ & 0.500 & 62 & 45-115 & 11 & 30 \\
\hline Heptachlor epoxide & 0.377 & 0.10 & 0.020 & ug/ & 0.500 & 75 & 50-120 & 18 & 30 \\
\hline Methoxychlor & 0.455 & 0.10 & 0.035 & ug/l & 0.500 & 91 & 60-135 & 22 & 30 \\
\hline Surrogate: Tetrachloro-m-xylene & 0.190 & & & \(u g h\) & 0.500 & 38 & 35-120 & & \\
\hline Surrogate: Decachlorobiphenyl & 0.412 & & & ug/ & 0.500 & 82 & 45-120 & & \\
\hline
\end{tabular}

Data
Qualifiers

M-NR1
\(15-30\)
\(\qquad\) 30 0 30

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Annual Outfall 009
Report Number: IOB0996 Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKIQC DATA}

\section*{TOTAL PCBS (EPA 608)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & RPD Limit & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5B15038 Extracted: 02/15/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 02/15/2005-02/16/2005 (5B15038-BLK1)} \\
\hline Aroclor 1016 & ND & 1.0 & 0.20 & ugh & & & & & & & \\
\hline Aroclor 1221 & ND & 1.0 & 0.10 & ug/ & & & & & & & \\
\hline Aroclor 1232 & ND & 1.0 & 0.15 & ug/ & & & & & & & \\
\hline Aroclor 1242 & ND & 1.0 & 0.15 & ug/ & & & & & & & \\
\hline Aroclor 1248 & ND & 1.0 & 0.25 & ug/ & & & & & & & \\
\hline Aroclor 1254 & ND & 1.0 & 0.25 & ugh & & & & & & & \\
\hline Aroclor 1260 & ND & 1.0 & 0.40 & ug/l & & & & & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.410 & & & \(u g /\) & 0.500 & & 82 & 45-120 & & & \\
\hline LCS Analyzed: 02/15/2005 (& & & & & & & & & & & M-NR1 \\
\hline Aroclor 1016 & 2.88 & 1.0 & 0.20 & ug/ & 4.00 & & 72 & 50-115 & & & \\
\hline Aroclor 1260 & 3.29 & 1.0 & 0.40 & ugh & 4.00 & & 82 & 60-115 & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.444 & & & \(u \mathrm{~g} / \mathrm{l}\) & 0.500 & & 89 & 45-120 & & & \\
\hline \multicolumn{12}{|l|}{LCS Dup Analyzed: \(02 / 15 / 2005\) (5B15038-BSD2)} \\
\hline Aroclor 1016 & 2.51 & 1.0 & 0.20 & ug/l & 4.00 & & 63 & 50-115 & 14 & 30 & \\
\hline Aroclor 1260 & 2.99 & 1.0 & 0.40 & ug/ & 4.00 & & 75 & 60-115 & 10 & 25 & \\
\hline Surrogate: Decachlorobiphenyl & 0.404 & & & ug/ & 0.500 & & 81 & 45-120 & & & \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager
}

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 009
Report Number: 1OB0996

\section*{METHOD BIANKVC DATA}

\section*{METALS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Oualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5B15070 Extracted: 02/15/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 02/15/2005 (5B15070-BLK1)} \\
\hline Mercury ND & 0.20 & 0.063 & ug/ & & & & & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 02/15/2005 (5B15070-BS1)} \\
\hline Mercury 8.18 & 0.20 & 0.063 & ug/ & 8.00 & & 102 & 85-115 & & & \\
\hline \multicolumn{11}{|l|}{Matrix Spike Analyzed: 02/15/2005 (5B15070-MS1) Source: 1OB1088-01} \\
\hline Mercury 8.26 & 0.20 & 0.063 & ug/ & 8.00 & ND & 103 & 70-130 & & & \\
\hline \multicolumn{11}{|l|}{Matrix Spike Dup Analyzed: 02/15/2005 (5B15070-MSD1) Source: 1OB1088-01} \\
\hline Mercury 8.26 & 0.20 & 0.063 & ug/l & 8.00 & ND & 103 & 70-130 & 0 & 20 & \\
\hline Batch: 5B17097 Extracted: 02/17/05 & & & & & & & & & & \\
\hline
\end{tabular}

Blank Analyzed: 02/17/2005-02/18/2005 (5B17097-BLK1)
\begin{tabular}{lccccc}
Aluminum & & ND & 50 & 47 & \(\mathrm{ug} /\) \\
Arsenic & & ND & 5.0 & 3.8 & \(\mathrm{ug} /\) \\
Beryllium & & ND & 2.0 & 0.62 & \(\mathrm{ug} /\) \\
Boron & & ND & 0.050 & 0.0074 & \(\mathrm{mg} / \mathrm{l}\) \\
Chromium & ND & 5.0 & 0.68 & \(\mathrm{ug} /\) \\
Nickel & ND & 10 & 2.0 & \(\mathrm{ug} / \mathrm{l}\) \\
Selenium & ND & 5.0 & 4.6 & \(\mathrm{ug} /\) \\
Silver & ND & 10 & 1.3 & \(\mathrm{ug} /\) \\
Thallium & ND & 5.0 & 3.1 & \(\mathrm{ug} /\) \\
Vanadium & ND & 10 & 1.4 & \(\mathrm{ug} /\) \\
Zinc & ND & 20 & 3.7 & \(\mathrm{ug} / \mathrm{l}\)
\end{tabular}

LCS Analyzed: 02/17/2005-02/18/2005 (5B17097-BS1)
\begin{tabular}{lccccccc}
Aluminum & 464 & 50 & 47 & \(\mathrm{ug} /\) & 500 & 93 & \(85-115\) \\
Arsenic & 514 & 5.0 & 3.8 & \(\mathrm{ug} /\) & 500 & 103 & \(85-115\) \\
Beryllium & 502 & 2.0 & 0.62 & \(\mathrm{ug} /\) & 500 & 100 & \(85-115\) \\
Boron & 0.474 & 0.050 & 0.0074 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 95 & \(85-115\) \\
Chromium & 517 & 5.0 & 0.68 & \(\mathrm{ug} / \mathrm{l}\) & 500 & 103 & \(85-115\) \\
Nickel & 508 & 10 & 2.0 & \(\mathrm{ug} / \mathrm{l}\) & 500 & 102 & \(85-115\) \\
Selenium & 514 & 5.0 & 4.6 & \(\mathrm{ug} /\) & 500 & 103 & \(85-115\) \\
Silver & 258 & 10 & 1.3 & \(\mathrm{ug} /\) & 250 & 103 & \(85-115\) \\
Thallium & 523 & 5.0 & 3.1 & \(\mathrm{ug} /\) & 500 & 105 & \(85-115\) \\
Vanadium & 512 & 10 & 1.4 & \(\mathrm{ug} / 1\) & 500 & 102 & \(85-115\)
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

Sampled: 02/11/05
Received: 02/11/05

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\section*{Project ID: Annual Outfall 009}

Report Number: \(10 B 0996\)
Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKIQC DATA}

\section*{METALS}

LCS Analyzed: 02/17/2005-02/18/2005 (5B17097-BS1)
Zinc

Matrix Spike Analyzed: 02/17/2005-02/18/2005 (5B17097-MS1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Aluminum & 1690 & 50 & 47 & ugh & 500 & 880 & 162 & 70-130 \\
\hline Arsenic & 516 & 5.0 & 3.8 & ug/l & 500 & ND & 103 & 70-130 \\
\hline Beryllium & 506 & 2.0 & 0.62 & ugh & 500 & ND & 101 & 70-130 \\
\hline Boron & 0.499 & 0.050 & 0.0074 & \(\mathrm{mg} / 1\) & 0.500 & 0.017 & 96 & 70-130 \\
\hline Chromium & 522 & 5.0 & 0.68 & ug/ & 500 & 3.4 & 104 & 70-130 \\
\hline Nickel & 526 & 10 & 2.0 & ug/ & 500 & 2.9 & 105 & 70-130 \\
\hline Selenium & 509 & 5.0 & 4.6 & ug/ & 500 & 4.7 & 101 & 70-130 \\
\hline Silver & 262 & 10 & 1.3 & ug/ & 250 & ND & 105 & 70-130 \\
\hline Thallium & 525 & 5.0 & 3.1 & ug/ & 500 & ND & 105 & 70-130 \\
\hline Vanadium & 524 & 10 & 1.4 & ug/ & 500 & 3.1 & 104 & 70-130 \\
\hline Zine & 640 & 20 & 3.7 & ugh & 500 & 120 & 104 & 70-130 \\
\hline
\end{tabular}

Matrix Spike Dup Analyzed: 02/17/2005-02/18/2005 (5B17097-MSD1)

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 009
Report Number: IOB0996

\section*{METHOD BLANKIOC DATA}

\section*{METALS}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 009
Report Number: IOB0996
Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKIOC DATA}

\section*{INORGANICS}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\author{
Project ID: Annual Outfall 009 \\ Report Number: IOB0996 \\ Received: 02/11/05
}

\section*{METHOD BLANKIOC DATA}

\section*{INORGANICS}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 009
Report Number: \(10 B 0996\) Received: 02/11/05

\section*{METHOD BLANKGC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5B17069 Extracted: 02/17/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 02/17/2005 (5B17069-BLK1)} \\
\hline Total Suspended Solids ND & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 02/17/2005 (5B17069-BS1)} \\
\hline Total Suspended Solids 977 & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & 1000 & & 98 & 85-115 & & & \\
\hline Duplicate Analyzed: 02/17/2005 (5B17069-DUP1) & & & & & ce: IOB0 & 990-01 & & & & \\
\hline Total Suspended Solids ND & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & & ND & & & & 10 & \\
\hline
\end{tabular}

Batch: 5B17117 Extracted: 02/17/05
Blank Analyzed: 02/17/2005 (5B17117-BLK1)
Oil \& Grease ND

LCS Analyzed: 02/17/2005 (5B17117-BS1)
Oil \& Grease
7.6
5.0 0.94

LCS Dup Analyzed: 02/17/2005 (5B17117-BSD1)
Oil \& Grease 16.4
\(5.0 \quad 0.94 \quad \mathrm{mg} / 1 \quad 20.0\)
M-NR1

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 009
Report Number: \(10 \mathrm{BO996}\)

Sampled: 02/11/05
Received: 02/11/05

\section*{Compliance Check}

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.
\begin{tabular}{lllcccc}
LabNumber & Analysis & Analyte & & & Compliance \\
\hline IOB0996-01 & 413.1 Oil and Grease & Oil \& Grease & \(\mathrm{mg} / \mathrm{l}\) & 0 & 5.0 & 15 \\
IOB0996-01 & Boron-200.7 & Boron & \(\mathrm{mg} / \mathrm{l}\) & 0.047 & 0.050 & 1.00 \\
1OB0996-01 & Chloride -300.0 & Chloride & \(\mathrm{mg} / \mathrm{l}\) & 6.20 & 0.50 & 150 \\
IOB0996-01 & Nitrogen, NO3+NO2-N & Nitrate/Nitrite-N & \(\mathrm{mg} / \mathrm{l}\) & 0.95 & 0.26 & 10.00 \\
IOB0996-01 & Perchlorate 314.0 & Perchlorate & \(\mathrm{ug} / \mathrm{l}\) & 0 & 4.0 & 6.00 \\
IOB0996-01 & Sulfate-300.0 & Sulfate & \(\mathrm{mg} / \mathrm{l}\) & 13 & 0.50 & 250 \\
IOB0996-01 & TDS - SM 2540C & Total Dissolved Solids & \(\mathrm{mg} / \mathrm{l}\) & 86 & 10 & 850
\end{tabular}

\section*{ADDITIONAL COMMENTS}

For 1,2-Diphenylhydrazine:
The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene. 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St, Sulte 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. 3 . Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 009
Report Number: IOB0996

Sampled: 02/11/05
Received: 02/11/05

\section*{Certification Summary}

\section*{Del Mar Analytical, Irvine}
\begin{tabular}{cccc}
Method & Matrix & Nelac & California \\
EPA 160.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 200.7 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 200.8 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 245.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 300.0 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 314.0 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 335.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 413.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 608 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 624 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 625 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
SM2540C & Water & \(\mathbf{X}\) & \(\mathbf{X}\)
\end{tabular}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

\section*{Subcontracted Laboratories}

Alta Analytical Perspectives
Analysis Performed: 1613-Dioxin-HR
Samples: 10B0996-01
Analysis Performed: EDD + Level 4
Samples: 10B0996-01
Aquatic Testing Laboratories-SUB California Cert \#1775
4350 Transport Street, Unit 107 - Ventura, CA 93003
Analysis Performed: Bioassay-Acute 96 hr
Samples: 1OB0996-01
Eberline Services - SUB
2030 Wright Avenue - Richmond, CA 94804
Analysis Performed: EDD + Level 4
Samples: 1OB0996-01
Analysis Performed: Gross Alpha
Samples: 1OB0996-01
Analysis Performed: Gross Beta
Samples: 1OB0996-01
Analysis Performed: Strontium 90
Samples: 1OB0996-01
Analysis Performed: Tritium
Samples: IOB0996-01

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}
\begin{tabular}{cr}
Project ID: Annual Outfall 009 & \\
Report Number: IOB0996 & Sampled: 02/11/05 \\
Received: 02/11/05
\end{tabular}

Sampled: 02/11/05

 ANALYSIS REQUIRED

\title{
\(<\) Del MarAnalytical
}

March 25,2005

MWH-Pasadena/ Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention: Bronwyn Kelly
Project: Annual Outfall 009
Sampled: 02/11/05
Del Mar Analytical Number: IOB0996

Dear Ms. Kelly:
Aquatic Testing Laboratories performed the Fathead Minnow 96 hr Percent Survival Bioassay (EPA Method 2000.0), Eberline Services tested gross alpha/gross beta (EPA 900.0), tritium (H-3, EPA 906.0), and strontium-90 (Sr-90, EPA 905.0) and Alta Analytical Perspectives performed the EPA Method 1613B Dioxin analysis for the project referenced above. Please use the following cross-reference table when reviewing your results.
\begin{tabular}{|c|c|c|c|c|}
\hline MWH ID & DEL MAR ID & AtI ID & Eberline ID & Alta ID \\
\hline Outfall 009 & IOB0996-01 & A-05021205-001 & R502133-01/8262-001 & P5072 2989 003 \\
\hline
\end{tabular}

Attached are the original reports from the subcontract laboratories. If you have any questions or require further assistance, please do not hesitate to contact me at (949) 261-1022 at extension 215.

Sincerely yours,
DEL MAR ANALYTICAL

Project Manager

\section*{LABORATORY REPORT}

Date:
February 16, 2005
Client: Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Attn: Michele Harper

\author{
Aquatic \\ Testing \\ \\ \section*{Laboratories} \\ "dedicated to providing quality aquatic toxicity testing" \\ 4350 Transport Street, Unit 107 \\ Ventura, CA 93003 \\ (805) 650-0546 FAX (805) 650-0756 \\ CA DOHS ELAP Cert. No.: 1775
}

Laboratory No.: A-05021205-001
Sample ID.: IOB0996-01

Sample Control: The samples were received by ATL in a chilled state, with the chain of custody record attached.

Date Sampled: \(\quad 02 / 11 / 05\)
Date Received: 02/12/05
Date Tested: \(\quad 02 / 12 / 05\) to \(02 / 16 / 05\)

Sample Analysis: The following analyses were performed on your sample:
Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0).
Attached are the test data generated from the analysis of your sample.

\section*{Result Summary:}
\(\frac{\text { Sample ID. }}{\text { IOB0996-01 }} \quad \frac{\text { Results }}{100 \% \text { Survival }(\text { TUa }=0.0)}\)

Quality Control: Reviewed and approved by:

\section*{FATHEAD MINNOW PERCENT SURVIVAL TEST}

Lab No.: A-05021205-001
Client/ID: Del Mar IOB0996-01

\section*{TEST SUMMARY}

Species: Pimephales promelas.
Age: 13 (1-14) days.
Regulations: NPDES.
Test solution volume: 250 ml .
Feeding: prior to renewal at 48 hrs .
Number of replicates: 2.
Dilution water: Moderately hard reconstituted water.
Photoperiod: 16/8 hrs light/dark.

Start Date: 02/12/2005

Source: In-laboratory Culture.
Test type: Static-Renewal.
Test Protocol: EPA-821-R-02-012.
Endpoints: Percent Survival at 96 hrs.
Test chamber: 600 ml beakers.
Temperature: \(20+1-1^{\circ} \mathrm{C}\).
Number of fish per chamber: 10.
QA/QC Batch No.: RT-050208.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{TEST DATA} \\
\hline & & \multirow{2}{*}{\({ }^{\circ} \mathrm{C}\)} & \multirow{2}{*}{DO} & \multirow[b]{2}{*}{pH} & \multicolumn{2}{|r|}{\# Dead} & \multirow[t]{2}{*}{Analyst \& Time of Readings} \\
\hline & & & & & A & B & \\
\hline \multirow[t]{2}{*}{INITIAL} & Control & 20.2 & 8.1 & 7.8 & \(C\) & \(C\) & \multirow[t]{2}{*}{R20} \\
\hline & 100\% & 20.3 & 210 & 6.8 & 12 & 0 & \\
\hline \multirow[t]{2}{*}{24 Hr} & Control & 203 & 6.5 & 7.7 & \(\cdots\) & 0 & \multirow[t]{2}{*}{} \\
\hline & 100\% & 20.1 & 16.5 & 73 & \(C\) & 0 & \\
\hline \multirow[t]{2}{*}{48 Hr} & Control & 204 & 24 & 2 s & \(C\) & \(C\) & \multirow[t]{2}{*}{\[
\frac{2}{120 \pi}
\]} \\
\hline & 100\% & 2014 & 2.2 & 71 & 0. & 0 & \\
\hline \multirow[t]{2}{*}{Renewal} & Control & 20.4 & 8.0 & 2. 7 & 0 & 0 & \multirow[t]{2}{*}{\[
\frac{2}{1200}
\]} \\
\hline & 100\% & 2013 & 9.2 & 7-0 & \(c\) & 0 & \\
\hline \multirow[t]{2}{*}{72 Hr} & Control & 198 & 28 & 24 & 0 & 0 & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Pm } \\
& 1100
\end{aligned}
\]} \\
\hline & 100\% & 1912 & 2.9 & 70 & 0 & 0 & \\
\hline \multirow[t]{2}{*}{96 Hr} & Control & 20.7 & 78 & 24 & 0 & 0 & \multirow[t]{2}{*}{RLN} \\
\hline & 100\% & 20.4 & 7.9 & 7.0 & 0 & 0 & \\
\hline
\end{tabular}

Comments:
Sample as received: Chlorine: \(0 \mathrm{mg} / \mathrm{l} \mathrm{pH}: 6.8\); Conductivity: \(/ / 7\) umho; Temp: \(4^{\circ} \mathrm{C}\); DO: \(\mathcal{S}\) L \(\mathrm{mg} / \mathrm{l}\); Alkalinity: \(3 / \mathrm{mg} / \mathrm{l}\), Hardness: \(4 \mathrm{gmg} / ; \mathrm{NH}_{3}-\mathrm{N}: 0.5 \mathrm{mg} / \mathrm{l}\). Sample aerated moderately (approx. \(500 \mathrm{ml} / \mathrm{min}\)) to raise or lower DO? Yes /
Control: Alkalinity: \(54 \mathrm{mg} /\); Hardness: \(87 \mathrm{mg} /\); Conductivity: 295 umho.
Test solution aerated (not to exceed 100 bubbles \(/ \mathrm{min}\)) to maintain DO \(>4.0 \mathrm{mg} / 1\) Yes / No
Sample used for renewal is the original sample kept at \(0-6^{\circ} \mathrm{C}\) with minimal headspace.

\section*{RESULTS}

Ph (949) 281-1022 Ph (909) 370-4667 Pn (619) 505-9686 P4 (480) 785-0043 Pn (702) 7903020

Fax (949) \(281-1228\) Fax (509) 370-1046 Fix (619) 505-968 Fix (400) 705-085 Fax (70c) 78e-3an

\section*{SUBCONTRACT ORDER - PROJECT \# IOB0996}

\section*{EBERLINE}

March 8. 2005

Ms. Michele Harper
Project Manager
Del Mar Analytical
17461 Derian Avenue, Suite 100
Irvine. CA 92614
\(\begin{array}{ll}\text { Reference: } & \text { Del Mar Analytical Project No. IOB0996 } \\ & \text { Eberline Services NELAP Cert \#01120CA (exp. 01/31/06) } \\ & \text { Eberline Services Report R502133-8262 }\end{array}\)
Dear Ms. Harper:
Enclosed are results from the analyses of one water sample received at Eberline Services on February 15, 2005. The sample was analyzed according to the accompanying Del Mar Analytical Subcontract Order Form. The requested analyses were gross alpha/gross beta (EPA900.0), tritium (H-3, EPA906.0), and strontium-90 (Sr-90, EPA905.0). The QC LCS, blank analyses, sample duplicates, and matrix spike results for the analyses were within the limits defined in Eberline Services Quality Control Procedures Manual. Analyses that involve the yiclding of an analytical tracer or carrier, such as \(\mathrm{Sr}-90\), do not require matrix spike analyses to be performed.

Please call me if you have any questions concerning this report.
Regards.
muermons.
Melissa Mannion
Senior Program Manager

MC'Minjv
Enc/osure: Report
Subcontract Form
Receipt checklist
Invoice
sberline services

\section*{ANALYSIS RESULTS}
\begin{tabular}{|cc|}
\hline SDG 8262 & Client DEL MAR ANAL \\
WOrk Order R502133-01. & Contract MROTECTH IORO996 \\
Received Date \(02 / 15 / 05\) & Matrix KATER
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
client \\
Sample TD
\end{tabular} & Lab Sample ID & Collected & Analyzed & Nucline & Regults \(\pm 20\) & Onits & MDA \\
\hline \multirow[t]{4}{*}{1080996-01} & \multirow[t]{4}{*}{8262-001} & \multirow[t]{4}{*}{02/11/05} & 03/01/05 & GrosgAlpha & \(0.812 \pm 0.63\) & \(\mathrm{pCi} / \mathrm{L}\) & 0.864 \\
\hline & & & 03/01/05 & Gross Beta & \(1.76 \pm 1.1\) & \(\mathrm{pCi} / \mathrm{L}\) & 1.79 \\
\hline & & & 03/02/05 & H3 & \(59.8 \pm 140\) & pCi/L & 240 \\
\hline & & & 02/25/05 & Sr90 & \(0.078 \pm 0.25\) & \(\mathrm{pCi} / \mathrm{L}\) & 0.470 \\
\hline
\end{tabular}

\section*{Eberline Services}

QC RESULTS

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample ID & Nuclide & Results & Units & Amount Added & MDA & Evaluation \\
\hline \multicolumn{7}{|l|}{LCS} \\
\hline \multirow[t]{4}{*}{8261-002} & GrossAlpha & \(8.92 \pm 1.1\) & pCi/Smpl & 11.2 & 0.403 & 80\% recovery \\
\hline & Grose Beta & \(10.6 \pm 0.77\) & pCi/Smpl & 12.1 & 0.556 & 88\% recovery \\
\hline & H3 & \(281 \pm 24\) & pCi/Smpl & 259 & 23.4 & 108\% recovery \\
\hline & Sr90 & \(12.0 \pm 0.59\) & pCi/Smpl & 11.1 & 0.238 & 108: recovery \\
\hline \multicolumn{7}{|l|}{BLANX} \\
\hline \multirow[t]{4}{*}{8261-003} & GrossAlpha & \(-0.032 \pm 0.15\) & pCi/Supl & NA & 0.374 & <MDA \\
\hline & Gross Beta & \(-0.073 \pm 0.30\) & pCi/Smpl & NA & 0.554 & <MDA \\
\hline & H3 & \(13.6 \pm 15\) & pCi/Smpl & NA & 23.9 & <MDA \\
\hline & Sx90 & \(-0.091 \pm 0.10\) & pCi/Smpl & NA & 0.234 & CMDA \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{DUPLICATES} & \multicolumn{3}{|c|}{ORIGINALS} & \multicolumn{2}{|l|}{} \\
\hline Sample ID & Nuclide & Rexults_土 20 & MDA & Sample ID & Regults_ 20 & MDA & RPD & \(3 \sigma\)
(Tot) Eval \\
\hline 8261-004 & GrossAlpha & \(3.40 \pm 1.4\) & 0.926 & 8261-001 & \(1.64 \pm 2.0\) & 0.936 & 70 & 112 satis. \\
\hline & Gross Beta & \(6.02 \pm 1.4\) & 1.80 & & \(5.18 \pm 1.3\) & 1.80 & 15 & 60 satis. \\
\hline & H3 & \(393 \pm 160\) & 242 & & \(71.9 \pm 150\) & 246 & 138 & 144 satis. \\
\hline & Sr90 & \(-0.186 \pm 0.19\) & 0.431 & & \(-0.077 \pm 0.25\) & 0.499 & - & 0 satis. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{SPIKED SAMPLE} & & \multicolumn{3}{|c|}{ORIGINAL SAMPLE} & \multirow[b]{2}{*}{Added} & \multirow[b]{2}{*}{SRecy} \\
\hline Sample 50 & Nuciide & Resultg +20 & MDA & Sample ID & Results +20 & MDA & & \\
\hline 8261~005 & Grossalpha & \(81.8 \pm 5.3\) & 1.04 & 8261-001 & \(1.64 \pm 1.0\) & 0.936 & 76.6 & 105 \\
\hline & Grose Beta & \(82.0 \pm 3.7\) & 1.81 & & \(5.18 \pm 1.3\) & 1.80 & 73.9 & 104 \\
\hline & H3 & \(17800 \pm 520\) & 243 & & \(71.9 \pm 150\) & 246 & 18900 & 94 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { certified by } 3 \cdot(2) . C \\
& \text { Report date } 03 / 08 / 05 \\
& \text { Page } 2
\end{aligned}
\]} \\
\hline \\
\hline
\end{tabular}

\section*{SUBCONTRACT ORDER - PROJECT \# IOB0996}

SAMPIE RECERTT CHECXLIST

\section*{Alta analytical Perspectives}

3 March 2005
Scott Unze
Pace Analytical Services
1700 Elm Street
Minneapolis, MN 55414
Ph.: \(612-607+1700\)
Fax: 612-607-6444

\section*{Subject: Certificate of Results}

\section*{Dear Scott;}

Attached to this narrative are the analytical results you requested on the samples submitted for the determination of polychlorinated dibenzo-p-dioxins and dibenzofurans. The insert below summarizes the relevant information pertaining to your project. In particular, the QC annotations bring to your attention specific analytical observations and assessments made during the sample handling and data interpretation phases. A brief description of the report's components is provided on the next page.

\footnotetext{
2714 EXCHANGE DRIVE
WILMINGTON
NORTH CAROLINA 28405
TEL: 910-794-1613 FAX 910-794-3919
}

\section*{QC Annotations:}
1. A " J " data qualifier is used for analytes with a concentration below the reporting limit.

Alta Analytical Perspectives remains committed to serving you in the most effective manner. Should you have any questions or need additional information and technical support, please, do not hesitate to contact us. We wanted to thank you for choosing Alta Analytical Perspectives as part of your analytical support team.

Sincerely,

Amy J. Boehm
Project Manager

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|l|}{} \\
\hline Aratye & & [100:1001-01 & 1000033-61 & 1080680-01 & 1080347-01 & 1085014.01 & 1080380-64 & 1080040-04 & 1017003.01 & 1081002.41 & 1080037-04 & 103500401 & 1080984, \({ }^{\text {a }}\) & \\
\hline & (1.45) & (2.29) & [2.06) & (2.02) & (1.34) & & & R02. & est & P9, & Pat & 002 & pra & por \\
\hline & \((1.55)\)
\((2.57)\) & (1.85) & [4.79) & (2.09) & (214) & (9.73) & (2.2.2) & (2ss) & \begin{tabular}{l}
\((4.81)\) \\
\((4.62)\) \\
\hline
\end{tabular} & (1.44)
R04) & (2.87) & \({ }^{12.78)}\) & (3.24) & (3.01) \\
\hline 123, 7 \% & (2.57 & (3.45) & (2.55) & (271) & (2.48) & (3.88) & (4.19) & (2.42) & \({ }^{1.587}\) & (204) & (3.14) & (2122) & (248) & (5.38) \\
\hline & [24) & (3.21) & (235) & [2.7) & (2.34) & (3.0) & (4.11) & (2.4) & 8.47 & (2.68) & (3.01) & (122) & (4.44) & (4.94) \\
\hline & (1.90) & 73.4 & (3.13) & (3.33) & (2.82) & (4.68) & (4.93) & (2.8) & 5.27 & (3.43) & (7.12) & (13.8) & \({ }_{(65.54)}\) & (4.7) \\
\hline -caso & (4.75) & 803 & 267 & 180 & (9.38) & 12.2 & (3,36) & 4.88 & 207 & 12.1 & (10.6) & 20.8 & (8.49) & \({ }^{(8.61)}\) \\
\hline 2.378.7cor & & & & & 20.4 & 157 & 60.1 & 479 & 2120 & 189 & 70.2 & 243 & 50.3 & 50 \\
\hline 1.2.3, 2 erach & (1.04) & (1.24) & (1.44) & (1.88) & (0.906) & (2.08) & (1.35) & & & & & & & \\
\hline & (1.94) & (1.70) & (2.73) & (1.44) & (2.33) & (1.54) & (3.74) & (1.88) & (1.49)
(2,36) & (1.08) & (2.54) & (274) & (238) & (2.64) \\
\hline 12,3.4.7.amacior & (0.808\()\) & (1.88) & (2.8) & (1.46) & (242) & (1.89) & (3.88) & & (2.31) & (1,.05) & (13.02) & (2.58) & (2.88) & (2.48) \\
\hline & (0.72) & (0.867) & (0.8) & \({ }^{(0,755)}\) & (0.043) & (1.36) & (1.39) & (1.47) & 10.07) & (0.855) & \(\left(\begin{array}{c}\text { (1.37) } \\ (1.53)\end{array}\right.\) & (2.33) & (3) & (2.49) \\
\hline 2,2,4,6.8.8-4cor & \({ }^{(10.781)}\) & (0.843) & (0.827) & (0.708) & (0.07) & (131) & (1.3) & (1.51) & p.888) & (0.70) & (1.42) & (18.86) & (1.62) & (1.33) \\
\hline 1.2.3.7.82mebr & (1.01) & (1.1.12) & (104) & (0.833) & (1.12) & (186) & (1.73) & (1.9) & (1.1) & (0.ss) & (4,91) & (a, \({ }^{(23)}\) & (2.53) & (1.10) \\
\hline & & (86.8) & (1.58) & (1.47) & (1.73) & (244) & (2.50) & (265) & (1.7) & (1.51) & (2.31) & & (2.03)
\((2.4)\) & (1.46) \\
\hline (e) & (2.67) & (3.48) & (1.095) & \((1,47)\)
\((7.47)\) & & 4.04
\((2.63)\) & (3.28)
(4.39) & 10.8 & 27.2 & (1.60) & (4.35) & (3.42) & (2.7)
(2.05) & (2.05)
(3.28) \\
\hline & (11.9) & 155 & (IT) & \({ }^{\text {(27.47 }}\) & (3.25) & \((2.63)\)
\((0.53)\) & & (258) & (1.43) & (2.59) & (7.3) & (6).49) & (3.04) & (3.28) \\
\hline & & & & & & & & & & (10.1) & (1,.69) & (20.8) & (15.1) & (1.89) \\
\hline & & & & . & . & & & & & & & & & \\
\hline \multirow[t]{2}{*}{crease} & \multirow[t]{2}{*}{3305} & \multirow[b]{2}{*}{4381} & \multirow[b]{2}{*}{4681} & \multirow[b]{2}{*}{4965} & \multirow[b]{2}{*}{5239} & \multirow[b]{2}{*}{5527} & \multirow[b]{2}{*}{5787} & \multirow[b]{2}{*}{0087} & \multirow[b]{2}{*}{0335} & \multirow[b]{2}{*}{0812} & \multirow[b]{2}{*}{3028} & \multirow[b]{2}{*}{4335} & \multirow[b]{2}{*}{4622} & \multirow[b]{2}{*}{4900} \\
\hline & & & & & & & & & & & & & & \\
\hline
\end{tabular}
() \(=D L\)
I \(=E M O C\)

Nombly

P5072 - Totals
Project ID: General Analytical HRMS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|l|}{} \\
\hline Analyte & 0 2040 macer & 1081009-0t & 1030093-04 & 10809ment & 1080997-04 & 108101401 & 1030090-0t & 10800e8.01 & 1039009.41 & \(1081002-01\) & 10B0092.01 & 108t09401 & 106003s-01 & 10Bematat \\
\hline Totas & Pot. & p 兄 & pgh & egh & poth & pat & pat & P9 & pgh & poll & 04 & P0/2 & gat & P0/2 \\
\hline TC00\% & 0 & 0 & 0 & 0 & & & & & & & & & & \\
\hline PucDos & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4.77
45.5 & 0 & 0 & & 0 & 0 \\
\hline HxCODs & 0 & 7.38 & 4.44 & 0 & 0 & 0 & 0 & 0 & 15.5
39.8 & 0 & 0 & 0 & 0 & 0 \\
\hline Hocons
OCOD & 0 & 153 & 85.1 & 25.2 & 9.46 & 29.8 & 0 & 101 & 415 & 12.1 & 0 & \({ }^{0} 4\) & 0 & 0 \\
\hline OCDO & 0 & 883 & 267 & 134 & 70.4 & 157 & 58.1 & 471 & 2120 & 12.1
183 & 70.2 & 43.1
213 & 12.2
50.3 & 0
50 \\
\hline TCDF: & 0 & 0 & & & & & & & & & & & & \\
\hline Pecopz & 0 & 0 & 0.858 & 0 & 0 & 0
0.78 & \({ }_{0}^{0}\) & 0 & 6.53 & 0 & 0 & 0 & 0 & 0 \\
\hline PrxCDFs & 0 & 2.68 & 0 & 0 & 0 & 0.78
0 & 0.258 & \({ }_{4}^{0}\) & 2.57 & 0 & 0.456 & 0 & 0 & 0 \\
\hline Hocurs & 0 & 92.9 & 0 & 0 & 0 & 90.2 & 0 & 4.13
36.5 & 32.8 & \({ }^{0}\) & 0 & 0 & 0 & 0 \\
\hline OCOF & 0 & 155 & 0 & 0 & 0 & 0 & 0 & 36.5
34.9 & 98.7
37.1 & 5.88
0 & 0 & 0 & 0 & 0 \\
\hline Totw PCODF2 (NOW0; EnPCmon & 0.00 & 1,290 & 338 & 158 & 78.8 & 197 & 58.4 & & & & & & & \\
\hline Total PCDDF* (ND=0; EMPC (EMPC) & 0.00 & 1,300 & 342 & 480 & 78.9 & 197 & 68.4 & 683 & 2,830 & 183 & 70.7 & 258 & 62.8 & 50 \\
\hline Total PCDONF (\(237 \mathrm{~F}-\mathrm{X}\) NOMDL, EMPCuEMPC) & 42.2 & 1,330 & 381 & 215 & 128 & 238 & 118 & 88. & 2,840 & 229 & 144 & 370 & 124 & 144 \\
\hline & 0.00 & 4,130 & 299 & 444 & 70.4 & 173 & & & & & & & & \\
\hline & 21.1 & 1.140 & 319 & 172 & 94.8 & 183 & 87.8 & 581 & 2,440 & 178

193 & 70.2 & 234 & 50.3 & 50 \\
\hline & 42.2 & 1,180 & 338 & 200 & 118 & 214 & 119 & 505 & 2,450 & 211 & 144 & 346 & 10.5 & 814 \\
\hline & 0.00 & 1,430 & 299 & 144 & 70.4 & 173 & 58.1 & & & & & & & \\
\hline Total 2378 (ND=0.5, EMPC=1) & 21.1 & 1.140 & 349 & 172 & 94.8 & 193 & 87.5 & 581 & 2,450 & 1783 & 70.2 & 234 & 50.3
79.5 & 50 \\
\hline & 42.2 & 1,160 & 338 & 200 & 118 & 214 & 119 & 385 & 2,450 & 211 & 144 & 291
348 & 79.5
108 & 82
414 \\
\hline Chackeode & 3385 & 4364 & 4881 & 4985 & 5239 & 5527 & 5797 & 0067 & 0935 & 0812 & 3229 & 4365 & 4822 & 4900 \\
\hline
\end{tabular}

Towi 2370s = Sum of 17 2378-aubsikuted PCDOPCDF congerius (SARA 319)

P5072 - Others
Project ID: General Analytical HRMS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|l|}{} \\
\hline Analy & \begin{tabular}{l}
0 _2tan_manot \\

\end{tabular} & \begin{tabular}{l}
1081001-01 \\
pgh
\end{tabular} & 1090003-01 pgit & \(10 \mathrm{BOPDP6}-01\)
pgR & \[
\begin{gathered}
1080207-01 \\
\mathrm{pop}
\end{gathered}
\] & 1083014-81 pgh & \[
\left.\begin{gathered}
108009001 \\
\mathrm{pgh}
\end{gathered} \right\rvert\,
\] & \[
\left\lvert\, \begin{gathered}
108080-91 \\
\mathrm{pgn}
\end{gathered}\right.
\] & \[
\left\lvert\, \begin{gathered}
1081008-81 \\
\mathrm{pgh} \\
\hline
\end{gathered}\right.
\] & \[
\left|\begin{array}{c}
1081002 \cdot 01 \\
\mathrm{pen}
\end{array}\right|
\] & \(\begin{array}{r}10 \mathrm{cosen}-01 \\ \mathrm{pol} \\ \hline\end{array}\) & \(\left|\begin{array}{c}103100401 \\ \text { pept }\end{array}\right|\) & \[
\begin{gathered}
108008509 \\
\mathrm{pen} \\
\hline
\end{gathered}
\] & \begin{tabular}{c}
\(10 \mathrm{Bogev}-01\) \\
pen \\
\hline
\end{tabular} \\
\hline & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & 0
0
7.38
77.2 & 0
0
4.44
33.6 & \[
\begin{gathered}
0 \\
0 \\
0 \\
0 \\
15.2
\end{gathered}
\] & \[
\begin{gathered}
0 \\
0 \\
0 \\
0.46
\end{gathered}
\] & \[
\begin{gathered}
0 \\
0 \\
0 \\
17.4
\end{gathered}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{gathered}
0 \\
0 \\
0 \\
51.5
\end{gathered}
\] & \[
\begin{aligned}
& 4.77 \\
& 15.5 \\
& 22.5 \\
& 208
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{gathered}
0 \\
0 \\
0 \\
02.3
\end{gathered}
\] & \[
\begin{gathered}
0 \\
0 \\
0 \\
12.2
\end{gathered}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & 0
0
0
2.88
76.1 & 0
0.858
08
0 & 0
0
0
0 & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{gathered}
0 \\
0.76 \\
0 \\
0.78
\end{gathered}
\] & \[
\begin{gathered}
0 \\
0.258 \\
0 \\
0
\end{gathered}
\] & \[
\begin{gathered}
0 \\
0 \\
0.13 \\
25.7
\end{gathered}
\] & \[
\begin{aligned}
& 8.53 \\
& 2.57 \\
& 32.8 \\
& 71.6
\end{aligned}
\] & \[
\begin{gathered}
0 \\
0 \\
0 \\
0.98
\end{gathered}
\] & 0
0.458
0
0 & 0
0
0
0 & 0
0
0
0 & 0
0
0
0 \\
\hline \begin{tabular}{l}
Other PCDFFE (NDOA, EMPCOENPC) \\
Oun TCDD Ofner PaCOD Oter MxCDD O日v Hucto
\end{tabular} & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & 0
0
7.38
77.2 & \begin{tabular}{c}
0 \\
0 \\
8.57 \\
33.6 \\
\hline
\end{tabular} & 0
0
0
15.2 & \[
\begin{gathered}
0 \\
0 \\
0 \\
0.48
\end{gathered}
\] & \[
\begin{gathered}
0 \\
0 \\
0 \\
17.4
\end{gathered}
\] & 0
0
0
0 & \[
\begin{gathered}
0 \\
0 \\
8.86 \\
51.5
\end{gathered}
\] & \[
\begin{aligned}
& 4.77 \\
& 15.5 \\
& 47.7 \\
& 42.7
\end{aligned}
\] & \[
\begin{gathered}
0 \\
0 \\
0 \\
11,3
\end{gathered}
\] & 0
0
0
0 & \[
\begin{gathered}
0 \\
0 \\
0 \\
22.3
\end{gathered}
\] & \[
\begin{gathered}
0 \\
0 \\
0 \\
12.2
\end{gathered}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] \\
\hline Oiner TCOF Other PeCDF Other Hxcor Oin & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & 0
0
0.88
76.1 & 0
0.058
0
0 & 0
0.213
0
0 & O & \[
\begin{gathered}
0 \\
0.76 \\
0 \\
0.16
\end{gathered}
\] & 0
0.258
0
0 & 2.21
0.358
\(7 . .22\)
25.7 & \[
\begin{aligned}
& 6.53 \\
& 2.53 \\
& 32.8 \\
& 71.6
\end{aligned}
\] & \[
\begin{gathered}
0 \\
0 \\
0 \\
5.9
\end{gathered}
\] & 0
0.458
0
0 & \[
\begin{gathered}
0 \\
0 \\
0
\end{gathered}
\] & 0
0
0
0 & 0
0
0
0 \\
\hline cractican & 3385 & 4361 & 4689 & 4965 & 5239 & 5527 & 5797 & 0067 & 0335 & 0612 & 3929 & 4355 & 4622 & 4900 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline otals & C Total PCDD/Fs (\(\mathrm{ND}=0\); EMPC=0) \\
\hline Project ID: General Analytical HRMS & [Total PCDD/Fs (\(\mathrm{ND}=0\); EMPC=EMPC) \\
\hline P5072 & - Total PCDD/Fs (2378-X ND=DL; EMPC=EMPC) \\
\hline
\end{tabular}

Mean Recoveries of Clean-Up Standards (\(\mathrm{N}=14\))
Project ID: General Analytical HRMS P5072

\begin{tabular}{|c|c|}
\hline Ph(949) 264-1022 & Fax (949) 26\%-122边 \\
\hline Ph (909) 370-4667 & Fax (909) 370-1046 \\
\hline Ph (619) 505.9586 & Fax (619) 565-9689 \\
\hline & Fax (480) 785-0851 \\
\hline 伹(768) 780-3nzo & Fax (702) \(780-3\) \\
\hline
\end{tabular}

\section*{SUBCONTRACT ORDER - PROJECT \# IOB0996}

CHAIN－OF－CUSTODY／Analytical Request Document The Chat－－ot－Custody Is a LEGAL DOCUMENT．All relevant fiolds must be comploted eccurratly．

\[
\begin{array}{|l|l|}
\hline & \\
\hline
\end{array}
\]
RELNOUISHED BY/AFFAIAVIC
\[
\operatorname{San}\left(\cdot l_{\mathrm{n}}^{\mathrm{g}} \mathrm{f}\right.
\]

\section*{com}

\[
3,1
\]
QNe DSc
\[
\begin{aligned}
& \text { Requined Cimert mpomation: } \\
& \text { Sample ids must be unioue }
\end{aligned}
\]
CHAIN-OF-CUSTODY / Analytical Request Document

814592

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

\section*{amec \({ }^{\text {® }}\)}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES \\ Monitoring
}

\author{
ANALYSIS: DIOXINS/FURANS SAMPLE DELIVERY GROUPS. Multiple SDGs
}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{ll}
DATA VALIDATHON REPORT & \begin{tabular}{l}
Project: \\
SDG No.:
\end{tabular} \\
\begin{tabular}{c}
NPDES \\
Multiple
\end{tabular} \\
Aralvsis: & DF \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: Multiple SDGs \\ Project Manager: B. McIlvaine \\ Matrix: Water \\ Analysis: Dioxins/Furans \\ QC Level: Level IV \\ No, of Samples: 6 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: K. Shadowlight \\ Date of Review: March 9, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{ll}
DATA VALIDATION REPORT & Project: \\
\hline & SDG No.: \\
& Analysis: \\
\hline
\end{tabular}

Table 1. Sample Identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & \begin{tabular}{c}
Laboratory ID \\
(Del Mar)
\end{tabular} & \begin{tabular}{c}
Laboratory ID \\
(Alta)
\end{tabular} & Matrix & COC Method \\
\hline Outfall 001 & IOB1560-01 & \(25788-001\) & water & 1613 \\
\hline Outfall 004 & IOB1556-01 & \(25786-001\) & water & 1613 \\
\hline Outfall 005 & IOB1557-01 & \(25787-001\) & water & 1613 \\
\hline Outfall 006 & IOB1559-01 & \(25784-001\) & water & 1613 \\
\hline Outfall 009 & IOB1574-01 & \(25789-001\) & water & 1613 \\
\hline Outfall 010 & IOB1575-01 & \(25785-001\) & water & 1613 \\
\hline
\end{tabular}

\section*{DATA VALIDATION REPORT \\ 2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

All of the samples in these SDGs were received at Del Mar Analytical within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). The samples were shipped to Alta for dioxin/furan analyses and were received below the temperature limits at \(0.8^{\circ} \mathrm{C}\) and \(1.6^{\circ} \mathrm{C}\); however, as none of the samples were noted to have been frozen or damaged, no qualifications were required. According to the laboratory login sheets, all samples were received intact and in good condition at both laboratories. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs and transfer COCs were legible and signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. As the samples were couriered directly to Del Mar Analytical, custody seals were not required. The coolers received by Alta had custody seals present and intact; however, custody seals were not present on the sample containers. The EPA IDs were added to the sample result summary report by the reviewer. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The samples were extracted and analyzed within a year of collection. No qualifications were required.

\subsection*{2.2 INSTRUMENT PERFORMANCE}

Following are findings associated with instrument performance:

\subsection*{2.2.1 GC Column Performance}

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and \(2,3,7,8-\) TCDD reported as less than \(25 \%\). No qualifications
were required.
\begin{tabular}{ll}
DATA VALIDATION REPORT & \begin{tabular}{c}
Project: \\
\\
SDG NO.:
\end{tabular} \\
NPDES \\
Multiple
\end{tabular}

\subsection*{2.2.2 Mass Spectrometer Performance}

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

\subsection*{2.3 CALIBRATION}

\subsection*{2.3.1 Initial Calibration}

There were two initial calibrations, analyzed 08/30/04 and 10/04/04. The calibrations each consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibrations were acceptable with \%RSDs \(\leq 20 \%\) for the 15 native compounds (calibration by isotope dilution) and \(\leq 35 \%\) for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.3.2 Continuing Calibration}

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \(\%\) Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standards instead of being analyzed separately, as noted in section 2.2 .1 of this report. No adverse effect was observed with this practice.

\subsection*{2.4 BLANKS}

One method blank (6543-MB001) was extracted and analyzed with the samples in these SDGs. There were no detects reported in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One Ongoing Precision Recovery (OPR) sample (6543-OPR001) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of the Method 1613. No qualifications were required.

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy was based on the OPR results. No qualifications were required.
\begin{tabular}{ll}
DATA VALIDATHON REPORT & \begin{tabular}{l}
Project: \\
SDG No.: \\
Analysis:
\end{tabular} \\
\begin{tabular}{c}
NPDES \\
Multipie
\end{tabular} \\
D.F
\end{tabular}

\subsection*{2.7 FIELD QC SAMPLES}

Following are findings associated with field QC:

\subsection*{2.7.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.7.2 Field Duplicates}

No field duplicate samples were identified for these SDGs.

\subsection*{2.8 INTERNAL STANDARDS}

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

\subsection*{2.9 COMPOUND IDENTIFICATION}

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

\subsection*{2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Compounds flagged by the laboratory with a " \(D\) " qualifier indicated possible diphenylether interference and were qualified as estimated, "J." Any reported EMPC was qualified as an estimated nondetect, "UJ." Any detects below the lower method calibration level (MCL) were qualified as estimated, "J;" however, as Alta analyzed an additional calibration standard, not all results below the method calibration level were appropriately qualified by the laboratory. These results were qualified as estimated, "J," by the reviewer. No further qualifications were required.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Analysis/Method Metals

Package ID T711MT46
Task Order 313150010
SDG No. IOB1574, IOB1575
No. of Analyses 2
Date: 03/21/05
Reviewer's Signature
P. Meel

\section*{ACIIONITEMS}
1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis Protocol, e.g.,

Qualifications applied for:
1. Detects below the reporting limit.
2. antimony detected in the CCBs.

Holding Times
GC/MS Tune/Inst.
3. Both antimony MDLs raised and Outfall 010 result raised.

Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Intemal Standard
Performance
Compound Identification and Quantitation
System Performance
\(\qquad\)
. \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
COMMENTS \({ }^{\text {b }}\)

\footnotetext{
* Subcontracted analytical laboratory is not meeting contract and/or method requirements.
\({ }^{6}\) Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.
}

\title{
amec \({ }^{\circ}\)
}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES \\ Monitoring
}

\title{
ANALYSIS: METALS \\ SAMPLE DELIVERY GROUPS: IOB1574 \& IOB1575
}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ SDG\#: IOB1574, IOB1575 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Metals \\ QC Level: Level IV \\ No. of Samples: 2 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: P. Meeks \\ Date of Review: March 21, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, SW-846 Method 6010B for Inductively Coupled Plasma, SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{lr}
& Project: \\
DATA VALIDATION REPORT & SDG No.: \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 009 & Outfall 009 & IOB1574-01 & water & ILM04 \\
\hline Outfall 010 & Outfall 010 & IOB1575-01 & water & ILM04 \\
\hline
\end{tabular}
\begin{tabular}{lrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOB1574, 1575 \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C}\) \(\pm 2^{\circ} \mathrm{C}\). No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by field and laboratory personnel and accounted for the samples and analyses presented in these SDGs. Duplicate samples were submitted for all samples in these SDGs; however, duplicate analyses were not required. No sample qualifications were required.

\subsection*{2.1.3 Holding Times}

The dates of collection recorded on the COCs and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS metals and 28 days for mercury. No qualifications were required.

\subsection*{2.2 ICP-MS TUNING}

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. All \(\%\) RSDs were less than \(5 \%\). The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

\subsection*{2.3 CALIBRATION}

The ICV and CCV results showed acceptable recoveries, \(90-110 \%\) for ICP/MS metals and 80-120\% for mercury. The reporting limit check standards were recovered within the AMEC control limits of 70 \(130 \%\). No sample qualifications were required.
\begin{tabular}{rrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOB1574, 1575 \\
\hline
\end{tabular}

\subsection*{2.4 BLANKS}

Antimony was detected in both bracketing CCBs at approximately \(1.10 \mu \mathrm{~g} / \mathrm{L}\) and in method blank 5B25067 at \(0.275 \mu \mathrm{~g} / \mathrm{L}\), and antimony was detected in the site samples at concentrations below the level reported in the CCBs. The CCB detects indicated the laboratory could not detect antimony at the level reported in the CCBs. The reviewer raised the MDLs to the level reported in the CCBs, \(1.10 \mu \mathrm{~g} / \mathrm{L}\), and qualified the results as estimated, "UJ." No further qualifications were required due to the method and calibration blank results.

\subsection*{2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)}

ICSA and ICSAB analyses were included in the raw data for the ICP-MS analyses. Results were not provided for spiked interferents sulfur, phosphorus, carbon, and chloride, and antimony and lead were not spiked into the ICSAB solution. Copper, antimony, and cadmium were detected above the applicable reporting limit in the ICSA. The results for sodium and potassium were above the calibration range of the instrument in the ICSA and ICSAB analyses; however, as these analytes were not reported in the site samples, no qualifications were required. The validator reviewed the raw data for the site sample ICP/MS analyses for the level of reported interferents, \(\mathrm{Al}, \mathrm{Ca}, \mathrm{Fe}\), and Mg , and determined that the level of reported interferents were not high enough to cause matrix affects. No assessment could be made with respect to possible interference from sulfur, phosphorus, carbon, and chloride. No qualifications were required.

\subsection*{2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The ICP/MS LCS sample was identified as 5B25067-BS1 and the mercury LCS sample was identified as 5B22064. The LCS results on the summary forms and in the raw data were within the laboratory-established ICP/MS and mercury control limits of \(85-115 \%\). No qualifications were required.

\subsection*{2.7 LABORATORY DUPLICATES}

No MS/MSD or laboratory duplicate analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.8 MATRIX SPIKE}

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on LCS results.
\begin{tabular}{rrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOB1574, 1575 \\
\hline
\end{tabular}

\subsection*{2.9 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.10 ICP/MS AND ICP SERIAL DILUTION}

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.11 INTERNAL STANDARDS PERFORMANCE}

The ICP-MS internal standard recoveries for the site samples and associated QC sample analyses were within the \(60-125 \%\) control limits and no qualifications were required.

\subsection*{2.12 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit were qualified as estimated, "J." No further qualifications were required.

\subsection*{2.13 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

\subsection*{2.13.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.13.2 Field Duplicates}

There were no field duplicate analyses performed in association with the site samples.

17461 Derian Ave., Sutte 100, Irvine, CA 92614, (949) 26:-1022 FAX (9437.250-3207
\begin{tabular}{|c|c|c|}
\hline MWH-Pasadena Boeing & \multicolumn{2}{|l|}{Project ID: Routine Outfall 009} \\
\hline \begin{tabular}{l}
300 North Laxe Avenue, Suite 1200 \\
Pasadena, CA 91101
\end{tabular} & & Sampled: 02:18:05 \\
\hline Artention: Bronwyn Kelly & 1031574 & Received: 02/18/05 \\
\hline
\end{tabular}

DRAFT: METALS

\section*{AMEC VALIDATED}

\section*{LEveliv}

\section*{DRAFT REPORT}

DRAFT REPORT
DATA SUBJECT TO CHANGE

\section*{LABORATORY REPORT}

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 009

Sampled: 02/18/05
Received: 02/18/05
Issued: 03/25/05 11:01

\section*{NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117}

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

\section*{SAMPLE CROSS REFERENCE}

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
IOB1574-01

CLIENT ID
Outfall 009

MATRIX
Water

Reviewed By:

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
\begin{tabular}{|lll}
\hline MWH-Pasadena/Boeing & Project ID: Routine Outfall 009 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: 02/18/05 \\
Pasadena, CA 91101 & Report Number: IOB1574 & Received: 02/18/05 \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{METALS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & Sample Result & Dilution Factor & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{Sample ID: IOB1574-01 (Outfall 009 - Water)} \\
\hline \multicolumn{10}{|c|}{Reporting Units: ug/} \\
\hline Antimony & EPA 200.8 & 5B25067 & 0.18 & 2.0 & 1.2 & 1 & 02/25/05 & 02/28/05 & B, J \\
\hline Cadmium & EPA 200.8 & 5B25067 & 0.015 & 1.0 & 0.25 & 1 & 02/25/05 & 02/28/05 & J \\
\hline Copper & EPA 200.8 & 5B25067 & 0.49 & 2.0 & 9.5 & 1 & 02/25/05 & 02/28/05 & \\
\hline Lead & EPA 200.8 & 5B25067 & 0.13 & 1.0 & 10 & 1 & 02/25/05 & 02/28/05 & \\
\hline Mercury & EPA 245.1 & 5B22063 & 0.063 & 0.20 & 0.066 & 1 & 02/22/05 & 02/22/05 & J \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 009
Report Number: IOB1574

Sampled: 02/18/05
Received: 02/18/05

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Sample ID: 1OB1574-01 (Outfall 009 - Water) - cont. \\
Reporting Units: mg/l
\end{tabular}}} \\
\hline & & & & & & & & & \\
\hline Chioride & EPA 300.0 & 5B18129 & 0.15 & 0.50 & 2.3 & 1 & 02/18/05 & 02/19/05 & \\
\hline Nitrate/Nitrite-N & EPA 300.0 & 5B18129 & 0.075 & 0.11 & 0.70 & 1 & 02/18/05 & 02/19/05 & \\
\hline Oil \& Grease & EPA 413.1 & 5B28071 & 0.94 & 5.0 & ND & 1 & 02/28/05 & 02/28/05 & \\
\hline Sulfate & EPA 300.0 & 5B18129 & 0.25 & 0.50 & 2.5 & 1 & 02/18/05 & 02/19/05 & \\
\hline Total Dissolved Solids & SM2540C & 5B24111 & 10 & 10 & 87 & 1 & 02/24/05 & 02/24/05 & \\
\hline Total Suspended Solids & EPA 160.2 & 5B25089 & 10 & 10 & 98 & 1 & 02/25/05 & 02/25/05 & \\
\hline
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 009
Report Number: IOB1574

Sampled: 02/18/05
Received: 02/18/05

\section*{SHORT HOLD TIME DETAIL REPORT}
\begin{tabular}{lcccccc}
& \begin{tabular}{c}
Hold Time \\
(in days)
\end{tabular} & \begin{tabular}{c}
Date/Time \\
Sampled
\end{tabular} & \begin{tabular}{c}
Date/Time \\
Received
\end{tabular} & \begin{tabular}{c}
Date/Time \\
Extracted
\end{tabular} & \begin{tabular}{c}
Date/Time \\
Analyzed
\end{tabular} \\
\begin{tabular}{lllll}
Sample ID: Outfall 009 (IOB1574-01) - Water \\
EPA 300.0
\end{tabular} & 2 & \(02 / 18 / 200514: 21\) & \(02 / 18 / 200518: 30\) & \(02 / 18 / 2005\) & \(22: 00\) & \(02 / 19 / 2005\) \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}
```

Project ID: Routine Outfall 009
Report Number: IOB1574
Sampled: 02/18/05
Received: 02/18/05

```

\section*{METHOD BLANKIQC DATA}

\section*{METALS}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 009
Report Number: IOB1574
Sampled: 02/18/05
Received: 02/18/05

\section*{METHOD BLANKIQC DATA}

\section*{METALS}
\begin{tabular}{lcccccccccc}
Analyte & Result & \begin{tabular}{c}
Reporting \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{c}
Spike \\
Level
\end{tabular} & \begin{tabular}{c}
Source \\
Result
\end{tabular} & \begin{tabular}{c}
\%REC \\
\%REC
\end{tabular} & Limits & RPD & \begin{tabular}{c}
RPD \\
Limit
\end{tabular} \\
Batch: \(\mathbf{5 B 2 5 0 6 7}\) & Extracted: \(\mathbf{0 2 / 2 5 / 0 5}\) & & & & & & & & & \\
Qualifiers
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Report Number: IOB1574

Sampled: 02/18/05
Received: 02/18/05

\section*{METHOD BLANKIOC DATA}

\section*{INORGANICS}
\begin{tabular}{lllllllllll}
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit
\end{tabular}

Batch: 5B18129 Extracted: 02/18/05

Batch: 5B24111 Extracted: 02/24/05
Blank Analyzed: 02/24/2005 (5B24111-BLK1)
Total Dissolved Solids ND
LCS Analyzed: 02/24/2005 (5B24111-BS1)
Total Dissolved Solids 976
\(10 \quad 10 \quad \mathrm{mg} / \mathrm{l}\)
Duplicate Analyzed: 02/24/2005 (5B24111-DUP1)
Total Dissolved Solids 374
\(10 \quad 10 \quad \mathrm{mg} / \mathrm{l}\)
\(90-110\)

Source: 1OB1821-01

Qualifiers

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 009
Report Number: \(10 B 1574\)

Sampled: 02/18/05
Received: 02/18/05

\section*{METHOD BLANKIQC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5B25089 Extracted: 02/25/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 02/25/2005 (5B25089-BLK1)} \\
\hline Total Suspended Solids ND & 10 & 10 & mg/ & & & & & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 02/25/2005 (5B25089-BS1)} \\
\hline Total Suspended Solids 956 & 10 & 10 & mg/ & 1000 & & 96 & 85-115 & & & \\
\hline Duplicate Analyzed: 02/25/2005 (5B25089-DUP1) & & & & & ce: IOB1 & 979-01 & & & & \\
\hline Total Suspended Solids ND & 10 & 10 & \(\mathrm{mg} / 1\) & & ND & & & & 10 & \\
\hline \multicolumn{11}{|l|}{Batch: 5B28071 Extracted: 02/28/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 02/28/2005 (5B28071-BLK1)} \\
\hline Oil \& Grease ND & 5.0 & 0.94 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline LCS Analyzed: 02/28/2005 (5B28071-BS1) & & & & & & & & & & M-NR1 \\
\hline Oil \& Grease 16.7 & 5.0 & 0.94 & mgl & 20.0 & & 84 & 65-120 & & & \\
\hline \multicolumn{11}{|l|}{LCS Dup Analyzed: 02/28/2005 (5B28071-BSD1)} \\
\hline Oil \& Grease 17.7 & 5.0 & 0.94 & \(\mathrm{mg} / \mathrm{l}\) & 20.0 & & 88 & 65-120 & 6 & 20 & \\
\hline
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 009
Report Number: \(10 B 1574\)

Sampled: 02/18/05
Received: 02/18/05

\section*{Compliance Check}

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.
\begin{tabular}{llllccc}
LabNumber & Analysis & Analyte & & \multicolumn{2}{c}{ Compliance } \\
\hline IOB1574-01 & 413.1 Oil and Grease & Oil \& Grease & Units & Result & MRL & Limit \\
IOB1574-01 & Chloride - 300.0 & Chloride & \(\mathrm{mg} / 1\) & 0.29 & 5.0 & 15 \\
IOB1574-01 & Nitrogen, NO3+NO2 -N & Nitrate/Nitrite-N & \(\mathrm{mg} / 1\) & 2.30 & 0.50 & 150 \\
IOB1574-01 & Sulfate-300.0 & Sulfate & \(\mathrm{mg} / 1\) & 0.70 & 0.11 & 10.00 \\
IOB1574-01 & TDS - SM 2540C & Total Dissolved Solids & \(\mathrm{mg} / 1\) & 2.50 & 0.50 & 250 \\
& & & \(\mathrm{mg} / 1\) & 87 & 10 & 850
\end{tabular}

Sampled: 02/18/05
Received: 02/18/05

Attention: Bronwyn Kelly

\section*{DATA QUALIFIERS AND DEFINITIONS}

B Analyte was detected in the associated Method Blank.
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

\author{
Del Mar Analytical, Irvine \\ Wendy Kirkeeng For Michele Harper \\ Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 009
Report Number: \(10 B 1574\)

Sampled: 02/18/05
Received: 02/18/05

\section*{Certification Summary}

\section*{Del Mar Analytical, Irvine}
\begin{tabular}{cccc}
Method & Matrix & Nelac & California \\
EPA 160.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 200.8 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 245.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 300.0 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 413.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
SM2540C & Water & \(\mathbf{X}\) & \(\mathbf{X}\)
\end{tabular}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

\section*{Subcontracted Laboratories}

\author{
Alta Analytical California Cert \#1640 \\ 1104 Windfield Way - El Dorado Hills, CA 95762 \\ Analysis Performed: 1613-Dioxin-HR \\ Samples: 1OB1574-01 \\ Analysis Performed: EDD + Level 4 \\ Samples: 1OB1574-01
}
IOB1574

March 23,2005

MWH-Pasadena/ Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention: Bronwyn Kelly
\(\begin{array}{ll}\text { Project: } & \text { Routine Outfall } 009 \\ & \text { Sampled: 02/18/05 } \\ & \text { Del Mar Analytical Number: IOB1574 }\end{array}\)

Dear Ms. Kelly:
Alta Analytical Laboratory performed the EPA Method 1613 Dioxin analysis for the project referenced above. Please use the following cross-reference table when reviewing your results.
\begin{tabular}{|c|c|c|}
\hline MWH ID & DEL MAR ID & Alta ID \\
\hline Outfall 009 & IOB1574-01 & \(25789-001\) \\
\hline
\end{tabular}

Attached is the original report from the subcontract laboratory. If you have any questions or require further assistance, please do not hesitate to contact me at (949) 261-1022 at extension 215.

Sincerely yours,
DEL MAR ANALYTICAL

March 02, 2005

\section*{Alta Project I.D.: 25789}

Ms. Michele Harper
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Dear Ms. Harper,
Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on February 24, 2005 under your Project Name "IOB1574". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,
 HRMS Services Director

Alta Analytical Laboratory Inc.

Section I: Sample Inventory Report Date Received: 2/24/2005

\section*{Alta Lab. ID}

25789-001

Client Sample ID
IOB1574-01

\section*{SECTION II}
EPA Method 1613

\section*{APPENDIX}

\section*{DATA QUALIFIERS \& ABBREVIATIONS}

B This compound was also detected in the method blank.
D The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.
I Chemical Interference
J The amount detected is below the Lower Calibration Limit of the instrument.
* See Cover Letter

Conc. Concentration
DL Sample-specific estimated detection limit
MDL The minimum concentration of a substance that can be measured and reported with \(99 \%\) confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration
NA Not applicable
RL Reporting Limit - concentrations that corresponds to low calibration point
ND Not Detected
TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

The control limits are "interim limits only" until in-house limits are utilized.

NELAP - (Primary AA: California, Certificate No. 02102CA)
Department of the Navy
U.S. Army Corps of Engineers
U.S. EPA Region 5

Bureau of Reclamation - Mid-Pacific Region - (MP-470, Res-1.10)
Commonwealth of Kentucky - (Certificate No. 90063)
Commonwealth of Virginia - (Certificate No. 00013)
State of Alaska, Department of Environmental Conservation - (Certificate No. OS-00197)
State of Arizona - (Certificate No. AZ0639)
State of Arkansas, Department of Health - (Approval granted through CA certification)
State of Arkansas, Department of Environmental Quality
State of California - (Certificate No. 1640)
State of Colorado
State of Connecticut - (Certificate No. PH-0182)
State of Florida - (Certificate No. 87456)
State of Louisiana, Department of Health and Hospitals - (Certificate No. LA000014)
State of Louisiana, Department of Environmental Quality
State of Maine
State of Michigan (Certificate No. 81178087)
State of Mississippi - (Approval granted through CA certification)
State of Nevada - (Certificate No. CA413)
State of New Jersey - (Certificate No. CA003)
State of New York, Department of Health - (Certificate No. 11411)
State of North Carolina - (Certification No. 06700)
State of North Dakota, Department of Health - (Certificate No. R-078)
State of New Mexico
State of Oklahoma - (D9919)
State of Oregon - (Certificate No. CA413)
State of Pennsylvania - (Certificate No. 68-490)
State of South Carolina - (Certificate No. 87002001)
State of Tennessee - (Certificate No. 02996)
State of Texas - (Certificate No. TX247-1000A
State of Utah - (Certificate No. E-201)
State of Washington - (Certification No. C091)
State of Wisconsin - (Certificate No. 998036160)
State of Wyoming - (USEPA Region 8 Ref: 8TMS-Q)

SUBCONTRACT ORDER - PROJECT \# IOB1574

\section*{STANDARD OPERATING PROCEDURE}

Attachment 10.B. 1

\section*{SAMPLE LOG-IN CHECKLIST}

ALTA Project No.: \(\qquad\)
25789

\section*{Comments:}

\section*{APPENDIX G}

\section*{Section 24}

February Outfall 010
AMEC Data Validation Reports

\section*{Del Mar Analytical Laboratory Reports}

\title{
CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA
}

\title{
amec \({ }^{\theta}\)
}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES \\ Monitoring
}

\author{
ANALYSIS: DIOXINS/FURANS SAMPLE DELIVERY GROUPS: Multiple SDGs
}

\section*{Prepared by}

AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{lll}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: Multiple SDGs \\ Project Manager: B. McIlvaine \\ Matrix: Water \\ Analysis: Dioxins/Furans \\ QC Level: Level IV \\ No. of Samples: 13 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: H. Chang \\ Date of Review: March 18, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{lc}
& Project: \\
DATA VALIDATION REPORT & SDG No.: \\
\hline
\end{tabular}

Table 1. Sample Identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & \begin{tabular}{c}
Laboratory ID \\
(Del Mar)
\end{tabular} & \begin{tabular}{c}
Laboratory ID \\
(Alta AP)
\end{tabular} & Matrix & COC Method \\
\hline Outfall 001 & IOB0980-01 & P5072_2989_007 & water & 1613B \\
\hline Outfall 002 & IOB0981-01 & P5072_2989_013 & water & 1613 B \\
\hline Outfall 003 & IOB0988-01 & P5072_2989_012 & water & 1613 B \\
\hline Outfall 004 & IOB1002-01 & P5072_2989_009 & water & 1613 B \\
\hline Outfall 005 & IOB0990-01 & P5072_2989_006 & water & 1613 B \\
\hline Outfall 006 & IOB0992-01 & P5072_2989_010 & water & 1613 B \\
\hline Outfall 007 & IOB0993-01 & P5072_2989_002 & water & 1613 B \\
\hline Outfall 008 & IOB0997-01 & P5072_2989_004 & water & 1613 B \\
\hline Outfall 009 & IOB0996-01 & P5072_2989_003 & water & 1613 B \\
\hline Outfall 010 & IOB1001-01 & P5072_2989_001 & water & 1613 B \\
\hline Outfall 011 Composite & IOB1004-01 & P5072_2989_011 & water & 1613 B \\
\hline Outfall 011 & IOB1014-01 & P5072_2989_005 & water & 1613 B \\
\hline Outfall 018 & IOB1008-01 & P5072_2989_008 & water & 1613 B \\
\hline
\end{tabular}
\begin{tabular}{ll}
& \begin{tabular}{l}
Project: \\
DATA VALIDATION REPORT
\end{tabular} \\
SDGES No.: & Multiple \\
SDI \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

All of the samples in these SDGs were received at Del Mar Analytical within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\) except sample Outfall 009 which was at \(8^{\circ} \mathrm{C}\). Due to non-volatile nature of the analytes, no qualifications were necessary for the elevated cooler temperature. The samples were received at Pace Analytical with cooler temperatures of \(1.6^{\circ} \mathrm{C}, 2.3^{\circ} \mathrm{C}\), and \(3^{\circ} \mathrm{C}\). The samples were received at Alta Analytical Perspectives with cooler temperatures of \(1^{\circ} \mathrm{C}\) and \(3^{\circ} \mathrm{C}\). According to the laboratory login sheets, all samples were received intact and in good condition at Del Mar and Alta AP. No sample conditions were available for review for the sample receipt at Pace. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

It appears that the samples were initially sent from Del Mar Analytical to Pace Analytical then subsequently shipped to Alta Analytical Perspectives. The COCs from the field to Del Mar, Del Mar to Pace, and Pace to Alta were available for review. The COCs were legible and signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. The custody seals were not present on the coolers upon receipt at either Del Mar or Alta. No custody seal information was available for Pace. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The samples were extracted and analyzed within a year of collection. No qualifications were required.

\subsection*{2.2 INSTRUMENT PERFORMANCE}

Following are findings associated with instrument performance:

\subsection*{2.2.1 GC Column Performance}

A Column Performance Check Standard (CPSM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed prior to initial calibration analysis. A separate CPSM was not analyzed for daily analytical sequence; instead, CPSM compounds were added to OPR analysis. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and \(2,3,7,8\)-TCDD reported as less than \(25 \%\). No qualifications were required.

\subsection*{2.2.2 Mass Spectrometer Performance}

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.
\begin{tabular}{llr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\subsection*{2.3 CALIBRATION}

\subsection*{2.3.1 Initial Calibration}

There was one initial calibrations, analyzed 08/12/04. The calibrations each consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with \(\%\) RSDs \(\leq 20 \%\) for the native compounds and \(\leq 35 \%\) for the labeled compounds. The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.3.2 Continuing Calibration}

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.4 BLANKS}

One method blank (0_2989_MB001) was extracted and analyzed with the samples in these SDGs. There were no detects reported in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One Ongoing Precision Recovery (OPR) sample (0_2989_OPR001) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of the Method 1613. No qualifications were required.

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

\subsection*{2.7 FIELD QC SAMPLES}

Following are findings associated with field QC:

\subsection*{2.7.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.
\begin{tabular}{lll}
& Project: & \begin{tabular}{c}
NPDES \\
DATA VALIDATION REPORT
\end{tabular} \\
\hline
\end{tabular}

\subsection*{2.7.2 Field Duplicates}

No field duplicate samples were identified for these SDGs.

\subsection*{2.8 INTERNAL STANDARDS}

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

\subsection*{2.9 COMPOUND IDENTIFICATION}

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data. The laboratory reported total PeCDFs detects in samples Outfall 005, Outfall 006, Oufall 007, and Outfall 011 . The reviewer deemed the signals used to be below the signal-to-noise ratio of 2.5 and the results were changed to nondetects. A false negative for total HxCDD was noted in sample Outfall 001 and was changed to a detect. No further qualifications were required.

\subsection*{2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the lower method calibration level (MCL) were qualified as estimated, "J." The laboratory did not flag OCDD in samples Outfall 002 and Outfall 003 although the reported concentrations were below the lower MCL, OCDD in these samples was qualified as estimated, "I." The laboratory did not notate detects below the lower MCL for totals. These totals were qualified as estimated, "J." The "DNQ" qualification code was applied only if all components of the totals were below the lower MCL.

The laboratory indicated that one of the non-2,3,7,8 substituted HxCDD detect, present in majority of the samples, was due to recovery standard (\(13 \mathrm{C}-1,2,3,4,6,7-\mathrm{HxCDD}\)) contribution. This compound was also present in the method blank. This compound was not included in the total HxCDD concentration. Several total HxCDD results could not be reproduced from the raw data by the reviewer and were hand-corrected on the Form I. No further qualifications were required.

\title{
amec \({ }^{\text {® }}\)
}

\title{
DATA VALIDATION REPORT
}

NPDES
Monitoring

\author{
ANALYSIS: METALS \\ SAMPLE DELIVERY GROUPS: IOB0997, IOB1001, \& IOB1008
}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{lrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: IOB0997, IOB1001, IOB1008 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Metals \\ QC Level: Level IV \\ No. of Samples: 3 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: P. Meeks \\ Date of Review: March 28, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, SW-846 Method 6010B for Inductively Coupled Plasma , SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{lrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 008 & Outfall 008 & IOB0997-01 & water & ILM04 \\
\hline Outfall 010 & Outfall 010 & IOB1001-01 & water & ILM04 \\
\hline Outfall 018 & Outfall 018 & IOB1008-01 & water & ILM04 \\
\hline
\end{tabular}
\begin{tabular}{lr}
& Project: \\
DATA VALIDATION REPORT & SDG No.: \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C}\) \(\pm 2^{\circ} \mathrm{C}\). No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by field and laboratory personnel. The requested analytes for Outfall 018 were changed in a memo from MWH personnel dated 02/17/05. The COCs accounted for the remaining samples and analyses presented in these SDGs. Duplicate samples were submitted for all samples in these SDGs; however, duplicate analyses were not required. No sample qualifications were required.

\subsection*{2.1.3 Holding Times}

The dates of collection recorded on the COCs and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP and ICP/MS metals and 28 days for mercury. No qualifications were required.

\subsection*{2.2 ICP-MS TUNING}

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. All \%RSDs were less than \(5 \%\). The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

\subsection*{2.3 CALIBRATION}

The ICV and CCV results showed acceptable recoveries, \(90-110 \%\) for ICP/MS metals and \(80-120 \%\) for mercury. Silver was recovered below the control limit in the ICP reporting limit check standard associated with Outfall 008 and Outfall 010; therefore, nondetected silver in these samples was qualified as estimated, "UJ." Antimony was recovered below the control limit in the ICP/MS 0.2 ppb reporting limit check standard associated with Outfall 010; therefore, nondetected antimony in Outfall 010 (see
\begin{tabular}{lrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}
section 2.4) was qualified as estimated, "UJ." Copper was not recovered in the ICP/MS 1.0 ppb reporting limit check standard and was recovered below the control limit in the ICP/MS 2.0 ppb reporting limit check standard; however, as copper was detected in the associated sample, Outfall 018, at \(\geq 3 \times\) RL, no qualifications were required. The remaining reporting limit check standards were recovered within the AMEC control limits of \(70-130 \%\). No further sample qualifications were required.

\subsection*{2.4 BLANKS}

Arsenic was reported in method blank 5B17127 at \(-0.0071 \mathrm{mg} / \mathrm{L}\); therefore, nondetected arsenic in Outfall 010 was qualified as estimated, "UJ." Antimony was detected in the CCBs bracketing Outfall 008 and Outfall 010 at approximately 0.95 and \(0.50 \mu \mathrm{~g} / \mathrm{L}\), respectively and antimony was detected in Outfall 008 and Outfall 010 at concentrations below the level reported in the CCBs. The CCB detects indicated the laboratory could not detect antimony at the reported MDL. The reviewer raised the MDLs in the site samples to the level reported in the respective CCBs and qualified the results as estimated, "UJ." No further qualifications were required due to the method and calibration blank results.

\subsection*{2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)}

ICSA and ICSAB analyses were included in the raw data for the ICP-MS analyses. Results were not provided for spiked interferents sulfur, phosphorus, carbon, and chloride, and antimony and lead were not spiked into the ICSAB solution. Copper and cadmium were detected above the applicable reporting limit in the ICSA. The results for sodium and potassium were above the calibration range of the instrument in all the ICSA and ICSAB analyses and aluminum was above the calibration range in the ICSA and ICSAB analyses associated with Outfall 010, however, as these analytes were not reported in the site samples, no qualifications were required. The validator reviewed the raw data for the site sample ICP/MS analyses for the level of reported interferents, \(\mathrm{Al}, \mathrm{Ca}, \mathrm{Fe}\), and Mg , and determined that the level of reported interferents were not high enough to cause matrix affects. No assessment could be made with respect to possible interference from sulfur, phosphorus, carbon, and chloride.

ICSA and ICSAB analyses were included in the raw data for the ICP analyses, but were not run on the days the site samples were analyzed. The recoveries for the interferents and the other spiked analytes were within the control limits of \(80-120 \%\). In the ICSA analyses there were negative results for chromium and positive results for thallium and zinc that were above the applicable reporting limits. The validator reviewed the raw data for the site sample ICP analyses for the level of reported interferents, Al , \(\mathrm{Ca}, \mathrm{Fe}\), and Mg , and determined that the level of reported interferents were not high enough to cause matrix affects. No qualifications were required.

\subsection*{2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The ICP/MS LCS samples were identified as 5B12041-BS1, 5B17098-BS1, and 5B17129-BS1 and the ICP LCS samples were identified as 5B17097-BS1 and 5B17127-BS1. The mercury LCS samples were identified as 5B12033-BS1 and 5B15070-BS1. The LCS results on the summary forms and in the raw data were within the laboratory-established ICP, ICP/MS, and mercury control limits of 85-115\%. No qualifications were required.
\begin{tabular}{ccc}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\subsection*{2.7 LABORATORY DUPLICATES}

No MS/MSD or laboratory duplicate analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.8 MATRIX SPIKE}

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on LCS results.

\subsection*{2.9 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.10 ICP/MS AND ICP SERIAL DILUTION}

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.11 INTERNAL STANDARDS PERFORMANCE}

The ICP-MS internal standard recoveries for the site samples and associated QC sample analyses were within the \(60-125 \%\) control limits and no qualifications were required.

\subsection*{2.12 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit were qualified as estimated, "J." No further qualifications were required.

\subsection*{2.13 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

\subsection*{2.13.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.
\begin{tabular}{lrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\subsection*{2.13.2 Field Duplicates}

There were no field duplicate analyses performed in association with the site samples.
Project ID: Annual Outfall 010
MWH-Pasadena/Boeing
P00 Norh Lake Avenue, Suite 1200

\section*{DRAFT: METALS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & Dilution Date FactorExtracted & \begin{tabular}{l}
Date \\
Analyzed
\end{tabular} & Data Dalifie \\
\hline Analyte & Method & Batch & & & & & & \\
\hline
\end{tabular}

Sample ID: IOB1001-01 (DRAFT: Outfall 010-Water) - cont.

Reporting Uaits: mg/
Arsenic
Beryllium
Chromium
Nickel
Selenium
Silver
Thallium
Zinc
\begin{tabular}{lclccccc}
EPA 200.7 & \(5 B 17127\) & 0.0038 & 0.0050 & ND & 1 & \(02 / 17 / 05\) & \(02 / 18 / 05\) \\
EPA 200.7 & 5 B 171277 & 0.00062 & 0.0020 & ND & 1 & \(02 / 17 / 05\) & \(02 / 18 / 05\) \\
EPA 200.7 & 5 B 17127 & 0.00068 & 0.0050 & 0.0027 & 1 & \(02 / 17 / 05\) & \(02 / 18 / 05\) \\
EPA 200.7 & SB17127 & 0.0020 & 0.010 & 0.0021 & 1 & \(02 / 17 / 05\) & \(02 / 18 / 05\) \\
EPA 200.7 & \(5 B 17127\) & 0.0046 & 0.0050 & ND & 1 & \(02 / 17 / 05\) & \(02 / 18 / 05\) \\
EPA 200.7 & \(5 \mathrm{BB17127}\) & 0.0013 & 0.010 & ND & 1 & \(02 / 17 / 05\) & \(02 / 18 / 05\) \\
EPA 200.7 & \(5 B 17127\) & 0.0031 & 0.0050 & ND & 1 & \(02 / 17 / 05\) & \(02 / 20 / 05\) \\
EPA 200.7 & \(5 B 17127\) & 0.0037 & 0.020 & 0.023 & 1 & \(02 / 17 / 05\) & \(02 / 18 / 05\)
\end{tabular}
\begin{tabular}{c|c}
Rev & Qual \\
Qual & Code \\
\hline\(U J\) & \(B\) \\
\(U\) & \\
\(J J\) & \(D N Q\) \\
\(J J\) & \(D N Q\) \\
\(U\) & \\
\(U J\) & \(\times 3\) \\
\(U\) &
\end{tabular}

\title{
AMEC VALIDATED
}

\section*{DRAFT REPORT \\ DRAFT REPORT \\ DATA SUBJECT TO CHANGE}

12461Derian Ave, Suite 100, Irvine, CA 92614 1949:261-1022 FAX :949; 260-1297 1014 E. Cooicy Dr., Suite A, Cohon, CA 92324 (909) 370-40́67 FAX (949) 370-104
\begin{tabular}{|c|c|c|}
\hline MWH-Pasadena/Boeing & \multicolumn{2}{|l|}{Project ID: Annual Outfall 010} \\
\hline 300 North Lake Avenue, Suite 1200 & & \\
\hline Pasadena, CA 91101 & Report Number: 1081001 & \\
\hline Attention: Bronwyn Kelly & Repor Namber. IOBIOI & Received: 02/11/05 \\
\hline
\end{tabular}

\section*{DRAFT: METALS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample Dil \\
Result Fa
\end{tabular} & Dilution Factor & Date Extracted & Date Analyzed & \[
\begin{array}{r}
\text { Da } \\
\text { Quali }
\end{array}
\] & ta fiers \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Sample ID: IOB1001-01 (DRAFT: Outfall 010 - Water) - cont. \\
Reporting Units: ug/
\end{tabular}} & & & & \multicolumn{2}{|l|}{Rev Qual} & Qual Code \\
\hline Aluminum & EPA 200.7 & 5F317127 & 47 & 50 & 1200 & 1 & 02/17/05 & 02/18/05 & & \\
\hline Antimony & EPA 200.8 & 5817129 & - 0.18 & 0.502 .0 & 0.30 0.50 & O 1 & 02/17/05 & 02/22/05 & U5 & \\
\hline Cadmium & EPA 200.8 & 5B17129 & 0.015 & 1.0 & 0.081 & 1 & 02/17/05 & 02/22/05 & さ & \(D_{1} * 3,1 \$\) \\
\hline Copper & EPA 200.8 & 5817129 & 0.49 & 2.0 & 3.8 & 1 & 02/17/05 & 02/22/05 & Ј J & DNQ \\
\hline Lead & EPA 200.8 & 5817129 & 0.13 & 1.0 & 2.4 & 1 & 02/17/05 & 02/22/05 & & \\
\hline Mercury & EPA 245.1 & 5E15070 & 0.063 & 0.20 & 0.25 & 1 & 02/15/05 & 02/15/05 & & \\
\hline Vanadium & EPA 200.7 & 5B17127 & 1.4 & 10 & 5.2 & 1 & 02/17/05 & 02/18/05 & J J & \(D N Q\) \\
\hline & & \(M\) & & \[
9 / 05
\] & & & & & & \\
\hline
\end{tabular}

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}

AMEC Earth \& Environmental 550 South Wadsworth Boulevard Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer K. Shadowlight
Analysis/Method Pesticides

Package ID T711PP17
Task Order 313150010
SDG No. Multiple
No. of Analyses 3
Date March 28, 2005
Reviewer's Signature

\section*{ACTION ITEMS \({ }^{\text { }}\)}
1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, egg.,
Holding Times
GC/MS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Intemal Standard Performance
Compound Identification and
Quantitation
System Performance
COMMENTS \({ }^{\text {b }}\)
Acceptable as reviewed.

\footnotetext{
- Subcontracted analytical laboratory is not meeting contract and/or method requirements.
\({ }^{-}\)Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.
}

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\title{
ANALYSIS: PESTICIDES/PCBs \\ \\ SAMPLE DELIVERY GROUP: Multiple SDGs
} \\ \\ SAMPLE DELIVERY GROUP: Multiple SDGs
}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{ccc}
& \begin{tabular}{c}
Project: \\
DATA VALID.ATION REPORT
\end{tabular} & \begin{tabular}{c}
NPDES \\
Multiple
\end{tabular} \\
SDG:
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ SDG\#: Multiple SDGs \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Pesticides/PCBs \\ QC Level: Level IV \\ No. of Samples: 3 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: K. Shadowlight \\ Date of Review; March 25, 2005
}

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedures (DVP-4, Rev.2), EPA Method 608, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary form as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & Method \\
\hline Outfall 008 & Outfall 008 & IOB0997-01 & water & 608 \\
\hline Outfall 010 & Outfall 010 & IOB1001-01 & water & 608 \\
\hline Outfall 018 & Outfall 018 & IOB1008-01 & water & 608 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & Project: SDG: & NPDES Multiple \\
\hline DATA VALIDATION REPORT & Analysis: & PestiPCB \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The coolers were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). The analysis did not require preservation, and no preservation was noted in the field. The COCs noted that the samples were received intact. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by both field and laboratory personnel. The COCs accounted for the analyses presented in these SDGs. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The water samples were extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

\subsection*{2.2 PESTICIDES INSTRUMENT PERFORMANCE}

No resolution check standards or breakdown check standards are required by Method 608 for pesticides, and according to the raw data provided, a resolution check standard was not analyzed by the laboratory. The laboratory did analyze a breakdown check standard with a breakdown of \(\leq 20 \%\) for individual components (4,4-DDT and endrin) and \(\leq 30 \%\) for the total, as suggested in the National Functional Guidelines. A review of the raw data indicated that the analytical run time was of sufficient length to provide adequate standard separation. The two analytical columns used in the analyses were within the guidelines specified in the methods.

According to the laboratory SOP and the initial calibration raw data, the retention time windows are \(\pm 0.10\) minutes for both surrogates and target compound calibration standards. A review of the raw data indicated that the laboratory retention time criteria were met for the surrogates and pesticide calibration standards. No qualifications were required.

\subsection*{2.3 CALIBRATION}

\subsection*{2.3.1 Analytical Sequence}

Based on the data provided, the analytical sequences were in accordance with the requirements of Method 608. No qualifications were required.

\subsection*{2.3.2 Initial Calibration}

There were two initial calibrations dated 02/15/05 and 02/17/05 associated with the pesticide analyses of the samples in these SDGs, which consisted of six point calibrations for all pesticide target compounds on two analytical columns. The \%RSDs were within the EPA Method 608 QC limit of \(\leq 10 \%\) or the \(\mathrm{r}^{2}\) values were \(\geq 0.995\) on both analytical columns. There was one initial calibration dated 02/11/05 associated with the PCB analyses of the samples in these SDGs which consisted of five points for Aroclor 1016 and Aroclor 1260. Single point calibrations for Aroclor 1242 and Aroclor 1254 were also analyzed. The average \(\%\) RSDs for the individual peaks of Aroclor 1016 and Aroclor 1260 were \(\leq 10 \%\) or the \(r^{2}\) values were \(\geq 0.995\) on both analytical columns. An ICV was analyzed immediately following each of the initial calibrations. The \%Ds for all target compounds were within the QC limits of \(15 \%\) on both analytical columns. A representative number of \%RSDs and ICV \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.3.3 Continuing Calibration}

Of the continuing calibrations associated with the pesticide analyses for the samples in these SDGs there were several \(\%\) D outliers. The \(\%\) Ds for beta-BHC, endosulfan II, endrin aldehyde, and endrin ketone exceeded \(15 \%\) in one of the three calibrations standards bracketing sample Outfall 008; therefore, the aforementioned target compounds were qualified as estimated, "UJ," in Outfall 008.

The continuing calibrations associated with sample Outfall 010 were bracketed by four continuing calibrations, two preceding and two following the analyses. The \%Ds for target compounds endrin aldehyde (\(02 / 17 / 05\)), \(44^{\prime}\)-DDT and methoxyclor (\(02 / 18 / 05\) at \(03: 14\) a.m. and 03:41 a.m.) and heptachlor, endrin aldehyde, and endrin ketone (02/18/05 at 03:41 a.m.) exceeded \(15 \%\) on the primary channel, therefore, the aforementioned target compounds were qualified as estimated, "UJ," in sample Outfall 010.

The remaining \%Ds were within the Method QC limit of \(\pm 15 \%\) for the remaining calibrations. Each of the PCB analyses for the samples in these SDGs were bracketed by two CCVs and the \%Ds for Aroclor 1016 and Aroclor 1260 were \(\leq 15 \%\). A representative number of \%Ds were recalculated from the raw data and no transcription or calculation errors were noted.

No further qualifications were required.

\subsection*{2.4 BLANKS}

\subsection*{2.4.1 Instrument Blanks}

An instrument blank was analyzed at the beginning of each analytical sequence. Crosscontamination was not evident in the samples. No qualifications were necessary.

\subsection*{2.4.2 Method Blanks}

Three water method blanks (5B15038-BLK1, 5B17042-BLK1, and 5B13028-BLK1) were extracted and analyzed with these SDGs. There were no pesticide target compounds or Aroclors detected in any of the method blanks. Review of the chromatograms showed no false negatives. No qualifications were required.
\begin{tabular}{ccc}
& \begin{tabular}{c}
Project: \\
DATA VALIDATION REPORT
\end{tabular} & \begin{tabular}{c}
NPDES \\
Multiple
\end{tabular} \\
SDG:
\end{tabular}

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

Three blank spike/blank spike duplicate pairs (5B15038-BS1/BSD1, 5B17042-BS1/BSD, and 5B13028-BS1/BSD) were extracted and analyzed with these SDGs. The recoveries for all spiked pesticide target compounds and Aroclors were within the laboratory-established QC limits and the RPDs were \(\leq 30 \%\). A representative number of recoveries were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.6 SURROGATE RECOVERY}

The sample and all QC samples were fortified with the surrogate compounds decachlorobiphenyl and tetrachloro-m-xylene. Surrogate recoveries for the pesticide and PCB analyses of the samples were within the laboratory-established. The recoveries were calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

There were no MS/MSD analyses associated with these SDGs. Method accuracy and precision were assessed based on the blank spike/blank spike duplicate results. No qualifications were required.

\subsection*{2.8 SAMPLE CLEANUP PERFORMANCE}

According to the laboratory extraction benchsheets, no cleanups were performed on the water samples. No qualifications were required.

\subsection*{2.9 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.9.1 Field Blanks and Equipment Rinsates}

There were no field QC samples associated with the samples in these SDGs. No qualifications were required.

\subsection*{2.9.2 Field Duplicates}

There were no field duplicate samples associated with the sample in these SDGs.

\subsection*{2.10 COMPOUND IDENTIFICATION}

The laboratory analyzed for pesticide target compounds and PCBs by EPA Method 608. Compound identification is verified at a Level IV validation. Review of chromatograms and
DATA VALIDATION REPORT \(\quad\)\begin{tabular}{c}
Project:
\end{tabular} \begin{tabular}{c}
NPDES \\
SDG: \\
Multiple
\end{tabular}
retention times indicated no problems with compound identification for the samples in these SDGs. No qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification was verified for these SDGs; however, as there were no detects reported in the samples, quantitation was verified by recalculating a representative number of blank spike and surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibration and the laboratory MDL studies. The water reporting limits were not adjusted for sample amounts on the result summaries; however, the dilution factors listed on the summaries reflected the sample volumes extracted. Results were reported in ug/L (ppb). No qualifications were required.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 010
Report Number: IOB1001

Sampled: 02/1105
Received: 02:11:05

\section*{DRAFT: ORGANOCHLORINE PESTICIDES (EPA 608)}

 2520 E. Sunset Rd. \#3, Las Vegas, NV 89120 ;702: 708.3020 Fix 6021798.362
\begin{tabular}{|c|c|c|}
\hline MWH-Pasadena'Boeing 300 North Lake Avenue & \multicolumn{2}{|l|}{Project ID: Ammal Outfall 010} \\
\hline Pasadena, CA 91101 & & Sampled: 0211/05 \\
\hline Attention: Bronwyn Kelly & Repor Number: \(10 B 1001\) & Received: 02/11/05 \\
\hline
\end{tabular}

DRAFT: TOTAL PCBS (EPA 608)

\title{
AMEC VALIDATED UEVEL IV
}

\section*{DRAFT REPORT}

DRAFT REPORT
Data subiect to change

CONTRACT COMPLLANCE SCREENING FORM FOR HARDCOPY DATA
AMEC Earth \& Environmental

550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer P. Meeks
Analysis/Method Radionuclides

Package ID T711RA4
Task Order 313150010
SDG No. Multiple
No. of Analyses 11
Date: 03/24/05
Rexiewer's Signature
R. Mes

ACIIONIIEMS
1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy Deliverables
6. Deviations from Analysis Protocol, e.g.,

Holding Times
GCMS Tune/Inst. Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Qualifications applied for:
1. Exceeded holding times.
2. Matrix spike recovery outlier.
3. Laboratory duplicate RPD outlier.
4. Incorrect sample container.
5. Detector efficiency outliers.
6. Incorrect sample preservation.
7. Reanalysis rejected in favor of original resiult Three tritium results rejected due to incorrect sample preservation. Performance
Compound Identification and Quantitation
System Performance \(\qquad\)

\section*{COMMENTS \({ }^{\circ}\)}
\({ }^{2}\) Subcontracted analytical laboratory is not meeting contract and/or method requirements.
- Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

\title{
amec \({ }^{\text {® }}\)
}

\title{
DATA VALIDATION REPORT
}

NPDES
Monitoring

\section*{ANALYSIS: RADIONUCLIDES}

\section*{SAMPLE DELIVERY GROUPS:}

IOB0418, IOB0980, IOB0993, IOB0996, IOB0997, IOB1001, IOB1004, IOB1014, \& IOB1069

\section*{Prepared by}

AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{lrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: IOB0418, IOB0980, IOB0993, IOB0996, IOB0997, IOB1001, IOB1004, IOB1014, \& IOB1069 \\ Project Manager: B. McIlvaine \\ Matrix: Water \\ Analysis: Radionuclides \\ QC Level: Level IV \\ No. of Samples: 11 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: P. Meeks \\ Date of Review: March 23, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the EPA Prescribed Procedures for Measurements of Radioactivity in Drinking Water, Methods 900.0, 905.0, and 906.0, and validation procedures outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{lr}
& Project: \\
DATA VALIDATION REPORT & SDG No.: \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & Del Mar ID & Eberline ID & Matrix & COC Method \\
\hline Outfall 002 & IOB0418-01 & \(8237-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 001 & IOB0980-01 & \(8265-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 001RE1 & IOB0980-01RE1 & \(8265-001\) & water & 900.0 \\
\hline Outfall 007 & IOB0993-01 & \(8261-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 009 & IOB0996-01 & \(8262-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 008 & IOB0997-01 & \(8266-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 010 & IOB1001-01 & \(8267-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 011 & IOB1004-01 & \(8263-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 011 & IOB1014-01 & \(8264-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 003 Filtered & IOB1069-01 & \(8268-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 003 Unfiltered & IOB1069-02 & \(8268-002\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 003 Substrate & IOB1069-03 & \(8269-001\) & water & \\
\hline IOP & & & \\
\hline
\end{tabular}
\begin{tabular}{lrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
Analysis: & RAD \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

Most samples in these SDGs were received at Del Mar Analytical within the temperature limits of \(4 \pm 2^{\circ} \mathrm{C}\). After the analyses were complet, Del Mar Analytical sent extra volume of Outfall 001 to Eberline for gross alpha reanalysis. No temperature information was provided by Eberline, the subcontract laboratory; however, as it is not necessary to chill radiological samples, no qualifications were required. All samples were received intact and in good condition.

According to the Eberline login sheet, Outfall 002 was received unpreserved. It was confirmed in correspondence with Eberline dated 01/31/05, that the gross alpha, gross beta, and strontium samples were not preserved upon receipt; therefore, the nondetected strontium result for Outfall 002 was qualified as estimated, "UJ." According to the Los Angeles Water Quality Control Board (LARWQCB) guidance letter dated \(01 / 12 / 05\), unfiltered samples should not be preserved and filtered aliquots should be preserved after filtration.

Eberline noted on their login sheets that Outfall 007, Outfall 008, Outfall 009 and Outfall 010 were received preserved, in plastic containers. Per the method, tritium samples should not be preserved. Per a telephone conversation with M . Mannion of Eberline, the pH of these samples was adjusted back to about 7 upon receipt at Eberline. Due to the improper pH adjustments, the tritium results for Outfall 007, Outfall 008, Outfall 009 , and Outfall 010 were rejected, "R." Additional, unpreserved aliquots of Outfall 007, Outfall 008, Outfall 009, and Outfall 010 were sent from Del Mar to Eberline for tritium reanalysis. These results were not available at the time of this report.

Additionally, according to the 01/12/05 LARWQCB guidance letter, samples collected for tritium analysis should be submitted in glass containers to avoid potential loss of tritium by sorption onto the plastic container. As the Outfall 007, Outfall 008 , Outfall 009 and Outfall 010 tritium samples were previously rejected, no further qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The original COCs were signed and dated by field and laboratory personnel and the transfer COCs were signed by personnel from both laboratories. Filtered, unfiltered, and substrate analyses were requested for Outfall 011 (IOB1014) on the original COC from the field to Del Mar. There instructions did not appear on the transfer COC to Eberline and subsequently only filtered unanalyses were preformed. The remaining original and transfer COCs accounted for the samples and analyses presented in this data package. Eberline did not list the MWH IDs on the Form Is; therefore, the reviewer edited the Form Is to reflect these IDs. A reanalyses for gross alpha was requested for Outfall 001. To distinguish between the two results, the reviewer added an "RE1," suffix to the Outfall 001 and Del Mar Analytical IDs. No qualifications were required.
\begin{tabular}{cc}
& Project: \\
DATA VALIDATION REPORT & SDG No.:
\end{tabular}

\subsection*{2.1.3 Holding Times}

The tritium and strontium samples were analyzed within 180 days of collection. The Outfall 002 and Outfall 003 Unfiltered gross alpha and gross beta samples were analyzed beyond the five day holding time for unpreserved samples; therefore, these gross alpha and gross beta results were qualified as estimated, "J," for detects and, "UJ," for nondetects. No further qualifications were necessary.

\subsection*{2.2 CALIBRATION}

The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

\section*{Gross Alpha}

The initial calibration included with the data was performed in February 2003. All detector efficiencies were below \(20 \%\); therefore, the gross alpha results were qualified as estimated, "UJ," for nondetects and, "J," for detects, unless otherwise rejected (see section 2.10).

\section*{Tritium}

No calibration standards were analyzed for this method. According to the laboratory, every sample was spiked for efficiency determination; therefore, no calibration is necessary. All detector efficiencies in the samples were at least \(20 \%\) and were considered acceptable. All internal spike efficiency to default efficiency ratios were near 1 , indicating that quenching did not occur.

\section*{Gross Beta and Strontium-90}

The initial calibrations were performed in June 1997. All gross beta detector efficiencies were at least \(20 \%\) and were considered acceptable. All strontium chemical yields were at least \(65 \%\) and were considered acceptable and the strontium continuing calibration results were within the laboratory control limits. No qualifications were necessary.

\section*{Cesium}

The reviewer confirmed that the 662 KeV peak was used for quantitation, with an efficiency of \(85 \%\). No qualifications were necessary.

\subsection*{2.3 BLANKS}

No measurable activities were detected in the method blanks; therefore, no qualifications were necessary.

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

Three blank spikes (\(8261-002,8237-002,8269-002\)) were analyzed in association with the samples in these SDGs. The gross alpha, gross beta, and strontium recoveries for \(8261-002\) were outside of the 3sigma limits, but all had acceptable recoveries of \(80 \%, 88 \%\), and \(108 \%\), respectively. The remaining blank spike results were within the 3 -sigma limits. No qualifications were necessary.
\begin{tabular}{lrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\subsection*{2.5 LABORATORY DUPLICATES}

The laboratory performed duplicate analysis on Outfall 002, Outfall 007, and Outfall 003 Substrate, The gross alpha and tritium RPDs were greater than \(20 \%\) for Outfall 007 . The gross alpha results were within 3 -sigma and were considered acceptable, but the tritium result was just above 3 -sigma; however, as no tritium detects were retained (see section 2.1.1), no qualifications were required. The remaining RPD were \(\leq 20 \%\). No further qualifications were necessary.

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

The laboratory performed matrix spike analyses on Outfall 002 and Outfall 007 for gross alpha, gross beta, and tritium. The Outfall 002 recovery for gross alpha was below 3 -sigma; therefore, the gross alpha results in all samples except Outfall 007 were qualified as estimated, " J ," for detects and, "UJ," for nondetects. As Outfall 007 had an acceptable recovery for gross alpha, no qualifications were applied. The remaining recoveries were within the 3 -sigma limits. No further qualifications were necessary.

\subsection*{2.7 SAMPLE RESULT VERIFICATION}

An EPA Level IV review was performed for the samples in these data packages. Sample results and MDAs reported on the sample result forms were verified against the raw data and no calculation or transcription errors were noted.

The original planchet for gross alpha in Outfall 001 was recounted once per a request from MWH personnel. The recount yielded an equivalent result as the original count and was not reported. The sample was later reanalyzed from extra sample volume provided by Del Mar Analytical, and was reported as Outfall 001 RE1. As the two gross alpha results were similar, the reviewer rejected, "R," the reanalysis, Outfall \(001 \mathrm{RE1}\), in favor of the original result, Outfall 001 . No further qualifications were necessary.

\subsection*{2.8 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

\subsection*{2.8.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.8.2 Field Duplicates}

There were no field duplicate samples in these SDGs.

\section*{Eberline Services}

ANALYSIS RESULTS

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Client } \\
& \text { Sample ID }
\end{aligned}
\] & Lab Sample ID & Collecced & Analyzed & Nuclide & Pesults \(\pm 25\) & Units & MDA & Rev & Qual \\
\hline Outfall 010 & & & & & 2esulus+20 & Unica & MBA & Qual & Code \\
\hline 1081001-01 & 8267-001 & 02/11/05 & 03/01/05 & Grossalpha & \(4.98 \pm 2.5\) & pCi/L & 1.06 & J & \(R, Q\) \\
\hline & & & 03/01/05 & Gross Eeta & \(8.16 \pm 1.6\) & pCi/L & 1.92 & & \\
\hline & & & 03/03/05 & H3 & \(271 \pm 150\) & pCi/L & 240 & , & 3 \\
\hline & & & 02/25/05 & Sx90 & \(-0.061 \pm 0.24\) & pCi/L & 0.485 & & \\
\hline
\end{tabular}

\section*{An 3/24los}

\section*{AMEC VALIDATED}

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA
\begin{tabular}{|c|c|}
\hline AMEC Earth \& Environmental & Package ID T711SV32 \\
\hline 550 South Wadsworth Boulevard & Task Order 313150010 \\
\hline Suite 500 & SDG No. IOB0997, 1001, 1008 \\
\hline Lakewood, CO 80226 & No. of Analyses 3 \\
\hline Laboratory Del Mar & Date: March 30, 2005 \\
\hline Reviewer M. Pokorny & Reviewer's \(\$ 19\) nature \\
\hline Analysis/Method Semivolatiles & \(M \cdot F \sim \sim\) \\
\hline
\end{tabular}

\section*{\(a m e c^{8}\)}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES Monitoring
}

\section*{ANALYSIS: SEMIVOLATILES}

\section*{SAMPLE DELIVERY GROUP: IOB0997, IOB1001, IOB1008}

Prepared by
AMEC Denver Operations

Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: \(\quad\) NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: IOB0997, IOB1001, IOB1008 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Semivolatiles \\ QC Level: Level IV \\ No. of Samples: 3 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: L. Calvin \\ Date of Review: March 30, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Semivolatile Organics (DVP-3, Rev. 2), EPA Method 625, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{ccc}
& \begin{tabular}{c}
Project: \\
DATA VALIDATION REPORT
\end{tabular} & \begin{tabular}{c}
NPDES \\
SDG:
\end{tabular} \\
Multiple
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Chent ID & EPA ID & Lab No. & Matrix & Method \\
\hline Outfall 008 & Outfall 008 & IOB0997-01 & water & 625 \\
\hline Outfall 010 & Outfall 010 & IOB1001-01 & water & 625 \\
\hline Outfall 018 & Outfall 018 & IOB1008-01 & water & 625 \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by both field and laboratory personnel. The COCs accounted for the analyses presented in these SDGs. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

Extraction of the water samples was performed within seven days of collection. The samples were analyzed within 40 days of extraction. No qualifications were required.

\subsection*{2.2 GC/MS TUNING}

The DFTPP tune met the ion abundance criteria specified in Method 625. No qualifications were required.

\subsection*{2.3 CALIBRATION}

The initial calibrations associated with these SDGs were dated \(02 / 15 / 05\) and \(02 / 17 / 05\). The average RRFs for were \(\geq 0.05\) for all applicable target compounds. The \(\%\) RSDs were \(\leq 35 \%\) or \(\mathrm{r}^{2}\) \(\geq 0.995\) with the exception of the \(r^{2}\) values for benzoic acid, hexachlorocyclopentadiene, and 2,4dinitrophenol. The nondetect results for the aforementioned compounds were qualified as estimated, "UJ," in site samples Outfall 008 and Outfall 010. The continuing calibrations associated with the sample analyses were analyzed \(02 / 15 / 05,02 / 17 / 05\), and \(02 / 22 / 05\). The RRFs for all target compounds were \(\geq 0.05\), and the \(\%\) Ds were \(\leq 20 \%\) except for the \(\%\) D for NDMA in the calibration dated \(02 / 17 / 05\). The nondetect for NDMA was qualified as estimated, "UJ," for sample Outfall 018. A representative number of average RRFs, \(\%\) RSDs, and \(r^{2} s\) for the initial calibration and RRFs and \%Ds for the continuing calibration were checked from the raw data, and no calculation or transcription errors were noted. No further qualifications were required.

\subsection*{2.4 BLANKS}

Two method blanks (5B13024-BLK1, 5B17041-BLK1/benzidine only, and 5B14010-BLK1) were extracted and analyzed with these SDGs. There were no detects above the MDLs for any target compounds. Review of the raw data indicated no false negatives. No qualifications were required.
DATA VALIDATION REPORT \(\quad\)\begin{tabular}{c}
Project: \\
SDG: \\
Analysis:
\end{tabular} \begin{tabular}{c}
NPDES \\
Multiple \\
SVOC
\end{tabular}

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

Three blank spike/ blank spike duplicate pairs (5B13024-BS1/BSD1, 5B17041-BS1/BSD1, and 5B14010-BS1/BSD1) were extracted and analyzed with these SDGs. For blank spike/blank spike duplicate pairs, qualifications are applied, if necessary, to the associated samples based on those recoveries consistently outside of the laboratory-established QC limits in both the blank spike and blank spike duplicate. Results for those compounds with recoveries not consistent within the pair, with RPDs above the QC limit, are qualified as estimated, "UJ" for nondetects and " J " for detects, in the associated samples.

For 5B13024-BS1/BSD1 and 5B17041-BS1/BSD1, all applicable target compounds were recovered within the QC limits and all RPDs were below the QC limits.

For 5B14010-BS1/BSD1, all percent recoveries were within the QC limits and all RPDs were below the QC limits except for the RPD for n-nitrosodimethylamine (NDMA). The nondetect for NDMA was qualified as estimated, "UJ," for sample Outfall 018.

A representative number of recoveries and RPDs were calculated from the raw data and no calculation or transcription errors were found. No further qualifications were required.

\subsection*{2.6 SURROGATE RECOVERY}

The sample surrogate recoveries for all samples were within the laboratory QC limits. A representative number of recoveries were calculated from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

No MS/MSD analyses were associated with these SDGs. Evaluation of method accuracy and precision was based on blank spike/blank spike duplicate results. No qualifications were required.

\subsection*{2.8 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

\subsection*{2.8.1 Field Blanks and Equipment Rinsates}

There were no field QC samples associated with these SDGs. No qualifications were required.

\subsection*{2.8.2 Field Duplicates}

There were no field duplicate samples associated with these SDGs.
DATA VALIDATION REPORT \(\quad\)\begin{tabular}{c}
Project: \\
SDG:
\end{tabular} \begin{tabular}{c}
NPDES \\
Multiple
\end{tabular}

\subsection*{2.9 INTERNAL STANDARDS PERFORMANCE}

The internal standard area counts and retention times were within the control limits established by the continuing calibration standards: \(-50 \% /+100 \%\) for internal standard areas and \(\pm 30\) seconds for retention times. A representative number of recoveries were checked from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.10 COMPOUND IDENTIFICATION}

The laboratory analyzed for semivolatile target compounds by EPA Method 625. Review of the sample chromatograms, retention times, and spectra indicated no problems with target compound identification. No qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification is verified at a Level IV data validation. No calculation or transcription errors were found. The reporting limits were supported by the low level of the initial and the method detection limit study. The reporting limits were not adjusted for sample amount; however, the dilution factors on the sample result summaries reflected the sample amount extracted. Results were reported in \(\mu \mathrm{g} / \mathrm{L}\) (ppb). No qualifications were required.

\subsection*{2.12 TENTATIVELY IDENTIFIED COMPOUNDS}

TICs were not reported by the laboratory for these SDGs. No qualifications were required.

\subsection*{2.13 SYSTEM PERFORMANCE}

Review of the raw data indicated no problems with system performance. No qualifications were required.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101 Attention: Bronwyn Kelly

Project ID: Annual Outfall 010
Report Number: IOB1001

Sampled: 02/1105
Received: 02/11/05

DRAFT: ACID \& BASENEUTRALS BY GC/MS (EPA 625)
 Project ID: Annual Outfall 010

Report Number: IOB1001

Sampled: 02/11/05
Received: 02:11/05

DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

\footnotetext{
MWH-Pasadena Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
}

Project ID: Annual Outfall 010
Report Number:: IOB1001

Sampled: 02/11/05
Received: 02:1105

DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental 550 South Wadsworth Boulevard Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer M. Pokorny
Analysis/Method Volatiles

Package ID T711VO61
Task Order 313150010
SDG No. IOB0997, 1001, 1008
No. of Analyses 6

\section*{amec \({ }^{8}\)}

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\author{
ANALYSIS: VOLATILES
}

\section*{SAMPLE DELIVERY GROUPs: IOB0997, IOB1001, IOB1008}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{lc}
DATA VALIDATION REPORT & \begin{tabular}{c}
Project: \\
SDG:
\end{tabular} \\
\begin{tabular}{c}
NPDES \\
Multiple
\end{tabular} \\
VOC
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ SDG\#: 1OB0997, IOB1001, IOB1008 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Volatiles \\ QC Level: Level IV \\ No. of Samples: 6 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: M. Pokomy \\ Date of Review: March 30, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Volatile Organics (DVP-2, Rev. 2), EPA Method 624, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary forms as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{lcc}
& \begin{tabular}{c}
Project: \\
SDG:
\end{tabular} & \begin{tabular}{c}
NPDES \\
Multiple
\end{tabular} \\
DATA VALIDATION REPORT & Analysis: & VOC \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Lab No. & Matrix & Method \\
\hline Outfall 008 & Outfall 008 & IOB0997-01 & water & 624 \\
\hline Trip Blank & Trip Blank & IOB0997-02 & water & 624 \\
\hline Outfall 010 & Outfall 010 & IOB1001-01 & water & 624 \\
\hline Trip Blank & Trip Blank & IOB1001-02 & water & 624 \\
\hline Outfall 018 & Outfall 018 & IOB1008-01 & water & 624 \\
\hline Trip Blank & Trip Blank & IOB1008-02 & water & 624 \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). The samples were properly preserved. The COC noted that the samples were received intact; however, information regarding absence of headspace was not provided. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by both field and laboratory personnel. The COCs accounted for the analyses presented in these SDGs. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The samples were analyzed within 14 days of collection. No qualifications were required.

\subsection*{2.2 GC/MS TUNING}

The ion abundance windows shown on the quantitation report were consistent with those specified in the EPA Method 624, and all ion abundances were within the established windows. The samples and associated QC were analyzed within 12 hours of the BFB injection times. The Form Vs were verified from the raw data and no discrepancies between the summary forms and the raw data were noted. No qualifications were required.

\subsection*{2.3 CALIBRATION}

Three initial calibrations dated 10/14/04 (acrolein and acrylonitrile only), 02/01/05, and \(02 / 07 / 05\), were associated with these SDGs. The average RRF for acrolein was \(<0.05\); therefore, the nondetect results for acrolein were rejected, "R," in samples Outfall 008, Trip Blank (IOB 099702), Outfall 010, and Trip blank (IOB 1001-02). The remaining average RRFs were \(\geq 0.05\) and all \(\%\) RSDs were \(\leq 35 \%\) for the target compounds listed on the sample result summaries. Three continuing calibrations analyzed 02/17/05 and 02/18/05 (08:37 and 17:45) were associated with the sample analyses. The RRF for acrolein was \(<0.05\) in the continuing calibration dated 02/17/05; therefore, the nondetect results for acrolein were rejected, "R," in samples Outfall 008, Trip Blank (IOB 0997-02), Outfall 010, and Trip blank (IOB 1001-02). The \%Ds for acrolein and acrylonitrile exceeded \(20 \%\); therefore, nondetect results for acrolein and acrylonitrile were qualified as estimated, "UJ," in samples Outfall 008 and Outfall 010, unless otherwise rejected. The trip blanks were not qualified for \(\% \mathrm{D}\) calibration outliers. For all remaining target compounds the \%Ds were \(\leq 20 \%\) and the RRFs were \(\geq 0.05\). A representative number of \(\%\) RSDs and average RRFs from the
\begin{tabular}{rr}
Project: & NPDES \\
SDG: & Multiple \\
Analysis: & VOC
\end{tabular}

DATA VALIDATION REPORT
initial calibration, and \%Ds and RRFs from the continuing calibration were recalculated from the raw data, and no calculation or transcription errors were found. No further qualifications were required.

\subsection*{2.4 BLANKS}

Three water method blanks (5B17014-BLK1, 5B18008-BLK1, and 5B12011-BLK1) were associated with these SDGs. There were no detects above the MDLs for the target compounds listed on the sample result summaries. The method blank raw data showed no evidence of false negatives. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

Three water blank spikes (5B17014-BS1, 5B18008-BS1, and 5B12011-BS1) were associated with these SDGs. All recoveries were within the laboratory-established QC limits. A representative number of recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.6 SURROGATE RECOVERY}

The surrogates were recovered within the QC limits of \(80-120 \%\) in the samples and associated QC. A representative number of surrogate recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

Sample Outfall 010 was the MS/MSD analyses performed with the site samples in these SDGs. All recoveries and RPDs were within the laboratory-established QC limits. No qualifications were required.

\subsection*{2.8 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

\subsection*{2.8.1 Trip Blanks}

Sample Trip Blank (IOB0997), Trip Blank (IOB1001), and Trip Blank (IOB1008) were the trip blanks associated with the site samples in these SDGs. There were no target compounds detected above the MDLs in any of the trip blanks. No qualifications were required.
\begin{tabular}{ccc}
& \begin{tabular}{c}
Project: \\
DATA VALIDATION REPORT
\end{tabular} & \begin{tabular}{c}
NPDES \\
Multiple
\end{tabular} \\
SDG: & VOC
\end{tabular}

\subsection*{2.8.2 Field Blanks and Equipment Rinsates}

There were no field QC samples associated with these SDGs. No qualifications were required.

\subsection*{2.8.3 Field Duplicates}

There were no field duplicate samples associated with these SDGs.

\subsection*{2.9 INTERNAL STANDARDS PERFORMANCE}

Internal standard area counts and retention times for the samples in these SDGs were within the control limits established by the continuing calibration standards, of \(+100 \% /-50 \%\) for internal standard areas and \(\pm 0.50\) minutes for retention times. A representative number of internal standard areas and retention times were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.10 COMPOUND IDENTIFICATION}

Target compound identification was verified at a Level IV data validation. The laboratory analyzed for volatile target compounds by EPA Method 624. Chromatograms, retention times, and spectra for the samples and QC were examined and no target compound identification problems were noted. No qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification is verified at a Level IV data validation. The reporting limits were supported by the lowest concentrations of the initial calibration standards and by the MDL study. Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike and surrogate recoveries from the raw data. Results were reported in ug/L (ppb). No calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.12 TENTATIVELY IDENTIFIED COMPOUNDS}

The laboratory did not provide TICs for these SDGs. No qualifications were required.

\subsection*{2.13 SYSTEM PERFORMANCE}

A review of the chromatograms and other raw data showed no identifiable problems with system performance. No qualifications were required.

DRAFT: PURGEABLES BY GC/MS (EPA 624)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MmL \\
Limit
\end{tabular} & Reporting Linait & Sample Result & Dilution Factor & n Date Extracted & Date
Analyze & \[
\begin{array}{r}
\text { Da } \\
\text { ed }
\end{array}
\] & \[
\begin{aligned}
& \text { ita } \\
& \text { ifiers }
\end{aligned}
\] \\
\hline Sample ID: 1OB1001-01 Reporting Units: ug/ & Outfall 010 & Water) & & & & & & & \[
\begin{aligned}
& R_{E} V \\
& \text { QuAL }
\end{aligned}
\] & QUAL
\(C C D E\) \\
\hline Benzene & EPA 624 & 5817014 & 0.28 & 1.0 & ND & 1 & 0217105 & 02:17/05 & & \\
\hline Bromodichloromethane & EPA 624 & 5B17014 & 0.30 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 & U & \\
\hline Bromoform & EPA 624 & 5B17014 & 0.32 & 5.0 & ND & & 02/17105 & 02/17/05 & & \\
\hline Bromomethane & EPA 624 & 5817014 & 0.34 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 & & \\
\hline Carbon tetrachloride & EPA 624 & 5837014 & 0.28 & 0.50 & ND & 1 & 02/17/05 & 02/17/05 & & \\
\hline Chlorobenzene & EPA 624 & 5817014 & 0.36 & 2.0 & ND & 1 & 02/17:05 & 02/17/05 & & \\
\hline Chloroethane
Chloroform & EPA 624 & 5817014 & 0.33 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 & & \\
\hline Chloroform & EPA 624 & 5817014 & 0.33 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 & & \\
\hline Chloromethane & EPA 624 & 5B17014 & 0.30 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 & & \\
\hline Dibromochloromethane & EPA 624 & 5537014 & 0.28 & 2.0 & ND & 1 & 02/17/05 & 02/17:05 & & \\
\hline 1,2-Dichlorobenzene & EPA 624 & 5 E 17014 & 0.32 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 & & \\
\hline 1,3-Dichlorobenzene & EPA 624 & 5317014 & 0.35 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 & & \\
\hline 1,4-Dichlorobenzene & EPA 624 & 5817014 & 0.37 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 & & \\
\hline 1,1-Dichloroethane & EPA 624 & 58317014 & 0.27 & 2.0 & ND & 1 & 02/17105 & 02/17/05 & & \\
\hline 1,1-Dichloroethene & EPA 624 & \(5 \mathrm{SB17014}\) & 0.28 & 0.50 & ND & 1 & 02/17/05 & 02/17/05 & & \\
\hline trans-1,2-Dichloroethene & EPA 624 & \(5 \mathrm{SB1} 9014\) & 0.32 & 5.0
2.0 & ND & 1 & \(02 / 17105\) & 02/17/05 & & \\
\hline 1,2-Dichloropropane & EPA 624 & 5B17014 & 0.35 & 2.0 & ND & 1 & 0217705
\(02 / 1705\) & \(02 / 17 / 05\)
\(02 / 17 / 05\) & & \\
\hline cis-1,3-Dichloropropene & EPA 624 & 5 B 17014 & 0.22 & 2.0 & ND & 1 & 02/17/05 & 02:17/05 & & \\
\hline trans-1,3-Dichloropropene & EPA 624 & 5817014 & 0.24 & 2.0 & ND & 1 & 0211705 & 02/17/05 & & \\
\hline Ethylbenzene & EPA 624 & 5817014 & 0.25 & 2.0 & ND & & 02/1705 & 02/17/05 & & \\
\hline Methylene chloride & EPA 624 & 5817014 & 0.48 & 5.0 & ND & 1 & 02/1705 & 02/17/05 & & \\
\hline 1,1,2,2-Tetrachloroethane & EPA 624 & 5817014 & 0.24 & 2.0 & ND & 1 & 02/17:05 & 02/17/05 & & \\
\hline Tetrachloroethene
Toluene & EPA 624 & 5317014 & 0.32 & 2.0 & ND & 1 & 02:1705 & 02/17/05 & & \\
\hline Toluene
\(1,1,1\) Trichloroethane & EPA 624 & 5817014 & 0.36 & 2.0 & ND & 1 & 02/17/05 & 02117/05 & & \\
\hline 1,1,1-Trichloroethane & EPA 624 & 5B17014 & 0.30 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 & & \\
\hline 1,1,2-Trichloroethane
Trichloroethene & EP. 624 & 5B17014 & 0.30 & 2.0 & ND & & 02/17/05 & 0217/05 & & \\
\hline Trichloroethene & EPA 624 & 5817014 & 0.26 & 2.0 & ND & 1 & 02/1705 & 02/17/05 & & \\
\hline Trichlorofluoromethane & EPA 624 & 5B17014 & 0.34 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 & & \\
\hline Vinyl chloride & EPA 624 & 5831,014 & 0.26 & 0.50 & ND & 1 & 0211705 & 02/1705 & & \\
\hline Xylenes, Total
Surrogate: Dibromofluorom & EPA 624 & 5B17014 & 0.52 & 4.0 & & & 021705 & & \(\downarrow\) & \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Surrogate: Dibromofluoromethane (\(80-120 \%\)) \\
Surrogate: Toluene-d8 (80-120\%)
\end{tabular}}} & \multicolumn{6}{|l|}{M1\% \(11 \%\)} \\
\hline & & & & & \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\(101 \%\)}} \\
\hline \multicolumn{5}{|l|}{Surrogate: 4-Bromoftuorobenzene (\(80-120 \%\))} & & & & & & \\
\hline
\end{tabular}

DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE

Del Mar Analytical

MWH-Pasadena Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronuyn Kelly

Projec: ID: Annual Outfall 010
Report Number: IOB1001

Sampled: 02/1105
Received: 0211105

DRAFT: PURGEABLES BY GC/MS (EPA 624)

DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE

\section*{DRAFT: PURGEABLES BY GC/MS (EPA 624)}

\section*{DRAFT REPORT}

\title{
amec \({ }^{9}\)
}

\title{
DATA VALIDATION REPORT
}

\section*{NPDES Monitoring}

\section*{ANALYSIS: GENERAL MINERALS}

\section*{SAMPLE DELIVERY GROUP: IOB0997, IOB1001, \& IOB1008}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: IOB0997, IOB1001, IOB1008 \\ Project Manager: B. McIlvaine \\ Matrix: Water \\ Analysis: General Minerals \\ QC Level: Level IV \\ No. of Samples: 3 \\ Reviewer: L. Jarusewic \\ Date of Review: March 24, 2005
}

The sample listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 300.0, 350.2, 405.1, 335.2, 413.1, 425.1, 218.6, 120.1, 160.2, 160.5, 180.1, and 160.1, Standard Methods for the Examination of Water and Wastewater Method SM2540C, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 008 & Outfall 008 & IOB0997-01 & Water & General Minerals \\
\hline Outfall 010 & Outfall 010 & IOB1001-01 & Water & General Minerals \\
\hline Outfall 018 & Outfall 018 & IOB1008-01 & Water & General Minerals \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). No preservation problems were noted by the laboratory. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by field and laboratory personnel. The COCs accounted for all analyses present in these SDGs. A memo from MWH personnel dated 02/17/05 requested a change of analysis for sample Outfall 018 from annual to routine constituent analysis. No sample qualifications were required.

\subsection*{2.1.3 Holding Times}

The holding times were assessed by comparing the date of collection with the dates of analyses. The 28 -day analytical holding time for ammonia, chloride, sulfate, conductivity, and oil and grease, the 14 -day analytical holding time for cyanide, the seven-day holding time for total suspended solids and total dissolved solids, the 48 -hour holding time for surfactants, turbidity, nitrate/nitrite, biological oxygen demand, and total settleable solids were met. No qualifications were required.

\subsection*{2.2 CALIBRATION}

For the applicable analyses, the initial calibration correlation coefficients were \(\geq 0.995\). Initial and continuing calibration information was acceptable with \(\%\) Rs within the control limits of \(90-110 \%\) for all analytes. For ammonia, no information regarding the standardization of the titrant was provided; however, as the LCS recovery was within the CCV control limits, no qualifications were required. For BOD, no information regarding the calibration of the oxygen meter was provided; however, as the LCS recovery was within the CCV control limits, no qualifications were required. Calibration is not applicable to total settleable solids. No qualifications were required.

The total cyanide reporting limit check standards were recovered above the control limits of 70-130\% at \(137.9 \%\) and \(155.9 \%\); however, as cyanide was not detected in any of the samples, no qualifications were required.

\subsection*{2.3 BLANKS}

Turbidity was detected in the associated method blank for Outfall 018 at 0.040 NTU; however, the result was insufficient to qualify the Outfall 018 result. The remaining method blank and CCB results
\begin{tabular}{llr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOB0997/1001/1008 \\
\hline
\end{tabular}
reported on the summary forms and in the raw data for blank analyses associated with the samples were nondetects at the reporting limit. No qualifications were required.

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The laboratory control sample and laboratory control sample duplicate (BOD and oil and grease only) recoveries and RPDs were within the laboratory-established control limits. The LCS is not applicable to turbidity, conductivity, or total settleable solids. No qualifications were required.

\subsection*{2.5 SURROGATES RECOVERY}

Surrogate recovery is not applicable to the analyses presented in these SDGs.

\subsection*{2.6 LABORATORY DUPLICATES}

No MS/MSD or duplicate analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.8 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analyses of these samples; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.9 ICP SERIAL DILUTION}

ICP serial dilution is not applicable to the analyses presented in this data validation report.

\subsection*{2.10 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Surfactant detected below the reporting limit in Outfall 018 was qualified as estimated, "J." No further qualifications were required.
\begin{tabular}{llr}
& Project: & NPDES \\
& SDG No.: & IOB0997/1001/1008 \\
DATA VALIDATION REPORT & Analysis: & General Minerals \\
\hline
\end{tabular}

\subsection*{2.11 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.11.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.11.2 Field Duplicates}

There were no field duplicate pairs associated with these SDGs.

 2520 E Su, ,utte B-120, Phoenix. Aㄱ 85044 (480) 785-11243 Fix (480) \(785-0853\)

Proiect ID: Annual Outfall 010
Report Number: IOB1001

Sampled: 02/11/05
Received: 02:11105

\section*{DRAFT: INORGANICS}

\section*{AMEC VALIDATED}

\section*{LEVEL IV}
\%

母
K
\(\qquad\)
K
,
\(\qquad\)
,
,

\section*{LABORATORY REPORT}

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Annual Outfall 010

Sampled: 02/11/05
Received: 02/11/05
Issued: 03/28/05 10:14

\section*{NELAP \#01108CA Califomia ELAP\#1197 CSDLAC \#10117}

The results histed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, I page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

\section*{SAMPLE CROSS REFERENCE}

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
IOB1001-01
1OB1001-02
\begin{tabular}{lc}
CLIENT ID & MATRIX \\
Outfall 010 & Water \\
Trip Blanks & Water
\end{tabular}

Reviewed By:

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

Attention: Bronwyn Kelly

\section*{CORRECTIVE ACTION REPORT}

Department: Extractions
Method: EPA 625
QC Batch: 5B13024

Date: 02/16/2005
Matrix: Water

\section*{Identification and Definition of Problem:}

The percent recovery for benzidine in the BS was below method acceptance limits.

Determination of the Cause of the Problem:
Benzidine is known to be a problematic compound. According to the EPA, it can be subject to oxidative losses during solvent extraction and its chromatographic behavior is poor.

Corrective Action Taken:
The percent recovery in BSD was within the acceptance limits. All results reported for benzidine are potentially biased low and can be considered estimates only.

Quality Assurance Approval:

Date: 02/18/2005 04:36 PM

\section*{Dave Dawes}

\section*{Del Mar Analytical, Irvine \\ Wendy Kirkeeng For Michele Harper \\ Project Manager}
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 010
Report Number: IOB1001

Sampled: 02/11/05
Received: 02/11/05

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualfiers \\
\hline \multicolumn{9}{|l|}{Sample ID: IOB1001-01 (Outfall 010 - Water)} \\
\hline \multicolumn{9}{|l|}{Reporting Units: ugh} \\
\hline Acrolein EPA 624 & 5B12011 & 4.6 & 50 & ND & 1 & 02/12/05 & 02/12/05 & \\
\hline Acrylonitrile EPA 624 & 5812011 & 5.1 & 50 & ND & 1 & 02/12/05 & 02/12/05 & \\
\hline 2 -Chloroethyl vinyl ether EPA 624 & 5B12011 & 1.3 & 5.0 & ND & 1 & 02/12/05 & 02/12/05 & \\
\hline Surragate: Dibromofluoromethane (80-120\%) & & & & 95\% & & & & \\
\hline Surrogate: Toluene-d8 (80-120\%) & & & & \(105 \%\) & & & & \\
\hline Surrogate: 4-Bromofluorobenzene (80-120\%) & & & & 100\% & & & & \\
\hline \multicolumn{9}{|l|}{Sample ID: IOB1001-02 (Trip Blanks - Water)} \\
\hline \multicolumn{9}{|l|}{Reporting Units: ug/} \\
\hline Acrolein EPA 624 & 5B12011 & 4.6 & 50 & ND & 1 & 02/12/05 & 02/12/05 & \\
\hline Acrylonitrile EPA 624 & 5B12011 & 5.1 & 50 & ND & 1 & 02/12/05 & 02/12/05 & \\
\hline 2-Chloroethyl vinyl ether EPA 624 & 5B12011 & 1.3 & 5.0 & ND & 1 & 02/12/05 & 02/12/05 & \\
\hline Surrogate: Dibromofluoromethane (80-120\%) & & & & 94\% & & & & \\
\hline Surrogate: Toluene-d8 (80-120\%) & & & & 104\% & & & & \\
\hline Surrogate: 4-Bromofluorobenzene (80-120\%) & & & & 98\% & & & & \\
\hline
\end{tabular}

\author{
MWH-Pasadena/Bocing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

\author{
Project ID: Annual Outfall 010 \\ Report Number: IOB1001 \\ Sampled: 02/11/05 \\ Received: 02/11/05
}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\(\left.\begin{array}{lllllllllll} & & & \text { MDL } \\ \text { Analyte } & \text { Method } & \text { Batch } & \text { Limit } & \begin{array}{c}\text { Reporting } \\ \text { Limit }\end{array} & \begin{array}{c}\text { Sample } \\ \text { Result }\end{array} & \begin{array}{c}\text { Dilution } \\ \text { Factor }\end{array} & \begin{array}{c}\text { Date } \\ \text { Extracted }\end{array} & \begin{array}{c}\text { Date } \\ \text { Analyzed }\end{array} \\ \text { Qualifiers }\end{array}\right]\)

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 010
Report Number: IOB1001

Sampled: 02/11/05
Received: 02/11/05

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & \[
\begin{gathered}
\text { Date } \\
\text { Analyze }
\end{gathered}
\] \\
\hline \multicolumn{9}{|l|}{Sample ID: 1OB1001-02 (Trip Blanks - Water)} \\
\hline \multicolumn{9}{|l|}{Reporting Units: ugh} \\
\hline Benzene & EPA 624 & 5B17014 & 0.28 & 1.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Bromodichloromethane & EPA 624 & 5B17014 & 0.30 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Bromoform & EPA 624 & 5B17014 & 0.32 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Bromomethane & EPA 624 & SB17014 & 0.34 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Carbon tetrachloride & EPA 624 & 5B17014 & 0.28 & 0.50 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Chlorobenzene & EPA 624 & 5B17014 & 0.36 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Chloroethane & EPA 624 & 5B17014 & 0.33 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Chloroform & EPA 624 & SB17014 & 0.33 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Chloromethane & EPA 624 & 5B17014 & 0.30 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Dibromochloromethane & EPA 624 & 5B17014 & 0.28 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline 1,2-Dichlorobenzene & EPA 624 & 5B17014 & 0.32 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline 1,3-Dichlorobenzene & EPA 624 & 5B17014 & 0.35 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline 1,4-Dichlorobenzene & EPA 624 & 5B17014 & 0.37 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline 1,1-Dichloroethane & EPA 624 & 5B17014 & 0.27 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline 1,2-Dichloroethane & EPA 624 & 5B17014 & 0.28 & 0.50 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline 1,1-Dichloroethene & EPA 624 & 5B17014 & 0.32 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline trans-1,2-Dichloroethene & EPA 624 & 5B17014 & 0.27 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline 1,2-Dichloropropane & EPA 624 & 5 Bl 17014 & 0.35 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline cis-1,3-Dichloropropene & EPA 624 & 5B17014 & 0.22 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline trans-1,3-Dichloropropene & EPA 624 & 5817014 & 0.24 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Ethylbenzene & EPA 624 & 5B17014 & 0.25 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Methylene chloride & EPA 624 & 5B17014 & 0.48 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline 1,1,2,2-Tetrachloroethane & EPA 624 & 5B17014 & 0.24 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Tetrachloroethene & EPA 624 & 5B17014 & 0.32 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Toluene & EPA 624 & 5B17014 & 0.36 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline 1,1,1-Trichloroethane & EPA 624 & 5 B 17014 & 0.30 & 2.0 & ND & 1 & 02/17/05 & 02/17/65 \\
\hline 1,1,2-Trichloroethane & EPA 624 & 5B17014 & 0.30 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Trichloroethene & EPA 624 & 5B17014 & 0.26 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Trichlorofluoromethane & EPA 624 & 5B17014 & 0.34 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Vinyl chloride & EPA 624 & 5817014 & 0.26 & 0.50 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Xylenes, Total & EPA 624 & 5B17014 & 0.52 & 4.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline \multicolumn{2}{|l|}{Surrogate: Dibromofluoromethane (80-120\%)} & & & & 106\% & & & \\
\hline \multicolumn{2}{|l|}{Surrogate: Toluene-d8 (80-120\%)} & & & & 101\% & & & \\
\hline \multicolumn{2}{|l|}{Surrogate: 4-Bromofluorobenzene (80-120\%)} & & & & 97\% & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine \\ Wendy Kirkeeng For Michele Harper \\ Project Manager}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\section*{Project ID: Annual Outfall 010}

Report Number: 1OB1001

Sampled: 02/11/05
Received: 02/11/05

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{llllllllll}
& & & MDL & Reporting & Sample & Dilution & Date & Date \\
Analyte & Method & Batch & Limit & Limit & Result & Factor & Extracted & Analyzed \\
Qualifiers
\end{tabular}

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\author{
Project ID: Annual Outfall 010 \\ Report Number: \(10 B 1001\) \\ Sampled: 02/11/05 \\ Received: 02/11/05
}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & \begin{tabular}{l}
Date \\
Analyzed
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{Sample ID: 1OB1001-01 (Outfall 010 - Water) - cont. Reporting Units: ugh}} \\
\hline & & & & & & & & & \\
\hline Hexachlorobenzene & EPA 625 & 5B13024 & 4.8 & 10 & ND & 0.948 & 02/13/05 & 02/16/05 & \\
\hline Hexachlorobutadiene & EPA 625 & 5B13024 & 4.2 & 10 & ND & 0.948 & 02/13/05 & 02/16/05 & \\
\hline Hexachlorocyclopentadiene & EPA 625 & 5B13024 & 3.4 & 20 & ND & 0.948 & 02/13/05 & 02/16/05 & \\
\hline Hexachloroethane & EPA 625 & 5B13024 & 4.2 & 10 & ND & 0.948 & 02/13/05 & 02/16/05 & \\
\hline Indeno(1,2,3-cd)pyrene & EPA 625 & \(5 \mathrm{B13024}\) & 5.4 & 20 & ND & 0.948 & 02/13/05 & 02/16/05 & \\
\hline Isophorone & EPA 625 & 5B13024 & 3.7 & 10 & ND & 0.948 & 02/13/05 & 02/16/05 & \\
\hline 2-Methylnaphthalene & EPA 625 & SB13024 & 3.0 & 10 & ND & 0.948 & 02/13/05 & 02/16/05 & \\
\hline 2-Methylphenol & EPA 625 & \(5 \mathrm{B13024}\) & 3.7 & 10 & ND & 0.948 & 02/13/05 & 02/16/05 & \\
\hline 4-Methylphenol & EPA 625 & \(5 \mathrm{B1} 13024\) & 3.8 & 10 & ND & 0.948 & 02/13/05 & 02/16/05 & \\
\hline Naphthalene & EPA 625 & 5B13024 & 4.5 & 10 & ND & 0.948 & 02/13/05 & 02/16/05 & \\
\hline 2-Nitroaniline & EPA 625 & 5B13024 & 3.9 & 20 & ND & 0.948 & 02/13/05 & 02/16/05 & \\
\hline 3-Nitroaniline & EPA 625 & 5B13024 & 4.5 & 20 & ND & 0.948 & 02/13/05 & 02/16/05 & \\
\hline 4-Nitroaniline & EPA 625 & 5B13024 & 4.9 & 20 & ND & 0.948 & 02/13/05 & 02/16/05 & \\
\hline Nitrobenzene & EPA 625 & 5B13024 & 4.2 & 20 & ND & 0.948 & 02/13/05 & 02/16/05 & \\
\hline 2-Nitrophenol & EPA 625 & 5B13024 & 4.2 & 10 & ND & 0.948 & 02/13/05 & 02/16/05 & \\
\hline 4-Nitrophenol & EPA 625 & 5B13024 & 6.6 & 20 & ND & 0.948 & 02/13/05 & 02/16/05 & \\
\hline N-Nitrosodiphenylamine & EPA 625 & 5B13024 & 4.0 & 10 & ND & 0.948 & 02/13/05 & 02/16/05 & \\
\hline N -Nitroso-di-n-propylamine & EPA 625 & \(5 \mathrm{B1} 13024\) & 3.6 & 10 & ND & 0.948 & 02/13/05 & 02/16/05 & \\
\hline Pentachlorophenol & EPA 625 & \(5 \mathrm{B1} 1302\) & 4.0 & 20 & ND & 0.948 & 02/13/05 & 02/1605 & \\
\hline Phenanthrene & EPA 625 & 5B13024 & 3.3 & 10 & ND & 0.948 & 02/13/05 & 02/16/05 & \\
\hline Phenol & EPA 625 & 5B13024 & 4.0 & 10 & ND & 0.948 & 02/13/05 & 02/16/05 & \\
\hline Pyrene & EPA 625 & 5B13024 & 3.9 & 10 & ND & 0.948 & 02/13/05 & 02/16/05 & \\
\hline 1,2,4-Trichlorobenzene & EPA 625 & 5B13024 & 4.4 & 10 & ND & 0.948 & 02/13/05 & 02/16/05 & \\
\hline 2,4,5-Trichlorophenol & EPA 625 & 5B13024 & 3.6 & 20 & ND & 0.948 & 02/13/05 & 02/16/05 & \\
\hline 2,4,6-Trichlorophenol & EPA 625 & 5B13024 & 4.1 & 20 & ND & 0.948 & 02/13/05 & 02/16/05 & \\
\hline 1,2-Diphenylhydrazine/Azobenzene & EPA 625 & 5B13024 & 5.0 & 20 & ND & 0.948 & 02/13/05 & 02/16/05 & \\
\hline N -Nitrosodimethylamine & EPA 625 & 5B13024 & 3.7 & 20 & ND & 0.948 & 02/13/05 & 02/16/05 & \\
\hline \multicolumn{2}{|l|}{Surrogate: 2-Ftuorophenol (35-120\%)} & & & & 63\% & & & & \\
\hline Surrogate: Phenol-d6 (45-120\%) & & & & & 67\% & & & & \\
\hline Surrogate: 2,4,6-Tribromophenol (50-125\%) & & & & & 91\% & & & & \\
\hline Surrogate: Nitrobenzene-d5 (45-120\%) & & & & & 76\% & & & & \\
\hline Surrogate: 2-Fluorobiphenyl (45-120\%) & & & & & 82\% & & & & \\
\hline Surrogate: Terphenyl-d14 (45-135\%) & & & & & 96\% & & & & \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 010

Report Number: 1OB1001

Sampled: 02/11/05
Received: 02/11/05

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{Sample ID: IOB1001-01RE1 (Outfall 010-Water) - cont. Reporting Units: ug/} \\
\hline Benzidine & EPA 625 & 5B17041 & 5.2 & 20 & ND & 0.962 & 02/17/05 & 02/23/05 & \\
\hline Surrogate: 2-Fluorophenol (35-120\%) & & & & & 58\% & & & & \\
\hline Surrogate: Phenol-d6 (45-120\%) & & & & & \(64 \%\) & & & & \\
\hline Surrogate: 2,4,6-Tribromophenol (50-125\%) & & & & & \(78 \%\) & & & & \\
\hline Surrogate: Nitrobenzene-d5 (45-120\%) & & & & & \(72 \%\) & & & & \\
\hline Surrogate: 2-Fluorobiphenyl (45-120\%) & & & & & \(78 \%\) & & & & \\
\hline Surrogate: Terphenyl-d14 (45-135\%) & & & & & \(74 \%\) & & & & \\
\hline
\end{tabular}

\title{
Del Mar Analytical
}

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 010

Report Number: \(10 B 1001\)

Sampled: 02/11/05
Received: 02/11/05

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & Dilution Factor & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Sample ID: IOB1001-01 (Outfall 010 - Water) - cont. \\
Reporting Units: ugh
\end{tabular}}} \\
\hline & & & & & & & & & \\
\hline Aldrin & EPA 608 & 5B17042 & 0.030 & 0.10 & ND & 0.943 & 02/17/05 & 02/17/05 & \\
\hline alpha-BHC & EPA 608 & \(5 \mathrm{B17042}\) & 0.015 & 0.10 & ND & 0.943 & 02/17/05 & 02/17/05 & \\
\hline beta-BHC & EPA 608 & 5B17042 & 0.015 & 0.10 & ND & 0.943 & 02/17/05 & 02/17/05 & \\
\hline delta-BHC & EPA 608 & 5B17042 & 0.020 & 0.20 & ND & 0.943 & 02/17/05 & 02/17/05 & \\
\hline gamma-BHC (Lindane) & EPA 608 & 5B17042 & 0.015 & 0.10 & ND & 0.943 & 02/17/05 & 02/17/05 & \\
\hline Chlordane & EPA 608 & 5 B 17042 & 0.20 & 1.0 & ND & 0.943 & 02/17/05 & 02/17/05 & \\
\hline 4,4-DDD & EPA 608 & 5 B 17042 & 0.015 & 0.10 & ND & 0.943 & 02/17/05 & 02/17/05 & \\
\hline 4,4-DDE & EPA 608 & 5 B 17042 & 0.020 & 0.10 & ND & 0.943 & 02/17/05 & 02/17105 & \\
\hline 4,4-DDT & EPA 608 & 5B17042 & 0.030 & 0.10 & ND & 0.943 & 02/17/05 & 02/17/05 & C5 \\
\hline Dieldrin & EPA 608 & 5B17042 & 0.015 & 0.10 & ND & 0.943 & 02/17/05 & 02/17/05 & \\
\hline Endosulfan I & EPA 608 & 5 B 17042 & 0.015 & 0.10 & ND & 0.943 & 02/17/05 & 02/17/05 & \\
\hline Endosulfan II & EPA 608 & 5B17042 & 0.040 & 0.10 & ND & 0.943 & 02/17/05 & 02/17/05 & \\
\hline Endosulfan sulfate & EPA 608 & 5B17042 & 0.015 & 0.20 & ND & 0.943 & 02/17/05 & 02/17/05 & \\
\hline Endrin & EPA 608 & 5B17042 & 0.015 & 0.10 & ND & 0.943 & 02/17/05 & 02/17/05 & \\
\hline Endrin aldehyde & EPA 608 & 5B17042 & 0.045 & 0.10 & ND & 0.943 & 02/17/05 & 02/17/05 & \\
\hline Endrin ketone & EPA 608 & 5B17042 & 0.020 & 0.10 & ND & 0.943 & 02/17/05 & 02/17/05 & C5 \\
\hline Heptachlor & EPA 608 & 5B17042 & 0.030 & 0.10 & ND & 0.943 & 02/17/05 & 02/17/05 & \\
\hline Heptachlor epoxide & EPA 608 & 5B17042 & 0.020 & 0.10 & ND & 0.943 & 02/17/05 & 02/17/05 & \\
\hline Methoxychlor & EPA 608 & 5817042 & 0.035 & 0.10 & ND & 0.943 & 02/17/05 & 02/17/05 & C5 \\
\hline Toxaphene & EPA 608 & 5B17042 & 1.5 & 5.0 & ND & 0.943 & 02/17/05 & 02/17/05 & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Surrogate: Tetrachloro-m-xylene (35-120\%)
Surrogate: Decachlorobiphenyl (45-120\%)}} & & & & 45\% & & & & \\
\hline & & & & & 64\% & & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 010
Report Number: \(10 B 1001\)

Sampled: 02/11/05
Received: 02/11/05

\section*{TOTAL PCBS (EPA 608)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & MDL Limit & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{Sample ID: IOB1001-01 (Outfall 010 - Water) - cont.}} \\
\hline & & & & & & & & & \\
\hline Aroclor 1016 & EPA 608 & 5B17042 & 0.20 & 1.0 & ND & 0.943 & 02/17/05 & 02/18/05 & \\
\hline Aroclor 1221 & EPA 608 & 5B17042 & 0.10 & 1.0 & ND & 0.943 & 02/17/05 & 02/18/05 & \\
\hline Aroclor 1232 & EPA 608 & 5B17042 & 0.15 & 1.0 & ND & 0.943 & 02/17/05 & 02/18/05 & \\
\hline Aroclor 1242 & EPA 608 & 5B17042 & 0.15 & 1.0 & ND & 0.943 & 02/17/05 & 02/18/05 & \\
\hline Aroclor 1248 & EPA 608 & 5B17042 & 0.25 & 1.0 & ND & 0.943 & 02/17/05 & 02/18/05 & \\
\hline Aroclor 1254 & EPA 608 & 5B17042 & 0.25 & 1.0 & ND & 0.943 & 02/17/05 & 02/18/05 & \\
\hline Aroclor 1260 & EPA 608 & 5B17042 & 0.40 & 1.0 & ND & 0.943 & 02/17/05 & 02/18/05 & \\
\hline Surrogate: Decachlorobiphenyl (45-120\%) & & & & & \(62 \%\) & & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 010
Report Number: IOB1001

Sampled: 02/11/05
Received: 02/11/05

\section*{METALS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Sample ID: IOB1001-01 (Outfall 010 - Water) - cont. \\
Reporting Units: ugl
\end{tabular}}} \\
\hline & & & & & & & & & \\
\hline Aluminum & EPA 200.7 & 5B17127 & 47 & 50 & 1200 & 1 & 02/17/05 & 02/18/05 & \\
\hline Antimony & EPA 200.8 & 5B17129 & 0.18 & 2.0 & 0.30 & 1 & 02/17/05 & 02/22/05 & J \\
\hline Arsenic & EPA 200.7 & 5B17127 & 3.8 & 5.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline Beryllium & EPA 200.7 & 5 B 17127 & 0.62 & 2.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline Cadmium & EPA 200.8 & 5B17129 & 0.015 & 1.0 & 0.081 & 1 & 02/17/05 & 02/22/05 & J \\
\hline Chromium & EPA 200.7 & 5B17127 & 0.68 & 5.0 & 2.7 & 1 & 02/17/05 & 02/18/05 & J \\
\hline Copper & EPA 200.8 & 5B17129 & 0.49 & 2.0 & 3.8 & 1 & 02/17/05 & 02/22/05 & \\
\hline Lead & EPA 200.8 & 5B17129 & 0.13 & 1.0 & 2.4 & 1 & 02/17/05 & 02/22/05 & \\
\hline Mercury & EPA 245.1 & 5B15070 & 0.063 & 0.20 & 0.25 & 1 & 02/15/05 & 02/15/05 & \\
\hline Nickel & EPA 200.7 & 5B17127 & 2.0 & 10 & 2.1 & 1 & 02/17/05 & 02/18/05 & J \\
\hline Selenium & EPA 200.7 & 5B17127 & 4.6 & 5.0 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline Silver & EPA 200.7 & 5B17127 & 1.3 & 10 & ND & 1 & 02/17/05 & 02/18/05 & \\
\hline Thallium & EPA 200.7 & 5B17127 & 3.1 & 5.0 & ND & 1 & 02/17/05 & 02/20/05 & \\
\hline Vanadium & EPA 200.7 & 5 B 17127 & 1.4 & 10 & 5.2 & 1 & 02/17/05 & 02/18/05 & J \\
\hline Zinc & EPA 200.7 & 5 B 17127 & 3.7 & 20 & 23 & 1 & 02/17/05 & 02/18/05 & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper Project Manager
\begin{tabular}{|llr}
MWH-Pasadena/Boeing & Project ID: Annual Outfall 010 & \\
300 North Lake Avenue, Suite 1200 & Report Number: \(10 B 1001\) & Sampled: \(02 / 11 / 05\) \\
Pasadena, CA 91101 & & Received: \(02 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
Sample ID: IOB1001-01 (Outfall 010 - Water) - cont. \\
Reporting Units: mgl
\end{tabular}} \\
\hline Chioride & EPA 300.0 & 5B11120 & 0.26 & 0.50 & 4.2 & 1 & 02/11/05 & 02/12/05 \\
\hline Total Cyanide & EPA 335.2 & 5B14107 & 0.0022 & 0.0050 & ND & 1 & 02/14/05 & 02/14/05 \\
\hline Nitrate/Nitrite-N & EPA 300.0 & 5B11120 & 0.072 & 0.26 & 0.15 & 1 & 02/11/05 & 02/12/05 \\
\hline Oil \& Grease & EPA 413.1 & 5 B 17117 & 0.94 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Sulfate & EPA 300.0 & 5B11120 & 0.18 & 0.50 & 2.0 & 1 & 02/11/05 & 02/12/05 \\
\hline Total Dissolved Solids & SM2540C & 5B17104 & 10 & 10 & 79 & 1 & 02/17/05 & 02/17/05 \\
\hline Total Suspended Solids & EPA 160.2 & 5B17069 & 10 & 10 & 150 & 1 & 02/17/05 & 02/17/05 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
MWH-Pasadena/Boeing \\
300 North Lake Avenue, Suite 1200 \\
Pasadena, CA 91101 \\
Attention: Bronwyn Kelly
\end{tabular} & & Project ID:
rt Number: & Annual
IOB100 & Otfall 010 & & \multicolumn{4}{|c|}{Sampled: \(02 / 11 / 05\)
Received: 02/11/05} \\
\hline \multicolumn{10}{|c|}{INORGANICS} \\
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & \begin{tabular}{l}
Date \\
Extracted
\end{tabular} & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{Sample ID: IOB1001-01 (Outfall 010 - Water) - cont.} \\
\hline \multicolumn{10}{|l|}{Reporting Units: ugh} \\
\hline Perchlorate & EPA 314.0 & 5B16069 & 0.80 & 4.0 & ND & 1 & 02/16/05 & 02/17/05 & \\
\hline
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 010

Report Number: 1OB1001

Sampled: 02/11/05
Received: 02/11/05

\section*{SHORT HOLD TIME DETAIL REPORT}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Hold Time (in days) & Date/Time Sampled & Date/Time Received & \begin{tabular}{l}
Date/Time \\
Extracted
\end{tabular} & Date/Time Analyzed \\
\hline \multicolumn{6}{|l|}{Sample ID: Outfall 010 (IOB1001-01) - Water} \\
\hline EPA 300.0 & 2 & 02/11/2005 15:30 & 02/11/2005 20:30 & 02/11/2005 23:00 & 02/12/2005 06:09 \\
\hline EPA 624 & 3 & 02/11/2005 15:30 & 02/11/2005 20:30 & 02/12/2005 00:00 & 02/12/2005 17:55 \\
\hline \multicolumn{6}{|l|}{Sample ID: Trip Blanks (1OB1001-02) - Water} \\
\hline EPA 624 & 3 & 02/11/2005 17:00 & 02/11/2005 20:30 & 02/12/2005 00:00 & 02/12/2005 18:26 \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Annual Outfall 010
\begin{tabular}{ll}
& \\
Report Number: \(10 B 1001\) & \begin{tabular}{r}
Sampled: \\
Received:
\end{tabular} \(02 / 11 / 05\)
\end{tabular}

Received: 02/11/05

\section*{METHOD BLANKIOC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \[
\begin{aligned}
& \text { \%REC } \\
& \text { Limits }
\end{aligned}
\] & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5812011 Extracted: 02/12/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 02/12/2005 (5B12011-BLK1)} \\
\hline Acrolein & ND & 50 & 4.6 & ug/ & & & & & & & \\
\hline Acrylonitrile & ND & 50 & 5.1 & ug/ & & & & & & & \\
\hline 2-Chloroethyl vinyl ether & ND & 5.0 & 1.3 & ug/ & & & & & & & \\
\hline Surrogate: Dibromofluoromethane & 21.9 & & & \(u g /\) & 25.0 & & 88 & 80-120 & & & \\
\hline Surrogate: Toluene-d8 & 26.4 & & & ug/ & 25.0 & & 106 & 80-120 & & & \\
\hline Surrogate: 4-Bromofluorobenzene & 24.3 & & & ug \(/\) & 25.0 & & 97 & 80-120 & & & \\
\hline \multicolumn{12}{|l|}{LCS Analyzed: 02/12/2005 (5B12011-BS1)} \\
\hline 2-Chloroethyl vinyl ether & 26.8 & 5.0 & 1.3 & ug/ & 25.0 & & 107 & 20-175 & & & \\
\hline Surrogate: Dibromofluoromethane & 21.8 & & & \(u g / l\) & 25.0 & & 87 & 80-120 & & & \\
\hline Surrogate: Toluene-d8 & 26.6 & & & \(u g /\) & 25.0 & & 106 & 80-120 & & & \\
\hline Surrogate: 4-Bromafluorobenzene & 24.8 & & & \(u g /\) & 25.0 & & 99 & 80-120 & & & \\
\hline \multicolumn{2}{|l|}{Matrix Spike Analyzed: \(02 / 12 / 2005\) (5812011-MS1)} & & & & Sour & C 10B0 & 980-01 & & & & \\
\hline 2 Chloroethyl vinyl ether & 27.2 & 5.0 & 1.3 & ug/l & 25.0 & ND & 109 & 20-175 & & & \\
\hline Surrogate: Dibromofluoromethane & 22.6 & & & ug/l & 25.0 & & 90 & 80-120 & & & \\
\hline Surrogate: Toluene-d8 & 26.3 & & & \(u g /\) & 25.0 & & 105 & 80-120 & & & \\
\hline Surrogate: 4-Bromofluorobenzene & 25.1 & & & ug/ & 25.0 & & 100 & 80-120 & & & \\
\hline \multicolumn{3}{|l|}{Matrix Spike Dup Analyzed: 02/12/2005 (5B12011-MSD1)} & & & \multicolumn{3}{|l|}{Source: 10B0980-01} & & & & \\
\hline 2 -Chloroethyl vinyl ether & 27.5 & 5.0 & 1.3 & ug/l & 25.0 & ND & 110 & 20-175 & 1 & 25 & \\
\hline Surrogate: Dibromofluoromethane & 22.7 & & & ug/ & 25.0 & & 91 & 80-120 & & & \\
\hline Surrogate: Toluene-d8 & 26.4 & & & ug/ & 25.0 & & 106 & 80-120 & & & \\
\hline Surrogate: 4-Bromofluorobenzene & 24.8 & & & ug/l & 25.0 & & 99 & 80-120 & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 010
Report Number: IOB1001

Sampled: 02/11/05
Received: 02/11/05

\section*{METIOD BLANKIQC DATA}

\title{
PURGEABLES BY GC/MS (EPA 624)
}
\begin{tabular}{lccccccccccc}
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

Batch: 5B17014 Extracted: 02/17/05
Blank Analyzed: 02/17/2005 (5B17014-BLK1)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Benzene & ND & 1.0 & 0.28 & ug/l & & & \\
\hline Bromodichloromethane & ND & 2.0 & 0.30 & ugh & & & \\
\hline Bromoform & ND & 5.0 & 0.32 & ug/ & & & \\
\hline Bromomethane & ND & 5.0 & 0.34 & ug/ & & & \\
\hline Carbon tetrachloride & ND & 0.50 & 0.28 & ug/ & & & \\
\hline Chlorobenzene & ND & 2.0 & 0.36 & ugh & & & \\
\hline Chloroethane & ND & 5.0 & 0.33 & ug/ & & & \\
\hline Chloroform & ND & 2.0 & 0.33 & ug/l & & & \\
\hline Chloromethane & ND & 5.0 & 0.30 & ugl & & & \\
\hline Dibromochloromethane & ND & 2.0 & 0.28 & ug/ & & & \\
\hline 1,2-Dichlorobenzene & ND & 2.0 & 0.32 & ugl & & & \\
\hline 1,3-Dichlorobenzene & ND & 2.0 & 0.35 & ug/l & & & \\
\hline 14 Dichloroberzene & ND & 2.0 & 0.37 & ug/ & & & \\
\hline 1,-Dichloroethane & ND & 2.0 & 0.27 & ugh & & & \\
\hline 1,2-Dichloroethane & ND & 0.50 & 0.28 & ug/l & & & \\
\hline 1,1-Dichloroethene & ND & 5.0 & 0.32 & ug/l & & & \\
\hline trans-1,2-Dichloroethene & ND & 2.0 & 0.27 & ug/ & & & \\
\hline 1,2-Dichloropropane & ND & 2.0 & 0.35 & ug/ & & & \\
\hline cis-1,3-Dichloropropene & ND & 2.0 & 0.22 & ug/ & & & \\
\hline trans-1,3-Dichloropropene & ND & 2.0 & 0.24 & ug/ & & & \\
\hline Ethylbenzene & ND & 2.0 & 0.25 & ug/l & & & \\
\hline Methylene chloride & ND & 5.0 & 0.48 & ughl & & & \\
\hline 1,1,2,2-Tetrachloroethane & ND & 2.0 & 0.24 & ug/ & & & \\
\hline Tetrachloroethene & ND & 2.0 & 0.32 & ughl & & & \\
\hline Toluene & ND & 2.0 & 0.36 & ughl & & & \\
\hline 1,1,1-Trichloroethane & ND & 2.0 & 0.30 & ug/l & & & \\
\hline 1,1,2-Trichloroethane & ND & 2.0 & 0.30 & ug/l & & & \\
\hline Trichloroethene & ND & 2.0 & 0.26 & ug/ & & & \\
\hline Trichlorofluoromethane & ND & 5.0 & 0.34 & ugl & & & \\
\hline Vinyl chloride & ND & 0.50 & 0.26 & \(\mathrm{ug} / 1\) & & & \\
\hline Xylenes, Total & ND & 4.0 & 0.52 & ugl & & & \\
\hline Surrogate: Dibromofluoromethane & 26.4 & & & \(u g /\) & 25.0 & 106 & 80-120 \\
\hline Surrogate: Toluene-d8 & 25.1 & & & ug/ & 25.0 & 100 & 80-120 \\
\hline Surrogate: 4-Bromofluorobenzene & 24.2 & & & \(u g /\) & 25.0 & 97 & 80-120 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\author{
Project ID: Annual Outfall 010 \\ Report Number: 1OB1001 \\ Sampled: 02/11/05 \\ Received: 02/11/05
}

\section*{METHOD BLANKIQC DATA}

PURGEABLES BY GC/MS (EPA 624)
\begin{tabular}{llllllllllll}
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

LCS Analyzed: 02/17/2005 (5B17014-BS1)
\begin{tabular}{lr}
Benzene & 24.9 \\
Bromodichloromethane & 25.7 \\
Bromoform & 24.2 \\
Bromomethane & 29.1 \\
Carbon tetrachloride & 26.2 \\
Chlorobenzene & 23.4 \\
Chloroethane & 27.4 \\
Chloroform & 26.2 \\
Chloromethane & 25.8 \\
Dibromochloromethane & 24.7 \\
1,2-Dichlorobenzene & 23.3 \\
1,3-Dichlorobenzene & 23.6 \\
1,4-Dichlorobenzene & 23.0 \\
1,1-Dichloroethane & 25.5 \\
1,2-Dichloroethane & 25.9 \\
1,1-Dichloroethene & 24.6 \\
trans-1,2-Dichloroethene & 25.4 \\
1,2-Dichloropropane & 24.8 \\
cis-1,3-Dichloropropene & 25.6 \\
trans-1,3-Dichloropropene & 25.7 \\
Ethylbenzene & 26.4 \\
Methylene chloride & 25.4 \\
1,1,2,2-Tetrachloroethane & 23.2 \\
Tetrachloroethene & 23.2 \\
Toluene & 24.6 \\
1,1,1-Trichloroethane & 27.1 \\
1,1,2-Trichloroethane & 24.9 \\
Trichloroethene & 23.4 \\
Trichlorofluoromethane & 28.0 \\
Vinyl chloride & 27.7 \\
Surrogate: Dibromofluoromethane & 26.4 \\
Surrogate: Toluene-d8 & 25.3 \\
Surrogate: 4-Bromofluorobenzene & 26.9 \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager
}

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\section*{Project ID: Annual Outfall 010}

Report Number: \(10 B 1001\)

Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKOC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{llllllllllll}
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifers
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Matrix Spike Analyzed: 02/17 & 4-M & & & & & : 10 & 01-01 & \\
\hline Benzene & 25.2 & 1.0 & 0.28 & ug/ & 25.0 & ND & 101 & 70-120 \\
\hline Bromodichloromethane. & 26.3 & 2.0 & 0.30 & ugh & 25.0 & ND & 105 & 70-140 \\
\hline Bromoform & 23.7 & 5.0 & 0.32 & ug/ & 25.0 & ND & 95 & 55-140 \\
\hline Bromomethane & 28.7 & 5.0 & 0.34 & ug/ & 25.0 & ND & 115 & 50-145 \\
\hline Carbon tetrachloride & 26.8 & 0.50 & 0.28 & ug/ & 25.0 & ND & 107 & 70-145 \\
\hline Chlorobenzene & 23.0 & 2.0 & 0.36 & ug/l & 25.0 & ND & 92 & 80-125 \\
\hline Chloroethane & 26.4 & 5.0 & 0.33 & ugh & 25.0 & ND & 106 & 50-145 \\
\hline Chloroform & 26.9 & 2.0 & 0.33 & ug/l & 25.0 & ND & 108 & 70-135 \\
\hline Chloromethane & 24.7 & 5.0 & 0.30 & ug/l & 25.0 & ND & 99 & 35-145 \\
\hline Dibromochloromethane & 24.8 & 2.0 & 0.28 & ugh & 25.0 & ND & 99 & 65-145 \\
\hline 1,2-Dichlorobenzene & 23.4 & 2.0 & 0.32 & ugh & 25.0 & ND & 94 & 75-130 \\
\hline 1,3-Dichlorobenzene & 23.4 & 2.0 & 0.35 & ughl & 25.0 & ND & 94 & 75-130 \\
\hline 14 Dichlorobenzene & 230 & 20 & 037 & ug/ & 250 & ND & 92 & 80120 \\
\hline 1,1-Dichloroethane & 26.4 & 2.0 & 0.27 & ugh & 250 & ND & 106 & 65-135 \\
\hline 1,2-Dichloroethane & 27.2 & 0.50 & 0.28 & ugh & 25.0 & ND & 109 & 60-150 \\
\hline 1,1-Dichloroethene & 25.2 & 5.0 & 0.32 & ugh & 25.0 & ND & 101 & 65-140 \\
\hline trans-1,2-Dichloroethene & 25.9 & 2.0 & 0.27 & ugl & 25.0 & ND & 104 & 65-135 \\
\hline 1,2-Dichloropropane & 24.9 & 2.0 & 0.35 & ugh & 25.0 & ND & 100 & 65-130 \\
\hline cis-1,3-Dichloropropene & 26.0 & 2.0 & 0.22 & ug/ & 25.0 & ND & 104 & 70-140 \\
\hline trans-1,3-Dichloropropene & 26.3 & 2.0 & 0.24 & ugh & 25.0 & ND & 105 & 70-140 \\
\hline Ethylbenzene & 26.1 & 2.0 & 0.25 & ugl & 25.0 & ND & 104 & 70-130 \\
\hline Methylene chloride & 26.0 & 5.0 & 0.48 & ug/ & 25.0 & ND & 104 & 60-135 \\
\hline 1,1,2,2-Tetrachloroethane & 23.1 & 2.0 & 0.24 & ug/ & 25.0 & ND & 92 & 60-145 \\
\hline Tetrachloroethene & 22.7 & 2.0 & 0.32 & ug/ & 25.0 & ND & 91 & 70-130 \\
\hline Tofuene & 25.2 & 2.0 & 0.36 & ug/ & 25.0 & ND & 101 & 70-120 \\
\hline 1,1,1-Trichloroethane & 28.0 & 2.0 & 0.30 & ug/ & 25.0 & ND & 112 & 75-140 \\
\hline 1,1,2-Trichloroethane & 25.1 & 2.0 & 0.30 & \(\mathrm{ug} /\) & 25.0 & ND & 100 & 60-135 \\
\hline Trichloroethene & 23.5 & 2.0 & 0.26 & \(\mathrm{ug} /\) & 25.0 & ND & 94 & 70-125 \\
\hline Trichlorofluoromethane & 28.7 & 5.0 & 0.34 & ug/ & 25.0 & ND & 115 & 55-145 \\
\hline Vinyl chloride & 26.3 & 0.50 & 0.26 & ug/ & 25.0 & ND & 105 & 40-135 \\
\hline Surrogate: Dibromofluoromethane & 27.5 & & & \(u g /\) & 25.0 & & 110 & 80-120 \\
\hline Surrogate: Toluene-d8 & 25.7 & & & ug/ & 25.0 & & 103 & 80-120 \\
\hline Surrogate: 4-Bromofluorobenzene & 26.5 & & & \(u g /\) & 25.0 & & 106 & 80-120 \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

\author{
Project ID: Annual Outfall 010 \\ \(\begin{array}{lr} & \text { Sampled: } 02 / 11 / 05 \\ \text { Report Number: } 10 B 1001 & \text { Received: } 02 / 11 / 05\end{array}\)
}

\section*{METHOD BLANKIQC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{lllllllllllllll}
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

\section*{Matrix Spike Dup Analyzed: 02/17/2005 (5B17014-MSD1)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Matrix Spike Dup Analyze & \multicolumn{10}{|c|}{Source: 1OB1001-01} \\
\hline Benzene & 25.1 & 1.0 & 0.28 & ug/l & 25.0 & ND & 100 & 70-120 & 0 & 20 \\
\hline Bromodichloromethane & 25.4 & 2.0 & 0.30 & ug/l & 25.0 & ND & 102 & 70-140 & 3 & 20 \\
\hline Bromoform & 21.6 & 5.0 & 0.32 & ug/1 & 25.0 & ND & 86 & 55-140 & 9 & 25 \\
\hline Bromomethane & 31.0 & 5.0 & 0.34 & ug/l & 25.0 & ND & 124 & 50-145 & 8 & 25 \\
\hline Carbon tetrachloride & 26.5 & 0.50 & 0.28 & ug/l & 25.0 & ND & 106 & 70-145 & 1 & 25 \\
\hline Chlorobenzene & 23.9 & 2.0 & 0.36 & ug/ & 25.0 & ND & 96 & 80-125 & 4 & 20 \\
\hline Chloroethare & 29.6 & 5.0 & 0.33 & ug/l & 25.0 & ND & 118 & 50-145 & 11 & 25 \\
\hline Chloroform & 26.4 & 2.0 & 0.33 & ug/ & 25.0 & ND & 106 & 70-135 & 2 & 20 \\
\hline Chloromethane & 28.0 & 5.0 & 0.30 & ug/l & 25.0 & ND & 112 & 35-145 & 13 & 25 \\
\hline Dibromochloromethane & 23.4 & 2.0 & 0.28 & ug/ & 25.0 & ND & 94 & 65-145 & 6 & 25 \\
\hline 1,2-Dichlorobenzene & 23.4 & 2.0 & 0.32 & ug/1 & 25.0 & ND & 94 & 75-130 & 0 & 20 \\
\hline 1,3-Dichlorobenzene & 24.0 & 2.0 & 0.35 & ug/ & 25.0 & ND & 96 & 75-130 & 3 & 20 \\
\hline 1,4-Dichlorobenzene & 23.6 & 2.0 & 0.37 & ug/ & 25.0 & ND & 94 & 80-120 & 3 & 20 \\
\hline 1,1-Dichloroethane & 26.1 & 2.0 & 0.27 & ug/i & 25.0 & ND & 104 & 65-135 & 1 & 20 \\
\hline 1,2-Dichloroethane & 24.5 & 0.50 & 0.28 & ug/ & 25.0 & ND & 98 & 60-150 & 10 & 20 \\
\hline 1,1-Dichloroethene & 24.9 & 5.0 & 0.32 & ug/ & 25.0 & ND & 100 & 65-140 & 1 & 20 \\
\hline trans-1,2-Dichloroethene & 25.9 & 2.0 & 0.27 & ug/l & 25.0 & ND & 104 & 65-135 & 0 & 20 \\
\hline 1,2-Dichloropropane & 24.3 & 2.0 & 0.35 & ug/l & 25.0 & ND & 97 & 65-130 & 2 & 20 \\
\hline cis-1,3-Dichloropropene & 25.2 & 2.0 & 0.22 & ug/l & 25.0 & ND & 101 & 70-140 & 3 & 20 \\
\hline trans-1,3-Dichloropropene & 24.4 & 2.0 & 0.24 & ug/l & 25.0 & ND & 98 & 70-140 & 7 & 25 \\
\hline Ethylbenzene & 27.0 & 2.0 & 0.25 & ug/l & 25.0 & ND & 108 & 70-130 & 3 & 20 \\
\hline Methylene chloride & 25.4 & 5.0 & 0.48 & ug/l & 25.0 & ND & 102 & 60-135 & 2 & 20 \\
\hline 1,1,2,2-Tetrachloroethane & 20.8 & 2.0 & 0.24 & ug/l & 25.0 & ND & 83 & 60-145 & 10 & 30 \\
\hline Tetrachloroethene & 23.9 & 2.0 & 0.32 & ug/l & 25.0 & ND & 96 & 70-130 & 5 & 20 \\
\hline Toluene & 24.9 & 2.0 & 0.36 & ug/l & 25.0 & ND & 100 & 70-120 & 1 & 20 \\
\hline 1,1,1-Trichloroethane & 27.8 & 2.0 & 0.30 & ug/l & 25.0 & ND & 111 & 75-140 & 1 & 20 \\
\hline 1,1,2-Trichloroethane & 22.8 & 2.0 & 0.30 & ugh & 25.0 & ND & 91 & 60-135 & 10 & 25 \\
\hline Trichloroethene & 23.5 & 2.0 & 0.26 & \(\mathrm{ug} / 1\) & 25.0 & ND & 94 & 70-125 & 0 & 20 \\
\hline Trichlorofluoromethane & 28.5 & 5.0 & 0.34 & ug/l & 25.0 & ND & 114 & 55-145 & 1 & 25 \\
\hline Vinyl chloride & 30.0 & 0.50 & 0.26 & \(\mathrm{ug} / \mathrm{l}\) & 25.0 & ND & 120 & 40-135 & 13 & 30 \\
\hline Surrogate: Dibromofluoromethane & 26.5 & & & \(u g / l\) & 25.0 & & 106 & 80-120 & & \\
\hline Surrogate: Toluene-d8 & 25.2 & & & \(u g / l\) & 25.0 & & 101 & 80-120 & & \\
\hline Surrogate: 4-Bromofluorobenzene & 26.4 & & & ug/ & 25.0 & & 106 & 80-120 & & \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager
}

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Annual Outfall 010

Sampled: 02/11/05
Report Number: 1OB1001 Received: 02/11/05

\section*{METHOD BLANKIOC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{lllllllllll}
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit
\end{tabular}

Batch: 5B13024 Extracted: 02/13/05
Blank Analyzed: 02/15/2005 (5B13024-BLK1)
\begin{tabular}{|c|c|c|c|c|}
\hline Acenaphthene & ND & 10 & 4.3 & ug/ 1 \\
\hline Acenaphthylene & ND & 10 & 3.2 & ug/ \\
\hline Aniline & ND & 10 & 2.9 & ugh \\
\hline Anthracene & ND & 10 & 3.2 & ug/l \\
\hline Benzidine & ND & 20 & 5.2 & ug/l \\
\hline Benzoic acid & ND & 20 & 2.6 & ug/ \\
\hline Benzo(a)anthracene & ND & 10 & 3.7 & ug/l \\
\hline Benzo(b)fluoranthene & ND & 10 & 2.7 & ugh \\
\hline Benzo(k)fluoranthene & ND & 10 & 3.4 & ug/ \\
\hline Benzo(g,h,i)perylene & ND & 10 & 5.3 & ug/1 \\
\hline Benzo(a)pyrene & ND & 10 & 3.5 & ug/ \\
\hline Benzyl alcohol & ND & 20 & 2.5 & ug/l \\
\hline Bis(2-chloroethoxy)methane & ND & 10 & 3.9 & 48/1 \\
\hline Bis (2-chloroethyl)ether & ND & 10 & 4.4 & ug \\
\hline Bis(2-chloroisopropyl)ether & ND & 10 & 4.6 & ug/ \\
\hline Bis(2-ethylhexyl)phthalate & ND & 50 & 5.2 & ug/ \\
\hline 4-Bromophenyl phenyl ether & ND & 10 & 4.6 & .ug/ \\
\hline Butyl benzyl phthalate & ND & 20 & 3.5 & ug/ \\
\hline 4-Chloroaniline & ND & 10 & 6.0 & ugh \\
\hline 2-Chloronaphthalene & ND & 10 & 4.0 & ugh \\
\hline 4-Chloro-3-methylphenol & ND & 20 & 3.5 & ugh \\
\hline 2-Chlorophenol & ND & 10 & 4.2 & ughl \\
\hline 4-Chlorophenyl phenyl ether & ND & 10 & 3.0 & ug/ \\
\hline Chrysene & ND & 10 & 2.8 & ug/l \\
\hline Dibenz(a,h)anthracene & ND & 20 & 4.7 & ug/l \\
\hline Dibenzofuran & ND & 10 & 2.6 & ugl \\
\hline Di-n-butyl phthalate & ND & 20 & 2.8 & ughl \\
\hline 1,3-Dichlorobenzene & ND & 10 & 4.1 & ugh \\
\hline 1,4-Dichlorobenzene & ND & 10 & 3.9 & ugh \\
\hline 1,2-Dichlorobenzene & ND & 10 & 4.5 & ug/l \\
\hline 3,3-Dichlorobenzidine & ND & 20 & 11 & ugh \\
\hline 2,4-Dichlorophenol & ND & 10 & 4.1 & ug/ \\
\hline Diethyl phthalate & ND & 10 & 3.1 & ug/l \\
\hline 2,4-Dimethyiphenol & ND & 20 & 4.4 & ug/ \\
\hline Dimethyl phthalate & ND & 10 & 3.6 & ug/l \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

\author{
Project ID: Annual Outfall 010 \\ Report Number: \(10 B 1001\) \\ Sampled: 02/11/05 \\ Received: 02/11/05
}

\section*{METHOD BLANKKOC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & & RPD & Data \\
\hline & & & & & & & \%REC & & RPD & & Qualifiers \\
\hline
\end{tabular}

Batch: 5B13024 Extracted: 02/13/05
Blank Analyzed: 02/15/2005 (5B13024-BLK1)
\begin{tabular}{|c|c|c|c|c|c|}
\hline 4,6-Dinitro-2-methylphenol & ND & 20 & 5.1 & ug/l & \\
\hline 2,4-Dinitrophenol & ND & 20 & 5.3 & ug/ & \\
\hline 2,4-Dinitrotoluene & ND & 10 & 4.2 & ug/ & \\
\hline 2,6-Dinitrotoluene & ND & 10 & 3.2 & ug/ & \\
\hline Di-n-octyl phthalate & ND & 20 & 4.7 & ug/ & \\
\hline Fluoranthene & ND & 10 & 4.2 & ug/ & \\
\hline Fluorene & ND & 10 & 3.9 & ug/ & \\
\hline Hexachlorobenzene & ND & 10 & 4.8 & ug/l & \\
\hline Hexachlorobutadiene & ND & 10 & 4.2 & ug/ & \\
\hline Hexachlorocyclopentadiene & ND & 20 & 3.4 & ug/ & \\
\hline Hexachloroethane & ND & 10 & 4.2 & ug/ & \\
\hline Indeno(1,2,3-cd)pyrene & ND & 20 & 5.4 & ug/l & \\
\hline Isophorone & ND & 10 & 3.7 & ug/ & \\
\hline 2-Methylnaphthalene & ND & 10 & 3.0 & ug/ & \\
\hline 2-Methylphenol & ND & 10 & 3.7 & ug/ & \\
\hline 4-Methylphenol & ND & 10 & 3.8 & ug/ & \\
\hline Naphthalene & ND & 10 & 4.5 & ug/ & \\
\hline 2-Nitroaniline & ND & 20 & 3.9 & ug/ & \\
\hline 3-Nitroaniline & ND & 20 & 4.5 & ug/ & \\
\hline 4-Nitroaniline & ND & 20 & 4.9 & ug/l & \\
\hline Nitrobenzene & ND & 20 & 4.2 & ug/ & \\
\hline 2-Nitrophenol & ND & 10 & 4.2 & ug/ & \\
\hline 4-Nitrophenol & ND & 20 & 6.6 & ug/ & \\
\hline N -Nitrosodiphenylamine & ND & 10 & 4.0 & ug/ & \\
\hline N-Nitroso-di-n-propylamine & ND & 10 & 3.6 & ug 1 & \\
\hline Pentachlorophenol & ND & 20 & 4.0 & ug/ & \\
\hline Phenanthrene & ND & 10 & 3.3 & ug/ & \\
\hline Phenol & ND & 10 & 4.0 & ughl & \\
\hline Pyrene & ND & 10 & 3.9 & ugl & \\
\hline 1,2,4-Trichlorobenzene & ND & 10 & 4.4 & ugl & \\
\hline 2,4,5-Trichlorophenol & ND & 20 & 3.6 & ugd & \\
\hline 2,4,6-Trichlorophenol & ND & 20 & 4.1 & ug/l & \\
\hline 1,2-Diphenylhydrazine/Azobenzene & ND & 20 & 5.0 & ug/ & \\
\hline N -Nitrosodimethylamine & ND & 20 & 3.7 & ug/ & \\
\hline Surrogate: 2-Fluorophenol & 141 & & & ug/ & 70 \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
\begin{tabular}{lcr}
MWH-Pasadena/Boeing & Project ID: Annual Outfall 010 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: 02/11/05 \\
Pasadena, CA 91101 & Report Number: 1OB1001 & Received: \(02 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{METHOD BLANKKOC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5813024 Extracted: 02/13/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 02/15/2005 (5B13024-BLK1)} \\
\hline Surrogate: Phenol-d6 & 152 & & & ug/ & 200 & & 76 & 45-120 & & & \\
\hline Surrogate: 2,4,6-Tribromophenol & 189 & & & ug/ & 200 & & 94 & 50-125 & & & \\
\hline Surrogate: Nitrobenzene-d5 & 82.2 & & & ug/ & 100 & & 82 & 45-120 & & & \\
\hline Surrogate: 2-Fluorobiphenyl & 86.8 & & & ug/ & 100 & & 87 & 45-120 & & & \\
\hline Surrogate: Terphenyl-dl4 & 87.1 & & & \(u g h\) & 100 & & 87 & 45-135 & & & \\
\hline LCS Analyzed: 02/15/2005 (5B & & & & & & & & & & & M-NR1 \\
\hline Acenaphthene & 83.0 & 10 & 4.3 & ugh & 100 & & 83 & 55-120 & & & \\
\hline Acenaphthylene & 88.0 & 10 & 3.2 & ug/ & 100 & & 88 & 55-120 & & & \\
\hline Aniline & 67.5 & 10 & 2.9 & ug/ & 100 & & 68 & 30-120 & & & \\
\hline Anthracene & 82.9 & 10 & 3.2 & ug/ & 100 & & 83 & 60-120 & & & \\
\hline Benzidine & 11.3 & 20 & 5.2 & ug/ & 100 & & 11 & 20-180 & & & L2, J \\
\hline Benzoic acid & 72.6 & 20 & 2.6 & ug & 100 & & 73 & 30-125 & & & \\
\hline Benzo(a)anthracene & 89.4 & 10 & 3.7 & ug/ & 100 & & 89 & 65-120 & & & \\
\hline Benzo(b)fluoranthene & 84.9 & 10 & 2.7 & ug/ & 100 & & 85 & 50-125 & & & \\
\hline Benzo(k)fluoranthene & 84.1 & 10 & 3.4 & ug/ & 100 & & 84 & 50-125 & & & \\
\hline Benzo(g,h,i)perylene & 83.3 & 10 & 5.3 & ug/ & 100 & & 83 & 35-160 & & & \\
\hline Benzo(a)pyrene & 87.3 & 10 & 3.5 & ug/ & 100 & & 87 & 55-125 & & & \\
\hline Benzyl alcohol & 77.6 & 20 & 2.5 & ug/ & 100 & & 78 & 40-130 & & & \\
\hline Bis(2-chloroethoxy)methane & 83.2 & 10 & 3.9 & ug/ & 100 & & 83 & 55-120 & & & \\
\hline Bis(2-chloroethyl)ether & 68.3 & 10 & 4.4 & ug/ & 100 & & 68 & 50-120 & & & \\
\hline Bis(2-chloroisopropyl)ether & 73.7 & 10 & 4.6 & ug/ & 100 & & 74 & 50-120 & & & \\
\hline Bis(2-ethylhexyl)phthalate & 77.2 & 50 & 5.2 & ug/ & 100 & & 77 & 65-125 & & & \\
\hline 4-Bromophenyl phenyl ether & 79.7 & 10 & 4.6 & ug/ & 100 & & 80 & 55-125 & & & \\
\hline Butyl benzyl phthalate & 77.4 & 20 & 3.5 & ug/ & 100 & & 77 & 60-125 & & & \\
\hline 4-Chloroaniline & 80.1 & 10 & 6.0 & ug/ & 100 & & 80 & 55-120 & & & \\
\hline 2-Chloronaphthalene & 81.0 & 10 & 4.0 & ug/ & 100 & & 81 & 60-120 & & & \\
\hline 4-Chloro-3-methylphenol & 83.6 & 20 & 3.5 & ugh & 100 & & 84 & 60-120 & - & & \\
\hline 2-Chlorophenol & 71.0 & 10 & 4.2 & ugh & 100 & & 71 & 45-120 & & & \\
\hline 4-Chlorophenyl phenyl ether & 84.8 & 10 & 3.0 & ug/1 & 100 & & 85 & 55-120 & & & \\
\hline Chrysene & 85.3 & 10 & 2.8 & ug/l & 100 & & 85 & 65-120 & & & \\
\hline Dibenz(a,h)anthracene & 88.7 & 20 & 4.7 & ugh & 100 & & 89 & 40-160 & & & \\
\hline Dibenzofuran & 83.4 & 10 & 2.6 & ug/1 & 100 & & 83 & 60-120 & & & \\
\hline di-n-butyl phthalate & 81.1 & 20 & 2.8 & ug/l & 100 & & 81 & 65-125 & & & \\
\hline ,3-Dichlorobenzene & 63.4 & 10 & 4.1 & ug1 & 100 & & 63 & 40-120 & & & \\
\hline 1,4-Dichlorobenzene & 61.8 & 10 & 3.9 & ug/ & 100 & & 62 & 40-120 & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager
\begin{tabular}{lrr}
MWH-Pasadena/Boeing & Project ID: Annual Outfall 010 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(02 / 11 / 05\) \\
Pasadena, CA 91101 & Report Number: IOB1001 & Received: \(02 / 11 / 05\)
\end{tabular}

\section*{METHOD BLANKIOC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5B13024 Extracted: 02/13/05} \\
\hline LCS Analyzed: 02/15/20 & & & & & & & & & & & M-NR1 \\
\hline 1,2-Dichlorobenzene & 63.4 & 10 & 4.5 & ug/l & 100 & - & 63 & 40-120 & & & M-NRI \\
\hline 3,3-Dichlorobenzidine & 101 & 20 & 11 & ug/ & 100 & & 101 & 50-170 & & & \\
\hline 2,4-Dichlorophenol & 81.8 & 10 & 4.1 & ug/1 & 100 & & 82 & 55-120 & & & \\
\hline Diethyl phthalate & 76.5 & 10 & 3.1 & ug/l & 100 & & 76 & 60-120 & & & \\
\hline 2,4-Dimethylphenol & 65.9 & 20 & 4.4 & ug/l & 100 & & 66 & 35-120 & & & \\
\hline Dimethyl phthalate & 80.9 & 10 & 3.6 & ug/l & 100 & & 81 & 60-120 & & & \\
\hline 4,6-Dinitro-2-methylphenol & 80.0 & 20 & 5.1 & ug/l & 100 & & 80 & 55-120 & & & \\
\hline 2,4-Dinitrophenol & 77.4 & 20 & 5.3 & ug/l & 100 & & 77 & 40-140 & & & \\
\hline 2,4-Dinitrotoluene & 81.4 & 10 & 4.2 & ug/l & 100 & & 81 & 60-140 & & & \\
\hline 2,6-Dinitrotoluene & 77.3 & 10 & 3.2 & ug/ & 100 & & 77 & 65-125 & & & \\
\hline Di-n-octyl phthalate & 86.1 & 20 & 4.7 & ug/l & 100 & & 86 & 60-130 & & & \\
\hline Fluotanthene & 91.5 & 10 & 4.2 & ug/l & 100 & & 92 & 55-125 & & & \\
\hline Fhorene & 87.4 & 10 & 3.9 & ug/l & 100 & \(\because\) & 87 & 60-120 & & & \\
\hline Hexachlorobenzene & 83.3 & 10 & 4.8 & ug/l & 100 & & 83 & 50-120 & & & \\
\hline Hexachlorobutadiene & 71.6 & 10 & 4.2 & ug/l & 100 & & 72 & 45-120 & & & \\
\hline Hexachlorocyclopentadiene & 63.9 & 20 & 3.4 & ug/l & 100 & & 64 & 10-130 & & & \\
\hline Hexachloroethane & 60.9 & 10 & 4.2 & ug/ & 100 & & 61 & 40-120 & & & \\
\hline Indeno(1,2,3-cd)pyrene & 85.2 & 20 & 5.4 & ug/l & 100 & & 85 & 35-150 & & & \\
\hline Isophorone & 77.0 & 10 & 3.7 & ug/l & 100 & & 77 & 55-120 & & & \\
\hline 2-Methyinaphthalene & 82.7 & 10 & 3.0 & ug/l & 100 & & 83 & 50-120 & & & \\
\hline 2-Methylphenol & 72.5 & 10 & 3.7 & ug/l & 100 & & 72 & 45-120 & & & \\
\hline 4-Methylphenol & 74.6 & 10 & 3.8 & ug/l & 100 & & 75 & 45-120 & & & \\
\hline Naphthalene & 80.2 & 10 & 4.5 & ug/l & 100 & & 80 & 50-120 & & & \\
\hline 2-Nitroaniline & 88.9 & 20 & 3.9 & ug/l & 100 & & 89 & 60-130 & & & \\
\hline 3-Nitroaniline & 83.1 & 20 & 4.5 & ug/l & 100 & & 83 & 50-140 & & & \\
\hline 4-Nitroaniline & 85.5 & 20 & 4.9 & ug/l & 100 & & 86 & 45-160 & & & \\
\hline Nitrobenzene & 72.2 & 20 & 4.2 & ug/l & 100 & & 72 & 50-120 & & & \\
\hline 2-Nitrophenol & 80.7 & 10 & 4.2 & ug/l & 100 & & 81 & 55-120 & & & \\
\hline 4-Nitrophenol & 78.9 & 20 & 6.6 & ug/l & 100 & & 79 & 50-135 & & & \\
\hline N -Nitrosodiphenylamine & 76.0 & 10 & 4.0 & ug/ & 100 & & 76 & 60-120 & & & \\
\hline \(\mathrm{N}-\) Nitroso-di-n-propylamine & 71.2 & 10 & 3.6 & ug/l & 100 & & 71 & 50-120 & & & \\
\hline Pentachlorophenol & 88.6 & 20 & 4.0 & ug/l & 100 & & 89 & 50-125 & & & \\
\hline Phenanthrene & 80.8 & 10 & 3.3 & \(\mathrm{ug} / \mathrm{l}\) & 100 & & 81 & 55-120 & & & \\
\hline Phenol & 74.0 & 10 & 4.0 & ug/l & 100 & & 74 & 45-120 & & & \\
\hline Pyrene & 85.3 & 10 & 3.9 & ug/l & 100 & & 85 & 50-120 & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 010
Report Number: IOB1001

Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKIQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
Analyte
Batch: 5B13024 Extracted. \(02 / 13 / 05\)

LCS Analyzed: 02/15/2005 (5B13024-BS1)
\begin{tabular}{ll}
1,2,4-Trichlorobenzene & 72.0 \\
2,4,5-Trichlorophenol & 85.4 \\
2,4,6-Trichlorophenol & 87.6 \\
1,2-Diphenylhydrazine/Azobenzene & 85.6 \\
N-Nitrosodimethylamine & 71.1 \\
Surrogate: 2 -Fluorophenol & 133 \\
Surrogate: \(P h e n o l-d 6\) & 143 \\
Surrogate: \(2,4,6\)-Tribromophenol & 177 \\
Surrogate: Nitrobenzene-d5 & 75.4 \\
Surrogate: 2-Fluorobiphenyl & 79.5 \\
Surrogate: Terphenyl-d14 & 78.6
\end{tabular}

LCS Dup Analyzed: 02/15/2005 (5B13024-BSD1)
\begin{tabular}{lr}
Acenaphthene & 86.2 \\
Acenaphthylene & 90.7 \\
Aniline & 81.2 \\
Anthracene & 88.7 \\
Benzidine & 137 \\
Benzoic acid & 66.6 \\
Benzo(a)anthracene & 95.6 \\
Benzo(b)fluoranthene & 92.5 \\
Benzo(k)fluoranthene & 88.6 \\
Benzo(g,h,i)perylene & 97.4 \\
Benzo(a)pyrene & 93.6 \\
Benzyl alcohol & 80.5 \\
Bis(2-chloroethoxy)methane & 85.9 \\
Bis(2-chloroethyl)ether & 70.9 \\
Bis(2-chloroisopropyl)ether & 76.8 \\
Bis(2-ethylhexyl)phthalate & 84.3 \\
4-Bromophenyl phenyl ether & 85.8 \\
Butyl benzyl phthalate & 82.9 \\
4-Chloroaniline & 84.5 \\
2-Chloronaphthalene & 83.6 \\
4-Chloro-3-methylphenol & 87.2 \\
2-Chlorophenol & 72.1 \\
4-Chlorophenyl phenyl ether & 90.4
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\title{
Del Mar Analytical
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\section*{Project ID: Annual Outfall 010}

Report Number: IOB1001

Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & Reporting & & & Spike & Source & & \%REC & & RPD & Data \\
\hline Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers \\
\hline
\end{tabular}

LCS Dup Analyzed: 02/15/2005 (5B13024-BSD1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Chrysene & 90.6 & 10 & 2.8 & ug/ & 100 & 91 & 65-120 & 6 & 20 \\
\hline Dibenz(i, h) anthracene & 103 & 20 & 4.7 & ug/ & 100 & 103 & 40-160 & 15 & 25 \\
\hline Dibenzofuran & 87.2 & 10 & 2.6 & ug/ & 100 & 87 & 60-120 & 4 & 20 \\
\hline Di-n-butyl phthalate & 86.8 & 20 & 2.8 & ug/ & 100 & 87 & 65-125 & 7 & 20 \\
\hline 1,3-Dichlorobenzene & 59.7 & 10 & 4.1 & ug/ & 100 & 60 & 40-120 & 6 & 25 \\
\hline 1,4-Dichlorobenzene & 63.0 & 10 & 3.9 & ug/ & 100 & 63 & 40-120 & 2 & 25 \\
\hline 1,2-Dichlorobenzene & 62.9 & 10 & 4.5 & ug/ & 100 & 63 & 40-120 & 1 & 25 \\
\hline 3,3-Dichlorobenzidine & 114 & 20 & 11 & ug/ & 100 & 114 & 50-170 & 12 & 25 \\
\hline 2,4-Dichlorophenol & 84.2 & 10 & 4.1 & ug/ & 100 & 84 & 55-120 & 3 & 20 \\
\hline Diethyl phthalate & 80.6 & 10 & 3.1 & ug/ & 100 & 81 & 60-120 & 5 & 20 \\
\hline 2,4-Dimethylphenol & 72.1 & 20 & 4.4 & ug/ & 100 & 72 & 35-120 & 9 & 25 \\
\hline Dimethyl phthalate & 84.3 & 10 & 3.6 & ug/ & 100 & 84 & 60-120 & 4 & 20 \\
\hline 4.6-Dinitro-2-methylphenol & 84.0 & 20 & 51 & ugh & 100 & 84 & 55120 & 5 & 25 \\
\hline 2,4-Dinitophenol & 80.3 & 20 & 5.3 & ugh & 100 & 80 & \(40-140\) & 4 & 25 \\
\hline 2,4-Dinitrotoluene & 86.3 & 10 & 4.2 & ug/ & 100 & 86 & 60-140 & 6 & 20 \\
\hline 2,6-Dinitrotoluene & 80.3 & 10 & 3.2 & ugh & 100 & 80 & 65-125 & 4 & 20 \\
\hline Di-n-octyl phthalate & 96.4 & 20 & 4.7 & ug/l & 100 & 96 & 60-130 & 11 & 20 \\
\hline Fluoranthene & 96.3 & 10 & 4.2 & ugh & 100 & 96 & 55-125 & 5 & 20 \\
\hline Fluorene & 91.9 & 10 & 3.9 & ug/ & 100 & 92 & 60-120 & 5 & 20 \\
\hline Hexachlorobenzene & 87.5 & 10 & 4.8 & ug/ & 100 & 88 & 50-120 & 5 & 20 \\
\hline Hexachlorobutadiene & 73.2 & 10 & 4.2 & ugh & 100 & 73 & 45-120 & 2 & 25 \\
\hline Hexachlorocyclopentadiene & 66.5 & 20 & 3.4 & ug/ & 100 & 66 & 10-130 & 4 & 30 \\
\hline Hexachloroethane & 60.4 & 10 & 4.2 & ug/ & 100 & 60 & 40-120 & 1 & 25 \\
\hline Indeno(1,2,3-cd)pyrene & 98.6 & 20 & 5.4 & ugh & 100 & 99 & 35-150 & 15 & 25 \\
\hline Isophorone & 81.3 & 10 & 3.7 & ug/ & 100 & 81 & 55-120 & 5 & 20 \\
\hline 2-Methylnaphthalene & 86.1 & 10 & 3.0 & ug/ & 100 & 86 & 50-120 & 4 & 20 \\
\hline 2-Methylphenol & 75.6 & 10 & 3.7 & ugh & 100 & 76 & 45-120 & 4 & 20 \\
\hline 4-Methylphenol & 78.2 & 10 & 3.8 & ug/ & 100 & 78 & 45-120 & 5 & 20 \\
\hline Naphthalene & 83.1 & 10 & 4.5 & ugl & 100 & 83 & 50-120 & 4 & 20 \\
\hline 2-Nitroaniline & 91.5 & 20 & 3.9 & ug/1 & 100 & 92 & 60-130 & 3 & 20 \\
\hline 3-Nitroaniline & 88.6 & 20 & 4.5 & ug/ & 100 & 89 & 50-140 & 6 & 25 \\
\hline 4-Nitroaniline & 94.4 & 20 & 4.9 & ug/ & 100 & 94 & 45-160 & 10 & 20 \\
\hline Nitrobenzene & 74.6 & 20 & 4.2 & ugh & 100 & 75 & 50-120 & 3 & 25 \\
\hline 2-Nitrophenol & 83.0 & 10 & 4.2 & ughl & 100 & 83 & 55-120 & 3 & 25 \\
\hline 4-Nitrophenol & 81.6 & 20 & 6.6 & ug/1 & 100 & 82 & 50-135 & 3 & 25 \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
\[
\begin{array}{rr}
\text { Project ID: Annual Outfall } 010 & \\
& \text { Sampled: 02/11/05 } \\
\text { Report Number: } 10 B 1001 & \text { Received: 02/11/05 }
\end{array}
\]

\section*{METHOD BLANKIOC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{lllllllllllll}
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

LCS Dup Analyzed: 02/15/2005 (5B13024-BSD1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline N -Nitrosodiphenylamine & 80.6 & 10 & 4.0 & ug/ & 100 & 81 & 60-120 & 6 & 20 \\
\hline N-Nitroso-di-n-propylamine & 75.1 & 10 & 3.6 & ugh & 100 & 75 & 50-120 & 5 & 20 \\
\hline Pentachlorophenol & 92.7 & 20 & 4.0 & ug/ & 100 & 93 & 50-125 & 5 & 25 \\
\hline Phenanthrene & 86.6 & 10 & 3.3 & \(\mathrm{ug} / 1\) & 100 & 87 & 55-120 & 7 & 20 \\
\hline Phenol & 75.1 & 10 & 4.0 & ug/ & 100 & 75 & 45-120 & 1 & 25 \\
\hline Pyrene & 88.4 & 10 & 3.9 & ug/ & 100 & 88 & 50-120 & 4 & 25 \\
\hline 1,2,4-Trichlorobenzene & 73.0 & 10 & 4.4 & ugh & 100 & 73 & 50-120 & 1 & 20 \\
\hline 2,4,5-Trichlorophenol & 88.6 & 20 & 3.6 & ugh & 100 & 89 & 60-120 & 4 & 20 \\
\hline 2,4,6-Trichlorophenol & 89.5 & 20 & 4.1 & ug/ & 100 & 90 & 60-120 & 2 & 20 \\
\hline 1,2-Diphenylhydrazine/Azobenzene & 90.2 & 20 & 5.0 & ug/ & 100 & 90 & 60-120 & 5 & 25 \\
\hline N-Nitrosodimethylamine & 71.1 & 20 & 3.7 & ug/ & 100 & 71 & 40-120 & 0 & 20 \\
\hline Surrogate: 2-Fluorophenol & 128 & & & \(u g /\) & 200. & 64. & 35-120 & & \\
\hline Surrogate: Phenol-d6 & 141 & & & ug/l & 200 & 70 & 45-120 & & \\
\hline Surrogate: 2,4,6-Tribromophenol & 185 & & & ug/ & 200 & 92 & 50-125 & & \\
\hline Surrogate: Nitrobenzene-d5 & 76.5 & & & \(u g /\) & 100 & 76 & 45-120 & & \\
\hline Surrogate: 2-Fluorobiphenyl & 79.4 & & & ug/ & 100 & 79 & 45-120 & & \\
\hline Surrogate: Terphenyl-d14 & 82.3 & & & \(u g h\) & 100 & 82 & 45-135 & & \\
\hline
\end{tabular}

\section*{Batch: 5B17041 Extracted: 02/17/05}

\section*{Blank Analyzed: 02/22/2005 (5B17041-BLK1)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Benzidine & ND & 20 & 5.2 & ugh & & & \\
\hline Surrogate: 2-Fluorophenol & 110 & & & ug/ & 200 & 55 & 35-120 \\
\hline Surrogate: Phenol-d6 & 121 & & & ugl & 200 & 60 & 45-120 \\
\hline Surrogate: 2,4,6-Tribromophenol & 144 & & & ugh & 200 & 72 & 50-125 \\
\hline Surrogate: Nitrobenzene-ds & 66.4 & & & ug/ & 100 & 66 & 45-120 \\
\hline Surrogate: 2-Fluorobiphenyl & 70.0 & & & ugh & 100 & 70 & 45-120 \\
\hline Surrogate: Terphenyl-d14 & 67.5 & & & ug/ & 100 & 68 & 45-135 \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 010

Report Number: IOB1001

Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKOC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5817041 Extracted: 02/17/05} \\
\hline LCS Analyzed: 02/22/2005 (5 & & & & & & & & & & & M-NR1 \\
\hline Benzidine & 145 & 20 & 5.2 & ug/ & 100 & & 145 & 20-180 & & & \\
\hline Surrogate: 2-Fluorophenol & 120 & & & ug \(/\) & 200 & & 60 & 35-120 & & & \\
\hline Surrogate: Phenol-d6 & 138 & & & ugh & 200 & & 69 & 45-120 & & & \\
\hline Surrogate: 2,4,6-Tribromophenol & 164 & & & ug \(n\) & 200 & & 82 & 50-125 & & & \\
\hline Surrogate: Nitrobenzene-d5 & 74.1 & & & ug \(/\) & 100 & & 74 & 45-120 & & & \\
\hline Surrogate: 2-Fluorobiphenyl & 73.0 & & & ug/ & 100 & & 73 & 45-120 & & & \\
\hline Surrogate: Terphenyl-d14 & 85.2 & & & ug/ & 100 & & 85 & 45-135 & & & \\
\hline \multicolumn{12}{|l|}{LCS Dup Analyzed: 02/22/2005 (5B17041-BSD1)} \\
\hline Benzidine & 149 & 20 & 5.2 & ug/ & 100 & & 149 & 20-180 & 3 & 35 & \\
\hline Surrogate: 2-Fluorophenol & 120 & & & ug/ & 200 & & 60 & 35-120 & & & \\
\hline Surrogate: Phenol-d6 & 132 & & & ug/ & 200 & & 66 & 45-120 & & & \\
\hline Surrogate: 2,4,6-Tribromophenol & 163 & & & ugh & 200 & & 82 & 50-125 & & & \\
\hline Surrogate: Nitrobenzene-d5 & 76.0 & & & ug/ & 100 & & 76 & 45-120 & & & \% \\
\hline Surrogate: 2-Fluorobiphenyl & 74.0 & & & ug \(/\) & 100 & & 74 & 45-120 & & & \\
\hline Surrogate: Terphenyl-d14 & 84.4 & & & ug \(/\) & 100 & & 84 & 45-135 & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager
\begin{tabular}{lrr}
MWH-Pasadena/Boeing & Project ID: Annual Outfall 010 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(02 / 11 / 05\) \\
Pasadena, CA 91101 & Report Number: \(10 B 1001\) & Received: \(02 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{METHOD BLANKIOC DATA}

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5B17042 Extracted: 02/17/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 02/17/2005-02/18/2005 (5B17042-BLK1)} \\
\hline Aldrin & ND & 0.10 & 0.030 & ug/ & & & & & & & \\
\hline alpha-BHC & ND & 0.10 & 0.015 & ug/1 & & & & & & & \\
\hline beta-BHC & ND & 0.10 & 0.015 & ug/ & & & & & & & \\
\hline delta-BHC & ND & 0.20 & 0.020 & ug/ & & & & & & & \\
\hline gamma-BHC (Lindane) & ND & 0.10 & 0.015 & ug/ & & & & & & & \\
\hline Chlordane & ND & 1.0 & 0.20 & ug/ & & & & & & & \\
\hline 4,4'-DDD & ND & 0.10 & 0.015 & ug 1 & & & & & & & \\
\hline 4,4*-DDE & ND & 0.10 & 0.020 & ug/ & & & & & & & \\
\hline 4,4'-DDT & ND & 0.10 & 0.030 & ug/ & & & & & & & \\
\hline Dieldrin & ND & 0.10 & 0.015 & ug/ & & & & & & & \\
\hline Endosulfan I & ND & 0.10 & 0.015 & ug/ & & & & & & & \\
\hline Endosulfan II & ND & 0.10 & 0.040 & ug/ & & & & & & & \\
\hline Endosulfan sulfate & ND & 0.20 & 0.015 & ug/ & & & & & & & \\
\hline Endrin & ND & 0.10 & 0.015 & ug/ & & & & & & & \\
\hline Endrin aldehyde & ND & 0.10 & 0.045 & ug/ & & & & & & & \\
\hline Endrin ketone & ND & 0.10 & 0.020 & ug/ & & & & & & & \\
\hline Heptachlor & ND & 0.10 & 0.030 & ugh & & & & & & & \\
\hline Heptachlor epoxide & ND & 0.10 & 0.020 & ug/1 & & & & & & & \\
\hline Methoxychlor & ND & 0.10 & 0.035 & ug/ & & & & & & & \\
\hline Toxaphene & ND & 5.0 & 1.5 & ug/ & & & & & & & \\
\hline Surrogate: Tetrachloro-m-xylene & 0.264 & & & ug/ & 0.500 & & 53 & 35-120 & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.339 & & & ug/l & 0.500 & & 68 & 45-120 & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 02/18/2005 (5B17042-BS1)} & M-NR1 \\
\hline Aldrin & 0.364 & 0.10 & 0.030 & ug/ & 0.500 & & 73 & 45-115 & & & M-NR1 \\
\hline alpha-BHC & 0.374 & 0.10 & 0.015 & ug/ & 0.500 & & 75 & 45-115 & & & \\
\hline beta-BHC & 0.373 & 0.10 & 0.015 & ug/ & 0.500 & & 75 & 50-115 & & & \\
\hline delta-BHC & 0.391 & 0.20 & 0.020 & ug/ & 0.500 & & 78 & 55-120 & & & \\
\hline gamma-BHC (Lindane) & 0.385 & 0.10 & 0.015 & ug/ & 0.500 & & 77 & 45-115 & & & \\
\hline 4,4'-DDD & 0.415 & 0.10 & 0.015 & ug/ & 0.500 & & 83 & 60-120 & & & \\
\hline 4,4-DDE & 0.412 & 0.10 & 0.020 & ugh & 0.500 & & 82 & 55-120 & & & \\
\hline 4,4'-DDT & 0.424 & 0.10 & 0.030 & ug/ & 0.500 & & 85 & 60-130 & & & \\
\hline Dieldrin & 0.403 & 0.10 & 0.015 & ug/l & 0.500 & & 81 & 55-120 & & & \\
\hline Endosulfan I & 0.384 & 0.10 & 0.015 & ug/ & 0.500 & & 77 & 50-115 & & & \\
\hline Endosulfan II & 0.397 & 0.10 & 0.040 & ug/ & 0.500 & & 79 & 60-125 & & & \\
\hline Endosulfan sulfate & 0.425 & 0.20 & 0.015 & ug/ & 0.500 & & 85 & 60-120 & & & \\
\hline Del Mar Analytical, Irvine Wendy Kirkeeng For Michele Project Manager & & & & & & & & & & & \\
\hline
\end{tabular}

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 010

Report Number: IOB1001

Sampled: 02/11/05
Received: 02/11/05

\section*{METIIOD BLANKIOC DATA}

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}
\begin{tabular}{lllllllllll}
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit
\end{tabular}

Batch: 5B17042 Extracted: 02/17/05
\begin{tabular}{ll}
LCS Analyzed: 02/18/2005 (5B17042-BS1) \\
Endrin & 0.446 \\
Endrin aldehyde & 0.374 \\
Endrin ketone & 0.423 \\
Heptachlor & 0.404 \\
Heptachlor epoxide & 0.383 \\
Methoxychlor & 0.486 \\
Surrogate: Tetrachloro-m-xylene & 0.304 \\
Surrogate: Decachlorobiphenyl & 0.398
\end{tabular}
\begin{tabular}{llllll}
0.10 & 0.015 & \(\mathrm{ug} / 1\) & 0.500 & 89 & \(55-125\) \\
0.10 & 0.045 & \(\mathrm{ug} /\) & 0.500 & 75 & \(55-115\) \\
0.10 & 0.020 & \(\mathrm{ug} / 1\) & 0.500 & 85 & \(60-120\) \\
0.10 & 0.030 & \(\mathrm{ug} / 1\) & 0.500 & 81 & \(45-115\) \\
0.10 & 0.020 & \(\mathrm{ug} / 1\) & 0.500 & 77 & \(50-120\) \\
0.10 & 0.035 & \(\mathrm{ug} / 1\) & 0.500 & 97 & \(60-135\) \\
& & \(u g / l\) & 0.500 & 61 & \(35-120\) \\
& & \(u g / l\) & 0.500 & 80 & \(45-120\)
\end{tabular}

M-NR1

LCS Dup Analyzed: 02/18/2005 (5B17042-BSD1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Aldrin & 0.354 & 0.10 & 0.030 & ugh & 0.500 & 71 & 45-115 & 3 & 30 \\
\hline alpha-BHC & 0.353 & 0.10 & 0.015 & ugl & 0.500 & 71 & 45-115 & 6 & 30 \\
\hline beta-BHC & 0.372 & 0.10 & 0.015 & ug/l & 0.500 & 74 & 50-115 & 0 & 30 \\
\hline delta-BHC & 0.380 & 0.20 & 0.020 & ug/ & 0.500 & 76 & 55-120 & 3 & 30 \\
\hline gamma-BHC (Lindane) & 0.371 & 0.10 & 0.015 & ugh & 0.500 & 74 & 45-115 & 4 & 30 \\
\hline 4,4-DDD & 0.402 & 0.10 & 0.015 & ug/l & 0.500 & 80 & 60-120 & 3 & 30 \\
\hline 4,4'-DDE & 0.407 & 0.10 & 0.020 & ug/ & 0.500 & 81 & 55-120 & 1 & 30 \\
\hline 4,4-DDT & 0.409 & 0.10 & 0.030 & ugh & 0.500 & 82 & 60-130 & 4 & 30 \\
\hline Dieldrin & 0.396 & 0.10 & 0.015 & ug/l & 0.500 & 79 & 55-120 & 2 & 30 \\
\hline Endosulfan I & 0.379 & 0.10 & 0.015 & ug/ & 0.500 & 76 & 50-115 & 1 & 30 \\
\hline Endosulfan II & 0.386 & 0.10 & 0.040 & ug/ & 0.500 & 77 & 60-125 & 3 & 30 \\
\hline Endosulfan sulfate & 0.398 & 0.20 & 0.015 & ug/ & 0.500 & 80 & 60-120 & 7 & 30 \\
\hline Endrin & 0.433 & 0.10 & 0.015 & ug/ & 0.500 & 87 & 55-125 & 3 & 30 \\
\hline Endrin aldehyde & 0.366 & 0.10 & 0.045 & ug/ & 0.500 & 73 & 55-115 & 2 & 30 \\
\hline Endrin ketone & 0.392 & 0.10 & 0.020 & ug/ & 0.500 & 78 & 60-120 & 8 & 30 \\
\hline Heptachlor & 0.382 & 0.10 & 0.030 & ug/ & 0.500 & 76 & 45-115 & 6 & 30 \\
\hline Heptachlor epoxide & 0.378 & 0.10 & 0.020 & ug/ & 0.500 & 76 & 50-120 & 1 & 30 \\
\hline Methoxychlor & 0.446 & 0.10 & 0.035 & ug/ & 0.500 & 89 & 60-135 & , & 30 \\
\hline Surrogate: Tetrachloro-m-xylene & 0.277 & & & \(u g /\) & 0.500 & 55 & 35-120 & & \\
\hline Surrogate: Decachlorobiphenyl & 0.364 & & & \(u g /\) & 0.500 & 73 & 45-120 & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

\title{
Del Mar Analytical
}
\begin{tabular}{|llr}
MWH-Pasadena/Boeing & Project ID: Annual Outfall 010 & \\
300 North Lake Avenue, Suite 1200 & Report Number: IOB1001 & Sampled: \(02 / 11 / 05\) \\
Pasadena, CA 91101 & Received: \(02 / 11 / 05\) \\
Attention: Bronwyn Kelly & \(\ldots\) &
\end{tabular}

\section*{METHOD BLANKIQC DATA}

TOTAL PCBS (EPA 608)
\begin{tabular}{llllllllllll}
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{Blank Analyzed: 02/17/2005-02/18/2005 (5B17042-BLK1)} \\
\hline Aroclor 1016 & ND & 1.0 & 0.20 & ugh & & & & & & \\
\hline Aroclor 1221 & ND & 1.0 & 0.10 & ugh & & & & & & \\
\hline Aroclor 1232 & ND & 1.0 & 0.15 & ugh & & & & & & \\
\hline Aroclor 1242 & ND & 1.0 & 0.15 & ug/l & & & & & & \\
\hline Aroclor 1248 & ND & 1.0 & 0.25 & ugh & & & & & & \\
\hline Aroclor 1254 & ND & 1.0 & 0.25 & ug/ & & & & & & \\
\hline Aroclor 1260 & ND & 1.0 & 0.40 & ug/ & & & & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.451 & & & ug/ & 0.500 & 90 & 45-120 & & & \\
\hline LCS Analyzed: 02/18/2005 & & & & & & & & & & M-NR1 \\
\hline Aroclor 1016 & 2.54 & 1.0 & 0.20 & ug/ & 4.00 & 64 & 50-115 & & & \\
\hline Aroclor 1260 & 2.69 & 1.0 & 0.40 & ug/ & 4.00 & 67 & 60-115 & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.378 & & & ug \(/\) & 0.500 & 76 & 45-120 & & & \\
\hline \multicolumn{11}{|l|}{LCS Dup Analyzed: 02/18/2005 (5B17042-BSD2)} \\
\hline Aroclor 1016 & 3.09 & 1.0 & 0.20 & ug/ & 4.00 & 77 & 50-115 & 20 & 30 & \\
\hline Aroclor 1260 & 2.98 & 1.0 & 0.40 & ug/ & 4.00 & 74 & 60-115 & 10 & 25 & \\
\hline Surrogate: Decachlorobiphenyl & 0.404 & & & ug \(/\). & 0.500 & 81 & 45-120 & & & \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

\section*{MWH-Pasadena/Boeing}

300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 010
Report Number: 1OB1001
Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKKC DATA}

\section*{METALS}

\section*{Batch: 5817127 Extracted: 02/17/05}

Blank Analyzed: 02/18/2005-02/22/2005 (5B17127-BLK1)
\begin{tabular}{|c|c|c|c|c|}
\hline Aluminum & ND & 50 & 47 & ug/1 \\
\hline Arsenic & ND & 5.0 & 3.8 & ug/ \\
\hline Beryllium & ND & 2.0 & 0.62 & ug/l \\
\hline Boron & ND & 0.050 & 0.0074 & \(\mathrm{mg} / 1\) \\
\hline Chromium & ND & 5.0 & 0.68 & ugh \\
\hline Nickel & ND & 10 & 2.0 & ug/ \\
\hline Selenium & ND & 5.0 & 4.6 & ug/l \\
\hline Silver & ND & 10 & 1.3 & ug/ \\
\hline Thallium & ND & 5.0 & 3.1 & ugh \\
\hline Vanadium & ND & 10 & 1.4 & ug/ \\
\hline Zinc & ND & 20 & 3.7 & ug/1 \\
\hline
\end{tabular}

LCS Analyzed: 02/18/2005-02/22/2005 (5B17127-BS1)
\begin{tabular}{lcccccc}
Aluminum & 450 & 50 & 47 & \(\mathrm{ug} / \mathrm{l}\) & 500 & 90 \\
Arsenic & 502 & 5.0 & 3.8 & \(\mathrm{ug} / \mathrm{l}\) & 500 & \(85-115\) \\
Beryllium & 489 & 2.0 & 0.62 & \(\mathrm{ug} / \mathrm{h}\) & 500 & \(85-115\) \\
Boron & 0.463 & 0.050 & 0.0074 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 98 \\
Chromium & 509 & 5.0 & 0.68 & \(\mathrm{ug} / \mathrm{h}\) & 500 & \(85-115\) \\
Nickel & 496 & 10 & 2.0 & \(\mathrm{ug} / \mathrm{l}\) & 500 & \(85-115\) \\
Selenium & 499 & 5.0 & 4.6 & \(\mathrm{ug} / \mathrm{l}\) & 500 & 102 \\
Silver & 254 & 10 & 1.3 & \(\mathrm{ug} / \mathrm{l}\) & \(25-115\) \\
Thallium & 477 & 5.0 & 3.1 & \(\mathrm{ug} / \mathrm{l}\) & 500 & 99 \\
Vanadium & 500 & 10 & 1.4 & \(\mathrm{ug} / \mathrm{l}\) & 500 & 100 \\
& & & \(85-115\) \\
& & & & & 85 \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager
}

\title{
Del Mar Analytical
} 484 Chesapeake Dr., Sulte 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St, Sulte B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-085 2520 E. Sunset Rd. Was, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621
\begin{tabular}{|c|c|c|}
\hline MWH-Pasadena/Boeing & Project ID: Annual Outfall 010 & \\
\hline 300 North Lake Avenue, Suite 1200 & & Sampled: 02/11/05 \\
\hline Pasadena, CA 91101 & Report Number: 10B1001 & Received: 02/11/05 \\
\hline Attention: Bronwyn Kelly & & \\
\hline
\end{tabular}

\section*{METHOD BLANKQC DATA}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & ME & ALS & & & & & & & \\
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline
\end{tabular}

Batch: 5B17127 Extracted: 02/17/05
\begin{tabular}{lcccccccc}
LCS Analyzed: & 02/18/2005-02/22/2005 (5B17127-BS1) & & & & & \\
Zinc & 492 & 20 & 3.7 & ug/l & 500 & 98 & \(85-115\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Matrix Spike Analyzed: 02/18/2005-02/22/2005 (5B17127-MS1)} & \multicolumn{5}{|c|}{Source: IOB0814-02} \\
\hline Aluminum & 456 & 50 & 47 & ugh & 500 & ND & 91 & 70-130 \\
\hline Arsenic & 510 & 5.0 & 3.8 & ug/l & 500 & ND & 102 & 70-130 \\
\hline Beryllium & 496 & 2.0 & 0.62 & ug/l & 500 & ND & 99 & 70-130 \\
\hline Boron & 0.573 & 0.050 & 0.0074 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.077 & 99 & 70-130 \\
\hline Chromium & 502 & 5.0 & 0.68 & ug/ & 500 & ND & 100 & 70-130 \\
\hline Nickel & 476 & 10 & 2.0 & ug/ & 500 & ND & 95 & 70-130 \\
\hline Selenium & 500 & 5.0 & 4.6 & ug/1 & 500 & ND & 100 & 70-130 \\
\hline Silver & 255 & 10 & 1.3 & ug/ & 250 & ND & 102 & 70-130 \\
\hline Thallium & 476 & 5.0 & 3.1 & ug/1 & 500 & 8.6 & 93 & 70-130 \\
\hline Vanadiam & 502 & 10 & 1:4 & ug/1 & 500 & 1.7 & 100 & \(70-130\) \\
\hline Zinc & 492 & 20 & 3.7 & ug/ & 500 & ND & 98 & 70.130 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Matrix S & 2/22/2 & 17127 & & & & ce: IOB & 14-02 & & & \\
\hline Aluminum & 454 & 50 & 47 & ug/l & 500 & ND & 91 & 70-130 & 0 & 20 \\
\hline Arsenic & 505 & 5.0 & 3.8 & ug/ & 500 & ND & 101 & 70-130 & 1 & 20 \\
\hline Berylium & 492 & 2.0 & 0.62 & ug/ & 500 & ND & 98 & 70-130 & 1 & 20 \\
\hline Boron & 0.565 & 0.050 & 0.0074 & \(\mathrm{mg} / 1\) & 0.500 & 0.077 & 98 & 70-130 & 1 & 20 \\
\hline Chromium & 500 & 5.0 & 0.68 & ugh & 500 & ND & 100 & 70-130 & 0 & 20 \\
\hline Nickel & 477 & 10 & 2.0 & ugh & 500 & ND & 95 & 70-130 & 0 & 20 \\
\hline Selenium & 498 & 5.0 & 4.6 & ugh & 500 & ND & 100 & 70-130 & 0 & 20 \\
\hline Silver & 258 & 10 & 1.3 & ugh & 250 & ND & 103 & 70-130 & 1 & 20 \\
\hline Thallium & 463 & 5.0 & 3.1 & ug/ & 500 & 8.6 & 91 & 70-130 & 3 & 20 \\
\hline Vanadium & 503 & 10 & 1.4 & ug/l & 500 & 1.7 & 100 & 70-130 & 0 & 20 \\
\hline Zinc & 492 & 20 & 3.7 & ug/ & 500 & ND & 98 & 70-130 & 0 & 20 \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 010

Report Number: IOB1001

Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANK/QC DATA}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & ME & ALS & & & & & & & \\
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & \begin{tabular}{l}
Data \\
Qualifiers
\end{tabular} \\
\hline
\end{tabular}

\section*{Batch: 5B17129 Extracted: 02/17/05}

Blank Analyzed: 02/22/2005 (5B17129-BLK1)
\begin{tabular}{llccc}
Antimony & ND & 2.0 & 0.18 & ug \(/\) \\
Cadmium & ND & 1.0 & 0.015 & ug \\
Copper & ND & 2.0 & 0.49 & ug \\
Lead & ND & 1.0 & 0.13 & ug \(/\)
\end{tabular}

LCS Analyzed: 02/22/2005 (5B17129-BS1)
\begin{tabular}{lccccccc}
Antimony & 85.6 & 2.0 & 0.18 & ug/l & 80.0 & 107 & \(85-115\) \\
Cadmium & 76.5 & 1.0 & 0.015 & ug/ & 80.0 & 96 & \(85-115\) \\
Copper & 79.4 & 2.0 & 0.49 & ug/ & 80.0 & 99 & \(85-115\) \\
Lead & 77.5 & 1.0 & 0.13 & ug/l & 80.0 & 97 & \(85-115\)
\end{tabular}
\begin{tabular}{lcllllllll}
Matrix Spike Analyzed: & \(\mathbf{0 2 / 2 2 / 2 0 0 5}\) (5B17129-MS1) & & & \multicolumn{4}{c}{ Source: IOB1230-01 } \\
Antimony & 89.6 & 2.0 & 0.18 & \(\mathrm{ug} / \mathrm{l}\) & 80.0 & 1.2 & 110 & \(70-130\) \\
Cadmium & 75.7 & 1.0 & 0.015 & \(\mathrm{ug} / \mathrm{l}\) & 80.0 & 0.10 & 94 & \(70-130\) \\
Copper & 111 & 2.0 & 0.49 & \(\mathrm{ug} / \mathrm{l}\) & 80.0 & 33 & 98 & \(70-130\) \\
Lead & 77.8 & 1.0 & 0.13 & \(\mathrm{ug} / \mathrm{l}\) & 80.0 & 1.8 & 95 & \(70-130\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Matrix Spike Dup Analyzed: 02/22/2005 (5817129-MSD1)} & \multicolumn{8}{|c|}{Source: IOB1230-01} \\
\hline Antimony & 87.5 & 2.0 & 0.18 & ug/1 & 80.0 & 1.2 & 108 & 70-130 & 2 & 20 \\
\hline Cadmium & 73.8 & 1.0 & 0.015 & ug/l & 80.0 & 0.10 & 92 & 70-130 & 3 & 20 \\
\hline Copper & 108 & 2.0 & 0.49 & ug/ & 80.0 & 33 & 94 & 70-130 & 3 & 20 \\
\hline Lead & 77.5 & 1.0 & 0.13 & ug/ & 80.0 & 1.8 & 95 & 70-130 & 0 & 20 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 010
Report Number: IOB1001

Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKIQCDATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reportin Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5B11120 Extracted; 02/11/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 02/11/2005 (5B11120-BLK1)} \\
\hline Chloride & ND & 0.50 & 0.26 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline Nitrate/Nitrite-N & ND & 0.26 & 0.072 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline Sulfate & ND & 0.50 & 0.18 & mg/l & & & & & & & \\
\hline \multicolumn{12}{|l|}{LCS Analyzed: 02/11/2005 (5B11120-BS1)} \\
\hline Chloride & 4.84 & 0.50 & 0.26 & \(\mathrm{mg} / \mathrm{l}\) & 5.00 & & 97 & 90-110 & & & \\
\hline Sulfate & 10.0 & 0.50 & 0.18 & \(\mathrm{mg} / \mathrm{l}\) & 10.0 & & 100 & 90-110 & & & \\
\hline \multicolumn{5}{|l|}{Matrix Spike Analyzed: 02/12/2005 (5B11120-MS1)} & \multicolumn{4}{|c|}{Source: 1OB0980-01} & & & \\
\hline Chloride & 15.6 & 0.50 & 0.26 & \(\mathrm{mg} / \mathrm{l}\) & 5.00 & 11 & 92 & 80-120 & & & \\
\hline Sulfate & 38.7 & 0.50 & 0.18 & \(\mathrm{mg} / \mathrm{l}\) & 10.0 & 29 & 97 & 80-120 & & & \\
\hline \multicolumn{5}{|l|}{Matrix Spike Dup Analyzed: 02/12/2005 (5B11120-MSD1)} & \multicolumn{4}{|c|}{Source: IOB0980-01} & & & \\
\hline Chioride & 15.8 & 0.50 & 0.26 & \(\mathrm{mg} / \mathrm{l}\) & 5.00 & 11 & 96 & 80-120 & 1 & 20 & \% \\
\hline Sulfate & 39.3 & 0.50 & 0.18 & \(\mathrm{mg} / \mathrm{l}\) & 10.0 & 29 & : 103 & 80-120 & 2 & 20 & \\
\hline
\end{tabular}

Batch: 5B14107 Extracted: 02/14/05
Blank Analyzed: 02/14/2005 (5B14107-BLK1)

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
\begin{tabular}{|lll}
\hline MWH-Pasadena/Boeing & Project ID: Annual Outfall 010 & \\
300 North Lake Avenue, Suite 1200 & Report Number: IOB1001 & \begin{tabular}{l}
Sampled: \(02 / 11 / 05\) \\
Received: \(02 / 11 / 05\)
\end{tabular} \\
\begin{tabular}{l}
Pasadena, CA 91101 \\
Attention: Bronwyn Kelly
\end{tabular} & & \\
\hline
\end{tabular}

\section*{MIETHOD DHANKOC DATA}

\section*{INORGANICS}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
\begin{tabular}{|lll}
MWH-Pasadena/Boeing & Project ID: Annual Outfall 010 & \\
\(\mathbf{3 0 0}\) North Lake Avenue, Suite 1200 & Report Number: IOB1001 & Sampled: \(02 / 11 / 05\) \\
Pasadena, CA 91101 & Received: \(02 / 11 / 05\) \\
Attention: Bronwyn Kelly & \(\cdots\) &
\end{tabular}

\section*{METHOD BLANK/OC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5B17104 Extracted: 02/17/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 02/17/2005 (5B17104-BLK1)} \\
\hline Total Dissolved Solids ND & 10 & 10 & mg/ & & & & & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 02/17/2005 (5B17104-BS1)} \\
\hline Total Dissolved Solids 1050 & 10 & 10 & \(\mathrm{mg} /\) & 1000 & & 105 & 90-110 & & & \\
\hline Duplicate Analyzed: 02/17/2005 (5B17104-DUP1) & & & & Sou & ce: IOB1 & 273-03 & & & & \\
\hline Total Dissolved Solids 483 & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & & 490 & & & 1 & 10 & \\
\hline \multicolumn{11}{|l|}{Batch: 5B17117 Extracted: 02/17/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 02/17/2005 (5B17117-BLK1)} \\
\hline Oil \& Grease ND & 5.0 & 0.94 & \(\mathrm{mg} / 1\) & & & & & & & \\
\hline LCS Analyzed: 02/17/2005 (5B17117-BS1) & & & & & & & & & & M-NR1 \\
\hline Oil \& Grease 17.6 & 5.0 & 0.94 & \(\mathrm{mg} / \mathrm{l}\) & 20.0 & & 88 & 65-120 & & & \\
\hline \multicolumn{11}{|l|}{LCS Dup Analyzed: 02/17/2005 (5B17117-BSD1)} \\
\hline Oil \& Grease 16.4 & 5.0 & 0.94 & \(\mathrm{mg} / 1\) & 20.0 & & 82 & 65-120 & 7 & 20 & \\
\hline
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 010

Report Number: 1OB1001
Sampled: 02/11/05
Received: 02/11/05

\section*{Compliance Check}

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.
\begin{tabular}{lllcccc}
LabNumber & Analysis & Analyte & & Units & Result & MRL \\
\hline IOB1001-01 & 413.1 Oil and Grease & Oil \& Grease & \(\mathrm{mg} / \mathrm{l}\) & 0 & 5.0 & 15 \\
IOB1001-01 & Boron-200.7 & Boron & \(\mathrm{mg} / \mathrm{l}\) & 0.00040 & 0.050 & 1.00 \\
IOB1001-01 & Chloride -300.0 & Chloride & \(\mathrm{mg} / \mathrm{l}\) & 4.20 & 0.50 & 150 \\
IOB1001-01 & Nitrogen, NO3+NO2 -N & Nitrate Nitrite-N & \(\mathrm{mg} / 1\) & 0.15 & 0.26 & 10.00 \\
IOB1001-01 & Perchlorate 314.0 & Perchlorate & \(\mathrm{ug} / \mathrm{l}\) & 0 & 4.0 & 6.00 \\
IOB1001-01 & Sulfate-300.0 & Sulfate & \(\mathrm{mg} / \mathrm{l}\) & 2.00 & 0.50 & 250 \\
IOB1001-01 & TDS - SM 2540 C & Total Dissolved Solids & \(\mathrm{mg} / \mathrm{l}\) & 79 & 10 & 850
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager
\begin{tabular}{l}
MWH-Pasadena/Boeing \\
300 North Lake Avenue, Suite 1200 \\
Pasadena, CA 91101 \\
Attention: Bronwyn Kelly
\end{tabular}
Droject ID: Annual Outfall 010
DATA QUALIFIERS AND DEFINITIONS

\section*{ADDITIONAL COMMENTS}

\section*{For 1,2-Diphenylhydrazine:}

The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.

\author{
Del Mar Analytical, Irvine \\ Wendy Kirkeeng For Michele Harper \\ Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 010
Report Number: \(10 B 1001\)

Sampled: 02/11/05
Received: 02/11/05

\section*{Certification Summary}

\section*{Del Mar Analytical, Irvine}
\begin{tabular}{clcc}
Method & Matrix & Nelac & California \\
EPA 160.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 200.7 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 200.8 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 245.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 300.0 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 314.0 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 335.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 413.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 608 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 624 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 625 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
SM2540C & Water & \(\mathbf{X}\) & \(\mathbf{X}\)
\end{tabular}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

\section*{Subcontracted Laboratories}

\section*{Alta Analytical Perspectives}

Analysis Performed: 1613-Dioxin-HR
Samples: IOB1001-01
Analysis Performed: EDD + Level 4
Samples: IOB1001-01
Aquatic Testing Laboratories-SUB California Cert \#1775
4350 Transport Street, Unit 107 - Ventura, CA 93003
Analysis Performed: Bioassay-Acute 96 hr
Samples: IOB1001-01
Eberline Services - SUB
2030 Wright Avenue - Richmond, CA 94804
Analysis Performed: EDD + Level 4
Samples: 10B1001-01
Analysis Performed: Gross Alpha
Samples: LOB1001-01
Analysis Performed: Gross Beta
Samples: 1OB1001-01
Analysis Performed: Strontium 90
Samples: 1OB1001-01
Analysis Performed: Tritium
Samples: 1OB1001-01

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 010
Report Number: IOB1001 Received: 02/11/05

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager
IOBIOJ

March 25,2005

MWH-Pasadena/ Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention: Bronwyn Kelly
Project: Annual Outfall 010
Sampled: 02/11/05
Del Mar Analytical Number: IOB1001

Dear Ms. Kelly:
Aquatic Testing Laboratories performed Fathead Minnow 96 hr Percent Survival Bioassay (EPA Method 2000.0), Eberline Services tested gross alpha/gross beta (EPA 900.0), tritium (H-3, EPA 906.0), and strontium-90 (Sr-90, EPA 905.0) and Alta Analytical Perspectives performed Method 1613 Dioxin analysis for the project referenced above. Please use the following cross-reference table when reviewing your results.
\begin{tabular}{|l|c|c|c|c|}
\hline MWH ID & DEL MAR ID & ATL ID & EBERLINE ID & ALTA ID, \\
\hline Outfall 010 & IOB1001-01 & A-05021208-001 & R502138-8267-001 & P5072 2989 001 \\
\hline
\end{tabular}

Attached are the original reports from the subcontract laboratories. If you have any questions or require further assistance, please do not hesitate to contact me at (949) 261-1022 at extension 215.

Sincerely yours,
DEL MAR ANALYTICAL

Michele Harper
Project Manager

\title{
LABORATORY REPORT
}

Date: \(\quad\) February 16, 2005
Aquatic
Testing

Client: Del Mar Analytical, Irvine 17461 Derian Avenue, Suite 100 Irvine, CA 92614
Attn: Michele Harper

\section*{Laboratories}

4350 Transport Street, Unit 107.
Ventura, CA 93003
(805) 650-0546 FAX (805) 650-0756

Ca dohs ELAP Cert. No.: 1775

Laboratory No.: A-05021208-001
Sample ID.: IOB1001-01

Sample Control: The samples were received by ATL in a chilled state, with the chain of custody record attached.

Date Sampled: \(\quad 02 / 11 / 05\)
Date Received: \(\quad 02 / 12 / 05\)
Date Tested: \(\quad 02 / 12 / 05\) to \(02 / 16 / 05\)

Sample Analysis: The following analyses were performed on your sample:
Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0).
Attached are the test data generated from the analysis of your sample.

Result Summary:
\begin{tabular}{ll}
Sample ID. & Results \\
IOB1001-01 & \(100 \%\) Survival \((T U a=0.0)\)
\end{tabular}

Quality Control: Reviewed and approved by:

\section*{FATHEAD MINNOW PERCENT SURVIVAL TEST}

Lab No.: A-05021208-001
Client/ID: Del Mar 1OB1001-01

\section*{Start Date: 02/12/2005}

\section*{TEST SUMMARY}

Species: Pimephales promelas.
Age: \(/ 3\) (1-14) days.
Regulations: NPDES.
Test solution volume: 250 ml .
Feeding: prior to renewal at 48 hrs .
Number of replicates: 2.
Dilution water: Moderately hard reconstituted water.
Photoperiod: \(16 / 8\) hrs light/dark.

Source: In-laboratory Culture.
Test type: Static-Renewal.
Test Protocol: EPA-821-R-02-012.
Endpoints: Percent Survival at 96 hrs.
Test chamber: 600 ml beakers.
Temperature: \(20+/-1^{\circ} \mathrm{C}\).
Number of fish per chamber: 10.
QA/QC Batch No.: RT-050208.

TEST DATA

Comments:
Sample as received: Chlorine: \(0 \mathrm{mg} / \mathrm{pH}: 7.0\); Conductivity: 71 umho; Temp: \(4^{\circ} \mathrm{C}\); DO: \(9.1 \mathrm{mg} /\); Alkalinity: \(25 \mathrm{mg} / ;\) Hardness: \(24 \mathrm{mg} / \mathrm{l} ; \mathrm{NH}_{3}-\mathrm{N}: 0.4 \mathrm{mg} / \mathrm{l}\). Sample aerated moderately (approx. \(500 \mathrm{ml} / \mathrm{min}\)) to raise or lower DO? Yes / Wo.
Control: Alkalinity: \(54 \mathrm{mg} /\); Hardness: \(87 \mathrm{mg} /\); Conductivity: 295 umho.
Test solution aerated (not to exceed 100 bubbles \(/ \mathrm{min}\)) to maintain DO \(>4.0 \mathrm{mg} / \mathrm{l}\) ? Yes
Sample used for renewal is the original sample kept at \(0-6^{\circ} \mathrm{C}\) with minimal headspace.

\section*{RESULTS}
\(\qquad\) \% 100\% Sample: \(\qquad\) \(\%\)

Far (940) 281 1422: Fax (509) 370-1046 Finx (619) 505-96es Fax (400) \(785-0451\) F(7) (7az) 793-302

\section*{SUBCONTRACT ORDER - PROJECT \# IOB1001}
\begin{tabular}{|c|c|}
\hline SENDING LABORATORY: & RECEIVING LABORATORY: \\
\hline Del Mar Analytical, Irvine & Aquatic Testing Laboratories-SUB \\
\hline 17461 Derian Avenue. Suite 100 & 4350 Transport Street, Unit 107 \\
\hline Irvine, CA 92614 & Ventura, CA 93003 \\
\hline Phone: (949) 261-1022 & Phone :(805) 650-0546 \\
\hline Fax: (949) 261-1228 & Fax: (805) 650-0756 \\
\hline Project Manager: Michele Harper & \\
\hline
\end{tabular}

Standard TAT is requested unless specific due date is requested \(\Rightarrow\) Due Date: \(\qquad\) Initials: \(\qquad\)

March 8. 2005

Ms. Michele Harper
Project Manager
Del Mar Analytical
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Reference: Del Mar Analytical Project No. IOB1001
Eberline Services NELAP Cert \#01120CA (exp. 01/31/06)
Eberline Services Report R502138-8267
Dear Ms. Harper:
Enclosed are results from the analyses of one water sample received at Eberline Services on February 15, 2005. The sample was analyzed according to the accompanying Del Mar Analytical Subcontract Order Form. The requested analyses were gross alpha/gross beta (EPA900.0), tritium (H-3, EPA906.0), and strontium-90 (Sr-90, EPA905.0). The QC LCS, blank analyses, sample duplicates, and matrix spike results for the analyses were within the limits defined in Eberline Services Quality Control Procedures Manual. Analyses that involve the yielding of an analytical tracer or carrier, such as \(\mathrm{Sr}-90\), do not require matrix spike analyses to be performed.

Please call me if you have any questions concerning this report.
Regards,

Melissa Mannion
Senior Program Manager

MCMing
Enclasure: Report
Subcontract Form
Receipt check/ist
Invoice

Eberline Services

\section*{ANALYSIS RESULTS}

\title{
Eberline Services \\ QC RESULTS
}

Certified by
Report Date \(03 / 08 / 65\)
page 2

\section*{SUBCONTRACT ORDER - PROJECT \# IOB1001}
\begin{tabular}{l}
\multicolumn{1}{|c|}{ SENDING LABORATORY: } \\
\begin{tabular}{l}
Del Mar Analytical, Irvine \\
17461 Derian Avenue. Suite 100 \\
Irvine, CA 92614 \\
Phone: (949) 261-1022 \\
Fax: (949) 261-1228 \\
Project Manager: Michele Harper
\end{tabular}\(\quad\)\begin{tabular}{l}
\multicolumn{1}{c|}{ RECEIVING LABORATORY: } \\
Eberline Services \\
2030 Wright Avenue \\
Richmond, CA 94804 \\
Phone :(510) 235-2633 \\
Fax: (510) 235-0438
\end{tabular} \\
\hline
\end{tabular}

Standard TAT is requested uniess specific due date is requested \(\Rightarrow\) Due Date Initials: \(\qquad\) Analysis Expiration Comments
\begin{tabular}{cc}
Sample ID: 1OB1001-01 Water Sampled: 02/11/05 15:30 \\
EDD+Level 4-OUT & \(03 / 11 / 0515: 30\)
\end{tabular}
\begin{tabular}{lll}
Gross Alpha-O & \(02 / 11 / 0615: 30\) & 900.0 , IF RESULT \(>15 \mathrm{pCi} / \mathrm{L}\), run Radium 226 \& 228 \\
Gross Beta-O & \(02 / 11 / 0615: 30\) & 900.0 , IF RESULT \(>50\) pCi/L, run Radium 226 \& 228 \\
Radium, Combined-O & \(02 / 11 / 0615: 30\) & HOLD for Gross A\&B results; EPA \(903.1 \& 904.0\) \\
Strontium \(90-0\) & \(02 / 11 / 0615: 30\) & EPA 905.0 \\
Tritium-O & \(02 / 11 / 0615: 30\) & EPA 906.0
\end{tabular}

\section*{Containers Supplied:}

1 gal Poly (IOB1001-015) w/fNO2

SAMPLE ETTEGRITY:

\section*{Alta analytical Perspectives}

3 March 2005

\section*{Scott Unze}

Pace Analytical Services
1700 Elm Street
Minneapolis, MN 55414
Ph.: 612-607-1700
Fax: 612-607-6444
Subject: Certificate of Results

\section*{Dear Scott;}

Attached to this narrative are the analytical results you requested on the samples submitted for the determination of polychlorinated dibenzo-p-dioxins and dibenzofurans. The insert below summarizes the relevant information pertaining to your project. In particular, the QC annotations bring to your attention specific analytical observations and assessments made during the sample handling and data interpretation phases. A brief description of the report's components is provided on the next page.
\begin{tabular}{|c|c|}
\hline Projoct Information Summary & \multirow[t]{17}{*}{} \\
\hline Client Project No. & \\
\hline AAP Project No. & \\
\hline Analytical Protocol & \\
\hline No.Samplos Submited & \\
\hline No. Samples Analyzod & \\
\hline No. Laboratory Method Blanks & \\
\hline No. OPRs / Batch CS3 & \\
\hline No. Ouistanding Samples & \\
\hline Date Received & \\
\hline Condition Recelved & \\
\hline Temperature upon Receipt (C) & \\
\hline Extraction within Holding Time & \\
\hline Anolysis within Holding Time & \\
\hline Data meot QAOC Requirements & \\
\hline Exceptions & \\
\hline Analytical Difficulties & \\
\hline
\end{tabular}

\footnotetext{
2714 EXCHANGE DRIVE
Wilminaton
NORTH CAROLINA 28405
TEL: 910-794-1613 FAX 910-794-3919
}

\section*{QC Annotations:}
1. A " l " data qualifier is used for analytes with a concentration below the reporting limit.

Alta Analytical Perspectives remains committed to serving you in the most effective manner. Should you have any questions or need additional information and technical support, please, do not hesitate to contact us. We wanted to thank you for choosing Alta Analytical Perspectives as part of your analytical support team.

Sincerely,
Coose
Amy J. Boehm
Project Manager

AAP 2005 Rev. \(B\)
Reviewer

P5072 - TEQ
Project ID: General Analytical HRMS

() \(=\mathrm{DL}\)
(] \(=\mathrm{EMPC}\)

P5072 - Totals
Project ID: General Analytical HRMS

Il EEMPC

P5072 - Others
Project ID: General Analytical HRMS

Totals \(\quad \square\) Total PCDDFs (ND \(=0\); EMPC \(=0\))
Project ID: General Analytical HRMS P5072
- Total PCDD/Fs (ND=0; EMPC=EMPC) - Total PCDD/Fs (2378-X ND=DL: EMPC=EMPC)

\section*{SUBCONTRACT ORDER - PROJECT \# IOB1001}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
SENDING LABORATORY: \\
Del Mar Analytical, Irvine \\
17461 Derian Avenue. Suite 100 \\
Irvine, CA 92614 \\
Phone: (949) 261-1022 \\
Fax: (949) 261-1228 \\
Project Manager: Michele Harper
\end{tabular} & \begin{tabular}{l}
RECEIVING LABORATORY: \\
Pace Analytical, MN- SUB \\
1700 Elm Street, Ste 200 \\
Minneapolis, MN 55414 \\
Phone :(612) 607-1700 \\
Fax: (612) 607-6444
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Standard TAT is requested unless specific due date is requested \(\Rightarrow\) Due Date:___ Initials:} \\
\hline Analysis Expiration & omments \\
\hline \begin{tabular}{lll}
Sample ID: IOB1001-01 & Water & Sampled: 02/11/05 15:30 \\
1613-Dioxin-HR & \(02 / 18 / 0515: 30\) \\
EDD + Level 4 & \(03 / 11 / 0515: 30\)
\end{tabular} & \begin{tabular}{l}
00 \\
flags, 17 congeners, no TEQ, sub to Pace-MN
\end{tabular} \\
\hline \begin{tabular}{l}
Containers Supplied: \\
1 L Amber (IOB1001-01C) \\
1 L Amber (1OB1001-01D)
\end{tabular} & \\
\hline
\end{tabular}

CHAIN－OF－CUSTODY／Analytical Request Document

814593
10
\(N\)
2
7
1
9
\(h\) \begin{tabular}{ll|l|l|l|l|l|l|l|l|l}
\\
\hline
\end{tabular}

\section*{\begin{tabular}{l}
PSO 72 \\
\hline Page： 1 of 2 \\
\hline
\end{tabular}}
Section B

Q31037700
31va

andoras 1700 ElM st．

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & ect & ion & & & & dre & & & 1 D & & & & \multicolumn{3}{|l|}{} & & \\
\hline & 0 & B & & 0 & 0 & 1 & & 0 & & & & & & & & WT & 10 \\
\hline I & 0 & \(B\) & 0 & 9 & 9 & 3 & － & 0 & 1 & & & & & & & & \\
\hline I & 0 & \(B\) & 0 & 9 & 9 & 6 & － & 0 & 1 & & & & & & & & \\
\hline I & 0 & B & 0 & 9 & 9 & 7 & － & 0 & 1 & & & & & & & & \\
\hline \(\pm\) & 0 & 3 & 1 & 0 & 1 & 4 & － & 0 & 1 & & & & & & & & \\
\hline I & 0 & \(B\) & 0 & 9 & 9 & 0 & － & 0 & 1 & & & & & & & & \\
\hline I & 0 & 3 & 0 & 9 & 8 & 0 & － & 0 & 1 & & & & & & & & \\
\hline I & 0 & B & 1 & 0 & 0 & 8 & － & 0 & 1 & & & & & & & & \\
\hline I & 0 & B & 1 & 0 & 0 & 2 & － & 0 & 1 & & & & & & & & \\
\hline I & 0 & 6 & 0 & 9 & 9 & 2 & － & 0 & 1 & & & & & & & & \\
\hline I & 0 & \(B\) & 1. & 0 & 0 & 4 & － & 0 & 1 & & & & & & & & \\
\hline \(\underline{5}\) & 0 & \(B\) & 0 & 9 & 8 & 8 & － & 0 & 1 & & & & & & & I & \\
\hline
\end{tabular}

SAMPLE MOTES
Email to：
Scott．Unze
mos squasod 0
PRINT Nom of Skyurert
siginature ol simpler：
DWTE Sgned：（MM／DO／YM）
CHAIN-OF-CUSTODY / Analytical Request Document

 Requirad Client intormation:
 Required Client Information: Section B.
 Page: 2 of 2
 8814592
 To Be Complanc:

\(\qquad\)

\title{
amec \({ }^{\boldsymbol{\theta}}\)
}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES \\ Monitoring
}

\section*{ANALYSIS: DIOXINS/FURANS \\ SAMPLE DELIVERY GROUPS: Multiple SDGs}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: Multiple SDGs \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Dioxins/Furans \\ QC Level: Level IV \\ No. of Samples: 6 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: K. Shadowlight \\ Date of Review: March 9, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample Identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & \begin{tabular}{c}
Laboratory ID \\
(Del Mar)
\end{tabular} & \begin{tabular}{c}
Laboratory ID \\
(Alta)
\end{tabular} & Matrix & COC Method \\
\hline Outfall 001 & IOB1560-01 & \(25788-001\) & water & 1613 \\
\hline Outfall 004 & IOB1556-01 & \(25786-001\) & water & 1613 \\
\hline Outfall 005 & IOB1557-01 & \(25787-001\) & water & 1613 \\
\hline Outfall 006 & IOB1559-01 & \(25784-001\) & water & 1613 \\
\hline Outfall 009 & IOB1574-01 & \(25789-001\) & water & 1613 \\
\hline Outfall 010 & IOB1575-01 & \(25785-001\) & water & 1613 \\
\hline
\end{tabular}
\begin{tabular}{llr}
& Project: & \begin{tabular}{c}
NPDES \\
DATA VALIDATION REPORT
\end{tabular} \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

All of the samples in these SDGs were received at Del Mar Analytical within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). The samples were shipped to Alta for dioxin/furan analyses and were received below the temperature limits at \(0.8^{\circ} \mathrm{C}\) and \(1.6^{\circ} \mathrm{C}\); however, as none of the samples were noted to have been frozen or damaged, no qualifications were required. According to the laboratory login sheets, all samples were received intact and in good condition at both laboratories. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs and transfer COCs were legible and signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. As the samples were couriered directly to Del Mar Analytical, custody seals were not required. The coolers received by Alta had custody seals present and intact; however, custody seals were not present on the sample containers. The EPA IDs were added to the sample result summary report by the reviewer. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The samples were extracted and analyzed within a year of collection. No qualifications were required.

\subsection*{2.2 INSTRUMENT PERFORMANCE}

Following are findings associated with instrument performance:

\subsection*{2.2.1 GC Column Performance}

A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards (see section 2.3.2). The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and \(2,3,7,8-\mathrm{TCDD}\) reported as less than \(25 \%\). No qualifications were required.
\begin{tabular}{lrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\subsection*{2.2.2 Mass Spectrometer Performance}

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.

\subsection*{2.3 CALIBRATION}

\subsection*{2.3.1 Initial Calibration}

There were two initial calibrations, analyzed 08/30/04 and 10/04/04. The calibrations each consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibrations were acceptable with \%RSDs \(\leq 20 \%\) for the 15 native compounds (calibration by isotope dilution) and \(\leq 35 \%\) for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.3.2 Continuing Calibration}

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \(\%\) Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

WDM and isomer specificity compounds were added to the VER standards instead of being analyzed separately, as noted in section 2.2 .1 of this report. No adverse effect was observed with this practice.

\subsection*{2.4 BLANKS}

One method blank (\(6543-\mathrm{MB} 001\)) was extracted and analyzed with the samples in these SDGs. There were no detects reported in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One Ongoing Precision Recovery (OPR) sample (6543-OPR001) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of the Method 1613. No qualifications were required.

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy was based on the OPR results. No qualifications were required.
\begin{tabular}{ll}
\\
DATA VALIDATION REPORT & \begin{tabular}{r}
Project: \\
SDG \\
\end{tabular} \\
\hline
\end{tabular}

\subsection*{2.7 FIELD QC SAMPLES}

Following are findings associated with field QC :

\subsection*{2.7.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.7.2 Field Duplicates}

No field duplicate samples were identified for these SDGs.

\subsection*{2.8 INTERNAL STANDARDS}

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

\subsection*{2.9 COMPOUND IDENTIFICATION}

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

\subsection*{2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Compounds flagged by the laboratory with a " D " qualifier indicated possible diphenylether interference and were qualified as estimated, "J." Any reported EMPC was qualified as an estimated nondetect, "UJ." Any detects below the lower method calibration level (MCL) were qualified as estimated, "J;" however, as Alta analyzed an additional calibration standard, not all results below the method calibration level were appropriately qualified by the laboratory. These results were qualified as estimated, "JJ" by the reviewer. No further qualifications were required.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{7}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Sample ID: \\
Client Data
\end{tabular}}} & \multicolumn{2}{|l|}{,} & & \multicolumn{3}{|l|}{EPA Method 1613} \\
\hline & & & & \multirow[t]{5}{*}{\begin{tabular}{ll}
Sample Datz & \\
\hline Matrix: & \\
Sample Size: & Aqueou \\
& 0.996 L
\end{tabular}} & \multicolumn{4}{|l|}{Laboratory Data} \\
\hline & Name: Del & \multirow[t]{4}{*}{\begin{tabular}{l}
Del Mar Analytical, Irvine \\
IOB1575 \\
18-Feb-05 \\
1515
\end{tabular}} & & & Lab Sample: & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Date Received:}} & \\
\hline & Project:
IOB1 & & & & Lab Sample: 25785-001 & & & 24-Feb-05 \\
\hline & Date Collected:
\[
18-\mathrm{F}
\] & & & & QC Batch No.: 6543 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Date Extracted: \(\quad 25\)-Feb-05
Date Analyzed DB-225: NA}} \\
\hline & Time Collected: 1515 & & & & Date Analyzed DB-5: 28-Feb-05 & & & \\
\hline & Analyte & Conc. (pg/L) & DL \({ }^{\text {a }}\) & EMPC \({ }^{\text {b }}\) & Labeled Standard & \%R & LCL-UCL \({ }^{\text {d }}\) & Oualifiers \\
\hline & \multicolumn{4}{|l|}{\multirow[t]{26}{*}{}} & IS 13C-2,3,7,8-TCDD & 72.4 & 25-164 & \\
\hline & & & & & 13C-1,2,3,7,8-PeCDD & 69.2 & 25-181 & \\
\hline & & & & & 13C-1,2,3,4,7,8-HxCDD & 66.4 & 32-141 & \\
\hline U木积 & & & & & 13C-1,2,3,6,7,8-HxCDD & 69.5 & 28-130 & \\
\hline & & & & & 13C-1,2,3,4,6,7,8-HpCDD & 69.7 & 23-140 & \\
\hline & & & & & 13C-OCDD & 64.5 & 17-157 & \\
\hline & & & & & 13C-2,3,7,8-TCDF & 73.2 & 24-169 & \\
\hline & & & & & 13C-1,2,3,7,8-PeCDF & 66.1 & 24-185 & \\
\hline & & & & & 13C-2,3,4,7,8-PeCDF & 66.8 & 21-178 & \\
\hline & & & & & 13C-1,2,3,4,7,8-HxCDF & 60.2 & 26-152 & \\
\hline & & & & & 13C-1,2,3,6,7,8-HxCDF & 60.1 & 26-123 & \\
\hline & & & & & \(13 \mathrm{C}-2,3,4,6,7,8-\mathrm{HxCDF}\) & 59.0 & 28-136 & \\
\hline & & & & & 13C-1,2,3,7,8,9-HxCDF & 63.1 & 29-147 & \\
\hline & & & & & 13C-1,2,3,4,6,7,8-HpCDF & 57.7 & 28-143 & \\
\hline & & & & & 13C-1,2,3,4,7,8,9-HpCDF & 62.3 & 26-138 & \\
\hline \(1 \times\) & & & & & 13C-OCDF & 61.9 & 17-157 & \\
\hline & & & & & CRS 37Cl-2,3,7,8-TCDD & 84.1 & 35-197 & \\
\hline & & & & & Footnotes & & & \\
\hline \[
!
\] & & & & & a. Sample specific estimated detection limit. & & & \\
\hline & & & & & b. Estimated maximum possible concentration. & & & \\
\hline \(\mathrm{OHO}_{3}\) & & & & & c. Method detection limit. & & & \\
\hline & & & & & d. Lower control limit - upper control limit. & & & \\
\hline & & & & & & & & \\
\hline A & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}
\begin{tabular}{|c|c|}
\hline AMEC Earth \& Environmental & Package ID T711MT46 \\
\hline 550 South Wadsworth Boulevard & Task Order 313150010 \\
\hline Suite 500 & SDG No. IOB1574, 1OB1575 \\
\hline Lakewood, CO 80226 & No. of Analyses 2 \\
\hline Laboratory Del Mar & Date: 03/21/05 \\
\hline Reviewer P. Meeks & Reviewer's Signature \\
\hline Analysis/Method Metals & Pr Mead \\
\hline
\end{tabular}

\section*{ACHON ITEMS' \\ 1. Case Narrative Deficiencies}
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
\begin{tabular}{|c|c|}
\hline 6. Deviations from & Qualifications applied for: \\
\hline Analysis Protocol, e.g., & 1. Detects below the reporting limit. \\
\hline Holding Times & 2. antimony detected in the CCBS. \\
\hline GC/MS Tune/Inst. & 3. Both antimony MDLs raised and Outfall 010 result raised. \\
\hline
\end{tabular}

Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification and Quantitation
System Performance
\(\qquad\)

\section*{COMMENTS}

\footnotetext{
* Subcontracted analytical laboratory is not meeting contract and/or method requirements.

Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.
}

\title{
amec \({ }^{\circ}\)
}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES \\ Monitoring
}

\section*{ANALYSIS: METALS}

SAMPLE DELIVERY GROUPS: IOB1574 \& IOB1575

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{rrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOB1574, 1575 \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: IOB1574, IOB1575 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Metals \\ QC Level: Level IV \\ No. of Samples: 2 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: P. Meeks \\ Date of Review: March 21, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, SW-846 Method 6010B for Inductively Coupled Plasma , SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{lrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOBI574, \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 009 & Outfall 009 & IOB1574-01 & water & ILM04 \\
\hline Outfall 010 & Outfall 010 & IOB1575-01 & water & ILM04 \\
\hline
\end{tabular}
\begin{tabular}{rrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOBI574, 1575 \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C}\) \(\pm 2^{\circ} \mathrm{C}\). No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by field and laboratory personnel and accounted for the samples and analyses presented in these SDGs. Duplicate samples were submitted for all samples in these SDGs; however, duplicate analyses were not required. No sample qualifications were required.

\subsection*{2.1.3 Holding Times}

The dates of collection recorded on the COCs and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS metals and 28 days for mercury, No qualifications were required.

\subsection*{2.2 ICP-MS TUNING}

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. All \%RSDs were less than \(5 \%\). The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

\subsection*{2.3 CALIBRATION}

The ICV and CCV results showed acceptable recoveries, \(90-110 \%\) for ICP/MS metals and \(80-120 \%\) for mercury. The reporting limit check standards were recovered within the AMEC control limits of 70\(130 \%\). No sample qualifications were required.
\begin{tabular}{lrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No:: & IOB1574, \\
\hline
\end{tabular}

\subsection*{2.4 BLANKS}

Antimony was detected in both bracketing CCBs at approximately \(1.10 \mu \mathrm{~g} / \mathrm{L}\) and in method blank \(5 B 25067\) at \(0.275 \mu \mathrm{~g} / \mathrm{L}\), and antimony was detected in the site samples at concentrations below the level reported in the CCBs. The CCB detects indicated the laboratory could not detect antimony at the level reported in the CCBs. The reviewer raised the MDLs to the level reported in the CCBs, \(1.10 \mu \mathrm{~g} / \mathrm{L}\), and qualified the results as estimated, "UJ." No further qualifications were required due to the method and calibration blank results.

\subsection*{2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)}

ICSA and ICSAB analyses were included in the raw data for the ICP-MS analyses. Results were not provided for spiked interferents sulfur, phosphorus, carbon, and chloride, and antimony and lead were not spiked into the ICSAB solution. Copper, antimony, and cadmium were detected above the applicable reporting limit in the ICSA. The results for sodium and potassium were above the calibration range of the instrument in the ICSA and ICSAB analyses; however, as these analytes were not reported in the site samples, no qualifications were required. The validator reviewed the raw data for the site sample ICP/MS analyses for the level of reported interferents, \(\mathrm{Al}, \mathrm{Ca}, \mathrm{Fe}\), and Mg , and determined that the level of reported interferents were not high enough to cause matrix affects. No assessment could be made with respect to possible interference from sulfur, phosphorus, carbon, and chloride. No qualifications were required.

\subsection*{2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The ICP/MS LCS sample was identified as 5B25067-BS1 and the mercury LCS sample was identified as 5B22064. The LCS results on the summary forms and in the raw data were within the laboratory-established ICP/MS and mercury control limits of \(85-115 \%\). No qualifications were required.

\subsection*{2.7 LABORATORY DUPLICATES}

No MS/MSD or laboratory duplicate analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.8 MATRIX SPIKE}

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on LCS results.

\subsection*{2.9 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.10 ICP/MS AND ICP SERIAL DILUTION}

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.11 INTERNAL STANDARDS PERFORMANCE}

The ICP-MS internal standard recoveries for the site samples and associated QC sample analyses were within the \(60-125 \%\) control limits and no qualifications were required.

\subsection*{2.12 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit were qualified as estimated, "J." No further qualifications were required.

\subsection*{2.13 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

\subsection*{2.13.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.13.2 Field Duplicates}

There were no field duplicate analyses performed in association with the site samples.
\begin{tabular}{lll}
MWH-Pasadena/Boeing & Project \(\operatorname{DD}:\) Rcutine Outfall 010 & \\
300 North Lake Avenue, Suite 1200 & Report Number: \(10 B 1575\) & Sampled: \(02 / 18: 05\) \\
Pasadena, CA 91101 & & Received: 02:18/05
\end{tabular}

\section*{DRAFT: METALS}

\section*{AMEC VALIDATED LEVELIV}

\section*{LABORATORY REPORT}

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 010

Sampled: 02/18/05
Received: 02/18/05
Issued: 03/25/05 10:59

\section*{NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117}

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

\section*{SAMPLE CROSS REFERENCE}

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

\author{
LABORATORY ID \\ IOB1575-01
}

\section*{CLIENT ID \\ Outfall 010}

MATRIX
Water

\section*{Reviewed By:}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Routine Outfall 010
Report Number: IOB1575

Sampled: 02/18/05
Received: 02/18/05

\section*{METALS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{Sample ID: 1OB1575-01 (Outfall 010-Water)} \\
\hline \multicolumn{10}{|c|}{Reporting Units: ug/} \\
\hline Antimony & EPA 200.8 & 5B25067 & 0.18 & 2.0 & 0.34 & 1 & & & \\
\hline Cadmium & EPA 200.8 & 5B25067 & 0.015 & 1.0 & 0.19 & 1 & & & B, J \\
\hline Copper & EPA 200.8 & SB25067 & 0.49 & 2.0 & 11 & 1 & 02/25/05 & 02/28/05 & J \\
\hline Lead & EPA 200.8 & 5B25067 & 0.13 & 1.0 & 6.2 & 1 & 02/25/05 & 02/28/05 & \\
\hline Mercury & EPA 245.1 & 5B22064 & 0.063 & 0.20 & 0.14 & 1 & 02/22/05 & 02/22/05 & J \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 010
Report Number: IOB1575

Sampled: 02/18/05
Received: 02/18/05

INORGANICS

\section*{Analyte}

Sample ID: IOB1575-01 (Outfall 010 - Water) - cont. Reporting Units: mg/
\begin{tabular}{lcccccccc}
Chloride & EPA 300.0 & \(5 B 18129\) & 0.15 & 0.50 & \(\mathbf{6 . 8}\) & 1 & \(02 / 18 / 05\) & \(02 / 19 / 05\) \\
Nitrate/Nitrite-N & EPA 300.0 & \(5 B 18129\) & 0.075 & 0.11 & 0.13 & 1 & \(02 / 18 / 05\) & \(02 / 19 / 05\) \\
Oil \& Grease & EPA 413.1 & \(5 B 28071\) & 0.94 & 5.0 & ND & 1 & \(02 / 28 / 05\) & \(02 / 28 / 05\) \\
Sulfate & EPA 300.0 & \(5 B 18129\) & 0.25 & 0.50 & \(\mathbf{2 . 7}\) & 1 & \(02 / 18 / 05\) & \(02 / 19 / 05\) \\
Total Dissolved Solids & SM2540C & \(5 B 24111\) & 10 & 10 & 100 & 1 & \(02 / 24 / 05\) & \(02 / 24 / 05\) \\
Total Suspended Solids & EPA 160.2 & \(5 B 25089\) & 10 & 10 & 200 & 1 & \(02 / 25 / 05\) & \(02 / 25 / 05\)
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper

\section*{Project Manager} 9484 Chesapeake Dr, Sutee 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 010
Report Number: IOB1575

Sampled: 02/18/05
Received: 02/18/05

\section*{SHORT HOLD TIME DETAIL REPORT}
\begin{tabular}{lcccccc}
& \begin{tabular}{c}
Hold Time \\
(in days)
\end{tabular} & \begin{tabular}{c}
Date/Time \\
Sampled
\end{tabular} & \begin{tabular}{c}
Date/Time \\
Received
\end{tabular} & \begin{tabular}{c}
Date/Time \\
Extracted
\end{tabular} & \begin{tabular}{c}
Date/Time \\
Analyzed
\end{tabular} \\
\begin{tabular}{l}
Sample ID: Outfall 010 (1OB1575-01)-Water \\
EPA 300.0
\end{tabular} & 2 & \(02 / 18 / 200515: 15\) & \(02 / 18 / 200518: 30\) & \(02 / 18 / 2005\) & \(22: 00\) & \(02 / 19 / 2005\) \\
\hline
\end{tabular}
\begin{tabular}{lcr}
MWH-Pasadena/Boeing & Project ID: Routine Outfall 010 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(02 / 18 / 05\) \\
Pasadena, CA 91101 & Report Number: \(10 B 1575\) & Received: \(02 / 18 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{METHOD BLANKGC DATA}

\title{
METALS
}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
\(\left.\begin{array}{|l|}\hline \begin{array}{l}\text { MWH-Pasadena/Boeing } \\ \text { 300 North Lake Avenue, Suite 1200 } \\ \text { Pasadena, CA 91101 } \\ \text { Attention: Bronwyn Kelly }\end{array} \\ \hline\end{array} \begin{array}{c}\text { Project ID: Routine Outfall 010 }\end{array}\right\}\)

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101
}

Project ID: Routine Outfall 010
Report Number: \(10 B 1575\)

Sampled: 02/18/05
Received: 02/18/05

\section*{METHOD BLANK/OC DATA}

\section*{INORGANICS}

Batch: 5B24111 Extracted: 02/24/05
Blank Analyzed: 02/24/2005 (5B24111-BLK1)

\begin{tabular}{|lll}
\hline MWH-Pasadena/Boeing & Project ID: Routine Outfall 010 & \\
300 North Lake Avenue, Suite 1200 & Report Number: IOB1575 & Sampled: 02/18/05 \\
Pasadena, CA 91101 & & Received: 02/18/05 \\
Attention: Bronwyn Kelly & & \\
\hline
\end{tabular}

\section*{METHOD BLANKIOC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5B25089 Extracted: 02/25/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 02/25/2005 (5B25089-BLK1)} \\
\hline Total Suspended Solids ND & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 02/25/2005 (5B25089-BS1)} \\
\hline Total Suspended Solids 956 & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & 1000 & & 96 & 85-115 & & & \\
\hline Duplicate Analyzed: 02/25/2005 (5B25089-DUP1) & & & & Sour & ce: IOB1 & 979-01 & & & & \\
\hline Total Suspended Solids ND & 10 & 10 & \(\mathrm{mg} / 1\) & & & & & & 10 & \\
\hline \multicolumn{11}{|l|}{Batch: 5B28071 Extracted: 02/28/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 02/28/2005 (5B28071-BLK1)} \\
\hline Oil \& Grease ND & 5.0 & 0.94 & \(\mathrm{mg} / 1\) & & & & & & & \\
\hline LCS Analyzed: 02/28/2005 (5B28071-BS1) & & & & & & & & & & M-NR1 \\
\hline Oit \& Grease 16.7 & 5.0 & 0.94 & \(\mathrm{mg} / 1\) & 20.0 & & 84 & 65-120 & & & \\
\hline \multicolumn{11}{|l|}{LCS Dup Analyzed: 02/28/2005 (5B28071-BSD1)} \\
\hline Oil \& Grease 17.7 & 5.0 & 0.94 & \(\mathrm{mg} / \mathrm{l}\) & 20.0 & & 88 & 65-120 & 6 & 20 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
MWH-Pasadena/Boeing \\
300 North Lake Avenue, Suite 1200 \\
Pasadena, CA 91101 \\
Attention: Bronwyn Kelly
\end{tabular}} & \begin{tabular}{l}
Project ID: Routine O \\
Report Number: 1OB1575
\end{tabular} & & \multicolumn{3}{|c|}{\begin{tabular}{l}
Sampled: 02/18/05 \\
Received: 02/18/05
\end{tabular}} \\
\hline \multicolumn{7}{|c|}{Compliance Check} \\
\hline \multicolumn{7}{|l|}{The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.} \\
\hline LabNumber & Analysis & Analyte & Units & Result & MRL & Compliance Limit \\
\hline IOB1575-01 & 413.1 Oil and Grease & Oil \& Grease & \(\mathrm{mg} / \mathrm{l}\) & 0.78 & 5.0 & 15 \\
\hline 1OB1575-01 & Chloride - 300.0 & Chloride & \(\mathrm{mg} / \mathrm{l}\) & 6.80 & 0.50 & 150 \\
\hline IOB1575-01 & Nitrogen, \(\mathrm{NO} 3+\mathrm{NO} 2-\mathrm{N}\) & Nitrate/Nitrite-N & \(\mathrm{mg} / \mathrm{l}\) & 0.13 & 0.11 & 10.00 \\
\hline IOB1575-01 & Sulfate-300.0 & Sulfate & \(\mathrm{mg} / \mathrm{l}\) & 2.70 & 0.50 & 250 \\
\hline IOB1575-01 & TDS - SM 2540C & Total Dissolved Solids & \(\mathrm{mg} / \mathrm{l}\) & 100 & 10 & 850 \\
\hline
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 010
Report Number: IOB1575 Sampled: 02/18/05

\section*{DATA QUALIFIERS AND DEFINITIONS}

B Analyte was detected in the associated Method Blank.
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

\author{
Del Mar Analytical, Irvine \\ Wendy Kirkeeng For Michele Harper
}

Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 010
Report Number: IOB1575

Sampled: 02/18/05
Received: 02/18/05

\section*{Certification Summary}

\section*{Del Mar Analytical, Irvine}
\begin{tabular}{cccc}
Method & Matrix & Nelac & California \\
EPA 160.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 200.8 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 245.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 300.0 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 413.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
SM2540C & Water & \(\mathbf{X}\) & \(\mathbf{X}\)
\end{tabular}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

\section*{Subcontracted Laboratories}
```

Alta Analytical California Cert \#1640
1104 Windfield Way - El Dorado Hills, CA 95762
Analysis Performed: 1613-Dioxin-HR
Samples: 1OB1575-01
Analysis Performed: EDD + Level 4
Samples: IOB1575-01

```

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

学
\begin{tabular}{|c|c|c|}
\hline N－2ON＋EON＇৮OS＇－15 & & \\
\hline （1ヶとしゃ \(\forall \mathrm{d} \exists\) ）eseers 8 8 ！ & & \\
\hline （sLoue6u00 \＃8 pue） 0001 & & \\
\hline 6H＇qd＇no＇po＇qs ：splew eqqeienoey jelos & \(\times\) & \(\times\) \\
\hline
\end{tabular}

March 23,2005

MWH-Pasadena/ Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention:
Bronwyn Kelly
Project: Routine Outfall 010
Sampled: 02/18/05
Del Mar Analytical Number: IOB1575

Dear Ms. Kelly:
Alta Analytical Laboratory performed the EPA Method 1613 Dioxin analysis for the project referenced above. Please use the following cross-reference table when reviewing your results.
\begin{tabular}{|c|c|c|}
\hline MWH ID & DEL MAR ID & Alta ID \\
\hline Outfall 010 & IOB1575-01 & \(25785-001\) \\
\hline
\end{tabular}

Attached is the original report from the subcontract laboratory. If you have any questions or require further assistance, please do not hesitate to contact me at (949) 261-1022 at extension 215.

Sincerely yours,
DEL MAR ANALYTICAL

Michele Harper
Project Manager

March 01, 2005
Alta Project I.D.: 25785
Ms. Michele Harper
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614

\section*{Dear Ms. Harper,}

Enclosed are the results for the one aqueous sample received at Alta Analytical Laboratory on February 24, 2005 under your Project Name "IOB1575". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Alta's current certifications, and copies of the raw data (if requested).

Alta Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-933-1640 or by email at mmaier@altalab.com. Thank you for choosing Alta as part of your analytical support team.

Sincerely,

\title{
Section I: Sample Inventory Report \\ Date Received: 2/24/2005
}

Alta Lab, ID
25785-001

\section*{Client Sample ID}

IOB1575-01

\section*{SECTION II}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Method Blank} & \multicolumn{3}{|l|}{EPA Method 1613} \\
\hline \begin{tabular}{l}
Matrix: \\
Sample Size:
\end{tabular} & \[
\begin{gathered}
\text { Aqueous } \\
1.000 \mathrm{~L}
\end{gathered}
\] & \multicolumn{2}{|l|}{\begin{tabular}{l}
QC Batch No.: \\
Date Extracted:
\end{tabular}} & \[
\begin{aligned}
& 6543 \\
& 25-\mathrm{Feb}-05
\end{aligned}
\] & \multicolumn{3}{|l|}{\begin{tabular}{ll}
Lab Sample: & \(0-\mathrm{MB} 001\) \\
Date Analyzed DB-5: & 28-Feb-05
\end{tabular}} & \multicolumn{3}{|l|}{Date Analyzed DB-225: NA} \\
\hline Analyte & Conc. (pg/L) & DL \({ }^{\text {a }}\) & EMPC \({ }^{\text {b }}\) & Qualifiers & & Labeled Stand & & \%R & LCL-UCL \({ }^{\text {d }}\) & Oualifiers \\
\hline 2,3,7,8-TCDD & ND & 0.866 & & & IS & 13C-2,3,7,8-T & & 75.9 & 25-164 & \\
\hline 1,2,3,7,8-PeCDD & ND & 1.15 & & & & 13C-1,2,3,7,8-1 & CDD & 73.9 & 25-181 & \\
\hline 1,2,3,4,7,8-HxCDD & ND & 1.88 & & & & 13C-1,2,3,4,7,8 & xCDD & 70.6 & 32-141 & \\
\hline 1,2,3,6,7,8-HxCDD & ND & 1.86 & & & & 13C-1,2,3,6,7,8 & \(\times \mathrm{CDD}\) & 73.4 & 28-130 & \\
\hline 1,2,3,7,8,9-HxCDD & ND & 1.84 & & & & 13C-1,2,3,4,6,7 & HpCDD & 67.4 & 23-140 & \\
\hline 1,2,3,4,6,7,8-HpCDD & ND & 3.38 & & & & \(13 \mathrm{C}-\mathrm{OCDD}\) & & 56.3 & 17-157 & \\
\hline OCDD & ND & 8.88 & & & & 13C-2,3,7,8-T & & 78.7 & 24-169 & \\
\hline 2,3,7,8-TCDF & ND & 0.545 & & & & 13C-1,2,3,7,8- & CDF & 68.1 & 24-185 & \\
\hline 1,2,3,7,8-PeCDF & ND & 1,62 & & & & 13C-2,3,4,7,8- & CDF & 73.3 & 21-178 & \\
\hline 2,3,4,7,8-PeCDF & ND & 1.45 & & & & 13C-1,2,3,4,7, & xCDF & 60.2 & 26-152 & \\
\hline 1,2,3,4,7,8-HxCDF & ND & 1.24 & & & & 13C-1,2,3,6,7, & xCDF & 64.3 & 26-123 & \\
\hline 1,2,3,6,7,8-HxCDF & ND & 0.869 & & & & 13C-2,3,4,6,7, & xCDF & 63.5 & 28-136 & \\
\hline 2,3,4,6,7,8-HxCDF & ND & 0.958 & & & & 13C-1,2,3,7,8, & xCDF & 65.2 & 29-147 & \\
\hline 1,2,3,7,8,9-HxCDF & ND & 1.55 & & & & 13C-1,2,3,4,6, & -HpCDF & 54.3 & 28-143 & \\
\hline 1,2,3,4,6,7,8-HpCDF & ND & 2.22 & & & & 13C-1,2,3,4,7, & - HpCDF & 59.8 & 26-138 & \\
\hline 1,2,3,4,7,8,9-HpCDF & ND & 1.68 & & & & 13C-OCDF & & 54.9 & 17-157 & \\
\hline OCDF & ND & 4.49 & & & CR & 37Cl-2,3,7,8-T & & 77.4 & 35-197 & \\
\hline \multicolumn{5}{|l|}{Totals} & \multicolumn{6}{|l|}{Footnotes} \\
\hline \multicolumn{5}{|l|}{Total TCDD ND 0.866} & \multicolumn{6}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
a. Sample specific estimated detection limit. \\
b. Estimated maximum possible concentration. \\
c. Method detection limit. \\
d. Lower control limit - upper control limit.
\end{tabular}}} \\
\hline Total PeCDD & ND & 1.15 & & & & & & & & \\
\hline Total HxCDD & ND & 1.86 & & & & & & & & \\
\hline Total HpCDD & ND & 3.38 & & & & & & & & \\
\hline Total TCDF & ND & 0.545 & & & & & & & & \\
\hline Total PeCDF & ND & -1.54 & & & & & & \(\cdots\) & & \\
\hline Total HxCDF & ND & 1.37 & & & & & & & & \\
\hline Total HpCDF & ND & 2.38 & & & & & & & & \\
\hline \multicolumn{2}{|l|}{Analys: MS} & & & & \multicolumn{3}{|l|}{Approved By: William J. L} & semburg & 01-Mar-2005 & 16:49 \\
\hline
\end{tabular}

APPENDIX

\section*{DATA QUALIFIERS \& ABBREVIATIONS}

B This compound was also detected in the method blank.
D The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.
I Chemical Interference
J
The amount detected is below the Lower Calibration Limit of the instrument.
* See Cover Letter

Conc. Concentration
DL Sample-specific estimated detection limit
MDL The minimum concentration of a substance that can be measured and reported with \(99 \%\) confidence that the analyte concentration is greater than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration
NA Not applicable
RL Reporting Limit - concentrations that corresponds to low calibration point
ND Not Detected
TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

The control limits are "interim limits only" until in-house limits are utilized.

NELAP - (Primary AA: California, Certificate No. 02102CA)
Department of the Navy
U.S. Army Corps of Engineers
U.S. EPA Region 5

Bureau of Reclamation - Mid-Pacific Region - (MP-470, Res-1.10)
Commonwealth of Kentucky - (Certificate No. 90063)
Commonwealth of Virginia - (Certificate No. 00013)
State of Alaska, Department of Environmental Conservation - (Certificate No. OS-00197)
State of Arizona - (Certificate No. AZ0639)
State of Arkansas, Department of Health - (Approval granted through CA certification)
State of Arkansas, Department of Environmental Quality
State of California - (Certificate No. 1640)
State of Colorado
State of Connecticut - (Certificate No. PH-0182)
State of Florida - (Certificate No. 87456)
State of Louisiana, Department of Health and Hospitals - (Certificate No. LA000014)
State of Louisiana, Department of Environmental Quality
State of Maine
State of Michigan (Certificate No. 81178087)
State of Mississippi - (Approval granted through CA certification)
State of Nevada - (Certificate No. CA413)
State of New Jersey - (Certificate No. CA003)
State of New York, Department of Health - (Certificate No. 11411)
State of North Carolina - (Certification No. 06700)
State of North Dakota, Department of Health - (Certificate No. R-078)
State of New Mexico
State of Oklahoma - (D9919)
State of Oregon - (Certificate No. CA413)
State of Pennsylvania - (Certificate No. 68-490)
State of South Carolina - (Certificate No. 87002001)
State of Tennessee - (Certificate No. 02996)
State of Texas - (Certificate No. TX247-1000A
State of Utah - (Certificate No. E-201)
State of Washington - (Certification No. C091)
State of Wisconsin - (Certificate No. 998036160)
State of Wyoming - (USEPA Region 8 Ref: 8TMS-Q)
 t014E Cootoy Dr., Sum A, Colton, CA grana

\section*{SUBCONTRACT ORDER - PROJECT \# IOB1575}

Project 25785

\section*{SAMPLE LOG -AN CHECKLIST}

\section*{ALTA Project No.:}
\(\qquad\)
1. Date Samples Arrived:
 Initials:
 Location:
2. Time / Date logged in: \(\qquad\) initiais:cas FedEx UPS World Courier other:
3. Samples Arrived By: (circle)
4. Shipping Preservation: (circle)

5. Shipping Containers) intact? If not, describe condition in comment section.
6. Shipping Containers) Custody Seals Present? Intact? If not intact, describe condition in comment section.
7. Shipping Documentation Present? (circle) Shipping Label Aril

Tracking Number

8. Sample Custody Seals) Present?

No. of Seals \(\qquad\) or Seal No.
Intact? If not intact, describe condition in comment section.
9. Sample Container Intact? if no, indicate sample condition in comment section.
10. Chain of Custody (\(C O C\)) or other Sample Documentation Present?
11. COCIDocumentation Acceptable? If no, complete COC Anomaly Form.
\begin{tabular}{|c|c|c|}
\hline YES & NO & NA \\
\hline\(V\) & & \\
\hline\(V\) & & \\
\hline\(V\) & & \\
\hline\(V\) & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline\(V\) & & \\
\hline
\end{tabular}
12. Shipping Container (circle): ALTA
(Client Retail or Return or Disposed
13. Container (s) and/or Bottie(s) Requested?
14. Drinking Water Sample? (HRMS Only) Preservation Info From? (circle) COC or Sample Container or None Noted

Comments:

\section*{Samples innitale yound on sample label.}

\section*{APPENDIX G}

\section*{Section 25}

February Outfall 011
AMEC Data Validation Reports
Del Mar Analytical Laboratory Reports

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA} AMEC Earth \& Environmental 550 South Wadsworth Boulevard Suite 500
Lakewood, CO 80226
Laboratory Alta Analytical Perspective
Reviewer H. Chang
Analysis/Method Dioxin\&Furans/1613

Package ID T711DF30
Task Order 313150010
SDG No. Multi
No. of Analyses 13
Date: March 18, 2005
Reviewer's Signature
d.an

\section*{amec \({ }^{\theta}\)}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES \\ Monitoring
}

\title{
ANALYSIS: DIOXINS/FURANS \\ SAMPLE DELIVERY GROUPS: Multiple SDGs
}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{lll}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline & Analysis: & D/F \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: Multiple SDGs \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Dioxins/Furans \\ QC Level: Level IV \\ No. of Samples: 13 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: H. Chang \\ Date of Review: March 18, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{lll}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline & Analysis: & D/F
\end{tabular}

Table 1. Sample Identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & Laboratory ID (Del Mar) & Laboratory ID (Alta AP) & Matrix & COC Method \\
\hline Outfall 001 & IOB0980-01 & P5072_2989_007 & water & 1613B \\
\hline Outfall 002 & IOB0981-01 & P5072_2989_013 & water & 1613B \\
\hline Outfall 003 & IOB0988-01 & P5072_2989_012 & water & 1613B \\
\hline Outfall 004 & 1OB1002-01 & P5072_2989_009 & water & 1613B \\
\hline Outfall 005 & 10B0990-01 & P5072_2989_006 & water & 1613B \\
\hline Outfall 006 & IOB0992-01 & P5072 2989010 & water & 1613B \\
\hline Outfall 007 & IOB0993-01 & P5072_2989_002 & water & 1613B \\
\hline Outfall 008 & 1OB0997-01 & P5072 2989004 & water & 1613B \\
\hline Outfall 009 & 10B0996-01 & P5072_2989_003 & water & 1613B \\
\hline Outfall 010 & IOB1001-01 & P5072_2989_001 & water & 1613B \\
\hline Outfall 011 Composite & IOB1004-01 & P5072_2989_011 & water & 1613B \\
\hline Outfall 011 & IOB1014-01 & P5072_2989_005 & water & 1613B \\
\hline Outfall 018 & IOB1008-01 & P5072_2989_008 & water & 1613B \\
\hline
\end{tabular}
\begin{tabular}{lll}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
& Analysis: & D/F \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

All of the samples in these SDGs were received at Del Mar Analytical within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\) except sample Outfall 009 which was at \(8^{\circ} \mathrm{C}\). Due to non-volatile nature of the analytes, no qualifications were necessary for the elevated cooler temperature. The samples were received at Pace Analytical with cooler temperatures of \(1.6^{\circ} \mathrm{C}, 2.3^{\circ} \mathrm{C}\), and \(3^{\circ} \mathrm{C}\). The samples were received at Alta Analytical Perspectives with cooler temperatures of \(1^{\circ} \mathrm{C}\) and \(3^{\circ} \mathrm{C}\). According to the laboratory login sheets, all samples were received intact and in good condition at Del Mar and Alta AP. No sample conditions were available for review for the sample receipt at Pace. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

It appears that the samples were initially sent from Del Mar Analytical to Pace Analytical then subsequently shipped to Alta Analytical Perspectives. The COCs from the field to Del Mar, Del Mar to Pace, and Pace to Alta were available for review. The COCs were legible and signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. The custody seals were not present on the coolers upon receipt at either Del Mar or Alta. No custody seal information was available for Pace. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The samples were extracted and analyzed within a year of collection. No qualifications were required.

\subsection*{2.2 INSTRUMENT PERFORMANCE}

Following are findings associated with instrument performance:

\subsection*{2.2.1 GC Column Performance}

A Column Performance Check Standard (CPSM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed prior to initial calibration analysis. A separate CPSM was not analyzed for daily analytical sequence; instead, CPSM compounds were added to OPR analysis. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and \(2,3,7,8\)-TCDD reported as less than \(25 \%\). No qualifications were required.

\subsection*{2.2.2 Mass Spectrometer Performance}

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.
\begin{tabular}{ll}
& \begin{tabular}{l}
Project: \\
DATA VALIDATION REPORT
\end{tabular} \\
\hline & SDG No.: \\
NPDES \\
Multiple \\
Analysis: & D/F \\
\hline
\end{tabular}

\subsection*{2.3 CALIBRATION}

\subsection*{2.3.1 Initial Calibration}

There was one initial calibrations, analyzed 08/12/04. The calibrations each consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with \%RSDs \(\leq 20 \%\) for the native compounds and \(\leq 35 \%\) for the labeled compounds. The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \(\%\) RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.3.2 Continuing Calibration}

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \(\%\) Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.4 BLANKS}

One method blank (\(0 _2989\) MB001) was extracted and analyzed with the samples in these SDGs. There were no detects reported in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One Ongoing Precision Recovery (OPR) sample (0_2989_OPR001) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of the Method 1613. No qualifications were required.

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

\subsection*{2.7 FIELD QC SAMPLES}

Following are findings associated with field QC :

\subsection*{2.7.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.
\begin{tabular}{l|l|l|l}
DATA VALIDATION REPORT & \begin{tabular}{l}
Project: \\
SDG No.:
\end{tabular} & \begin{tabular}{l}
NPDES \\
Multiple
\end{tabular} \\
\hline 2.7.2 Field Duplicates & Analysis: & D/F \\
\hline
\end{tabular}

\subsection*{2.7.2 Field Duplicates}

No field duplicate samples were identified for these SDGs.

\subsection*{2.8 INTERNAL STANDARDS}

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

\subsection*{2.9 COMPOUND IDENTIFICATION}

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data. The laboratory reported total PeCDFs detects in samples Outfall 005 , Outfall 006 , Oufall 007, and Outfall 011 . The reviewer deemed the signals used to be below the signal-to-noise ratio of 2.5 and the results were changed to nondetects. A false negative for total HxCDD was noted in sample Outfall 001 and was changed to a detect. No further qualifications were required.

\subsection*{2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the lower method calibration level (MCL) were qualified as estimated, "J." The laboratory did not flag OCDD in samples Outfall 002 and Outfall 003 although the reported concentrations were below the lower MCL. OCDD in these samples was qualified as estimated, "f" The laboratory did not notate detects below the lower MCL for totals. These totals were qualified as estimated, "J." The "DNQ" qualification code was applied only if all components of the totals were below the lower MCL.

The laboratory indicated that one of the non \(-2,3,7,8\) substituted HxCDD detect, present in majority of the samples, was due to recovery standard (\(13 \mathrm{C}-1,2,3,4,6,7-\mathrm{HxCDD}\)) contribution. This compound was also present in the method blank. This compound was not included in the total HxCDD concentration. Several total HxCDD results could not be reproduced from the raw data by the reviewer and were hand-corrected on the Form I. No further qualifications were required.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA
AMEC Earth \& Environmental Package ID T711DF30

550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Alta Analytical Perspective
Reviewer H. Chang
Analysis/Method Dioxin\&Furans/1613

Task Order 313150010 SDG No. Multi
No. of Analyses 13
Date: March 18, 2005
Reviewer's Signature

\section*{ACTION ITEMS \({ }^{\text {a }}\)}
1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, e.g.,
Holding Times
GC/MS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and
Quantitation
System Performance

\({ }^{\text {s }}\) Subcontracted analytical laboratory is not meeting contract and/or method requirements.
\({ }^{6}\) Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

\title{
amec \({ }^{\theta}\)
}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES \\ Monitoring
}

\section*{ANALYSIS: DIOXINS/FURANS SAMPLE DELIVERY GROUPS: Multiple SDGs}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: Multiple SDGs \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Dioxins/Furans \\ QC Level: Level IV \\ No. of Samples: 13 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: H. Chang \\ Date of Review: March 18, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{llr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

Table 1. Sample Identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & \begin{tabular}{c}
Laboratory ID \\
(Del Mar)
\end{tabular} & \begin{tabular}{c}
Laboratory ID \\
(Alta AP)
\end{tabular} & Matrix & COC Method \\
\hline Outfall 001 & IOB0980-01 & P5072_2989_007 & water & 1613 B \\
\hline Outfall 002 & IOB0981-01 & P5072_2989_013 & water & 1613 B \\
\hline Outfall 003 & IOB0988-01 & P5072_2989_012 & water & 1613 B \\
\hline Outfall 004 & IOB1002-01 & P5072_2989_009 & water & 1613 B \\
\hline Outfall 005 & IOB0990-01 & P5072_2989_006 & water & 1613 B \\
\hline Outfall 006 & IOB0992-01 & P5072_2989_010 & water & 1613 B \\
\hline Outfall 007 & IOB0993-01 & P5072_2989_002 & water & 1613 B \\
\hline Outfall 008 & IOB0997-01 & P5072_2989_004 & water & \(1613 B\) \\
\hline Outfall 009 & IOB0996-01 & P5072_2989_003 & water & \(1613 B\) \\
\hline Outfall 010 & IOB1001-01 & P5072_2989_001 & water & \(1613 B\) \\
\hline Outfall 011 Composite & IOB1004-01 & P5072_2989_011 & water & \(1613 B\) \\
\hline Outfall 011 & IOB1014-01 & P5072_2989_005 & water & \(1613 B\) \\
\hline Outfall 018 & IOB1008-01 & P5072_2989_008 & water & \(1613 B\) \\
\hline
\end{tabular}
\begin{tabular}{lrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

All of the samples in these SDGs were received at Del Mar Analytical within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\) except sample Outfall 009 which was at \(8^{\circ} \mathrm{C}\). Due to non-volatile nature of the analytes, no qualifications were necessary for the elevated cooler temperature. The samples were received at Pace Analytical with cooler temperatures of \(1.6^{\circ} \mathrm{C}, 2.3^{\circ} \mathrm{C}\), and \(3^{\circ} \mathrm{C}\). The samples were received at Alta Analytical Perspectives with cooler temperatures of \(1^{\circ} \mathrm{C}\) and \(3^{\circ} \mathrm{C}\). According to the laboratory login sheets, all samples were received intact and in good condition at Del Mar and Alta AP. No sample conditions were available for review for the sample receipt at Pace. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

It appears that the samples were initially sent from Del Mar Analytical to Pace Analytical then subsequently shipped to Alta Analytical Perspectives. The COCs from the field to Del Mar, Del Mar to Pace, and Pace to Alta were available for review. The COCs were legible and signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. The custody seals were not present on the coolers upon receipt at either Del Mar or Alta. No custody seal information was available for Pace. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The samples were extracted and analyzed within a year of collection. No qualifications were required.

\subsection*{2.2 INSTRUMENT PERFORMANCE}

Following are findings associated with instrument performance:

\subsection*{2.2.1 GC Column Performance}

A Column Performance Check Standard (CPSM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed prior to initial calibration analysis. A separate CPSM was not analyzed for daily analytical sequence; instead, CPSM compounds were added to OPR analysis. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and \(2,3,7,8\)-TCDD reported as less than \(25 \%\). No qualifications were required.

\subsection*{2.2.2 Mass Spectrometer Performance}

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.
\begin{tabular}{llr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\subsection*{2.3 CALIBRATION}

\subsection*{2.3.1 Initial Calibration}

There was one initial calibrations, analyzed 08/12/04. The calibrations each consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with \%RSDs \(\leq 20 \%\) for the native compounds and \(\leq 35 \%\) for the labeled compounds. The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.3.2 Continuing Calibration}

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.4 BLANKS}

One method blank (0_2989_MB001) was extracted and analyzed with the samples in these SDGs. There were no detects reported in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One Ongoing Precision Recovery (OPR) sample (0_2989_OPR001) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of the Method 1613. No qualifications were required.

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

\subsection*{2.7 FIELD QC SAMPLES}

Following are findings associated with field QC :

\subsection*{2.7.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{3}{*}{DATA VALIDATION REPORT} & Project: & NPDES \\
\hline & SDG No.: & Multiple \\
\hline & Analysis: & D/F \\
\hline
\end{tabular}

\subsection*{2.7.2 Field Duplicates}

No field duplicate samples were identified for these SDGs.

\subsection*{2.8 INTERNAL STANDARDS}

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

\subsection*{2.9 COMPOUND IDENTIFICATION}

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data. The laboratory reported total PeCDFs detects in samples Outfall 005 , Outfall 006 , Oufall 007 , and Outfall 011 . The reviewer deemed the signals used to be below the signal-to-noise ratio of 2.5 and the results were changed to nondetects. A false negative for total HxCDD was noted in sample Outfall 001 and was changed to a detect. No further qualifications were required.

\subsection*{2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the lower method calibration level (MCL) were qualified as estimated, "J." The laboratory did not flag OCDD in samples Outfall 002 and Outfall 003 although the reported concentrations were below the lower MCL. OCDD in these samples was qualified as estimated, "J" The laboratory did not notate detects below the lower MCL for totals. These totals were qualified as estimated, "J." The "DNQ" qualification code was applied only if all components of the totals were below the lower MCL.

The laboratory indicated that one of the non \(-2,3,7,8\) substituted HxCDD detect, present in majority of the samples, was due to recovery standard (\(13 \mathrm{C}-1,2,3,4,6,7-\mathrm{HxCDD}\)) contribution. This compound was also present in the method blank. This compound was not included in the total HxCDD concentration. Several total HxCDD results could not be reproduced from the raw data by the reviewer and were hand-corrected on the Form I. No further qualifications were required.

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}
\begin{tabular}{|c|c|}
\hline AMEC Earth \& Environmental. & Package ID \({ }^{\text {T }} 711 \mathrm{HZ} 8\) \\
\hline 550 South Wadsworth Boulevard & Task Order 313150010 \\
\hline Suite 500 & SDG No. \({ }^{\text {IOB1004 }}\) \\
\hline Lakewood, CO 80226 & No. of Analyses 1 \\
\hline Laboratory Truesdail & Date: \(03 / 31 / 05\) \\
\hline Reviewer P. Meeks & Revieyes Signature \\
\hline Analysis/Method Hydrazines & T.108 \\
\hline
\end{tabular}

\title{
\(a m e c^{\circ}\)
}

\section*{DATA VALIDATION REPORT}

\author{
NPDES \\ Monitoring
}

\author{
ANALYSIS: HYDRAZINES SAMPLE DELIVERY GROUP: IOB1004
}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: IOB1004 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Hydrazines \\ QC Level: Level IV \\ No. of Samples: 1 \\ Reviewer: P. Meeks \\ Date of Review: March 31, 2005
}

The samples listed in Table 1 were validated based on the general guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (2/94), and USEPA SW-846 Method 8315. Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{rrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOBIO04 \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline EPA ID & Del Mar ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 011 & IOB1004-01 & 939456 & water & Hydrazines by 8315 \\
\hline
\end{tabular}
\begin{tabular}{rrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOB1004 \\
Hydrazines \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The sample in this SDG was received at Del Mar Analytical and the subcontract laboratory, Truesdail Laboratories, within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). The analysis did not require preservation and no preservation was noted in the field. The case narratives for this SDG noted that the sample was received intact at both laboratories. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COC from the field to Del Mar was signed and dated by field and laboratory personnel, and the transfer COC from Del Mar to Truesdail Laboratories was signed and dated by personnel from both laboratories. Both the original COC and transfer COCs requested only monomethyl hydrazine analysis; however, unsymmetrical dimethyl hydrazine and hydrazine were also reported. As the sample was transported to Del Mar and then to Truesdail by courier, no custody seals were required. Truesdail Laboratories did not list the Outfall 011 ID on the Form I; therefore, the reviewer hand-corrected the Form I to include this information. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The holding time was assessed by comparing the date of collection with the date of analysis. The three-day extraction holding time for the hydrazine analysis was met and the sample was analyzed within three days of extraction. No qualifications were required.

\subsection*{2.2 CALIBRATION}

The five-point initial calibrations were analyzed 02/14/05, with correlation coefficients of \(\geq 0.995\) for the hydrazines. The ICV and CCV bracketing the sample analysis had recoveries for the hydrazines within the QC limits of \(85-115 \%\). No qualifications were required.

\subsection*{2.3 BLANKS}

One method blank was analyzed with this SDG. The results reported on the method blank summary form and in the raw data for the instrument and method blank analyses associated with the sample were nondetects at the reporting limit. No qualifications were required.
\begin{tabular}{rrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDGNo.: & IOBI004 \\
Hy & & Analysis: \\
\hline
\end{tabular}

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One laboratory control sample/laboratory control sample duplicate was analyzed with this SDG. The hydrazines were recovered within the laboratory-established control limits of \(70 \%-130 \%\), and the RPDs were within the control limit of \(\leq 20 \%\). No qualifications were required.

\subsection*{2.5 SURROGATES RECOVERY}

Surrogates were not utilized in this analysis. No qualifications were required.

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

No MSD/MSD analyses were performed on Outfall 002; therefore, no assessment was made with respect to this criterion. Method accuracy and precision were assessed based on LCS/LCSD results. No qualifications were required.

\subsection*{2.7 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

\subsection*{2.7. Field Blanks and Equipment Rinsates}

The site sample in this SDG had no associated field QC. No qualifications were required.

\subsection*{2.7.2 Field Duplicates}

There were no field duplicate samples in this SDG.

\subsection*{2.8 COMPOUND IDENTIFICATION}

The sample was analyzed by HPLC for monomethyl hydrazine, unsymmetrical dimethyl hydrazine, and hydrazine by Method 8315. Compound identification was verified, and review of the raw data indicated no compound identification errors. No qualifications were required.

\subsection*{2.9 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification was verified from the raw data at a Level IV data validation by recalculating LCS/LCSD and MS/MSD detects, as there were no sample detects. No compound quantitation problems were noted. The hydrazine reporting limits were supported by the lower levels of the initial calibration. No qualifications were required.
Truesdail Laboratories, Inc.
INOEFENDENT TESTING, FORENSIC SCIENCE, AND ENVIAONMENTAL, ANALYSES
\[
\begin{array}{ll}
\text { Client: } & \text { Del Mar Analytical } \\
& \text { 17461 Derian Ave. } \\
& \text { Irvine, CA 92614 } \\
& \vdots \\
\text { ention: } & \text { Micheie Harper } \\
\text { ample: } & \text { Liquid / 1 Sample } \\
\text { Name: } & \text { IOB1004 } \\
\text { umber: } & \text { IOB1004 } \\
\text { umber: } & 8315 \text { (Modified) } \\
\text { gation: } & \text { Hydrazines in Liquid }
\end{array}
\]
Analytical Results

MDL: Method Detection Limit, ug/L
PQL: Practical Quantitation Limit, ug/L
ND: Not Detected at or above the MDL. value. N/A: Not Applicable
Note: Results based on detector \#1 (UV=365nm) data.

\section*{AMEC VALIDATED}

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer P. Meeks
Analysis/Method Metals

Package ID T711MT62
Task Order 313150010
SDG No. IOB1004
No. of Analyses 1
Date: 03/30/05

\begin{tabular}{|l|l|l|}
\hline ACTION ITEMS', \\
\hline 1. Case Narrative
\end{tabular}

\section*{Deficiencies}
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from

Analysis Protocol, e.g.,
\begin{tabular}{l}
Qualifications applied for: \\
\hline 1. Detects below the reporting glimit
\end{tabular}

Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification and Quantitation
System Performance
2. Reporting limit check standard recovery outliers.
3. CCB detect
4. Antimony MDL raised due to CCB detects

\section*{COMMENTS}

\footnotetext{
\({ }^{4}\) Subcontracted analytical laboratory is not meeting contract and/or method requirements.
\({ }^{\text {b }}\) Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.
}

\title{
amec \({ }^{\circ}\)
}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES \\ Monitoring
}

\author{
ANALYSIS: METALS SAMPLE DELIVERY GROUP. IOB1004
}

Prepared by
AMEC-Denver Operations
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ SDG\#: IOB1004 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Metals \\ QC Level: Level IV \\ No. of Samples: 1 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: P. Meeks \\ Date of Review: March 30, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6010B for Inductively Coupled Plasma, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{lrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOBIO04 \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 011 Composite & Outfall 011 Composite & IOB1004-01 & water & ILM04 \\
\hline
\end{tabular}
\begin{tabular}{rrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOBIO04 \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The sample in this SDG was received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

\subsection*{2.1.2 Chain of Custody}

The COC was signed and dated by field and laboratory personnel. Not all analytes were requested on the COC. The remaining analytes were requested in a memo from MWH personnel dated 03/01/05. A duplicate was submitted for Outfall 011 Composite; however, duplicate analyses were not required. No sample qualifications were required.

\subsection*{2.1.3 Holding Times}

The date of collection recorded on the COC and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP and ICP/MS metals, and 28 days for mercury. No qualifications were required.

\subsection*{2.2 ICP-MS TUNING}

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. All \%RSDs were less than \(5 \%\). The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

\subsection*{2.3 CALIBRATION}

The ICV and CCV results showed acceptable recoveries, \(90-110 \%\) for the ICP and ICP/MS metals and \(80-120 \%\) for mercury. Thallium, antimony, and manganese were recovered below the control limit in the \(0.1 \mathrm{ppb}, 0.2 \mathrm{ppb}\), and .0 ppb reporting limit check standards, respectively; therefore, nondetected antimony and thallium were qualified as estimated, "UJ," and manganese detected in Outfall 011 Composite was qualified as estimated, "J." The remaining reporting limit check standards were recovered within the AMEC control limits of \(70-130 \%\). No further sample qualifications were required.
\begin{tabular}{rrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOB1004 \\
\hline
\end{tabular}

\subsection*{2.4 BLANKS}

Boron was detected in a bracketing CCB at \(0.0737 \mathrm{mg} / \mathrm{L}\); therefore, boron detected in Outfall 011 Composite was qualified as estimated, "UJ." Antimony was detected in both CCBs bracketing the analysis of Outfall 011 Composite, indicating that the laboratory was not able to report antimony at the level of the MDL. The reviewer raised the antimony MDL to the highest level of interference reported in the CCBs, \(0.94 \mu \mathrm{~g} / \mathrm{L}\), and qualified the result as estimated. No further qualifications were required due to the method and calibration blank results.

\subsection*{2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)}

ICSA and ICSAB analyses were included in the raw data for the ICP boron analysis, but were not run on the day the site sample was analyzed. The recoveries for the interferents and the other spiked analytes were within the control limits of \(80-120 \%\).

ICSA and ICSAB analyses were included in the raw data for the ICP-MS analyses. Results were not provided for spiked interferents sulfur, phosphorus, carbon, and chloride, and antimony and lead were not spiked into the ICSAB solution. Copper, cadmium, manganese, and nickel were detected above the applicable reporting limit in the ICSA. The results for aluminum, sodium, and potassium were above the calibration range of the instrument in the ICSA and ICSAB analyses and the manganese result was above the calibration range in the ICSA analysis. As aluminum, sodium, magnesium, and potassium were not reported in the site sample, no qualifications were required. The validator reviewed the raw data for the site sample ICP/MS analyses for the level of reported interferents, \(\mathrm{Al}, \mathrm{Ca}, \mathrm{Fe}\), and Mg , and determined that the levels of reported interferents were not high enough to cause matrix affects No assessment could be made with respect to possible interference from sulfur, phosphorus, carbon, and chloride. No qualifications were required.

\subsection*{2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The ICP LCS and ICP/MS LCS samples associated with the retained results were identified as 5B17127-BSI and 5B17112-BS1, respectively. The mercury LCS sample was identified as 5B15070BS1. The LCS results on the summary forms and in the raw data were within the laboratory-established ICP, ICP/MS, and mercury control limits of \(85-115 \%\). No qualifications were required.

\subsection*{2.7 LABORATORY DUPLICATES}

No MS/MSD or laboratory duplicate analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.
\begin{tabular}{rrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOBI004 \\
\hline
\end{tabular}

\subsection*{2.8 MATRIX SPIKE}

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on LCS results.

\subsection*{2.9 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analysis of this sample; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.10 ICP/MS AND ICP SERIAL DILUTION}

No serial dilution analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

\subsection*{2.11 INTERNAL STANDARDS PERFORMANCE}

The ICP-MS internal standard recoveries for the site sample and associated QC sample analyses were within the \(60-125 \%\) control limits and no qualifications were required.

\subsection*{2.12 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit were qualified as estimated, "J." No further qualifications were required.

\subsection*{2.13 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated sample.

\subsection*{2.13.1 Field Blanks and Equipment Rinsates}

The sample in this SDG had no associated field QC samples. No qualifications were required.

\subsection*{2.13.2 Field Duplicates}

There were no field duplicate analyses performed in association with the site sample.

17461 Derian Ave., Suite 100 irvine, CA 92614 (949) \(261 \cdot 1022\) FAX (949) 260.3257 1014'E. Cooley Dr., Suite A, Coton, CA 92324 (909) 370-4667 FAX (949) 37C-1046 3484 Chesapeake Dt., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) \(505-9689\) 9530 South 51 st St. Suite B-120. Phoenix, AZ 85044 (480) 785-0043 FAX (480) \(785-0251\) 2520 E. Sunset Rd. \#3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) \(798-3621\)
\begin{tabular}{|c|c|c|c|}
\hline IMWH-Pasadena/Boeing & Project ID: & 13267 (Study 1) & \\
\hline 5300 North Lake Avenue, Suite 1200 & & Outfall 011 & Sampled: 02:11/05 \\
\hline \begin{tabular}{l}
Pasadena, CA 91101 \\
Attention: Bronwy K Kelly
\end{tabular} & Repon Number: & IOB1004 & Received: 02/11/05 \\
\hline
\end{tabular}

DRAFT: METALS

DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE

74ETDerian Ave., Suile 100, Invize, CA 92574 (949) 26:-1022 FAX (949) 260-3297 1014 E. Cooiey Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9494 Chesapeake Dr., Suite 805. San Dieco, CA 92123 (858) \(505-8596\) FAX (858 1) 505 -9689 9830 South 5 :si St. Suite S-120, Phoenix, AZ 85044 (480) 785-0043 FAX (450) 785-0851 2520 E. Surset Ra. \#3. Las Vegas. NV 89120 (772) 798-3620 FAX (702) 799-3621

\section*{AMEC VALIDATED}

\section*{DRAFT REPORT \\ DRAFT REPORT \\ DATA SUBJECT TO CHANGE}

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

\section*{AMEC Earth \& Environmental}

550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer K. Shadowlight
Analysis/Method TPH-Purgeable

Reviewer K. Shadowlight
Analysis/Method TPH-Purgeable

Package ID T711TF46
Task Order 313150010 SDG No. IOB1004
No. of Analyses 2
Date April 1, 2005
Reviewer's Signature

\section*{ACTION ITEMS}
1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
\begin{tabular}{|c|c|}
\hline 5. Incorrect Hardcopy Deliverables & \\
\hline 6. Deviations from Analysis & \\
\hline GCMS Tunellist Perform & \\
\hline Calibrations & \\
\hline Blanks & \\
\hline Surrogates & \\
\hline Matrix Spike/Dup LCS & \\
\hline Field QC & \\
\hline Intermal Standard Performance & \\
\hline Compound Identification and & \\
\hline Quantitation & \\
\hline System Performance & \\
\hline COMMENTS \({ }^{\text {b }}\) & Acceptable as reviewed. \\
\hline & \\
\hline & \\
\hline & \\
\hline \begin{tabular}{l}
\({ }^{\text {a }}\) Subcontracted analytical laboratory is \(n\) \\
\({ }^{5}\) Differences in protocol have been adop
\end{tabular} & eeting contract and/or method requirements. the laboratory but no action against the laboratory is required \\
\hline
\end{tabular}

\title{
amec \({ }^{\text {® }}\)
}

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\section*{ANALYSIS: TPH/PURGEABLE}

\author{
SAMPLE DELIVERY GROUP: IOB1004
}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{cc}
& \begin{tabular}{c}
Project: \\
SDG: \\
DATA VALIDATION REPORT
\end{tabular} \\
NPDES \\
IOBI \\
Analysis: & TPH
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: \(\quad 313150010\) \\ SDG\#: IOB1004 \\ Project Manager: B. McIlvaine \\ Matrix: Water \\ Analysis: TPH-Purgeable \\ QC Level: Level IV \\ No. of Samples: 2 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: K. Shadowlight \\ Date of Review: April 1,2005
}

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Extractable Total Fuel Hydrocarbons by GC (DVP-8, Rev. 2), USEPA SW-846 Method 8015M, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{|c|c|c|}
\hline & & NPDES \(10 B 1004\) \\
\hline DATA VALIDATIONREPORT & Analysis: & TPH \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Lab No. & Matrix & Method \\
\hline \begin{tabular}{l}
Outfall 011 \\
Composite
\end{tabular} & \begin{tabular}{l}
Outfall 011 \\
Composite
\end{tabular} & IOB1004-01 & water & \(8015 \mathrm{M} / \mathrm{GRO}\) \\
\hline Trip Blank & Trip Blank & 1OB1004-02 & water & \(8015 \mathrm{M} / \mathrm{GRO}\) \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in this SDG were received at Del Mar Analytical laboratory on ice within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). The Del Mar Analytical case narrative noted that the samples were received intact, and the COC indicated the samples were properly preserved; however, information regarding absence of headspace was not provided. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COC was signed and dated by both field and laboratory personnel. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The water samples were analyzed within 14 days of collection. No qualifications were required.

\subsection*{2.2 CALIBRATION}

One gasoline standard initial calibration dated \(08 / 26 / 04\) was associated with this SDG. The \%RSD for GRO (C4-C12) was within the QC limit of \(\leq 20 \%\). An initial calibration verification (ICV) was not provided in the data package. The \%Ds for the CCVs bracketing the sample analyses were within the Method QC limit of \(\leq 15 \%\). The \(\%\) RSD and \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.3 METHOD BLANKS}

One water method blank (5B20029-BLK1) was associated with this SDG. GRO (C4-C12) was not detected above the MDL in the method blank. Review of the raw data indicated no false negative result. No qualifications were necessary.

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One water method blank spike (5B20029-BS1) was associated with this SDG. GRO (C4-C12) was recovered within the laboratory-established QC limits of \(70-140 \%\) in the blank spike. The recovery was checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.
\begin{tabular}{cc}
& \begin{tabular}{c}
Project: \\
DATA VALIDATIONREPORT
\end{tabular} \\
SDG: & NPDES \\
IOB1004 \\
Analysis: & TPH
\end{tabular}

\subsection*{2.5 SURROGATE RECOVERY}

The samples and QC were fortified with the surrogate compound bromofluorobenzene (BFB). The surrogate recovery was within the laboratory QC limits of \(65-140 \%\) for the samples. The recovery was calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

MS/MSD analyses were not performed for this SDG; therefore, evaluation of method accuracy was based on the blank spike results. No qualifications were required.

\subsection*{2.7 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.7.1 Trip Blanks, Field Blanks, and Equipment Rinsates}

Sample Trip Blank was the trip blank associated with this SDG. Target compound GRO was not detected in the trip blank. There were no other field QC samples associated with this SDG. No qualifications were required.

\subsection*{2.7.2 Field Duplicates}

There were no field duplicate samples in this SDG.

\subsection*{2.8 COMPOUND IDENTIFICATION}

The laboratory analyzed for GRO (C4-C12) by EPA SW-846 Method 8015M. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for the samples in this SDG. No qualifications were required.

\subsection*{2.9 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification was verified for this SDG by recalculating any sample detects, blank spike recoveries, and a representative number of surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibration and by the laboratory MDL. No qualifications were required.

17451 Detian Ave., Suite 100, Ivine. CA \(926: 4\) (949) 26:-1C22 FAX (949) 260-3297 1014 E Cootey Dr., Suite A, Cotion. CA 92324 (909) 37 C-4667 FAX (949) \(370-1046\) 9424 Chesapeaike Dr. Sute 805. San Diego, CA 92123 (658) 505-8596 FAX (858) 505-9689 9830 South 51 st St., Suite B-120, Phoenix, AZ 85044 (480) \(785-0043\) FAX (\(4501785-0851\) 2520 E. Sunset Rd. \#3, Las Vegas, NV 89:20 (702) 796-3620 FAX (702; 798-3621
\begin{tabular}{|c|c|c|}
\hline MWH-Pasadena/Bocing & Project ID: 13267 (Study 1) & \\
\hline 800 North Lake Avenue, Suite 1200 & Outfall 011 & Sampled: 02,11/05 \\
\hline - Pasadena, CA 91101 & Report Number: \(10 B 1004\) & Received: 02,11/05 \\
\hline Attention: Bronwyn Kelly & & \\
\hline
\end{tabular}

\section*{DRAFT: VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & Dilution Factor & \begin{tabular}{l}
Date \\
Extracted
\end{tabular} & Date Analyzed & Data Qualifiers & \\
\hline \multicolumn{11}{|l|}{\begin{tabular}{l}
Sample ID: IOB1004-01 (DRAFT: Outfall 011-composite - Water) - cont. \\
Reporting Units: ug \(I\)
\end{tabular}} \\
\hline GRO (C4-C12) & EPA 8015 Mod. & 5B20029 & 50 & 100 & ND & 1 & 02/20105 & 02/21/05 & \(U\) & \\
\hline Surrogate: 4-BFB (FID) (65-140\%) & & & & & 88\% & & & & & \\
\hline \begin{tabular}{l}
Sample ID: 1OB1004-02 (DRAFT: \\
Reporting Units: ugh
\end{tabular} & Trip Blank - W & & & & & & & & & \\
\hline GRO (C4-C12) & EPA 8015 Mod. & 5B20029 & 50 & 100 & ND & 1 & 02/20/05 & 02/20/05 & 4 & \% \\
\hline Surrogate: 4-BFB (FID) (65-140\%) & & & & & 85\% & & & & & \\
\hline
\end{tabular}

\section*{AMEC VALIDATED} LEVEL IV

\section*{DRAFI REPORT}

DRAFT REPORT
DATA SUBJECT TO CHANGE

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}
\begin{tabular}{l}
AMEC Earth \& Environmental \\
550 South Wadsworth Boulevard \\
Suite 500 \\
Lakewood, CO 80226 \\
\(\quad\) Laboratory Del Mar Analytical \\
\(\quad\) Reviewer K. Shadowlight \\
Analysis/Method TPH-Extractable \\
\hline
\end{tabular}

Package ID T711TF47
Task Order 313150010
SDG No. IOB1004
No. of Analyses 1
Date April 1, 2005
Reviewer's Signature

\begin{tabular}{|ll|}
\hline ACTION ITEMS \\
\hline 1. & Case Narrative \\
\hline Deficiencies & \\
\hline 2. & Out of Scope \\
Analyses
\end{tabular}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES Monitoring
}

\author{
ANALYSIS: TPH/EXTRACTABLE
}

\section*{SAMPLE DELIVERY GROUP: IOB1004}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{|c|c|c|c|}
\hline & & Project: SDG: & NPDES FB1004 \\
\hline DATA VALIDATION REPORT & & Analysis: & TPH \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: \(\quad 313150010\) \\ SDG\#: IOB1004 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: TPH-Extractable \\ QC Level: Level IV \\ No. of Samples: 1 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: K. Shadowlight \\ Date of Review: April 1,2005
}

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Extractable Total Fuel Hydrocarbons by GC (DVP-8, Rev. 2), USEPA SW-846 Method 8015M, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{cc}
& \begin{tabular}{c}
Project: \\
DATA VALIDATION REPORT \\
SDG:
\end{tabular} \\
NPDES \\
IOB1004 \\
Analysis: & TPH
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Lab No. & Matrix & Method \\
\hline \begin{tabular}{l}
Outfall 011 \\
Composite
\end{tabular} & \begin{tabular}{l}
Outfall 011 \\
Composite
\end{tabular} & IOB1004-01 & water & \(8015 \mathrm{M} / E F H\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & Project: SDG: & \[
\begin{aligned}
& \text { NPDES } \\
& \text { IOB1004 }
\end{aligned}
\] \\
\hline DATA VALIDATION REPORT & Analysis: & TPH \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The sample in this SDG was received at Del Mar Analytical laboratory on ice within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). The Del Mar Analytical case narrative noted that the sample containers were received intact. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COC was signed and dated by both field and laboratory personnel, and accounted for the analysis presented in this SDG. As the sample was couriered directly to the laboratory, custody seals were not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The sample was extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

\subsection*{2.2 CALIBRATION}

The initial calibration associated with the sample analysis was analyzed on \(12 / 21 / 04\) The \(\%\) RSD was within the QC limit of \(\leq 20 \%\). The \(\%\) Ds for the initial calibration verification (ICV) and continuing calibrations associated with the sample analysis were \(\leq 15 \%\). The \(\%\) RSD and \(\%\) Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required

\subsection*{2.3 METHOD BLANKS}

One method blank (5B12001-BLK1) was extracted and analyzed with the sample in this SDG. EFH (C13-C22) was not present above the MDL in the method blank or in the instrument blank analyzed at the beginning of the analytical sequence. Review of the chromatograms showed no false negatives. No qualifications were required.

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One method blank spike/blank spike duplicate pair (5B12001-BS1/5B12001-BS1D) was extracted and analyzed with the sample in this SDG. The recoveries of alkane range C13-C40 from spiked diesel was within the laboratory-established QC limits of \(40-120 \%\) and the RPD was \(\leq 25 \%\). The recoveries and RPD were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.
\begin{tabular}{ccc}
& \begin{tabular}{c}
Project: \\
SDG: \\
DATA VALIDATION REPORT
\end{tabular} & \begin{tabular}{c}
NPDES \\
IOBIOO4
\end{tabular} \\
IPH
\end{tabular}

\subsection*{2.5 SURROGATE RECOVERY}

The sample and QC were fortified with the surrogate compound \(n\)-octacosane. The surrogate recoveries were within the laboratory-established QC limits of \(40-125 \%\). The recovery was calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

There were no MS/MSD analyses associated with the sample of this SDG. Evaluation of method accuracy and precision was based on the BS/BSD results. No qualifications were required.

\subsection*{2.7 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.7.1 Field Blanks and Equipment Rinsates}

There were no field blank or equipment rinsate samples associated with the site sample in this SDG. No qualifications were required.

\subsection*{2.7.2 Field Duplicates}

There were no field duplicate samples associated with this SDG.

\subsection*{2.8 COMPOUND IDENTIFICATION}

The laboratory analyzed for EFH n-alkane range C13-C22 by EPA SW846 Method 8015M. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for this SDG. No qualifications were required.

\subsection*{2.9 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification was verified for this SDG by recalculating any sample detect, blank spike recoveries, and a representative number of surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibration and by the laboratory MDL. The reporting limit was not adjusted for sample amount; however, the dilution factor on the sample result summary reflected the sample amount extracted. No qualifications were required.

Project ID: 13267 (Study 1) Outfall 011
Report Number: IOB 1004

Sampled: 02/11/05
Received: 02/11/05

\section*{DRAFT: EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)}

\section*{amec valionted}

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
\begin{tabular}{l}
Laboratory Del Mar \\
Reviewer M. Pokomy \\
Analysis/Method Volatiles \\
\hline
\end{tabular}.

Package ID T711VO72
Task Order 313150010 SDG No. IOB1004
No. of Analyses 2
Date: April 1, 2005
Revieyer's signature
M.

\section*{ACTION ITEMS \({ }^{2}\)}
1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables \(\square\)
\(\qquad\)
6. Deviations from Analysis

Qualifications required for calibration outliers.
Protocol, e.g.,
Holding Times
GCMS Tuneflnst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance Compound Identification and Quantitation
System Performance

\section*{COMMENTS \({ }^{\text {b }}\)}

\footnotetext{
\({ }^{*}\) Subcontracted analytical laboratory is not meeting contract and/or method requirements.
\({ }^{6}\) Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.
}

\section*{amec \({ }^{8}\)}

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\author{
ANALYSIS: VOLATILES
}

\section*{SAMPLE DELIVERY GROUP: IOB1004}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{|c|c|c|}
\hline & Project: SDG: & \[
\begin{aligned}
& \text { NPDES } \\
& \text { 1OBIO04 }
\end{aligned}
\] \\
\hline DALA VALIDATION REPORT & Analysis: & VOC \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ SDG\#: IOB1004 \\ Project Manager: B. McIlvaine \\ Matrix: Water \\ Analysis: Volatiles \\ QC Level: Level IV \\ No. of Samples: 2 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: M. Pokorny \\ Date of Review: April 1, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Volatile Organics (DVP-2, Rev. 2), EPA Method 624, EPA SW-846 Method 8260B, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary forms as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{|c|c|c|}
\hline & Project: SDG: & \[
\begin{aligned}
& \text { NPDES } \\
& \text { IOB1004 }
\end{aligned}
\] \\
\hline DATA VALIDATION REPORT & Analysis: & VOC \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Lab No. & Matrix & Method \\
\hline Outfall 011-composite & Outfall 011-composite & IOB1004-01 & water & \(624 / 8260 \mathrm{~B}\) \\
\hline Trip Blank & Trip Blank & IOB1004-02 & water & 624 \\
\hline
\end{tabular}
\begin{tabular}{cc}
& \begin{tabular}{c}
Project: \\
DATA VALIDATION \(R E P O R T\)
\end{tabular} \\
SDG: & NPDES \\
IOBIOO4 \\
Analysis: & VOC
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in this SDG were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C}\) \(\pm 2^{\circ} \mathrm{C}\). The samples were properly preserved. The COCs noted that the samples were received intact; however, information regarding absence of headspace was not provided. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by both field and laboratory personnel. The COCs accounted for the analyses presented in this SDG. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The samples were analyzed within 14 days of collection. No qualifications were required.

\subsection*{2.2 GC/MS TUNING}

The on abundance windows shown on the quantitation reports were consistent with those specified in the EPA Method 624 and SW- 846 Method 8260 B , and all ion abundances were within the established windows. The samples and associated QC were analyzed within 12 hours of the BFB injection times. The Form Vs were verified from the raw data and no discrepancies between the summary forms and the raw data were noted. No qualifications were required.

\subsection*{2.3 CALIBRATION}

Two initial calibrations dated 11/03/04 (acrolein, acrylonitrile, and Freon 113 only) and \(02 / 01 / 05\) were associated with this SDG. The average RRFs were \(\geq 0.05\) for all compounds listed on the sample result summaries. The \(\%\) RSDs were \(\leq 35 \%\) for the target compounds analyzed by EPA Method 624, and the \%RSD for trichlorotrifluorethane (Freon 113) analyzed by EPA SW-846 Method 8260 B was \(\leq 15 \%\). Two continuing calibrations associated with the sample analyses were analyzed \(02 / 17 / 05\) (14:08 and \(15: 09\)). The RRFs were \(\geq 0.05\) in all of the continuing calibrations, except for the RRF for acrolein. Acrolein was rejected, "R," in both of the samples of this SDG. The \%Ds for acrolein and acrylonitrile exceeded \(20 \%\) in the continuing calibration; therefore, the nondetect result for acrylonitrile were qualified as estimated, "UJ," in sample Outfall 011. No qualifications were required for the Trip blank. The \(\%\) Ds were \(\leq 20 \%\) for the remaining target compounds listed on the result summaries. A representative number of \%RSDs and average RRFs from the initial calibrations, and \%Ds and RRFs from the continuing calibrations were recalculated
\begin{tabular}{|c|c|c|}
\hline & Project: SDG: & \[
\begin{aligned}
& \text { NPDES } \\
& \text { IOB1004 }
\end{aligned}
\] \\
\hline DATA VALIDATION REPORT & Analysis: & VOC \\
\hline
\end{tabular}
from the raw data, and no calculation or transcription errors were found. No further qualifications were required.

\subsection*{2.4 BLANKS}

Two water method blanks (5B17014-BLK1 and 5B12011-BLK1) were associated with the sample analyses. There were no detects above the MDLs for the target compounds listed on the sample result summaries. The method blank raw data showed no evidence of false negatives. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

Two water blank spikes (5B17014-BS1 and 5B12011-BS1) were associated with the sample analyses. All recoveries were within the laboratory-established QC limits. A representative number of recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.6 SURROGATE RECOVERY}

The surrogates were recovered within the QC limits of \(80-120 \%\) in the samples and associated QC. A representative number of surrogate recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

An MSMSD analyses were not performed with the samples of this SDG. Method accuracy was based on LCS performance. No qualifications were required.

\subsection*{2.8 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

\subsection*{2.8.1 Trip Blanks}

Sample Trip Blank was the trip blank associated with this SDG. There were no target compounds detected above the MDLs in the trip blank. No qualifications were required.

\subsection*{2.8.2 Field Blanks and Equipment Rinsates}

There were no field QC samples associated with this SDG. No qualifications were required.
\begin{tabular}{cc}
DATA VALIDATION REPORT & \begin{tabular}{c}
Project: \\
SDG:
\end{tabular} \\
Analysis: & NPDES \\
IOBI004 \\
VOC
\end{tabular}

\subsection*{2.8.3 Field Duplicates}

There were no field duplicate samples associated with this SDG. No qualifications were required.

\subsection*{2.9 INTERNAL STANDARDS PERFORMANCE}

Internal standard area counts and retention times for the samples in this SDG were within the control limits established by the continuing calibration standards, of \(+100 \% /-50 \%\) for internal standard areas and \(\pm 0.50\) minutes for retention times. A representative number of internal standard areas and retention times were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.10 COMPOUND IDENTIFICATION}

Target compound identification was verified at a Level IV data validation. The laboratory analyzed trichlorotrifluoroethane by EPA SW-846 8260B and the remaining volatile target compounds by EPA Method 624. A TIC search was performed for requested target compounds 1,2-dichloro-1,1,2-trichloroethane and cyclohexane, as these compounds were not included in the calibration (see section 2.11). Neither compound was detected as a TIC. Chromatograms, retention times, and spectra for the samples and QC were examined and no target compound identification problems were noted. No qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification is yerified at a Level IV data validation. The reporting limits were supported by the lowest concentrations of the initial calibration standards and by the MDL study. Calibration was not performed for target compounds 1,2 -dichloro-1,1,2-trifluorethane and cyclohexane; therefore, the laboratory performed only a TIC search for those compounds. Nondetects for both compounds were qualified as estimated, "UJ," in sample Outfall 011. Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike and surrogate recoveries from the raw data. Results were reported in \(\mu \mathrm{g} / \mathrm{L}\) (ppb). No calculation or transcription errors were noted. No further qualifications were required:

\subsection*{2.12 TENTATIVELY IDENTIFIED COMPOUNDS}

The laboratory did not provide TICs for this SDG. No qualifications were required.

\subsection*{2.13 SYSTEM PERFORMANCE}

A review of the chromatograms and other raw data showed no identifiable problems with system performance. No qualifications were required.
Project ID: 13267 (Study 1)
Outfall 011
Sampled: 02/11/05
Report Number: IOB1004
Received: 02/11/05

DRAFT: PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS

\section*{AMECBMLDATRD}

MWH-Pasadena/Bocing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwy Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10 BI 1004

Sampled: 02/11/05
Received: 02/11/05

\section*{DRAFT: PURGEABLES BY GC/MS (EPA 624)}

\section*{DRAFT REPORT \\ DRAFT REPORT \\ DATA SUBIECT TO CHANGE}
17461 Deriari Ave. Suite 100, Irvine, CA 92674 (949; 261-1022 FAX (949) 260-3297
1014 E Cocley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (949) 370 -104
9464 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505.9689
9830) South 51si S:, Suite Bui20. Phoenix, AZ 85044 (480) 785-0043 FAX (480) 7E5-085 2520 E. Sunset Ré. \#3, Las Vegas, NV 89120 (702) 798-3E20 FAX (02) 798-3621

\section*{DRAFT REPORT}

DRAFT REPORT
DATA SUBJECT TO CHANGE

17461Derian Ave. Suite 100, Irvine. CA S2614 (949) 261-1022 FAX (940) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) \(370-4667\) FAX (944 ; 370-1046 9484 Chesapeake Dr., Suite 805 . San Diego. CA 92123 (858) 505-8596. FAX (858) \(505-9689\) 9830 South 51 st St., Suite B-120, Phoenix, AZ 85044 (480) \(785-0043\) FAX (480) \(785-0851\) 2520 E. Sunset Rd. \#3, Las Vegas, NV 89120 (7C2) 798-3520 FAX (702) 798-3521
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 1OB1004

Sampled: 02/11/05
Received: 0211/05

DRAFT: PURGEABLES BY GC/MS (EPA 624)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{DRAFT: PURGEABLES BY GC/MS (EPA 624)} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{}} \\
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & Dilutio Factor & Date Extracted & & \\
\hline \multicolumn{10}{|l|}{Sample ID: IOB1004-02 (DRAFT: Trip Blank - Water) Reporting Units: ugh} \\
\hline Benzene & EPA 624 & 5B17014 & 0.28 & 1.0 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline Bromodichloromethane & EPA 624 & 5 B 17014 & 0.30 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline Bromoform & EPA 624 & 5B17014 & 0.32 & 5.0 & ND & 1 & 02/17/05 & 02117105 & \\
\hline Bromomethane & EPA 624 & 5 B 17014 & 0.34 & 5.0 & ND & , & 02/17\%05 & 02/17/05 & \\
\hline Carbon tetrachloride & EPA 624 & SB17014 & 0.28 & 0.50 & ND & 1 & 02/17:05 & 0217105 & \\
\hline Chlorobenzene & EPA 624 & 5B17014 & 0.36 & 2.0 & ND & 1 & 02/17/05 & 02i17/05 & \\
\hline Chloroethane & EPA 624 & 5B17014 & 0.33 & 5.0 & ND & 1 & 02/17/05 & 02:17:05 & \\
\hline Chloroform & EPA 624. & \(5 \mathrm{B17014}\) & 0.33 & 2.0 & ND & 1 & \(02 / 17105\) & 02/17/05 & \\
\hline Chloromethane & EPA 624 & 5B17014 & 0.30 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline Dibromochloromethase & EPA 624 & 5B17014 & 0.28 & 2.0 & ND & 1 & 02i17/05 & 02/17/05 & \\
\hline 1,2-Dichlorobenzene & EPA 624 & 5B17014 & 0.32 & 2.0 & ND & 1 & 02/17/05 & 02:17/05 & \\
\hline 1,3-Dichlorobenzene & EPA 624 & 5B17014 & 0.35 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline 1,4-Dichlorobenzene & EPA 624 & 5B17014 & 0.37 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline 1,1-Dichloroethane & EPA. 624 & 5B17014 & 0.27 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline 1,2-Dichloroethane & EPA 624 & 5B17014 & 0.28 & 0.50 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline 1,1-Dichloroethene & EPA 624 & 5B17014 & 0.32 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline trans-1,2-Dichloroethene & EPA 624 & 5B17014 & 0.27 & 2.0 & ND & i & 02/17/05 & 02/17/05 & \\
\hline 1,2-Dichloropropane & EPA 624 & 5 BI 7014 & 0.35 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline cis-1,3-Dichloropropene & EPA 624 & \(5 \mathrm{B17014}\) & 0.22 & 2.0 & ND & 1 & 02/17105 & 02/17/05 & \\
\hline trans 1,3 Dichoropropene & EPA 624 & SB17014 & 024 & 20 & ND & 1 & \(02 / 17105\) & \(02 / 1705\) & \\
\hline Ethylbenzene , & EPA624 & SB17014 & 0.25 & 2.0 & ND & 1 & \(02 / 1705\) & \(02 / 1705\) & \\
\hline Methylene chloride & EPA 624 & 5B17014 & 0.48 & 5.0 & ND & 1 & 02/17/05 & 22/17/05 & \\
\hline 1,1,2,2-Tetrachloroethane & EPA 624 & 5B17014 & 0.24 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline Tetrachlorothene & EPA 624 & SB17014 & 0.32 & 2.0 & ND & 1 & 02/17105 & 02,17:05 & \\
\hline Toluene & EPA 624 & 5817014 & 0.36 & 2.0 & ND & 1 & 02/17/05 & 02/17105 & \\
\hline 1,1,1-Trichloroethane & EPA 624 & 5B17014 & 0.30 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline 1,1,2-Trichloroethane & EPA 624 & 5B17014 & 0.30 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline Trichloroethene & EPA 624 & 5B17014 & 0.26 & 2.0 & ND & , & 02/17/05 & 02/17/05 & \\
\hline Trichlorofluoromethane & EPA 624 & 5B17014 & 0.34 & 5.0 & ND & 1 & 02/17/05 & 02/17105 & \\
\hline Vinyl chloride & EPA 624 & 5B17014 & 0.26 & 0.50 & ND & 1 & 02/17/05 & 02/17:05 & \\
\hline Xylenes, Total & EPA 624 & 5B17014 & 0.52 & 4.0 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline \multicolumn{5}{|l|}{} & 108\% & & & & \\
\hline \multicolumn{5}{|l|}{Surrogate: Dibromoffuoromethane (80-120\%)
Surrogate: Toluene-d8 (80-120\%)} & \(101 \%\) & & & & \\
\hline \multicolumn{5}{|l|}{Surrogate: 4-Bromofluorobenzene (80-120\%)} & 98\% & & & & \\
\hline
\end{tabular}

\section*{DRAFT REPORT}

DRAFT REPORT
DATA SUBJECT TO CHANGE

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer L. Jarusewic
Analysis/Method General Minerals

Laboratory Del Mar Analytical
Reviewer L. Jarusewic
Analysis/Method General Minerals

\section*{ACTION ITEMS*}
1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables

Performance
Compound Identification and Quantitation
System Performance

Package ID T711WC100
Task Order 313150010
SDG No. IOB1004
No. of Analyses 1
\begin{tabular}{|l|l|}
\hline Date: \(03 / 30 / 05\) \\
\hline Reviewer's Signature \\
\hline, & aciciecuc \\
\hline
\end{tabular}
6. Deviations from
6. Deviations from \(\begin{aligned} & \text { Analysis Protocol, e.g., }\end{aligned}\)

Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
\begin{tabular}{l}
Qualifications were applied for detects below the reporting limit. \\
\hline \\
\hline \\
\hline
\end{tabular}
 (
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

COMMENTS \({ }^{\text {b }}\)
* Subcontracted analytical laboratory is not meeting contract and/or method requirements.

Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

\title{
amec \({ }^{\theta}\)
}

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\author{
ANALYSIS: GENERAL MINERALS SAMPLE DELIVERY GROUP: IOB1004
}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{rrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOB1004 \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: IOB1004 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: General Minerals \\ QC Level: Level IV \\ No. of Samples: 1 \\ Reviewer: L. Jarusewic \\ Date of Review: March 30, 2005
}

The sample listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 300.0, 330.5, 405.1, 335.2, 218.6, 160.2, 120.1, 160.5, 415.1, 413.1, 350.2, 418.1, and 180.1. Standard Methods for the Examination of Water and Wastewater Method SM5540-C and SM2540C, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{rrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOBI004 \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 011-Composite & Outfall 011-Composite & 1OB1004-01 & Water & General Minerals \\
\hline
\end{tabular}
\begin{tabular}{rrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No:: & IOBIO04 \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The sample in this SDG was received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). No preservation problems were noted by the laboratory. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COC was signed and dated by field and laboratory personnel. A memo from MWH personnel dated 03/01/05 requested analysis for ammonia, BOD, chloride, nitrate/nitrite, oil and grease, sulfate, surfactants, total dissolved solids, total suspended solids, total settleable solids, turbidity, cyanide, conductivity, and total organic carbon. The COC accounted for the remaining analyses presented in this SDG. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The holding times were assessed by comparing the date of collection with the dates of analyses. The 28 -day analytical holding time for total recoverable hydrocarbons, ammonia, fluoride, sulfate, oil and grease, total organic carbon, and conductivity, the 14-day analytical holding time for cyanide, the seven-day holding time for total dissolved solids and total suspended solids, the 48 -hour holding time for turbidity, nitrate/nitrite, surfactants, total settleable solids, and biological oxygen demand, and the 24-hour hexavalent chromium and residual chlorine holding times were met. No qualifications were required:

\subsection*{2.2 CALIBRATION}

For the applicable analyses, the initial calibration correlation coefficients were \(\geq 0.995\). The initial and continuing calibration verification information was acceptable with \%Rs within the control limits of 90 \(110 \%\). For ammonia, no information regarding the standardization of the titrant was provided; however, as the LCS recovery was within the CCV control limits, no qualifications were required. For BOD, no information regarding the calibration of the oxygen meter was provided; however, as the LCS recovery was within the CCV control limits, no qualifications were required. The total cyanide reporting limit check standard was recovered above control limits at \(156 \%\); however, as cyanide was not detected in Outfall 011 Composite, no qualifications were required. Calibration is not applicable to residual chlorine, oil and grease, total dissolved solids, total settleable solids, or total suspended solids. No qualifications were required.
\begin{tabular}{rrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOBI004 \\
\hline
\end{tabular}

\subsection*{2.3 BLANKS}

Turbidity was detected in method blank 5B12055-BLK1 at 0.040 NTU, however, the method blank result was insufficient to qualify the Outfall 011-Composite result. Hexavalent chromium was detected in a bracketing CCB at \(0.21 \mu \mathrm{~g} / \mathrm{L}\); however, as hexavalent chromium was not detected in Outfall 011Composite, no qualifications were required. The remaining method blank and CCB results reported on the summary forms and in the raw data for blank analyses associated with the sample were nondetects at the reporting limit. No qualifications were required.

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The laboratory control sample and laboratory control sample duplicate (BOD, total recoverable hydrocarbons, and oil and grease only) recoveries were within the laboratory-established control limits. The LCS is not applicable to turbidity, total settleable solids, conductivity, or residual chlorine. No qualifications were required.

\subsection*{2.5 SURROGATES RECOVERY}

Surrogate recovery is not applicable to the analyses presented in this SDG.

\subsection*{2.6 LABORATORY DUPLICATES}

No MSMSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

\subsection*{2.8 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analyses of this sample; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.9 ICP SERIAL DILUTION}

ICP serial dilution is not applicable to the analyses presented in this data validation report.
\begin{tabular}{rrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOBIO04 \\
\hline
\end{tabular}

\subsection*{2.10 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Flouride detected below the reporting limit was qualified as estimated, "J." No further qualifications were required.

\subsection*{2.11 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.11.1 Field Blanks and Equipment Rinsates}

The sample in this SDG had no associated field QC samples. No qualifications were required.

\subsection*{2.11.2 Field Duplicates}

There were no field duplicate pairs associated with this SDG.
```

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Aatention: Bronwyn Kelly

```

Project ID: 13267 (Study 1)
Outfall 011
Report Number: \(10 B 1004\)

Sampled: 021105
Received: 02111,05

\section*{DRAFT: TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)}

\section*{AMEC VALIDATICD}

\begin{tabular}{|c|c|c|c|}
\hline 6 MWH-Pasadena/Boeing & Project ID: & 13267 (Study 1) & \\
\hline 300 North Lake Avenue, Suite 1200 & & Outfall 011 & Sampled: 0211105 \\
\hline Pasadena, CA 91101 & Report Number: & IOB1004 & Received: \(02 / 11105\) \\
\hline
\end{tabular}

\section*{DRAFT: INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & MDL Limit & Reporting Limit & Sample Result & Dilution Factor & Date Extracted & \begin{tabular}{l}
Date \\
Analyze
\end{tabular} \\
\hline \multicolumn{9}{|l|}{Sample ID: IOB1004-01 (DRAFT: Outfall 011-composite - Water) - cont. Reporting Units: ml//hr} \\
\hline Total Settieable Solids & EPA 160.5 & 5B11129 & 0.10 & 0.10 & ND & 1 & 02/11/05 & 0211105 \\
\hline
\end{tabular}

\section*{amec validatico}

DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE
\begin{tabular}{lcl}
MWH-Pasadena/Boeing & Project ID: 13267 (Saudy 1) & Outfall 011
\end{tabular}

\section*{DRAFT: INORGANICS}

\section*{amec validated}

 9830 South 5 ist SL, Suite B-120. Phoenix, AZ 85044 (450) 785.0043 FAX (480) \(785-0851\) 2520 E. Sunset Rd. \(\# 3\), Las Vegas. NV 89120 (702) 798-3620 FAX (702) 798-3621

\section*{DRAFT: INORGANICS}

\section*{AMEC VAlidatios}

DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE
\(\begin{aligned} & 1014 \text { E. Cooley Dr. Suite A, Colton. CA } 92324 \text { (909) 370-4667 FAX (Ci43) } 370-1046 \\ & \text { Chesapeake Dr. Sute B05. San Diego, CA } 92123 \text { (} 858 \text {) } 505-8596 \text { FAX (858) } 505.9689\end{aligned}\)
9484 Chesapeake Dr. Suite B05. San Diego, CA 92123 (858) 505-8596 FAX (858) 505.9689
2520 E. Sunset Rd. \#3, Las Vegas, NV 89120 (702) 795-3620 FAX (702) 798 -3621
MWH-Pasadena/Bocing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project LD: 13267 (Study 1)
Outfall 011
Report Number: IOB1004

Sampled: 02111/05
Received: 0211105

\section*{DRAFT: INORGANICS}

\section*{AMEC VALIDAILE} TEVEL

\section*{DRAFT REPORT}

DRAFT REPORT
DATA SUBJECT TO CHANGE

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}
AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
\(\quad\) Laboratory Del Mar Analytical
Reviewer L. Jarusewic
Analysis/Method Perchlorate

Package ID T711WC101
Task Order 313150010
SDG No. IOB1004
No. of Analyses 1

ACTION ITEMS
1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy Deliverables
6. Deviations from

Analysis Protocol, e.g.,
Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Intemal Standard
Performance
Compound Identification
and Quantitation
System Performance \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
COMMENTS \({ }^{\text {b }}\)
Acceptable as reviewed.
\({ }^{\text {a }}\) Subcontracted analytical laboratory is not meeting contract and/or method requirements.
\({ }^{6}\) Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

\title{
amec \({ }^{9}\)
}

\section*{DATA VALIDATION REPORT}

\section*{NPDES Monitoring}

\author{
ANALYSIS: PERCHLORATE SAMPLE DELIVERY GROUP: IOB1004
}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{rrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOB1004 \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: IOB1004 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Perchlorate \\ QC Level: Level IV \\ No. of Samples: 1 \\ Reviewer: L. Jarusewic \\ Date of Review: March 30, 2005
}

The samples listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 314.0, and 120.1, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{rrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOBI004 \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 011-Composite & Outfall 011-Composite & IOB1004-01 & Water & Perchlorate \\
\hline
\end{tabular}
\begin{tabular}{rrr}
& Project: & NPDES \\
& SDG No:: & 1OBIO04 \\
DATA VALIDATION REPORT & Analysis: & Perchlorate \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The sample in this SDG was received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). No preservation problems were noted by the laboratory. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COC was signed and dated by field and laboratory personnel, and accounted for the sample and analysis presented in this SDG. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The holding time was assessed by comparing the date of collection with the date of analysis. The 28day analytical holding time for perchlorate was met, and no qualifications were required.

\subsection*{2.2 CALIBRATION}

The initial calibration correlation coefficient was \(\geq 0.995\). The IPC-MA recovery was within the control limits of \(80-120 \%\). The ICV, CCV, and IPC recoveries were within the control limits of \(90-110 \%\). No qualifications were required.

\subsection*{2.3 BLANKS}

The method blank and CCB results reported on the summary forms and in the raw data for blank analyses associated with the sample were nondetects at the reporting limit. No qualifications were required.

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The laboratory control sample recovery was within the method control limits of \(85-115 \%\). No qualifications were required.

\subsection*{2.5 SURROGATES RECOVERY}

Surrogate recovery is not applicable to the analysis presented in this SDG.
\begin{tabular}{rrr}
& Project: & NPDES \\
DATA VALID.ATION REPORT & SDG No.: & IOBI004 \\
\hline
\end{tabular}

\subsection*{2.6 LABORATORY DUPLICATES}

No MS/MSD or duplicate analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was assessed based on LCS results.

\subsection*{2.8 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analysis of this sample; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.9 ICP SERIAL DILUTION}

ICP serial dilution is not applicable to the analysis presented in this data validation report.

\subsection*{2.10 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample results reported on the Form I was verified against the raw data. No transcription errors or calculation errors were noted. No qualifications were required.

\subsection*{2.11 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.11.1 Field Blanks and Equipment Rinsates}

The sample in this SDG had no associated field QC samples. No qualifications were required.

\subsection*{2.11.2 Field Duplicates}

There were no field duplicate pairs associated with this SDG.
\begin{tabular}{|c|c|c|c|}
\hline MWH-Pasadena/Boeing & Project ID: & 13267 (Stud & \\
\hline 300 North Lake Avenue, Suite 1200 & & Outfall 011 & Sampled \\
\hline Pasadena, CA 91101 & Report Number: & IOB1004 & Received \\
\hline Attention: Bronwyn Kelly & & & \\
\hline
\end{tabular}

\section*{DRAFT: INORGANICS}

\section*{AMEC VABIDRTU} LEVEL IV

\section*{amec \({ }^{\text {® }}\)}

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\section*{ANALYSIS: SEMIVOLATILES}

\section*{SAMPLE DELIVERY GROUP: IOB1004}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{cc}
& \begin{tabular}{c}
Project: \\
DATA VALIDATION REPORT
\end{tabular} \\
SDDES \\
SD: & Analysis: \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ SDG\#: IOB1004 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Semivolatiles \\ QC Level: Level IV \\ No. of Samples: 1 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: M. Pokomy \\ Date of Review: April 1, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Semivolatile Organics (DVP-3, Rev. 2), EPA Method 625, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{ccc}
& \begin{tabular}{c}
Project: \\
DATA VALIDATION REPORT
\end{tabular} & \begin{tabular}{c}
NPDES \\
IOBIOO4
\end{tabular} \\
SDG: & Analysis: & SVOC \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Lab No. & Matrix & Method \\
\hline \begin{tabular}{c}
Outfall 011- \\
composite
\end{tabular} & \begin{tabular}{c}
Outfall 011- \\
composite
\end{tabular} & IOB1004-01 & water & 625 \\
\hline
\end{tabular}
\begin{tabular}{cc}
\\
DATA VALIDATION REPORT & \begin{tabular}{c}
Project: \\
SPDES \\
SDG: \\
IOB1004 \\
SVOC
\end{tabular} \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The sample in this SDG was received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C}\) \(\pm 2^{\circ} \mathrm{C}\), at \(3^{\circ} \mathrm{C}\). The analysis did not require preservation, and no preservation was noted in the field. The COC noted that the sample was received intact. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COC was signed and dated by both field and laboratory personnel. The COC accounted for the analysis presented in this SDG. As the sample was couriered directly to the laboratory, custody seals were not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The water sample was extracted within seven days of collection and analyzed within 40 days of collection. No qualifications were required.

\subsection*{2.2 GC/MS TUNING}

The DFTPP tunes met the criteria specified in Method 625, and the sample was analyzed within 12 hours of the DFTPP injection time. No qualifications were required.

\section*{23 CALIBRATION}

The initial calibration associated with this SDG was dated 02/17/05. The average RRFs for were \(\geq 0.05\) and the \(\%\) RSDs were \(\leq 35 \%\) or \(r^{2} \geq 0.995\) for all target compounds except for the \(r^{2}\) values for 2,4-dinitrophenol, 4-nitroaniline, and 4,6-dinitro-2-methylphenol. 2,4-Dinitrophenol, 4nitroaniline, and 4,6-dinitro-2-methylphenol were qualified as estimated nondetects, "UJ," in the sample of this SDG. A representative number of average RRFs and \%RSDs were checked from the raw data, and no calculation or transcription errors were noted. The continuing calibration associated with the sample analysis was analyzed \(02 / 18 / 05\). The RRFs for all target compounds were \(\geq 0.05\), and the \(\%\) Ds were \(\leq 20 \%\), except for the \(\% \mathrm{Ds}\) for \(n\)-nitrosodimethylamine, benzoic acid, and 4-nitrophenol. N-Nitrosodimethylamine, benzoic acid, and 4-nitrophenol were qualified as estimated nondetects, "UJ," in the sample of this SDG. A representative number of RRFs and \(\%\) Ds were checked from the raw data, and no calculation or transcription errors were noted. No further qualifications were required.

\subsection*{2.4 BLANKS}

One method blank (5B14010-BLK1) was extracted and analyzed with this SDG. Diethylphthalate, fluorene, 2-methylnaphthalene, naphthalene, and phenanthrene were detected in the method blank. 2-Methylnaphthalene was qualified as a nondetect, " \(U\)," in the sample of this

SDG. Review of the raw data indicated no reportable false negatives. No further qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One blank spike/ blank spike duplicate pair (5B14010-BS1/BSD1) was extracted and analyzed with this SDG. For blank spike/blank spike duplicate pairs, qualifications are applied, if necessary, to the associated samples based on those recoveries consistently outside of the laboratoryestablished QC limits in both the blank spike and blank spike duplicate. Results for those compounds with recoveries not consistent within the pair, with RPDs above the QC limit, are qualified as estimated, "UJ" for nondetects and "J" for detects, in the associated samples. All percent recoveries and RPDs were within the laboratory QC limits except for benzidine which was not recovered in the BSD and the RPDs for benzidine and NDMA. The sample of this SDG had benzidine and NDMA qualified as estimated nondetects, "UJ." A representative number of recoveries and RPDs were calculated from the raw data and no calculation or transcription errors were found. No further qualifications were required.

\subsection*{2.6 SURROGATE RECOVERY}

The sample surrogate recoveries were within the laboratory QC limits. A representative number of recoveries were calculated from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

No MSMSD analyses were associated with this SDG. Evaluation of method accuracy and precision was based on blank spike/blank spike duplicate results. No qualifications were required.

\subsection*{2.8 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples.

\subsection*{2.8.1 Field Blanks and Equipment Rinsates}

There were no field QC samples associated with this SDG. No qualifications were required.

\subsection*{2.8.2 Field Duplicates}

There were no field duplicate samples associated with this SDG.
\begin{tabular}{|c|c|c|}
\hline & Project: SDG: & \[
\begin{aligned}
& \text { NPDES } \\
& \text { 1OB1004 }
\end{aligned}
\] \\
\hline DATA VALIDATION REPORT & Analysis: & SVOC \\
\hline
\end{tabular}

\subsection*{2.9 INTERNAL STANDARDS PERFORMANCE}

The internal standard area counts and retention times were within the control limits established by the continuing calibration standards: \(-50 \% /+100 \%\) for internal standard areas and \(\pm 30\) seconds for retention times. A representative number of recoveries were checked from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.10 COMPOUND IDENTIFICATION}

The laboratory analyzed for the semivolatile target compounds by EPA Method 625. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification. No qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification is verified at a Level IV data validation. No calculation or transcription errors were found. The reporting limits were supported by the low level of the initial and the method detection limit study. Detects below the reporting limit were qualified as estimated, " \(J\)," by the laboratory. No further qualifications were required.

\subsection*{2.12 TENTATIVELY IDENTIFIED COMPOUNDS}

TICs were not reported by the laboratory for this SDG. No qualifications were required.

\subsection*{2.13 SXSTEM PERFORMANCE}

Review of the raw data indicated no problems with system performance. No qualifications were required.

1746:Deriar: Ave, Sute 100, Irvine, CA \(926: 4\) (e43) 224-1022 FAX \(9949 ; 260-3297\) 1014 E. Cociey Dr. Sute A. Colton, CA 92324 (900) 370-4667 FAX (974) 370-1046 9484 Chesapeake Dr. Sute 805. San Diego. CA 92123 (858; 505.8596 FAX \(\{858\)) \(505-9689\) 9833 South 51 st Si, Sute 5-120, Phoenix. AZ 85044 (480) 785-3043 FAX (480) 785-085? 2520 E. Sunset Re. \#3, Las Vegas, NV 89120 (702) 798-3620 FAX (\%02) 798-3621

DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

\author{
174610eriar: Ave., Suite 100, irvine. CA 92614 \{949) 261-1622 FAX \(\{949\}\) 266-3297 1014 E. Covey Dr., Suite A . Cotton, CA 32324 (909; 37C-4667 FAX (949) 37 C -1046 9484 Chesapeake Dr., Suite 805 . San Diego, CA 92123 (858) 505 -6596 FAX (858) \(505-9689\) 9830 South 51 st S.: Suite B-120, Phoenix, AZ 85044 (480) \(785-0043\) FAX (480) \(785-0851\) 2520 E. Sunset Rc. \#3. Las Vegas, NV 89120 (702) 798-3620 faX ('02) 738-362
}
MWH-PasadenalBoeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwy Kelly

Project ID: 13267 (Study 1)
Outfall 011 Sampled: 0211/05
Report Number: IOB1004
Received: 02/11,05

DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)
Analyse
Method Batch Limit Limit Result Factor Extracted
Date Data

Sample 1D: 1OB1004-01 (DRAFT: Outfall 011-composite - Water) - cont.
Reporting Units: ugh

\section*{DRAFT REPORT \\ DRAFT REPORT \\ DATA SUBJECT TO CHANGE}

\section*{}

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}

AMEC Earth \& Environmental

\section*{550 South Wadsworth Boulevard}

Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer K. Shadowlight
Analysis/Method Pesticides

Analysis/Method Pesticides

Package ID T711PP24
Task Order 313150010 SDG No. IOB1004
No. of Analyses 1

\section*{ACTION ITEMS \\ 1. Case Narrative \\ Deficiencies}
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables \(\qquad\)
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protecol, e.g,
Qualifications were assigned for \(\% \mathrm{D}\) continuing calibration outliers
Holding Times
GC/MS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Perfornance
Compound Identification and
Quantitation
System Performance

\section*{COMMENTS \({ }^{b}\)}

Acceptable as reviewed.
\({ }^{*}\) Subcontracted analytical laboratory is not meeting contract and/or method requirements.
\({ }^{6}\) Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\section*{ANALYSIS: PESTICIDES/PCBs}

\section*{SAMPLE DELIVERY GROUP: IOB1004}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{lc}
\\
DATA VALIDATION REPORT & \begin{tabular}{c}
Project: \\
SDG:
\end{tabular} \\
NPDES \\
IOBIOO4 \\
PestiPCB
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: IOB1004 \\ Project Manager: B. McIlvaine \\ Matrix: Water \\ Analysis: Pesticides/PCBs \\ QC Level: Level IV \\ No. of Samples: 1 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: K. Shadowlight \\ Date of Review: April 1, 2005
}

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedures (DVP-4, Rev.2), EPA Method 608, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary form as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
DALA VALIDATION REPORT \(\quad\)\begin{tabular}{c}
Project: \\
SDGES \\
IOBIO04 \\
Pest/PCB
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & Method \\
\hline Outfall 011 Composite & Outfall 011 Composite & IOB1004-01 & water & 608 \\
\hline
\end{tabular}
\begin{tabular}{ll}
\\
DATA VALIDATION REPORT & \begin{tabular}{c}
Project: \\
SDG: \\
NPDES \\
IOBIOOA \\
PestiPCB
\end{tabular} \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The cooler was received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). The analysis did not require preservation, and no preservation was noted in the field. The COC noted that the sample was received intact. No qualifications were required.

\section*{2.1,2 Chain of Custody}

The COC was signed and dated by both field and laboratory personnel. The COC accounted for the analyses presented in this SDG. As the sample was couriered directly to the laboratory, custody seals were not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The water sample was extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

\subsection*{2.2 PESTICIDES INSTRUMENT PERFORMANCE}

No resolution check standards or breakdown check standards are required by Method 608 for pesticides, and according to the raw data provided, a resolution check standard was not analyzed by the laboratory. The laboratory did analyze a breakdown check standard with a breakdown of \(\leq 20 \%\) for individual components (4,4-DDT and endrin) and \(\leq 30 \%\) for the total, as suggested in the National Functional Guidelines. A review of the raw data indicated that the analytical run time was of sufficient length to provide adequate standard separation. The two analytical columns used in the analyses were within the guidelines specified in the methods.

According to the laboratory SOP and the initial calibration raw data, the retention time windows are \(\pm 0.10\) minutes for both surrogates and target compound calibration standards. A review of the raw data indicated that the laboratory retention time criteria were met for the surrogates and pesticide calibration standards. No qualifications were required.

\subsection*{2.3 CALIBRATION}

\subsection*{2.3.1 Analytical Sequence}

Based on the data provided, the analytical sequences were in accordance with the requirements of Method 608. No qualifications were required.
\begin{tabular}{ccc}
& Project: & NPDES \\
DATA YALIDATION REPORT & SDG: & IOB1004 \\
PestPCB
\end{tabular}

\subsection*{2.3.2 Initial Calibration}

There was one initial calibration dated 02/17/05 associated with the pesticide analysis of this SDG, which consisted of six point calibrations for all pesticide target compounds on two analytical columns. The \%RSDs were within the EPA Method 608 QC limit of \(\leq 10 \%\) or the \(r^{2}\) values were \(\geq 0.995\) on both analytical columns. There was one initial calibration dated \(02 / 11 / 05\) associated with the PCB analysis in this SDG which consisted of five points for Aroclor 1016 and Aroclor 1260. Single point calibrations for Aroclor 1242, Aroclor 1248, and Aroclor 1254 were also analyzed. The average \%RSDs for the individual peaks of Aroclor 1016 and Aroclor 1260 were \(\leq 10 \%\) or the \(r^{2}\) values were \(\geq 0.995\) on both analytical columns. An ICV was analyzed immediately following each of the initial calibrations. The \%Ds for all target compounds were within the QC limits of \(15 \%\) on both analytical columns. A representative number of \%RSDs and ICV \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.3.3 Continuing Calibration}

The pesticide analysis of sample Outfall 011 Composite was bracketed by four continuing calibrations, two preceding and two following the analyses. The \%Ds for target compounds endrin aldehyde (\(02 / 17 / 05\)), 4,4-DDT and methoxyclor (02/18/05 at 03:14 a.m. and 03:41 a.m.) and heptachlor, \(4,4^{\prime}\)-DDT, endrin aldehyde and endrin ketone (\(02 / 18 / 05\) at \(03: 41 \mathrm{a} . \mathrm{m}\).) exceeded \(15 \%\) on the primary channel; therefore, the aforementioned target compounds were qualified as estimated, "UJ," in sample Outfall 011 Composite. The remaining \%Ds were within the Method QC limit of \(\pm 15 \%\) for the remaining calibrations. The PCB analysis for this SDG was bracketed by two CCVs and the \%Ds for Aroclor 1016 and Aroclor 1260 were \(\leq 15 \%\). A representative number of \(\%\) Ds were recalculated from the raw data and no transcription or calculation errors were noted.

No further qualifications were required.

\subsection*{2.4 BLANKS}

\subsection*{2.4.1 Instrument Blanks}

An instrument blank was analyzed at the beginning of each analytical sequence. Crosscontamination was not evident in the samples. No qualifications were necessary.

\subsection*{2.4.2 Method Blanks}

One water method blank (5B17042-BLK1) was extracted and analyzed with this SDG. There were no pesticide target compounds or Aroclors detected in the method blank. Review of the chromatograms showed no false negatives. No qualifications were required

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One blank spike/blank spike duplicate pair (5B17042-BS1/BSDI) was extracted and analyzed with this SDG. The recoveries for all spiked pesticide target compounds and Aroclors were within the laboratory-established QC limits and the RPDs were \(\leq 30 \%\). A representative number of recoveries were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.
\begin{tabular}{|c|c|c|}
\hline & Project: SDG: & \[
\begin{aligned}
& \text { NPDES } \\
& \text { IOB1004 }
\end{aligned}
\] \\
\hline DATA VALIDATIONREPORT & Analysis: & Pestrce \\
\hline
\end{tabular}

\subsection*{2.6 SURROGATE RECOVERY}

The sample and all QC samples were fortified with the surrogate compounds decachlorobiphenyl and tetrachloro-m-xylene. Surrogate recoveries for the pesticide and PCB analyses of the samples were within the laboratory-established control limits. The recoveries were calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

There were no MS/MSD analyses associated with this SDG. Method accuracy and precision were assessed based on the blank spike/blank spike duplicate results. No qualifications were required.

\subsection*{2.8 SAMPLE CLEANUP PERFORMANCE}

According to the laboratory extraction benchsheets, no cleanups were performed on the water samples. No qualifications were required.

\subsection*{2.9 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated sample. The following are findings associated with field QC samples:

\subsection*{2.9.1 Field Blanks and Equipment Rinsates}

There were no field QC samples associated with this SDG. No qualifications were required.

\subsection*{2.9.2 Field Duplicates}

There were no field duplicate samples associated with this SDG.

\subsection*{2.10 COMPOUND IDENTIFICATION}

The laboratory analyzed for pesticide target compounds and PCBs by EPA Method 608. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for the sample in this SDG. No qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification was verified for this SDG; however, as there were no detects reported in the sample, quantitation was verified by recalculating a representative number of
\begin{tabular}{ccc}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG: \\
IOBIOO4 \\
Analysis: Pest/PCB
\end{tabular}
blank spike and surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibration and the laboratory MDL studies. The water reporting limits were not adjusted for sample amounts on the result summaries; however, the dilution factors listed on the summaries reflected the sample volumes extracted. Results were reported in ug/L (ppb). No qualifications were required.

\section*{DRAFT REPORT}

DRAFT REPORT
DATA SUBJECT TO CHANGE

\section*{D Del Mar Analytical}
 9830 South 51 si St., Suite B-120, Phoenix, AZ 85344 (480) \(785-0043\) FAX (480) 785-0851 2520 E. Sunset Re \#3, Las Veģas, NV 89120 (702) \(798-3620\) FAX (702) 798.3521

\section*{DRAFT REPORT}

DRAFT REPORT
DATA SUBJECT TO CHANGE

\section*{Data Qualifier Reference Table}
Qualifier Organics

U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
\(J \quad\) The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
\(\mathrm{N} \quad\) The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."

NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ The analyte was not deemed above the reported sample quantitation limit However, the reported quantitation limit is approxImate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.

The associated value is an estimated quantity.

Not applicable.

Not applicable.

The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

The data are unusable. (Note: Analyte may or may not be present).

\section*{Qualification Code Reference Table}
\begin{tabular}{|c|c|c|}
\hline Qualifier & Organics & Inorganics \\
\hline H & Holding times were exceeded. & Holding times were exceeded. \\
\hline S & Surrogate recovery was outside QC limits. & The sequence or number of standards used for the calibration was incorrect \\
\hline C & Calibration \%RSD or \%D were noncompliant. & Correlation coefficient is \(<0.995\). \\
\hline R & Calibration RRF was <0.05. & \(\% \mathrm{R}\) for calibration is not within control limits. \\
\hline B & Presumed contamination from preparation (method) blank. & Presumed contamination from preparation (method) or calibration blank. \\
\hline L & Laboratory Blank Spike/Blank Spike Duplicate \%R was not within control limits. & Laboratory Control Sample \%R was not within control limits. \\
\hline Q & MS/MSD recovery was poor or RPD high. & MS recovery was poor. \\
\hline E & Not applicable. & Duplicates showed poor agreement. \\
\hline I & Internal standard performance was unsatisfactory. & ICP ICS results were unsatisfactory. \\
\hline A & Not applicable. & ICP Serial Dilution \%D were not within control limits. \\
\hline M & Tuning (BFB or DFTPP) was noncompliant. & Not applicable. \\
\hline T & Presumed contamination from trip blank. & Not applicable. \\
\hline \(+\) & False positive - reported compound was not present. Not applicable. & \\
\hline - & False negative - compound was present but not reported. & Not applicable. \\
\hline F & Presumed contamination from FB, or ER. & Presumed contamination from FB or ER. \\
\hline \$ & Reported result or other information was incorrect. & Reported result or other information was incorrect. \\
\hline ? & TIC identity or reported retention time has been changed. & Not applicable. \\
\hline D & The analysis with this flag should not be used because another more technically sound analysis is available. & The analysis with this flag should not be used because another more technically sound analysis is available. \\
\hline P & Instrument performance for pesticides was poor. & Post Digestion Spike recovery was not within control limits. \\
\hline DNQ & The compound was detected between the MDL and the RL and, by definition, is considered an estimated value. & The compound was detected between the MDL and the RL and, by definition, is considered an estimated value. \\
\hline
\end{tabular}

Unusual problems found with the data that have been described in Section 2.\#, "Data Validation Findings." The number following the asterisk (*) will indicate the subsection where a description of the problem can be found (eg.*1 would indicate a sample was not within temperature limits).

Unusual problems found with the data that have been described in Section 2.\#, "Data Validation Findings." The number following the asterisk (*) will indicate the subsection where a description of the problem can be found (eg. *1 would indicate a sample was not within temperature limits).

\section*{amec \({ }^{\circ}\)}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES \\ Monitoring
}

\section*{ANALYSIS: RADIONUCLIDES}

\section*{SAMPLE DELIVERY GROUPS:}

IOB0418, IOB0980, IOB0993, IOB0996, IOB0997, IOB1001, IOB1004, IOB1014, \& IOB1069

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{lrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: IOB0418, IOB0980, IOB0993, IOB0996, IOB0997, IOB1001, IOB1004, IOB1014, \& IOB1069 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Radionuclides \\ QC Level: Level IV \\ No. of Samples: 11 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: P. Meeks \\ Date of Review: March 23, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the EPA Prescribed Procedures for Measurements of Radioactivity in Drinking Water, Methods 900.0, 905.0, and 906.0, and validation procedures outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & Del Mar ID & Eberline ID & Matrix & COC Method \\
\hline Outfall 002 & IOB0418-01 & \(8237-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 001 & IOB0980-01 & \(8265-001\) & water & \begin{tabular}{c}
\(900.0,903.1,904.0\), \\
\(905.0,906.0\)
\end{tabular} \\
\hline Outfall 001RE1 & IOB0980-01RE1 & \(8265-001\) & water & 900.0 \\
\hline Outfall 007 & IOB0993-01 & \(8261-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 007 RE1 & IOB0993-01 RE1 & \(8377-001\) & water & 906.0 \\
\hline Outfall 009 & IOB0996-01 & \(8262-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 009 RE1 & IOB0996-01 RE1 & \(8378-001\) & water & 906.0 \\
\hline Outfall 008 & IOB0997-01 & \(8266-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 008 RE1 & IOB0997-01 RE1 & \(8379-001\) & water & 906.0 \\
\hline Outfall 010 & IOB1001-01 & \(8267-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 010 RE1 & IOB1001-01 RE1 & \(8380-001\) & water & 906.0 \\
\hline Outfall 011 & IOB1004-01 & \(8263-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 011 & \(10 B 1014-01\) & 8264001 & water & \(9000,9050,906.0\) \\
\hline Outfall 003 Filtered & IOB1069-01 & \(8268-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 003 Unfiltered & IOB1069-02 & \(8268-002\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 003 Substrate & IOB1069-03 & \(8269-001\) & water & 901.1 \\
\hline
\end{tabular}
\begin{tabular}{rr}
Project: & NPDES \\
SDG No.: & Multiple \\
Analysis: & RAD \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

Most samples in these SDGs were received at Del Mar Analytical within the temperature limits of \(4 \pm 2^{\circ} \mathrm{C}\). Eberline, the subcontract laboratory, did not provide sample receipt temperature information; however, as it is not necessary to chill radiological samples, no qualifications were required. All samples were received intact and in good condition.

According to the Eberline login sheet, Outfall 002 was received unpreserved. It was confirmed in correspondence with Eberline dated \(01 / 31 / 05\), that the gross alpha, gross beta, and strontium samples were not preserved upon receipt; therefore, the nondetected strontium result for Outfall 002 was qualified as estimated, "UJ." The gross alpha and gross beta results were not qualified for lack of preservation, as the method also specifies a five-day holding time for unpreserved samples.

Eberline noted on their login sheets that Outfall 007, Outfall 008, Outfall 009 and Outfall 010 were received preserved, in plastic containers. The method states that tritium samples should not be preserved. Per a telephone conversation with M. Mannion of Eberline, these samples were adjusted back to a pH of about 7 upon receipt at Eberline. Due to the improper pH adjustments, the tritium results for Outfall 007, Outfall 008, Outfall 009, and Outfall 010 were rejected, "R." Del Mar Analytical sent additional aliquots of Outfall 007, Outfall 008, Outfall 009, and Outfall 010 for tritium reanalyses. These samples were received in the proper containers and were not preserved.

Additionally, according to the Los Angeles Regional Water Quality Control Board's guidance letter dated \(01 / 12 / 05\), samples collected for tritium analysis should be submitted in glass containers to avoid potential loss of tritium by sorption onto the plastic container. As the Outfall 007, Outfall 008, Outfall 009 and Outfall 010 tritium samples were previously rejected, no further qualifications were required.

After all analyses were complete, Del Mar Analytical sent extra volume of Outfall 001 to Eberline for gross alpha reanalysis and radium- 228 and radium- 226 analyses. These aliquots were received properly preserved. No further qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The original COCs were signed and dated by field and laboratory personnel and the transfer COCs were signed by personnel from both laboratories. Filtered, unfiltered, and substrate analyses were requested for Outfall 011 (IOB1014) on the original COC from the field to Del Mar. These instructions did not appear on the transfer COC to Eberline and subsequently only unfiltered analyses were preformed. The remaining original and transfer COCs accounted for the samples and analyses presented in this data package. Eberline did not list the MWH IDs on the Form Is; therefore, the reviewer edited the Form Is to reflect these IDs. A gross alpha was reanalyses was requested for Outfall 001, and tritium reanalyses were requested for Outfall 007 , Outfall 008, Outfall 009, and Outfall 010. To distinguish between the original and reanalysis results, the reviewer added "RE1," suffices to the original MWH and Del Mar Analytical IDs. No qualifications were required.
\begin{tabular}{lr}
& SDG No.:
\end{tabular} \begin{tabular}{c}
Multiple \\
DATA VALIDATION REPORT
\end{tabular}

\subsection*{2.1.3 Holding Times}

The tritium, radium, and strontium samples were analyzed within 180 days of collection. The Outfall 002 and Outfall 003 Unfiltered gross alpha and gross beta samples were analyzed beyond the five day holding time for unpreserved samples; therefore, these gross alpha and gross beta results were qualified as estimated, "JJ" for detects and, "UJ," for nondetects. No further qualifications were necessary.

\subsection*{2.2 CALIBRATION}

The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

\section*{Gross Alpha}

The initial calibration included with the data was performed in February 2003. All detector efficiencies were below \(20 \%\); therefore, the gross alpha results were qualified as estimated, "UJ," for nondetects and, "J," for detects, unless otherwise rejected (see section 2.10).

\section*{Gross Beta}

The initial calibrations were performed in June 1997. All gross beta detector efficiencies were at least \(20 \%\) and were considered acceptable.

\section*{Tritium}

No calibration standards were analyzed for this method. According to the laboratory, every sample was spiked for efficiency determination; therefore, no calibration is necessary. All detector efficiencies in the samples were at least \(20 \%\) and were considered acceptable. All internal spike efficiency to default efficiency ratios were near 1 , indicating that quenching did not occur.

\section*{Strontium-90}

The initial calibrations were performed in June 1997. All strontium chemical yields were at least \(65 \%\) and were considered acceptable and the strontium continuing calibration results were within the laboratory control limits. No qualifications were necessary.

\section*{Cesium}

The reviewer confirmed that the 662 KeV peak was used for quantitation, with an efficiency of \(85 \%\). No qualifications were necessary.

\section*{Radium}

The radium-226 cell efficiencies were determined in May 2004. The radium-226 continuing calibration results were within the laboratory-established control limits. The radium- 228 calibration utilized actinium-288 and was verified in June 2003. The radium-228 tracer, barium-133, was calibrated in March 2004. The tracer chemical yields were greater than \(90 \%\). And the actinium chemical yields were greater than \(65 \%\). No qualifications were necessary.
\begin{tabular}{rrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\subsection*{2.3 BLANKS}

No measurable activities were detected in the method blanks; therefore, no qualifications were necessary.

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

Six blank spikes (8261-002, 8237-002, 8269-002, 2008-002, 9479-004, 8377-002) were analyzed in association with the samples in these SDGs. The gross alpha, gross beta, and strontium recoveries for \(8261-002\) were outside of the 3 -sigma limits, but all had acceptable recoveries of \(80 \%, 88 \%\), and \(108 \%\), respectively. The remaining blank spike results were within the 3 -sigma limits. No qualifications were necessary.

\subsection*{2.5 LABORATORY DUPLICATES}

The laboratory performed duplicate analyses for gross alpha, gross beta, tritium, and strontium on Outfall 002, Outfall 007, and Outfall 003 Substrate, and for tritium on Outfall 007 RE1. The gross alpha and tritium RPDs were greater than \(20 \%\) for Outfall 007. The gross alpha results were within 3 -sigma and were considered acceptable, but the tritium result was just above 3-sigma; however, as no associated tritium detects were retained (see section 2.1.1), no qualifications were required. The remaining RPD were \(\leq 20 \%\). No further qualifications were necessary.

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

The laboratory performed matrix spike analyses for gross alpha, gross beta, and tritium on Outfall 002 and Outfall 007 and for tritium on Outfall 007 RE1. The Outfall 002 recovery for gross alpha was below 3-sigma; therefore, the gross alpha results in all samples except Outfall 007 were qualified as estimated, "J," for detects and, "UJ," for nondetects. As Outfall 007 had an acceptable recovery for gross alpha, no qualifications were applied. The remaining recoveries were within the 3 -sigma limits. No further qualifications were necessary.

\subsection*{2.7 SAMPLE RESULT VERIFICATION}

An EPA Level IV review was performed for the samples in these data packages. Sample results and MDAs reported on the sample result forms were verified against the raw data and no calculation or transcription errors were noted.

The original planchet for gross alpha in Outfall 001 was recounted once per a request from MWH personnel. The recount yielded an equivalent result as the original count and was not reported. The sample was later reanalyzed from extra sample volume provided by Del Mar Analytical, and was reported as Outfall 001 RE1. As the two gross alpha results were similar, the reviewer rejected, " \(R\)," the reanalysis, Outfall 001 RE1, in favor of the original result, Outfall 001 . No further qualifications were necessary.
\begin{tabular}{rrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\subsection*{2.8 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

\subsection*{2.8.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.8.2 Field Duplicates}

There were no field duplicate samples in these SDGs.

\section*{Eberline Services}

ANALYSIS RESULTS

\section*{AMES VALIDATED}

certified by
Report Date \(03 / 08105\)
page 1

\(\qquad\)
<res
Wras
+
द्र
世
, \& \(\qquad\)

\section*{LABORATORY REPORT}

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Outfall 011

Sampled: 02/11/05
Received: 02/11/05
Issued: 04/05/05 12:14

\section*{NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117}

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain(s) of Custody, 4 pages, are included and are an integral part of this report.
This entire report was reviewed and approved for release.

\section*{SAMPLE CROSS REFERENCE}

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
IOB1004-01
IOB1004-02

CLIENT ID
Outfall 011-composite
Trip Blank Water

Reviewed By:

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011

Report Number: IOB1004

Sampled: 02/11/05
Received: 02/11/05

\section*{CORRECTIVE ACTION REPORT}

Department: Extractions
Method: EPA 625
QC Batch: 5B14010

\section*{Identification and Definition of Problem:}

The percent recovery for benzidine in the BSD was below method acceptance limits.

Determination of the Cause of the Problem:
Benzidine is known to be a problematic compound. According to the EPA, it can be subject to oxidative losses during solvent extraction and its chromatographic behavior is poor.

\section*{Corrective Action Taken:}

The percent recovery in the BS was within the acceptance limits. All results reported for benzidine are potentially biased low and can be considered estimates only.

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\section*{CORRECTIVE ACTION REPORT}

Department: Extractions
Method: EPA 625
QC Batch: 5B14010

Date: 02/22/2005
Matrix: Water

\section*{Identification and Definition of Problem:}

The Method Blank result for 2-Methylnaphthalene was above the reporting limit (8.7ppb).

Determination of the Cause of the Problem:
A definitive cause for the QC failure has not been determined.

Corrective Action Taken:
There was insufficient sample volume for re-analysis. Samples had J-flag hits and were flagged with 'B' qualifier.

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: \(10 B 1004\)

Sampled: 02/11/05
Received: 02/11/05

\section*{TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)}
\begin{tabular}{lccccccccc}
\\
\begin{tabular}{llllll}
Analyte \\
Sample ID: IOB1004-01 (Outfall 011-composite - Water) \\
Reporting Units: mg/
\end{tabular} & Method & Batch & & MDL & Limit & \begin{tabular}{c}
Reporting \\
Limit
\end{tabular} & \begin{tabular}{c}
Sample \\
Result
\end{tabular} & \begin{tabular}{c}
Dilution \\
Factor
\end{tabular} & \begin{tabular}{c}
Date \\
Extracted
\end{tabular}
\end{tabular} \begin{tabular}{c}
Date \\
Analyzed
\end{tabular} \begin{tabular}{c}
Data \\
Qualifiers
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: 1OB1004

Sampled: 02/11/05
Received: 02/11/05

EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{Sample ID: 1OB1004-01 (Outfall 011-composite - Water) - cont.} \\
\hline \multicolumn{10}{|l|}{Reporting Units: mg/l} \\
\hline EFH (C13-C22) & EPA 8015B & 5B12001 & 0.082 & 0.50 & ND & 0.99 & 02/12/05 & 02/14/05 & \\
\hline Surrogate: \(n\)-Octacosane (40-125\%) & & & & & \(55 \%\) & & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: IOB1004

Sampled: 02/11/05
Received: 02/11/05

VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifers \\
\hline \multicolumn{10}{|l|}{Sample ID: IOB1004-01 (Outfall 011-composite - Water) - cont.} \\
\hline \multicolumn{10}{|l|}{Reporting Units: mg/} \\
\hline GRO (C4-C12) & EPA 8015 Mod. & 5B20029 & 0.050 & 0.10 & ND & 1 & 02/20/05 & 02/21/05 & \\
\hline Surrogate: 4-BFB (FID) (65-140\%) & & & & & \(88 \%\) & & & & \\
\hline \multicolumn{10}{|l|}{Sample ID: IOB1004-02 (Trip Blank - Water)} \\
\hline Reporting Units: mg/ & & & & & & & & & \\
\hline GRO (C4-C12) & EPA 8015 Mod. & 5B20029 & 0.050 & 0.10 & ND & 1 & 02/20/05 & 02/20/05 & \\
\hline Surrogate: 4-BFB (FID) (65-140\%) & & & & & \(85 \%\) & & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\title{
Del Mar Analytical
}

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101
}

Project ID: Outfall 011

Report Number: IOB1004

Sampled: 02/11/05
Received: 02/11/05

FREON 113 (EPA 8260B)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \begin{tabular}{l}
Sample ID: 1OB1004-01 (Outfall 011-composite - Water) \\
Reporting Units: ugh
\end{tabular} & & & & & & & & \\
\hline Trichlorotrifuoroethane (Freon 113) EPA 8260B & 5B17014 & 1.2 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline Surrogate: Dibromofluoromethane (80-120\%) & & & & \(108 \%\) & & & & \\
\hline Surrogate: Toluene-d8 (80-120\%) & & & & \(101 \%\) & & & & \\
\hline Surrogate: 4-Bromofluorobenzene (80-120\%) & & & & 97\% & & & & \\
\hline \begin{tabular}{l}
Sample ID: IOB1004-02 (Trip Blank - Water) \\
Reporting Units: ugh
\end{tabular} & & & & & & & & \\
\hline Trichlorotrifluoroethane (Freon 113) EPA 8260B & 5B17014 & 1.2 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline Surrogate: Dibromofluoromethane (80-120\%) & & & & \(108 \%\) & & & & \\
\hline Surrogate: Toluene-d8 (80-120\%) & & & & \(101 \%\) & & & & \\
\hline Surrogate: 4-Bromofluorobenzene (80-120\%) & & & & 98\% & & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\title{
Del Mar Analytical
}

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Outfall 011
Report Number: \(10 B 1004 \quad \begin{array}{r}\text { Sampled: } 02 / 11 / 05 \\ \text { Received: 02/11/05 }\end{array}\)

\section*{PURGEABLES BY GC/MS (EPA 624)}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

\title{
Del Mar Analytical
}
```

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Project ID:Outfall 011
Report Number: 1OB1004
Pasadena, CA 91101

```

\section*{PURGEABLES BY GC/MS (EPA 624)}

Sampled: 02/11/05
Received: 02/11/05
\begin{tabular}{lllllllllll}
& & & MDL \\
Analyte & Method & Batch & \begin{tabular}{c}
Reporting \\
Limit
\end{tabular} & \begin{tabular}{c}
Sample \\
Result
\end{tabular} & \begin{tabular}{c}
Dilution \\
Factor
\end{tabular} & \begin{tabular}{c}
Date \\
Extracted
\end{tabular} & \begin{tabular}{c}
Date \\
Analyzed
\end{tabular} \\
Qualifiers
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Outfall 011

Report Number: \(10 B 1004\)
Sampled: 02/11/05
Received: 02/11/05

PURGEABLES BY GC/MS (EPA 624)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date
Extracted & \[
\begin{gathered}
\text { Date } \\
\text { Analyz }
\end{gathered}
\] \\
\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{Sample ID: 1OB1004-02 (Trip Blank - Water) Reporting Units: ug/}} \\
\hline & & & & & & & & \\
\hline Benzene & EPA 624 & 5B17014 & 0.28 & 1.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Bromodichloromethane & EPA 624 & 5B17014 & 0.30 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Bromoform & EPA 624 & 5B17014 & 0.32 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Bromomethane & EPA 624 & 5B17014 & 0.34 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Carbon tetrachloride & EPA 624 & 5B17014 & 0.28 & 0.50 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Chlorobenzene & EPA 624 & 5B17014 & 0.36 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Chloroethane & EPA 624 & 5B17014 & 0.33 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Chloroform & EPA 624 & 5B17014 & 0.33 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Chloromethane & EPA 624 & 5B17014 & 0.30 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Dibromochloromethane & EPA 624 & 5B17014 & 0.28 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline 1,2-Dichlorobenzene & EPA 624 & 5B17014 & 0.32 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline 1,3-Dichlorobenzene & EPA 624 & 5B17014 & 0.35 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline 1,4-Dichlorobenzene & EPA 624 & 5B17014 & 0.37 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline 1,1-Dichloroethane & EPA 624 & 5B17014 & 0.27 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline 1,2-Dichloroethane & EPA 624 & 5B17014 & 0.28 & 0.50 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline 1,1-Dichloroethene & EPA 624 & 5B17014 & 0.32 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline trans-1,2-Dichloroethene & EPA 624 & 5B17014 & 0.27 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline 1,2-Dichloropropane & EPA 624 & 5B17014 & 0.35 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline cis-1,3-Dichloropropene & EPA 624 & 5817014 & 0.22 & 2.0 & ND & 1 & 02/17/05 & 02/17105 \\
\hline trans-1,3-Dichloropropene & EPA 624 & 5B17014 & 0.24 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Ethylbenzene & EPA 624 & 5B17014 & 0.25 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Methylene chloride & EPA 624 & 5B17014 & 0.48 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline 1,1,2,2-Tetrachloroethane & EPA 624 & 5B17014 & 0.24 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Tetrachloroethene & EPA 624 & 5B17014 & 0.32 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Toluene & EPA 624 & 5B17014 & 0.36 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline 1,1,1-Trichloroethane & EPA 624 & 5B17014 & 0.30 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline 1,1,2-Trichloroethane & EPA 624 & 5B17014 & 0.30 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Trichloroethene & EPA 624 & 5B17014 & 0.26 & 2.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Trichlorofluoromethane & EPA 624 & 5B17014 & 0.34 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Vinyl chloride & EPA 624 & 5B17014 & 0.26 & 0.50 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline Xylenes, Total & EPA 624 & 5B17014 & 0.52 & 4.0 & ND & 1 & 02/17/05 & 02/17/05 \\
\hline \multicolumn{2}{|l|}{Surrogate: Dibromofluoromethane (80-120\%)} & & & & \(108 \%\) & & & \\
\hline \multicolumn{2}{|l|}{Surrogate: Toluene-d8 (80-120\%)} & & & & \(101 \%\) & & & \\
\hline \multicolumn{2}{|l|}{Surrogate: 4-Bromofluorobenzene (80-120\%)} & & & & 98\% & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Bocing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: \(10 B 1004\)

Sampled: 02/11/05
Received: 02/11/05

PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & \begin{tabular}{l}
Date \\
Analyzed
\end{tabular} & Data Qualfiers \\
\hline \multicolumn{10}{|l|}{Sample ID: IOB1004-01 (Outfall 011-composite - Water)} \\
\hline \multicolumn{10}{|l|}{Reporting Units: ug/} \\
\hline 1,2-Dichloro-1,1,2-trifluoroethane & EPA 624 (MOD.) & 5B17014 & N/A & 2.5 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline Cyclohexane & EPA 624 (MOD.) & 5B17014 & N/A & 2.5 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline \multicolumn{10}{|l|}{Sample ID: 1OB1004-02 (Trip Blank - Water)} \\
\hline Reporting Units: ugh & & & & & & & & & \\
\hline 1,2-Dichloro-1,1,2-trifluoroethane & EPA 624 (MOD.) & 5B17014 & N/A & 2.5 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline Cyclohexane & EPA 624 (MOD.) & 5B17014 & N/A & 2.5 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\section*{Project ID: Outfall 011}

Report Number: IOB1004

Sampled: 02/11/05
Received: 02/11/05

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & Dilution Factor & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{Sample ID: IOB1004-01 (Outfall 011-composite - Water)
Reporting Units: ug}} \\
\hline & & & & & & & & & \\
\hline Acenaphthene & EPA 625 & 5B14010 & 0.10 & 0.50 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Acenaphthylene & EPA 625 & SB14010 & 0.10 & 0.50 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Aniline & EPA 625 & SB14010 & 2.9 & 10 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Anthracene & EPA 625 & 5B14010 & 0.083 & 0.50 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Benzidine & EPA 625 & 5814010 & 2.4 & 5.0 & ND & 0.98 & 02/14/05 & 02/18/05 & L2 \\
\hline Benzoic acid & EPA 625 & 5B14010 & 3.7 & 20 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Benzo(a)anthracene & EPA 625 & 5B14010 & 0.038 & 5.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Benzo(a)pyrene & EPA 625 & 5B14010 & 0.14 & 2.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Benzo(b)fluoranthene & EPA 625 & 5B14010 & 0.050 & 2.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Benzo(g,h,i)perylene & EPA 625 & 5B14010 & 0.059 & 5.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Benzo(k)fluoranthene & EPA 625 & 5B14010 & 0.053 & 0.50 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Benzyl alcohol & EPA 625 & 5B14010 & 0.21 & 5.0 & 0.27 & 0.98 & 02/14/05 & 02/18/05 & J \\
\hline Bis(2-chloroethoxy)methane & EPA 625 & 5B14010 & 0.072 & 0.50 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Bis(2-chloroethyl)ether & EPA 625 & \(5 \mathrm{B14010}\) & 0.084 & 0.50 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Bis(2-chloroisopropyl)ether & EPA 625 & 5B14010 & 0.11 & 0.50 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Bis(2-ethylhexyl)phthalate & EPA 625 & 5B14010 & 1.1 & 5.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline 4-Bromophenyl phenyl ether & EPA 625 & 5B14010 & 0.12 & 1.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Butyl benzyl phthalate & EPA 625 & 5B14010 & 0.34 & 5.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline 4 Chioroaniline & EPA 625 & 5B14010 & 0.20 & 2.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline 2-Chloronaphthalene & EPA 625 & 5B14010 & 0.059 & 0.50 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline 4-Chloro-3-methylphenol & EPA 625 & 5B14010 & 0.34 & 2.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline 4-Chlorophenyl phenyl ether & EPA 625 & 5B14010 & 0.056 & 0.50 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline 2-Chlorophenol & EPA 625 & 5B14010 & 0.12 & 1.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Chrysene & EPA 625 & 5814010 & 0.072 & 0.50 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Dibenz(a,h)anthracene & EPA 625 & 5B14010 & 0.083 & 0.50 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Dibenzofuran & EPA 625 & 5B14010 & 0.075 & 0.50 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Di-n-butyl phthalate & EPA 625 & 5B14010 & 0.26 & 2.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline 1,2-Dichlorobenzene & EPA 625 & 5 B 14010 & 0.11 & 0.50 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline 1,3-Dichlorobenzene & EPA 625 & 5 B 14010 & 0.13 & 0.50 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline 1,4-Dichlorobenzene & EPA 625 & 5B14010 & 0.050 & 0.50 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline 3,3-Dichlorobenzidine & EPA 625 & 5B14010 & 0.93 & 5.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline 2,4-Dichlorophenol & EPA 625 & 5B14010 & 0.21 & 2.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Diethyl phthalate & EPA 625 & 5B14010 & 0.12 & 1.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline 2,4-Dimethylphenol & EPA 625 & 5B14010 & 0.31 & 2.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Dimethyl phthalate & EPA 625 & 5B14010 & 0.081 & 0.50 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline 4,6-Dinitro-2-methylphenol & EPA 625 & 5B14010 & 0.38 & 5.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline 2,4-Dinitrophenol & EPA 625 & 5B14010 & 2.7 & 5.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline 2,4-Dinitrotoluene & EPA 625 & 5B14010 & 0.23 & 5.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline 2,6-Dinitrotoluene & EPA 625 & 5B14010 & 0.24 & 5.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Di-n-octyl phthalate & EPA 625 & 5B14010 & 0.17 & 5.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline 1,2-Diphenylhydrazine/Azobenzene & EPA 625 & 5B14010 & 0.087 & 1.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline \multicolumn{10}{|l|}{Del Mar Analytical, Irvine Wendy Kirkeeng For Michele Harper Project Manager} \\
\hline
\end{tabular}

\title{
Del Mar Analytical
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: 1OB1004

Sampled: 02/11/05
Received: 02/11/05

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & \begin{tabular}{l}
Date \\
Extracted
\end{tabular} & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{Sample ID: IOB1004-01 (Outfall 011-composite - Water) - cont.}} \\
\hline & & & & & & & & & \\
\hline Fluoranthene & EPA 625 & 5B14010 & 0.089 & 0.50 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Fluorene & EPA 625 & 5B14010 & 0.075 & 0.50 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Hexachlorobenzene & EPA 625 & 5B14010 & 0.13 & 1.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Hexachlorobutadiene & EPA 625 & 5B14010 & 0.38 & 2.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Hexachlorocyclopentadiene & EPA 625 & 5B14010 & 1.8 & 5.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Hexachloroethane & EPA 625 & 5B14010 & 0.51 & 3.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Indeno(1,2,3-cd)pyrene & EPA 625 & 5B14010 & 0.19 & 2.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Isophorone & EPA 625 & 5B14010 & 0.059 & 1.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline 2-Methylnaphthalene & EPA 625 & 5B14010 & 0.13 & 1.0 & 0.16 & 0.98 & 02/14/05 & 02/18/05 & B, J \\
\hline 2-Methylphenol & EPA 625 & 5B14010 & 0.28 & 2.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline 4-Methylphenol & EPA 625 & 5B14010 & 0.20 & 5.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Naphthalene & EPA 625 & 5B14010 & 0.13 & 1.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline 2-Nitroaniline & EPA 625 & 5B14010 & 0.18 & 5.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline 3-Nitroaniline & EPA 625 & 5B14010 & 0.35 & 5.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline 4-Nitroaniline & EPA 625 & 5B14010 & 0.49 & 5.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Nitrobenzene & EPA 625 & 5B14010 & 0.10 & 1.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline 2-Nitrophenol & EPA 625 & 5B14010 & 0.23 & 2.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline 4 Nitrophenol & EPA 625 & 5B14010 & 0.73 & 5.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline N-Nitrosodimethylamine & EPA 625 & 5B14010 & 0.22 & 2.0 & ND & 0.98 & 02/14/05 & 02/18/05 & C \\
\hline N-Nitroso-di-n-propylamine & EPA 625 & 5B14010 & 0.18 & 2.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline N -Nitrosodiphenylamine & EPA 625 & 5B14010 & 0.077 & 1.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Pentachlorophenol & EPA 625 & 5B14010 & 0.78 & 2.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Phenanthrene & EPA 625 & 5B14010 & 0.071 & 0.50 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Phenol & EPA 625 & 5B14010 & 0.14 & 1.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Pyrene & EPA 625 & 5B14010 & 0.059 & 0.50 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline 1,2,4-Trichlorobenzene & EPA 625 & 5B14010 & 0.10 & 1.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline 2,4,5-Trichlorophenol & EPA 625 & 5B14010 & 0.075 & 2.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline 2,4,6-Trichlorophenol & EPA 625 & 5B14010 & 0.10 & 1.0 & ND & 0.98 & 02/14/05 & 02/18/05 & \\
\hline Surrogate: 2-Fluorophenol (35-120\%) & & & & & \(77 \%\) & & & & \\
\hline Surrogate: Phenol-d6 (45-120\%) & & & & & 80\% & & & & \\
\hline Surrogate: 2,4,6-Tribromophenol (50-125\%) & & & & & \(88 \%\) & & & & \\
\hline Surrogate: Nitrobenzene-d5 (45-120\%) & & & & & \(78 \%\) & & & & \\
\hline Surrogate: 2-Fluorabiphenyl (45-120\%) & & & & & \(75 \%\) & & & & \\
\hline Surrogate: Terphenyl-d14 (45-135\%) & & & & & \(71 \%\) & & & & \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

\title{
Del Mar Analytical
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011

Report Number: IOB1004

Sampled: 02/11/05
Received: 02/11/05

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
\begin{tabular}{|lcr}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
300 North Lake Avenue, Suite 1200 & & \begin{tabular}{r}
Sampled: \(02 / 11 / 05\) \\
Pasadena, CA 91101 \\
Attention: Bronwyn Kelly
\end{tabular}
\end{tabular}

\section*{TOTAL PCBS (EPA 608)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & Sample Result & Dilution Factor & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{Sample ID: IOB1004-01 (Outfall 011-composite - Water) - cont.} \\
\hline \multicolumn{10}{|l|}{Reporting Units: ug/} \\
\hline Aroclor 1016 & EPA 608 & 5B17042 & 0.20 & 1.0 & ND & 0.962 & 02/17/05 & 02/18/05 & \\
\hline Aroclor 1221 & EPA 608 & 5B17042 & 0.10 & 1.0 & ND & 0.962 & 02/17/05 & 02/18/05 & \\
\hline Aroclor 1232 & EPA 608 & 5B17042 & 0.15 & 1.0 & ND & 0.962 & 02/17/05 & 02/18/05 & \\
\hline Aroclor 1242 & EPA 608 & 5B17042 & 0.15 & 1.0 & ND & 0.962 & 02/17/05 & 02/18/05 & \\
\hline Aroclor 1248 & EPA 608 & 5B17042 & 0.25 & 1.0 & ND & 0.962 & 02/17/05 & 02/18/05 & \\
\hline Aroclor 1254 & EPA 608 & 5B17042 & 0.25 & 1.0 & ND & 0.962 & 02/17/05 & 02/18/05 & \\
\hline Aroclor 1260 & EPA 608 & 5B17042 & 0.40 & 1.0 & ND & 0.962 & 02/17/05 & 02/18/05 & \\
\hline Surrogate: Decachlorobiphenyl (45-120\%) & & & & & 74\% & & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011

Report Number: \(10 B 1004\)

Sampled: 02/11/05
Received: 02/11/05

\section*{METALS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & Sample Result & Dilution Factor & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{Sample ID: IOB1004-01 (Outfall 011-composite - Water) - cont.} \\
\hline \multicolumn{10}{|l|}{Reporting Units: mg/} \\
\hline Barium & EPA 200.8 & 5B17112 & 0.00014 & 0.0010 & 0.024 & 1 & 02/17/05 & 02/22/05 & \\
\hline Boron & EPA 200.7 & 5B17127 & 0.0074 & 0.050 & 0.047 & 1 & 02/17/05 & 02/20/05 & J \\
\hline Iron & EPA 200.8 & 5B17112 & 0.0032 & 0.010 & 2.2 & 1 & 02/17/05 & 02/22/05 & \\
\hline
\end{tabular}

\title{
Del Mar Analytical
}
\begin{tabular}{lcr}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
300 North Lake Avenue, Suite 1200 & & \begin{tabular}{r}
Sampled: \(02 / 11 / 05\) \\
Pasadena, CA 91101 \\
Attention: Bronwyn Kelly
\end{tabular}
\end{tabular}

Attention: Bronwyn Kelly

METALS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{Sample ID: 1OB1004-01 (Outfall 011-composite - Water) - cont. Reporting Units: ugA}} \\
\hline & & & & & & & & & \\
\hline Antimony & EPA 200.8 & 5B17112 & 0.18 & 2.0 & 0.63 & 1 & 02/17/05 & 02/22/05 & J \\
\hline Arsenic & EPA 200.8 & 5B17112 & 0.49 & 1.0 & 1.1 & 1 & 02/17/05 & 02/22/05 & B \\
\hline Beryllium & EPA 200.8 & 5B17112 & 0.037 & 0.50 & 0.10 & 1 & 02/17/05 & 02/22/05 & J \\
\hline Cadmium & EPA 200.8 & 5B17112 & 0.015 & 1.0 & 0.13 & 1 & 02/17/05 & 02/22/05 & J \\
\hline Chromium & EPA 200.8 & 5B17112 & 0.26 & 1.0 & 3.9 & 1 & 02/17/05 & 02/24/05 & \\
\hline Cobalt & EPA 200.8 & 5B17112 & 0.10 & 1.0 & 0.84 & 1 & 02/17/05 & 02/22/05 & J \\
\hline Copper & EPA 200.8 & 5B17112 & 0.49 & 2.0 & 4.4 & 1 & 02/17/05 & 02/22/05 & \\
\hline Lead & EPA 200.8 & 5B17112 & 0.13 & 1.0 & 1.6 & 1 & 02/17/05 & 02/22/05 & \\
\hline Manganese & EPA 200.8 & 5B17112 & 0.44 & 1.0 & 43 & 1 & 02/17/05 & 02/22/05 & \\
\hline Mercury & EPA 245.1 & 5B15070 & 0.063 & 0.20 & ND & 1 & 02/15/05 & 02/15/05 & \\
\hline Nickel & EPA 200.8 & 5B17112 & 0.15 & 1.0 & 3.4 & 1 & 02/17/05 & 02/22/05 & \\
\hline Selenium & EPA 200.8 & 5B17112 & 0.36 & 2.0 & ND & 1 & 02/17/05 & 02/22/05 & \\
\hline Silver & EPA 200.8 & 5B17112 & 0.089 & 1.0 & ND & 1 & 02/17/05 & 02/22/05 & \\
\hline Thallium & EPA 200.8 & 5B17112 & 0.075 & 1.0 & ND & 1 & 02/17/05 & 02/22/05 & \\
\hline Vanadium & EPA 200.8 & 5B17112 & 0.86 & 1.0 & 5.5 & 1 & 02/17/05 & 02/23/05 & \\
\hline Zinc & EPA 200.8 & 5B17112 & 3.1 & 20 & 17 & 1 & 02/17/05 & 02/22/05 & J \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
\begin{tabular}{|lcr|}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(02 / 11 / 05\) \\
Pasadena, CA 91101 & Report Number: \(10 B 1004\) & Received: \(02 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Sample ID: IOB1004-01 (Outfall 011-composite - Water) - cont. \\
Reporting Units: mg/l
\end{tabular}}} \\
\hline & & & & & & & & & \\
\hline Ammonia-N (Distilled) & EPA 350.2 & 5B15110 & 0.30 & 0.50 & 0.56 & 1 & 02/15/05 & 02/15/05 & \\
\hline Biochemical Oxygen Demand & EPA 405.1 & 5B11108 & 0.59 & 2.0 & 3.3 & 1 & 02/11/05 & 02/16/05 & \\
\hline Chloride & EPA 300.0 & 5B11120 & 0.26 & 0.50 & 5.1 & 1 & 02/11/05 & 02/12/05 & \\
\hline Chromium VI & EPA 218.6 & 5B11047 & 0.000045 & 0.0010 & ND & 1 & 02/11/05 & 02/11/05 & \\
\hline Total Cyanide & EPA 335.2 & 5B12048 & 0.0022 & 0.0050 & ND & 1 & 02/12/05 & 02/12/05 & \\
\hline Fluoride & EPA 300.0 & 5B11120 & 0.10 & 0.50 & 0.29 & 1 & 02/11/05 & 02/12/05 & J \\
\hline Nitrate/Nitrite-N & EPA 300.0 & 5B11120 & 0.072 & 0.26 & 0.62 & 1 & 02/11/05 & 02/12/05 & \\
\hline Oil \& Grease & EPA 413.1 & 5B17117 & 0.94 & 5.0 & ND & 1 & 02/17/05 & 02/17/05 & \\
\hline Residual Chlorine & EPA 330.5 & 5B11072 & 0.10 & 0.10 & ND & 1 & 02/11/05 & 02/11/05 & \\
\hline Sulfate & EPA 300.0 & 5B11120 & 0.18 & 0.50 & 13 & 1 & 02/11/05 & 02/12/05 & \\
\hline Surfactants (MBAS) & SM5540-C & 5B12050 & 0.088 & 0.20 & ND & 2 & 02/12/05 & 02/12/05 & RL-1 \\
\hline Total Dissolved Solids & SM2540C & 5B16119 & 10 & 10 & 98 & 1 & 02/16/05 & 02/16/05 & \\
\hline Total Organic Carbon & EPA 415.1 & 5B23083 & 0.25 & 1.0 & 11 & 1 & 02/23/05 & 02/23/05 & \\
\hline Total Suspended Solids & EPA 160.2 & 5B17122 & 10 & 10 & 46 & 1 & 02/17/05 & 02/17/05 & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

\title{
Del Mar Analytical
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011

Report Number: 1OB1004

Sampled: 02/11/05
Received: 02/11/05

\section*{INORGANICS}

\begin{tabular}{llr}
MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(02 / 11 / 05\) \\
Pasadena, CA 91101 & Report Number: IOB1004 & Received: \(02 / 11 / 05\) \\
Attention: Bronwyn Kelly & \(\ldots\)
\end{tabular}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & \begin{tabular}{l}
Reperting \\
Limit
\end{tabular} & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & \begin{tabular}{l}
Date \\
Extracted
\end{tabular} & Date Analyzed & Data Qualifiers \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: IOB1004

Sampled: 02/11/05
Received: 02/11/05
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{INORGANICS} \\
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & \begin{tabular}{l}
Date \\
Extracted
\end{tabular} & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{Sample ID: IOB1004-01 (Outfall 011-composite - Water) - cont.} \\
\hline Reporting Units: umhos/cm & & & & & & & & & \\
\hline Specific Conductance & EPA 120.1 & 5B16120 & 1.0 & 1.0 & 130 & 1 & 02/16/05 & 02/16/05 & \\
\hline
\end{tabular}
\begin{tabular}{|lrr}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
300 North Lake Avenue, Suite 1200 & & \begin{tabular}{l}
Sampled: \(02 / 11 / 05\) \\
Rasadena, CA 91101
\end{tabular} \\
\begin{tabular}{ll}
Received: & \(02 / 11 / 05\)
\end{tabular}
\end{tabular}

1,4-DIOXANE BY GC/MS (EPA 5030B/8260B)
\begin{tabular}{lllllllll}
& & & MDL & Reporting & Sample & Dilution & Date & Date
\end{tabular} Data

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: IOB1004

Sampled: 02/11/05
Received: 02/11/05

\section*{SHORT HOLD TIME DETAIL REPORT}
\begin{tabular}{lcccccc}
& \begin{tabular}{c}
Hold Time \\
(in days)
\end{tabular} & \begin{tabular}{c}
Date/Time \\
Sampled
\end{tabular} & \begin{tabular}{c}
Date/Time \\
Received
\end{tabular} & \begin{tabular}{c}
Date/Time \\
Extracted
\end{tabular} & \begin{tabular}{c}
Date/Time \\
Analyzed
\end{tabular} \\
Sample ID: Outfall 011-composite (IOB1004-01)- - Water
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Outfall 011
Report Number: 1OB1004
Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKIOC DATA}

\section*{TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5B15078 Extracted: 02/15/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 02/15/2005 (5B15078-BLK1)} \\
\hline Total Recoverable Hydrocarbons ND & 1.0 & 0.31 & mg/ & & & & & & & \\
\hline LCS Analyzed: 02/15/2005 (5B15078-BS1) & & & & & & & & & & M-NR1 \\
\hline Total Recoverable Hydrocarbons 4.46 & 1.0 & 0.31 & \(\mathrm{mg} /\) & 5.00 & & 89 & 65-120 & & & \\
\hline \multicolumn{11}{|l|}{LCS Dup Analyzed: 02/15/2005 (5B15078-BSD1)} \\
\hline Total Recoverable Hydrocarbons 4.21 & 1.0 & 0.31 & \(\mathrm{mg} /\) & 5.00 & & 84 & 65-120 & 6 & 20 & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: 1OB1004
Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKIQC DATA}

\section*{EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011

Report Number: IOB1004

Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKGC DATA}

\section*{VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5B20029 Extracted: 02/20/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 02/20/2005 (5B20029-BLK1)} \\
\hline GRO (C4-C12) ND & 0.10 & 0.050 & mg/ & & & & & & & \\
\hline Surrogate: 4-BFB (FID) 0.00927 & & & \(m g / 7\) & 0.0100 & & 93 & 65-140 & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 02/20/2005 (5B20029-BS1)} \\
\hline GRO (C4-C12) 0.616 & 0.10 & 0.050 & mg/ & 0.800 & & 77 & 70-140 & & & \\
\hline Surrogate: 4-BFB (FID) 0.0260 & & & \(m g /\) & 0.0300 & & 87 & 65-140 & & & \\
\hline Matrix Spike Analyzed: 02/20/2005 (5B20029-MS1) & \multicolumn{10}{|c|}{Source: 1OB1121-09} \\
\hline GRO (C4-C12) 0.219 & 0.10 & 0.050 & \(\mathrm{mg} / \mathrm{l}\) & 0.220 & ND & 100 & 60-140 & & & \\
\hline Surrogate: 4-BFB (FID) 0.00982 & & & \(m g / 1\) & 0.0100 & & 98 & 65-140 & & & \\
\hline \multicolumn{2}{|l|}{Matrix Spike Dup Analyzed: 02/20/2005 (5B20029-MSD1)} & & & \multicolumn{3}{|r|}{Source: 10B1121-09} & & & & \\
\hline GRO (C4-C12) 0.209 & 0.10 & 0.050 & \(\mathrm{mg} / 1\) & 0.220 & ND & 95 & 60-140 & 5 & 20 & \\
\hline Surrogate; 4-BFB (FID) . 0.0104 & \(\because\) & & mg/ \(/\) & 0.0100 & & 104 & 65-140 & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention; Bronwyn Kelly
}

Project ID: Outfall 011

Sampled: 02/11/05
Received: 02/11/05

\section*{MEIHOD BLANKIQC DATA}

\section*{FREON 113 (EPA 8260B)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5B17014 Extracted: 02/17/05} \\
\hline & & & & & & & & & & & \\
\hline \multicolumn{12}{|l|}{Biank Analyzed: 02/17/2005 (5B17014-BLK1)} \\
\hline Trichlorotrifuoroethane (Freon 113) & ND & 5.0 & 1.2 & ug/l & & & & & & & \\
\hline Surrogate: Dibromofluoromethane & 26.4 & & & \(u g /\) & 25.0 & & 106 & 80-120 & & & \\
\hline Surrogate: Toluene-d8 & 25.1 & & & \(u g / l\) & 25.0 & & 100 & 80-120 & & & \\
\hline Surrogate: 4-Bromofluorobenzene & 24.2 & & & \(u \mathrm{~g} / \mathrm{l}\) & 25.0 & & 97 & 80-120 & & & \\
\hline
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: IOB1004

Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKIOC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & & & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Oualifiers \\
\hline Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & & Qualifiers \\
\hline
\end{tabular}

Blank Analyzed: 02/12/2005 (5B12011-BLK1)
\begin{tabular}{lc}
Acrolein & ND \\
Acrylonitrile & ND \\
2-Chloroethyl vinyl ether & ND \\
Surrogate: Dibromofluoromethane & 21.9 \\
Surrogate: Toluene-d8 & 26.4 \\
Surrogate: 4 -Bromofluorobenzene & 24.3
\end{tabular}
\begin{tabular}{ll}
LCS Analyzed: 02/12/2005 (5B12011-BS1) \\
\hline 2-Chloroethyl vinyl ether & 26.8 \\
Surrogate: Dibromofluoromethane & 21.8 \\
Surrogate: Toluene-d8 & 26.6 \\
Surrogate: 4 -Bromofluorobenzene & 24.8
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Matrix Spike Analyzed: 02/12/2005 (5B12011-MS1)} & \multicolumn{6}{|c|}{Source: 1OB0980-01} & & \\
\hline 2 -Chloroethyl vinyl ether & 27.2 & 5.0 & 1.3 & ugh & 25.0 & ND & 109 & 20-175 & & \\
\hline Surrogate: Dibromofluoromethane & 22.6 & & & ug/ & 25.0 & & 90 & 80-120 & & \\
\hline Surrogate: Toluene-d8 & 26.3 & & & \(u g /\) & 25.0 & & 105 & 80-120 & & \\
\hline Surrogate: 4-Bromofluorobenzene & 25.1 & & & ug/ & 25.0 & & 100 & 80-120 & & \\
\hline \multicolumn{3}{|l|}{Matrix Spike Dup Analyzed: 02/12/2005 (5B12011-MSD1)} & \multicolumn{6}{|c|}{Source: 10B0980-01} & & \\
\hline 2-Chloroethyl vinyl ether & 27.5 & 5.0 & 1.3 & ug/ & 25.0 & ND & 110 & 20-175 & 1 & 25 \\
\hline Surrogate: Dibromofuoromethane & 22.7 & & & \(u g /\) & 25.0 & & 91 & 80-120 & & \\
\hline Surrogate: Toluene-d8 & 26.4 & & & ugh & 25.0 & & 106 & 80-120 & & \\
\hline Surrogate: 4-Bromofluorobenzene & 24.8 & & & ug/ & 25.0 & & 99 & 80-120 & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Sampled: 02/11/05
Report Number: 1OB1004 Received: 02/11/05

\section*{METHOD BLANKIQC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & & & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Oualifiers \\
\hline Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers \\
\hline
\end{tabular}

Blank Analyzed: 02/17/2005 (5B17014-BLK1)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Benzene & ND & 1.0 & 0.28 & ug/ & & & \\
\hline Bromodichloromethane & ND & 2.0 & 0.30 & ug/ & & & \\
\hline Bromoform & ND & 5.0 & 0.32 & ug/1 & & & \\
\hline Bromomethane & ND & 5.0 & 0.34 & ug/ & & & \\
\hline Carbon tetrachloride & ND & 0.50 & 0.28 & ug/1 & & & \\
\hline Chlorobenzene & ND & 2.0 & 0.36 & ug/ & & & \\
\hline Chloroethane & ND & 5.0 & 0.33 & ugl & & & \\
\hline Chloroform & ND & 2.0 & 0.33 & ug/l & & & \\
\hline Chloromethane & ND & 5.0 & 0.30 & ug/ & & & \\
\hline Dibromochloromethane & ND & 2.0 & 0.28 & ug/ & & & \\
\hline 1,2-Dichlorobenzene & ND & 2.0 & 0.32 & ug/ & & & \\
\hline 1,3-Dichlorobenzene & ND & 2.0 & 0.35 & ug/ & & & \\
\hline 14-Dichlorobenzene & ND & 2.0 & 0.37 & ug/ & & & \\
\hline 1,1-Dichloroethane & ND & 2.0 & 0.27 & ug / & & & \\
\hline 1,2-Dichloroethane & ND & 0.50 & 0.28 & ug/ & & & \\
\hline 1,1-Dichloroethene & ND & 5.0 & 0.32 & ug/ & & & \\
\hline trans-1,2-Dichloroethene & ND & 2.0 & 0.27 & ug/ & & & \\
\hline 1,2-Dichloropropane & ND & 2.0 & 0.35 & ug/l & & & \\
\hline cis-1,3-Dichloropropene & ND & 2.0 & 0.22 & ug/ & & & \\
\hline trans-1,3-Dichloropropene & ND & 2.0 & 0.24 & ug/1 & & & \\
\hline Ethylbenzene & ND & 2.0 & 0.25 & ug/ & & & \\
\hline Methylene chloride & ND & 5.0 & 0.48 & ugh & & & \\
\hline 1,1,2,2-Tetrachloroethane & ND & 2.0 & 0.24 & ug/ & & & \\
\hline Tetrachloroethene & ND & 2.0 & 0.32 & ug/ & & & \\
\hline Toluene & ND & 2.0 & 0.36 & \(\mathrm{ug} / 1\) & & & \\
\hline 1,1,1-Trichloroethane & ND & 2.0 & 0.30 & ug1 & & & \\
\hline 1,1,2-Trichloroethane & ND & 2.0 & 0.30 & ug/ & & & \\
\hline Trichloroethene & ND & 2.0 & 0.26 & ug/l & & & \\
\hline Trichlorofluoromethane & ND & 5.0 & 0.34 & ug/l & & & \\
\hline Vinyl chloride & ND & 0.50 & 0.26 & ug/ & & & \\
\hline Xylenes, Total & ND & 4.0 & 0.52 & ug/ & & & \\
\hline Surrogate: Dibromofluoromethane & 26.4 & & & ug/ & 25.0 & 106 & 80-120 \\
\hline Surrogate: Toluene-d8 & 25.1 & & & \(u g / 1\) & 25.0 & 100 & 80-120 \\
\hline Surrogate: 4-Bromofluorobenzene & 24.2 & & & ug \(/\) & 25.0 & 97 & 80-120 \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager
}

\title{
Del Mar Analytical
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: 1OB1004

Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKIOC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{llllllllllll}
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

LCS Analyzed: 02/17/2005 (5B17014-BS1)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Benzene & 24.9 & 1.0 & 0.28 & ug/ & 25.0 & 100 & 70-120 \\
\hline Bromodichloromethane & 25.7 & 2.0 & 0.30 & ug/ & 25.0 & 103 & 70-140 \\
\hline Bromoform & 24.2 & 5.0 & 0.32 & ug/ & 25.0 & 97 & 55-135 \\
\hline Bromomethane & 29.1 & 5.0 & 0.34 & ug/ & 25.0 & 116 & 60-140 \\
\hline Carbon tetrachloride & 26.2 & 0.50 & 0.28 & ug/ & 25.0 & 105 & 70-140 \\
\hline Chlorobenzene & 23.4 & 2.0 & 0.36 & ug/ & 25.0 & 94 & 80-125 \\
\hline Chloroethane & 27.4 & 5.0 & 0.33 & ug/ & 25.0 & 110 & 60-145 \\
\hline Chloroform & 26.2 & 2.0 & 0.33 & ug/ & 25.0 & 105 & 75-130 \\
\hline Chloromethane & 25.8 & 5.0 & 0.30 & \(\mathrm{ug} / \mathrm{l}\) & 25.0 & 103 & 40-145 \\
\hline Dibromochloromethane & 24.7 & 2.0 & 0.28 & ug/l & 25.0 & 99 & 65-145 \\
\hline 1,2-Dichlorobenzene & 23.3 & 2.0 & 0.32 & ug/ & 25.0 & 93 & 80-120 \\
\hline 13-Dichlorobenzene & 23.6 & 2.0 & 0.35 & ug/ & 25.0 & 94 & 80-120 \\
\hline 14. Dichlorobenzene & 23.0 & 2.0 & 0.37 & ugh & 25.0 & 92 & \(80-120\) \\
\hline 1,1-Dichloroethane & 25.5 & 2.0 & 0.27 & ug/ & 25.0 & 102 & 70-135 \\
\hline 1,2-Dichloroethane & 25.9 & 0.50 & 0.28 & ug/1 & 25.0 & 104 & 60-150 \\
\hline 1,1-Dichloroethene & 24.6 & 5.0 & 0.32 & ug/l & 25.0 & 98 & 75-135 \\
\hline trans-1,2-Dichloroethene & 25.4 & 2.0 & 0.27 & ug/ & 25.0 & 102 & 70-130 \\
\hline 1,2-Dichloropropane & 24.8 & 2.0 & 0.35 & ug/ & 25.0 & 99 & 70-120 \\
\hline cis-1,3-Dichloropropene & 25.6 & 2.0 & 0.22 & ug/ & 25.0 & 102 & 75-130 \\
\hline trans-1,3-Dichloropropene & 25.7 & 2.0 & 0.24 & ug/ & 25.0 & 103 & 75-135 \\
\hline Ethylbenzene & 26.4 & 2.0 & 0.25 & ugI & 25.0 & 106 & 80-120 \\
\hline Methylene chloride & 25.4 & 5.0 & 0.48 & ug/ & 25.0 & 102 & 60-135 \\
\hline 1,1,2,2-Tetrachloroethane & 23.2 & 2.0 & 0.24 & ug/ & 25.0 & 93 & 60-135 \\
\hline Tetrachloroethene & 23.2 & 2.0 & 0.32 & ug/ & 25.0 & 93 & 75-125 \\
\hline Toluene & 24.6 & 2.0 & 0.36 & ug/ & 25.0 & 98 & 75-120 \\
\hline 1,1,1-Trichloroethane & 27.1 & 2.0 & 0.30 & ugl & 25.0 & 108 & 75-140 \\
\hline 1,1,2-Trichloroethane & 24.9 & 2.0 & 0.30 & ugl & 25.0 & 100 & 70-125 \\
\hline Trichloroethene & 23.4 & 2.0 & 0.26 & ug/ & 25.0 & 94 & 80-120 \\
\hline Trichlorofluoromethane & 28.0 & 5.0 & 0.34 & ug/ & 25.0 & 112 & 65-145 \\
\hline Vinyl chloride & 27.7 & 0.50 & 0.26 & ug/ & 25.0 & 111 & 50-130 \\
\hline Surrogate: Dibromofluoromethane & 26.4 & & & ug/ & 25.0 & 106 & 80-120 \\
\hline Surrogate: Toluene-d8 & 25.3 & & & ug/ & 25.0 & 101 & 80-120 \\
\hline Surrogate: 4-Bromofluorobenzene & 26.9 & & & \(u g /\) & 25.0 & 108 & 80-120 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine \\ Wendy Kirkeeng For Michele Harper \\ Project Manager}

\title{
Del Mar Analytical
}
\begin{tabular}{|lcr}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
300 North Lake Avenue, Suite 1200 & & \begin{tabular}{l}
Sampled: \(02 / 11 / 05\) \\
Pasadena, CA 91101
\end{tabular} \\
Received: \(02 / 11 / 05\)
\end{tabular}

\section*{METHOD BLANKIQC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & & & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline Analyte & Result & & MDL & Units & & & \%REC & & RPD & & \\
\hline
\end{tabular}

\section*{Batch: 5B17014 Extracted: 02/17/05}

Matrix Spike Analyzed: 02/17/2005 (5B17014-MS1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Benzene & 25.2 & 1.0 & 0.28 & ug/ & 25.0 & ND & 101 & 70-120 \\
\hline Bromodichloromethane & 26.3 & 2.0 & 0.30 & ug/ & 25.0 & ND & 105 & 70-140 \\
\hline Bromoform & 23.7 & 5.0 & 0.32 & ug/ & 25.0 & ND & 95 & 55-140 \\
\hline Bromomethane & 28.7 & 5.0 & 0.34 & ug/ & 25.0 & ND & 115 & 50-145 \\
\hline Carbon tetrachloride & 26.8 & 0.50 & 0.28 & ug/ & 25.0 & ND & 107 & 70-145 \\
\hline Chlorobenzene & 23.0 & 2.0 & 0.36 & ug/ & 25.0 & ND & 92 & 80-125 \\
\hline Chloroethane & 26.4 & 5.0 & 0.33 & ugh & 25.0 & ND & 106 & 50-145 \\
\hline Chloroform & 26.9 & 2.0 & 0.33 & ug/ & 25.0 & ND & 108 & 70-135 \\
\hline Chloromethane & 24.7 & 5.0 & 0.30 & ug/l & 25.0 & ND & 99 & 35-145 \\
\hline Dibromochloromethane & 24.8 & 2.0 & 0.28 & ug/l & 25.0 & ND & 99 & 65-145 \\
\hline 1,2-Dichlorobenzene & 23.4 & 2.0 & 0.32 & ug/l & 25.0 & ND & 94 & 75-130 \\
\hline 1,3-Dichlorobenzene & 23.4 & 2.0 & 0.35 & ug/ & 25.0 & ND & 94 & 75-130 \\
\hline 1,4 Dichlorobenzene & 23.0 & 2.0 & 0.37 & ugh & 25.0 & ND & 92 & 80-120 \\
\hline 1,1-Dichloroethane & 26.4 & 2.0 & 0.27 & ugh & 25.0 & ND & 106 & 65-135 \\
\hline 1,2-Dichloroethane & 27.2 & 0.50 & 0.28 & ug/l & 25.0 & ND & 109 & 60-150 \\
\hline 1,1-Dichloroethene & 25.2 & 5.0 & 0.32 & ug/ & 25.0 & ND & 101 & 65-140 \\
\hline trans-1,2-Dichloroethene & 25.9 & 2.0 & 0.27 & ug/l & 25.0 & ND & 104 & 65-135 \\
\hline 1,2-Dichloropropane & 24.9 & 2.0 & 0.35 & ug/ & 25.0 & ND & 100 & 65-130 \\
\hline cis-1,3-Dichloropropene & 26.0 & 2.0 & 0.22 & ug/ & 25.0 & ND & 104 & 70-140 \\
\hline trans-1,3-Dichloropropene & 26.3 & 2.0 & 0.24 & ug/ & 25.0 & ND & 105 & 70-140 \\
\hline Ethylbenzene & 26.1 & 2.0 & 0.25 & ugh & 25.0 & ND & 104 & 70-130 \\
\hline Methylene chloride & 26.0 & 5.0 & 0.48 & ug/ & 25.0 & ND & 104 & 60-135 \\
\hline 1,1,2,2-Tetrachloroethane & 23.1 & 2.0 & 0.24 & ug/ & 25.0 & ND & 92 & 60-145 \\
\hline Tetrachloroethene & 22.7 & 2.0 & 0.32 & ug/l & 25.0 & ND & 91 & 70-130 \\
\hline Toluene & 25.2 & 2.0 & 0.36 & ug/ & 25.0 & ND & 101 & 70-120 \\
\hline 1,1,1-Trichloroethane & 28.0 & 2.0 & 0.30 & ug/ & 25.0 & ND & 112 & 75-140 \\
\hline 1,1,2-Trichloroethane & 25.1 & 2.0 & 0.30 & ugA & 25.0 & ND & 100 & 60-135 \\
\hline Trichloroethene & 23.5 & 2.0 & 0.26 & ug/ & 25.0 & ND & 94 & 70-125 \\
\hline Trichlorofluoromethane & 28.7 & 5.0 & 0.34 & ug/l & 25.0 & ND & 115 & 55-145 \\
\hline Vinyl chloride & 26.3 & 0.50 & 0.26 & ug/ & 25.0 & ND & 105 & 40-135 \\
\hline Surrogate: Dibromofluoromethane & 27.5 & & & ug/ & 25.0 & & 110 & 80-120 \\
\hline Surrogate: Toluene-d8 & 25.7 & & & ug/ & 25.0 & & 103 & 80-120 \\
\hline Surrogate: 4-Bromofluorobenzene & 26.5 & & & ug \(/\) & 25.0 & & 106 & 80-120 \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Outfall 011
Report Number: IOB1004
Sampled: 02/11/05

\section*{METHOD BLANKIOC DATA}

PURGEABLES BY GC/MS (EPA 624)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Oualifiers \\
\hline & Result & & MDL & Units & & & \%REC & & RPD & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Matrix Spike Dup Analyzed: 02/17/2005 (5B17014-MSD1)} & \multicolumn{8}{|c|}{Source: 1OB1001-01} \\
\hline Benzene & 25.1 & 1.0 & 0.28 & ug/1 & 25.0 & ND & 100 & 70-120 & 0 & 20 \\
\hline Bromodichloromethane & 25.4 & 2.0 & 0.30 & ug/ & 25.0 & ND & 102 & 70-140 & 3 & 20 \\
\hline Bromoform & 21.6 & 5.0 & 0.32 & ug/ & 25.0 & ND & 86 & 55-140 & 9 & 25 \\
\hline Bromomethane & 31.0 & 5.0 & 0.34 & ug/ & 25.0 & ND & 124 & 50-145 & 8 & 25 \\
\hline Carbon tetrachloride & 26.5 & 0.50 & 0.28 & ug/ & 25.0 & ND & 106 & 70-145 & 1 & 25 \\
\hline Chlorobenzene & 23.9 & 2.0 & 0.36 & ug/ & 25.0 & ND & 96 & 80-125 & 4 & 20 \\
\hline Chloroethane & 29.6 & 5.0 & 0.33 & ug/ & 25.0 & ND & 118 & 50-145 & 11 & 25 \\
\hline Chloroform & 26.4 & 2.0 & 0.33 & ug/ & 25.0 & ND & 106 & 70-135 & 2 & 20 \\
\hline Chloromethane & 28.0 & 5.0 & 0.30 & ug/ & 25.0 & ND & 112 & 35-145 & 13 & 25 \\
\hline Dibromochloromethane & 23.4 & 2.0 & 0.28 & ug/ & 25.0 & ND & 94 & 65-145 & 6 & 25 \\
\hline 1,2-Dichlorobenzene & 23.4 & 2.0 & 0.32 & ug/ & 25.0 & ND & 94 & 75-130 & 0 & 20 \\
\hline 1,3-Dichlorobenzene & 24.0 & 2.0 & 0.35 & ugh & 25.0 & ND & 96 & 75-130 & 3 & 20 \\
\hline 1,4-Dichlorobenzene & 23.6 & 2.0 & 037 & ugh & 25.0 & ND & 94 & 80-120 & 3 & 20 \\
\hline 1,1-Dichloroethane & 26.1 & 2.0 & 0.27 & ugh & 25.0 & ND & 104 & 65-135 & 1 & 20 \\
\hline 1,2-Dichloroethane & 24.5 & 0.50 & 0.28 & ug/l & 25.0 & ND & 98 & 60-150 & 10 & 20 \\
\hline 1,1-Dichloroethene & 24.9 & 5.0 & 0.32 & ug/ & 25.0 & ND & 100 & 65-140 & 1 & 20 \\
\hline trans-1,2-Dichloroethene & 25.9 & 2.0 & 0.27 & ugh & 25.0 & ND & 104 & 65-135 & 0 & 20 \\
\hline 1,2-Dichloropropane & 24.3 & 2.0 & 0.35 & ugh & 25.0 & ND & 97 & 65-130 & 2 & 20 \\
\hline cis-1,3-Dichloropropene & 25.2 & 2.0 & 0.22 & ug/ & 25.0 & ND & 101 & 70-140 & 3 & 20 \\
\hline trans-1,3-Dichloropropene & 24.4 & 2.0 & 0.24 & ug/ & 25.0 & ND & 98 & 70-140 & 7 & 25 \\
\hline Ethylbenzene & 27.0 & 2.0 & 0.25 & ug/l & 25.0 & ND & 108 & 70-130 & 3 & 20 \\
\hline Methylene chloride & 25.4 & 5.0 & 0.48 & ug/ & 25.0 & ND & 102 & 60-135 & 2 & 20 \\
\hline 1,1,2,2-Tetrachloroethane & 20.8 & 2.0 & 0.24 & ug/l & 25.0 & ND & 83 & 60-145 & 10 & 30 \\
\hline Tetrachloroethene & 23.9 & 2.0 & 0.32 & ugh & 25.0 & ND & 96 & 70-130 & 5 & 20 \\
\hline Toluene & 24.9 & 2.0 & 0.36 & ug/ & 25.0 & ND & 100 & 70-120 & 1 & 20 \\
\hline 1,1,1-Trichloroethane & 27.8 & 2.0 & 0.30 & ug/ & 25.0 & ND & 111 & 75-140 & 1 & 20 \\
\hline 1,1,2-Trichloroethane & 22.8 & 2.0 & 0.30 & ugh & 25.0 & ND & 91 & 60-135 & 10 & 25 \\
\hline Trichloroethene & 23.5 & 2.0 & 0.26 & ugl & 25.0 & ND & 94 & 70-125 & 0 & 20 \\
\hline Trichlorofluoromethane & 28.5 & 5.0 & 0.34 & ug/1 & 25.0 & ND & 114 & 55-145 & 1 & 25 \\
\hline Vinyl chloride & 30.0 & 0.50 & 0.26 & ug/ & 25.0 & ND & 120 & 40-135 & 13 & 30 \\
\hline Surrogate: Dibromofluoromethane & 26.5 & & & ug/ & 25.0 & & 106 & 80-120 & & \\
\hline Surrogate: Toluene-d8 & 25.2 & & & \(u g /\) & 25.0 & & 101 & 80-120 & & \\
\hline Surrogate: 4-Bromofluorobenzene & 26.4 & & & ug \(/\) & 25.0 & & 106 & 80-120 & & \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: IOB1004
Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKIQC DATA}

\section*{PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5B17014 Extracted: 02/17/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 02/17/2005 (5B17014-BLK1)} \\
\hline 1,2-Dichloro-1,1,2-trifluoroethane & ND & 2.5 & N/A & ug/ & & & & & & & \\
\hline Cyclohexane & ND & 2.5 & N/A & ug/ & & & & & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\title{
Del Mar Analytical
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: IOB1004

Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKIQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{lcccccccccccc}
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Blank Analyzed: 02/18/2005 (5B14010-BLK1)} \\
\hline Acenaphthene & ND & 0.50 & 0.10 & ug/ \\
\hline Acenaphthylene & ND & 0.50 & 0.10 & ug/ \\
\hline Aniline & ND & 10 & 2.9 & ug/ \\
\hline Anthracene & ND & 0.50 & 0.083 & ug/ \\
\hline Benzidine & ND & 5.0 & 2.4 & ug/ \\
\hline Benzoic acid & ND & 20 & 3.7 & ug/ \\
\hline Benzo(a)anthracene & ND & 5.0 & 0.038 & ug/ \\
\hline Benzo(a)pyrene & ND & 2.0 & 0.14 & ug/ \\
\hline Benzo(b)fluoranthene & ND & 2.0 & 0.050 & ug/ \\
\hline Benzo(g,h,i)perylene & ND & 5.0 & 0.059 & ug/ \\
\hline Benzo(k)fluoranthene & ND & 0.50 & 0.053 & ug/ \\
\hline Benzyl alcohol & ND & 5.0 & 0.21 & ug/1 \\
\hline Bis(2-chloroethoxy)methane & ND & 0.50 & 0.072 & ugn \\
\hline Bis (2-chloroethyl)ether & ND & 0.50 & 0.084 & ug/ \\
\hline Bis(2-chloroisopropyl)ether & ND & 0.50 & 0.11 & ug/ \\
\hline Bis(2-ethylhexyl)phthalate & ND & 5.0 & 1.1 & ugh \\
\hline 4-Bromophenyl phenyl ether & ND & 1.0 & 0.12 & ug/ \\
\hline Butyl benzyl phthalate & ND & 5.0 & 0.34 & ug/ \\
\hline 4-Chloroaniline & ND & 2.0 & 0.20 & ug/ \\
\hline 2-Chloronaphthaiene & ND & 0.50 & 0.059 & ug/1 \\
\hline 4-Chloro-3-methylphenol & ND & 2.0 & 0.34 & ugh \\
\hline 4-Chlorophenyl phenyl ether & ND & 0.50 & 0.056 & ug/ \\
\hline 2-Chlorophenol & ND & 1.0 & 0.12 & ug/ \\
\hline Chrysene & ND & 0.50 & 0.072 & ug/ \\
\hline Dibenz(a,h)anthracene & ND & 0.50 & 0.083 & ug/ \\
\hline Dibenzofuran & ND & 0.50 & 0.075 & ug/ \\
\hline Di-n-butyl phthalate & ND & 2.0 & 0.26 & ug/ \\
\hline 1,2-Dichlorobenzene & ND & 0.50 & 0.11 & ug/ \\
\hline 1,3-Dichlorobenzene & ND & 0.50 & 0.13 & ug/ \\
\hline 1,4-Dichlorobenzene & ND & 0.50 & 0.050 & ug/ \\
\hline 3,3-Dichlorobenzidine & ND & 5.0 & 0.93 & ug/ \\
\hline 2,4-Dichlorophenol & ND & 2.0 & 0.21 & ug/ \\
\hline Diethyl phthalate & 0.200 & 1.0 & 0.12 & ug/ \\
\hline 2,4-Dimethylphenol & ND & 2.0 & 0.31 & ug/ \\
\hline Dimethyl phthalate & ND & 0.50 & 0.081 & ug/ \\
\hline
\end{tabular}

\title{
Del Mar Analytical
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: IOB1004

Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKIQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5B14010 Extracted: 02/14/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 02/18/2005 (5B14010-BLK1)} \\
\hline 4,6-Dinitro-2-methylphenol & ND & 5.0 & 0.38 & ug/ & & & & & & & \\
\hline 2,4-Dinitrophenol & ND & 5.0 & 2.7 & ug/ & & & & & & & \\
\hline 2,4-Dinitrotoluene & ND & 5.0 & 0.23 & ug/ & & & & & & & \\
\hline 2,6-Dinitrotoluene & ND & 5.0 & 0.24 & ug/ & & & & & & & \\
\hline Di-n-octyl phthalate & ND & 5.0 & 0.17 & ug/ & & & & & & & \\
\hline 1,2-Diphenylhydrazine/Azobenzene & ND & 1.0 & 0.087 & ug/ & & & & & & & \\
\hline Fluoranthene & ND & 0.50 & 0.089 & ugh & & & & & & & \\
\hline Fluorene & 0.200 & 0.50 & 0.075 & ug/ & & & & & & & \(J\) \\
\hline Hexachlorobenzene & ND & 1.0 & 0.13 & ug/ & & & & & & & \\
\hline Hexachlorobutadiene & ND & 2.0 & 0.38 & ug/ & & & & & & & \\
\hline Hexachlorocyclopentadiene & ND & 5.0 & 1.8 & ug/ & & & & & & & \\
\hline Hexachloroethane & ND & 3.0 & 0.51 & ug/ & & & & & & & \\
\hline Indeno(1,2,3-cd)pyrene & ND & 2.0 & 0.19 & ug/1 & & & & & & & \\
\hline Isophorone & ND & 1.0 & 0.059 & ug/ & & & & & & & \\
\hline 2-Methylnaphthalene & 8.70 & 1.0 & 0.13 & ug/ & & & & & & & B \\
\hline 2-Methylphenol & ND & 2.0 & 0.28 & ug/ & & & & & & & \\
\hline 4-Methylphenol & ND & 5.0 & 0.20 & ug \(/\) & & & & & & & \\
\hline Naphthalene & 0.300 & 1.0 & 0.13 & ug/ & & & & & & & \(J\) \\
\hline 2-Nitroaniline & ND & 5.0 & 0.18 & ug/ & & & & & & & \\
\hline 3-Nitroaniline & ND & 5.0 & 0.35 & ug/ & & & & & & & \\
\hline 4-Nitroaniline & ND & 5.0 & 0.49 & ug/ & & & & & & & \\
\hline Nitrobenzene & ND & 1.0 & 0.10 & ug/ & & & & & & & \\
\hline 2-Nitrophenol & ND & 2.0 & 0.23 & ug/1 & & & & & & & \\
\hline 4-Nitrophenol & ND & 5.0 & 0.73 & ug/ & & & & & & & \\
\hline N -Nitrosodimethylamine & ND & 2.0 & 0.22 & ug/ & & & & & & & \\
\hline N -Nitroso-di-n-propylamine & ND & 2.0 & 0.18 & ug/ & & & & & & & \\
\hline N-Nitrosodiphenylamine & ND & 1.0 & 0.077 & ug/ & & & & & & & \\
\hline Pentachlorophenol & ND & 2.0 & 0.78 & ug/ & & & & & & & \\
\hline Phenanthrene & 0.120 & 0.50 & 0.071 & ugh & & & & & & & \(J\) \\
\hline Phenol & ND & 1.0 & 0.14 & ug/1 & & & & & & & \\
\hline Pyrene & ND & 0.50 & 0.059 & ug/ & & & & & & & \\
\hline 1,2,4-Trichlorobenzene & ND & 1.0 & 0.10 & ug/l & & & & & & & \\
\hline 2,4,5-Trichlorophenol & ND & 2.0 & 0.075 & ug/l & & & & & & & \\
\hline 2,4,6-Trichlorophenol & ND & 1.0 & 0.10 & ug/ & & & & & & & \\
\hline Surrogate: 2-Fluorophenol & 15.9 & & & ug/ & 20.0 & & 80 & 35-120 & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

\title{
Del Mar Analytical
}

\author{
MWH-Pasadena/Boeing
}

300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: IOB1004

Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKIQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{lllllllllll}
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit
\end{tabular}

Batch: 5B14010 Extracted: 02/14/05
Blank Analyzed: 02/18/2005 (5B14010-BLK1)
\begin{tabular}{ll}
Surrogate: Phenol-d6 & 15.5 \\
Surrogate: \(2,4,6\)-Tribromophenol & 14.0 \\
Sirrogate: Nitrobenzene-d5 & 7.44 \\
Surrogate: 2 -Fluorobiphenyl & 7.50 \\
Surrogate: Terphenyl-d14 & 8.10
\end{tabular}

LCS Analyzed: 02/18/2005 (5B14010-BS1)
Acenaphthene
Aniline
Anthracene
Benzidine
Benzoicacid
Benzo(a)pyrene
Benzo(b)fluoranthene
Benzo(\(\mathrm{g}, \mathrm{h}\), , \()\) perylene
Benzo(k)fluoranthene
Benzyl alcohol
Bis(2-chloroethoxy)methane
Bis(2-chloroethyl)ether
Bis(2-chloroisopropyl)ether
Bis(2-ethylhexyl)phthalate
4-Bromophenyl phenyl ether
Butyl benzyl phthalate
4-Chloroaniline
2-Chloronaphthalene
4-Chloro-3-methylphenol
4-Chlorophenyl phenyl ether
2-Chlorophenol
Chrysene
Dibenz \((\mathrm{a}, \mathrm{h})\) anthracene
Dibenzofuran
Di-n-butyl phthalate
1,2-Dichlorobenzene
1,3-Dichlorobenzene
15.5
14.0
7.44
7.50
8.10
7.94
8.16
8.24
8.12
4.86
8.28
9.18
8.00
8.04
8.44
7.34
7.30
6.84
7.70

\subsection*{7.56}
7.22
7.90
7.86
7.90

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\title{
Del Mar Analytical
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011

Report Number: IOB1004
Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKIQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{llllllllllll}
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

Batch: 5B14010 Extracted: 02/14/05
LCS Analyzed: 02/18/2005 (5B14010-BS1)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1,4-Dichlorobenzene & 6.22 & 0.50 & 0.050 & ug/ & 10.0 & 62 & 40-120 \\
\hline 3,3-Dichlorobenzidine & 7.52 & 5.0 & 0.93 & ugh & 10.0 & 75 & 50-170 \\
\hline 2,4-Dichlorophenol & 7.64 & 2.0 & 0.21 & ugl & 10.0 & 76 & 55-120 \\
\hline Diethyl phthalate & 7.58 & 1.0 & 0.12 & ugh & 10.0 & 76 & 60-120 \\
\hline 2,4-Dimethylphenol & 5.34 & 2.0 & 0.31 & ugl & 10.0 & 53 & 35-120 \\
\hline Dimethyl phthalate & 7.42 & 0.50 & 0.081 & ugh & 10.0 & 74 & 60-120 \\
\hline 4,6-Dinitro-2-methylphenol & 6.64 & 5.0 & 0.38 & ugh & 10.0 & 66 & 55-120 \\
\hline 2,4-Dinitrophenol & 6.02 & 5.0 & 2.7 & ug/l & 10.0 & 60 & 40-140 \\
\hline 2,4-Dinitrotoluene & 6.68 & 5.0 & 0.23 & ug/ & 10.0 & 67 & 60-140 \\
\hline 2,6-Dinitrotoluene & 7.44 & 5.0 & 0.24 & ug/l & 10.0 & 74 & 65-125 \\
\hline Di-n-octyl phthalate & 6.72 & 5.0 & 0.17 & ug/l & 10.0 & 67 & 60-130 \\
\hline 1,2-Diphenylhydrazine/Azobenzene & 8.52 & 1.0 & 0.087 & ug/ & 10.0 & 85 & 60-120 \\
\hline Fluoranthene & 9.34 & 0.50 & 0.089 & ugl & 10.0 & 93 & 55125 \\
\hline Fuorene & 8.32 & 0.50 & 0.075 & ugh & 10.0 & 83 & 60-120 \\
\hline Hexachlorobenzene & 7.70 & 1.0 & 0.13 & ug/ & 10.0 & 77 & 50-120 \\
\hline Hexachlorobutadiene & 6.44 & 2.0 & 0.38 & ug/ & 10.0 & 64 & 45-120 \\
\hline Hexachlorocyclopentadiene & 7.70 & 5.0 & 1.8 & ug/ & 10.0 & 77 & 10-130 \\
\hline Hexachloroethane & 6.90 & 3.0 & 0.51 & ug/ & 10.0 & 69 & 40-120 \\
\hline Indeno(1,2,3-cd)pyrene & 7.40 & 2.0 & 0.19 & ug/ & 10.0 & 74 & 35-150 \\
\hline Isophorone & 6.42 & 1.0 & 0.059 & ug/ & 10.0 & 64 & 55-120 \\
\hline 2-Methylnaphthalene & 8.02 & 1.0 & 0.13 & ug/ & 10.0 & 80 & 50-120 \\
\hline 2-Methylphenol & 7.06 & 2.0 & 0.28 & ug/ & 10.0 & 71 & 45-120 \\
\hline 4-Methylphenol & 7.38 & 5.0 & 0.20 & ug/ & 10.0 & 74 & 45-120 \\
\hline Naphthalene & 7.88 & 1.0 & 0.13 & ug/1 & 10.0 & 79 & 50-120 \\
\hline 2-Nitroaniline & 7.54 & 5.0 & 0.18 & ug/ & 10.0 & 75 & 60-130 \\
\hline 3-Nitroaniline & 7.72 & 5.0 & 0.35 & ug/ & 10.0 & 77 & 50-140 \\
\hline 4-Nitroaniline & 7.48 & 5.0 & 0.49 & ug/ & 10.0 & 75 & 45-160 \\
\hline Nitrobenzene & 7.26 & 1.0 & 0.10 & ug/ & 10.0 & 73 & 50-120 \\
\hline 2-Nitrophenol & 8.06 & 2.0 & 0.23 & ug/ & 10.0 & 81 & 55-120 \\
\hline 4-Nitrophenol & 6.82 & 5.0 & 0.73 & ug/ & 10.0 & 68 & 50-135 \\
\hline N-Nitrosodimethylamine & 5.44 & 2.0 & 0.22 & ug/ & 10.0 & 54 & 40-120 \\
\hline N -Nitroso-di-n-propylamine & 6.94 & 2.0 & 0.18 & ug/ & 10.0 & 69 & 50-120 \\
\hline N -Nitrosodiphenylamine & 7.04 & 1.0 & 0.077 & ug/ & 10.0 & 70 & 60-120 \\
\hline Pentachlorophenol & 7.14 & 2.0 & 0.78 & ug/ & 10.0 & 71 & 50-125 \\
\hline Phenanthrene & 7.92 & 0.50 & 0.071 & ug/ & 10.0 & 79 & 55-120 \\
\hline
\end{tabular}

M-NR1

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

\title{
Del Mar Analytical
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: IOB1004
Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKIOC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{lllllllllll}
& & Reporting & & & Spike & Source & \%REC & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit \\
Qualifiers
\end{tabular}
\begin{tabular}{ll}
LCS Analyzed: 02/18/2005 (5B14010-BS1) \\
Phenol & 7.54 \\
Pyrene & 7.86 \\
1,2,4-Trichlorobenzene & 6.84 \\
2,4,5-Trichlorophenol & 8.44 \\
2,4,6-Trichlorophenol & 7.90 \\
Surrogate: 2-Fluorophenol & 13.9 \\
Surrogate: Phenol-d6 & 14.3 \\
Surrogate: \(2,4,6\)-Tribromophenol & 14.7 \\
Surrogate: Nitrobenzene-d5 & 7.24 \\
Surrogate: 2 -Fluorobiphenyl & 7.38 \\
Surrogate: Terphenyl-d14 & 6.90
\end{tabular}

LCS Dup Analyzed: 02/18/2005 (5B14010-BSD1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Aceraphthene & 7.88 & 0.50 & 0.10 & ug/l & 10.0 & 79 & 55-120 & 1 & 20 \\
\hline Acenaphthylene & 8.12 & 0.50 & 0.10 & ug/1 & 10.0 & 81 & 55-120 & 1 & 20 \\
\hline Aniline & 8.62 & 10 & 2.9 & ug/ & 10.0 & 86 & 30-120 & 5 & 25 \\
\hline Anthracene & 8.18 & 0.50 & 0.083 & ughl & 10.0 & 82 & 60-120 & 1 & 20 \\
\hline Benzidine & ND & 5.0 & 2.4 & ug/ & 10.0 & & 20-180 & & 35 \\
\hline Benzoic acid & 4.38 & 20 & 3.7 & ug/ & 10.0 & 44 & 30-125 & 10 & 30 \\
\hline Benzo(a)anthracene & 8.50 & 5.0 & 0.038 & ug/l & 10.0 & 85 & 65-120 & 3 & 20 \\
\hline Benzo(a)pyrene & 9.16 & 2.0 & 0.14 & ug/l & 10.0 & 92 & 55-125 & 0 & 25 \\
\hline Benzo(b)fluoranthene & 8.60 & 2.0 & 0.050 & ugh & 10.0 & 86 & 50-125 & 7 & 25 \\
\hline Benzo(g,h,i)perylene & 7.20 & 5.0 & 0.059 & ughl & 10.0 & 72 & 35-160 & 11 & 25 \\
\hline Benzo(k)fluoranthene & 8.40 & 0.50 & 0.053 & ug/ & 10.0 & 84 & 50-125 & 1 & 20 \\
\hline Benzyl alcohol & 8.70 & 5.0 & 0.21 & \(\mathrm{ug} / 1\) & 10.0 & 87 & 40-130 & 17 & 20 \\
\hline Bis(2-chloroethoxy)methane & 7.60 & 0.50 & 0.072 & ug/ & 10.0 & 76 & 55-120 & 4 & 20 \\
\hline Bis(2-chloroethyl)ether & 7.02 & 0.50 & 0.084 & ugh & 10.0 & 70 & 50-120 & 3 & 20 \\
\hline Bis(2-chloroisopropyl)ether & 7.66 & 0.50 & 0.11 & ugh & 10.0 & 77 & 50-120 & 3 & 20 \\
\hline Bis(2-ethylhexyl)phthalate & 7.78 & 5.0 & 1.1 & ug/ & 10.0 & 78 & 65-125 & 1 & 20 \\
\hline 4-Bromophenyl phenyl ether & 7.50 & 1.0 & 0.12 & ug/ & 10.0 & 75 & 55-125 & 1 & 25 \\
\hline Butyl benzyl phthalate & 7.26 & 5.0 & 0.34 & ug/ & 10.0 & 73 & 60-125 & 1 & 20 \\
\hline 4-Chloroaniline & 8.46 & 2.0 & 0.20 & ug/ & 10.0 & 85 & 55-120 & 7 & 25 \\
\hline 2-Chloronaphthalene & 7.72 & 0.50 & 0.059 & ug/ & 10.0 & 77 & 60-120 & 2 & 20 \\
\hline 4-Chloro-3-methylphenol & 8.48 & 2.0 & 0.34 & ug/ & 10.0 & 85 & 60-120 & 7 & 25 \\
\hline 4-Chlorophenyl phenyl ether & 7.90 & 0.50 & 0.056 & ug/ & 10.0 & 79 & 55-120 & 5 & 20 \\
\hline 2-Chlorophenol & 7.54 & 1.0 & 0.12 & ug/ & 10.0 & 75 & 45-120 & 5 & 25 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper Project Manager

\title{
Del Mar Analytical
}

\section*{MWH-Pasadena/Boeing}

300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: IOB1004
Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKKOC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{llllllllllll}
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

LCS Dup Analyzed: 02/18/2005 (5B14010-BSD1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Chrysene & 8.04 & 0.50 & 0.072 & ug/ & 10.0 & 80 & 65-120 & 2 & 20 \\
\hline Dibenz(a,h)anthracene & 7.18 & 0.50 & 0.083 & ug/ & 10.0 & 72 & 40-160 & 6 & 25 \\
\hline Díberzofuran & 8.06 & 0.50 & 0.075 & ug/ & 10.0 & 81 & 60-120 & 1 & 20 \\
\hline Di-n-butyl phthalate & 8.06 & 2.0 & 0.26 & ug/ & 10.0 & 81 & 65-125 & 1 & 20 \\
\hline 1,2-Dichlorobenzene & 6.78 & 0.50 & 0.11 & ug/ & 10.0 & 68 & 40-120 & 4 & 25 \\
\hline 1,3-Dichlorobenzene & 6.54 & 0.50 & 0.13 & ug/ & 10.0 & 65 & 40-120 & 2 & 25 \\
\hline 1,4-Dichlorobenzene & 6.60 & 0.50 & 0.050 & ug/ & 10.0 & 66 & 40-120 & 6 & 25 \\
\hline 3,3-Dichlorobenzidine & 7.96 & 5.0 & 0.93 & ug/ & 10.0 & 80 & 50-170 & 6 & 25 \\
\hline 2,4-Dichlorophenol & 8.34 & 2.0 & 0.21 & ug/ & 10.0 & 83 & 55-120 & 9 & 20 \\
\hline Diethyl phthalate & 7.90 & 1.0 & 0.12 & ug/ & 10.0 & 79 & 60-120 & 4 & 20 \\
\hline 2,4-Dimethylphenol & 6.10 & 2.0 & 0.31 & ug/ & 10.0 & 61 & 35-120 & 13 & 25 \\
\hline Dimethyl phthalate & 7.50 & 0.50 & 0.081 & ugh & 10.0 & 75 & 60-120 & 1 & 20 \\
\hline 4,6-Dinitro-2-methylphenol & 7.64 & 5.0 & 0.38 & ugl & 10.0 & 76 & 55-120 & 14 & 25 \\
\hline 2,4-Dinitrophenol & 6.88 & 5.0 & 2.7 & ugh & 10.0 & 69 & 40-140 & 13 & 25 \\
\hline 2,4-Dinitrotoluene & 7.20 & 5.0 & 0.23 & ug/ & 10.0 & 72 & 60-140 & 7 & 20 \\
\hline 2,6-Dinitrotoluene & 7.78 & 5.0 & 0.24 & ug/l & 10.0 & 78 & 65-125 & 4 & 20 \\
\hline Di-n-octyl phthalate & 7.08 & 5.0 & 0.17 & ug/ & 10.0 & 71 & 60-130 & 5 & 20 \\
\hline 1,2-Diphenylhydrazine/Azobenzene & 8.36 & 1.0 & 0.087 & ug/1 & 10.0 & 84 & 60-120 & 2 & 25 \\
\hline Fluoranthene & 9.12 & 0.50 & 0.089 & ug/ & 10.0 & 91 & 55-125 & 2 & 20 \\
\hline Fluorene & 8.50 & 0.50 & 0.075 & ug/ & 10.0 & 85 & 60-120 & 2 & 20 \\
\hline Hexachlorobenzene & 7.62 & 1.0 & 0.13 & ug/ & 10.0 & 76 & 50-120 & 1 & 20 \\
\hline Hexachlorobutadiene & 6.72 & 2.0 & 0.38 & ugl & 10.0 & 67 & 45-120 & 4 & 25 \\
\hline Hexachlorocyclopentadiene & 7.88 & 5.0 & 1.8 & \(u g / 1\) & 10.0 & 79 & 10-130 & 2 & 30 \\
\hline Hexachloroethane & 6.98 & 3.0 & 0.51 & ug/l & 10.0 & 70 & 40-120 & 1 & 25 \\
\hline Indeno(\(1,2,3-\mathrm{cd}\))pyrene & 7.64 & 2.0 & 0.19 & ugh & 10.0 & 76 & 35-150 & 3 & 25 \\
\hline Isophorone & 7.28 & 1.0 & 0.059 & ugl & 10.0 & 73 & 55-120 & 13 & 20 \\
\hline 2-Methylnaphthalene & 8.84 & 1.0 & 0.13 & ugl & 10.0 & 88 & 50-120 & 10 & 20 \\
\hline 2-Methylphenol & 8.02 & 2.0 & 0.28 & ugh & 10.0 & 80 & 45-120 & 13 & 20 \\
\hline 4-Methylphenol & 8.32 & 5.0 & 0.20 & ugh & 10.0 & 83 & 45-120 & 12 & 20 \\
\hline Naphthalene & 7.78 & 1.0 & 0.13 & ug/ & 10.0 & 78 & 50-120 & 1 & 20 \\
\hline 2-Nitroaniline & 7.58 & 5.0 & 0.18 & ug/ & 10.0 & 76 & 60-130 & 1 & 20 \\
\hline 3-Nitroaniline & 7.74 & 5.0 & 0.35 & ug/ & 10.0 & 77 & 50-140 & 0 & 25 \\
\hline 4-Nitroaniline & 8.56 & 5.0 & 0.49 & ug/ & 10.0 & 86 & 45-160 & 13 & 20 \\
\hline Nitrobenzene & 7.48 & 1.0 & 0.10 & ug/ & 10.0 & 75 & 50-120 & 3 & 25 \\
\hline 2-Nitrophenol & 8.62 & 2.0 & 0.23 & ug/ & 10.0 & 86 & 55-120 & 7 & 25 \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Outfall 011
\begin{tabular}{rr}
Project ID: Outfall 011 & \\
Report Number: \(10 B 1004\) & Sampled: 02/11/05 \\
Received: 02/11/05
\end{tabular}

\section*{METHOD BLANKIOC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\title{
Del Mar Analytical
}
\begin{tabular}{|lcr|}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
300 North Lake Avenue, Suite 1200 & Report Number: IOB1004 & \begin{tabular}{l}
Sampled: \(02 / 11 / 05\) \\
Pasadena, CA 91101
\end{tabular} \\
Received: \(02 / 11 / 05\)
\end{tabular}

\section*{METHOD BLANKIOC DATA}

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & Reporting & & & Spike & Source & & \%REC & & RPD & Data \\
\hline Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers \\
\hline
\end{tabular}

\section*{Batch: 5B17042 Extracted: 02/17/05}

Blank Analyzed: 02/17/2005-02/18/2005 (5B17042-BLK1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Aldrin & ND & 0.10 & 0.030 & ug/ & & & & \\
\hline alpha-BHC & ND & 0.10 & 0.015 & ug/ & & & & \\
\hline beta-BHC & ND & 0.10 & 0.015 & ug/ & & & & \\
\hline delta-BHC & ND & 0.20 & 0.020 & ug/l & & & & \\
\hline gamma-BHC (Lindane) & ND & 0.10 & 0.015 & ug/l & & & & \\
\hline Chlordane & ND & 1.0 & 0.20 & ug/l & & & & \\
\hline 4,42-DDD & ND & 0.10 & 0.015 & ug/l & & & & \\
\hline 4,4-DDE & ND & 0.10 & 0.020 & ug/ & & & & \\
\hline 4,4-DDT & ND & 0.10 & 0.030 & ug/l & & & & \\
\hline Dieldrin & ND & 0.10 & 0.015 & ug/l & & & & \\
\hline Endosulfan I & ND & 0.10 & 0.015 & ug/l & & & & \\
\hline Endosulfan II & ND & 0.10 & 0.040 & ug/ & & & & \\
\hline Endosulfan sulfate & ND & 020 & 0.015 & 4g/ & . & & & \\
\hline Endrim & ND & 0.10 & 0.015 & ug/ & & & & \\
\hline Endrin aldehyde & ND & 0.10 & 0.045 & ug/l & & & & \\
\hline Endrin ketone & ND & 0.10 & 0.020 & ughl & & & & \\
\hline Heptachlor & ND & 0.10 & 0.030 & ug/l & & & & \\
\hline Heptachlor epoxide & ND & 0.10 & 0.020 & ug/l & & & & \\
\hline Methoxychlor & ND & 0.10 & 0.035 & ug/l & & & & \\
\hline Toxaphene & ND & 5.0 & 1.5 & ug/l & & & & \\
\hline Surrogate: Tetrachlorommxylene & 0.264 & & & \(u g /\) & 0.500 & 53 & 35-120 & \\
\hline Surrogate: Decachlorobiphenyl & 0.339 & & & \(u g / 1\) & 0.500 & 68 & 45-120 & \\
\hline LCS Analyzed: 02/18/2005 (5) & & & & & & & & M-NR1 \\
\hline Aldrin & 0.364 & 0.10 & 0.030 & ug/ & 0.500 & 73 & 45-115 & \\
\hline alpha-BHC & 0.374 & 0.10 & 0.015 & ug/ & 0.500 & 75 & 45-115 & \\
\hline beta-BHC & 0.373 & 0.10 & 0.015 & ug/ & 0.500 & 75 & 50-115 & \\
\hline delta-BHC & 0.391 & 0.20 & 0.020 & ug/l & 0.500 & 78 & 55-120 & \\
\hline gamma-BHC (Lindane) & 0.385 & 0.10 & 0.015 & ug/l & 0.500 & 77 & 45-115 & \\
\hline 4,4'-DDD & 0.415 & 0.10 & 0.015 & ug/l & 0.500 & 83 & 60-120 & \\
\hline 4,44-DDE & 0.412 & 0.10 & 0.020 & \(\mathrm{ug} / \mathrm{l}\) & 0.500 & 82 & 55-120 & \\
\hline 4,4-DDT & 0.424 & 0.10 & 0.030 & ug/l & 0.500 & 85 & 60-130 & \\
\hline Dieldrin & 0.403 & 0.10 & 0.015 & ug/l & 0.500 & 81 & 55-120 & \\
\hline Endosulfan I & 0.384 & 0.10 & 0.015 & ug/l & 0.500 & 77 & 50-115 & \\
\hline Endosulfan II & 0.397 & 0.10 & 0.040 & ug/ & 0.500 & 79 & 60-125 & \\
\hline Endosulfan sulfate & 0.425 & 0.20 & 0.015 & ug/l & 0.500 & 85 & 60-120 & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

\title{
Del Mar Analytical
}
\begin{tabular}{|c|c|c|}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
\hline 300 North Lake Avenue, Suite 1200 & & Sampled: 02/11/05 \\
\hline Pasadena, CA 91101 & Report Number: 10B1004 & Received: 02/11/05 \\
\hline Attention: Bronwyn Kelly & & \\
\hline
\end{tabular}

\section*{METMOD MIANHIGC DATA}

ORGANOCHLORINE PESTICIDES (EPA 608)

\begin{tabular}{lr}
LCS Analyzed: 02/18/2005 (5B17042-BS1) \\
Endrin & 0.446 \\
Endrin aldehyde & 0.374 \\
Endrin ketone & 0.423 \\
Heptachlor & 0.404 \\
Heptachlor epoxide & 0.383 \\
Methoxychlor & 0.486 \\
Surrogate: Tetrachloro-m-xylene & 0.304 \\
Surrogate: Decachlorobiphenyl & 0.398
\end{tabular}

LCS Dup Analyzed: 02/18/2005 (5B17042-BSD1)
\begin{tabular}{lr}
Aldrin & 0.354 \\
alpha-BHC & 0.353 \\
beta-BHC & 0.372 \\
delta-BHC & 0.380 \\
gamma-BHC (Lindane) & 0.371 \\
4,4-DDD & 0.402 \\
4,4-DDE & 0.407 \\
4,4-DDT & 0.409 \\
Dieldrin & 0.396 \\
Endosulfan I & 0.379 \\
Endosulfan II & 0.386 \\
Endosulfan sulfate & 0.398 \\
Endrin & 0.433 \\
Endrin aldehyde & 0.366 \\
Endrin ketone & 0.392 \\
Heptachlor & 0.382 \\
Heptachlor epoxide & 0.378 \\
Methoxychlor & 0.446 \\
Surrogate: Tetrachloro-m-xylene & 0.277 \\
Surrogate: Decachlorobiphenyl & 0.364
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 0.10 & 0.030 & ughl & 0.500 & 71 & 45-115 & 3 & 30 \\
\hline 0.10 & 0.015 & ugl & 0.500 & 71 & 45-115 & 6 & 30 \\
\hline 0.10 & 0.015 & ugl & 0.500 & 74 & 50-115 & 0 & 30 \\
\hline 0.20 & 0.020 & ug/l & 0.500 & 76 & 55-120 & 3 & 30 \\
\hline 0.10 & 0.015 & ugl & 0.500 & 74 & 45-115 & 4 & 30 \\
\hline 0.10 & 0.015 & ugh & 0.500 & 80 & 60-120 & 3 & 30 \\
\hline 0.10 & 0.020 & ug/ & 0.500 & 81 & 55-120 & 1 & 30 \\
\hline 0.10 & 0.030 & ug/ & 0.500 & 82 & 60-130 & 4 & 30 \\
\hline 0.10 & 0.015 & ug/ & 0.500 & 79 & 55-120 & 2 & 30 \\
\hline 0.10 & 0.015 & ug/ & 0.500 & 76 & 50-115 & 1 & 30 \\
\hline 0.10 & 0.040 & ug/1 & 0.500 & 77 & 60-125 & 3 & 30 \\
\hline 0.20 & 0.015 & ug/1 & 0.500 & 80 & 60-120 & 7 & 30 \\
\hline 0.10 & 0.015 & ug/ & 0.500 & 87 & 55-125 & 3 & 30 \\
\hline 0.10 & 0.045 & ug/ & 0.500 & 73 & 55-115 & 2 & 30 \\
\hline 0.10 & 0.020 & ug/ & 0.500 & 78 & 60-120 & 8 & 30 \\
\hline 0.10 & 0.030 & ug/ & 0.500 & 76 & 45-115 & 6 & 30 \\
\hline 0.10 & 0.020 & ug/1 & 0.500 & 76 & 50-120 & 1 & 30 \\
\hline 0.10 & 0.035 & ug/ & 0.500 & 89 & 60-135 & 9 & 30 \\
\hline & & ug/ & 0.500 & 55 & 35-120 & & \\
\hline & & ug/t & 0.500 & 73 & 45-120 & & \\
\hline
\end{tabular}
\begin{tabular}{|lrl}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
\begin{tabular}{l}
300 North Lake Avenue, Suite 1200 \\
Pasadena, CA 91101
\end{tabular} & Report Number: 1OB1004 & \begin{tabular}{l}
Sampled: \(02 / 11 / 05\) \\
Attention: Bronwyn Kelly
\end{tabular}
\end{tabular}

\section*{METHOD BLANKIOC DATA}

\section*{TOTAL PCBS (EPA 608)}

Blank Analyzed: 02/17/2005-02/18/2005 (5B17042-BLK1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Aroclor 1016 & ND & 1.0 & 0.20 & ug/l & & & & & & \\
\hline Aroclor 1221 & ND & 1.0 & 0.10 & ug/ & & & & & & \\
\hline Aroclor 1232 & ND & 1.0 & 0.15 & \(\mathrm{ug} / \mathrm{l}\) & & & & & & \\
\hline Aroclor 1242 & ND & 1.0 & 0.15 & \(\mathrm{ug} / \mathrm{l}\) & & & & & & \\
\hline Aroclor 1248 & ND & 1.0 & 0.25 & \(\mathrm{ug} / \mathrm{l}\) & & & & & & \\
\hline Aroclor 1254 & ND & 1.0 & 0.25 & ug/l & & & & & & \\
\hline Aroclor 1260 & ND & 1.0 & 0.40 & ug/l & & & & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.451 & & & \(u g /\) & 0.500 & 90 & 45-120 & & & \\
\hline LCS Analyzed: 02/18/2005 & & & & & & & & & & M-NR1 \\
\hline Aroclor 1016 & 2.54 & 1.0 & 0.20 & \(u g / 1\) & 4.00 & 64 & 50-115 & & & \\
\hline Arocior 1260 & 2.69 & 1.0 & 0.40 & ug/l & 4.00 & 67 & 60-115 & & & \\
\hline Surrogate Decachlorobiphenyl & 0.378 & & & \(u \mathrm{~g} /\) & 0.500 & 76 & 45-120 & & & \\
\hline LCS Dup Analyzed: 02/18/2 & 3SD2) & & & \(\cdots\) & & & & & & \\
\hline Aroclor 1016 & 3.09 & 1.0 & 0.20 & ug/ & 4.00 & 77 & 50-115 & 20 & 30 & \\
\hline Aroclor 1260 & 2.98 & 1.0 & 0.40 & ug/l & 4.00 & 74 & 60-115 & 10 & 25 & \\
\hline Surrogate: Decachlorobiphenyl & 0.404 & & & \(u g / l\) & 0.500 & 81 & 45-120 & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\title{
Del Mar Analytical
}
\begin{tabular}{|lrr|}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
\(\mathbf{3 0 0}\) North Lake Avenue, Suite 1200 & Report Number: \(10 B 1004\) & Sampled: \(02 / 11 / 05\) \\
Pasadena, CA 91101 & Received: \(02 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{METHOD BLANKIQC DATA}
\begin{tabular}{lllllllllll}
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit
\end{tabular}

Batch: 5B15070 Extracted: 02/15/05
Blank Analyzed: 02/15/2005 (5B15070-BLK1)

Batch: 5B17112 Extracted: 02/17/05
Blank Analyzed: 02/18/2005-02/20/2005 (5B17112-BLK1)
\begin{tabular}{|c|c|c|c|}
\hline Antimony & ND & 2.0 & 0.18 \\
\hline Arsenic & 0.713 & 1.0 & 0.49 \\
\hline Barium & ND & 0.0010 & 0.00014 \\
\hline Beryllium & ND & 0.50 & 0.037 \\
\hline Cadmium & ND & 1.0 & 0.015 \\
\hline Chromium & ND & 1.0 & 0.26 \\
\hline Cobalt & ND & 1.0 & 0.10 \\
\hline Copper & ND & 2.0 & 0.49 \\
\hline Iron & 0.00575 & 0.010 & 0.0032 \\
\hline Lead & ND & 1.0 & 0.13 \\
\hline Manganese & ND & 1.0 & 0.44 \\
\hline Nickel & ND & 1.0 & 0.15 \\
\hline Selenium & ND & 2.0 & 0.36 \\
\hline Silver & ND & 1.0 & 0.089 \\
\hline Thallium & 0.343 & 1.0 & 0.075 \\
\hline Vanadium & ND & 1.0 & 0.86 \\
\hline Zinc & ND & 20 & 3.1 \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\title{
Del Mar Analytical
}
\begin{tabular}{lrr}
MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(02 / 11 / 05\) \\
Pasadena, CA 91101 & Report Number: 1OB1004 & Received: 02/11/05 \\
Attention: Bronwyn Kelly & \(\ldots\)
\end{tabular}

\section*{METHOD BLANKOC DATA}

\section*{METALS}
\begin{tabular}{lllllllllll}
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit
\end{tabular}

LCS Analyzed: 02/18/2005-02/20/2005 (5B17112-BS1)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Antimony & 87.9 & 2.0 & 0.18 & ug/l & 80.0 & 110 & 85-115 \\
\hline Arsenic & 85.9 & 1.0 & 0.49 & ug/l & 80.0 & 107 & 85-115 \\
\hline Barium & 0.0779 & 0.0010 & 0.00014 & mg/l & 0.0800 & 97 & 85-115 \\
\hline Beryllium & 76.5 & 0.50 & 0.037 & ug/l & 80.0 & 96 & 85-115 \\
\hline Cadmium & 73.4 & 1.0 & 0.015 & ug/l & 80.0 & 92 & 85-115 \\
\hline Chromium & 80.5 & 1.0 & 0.26 & ug/ & 80.0 & 101 & 85-115 \\
\hline Cobalt & 79.2 & 1.0 & 0.10 & ug/l & 80.0 & 99 & 85-115 \\
\hline Copper & 80.0 & 2.0 & 0.49 & ug/l & 80.0 & 100 & 85-115 \\
\hline Iron & 0.799 & 0.010 & 0.0032 & \(\mathrm{mg} / \mathrm{l}\) & 0.800 & 100 & 85-115 \\
\hline Lead & 80.0 & 1.0 & 0.13 & ug/l & 80.0 & 100 & 85-115 \\
\hline Manganese & 78.9 & 1.0 & 0.44 & ug/l & 80.0 & 99 & 85-115 \\
\hline Nickel & 80.5 & 1.0 & 0.15 & ug/ & 80.0 & 101 & 85-115 \\
\hline Selenium & 76.6 & 2.0 & 0.36 & ug/ & 80.0 & 96 & 85-115 \\
\hline Silver & 77.7 & 1.0 & 0.089 & ug/ & 80.0 & . 97 & 85-115 \\
\hline Thallium & 80.5 & 1.0 & 0.075 & ug/ & 80.0 & 101 & 85-115 \\
\hline Vanadium & 79.6 & 1.0 & 0.86 & ug/ & 80.0 & 100 & 85-115 \\
\hline Zinc & 75.4 & 20 & 3.1 & ug/ & 80.0 & 94 & 85-115 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Matrix Sp & 2005 (5 & 2-MS1) & & & Sou & e: 10B & 70-01 & \\
\hline Antimony & 90.2 & 2.0 & 0.18 & ug/l & 80.0 & 0.61 & 112 & 70-130 \\
\hline Arsenic & 88.1 & 1.0 & 0.49 & ug/l & 80.0 & 0.70 & 109 & 70-130 \\
\hline Barium & 0.0947 & 0.0010 & 0.00014 & \(\mathrm{mg} / 1\) & 0.0800 & 0.016 & 98 & 70-130 \\
\hline Beryllium & 73.9 & 0.50 & 0.037 & ug/ & 80.0 & ND & 92 & 70-130 \\
\hline Cadmium & 73.9 & 1.0 & 0.015 & ug/ & 80.0 & 0.37 & 92 & 70-130 \\
\hline Chromium & 84.8 & 1.0 & 0.26 & ug/ & 80.0 & 2.7 & 103 & 70-130 \\
\hline Cobalt & 80.3 & 1.0 & 0.10 & ug/l & 80.0 & 0.43 & 100 & 70-130 \\
\hline Copper & 92.0 & 2.0 & 0.49 & ug/ & 80.0 & 11 & 101 & 70-130 \\
\hline Iron & 1.11 & 0.010 & 0.0032 & \(\mathrm{mg} / \mathrm{l}\) & 0.800 & 0.35 & 95 & 70-130 \\
\hline Lead & 91.8 & 1.0 & 0.13 & ugh & 80.0 & 13 & 98 & 70-130 \\
\hline Manganese & 107 & 1.0 & 0.44 & ug1 & 80.0 & 25 & 102 & 70-130 \\
\hline Nickel & 83.5 & 1.0 & 0.15 & ug/ & 80.0 & 2.6 & 101 & 70-130 \\
\hline Selenium & 76.2 & 2.0 & 0.36 & \(\mathrm{ug} / \mathrm{l}\) & 80.0 & 0.48 & 95 & 70-130 \\
\hline Silver & 77.6 & 1.0 & 0.089 & ug/l & 80.0 & ND & 97 & 70-130 \\
\hline Thallium & 79.6 & 1.0 & 0.075 & ug/ & 80.0 & 0.42 & 99 & 70-130 \\
\hline Vanadium & 89.3 & 1.0 & 0.86 & ug/l & 80.0 & 8.0 & 102 & 70-130 \\
\hline Zinc & 338 & 20 & 3.1 & ug/ & 80.0 & 270 & 85 & 70-130 \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\title{
Del Mar Analytical
}

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Outfall 011
Report Number: IOB1004
Sampled: 02/11/05
\begin{tabular}{rr}
Project ID: Outfall 011 & \\
Report Number: \(10 B 1004\) & Sampled: 02/11/05 \\
Received: \(02 / 11 / 05\)
\end{tabular}

\section*{METHOD BLANKIQC DATA}

\section*{METALS}
\begin{tabular}{lllllllllll}
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result \(\%\) REC & Limits & RPD & Limit & \begin{tabular}{c}
Qualifiers
\end{tabular} \\
Batch: 5B17112 Extracted: 02/17/05 & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Matrix Sp & /20/20 & 17112- & D1) & & & : 10 B & 70-01 & & & \\
\hline Antimony & 91.1 & 2.0 & 0.18 & ug/ & 80.0 & 0.61 & 113 & 70-130 & 1 & 20 \\
\hline Arsenic & 87.3 & 1.0 & 0.49 & ugh & 80.0 & 0.70 & 108 & 70-130 & 1 & 20 \\
\hline Barium & 0.0942 & 0.0010 & 0.00014 & \(\mathrm{mg} / 1\) & 0.0800 & 0.016 & 98 & 70-130 & 1 & 20 \\
\hline Beryllium & 74.9 & 0.50 & 0.037 & ug/ & 80.0 & ND & 94 & 70-130 & 1 & 20 \\
\hline Cadmium & 72.3 & 1.0 & 0.015 & ug/ & 80.0 & 0.37 & 90 & 70-130 & 2 & 20 \\
\hline Chromium & 84.7 & 1.0 & 0.26 & ug/ & 80.0 & 2.7 & 102 & 70-130 & 0 & 20 \\
\hline Cobalt & 79.9 & 1.0 & 0.10 & ugl & 80.0 & 0.43 & 99 & 70-130 & 1 & 20 \\
\hline Copper & 91.8 & 2.0 & 0.49 & ug/l & 80.0 & 11 & 101 & 70-130 & 0 & 20 \\
\hline Iron & 1.14 & 0.010 & 0.0032 & \(\mathrm{mg} / \mathrm{l}\) & 0.800 & 0.35 & 99 & 70-130 & 3 & 20 \\
\hline Lead & 92.8 & 1.0 & 0.13 & ug/l & 80.0 & 13 & 100 & 70-130 & 1 & 20 \\
\hline Manganese & 105 & 1.0 & 0.44 & \(\mathrm{ug} / 1\) & 80.0 & 25 & 100 & 70-130 & 2 & 20 \\
\hline Nickel & 82.8 & 1.0 & 0.15 & ug/ & 80.0 & 2.6 & 100 & 70-130 & 1 & 20 \\
\hline Selenium & 76.5 & 2.0 & 0.36 & ug/ & 80.0 & 0.48 & 95 & \(70-130\) & 0 & 20 \\
\hline Silver & 77.3 & 1.0 & 0.089 & ug/ & 80.0 & ND & 97. & \(70-130\) & 0 & 20 \\
\hline Thallium & 80.4 & 1.0 & 0.075 & ug/ & 80.0 & 0.42 & 100 & 70-130 & 1 & 20 \\
\hline Vanadium & 88.8 & 1.0 & 0.86 & ug/ & 80.0 & 8.0 & 101 & 70-130 & 1 & 20 \\
\hline Zinc & 340 & 20 & 3.1 & ug/ & 80.0 & 270 & 88 & 70-130 & 1 & 20 \\
\hline
\end{tabular}

Batch: 5B17127 Extracted: 02/17/05
Blank Analyzed: 02/18/2005 (5B17127-BLK1)

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
\begin{tabular}{|llr}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
300 North Lake Avenue, Suite 1200 & Report Number: \(10 B 1004\) & Sampled: \(02 / 11 / 05\) \\
Pasadena, CA 91101 & & Received: \(02 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{METHOD BLANKVQC DATA}

\section*{METALS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & Reporting & & & Spike & Source & & \%REC & & RPD & Data \\
\hline Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers \\
\hline
\end{tabular}

Batch: 5B17127 Extracted: 02/17/05

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
\begin{tabular}{|lll}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
\begin{tabular}{lll}
300 North Lake Avenue, Suite 1200 & Report Number: \(10 B 1004\) & \begin{tabular}{l}
Sampled: \(02 / 11 / 05\) \\
Pasadena, CA 91101
\end{tabular} \\
Received: 02/11/05
\end{tabular} \\
\hline
\end{tabular}

\section*{MICTIOD DIA NIIOC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5B11047 Extracted: 02/11/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 02/11/2005 (5B11047-BLK1)} \\
\hline Chromium VI ND & 0.0010 & 0.000045 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 02/11/2005 (5B11047-BS1)} \\
\hline Chromium VI 0.0521 & 0.0010 & 0.000045 & \(\mathrm{mg} / 1\) & 0.0500 & & 104 & 90-110 & & & \\
\hline Matrix Spike Analyzed: 02/11/2005 (5B11047-MS1) & & & & Sou & rce: 10B0 & 888-01 & & & & \\
\hline Chromium VI 0.0370 & 0.0010 & 0.000045 & mg/l & 0.0500 & 0.00018 & 74 & 90-110 & & & M2 \\
\hline \multicolumn{2}{|l|}{Matrix Spike Dup Analyzed: 02/11/2005 (5B11047-MSD1)} & & & Sou & rce: IOB0 & 888-01 & & & & \\
\hline Chromium VI 0.0368 & 0.0010 & 0.000045 & mg/ & 0.0500 & 0.00018 & 73 & 90-110 & 1 & 10 & M2 \\
\hline
\end{tabular}

Batch: 5B11072 Extracted: 02/11/05
Daplicate Analyzed: 02/11/2005 (5811072-DUP1)
Source: 1OB0822-02
Residual Chlorine \(\quad \mathrm{ND} \quad 0.10 \quad 0.10 \mathrm{mg} / 1 \quad 20\)

Batch: 5B11108 Extracted: 02/11/05
Blank Analyzed: 02/16/2005 (5B11108-BLK1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Biochemical Oxygen Demand & ND & 2.0 & 0.59 & \(\mathrm{mg} / \mathrm{l}\) & & & & & \\
\hline \multicolumn{10}{|l|}{LCS Analyzed: 02/16/2005 (5B11108-BS1)} \\
\hline Biochemical Oxygen Demand & 206 & 100 & 30 & \(\mathrm{mg} / \mathrm{l}\) & 198 & 104 & 85-115 & & \\
\hline \multicolumn{10}{|l|}{LCS Dup Analyzed: 02/16/2005 (5B11108-BSD1)} \\
\hline Biochemical Oxygen Demand & 204 & 100 & 30 & \(\mathrm{mg} / 1\) & 198 & 103 & 85-115 & 1 & 20 \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\title{
Del Mar Analytical
}
\begin{tabular}{|lcr}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
300 North Lake Avenue, Suite 1200 & Report Number: \(10 B 1004\) & Sampled: \(02 / 11 / 05\) \\
Pasadena, CA 91101 & & Received: \(02 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{MIMTHO MLANKIOC DATA}

\section*{INORGANICS}

Batch: 5B12048 Extracted: 02/12/05
Blank Analyzed: 02/12/2005 (5B12048-BLK1)
\begin{tabular}{lllll}
Total Cyanide ND & 0.0050 & 0.0022 & \(\mathrm{mg} / \mathrm{l}\)
\end{tabular}

LCS Analyzed: 02/12/2005 (5B12048-BS1)
\(\begin{array}{llllllll}\text { Total Cyanide } & 0.192 & 0.0050 & 0.0022 & \mathrm{mg} / \mathrm{l} & 0.200 & 96 & 90-110\end{array}\)

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\title{
Del Mar Analytical
}
\begin{tabular}{lcr}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
\(\mathbf{3 0 0}\) North Lake Avenue, Suite 1200 & Report Number: IOB1004 & Sampled: \(\mathbf{0 2 / 1 1 / 0 5}\) \\
Pasadena, CA 91101 & Received: \(\mathbf{0 2 / 1 1 / 0 5}\) \\
Attention: Bronwyn Kelly &
\end{tabular}

\section*{METHOD BLANKIOC DATA}

\section*{INORGANICS}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

\title{
Del Mar Analytical
}

\section*{INORGANICS}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager
\begin{tabular}{|lll}
MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
\begin{tabular}{l}
300 North Lake Avenue, Suite 1200 \\
Pasadena, CA 91101
\end{tabular} & Report Number: \(10 B 1004\) & Sampled: 02/11/05 \\
Attention: Bronwyn Kelly & & Received: \(02 / 11 / 05\)
\end{tabular}

\section*{MIEIIOD REANKIQCBATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5816119 Extracted: 02/16/05} \\
\hline B \(\because\) & & & & & & & & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 02/16/2005 (5B16119-BS1)} \\
\hline Total Dissolved Solids 988 & 10 & 10 & mgl & 1000 & & 99 & 90-110 & & & \\
\hline Duplicate Analyzed: 02/16/2005 (5B16119-DUP1) & & \multicolumn{9}{|c|}{Source: 1OB1106-12} \\
\hline Total Dissolved Solids 1280 & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & & 1300 & & & 2 & 10 & \\
\hline \multicolumn{11}{|l|}{Batch: 5B16120 Extracted: 02/16/05} \\
\hline Duplicate Analyzed: 02/16/2005 (5B16120-DUP1) & \multicolumn{10}{|c|}{Source: 1080937-02} \\
\hline Specific Conductance 95.3 & 1.0 & 1.0 & umhos/cm & & 95 & & & 0 & 5 & \\
\hline \multicolumn{11}{|l|}{Batch: 5B17117 Extracted: 02/17/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 02/17/2005 (5B17117-BLK1) -} \\
\hline Oil \& Grease
\[
\mathrm{ND}
\] & 5.0 & 0.94 & mg/l & \(\because\) & & \(\therefore\) ? & - & & & \\
\hline LCS Analyzed: 02/17/2005 (5B17117-BS1) & & & & & & & & & & M-NR1 \\
\hline Oil \& Grease 17.6 & 5.0 & 0.94 & \(\mathrm{mg} / \mathrm{l}\) & 20.0 & & 88 & 65-120 & & & \\
\hline \multicolumn{11}{|l|}{LCS Dup Analyzed: 02/17/2005 (5B17117-BSD1)} \\
\hline Oil \& Grease 16.4 & 5.0 & 0.94 & \(\mathrm{mg} / \mathrm{l}\) & 20.0 & & 82 & 65-120 & 7 & 20 & \\
\hline \multicolumn{11}{|l|}{Batch: 5B17122 Extracted: 02/17/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 02/17/2005 (5B17122-BLK1)} \\
\hline Total Suspended Solids ND & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
\begin{tabular}{|lcr|}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
300 North Lake Avenue, Suite 1200 & Report Number: \(10 B 1004\) & \begin{tabular}{l}
Sampled: \(02 / 11 / 05\) \\
Pasadena, CA 91101
\end{tabular} \\
Received: \(02 / 11 / 05\)
\end{tabular}

\section*{METHOD BLANKIQC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5B17122 Extracted: 02/17/05} \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 02/17/2005 (5B17122-BS1)} \\
\hline Total Suspended Solids 953 & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & 1000 & & 95 & 85-115 & & & \\
\hline Duplicate Analyzed: 02/17/2005 (5B17122-DUP1) & & & & & ce: IOB & 1088-02 & & & & \\
\hline Total Suspended Solids ND & 10 & 10 & mg/ & & ND & & & & 10 & \\
\hline \multicolumn{11}{|l|}{Batch: 5B23083 Extracted: 02/23/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 02/23/2005 (5B23083-BLK1)} \\
\hline Total Organic Carbon ND & 1.0 & 0.25 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 02/23/2005 (5B23083-BS1)} \\
\hline Total Organic Carbon 10.4 & 1.0 & 0.25 & \(\mathrm{mg} / \mathrm{l}\) & 10.0 & & 104 & 90-110 & & & \\
\hline Matrix Spike Analyzed: 02/23/2005 (5B23083-MS1) & & & & & ce: IOB & 292-18 & & & & \\
\hline Total Organic Carbon \(\quad 6.12\) & 1.0 & 0.25 & \(\mathrm{mg} / \mathrm{l}\) & 5.00 & 0.49 & 113 & 80-120 & . & & \(\cdots\) \\
\hline \multicolumn{2}{|l|}{Matrix Spike Dup Analyzed: 02/23/2005 (5B23083-MSD1)} & & & & ce: IOB1 & 292-18 & & & & \\
\hline Total Organic Carbon 6.30 & 1.0 & 0.25 & \(\mathrm{mg} / \mathrm{l}\) & 5.00 & 0.49 & 116 & 80-120 & 3 & 20 & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Outfall 011
Report Number: \(10 B 1004\)
Sampled: 02/11/05
Received: 02/11/05

\section*{METHOD BLANKIQC DATA}

\section*{1,4-DIOXANE BY GC/MS (EPA 5030B/8260B)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & Spike Level & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \[
\begin{aligned}
& \text { RPD } \\
& \text { Limit }
\end{aligned}
\] & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: P5B1701 Extracted: 02/17/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 02/17/2005 (P5B1701-BLK1)} \\
\hline 1,4-Dioxane & ND & 1.0 & 0.49 & ug/1 & & & & & & & \\
\hline Surrogate: Dibromofluoromethane & 0.930 & & & \(u g /\) & 1.00 & & 93 & 80-125 & & & \\
\hline \multicolumn{12}{|l|}{LCS Analyzed: 02/17/2005 (P5B1701-BS1)} \\
\hline 1,4-Dioxane & 10.9 & 1.0 & 0.49 & ug/ & 10.0 & & 109 & 70-130 & & & \\
\hline Surrogate: Dibromofluoromethane & 0.920 & & & \(u g / l\) & 1.00 & & 92 & 80-125 & & & \\
\hline \multicolumn{12}{|l|}{LCS Dup Analyzed: 02/17/2005 (P5B1701-BSD1)} \\
\hline 1,4-Dioxane & 12.3 & 1.0 & 0.49 & ug/l & 10.0 & & 123 & 70-130 & 12 & 20 & \\
\hline Surrogate: Dibromofluoromethane & 0.950 & & & \(u g /\) & 1.00 & & 95 & 80-125 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Matrix Spike Analyzed: 02/17/2005 (P5B1701-MS1)} & \multicolumn{8}{|c|}{Source: POB0398-01} \\
\hline 1,4-Dioxane & 11.1 & 1.0 & 0.49 & \(\mathrm{ug} /\) & 10.0 & ND & 111 & 70-150 & & \\
\hline Surrogate Dibromofluoromethane & 0.980 & & & ugh & 1.00 & & 98 & 80-125 & & \\
\hline \multicolumn{3}{|l|}{Matrix Spike Dup Analyzed: 02/17/2005 (P5B1701-MSD1)} & \multicolumn{8}{|c|}{Source: POB0398-01} \\
\hline 1,4-Dioxane & 11.0 & 1.0 & 0.49 & ug/ & 10.0 & ND & 110 & 70-150 & 1 & 25 \\
\hline Surrogate: Dibromofluoromethane & 1.00 & & & ug/ & 1.00 & & 100 & 80-125 & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Outfall 011
Report Number: IOB1004
Sampled: 02/11/05

\section*{DATA QUALIFIERS AND DEFINITIONS}

B Analyte was detected in the associated Method Blank.
C Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.
C5 Calibration Verification recovery was below the method control limit for this analyte. An additional check standard was analyzed at the reporting limit to ensure instrument sensitivity at the reporting limit. Samples ND.
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
\(\mathbf{L} 2\) Laboratory Control Sample recovery was below method control limits.
M2 The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
R-7 LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria.
RL-1 Reporting limit raised due to sample matrix effects.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

\section*{ADDITIONAL COMMENTS}

For TICs:
All identifications are tentative and concentrations are estimates based upon spectral comparison to the EPA/NIH library. For 1,2-Diphenylhydrazine:

The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.
For GRO (C4-C12):
GRO (C4-C12) is quantitated against a gasoline standard. Quantitation begins immediately following the methanol peak. For Extractable Fuel Hydrocarbons (EFH, DRO, ORO) :

Unless otherwise noted, Extractable Fuel Hydrocarbons (EFH, DRO, ORO) are quantitated against a Diesel Fuel Standard.

\author{
Del Mar Analytical, Irvine \\ Wendy Kirkeeng For Michele Harper \\ Project Manager
}

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Outfall 011

Report Number: \(10 B 1004\)
Sampled: 02/11/05

\section*{Certification Summary}

\section*{Del Mar Analytical, Irvine}
\begin{tabular}{cccc}
Methed & Matrix & Nelac & California \\
EPA 120.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 160.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 160.5 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 180.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 200.7 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 200.8 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 218.6 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 245.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 300.0 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 314.0 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 330.5 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 335.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 350.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 405.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 413.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 415.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 418.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 608 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 624 (MOD.) & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 624 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 625 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 8015 Mod. & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 8015B & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 8260B & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
SM2540C & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
SM5540-C & Water & \(\mathbf{X}\) & \(\mathbf{X}\)
\end{tabular}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

\section*{Subcontracted Laboratories}

\section*{Alta Analytical Perspectives}

2714 Exchange Drive - Wilmington, NC 28405
Analysis Performed: 1613-Dioxin-HR
Samples: 1OB1004-01
Analysis Performed: EDD + Level 4
Samples: \(10 B 1004-01\)
Aquatic Testing Laboratories-SUB California Cert \#1775
4350 Transport Street, Unit 107 - Ventura, CA 93003
Analysis Performed: Bioassay-7 dy Chrnic

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

\title{
Del Mar Analytical
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011

Report Number: 1OB1004

Sampled: 02/11/05
Received: 02/11/05

Aquatic Testing Laboratories-SUB California Cert \#1775
4350 Transport Street, Unit 107 - Ventura, CA 93003
Samples: 1OB1004-01
Analysis Performed: Bioassay-Acute 96 hr
Samples: [OB1004-01
Del Mar Analytical - Phoenix NELAC Cert \#01109CA, California Cert \#2446
9830 S. 51 st Street, Suite B-120 - Phoenix, AZ 85044
Method Performed: EPA 8260B
Samples: IOB1004-01
Eberline Services - SUB
2030 Wright Avenue - Richmond, CA 94804
Analysis Performed: EDD + Level 4
Samples: IOB1004-01
Analysis Performed: Gross Alpha
Samples: IOB1004-01
Analysis Performed: Gross Beta
Samples: IOB1004-01
Analysis Performed: Radium, Combined
Samples: IOB1004-01
Analysis Performed: Strontium 90
Samples: IOB1004-01
Analysis Performed: Tritium
Samples: IOB1004-01
Truesdail Laboratories-SUB Califormia Cert \#1237
14201 Franklin Avenue - Tustin, CA 92680
Analysis Performed: Hydrazine
Samples: 10B1004-01
Analysis Performed: Level 4 Data Package
Samples: IOB1004-01

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

\section*{\(F \propto X\)}

\section*{(4) MWH}

Date: 03/01/05

300 N. Lake Ave., Suite 1200
Pasadena, California 91101
Tel: 626-568-6691
Fax: 626-568-6515

Chain-of-Custody Form Analytical Request Change

No. of Pages: 1
(including cover)

Per Request:
Please make the changes listed below to the chain-of-custody analytical request form. Include this form with the final deliverables for these samples.
\begin{tabular}{|c|c|c|c|c|}
\hline DelMar Work Order \# & Sample ID & Date Collected & Change(b) Requested, Not Completed & Change(s) and Mefhod (s) Now Requested \\
\hline 10A0567 & Outfall 011 Composite & 01/11/05 & & \(\mathrm{NH3}, \mathrm{BOD}, \mathrm{Cl}, \mathrm{N} / \mathrm{N}-\mathrm{N}, \mathrm{Oil}\) and Grcase, Sulfate, MBAS, TDS, TSS, Setleable Solids, Turbidity, \(\mathrm{CN}, \mathrm{Clo4-}\). Conductivity, Lead, \(\mathrm{Cr}, \mathrm{Cu}, \mathrm{Hg}, \mathrm{TOC}\), TCDD. \\
\hline 10A0549 & \[
\begin{aligned}
& \text { Outfall } 011 \text { - } \\
& \text { Grab }
\end{aligned}
\] & 01/11/05 & & 608 Pest/PCB-PP list, 625-PP list, Sb, As, \(\mathrm{Ba}, \mathrm{Be}, \mathrm{B}, \mathrm{Cd}, \mathrm{Cr}, \mathrm{Co}, \mathrm{F}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{Ni}, \mathrm{Se}\), Ag, T1, V, Zn, 1,4-Dioxane, 624-Freon 113, Freon 123a, Cyclohexane \\
\hline IOB1004 & Outall 011 Composite & 01/11/05 & - . \({ }^{\text {- }}\) & NII3, BOD, Cl-, N/N-N, Oil and Grease, Sulfate MBAS, TDS, TSS, Setteable Solids, Turbidity, CN, Clo4. Conductivity, Lead, \(\mathrm{Cr}, \mathrm{Cu}, \mathrm{Hg}\), TOC, TCDD. \\
\hline
\end{tabular}

The reason for these changes:

\section*{Incorrectly marked on COC form}

Lack of sample volume
MWH affice personnel require this change
Other: Containers mislabeled \(\qquad\)

This Change Order supersedes all previous change orders submitted.

Thank you

April 6,2005

MWH-Pasadena/ Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention: Bronwyn Kelly
Project: \(\quad 13267\) (Study1)/Outfall 011
Sampled: 02/11/05
Del Mar Analytical Number: IOB1004

Dear Ms. Kelly:
Aquatic Testing Laboratories performed the Fathead Minnow 96 hr Percent Survival Bioassay (EPA Method 2000.0), Eberline Services tested gross alpha/gross beta (EPA 900.0), tritium (H-3, EPA 906.0), and strontium-90 (Sr-90, EPA 905.0) and Alta Analytical Perspectives performed Method 1613 Dioxin, and Truesdail Laboratories performed the Hydrazines by EPA 8315 analysis for the project referenced above. Please use the following cross-reference table when reviewing your results.
\begin{tabular}{|c|c|c|c|c|c|}
\hline MWH ID & \begin{tabular}{c}
DEL MAR \\
ID
\end{tabular} & ATL ID & \begin{tabular}{c}
EBERLINE \\
ID
\end{tabular} & ALTA ID & \begin{tabular}{c}
TRUESDAIL \\
ID
\end{tabular} \\
\hline Outfall 011-composite & \(10 B 1004-01\) & A-05021209-001/002 & R502134-8263 & P5072.2989 011 & \(939706-1\) \\
\hline
\end{tabular}

Attached are the original reports from the subcontract laboratories. If you have any questions or require further assistance, please do not hesitate to contact me at (949) 261-1022 at extension 215.

Sincerely yours,
DEL MAR ANALYTICAL

Date:
February 19, 2005
Client: Del Mar Analytical, Irvine 17461 Derian Avenue, Suite 100
Irvine, CA 92614
Attn: Michele Harper

Laboratory No.: A-05021209-001/002
Sample I.D.: IOB1004-01

Sample Control: The sample was received by ATL chilled, with the chain of custody record attached.
\begin{tabular}{ll}
Date Sampled: & \(02 / 11 / 05\) \\
Date Received: & \(02 / 12 / 05\) \\
Date Tested: & \(02 / 12 / 05\) to \(02 / 18 / 05\)
\end{tabular}

Sample Analysis: The following analyses were performed on your sample:
Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0), Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

\section*{Result Summary:}
\begin{tabular}{lcc}
Acute: & \(\frac{\text { Survival }}{100 \%}\) & \(\frac{\text { TUG }}{0.0}\) \\
Fathead Minnow: & & \\
Chronic: & \(\frac{\text { NOES }}{}\) & TUE \\
\(\quad\) Ceriodaphnia Survival: & \(100 \%\) & 1.0 \\
\(\quad\) Ceriodaphnia Reproduction: & \(100 \%\) & 1.0
\end{tabular}

Quality Control: Reviewed and approved by:

\section*{FATHEAD MINNOW PERCENT SURVIVAL TEST}

Lab No.: A-05021209-001
Client/ID: Del Mar IOB1004-01

TEST SUMMARY
Species: Pimephales promelas.
Age: 13 (1-14) days.
Regulations: NPDES.
Test solution volume: 250 ml .
Feeding: prior to renewal at \(\mathbf{4 8}\) hrs.
Number of replicates: 2.
Dilution water: Moderately hard reconstituted water.
Photoperiod: \(16 / 8\) hrs light/dark.

Start Date: 02/12/2005

Aquatic Testing Leboratorises
: TEST DATA
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & \multirow{2}{*}{\({ }^{\circ} \mathrm{C}\)} & \multirow{2}{*}{DO} & \multirow[b]{2}{*}{pH} & \multicolumn{2}{|r|}{\# Dead} & \multirow[t]{2}{*}{Analyst \& Time of Readings} \\
\hline & & & & & A & B & \\
\hline \multirow[t]{2}{*}{INITIAL} & Control & 20.2 & 8.1 & 2.8 & 0 & 0 & \multirow[t]{2}{*}{\[
N_{1200}
\]} \\
\hline & 100\% & 21.0 & 9.7 & 6.7 & 0 & 0 & \\
\hline \multirow[t]{2}{*}{24 Hr} & Control & 26.3 & 6.9 & 2.2 & C & 0 & \multirow[t]{2}{*}{\[
\frac{2}{1 / 00}
\]} \\
\hline & 100\% & 203 & C. 2 & 2.0 & \(C\) & 0 & \\
\hline \multirow[t]{2}{*}{48 Hr} & Control & 20.4 & 7.4 & 2.5 & 0 & 0 & \multirow[t]{2}{*}{\[
\frac{2}{1200}
\]} \\
\hline & 100\% & 20.5 & 74 & 20 & 0 & 0 & \\
\hline \multirow[t]{2}{*}{Renewal} & Control & 20.4 & 8.0 & \(\geq 2\) & 0 & 0 & \multirow[t]{2}{*}{\[
1200
\]} \\
\hline & 100\% & 20.3 & 87 & 6.8 & 0 & 0 & \\
\hline \multirow[t]{2}{*}{72 Hr} & Control & 19.8 & 2.8 & 7.4 & 0 & 0 & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { ann } \\
& 1100
\end{aligned}
\]} \\
\hline & 100\% & 19.6 & 28 & 6.9 & \(\alpha\) & 0 & \\
\hline \multirow[t]{2}{*}{96 Hr} & Control & 20.7 & 2.8 & 24 & 0 & 0 & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { pho } \\
& \text { lao }
\end{aligned}
\]} \\
\hline & 100\% & 20.5 & 7.6 & 6.9 & 0 & 0 & \\
\hline \multicolumn{8}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Comments: \\
Sample as received: Chlorine: \(0 \mathrm{mg} / 1 ; \mathrm{pH}: 6.7\); Conductivity: 108 umho; Temp: \(4^{\circ} \mathrm{C}\); DO: \(9.7 \mathrm{mg} /\); Alkalinity: \(34 \mathrm{mg} / \mathrm{f}\), Hardness: \(/ 6 \mathrm{mg} / \mathrm{l} ; \mathrm{NH}_{3}-\mathrm{N}: 0.3 \mathrm{mg} / \mathrm{I}\). \\
Sample aerated moderately (approx. \(500 \mathrm{ml} / \mathrm{min}\)) to raise or lower DO? Yes / Xo. \\
Control: Alkalinity: \(54 \mathrm{mg} /\); Hardness: \(87 \mathrm{mg} /\); Conductivity: 295 umho. \\
Test solution aerated (not to exceed 100 bubbles \(/ \mathrm{min}\)) to maintain DO \(>4.0 \mathrm{mg} / 1\) Yes / \\
Sample used for renewal is the original sample kept at \(0-6^{\circ} \mathrm{C}\) with minimal headspace.
\end{tabular}}} \\
\hline & & & & & & & \\
\hline
\end{tabular}

\section*{RESULTS}
\(\qquad\) \% \(\qquad\) \%

\section*{CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0}

Lab No.: A-05021209
Date Tested: 02/12/05 to 02/18/05
Client/ID: Del Mar IOB1004-01

\section*{TEST SUMMARY}

Test type: Daily static-renewal.
Species: Ceriodaphnia dubia.
Age: <24 hrs; all released within 8 hrs.
Test vessel size: 30 ml .
Number of test organisms per vessel: 1. Temperature: \(25+/-1^{\circ} \mathrm{C}\).
Dilution water: Mod. hard reconstituted (MHRW).
QA/QC Batch No.: RT-050204.

Endpoints: Survival and Reproduction.
Source: In-laboratory culture.
Food: . 1 ml YTC, algae per day.
Test solution volume: 15 ml .
Number of replicates: 10.
Photoperiod: \(16 / 8 \mathrm{hrs}\). light/dark cycle.
Test duration: 7 days.
Statistics: ToxCalc computer program.

RESULTS SUMMARY
\begin{tabular}{|c|c|c|}
\hline Sample Concentration & Percent Survival & \begin{tabular}{c}
Mean Number of \\
Young Per Female
\end{tabular} \\
\hline Control & \(100 \%\) & 25.8 \\
\hline \(6.25 \%\) & \(100 \%\) & 26.5 \\
\hline \(12.5 \%\) & \(100 \%\) & 28.2 \\
\hline \(25 \%\) & \(100 \%\) & 27.3 \\
\hline \(50 \%\) & \(100 \%\) & 25.8 \\
\hline \(100 \%\) & \(100 \%\) & 25.4 \\
\hline
\end{tabular}
* Statistically significantly less than control at \(\mathrm{P}=0.05\) level.
** Reproduction data from concentrations greater than survival NOEC are excluded from statistical analysis.

CHRONIC TOXICITY
\begin{tabular}{|c|c|c|}
\hline Parameter & Survival & Growth \\
\hline NOEC & \(100 \%\) & \(100 \%\) \\
\hline TUc & 1.0 & 1.0 \\
\hline
\end{tabular}

QA/QC TEST ACCEPTABILITY
\begin{tabular}{|c|c|}
\hline Parameter & Result \\
\hline Control survival \(280 \%\) & Pass (100\% survival) \\
\hline\(\geq 15\) young per surviving control female & Pass (25.8 young) \\
\hline \(260 \%\) surviving controls had 3 broods & Pass (\(100 \%\) with 3 broods) \\
\hline \begin{tabular}{c|c|}
\hline PMSD \(<47 \%\) for reproduction; if \(>47 \%\) and no toxicity \\
at IWC, the test must be repeated
\end{tabular} & Pass (PMSD \(=15.8 \%\)) \\
\hline \begin{tabular}{c|c|}
Statistically significantly different concentrations relative \\
difference \(>13 \%\)
\end{tabular} & NA - No stat. sig. diff. concentrations \\
\hline Concentration response relationship acceptable & Pass (slight response at conc. tested) \\
\hline
\end{tabular}

\section*{SUBCONTRACT ORDER - PROJECT \# IOB1004}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
SENDING LABORATORY: \\
Del Mar Analytical, Irvine \\
17461 Derian Avenue. Suite 100 \\
Irvine, CA 92614 \\
Phone: (949) 261-1022 \\
Fax: (949) 261-1228 \\
Project Manager: Michele Harper
\end{tabular} & \begin{tabular}{l}
RECEIVING LABORATORY: \\
Aquatic Testing Laboratories-SUB \\
4350 Transport Street, Unit 107 \\
Ventura, CA 93003 \\
Phone :(805) 650-0546 \\
Fax: (805) 650-0756
\end{tabular} \\
\hline Standard TAT is requested unless specific due date is requ & Due Date: \\
\hline Analysis Expiration & Comments \\
\hline \begin{tabular}{cc}
Sample ID: 1OB1004-01 & Water \\
Bioassay-7 dy Chrnic & \(02 / 13 / 0504: 00\) \\
Bioassay-Acute 96 hr & \(02 / 13 / 0504: 00\)
\end{tabular} & Instant Nofication ceriodaphnia, 13267 fathead minnow, 13267 \\
\hline \begin{tabular}{l}
Containers Supplied: \\
1 gal Poly (IOB1004-01AP) \\
1 gal Poly (IOB1004-01AQ)
\end{tabular} & \\
\hline
\end{tabular}

March 8, 2005

\author{
Ms. Michele Harper
}

Project Manager
Del Mar Analytical
17461 Derian Avenue, Suite 100
Irvine. CA 92614
Reference: Del Mar Analytical Project No. IOB1004
Eberline Services NELAP Cert \#01120CA (exp. 01/31/06)
Eberline Services Report R502134-8263

Dear Ms. Harper:
Enclosed are results from the analyses of one water sample received at Eberline Services on February 15,2005 . The sample was analyzed according to the accompanying Del Mar Analytical Subcontract Order Form. The requested analyses were gross alpha/gross beta (EPA900.0), tritium (H-3, EPA906.0), and strontium-90 (Sr-90, EPA905.0). The QC LCS, blank analyses, sample duplicates, and matrix spike results for the analyses were within the limits defined in Eberline Services Quality Control Procedures Manual. Analyses that involve the yielding of an analytical tracer or carrier, such as \(\mathrm{Sr}-90\), do not require matrix spike analyses to be performed.

Please call me if you have any questions concerning this report.
Regards.
thue Morm.
Melissa Mannion
Senior Program Manager
\(M C^{\prime} M / m \dot{\prime}\)
Enclosure: Report
Suhcontract Form
Receipt checklist
Imoice

\section*{Gberline Services}

\section*{ANALYSIS RESULTS}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Client \\
Sample ID
\end{tabular} & Lab Sample ID & Collected & Analyzed & Nuclide & Results +20 & Units & MDA \\
\hline \multirow[t]{4}{*}{1081004-01} & \multirow[t]{4}{*}{8263-001} & \multirow[t]{4}{*}{02/11/05} & 03/01/05 & GrossAlpha & \(2.03 \pm 0.91\) & pCi/L & 0.787 \\
\hline & & & 03/01/05 & Gross Beta & \(2.30 \pm 1.2\) & pci/L & 1.78 \\
\hline & & & 03/02/05 & H3 & \(21.1 \pm 140\) & pCi/L & 240 \\
\hline & & & 02/25/05 & Sr90 & \(-0.060 \pm 0.23\) & pCi/L & 0.470 \\
\hline
\end{tabular}

\section*{Eberline Services}

\section*{QC RESULTS}

Lab
Sample ID Nuclide Results Units Amount Added MA Evaluation
\(\qquad\)
\begin{tabular}{lrllcll}
GrossAlpha & 8.92 & \(\pm 1.1\) & \(\mathrm{pCi} / \mathrm{Smpl}\) & 11.2 & 0.403 & \(80 \%\) recovery \\
Gross Beta & 10.6 & \(\pm 0.77\) & \(\mathrm{pCi} / \mathrm{Smpl}\) & 12.1 & 0.556 & \(88 \%\) recovery \\
H3 & 281 & \(\pm 24\) & \(\mathrm{pCi} / \mathrm{Smpl}\) & 259 & 23.4 & 108\% recovery \\
Sr90 & 12.0 & \(\pm 0.59\) & \(\mathrm{pCi} / \mathrm{Smpl}\) & 11.1 & 0.238 & \(108 \%\) recovery
\end{tabular}

BLANK
8261-003
\begin{tabular}{lclllll}
GrossAlpha & -0.032 & \(\pm 0.15\) & \(\mathrm{pCi} / \mathrm{smpl}\) & NA & 0.374 & <MOA \\
Gross Beta & -0.073 & \(\pm 0.30\) & \(\mathrm{pCi} / \mathrm{smp1}\) & NA & 0.554 & <MBA \\
HB & 13.6 & \(\pm 15\) & \(\mathrm{pCi} / \mathrm{Smpl}\) & NA & 23.9 & <RDA \\
Sr90 & -0.091 & \(\pm 0.10\) & \(\mathrm{pCi} / \mathrm{Smpl}\) & NA & 0.234 & <MOA
\end{tabular}

\section*{SUBCONTRACT ORDER - PROJECT \# IOB1004}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ SENDING LABORATORY: } \\
Del Mar Analytical, Irvine \\
17461 Derian Avenue. Suite 100 \\
Irvine, CA 92614 \\
Phone: (949) 261-1022 \\
Fax: (949) 261-1228 \\
Project Manager: Michele Harper
\end{tabular}\(\quad\)\begin{tabular}{l}
\multicolumn{1}{|c|}{\begin{tabular}{l}
RECEIVING LABORATORY: \\
Eberline Services
\end{tabular}} \\
\hline 2030 Wright Avenue \\
Richmond, CA 94804 \\
Phone :(510) 235-2633 \\
Fax: (510) 235-0438 \\
\hline
\end{tabular}

Standard TAT is requested uniess specific due date is requested \(m\) Due Date: \(\qquad\) Initials: \(\qquad\)
\begin{tabular}{|c|c|c|}
\hline Analysis & Expiration & Comments \\
\hline Sample ID: 1OB1004-01 Water & Sampled: 02/11/05 16:00 & Instant Nofication \\
\hline EDD + Level 4-OUT & 03/11/05 16:00 & \\
\hline Gross Alpha-O & 02/11/06 16:00 & 900.0, IF RESULT>15 pCi/L, run Radium 226 \& 228 \\
\hline Gross Beta-O & 02/11/06 16:00 & 900.0, IF RESULT \(>15 \mathrm{pCi} / \mathrm{L}\), run Radium 226 \& 228 \\
\hline Radium, Combined-O & 02/11/06 16:00 & HOLD for Gross Alpha/Beta resuit;EPA 903.1 \& 904.0 \\
\hline Strontium 90-O & 02/11/06 16:00 & 905.0 \\
\hline Tritium-O & 02/11/06 16:00 & 906 \\
\hline \multicolumn{3}{|l|}{Containers Supplied:} \\
\hline \multicolumn{3}{|l|}{1 gal Poly (IOB1004-01AC) wr/ \(\mathrm{HNO}_{3}\)} \\
\hline \multicolumn{3}{|l|}{40 ml Voa Vial (1OB1004-01AU)} \\
\hline \multicolumn{3}{|l|}{40 ml Voa Vial (IOB1004-01AV)} \\
\hline
\end{tabular}

RIGHMOND, OA LaBORATORY

\section*{SAMPLE RECEMT CHECXLUST}

Customer Sampia
Alpha Merer Ser. No.
Beta/Gamma Metar Ser. No.

\section*{Alta analytical Perspectives}

3 March 2005
Scott Unze
Pace Analytical Services
1700 Elm Street
Minneapolis, MN 55414
Ph.: 612-607-1700
Fax: 612-607-6444
Subject: Certificate of Results

\section*{Dear Scott;}

Attached to this narrative are the analytical results you requested on the samples submitted for the determination of polychlorinated dibenzo-p-dioxins and dibenzofurans. The insert below summarizes the relevant information pertaining to your project. In particular, the QC annotations bring to your attention specific analytical observations and assessments made during the sample handling and data interpretation phases. A brief description of the report's components is provided on the next page.
\begin{tabular}{|c|c|}
\hline Project Information Summary & \multirow[t]{17}{*}{} \\
\hline Cllent Project No. & \\
\hline AAP Project No. & \\
\hline Analytical Protocol & \\
\hline No. Samples Sulomitted & \\
\hline No. Samples Analyzed & \\
\hline No. Laboratory Method Blanks & \\
\hline No. OPRs / Batch CS3 & \\
\hline No. Outstanding Samples & \\
\hline Date Received & \\
\hline Condition Recelved & \\
\hline Temperature upon Receipt (C) & \\
\hline Extraction within Holding Time & \\
\hline Analysis within Holding Time & \\
\hline Data meet OAQC Requirements & \\
\hline Exceptions & \\
\hline Analytical Difficulties & \\
\hline
\end{tabular}

\author{
2714 EXCHANGE DRIVE \\ WILMINGTON \\ NORTH CAROLINA 28405 \\ TEL: 910-794-1613 FAX 910-794-3919
}

\section*{QC Annotations:}
1. A " J " data qualifier is used for analytes with a concentration below the reporting limit.

Alta Analytical Perspectives remains committed to serving you in the most effective manner. Should you have any questions or need additional information and technical support, please, do not hesitate to contact us. We wanted to thank you for choosing Alta Analytical Perspectives as part of your analytical support team.

Sincerely,

Amy J. Bochm
Project Manager

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|r|}{Hethod 1613} \\
\hline Anatyst & \[
\left\lvert\, \begin{gathered}
0_{-2} 201 n_{1} \\
001 \\
\mathrm{PaR}
\end{gathered}\right.
\] & 108tect-01 & & & 208tation & 1081024-6t & solmane-04
cor & 10sasine-41 & & & 1080428-41 & 10:3004-4t & \begin{tabular}{l}
1080ention \\
poll
\end{tabular} & \begin{tabular}{l}
 \\
pot
\end{tabular} \\
\hline 23,7,4.6000 & (1.58) & (2.29) & (2.06) & (2.02) & (1.34) & (1.74) & (2.29) & (2.55) & (4.81) & & & & & \\
\hline 12,27.8Pseco & (1.55) & (1.85) & (1779) & (2.09) & (2.11) & (1.73) & (3.2) & (6.ta) & (1,52) & (2.04) & (2.14) & (1.92) & & \\
\hline & (2.5n) & (e.45) & (2.55) & (271) & (2.4t) & (3.85) & (4.75) & (242) & 3.57 & (2.74) & (5.21) & (12.2) & (2.85) & (5.36) \\
\hline & (2.4) & (3.21) & (2.57) & (2.7) & (2.34) & (3.8) & (4.49) & (2.45) & 8. 47 & (28b) & (8.98) & (13) & (4.B6) & (4.7) \\
\hline 1,2ג,4.6. \(7,0-\mathrm{mocos}\) & (2.8) & (3.28) & (a.13) & (3.33) & (2.82) & (4,38) & (4.93) & (2.85) & 8.27 & (3, 13) & (7,12) & (83.8) & (8.54) & (5.85) \\
\hline \(l_{0 \times 0}\) & (1.86) & 75.4 & 31.8 & 14 & (8,38) & 42.2 & (6.34) & 49.4 & 207 & 12.1 & (50.6) & 20.8 & (3.40) & (10.6) \\
\hline & (4.7a) & 863 & 267 & 136 & 70.4 & 157 & 56.4 & 471 & 2121 & 163 & 70.2 & 213 & 30.3 & 50 \\
\hline \begin{tabular}{l}
23.7.8.7cop \\

\end{tabular} & (1.04) & (1.26) & (4.84) & (4.85) & (0.598) & (20) & (1.37) & (4.04) & (1.48) & (5.03) & (2.58) & (2.74) & (2.39) & (2.61) \\
\hline & (4.91) & (1.78) & (2.75) & (1.44) & (2.33) & (1.34) & (3.75) & (1.8\%) & (2.35) & (2,1) & (4.02) & (2.52) & (2.08) & (2.46) \\
\hline 1,2.5A.78.4xCPF & (1.88) & \((1.88)\)
\((0.867)\)
\((0.84)\) & (2.8) & (1.48) & (2.42) & (1.49) & (3.80) & (2.03) & (2.31) & (1.98) & (3.97) & (2.63) & (1) & (2.49) \\
\hline & (0.764) & (0.843) & (0.827) & (0.768) & (0.043) & (1.38) & (1.30) & (1.47) & (0.07) & (0.545) & (1.55) & (8.68) & (4.62) & (1.33) \\
\hline & (1.09) & (1.32) & \((0.827)\)
\((1.04)\) & (0.708) & (0.87) & (1.31) & (15) & (3,51) & (\%) & (0.78) & (1,42) & (6.24) & (9.53) & (1.19) \\
\hline & (1.42) & (1.87) & (1,58) & (1.47) & (1,72) & (1.83) & (1.73) & (1.8) & (1,*) & (0.28) & (4.91) & (4.23) & (2.08) & (1.48) \\
\hline & (1.78) & 16. & (1.42) & (4.57) & (1.8) & 4.04 & (3.26) & 10.8 & (1.7)
272 & (1.55) & (2, 1) & (124) & (274) & (2.05) \\
\hline Ocor & \{11.9\} & 158 & (19) & (22.4) & (12.4) & (0,53) & (14.8) & 34.9 & 87. & (10.1) & (7.69) & (20.8) & & (6.79) \\
\hline & & & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Chmekeose} & \multirow[t]{2}{*}{3385} & \multirow[t]{2}{*}{438:} & \multirow[b]{2}{*}{6881} & \multirow[t]{2}{*}{4985} & \multirow[b]{2}{*}{5239} & & & & & & & & & \\
\hline & & & & & & 5627 & 2797 & 0067 & 0335 & 0812 & 3929 & 4355 & 4822 & 4epo \\
\hline
\end{tabular}

P5072 - Totals
Project ID: General Analytical HRMS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|l|}{\[
\pm 2 \text { ilhemenemen menerves Method } 1613
\]} \\
\hline Anulyte & 0_204n_40001 & 103100t-01 & 1030093-01 & 1080906-41 & 1080entica & 1089044-01 & 10808s0.01 & tomonemet & 1OPTras-01 & 108t002-0t & 1030092-01 & 1084ead-01 & 106003t-64 & 1080at4-91 \\
\hline Tointe & 20AL & \(p\) / & q22. & 县㤩 & Pg/ & Prt & p\%A & P92 & pgit & P2 2 & pol & Peta & p\%/4. & pot \\
\hline 7600\% & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4.77 & 0 & 0 & & & \\
\hline Hecons & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 45.5 & 0 & 0 & 0 & 0 & 0 \\
\hline Huccapt & 0 & 7.38 & 4.44 & 0 & 0 & 0 & 0 & 0 & 39.8 & 0 & 0 & 0 & 0 & 0 \\
\hline Hocios & 0 & 153 & 65.1 & 25.2 & 9.48 & 28.6 & 0 & 104 & 415 & 12.1 & 0 & 43.1 & 12.2 & 0 \\
\hline 10000 & 0 & 889 & 267 & 134 & 70.4 & 157 & 58.1 & 471 & 2120 & 163 & 70.2 & 213 & 50.3 & 50 \\
\hline Treore & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 8.53 & 0 & 0 & 0 & 0 & 0 \\
\hline PaCDF\% & 0 & 0 & 0.858 & 0 & 0 & 0.78 & 0.256 & 0 & 2.57 & 0 & 0.456 & 0 & 0 & 0 \\
\hline Pricomis & 0 & 2.88 & 0 & 0 & 0 & 0 & 0 & 4.13 & 32.8 & 0 & 0 & 0 & 0 & 0 \\
\hline Hocis: & 0 & 92.9 & 0 & 0 & 0 & 10.2 & 0 & 36.5 & 98.7 & 5.98 & 0 & 0 & 0 & 0 \\
\hline OCOF. & 0 & 155 & 0 & 0 & 0 & 0 & 0 & 34.8 & 87,t & 0 & 0 & 0 & 0 & 0 \\
\hline & 0.00 & 18290 & 338 & 159 & 78.8 & 197 & 58.4 & 34* & 2.800 & 182 & 70.7 & 256 & 62.8 & 50 \\
\hline Patat PCODF\% (NDM0; EMPCWEMPC) & 0.00 & 1,300 & 342 & 160 & 79. & 197 & 56.4 & 883 & 2,830 & 103 & 70.7 & 258 & 62.8 & 50 \\
\hline & 42.2 & 4,330 & 381 & 215 & 12. & 238 & 118. & 694 & 2,840 & 229 & 144 & 370 & 121 & 114 \\
\hline & 0.00 & 1,130 & 295 & 144 & 70.1 & 173 & 56.1 & 587 & 2,440 & 176 & 70.2 & 234 & 50.3 & \\
\hline & 21.1 & 1.140 & 315 & 172 & 84.8 & 193 & 82.5 & 581 & 2,450 & 198 & 107 & 293 & 78.5 & 82 \\
\hline & 42.2 & 1,180 & 336 & 200 & 119 & 214 & 119 & 595 & 2,450 & 241 & 444 & 348 & 109 & 114 \\
\hline Total 2775s (NOM0; EMPCims) & 0.00 & 1,130 & 299 & 444 & 70.4 & 473 & 56.1 & 587 & 2,440 & 176 & 70.2 & 234 & 50.3 & 50 \\
\hline & 24.1 & 1,140 & 319 & 172 & 94.5 & 193 & 87.5 & 581 & 2,450 & 193 & 107 & 291 & 79.5 & 82 \\
\hline & 42.2 & 1,160 & 338 & 200 & 119 & 214 & 119 & 595 & 2,450 & 211 & 144 & 348 & 109 & 414 \\
\hline Chuereode & 3385 & 4361 & 4881 & 4965 & 5239 & 5527 & 5707 & 0067 & 0335 & 0612 & 3929 & 4355 & 4822 & 4900 \\
\hline
\end{tabular}

P5072 - Others
Project ID: General Analytical HRMS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|l|}{} \\
\hline Analyte & C, 2904_misory _pod & 108400t-04 pgh & \[
\begin{gathered}
1080933-10 \\
\text { 992 }
\end{gathered}
\] & & \[
\left|\begin{array}{c}
\text { 108ose7.-91 } \\
\text { pon }
\end{array}\right|
\] & \begin{tabular}{|c}
108104401 \\
gad \\
\hline
\end{tabular} & \(10 \mathrm{BOP50} 91\)
pgh & \(1080800-91\)
pga & \[
\left.\begin{array}{c}
108100001 \\
\mathrm{pgh}
\end{array}\right]
\] & \(1081002 \cdot 91\) pat & \[
\left\lvert\, \begin{gathered}
10 \mathrm{ompoz-01} \\
\mathrm{popr}
\end{gathered}\right.
\] & 108100401
POL & \[
\begin{gathered}
1080850 \cdot 01 \\
\mathrm{par} \\
\hline
\end{gathered}
\] & \[
\left|\begin{array}{c}
1080081-01 \\
\mathrm{pgh}
\end{array}\right|
\] \\
\hline & & 0
0
7.8
77.2 & 0
0
4.44
33.6 & \[
\begin{gathered}
0 \\
0 \\
0 \\
15.2
\end{gathered}
\] & \[
\begin{gathered}
0 \\
0 \\
0 \\
0.46
\end{gathered}
\] & 0
0
0
17.4 & 0
0
0
0 & 0
0
0
51.5 & \[
\begin{aligned}
& 4.77 \\
& 15.5 \\
& 22.5 \\
& 208
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{gathered}
0 \\
0 \\
0 \\
22.3
\end{gathered}
\] & 0
0
0
12.2 & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] \\
\hline & o & 0
0
2.68
76.1 & 0
0.858
0
0 & : & 0
0
0
0 & \[
\begin{gathered}
0 \\
0.76 \\
0 \\
0.16
\end{gathered}
\] & 0
0.256
0
0 & 0
0
4.13
25.7 & \[
\begin{aligned}
& 8.53 \\
& 2.55 \\
& 32.8 \\
& 71.6
\end{aligned}
\] & \[
\begin{gathered}
0 \\
0 \\
0 \\
\text { } 5.96
\end{gathered}
\] & 0
0.458
0
0 & : & 0
0
0
0 & 0
0
0
0 \\
\hline & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & 0
0
7.38
77.2 & 0
0
8.57
33.6 & 0
0
0
15.2 & \[
\begin{gathered}
0 \\
0 \\
0 \\
0.46
\end{gathered}
\] & \[
\begin{gathered}
0 \\
0 \\
0 \\
17.4
\end{gathered}
\] & 0
0
0
0 & 0
0.86
81.5 & 4.77
15.5
47.7
208 & \[
\begin{gathered}
0 \\
0 \\
0 \\
11.3
\end{gathered}
\] & 0
0
0 & \[
\begin{gathered}
0 \\
0 \\
0 \\
02.3
\end{gathered}
\] & 0
0
0
12.2 & 0.
0
0
0 \\
\hline & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & 0
0
0.88
76.1 & 0
0.858
0
0 & 0
0.213
0
0 & 0
0
0
0 & \[
\begin{gathered}
0 \\
0.76 \\
0 \\
8.16
\end{gathered}
\] & 0
0.258
0
0 & 2.21
0.368
\(7 . .22\)
25.7 & \[
\begin{aligned}
& 6.53 \\
& 2.57 \\
& 32.82 \\
& 79.6
\end{aligned}
\] & \[
\begin{gathered}
0 \\
0 \\
0 \\
0.96
\end{gathered}
\] & 0
0
0.458
0
0 & 0
0
0
0 & 0
0
0
0 & 0
0
0
0 \\
\hline craexcosie & 3385 & 4381 & 4881 & 4885 & 5239 & 5527 & 5797 & 0067 & 0335 & 0612 & 3629 & 4355 & 4622 & 4900 \\
\hline
\end{tabular}

0 : EMPC
\begin{tabular}{|c|c|}
\hline Totals & \(\square\) Total PCDD/Fs (\(\mathrm{ND}=0\); EMPC \(=0\)) \\
\hline Project ID: General Analytical HRMS & \(\square\) Total PCDD/Fs (\(\mathrm{ND}=0\); EMPC=EMPC) \\
\hline P5072 & - Total PCDD/Fs (2378-X ND=DL; EMPC=EMPC) \\
\hline
\end{tabular}

Mean Recoveries of Clean-Up Standards (\(\mathrm{N}=14\))
Project ID: General Analytical HRMS P5072

\section*{SUBCONTRACT ORDER - PROJECT \# IOB1004}

CHAIN-OF-CUSTODY I Analytical Request Document The Chain-ot-Cuastody is a LEGAL DOCUMENT. All relavant fields must be completad accurntaly.

\section*{}
 Tor finc:ing/ime Pr
 nour Paint Nema or TMMPLER: SIGMVIURE OI SANPTEF: DATE Siqnad: (MMIDODM 1

\section*{
}

\section*{Truesdail Laboratories, Inc.}
\begin{tabular}{ll}
Client: & Del Mar Analytical \\
& 17461 Derian Avenue, Suite 100 \\
& Irvine, CA 92614 \\
Attention: & Michele Harper
\end{tabular}

Project Name: IOB1004 Truesdail Project: 939706
Date Received: 02/14/05

\section*{Samples Cross-reference}
\begin{tabular}{lllccl}
\hline TruesdailID & Client ID & Matrix & Date Sampled & Time Sampled & \\
\hline \(939706-1\) & IOB \(1004-01\) & Water & \(02 / 11 / 05\) & \(16: 00\) & Hydrazines Requested EPA 8315M \\
\hline
\end{tabular}

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

\section*{Truesdail Laboratories, Inc.}

\author{
Client: Del Mar Analytical \\ 17461 Derian Avenue, Suite 100 \\ Irvine, CA 92614 \\ Attention: Michele Harper
}
\begin{tabular}{lll}
Project Name: & 1OB1004 & Truesdail Project: 939706 \\
Date Received: & \(02 / 14 / 05\) &
\end{tabular}

\section*{Case Narrative}

Sample Receipt The sample was received in good condition and no anomalies were noted during check-in. The sample was kept in a locked refrigerator until analysis. Thereafter, it is being kept in ambient storage for an additional 2 months before disposal.

Analysis The analysis was perfomed as requested on the chain-of-custody.
Quality Control The analytical results for each batch of samples performed include a minimum of one set of laboratory control sample/laboratory control sample duplicate (LCS/LCSD), one matrix spike (MS) and a reagent blank (Method blank). Any exceptions or problems would be noted in the "comments" section.

\section*{Comments}

The test results in this report meet all quality assurance requirements set forth by the method specification and all quality control recoveries were within the laboratory acceptance limits. No anomalies or nonconformance events occurred during the course of analysis.

The analytes were quantitated down to the Method Detection Limit (J flags) per client's request.

Respectfully Submitted, TRUESDAIL LABORATORIES, \(\mathbb{N} C\).

Truesdail Laboratories, inc.
INDEPENDENT TESTING. FOAENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES
\(\frac{\text { Estabished 1931 }}{\text { 14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 }}\) (714) 730-6239 - FAX (714) 730-6462 - Ww.truesdali.com

Truesdail Laboratories, Inc.
INDEPENDENT TESTING, FORIENSIC SCIENCE, AND ENVIAONMENTAL ANALYSES

\section*{Client: Del Mar Analytical \\ Invine, CA 92614 \\ Michele Harper \\ Cilent Contact:
Sample:
Sample ID:
P.O. Number:
Method Number:
Run Batch No.:
Investigation:}

\section*{REPORT}
ICV
Quality Control/Quality Assurance Calibration Report
QCS
\begin{tabular}{lcccc|cc}
\hline Parameter & \begin{tabular}{c}
Theoretical \\
Value (ug/L)
\end{tabular} & \begin{tabular}{c}
Measured \\
Value (ug/L)
\end{tabular} & \begin{tabular}{c}
\% \\
Rec.
\end{tabular} & \begin{tabular}{c}
Control \\
Limits
\end{tabular} & Fiag \\
\hline \hline Monomethyl Hydrazine & 50.0 & 49.9 & 100 & \(85-115\) & PASS \\
\hline U-Dimethyl Hydrazine & 50.0 & 46.8 & 93.5 & \(85-115\) & PASS \\
\hline Hydrazine & 10.0 & 10.9 & 109 & \(85-115\) & PASS \\
\hline
\end{tabular}

\footnotetext{
Quality Control/Quality Assurance Spikes Report
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Spliked Conc. ugh.} & \multicolumn{3}{|l|}{Recoverad Concentration} & \multicolumn{2}{|l|}{Percent Recovery (\%)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { MSI } \\
& \text { MSD } \\
& \text { \% D }
\end{aligned}
\]} & \multirow[t]{2}{*}{Flag} & \multicolumn{2}{|l|}{Accurncy
Control Limits:} \\
\hline & MS & MSD & Sampl & MS & MSD & & & \%D & \% Rec. \\
\hline 50.0 & 37.4 & 35.3 & 0.0 & 74.8 & 70.6 & 5.67\% & PASS & 20 & 0-150 \\
\hline
\end{tabular}
\begin{tabular}{llllllllll}
-10.0 & 7.61 & 7.27 & 0.0 & 76.1 & 72.7 & \(4.52 \%\) & PASS & 20 & \(0-150\) \\
\hline
\end{tabular}
}

\section*{SUBCONTRACT ORDER - PROJECT \# IOB1004}

\section*{For Sample Conditions See Form Attached}

Truesdail Laboratories, Inc.

\section*{Sample Integrity \& Analysis Discrepancy Form}

Client:

Lab 939706 Date Delivered: OZ 14/05 Time: OL.22 By: sMall aField Service diclient
1. Was a Chain of Custody received and signed? dYes anoa anta
2. Does Customer require an acknowledgement of the COC?
3. Are there any special requirements or notes on the COC?
4. If a letter was sent with the COC, does it match the COC?
5. Were all requested analyses understood and acceptable?
6. Were samples received in a chilled condition?

Temperature (if yes)? \(\mathrm{C}^{\circ} \mathrm{C}\)
7. Were samples received intact
(ie. broken bottles, leaks, air bubbles,
8. Were sample custody seals intact?
9. Does the number of samples received agree with COC?
10. Did sample labels correspond with the client ID's?
11. Did sample labels indicate proper preservation?

Preserved (if yes) by: aTruesdall Client
12. Were samples pH checked? \(\mathrm{pH}=\) \(\qquad\)
13. Were all analyses within holding time at time of receipt? If not, notify the Project Manager.
14. Have Project due dates been checked and accepted? Turn Around Time (TAT): R RUSH [1/ Std
aYes aN INA
aYes oNo QN/A \(\square Y e s \quad \square N o \quad \square N / A\) dyes ONo aNTA ares an DNA ares Ono DNA dYes ana \(\square N / A\)

DYes QNa
DNA aYes an \(\square / V / A\)
ayes ant \(\square N / A\) dyes anoa QN/A
15. Sample Matrix: Q Liquid DDrinking Water aGround Water Waste Water \(\square\) Sludge
-Soil
-Wipe
a Paint Solid
16. Comments:
17. Sample Check-In completed by Truesdail Log-In/Receiving:

TRUESDAIL LABORATORIES, INC.
Internal Chain of Custody Logbook
Noer: \(\frac{939706}{\text { Del M1/ }}\) Storage Temperature: \(4 O Q\)

Name: Lanc
e I.D.

\begin{tabular}{|c|c|c|c|}
\hline & & \\
\hline \(\begin{array}{c}\text { Storage } \\
\text { Date }\end{array}\) & \(\begin{array}{c}\text { Shell No. For } \\
\text { Storago }\end{array}\) & Printed Name & Initials \\
\hline & & & \\
\hline
\end{tabular}

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}

\section*{AMEC Earth \& Environmental}

550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer K. Okonzak
Analysis/Method Metals

Package ID T711MT67
Task Order 313150010
SDG No. IOB1014
No. of Analyses 1
Date: 4/05/05

\section*{ACTION ITEMS \({ }^{*}\)}
1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, e.g.,
Holding Times
GC/MS Tune/Inst. Perform
Calibrations
Qualifications applied for:
Analytes detected below the reporting limit were qualified as estimated, "J."
Reporting limit check standard recoveries found outside of control limits.
Detects and negative results for the associated method blank and CCBs.
The antimony detect at \(0.44 \mu \mathrm{~g} / \mathrm{L}\) in the sample was qualified as estimated, "UJ," at a raised MDL of \(0.9 \mu \mathrm{~g} / \mathrm{L}\) due to bracketing CCB detects at approximately \(0.9 \mu \mathrm{~g} / \mathrm{L}\).

\section*{Blanks}

Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and
Quantitation
System Performance

* Subcontracted analytical laboratory is not meeting contract and/or method requirements.
bifferences in protocol have been adopted by the laboratory but no action against the laboratory is required.

\section*{Data Qualifier Reference Table}
\begin{tabular}{ll}
\hline Qualifier & Organics \\
\hline
\end{tabular}

U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

J The analyte was positively identified; the associated numerical value is the approx imate concentration of the analyte in the sample.
\(\mathrm{N} \quad\) The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."

NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approxmate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
\(\mathrm{R} \quad\) The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.

The associated value is an estimated quantity.

Not applicable.

Not applicable.

The material was analyzed for, but was not detected. The associated value is an estimate and may be naccurate or imprecise.

The data are unusable. (Note: Analyte may or may not be present).

\section*{Qualification Code Reference Table}
\begin{tabular}{|c|c|c|}
\hline Qualifier & Organics & Inorganics \\
\hline H & Holding times were exceeded. & Holding times were exceeded. \\
\hline S & Surrogate recovery was outside QC limits. & The sequence or number of standards used for the calibration was incorrect \\
\hline C & Calibration \%RSD or \%D were noncompliant. & Correlation coefficient is \(<0.995\). \\
\hline R & Calibration RRF was \(<0.05\). & \(\% \mathrm{R}\) for calibration is not within control limits. \\
\hline B & Presumed contamination from preparation (method) blank. & Presumed contamination from preparation (method) or calibration blank. \\
\hline L & Laboratory Blank Spike/Blank Spike Duplicate \(\% \mathrm{R}\) was not within control limits. & Laboratory Control Sample \%R was not within control limits. \\
\hline Q & MS/MSD recovery was poor or RPD high. & MS recovery was poor. \\
\hline E & Not applicable. & Duplicates showed poor agreement. \\
\hline I & Internal standard performance was unsatisfactory. & ICP ICS results were unsatisfactory. \\
\hline A & Not applicable. & ICP Serial Dilution \%D were not within control limits. \\
\hline M & Tuning (BFB or DFTPP) was noncompliant. & Not applicable. \\
\hline T & Presumed contamination from trip blank. & Not applicable. \\
\hline \(+\) & False positive - reported compound was not present Not applicable. & \\
\hline - & False negative - compound was present but not reported. & Not applicable. \\
\hline F & Presumed contamination from FB, or ER. & Presumed contamination from FB or ER. \\
\hline \$ & Reported result or other information was incorrect. & Reported result or other information was incorrect. \\
\hline ? & TIC identity or reported retention time has been changed. & Not applicable. \\
\hline D & The analysis with this flag should not be used because another more technically sound analysis is available. & The analysis with this flag should not be used because another more technically sound analysis is available. \\
\hline P & Instrument performance for pesticides was poor. & Post Digestion Spike recovery was not within control limits. \\
\hline DNQ & The compound was detected between the MDL and the RL and, by definition, is considered an estimated value. & The compound was detected between the MDL and the RL and, by definition, is considered an estimated value. \\
\hline
\end{tabular}

Unusual problems found with the data that have been described in Section 2.\#, "Data Validation Findings." The number following the asterisk (*) will indicate the subsection where a description of the problem can be found (eg. \({ }^{*}\) I would indicate a sample was not within temperature limits).

Unusual problems found with the data that have been described in Section 2.\#, "Data Validation Findings." The number following the asterisk \({ }^{*}\)) will indicate the subsection where a description of the problem can be found (eg. *1 would indicate a sample was not within temperature limits).

\title{
amec \({ }^{\circ}\)
}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES \\ Monitoring
}

\author{
ANALYSIS: METALS \\ SAMPLE DELIVERY GROUPS: IOB1014
}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: IOB1014 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Metals \\ QC Level: Level IV \\ No. of Samples: 1 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: K. Okonzak-Lowry \\ Date of Review: April 5,2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, SW-846 Method 6010B for Inductively Coupled Plasma, SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form \(I\) as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 011-grab & Outfall 011-grab & IOB1014-01 & water & \begin{tabular}{c}
Total Recoverable \\
Metals
\end{tabular} \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The sample in this SDG was received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

\subsection*{2.1.2 Chain of Custody}

The COC was signed and dated by field and laboratory personnel and accounted for the analyses presented in the data package. No sample qualifications were required.

\subsection*{2.1.3 Holding Times}

The date of collection recorded on the COC and the dates of analysis recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS and ICP metals and 28 days for mercury. No qualifications were required.

\subsection*{2.2 ICP-MS TUNING}

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. The laboratory performed the required tune solution analyses. The \%RSDs for the tune were all within the \(5 \%\) control limit. The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

\subsection*{2.3 CALIBRATION}

The ICV and CCV results showed acceptable recoveries, \(90-110 \%\) for the ICP/MS and ICP metals and \(80-120 \%\) for mercury. The applicable reporting limit check standards were recovered within the AMEC control limits of \(70-130 \%\), with the following exceptions: arsenic was recovered at \(47.9 \%\) in the \(1.0 \mu \mathrm{~g} / \mathrm{L}\) standard, nickel was recovered at \(8.6 \%\) and \(60.5 \%\), respectively, in the 1.0 and \(2.0 \mu \mathrm{~g} / \mathrm{L}\) standards, and copper was recovered at \(67 \%\) in the \(2.0 \mu \mathrm{~g} / \mathrm{L}\) standard. Therefore, the arsenic, nickel and copper detects for sample Outfall 011 -grab were qualified as estimated, "J." No further qualifications were required.

\subsection*{2.4 BLANKS}

There were detects and negative results reported in the associated method blank and calibration blank (CCB) analyses. The sample results were qualified for the blanks results as follows:
\begin{tabular}{|c|c|c|}
\hline Findings & Associated Samples & Qualification of Data \\
\hline Boron was detected in the bracketing CCBs at 0.025 and \(0.021 \mathrm{mg} / \mathrm{L}\), respectively. & Outfall 011-grab & Boron detected in the sample was qualified, "UJ." \\
\hline Chromium was detected in method blank 5B12041-BLK1 at \(0.846 \mu \mathrm{~g} / \mathrm{L}\). The validator chose to report this original chromium MB result as opposed to the rerun MB result that the laboratory had reported for chromium, due to the fact that the original MB analysis was performed along with the site sample chromium analysis and is more indicative of the instrument conditions applicable to the chromium analysis. & Outfall 011-grab & Chromium detected in the sample was qualified, "UJ." \\
\hline Nickel and vanadium were reported in method blank 5B12041-BLK1 at -0.77 and \(-0.98 \mu \mathrm{~g} /\), respectively. & Outfall 011-grab & Nickel and vanadium detected in the sample were qualified, "J." \\
\hline Antimony was detected in the bracketing CCBs at 0.89 and \(0.81 \mu \mathrm{~g} / \mathrm{L}\), respectively & Outfall 011-grab & The antimony detected in the sample was qualified, "UJ," at a raised MDL of \(0.9 \mu \mathrm{~g} / \mathrm{L}\). \\
\hline
\end{tabular}

\subsection*{2.5 ICP and ICP/MS INTERFERENCE CHECK SAMPLE (ICS A/AB)}

The results for the ICSA/ICSAB analyses reported in the raw data for the ICP analysis were within established control limits. No qualifications were required. There were no ICSA/AB analyses associated with the ICP/MS sample analyses; therefore, the ICP/MS results were not assessed for this criterion.

\subsection*{2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The ICP/MS LCS sample was identified as 5B12041-BS1, and the ICP LCS sample was identified as 5B12044-BS1. The mercury LCS sample was identified as 5B12033-BS1. The LCS results on the summary forms and in the raw data were within the laboratory-established ICP/MS, ICP, and mercury control limits of \(85-115 \%\). No qualifications were required.

\subsection*{2.7 LABORATORY DUPLICATES}

No MS/MSD analyses were associated with the site sample in this SDG; therefore, the sample was not assessed for this criterion.

\subsection*{2.8 MATRIX SPIKE}

No MS/MSD analyses were associated with the site sample in this SDG; therefore, the sample was not assessed for this criterion. Method accuracy was assessed based on the LCS results.

\subsection*{2.9 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analysis of this sample; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.10 ICP/MS SERIAL DILUTION}

No serial dilution analysis was performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

\subsection*{2.11 INTERNAL STANDARDS PERFORMANCE}

The ICP-MS internal standard recoveries associated with the site sample and associated QC sample analyses, were within the \(60-125 \%\) control limits and no qualifications were required.

\section*{DATA VALIDATION REPORT}

\subsection*{2.12 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit in sample Outfall 011 -grab were qualified as estimated, "J." For the ICP/MS run, the antimony detects in the associated CCBs were found at approximately \(2 \times\) the level of the \(0.44 \mu \mathrm{~g} / \mathrm{L}\) detect for antimony in sample Outfall 011 -grab. Therefore, the antimony detected in sample Outfall 011 -grab was qualified as estimated, "UJ," at a raised MDL of 0.9 \(\mu \mathrm{g} / \mathrm{L}\). No qualifications were required.

\subsection*{2.13 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

\subsection*{2.13.1 Field Blanks and Equipment Rinsates}

The sample in this SDG had no associated field QC samples. No qualifications were required.

\subsection*{2.13.2 Field Duplicates}

There were no field duplicate analyses performed in association with the site sample.

\section*{DRAFT: METALS}

MDL Reporting Sample Dilution Date Date Data

\section*{Sample ID: IOB1014-01 (DRAFT: Outfall 011-grab - Water) - cont. Reporting Units: ugh/}

Antimony
Arsenic
Beryllium
Cadmium
Chromium
Cobalt
Copper
Lead
Manganese
Mercury
Nickel
Selenium
Silver
Thallium
Vanadium
Zinc

EPA 200.8 SB12041 10180.92 .0
EPA 200.8 5 SB 12041 \(0.49 \quad 1.0\)
\(\begin{array}{llllll}\text { EPA 200.8 } & 5 \text { B12041 } & 0.037 & 0.50 & 1.0\end{array}\)
\(\begin{array}{llllll}\text { EPA 200.8 } & 5 B 12041 & 0.015 & 1.0 & 0.11 & 1 \\ \text { EPA 2008 } & 5 \text { SB 12041 } & 0.26 & 10 & 1.8 & 1\end{array}\)
\(\begin{array}{ll}0.26 & 1.0\end{array}\)
\(\begin{array}{lllll}\text { EPA } 200.8 & 5 B 12041 & 0.49 & 2.0\end{array}\)
\(\begin{array}{llll}\text { EPA } 200.8 & \text { SB12041 } & 0.13 & 1.0 \\ \text { EPA 200.8 } & \text { SB 12041 } & 0.44 & 1.0\end{array}\)
\(\begin{array}{llll}\text { EPA } 245.1 & 5 B 12033 & 0.063 & 0.20\end{array}\)
\(\begin{array}{llll}\text { EPA } 200.8 & 5 B 12041 & 0.15 & 1.0\end{array}\)
\(\begin{array}{llll}\text { EPA } 200.8 & 5 B 12041 & 0.36 & 2.0\end{array}\)
\(\begin{array}{lllll}\text { EPA 200.8 } & 5 B 12041 & 0.089 & 10 & \text { ND }\end{array}\)
\(\begin{array}{lllll}\text { EPA 200.8 } & \text { 5B12041 } & 0.075 & 1.0 & \text { ND }\end{array}\)
\(\begin{array}{lllll}\text { EPA 200.8 } & \text { 5B12041 } & 0.86 & 1.0 & 3.7 \\ \text { EPA 200.8 } & \text { SB 12041 } & 3.1 & 20 & 16\end{array}\)

Sampled. 02:11:05
Received: 02/11:05

\section*{AMES VALIDATED}

Level IV

DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE

\section*{DRAFT: METALS}

\section*{AMES VALIDATED \\ Level IV}

\section*{DRAFT REPORT}

DRAFT REPORT
DATA SUBJECT TO CHANGE

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer L. Calvin
Analysis/Method Pesticides/PCBs by Method 608

Package ID T711PP28
Task Order 313150010
SDG No. IOB1014
No. of Analyses 1
Date: April 6, 2005

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{ACTION ITEMS} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{. Case Narrative Deficiencies}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{2. Out of Scope Analyses}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{3. Analyses Not Conducted} \\
\hline 4. Missing Hardcopy Deliverables & \\
\hline 5. Incorrect Hardcopy Deliverables & \\
\hline \multirow[t]{13}{*}{\begin{tabular}{l}
6. Deviations from Analysis \\
Protocol, e.g., \\
Holding Times \\
GC/MS Tune/Inst. Performance \\
Calibration \\
Method blanks \\
Surrogates \\
Matrix Spike/Dup LCS \\
Field QC \\
Internal Standard Performance \\
Compound Identification \\
Quantitation \\
System Performance
\end{tabular}} & Qualifications assigned for continuing calibration \%D outliers. \\
\hline & \\
\hline COMMENTS \({ }^{\text {b }}\) & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline & \\
\hline \begin{tabular}{l}
\({ }^{2}\) Subcontracted analytical laboratory is not \\
\({ }^{\text {b }}\) Differences in protocol have been adopted
\end{tabular} & \begin{tabular}{l}
eting contract and/or method requirements. \\
the laboratory but no action against the laboratory is required.
\end{tabular} \\
\hline
\end{tabular}

\title{
amec \({ }^{\text {® }}\)
}

\title{
DATA VALIDATION REPORT
}

\section*{NPDES Monitoring}

\section*{ANALYSIS: PESTICIDES/PCBs}

\section*{SAMPLE DELIVERY GROUP: IOB1014}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{lr}
& Project: \\
DATA VALIDATION REPORT & SDDES: \\
SDI \\
IOB1014 \\
Pest/PCB
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ SDG\#: IOB1014 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Pesticides/PCBs \\ QC Level: Level IV \\ No. of Samples: 1 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: L. Calvin \\ Date of Review: April 6, 2005
}

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedures (DVP-4, Rev.2), EPA Method 608, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary form as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{cc}
\\
DATA VALIDATION REPORT & \begin{tabular}{c}
Project: \\
SDG:
\end{tabular} \\
NPDES \\
IOBIO14 \\
PestuPCB
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & Method \\
\hline Outfall 011-Grab & Outfall 011-Grab & IOB1014-01 & water & 608 \\
\hline
\end{tabular}
\begin{tabular}{lr}
& \begin{tabular}{c}
Project: \\
DATA VALIDATION REPORT
\end{tabular} \\
SDG: & NPDES \\
IOBIO14 \\
PestPCB
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The sample was received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). The analysis did not require preservation, and no preservation was noted in the field. The COC noted that the sample was received intact. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COC was signed and dated by both field and laboratory personnel. The COC accounted for the analysis presented in this SDG. As the sample was couriered directly to the laboratory, custody seals were not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The water sample was extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

\subsection*{2.2 PESTICIDES INSTRUMENT PERFORMANCE}

No resolution check standards or breakdown check standards are required by Method 608 for pesticides, and according to the raw data provided, a resolution check standard was not analyzed by the laboratory. The laboratory did analyze a breakdown check standard with a breakdown of \(\leq 20 \%\) for individual components (4,4-DDT and endrin) and \(\leq 30 \%\) for the total, as suggested in the National Functional Guidelines. A review of the raw data indicated that the analytical run time was of sufficient length to provide adequate standard separation. The two analytical columns used in the analyses were within the guidelines specified in the methods.

According to the laboratory SOP and the initial calibration raw data, the retention time windows are \(\pm 0.10\) minutes for both surrogates and target compound calibration standards. A review of the raw data indicated that the laboratory retention time criteria were met for the surrogates and pesticide calibration standards. No qualifications were required.

\subsection*{2.3 CALIBRATION}

\subsection*{2.3.1 Analytical Sequence}

Based on the data provided, the analytical sequences were in accordance with the requirements of Method 608. No qualifications were required.
\begin{tabular}{|c|c|c|}
\hline & Project: SDG: & \[
\begin{aligned}
& \text { NPDES } \\
& \text { IOB1014 }
\end{aligned}
\] \\
\hline DATA VALIDATION REPORT & & \\
\hline
\end{tabular}

\subsection*{2.3.2 Initial Calibration}

There was one initial calibration dated 02/17/05 associated with the pesticide analysis of the sample, which consisted of six point calibrations for all pesticide target compounds on two analytical columns. The \%RSDs were within the EPA Method 608 QC limit of \(\leq 10 \%\) or the \(r^{2}\) values were \(\geq 0.995\) on both analytical columns. There was one initial calibration dated 02/11/05 associated with the PCB analysis of the sample which consisted of five points for Aroclor 1016 and Aroclor 1260. Single point calibrations for Aroclor 1242, Aroclor 1248, and Aroclor 1254 were also analyzed. The average \%RSDs for the individual peaks of Aroclor 1016 and Aroclor 1260 were \(\leq 10 \%\) or the \(\mathrm{r}^{2}\) values were \(\geq 0.995\) on both analytical columns. An ICV was analyzed immediately following each of the initial calibrations. The \(\%\) Ds for all target compounds were within the QC limits of \(15 \%\) on both analytical columns. A representative number of \%RSDs and ICV \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.3.3 Continuing Calibration}

In the continuing calibrations bracketing the pesticide analysis of the sample, all \%Ds were \(\leq 15 \%\) with the exception of \(\%\) Ds for \(4,4 \%\) DDT, endrin aldehyde, methoxychlor, and endrin ketone in one or more of the calibrations. Nondetect results for the aforementioned compounds were qualified as estimated, "UJ," in sample Outfall 011-Grab. Of the continuing calibrations associated with the PCB analysis of the sample, all \%Ds were \(\leq 15 \%\) for Aroclor 1016 and Aroclor 1260. A representative number of \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No further qualifications were required.

\subsection*{2.4 BLANKS}

\subsection*{2.4.1 Instrument Blanks}

An instrument blank was analyzed at the beginning of each analytical sequence. Crosscontamination was not evident in the samples. No qualifications were necessary.

\subsection*{2.4.2 Method Blanks}

One water method blank (5B17042-BLK1) was extracted and analyzed with this SDG. There were no pesticide target compounds or Aroclors detected in the method blank. Review of the chromatograms showed no false negatives. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One blank spike/blank spike duplicate pair (5B17042-BS1/BSD1 for pesticides and -BS2/BSD2 for PCBs) was extracted and analyzed with this SDG. The recoveries for all spiked pesticide target compounds and Aroclors were within the laboratory-established QC limits and the RPDs were \(\leq 30 \%\) for pesticides, and \(\leq 30 \%\) and \(\leq 25 \%\) for Aroclors 1016 and 1260 , respectively. A representative number of recoveries were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.
\begin{tabular}{|c|c|c|c|}
\hline & & Project: SDG: & \begin{tabular}{l}
NPDES
\(10 B 1014\) \\
Pes \(/ P C B\)
\end{tabular} \\
\hline DAIA VALIDATION REPORT & & & \\
\hline
\end{tabular}

\subsection*{2.6 SURROGATE RECOVERY}

The sample and all QC samples were fortified with the surrogate compounds decachlorobiphenyl and tetrachloro-m-xylene. Surrogate recoveries for the pesticide and PCB analyses of the samples were within the laboratory-established QC limits. The recoveries were calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

There were no MS/MSD analyses associated with this SDG. Method accuracy and precision were assessed based on the blank spike/blank spike duplicate results. No qualifications were required.

\subsection*{2.8 SAMPLE CLEANUP PERFORMANCE}

According to the laboratory extraction benchsheets, no cleanups were performed on the water samples. No qualifications were required.

\subsection*{2.9 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.9. Field Blanks and Equipment Rinsates}

There were no field QC samples associated with the sample in this SDG. No qualifications were required.

\subsection*{2.9.2 Field Duplicates}

There were no field duplicate samples associated with the sample in this SDG.

\subsection*{2.10 COMPOUND IDENTIFICATION}

The laboratory analyzed for pesticide target compounds and PCBs by EPA Method 608. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for the sample in this SDG. No qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification was verified for this SDG; however, as there were no detects reported in the sample, quantitation was verified by recalculating a representative number of blank spike and surrogate recoveries. Reporting limits were supported by the low level standard
of the initial calibrations and the laboratory MDL studies. The water reporting limits were not adjusted for sample amount on the result summaries; however, the dilution factor listed on the summaries reflected the sample volume extracted. Results were reported in \(u g / L\) (\(p p b\)). No qualifications were required.

\author{
MWH-Pasadena/Boeing \\ 300 Norh Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Atrention: Bronwyn Kelly
}

Project ID: 13267 (Study 1)
Outfall 011
Report Vumber: IOB1014

Sampled: 02/1105
Received: 02:1105

\section*{DRAFT: ORGANOCHLORINE PESTICIDES (EPA 608)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & MDL Limit & Reporting Limit & Sample Result & Dilution Factor & \begin{tabular}{l}
Date \\
Extracted
\end{tabular} & Date
Analyze & & Data ualifiers \\
\hline Sample ID: IOB1014-0 Reporting Units: & Outfall 011 & - Water) & con & & & & & & & 90ads \\
\hline Aldrin & EPA 608 & 5B17042 & 0.030 & 0.10 & ND & & 02/17/05 & 021705 & & \\
\hline alpha-BHC & EPA 608 & \(5 \mathrm{B17042}\) & 0.015 & 0.10 & ND & 0.952 & 02/17/05 & 0277105 & \(u\) & \\
\hline beta-BHC & EPA 608 & 5 B 17042 & 0.015 & 0.10 & ND & 0.952 & 02/17/05 & 02:17:05 & & \\
\hline delta-BHC & EPA 608 & 5B17042 & 0.020 & 0.20 & ND & 0.952 & 0211705 & \(02 / 17.05\) & & \\
\hline gamma-BHC (Lindane) & EPA 608 & 5 B 17042 & 0.015 & 0.10 & ND & 0.952 & 02/17105 & 02/17\%05 & & \\
\hline Chlordane & EPA 608 & 5 B 17042 & 0.20 & 1.0 & ND & 0.952 & 02/17/05 & 021705 & & \\
\hline 4.4'DDD & EPA 608 & \(5 B 17042\) & 0.015 & 0.10 & ND & 0.952 & 02/17/05 & & & \\
\hline 4.4. \({ }^{\text {DDE }}\) & EPA 608 & 5B17042 & 0.020 & 0.10 & ND & 0.952 & 02/17/05 & 0217105 & & \\
\hline 4.4.DDT & EPA 608 & \(5 \mathrm{B17042}\) & 0.030 & 0.10 & ND & 0.952 & 0217105 & 0211705 & & \\
\hline Dieldrin & EPA 608 & 5 B 17042 & 0.015 & 0.10 & ND & 0.952 & 02/17/05 & 02117:05 & l & \\
\hline Endosulfan I & EPA 608 & 5B17042 & 0.015 & 0.10 & ND & 0.952 & 02/17/05 & 02/17:05 & & \\
\hline Endosulfan sulfate & EPA 608 & SB17042 & 0.040 & 0.10 & ND & 0.952 & 02/17/05 & 02:17:05 & & \\
\hline Endrin & EPA 608 & 5B17042 & 0.015 & 0.20 & ND & 0.952 & 02/17/05 & 02/17.05 & & \\
\hline Endrin alcehyde & EPA 608 & \(5 \mathrm{SB17042}\) & 0.045 & 0.10 & ND & 0.952 & 02/17/05 & 02/17.05 & & \\
\hline Endrin kerone & EPA 608 & 5 B 17042 & 0.020 & 0.10 & ND & 0.952 & 0241705 & 0241705 & & Cs \\
\hline Heptachlor & EPA 608 & 5B17042 & 0.030 & 0.10 & ND & 0.952 & 02217105 & 0211705 & & \(\mathrm{Cs}^{\text {C }}\) \\
\hline Heptachlor epoxide & EPA 608 & 5B17042 & 0.020 & 0.10 & ND & 0.952 & \(02 / 17705\)
0217105 & 021705 & \(u\) & \\
\hline Methoxychior & EPA 608 & SB17042 & 0.035 & 0.10 & ND & 0.952 & 02/17705 & 0241705 & us & cs 0 \\
\hline Toxaphene & EPA 608 & SB17042. & 1.5 & 5.0 & ND & 0.952 & 02/17/05 & 02117.05 & u & \\
\hline \multicolumn{5}{|l|}{Surrogate: Tetrachloro-m-xylene (35-120\%)} & \multicolumn{6}{|l|}{\(45 \%\) l} \\
\hline \multicolumn{5}{|l|}{Surrogate: Decachlorobiphenyl (\(45-120 \%\))} & \multicolumn{6}{|l|}{\(72 \%\)} \\
\hline
\end{tabular}

\section*{AMEC VALIDATED}

\begin{tabular}{|c|c|c|c|}
\hline MWH-Pasadena Boeing & \multicolumn{3}{|l|}{Project ID: 13267 (Study 1)} \\
\hline 300 North Lake Avenue, Suite 1200 & & Ourfall 011 & Sampled: 02/1105 \\
\hline Pasadena, CA 91101 & Report Number: & IOB1014 & Received: 02/11:05 \\
\hline Attention: Bronwyn Kelly & & & \\
\hline
\end{tabular}

DRAFT: TOTAL PCBS (EPA 608)

\section*{AMEC VALIDATED}

\section*{CONTRACT COMPLLANCE SCREENING FORM FOR HARDCOPY DATA}

AMEC Earth \& Environmental 550 South Wadsworth Boulevard Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer P. Meeks
Analysis/Method Radionuclides

Laboratory Del Mar
Analysis/Method Radionuclides

Package ID
T711RA4
Task Order 313150010
SDG No. Multiple
No. of Analvses 11
Date: 03/24/05
Rexiewer's Signature
Repiewer's signature

\section*{ACIIONITEMS}
1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations fro Analysis Protocol, e.g.,

Holding Times GCMS Tune/Inst.

Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification
and Quantitation
System Performance
Qualifications applied for:
2. Matrix spike recovery outlier.
3. Laboratory duplicate RPD outlier.
4. Incorrect sample container.
5. Detector efficiency outliers.
6. Incorrect sample preservation.
7. Reanalysis rejected in faver of origimai coselt

Three tritium results rejected due to incorrect sample preservation.

\(\qquad\)
\(\square\)
\(\square\)
\(\square\)

\section*{COMMENTS \({ }^{\text {b }}\)}

\footnotetext{
\({ }^{3}\) Subcontracted analytical laboratory is not meeting contract and/or method requirements.
b Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.
}

\title{
amec \({ }^{\theta}\)
}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES \\ Monitoring
}

ANALYSIS: RADIONUCLIDES
SAMPLE DELIVERY GROUPS: IOB0418, IOB0980, IOB0993, IOB0996, IOB0997, IOB1001, IOB1004, IOB1014, \& IOB1069

Prepared by
AMEC--Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{rrr}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: IOB0418, IOB0980, IOB0993, IOB0996, IOB0997, IOB1001, IOB1004, IOB1014, \& IOB1069 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Radionuclides \\ QC Level: Level IV \\ No. of Samples: 11 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: P. Meeks \\ Date of Review: March 23, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the EPA Prescribed Procedures for Measurements of Radioactivity in Drinking Water, Methods 900.0, 905.0, and 906.0, and validation procedures outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{ccc}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & Del Mar ID & Eberline ID & Matrix & COC Method \\
\hline Outfall 002 & IOB0418-01 & \(8237-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 001 & IOB0980-01 & \(8265-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 001RE1 & IOB0980-01RE1 & \(8265-001\) & water & 900.0 \\
\hline Outfall 007 & IOB0993-01 & \(8261-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 009 & IOB0996-01 & \(8262-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 008 & IOB0997-01 & \(8266-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 010 & IOB1001-01 & \(8267-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 011 & IOB1004-01 & \(8263-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 011 & IOB1014-01 & \(8264-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 003 Filtered & IOB1069-01 & \(8268-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 003 Unfiltered & IOB1069-02 & \(8268-002\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 003 Substrate & IOB1069-03 & \(8269-001\) & water & \\
\hline
\end{tabular}
\begin{tabular}{ccc}
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No:: & Multiple \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

Most samples in these SDGs were received at Del Mar Analytical within the temperature limits of \(4 \pm 2^{\circ} \mathrm{C}\). After the analyses were complet, Del Mar Analytical sent extra volume of Outfall 001 to Eberline for gross alpha reanalysis. No temperature information was provided by Eberline, the subcontract laboratory; however, as it is not necessary to chill radiological samples, no qualifications were required. All samples were received intact and in good condition.

According to the Eberline login sheet, Outfall 002 was received unpreserved. It was confirmed in correspondence with Eberline dated 01/31/05, that the gross alpha, gross beta, and strontium samples were not preserved upon receipt; therefore, the nondetected strontium result for Outfall 002 was qualified as estimated, "UJ." According to the Los Angeles Water Quality Control Board (LARWQCB) guidance letter dated 01/12/05, unfiltered samples should not be preserved and filtered aliquots should be preserved after filtration.

Eberline noted on their login sheets that Outfall 007, Outfall 008, Outfall 009 and Outfall 010 were received preserved, in plastic containers. Per the method, tritium samples should not be preserved. Per a telephone conversation with M . Mannion of Eberline, the pH of these samples was adjusted back to about 7 upon receipt at Eberline. Due to the improper pH adjustments, the tritium results for Outfall 007, Outfall 008, Outfall 009 , and Outfall 010 were rejected, "R." Additional, unpreserved aliquots of Outfall 007 , Outfall 008 , Outfall 009 , and Outfall 010 were sent from Del Mar to Eberline for tritium reanalysis. These results were not available at the time of this report.

Additionally, according to the 01/12/05 LARWQCB guidance letter, samples collected for tritium analysis should be submitted in glass containers to avoid potential loss of tritium by sorption onto the plastic container. As the Outfall 007 , Outfall 008 , Outfall 009 and Outfall 010 tritium samples were previously rejected, no further qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The original COCs were signed and dated by field and laboratory personnel and the transfer COCs were signed by personnel from both laboratories. Filtered, unfiltered, and substrate analyses were requested for Outfall 011 (IOB1014) on the original COC from the field to Del Mar. There instructions did not appear on the transfer \(C O C\) to Eberline and subsequently only filtered unanalyses were preformed. The remaining original and transfer COCs accounted for the samples and analyses presented in this data package. Eberline did not list the MWH IDs on the Form Is; therefore, the reviewer edited the Form Is to reflect these IDs. A reanalyses for gross alpha was requested for Outfall 001. To distinguish between the two results, the reviewer added an "RE1," suffix to the Outfall 001 and Del Mar Analytical IDs. No qualifications were required.
\begin{tabular}{cc}
& Project: \\
DATA VALIDATION REPORT & SDGNo.: \\
\hline
\end{tabular}

\subsection*{2.1.3 Holding Times}

The tritium and strontium samples were analyzed within 180 days of collection. The Outfall 002 and Outfall 003 Unfiltered gross alpha and gross beta samples were analyzed beyond the five day holding time for unpreserved samples; therefore, these gross alpha and gross beta results were qualified as estimated, "J," for detects and, "UJ," for nondetects. No further qualifications were necessary.

\subsection*{2.2 CALIBRATION}

The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

\section*{Gross Alpha}

The initial calibration included with the data was performed in February 2003. All detector efficiencies were below \(20 \%\); therefore, the gross alpha results were qualified as estimated, "UJ," for nondetects and, "J," for detects, unless otherwise rejected (see section 2.10).

\section*{Tritium}

No calibration standards were analyzed for this method. According to the laboratory, every sample was spiked for efficiency determination; therefore, no calibration is necessary. All detector efficiencies in the samples were at least \(20 \%\) and were considered acceptable. All internal spike efficiency to default efficiency ratios were near 1 , indicating that quenching did not occur.

\section*{Gross Beta and Strontium-90}

The initial calibrations were performed in June 1997. All gross beta detector efficiencies were at least \(20 \%\) and were considered acceptable. All strontium chemical yields were at least \(65 \%\) and were considered acceptable and the strontium continuing calibration results were within the laboratory control limits. No qualifications were necessary.

\section*{Cesium}

The reviewer confirmed that the 662 KeV peak was used for quantitation, with an efficiency of \(85 \%\). No qualifications were necessary.

\subsection*{2.3 BLANKS}

No measurable activities were detected in the method blanks; therefore, no qualifications were necessary.

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

Three blank spikes (\(8261-002,8237-002,8269-002\)) were analyzed in association with the samples in these SDGs. The gross alpha, gross beta, and strontium recoveries for \(8261-002\) were outside of the 3 sigma limits, but all had acceptable recoveries of \(80 \%, 88 \%\), and \(108 \%\), respectively. The remaining blank spike results were within the 3 -sigma limits. No qualifications were necessary.
\begin{tabular}{cc}
& Project: \\
DATA VALIDATION REPORT & SDG No::
\end{tabular}

\subsection*{2.5 LABORATORY DUPLICATES}

The laboratory performed duplicate analysis on Outfall 002, Outfall 007, and Outfall 003 Substrate. The gross alpha and tritium RPDs were greater than \(20 \%\) for Outfall 007 . The gross alpha results were within 3-sigma and were considered acceptable, but the tritium result was just above 3-sigma; however, as no tritium detects were retained (see section 2.1.1), no qualifications were required. The remaining RPD were \(\leq 20 \%\). No further qualifications were necessary.

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

The laboratory performed matrix spike analyses on Outfall 002 and Outfall 007 for gross alpha, gross beta, and tritium. The Outfall 002 recovery for gross alpha was below 3 -sigma; therefore, the gross alpha results in all samples except Outfall 007 were qualified as estimated, "J," for detects and, "UJ," for nondetects. As Outfall 007 had an acceptable recovery for gross alpha, no qualifications were applied. The remaining recoveries were within the 3 -sigma limits. No further qualifications were necessary.

\subsection*{2.7 SAMPLE RESULT VERIFICATION}

An EPA Level IV review was performed for the samples in these data packages. Sample results and MDAs reported on the sample result forms were verified against the raw data and no calculation or transcription errors were noted.

The original planchet for gross alpha in Outfall 001 was recounted once per a request from MWH personnel. The recount yielded an equivalent result as the original count and was not reported. The sample was later reanalyzed from extra sample volume provided by Del Mar Analytical, and was reported as Outfall 001 RE1. As the two gross alpha results were similar, the reviewer rejected, " \(R\) " the reanalysis, Outfall 001 REI , in favor of the original result, Ouffall 001 . No further qualifications were necessary.

\subsection*{2.8 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

\subsection*{2.8.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.8.2 Field Duplicates}

There were no field duplicate samples in these SDGs.

Eberline Services
ANALYSIS RESULTS

Client
sample ip
Outfall Oll
IOB1014-01

Pm 3/2405

Client DEL MAR ANAL
Contract project roseola
Matrix WATER

Eberline Services
ANALYSIS RESULTS

Client
sample ID
Outfall OII
1082004-01

An 3/24/OS

\section*{AMES VALIDATED}

\title{
CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA
}

\section*{\(a m e c^{\theta}\)}

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\author{
ANALYSIS. SEMIVOLATILES \\ SAMPLE DELIVERY GROUP: IOB1014
}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{rrr}
& \begin{tabular}{c}
Project: \\
DATA VALIDATION REPORT
\end{tabular} & \begin{tabular}{c}
NPDES \\
IOBIOIA
\end{tabular} \\
SDG: & Analysis: & SVOC \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: IOB1014 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Semivolatiles \\ QC Level: Level IV \\ No. of Samples: \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: M. Pokorny \\ Date of Review: April 4, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels \(C\) and D Semivolatile Organics (DVP-3, Rev. 2), EPA Method 625 and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{cc}
& \begin{tabular}{c}
Project: \\
DATA VALIDATION REPORT
\end{tabular} \\
SDG: & NPDES \\
IOBIO14 \\
SVOC
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Lab No. & Matrix & Method \\
\hline Outfall 011 & Outfall 011 & IOB1014-01 & water & 625 \\
\hline
\end{tabular}
\begin{tabular}{ccc}
& \begin{tabular}{c}
Project: \\
DATA VALIDATION REPORT
\end{tabular} & \begin{tabular}{c}
NPDES \\
SDG:
\end{tabular} \\
IOBIV14 \\
Analysis: & SVOC \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The sample in this SDG was received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C}\) \(\pm 2^{\circ} \mathrm{C}\). The analysis did not require preservation, and no preservation was noted in the field. The COC noted that the sample was received intact. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COC was signed and dated by both field and laboratory personnel. The COC accounted for the analysis presented in this SDG. As the sample was couriered directly to the laboratory, custody seals were not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The water sample was extracted within seven days of collection and analyzed within 40 days of collection. No qualifications were required.

\subsection*{2.2 GC/MS TUNING}

The DFTPP tunes met the criteria specified in Method 625, and the sample was analyzed within 12 hours of the DFTPP injection time. No qualifications were required.

\subsection*{2.3 CALIBRATION}

The initial calibration associated with this SDG was dated 02/17/05. The average RRFs for were \(\geq 0.05\) and the \(\%\) RSDs were \(\leq 35 \%\) or \(r^{2} \geq 0.995\) for all target compounds except for the \(r^{2}\) values for 2,4-dinitrophenol, 4-nitroaniline, and 4,6-dinitro-2-methlyphenol. 2,4-Dinitrophenol, 4nitroaniline, and 4,6-dinitro-2-methlyphenol were qualified as estimated nondetects, "UJ," in the sample of this SDG. A representative number of average RRFs and \%RSDs were checked from the raw data, and no calculation or transcription errors were noted. The continuing calibration associated with the sample analysis was analyzed \(02 / 18 / 05\). The RRFs for all target compounds were \(\geq 0.05\), and the \(\%\) Ds were \(\leq 20 \%\), except for the \(\%\) Ds for NDMA, benzoic acid, and 4 nitrophenol. NDMA, benzoic acid, and 4 -nitrophenol were qualified as estimated nondetects, "UJ," in the sample of this SDG. A representative number of RRFs, \(\mathrm{r}^{2}\) values, and \%Ds were checked from the raw data, and no calculation or transcription errors were noted. No further qualifications were required.

\subsection*{2.4 BLANKS}

One method blank (5B14010-BLK1) was extracted and analyzed with this SDG. Fluorene, 2methylnaphthalene, naphthalene, and phenanthrene were reported in the method blank at concentrations less than the reporting limits; however, the sample of this SDG did not have any
\begin{tabular}{rr}
Project: & NPDES \\
DATA VALIDATION REPORT & SDG: \\
IOBIOI4 \\
Analysis: & SVOC \\
\hline
\end{tabular}
target compound detects. Review of the raw data indicated no reportable false negatives or false positives. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One blank spike/ blank spike duplicate pair (5B14010-BS1/BSD1) was extracted and analyzed with this SDG. For blank spike/blank spike duplicate pairs, qualifications are applied, if necessary, to the associated samples based on those recoveries consistently outside of the laboratoryestablished QC limits in both the blank spike and blank spike duplicate. Results for those compounds with recoveries not consistent within the pair, with RPDs above the QC limit, are qualified as estimated, "UJ," for nondetects, and "J," for detects, in the associated samples. All percent recoveries and RPDs were within the laboratory QC limits except for benzidine. Benzidine was not recovered in the BSD and its RPD exceeded the control limit. The RPD for NDMA exceeded the control limit. The sample of this SDG had benzidine and NDMA qualified as estimated nondetects, "UJ." A representative number of recoveries and RPDs were calculated from the raw data and no calculation or transcription errors were found. No further qualifications were required.

\subsection*{2.6 SURROGATE RECOVERY}

The sample surrogate recoveries were within the laboratory QC limits. A representative number of recoveries were calculated from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

No MS/MSD analyses were associated with this SDG. Evaluation of method accuracy and precision was based on blank spike/blank spike duplicate results. No qualifications were required.

\subsection*{2.8 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

\subsection*{2.8.1 Field Blanks and Equipment Rinsates}

There were no field QC samples associated with this SDG. No qualifications were required.

\subsection*{2.8.2 Field Duplicates}

There were no field duplicate samples associated with this SDG. No qualifications were required.
\begin{tabular}{cc}
& \begin{tabular}{c}
Project: \\
DATA VALIDATION REPORT
\end{tabular} \\
SDG: & \begin{tabular}{c}
NPDES \\
IOBIO14
\end{tabular} \\
SVOC
\end{tabular}

\subsection*{2.9 INTERNAL STANDARDS PERFORMANCE}

The internal standard area counts and retention times were within the control limits established by the continuing calibration standards: \(-50 \% /+100 \%\) for internal standard areas and \(\pm 30\) seconds for retention times. A representative number of recoveries were checked from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.10 COMPOUND IDENTIFICATION}

The laboratory analyzed for the semivolatile target compounds by EPA Method 625. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification. No qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification is verified at a Level IV data validation. No calculation or transcription errors were found. The reporting limits were supported by the low level of the initial and the method detection limit study. No qualifications were required.

\subsection*{2.12 TENTATIVELY IDENTIFIED COMPOUNDS}

TICs were not reported by the laboratory for this SDG. No qualifications were required.

\subsection*{2.13 SYSTEM PERFORMANCE}

Review of the raw data indicated no problems with system performance. No qualifications were required.

Sampled: 021105
Received: 02/1105

DRAFT: ACID \& BASENELTRALS BY GCMMS (EPA 625)

```

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, C.A }9110
Attention: Bronwyn Kelly

```
```

        Projecr iD: 13267 (Study 1)
    ```
 Projecr iD: 13267 (Study 1)
 Outfallo!1
 Outfallo!1
Report Number: 1OBIOI4
Report Number: 1OBIOI4
 Sampied: 0211/05
Receved: 02710:
```

DRAFT: ACID \& BASENEUTRALS BY GC/MS (EPA 625)


DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE

## AGE VALUATE



level


# $a m e c^{\theta}$ 

# DATA VALIDATION REPORT 

## NPDES Monitoring

ANALYSIS: Total Petroleum Hydrocarbons: Purgeable SAMPLE DELIVERY GROUP: IOB1014

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

|  | Project: |
| :---: | :---: |
| DATA VALIDATION REPORT | NPDES <br> SDG: <br> IOB1014 <br> Analysis: |

## 1. INTRODUCTION

Task Order Title: NPDES Monitoring<br>Contract Task Order \#: 313150010<br>SDG\#: IOB1014<br>Project Manager: B. McIlvaine<br>Matrix: Water<br>Analysis: TPH-Purgeable<br>QC Level: Level IV<br>No. of Samples: 2<br>No. of Reanalyses/Dilutions: 0<br>Reviewer: L. Calvin<br>Date of Review: April 6, 2005

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Extractable Total Fuel Hydrocarbons by GC (DVP-8, Rev. 2), USEPA SW-846 Method 8015M, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " $R$ " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

DATA VALIDATION REPORT | Project: |
| :---: |
| SDG: |
| NPDES |
| IOBlol4 |
| TPH |

Table 1. Sample identification

| Client ID | EPA.ID | Lab No. | Matrix | Method |
| :---: | :---: | :---: | :---: | :---: |
| Outfall 011 | Outfall 011 | IOB1014-01 | water | 8015M/GRO |
| Trip Blank | Trip Blank | IOB1014-02 | water | 8015M/GRO |


|  | Project: SDG: | $\begin{aligned} & \text { NPDES } \\ & \text { IOB1014 } \end{aligned}$ |
| :---: | :---: | :---: |
| DATA VALIDATION REPORT | Analysis: | TPH |

## 2. DATA VALIDATION FINDINGS

### 2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

### 2.1.1 Sample Preservation, Handling, and Transport

The samples in this SDG were received at Del Mar Analytical laboratory on ice within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$, at $4^{\circ} \mathrm{C}$. The Del Mar Analytical case narrative noted that the samples were received intact, and the COC indicated the samples were properly preserved. No qualifications were required.

### 2.1.2 Chain of Custody

The COC was signed and dated by both field and laboratory personnel. As the samples were couriered directly to the laboratory, custody seals were not required. The TPH-GRO analysis was not requested on the COC for the trip blank sample; however, as the laboratory analyzed the trip blank and included it in the data package, the analysis was validated. No qualifications were required.

### 2.1.3 Holding Times

The water samples were analyzed within 14 days of collection. No qualifications were required.

### 2.2 CALIBRATION

One gasoline standard initial calibration dated 08/20/04 was associated with the sample analyses. The \%RSD for GRO (C4-C12) was within the QC limit of $\leq 20 \%$. An initial calibration verification (ICV) was not provided in the data package. The \%Ds for all CCVs bracketing the sample analyses were within the Method QC limit of $\leq 15 \%$. The \%RSD and \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required

### 2.4 METHOD BLANKS

One water method blank (5B22003-BLK1) was associated with the sample analyses. GRO ( $\mathrm{C} 4-\mathrm{Cl} 2$ ) was not detected above the MDL in the method blank. Review of the raw data indicated no false negative result. No qualifications were necessary.

### 2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One water method blank spike (5B22003-BS1) was associated with the sample analyses. GRO (C4-C12) was recovered within the laboratory-established QC limits of $70-140 \%$ in the blank spike.

|  | Project: <br> DATA VALIDATION REPORT |
| :---: | :---: |
| SDG: | NPDES |
| IOBIO14 |  |
| Analys: | TPH |

The recovery was checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

### 2.6 SURROGATE RECOVERY

The samples were fortified with the surrogate compound 4-bromofluorobenzene (BFB). Surrogate recoveries were within the laboratory-established QC of $65-140 \%$ for both samples. Recoveries were calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

### 2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed on the site sample in this SDG; therefore, evaluation of method accuracy was based on the blank spike results. No qualifications were required.

### 2.8 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

### 2.9.1 Trip Blanks, Field Blanks, and Equipment Rinsates

Sample Trip Blank was the trip blank associated with site sample Outfall 011. GRO (C4-C12) was not detected above the MDL in the trip blank. Review of the raw data indicated no false negative result. There were no field blank or equipment rinsate samples associated with this SDG. No qualifications were necessary.

### 2.9.2 Field Duplicates

There were no field duplicate samples in this SDG.

### 2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for GRO (C4-C12) by EPA SW-846 Method 8015M. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for the samples in this SDG. No qualifications were required.

### 2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification was verified for this SDG by recalculating any sample detects, blank spike recoveries, and a representative number of surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibrations and by the laboratory MDL. No qualifications were required.

## DRAFT: VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)

| Analyte | Method | Batch | MDL <br> Limit | Reporting Limit | Sample Result | Dilution Factor | Date Extracted |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID: IOB1014-01 (DRAFT: <br> Reporting Units: mg/I | Outfall 011-grab | Water) | con |  |  |  |  |  |  |  |
| GRO (C4-C12) <br> Surrogate: 4-BFB (FID) (65-140\%) | EPA 8015 Mod . | 5B22003 | 0.050 | 0.10 | $\begin{aligned} & \mathrm{ND} \\ & 78 \% \end{aligned}$ | 1 | 02/22/05 | 02/22/05 | $u$ |  |
| Sample ID: IOB1014-02 (DRAFT Reporting Units: mg/ | Trip Blank - V |  |  |  |  |  |  |  |  |  |
| GRO (C4-C12) <br> Surrogate: 4-BFB (FID) ( $65-140 \%$ ) | EPA 8015 Mod . | 5B23023 | 0.050 | 0.10 | $\begin{aligned} & \text { ND } \\ & 93 \% \end{aligned}$ |  | 02/23.05 | 0223/05 | $u$ |  |





## amec ${ }^{\text {d }}$

# DATA VALIDATION REPORT 

NPDES Monitoring

## ANALYSIS: TPH/EXTRACTABLE

## SAMPLE DELIVERY GROUP: IOB1014

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

|  | Project: SDG: | $\begin{aligned} & \text { NPDES } \\ & \text { IOB1014 } \end{aligned}$ |
| :---: | :---: | :---: |
| DATA VALIDATION REPORT | Analysis: |  |

## 1. INTRODUCTION

Task Order Title: NPDES Monitoring<br>Contract Task Order \#: 313150010<br>SDG\#: IOB1014<br>Project Manager: B. Mcllvaine<br>Matrix: Water<br>Analysis: TPH-Extractable<br>QC Level: Level IV<br>No. of Samples: 1<br>No. of Reanalyses/Dilutions: 0<br>Reviewer: L. Calvin<br>Date of Review: April 6, 2005

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Extractable Total Fuel Hydrocarbons by GC (DVP-8, Rev. 2), USEPA SW-846 Method 8015M, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

|  | Project: SDG: | NPDES IOB1014 |
| :---: | :---: | :---: |
| DATA VALIDATION REPORT | Analysis: | TPH |

Table 1. Sample identification

| Client ID | EPA ID | Lab No: $\cdots \cdots$ | Matrix | Method |
| :---: | :---: | :---: | :---: | :---: |
| Outfall 011 | Outfall 011 | IOB1014-01 | water | $8015 \mathrm{M} / \mathrm{EFH}$ |


|  |  |
| :---: | :---: |
| DATA VALIDATION REPORT | Project: <br> SDG: |
| NPDES |  |
| IOBIO14 |  |
| Analysis: | TPH |

## 2. DATA VALIDATION FINDINGS

### 2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

### 2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at Del Mar Analytical laboratory on ice within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The Del Mar Analytical case narrative noted that the sample containers were received intact. No qualifications were required.

### 2.1.2 Chain of Custody

The COC was signed and dated by both field and laboratory personnel, and accounted for the analysis presented in this SDG. As the sample was couriered directly to the laboratory, custody seals were not required. No qualifications were required.

### 2.1.3 Holding Times

The sample was extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

### 2.2 CALIBRATION

The initial calibration associated with the sample analysis was analyzed on 02/08/05. The $\% \mathrm{RSD}$ was within the QC limit of $520 \%$. The $\% \mathrm{D}$ s for the initial calibration verification (ICV) and continuing calibrations associated with the sample analysis were $\leq 15 \%$. The $\%$ RSD and $\%$ Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required

### 2.4 METHOD BLANKS

One method blank (5B19002-BLK1) was extracted and analyzed with the sample in this SDG. EFH (C13-C22) was not present above the MDL in the method blank or in the instrument blank analyzed at the beginning of the analytical sequence. Review of the chromatograms showed no false negatives. No qualifications were required.

### 2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One method blank spike/blank spike duplicate pair (5B19002-BS1/BSD1) was extracted and analyzed with the sample in this SDG. The recoveries of alkane range C13-C22 from spiked diesel were within the laboratory-established QC limits of $40-120 \%$, and the RPD was within the QC limit of $\leq 25 \%$. The recoveries and RPD were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

|  | Project: | NPDES |
| :--- | ---: | ---: |
| DATA VALIDATION REPORT | SDG: | IOB1014 |

### 2.6 SURROGATE RECOVERY

The sample was fortified with the surrogate compound $n$-octacosane. The sample surrogate recovery was within the laboratory-established QC of $40-125 \%$. The recovery was calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

### 2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

There were no MS/MSD analyses associated with the sample of this SDG. Evaluation of method accuracy and precision was based on the $\mathrm{BS} / \mathrm{BSD}$ results. No qualifications were required.

### 2.8 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

### 2.9.1 Field Blanks and Equipment Rinsates

There were no field blank or equipment rinsate samples associated with the site sample in this SDG. No qualifications were required.

### 2.9.2 Field Duplicates

There were no field duplicate samples associated with the samples in this SDG.

### 2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for EFH n-alkane range C13-C22 by EPA SW846 Method 8015M. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for this SDG. No qualifications were required.

### 2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification was verified for this SDG by recalculating any sample detect, blank spike recoveries, and a representative number of surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibration and by the laboratory MDL. The reporting limit was not adjusted for sample amount; however, the dilution factor on the sample result summary reflected the sample amount extracted. No qualifications were required.


 2r20 5. 5uset Rd. \#3, Lis Vegas, NV gol-

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014

## DRAFT: EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

| Analyte | Method | Batch | MDL <br> Limit | Reporting Limit | Sample <br> Result | Dilution Factor | Date Extracted | Date |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID: IOB1014-01 (DRAFT: Reporting linits: mg/l $\mathrm{EFH}(\mathrm{Cl} 3-\mathrm{C} 22)$ | Outfall 011-g | - Water) 5814105 | - cont. |  |  |  |  | $\begin{gathered} \text { Analyzed } \\ \text { ved } \\ \text { yoal } \\ \hline \end{gathered}$ | $\begin{aligned} & \text { qualifiets } \\ & \text { giva } \end{aligned}$ |
| Surrogate: $n$-Octacosane (40-125\%) | 8 | 5B] 4105 | 0.082 | 0.50 | $\begin{aligned} & \text { ND } \\ & 59 \% \end{aligned}$ | 0.98 | 02/14,05 | 02/1505 U |  |

## AMEC VALIDATED




## amec ${ }^{\circ}$

# DATA VALIDATION REPORT 

NPDES Monitoring

## ANALYSIS: VOLATILES

## SAMPLE DELIVERY GROUP: IOB1014

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

| DATA VALIDATION REPORT | Project: <br> SDG: |
| :---: | :---: |
| NPDES |  |
| IOBIO14 |  |
| VOC |  |

## 1. INTRODUCTION

Task Order Title: NPDES Monitoring<br>Contract Task Order \#: 313150010<br>SDG\#: IOB1014<br>Project Manager: B. McIlvaine<br>Matrix: Water<br>Analysis: Volatiles<br>QC Level: Level IV<br>No. of Samples: 2<br>No. of Reanalyses/Dilutions: 0<br>Reviewer: M. Pokorny<br>Date of Review: April 4, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Volatile Organics (DVP-2, Rev. 2), EPA Method 624, EPA SW-846 Method 8260B, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary forms as having only the " $R$ " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.


Table 1. Sample identification

| Client ID | EPA ID | Lab No. | Matrix | Method |
| :---: | :---: | :---: | :---: | :---: |
| Outfall 011 | Outfall 011 | IOB1014-01 | water | 624 |
| Trip Blank | Trip Blank | IOB1014-02 | water | 624 |


|  | Project: | NPDES |
| :---: | :---: | :---: |
| DATA VALIDATION REPORT | SDG: | IOBIO14 |
|  | Analysis: | VOC |

## 2. DATA VALIDATION FINDINGS

### 2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

### 2.1.1 Sample Preservation, Handling, and Transport

The samples in this SDG were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. The samples were properly preserved. The COCs noted that the samples were received intact; however, information regarding absence of headspace was not provided. 2-Chloroethylvinyl ether was analyzed from an unpreserved sample. No qualifications were required.

### 2.1.2 Chain of Custody

The COCs were signed and dated by both field and laboratory personnel. The COCs accounted for the analyses presented in this SDG. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

### 2.1.3 Holding Times

The samples were analyzed within 14 days of collection. No qualifications were required.

### 2.2 GC/MS TUNING

The ion abundance windows shown on the quantitation reports were consistent with those specified in the EPA Method 624 and SW- 846 Method 8260 B , and all ion abundances were within the established windows. The samples and associated QC were analyzed within 12 hours of the BFB injection times. The Form Vs were verified from the raw data and no discrepancies between the summary forms and the raw data were noted. No qualifications were required.

### 2.3 CALIBRATION

Two initial calibrations dated 11/03/04 (acrolein, acrylonitrile, and Freon 113 only) and $02 / 01 / 05$ were associated with this SDG. The average RRFs were $\geq 0.05$ for all compounds listed on the sample result summaries except for the RRF for acrolein. Acrolein was rejected, "R," in both of the samples. The \%RSDs were $\leq 35 \%$ for the target compounds analyzed by EPA Method 624, and the \%RSD for trichlorotrifluorethane (Freon 113) analyzed by EPA SW-846 Method 8260 B was $\leq 15 \%$. Two continuing calibrations associated with the sample analyses were analyzed 02/17/05 (14:08 and 15:09). The RRFs were $\geq 0.05$ in all of the continuing calibrations, except for the RRF for acrolein. Acrolein was rejected, "R," in both of the samples of this SDG. The \%Ds for acrolein and acrylonotrile exceeded $20 \%$ in the continuing calibration. Acrolein was already rejected and not further qualified. Acrylonitrile was qualified as an estimated nondetect, "UJ," in the site sample. No qualifications were required for the Trip blank. The $\% \mathrm{Ds}$ were $\leq 20 \%$ for the remaining target compounds listed on the result summaries. A representative number of \%RSDs and average RRFs from the initial calibrations, and \%Ds and RRFs from the continuing calibrations

|  | Project: <br> DATA VALIDATION REPORT | NPDES <br> SDG: <br> IOBIOI4 |
| :---: | :---: | :---: |
| VOC |  |  |

were recalculated from the raw data, and no calculation or transcription errors were found. No further qualifications were required.

### 2.4 BLANKS

Two water method blanks (5B17014-BLK1 and 5B12011-BLK1) were associated with the sample analyses. There were no detects above the MDLs for the target compounds listed on the sample result summaries. The method blank raw data showed no evidence of false negatives. No qualifications were required.

### 2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

Two water blank spikes (5B17014-BS1 and 5B12011-BS1) were associated with the sample analyses. All recoveries were within the laboratory-established QC limits. A representative number of recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

### 2.6 SURROGATE RECOVERY

The surrogates were recovered within the QC limits of $80-120 \%$ in the samples and associated QC. A representative number of surrogate recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

### 2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were associated with this SDG. Evaluation of method accuracy was based on blank spike results. No qualifications were required.

### 2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

### 2.8.1 Trip Blanks

Sample Trip Blank was the trip blank associated with this SDG. No target compounds were reported in the trip blank. No qualifications were required.

### 2.8.2 Field Blanks and Equipment Rinsates

There were no field QC samples associated with this SDG. No qualifications were required.

|  |  |
| :---: | :---: |
| DATA VALIDATION REPORT | Project: <br> SDG: <br> NPDES <br> IOBIO14 |
| VOC |  |

### 2.8.3 Field Duplicates

There were no field duplicate samples associated with this SDG. No qualifications were required.

### 2.9 INTERNAL STANDARDS PERFORMANCE

Internal standard area counts and retention times for the samples in this SDG were within the control limits established by the continuing calibration standards, of $+100 \% /-50 \%$ for internal standard areas and $\pm 0.50$ minutes for retention times. A representative number of internal standard areas and retention times were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

### 2.10 COMPOUND IDENTIFICATION

Target compound identification was verified at a Level IV data validation. The laboratory analyzed the volatile target compounds by EPA Method 624. A TIC search was performed for requested target compounds 1,2-dichloro-1,1,2-trifluoroethane and cyclohexane, as these compounds were not included in the calibration (see section 2.11). Neither compound was detected as a TIC. Chromatograms, retention times, and spectra for the samples and QC were examined and no target compound identification problems were noted. No qualifications were required.

### 2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. The reporting limits were supported by the lowest concentrations of the initial calibration standards and by the MDL study. Calibration was not performed for target compounds 1,2-dichloro-1,1,2-trifluorethane and cyclohexane; therefore, the laboratory performed only a TIC search for those compounds. Nondetects for both compounds were qualified as estimated, "UJ," in the site samples of these SDGs. Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike and surrogate recoveries from the raw data. Results were reported in $\mu \mathrm{g} / \mathrm{L}(\mathrm{ppb})$. No calculation or transcription errors were noted. No further qualifications were required.

### 2.12 TENTATIVELY IDENTIFIED COMPOUNDS

The laboratory did not provide TICs for this SDG. No qualifications were required.

### 2.13 SYSTEM PERFORMANCE

A review of the chromatograms and other raw data showed no identifiable problems with system performance. No qualifications were required.

Project ID:
13267 (Study 1) Outfall 011
Report Number: 10 B 1014

Sampled: 02/1105
Received: 02111:05

## DRAFT: PLRGEABLES BY GC/MS (EPA 624)

| Analyte | Method | Batch | MDL <br> Limit | Reporting Limit | Sample Result | Dilution Factor | D Date Extracted | Date Analyz | $1 \mathrm{Qu}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID: IOB1014-01 <br> Reporting Units: ugh | utfall 011 | - Water) |  |  |  |  |  |  | REV Qual | $\begin{aligned} & Q U A L \\ & C O D E \end{aligned}$ |
| Benzene | EPA 624 | 5B17014 | 0.28 | 1.0 | ND | 1 | 02/17\%05 | 02:17105 |  |  |
| Bromodichloromethane | EPA 624 | 5B17014 | 0.30 | 2.0 | ND | 1 | 02/1705 | 02/17/05 |  |  |
| Bromoform | EPA 624 | 5B17014 | 0.32 | 5.0 | ND | 1 | 02/17/05 | 02/17/05 |  |  |
| Bromomethane | EPA 624 | 5B17014 | 0.34 | 5.0 | ND | 1 | 02/17/05 | 02:17:05 |  |  |
| Carbon tetrachloride | EPA 624 | 5817014 | 0.28 | 0.50 | ND | 1 | 0211705 | 02/17/05 |  |  |
| Chlorobenzene | EPA 624 | 5 B 17014 | 0.36 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |  |  |
| Chloroethane | EPA 624 | 5B17014 | 0.33 | 5.0 | ND | 1 | 02/17/05 | 02/17105 |  |  |
| Chloroform | EPA 624 | 5 B 17014 | 0.33 | 2.0 | ND | 1 | 02/17:05 | 0261705 |  |  |
| Chloromethane | EPA 624 | $5 B 17014$ | 0.30 | 5.0 | ND | 1 | 02:17105 | 02/17.05 |  |  |
| Dibromochloromethane | EPA 624 | 5817014 | 0.28 | 2.0 | ND | 1 | 02i17105 | 02/17:05 |  |  |
| 1,2-Dichlorobenzene | EPA 624 | 5817014 | 0.32 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |  |  |
| 1,3-Dichlorobenzene | EPA 624 | 5B17014 | 0.35 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |  |  |
| 1,4-Dichlorobenzene | EPA 624 | 5817014 | 0.37 | 2.0 | ND | 1 | 02/17.05 | 02/17/05 |  |  |
| 1,1-Dichloroethane | EPA 624 | $5 B 17014$ | 0.27 | 2.0 | ND | 1 | 02/17105 | 02/17/05 |  |  |
| 1,2-Dichloroethane | EPA 624 | 5B17014 | 0.28 | 0.50 | ND | 1 | 02/17105 | 02/17:05 |  |  |
| 1,1-Dichloroethene | EPA 624 | 5B17014 | 0.32 | 5.0 | ND | 1 | 02/17105 | 02/17/05 |  |  |
| trans-1,2-Dichloroethene | EPA 624 | 5B17014 | 0.27 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |  |  |
| 1,2-Dichloropropane | EPA 624 | 5B17014 | 0.35 | 2.0 | ND | 1 | 02/17105 | 0247705 |  |  |
| cls-1,3-Dichoropropene | EPA 624 | SB17014 | 0.22 | 20 | ND | 1 | 02/1705 | $02 / 1705$ |  |  |
| trans-1,3-Dichloropropene | EPA 624 | $5 B 17014$ | 0.24 | 2.0 | ND | 1 | 02/17/05 | 02/17.05 |  |  |
| Ethylbenzene | EPA 624 | 5B17014 | 0.25 | 2.0 | ND | 1 | 02/17105 | 02/17/05 |  |  |
| Methylene chloride | EPA 624 | 5B17014 | 0.48 | 5.0 | ND | 1 | 02/17/05 | 02/17/05 |  |  |
| 1,1,2,2-Tetrachloroethane | EPA 624 | $5 \mathrm{B17014}$ | 0.24 | 2.0 | ND | 1 | 02:17/05 | 02/17105 |  |  |
| Tetrachloroethene | EPA 624 | 5 B 17014 | 0.32 | 2.0 | ND | 1 | 02/17/05 | 02/17:05 |  |  |
| Toluene | EPA 624 | 5B17014 | 0.36 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |  |  |
| 1,1,1-Trichloroethane | EPA 624 | $5 \mathrm{B17014}$ | 0.30 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |  |  |
| 1,1,2-Trichloroethane Trichloroethene | EPA 624 | SB17014 | 0.30 | 2.0 | ND | 1 | 02/17:05 | 02/17/05 |  |  |
| Trichlorothene | EPA 624 | $5 \mathrm{S17014}$ | 0.26 | 2.0 | ND | 1 | 02/17/05 | 02:1705 |  |  |
| Vinyl chloride | EPA 624 | 5B17014 | 0.34 | 5.0 | ND | 1 | 02/17/05 | 02/17/05 |  |  |
| Xylenes, Total | EPA 624 | 5817014 | 0.26 | 0.50 | ND | 1 | 02/17/05 | 02/17/05 |  |  |
| Surrogate: Dibromofluoromethane (80-120\%)Surrogate: Toluene-d8 $(80-120 \%)$ |  |  |  |  | $114 \%$ I |  |  |  |  |  |
|  |  |  |  |  | $102 \%$ |  |  |  |  |  |
| Surrogate: 4-Bromofluorobenzene (80-120\%) |  |  |  |  | 98\% |  |  |  |  |  |

Sampled: 0211105
Received: 02/11:05

DRAFT: PLRGEABLES BY GC/MS (EPA 624)

| Analyte | Method | Batch | MDL <br> Limit | Reporting Limit | Sample <br> Result | Dilution <br> Factor | n Date Extracted | Date Analyzed | $\begin{array}{r} \mathrm{Da} \\ \mathrm{~d} \text { Quali } \end{array}$ | fiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID: IOB1014-02 <br> Reporting Units: ug/ | Trip Blank |  |  |  |  |  |  |  | $\begin{aligned} & \text { ReV } \\ & \text { QuAL } \end{aligned}$ | QUAL |
| Benzene | EPA 624 | 5B17014 | 0.28 | 1.0 | ND | 1 | 02/17/05 | 0217\% | $U$ |  |
| Bromodichloromethane | EPA 624 | 5B17014 | 0.30 | 2.0 | ND | 1 | $02 / 17105$ | 02/17105 | U |  |
| Bromoform | EPA 624 | 5B17014 | 0.32 | 5.0 | ND | 1 | 02/17/05 | 0217/05 |  |  |
| Bromomethane | EPA 624 | 5817014 | 0.34 | 5.0 | ND | 1 | 02:17i05 | 02/1705 |  |  |
| Carbon tetrachloride | EPA 624 | 5B17014 | 0.28 | 0.50 | ND | 1 | 02:17105 | 02/17,05 |  |  |
| Chlorabenzene | EPA 624 | 5B17014 | 0.36 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |  |  |
| Chloroethane | EPA 624 | SB17014 | 0.33 | 5.0 | ND | 1 | 02/17/05 | 0247105 |  |  |
| Chloroform | EPA 624 | 5B17014 | 0.33 | 2.0 | ND | 1 | $02 / 1705$ | 0211705 |  |  |
| Chloromethane | EPA 624 | 5B17014 | 0.30 | 5.0 | ND | 1 | 02/1705 | 02/17/05 |  |  |
| Dibromochioromethane | EPA 624 | SB17014 | 0.28 | 2.0 | ND | 1 | 0217105 | 02/17/05 |  |  |
| 1,2-Dichlorobenzene | EPA 624 | 5 B 17014 | 0.32 | 2.0 | ND | 1 | 02/17105 | 02/17/05 |  |  |
| 1,3-Dichlorobenzene | EPA 624 | SB17014 | 0.35 | 2.0 | ND | 1 | 02/17/05 | 02:17:05 |  |  |
| 1,4-Dichlorobenzene | EPA 624 | 5817014 | 0.37 | 2.0 | ND | 1 | 02:17105 | 02/17/05 |  |  |
| 1,1-Dichloroethane | EPA 624 | 5B17014 | 0.27 | 2.0 | ND | 1 | 02:17:05 | 02/17/05 |  |  |
| 1,2-Dichloroethane | EPA 624 | 5B17014 | 0.28 | 0.50 | ND | 1 | 02/17,05 | 02/17.05 |  |  |
| 1,1-Dichloroethene | EPA 624 | 5B17014 | 0.32 | 5.0 | ND | 1 | 0217105 | 02:17:05 |  |  |
| trans-1,2-Dichloroethene | EPA 624 | 5B17014 | 0.27 | 2.0 | ND | 1 | 02/17105 | 02/17/05 |  |  |
| 12-Dichloropropane | EPA 624 | 5B17014 | 0.35 | 20 | ND | 1 | 0217105 | 0217105 |  |  |
| cis-1,6-Dichloropropene | EPA 624 | 5B17014 | 0.22 | 20 | ND | 1 | 021705 | 02/17/05 |  |  |
| trans-1,3-Dichloropropene Ethylbenzene | EPA 624 | 5 B 17014 | 0.24 | 2.0 | ND | 1 | 02/17/05 | 02.17105 |  |  |
| Ethylbenzene Methylene chloride | EPA 624 | 5B17014 | 0.25 | 2.0 | ND | 1 | 02/17/05 | 02/17:05 |  |  |
| Methylene chloride 1,1,2,2-Tetrachloroethane | EPA 624 | $5 \mathrm{S17014}$ | 0.48 | 5.0 | ND | 1 | 0211705 | 02:1705 |  |  |
| 1,1,2,2-Tetrachloroethane Tetrachloroethene | EPA 624 | 5 B 17014 | 0.24 | 2.0 | ND | 1 | 02/1705 | 02177/05 |  |  |
| Ietrachloroethene Toluene | EPA 624 | 5B17014 | 0.32 | 2.0 | ND | 1 | 02:17/05 | 02/1705 |  |  |
| 1,1,1-Trichloroethane | EPA 624 | 5B17014 5817014 | 0.36 | 2.0 | ND | 1 | 02/17:05 | $02 / 17105$ |  |  |
| 1,1,2-Trichloroethane | EPA 624 | $5 B 17014$ 5817014 | 0.30 0.30 | 2.0 | ND | , | 02/17/05 | 02/17/05 |  |  |
| Trichloroethene | EPA 624 | 5B17014 | 0.26 | 2.0 | ND | 1. | 02/17.05 | $02 / 17 / 05$ $02 / 17 / 05$ |  |  |
| Trichlorofluoromethane | EPA 624 | 5B17014 | 0.34 | 5.0 | ND | 10 | 02/17:05 | 02/17/05 |  |  |
| Vinyl chloride | EPA 624 | 5817014 | 0.26 | 0.50 | ND | 10 | 0217705 | 02:17/05 |  |  |
| Xylenes, Total | EPA 624 | 5 B 17014 | 0.52 | 4.0 | ND | 1 0 |  | $0217 / 05$ | $\downarrow$ |  |
| Surrogate: Dibromofluoromethane (80-120\%)Surrogare: Toluene-d8 (80-120\%) |  |  |  |  | $109 \%$ 1 02\%1705 02:17,05 |  |  |  |  |  |
|  |  |  |  |  | $101 \%$ |  |  |  |  |  |
| Surrogate: 4-Bromofluorobenzene (80-120\%) |  |  |  |  | 97\% |  |  |  |  |  |

[^20]
## DRAFT: FREON 113 (EPA 8260B)



Project ID: 13267 (Study 1)<br>Outfall 011<br>Sampled: 0211105<br>Report Number: 1OB1014<br>Received: 02:1105

## DRAFT: PURGEABLES BY GC/MS (EPA 624)



DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE
level IV

# (2. Del Mar Analytical 







| MWH-Pasadena/Boeing | Project ID: 13267 (Sura 1) | Outfall o11 |
| :--- | :---: | ---: |
| 300 North Lake Avenue, Suite 1200 | Report Number: $10 B 1014$ | Sampled: 021105 |
| Pasadena, CA 91101 |  | Received: 02/1105 |

## DRAFT: PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS



DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE




CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer L. Jarusewic
Analysis/Method General Minerals

Package ID T711WC108
Task Order 313150010
SDG No. IOB1014
No. of Analyses 1
Date: 03/31/05
Reviewer's Signature

## ACTION ITEMS:

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

## Deliverables

5. Incorrect Hardcopy

Deliverables
6. Deviations from Qualifications applied for:

Analysis Protocol, e.g.,

1) Detects below the reporting limit
2) CCB detects

Holding Times
2) CCB detects

GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification
and Quantitation
System Performance

COMMENTS ${ }^{\text {b }}$

[^21]
# amec ${ }^{\theta}$ 

# DATA VALIDATION REPORT 

NPDES Monitoring

## ANALYSIS: GENERAL MINERALS <br> SAMPLE DELIVERY GROUP: IOB1014

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

|  | Project: | NPDES |
| ---: | ---: | ---: |
| DATA VALIDATION REPORT | SDG No.: | IOB1014 |

## 1. INTRODUCTION

Task Order Title: NPDES Monitoring<br>Contract Task Order \#: 313150010<br>Sample Delivery Group \#: IOB1014<br>Project Manager: B. McIlvaine<br>Matrix: Water<br>Analysis: General Minerals<br>QC Level: Level IV<br>No. of Samples: 1<br>Reviewer: L. Jarusewic<br>Date of Review: March 31, 2005

The sample listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 300.0, 330.5, 405.1, 335.2, 160.2, 120.1, 160.5, 415.1, 413.1, 350.2, 418.1, and 180.1. Standard Methods for the Examination of Water and Wastewater Method SM5540-C and SM2540C, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " $R$ " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

|  | Project: | NPDES |
| ---: | ---: | ---: |
| DATA VALIDATION REPORT | SDG No.: | IOBIO14 |

Table 1. Sample identification

| Client ID | EPA ID | Laboratory ID | Matrix | COC Method |
| :---: | :---: | :---: | :---: | :---: |
| Outfall 011-Grab | Outfall 011-Grab | IOB1014-01 | Water | General Minerals |


|  | Project: | NPDES |
| ---: | ---: | ---: |
| DATA VALIDATION REPORT | SDG No.: | IOB1014 |

## 2. DATA VALIDATION FINDINGS

### 2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

### 2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. No preservation problems were noted by the laboratory. No qualifications were required.

### 2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel. The COC accounted for the analyses and sample presented in this SDG. No qualifications were required.

### 2.1.3 Holding Times

The holding times were assessed by comparing the date of collection with the dates of analyses. The 28 -day analytical holding time for total recoverable hydrocarbons, ammonia, chloride, fluoride, sulfate, oil and grease, total organic carbon, and conductivity, the 14-day analytical holding time for cyanide, the seven-day holding time for total dissolved solids and total suspended solids, the 48 -hour holding time for turbidity, nitrate/nitrite, surfactants, total settleable solids, and biological oxygen demand, and the 24 -hour residual chlorine holding times were met. No qualifications were required.

### 2.2 CALIBRATION

For the applicable analyses, the initial calibration correlation coefficients were $\geq 0.995$. The initial and continuing calibration verification information was acceptable with recoveries within the control limits of $90-110 \%$. For ammonia, no information regarding the standardization of the titrant was provided; however, as the LCS recovery was within the CCV control limits, no qualifications were required. For BOD, no information regarding the calibration of the oxygen meter was provided; however, as the LCS recovery was within the CCV control limits, no qualifications were required. The total cyanide reporting limit check standard was recovered above control limits at $137.9 \%$; however, as cyanide was not detected in Outfall 011-Grab, no qualifications were required. Calibration is not applicable to residual chlorine, oil and grease, total dissolved solids, total settleable solids, or total suspended solids. No qualifications were required.

### 2.3 BLANKS

Turbidity was detected in method blank 5B12055-BLK1 at 0.040 NTU; however, the method blank result was insufficient to qualify the Outfall 011 -Grab result. Flouride was detected in a bracketing CCB at $0.27 \mathrm{mg} / \mathrm{L}$; therefore, fluoride detected in Outfall $011-\mathrm{Grab}$ was qualified as estimated, "UJ." The remaining method blank and CCB results reported on the summary forms and in the raw data for blank analyses associated with the sample were nondetects at the reporting limit. No further qualifications were required.

|  | Project: | NPDES |
| ---: | ---: | ---: |
| DATA VALIDATION REPORT | SDG No.: | IOB1014 |

### 2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample and laboratory control sample duplicate (BOD, total recoverable hydrocarbons, and oil and grease only) recoveries were within the laboratory-established control limits. The LCS is not applicable to turbidity, total settleable solids, conductivity, or residual chlorine. No qualifications were required.

### 2.5 SURROGATES RECOVERY

Surrogate recovery is not applicable to the analyses presented in this SDG.

### 2.6 LABORATORY DUPLICATES

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

### 2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

### 2.8 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analyses of this sample; therefore, furnace atomic absorption QC is not applicable.

### 2.9 ICP SERIAL DILUTION

ICP serial dilution is not applicable to the analyses presented in this data validation report.

### 2.10 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Surfactant detected below the reporting limit was qualified as estimated, "J." No further qualifications were required.

|  | Project: | NPDES |
| ---: | ---: | ---: |
| DATA VALIDATION REPORT | SDG No.: | IOBI014 |

### 2.11 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

### 2.11.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

### 2.11.2 Field Duplicates

There were no field duplicate pairs associated with this SDG.





```
MWH-Pasadeaa/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
```

Outfall 01
Repon Number: 10 BlOL 9

Sampled: 0211.05
Received: 02/1105

```
 Project ID: 13267 (Study i)
```

```
 Project ID: 13267 (Study i)
```


## DRAFT: INORGANICS



## AMEC VALIDATED



| MWH-Pasadena/Boeing | Project ID: 13267 (Sudy 1) |  |
| :---: | :---: | :---: |
| 300 North Lake Avenue, Suite 1200 | Outialloll | Sampled: 0211105 |
| Aasadena, CA9llol | Report Number: 1081014 | Received: 02:1105 |

## DRAFT: INORGANICS



## amec validated







```
MWH-Pasadena/Bozing
300 North Lake Avenue, Suite 1200
Pasadena, CA91101
Artention: Bronwyn Kelly
Project ID: 13267 (Sady 1)
Outall On
Report Number: \(10 B 1014\)
```

DRAFT: INORGANICS


## AMEC VALIUnicu







| MWH-Pasadena Boeing | Project ID: 13267 (Study 1) |  |
| :---: | :---: | :---: |
| 300 North Lake Avenue, Suite 1200 | Outfalion | Sampled 02110s |
| Pasadena, CA 91101 | Report Number: $10 B 1014$ | Received: 0271105 |

DRAFT: INORGANICS
Analyte

Method
MDL Reporting Sample Dilution Date
Date Data
Batch Limit Limit Result FactorExtracted
Analyzed Qualifiers
Sample 10: 1OB1014-01 (DRAFT: Outfall 011-grab - Water) - cont. Reporting Units: ug/l

| EPA 335.2 | $5 B 14107$ | 2.2 | 5.0 | ND | 1 | $02 / 1405$ | $02 / 4105$ | $U$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| EPA 314.0 | $5 B 17053$ | 0.80 | 4.0 | ND | 1 | $02 / 17.05$ | 0217.05 | 世 |




D Del Mar Analytical





## DRAFT: INORGANICS



## AMEC VRLIVM:L



| MWH-Pasadena'Bocing | Project ID: 13267 (Study 1) |  |
| :---: | :---: | :---: |
| 300 North Lake Averue, Suite 1200 | Oufatol! | Sampled: 02,1105 |
| Pasadena, CA 91101 | Report Number: 1081014 | Received: 021165 |
| Attention: Bronwyn Kelly |  | Receved 02.1ios |

## DRAFT: TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)

| Analyte | Method | Batch | MDL <br> Limit | Reporting Limit | Sample <br> Result | Dilution <br> Factor | Date <br> Extracted | Date Analyze |  | Data |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample 1D: 1OB1014-01 (DRAF Reporting Units: mgh | utfall 011-g | Water |  |  |  |  |  |  | du | $\begin{aligned} & \text { contiers } \\ & 2 \text { CODE } \end{aligned}$ |
| Total Recoverable Hydrocarbons | EPA418.1 | 5815076 | 0.31 | 1.0 | ND | 1 | 02:5:05 | 021505 | $u$ |  |

## AMEC VAUDDATED



CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer L. Jarusewic
Analysis/Method Perchlorate

Package ID T711WC109
Task Order 313150010
SDG No. IOB1014
No. of Analyses 1


## ACTION ITEMS

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis Protocol, e.g.,

Holding Times
GC/MS Tune/Inst. Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and Quantitation
System Performance
$\square$
$\square$
$\square$
$\square$
$\square$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| COMMENTS $^{\text {b }}$ | Acceptable as reviewed. |
| :--- | :--- |

${ }^{2}$ Subcontracted analytical laboratory is not meeting contract andor method requirements.

- Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.


# amec ${ }^{\circ}$ 

# DATA VALIDATION REPORT 

## NPDES Monitoring

## ANALYSIS: PERCHLORATE SAMPLE DELIVERY GROUP: IOB1014

Prepared by

|  | Project: | NPDES |
| ---: | ---: | ---: |
| DATA VALIDATION REPORT | SDG No.: | IOBIO14 |

## 1. INTRODUCTION

Task Order Title: NPDES Monitoring<br>Contract Task Order \#: 313150010<br>Sample Delivery Group \#: IOBI014<br>Project Manager: B. Mcllvaine<br>Matrix: Water<br>Analysis: Perchlorate<br>QC Level: Level IV<br>No. of Samples: 1<br>Reviewer: L. Jarusewic<br>Date of Review: March 31, 2005

The samples listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 314.0, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " $R$ " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

|  | Project: | NPDES |
| ---: | ---: | ---: |
| DATA VALIDATION REPORT | SDG No.: | IOB1014 |

Table 1. Sample identification

| Client ID | EPA ID | Laboratory ID | Matrix | COC Method |
| :---: | :---: | :---: | :---: | :---: |
| Outfall 011-Grab | Outfall 011-Grab | IOB1014-01 | Water | Perchlorate |


|  | Project: | NPDES |
| ---: | ---: | ---: |
| DATA VALIDATION REPORT | SDG No.: | IOB1014 |

## 2. DATA VALIDATION FINDINGS

### 2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

### 2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. No preservation problems were noted by the laboratory. No qualifications were required.

### 2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel, and accounted for the sample and analysis presented in this SDG. No qualifications were required.

### 2.1.3 Holding Times

The holding time was assessed by comparing the date of collection with the date of analysis. The 28 day analytical holding time for perchlorate was met, and no qualifications were required.

### 2.2 CALIBRATION

The initial calibration correlation coefficient was $\geq 0.995$. The IPC-MA recovery was within the control limits of $80-120 \%$. The ICV, CCV, and IPC recoveries were within the control limits of $90-110 \%$. No qualifications were required.

### 2.3 BLANKS

The method blank and CCB results reported on the summary forms and in the raw data for blank analyses associated with the sample were nondetects at the reporting limit. No qualifications were required.

### 2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample recovery was within the method control limits of $85-115 \%$. No qualifications were required.

### 2.5 SURROGATES RECOVERY

Surrogate recovery is not applicable to the analysis presented in this SDG.

|  | Project: | NPDES |
| ---: | ---: | ---: |
| DATA VALIDATION REPORT | SDG No.: | IOBIOI4 |

### 2.6 LABORATORY DUPLICATES

No MS/MSD or duplicate analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

### 2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was assessed based on LCS results.

### 2.8 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analysis of this sample; therefore, furnace atomic absorption QC is not applicable.

### 2.9 ICP SERIAL DILUTION

ICP serial dilution is not applicable to the analysis presented in this data validation report.

### 2.10 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample results reported on the Form 1 was verified against the raw data. No transcription errors or calculation errors were noted. No qualifications were required.

### 2.11 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

### 2.11.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

### 2.11.2 Field Duplicates

There were no field duplicate pairs associated with this SDG.

Del Mar Analytical



MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
PAttention: Bronwyn Kelly

Project iD: 13267 (Srudy 1)
Outfall $0: 1$
Report Number: 10 B1014

Sampled: 021105
Received: 0211105

## DRAFT: INORGANICS

MDL Reporting Sample Dilution Date Date Data Batch Limit Limit Result FactorExtracted Analyza Qualifiers
Sample ID: IOB1014-01 (DRAFT: Outfall 011-grab - Water) - cont. Reporting Units: ugh
Total Cyanide Perchiorate

| EPA 335.2 | $5 B 14107$ | 2.2 |
| :--- | :--- | :---: |
| EPA 314.0 | $5 B 17053$ | 0.80 |



ND
02:14/05 02:1405

## AMEC VALIDATEO

 IEVEL I
## CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Truesdail
Reviewer P.Meeks.
Analysis/Method Hydrazines

Package ID T711HZ10
Task Order 313150010
SDG No. $10 B 1014$
No. of Analyses 1
Date: 04/01/05
Reviewer's Signature
P.MW

## ACIION ITEMS

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from

Analysis Protocol, e.g.,
Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification and Quantitation System Performance $\qquad$

[^22]
# amec ${ }^{\theta}$ 

# DATA VALIDATION REPORT 

NPDES<br>Monitoring

## ANALYSIS: HYDRAZINES SAMPLE DELIVERY GROUP: IOB1014

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

|  | Project: | NPDES |
| :---: | :---: | :---: |
|  | SDG No.: | IOB1014 |
| DAIA VALIDATION REPORT | Analysis: | Hydrazines |

## 1. INTRODUCTION

Task Order Title: NPDES Monitoring<br>Contract Task Order \#: 313150010<br>Sample Delivery Group \#: IOB1014<br>Project Manager: B. Mcllvaine<br>Matrix: Water<br>Analysis: Hydrazines<br>QC Level: Level IV<br>No. of Samples: 1<br>Reviewer: P. Meeks<br>Date of Review: April 01, 2005

The samples listed in Table 1 were validated based on the general guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (2/94), and USEPA SW-846 Method 8315. Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " $R$ " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

|  | Project: | NPDES |
| ---: | ---: | ---: |
| DATA VALIDATION REPORT | SDG No.: | IOBIO14 |

Table 1. Sample identification

| EPA ID | Del Mar ID | Laboratory ID | Matrix | COC Method |
| :---: | :---: | :---: | :---: | :---: |
| Outfall 011 | IOB1014-01 | 939705 | water | Hydrazines by 8315 |


|  | Project: |
| ---: | ---: |
| DATA VALIDATION REPORT | SDG No.: |

## 2. DATA VALIDATION FINDINGS

### 2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

### 2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at Del Mar Analytical and the subcontract laboratory, Truesdail Laboratories, within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The analysis did not require preservation, and no preservation was noted in the field. The case narratives for this SDG noted that the sample was received intact at both laboratories. No qualifications were required.

### 2.1.2 Chain of Custody

The COC from the field to Del Mar was signed and dated by field and laboratory personnel, and the transfer COC from Del Mar to Truesdail Laboratories was signed and dated by personnel from both laboratories. Both the original COC and transfer COCs requested only monomethyl hydrazine analysis; however, unsymmetrical dimethyl hydrazine and hydrazine were also reported. As the sample was transported to Del Mar and then to Truesdail by courier, no custody seals were required. Truesdail Laboratories did not list the Outfall 011 ID on the Form I; therefore, the reviewer hand-corrected the Form I to include this information. No qualifications were required.

### 2.1.3 Holding Times

The holding time was assessed by comparing the date of collection with the date of analysis. The sample was extraction within the three-day holding time; and was was analyzed within three days of extraction. No qualifications were required.

### 2.2 CALIBRATION

The five-point initial calibrations were analyzed $02 / 14 / 05$, with correlation coefficients of $\geq 0.995$ for the hydrazines. The ICV and CCV bracketing the sample analysis had recoveries for the hydrazines within the $Q C$ limits of $85-115 \%$. No qualifications were required.

### 2.3 BLANKS

One method blank was analyzed with this SDG. The results reported on the method blank summary form and in the raw data for the instrument and method blank analyses associated with the sample were nondetects at the reporting limit. No qualifications were required.

|  | Project: | NPDES |
| ---: | ---: | ---: |
| DATA VALIDATION REPORT | SDG No.: | IOBIO14 |

### 2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One laboratory control sample/laboratory control sample duplicate was analyzed with this SDG. The hydrazines were recovered within the laboratory-established control limits of $70 \%-130 \%$, and the RPDs were within the control limit of $\leq 20 \%$. No qualifications were required.

### 2.5 SURROGATES RECOVERY

Surrogates were not utilized in this analysis. No qualifications were required.

### 2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MSD/MSD analyses were performed on Outfall 011; therefore, no assessment was made with respect to this criterion. Method accuracy and precision were evaluated based on LCS/LCSD results. No qualifications were required.

### 2.7 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

### 2.7.1 Field Blanks and Equipment Rinsates

The site sample in this SDG had no associated field QC. No qualifications were required.

### 2.7.2 Field Duplicates

There were no field duplicate samples in this SDG.

### 2.8 COMPOUND IDENTIFICATION

The sample was analyzed by HPLC for monomethyl hydrazine, unsymmetrical dimethyl hydrazine, and hydrazine by Method 8315. Compound identification was verified, and review of the raw data indicated no compound identification errors. No qualifications were required.

### 2.9 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification was verified from the raw data at a Level IV data validation by recalculating LCS/LCSD and MS/MSD detects, as there were no sample detects. No compound quantitation problems were noted. The hydrazine reporting limits were supported by the lower levels of the initial calibration. No qualifications were required.
Truesdail Laboratories, Inc.
Indepenoent Testing. Forensic science, ano Environmental analyses

## REPORT



> Del Mar Analytical

> Client:

17461 Derian Ave.
Irvine, CA 92614
Michele Harper Liquid / 1 Sample 10B1014

IOB1014
8315 (Modified)
Hydrazines in Liquid
JS Dilution Factor:
Reported By:
939705
sooz'gl Kıenıqəy

sooz 'r
S002 'St Kienuqes $7 / 8 \mathrm{Br}$
aboratory No: Sampling Date: Receiving Date: Extraction Date: Analysis Date: Unlts:


K
＋
\％
－
；


女
B
4
6
4
＋+ ，
4
世
\％
\％
$\qquad$
4
，$\quad$ ，

$\because$
$\because$
$\because$
世
\＆

## LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: 13267 (Study 1)
Outfall 011

Sampled: 02/11/05
Received: 02/11/05
Issued: 04/07/05 18:09

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117
The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chains) of Custody, 9 pages,
are included and are an integral part of this report.
This entire report was reviewed and approved for release.

## SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
IOB1014-01
IOB1014-02
IOB1014-03
IOB1014-04

CLIENT ID
Outfall 011-grab
Trip Blank
Outfall 011-grab/filtered
Outfall 011-grab/Substrate

MATRIX
Water
Water
Water
Water

Reviewed By:


Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014
Sampled: 02/11/05
Received: 02/11/05

## CORRECTIVE ACTION REPORT

Department: Extractions
Method: EPA 625
QC Batch: 5B14010

Date: 02/22/2005
Matrix: Water

Identification and Definition of Problem:
The percent recovery for benzidine in the BSD was below method acceptance limits.

Determination of the Cause of the Problem:
Benzidine is known to be a problematic compound. According to the EPA, it can be subject to oxidative losses during solvent extraction and its chromatographic behavior is poor.

## Corrective Action Taken:

The percent recovery in the BS was within the acceptance limits. All results reported for benzidine are potentially biased low and can be considered estimates only.


## Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing<br>300 North Lake Avenue, Suite 1200<br>Pasadena, CA 91101<br>Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014
Sampled: 02/11/05
Received: 02/11/05

## CORRECTIVE ACTION REPORT

Department: Extractions
Method: EPA 625
QC Batch: 5B14010

Identification and Definition of Problem:
The Method Blank result for 2-Methylnaphthalene was above the reporting limit (8.7ppb).

Determination of the Cause of the Problem:
A definitive cause for the QC failure has not been determined.

Corrective Action Taken:
There was insufficient sample volume for re-analysis. Samples had J-flag hits and were flagged with 'B' qualifier.


Rima Angkasa
Date: 02/24/2005 11:49 AM

## Del Mar Analytical, Irvine

Vichele Harper
roject Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)


MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

## EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

| Analyte | Methed | Batch | MDL <br> Limit | Reporting Limit | Sample <br> Result | Dilution <br> Factor | Date Extracted | Date Analyzed | Data Oualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID: IOB1014-01 (Outfall 011-grab - Water) - cont. <br> Reporting Units: mg/ |  |  |  |  |  |  |  |  |  |
| EFH (C13-C22) <br> Surrogate: $n$-Octacosane (40-125\%) | EPA 8015B | 5B14105 | 0.082 | 0.50 | $\begin{aligned} & \text { ND } \\ & 59 \% \end{aligned}$ | 0.98 | 02/14/05 | 02/15/05 |  |

[^23]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

## VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)

| Analyte | Method | Batch | MDL <br> Limit | Reporting Limit | Sample <br> Result | Dilution <br> Factor | Date Extracted | Date <br> Analyzed | Data Onalifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID: IOB1014-01 (Outfall 011-grab - Water) - cont. <br> Reporting Units: mgl |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| GRO (C4-C12) | EPA 8015 Mod . | 5B22003 | 0.050 | 0.10 |  |  |  |  |  |
| Surrogate: 4-BFB (FID) (65-140\%) |  | SR2003 | 0.050 | 0.10 | $78 \%$ | 1 | 02/22/05 | 02/22/05 |  |
| Sample ID: IOB1014-02 (Trip Blank - Water) |  |  |  |  |  |  |  |  |  |
| Reporting Units: mg/l |  |  |  |  |  |  |  |  |  |
| GRO (C4-C12) | EPA 8015 Mod . | 5B23023 | 0.050 |  |  |  |  |  |  |
| Surrogate: 4-BFB (FID) (65-140\%) |  | SB23023 | 0.050 | 0.10 | $\begin{aligned} & \text { ND } \\ & 93 \% \end{aligned}$ | 1 | 02/23/05 | 02/23/05 |  |

[^24]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

FREON 113 (EPA 8260B)

| Analyte Method | Batch | MDL <br> Limit | Reporting <br> Limit | Sample Result | Dilution <br> Factor | Date Extracted | Date Analyzed | Data Oualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID: IOB1014-01RE1 (Outfall 011-grab - Water) Reporting Units: ugh |  |  |  |  |  |  |  |  |
| Trichlorotrifluoroethane (Freon 113) EPA 8260B | 5B24007 | 1.2 |  |  |  |  |  |  |
| Surrogate: Dibromofluoromethane (80-120\%) | 584007 | 1.2 | 5.0 | ND | 1 | 02/24/05 | 02/24/05 |  |
| Surrogate: Toluene-d8 (80-120\%) |  |  |  | $104 \%$ |  |  |  |  |
| Surrogate: 4-Bromofluorobenzene (80-120\%) |  |  |  | 99\% |  |  |  |  |
| Sample ID: IOB1014-02 (Trip Blank - Water) |  |  |  | $100 \%$ |  |  |  |  |
| Reporting Units: ug/ |  |  |  |  |  |  |  |  |
| Trichlorotrifluoroethane (Freon 113) EPA 8260B | 5B17014 |  |  |  |  |  |  |  |
| Surrogate: Dibromofluoromethane (80-120\%) | SB17014 | 1.2 | 5.0 |  | 1 | 02/17/05 | 02/17/05 |  |
| Surrogate: Toluene-d8 (80-120\%) |  |  |  | $109 \%$ |  |  |  |  |
| Surrogate: 4-Bromofluorobenzene (80-120\%) |  |  |  | $\begin{gathered} 101 \% \\ 97 \% \end{gathered}$ |  |  |  |  |

## el Mar Analytical, Irvine

ichele Harper
oject Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200<br>Pasadena, CA 91101<br>Attention: Bronwyn Kelly

```
 Project ID: 13267 (Study 1)
 Outfall 011
Report Number: IOB1014
 Sampled: 02/11/05
 Received: 02/11/05
```


# PURGEABLES BY GC/MS (EPA 624) 

| Analyte | Method | Batch | MDL <br> Limit | Reporting Limit | Sample <br> Result | Dilution <br> Factor | n Date <br> Extracted | Date Analyzed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID: IOB1014-01 (Outfall 011-grab - Water) <br> Reporting Units: ug/ |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| Benzene EPA 624 5B17014 0.28 |  |  |  |  |  |  |  |  |
| Bromodichloromethane | EPA 624 | 5B17014 | 0.28 | 1.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Bromoform | EPA 624 | 5B17014 | 0.30 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Bromomethane | EPA 624 | 5817014 | 0.32 | 5.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Carbon tetrachloride | EPA 624 | 5B17014 | 0.34 | 5.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Chlorobenzene | EPA 624 | $5 \mathrm{SB17014}$ | 0.28 | 0.50 | ND | 1 | 02/17/05 | 02/17/05 |
| Chloroethane | EPA 624 | SB17014 | 0.36 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Chloroform | EPA 624 | 5 S17014 | 0.33 | 5.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Chloromethane | EPA 624 | $5 \mathrm{SB17014}$ | 0.33 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
|  | EPA 624 | 5B17014 | 0.30 | 5.0 | ND | 1 | 02/17/05 | 02/17/05 |
| 1,2-Dichlorobenzene | EPA 624 | 5B17014 | 0.28 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| 1,3-Dichlorobenzene | EPA 624 | 5B17014 | 0.32 0.35 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| 1,4-Dichlorobenzene | EPA 624 | 5B17014 | 0.35 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| 1,1-Dichloroethane | EPA 624 | 5B17014 | 0.37 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| 1,2-Dichloroethane | EPA 624 | 5B17014 | 0.27 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| 1,1-Dichloroethene | EPA 624 | SB17014 | 0.28 | 0.50 | ND | 1 | 02/17/05 | 02/17/05 |
| trans-1,2-Dichloroethene | EPA 624 | 5B17014 | 0.32 | 5.0 | ND | 1 | 02/17/05 | 02/17/05 |
| 1,2-Dichloropropane | EPA 624 | 5B17014 | 0.27 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| cis-1,3-Dichloropropene | EPA 624 | SB17014 | 0.22 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| trans-1,3-Dichloropropene | EPA 624 | 5 B 17014 | 0.22 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Ethylbenzene | EPA 624 | 5B17014 | 0.24 0.25 | 2.0 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Methylene chloride | EPA 624 | 5B17014 | 0.25 0.48 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| 1,1,2,2-Tetrachloroethane | EPA 624 | 5B17014 | 0.48 | 5.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Tetrachloroethene | EPA 624 | 5B17014 | 0.24 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Toluene | EPA 624 | 5B17014 | 0.32 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| 1,1,1-Trichloroethane | EPA 624 | 5B17014 | 0.36 0.30 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| 1,1,2-Trichloroethane | EPA 624 | 5B17014 | 0.30 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Trichloroethene | EPA 624 | 5B17014 | 0.36 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Trichlorofluoromethane | EPA 624 | 5B17014 | 0.26 0.34 | 2.0 5.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Vinyl chloride | EPA 624 | 5B17014 | 0.34 0.26 | 5.0 0.50 | ND | 1 | 02/17/05 | 02/17/05 |
| Xylenes, Total | EPA 624 | 5B17014 | 0.26 | 0.50 | ND | 10 | 02/17/05 | 02/17/05 |
| Surrogate: Dibromofluoromethane (80-120\%) |  | 517014 |  | 4.0 | ND | 10 | 02/17/05 | 02/17/05 |
| Surrogate: Toluene-d8 (80-120\%) |  |  |  |  | 114\% |  |  |  |
| Surrogate: 4-Bromofluorobenzene (80-120\%) |  |  |  |  | $98 \%$ |  |  |  |

## Del Mar Analytical, Irvine <br> Michele Harper <br> Project Manager

MWH-Pasadena/Boeing<br>300 North Lake Avenue, Suite 1200<br>Pasadena, CA 91101<br>Attention: Bronwyn Kelly

$\begin{aligned} \text { Project ID: } & 13267 \text { (Study 1) } \\ & \text { Outfall 011 } \\ \text { Report Number: } & \text { IOB1014 }\end{aligned}$
Sampled: 02/11/05
Received: 02/11/05

# PURGEABLES BY GC/MS (EPA 624) 



## Del Mar Analytical, Irvine <br> Michele Harper <br> Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

PURGEABLES BY GC/MS (EPA 624)


[^25]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

## PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS

| Analyte | Method | Batch | MDL <br> Limit | Reporting <br> Limit | Sample Result | Dilution <br> Factor | Date <br> Extracted | Date Analyzed | Data Oualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID: IOB1014-01 (Outfall 011-grab - Water)Reporting Units: ug/ |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 1,2-Dichloro-1,1,2-trifluoroethane | EPA 624 (MOD.) | 5B17014 | N/A | 2.5 | ND | 1 | 02/17/05 |  |  |
| clohexane | EPA 624 (MOD.) | 5B17014 | N/A | 2.5 | ND | 1 | $02 / 17 / 05$ | 02/17/05 |  |
| Sample ID: IOB1014-02 (Trip Blank - Water) |  |  |  |  |  |  |  |  |  |
| Reporting Units: ug/ |  |  |  |  |  |  |  |  |  |
| 1,2-Dichloro-1,1,2-trifluoroethane | EPA 624 (MOD.) | 5B17014 | N/A | 2.5 |  |  |  |  |  |
| Cyclohexane | EPA 624 (MOD.) | 5817014 | N/A | 2.5 | ND | 1 | 02/17/05 | $02 / 17 / 05$ |  |

[^26]MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011<br>Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

## ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)



MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

| Project ID: | 13267 (Study 1) | | |
|---|---|---|---|
|  | Ouffall 011 | |  |
| :--- |
| Report Number: |

Sampled: 02/11/05
Received: 02/11/05

## ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)



C

## Del Mar Analytical, Irvine <br> Michele Harper <br> Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

# ORGANOCHLORINE PESTICIDES (EPA 608) 

| Analyte | Method | Batch | MDL <br> Limit | Reporting Limit | Sample Result | Dilution <br> Factor | Date Extracted | Date Analyzed | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID: IOB1014-01 (Outfall 011-grab - Water) - cont. <br> Reporting Units: ug/ |  |  |  |  |  |  |  |  |  |
| Aldrin | EPA 608 | 5B17042 |  |  |  |  |  |  |  |
| alpha-BHC | EPA 608 | SB17042 | 0.030 | 0.10 | ND | 0.952 | 02/17/05 | 02/17/05 |  |
| beta-BHC | EPA 608 | 5B17042 | 0.015 0.015 | 0.10 | ND | 0.952 | 02/17/05 | 02/17/05 |  |
| delta-BHC | EPA 608 | 5B17042 | 0.020 | 0.10 | ND | 0.952 | 02/17/05 | 02/17/05 |  |
| gamma-BHC (Lindane) | EPA 608 | 5B17042 | 0.020 0.015 | 0.20 | ND | 0.952 | 02/17/05 | 02/17/05 |  |
| Chlordane | EPA 608 | 5B17042 | 0.015 0.20 | 0.10 | ND | 0.952 | 02/17/05 | 02/17/05 |  |
| 4,4-DDD | EPA 608 | SB17042 | 0.20 0.015 | 1.0 | ND | 0.952 | 02/17/05 | 02/17/05 |  |
| 4,4-DDE | EPA 608 | SB17042 | 0.020 | 0.10 | ND | 0.952 | 02/17/05 | 02/17/05 |  |
| 4,4-DDT | EPA 608 | 5 B 17042 | 0.030 | 0.10 | ND | 0.952 | 02/17/05 | 02/17/05 |  |
| Dieldrin | EPA 608 | 5B17042 | 0.015 | 0.10 0.10 | ND | 0.952 | 02/17/05 | 02/17/05 | C5 |
| Endosulfan I | EPA 608 | SB17042 | 0.015 0.015 | 0.10 0.10 | ND | 0.952 | 02/17/05 | 02/17/05 |  |
| Endosulfan II | EPA 608 | 5 B 17042 | 0.015 0.040 | 0.10 0.10 | ND | 0.952 | 02/17/05 | 02/17/05 |  |
| Endosulfan sulfate | EPA 608 | 5B17042 | 0.040 0.015 | 0.10 0.20 | ND | 0.952 | 02/17/05 | 02/17/05 |  |
| Endrin | EPA 608 | 5B17042 | 0.015 0.015 | 0.20 0.10 | ND | 0.952 | 02/17/05 | 02/17/05 |  |
| Endrin aldehyde | EPA 608 | 5B17042 | 0.015 0.045 | 0.10 0.10 | ND | 0.952 | 02/17/05 | 02/17/05 |  |
| Endrin ketone | EPA 608 | 5B17042 | 0.045 0.020 | 0.10 | ND | 0.952 | 02/17/05 | 02/17/05 |  |
| Heptachlor | EPA 608 | 5B17042 | 0.020 0.030 | 0.10 | ND | 0.952 | 02/17/05 | 02/17/05 | C5 |
| Heptachlor epoxide | EPA 608 | 5B170 | 0.030 0.020 | 0.10 | ND | 0.952 | 02/17/05 | 02/17/05 |  |
| Methoxychlor | EPA 608 | $5 \mathrm{SB1704}$ | 0.020 | 0.10 | ND | 0.952 | 02/17/05 | 02/17/05 |  |
| Toxaphene | EPA 608 | 5B17042 | 0.035 | 0.10 | ND | 0.952 | 02/17/05 | 02/17/05 | C5 |
| $\begin{array}{llll}\text { Surrogate: Tetrachloro-m-xylene (35-120\%) } & & \\ \text { Surrogate: } & \end{array}$ |  |  |  |  | ND | 0.952 | 02/17/05 | 02/17/05 |  |
| Surrogate: Decachlorobiphenyl (45-120\%) |  |  |  |  | $\begin{aligned} & 45 \% \\ & 72 \% \end{aligned}$ |  |  |  |  |

## Del Mar Analytical, Irvine <br> Michele Harper <br> Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

TOTAL PCBS (EPA 608)

| Analyte | Method | Batch | MDL <br> Limit | Reporting Limit | Sample <br> Result | Dilution Factor | Date Extracted | Date Analyzed | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID: IOB1014-01 (Outfall 011-grab - Water) - cont. <br> Reporting Units: ugl |  |  |  |  |  |  |  |  |  |
| Aroclor 1016 | EPA 608 | 5B17042 |  |  |  |  |  |  |  |
| Aroclor 1221 | EPA 608 | 5B17042 | 0.20 | 1.0 | ND | 0.952 | 02/17/05 | 02/18/05 |  |
| Aroclor 1232 | EPA 608 | 5B17042 | 0.10 | 1.0 | ND | 0.952 | 02/17/05 | 02/18/05 |  |
| Aroclor 1242 | EPA 608 | $5 \mathrm{SB17042}$ | 0.15 | 1.0 | ND | 0.952 | 02/17/05 | 02/18/05 |  |
| Aroclor 1248 | EPA 608 | 5B17042 | 0.15 0.25 | 1.0 | ND | 0.952 | 02/17/05 | 02/18/05 |  |
| Aroclor 1254 | EPA 608 | 5B17042 | 0.25 | 1.0 | ND | 0.952 | 02/17/05 | 02/18/05 |  |
| Aroclor 1260 | EPA 608 | $5 \mathrm{SB17042}$ | 0.25 0.40 | 1.0 | ND | 0.952 | 02/17/05 | 02/18/05 |  |
| Surrogate: Decachlorobiphenyl (45-120\%) |  | $5 B 17042$ | 0.40 | 1.0 | $\begin{aligned} & \text { ND } \\ & 70 \% \end{aligned}$ | 0.952 | 02/17/05 | 02/18/05 |  |

[^27]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

METALS

| Analyte | Method | Batch | MDL <br> Limit | Reporting Limit | Sample <br> Result | Dilution <br> Factor | Date Extracted | Date Analyzed | Data Oualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID: IOB1014-01 (Outfall 011-grab - Water) - cont. <br> Reporting Units: mg/ |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| Barium <br> Boron <br> Iron | EPA 200.8 | 5B12041 | 0.00014 | 0.0010 |  |  |  |  | B |
|  | EPA 200.7 | 5B12044 | 0.0074 | 0.0010 |  |  | 02/12/05 | 02/14/05 |  |
|  | EPA 200.8 | 5B12041 | 0.0032 | 0.010 | 1.6 | 1 | 02/12/05 | 02/15/05 |  |

## Del Mar Analytical, Irvine

Michele Harper
Project Manager
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

| Project ID: | 13267 (Study 1) |
| ---: | ---: |
|  | Outfall 011 |$\quad$ Sampled: 02/11/05

Report Number: IOB1014

## METALS

| Analyte | Method | Batch | MDL <br> Limit | Reporting Limit | Sample <br> Result | Dilution Factor | Date Extracted | Date <br> Analyzed | Data Oualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID: IOB1014-01 (Outfall 011-grab - Water) - cont. <br> Reporting Units: ug/ |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| Antimony $\quad$ EPA 200.8 5B12041 0.18 ler |  |  |  |  |  |  |  |  |  |
| Arsenic | EPA 200.8 | 5B12041 | 0.18 | 2.0 | 0.44 | 1 | 02/12/05 | 02/14/05 | J |
| Berylium | EPA 200.8 | 5B12041 | 0.49 | 1.0 | 1.0 | 1 | 02/12/05 | 02/14/05 |  |
| Cadmium | EPA 200.8 | 5B12041 | 0.037 | 0.50 | 0.052 | 1 | 02/12/05 | 02/14/05 | J |
| Chromium | EPA 200.8 | 5B12041 | 0.015 | 1.0 | 0.11 | 1 | 02/12/05 | 02/14/05 | J |
| Cobalt | EPA 200.8 | 5B12041 | 0.26 0.10 | 1.0 | 1.8 | 1 | 02/12/05 | 02/14/05 |  |
| Copper | EPA 200.8 | 5B12041 | 0.10 0.49 | 1.0 | 0.60 | 1 | 02/12/05 | 02/14/05 | J |
| Lead | EPA 200.8 | 5B12041 | 0.49 0.13 | 2.0 | 3.4 | 1 | 02/12/05 | 02/14/05 |  |
| Manganese | EPA 200.8 | 5 B 12041 | 0.13 | 1.0 | 1.3 | 1 | 02/12/05 | 02/14/05 |  |
| Mercury | EPA 245.1 | 5 B 12033 | 0.44 0.063 | 1.0 | 36 | 1 | 02/12/05 | 02/14/05 |  |
| Nickel | EPA 200.8 | 5B12041 | 0.063 0.15 | 0.20 | 0.14 | 1 | 02/12/05 | 02/12/05 | J |
| Selenium | EPA 200.8 | 5B12041 | 0.15 0.36 | 1.0 | 1.4 | 1 | 02/12/05 | 02/14/05 |  |
| Silver | EPA 200.8 | 5B12041 | 0.36 0.089 | 2.0 | ND | 1 | 02/12/05 | 02/14/05 |  |
| Thallium | EPA 200.8 | 5B12041 | 0.089 | 1.0 | ND | 1 | 02/12/05 | 02/14/05 |  |
| Vanadium | EPA 200.8 | 5B12041 | 0.86 | 1.0 1.0 | ND | 1 | 02/12/05 | 02/14/05 |  |
| Zinc | EPA 200.8 | 5B12041 | 0.86 | 1.0 | 3.7 | 1 | 02/12/05 | 02/14/05 |  |
|  |  | SB12041 | 3.1 | 20 | 16 | 1 | 02/12/05 | 02/15/05 | J |

## Del Mar Analytical, Irvine <br> Michele Harper <br> Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

INORGANICS


## Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing<br>300 North Lake Avenue, Suite 1200<br>Pasadena, CA 91101<br>Attention: Bronwyn Kelly

| Project ID: | 13267 (Study 1) |  |
| ---: | :--- | ---: |
|  | Outfall 011 | Sampled: 02/11/05 |
| Report Number: | IOB1014 | Received: 02/11/05 |

Sampled: 02/11/05
Received: 02/11/05

## INORGANICS



[^28]MWH-Pasadena/Boeing<br>300 North Lake Avenue, Suite 1200<br>Pasadena, CA 91101

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014
Sampled: 02/11/05
Received: 02/11/05

## INORGANICS

| Analyte | Method | Batch | MDL <br> Limit | Reporting <br> Limit | Sample Result | Dilution <br> Factor | Date Extracted | Date Analyzed | Data Oualifers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID: IOB1014-01 (Outfall 011-grab - Water) - cont. |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| Turbidity | EPA 180.1 | 5B12055 | 0.040 | 1.0 | 38 | 1 | 02/12/05 | 2/12/05 |  |

[^29]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

## INORGANICS

| Analyte | Method | Batch | MDL <br> Limit | Reporting Limit | Sample <br> Result | Dilution <br> Factor | Date Extracted | Date | Data |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID: 1OB1014-01 (Outfall 011-grab - Water) - cont.Reporting Units: uga |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| Total Cyanide | EPA 335.2 | 5B14107 | 2.2 |  |  |  |  |  |  |
| Perchlorate | EPA 314.0 | 5B17053 | 2.2 0.80 | 4.0 | ND |  | 02/14/05 | 02/14/05 |  |
|  |  |  |  |  | ND | 1 | 02/17/05 | 02/17/05 |  |

[^30]| MWH-Pasadena/Boeing | Project ID: 13267 (Study 1) |  |
| :--- | ---: | ---: |
| 300 North Lake Avenue, Suite 1200 | Outfall 011 | Sampled: $02 / 11 / 05$ |
| Pasadena, CA 91101 | Report Number: $10 B 1014$ | Received: $02 / 11 / 05$ |
| Attention: Bronwyn Kelly |  |  |

## INORGANICS


MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

| Project ID: | 13267 (Study 1) |  |
| ---: | :--- | ---: |
|  | Outfall 011 |  |
| Report Number: | IOB1014 | Sampled: 02/11/05 |

## 1,4-DIOXANE BY GC/MS (EPA 5030B/8260B)



## Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing<br>300 North Lake Avenue, Suite 1200<br>Pasadena, CA 91101<br>Attention: Bronwyn Kelly

| Project ID: | 13267 (Study 1) |  |
| ---: | :--- | ---: |
|  | Outfall 011 | Sampled: 02/11/05 |
| Report Number: | IOB1014 | Received: 02/11/05 |

Sampled: 02/11/05
Received: 02/11/05

## SHORT HOLD TIME DETAIL REPORT

|  | Hold Time <br> (in days) | Date/Time <br> Sampled | Date/Time <br> Received | Date/Time <br> Extracted | Date/Time <br> Analyzed |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID: Outfall 011-grab (IOB1014-01) - Water |  |  |  |  |  |

[^31]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

## METHOD BEANIVOC DATA

## TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)



[^32]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

## method blankgoc data

## EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

| Analyte <br> Batch: 5B14105 Ex | Result | Reporting Limit | MDL | Units | Spike <br> Level | Source Result | \%REC | \%REC <br> Limits | RPD | RPD <br> Limit | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Blank Analyzed: 02/15/2005 (5B14105-BLK1) |  |  |  |  |  |  |  |  |  |  |  |
| EFFH (C13-C22) | ND | 0.50 | 0.082 | $\mathrm{mg} / \mathrm{l}$ |  |  |  |  |  |  |  |
| EFH (C13-C40) | ND | 0.50 | 0.082 | $\mathrm{mg} / \mathrm{l}$ |  |  |  |  |  |  |  |
| Surrogate: n-Octacosane | 0.169 |  |  |  | 0.200 |  | 84 | 40-125 |  |  |  |
| LCS Analyzed: 02/15/2005 (5B14105-BS1) ${ }^{\text {40-725 }}$ |  |  |  |  |  |  |  |  |  |  |  |
| EFH (C13-C40) | 0.654 | 0.50 | 0.082 |  |  |  |  |  |  |  | M-NR1 |
| Surrogate: $n$-Octacosane | 0.169 |  | 0.082 |  |  |  |  | 40-120 |  |  |  |
| LCS Dup Analyzed: 02/15/2005 (5B14105-BSD1) |  |  |  |  |  |  |  |  |  |  |  |
| EFH (Cl3-C40) | 0.610 | 0.50 | 0.082 | $\mathrm{mg} / 1$ | 0.775 |  |  |  |  |  |  |
| Surrogate: $n$-Octacosame | 0.161 |  |  | $\mathrm{mg} / \mathrm{l}$ |  |  | 79 80 | $\begin{aligned} & 40-120 \\ & 40-125 \end{aligned}$ | 7 | 25 |  |

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011
Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

## METHOD BLANKUC DATA

## VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)

| Analyte | Result | Reporting Limit | MDL | Units | Spike <br> Level | Source Result |  | \%REC |  | RPD | Data |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5B22003 Extracted: 02/22/05 |  |  |  | Unts |  |  | \%REC | Limits | RPD | Limit | Qualifiers |

Blank Analyzed: 02/22/2005 (5B22003-BLK1)
GRO (C4 - C12)
Surrogate: 4-BFB (FID)
$0.10 \quad 0.050 \mathrm{mg} / 1$

LCS Analyzed: 02/22/2005 (5B22003-BS1)

| GRO (C4-C12) | 0.734 |
| :--- | :---: |
| Surrogate: 4 -BFB (FID) | 0.0278 |


| 0.10 | 0.050 | $\mathrm{mg} / \mathrm{l}$ | 0.800 | 92 | $70-140$ |
| :--- | :--- | :--- | :--- | :--- | :--- |


| $\mathrm{mg} / \mathrm{l}$ | 0.0300 | 93 | $65-140$ |
| :--- | :--- | :--- | :--- |

Matrix Spike Analyzed: 02/22/2005 (5B22003-MS1)

| GRO (C4-C12) | 0.222 |
| :--- | ---: |
| Surrogate: 4-BFB (FID) | 0.0111 |

$0.10 \quad 0.050$

| Source: IOB1065-03 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{mg} / l$ | 0.220 | ND | 101 | $60-140$ |
| $\mathrm{mg} / l$ | 0.0100 |  | 111 | $65-140$ |


Batch: 5823023 . Extracted, $02 / 23 / 05$
Blank Analyzed: 02/23/2005 (5B23023-BLK1)

| GRO (C4 - C12) | ND |
| :--- | :---: |
| Surrogate: 4 -BFB (FID) | 0.00904 |

LCS Analyzed: 02/23/2005 (5B23023-BS1)
GRO (C4-C12) 0.781
$\begin{array}{llllll}0.10 & 0.050 & \mathrm{mg} / \mathrm{l} & 0.800 & 98 & 70-140\end{array}$
Surrogate: 4-BFB (FID) 0.0284
$0.100 .050 \mathrm{mg} / \mathrm{l}$
$\begin{array}{llll}\mathrm{mg} / \mathrm{l} & 0.0100 & 90 & 65-140\end{array}$

Matrix Spike Analyzed: 02/23/2005 (5B23023-MS1)
$\begin{array}{ll}\text { GRO (C4 - C12) } & 0.207 \\ \text { Surrogate: 4-BFB (FID) }\end{array}$
0.10

Source: IOB1305-06
0.0110
0.050

| $\mathrm{mg} / \mathrm{l}$ | 0.220 | ND | 94 | $60-140$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{mg} / \mathrm{l}$ | 0.0100 |  | 110 | $65-140$ |

## Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing<br>300 North Lake Avenue, Suite 1200<br>Pasadena, CA 91101<br>Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

## method blanigoc data

## VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)



MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

## METHOD BLANKIQC DATA

FREON 113 (EPA 8260B)

| Analyte <br> Batch: 5B17014 Extracted: | Result | Reporting <br> Limit | MDL | Units | Spike <br> Level | Source <br> Result | \%REC | \%REC <br> Limits | RPD | RPD <br> Limit | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Blank Analyzed: 02/17/2005 (5B17014-BLK1) |  |  |  |  |  |  |  |  |  |  |  |
| Trichlorotrifluoroethane (Freon 113) | ND | 5.0 | 1.2 | ug/ |  |  |  |  |  |  |  |
| Surrogate: Dibromofuoromethane | 26.4 |  |  | ug/ |  |  |  |  |  |  |  |
| Surrogate: Toluene-d8 | 25.1 |  |  | ugh/ | 25.0 25.0 |  |  |  |  |  |  |
| Surrogate: 4-Bromofluorobenzene | 24.2 |  |  | ug/l | 25.0 25.0 |  | 100 | $\begin{aligned} & 80-120 \\ & 80-120 \end{aligned}$ |  |  |  |
| Batch: 5B24007 Extracted: 02/24/05 |  |  |  |  |  |  |  |  |  |  |  |
| Blank Analyzed: 02/24/2005 (5B24007-BLK1) |  |  |  |  |  |  |  |  |  |  |  |
| Trichlorotrifluoroethane (Freon 113) | ND | 5.0 | 1.2 | ug/ |  |  |  |  |  |  |  |
| Surrogate: Dibromofluoromethane Surrogate: Toluene-d8 | 25.1 |  |  | ug $/ 1$ | 25.0 |  |  |  |  |  |  |
| Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenvene | 23.5 |  |  | ug/l | 25.0 |  | 94 |  |  |  |  |
| Surrogate: 4-Bromofluorobenzene | 23.7 |  |  | ug/ | 25.0 |  | 94 95 | $80-120$ $80-120$ |  |  |  |

[^33]MWH-Pasadena/Boeing<br>300 North Lake Avenue, Suite 1200<br>Pasadena, CA 91101<br>Attention: Bronwyn Kelly

| Project ID: | 13267 (Study 1) |  |
| ---: | :--- | ---: |
|  | Outfall 011 | Sampled: 02/11/05 |
| Report Number: | IOB1014 | Received: $02 / 11 / 05$ |

Sampled: 02/11/05
Received: 02/11/05

## METHOD BLANKIOC DATA

## PURGEABLES BY GC/MS (EPA 624)

Analyte
Batch: 5B17014 Extracted: 02/17/05

## Blank Analyzed: 02/17/2005 (5B17014-BLK1)

| Benzene | ND | 1.0 | 0.28 | ug/ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bromodichloromethane | ND | 2.0 | 0.30 | ug |  |  |  |
| Bromoform | ND | 5.0 | 0.32 | ug |  |  |  |
| Bromomethane | ND | 5.0 | 0.34 | ug/ |  |  |  |
| Carbon tetrachloride | ND | 0.50 | 0.28 | ug/l |  |  |  |
| Chlorobenzene | ND | 2.0 | 0.36 | ug/l |  |  |  |
| Chioroethane | ND | 5.0 | 0.33 | ug/l |  |  |  |
| Chloroform | ND | 2.0 | 0.33 | ug/l |  |  |  |
| Chloromethane | ND | 5.0 | 0.30 | ug/l |  |  |  |
| Dibromochloromethane | ND | 2.0 | 0.28 | ug/l |  |  |  |
| 1,2-Dichlorobenzene | ND | 2.0 | 0.32 | ug/1 |  |  |  |
| 1,3-Dichlorobenzene | ND | 2.0 | 0.35 | ug/ |  |  |  |
| 1,4-Dichlorobenzene | ND | 2.0 | 0.37 | ugh |  |  |  |
| 1,1-Dichloroethane | ND | 2.0 | 0.27 | ug/ |  |  |  |
| 1,2-Dichloroethane | ND | 0.50 | 0.28 | ug/1 |  |  |  |
| 1,1-Dichloroethene | ND | 5.0 | 0.32 | ug/l |  |  |  |
| trans-1,2-Dichloroethene | ND | 2.0 | 0.27 | ug/ |  |  |  |
| 1,2-Dichloropropane | ND | 2.0 | 0.35 | ug/1 |  |  |  |
| cis-1,3-Dichloropropene | ND | 2.0 | 0.22 | ug/l |  |  |  |
| trans-1,3-Dichloropropene | ND | 2.0 | 0.24 | ug/ |  |  |  |
| Ethylbenzene | ND | 2.0 | 0.25 | ug/1 |  |  |  |
| Methylene chloride | ND | 5.0 | 0.48 | ug/l |  |  |  |
| 1,1,2,2-Tetrachloroethane | ND | 2.0 | 0.24 | ug/l |  |  |  |
| Tetrachloroethene | ND | 2.0 | 0.32 |  |  |  |  |
| Toluene | ND | 2.0 |  | ug/1 |  |  |  |
| 1,1,1-Trichloroethane | ND | 2.0 | 0.36 | ug/ |  |  |  |
| 1,1,2-Trichloroethane | ND | 2.0 | 0.30 | ug/l |  |  |  |
| Trichloroethene | ND | 2.0 | 0.30 | ug/l |  |  |  |
| Trichlorofluoromethane | ND | 2.0 | 0.26 | ug/l |  |  |  |
| inyl chlorid | ND | 5.0 | 0.34 | ug/l |  |  |  |
| nyl chiorid | ND | 0.50 | 0.26 | ug/l |  |  |  |
| Xylenes, Total | ND | 4.0 | 0.52 | ug/l |  |  |  |
| Surrogate: Dibromofluoromethane | 26.4 |  |  |  |  |  |  |
| Surrogate: Toluene-d8 | 25.1 |  |  | ug/ | 25.0 | 106 | 80-120 |
| Surrogate: 4-Bromofluorobenzene | 24.2 |  |  | ug/ | 25.0 | 100 | 80-120 |
|  | 24.2 |  |  | ug/ | 25.0 | 97 | 80-120 |

[^34]MWH-Pasadena/Boeing<br>300 North Lake Avenue, Suite 1200<br>Pasadena, CA 91101<br>Attention: Bronwyn Kelly

## Project ID: 13267 (Study 1) <br> Outfall 011 <br> Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

## METHOD BLANKIOC DATA

## PURGEABLES BY GC/MS (EPA 624)

## Analyte Batch: 5B17014 Extracted: 02/17/05

## LCS Analyzed: 02/17/2005 (5B17014-BS1)



## Del Mar Analytical, Irvine Michele Harper <br> Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014
$\begin{aligned} \text { Sampled: } & 02 / 11 / 05 \\ \text { Received: } & 02 / 11 / 05\end{aligned}$

## METHOD BLANKIOC DATA

## PURGEABLES BY GC/MS (EPA 624)

| Analyte | Result | Reporting Limit | MDL | Units | Spike <br> Level | Source Result |  | \%REC |  | RPD | Data |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5B17014 Extracted: 02/17/05 |  |  |  |  |  |  | \%REC | Limits | RPD | Limit | Qualifiers |

## Matrix Spike Analyzed: 02/17/2005 (5B17014-MS1)

| Benzene |  |  |  |  |  | urce: 10 | 1001-01 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bromodichloromethane | 25.2 | 1.0 | 0.28 | ug/l | 25.0 | ND | 101 | 70-120 |
| Bromoform | 26.3 | 2.0 | 0.30 | ug/l | 25.0 | ND | 105 | 70-140 |
| Bromomethane | 23.7 | 5.0 | 0.32 | ug/l | 25.0 | ND | 95 | 55-140 |
| Carbon tetrachloride | 28.7 | 5.0 0.50 | 0.34 | ug/l | 25.0 | ND | 115 | 50-145 |
| Chlorobenzene | 26.8 | 0.50 | 0.28 | ug/l | 25.0 | ND | 107 | 70-145 |
| Chloroethane | 23.0 | 2.0 | 0.36 | ug/1 | 25.0 | ND | 92 | 80-125 |
| Chloroform | 26.4 | 5.0 | 0.33 | ug/l | 25.0 | ND | 106 | 50-145 |
| Chloromethane | 26.9 | 2.0 | 0.33 | ug/l | 25.0 | ND | 108 | 70-135 |
| Dibromochloromethane | 24.7 | 5.0 | 0.30 | $\mathrm{ug} / \mathrm{l}$ | 25.0 | ND | 99 | 35-145 |
| 1,2-Dichlorobenzene | 24.8 | 2.0 | 0.28 | ug/ | 25.0 | ND | 99 | 65-145 |
| 1,3-Dichlorobenzene | 23.4 23.4 | 2.0 | 0.32 | ug/l | 25.0 | ND | 94 | 75-130 |
| 1,4-Dichlorobenzene | 23.4 23.0 | 2.0 | 0.35 | ug/l | 25.0 | ND | 94 | 75-130 |
| 1,1-Dichloroethane | 23.0 | 2.0 | 0.37 | ug/l | 25.0 | ND | 92 | 80-120 |
| 1,2-Dichloroethane | 26.4 | 2.0 | 0.27 | ug/ | 25.0 | ND | 106 | 65-135 |
| 1,1-Dichloroethene | 27.2 | 0.50 | 0.28 | ug/l | 25.0 | ND | 109 | 60-150 |
| trans-1,2-Dichloroethene | 25.2 | 5.0 | 0.32 | ug/l | 25.0 | ND | 101 | 65-140 |
| 1,2-Dichloropropane | 24.9 | 2.0 | 0.27 | ug/l | 25.0 | ND | 104 | 65-135 |
| cis-1,3-Dichloropropene | 26.0 | 2.0 | 0.35 | ug/l | 25.0 | ND | 100 | 65-130 |
| trans-1,3-Dichloropropene | 26.3 | 2. | 0.22 | ug/l | 25.0 | ND | 104 | 70-140 |
| Ethylbenzene |  | 2.0 | 0.24 | ug/l | 25.0 | ND | 105 | 70-140 |
| Methylene chloride | 26.0 | 5.0 | 0.25 | $\mathrm{ug} / 1$ | 25.0 | ND | 104 | 70-130 |
| 1,1,2,2-Tetrachloroethane | 26.0 23.1 | 5.0 | 0.48 | ug/l | 25.0 | ND | 104 | 60-135 |
| Tetrachloroethene | 23.1 | 2.0 | 0.24 | ug/l | 25.0 | ND | 92 | 60-145 |
| Toluene | 22.7 | 2.0 | 0.32 | ug/l | 25.0 | ND | 91 | 70-130 |
| 1,1,1-Trichloroethane | 25.2 | 2.0 | 0.36 | ug/ | 25.0 | ND | 101 | 70-120 |
| 1,1,2-Trichloroethane | 8.0 | 2.0 | 0.30 | ug/l | 25.0 | ND | 112 | 75-140 |
| Trichloroethene | 23.5 | 2.0 2.0 | 0.30 0.26 | ug/l | 25.0 | ND | 100 | 60-135 |
| Trichlorofluoromethane | 28.7 | 2.0 5.0 | 0.26 | ug/l | 25.0 | ND | 94 | 70-125 |
| Vinyl chloride | 26.3 | 5.0 | 0.34 | $\mathrm{ug} / 1$ | 25.0 | ND | 115 | 55-145 |
| Surrogate: Dibromofluoromethane | 27.5 | 0.50 | 0.26 | ug/l | 25.0 | ND | 105 | 40-135 |
| Surrogate: Toluene-d8 | 25.7 |  |  | ug/ | 25.0 |  | 110 | 80-120 |
| Surrogate: 4-Bromofluorobenzene | 26.5 |  |  | ug/ | 25.0 |  | 103 | 80-120 |
|  | 26.5 |  |  | ug/ | 25.0 |  | 106 | 80-120 |

## Del Mar Analytical, Irvine <br> Michele Harper <br> Project Manager

MWH-Pasadena/Boeing<br>300 North Lake Avenue, Suite 1200<br>Pasadena, CA 91101<br>Attention: Bronwyn Kelly

| Project ID: | 13267 (Study 1) |  |
| ---: | :--- | ---: |
|  | Outfall 011 | Sampled: $02 / 11 / 05$ |
| Report Number: | IOB1014 | Received: $02 / 11 / 05$ |

Sampled: 02/11/05
Received: 02/11/05

## METHOD BLANKIOC DATA

## PURGEABLES BY GC/MS (EPA 624)

| Analyte | Result | Reporting Limit | MDL | Units | Spike | Source |  | \%REC |  | RPD | Data |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5817014 Extracted: 02/17/05 |  |  | MDL | Units |  | Result | \%REC | Limits | RPD | Limit | Qualifiers |

## Matrix Spike Dup Analyzed: 02/17/2005 (5B17014-MSD1)

| Benzene <br> Bromodichloromethane | 25.1 | 1.0 | 0.28 | Source: IOB1001-01 |  |  |  |  | 0 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | ug/ | 25.0 | ND | 100 | 70-120 |  |  |
| Bromoform | 25.4 | 2.0 | 0.30 | ug/l | 25.0 | ND | 102 | 70-140 | 3 |  |
| Bromomethane | 21.6 31.0 | 5.0 | 0.32 | ug/l | 25.0 | ND | 86 | 55-140 | 9 | 25 |
| Carbon tetrachloride | 31.0 26.5 | 5.0 | 0.34 | ug/l | 25.0 | ND | 124 | 50-145 | 8 | 25 |
| Chlorobenzene | 26.5 | 0.50 | 0.28 | ug/l | 25.0 | ND | 106 | 70-145 | 1 | 25 |
| Chloroethane | 23.9 | 2.0 | 0.36 | ug/l | 25.0 | ND | 96 | 80-125 | 4 | 20 |
| Chloroform | 29.6 | 5.0 | 0.33 | ug/l | 25.0 | ND | 118 | 50-145 | 11 | 25 |
| Chloromethane | 28.0 | 2.0 5.0 | 0.33 | ug/l | 25.0 | ND | 106 | 70-135 | 2 | 20 |
| Dibromochloromethane | 23.4 | 5.0 | 0.30 | ug/ | 25.0 | ND | 112 | 35-145 | 13 | 25 |
| 1,2-Dichlorobenzene | 23.4 | 2.0 | 0.28 | ug/l | 25.0 | ND | 94 | 65-145 | 6 | 25 |
| 1,3-Dichlorobenzene | 24.0 | 2.0 | 0.32 | ug/l | 25.0 | ND | 94 | 75-130 | 0 | 20 |
| 1,4-Dichlorobenzene | 23.6 | 20 | 0.35 | ug/l | 25.0 | ND | 96 | 75-130 | 3 | 20 |
| 1, Dichloroethane | 26.1 | 20 | 0.37 | ug/f | 25.0 | ND | 94 | $80-120$ | 3 | 20 |
| 1,2-Dichloroethane | , | 2.0 | 0.27 | ug/ | 25.0 | ND | 104 | 65-135 | 1 | 20 |
| 1,1-Dichloroethene | 24.9 | 0.50 | 0.28 | ug/l | 25.0 | ND | 98 | 60-150 | 10 | 20 |
| trans-1,2-Dichloroethene | 24.9 25.9 | 5.0 | 0.32 | ug/l | 25.0 | ND | 100 | 65-140 | 1 | 20 |
| 1,2-Dichloropropane | 24.3 | 0 | 0. | ug/l | 25.0 | ND | 104 | 65-135 | 0 | 20 |
| cis-1,3-Dichloropropene | 25.2 | 2.0 | 0.35 | ug/l | 25.0 | ND | 97 | 65-130 | 2 | 20 |
| trans-1,3-Dichloropropene | 24.4 | 2.0 | 0.22 | ug/l | 25.0 | ND | 101 | 70-140 | 3 | 20 |
| Ethylbenzene | 27.0 | 2. | 0.24 | ug/ | 25.0 | ND | 98 | 70-140 | 7 | 25 |
| Methylene chloride | 25.4 | 5. | 0.25 | ug/l | 25.0 | ND | 108 | 70-130 | 3 | 20 |
| 1,1,2,2-Tetrachloroethane | 20.8 | 5.0 | 0.48 | ug/ | 25.0 | ND | 102 | 60-135 | 2 | 20 |
| Tetrachloroethene | 23.9 | 2.0 2.0 | 0.24 0.32 | ug/ | 25.0 | ND | 83 | 60-145 | 10 | 30 |
| Toluene | 24.9 | 2. | 0.32 | ug/ | 25.0 | ND | 96 | 70-130 | 5 | 20 |
| 1,1,1-Trichloroethane | 27.9 | 2. | 0.36 | ug/1 | 25.0 | ND | 100 | 70-120 | 1 | 20 |
| 1,1,2-Trichloroethane | 22.8 | 2. | 0.30 | ug/ | 25.0 | ND | 111 | 75-140 | 1 | 20 |
| Trichloroethene | 235 | 2. | 0.30 | ng/l | 25.0 | ND | 91 | 60-135 | 10 | 25 |
| Trichlorofluoromethane | 28.5 | 2.0 5.0 | 0.26 | ug/ | 25.0 | ND | 94 | 70-125 | 0 | 20 |
| Vinyl chloride | 30.0 | 0 | 0.34 | ugl | 25.0 | ND | 114 | 55-145 | 1 | 25 |
| Surrogate: Dibromoffuoromethane | 26.5 | 0.50 | 6 | ug/l | 25.0 | ND | 120 | 40-135 | 13 | 30 |
| Surrogate: Toluene-d8 | 25.2 |  |  | ug/ | 25.0 |  | 106 | 80-120 |  |  |
| Surrogate: 4-Bromofluorobenzene | 26.4 |  |  | $u g /$ | 25.0 |  | 101 | 80-120 |  |  |
|  |  |  |  | ug/ | 25.0 |  | 106 | 80-120 |  |  |

## Del Mar Analytical, Irvine <br> Michele Harper <br> Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

| Project ID: | 13267 (Study 1) |  |
| ---: | :--- | ---: |
|  | Outfall 011 | Sampled: 02/11/05 |
| Report Number: | 1OB1014 | Received: 02/11/05 |

Sampled: 02/11/05
Received: 02/11/05

## METHOD BLANKIQC DATA

## PURGEABLES BY GC/MS (EPA 624)

| Analyte | Result | Reporting Limit | MDL | Units | Spike <br> Level | Source |  | \%REC |  | RPD | Data |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5B12011 Extracted: 02/12/05 |  |  | MDL | Units |  |  | \%REC |  | RPD | Limit | Qualifiers |

## Blank Analyzed: 02/12/2005 (5B12011-BLK1)



|  |  |  |  | ug/ | 25.0 |  | 99 | 80-120 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Matrix Spilke Analyzed: 02/12 | $11-\mathrm{M}$ |  |  |  |  |  |  |  |  |  |
| 2-Chloroethyl vinyl ether | 27.2 | 5 | 1 |  |  | e: 10 | $80-0$ |  |  |  |
| Surrogate: Dibromofluoromethane | 22.6 |  | 1.3 | ug/ | 25.0 | ND | 109 | 20-175 |  |  |
| Surrogate: Toluene-d8 | 22.6 |  |  | $u g /$ | 25.0 |  | 90 | 80-120 |  |  |
| Surrogate: 4-Bromofluorobenzene |  |  |  | $u g / 1$ | 25.0 |  | 105 | 80-120 |  |  |
|  |  |  |  | $u g /$ | 25.0 |  | 100 | 80-120 |  |  |
| Matrix Spike Dup Analyzed: 0 | B1201 |  |  |  |  |  |  |  |  |  |
| 2-Chloroethyl vinyl ether | 27.5 | 5.0 | 13 |  |  | IOB | 80-01 |  |  |  |
| Surrogate: Dibromofluoromethane | 22.7 | 5.0 | 1.3 | ug/l | 25.0 | ND | 110 | 20-175 | 1 | 25 |
| Surrogate: Toluene-d8 | 26.4 |  |  | $u g /$ | 25.0 |  | 91 | 80-120 |  |  |
| Surrogate: 4-Bromofluorobenzene |  |  |  | ug/ | 25.0 |  | 106 | 80-120 |  |  |
|  | 24.8 |  |  | ug/ | 25.0 |  | 99 | 80-120 |  |  |

## Del Mar Analytical, Irvine <br> Michele Harper <br> Project Manager

MWH-Pasadena/Boeing<br>300 North Lake Avenue, Suite 1200<br>Pasadena, CA 91101<br>Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

## METHOD BLANKKOC DATA

## PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS



MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200<br>Pasadena, CA 91101<br>Attention: Bronwyn Kelly

| Project ID: | 13267 (Study 1) |  |
| ---: | :--- | ---: |
|  | Outfall 011 | Sampled: 02/11/05 |
| Report Number: | IOB1014 | Received: 02/11/05 |

Sampled: 02/11/05
Received: 02/11/05

## METHOD BLANKIOC DATA

## ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

| Analyte | Result | Reporting Limit | MDL | Units | Spike <br> Level | Source |  | \%REC |  | RPD | Data |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5B14010 Extracted: 02/14/05 |  |  |  |  |  |  | \%REC | Limits | RPD | Limit | Qualifiers |

## Blank Analyzed: 02/18/2005 (5B14010-BLK1)

| Acenaphthene | ND | 0.50 | 0.10 | ug/l |
| :---: | :---: | :---: | :---: | :---: |
| Acenaphthylene | ND | 0.50 | 0.10 | ug/l |
| Aniline | ND | 10 | 2.9 | ug/ |
| Anthracene | ND | 0.50 | 0.083 | ug/ |
| Benzidine | ND | 5.0 | 2.4 | ug/ |
| Benzoic acid | ND | 20 | 2.4 3.7 | ug/ ug/ |
| Benzo(a)anthracene | ND | 5.0 | 0.038 | $u g /$ $u g / l$ |
| Benzo(a)pyrene | ND | 2.0 | 0.038 | $u g / 1$ $u g / I$ |
| Benzo(b)fluoranthene | ND | 2.0 | 0.050 | ug/ |
| Benzo(g,h,i)perylene | ND | 5.0 | 0.059 | ug/l |
| Benzo(k)fluoranthene | ND | 0.50 | 0.053 | ug/ |
| Benzyl alcohol | ND | 0.50 5.0 | 0.053 0.21 | ug/ |
| Bis(2-chloroethoxy)methane | ND | 0.50 | 0.21 | ug |
| Brs(2-chloroethyl)ether | ND | 0.50 | 0.084 | ug/ |
| Bis(2-chloroisopropyl)ether | ND | 0.50 | 0.084 0.11 | ug/ |
| Bis(2-ethylhexyl)phthalate | ND | 5.0 | 0.11 1.1 | $u g / 1$ $u g / l$ |
| 4-Bromophenyl phenyl ether | ND | 1.0 | 0.12 | ug/1 |
| Butyl benzyl phthalate | ND | 5.0 | 0.34 | ug/ |
| 4-Chloroaniline | ND | 2.0 | 0.20 | ug/1 |
| 2-Chloronaphthalene | ND | 0.50 | 0.20 0.059 | ug/ |
| 4-Chloro-3-methylphenol | ND | 2.0 | 0.059 | ug/ |
| 4-Chlorophenyl phenyl ether | ND | 0.50 | 0.056 | ug/1 |
| 2-Chlorophenol | ND | 1.0 | 0.056 0.12 | ug/l |
| Chrysene | ND | 0.50 | 0.12 0.072 | ug/ |
| Dibenz( $\mathrm{a}, \mathrm{h}$ )anthracene | ND | 0.50 | 0.072 | $u g / 1$ $u g / l$ |
| Dibenzofuran | ND | 0.50 | 0.075 | ug/1 |
| Di-n-butyl phthalate | ND | 2.0 | 0.075 | ug/1 |
| 1,2-Dichlorobenzene | ND | 0.50 | 0.11 | ughl |
| 1,3-Dichlorobenzene | ND | 0.50 | 0.13 | ug/l |
| 1,4-Dichlorobenzene | ND | 0.50 | 0.050 | ug/ |
| 3,3-Dichlorobenzidine | ND | 5.0 | 0.93 | ug/ |
| 2,4-Dichlorophenol | ND | 2.0 | 0.21 | ug/ |
| Diethyl phthalate | 0.200 | 1.0 | 0.12 | ug/ |
| 2,4-Dimethylphenol | ND | 2.0 | 0.31 | ug/I |
| Dimethyl phthalate | ND | 0.50 | 0.081 | ug/l |

## Del Mar Analytical, Irvine <br> Michele Harper <br> Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

## METHOD BLANKCQC DATA

## ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

| Analyte | Result | Reporting <br> Limit | MDL | Units | Spike | Source |  | \%REC |  | RPD | Data |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5B14010 Extracted: 02/14/05 |  |  |  |  |  |  | \%REC | Limits | RPD | Limit | Qualifiers |



Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing<br>300 North Lake Avenue, Suite 1200<br>Pasadena, CA 91101<br>Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)<br>Outfall 011<br>Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

## METHOD BLANKKOC DATA

## ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

| Analyte | Result | Reporting Limit | MDL | Units | Spike <br> Level | Source Result | \%REC | \%REC |  | RPD | Data |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5B14010 Extracted: 02/14/05 |  |  |  |  |  |  | \%REC | Limits | RPD | Limit | Qualifiers |


| Blank Analyzed: $\mathbf{\theta 2 / 1 8 / 2 0 0 5}$ (5B14010-BLK1) |  |
| :--- | ---: |
| Surrogate: Phenol-d6 | 15.5 |
| Surrogate: 2,4,6-Tribromophenol | 14.0 |
| Surrogate: Nitrobenzene-ds | 7.44 |
| Surrogate: 2 -Fluorobiphenyl | 7.50 |
| Surrogate: Terphenyl-d14 | 8.10 |

LCS Analyzed: 02/18/2005 (5B14010-BS1)
Acenaphthene
Acenaphthylene
Aniline
Anthracene
Benzidine
Benzoic acid
Benzo(a)anthracene
Benzo(a)pyrene
Benzo(b)fluoranthene
Benzo(g,h,i)perylene
Benzo(k)fluoranthene
Benzyl alcohol
Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether Bis(2-ethylhexyl)phthalate 4-Bromophenyl phenyl ether Butyl benzyl phthalate
4-Chloroaniline
2-Chloronaphthalene
4-Chloro-3-methylphenol
4-Chlorophenyl phenyl ether
2-Chlorophenol
Chrysene
Dibenz(a,h)anthracene
Dibenzofuran
Di-n-butyl phthalate
1,2-Dichlorobenzene
1,3-Dichlorobenzene

## Del Mar Analytical, Irvine

Michele Harper
Project Manager

| $u g / l$ | 20.0 | 78 | $45-120$ |
| :--- | :--- | :--- | :--- |
| $u g / l$ | 20.0 | 70 | $50-125$ |
| $u g / l$ | 10.0 | 74 | $45-120$ |
| $u g / l$ | 10.0 | 75 | $45-120$ |
| $u g / l$ | 10.0 | 81 | $45-135$ |

M-NR1

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011
Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

## METHOD BLANKIQC DATA

## ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte
Batch: 5B14010 Extracted: 02/14/05

| Result | Reporting <br> Limit | MDL | Units | Spike <br> Level | Source <br> Result | \%REC | \%REC <br> Limits | RPD | RPD | Limit |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Data |
| :---: |
| Qualifiers |

## LCS Analyzed: 02/18/2005 (5B14010-BS1)

| 1,4-Dichlorobenzene | 6.22 | 0.50 | 0.050 |  |  |  |  | M-NR1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3,3-Dichlorobenzidine | 7.52 | 5.0 | 0.050 0.93 | ug/l | 10.0 | 62 | 40-120 |  |
| 2,4-Dichlorophenol | 7.64 | 2.0 | 0.93 0.21 | ugh | 10.0 | 75 | 50-170 |  |
| Diethyl phthalate | 7.58 | 1.0 | 0.21 | ug/ | 10.0 | 76 | 55-120 |  |
| 2,4-Dimethylphenol | 5.34 | 1.0 | 0.12 | ug/ | 10.0 | 76 | 60-120 |  |
| Dimethyl phthalate | 7.42 | 0.0 | 0.31 | ug/ | 10.0 | 53 | 35-120 |  |
| 4,6-Dinitro-2-methylphenol | 6.64 | 5.50 | 0.081 | ug/ | 10.0 | 74 | 60-120 |  |
| 2,4-Dinitrophenol | 6.02 | 5.0 | 0.38 | ug/ | 10.0 | 66 | 55-120 |  |
| 2,4-Dinitrotoluene | 6.68 | 5.0 5.0 | 2.7 | ug/ | 10.0 | 60 | 40-140 |  |
| 2,6-Dinitrotoluene | 7.44 | 5.0 | 0.23 | ug/ | 10.0 | 67 | 60-140 |  |
| Di-n-octyl phthalate | 6.72 | 5.0 5.0 | 0.24 | ug/ | 10.0 | 74 | 65-125 |  |
| 1,2-Diphenylhydrazine/Azabenzene | 8.52 | 1.0 | 0.17 | ug/ | 10.0 | 67 | 60-130 |  |
| Fluoranthene | 9.34 | 050 | 0.087 | ug/ | 10.0 | 85 | 60-120 |  |
| Fluorene | 8.32 | 0.50 | 0.089 | ugd | 10.0 | 93 | 55-125 |  |
| Hexachlorobenzene | 7.70 |  | 0.075 | ug/ | 10.0 | 83 | 60-120 |  |
| Hexachlorobutadiene | 6.44 | 1.0 | 0.13 | ug/ | 10.0 | 77 | 50-120 |  |
| Hexachlorocyclopentadiene | 7.70 | 2.0 | 0.38 | ug/ | 10.0 | 64 | 45-120 |  |
| Hexachloroethane | 6.90 | 5.0 | 1.8 | ug/ | 10.0 | 77 | 10-130 |  |
| Indeno(1,2,3-cd)pyrene | 7.40 | 3.0 2.0 | 0.51 | ug/ | 10.0 | 69 | 40-120 |  |
| Isophorone | 6.42 | 2.0 | 0.19 | ug/ | 10.0 | 74 | 35-150 |  |
| 2-Methylnaphthalene | 8.42 | 1.0 | 0.059 | ug/1 | 10.0 | 64 | 55-120 |  |
| 2-Methylphenol | 7.06 | 1.0 2.0 | 0.13 | ug/ | 10.0 | 80 | 50-120 |  |
| 4-Methylphenol | 7.38 | 2.0 50 | 0.28 | ug/ | 10.0 | 71 | 45-120 |  |
| Naphthalene | 7.88 | 1.0 | 0.20 | ug/ | 10.0 | 74 | 45-120 |  |
| 2-Nitroaniline | 7.54 | 5.0 | 0.13 | ug/ | 10.0 | 79 | 50-120 |  |
| 3-Nitroaniline | 7.72 | 5.0 | 0.18 | ug/ | 10.0 | 75 | 60-130 |  |
| 4-Nitroaniline | 7.48 | 5.0 | 0.35 | ug/ | 10.0 | 77 | 50-140 |  |
| Nitrobenzene | 7.26 | 5.0 | 0.49 | ug/ | 10.0 | 75 | 45-160 |  |
| 2-Nitrophenol | 8.06 | 1.0 | 0.10 | ug/ | 10.0 | 73 | 50-120 |  |
| 4-Nitrophenol | 6.82 | 2.0 | 0.23 | ug/ | 10.0 | 81 | 55-120 |  |
| N-Nitrosodimethylamine | 5.44 | 5.0 2.0 | 0.73 | ug/ | 10.0 | 68 | 50-135 |  |
| N-Nitroso-di-n-propylamine | 6.94 | 2.0 | 0.22 | ug/ | 10.0 | 54 | 40-120 |  |
| N -Nitrosodiphenylamine | 7.04 | 1.0 | 0.18 | ugh | 10.0 | 69 | 50-120 |  |
| Pentachlorophenol | 7.14 | 1.0 | 0.077 | ug/ | 10.0 | 70 | 60-120 |  |
| Phenanthrene | 7.92 |  | 0.78 | ug/ | 10.0 | 71 | 50-125 |  |
|  |  | 0.50 | 0.071 | ug/ | 10.0 | 79 | 55-120 |  |

## Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

| Project ID: | 13267 (Study 1) | | |
|---|---|---|---|
|  | Outfall 011 |
| Report Number: | IOB1014 |$\quad$| Sampled: $02 / 11 / 05$ |
| :--- |

Sampled: 02/11/05
Received: 02/11/05

## METHOD BLANKIQC DATA

## ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)



MWH-Pasadena/Boeing<br>300 North Lake Avenue, Suite 1200<br>Pasadena, CA 91101<br>Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

## MEIHIOD BLANKIQC DATA

## ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

| Analyte | Result | Reporting <br> Limit | MDL | Units | Spike | Source |  | \%REC |  | RPD | Data |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5814010 Extracted: 02/14/05 |  |  |  |  |  |  | \%REC | Limits | RPD | Limit | Qualifiers |

## LCS Dup Analyzed: 02/18/2005 (5B14010-BSD1)



## Del Mar Analytical, Irvine

Michele Harper
?roject Manager

MWH-Pasadena/Boeing<br>300 North Lake Avenue, Suite 1200<br>Pasadena, CA 91101<br>Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

## METHOD BLANKIQC DATA

## ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

| Analyte <br> Batch: 5B14010 Extract | Result | Reporting <br> Limit | MDL | Units | Spike <br> Level | Source <br> Result | \%REC | \%REC <br> Limits | RPD | $\begin{aligned} & \text { RPD } \\ & \text { Limit } \end{aligned}$ | $\begin{gathered} \text { Data } \\ \text { Qualifiers } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LCS Dup Analyzed: 02/18/2005 (5B14010-BSD1) |  |  |  |  |  |  |  |  |  |  |  |
| 4-Nitrophenol | 7.58 | 5.0 | 0.73 |  |  |  |  |  |  |  |  |
| N -Nitrosodimethylamine | 8.36 | 2.0 | 0.73 0.22 | ug/ | 10.0 100 |  | 76 | 50-135 | 11 | 25 |  |
| N -Nitroso-di-n-propylamine | 7.70 | 2.0 | 0.18 | ug | 10.0 |  | 84 | 40-120 | 42 | 20 | R-7 |
| N-Nitrosodiphenylamine | 7.34 | 1.0 | 0.077 | ug/ | 10.0 |  | 77 | 50-120 | 10 | 20 |  |
| Pentachlorophenol | 7.76 | 2.0 | 0.78 | ug/ | 10.0 |  | 73 | 60-120 | 4 | 20 |  |
| Phenanthrene | 8.06 | 0.50 | 0.78 0.071 | ug/ | 10.0 |  | 78 | 50-125 | 8 | 25 |  |
| Phenol | 7.90 | 1.0 |  | ug/ | 10.0 |  | 81 | 55-120 | 2 | 20 |  |
| Pyrene | 8.10 | 0.50 | 0.14 | ug/ | 10.0 |  | 79 | 45-120 | 5 | 25 |  |
| 1,2,4-Trichlorobenzene | 6.66 | 0.50 1.0 | 0.059 0.10 | ug/ | 10.0 |  | 81 | 50-120 | 3 | 25 |  |
| 2,4,5-Trichlorophenol | 8.32 | 2.0 | 0.10 | ug/ | 10.0 |  | 67 | 50-120 | 3 | 20 |  |
| 2,4,6-Trichlorophenol | 8.22 |  | 0.075 0.10 | ug/ | 10.0 |  | 83 | 60-120 | 1 | 20 |  |
| Surrogate: 2-Fluorophenol | 14.0 |  | 0.10 | ug/ | 10.0 |  | 82 | 60-120 | 4 | 20 |  |
| Surrogate: Phenol-d6 | 15.1 |  |  | ug/ | 20.0 |  | 70 | 35-120 |  |  |  |
| Surrogate: 2,4,6-Tribromophenol | 15.1 |  |  | ug/ | 20.0 |  | 76 | 45-120 |  |  |  |
| Surrogate: Nitrobenzene-d5 | 7.54 |  |  | ugl | 20.0 |  | 76 | 50-125 |  |  |  |
| Surrogate: 2-Fluorobiphenyl | 7.30 |  |  | ugh | 10.0 |  | 75 | 45-120 |  |  |  |
| Surrogate: Terphenyl-d14 | 7.24 |  |  | ugh | 10.0 |  | 73 | 45-120 |  |  |  |
|  |  |  |  | ug/ | 10.0 |  | 72 | 45-135 |  |  |  |

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

## METHOD BLANKKQC DATA

## ORGANOCHLORINE PESTICIDES (EPA 608)

| Analyte | Result | Reporting Limit | MDL | Units | Spike <br> Level | Source |  | \%REC |  | RPD | Data |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5B17042 Extracted: 02/17/05 |  |  | MDL | Unis |  |  | \%REC |  | RPD | Limit | Qualifiers |



Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 1OB1014

Sampled: 02/11/05
Received: 02/11/05

## MEIHOD BLANKIQC DATA

## ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte
Batch: 5B17042 Extracted: 02/17/05

| Reporting |  |  | Spike | Source | \%REC |  | RPD | Data |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Limit | MDL | Units | Level | Result | \%REC | Limits | RPD | Limit | Qualifiers |

## LCS Analyzed: 02/18/2005 (5B17042-BS1)

| Endrin | 0.446 |
| :--- | :--- |
| Endrin aldehyde | 0.374 |
| Endrin ketone | 0.423 |
| Heptachlor | 0.404 |
| Heptachlor epoxide | 0.383 |
| Methoxychlor | 0.486 |
| Surrogate: Tetrachloro-m-xylene | 0.304 |
| Surrogate: Decachlorobiphenyl | 0.398 |


| 0.10 | 0.015 | ug/l | 0.500 |
| :--- | :--- | :--- | :--- |
| 0.10 | 0.045 | ug/l | 0.500 |
| 0.10 | 0.020 | ug/ | 0.500 |
| 0.10 | 0.030 | ug/l | 0.500 |
| 0.10 | 0.020 | ug/l | 0.500 |
| 0.10 | 0.035 | ug/ | 0.500 |
|  |  | $u g / 1$ | 0.500 |
|  |  | $u g / l$ | 0.500 |


| 89 | $55-125$ |  |  |
| :---: | :---: | :---: | :---: |
| 75 | $55-115$ |  |  |
| 85 | $60-120$ |  |  |
| 81 | $45-115$ |  |  |
| 77 | $50-120$ |  |  |
| 97 | $60-135$ |  |  |
| 61 | $35-120$ |  |  |
| 80 | $45-120$ |  |  |
|  |  |  |  |
| 71 | $45-115$ | 3 | 30 |
| 71 | $45-115$ | 6 | 30 |
| 74 | $50-115$ | 0 | 30 |
| 76 | $55-120$ | 3 | 30 |
| 74 | $45-115$ | 4 | 30 |
| 80 | $60-120$ | 3 | 30 |
| 81 | $55-120$ | 1 | 30 |
| 82 | $60-130$ | 4 | 30 |
| 79 | $55-120$ | 2 | 30 |
| 76 | $50-115$ | 1 | 30 |
| 77 | $60-125$ | 3 | 30 |
| 80 | $60-120$ | 7 | 30 |
| 87 | $55-125$ | 3 | 30 |
| 73 | $55-115$ | 2 | 30 |
| 78 | $60-120$ | 8 | 30 |
| 76 | $45-115$ | 6 | 30 |
| 76 | $50-120$ | 1 | 30 |
| 89 | $60-135$ | 9 | 30 |
| 55 | $35-120$ |  |  |
| 73 | $45-120$ |  |  |

MWH-Pasadena/Boeing<br>300 North Lake Avenue, Suite 1200<br>Pasadena, CA 91101<br>Attention: Bronwyn Kelly

| Project ID: | 13267 (Study 1) |  |
| ---: | :--- | ---: |
|  | Outfall 011 | Sampled: $02 / 11 / 05$ |
| Report Number: | IOB1014 | Received: 02/11/05 |

Sampled: 02/11/05
Received: 02/11/05

## METHOD BLANKIOC DATA

## TOTAL PCBS (EPA 608)

| Analyte | Result | Reporting Limit | MDL | Units | Spike <br> Level | Source <br> Result |  | \%REC |  | RPD | Data |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5B17042 Extracted: 02/17/05 |  |  | MDL | Units |  |  | \%REC |  | RPD | Limit | Qualifiers |

## Blank Analyzed: 02/17/2005-02/18/2005 (5B17042-BLK1)

| Aroclor 1016 | ND | 1.0 | 0.20 | $\mathrm{ug} /$ |
| :--- | :---: | :---: | :---: | :---: |
| Aroclor 1221 | ND | 1.0 | 0.10 | $\mathrm{ug} / 1$ |
| Aroclor 1232 | ND | 1.0 | 0.15 | $\mathrm{ug} /$ |
| Aroclor 1242 | ND | 1.0 | 0.15 | $\mathrm{ug} /$ |
| Aroclor 1248 | ND | 1.0 | 0.25 | $\mathrm{ug} /$ |
| Aroclor 1254 | ND | 1.0 | 0.25 | $\mathrm{ug} / 1$ |
| Aroclor 1260 | ND | 1.0 | 0.40 | $\mathrm{ug} / 1$ |
| Surrogate: Decachlorobiphenyl | 0.451 |  |  | $\mathrm{ug} / l$ |

LCS Analyzed: 02/18/2005 (5B17042-BS2)

| Aroclor 1016 | 2.54 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aroclor 1260 | 2.54 | 1.0 | 0.20 | ug/ | 4.00 | 64 | 50-115 |  |  |
| Surrogate: Decachlorobiphenyl | 2.69 0.378 | 1.0 | 0.40 | ugh | 4.00 | 67 | 60-115 |  |  |
|  |  |  |  | $u g h$ | 0.500 | 76 | 45-120 |  |  |
| LCS Dup Analyzed: 02/18/2 | BSD2 |  |  |  |  |  |  |  |  |
| Aroclor 1016 | 3.09 | 1.0 | 0.20 | ug/ |  |  |  |  |  |
| Aroclor 1260 | 2.98 | 1.0 | 0.40 | ug/ |  | 77 | 50-115 | 20 | 30 |
| Surrogate: Decachlorobiphenyl | 0.404 |  | 0.40 | ug/ $/$ | 0.500 | 74 81 | $60-115$ $45-120$ | 10 | 25 |

MWH-Pasadena/Boeing<br>300 North Lake Avenue, Suite 1200<br>Pasadena, CA 91101

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014

Sampled: 02/11/05<br>Received: 02/11/05

## METHOD BIEANK/QC DATA

## METALS

| Analyte <br> Batch: | Result | Reportin Limit | MDL | Units | Spike <br> Level | Source Result | \%REC | \%REC <br> Limits | RPD | RPD <br> Limit | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Blank Analyzed: 02/12/2005 (5B12033-BLK1) |  |  |  |  |  |  |  |  |  |  |  |
| Mercury | ND | 0.20 | 0.063 | ug/ |  |  |  |  |  |  |  |
| LCS Analyzed: 02/12/2005 (5B12033-BS1) |  |  |  |  |  |  |  |  |  |  |  |
| Mercury | 7.92 | 0.20 | 0.063 | ug/ | 8.00 |  | 99 | 85-115 |  |  |  |
| Matrix Spike Analyzed: 02/12/2005 (5B12033-MS1) |  |  |  |  |  |  |  |  |  |  |  |
| Mercury | 8.00 | 0.20 | 0.063 |  | Sou | e: IOB0 | 83-01 |  |  |  |  |
| Matrix Spike Dup Analyzed: 02/12/2005 (5B12033-MSD1) <br> Mercury <br> Source: IOB0983-01 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 0.20 | 0.063 | ug/ | 8.00 | ND | 97 | 70-130 | 3 | 20 |  |
| Batch: 5B12041 Extracted: 02/12/05 20 |  |  |  |  |  |  |  |  |  |  |  |
| Blank Analyzed: 02/14/2005-02/15/2005 (5B12041-BLK1) |  |  |  |  |  |  |  |  |  |  |  |
| Antimony | ND | 2.0 | 0.18 |  |  |  |  |  |  |  |  |
| Arsenic | ND | 1.0 | 0.49 | ugl |  |  |  |  |  |  |  |
| Barium | ND | 0.0010 | 0.00014 | mg/l |  |  |  |  |  |  |  |
| Berylium | ND | 0.50 | 0.037 | ug/1 |  |  |  |  |  |  |  |
| Cadmium | ND | 1.0 | 0.015 | ug/ |  |  |  |  |  |  |  |
| Chromium | ND | 1.0 | 0.26 | ugh |  |  |  |  |  |  |  |
| Cobalt | ND | 1.0 | 0.10 | ug/ |  |  |  |  |  |  |  |
| Copper | ND | 2.0 | 0.49 | ug/ |  |  |  |  |  |  |  |
| Lead | ND | 0.010 | 0.0032 | $\mathrm{mg} / 1$ |  |  |  |  |  |  |  |
|  | ND | 1.0 | 0.13 | ug/l |  |  |  |  |  |  |  |
| Manganese | 0.444 | 1.0 | 0.44 | ug/l |  |  |  |  |  |  |  |
|  | ND | 1.0 | 0.15 | ugh |  |  |  |  |  |  | $J$ |
|  | ND | 2.0 | 0.36 | ugh |  |  |  |  |  |  |  |
|  | ND | 1.0 | 0.089 | ug/ |  |  |  |  |  |  |  |
|  | ND | 1.0 | 0.075 | ug/ |  |  |  |  |  |  |  |
| anadiom | ND | 1.0 | 0.86 | ug/ |  |  |  |  |  |  |  |
|  | ND | 20 | 3.1 | ug/l |  |  |  |  |  |  |  |

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

| Project ID: | 13267 (Study 1) | | |
|---|---|---|---|
|  | Outfall 011 |
| Report Number: | IOB1014 |$\quad$| Sampled: $02 / 11 / 05$ |
| :--- |

Sampled: 02/11/05
Received: 02/11/05

## METHOD BLANKIOC DATA

## METALS

| Analyte | Result | Reporting <br> Limit | MDL | Units | Spike <br> Level | Source |  | \%REC |  | RPD | Data |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5B12041 Extracted: 02/12/05 |  |  |  |  |  |  | \%REC | Limits | RPD | Limit | Qualifiers |

LCS Analyzed: 02/14/2005-02/15/2005 (5B12041-BS1)

| Antimony | 87.7 | 2.0 | 0.18 |
| :--- | :---: | :---: | :---: |
| Arsenic | 87.1 | 1.0 | 0.49 |
| Barium | 0.0817 | 0.0010 | 0.00014 |
| Beryllium | 80.1 | 0.50 | 0.037 |
| Cadmium | 79.7 | 1.0 | 0.015 |
| Chromium | 82.5 | 1.0 | 0.26 |
| Cobalt | 82.1 | 1.0 | 0.10 |
| Copper | 81.5 | 2.0 | 0.49 |
| Iron | 0.811 | 0.010 | 0.0032 |
| Lead | 83.2 | 1.0 | 0.13 |
| Manganese | 83.6 | 1.0 | 0.44 |
| Nickel | 82.7 | 1.0 | 0.15 |
| Selenium | 84.2 | 2.0 | 0.36 |
| Silyer | 79.8 | 1.0 | 0.089 |
| Thallium | 81.7 | 1.0 | 0.075 |
| Vanadium | 82.2 | 1.0 | 0.86 |
| Zinc | 81.8 | 20 | 3.1 |

Matrix Spike Analyzed: 02/14/2005-02/15/2005 (5B12041-MS1)
Antimony

| Antimony | 93.0 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Arsenic | 93.0 | 2.0 | 0.18 | ug/l | 80.0 | ND | 116 | 70-130 |
| Barium | 88.0 | 1.0 | 0.49 | ug/l | 80.0 | ND | 110 | 70-130 |
| Baryllium | 0.250 | 0.0010 | 0.00014 | $\mathrm{mg} / \mathrm{l}$ | 0.0800 | 0.17 | 100 | $70-130$ $70-130$ |
| Berylium | 90.3 | 0.50 | 0.037 | ug/l | 80.0 | ND | 113 | 70-130 |
| Cadmium | 82.9 | 1.0 | 0.015 | ugh | 80.0 | ND | 113 | 70-130 |
| Chromium | 83.6 | 1.0 | 0.015 | ug/ | 80.0 | ND | 104 | 70-130 |
| Cobalt | 84.1 |  | 0.26 | ug/ | 80.0 | 2.2 | 102 | 70-130 |
| Copper | 84.1 | 1.0 | 0.10 | ug/l | 80.0 | ND | 105 | 70-130 |
| Iron | 81.6 0.804 | 2.0 | 0.49 | ug/l | 80.0 | ND | 102 | 70-130 |
| Lead | 0.804 | 0.010 | 0.0032 | $\mathrm{mg} / \mathrm{l}$ | 0.800 | 0.096 | 88 | $70-130$ |
| Manganese | 85.4 | 1.0 | 0.13 | ug/ | 80.0 | ND | 107 | 70-130 |
| Nickel | 88.1 | 1.0 | 0.44 | $\mathrm{ug} / 1$ | 80.0 | 1.3 | 108 | 70-130 |
| Selenium | 82.1 | 1.0 | 0.15 | ug/ | 80.0 | ND | 103 | 70-130 |
| Silver | 84.3 | 2.0 | 0.36 | ug/l | 80.0 | ND | 105 | 70-130 |
| Thallium | 80.3 | 1.0 | 0.089 | ug/l | 80.0 | ND | 100 | 70-130 |
| Vanadium | 87.9 | 1.0 | 0.075 | ug/l | 80.0 | 0.17 | 110 | 70-130 |
| Zinc | 89.2 | 1.0 | 0.86 | ug/l | 80.0 | 4.9 | 105 | 70-130 |
|  | 79.9 | 20 | 3.1 | ug/l | 80.0 | ND | 100 | 70-130 |

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing<br>300 North Lake Avenue, Suite 1200<br>Pasadena, CA 91101<br>Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

## METHOD BLANKIQC DATA

## METALS

| Analyte | Result | Reporting <br> Limit | MDL | Units | Spike <br> Level | Source <br> Result |  | \%REC |  | RPD | Data |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5B12041 Extracted: 02/12/05 |  |  |  | Units |  |  | \%REC | Limits | RPD | Limit | Qualifiers |

Matrix Spike Analyzed: 02/14/2005-02/15/2005 (5B12041-MS2)

| Matrix Spike Analyzed: $\mathbf{0 2 / 1 4 / 2 0 0 5 - 0 2 / 1 5 / 2 0 0 5}$ | (5B12041-MS2) |  |  |
| :--- | :---: | :---: | :---: |
| Antimony | 88.7 | 2.0 | 0.18 |
| Arsenic | 94.7 | 1.0 | 0.49 |
| Barium | 0.246 | 0.0010 | 0.00014 |
| Berylium | 75.9 | 0.50 | 0.037 |
| Cadmium | 75.6 | 1.0 | 0.015 |
| Chromium | 80.0 | 1.0 | 0.26 |
| Cobalt | 80.5 | 1.0 | 0.10 |
| Copper | 90.6 | 2.0 | 0.49 |
| Iron | 0.685 | 0.010 | 0.0032 |
| Lead | 81.3 | 1.0 | 0.13 |
| Manganese | 83.7 | 1.0 | 0.44 |
| Nickel | 78.5 | 1.0 | 0.15 |
| Selenium | 80.4 | 2.0 | 0.36 |
| Silver | 2 | 1.0 | 0.089 |
| Thallium | 87.1 | 1.0 | 0.075 |
| Vanadium | 87.6 | 1.0 | 0.86 |
| Zinc | 80.7 | 20 | 3.1 |



## Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

```
Project ID: 13267 (Study 1) Outfall 011
Report Number: 1OB1014
```

Sampled: 02/11/05
Received: 02/11/05

## METHOD BLANKIOC DATA

## METALS

| Analyte Batch: 5B12044 Extracted: 02/12/05 | Reporting <br> Limit | MDL | Units | Spike <br> Level | Source <br> Result | \%REC | \%REC <br> Limits | RPD | RPD <br> Limit | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Blank Analyzed: 02/12/2005 (5B12044-BLK1) |  |  |  |  |  |  |  |  |  |  |
| Boron 0.00980 | 0.050 | 0.0074 | mg/ |  |  |  |  |  |  |  |
| LCS Analyzed: 02/12/2005 (5B12044-BS1) J J |  |  |  |  |  |  |  |  |  |  |
| Boron 0.496 | 0.050 | 0.0074 | $\mathrm{mg} /$ | 0.500 |  | 99 | 85-115 |  |  |  |
| Matrix Spike Analyzed: 02/12/2005 (5B12044-MS1) |  |  |  |  |  |  |  |  |  |  |
| Boron 0.502 | 0.050 | 0.0074 |  | Sour | e: IOB0 | 91-02 |  |  |  |  |
| Matrix Spike Dup Analyzed: 02/12/2005 (5B12044-MSD1) Source: 10 (0000 |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| 0.503 | 0.050 | 0.0074 | $\mathrm{mg} / \mathrm{l}$ | 0.500 | 0.012 | 98 | 70-130 | 0 | 20 |  |

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)<br>Outfall 011

Report Number: $10 B 1014$ Sampled: 02/11/05
Received: 02/11/05

## MEIHOD BLANKIOC DATA

## INORGANICS

| Analyte | Result | Reporting <br> Limit | MDL | Units | Spike | Source |  | \%REC |  | RPD | Data |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5B11120 Extracted: 02/11/05 |  |  |  |  |  |  | \%REC | Limits | RPD | Limit | Qualifiers |

## Blank Analyzed: 02/11/2005 (5B11120-BLK1)



Duplicate Analyzed: 02/12/2005 (5B12035-DUP1)
Residual Chlorine

|  | ND | 0.10 | 0.10 |
| :---: | :---: | :---: | :---: |
| Batch: 5B12037 Extracted: 02/12/05 |  |  |  |
| Blank Analyzed: 02/17/2005 (5B12037-BLK1) |  |  |  |
| Biochemical Oxygen Demand | ND | 2.0 | 0.59 |

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011 Sampled: 02/11/05
$10 B 1014 \quad$ Received: 02/11/05

## METHOD BLANKIQC DATA

## INORGANICS

| Analyte | Result | Reportin <br> Limit | MDL | Units | Spike <br> Level | Source <br> Result | \%REC | \%REC <br> Limits | RPD | RPD <br> Limit | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5812037 Extracted: 02/12/05 |  |  |  |  |  |  |  |  |  |  |  |
| LCS Analyzed: 02/17/2005 (5B12037-BS1) |  |  |  |  |  |  |  |  |  |  |  |
| Biochemical Oxygen Demand | 211 | 100 | 30 | mgl | 198 |  | 107 | 85-115 |  |  |  |
| LCS Dup Analyzed: 02/17/2005 (5B12037-BSD1) |  |  |  |  |  |  |  |  |  |  |  |
| Biochemical Oxygen Demand | 212 | 100 | 30 | $\mathrm{mg} / 1$ | 198 |  | 107 | 85-115 | 1 | 20 |  |
| Batch: 5812050 Extracted: 02/12/05 |  |  |  |  |  |  |  |  |  |  |  |
| Blank Analyzed: 02/12/2005 (5B12050-BLK1) |  |  |  |  |  |  |  |  |  |  |  |
| Surfactants (MBAS) | ND | 0.10 | 0.044 | $\mathrm{mg} / 1$ |  |  |  |  |  |  |  |
| LCS Analyzed: 02/12/2005 (5B12050-BS1) |  |  |  |  |  |  |  |  |  |  |  |
| Surfactants (MBAS) | 0.247 | 0.10 | 0.044 | $\mathrm{mg} / 1$ | 0.250 |  | 99 | 90-110 |  |  |  |
| Matrix Spike Analyzed: 02/12/2005 (5B12050-MS1) Source: $1081021-01$ |  |  |  |  |  |  |  |  |  |  |  |
| Surfactants (MBAS) | 0.315 | 0.10 | 0.044 | $\mathrm{mg} /$ | 0.250 | 0.084 | 92 | 50-125 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Surfactants (MBAS) | 0.284 | 0.10 | 0.044 | $\mathrm{mg} / \mathrm{l}$ | 0.250 | 0.084 | 80 | 50-125 | 10 | 20 |  |
| Batch: 5B12055 Extracted: 02/12/05 |  |  |  |  |  |  |  |  |  |  |  |
| Blank Analyzed: 02/12/2005 (5B12055-BLK1) |  |  |  |  |  |  |  |  |  |  |  |
| Turbidity | 0.0400 | 1.0 | 0.040 | NTU |  |  |  |  |  |  | $J$ |
| Duplicate Analyzed: 02/12/2005 (5B12055-DUP1) |  |  |  |  | Source: IOB0952-01 |  |  |  |  |  |  |
| Turbidity | 48.8 | 2.0 | 0.080 | NTU |  | 48 |  |  | 2 | 20 |  |

## Del Mar Analytical, Irvine

Michele Harper
Project Manager

| MWH-Pasadena/Boeing | Project ID:13267 (Study 1) <br> Outfall 011 |  |
| :--- | :--- | ---: |
| 300 North Lake Avenue, Suite 1200 <br> Pasadena, CA 91101 | Report Number: $10 B 1014$ | Sampled: $02 / 11 / 05$ <br> Attention: Bronwyn Kelly |

## METIOD BUANIVIC DATA

## INORGANICS



Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

## METHOD MLANKIOC DATA

## INORGANICS



Batch: 5B17053 Extracted: 02/17/05
Blank Analyzed: 02/17/2005 (5B17053-BLK1)

| Perchlorate | ND | 4.0 | 0.80 | $\mathrm{ug} / \mathrm{l}$ |
| :--- | :--- | :--- | :--- | :--- |


| MWH-Pasadena/Boeing | Project ID: 13267 (Study 1) |  |
| :--- | :--- | :--- |
| 300 North Lake Avenue, Suite 1200 | Outfall 011 | Sampled: $02 / 11 / 05$ |
| Pasadena, CA 91101 | Report Number: $10 B 1014$ | Received: $02 / 11 / 05$ |
| Attention: Bronwyn Kelly |  |  |

## method blankigC data

## INORGANICS



Batch: 5B18126 Extracted: 02/18/05
Blank Analyzed: 02/18/2005 (5B18126-BLK1)

| Total Organic Carbon | ND | 1.0 | 0.25 | $\mathrm{mg} /$ |
| :--- | :--- | :--- | :--- | :--- |

LCS Analyzed: 02/18/2005 (5B18126-BS1)
$\begin{array}{llllllllll}\text { Total Organic Carbon } & 10.6 & 1.0 & 0.25 & \mathrm{mg} / \mathrm{l} & 10.0 & 106 & 90-110\end{array}$

[^35]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

## METHOD BLANKIOC DATA

## INORGANICS



| Matrix Spike Analyzed: 02/18/2005 (5B18126-MS1) |  |  | Source: 10B1090-02 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total Organic Carbon | 10.9 | 1.0 | 0.25 | $\mathrm{mg} /$ | 5.00 | 5.8 | 102 | 80-120 |  |  |
| Matrix Spike Dup Analyzed: 02/18/2005 (5B18126-MSD1) |  |  | Source: IOB1090-02 |  |  |  |  |  |  |  |
| Total Organic Carbon | 10.8 | 1.0 | 0.25 | $\mathrm{mg} / \mathrm{l}$ | 5.00 | 5.8 | 100 | 80-120 | 1 | 20 |

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011
Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

## METHOD BILANKIQC DATA

## 1,4-DIOXANE BY GC/MS (EPA 5030B/8260B)

| Analyte | Result | Reportin Limit | MDL | Units | Spike <br> Level | Source <br> Result | \%REC | $\begin{aligned} & \text { \%REC } \\ & \text { Limits } \end{aligned}$ | RPD | RPD <br> Limit | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: P5B1701 Extracted; 02/17/05 |  |  |  |  |  |  |  |  |  |  |  |
| Blank Analyzed: 02/17/2005 (P5B1701-BLK1) |  |  |  |  |  |  |  |  |  |  |  |
| 1,4-Dioxane | ND | 1.0 | 0.49 | ug/ |  |  |  |  |  |  |  |
| Surrogate: Dibromofluoromethane | 0.930 |  |  | ug/l | 1.00 |  | 93 | 80-125 |  |  |  |
| LCS Analyzed: 02/17/2005 (P5B1701-BS1) |  |  |  |  |  |  |  |  |  |  |  |
| 1,4-Dioxane | 10.9 | 1.0 | 0.49 | ug/ | 10.0 |  | 109 | 70-130 |  |  |  |
| Surrogate: Dibromofluoromethane | 0.920 |  |  | ug/ | 1.00 |  | 92 | $80-125$ |  |  |  |
| LCS Dup Analyzed: 02/17/2005 (P5B1701-BSD1) |  |  |  |  |  |  |  |  |  |  |  |
| 1,4-Dioxane | 12.3 | 1.0 | 0.49 | ug/ | 10.0 |  | 123 |  | 12 | 20 |  |
| Surrogate: Dibromoffuoromethane | 0.950 |  |  | $u g /$ | 1.00 |  |  | $80-125$ |  |  |  |
| Matrix Spike Analyzed: 02/17/2005 (P5B1701-MS1) Source: 1OB1014-01 |  |  |  |  |  |  |  |  |  |  |  |
| 1,4-Dioxane | 11.1 | 1.0 | 0.49 | ug/1 | 10.0 | ND | 111 | 70-150 |  |  |  |
| Surrogate: Dibromofluoromethane | 0.980 |  |  | ug $/$ | 1.00 |  |  |  |  |  |  |
| Matrix Spike Dup Analyzed: 02/17/2005 (P5B1701-MSD1) Source: 1OB1014-01 |  |  |  |  |  |  |  |  |  |  |  |
| 1,4-Dioxane | 11.0 | 1.0 | 0.49 | ug/l | 10.0 | ND | 110 | 70-150 | 1 | 25 |  |
| Surrogate: Dibromofuoromethane | 1.00 |  |  | ug/ | 1.00 |  | 100 | 80-125 |  |  |  |

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

## DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.
C Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.
C5 Calibration Verification recovery was below the method control limit for this analyte. An additional check standard was analyzed at the reporting limit to ensure instrument sensitivity at the reporting limit. Samples ND.
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the
L2 Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
Laboratory Control Sample recovery was below method control limits.
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
R-7 LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

## ADDITIONAL COMMENTS

## For TICs:

All identifications are tentative and concentrations are estimates based upon spectral comparison to the EPANNIH library. For 1,2-Diphenylhydrazine:

The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.
For GRO (C4-C12):
GRO (C4-C12) is quantitated against a gasoline standard. Quantitation begins immediately following the methanol peak. For Extractable Fuel Hydrocarbons (EFH, DRO, ORO) :

Unless otherwise noted, Extractable Fuel Hydrocarbons (EFH, DRO, ORO) are quantitated against a Diesel Fuel Standard.

## Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

## Certification Summary

## Del Mar Analytical, Irvine

| Method | Matrix | Nelac | California |
| :---: | :---: | :---: | :---: |
| EPA 120.1 | Water | $\mathbf{X}$ | $\mathbf{X}$ |
| EPA 160.2 | Water | $\mathbf{X}$ | $\mathbf{X}$ |
| EPA 160.5 | Water | $\mathbf{X}$ | $\mathbf{X}$ |
| EPA 180.1 | Water | $\mathbf{X}$ | $\mathbf{X}$ |
| EPA 200.7 | Water | $\mathbf{X}$ | $\mathbf{X}$ |
| EPA 200.8 | Water | $\mathbf{X}$ | $\mathbf{X}$ |
| EPA 245.1 | Water | $\mathbf{X}$ | $\mathbf{X}$ |
| EPA 300.0 | Water | $\mathbf{X}$ | $\mathbf{X}$ |
| EPA 314.0 | Water | $\mathbf{X}$ | $\mathbf{X}$ |
| EPA 330.5 | Water | $\mathbf{X}$ | $\mathbf{X}$ |
| EPA 335.2 | Water | $\mathbf{X}$ | $\mathbf{X}$ |
| EPA 350.2 | Water | $\mathbf{X}$ | $\mathbf{X}$ |
| EPA 405.1 | Water | $\mathbf{X}$ | $\mathbf{X}$ |
| EPA 413.1 | Water | $\mathbf{X}$ | $\mathbf{X}$ |
| EPA 415.1 | Water | $\mathbf{X}$ | $\mathbf{X}$ |
| EPA 418.1 | Water | $\mathbf{X}$ | $\mathbf{X}$ |
| EPA 608 | Water | $\mathbf{X}$ | $\mathbf{X}$ |
| EPA 624 (MOD.) | Water | $\mathbf{X}$ | $\mathbf{X}$ |
| EPA 624 | Water | $\mathbf{X}$ | $\mathbf{X}$ |
| EPA 625 | Water | $\mathbf{X}$ | $\mathbf{X}$ |
| EPA 8015 Mod. | Water | $\mathbf{X}$ | $\mathbf{X}$ |
| EPA 8015B | Water | $\mathbf{X}$ | $\mathbf{X}$ |
| EPA 8260B | Water | $\mathbf{X}$ | $\mathbf{X}$ |
| SM2540C | Water | $\mathbf{X}$ | $\mathbf{X}$ |
| SM5540-C | Water | $\mathbf{X}$ | $\mathbf{X}$ |

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

## Subcontracted Laboratories

## Alta Analytical Perspectives <br> 2714 Exchange Drive - Wilmington, NC 28405 <br> Analysis Performed: 1613-Dioxin-HR Samples: IOB1014-01 <br> Analysis Performed: $\quad$ EDD + Level 4 Samples: 1OB1014-01

## Aquatic Testing Laboratories-SUB Califormia Cert \#1775

4350 Transport Street, Unit 107 - Ventura, CA 93003
Analysis Performed: Bioassay-7 dy Chrnic
Samples: IOB1014-01
Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOB1014

Sampled: 02/11/05
Received: 02/11/05

Aquatic Testing Laboratories-SUB California Cert \#1775
4350 Transport Street, Unit 107 - Ventura, CA 93003
Analysis Performed: Bioassay-Acute 96 hr
Samples: IOB1014-01
Del Mar Analytical - Phoenix NELAC Cert \#01109CA, California Cert \#2446
9830 S. S1st Street, Suite B-120 - Phoenix, AZ 85044
Method Performed: EPA 8260B
Samples: IOB1014-01
Eberline Services - SUB
2030 Wright Avenue - Richmond, CA 94804
Analysis Performed: Gross Alpha
Samples: IOB1014-01
Analysis Performed: Gross Beta
Samples: IOB1014-01
Analysis Performed: Level 3 Data Package
Samples: IOB1014-01
Analysis Performed: Radium, Combined
Samples: IOB1014-01
Analysis Performed: Strontium 90
Samples: IOB1014-01
Analysis Performed: Tritium
Samples: 1OB1014-01
Eberline Services - SUB
2030 Wright Avenue-Richmond, CA 94804
Analysis Performed: EDD + Level 4
Samples: IOB1014-03
Analysis Performed: Gamma Scan
Samples: IOB1014-04
Analysis Performed: Gross Alpha
Samples: IOB1014-03
Analysis Performed: Gross Beta
Samples: 1OB1014-03
Analysis Performed: Radium, Combined
Samples: IOB1014-03
Analysis Performed: Strontium 90
Samples: IOB1014-03
Analysis Performed: Tritium
Samples: IOB1014-03
Truesdail Laboratories-SUB California Cert \#I237
14201 Franklin Avenue - Tustin, CA 92680
Analysis Performed: Hydrazine
Samples: 1OB1014-01
Analysis Performed: Level 4 Data Package
Samples: IOB1014-01

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing<br>300 North Lake Avenue, Suite 1200<br>Pasadena, CA 91101<br>Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Sampled: 02/11/05
Report Number: IOB1014
Received: 02/11/05



## $F A x$ <br> MWH

Date: 02/17/05

300 N. Lake Ave., Suite 1200
Pasmadena, California 91101
Tel: 626-568-5691
Fac: 626-508-6515

949-260-3297

Pani Meeks / AMEC
Krissi Mcllvenna / MWH

Subject:
Chalm-of-Custody Form Analytical Reyuear Change

No. of Pagen: 2
(including cover)

## Per Ruquest:

Please make the changes listed below to the chain-of-custody anslytical request form. Include this form with the final deliverables for these sumples.

| Del Mar Work Order: | Sample ID | Dute Collected | Change(y) Requested, Not Completed | $\begin{aligned} & \text { Change(s) wad Mefiod (a) } \\ & \text { Now Regaested } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1080988 | Cutall 003 | 02/11/105 | Annual Constituents per 2004 NPDESS Pernit - Total Resoverable Metals: Sb, $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{Hg}, \mathrm{B}, \mathrm{V}, \mathrm{Al}+\mathrm{PP} ; \mathrm{TCDD}$ (and all congeners); Oil and Grease (EPA 413.1), $\mathrm{Cl}-\mathrm{SO}, \mathrm{N}$ ) $3+\mathrm{NO}-\mathrm{N}_{4}$ Parthiorate, TDS, TSS VOCs (624); VOCs. A+A $2 C V /$ NPDES 4 PR Pesticidev/ICBs. PT, Gross Alphe. Gross Beta, Tritum (906.0), $\mathrm{Sr}-90$, Total Combined Radium 226e228; SVOCs - PP, Acure coxicity, Cyanide. | Routine Constinxents per 2004 NPDES Permit - Total Recoverable Metals: $\mathrm{Sb}, \mathrm{Cd}, \mathrm{Cu}$, Po, Hg; TCDD (and all congeners); Oil and Grease (FPA 413.1), TDS, TSS. |
| 10 BIO 22 | Outfall 604 | 02/11/05 | Annul Constivents par 2004 NPDES Pexnit - Total Recoveruble Metals: Sb , $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{Mg}, \mathrm{B}, \mathrm{V}, \mathrm{Al},+\mathrm{PP}, \mathrm{TCDD}$ (and all congeners), Oil und Orease (EPA 413.1), Cl-, $\mathrm{SO} 4, \mathrm{~N}$ ) $3+\mathrm{NO} 2-\mathrm{N}$, Perchiorme; TDS, TSS VOCS (624); VOCs, $1+\mathrm{A}+2 \mathrm{CVE}$; NPDES + PP; Pesticides/1CHs-PP, Gross Alpha, Gross Eela, Tritium (906.0), St-90, Total Combined Radium 226\&228; SVOCs - PP; Acute toxicity, Cyanide. | Routinc Constituents per 2004 NPDES Permit - Total Recoverable Metals: $\mathrm{Sb}, \mathrm{Cd}, \mathrm{Cu}$, $\mathrm{Pb}, \mathrm{Hg}$ : TCDD (and all congeners); Oil and Grease (EPA 413.1); TDS. TSS. |
| 1080990 | Outfitl 005 | 02/11/15 | Asnual Congituents por 2004 NPDFS <br> Pernit - Total Recoverable Metals: Sb, $\left.\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}, \lg _{2} \mathrm{~B}, \mathrm{~V}_{2} \mathrm{~A},+\mathrm{PR}, \mathrm{TCD}\right)$ (and all congeners), Oil and Grease (EPA 413.1), Cl-, SO4, N)3+NO2-N, Perchlorate; TDS, TSS VOCs (624); VOCs, $\Lambda+A+2 C V F ;$ NIDDES + PP; Pcsticides/PCBs-PP; Gross Alpha, Gross Betar. Tritium (906.0) Sr-90, Total Combined Radium 226e228; SVOCs - PR A Acute toxicity, Cyanide. | Routian Constituents per 2004 NPDES Pemit - Total Recoverable Metals: $\mathrm{Sb}, \mathrm{Cd}, \mathrm{Cu}$, $\mathrm{Pb}, \mathrm{Hg}_{\mathrm{g}} \mathrm{TCDD}$ (and all congeners); Oil and Crease (EPA 413.1), TDS, Tss. |


| 1080992 | Outall 006 | 02/11/05 | Anntual Constituenxs per 2004 NPDF:S <br> Permit - Total Recoverable Metals; $\mathrm{Sb}_{4}$ <br> $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{Hg}, \mathrm{B}, \mathrm{V}, \mathrm{A},+\mathrm{PP}, \mathrm{TCDD}$ <br> (and all congeners); Oil and Grease <br> (EPA 413.1), Cl $\mathrm{SO} 4, \mathrm{~N}) 3+\mathrm{NO} 2 \mathrm{~N}$, <br> Peruhtorate; TDS, TSS VOCe (624); <br> Vocs, $A+A+2 C V E ;$ NPDES + PR; <br> Pcoticides/PCBs-PP: Groes Alpha <br> Gross Beta, Tritum (906.0), Sr-90, <br> Total Combined Radium 226\$228; <br> SVOCs - PP, Acure toxiciry Cymidc. | Routine Constituents per 2004 NPDES Permit - Towal Recoverable Metals: Sb, Cd, Cu. $\mathrm{Pb}, \mathrm{Hg}$ TCDD (and all conyeners); Oil and Grease (EPA 413.1); TDS. TSS. |
| :---: | :---: | :---: | :---: | :---: |
| IOBIOOX | Outhall 018 | 02/11/05 | Annual Constituents par 2004 NPDES <br> Pernit - Tutal Recoverable Metalk: Sb, <br> $\mathrm{CL}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{Hg} \mathrm{B}, \mathrm{V}, \mathrm{Al},+\mathrm{PP}, \mathrm{TCDD}$ <br> (and all congeners); Oil and Grease <br> (EPA 413.I): Cl-, $\mathrm{NO} 4, \mathrm{~N} 33+\mathrm{NO} 2-\mathrm{N}$. <br> Porthlorate; TDS, TSS VOCs (624); <br> VOCs $1+A+2 C V E ;$ NPDES + PP; <br> Pcslicidea/PCRs-PP; Groms Alpha, <br> Gross Bets Trithum (906.0), $\mathbf{S r}-90$, <br> Total Combined Radium 2260228; <br> SVOX: - PP, Acutc toxicity, Cyanide. | Routinc Constituents per 2004 NPDES Pemit - 'Iocal Recoverable Mesals: $\mathrm{Sb}, \mathrm{Cd}, \mathrm{Cu}$, $\mathrm{Pb}, \mathrm{Hg}, \mathrm{TCDD}$ (and all congeners); Oil und Grease (EPA 413.1): TDS, TSS. |
| 1081014 | Outfall 011 | 02/11/04 | Chromium IV |  |
| 10A0131 | Outfall 011 -* Composite | 01/04/05 |  | Anmonial BOD, Chloride, NitruedNirite as $\mathrm{N}, \mathrm{Oil}$ and Grease Sultate, MBAS, TDS, TSS, TOC, Sctleable Solids, Turbidity, Cr. Cyanide, perchlorate, Conductivity, $\mathrm{Cu}, \mathrm{H}_{\mathrm{B}}$ TCDD |
| 10A0121 | Outall 111 Grab | 01/04/05 |  | Total Recoverable Hydrocarbons, Extructabic Fuel Hydrocarbons. GRO, Fhuoride, Kesidual Chlorine. TOC, Cr VI, 1,4-Dioxane, Monomethyl Hydrazine. Bicassays, SVOC (625)-PP list, PcstPCH-PP list (608), Total Recoveruble Metds (yclohexane Q Frion 123s \& $A+A+2 C V F$ (624). Rudchern |

The peason for these chunges:

## Incorrectly marked on COC form

t.ack of :atmple vaitumz

MWhi ajfice personnel require this charge
$\frac{x}{x}$

This Chunge Ordcr supersedes sll previouy change orders submited.


April 6,2005

MWH-Pasadena/ Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention: Bronwyn Kelly
Project: $\quad 13267$ (Study1)/Outfall 011
Sampled: 02/11/05
Del Mar Analytical Number: IOB1014

Dear Ms. Kelly:
Aquatic Testing Laboratories performed the Fathead Minnow 96 hr Percent Survival Bioassay (EPA Method 2000.0), Eberline Services tested gross alpha/gross beta (EPA 900.0), tritium (H-3, EPA 906.0), and strontium-90 (Sr-90, EPA 905.0) and Alta Analytical Perspectives performed Method 1613 Dioxin, and Truesdail Laboratories performed the Hydrazines by EPA 8315 analysis for the project referenced above. Please use the following cross-reference table when reviewing your results.

| MWH ID | DEL MAR <br> $\mathbf{D}$ | ATL ID | EBERLINE <br> $\mathbf{I D}$ | ALTA ID | TRUESDADL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{D}$ |  |  |  |  |  |

Attached are the original reports from the subcontract laboratories. If you have any questions or require further assistance, please do not hesitate to contact me at (949) 261-1022 at extension 215.

Sincerely yours,
DEL MAR ANALYTICAL


Michele Harper
Project Manager

Date:

Client:

February 19, 2005
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Attn: Michele Harper

Aquatic Testing

4350 Transport Street, Unit 107 Ventura, CA 93003
(805) 650-0546 FAX (805) 650-0756 CA DOHS ELAP Cert. No.: 1775

Laboratory No.: A-05021210-001/002
Sample I.D.: IOB1014-01

Sample Control: The sample was received by ATL chilled, with the chain of custody record attached.
Date Sampled: $\quad 02 / 11 / 05$
Date Received: 02/12/05
Date Tested: $\quad 02 / 12 / 05$ to $02 / 18 / 05$

Sample Analysis: The following analyses were performed on your sample:
Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0), Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

## Result Summary:

| Acute: | $\frac{\text { Survival }}{}$ | TUa |
| :--- | ---: | ---: |
| Fathead Minnow: | $100 \%$ | 0.0 |
|  |  |  |
| Chronic: |  | $100 \%$ |
| $\quad$ Neriodaphnia Survival: | 1.0 |  |
| $\quad$ Ceriodaphnia Reproduction: | $100 \%$ | 1.0 |

Quality Control: Reviewed and approved by:


## FATHEAD MINNOW PERCENT SURVIVAL TEST

Lab No.: A-05021210-001
Client/ID: Del Mar IOB1014-01

## TEST SUMMARY

Species: Pimephales promelas.
Age: 13 (1-14) days.
Regulations: NPDES.
Test solution volume: 250 ml .
Feeding: prior to renewal at 48 hrs .
Number of replicates: 2.
Dilution water: Moderately hard reconstituted water.
Photoperiod: $16 / 8 \mathrm{hrs}$ light/dark.


Start Date: 02/12/2005

Source: In-laboratory Culture.
Test type: Static-Renewal.
Test Protocol: EPA-821-R-02-012.
Endpoints: Percent Survival at 96 hrs.
Test chamber: 600 ml beakers.
Temperature: $20+/-1^{\circ} \mathrm{C}$.
Number of fish per chamber: 10.
QA/QC Batch No.: RT-050208.

TEST DATA

|  |  | ${ }^{\circ} \mathrm{C}$ | DO | pH |  | Dead | Analyst \& Time of Readings |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | A | B |  |
| InITIAL | Control | 20.2 | 8.1 | 2.8 | 0 | 0 | $\sum_{1200}^{\infty}$ |
|  | 100\% | 20.7 | 9.3 | 6.7 | 0 | 0 |  |
| 24 Hr | Control | 20.3 | 6.9 | 7.7 | 0 | 0 | $\frac{2}{1100}$ |
|  | 100\% | 20.3 | 6.4 | 2.0 | 0 | 0 |  |
| 48 Hr | Control | 20.4 | 7.4 | 2.5 | 0 | 0 | $\frac{2}{12 \infty}$ |
|  | 100\% | 20.5 | 2.2 | 7.0 | 0 | 0 |  |
| Renewal | Control | 20.4 | 8.0 | 7.7 | 0 | 0 | $\frac{n}{12 c 0}$ |
|  | 100\% | 20.3 | 8.8 | 6.7 | 0 | 0 |  |
| 72 Hr | Control | 19.8 | 7.8 | 24 | 0 | 0 | $\operatorname{LO}_{1100}$ |
|  | 100\% | 19.6 | 28 | 7.0 | 0 | 0 |  |
| 96 Hr | Control | 20.7 | 28 | 7.4 | 0 | 0 | cm |
|  | 100\% | 20.6 | 27 | 1.9 | 0 | 0 | 1100 |

Comments:
Sample as received: Chlorine: $0 \mathrm{mg} / \mathrm{pH}: 6.7$; Conductivity: $/ 13$ umbo; Temp: $4^{\circ} \mathrm{C}$; DO: $9.3 \mathrm{mg} /$; Alkalinity: $31 \mathrm{mg} / ;$ Hardness: $/ / / \mathrm{mg} / ; \mathrm{NH}_{3}-\mathrm{N}: 0.3 \mathrm{mg} / \mathrm{l}$.
Sample aerated moderately (approx. $500 \mathrm{ml} / \mathrm{min}$ ) to raise or lower DO? Yes / (60)
Control: Alkalinity: $54 \mathrm{mg} /$; Hardness: 87 mg l; Conductivity: 295 umho.
Test solution aerated (not to exceed 100 bubbles $/ \mathrm{min}$ ) to maintain DO $>4.0 \mathrm{mg} / 1$. Yes / Wol
Sample used for renewal is the original sample kept at $0-6^{\circ} \mathrm{C}$ with minimal headspace.

## RESULTS

Percent Survival In: Control: $\qquad$ $\% \quad 100 \%$ Sample: $\qquad$ $\%$

Lab No.: A-05021210
Client/ID: Del Mar IOB1014-01
Date Tested: 02/12/05 to 02/18/05

TEST SUMMARY
Test type: Daily static-renewal.
Species: Ceriodaphnia dubia.
Age: $<24 \mathrm{hrs}$; all released within 8 hrs .
Test vessel size: 30 ml .
Number of test organisms per vessel: 1.
Temperature: $25+/-1^{\circ} \mathrm{C}$.
Dilution water: Mod. hard reconstituted (MHRW).
QA/QC Batch No.: RT-050204.
Endpoints: Survival and Reproduction. Source: In-laboratory culture. Food: . 1 ml YTC, algae per day. Test solution volume: 15 ml . Number of replicates: 10. Photoperiod: $16 / 8$ hrs. light/dark cycle. Test duration: 7 days. Statistics: ToxCalc computer program.

RESULTS SUMMARY

| Sample Concentration | Percent Survival | Mean Number of <br> Young Per Female |
| :---: | :---: | :---: |
| Control | $100 \%$ | 27.6 |
| $6.25 \%$ | $100 \%$ | 27.3 |
| $12.5 \%$ | $100 \%$ | 26.2 |
| $25 \%$ | $100 \%$ | 27.7 |
| $50 \%$ | $100 \%$ | 28.9 |
| $100 \%$ |  |  |$\quad 100 \%, 24.6$.

CHRONIC TOXICITY

| Parameter | Survival | Growth |
| :---: | :---: | :---: |
| NOEC | $100 \%$ | $100 \%$ |
| TUc | 1.0 | 1.0 |

QA/QC TEST ACCEPTABILITY
$\left.\begin{array}{|c|c|}\hline \text { QA/QC TEST ACCEPTABILITY } \\ \hline \text { Parameter } & \text { Result } \\ \hline \text { Control survival } 280 \% & \text { Pass (100\% survival) } \\ \hline z 15 \text { young per surviving control female } & \text { Pass (27.6 young) } \\ \hline \times 60 \% \text { surviving controls had 3 broods } & \text { Pass ( } 100 \% \text { with } 3 \text { broods) } \\ \hline \text { PMSD }<47 \% \text { for reproduction; if }>47 \% \text { and no toxicity } \\ \text { at IWC, the test must be repeated }\end{array}\right]$ Pass (PMSD $=13.6 \%$ )

Fax (199) 254-1228 Fex (909) 370-1046 Fax (649) 505-9689 Fax (460) 785-085) Fax (7R2)703-3021

## SUBCONTRACT ORDER - PROJECT \# IOB1014

| SENDING LABORATORY: |  |
| :--- | :--- |
| Del Mar Analytical, Irvine | RECEIVING LABORATORY: <br> 17461 Derian Avenue. Suite 100 <br> Irvine, CA 92614 <br> Phone: (949) 261-1022 <br> Fax: (949) 261-1228 <br> Project Manager: Michele Harper |

Standard TAT is requested unless specific due date is requested $\Rightarrow$ Due Date: Initials: $\qquad$
Analysis
Expiration

## Comments

Sample ID: 1OB1014-01 Water Sampled: 02/11/05 12:20

| Bioassay-7 dy Chrnic | $02 / 13 / 0500: 20$ |
| :--- | :--- |
| Bioassay-Acute 96 hr | $02 / 13 / 0500: 20$ |

ceriodaphnia, 13267
fathead minnow, 13267

## Containers Supplied:

1 gal Poly (IOB1014-01AT)
1 gal Poly (IOB1014-01AU)


## EBERLINE

March 8, 2005

Ms. Michele Harper
Project Manager
Del Mar Analytical
17461 Derian Avenue, Suite 100
Irvine, CA 92614

## Reference: Del Mar Analytical Project No. IOB1014 <br> Eberline Services NELAP Cert \#01120CA (exp. 01/31/06) <br> Eberline Services Report R502135-8264

Dear Ms. Harper:
Enclosed are results from the analyses of one water sample received at Eberline Services on February 15, 2005. The sample was analyzed according to the accompanying Del Mar Analytical Subcontract Order Form. The requested analyses were gross alpha/gross beta (EPA900.0), tritium (H-3, EPA906.0), and strontium-90 (Sr-90, EPA905.0). The QC LCS, blank analyses, sample duplicates, and matrix spike results for the analyses were within the limits defined in Eberline Services Quality Control Procedures Manual. Analyses that involve the yielding of an analytical tracer or carrier, such as $\mathrm{Sr}-90$, do not require matrix spike analyses to be performed.

Please call me if you have any questions concerning this report.
Regards.


Melissa Mannion
Senior Program Manager
$M(M i n j v$
Enclosure: Report
Subcontract Form
Receipt checklist
Invoice

Analytical Services
2030 Wright Avenue
P.O. Bax 4040

## Eberline Services

ANALYSIS RESULTS


Client
Sample iD

IOB1014-01

| $\begin{gathered} \text { Lab } \\ \text { Sample ID } \end{gathered}$ | Collected | Analyzed | Nuclide | Regults $\pm 2 \sigma$ | Units | NDA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8264-001 | 02/11/05 | 03/01/05 | GrossAlpha | $0.895 \pm 0.76$ | pCi/L | 1.05 |
|  |  | 03/01/05 | Gross Beta | $2.50 \pm 1.3$ | pci/L | 1.90 |
|  |  | 03/02/05 | H3 | $97.4 \pm 140$ | pCi/L | 237 |
|  |  | 02/25/05 | Sr90 | $-0.216 \pm 0.23$ | pCi/L | 0.519 |

## Eberline Services

QC RESULTS

| $\begin{array}{r} \text { SDG } \frac{8264}{} \\ \text { Work Order } \frac{8502135-02}{02 / 15 / 05} \\ \text { Received Date } \end{array}$ |  |  |  | Client DEL MAR ANAL Contract pROIECTI IOB1014 Matrix Mater |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lab Sample ID | Nuclide | Results | Unitg | Amount Added | MDA | Evaluation |
| LCS |  |  |  |  |  |  |
| 8261-002 | GrossAlpha | $8.92 \pm 1.1$ | pCi/Smpl | 11.2 | 0.403 | 80\% recovery |
|  | Gross Beta | $10.6 \pm 0.77$ | pCi/Smpl | 12.1 | 0.556 | 88\% recovery |
|  | H3 | $281 \pm 24$ | pCi/Smpl | 259 | 23.4 | 108: recovery |
|  | Sr90 | $12.0 \pm 0.59$ | pCi/Smpl | 11.1 | 0.238 | 108: recovery |
| BLANK |  |  |  |  |  |  |
| 8261-003 | GrossAlpha | $-0.032 \pm 0.15$ | pCi/Smpl | NA | 0.374 | <MDA |
|  | Gross Beta | $-0.073 \pm 0.30$ | pCi/Smpl | NA | 0.554 | CMADA |
|  | H3 | $13.6 \pm 25$ | pCi/Smpl | NA | 23.9 | <MDA |
|  | Sr90 | $-0.091 \pm 0.10$ | $\mathrm{pCi} / \mathrm{Smpl}$ | NA | 0.234 | <MIDA |


| DUPLICATES |  |  |  | ORIGTNAIS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID | Nuclide | Results +20 | NDA | Sample ID | Results $\pm 2 \sigma$ | MDA | RPD | 30 (Tot) Eval |
| 8261-004 | GrossAlpha | $3.40 \pm 1.4$ | 0.926 | 8261-001 | $1.64 \pm 1.0$ | 0.936 | 70 | 112 satis. |
|  | Gross Beta | $6.02 \pm 1.4$ | 1.80 |  | $5.18 \pm 1.3$ | 1.80 | 15 | 60 satis. |
|  | H3 | $393 \pm 160$ | 242 |  | $72.9 \pm 150$ | 246 | 138 | 144 satis. |
|  | Sr90 | -0.186 $\pm 0.19$ | 0.431 |  | $-0.077 \pm 0.25$ | 0.499 | - | 0 atia. |


| SPIKED SAMPLE |  |  |  |
| :---: | :---: | :---: | :---: |
| Sample ID | Nuclice | Results $\pm 2 \sigma$ | MDA |
| 8261-005 | Grosmaipha | $81.8 \pm 5.3$ | 1.04 |
|  | Gross Beta | $82.0 \pm 3.7$ | 1.81 |
|  | $\mathrm{H}_{3}$ | 17800 $\pm 520$ | 243 |


| Sample ID | Regulta $\pm 20$ | MDA | Added | *Recy |
| :---: | :---: | :---: | :---: | :---: |
| 8261-001 | $1.64 \pm 1.0$ | 0.936 | 76.6 | 105 |
|  | $5.18 \pm 1.3$ | 1.80 | 73.9 | 104 |
|  | $71.9 \pm 150$ | 246 | 18900 | 94 |



## SUBCONTRACT ORDER - PROJECT \# IOB1014




## Ruchmand, CA LaBORATORY

SAMPLE RECEIFT CHECXUST

Customer Sample
No.
Ion Chamber Ser. No.
Alpha Merar Ser. No.
Bera/Garmina Merter Ser. No.

## Alta analytical Perspectives

3 March 2005
Scott Unze
Pace Analytical Services
1700 Elm Street
Minneapolis, MN 55414
Ph.: 612-607-1700
Fax: 612-607-6444

## Subject: Certificate of Results

## Dear Scott;

Attached to this narrative are the analytical results you requested on the samples submitted for the determination of polychlorinated dibenzo-p-dioxins and dibenzofurans. The insert below summarizes the relevant information pertaining to your project. In particular, the QC annotations bring to your attention specific analytical observations and assessments made during the sample handling and data interpretation phases. A brief description of the report's components is provided on the next page.

| Project Information Summary | When applicable, see QC Annotations for detailsP5072Method 161381313110 |
| :---: | :---: |
| Client Project No. |  |
| AAP Project No. |  |
| Analytical Protocol |  |
| No. Samples Submitted |  |
| No. Samples Analyzed |  |
| No. Laboratory Method Blanks |  |
| No. OpRs / Batch CS3 |  |
| No. Outstanding Samples |  |
| Date Received |  |
| Condition Received |  |
| Temperature upon Receipt (C) |  |
| Extraction within Holding Time |  |
| Analysis within Holding Time |  |
| Data meet QAQC Requirements |  |
| Exceptions |  |
| Analytical Difficulties |  |

[^36]
## QC Annotations:

1. A " J " data qualifier is used for analytes with a concentration below the reporting limit.

Alta Analytical Perspectives remains committed to serving you in the most effective manner. Should you have any questions or need additional information and technical support, please, do not hesitate to contact us. We wanted to thank you for choosing Alta Analytical Perspectives as part of your analytical support team.

Sincerely,
Core
Amy I. Boehm
Project Manager



(1) DR
$1=$ EMPC

## P5072 - Totals

Project ID: General Analytical HRMS

| Sample SummaryPart 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analyst |  |  |  |  |  |  |  |  |  |  |  |  | Method 1613 |  |
|  | -.zanmmabor | 108100701 | 1080085.1 | 108099601 | 108097001 | 108101441 | 1080980.01 |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | 10sasa0-0 | 1080880.01 | 108100801 | 1084002-01 | 1080982-19 | 108100404 | 1080885.01 | 108009109 |
| Totat | 20 | par | pod | pol | pal | ppa | p2 | ppa | pgt | pgh | p9 2 |  |  |  |
| T000: |  |  |  |  |  |  |  |  |  |  |  | pgn | pgh | por |
| Pacios | 0 |  | O | 0 | 0 |  |  |  |  |  |  |  |  |  |
| $\mathrm{Hecoch}^{\text {a }}$ | 0 | 0 7.38 | 4.4 | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 |  |
|  | - | 7.38 <br> 153 | 4.44 | ${ }_{25}^{0}$ | $\bigcirc$ | 0 | 0 | 0 | 30.8 | 0 | 0 | 0 | 0 | 0 |
| OcDo | 0 | ${ }_{88} 8$ | ${ }_{267} 85.1$ | ${ }_{134}^{25.2}$ | 9.48 70.4 | ${ }^{29.6}$ | 0 | 109 | 415 | 12.1 | 0 | $\stackrel{0}{43,}$ | 0 | 0 |
| TCCF\% |  |  |  |  | 70.4 | 157 | 56.1 | 471 | 2120 | 163 | 70.2 | ${ }_{213}$ | 12.2 50.3 | 0 |
| Pecors | 0 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |  |
| $\mathrm{HxCOFF}_{5}$ | 0 | $\bigcirc$ | 0.858 | 0 | 0 | 0.76 | 0.256 | 0 | 6.53 25 | 0 | 0 | 0 | 0 | 0 |
| ${ }_{\text {H0COFs }}$ | 0 | 2.68 98.9 | 0 | 0 | 0 | 0 | 0 | 4.13 | ${ }^{2.52 .8}$ | $\bigcirc$ | 0.456 | 0 | 0 | 0 |
| OCbF | 0 | ${ }^{9285}$ | 0 | $\bigcirc$ | 0 | ${ }_{0}^{10.2}$ | 0 | 36.5 | ${ }^{38.7}$ | 5.96 | 0 | 0 | 0 | 0 |
|  |  |  |  |  |  |  |  | 34.9 | 87.1 | 0 | 0 | 0 | 0 | 0 |
| Toatal PCDOFFS (NDOO; EMPC=EMPC) | 0.00 0.00 | 1,290 1,300 | 338 342 | 159 | 79.8 | 197 | 56.4 | 648 |  |  |  |  |  |  |
|  | 42.2 |  |  | 180 | 79.9 | 197 | 56.4 | 663 | ${ }_{2}^{2,030}$ | ${ }_{183}^{182}$ | 70.7 70.7 | ${ }^{256}$ | ${ }^{62.8}$ | 50 |
| Totat 2376s NDOEO : EmPCom |  | 1,330 | 301 | 215 | 128 | 238 | 119 | 691 | 2,840 | 228 |  | 256 | 62.6 | 50 |
|  | 0.00 | 1,130 | 298 |  |  |  |  |  |  |  | 144 | 370 | 121 | 144 |
|  | 21.1 42.2 | 1,140 1,160 | 319 | 172 | 94.6 | ${ }_{193}$ | ${ }_{\text {S }}^{56.9}$ | ${ }_{581}^{567}$ | 2,440 | 178 | 70.2 | 234 |  |  |
|  |  | 1,160 | ${ }^{338}$ | 200 | 118 | 214 | 119 | ${ }_{595}^{589}$ | 2,450 | 193 | 107 | 294 | ${ }_{79} 9.5$ | ${ }_{82}^{50}$ |
|  | 0.00 21.1 | 1,130 1,140 | ${ }^{299}$ | 144 | 70.4 |  |  |  |  |  | 14 | 348 | 109 | 114 |
|  | 21.1 <br> 42.2 | 1,140 <br> 1,160 | 319 339 | 172 200 | 94.6 | 193 | 56.1 87.5 | ${ }_{581}^{567}$ | 2,440 | 178 | 70.2 | 234 |  |  |
| Shecreode | 3385 | (1,660 | ${ }_{4681} 38$ | 200 | 119 | 214 | 119 | ${ }^{595}$ |  | 193 219 | 107 <br> 144 | ${ }_{348}^{291}$ | 78.5 | 82 |
|  | 3365 | 4369 | 4681 | 4985 | 5239 | 5527 | 5797 | 0067 | 0335 |  |  |  | 109 | 114 |
|  | mango |  |  |  |  |  |  |  |  | 0612 | 3929 | 4355 | 4822 | 4900 |



| Totals | $\square$ Total PCDO/Fs ( $\mathrm{ND}=0$; EMPC=0) |
| :---: | :---: |
| Project ID: General Analytical HRMS | $\square$ Total PCDD/Fs ( $\mathrm{ND}=0$ : EMPC=EMPC) |
| P5072 | © Total PCDD/Fs ( $2378-\mathrm{X}$ ND=DL |





## SUBCONTRACT ORDER - PROJECT \# IOB1014

| SENDING LABORATORY: <br> Del Mar Analytical; Irvine <br> 17461 Derian Avenue. Suite 100 <br> Irvine, CA 92614 <br> Phone: (949) 261-1022 <br> Fax: (949) 261-1228 <br> Project Manager: Michele Harper | RECEIVING LABORATORY: <br> Pace Analytical, MN- SUB <br> 1700 Elm Street, Ste 200 <br> Minneapolis, MN 55414 <br> Phone :(612) 607-1700 <br> 107694 <br> Fax: (612) 607-6444 |
| :---: | :---: |
| Standard TAT is requested unless specific due date is requested $\Rightarrow$ Due Date:___ Initials: |  |
| Analysis Expiration | Comments |
| Sample ID: 10B1014-01 Water Sampled: 02/11/05 12:20 |  |
| 1613-Dioxin-HR 02/18/05 12:20 | J flags, 17 congeners, no TEQ, sub to Pace-MN |
| EDD + Level $4003 / 11 / 0512: 20$ | Excel EDD email to pm, Include Std logs for Lvl IV |
| Containers Supplied: | 001 |
| 1 L Amber (IOB1014-011) | O1 |
| 1 L Amber (IOB1014-01J) |  |

SAMPLE INTEGRITY:

Released By
Section B.

## Page: 1 of 2

negar.
 (


Tun Around Time fiAT) in entendar daya.

## $\int^{3000 \times 18 i v W}$ <br> 5



| ORIMKING WATE |
| :--- |

Somple $2081002-01$ o1 $1080988-01$
ore bath datred $02 / 10 / 05$

| SAMPLE CONDIMON <br> Temp in ${ }^{\circ} \mathrm{C}$ |  |
| :--- | :---: |

Section D Roquired Cuent information:
Requirad Cuent intormation:
Section A
nodroass PACE
andrass 1700 ElM $5 t$.
Suite 200
Phone M/s., MN $5541 \%$

\# M 311
$\begin{array}{ll}4 & =1\end{array}$

## CHAIN-OF-CUSTODY / Analytical Request Document

 must bocompoted eccurrately.|  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

## Truesdail Laboratories, Inc.

February 22, 2005

$\xrightarrow{\text { Established } 1931}$
14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 • FAX (714) 730-6462 www.truesdail.com

Client: Del Mar Analytical
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Attention: Michele Harper

Project Name: $10 B 1014$
Date Received: 02/14/05
Truesdail Project: 939705

## Samples Cross-reference

| Truesdail ID | Clien ID | Matrix | Date Sampled | Time Sampled | Analysis Requested |
| :--- | :--- | :--- | :---: | :---: | :--- |
| $939705-1$ | IOB1014-01 | Water | $02 / 11 / 05$ | $12: 20$ | Hydrazines by EPA 8315M |

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.
$\frac{K \cdot \vec{N}, y \text { gen }}{\text { K.R.P. Iyer }}$


## Truesdail Laboratories, Inc.

independent Testing, Forensic Science, and Environmental Analyses

February 22, 2005


## Project Name:

Date Received:
1OB1014
02/14/05
Truesdail Project:
939705

## Case Narrative

The sample was received in good condition and no anomalies were noted during check-in. The sample was kept in a locked refrigerator until analysis. Thereafter, it is being kept in ambient storage for an additional 2 months before disposal.

Quality Control $\quad \begin{aligned} & \text { The analytical results for each batch of samples performed include a minimum of one set } \\ & \text { of laboratory control sample/labor }\end{aligned}$
The analytical results for each batch of samples performed include a minimum of one set
of laboratory control sample/laboratory control sample duplicate (LCS/LCSD), one matrix
spike (MS) and a reagent blank (Method blank). Any exceptions or problems would be
noted in the "comments" section.
The analytical results for each batch of samples performed include a minimum of one set
of laboratory control sample/laboratory control sample duplicate (LCS/LCSD), one mat
spike (MS) and a reagent blank (Method blank). Any exceptions or problems would be
noted in the "comments" section. noted in the "comments" section.

## Sample Receipt

Analysis

## Comments

 The analysis was perfomed as requested on the chain-of-custody.The test results in this report meet all quality assurance requirements set forth by the method specification and all quality control recoveries were within the laboratory acceptance limits. No anomalies or nonconformance events occurred during the course of analysis. The analytes were quantitated down to the Method Detection Limit (J flags) per client's
request.

\author{

| Client: | Del Mar Analytical <br>  <br>  <br>  <br> 17461 Derian Avenue, Suite 100 <br> Irvine, CA 92614 |
| :---: | :--- |
| Attention: | Michele Harper | <br> Del Mar Analytical <br> Irvine, CA 92614 <br> Michele Harper

}

Truesdail Laboratories. Inc.
INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES


Truesdail Laboratories. Inc.
INDEPENDENT TESTING, FORENSIC SCIENCE, ANO ENVIPONMENTAL ANALYSES
Quality Control/Quality Assurance Calibration Report

| Parametar | Theoretical Value (uglt) | Measured Value (ught) | $\begin{gathered} \% \\ \text { Rec. } \end{gathered}$ | Control Limits | Flag |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Monomethyl Hydrazine | 25.0 | 24.5 | 98.1 | 85-115 | PASS |
| u-Dimethyl Hydrazine | 25.0 | 25.4 | 102 | 85-115 | PASS |
| Hydrazine | 5.0 | 4.87 | 97.4 | 85-115 | PASS |

## Client: Del Mar Analytical <br> REPORT <br> 1761 Derian Ave irvine, CA 92614 <br> Michele Harper Liquid / 1 Sample <br> 1081014 <br> - <br> Client Contact: Sample: Sample ID: P.O. Number: Method Number: Run Batch No.: Investigation:


Parrametar
ICV: Inlital Callibration Vorification
OCS: Ouality Control Standard
LCS: Laboratory Control Spike
Ms: Matrix Spike
\%D: Pencent Oifferance
Flag: "Pass" If within Cont
Flag: "Pass" If within Controf Limits; Otherwise "Fais"
Note: Resultus based on detector $\operatorname{li} 1(\mathrm{UV}=365 \mathrm{~nm})$ data.

 Ftax (906) 370-1046 Fax ( Bt $^{2}$ ) 506-96es Finx (480) 783-0es Fin (roce) 7renser

## SUBCONTRACT ORDER - PROJECT \# IOB1014




> For Sample Conditions See Form Attached


## Sample Integrity \& Analysis Discrepancy Form



Date Delivered: $\underline{2} 2 \underline{14} / 05$ Time: $\underline{07}: 21$ By: eMail afield Service client

1. Was a Chain of Custody received and signed?
2. Does Customer require an acknowledgement of the COC?
3. Are there any special requirements or notes on the COC?
4. If a letter was sent with the COC, does it match the COC? dyes and aNTA
aYes aN antA
aYes an $\quad$ INA
aYes UNO INA
5. Were all requested analyses understood and acceptable?
6. Were samples received in a chilled condition?
ques a no
DNA dyes and
aNTA
7. Were samples received intact (ie. broken bottles, leaks, air bubbles, etc.
8. Were sample custody seals intact?

9. Does the number of samples received agree with COC ?
10. Did sample labels correspond with the client ID's?
11. Did sample labels indicate proper preservation?

Preserved (if yes) by: aTruesdall Client
12. Were samples pH checked? $\mathrm{pH}=$ $\qquad$
13. Were all analyses within holding time at time of receipt? If not, notify the Project Manager.
14. Have Project due dates been checked and accepted? Turn Around Time (TAT): $\square$ RUSH al Std


- Yes $\quad$ No


 [NRA ochres a no aNTA

15. Sample Matrix: Q Liquid DDrinking Water $\square G r o u n d$ Water Waste Water Sludge soil sWipe
$\square$ Paint Solid Other $\qquad$
16. Comments:
17. Sample Check-In completed by Truesdail Log-In/Receiving:


## Internal Chain of Custody Logbook



Storage Temperature:

-


$\square$


ID.

| Analysis <br> Done | Date <br> Out | Time | Date | Time |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | In | Ir. |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
| Storage | Shell No. For <br> Storage | Printed Name | Initials |  |
|  |  |  |  |  |

1.D.


| Storage <br> Date | Shelf No. For <br> Storage | Printed Name | Initials |
| :---: | :---: | :---: | :---: |
|  |  |  |  |


| Discharge Date | Printed Name | Initial: |
| :---: | :--- | :--- |
|  | . |  |


[^0]:    * Subcontracted analytical laboratory is not meeting contract and/or method requirements.
    ${ }^{6}$ Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

[^1]:    Subcontracted analytical laboratory is not meeting contract and/or method requirements.

    - Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

[^2]:    2714 EXCHANGE DRIVE
    WILMINGTON
    NORTH CAROLINA 28405
    TEL: 910-794-1613 FAX 910-794-3919

[^3]:    - Subcontracted analytical laboratory is not meeting contract andior method requirements.

    Differences in protocol have been adopted by the laboratory but no action against the laboratory is required

[^4]:    ${ }^{2}$ Subcontracted analytical laboratory is not meeting contract and/or method requirements.

    - Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

[^5]:    Subcontracted analytical laboratory is not meeting contract and or method requirements.
    ${ }^{6}$ Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

[^6]:    MWh-Pasadenabocing
    300 North Laxe Averue, Stite 1200 Pasadena, CA9110:
    Attention: Bronwyn Kelly

    Poject WV Anmal Outhall 006
    Repur Number: IOB1559

    Sampled: 02186s
    Receved: 021so5

[^7]:    * Subcontracted analytical laboratory is not meeting contract and/or method requirements.
    ${ }^{b}$ Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

[^8]:    MWH-Pasadena/Boeing
    300 North Lake Avenue, Suite 1200
    Pasadena, CA 9110:
    Artention: Bronwyn Kelly

    ## Project ID: Annual Outfall 006

    Report Number: $10 B 1559$

    Sampled: 02:18/05
    Received: 021805

[^9]:    Del Mar Analytical, Irvine
    Wendy Kirkeeng For Michele Harper
    Project Manager

[^10]:    Jel Mar Analytical, Irvine
    Vendy Kirkeeng For Michele Harper roject Manager

[^11]:    William J. Luksemburg 01-Mar-2005 16:44

[^12]:    ${ }^{\text {a }}$ Subcontracted analytical laboratory is not meeting contract and/or method requirements.
    b Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

[^13]:    - Subcontracted analytical laboratory is not meeting contract and/or method requirements.
    ${ }^{\text {b }}$ Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

[^14]:    MWH-Pasadena/Boeing
    300 North Lake Avenue, Suite 1200
    Pasadena, CA 91101
    Attention: Bronwyn Kelly

    Project ID: Annual Outfall 007
    Report Number: $10 B 0993 \quad$ Sampled: 02/1105

    Received: 02/11/05

[^15]:    MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Proiect ID: Annual Dutfall 007

    Report Number: IOB0993

    Sampled: 02/11/05
    Received: 02:11/05

[^16]:    Del Mar Analytical, Irvine
    Wendy Kirkeeng For Michele Harper Project Manager

[^17]:    Del Mar Analytical, Irvine
    Wendy Kirkeeng For Michele Harper
    Project Manager

[^18]:    Del Mar Analytical, Irvine
    Wendy Kirkeeng For Michele Harper
    Project Manager

[^19]:    Del Mar Analytical, Irvine Wendy Kirkeeng For Michele Harper Project Manager

[^20]:    MWH-P'asadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
    Attention: Bronwyn Kelly

    Project ID: 13267 (Study 1)
    Outfall 011
    Report Number: IOB1014

    Sampled: 0211.05
    Received: 02111:05

[^21]:    ${ }^{\text {a }}$ Subcontracted analytical laboratory is not meeting contract andior method requirements.

    * Differences in protocol have been adopted by the laboratory but no action against the laboratory is reguired.

[^22]:    ${ }^{2}$ Subcontracted analytical laboratory is not meeting contract and/or method requirements.

    - Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

[^23]:    Del Mar Analytical, Irvine
    Michele Harper
    Project Manager

[^24]:    Del Mar Analytical, Irvine
    Michele Harper
    Project Manager

[^25]:    Del Mar Analytical, Irvine
    Michele Harper
    Project Manager

[^26]:    Del Mar Analytical, Irvine
    Michele Harper
    Project Manager

[^27]:    Del Mar Analytical, Irvine
    Michele Harper
    Project Manager

[^28]:    Del Mar Analytical, Irvine
    Michele Harper
    Project Manager

[^29]:    Del Mar Analytical, Irvine
    Michele Harper
    Project Manager

[^30]:    Del Mar Analytical, Irvine
    Michele Harper
    Project Manager

[^31]:    Del Mar Analytical, Irvine
    Michele Harper
    Project Manager

[^32]:    Del Mar Analytical, Irvine
    Michele Harper
    Project Manager

[^33]:    Del Mar Analytical, Irvine
    Michele Harper
    Project Manager

[^34]:    Del Mar Analytical, Irvine
    Michele Harper
    Project Manager

[^35]:    Del Mar Analytical, Irvine
    Michele Harper
    Project Manager

[^36]:    2714 EXCHANGE DRIVE
    WILMINGTON
    NORTH CAROLINA 28405
    TEL: 910-794-1613 FAX 910-794-3919
    $1 / 2$

