APPENDIX G - VOLUME 3 (Part 2 of 7)
 TABLE OF CONTENTS

Section No.

11 January Outfall 011, AMEC Data Validation Reports, Del Mar Analytical Laboratory Reports

12 January Outfall 015 - AMEC Data Validation Reports, Del Mar Analytical Laboratory Reports

13 January Outfall 017 - AMEC Data Validation Reports, Del Mar Analytical Laboratory Reports

14 January Outfall 018 - AMEC Data Validation Reports, Del Mar Analytical Laboratory Reports

15 February Outfall 001 - AMEC Data Validation Reports, Del Mar Analytical Laboratory Reports

APPENDIX G

Section 11

January Outfall 011
AMEC Data Validation Report
Del Mar Analytical Laboratory Report

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Pace
Reviewer K. Shadowlight
Analysis/Method Dioxins

ACTION ITEMS

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, e.g.,
Holding Times
GC/MS Tune/Inst. Performance
Calibration
Method blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance Compound Identification and Quantitation
System Perfornance

COMMENTS $^{\mathrm{b}} \quad$| | Revision of original report dated 02/18/05 |
| :--- | :--- |

*Subcontracted analytical laboratory is not meeting contract and/or method requirements.
Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

amec ${ }^{\theta}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: DIOXINS/FURANS SAMPLE DELIVERY GROUPS: IOA0121

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOA0121

1. INTRODUCTION

Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010
Sample Delivery Group \#: IOA0121
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 1
No. of Reanalyses/Dilutions:
Reviewer: K. Shadowlight
Date of Review: February 18,2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
	SDG No.:	1OA0121
DATA VALIDATION REPORT	Analysis:	D/F

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Pace)	Matrix	COC Method
Outfall 011	IOA0121-01	105776001	water	1613
Outfall 011	IOA0121-01RE	$105776001 \mathrm{R1}$	water	1613

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOA0121
Analysis:	D/F	

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at Del Mar Analytical within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. The sample was subcontracted to Pace Analytical for dioxin/furan analysis. The sample was received at Pace Analytical Services below the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$; however, as the sample was not noted to have been frozen or damaged, no qualifications were required. The sample was received in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COC and transfer COC were signed by the appropriate field and laboratory personnel, and accounted for the analysis presented in this SDG. As the sample was couriered directly to the laboratory (Del Mar Analytical), custody seals were not required. There was no information regarding custody seals upon receipt at Pace. No qualifications were required.

2.1.3 Holding Times

The sample was extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A column performance standard was combined with the daily calibration verification and analyzed at the beginning of each analytical sequence. The GC column performance was acceptable with the chromatographic separation of $2,3,7,8$-TCDD and other TCDD isomers resolved with a valley of $\leq 25 \%$. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance could not be evaluated as the laboratory did not provide selected ion current profiles for the lock-mass ions. No qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOA0121
Analysis:	D/F	

2.3 CALIBRATION

2.3.1 Initial Calibration

There was one initial calibration associated with the retained analysis of this SDG. The initial calibration was analyzed $11 / 29 / 04$ on Instrument 10MSHR06. The calibration consisted of five concentration level standards (CS1 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with $\%$ RSDs $\leq 20 \%$ for the 15 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the 2 native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of $\%$ RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VER was acceptable with the concentrations within the acceptance criteria listed in the Table 6 of the EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of $\%$ Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.4 BLANKS

There was one method blank (Blank-6159) extracted and analyzed with the retained analysis of this SDG. Target compounds $1,2,3,4,6,7,8-\mathrm{HpCDF}$, total $\mathrm{HpCDF}, 1,2,3,4,6,7,8-\mathrm{HpCDD}$, and total HpCDD were reported at trace levels; however, $O C D F$ and $O C D D$ were reported above the detection limits at $180 \mathrm{pg} / \mathrm{L}$ and $220 \mathrm{pg} / \mathrm{L}$, respectively. Sample Outfall 011 was re-extracted and reanalyzed with a new method blank (Blank-6241). Dioxin/furan compounds were reported at trace levels in Blank-6241; however, trace amounts of $\mathrm{PeCDF}, \mathrm{PeCDD}, \mathrm{HxCDF}$, and HxCDD were reported in the re-extraction analysis of Outfall 011, which was not characteristic of the sample. According to a memo from the laboratory, dated March 11, 2005, the trace concentrations of PeCDF, PeCDD, HxCDF, and HxCDD were considered to be cross-contamination from a laboratory spike. The reextraction analysis of Outfall 011 was therefore, rejected, " R ", in favor of the original analysis. Any detects for the aforementioned target compounds reported at concentrations $<5 \times$ the concentrations reported in the method blank were qualified as estimated nondetects "UJ," at the levels of interference in sample Outfall 011. The detect for total HpCDF was qualified as estimated, "J," in Outfall 011, as a portion of the total concentration was attributed to method blank contamination. Target compound $1,2,3,6,7,8-\mathrm{HxCDD}$ was reported as an EMPC in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No further qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One LCS/LCSD pair (LCS-6160/LCSD-6161) was extracted and analyzed with the retained analysis of the sample in this SDG. All recoveries were within the acceptance criteria listed in Table 6 of the Method 1613. There are no method QC limits established for RPDs. The reported RPDs were within $\pm 20 \%$. No qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOA0121

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in this SDG. Evaluation of method accuracy and precision was based on the LCS/LCSD results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC :

2.7.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for this SDG.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the lower method calibration limit (MCL) were qualified as estimated, "J." No further qualifications were required.

[^0]I = interference
$\mathrm{E}=\mathrm{PCDE}$ Interference
ND = Not Detected
NA $=$ Not Applicable
NC $=$ Not Calculated

* $=$ See Discussion

Report No..... 105776

REPORT OF LABORATORY ANALYSIS
\qquad -

[^1]$1=$ Interference
$\mathrm{E}=\mathrm{PCDE}$ interference
ND $=$ Not Detected
NA = Not Applicable
NC = Not Calculated

- $=$ See Discussion

Report No..... 105776

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental	Package ID $7711 \mathrm{HZ2}$
550 South Wadsworth Boulevard	Task Order 313150010
Suite 500	SDG No. IOA0121, 10A0131
Lakewood, CO 80226	No. of Analyses 2
Laboratory Truesdail	Date: 02/14/05
Reviewer P. Meeks	Revievar's Signature
Analysis/Method Hydrazine	P. Mees

ACTION ITEMS
 1. Case Narrative
 Deficiencies

2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from

Analysis Protocol, e.g.,
Holding Times
GC/MS Tune/inst.
Performance
Calibrations
Blanks
Surrogates
Marix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification and Quantitation
System Performance

COMMENTS ${ }^{\text {b }}$	Acceptable as reviewed.
'Subcontracted analytical laboratory is not meeting contract and/or method requirements.	
' Differences in protocol have been adopted by the laboratory but no action against the labortory is required.	

$a m e C^{9}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: HYDRAZINES
 SAMPLE DELIVERY GROUP: IOA0121 \& IOA0131

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: IOA0121 \& IOA0131
Project Manager: B. McIlvaine
Matrix: Water
Analysis: Hydrazines
QC Level: Level IV
No. of Samples: 2
Reviewer: P. Meeks
Date of Review: February 10, 2005

The samples listed in Table 1 were validated based on the general guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (2/94), and USEPA SW-846 Method 8315. Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Project:

Table 1. Sample identification

EPA ID	Del Mar ID	Laboratory ID	Matrix	COC Method
Outfall 011	IOA0121-01	938344	water	Hydrazines by 8315
Outfall 011	IOA0131-01	938345	water	Hydrazines by 8315

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	
IOA0121, 0131		
Hydrazines		

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at Del Mar Analytical and the subcontract laboratory, Truesdail Laboratories, within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The analysis did not require preservation, and no preservation was noted in the field. No qualifications were required.

2.1.2 Chain of Custody

The COCs from the field to Del Mar were signed and dated by field and laboratory personnel, and the transfer COCs from Del Mar to Truesdail Laboratories were signed and dated by personnel from both laboratories. The transfer COCs accounted for the samples. The original COC for the Outfall 011 grab sample in SDG IOA0121 did not request hydrazine analyses while the original COC for the Outfall 011 composite sample in SDG IOA0131 did request monomethyl hydrazine analysis. Both transfer COCs requested only monomethyl hydrazine; however, unsymmetrical dimethyl hydrazine and hydrazine were also reported. A memo from MWH personnel dated $02 / 15 / 05$ requested monomethyl hydrazine analysis for the Outfall 011 grab sample in SDG IOA0121.

The case narratives for these SDGs noted that the samples were received intact. As the samples were transported to Del Mar by courier, no custody seals were required. No custody seals were present upon arrival at Truesdail Laboratories. Trusdail Laboratories did not list the Outfall 011 IDs on the Form Is; therefore, the reviewer hand-corrected the Form Is to include this information. No qualifications were required.

2.1.3 Holding Times

The holding time was assessed by comparing the dates of collection with the date of analysis. The three-day extraction holding time for the hydrazine analysis was met and the samples were analyzed within three days of extraction. No qualifications were required.

2.2 CALIBRATION

The five-point initial calibrations were analyzed 01/07/05, with correlation coefficients of ≥ 0.995 for the hydrazines. The ICV and CCV bracketing the sample analyses had recoveries for the hydrazines within the QC limits of $85-115 \%$. No qualifications were required.

| | Project: | NPDES |
| ---: | ---: | ---: | ---: |
| DATA VALIDATION REPORT | SDG No.: | IOA0121,0131 |

2.3 BLANKS

One method blank was analyzed with these SDGs. The results reported on the method blank summary form and in the raw data for the instrument and method blank analyses associated with the samples were nondetects at the reporting limit. No qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One laboratory control sample/laboratory control sample duplicate was analyzed with these SDGs. The hydrazines were recovered within the laboratory-established control limits of $70 \%-130 \%$, and the RPD was within the control limit of $\leq 20 \%$. No qualifications were required.

2.5 SURROGATES RECOVERY

Surrogates were not utilized in this analysis. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MSD/MSD analyses were performed on the Outfall 011 composite sample in SDG IOA0131. The recoveries for the hydrazines were within the laboratory QC limits of $0-150 \%$; however, both recoveries were $\geq 10 \%$. The RPDs were within the QC limit of $\leq 20 \%$. No qualifications were required.

2.7 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

2.7.1 Field Blanks and Equipment Rinsates

The site samples in these SDGs had no associated field QC. No qualifications were required.

2.7.2 Field Duplicates

There were no field duplicate samples in these SDGs.

2.8 COMPOUND IDENTIFICATION

The samples were analyzed by HPLC for monomethyl hydrazine, unsymmetrical dimethyl hydrazine, and hydrazine by Method 8315. Compound identification was verified, and review of the raw data indicated no compound identification errors. No qualifications were required.
Analysis: Hydrazines

2.9 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification was verified from the raw data. at a Level IV data validation by recalculating LCS/LCSD and MS/MSD detects, as there were no sample detects. No compound quantitation problems were noted. The hydrazine reporting limits were supported by the lower levels of the initial calibration. No qualifications were required.

Independent Testing, forensic Science, and Environmental analyses
IG
REPORT

$$
\begin{aligned}
\text { Client: } & \begin{array}{l}
\text { Del Mar Analytical- Alt. } \\
\\
\\
\\
\\
\\
\text { Irvine, CA } 92614 \\
\text { Attention: }
\end{array} \\
\text { Sample: } & \text { Michele Harper } \\
\text { Project Name: } & \text { Liquid / 1 Sample } \\
\text { P.O. Number: } & \text { 10A0131 } \\
\text { Method Number: } & \text { 8315 (Modified) } \\
\text { Investigation: } & \text { Hydrazines in Liquid }
\end{aligned}
$$

4201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008
$714) 730-6239 \cdot$ FAX $[714) 730-6462$ - wwwtruesdait.com

Analytical Results

* Analysis not validated
 Laboratory No: 938345 Report Date:
Sampling Date: Receiving Date: Extraction Date: $\begin{aligned} \text { Analysis Date: } & \text { January } 7,2005 \\ \text { Units: } & \mu \mathrm{g} / \mathrm{L} \\ \text { Dilution Factor: } & 1\end{aligned}$ $\begin{aligned} \text { Analysis Date: } & \text { January 7, } 2005 \\ \text { Units: } & \mu \mathrm{g} / \mathrm{L} \\ \text { Dilution Factor: } & 1\end{aligned}$ Reported By: January 10, 2005 January 5, 2005 Receiving Date: January 5, 2005 Extraction Date: January 6, 2005 RC

Page 1 of 1

PQL: Practical Quantitation Limit, ugh mm $2 / 17 / 0$ s
ND: Not Detected
N/A: Not Applicable
Note: Results based on detector \#1 (UV=365nm) data.

Truesdail Laboratories, Inc.
NOEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Del Mar Analytical- Alt. 17461 Derian Ave. Irvine, CA 92614
 Michele Harper Liquid / 1 Sample OA0121
 OA0121
 8315 (Modified) Hydrazines in Li
 Attention: Sample: Project Name: P.O. Number: Method Number: Hydrazines in Liquid
 Client:

 Investigation:

REPORT Analytical Results

14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA $92780-7008$
(714) $730-6239$. FAX (714) $730-6462$, www.truesdall.com (714) 730-6239 • FAX (714) 730-6462 . www.truesdall.com

Page 1 of 1
and these laboraiories, this report is submitted and accepted for the exclusive use of the ciive of the quality or condition or apparently identical or similar products. As a mutual protection to clients, the public, publicity matter without prior written authorization from these laboralories.

amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: METALS
 SAMPLE DELIVERY GROUPS: IOA0121

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOA0121

1. INTRODUCTION

Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010
SDG\#: IOA0121
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Metals
QC Level: Level IV
No. of Samples: 1
No. of Reanalyses/Dilutions: 0
Reviewer: P. Meeks
Date of Review: February 18, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, SW-846 Method 6010B for Inductively Coupled Plasma, SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOA0121

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 011	Outfall 011	IOA0121-01	water	ILM04

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOA0121

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel. The COC requested only a few of the presented analytes. The remaining analytes were requested in a memo from MWH personnel dated $02 / 16 / 05$. No sample qualifications were required.

2.1.3 Holding Times

The date of collection recorded on the COC and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS and ICP metals and 28 days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. The laboratory performed the required tune solution analyses but did not report \%RSDs. The laboratory SOP states that to be acceptable, the \%RSD must be less than 5%. The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, $90-110 \%$ for ICP and ICP/MS and 80$120 \%$ for mercury. The chromium and iron reporting limit check standard recoveries were below the control limit; therefore, chromium and iron detected in Outfall 011 were qualified as estimated, "J." The remaining reporting limit check standards were recovered within the AMEC control limits of 70-130\%. No further sample qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No::	IOA0121

2.4 BLANKS

There were detects and negative results reported for the method blanks and bracketing ICBs/CCBs associated with the sample in this SDG. Arsenic and antimony were detected in a bracketing CCB at 0.633 and $0.415 \mu \mathrm{~g} / \mathrm{L}$, respectively; therefore, arsenic and antimony detected in Outfall 011 were qualified as estimated, "UJ." No further qualifications were required due to the method and calibration blank results.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

No ICPMS interference check samples were analyzed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

An ICSA analysis was included in the raw data for the ICP boron analysis. The recoveries for the interferents were within the control limits of $80-120 \%$. No sample qualifications were required due to the ICP ICS analysis.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP/MS LCS sample was identified as 5A05092-BS1, the ICP LCS sample was identified as 5A05093-BS1, and the Hg LCS sample was identified as 5A06051-BS1. The LCS results on the summary forms and in the raw data were within the laboratory-established ICP/MS, ICP, and Hg control limits of $85-115 \%$. No qualifications were required.

2.7 LABORATORY DUPLICATES

MS/MSD analyses were performed on Outfall 011. The RPDs were less than the control limit of 20% and no qualifications were required.

2.8 MATRIX SPIKE

MS/MSD analyses were performed on Outfall 011. The recoveries for iron were below the control limit; therefore, iron detected in Outfall 011 was qualified as estimated, "J." The remaining recoveries were within the AMEC control limits of 75-125 and no further qualifications were required.

2.9 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analysis of this sample; therefore, furnace atomic absorption QC is not applicable.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOA0121

2.10 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.11 INTERNAL STANDARDS PERFORMANCE

The ICP and ICP-MS internal standard recoveries for the site sample and associated QC sample analyses were within the $60-125 \%$ control limits and no qualifications were required.

2.12 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit were qualified as estimated, "J." No further qualifications were required.

2.13 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.13.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site sample.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 1OA0121

Sampled: 01/04/05
Received: 01/04/05

DRAFT: METALS

AMEC VALIDATED

LEVELIV

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0121

Sampled: 01/04/05
Received: 01/04/05

DRAFT: METALS

AMEC VALIDATED

LEVELIV

DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer L. Calvin
Analysis/Method Pest/PCBs by Method 608

Package ID T711PP10
Task Order 313150010
SDG No. IOA0121
No. of Analyses 1

Date: February 14,2005
Revigueps spnatupe
alanc\|

ACTION ITEMS ${ }^{\text { }}$
 Case Narrative
 Deficiencies

2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, e.g.,
Holding Times
GC/MS Tune/Inst. Performance
Calibration
Method blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification
Quantitation
System Performance

COMMENTS	Acceptable as reviewed.

${ }^{2}$ Subcontracted analytical laboratory is not meeting contract and/or method requirements.
${ }^{\text {b }}$ Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

amec $^{\text {® }}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: PESTICIDES/PCBs

SAMPLE DELIVERY GROUP: IOA0121

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:
DATA VALIDATION REPORT	SDG:
NPDES	
IOA0121	
Pest/PCB	

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOA0121
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Pesticides/PCBs
QC Level: Level IV
No. of Samples: 1
No. of Reanalyses/Dilutions: 0
Reviewer: L. Calvin
Date of Review: February 16,2005

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedures (DVP-4, Rev.2), EPA Method 608, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary form as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:
DATA VALIDATION REPORT	NPDES
SDG:	IOAO121
Analysis:	Pest/PCB

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	Method
Outfall 011	Outfall 011	IOA0121-01	water	608

	Project:
DATA VALIDATION REPORT	NPDES
SDG:	Analysis:
IOA0121	
Pest/PCB	

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory on ice within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$, at 4°. The analysis did not require preservation, and no preservation was noted in the field. The case narrative noted that the sample was received intact. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by both field and laboratory personnel. The COC accounted for the analysis presented in this SDG. As the sample was couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The water sample was extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

2.2 PESTICIDES INSTRUMENT PERFORMANCE

No resolution check standards or breakdown check standards are required by Method 608 for pesticides, and according to the raw data provided, a resolution check standard was not analyzed by the laboratory. The laboratory did analyze a breakdown check standard with a breakdown of $\leq 20 \%$ for individual components (4,4-DDT and endrin) and $\leq 30 \%$ for the total, as suggested in the National Functional Guidelines. A review of the raw data indicated that the analytical run time was of sufficient length to provide adequate standard separation. The two analytical columns used in the analyses were within the guidelines specified in the methods.

According to the laboratory SOP and the initial calibration raw data, the retention time windows are ± 0.10 minutes for both surrogates and target compound calibration standards. A review of the raw data indicated that the laboratory retention time criteria were met for the surrogates and pesticide calibration standards. No qualifications were required.

2.3 CALIBRATION

2.3.1 Analytical Sequence

Based on the data provided, the analytical sequences were in accordance with the requirements of Method 608. No qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG:	IOA0121
Iest/PCB		

2.3.2 Initial Calibration

There was one initial calibration dated 10/26/04 associated with pesticide analysis of sample Outfall 011, which consisted of six point calibrations for all pesticide target compounds on two analytical columns. The \%RSDs were within the EPA Method 608 QC limit of $\leq 10 \%$ or $r^{2} \geq 0.995$ on both analytical columns. There was one initial calibration dated 01/04/05 associated with the PCB analysis of the sample. The PCB calibration consisted of five points for Arochlor 1016 and Arochlor 1260. Single point calibrations for Arochlor 1242, Aroclor 1248, and Aroclor 1254 were analyzed but were not provided in the data package. The average \%RSDs for the individual peaks of Aroclor 1016 and Aroclor 1260 were $\leq 10 \%$ on both analytical columns. An ICV was analyzed immediately following each of the initial calibrations. The \%Ds for all target compounds were within the QC limits of 15% on both analytical columns. A representative number of \%RSDs and ICV \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.3.3 Continuing Calibration

The pesticide sample analysis of this SDG was bracketed by four continuing calibrations. In one of the bracketing calibrations following the sample analysis several \%Ds exceeded 15% on channel A with high responses; however, as all results in this SDG were reported from channel B, no qualifications were assigned. The \%Ds were within the Method QC limit of $\pm 15 \%$ for the remaining calibrations. The PCB analysis of this sample was bracketed by two CCVs and the \%Ds for Aroclor 1016 and Aroclor 1260 were $\leq 15 \%$. A representative number of \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.4 BLANKS

2.4.1 Instrument Blanks

An instrument blank was analyzed at the beginning of the analytical sequence. Crosscontamination was not evident in the sample. No qualifications were necessary.

2.4.2 Method Blanks

One water method blank (5A05041-BLK1) was extracted and analyzed with this SDG. There were no pesticide target compounds or Aroclors detected in the method blank. Review of the chromatograms showed no false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike/blank spike duplicate pair (5A05041-BS2/BSD2) was extracted and analyzed with this SDG. The recoveries for all spiked pesticide target compounds and Aroclors were within the laboratory-established QC limits and the RPDs were $\leq 30 \%$. A representative number of recoveries were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

	Project: SDG:	NPDE IOA012 Pest/PC
DATA VALIDATION REPORT		

2.6 SURROGATE RECOVERY

The sample and all QC samples were fortified with the surrogate compounds decachlorobiphenyl and tetrachloro-m-xylene. Surrogate recoveries for this SDG were within the laboratory-established QC limits. The recoveries were calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

There were no MS/MSD analyses associated with this SDG. Method accuracy and precision were assessed based on the blank spike/blank spike duplicate results. No qualifications were required.

2.8 SAMPLE CLEANUP PERFORMANCE

According to the laboratory extraction benchsheets, no cleanups were performed on the water sample. No qualifications were required.

2.9 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.9.1 Field Blanks and Equipment Rinsates

There were no field QC samples associated with the sample in this SDG. No qualifications were required.

2.9.2 Field Duplicates

There were no field duplicate samples associated with the samples in this SDG.

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for pesticide target compounds and PCBs by EPA Method 608. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for the sample in this SDG. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification was verified for this SDG however, as there were no detects reported in this SDG, quantitation was verified by recalculating a representative number of blank spike and surrogate recoveries. Reporting limits were supported by the low level standard of the

	Project: DATA VALIDATION REPORT SDG: Analysis:	NPDES IOA0121 Pest/PCB

initial calibration and the laboratory MDL study. The water reporting limits were not adjusted for sample amount on the result summary; however, the dilution listed on the summary reflected the sample volume extracted. Results were reported in $\mu \mathrm{g} / \mathrm{L}(\mathrm{ppb})$. No qualifications were required.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 10 A 0121

Sampled: 01/04/05
Received: 01/04/05

DRAFT: ORGANOCHLORINE PESTICIDES (EPA 608)

DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project 1D: Quarterly Outfall 011+13267
Report Number: 10 AO 121

Sampled: 01/04/05
Received: 01/04/05

DRAFT: TOTAL PCBS (EPA 608)

AnIEG VALIDATED

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer P. Meeks
Analysis/Method Radionuclides

Laboratory Del Mar

Analysis/Method Radionuclides

1. Case Narrative Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardeopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from

Analysis Protocol, e.g.,
Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification and Quantitation
System Performance

ACTION ITEMS	
1. Case Narrative Deficiencies	
2. Out of Scope Analyses	
3. Analyses Not Conducted	
4. Missing Hardcopy Deliverables	
5. Incorrect Hardcopy Deliverables	
6. Deviations from Analysis Protocol, e.g., Holding Times. GC/MS Tune/Inst. Performance Calibrations Blanks Surrogates Matrix Spike/Dup LCS Field QC Internal Standard Performance Compound Identification and Quantitation System Performance	Qualifications applied for:
	1. Exceeded holding time
	2. Lack of preservation
	3. Incorrect sample container
	4. Detector efficiencies less than 20%
COMMENTS $^{\text {b }}$:	
* Subcontracted analytical laboratory is not meeting contract and/or method requirements. b Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.	

No. of Analyses 1
No. of Analyses 1
Date: $03 / 03 / 05$
Regiew Trsignature
Package ID T711RA2
Task Order 313150010
SDG No. IOA0115, 0121, 0131

amec ${ }^{9}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: RADIONUCLIDES

SAMPLE DELIVERY GROUPS:
 IOA0115, IOA0121, IOA0131

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOA0115, IOA0121, IOA0131
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Radionuclides
QC Level: Level IV
No. of Samples: 4
No. of Reanalyses/Dilutions: 0
Reviewer: P. Meeks
Date of Review: March 03, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the EPA Prescribed Procedures for Measurements of Radioactivity in Drinking Water, Methods 900.0, 905.0, and 906.0, and validation procedures outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification

Client ID	Del Mar ID	Eberline ID	Matrix	COC Method
Outfall 003 Unfiltered	1OA0115-01	$8149-01$	water	$900.0,905.0,906.0$
Outfall 003 Filtered	IOA0115-02	$8149-02$	water	$900.0,905.0,906.0$
Outfall 011	IOA0121-01	$8148-01$	water	$900.0,905.0,906.0$
Outfall 011 - Composite	IOA0131-01	$8147-01$	water	$900.0,905.0,906.0$

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at Del Mar Analytical within the temperature limits of $4 \pm 2^{\circ} \mathrm{C}$. No temperature information was provided by Eberline, the subcontract laboratory; however, as it is not necessary to chill radiological samples, no qualifications were required. All samples were intact and in good condition.

According to the Eberline login sheet, none of the samples were received preserved. It was confirmed in correspondence with Eberline dated $01 / 31 / 05$, that the gross alpha, gross beta, and strontium samples were not preserved upon receipt. According to the Los Angeles Water Quality Control Board (LARWQCB) guidance letter dated $01 / 12 / 05$, unfiltered samples should not be preserved and filtered aliquots should be preserved after filtration. As the strontium aliquot for Outfall 003 Filtered was not preserved; the nondetect strontium result was qualified as estimated, "UJ." Additionally, according to the 01/12/05 LARWQCB guidance letter, samples collected for tritium analysis should be submitted in glass containers to avoid potential loss of tritium by sorption onto the plastic container. As none of the tritium samples were submitted on glass containers, all nondetect tritium results were qualified as estimated, "UJ." No further qualifications were required.

2.1.2 Chain of Custody

The original COCs were signed and dated by field and laboratory personnel and the transfer COCs were signed by personnel from both laboratories. The original COCs for Outfall 003 did not request that an aliquot of each sample be filtered; however, the Del Mar project manager confirmed in a telephone conversation dated $1 / 31 / 05$, that this was required by MWH. The original COC for Outfall 011 (SDG 1OA0121) did not request that the sample containers received be analyzed for radionuclides. A memo from MWH personnel dated $2 / 17 / 05$ requested these analyses. The transfer COCs accounted for all samples. Eberline did not list the MWH IDs on the Form Is; therefore, the reviewer edited the Form Is to reflect these IDs. No qualifications were required.

2.1.3 Holding Times

The tritium and strontium samples were analyzed within 180 days of collection. The gross alpha and gross beta samples were analyzed beyond the five day holding time for unpreserved samples; therefore, the gross alpha and gross beta results were qualified as estimated, "J," for detects and, "UJ," for nondetects. No qualifications were necessary.

2.2 CALIBRATION

The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

	Project:
DATA VALIDATION REPORT	SDG No.:

Gross Alpha

The initial calibration included with the data was performed in February 2003. All detector efficiencies were below 20%; therefore, the nondetected alpha results were qualified as estimated, "UJ," for nondetects and " J ," for detects.

Tritium

No calibration standards were analyzed for this method. According to the laboratory, every sample was spiked for efficiency determination; therefore, no calibration is necessary. All detector efficiencies in the samples were at least 20% and were considered acceptable.

Gross Beta and Strontium-90

The initial calibrations were performed in June 1997. All detector efficiencies were at least 20% and were considered acceptable. All continuing calibration results were within the laboratory control limits; therefore, no qualifications were necessary.

2.3 BLANKS

No measurable activities were detected in the method blanks; therefore, no qualifications were necessary.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike (8147-002) was analyzed in association with the samples in these SDGs. All recoveries were within both 3 -sigma limits and the laboratory control limits. No qualifications were necessary.

2.5 LABORATORY DUPLICATES

The laboratory performed a duplicate analysis on Outfall 011 Composite. The RPDs for gross beta, tritium, and strontium were $\leq 20 \%$. The RPD for gross alpha was $>20 \%$; however, as the results were within the 3 sigma limit, no qualifications were necessary.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

The laboratory performed matrix spike analyses on Outfall 011 Composite for gross alpha, gross beta and tritium. The recoveries were within both 3 -sigma limits and the laboratory control limits. No qualifications were necessary.

2.7 SAMPLE RESULT VERIFICATION

An EPA Level IV review was performed for the samples in these data packages. Sample results and MDAs reported on the sample result forms were verified against the raw data and no calculation or transcription errors were noted. No qualifications were necessary.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.8.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate samples in these SDGs:

Eberline Services
ANALYSIS RESULTS

AMES VALIDATED Levelly.

Eberline Services
ANALYSIS RESULTS

SDG 8147			
Work Order $\frac{\text { R501013-01 }}{}$	Client DEL MAR ANAL Contract PROJECTH IOAO131		
Received Date $\underline{01 / 06 / 05}$		\quad	Matrix WATER
:---:			

$\begin{gathered} \begin{array}{c} \text { ctient } \\ \text { sample } 10 \end{array} \\ \text { Outfal } \end{gathered}$	\qquad	Collected	Analyzed	Nuclide	Results $\pm 2 a$	Units	MDA	Quen Qual	$l \begin{aligned} & \text { Qual } \\ & \text { Code }\end{aligned}$
10A0131-01	8147-001	01/05/05	01/22/05	Grossalpha	-0.671 ± 1.0	pCi/L	1.99	UJ	$\mathrm{H}_{1} * 2$
			01/22/05	Gross Beta	2.37 ± 1.2	pCi/L	1.80	J	H
			01/26/05	H3	-125 ± 170	pCi/L	300	$0 J$	$\cdots 1$
			01/14/05	Sr90	0.002 ± 0.22	pCi/L	0.446	U	

AMEC VALIDATED

LeVELIV

amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: SEMIVOLATILES

SAMPLE DELIVERY GROUP: IOA0121

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:
DATA VALIDATION REPORT	SDDES:
IOA0121	
SDOC	

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOA0121
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Semivolatiles
QC Level: Level IV
No. of Samples: 1
No. of Reanalyses/Dilutions: 0
Reviewer: M. Pokorny
Date of Review: February 14, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Semivolatile Organics (DVP-3, Rev. 2), EPA Method 625, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project: DATA VALIDATION REPORT	NPDES SDG: IOA012
SVOC		

Table 1. Sample identification

Client ID	EPA ID	Lab No.	Matrix	Method
Outfall 011	Outfall 011	IOA0121-01	water	625

DATA VALIDATION REPORT	Project: SDG: NPDES IOAO121 SVOC

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The sample in this SDG was received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$, at $5^{\circ} \mathrm{C}$. The analysis did not require preservation, and no preservation was noted in the field. The COC noted that the sample was received intact. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by both field and laboratory personnel. The COC accounted for the analysis presented in this SDG. As the sample was couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The water sample was extracted within seven days of collection and analyzed within 40 days of collection. No qualifications were required.

2.2 GC/MS TUNING

The DFTPP tunes met the criteria specified in Method 625, and the sample was analyzed within 12 hours of the DFTPP injection time. No qualifications were required.

23 CALIBRATION

The initial calibration associated with this SDG was dated $01 / 12 / 05$. The average RRFs for were ≥ 0.05 and the $\%$ RSDs were $\leq 35 \%$ or $\mathrm{r}^{2} \geq 0.995$ for all target compounds. A representative number of average RRFs and \%RSDs were checked from the raw data, and no calculation or transcription errors were noted. The continuing calibration associated with the sample analysis was analyzed $01 / 13 / 05$. The RRFs for all target compounds were ≥ 0.05, and the $\%$ Ds were ≤ 20. A representative number of RRFs and \%Ds were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.4 BLANKS

One method blank (5A03039-BLK1) was extracted and analyzed with this SDG. There were no reportable detects for the target compounds listed on the summary form. Review of the raw data indicated no reportable false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike/ blank spike duplicate pair (5A03039-BS1/BSD1) was extracted and analyzed with this SDG. For blank spike/blank spike duplicate pairs, qualifications are applied, if necessary,

	Project: SDG:	$\begin{aligned} & \text { NPDES } \\ & \text { IOA0121 } \end{aligned}$
DATA VALIDATION REPORT	Analysis:	SVOC

to the associated samples based on those recoveries consistently outside of the laboratoryestablished QC limits in both the blank spike and blank spike duplicate. Results for those compounds with recoveries not consistent within the pair, with RPDs above the QC limit, are qualified as estimated, "UF" for nondetects and " J " for detects, in the associated samples. All percent recoveries and RPDs were within the laboratory QC limits except for the recoveries of less than 10\% for benzidine in both the LCS and LCSD and the recovery above the QC limit for 2,4dinitrophenol in the LCSD only. Benzidine was rejected, "R," in the sample of this SDG. The RPD for hexachlorocyclopentadiene was above the QC limit and was qualified as an estimated nondetect, "UJ," in the sample of this SDG. A representative number of recoveries and RPDs were calculated from the raw data and no calculation or transcription errors were found. No further qualifications were required.

2.6 SURROGATE RECOVERY

The sample surrogate recoveries were within the laboratory QC limits. A representative number of recoveries were calculated from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were associated with this SDG. Evaluation of method accuracy and precision was based on blank spike/blank spike duplicate results. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

2.8.1 Field Blanks and Equipment Rinsates

There were no field QC samples associated with this SDG. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate samples associated with this SDG.

2.9 INTERNAL STANDARDS PERFORMANCE

The internal standard area counts and retention times were within the control limits established by the continuing calibration standards: $-50 \% /+100 \%$ for internal standard areas and ± 30 seconds for retention times. A representative number of recoveries were checked from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for five semivolatile target compounds by EPA Method 625. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. No calculation or transcription errors were found. The reporting limits were supported by the low level of the initial and the method detection limit study. Detects below the reporting limit were qualified as estimated, "J," by the laboratory. No further qualifications were required.

2.12 TENTATIVELY IDENTIFIED COMPOUNDS

TICs were not reported by the laboratory for this SDG. No qualifications were required.

2.13 SYSTEM PERFORMANCE

Review of the raw data indicated no problems with system performance. No qualifications were required.

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$

Report Number: 1OA0121

Sampled: 01/04,05
Received: 01/04/05

DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

e Del Mar Analytical
MWH-Pasadena/Bocing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$

Report Number: 1OA0121

Sampled: 01/04/05
Received: 01/04,05

DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA
AMEC Earth \& Environmental

550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer L. Calvin
Analysis/Method EFH by 8015M

Package ID T711TF32
Task Order 313150010 SDG No. IOA0121
No, of Analyses 1

Date: February 14,2005
Revieyer Sipnatury
ala

ACTIONITEMS ${ }^{\text {a }}$

Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, e.g.,
Holding Times
GCAMS Tune/lnst. Performance
Calibration
Method blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Intemal Standard Performance
Compound Identification
Quantitation
System Performance

COMMENTS b	Acceptable as reviewed.

[^2]
$a m e c^{-9}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: Total Petroleum Hydrocarbons: Extractable SAMPLE DELIVERY GROUP: IOA0121

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project: SDG:	NPDES IOA0121
DAIA VALIDATION REPORT		TPH

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOA0121
Project Manager: B. McIlvaine
Matrix: Water
Analysis: TPH-Extractable
QC Level: Level IV
No. of Samples: 1
No. of Reanalyses/Dilutions: 0
Reviewer: L. Calvin
Date of Review: February 14, 2005

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Extractable Total Fuel Hydrocarbons by GC (DVP-8, Rev. 2), USEPA SW-846 Method 8015M, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

DATA VALIDATION REPORT \quad| Project: |
| :---: |
| SDG: |
| NPDES |
| IOAOI21 |
| IPH |

Table 1. Sample identification

Client ID	EPA ID	Lab No.	Matrix	Method
Outfall 011	Outfall 011	IOA0121-01	water	8015M/EFH

	Project: DATA VALIDATION REPORT	SDG:
IOA012		
Inalysis:	TPH	

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at Del Mar Analytical laboratory on ice within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$, at $4^{\circ} \mathrm{C}$. The Del Mar Analytical case narrative noted that the sample containers were received intact. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by both field and laboratory personnel, and accounted for the analysis presented in this SDG. As the sample was couriered directly to the laboratory, custody seals were not required. The TPH-Extractable analysis was not requested on the COC; however, a COC analytical request change form dated $02 / 16 / 05$ clarified the requested analyses. No qualifications were required.

2.1.3 Holding Times

The sample was extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

2.2 CALIBRATION

The initial calibration associated with the sample analysis was analyzed on $12 / 22 / 04$. The $\%$ RSD was within the QC limit of $\leq 20 \%$. The \%Ds for the initial calibration verification (ICV) and continuing calibrations associated with the sample analysis were $\leq 15 \%$. The \%RSD and \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required

2.4 METHOD BLANKS

One method blank (5A06045-BLK1) was extracted and analyzed with the sample in this SDG. EFH (C13-C22) was not present above the MDL in the method blank or in the instrument blank analyzed at the beginning of the analytical sequence. Review of the chromatograms showed no false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One method blank spike/blank spike duplicate pair (5A06045-BS1/BSD1) was extracted and analyzed with the sample in this SDG. The recoveries of alkane range C13-C40 from spiked diesel were within the laboratory-established QC limits of $40-120 \%$, and the RPD was within the QC limit

	Project:	NPDES DATA VALIDATION REPORT
IOA0121		
SDG:	IPH	

of $\leq 25 \%$. The recoveries and RPD were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.6 SURROGATE RECOVERY

The sample was fortified with the surrogate compound n-octacosane. The sample surrogate recovery was within the laboratory-established QC of $40-125 \%$. The recovery was calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

There were no MS/MSD analyses associated with the sample of this SDG. Evaluation of method accuracy and precision was based on the $\mathrm{BS} / \mathrm{BSD}$ results. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.9.1 Field Blanks and Equipment Rinsates

There were no field blank or equipment rinsate samples associated with the site sample in this SDG. No qualifications were required.

2.9.2 Field Duplicates

There were no field duplicate samples associated with the samples in this SDG.

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for EFH n-alkane range C13-C22 by EPA SW846 Method 8015M. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for this SDG. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification was verified for this SDG by recalculating any sample detect, blank spike recoveries, and a representative number of surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibration and by the laboratory MDL. No qualifications were required.

MWH-Pasadena Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011 + 13267
Report Number: 10A0121 Sampled: 01/04.05
Received: 01/04/0s

DRAFT: EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer L Calvin
Analysis/Method GRO by 8015M

Package ID T711TF33
Task Order 313150010
SDG No. 1OA0121
No. of Analyses 2
Date: February 14, 2005
Reviewers signature 1 ~~~

\section*{ACTION ITEMS ${ }^{\circ}$
 | Case Narrative |
| :--- |
| Deficiencies |}

2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, e.g.,
Holding Times
GCMS Tune/Inst Performance
Calibration
Method blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance Compound Identification Quantitation
System Performance
COMMENTS ${ }^{\text {b }}$
Acceptable as reviewed.

[^3]
$a m e{ }^{-9}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: Total Petroleum Hydrocarbons: Purgeable SAMPLE DELIVERY GROUP: IOA0121

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

| | |
| :---: | :---: | :---: |
| DATA VALIDATION REPORT | Project:
 SDG:
 NPDES
 IOA0121 |
| IPH | |

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOA0121
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: TPH-Purgeable
QC Level: Level IV
No. of Samples: 2
No. of Reanalyses/Dilutions: 0
Reviewer: L. Calvin
Date of Review: February 14, 2005

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Extractable Total Fuel Hydrocarbons by GC (DVP-8, Rev. 2), USEPA SW-846 Method 8015 M , and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

| DATA VALIDATION REPORT | Project:
 SDG:
 NPDES
 IOA0121 |
| :---: | :---: | :---: |
| IPH | |

Table 1. Sample identification

Client ID	EPA ID	Lab No.	Matrix	Method
Outfall 011	Outfall 011	IOA0121-01	water	8015M/GRO
Trip Blank	Trip Blank	IOA0121-02	water	8015M/GRO

	Project: DATA VALIDATION REPORT
SDG:	NPDES
IOAO121	

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in this SDG were received at Del Mar Analytical laboratory on ice within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$, at $4^{\circ} \mathrm{C}$. The Del Mar Analytical case narrative noted that the samples were received intact, and the COC indicated the samples were properly preserved. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by both field and laboratory personnel. As the samples were couriered directly to the laboratory, custody seals were not required. The TPH-GRO analysis was not requested on the COC; however, a COC analytical request change form dated 02/16/05 clarified the requested analyses. No qualifications were required.

2.1.3 Holding Times

The water samples were analyzed within 14 days of collection. No qualifications were required.

2.2 CALIBRATION

One gasoline standard initial calibration dated 08/26/04 was associated with the sample analyses. The \%RSD for GRO (C4-C12) was within the QC limit of $\leq 20 \%$. An initial calibration verification (ICV) was not provided in the data package. The \%Ds for both CCVs bracketing the sample analyses were within the Method QC limit of $\leq 15 \%$. The \%RSD and \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required

2.4 METHOD BLANKS

One water method blank (5A06001-BLK1) was associated with the sample analyses. GRO (C4-C12) was not detected above the MDL in the method blank. Review of the raw data indicated no false negative result. No qualifications were necessary.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One water method blank spike (5A06001-BS1) was associated with the sample analyses. GRO (C4-C12) was recovered within the laboratory-established QC limits of $70-140 \%$ in the blank spike. The recovery was checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

	Project:
DATA VALIDATION REPORT	NPDES
SDG:	Analysis:
IOAO121	
TPH	

2.6 SURROGATE RECOVERY

The samples were fortified with the surrogate compound bromofluorobenzene (BFB). Surrogate recoveries were within the laboratory-established QC of $65-140 \%$ for both samples. Recoveries were calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed on the sample in this SDG; therefore, evaluation of method accuracy was based on the blank spike results. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.9.1 Trip Blanks, Field Blanks, and Equipment Rinsates

Sample Trip Blank was the trip blank associated with site sample Outfall 011. GRO (C4-C12) was not detected above the MDL in the trip blank. Review of the raw data indicated no false negative result. There were no field blank or equipment rinsate samples associated with this SDG. No qualifications were necessary.

2.9.2 Field Duplicates

There were no field duplicate samples in this SDG.

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for GRO (C4-C12) by EPA SW-846 Method 8015M. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for the samples in this SDG. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification was verified for this SDG by recalculating any sample detects, blank spike recoveries, and a representative number of surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibrations and by the laboratory MDL. No qualifications were required.

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 10 A 0121

Sampled: 01/04/05
Received: 01/04/05

DRAFT: VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)

DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

amec ${ }^{9}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: VOLATILES
SAMPLE DELIVERY GROUP: IOA0121

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOAO121

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: IOA0121
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Volatiles (1,4-dioxane)
QC Level: Level IV
No. of Samples: 1
No. of Reanalyses/Dilutions: 0
Reviewer: M. Pokorny
Date of Review: February 11, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Volatile Organics (DVP-2, Rev. 2), EPA Method SW-846 $8260 B$ and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Forml as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOA0121

Table 1. Sample identification

Client ID	EPA ID	Lab No.	Matrix	Method
Outfall 011	Outfall 011	IOA0121-01	water	624

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOAD121

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the Del Mar within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The sample was properly preserved. The COC noted that the sample was received intact; however, information regarding absence of headspace was not provided. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed by field and laboratory personnel. The COCs accounted for the analysis presented in this SDG. According to the sample login sheet, custody seals were not present on the cooler. No qualifications were required.

2.1.3 Holding Times

The sample was analyzed within 14 days of collection. No qualifications were required.

2.2 GCMMS TUNING

The ion abundance windows were consistent with those specified in EPA Method 8260B. All ion abundances were within the established windows, and the sample was analyzed within 12 hours of the BFB injection time. No qualifications were required.

2.3 CALIBRATION

One initial calibration, dated 01/07/04, was associated with this SDG. The average RRF for 1,4dioxane was ≥ 0.05 and the $\%$ RSD was $\leq 15 \%$. One continuing calibration, dated $01 / 07 / 05$ was associated with this SDG. The RRF for 1,4 -dioxane was ≥ 0.05 and the $\%$ D was $\leq 20 \%$. The $\%$ RSD and average RRF for 1,4-dioxane in the initial calibration, and the $\% \mathrm{D}$ and RRF for 1,4 -dioxane in the continuing calibration were recalculated from the raw data, and no calculation or transcription errors were found. No qualifications were required.

2.4 BLANKS

One water method blank (P5A1203-BLK1) was associated with this SDG. Target compound 1,4dioxane was not detected in the method blank. The method blank raw data showed no evidence of a false negative. No qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOA0121

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory analyzed a blank spike/blank spike duplicate pair (P5A1203-BSI/BS1D) with this SDG. The recoveries and RPD for 1,4 -dioxane were within the laboratory QC limits. A representative recovery was recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.6 SURROGATE RECOVERY

The sample and QC were fortified with dibromofluoromethane. The surrogate was recovered within the laboratory QC limits of $80-125 \%$. The surrogate recovery for this sample was recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

Sample Outfall 011 was the MS/MSD analyses performed with this SDG. The recoveries and RPD for 1,4-dioxane were within the laboratory QC limits. A representative recovery was recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

2.8.1 Trip Blanks

The sample in this SDG had no associated trip blank. No qualifications were required.

2.8.1 Field Blanks and Equipment Rinsates

The site sample in this SDG had no associated field QC samples. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate samples associated with this SDG.

2.9 INTERNAL STANDARDS PERFORMANCE

Internal standard area counts and retention times for the sample were within the control limits established by the continuing calibration standards, of $+100 \% /-50 \%$ for internal standard areas and ± 0.50 minutes for retention times. Internal standard areas and retention times were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOA0121

2.10 COMPOUND IDENTIFICATION

Target compound identification was verified at a Level IV data validation. The laboratory analyzed for 1,4-dioxane by Method 8260B/SIM. Chromatograms, retention times, and spectra for the sample and QC were examined and no target compound identification problems were noted. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. The reporting limit was supported by the lowest concentration of the initial calibration standards and by the undated MDL supplied by the laboratory. Compound quantitation was verified by recalculating blank spike and surrogate recoveries from the raw data. No calculation or transcription errors were noted. No qualifications were required.

2.12 TENTATIVELY IDENTIFIED COMPOUNDS

TICs are not typically reported for SIM methods.

2.13 SYSTEM PERFORMANCE

A review of the chromatograms and other raw data showed no identifiable problems with system performance. No qualifications were required.

MWH-Pasadena/Bocing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$

Report Number: 1OA0121

Sampled: 01/04/05
Received: 01/04/05

DRAFT: 1,4-DIOXANE BY GC/MS (EPA 5030B/8260B)

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: VOLATILES

SAMPLE DELIVERY GROUP: IOA0121

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project: SDG:	$\begin{aligned} & \text { NPDES } \\ & \text { IOAO121 } \end{aligned}$
D.4TA VALIDATION REPORT	Analysis:	VO

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOA0121
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Volatiles
QC Level: Level IV
No. of Samples: 2
No. of Reanalyses/Dilutions: 0
Reviewer: M. Pokorny
Date of Review: February 11,2005

The samples listed in Table 1 were validated based on the guidelines outined in the AMEC Data Validation Procedure for Levels C and D Volatile Organics (DVP-2, Rev. 2), EPA Method 624, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary forms as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

DATA VALIDATION REPORT \quad| Project: |
| :---: |
| SDG: |
| Analysis: |
| NPDES |
| IOA0121 |
| VOC |

Table 1. Sample identification

Client ID	EPA ID	Lab No.	Matrix	Method
Outfall 011	Outfall 011	IOA0121-01	water	624
Trip Blank	Trip Blank	IOA0121-02	water	624

DATA VALIDATION REPORT \quad| Project: |
| ---: |
| SDG: |
| Analysis: |
| NPDES |
| IOAO121 |
| VOC |

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in this SDG were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. According to the COC, the samples were received intact, without headspace, and in good condition. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed by field and laboratory personnel and accounted for the analyses presented in this SDG. As the samples were couriered directly to the laboratory, custody seals are not required. No qualifications were required.

2.1.3 Holding Times

The samples were analyzed within 14 days of collection. No qualifications were required.

2.2 GC/MS TUNING

The ion abundance windows shown on the quantitation report were consistent with those specified in the EPA Method 624. All ion abundances were within the established windows and were therefore acceptable. The samples and associated QC were analyzed within 12 hours of the BFB injection times. The Form Vs were verified from the raw data and no discrepancies between the summary forms and the raw data were noted. No qualifications were required.

2.3 CALIBRATION

Two initial calibrations, dated $10 / 24 / 04$ and $11 / 10 / 04$, were associated with this SDG. The average RRFs were ≥ 0.05 and the \%RSDs were $\leq 35 \%$ for the target compounds listed on the sample summary forms. Two continuing calibrations, dated 01/05/05 (16:00 and 16:33), were associated with this SDG. The RRFs for all target compounds were ≥ 0.05 and the $\%$ Ds were $\leq 20 \%$ except for the \%Ds for methylene chloride, 2-chloroethylvinyl ether, bromoform, acrolein, and acrylonitrile. The aforementioned compounds were qualified as estimated nondetects, "UJ," in the site sample of this SDG. A representative number of \%RSDs and average RRFs from the initial calibrations, and \%Ds and RRFs from the continuing calibrations were recalculated from the raw data, and no calculation or transcription errors were found. No further qualifications were required.

2.4 BLANKS

Two water method blank (5A05017-BLK1 and 5A05012) were associated with this SDG. There were no detects for the target compounds listed on the summary forms. The method blank raw data showed no evidence of false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

Two water blank spikes (5A05017-BS1 and 5A05012) were associated with this SDG. All spike recoveries were within the laboratory-established QC limits. A representative number of recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.6 SURROGATE RECOVERY

The surrogates were within the QC limits of $80-120 \%$. A representative number of surrogate recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

An MS/MSD analyses was not performed with this SDG. Evaluation of method accuracy was based on the LCS results. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

2.8.1 Trip Blanks

Sample Trip Blank (IOA0121-02) was the trip blank associated with the site sample of this SDG. Methylene chloride was detected in the trip blank; however, the sample of this SDG did not have any target compounds detected. No qualifications were required.

2.8.2 Field Blanks and Equipment Rinsates

There were no other field QC samples associated with this SDG. No qualifications were required.

2.8.3 Field Duplicates

There were no field duplicate samples associated with this SDG.

DATA VALIDATION REPORT	Project: SDG:	$\begin{aligned} & \text { NPDES } \\ & \text { HOA0121 } \end{aligned}$
DATA VALIDAIION REPORT	Analysis:	VOC

2.9 INTERNAL STANDARDS PERFORMANCE

Internal standard area counts and retention times for this SDG were within the control limits established by the continuing calibration standards, of $+100 \% /-50 \%$ for internal standard areas and ± 0.50 minutes for retention times. A representative number of internal standard areas and retention times were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.10 COMPOUND IDENTIFICATION

Target compound identification was verified at a Level IV data validation. The laboratory analyzed for a subset of volatile target compounds by EPA Method 624. Chromatograms, retention times, and spectra for the samples and QC were examined and no target compound identification problems were noted.

The laboratory analyzed for 1,2-dichloro-1,1,2-trifluorethane and cyclohexane as TICs for this SDG. 1,2-dichloro-1,1,2-trifluorethane was present in the calibration standards. Neither compound was reported either as a TIC or as a target compound in the samples of this SDG and were reported as estimated nondetects, "UJ."

No further qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. The reporting limits were supported by the lowest concentrations of the initial calibration standards and by MDL study. Compound quantitation was verified by recalculating any sample detect, and/or a representative number of blank spike and surrogate recoveries from the raw data. No calculation or transcription errors were noted. No qualifications were required.

2.12 TENTATIVELY IDENTIFIED COMPOUNDS

The laboratory analyzed for 1,2-dichloro-1,1,2-trifluorethane and cyclohexane as TICs for this SDG. 1,2-dichloro-1,1,2-trifluorethane was present in the calibration standards. Neither compound was reported either as a TIC or as a target compound in the samples of this SDG. No qualifications were required.

2.13 SYSTEM PERFORMANCE

A review of the chromatograms and other raw data showed no identifiable problems with system performance. No qualifications were required.

DRAFT: PURGEABLES BY GC/MS (EPA 624)

DRAFT REPORT

DRAFT REPORT
DATA SUBJECT TO CHANGE

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200
Pasadena CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 1OA0121 Sampled: 01/04/05

DRAFT: PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	$\begin{aligned} & \text { Data } \\ & \text { Qualifie } \end{aligned}$	
Sample ID: IOA0121-01 (DRAFT: Outfall 011 - grab - Water) Reporting Units: ugh					Sampled: 01/04/05				ReV CuJAL	QuAL Cal $=$
Acrolein	EPA 624	5A05012	4.6	50						
Acrylonitrile	EPA 624	5A05012	5.1	50	ND	I	01/05/05		35	
2-Chloroethyl vinyt ether	EPA 624	5A05012	1.3	5.0	ND	I	01/05/05	$01 / 05 / 05$ $01 / 05 / 05$	UJ	
Surrogate: Dibromofluoromethane ($80-120 \%$)					103\%		(10s/os	01/0s/0s	Us	
Surrogate: Toluene-d8 (80-120\%)					102%					
Surrogate: 4 -Bromofluorobenzene (80-120\%)					99\%					

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 10 A 0121

Sampled: 01/04/05
Received: 01/04/05

DRAFT: PURGEABLES BY GC/MS (EPA 624)


```
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
```

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0121

Sampled: 01/04/05
Received: 01/04/05

DRAFT: PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0121

Sampled: 01/04/05
Received: 01/04/05

DRAFT: FREON 113 (EPA 8260B)

amec ${ }^{9}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: GENERAL MINERALS

SAMPLE DELIVERY GROUP: IOA0121

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOA0121
	Analysis:	

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: IOA0121
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: General Minerals
QC Level: Level IV
No. of Samples: 1
Reviewer: P. Meeks
Date of Review: February 14, 2005

The sample listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 300.0, 350.2, 330.5, 405.1, 335.2, 413.1, 415.1, 418.1, 425.1, 218.6, 120.1, 160.2, 160.5, 180.1, 150.1, and 120.1, Standard Methods for the Examination of Water and Wastewater Method SM5540-C and SM2540C, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOA0121

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 011	Outfall 011 Grab	IOA0121-01	water	General Minerals

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOA0121

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel. The COC requested only a few of the presented analyses. The remaining analyses were requested in a memo from MWH personnel dated $02 / 16 / 05$. No sample qualifications were required.

2.1.3 Holding Times

The holding times were assessed by comparing the date of collection with the dates of analyses. The 28 -day analytical holding time for ammonia, fluoride, chloride, sulfate, conductivity, total recoverable hydrocarbons, TOC, and oil and grease, the 14-day analytical holding time for cyanide, the seven-day holding time for total suspended solids and total dissolved solids, the 48 -hour holding time for biological oxygen demand, surfactants, turbidity, nitrate/nitrite, and total settleable solids, and the 24 -hour residual chlorine holding time were met were met. The 24 -hour hexavalent chromium holding time was exceeded; therefore, nondetected hexavalent chromium in Outfall 011 Grab was qualified as estimated, "UJ?" No further qualifications were required.

2.2 CALIBRATION

For the applicable analyses, the initial calibration correlation coefficients were ≥ 0.995. All ICV and continuing calibration information was acceptable with \%Rs within the control limits of $90-110 \%$. For ammonia, no information regarding the standardization of the titrant was provided; however, as the LCS recovery was within the CCV control limits, no qualifications were required. For BOD, no information regarding the calibration of the oxygen meter was provided; however, as the LCS recovery was within the CCV control limits, no qualifications were required. Calibration is not applicable to residual chlorine or total settleable solids. No qualifications were required.

2.3 BLANKS

Hexavalent chromium was detected in the method blank at $0.15 \mathrm{mg} / \mathrm{L}$ and in the bracketing CCB at $0.20 \mathrm{mg} / \mathrm{L}$; therefore, hexavalent chromium detected in Outfall 011 Grab was qualified as an estimated nondetect, "UJ." The remaining method blank and CCB results reported on the summary forms and in the

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOA0121

raw data for blank analyses associated with the sample were nondetects at the reporting limit. No further qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample and laboratory control sample duplicate (BOD and oil and grease only) recoveries were within the laboratory-established control limits. The LCS is not applicable to turbidity, conductivity, residual chlorine, or settleable solids. No qualifications were required.

2.5 SURROGATES RECOVERY

Surrogate recovery is not applicable to the analyses presented in this SDG.

2.6 LABORATORY DUPLICATES

A duplicate analysis was performed on Outfall 011 Grab for residual chlorine and MS/MSD analyses were performed for hexavalent chromium. Both RPDs were within the laboratory-established control limits. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MSMSD analyses were performed on Outfall 011 Grab hexavalent chromium only. Both recoveries were within the laboratory-established control limits of $90-110 \%$ and no qualifications were required.

2.8 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analysis of this sample; therefore, furnace atomic absorption QC is not applicable.

2.9 ICP SERIAL DILUTION

ICP serial dilution is not applicable to the analysis presented in this data validation report.

2.10 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. MBAS was analyzed at a $100 \times$ dilution, as the sample had formed an

	Project:	NPDES
DATA VALIDATION REPORT	SDG No::	IOA0121

emulsion. Analytes detected below the reporting limit were qualified as estimated, "J." No further qualifications were required.

2.11 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.11.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.11.2 Field Duplicates

There were no field duplicate pairs associated with this SDG.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronuyn Kelly

Project ID: Quarterly Outfall $011+13267$

Report Number: IOA012I

Sampled: 01/04/05
Received: 01/04/05

DRAFT: TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)

AMEC VALIDATED

 LEVELIV

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 10A0121

Sampled: 01/04/05
Received: 01/04/05

DRAFT: INORGANICS

AMEC VALIDATED

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0121

Sampled: 01/04/05
Received: 01/04/05

DRAFT: INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed		$\begin{aligned} & \text { niz } \\ & \text { Hifers } \end{aligned}$
Sample ID: IOA0121-01 (DRAFT: Outfall 011 - grab - Water) - cont. Reporting tints: mi/h/hr					Sampled: 01/04/05			Qur Qual $\begin{aligned} & \text { Qual } \\ & \text { Cods }\end{aligned}$		
Total Settleable Solids	EPA 160.5	5A05055	0.10	0.10	ND	1	01/05/05	01/05/05	v	

AMEC VALMDATED

MWH-Pasadena/Boeing	Project ID: Quarterly Outfall $011+13267$	
300 North Lake Avenue, Suite 1200		Sampled: $01 / 04 / 05$
Pasadena, CA 91101	Report Number: $10 A 0121$	Received: $01 / 04 / 05$
Attention: Bronwyn Kelly		

DRAFT: INORGANICS

AMEC vemdared

DRAFT REPORT
 DRAFT REPORT
 DATA SUBJECT TO CHANGE

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena. CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0121
Sampled: 01/04/05
Received: 01/04/05

DRAFT: INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IOA0121-01 Reporting Units: ug/	$11011 \text {-grab }$	ter) - cont.			Samp	led: 01/04			Rew Qual	$\left\lvert\, \begin{aligned} & \text { Qual } \\ & \text { Code } \end{aligned}\right.$
Chromium Vl	EPA 218.6	5A05064	0.041	1.0	0.17	1	01/05/05	01/05/05		
Total Cyanide	EPA 335.2	5A05078	2.2	5.0	ND	1	01/05/05	01/05/05	B, $\mathrm{H}-\mathrm{I}, \mathrm{J}$ U	H_{1}
Perchlorate	EPA 314.0	5A06055	0.80	4.0	ND	1	01/06/05	01/06/05	*	

MWH-Pasadena/Boeing.

 300 North Lake Avenue, Suite 1200Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 1OA0121

Sampled: 01/04/05
Received: 01/04/05

DRAFT: INORGANIC

AHEM WHMOAMED

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental 550 South Wadsworth Boulevard Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer L. Jarusewic
Analysis/Method Perchlorate

No. of Analyses 1

ACTION ITEMS

1. Case Narrative Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from

Analysis Protocol, egg.,
Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification and Quantitation
System Performance

COMMENTS ${ }^{\text {b }}$

\square

[^4]
amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: PERCHLORATE SAMPLE DELIVERY GROUP: IOA0121

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: IOA0121
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Perchlorate
QC Level: Level IV
No. of Samples: 1
Reviewer: L. Jarusewic
Date of Review: February 11,2005

The sample listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 314.0, and 120.1, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOA0121

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 011	Outfall 011	IOA0121-01	water	Perchlorate

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOA0121

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel, and accounted for the sample and analysis presented in this SDG. No qualifications were required.

2.1.3 Holding Times

The holding time was assessed by comparing the date of collection with the date of analysis. The 28day analytical holding time for perchlorate was met, and no qualifications were required.

2.2 CALIBRATION

The initial calibration correlation coefficient was $\geq 0,995$. The IPC-MA recovery was within the control limits of $80-120 \%$. The ICV and IPC recoveries were within the control limits of $90-110 \%$. The CCV recovery was above the control limits of $90-110 \%$; however, as perchlorate was not detected in the site sample, no qualifications were required.

2.3 BLANKS

The method blank and CCB results reported on the summary forms and in the raw data for blank analyses associated with the sample were nondetects at the reporting limit. No qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample recovery was within the method control limits of $85-115 \%$. No qualifications were required.

2.5 SURROGATES RECOVERY

Surrogate recovery is not applicable to the analysis presented in this SDG.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOA0121

2.6 LABORATORY DUPLICATES

No MS/MSD or duplicate analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.8 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analysis of this sample; therefore, furnace atomic absorption QC is not applicable.

2.9 ICP SERIAL DILUTION

ICP serial dilution is not applicable to the analysis presented in this data validation report.

2.10 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample result reported on the Form I was verified against the raw data. No transcription errors or calculations errors were noted. No qualifications were required.

2.11 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.11.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.11.2 Field Duplicates

There were no field duplicate pairs associated with this package.

1451 Jerian Ave, Suite 100 Irine CA 92514 (9.49) 261.1022 FAX 9.491260 .324
Del Mar Analytical

Anolysis Not Validatat

AMEC VALIDATED

 LEVEL IV
LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Quarterly Outfall $011+13267$

Sampled: 01/04/05
Received: 01/04/05
Issued: 03/08/05 16:13

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain(s) of Custody, 3 pages, are included and are an integral part of this report.
This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT:	Samples were received intact, at $4^{\circ} \mathrm{C}$, on ice and with chain of custody documentation.
HOLDING TIMES:	Not all holding times were met. Results were qualified where the sample analysis did not occur within method specified holding time requirements.
PRESERVATION:	Samples requiring preservation were verified prior to sample analysis.
QA/QC CRITERIA:	All analyses met method criteria, except as noted in the report with data qualifiers.
COMMENTS:	Results that fall between the MDL and RL are 'J flagged. There was a dilution for the MBAS analysis due
to emulsion.	

LABORATORY ID
IOA0121-01
10A0121-02

CLIENT ID	MATRIX
Outfall 011 - grab	Water
Trip Blank	Water

Water
Water

Reviewed By:

[^5]300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$

Report Number: IOA0121

Received: 01/04/05

CORRECTIVE ACTION REPORT

Department: Extractions
Method: EPA 625
QC Batch: 5A05039

Identification and Definition of Problem:

The percent recoveries for benzidine in the LCS and LCSD were below method acceptance limits.

Determination of the Cause of the Problem:
Benzidine is known to be a problematic compound. According to the EPA, it can be subject to oxidative losses during solvent extraction and its chromatographic behavior is poor.

Corrective Action Taken:
All results reported for benzidine are potentially biased low and can be considered estimates only.

Quality Assurance Approval:

Date: 01/18/2005 09:20 AM

[^6]
Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Sampled: 01/04/05
Report Number: 1OA0121 Received: 01/04/05

TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 1OA0121

Sampled: 01/04/05
Received: 01/04/05

EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOA0121-01 (Outfall 011 - grab - Water) - cont.					Sampled: 01/04/05				
Reporting Units: mgh									
EFH (C13-C22)	EPA 8015B	5A06045	0.082	0.50	ND	0.962	01/06/05	01/07/05	
Surrogate: n-Octacosane (40-125\%)					59%				

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 10A0121
Sampled: 01/04/05
Received: 01/04/05

VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OA0121-01 (Outfall 011 - grab - Water) - cont. Reporting Units: mg/					Sampled: 01/04/05				
GRO (C4-C12)	EPA 8015 Mod.	5A06001	0.050	0.10	ND	1	01/06/05	01/06/05	
Surrogate: 4-BFB (FID) (65-140\%)					84\%				
Sample ID: 1OA0121-02 (Trip Blank - Water)					Sampled: 01/04/05				
: Reporting Units: mg/l									
GRO (C4-C12)	EPA 8015 Mod.	5A06001	0.050	0.10	ND	1	01/06/05	01/06/05	
Surrogate: 4-BFB (FID) (65-140\%)					85\%				

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0121

Sampled: 01/04/05
Received: 01/04/05

FREON 113 (EPA 8260B)

Analyte Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOA0121-01 (Outfall 011 - grab - Water) Reporting Units: ug/		Sampled: 01/04/05						
Trichlorotrifluoroethane (Freon 113) EPA 8260B	5A05017	1.2	5.0	ND	1	01/05/05	01/05/05	
Surrogate: Dibromofluoromethane (80-120\%)				100\%				
Surrogate: Toluene-d8 (80-120\%)				101\%				
Surrogate: 4-Bromofhuorobenzene (80-120\%)				97\%				
Sample ID: 1OA0121-02 (Trip Blank - Water) Reporting Units: ug/		Sampled: 01/04/05						
Trichlorotrifluoroethane (Freon 113) EPA 8260B	5 A 05017	1.2	5.0	ND	1	01/05/05	01/05/05	
Surrogate: Dibromofluoromethane (80-120\%)				98\%				
Surrogate: Toluene-d8 (80-120\%)				98\%				
Surrogate: 4-Bromofluorobenzene (80-120\%)				97\%				

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0121
Sampled: 01/04/05 Received: 01/04/05

PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result			Date Extracted	Date Analyz						
Sample ID: IOA0121-01 (Ontfall 011 - grab - Water)				Sampled: 01/04/05											
		Reparting Units: ug/													
Benzene	EPA 624	5A05017	0.28							1.0	ND		1	01/05/05	01/05/05
Bromodichloromethane	EPA 624	5 A 05017	0.30	2.0	ND		1	01/05/05	01/05/05						
Bromoform	EPA 624	5A05017	0.32	5.0	ND		1	01/05/05	01/05/05						
Bromomethane	EPA 624	5A05017	0.34	5.0	ND		1	01/05/05	01/05/05						
Carbon tetrachloride	EPA 624	5A05017	0.28	0.50	ND		1	01/05/05	01/05/05						
Chlorobenzene	EPA 624	5A05017	0.36	2.0	ND		1	01/05/05	01/05/05						
Chloroethane	EPA 624	5A05017	0.33	5.0	ND		1	01/05/05	01/05/05						
Chloroform	EPA 624	5 A05017	0.33	2.0	ND		1	01/05/05	01/05/05						
Chloromethane	EPA 624	5 A 05017	0.30	5.0	ND		1	01/05/05	01/05/05						
Dibromochloromethane	EPA 624	5 A05017	0.28	2.0	ND		1	01/05/05	01/05/05						
1,2-Dichlorobenzene	EPA 624	5A05017	0.32	2.0	ND		1	01/05/05	01/05/05						
1,3-Dichlorobenzene	EPA 624	5A05017	0.35	2.0	ND		1	01/05/05	01/05/05						
1,4-Dichlorobenzene	EPA 624	5A05017	0.37	2.0	ND		1	01/05/05	01/05/05						
1,1-Dichloroethane	EPA 624	5A05017	0.27	2.0	ND		1	01/05/05	01/05/05						
1,2-Dichloroethane	EPA 624	5 A 05017	0.28	0.50	ND		1	01/05/05	01/05/05						
1,1-Dichloroethene	EPA 624	5A05017	0.32	5.0	ND		1	01/05/05	01/05/05						
trans-1,2-Dichloroethene	EPA 624	5A05017	0.27	2.0	ND	1		01/05/05	01/05/05						
1,2-Dichloropropane	EPA 624.	5405017.	0.35	2.0	ND	1	1	01/05/05	01/05/05						
cis-1 3 -Dichloropropene	EPA 624	5A05017	0.22	2.0	ND	1		01/05/05	01/05/05						
trans-1,3-Dichloropropene	EPA 624	SA05017	0.24	2.0	ND	1		01/05/05	01/05/05						
Ethylbenzene	EPA 624	5A05017	0.25	2.0	ND	1		01/05/05	01/05/05						
Methylene chloride	EPA 624	5A05017	0.48	5.0	ND	1		01/05/05	01/05/05						
1,1,2,2-Tetrachloroethane	EPA 624	5 A05017	0.24	2.0	ND	1		01/05/05	01/05/05						
Tetrachloroethene	EPA 624	5A05017	0.32	2.0	ND	1		01/05/05	01/05/05						
Toluene	EPA 624	5A05017	0.36	2.0	ND	1		01/05/05	01/05/05						
1,1,1-Trichloroethane	EPA 624	5A05017	0.30	2.0	ND	1		01/05/05	01/05/05						
1,1,2-Trichloroethane	EPA 624	5 A 05017	0.30	2.0	ND	1		01/05/05	01/05/05						
Trichloroethene	EPA 624	5A05017	0.26	2.0	ND	1		01/05/05	01/05/05						
Trichlorofluoromethane	EPA 624	5 A 05017	0.34	5.0	ND	1		01/05/05	01/05/05						
Vinyl chloride	EPA 624	5A05017	0.26	0.50	ND	1		01/05/05	01/05/05						
Xylenes, Total	EPA 624	5A05017	0.52	4.0	ND	1		01/05/05	01/05/05						
Surrogate: Dibromofluoromethane (80-120\%)					100\%										
Surrogate: Toluene-d8 (80-120\%)					101\%										
Surrogate: 4-Bromofluorobenzene (80-120\%)					97%										

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
$\begin{array}{lr} & \text { Sampled: 01/04/05 } \\ \text { Report Number: } 1040121 & \text { Received: 01/04/05 }\end{array}$

PURGEABLES BY GC/MS (EPA 624)

| | | | MDL | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Analyte | Method | Batch | Reporting
 Limit | Sample
 Result | Dilution
 Factor | Exate
 Extracted | Date
 Analyzed |
| Qualifiers | | | | | | | |

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0121
Sampled: 01/04/05
Received: 01/04/05

PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOA0121-01 (Outfall Reporting Units: ugh	grab - Water) - co				Samp	led: 01/04	4/05		
1,2-Dichloro-1,1,2-trifluoroethane	EPA 624 (MOD.)	5A05017	N/A	2.5	ND	1	01/05/05	01/05/05	
Cyclohexane	EPA 624 (MOD.)	5A05017	N/A	2.5	ND	1	01/05/05	01/05/05	
Sample ID: IOA0121-02 (Trip Bla Reparting Units: ugh	Water)				Samp	led: 01/04			
1,2-Dichloro-1,1,2-trifluoroethane	EPA 624 (MOD.)	5 A 05017	N/A	2.5	ND	1	01/05/05	01/05/05	
Cyclohexane	EPA 624 (MOD.)	5A05017	N/A	2.5	ND	1	01/05/05	01/05/05	

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 1OA0121

Sampled: 01/04/05
Received: 01/04/05

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Sampled: 01/04/05
Received: 01/04/05

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

| | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Analyte | Method | Batch | MDL
 Limit | Reporting
 Limit | Sample
 Result | Dilution
 Factor | Date
 Extracted | Date
 Analyzed |
| Qualifiers | | | | | | | | |

Del Mar Analytical, Irvine

Michele Harper
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$

Report Number: 10 A 0121

Sampled: 01/04/05
Received: 01/04/05

ORGANOCHLORINE PESTICIDES (EPA 608)

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 10 A 0121

Sampled: 01/04/05
Received: 01/04/05

TOTAL PCBS (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OA0121-01 (Outfall 011 - grab - Water) - cont.					Sampled: 01/04/05				
Reporting Units: ug/									
Aroclor 1016	EPA 608	5A05041	0.067	1.0	ND	0.962	01/05/05	01/05/05	
Aroclor 1221	EPA 608	5A05041	0.057	1.0	ND	0.962	01/05/05	01/05/05	
Aroclor 1232	EPA 608	5A05041	0.13	1.0	ND	0.962	01/05/05	01/05/05	
Aroclor 1242	EPA 608	5 A 05041	0.12	1.0	ND	0.962	01/05/05	01/05/05	
Aroclor 1248	EPA 608	5A05041	0.21	1.0	ND	0.962	01/05/05	01/05/05	
Aroclor 1254	EPA 608	5A05041	0.16	1.0	ND	0.962	01/05/05	01/05/05	
Aroclor 1260	EPA 608	5A05041	0.17	1.0	ND	0.962	01/05/05	01/05/05	
Surrogate: Decachlorobiphenyl (45-120\%)					86\%				

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 10 A 0121

Sampled: 01/04/05
Received: 01/04/05

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 1OA0121 Received: 01/04/05

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: Repor	ab - Water) -				Samp	ed: 01/0	/05		
Antimony	EPA 200.8	5A05092	0.18	2.0	0.87	1	01/05/05	01/06/05	J
Arsenic	EPA 200.8	5A05092	0.49	1.0	0.80	1	01/05/05	01/06/05	J
Beryllium	EPA 200.8	5A05092	0.037	0.50	0.14	1	01/05/05	01/06/05	J
Cadmium	EPA 200.8	5 A 05092	0.015	1.0	0.25	1	01/05/05	01/06/05	J
Chromium	EPA 200.8	5A05092	0.26	1.0	3.5	1	01/05/05	01/06/05	
Cobalt	EPA 200.8	5A05092	0.10	1.0	0.59	1	01/05/05	01/06/05	J
Copper	EPA 200.8	5A05092	0.49	2.0	6.3	1	01/05/05	01/06/05	
Lead	EPA 200.8	5A05092	0.13	1.0	1.4	1	01/05/05	01/06/05	
Manganese	EPA 200.8	5A05092	0.44	1.0	26	1	01/05/05	01/06/05	
Mercury	EPA 245.1	5A06051	0.063	0.20	0.25	1	01/06/05	01/06/05	
Nickel	EPA 200.8	5A05092	0.15	1.0	3.5	1	01/05/05	01/06/05	
Selenium	EPA 200.8	5A05092	0.36	2.0	0.63	1	01/05/05	01/06/05	J
Silver	EPA 200.8	5A05092	0.089	1.0	ND	1	01/05/05	01/06/05	
Thallium	EPA 200.8	5A05092	0.075	1.0	ND	1	01/05/05	01/06/05	
Vanadium	EPA 200.8	5A05092	0.86	1.0	2.4	1	01/05/05	01/06/05	
Zinc	EPA 200.8	5A05092	3.1	20	22	1	01/05/05	01/06/05	

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 1OA0121

Sampled: 01/04/05
Received: 01/04/05

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOA0121-01 (Outfall 011 - grab - Water) - cont. Reporting Units: mgl			Sampled: 01/04/05						J
Ammonia-N (Distilled)	EPA 350.2	5A05067	0.30	0.50	ND	1	01/05/05	01/05/05	
Biochemical Oxygen Demand	EPA 405.1	5A05054	0.59	2.0	1.1	1	01/05/05	01/10/05	
Chloride	EPA 300.0	5A04042	0.26	0.50	4.2	1	01/04/05	01/04/05	
Fluoride	EPA 300.0	5 A04042	0.074	0.50	0.25	1	01/04/05	01/04/05	J
Nitrate/Nitrite-N	EPA 300.0	5A04042	0.072	0.26	2.1	1	01/04/05	01/04/05	
Oil \& Grease	EPA 413.1	5A05068	0.94	5.0	ND	1	01/05/05	01/05/05	
Residual Chlorine	EPA 330.5	5A05066	0.10	0.10	ND	1	01/05/05	01/05/05	RL-1
Sulfate	EPA 300.0	5A04042	0.18	0.50	5.9	1	01/04/05	01/04/05	
Suffactants (MBAS)	SM5540-C	5 A 04104	4.4	10	ND	100	01/04/05	01/04/05	
Total Dissolved Solids	SM2540C	5 A06082	10	10	120	1	01/06/05	01/06/05	
Total Organic Carbon	EPA 415.1	5A05058	0.56	1.0	12	1	01/05/05	01/05/05	
Total Suspended Solids	EPA 160.2	5A07077	10	10	ND	1	01/07/05	01/07/05	

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 10 A 0121

Sampled: 01/04/05
Received: 01/04/05

INORGANICS

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$

INORGANICS

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$

Report Number: IOA0121

Sampled: 01/04/05
Received: 01/04/05

INORGANICS

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0121

Sampled: 01/04/05
Received: 01/04/05

INORGANICS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1OA0121-01 (Outfall 011 - grab - Water) - cont.					Sampled: 01/04/05				
Reporting Units: umhos/cm									
Specific Conductance	EPA 120.1	5A06081	1.0	1.0	100	1	01/06/05	01/06/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0121

Sampled: 01/04/05
Received: 01/04/05

1,4-DIOXANE BY GC/MS (EPA 5030B/8260B)

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$

Report Number: $10 \mathrm{~A} 0121 \quad$| Sampled: |
| ---: |
| Received: | 01/04/05/05

Received: 01/04/05

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 011 - grab (IOA0121-01) - Water	2	$01 / 04 / 200510: 15$	$01 / 04 / 200518: 30$	$01 / 05 / 200509: 28$	$01 / 05 / 200510: 00$
EPA 160.5	2	$01 / 04 / 200510: 15$	$01 / 04 / 200518: 30$	$01 / 05 / 200514: 00$	$01 / 05 / 200515: 00$
EPA 180.1	1	$01 / 04 / 200510: 15$	$01 / 04 / 200518: 30$	$01 / 05 / 200511: 15$	$01 / 05 / 200512: 03$
EPA 218.6	2	$01 / 04 / 200510: 15$	$01 / 04 / 200518: 30$	$01 / 04 / 200522: 30$	$01 / 04 / 200523: 22$
EPA 300.0	1	$01 / 04 / 200510: 15$	$01 / 04 / 200518: 30$	$01 / 05 / 200509: 20$	$01 / 05 / 200510: 00$
EPA 330.5	2	$01 / 04 / 200510: 15$	$01 / 04 / 200518: 30$	$01 / 05 / 200514: 00$	$01 / 10 / 200519: 00$
EPA 405.1	3	$01 / 04 / 200510: 15$	$01 / 04 / 200518: 30$	$01 / 05 / 200500: 00$	$01 / 05 / 200517: 00$
EPA 624	2	$01 / 04 / 200510: 15$	$01 / 04 / 200518: 30$	$01 / 04 / 200521: 33$	$01 / 04 / 200522: 04$

[^7]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0121

Sampled: 01/04/05
Received: 01/04/05

METHOD BLANKIQC DATA

TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5A06070 Extracted: 01/06/05										
Blank Analyzed: 01/06/2005 (5A06070-BLK1)										
Total Recoverable Hydrocarbons ND	1.0	0.31	mg / l							
LCS Analyzed: 01/06/2005 (5A06070-BS1)										M-NR1
Total Recoverable Hydrocarbons 4.83	1.0	0.31	mg/	5.00		97	65-120			
LCS Dup Analyzed: 01/06/2005 (5A06070-BSD1)										
Total Recoverable Hydrocarbons 4.65	1.0	0.31	$\mathrm{mg} / 1$	5.00		93	65-120	4	20	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$

Project ID: Quarterly Outfall $011+13267$	
Report Number: $10 A 0121$	Sampled: 01/04/05
Received: 01/04/05	

METHOD BLANKIQC DATA

EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	$\begin{aligned} & \text { RPD } \\ & \text { Limit } \end{aligned}$	Data Qualifiers
Batch: 5A06045 Extracted: 01/06/05										
Blank Analyzed: 01/06/2005 (5A06045-BLK1)										
EFH (C13-C22) ND	0.50	0.082	mg/							
EFH (C13-C40) ND	0.50	0.082	mg/							
Surrogate: n-Octacosane 0.131			$m \mathrm{~g} / \mathrm{l}$	0.200		66	40-125			
LCS Analyzed: 01/06/2005 (5A06045-BS1)										M-NR1
EFH (C13-C40) 0.671	0.50	0.082	mg/	0.775		87	40-120			
Surrogate: n-Octacosane 0.136			$m g /$	0.200		68	40-125			
LCS Dup Analyzed: 01/06/2005 (5A06045-BSD1)										
EFH (C13-C40) 0.682	0.50	0.082	mg/	0.775		88	40-120	2	25	
Surrogate: n-Octacosane 0.149			$m g /$	0.200		74	40-125			

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 10A0121

Sampled: 01/04/05
Received: 01/04/05

METHOD RLANIKOC DATA

VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID: Quarterly Outfall 011+13267	
300 North Lake Avenue, Suite 1200	Report Number: 1OA0121	Sampled: 01/04/05
Pasadena, CA 91101		Received: 01/04/05
Attention: Bronwyn Kelly		

METHOD BLANKIQC DATA

FREON 113 (EPA 8260B)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5A05017 Extracted: 01/05/05											
Blank Analyzed: 01/05/2005 (5A05017-BLK1)											
Trichlorotrifluoroethane (Freon 113)	ND	5.0	1.2	ug 1							
Surrogate: Dibromofluoromethane	25.2			ug/	25.0		101	80-120			
Surrogate: Toluene-d8	25.2			ug/	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	24.3			ug/l	25.0		97	80-120			

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0121 Sampled: 01/04/05
Report Number: IOA0121
Received: 01/04/05

METHOD BLANKIQC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source	\%REC		RPD	Data	
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5A05017 Extracted: 01/05/05
Blank Analyzed: 01/05/2005 (5A05017-BLK1)

Benzene	ND	1.0	0.28	ug/			
Bromodichloromethane	ND	2.0	0.30	ugh			
Bromoform	ND	5.0	0.32	ug/1			
Bromomethane	ND	5.0	0.34	ug/			
Carbon tetrachloride	ND	0.50	0.28	ug/			
Chlorobenzene	ND	2.0	0.36	ug/			
Chloroethane	ND	5.0	0.33	ug/			
Chloroform	ND	2.0	0.33	ug/			
Chloromethane	ND	5.0	0.30	ug/			
Dibromochloromethane	ND	2.0	0.28	ug/			
1,2-Dichlorobenzene	ND	2.0	0.32	ug/			
1,3-Dichlorobenzene	ND	2.0	0.35	ug/			
1,4-Dichlorobenzene	ND	2.0	0.37	ug/			
1,1-Dichloroethane	ND	2.0	0.27	ug/			
1,2-Dichloroethane	ND	0.50	0.28	ug/			
1,1-Dichloroethene	ND	5.0	0.32	ug/1			
trans-1,2-Dichloroethene	ND	2.0	0.27	ug/			
1,2-Dichloropropane	ND	2.0	0.35	ug/			
cis-1,3-Dichloropropene	ND	2.0	0.22	ug/			
trans-1,3-Dichloropropene	ND	2.0	0.24	ug/			
Ethylbenzene	ND	2.0	0.25	ug/l			
Methylene chloride	0.700	5.0	0.48	ug/			
1,1,2,2-Tetrachloroethane	ND	2.0	0.24	ug/			
Tetrachloroethene	ND	2.0	0.32	ug/			
Toluene	ND	2.0	0.36	ug/			
1,1,1-Trichloroethane	ND	2.0	0.30	ug/			
1,1,2-Trichloroethane	ND	2.0	0.30	ug/			
Trichloroethene	ND	2.0	0.26	ug/			
Trichlorofluoromethane	ND	5.0	0.34	ug/			
Vinyl chloride	ND	0.50	0.26	ug/l			
Xylenes, Total	ND	4.0	0.52	ug/l			
Surrogate: Dibromofluoromethane	25.2			ug/l	25.0	101	80-120
Surrogate: Toluene-d8	25.2			ugh	25.0	101	80-120
Surrogate: 4-Bromofluorobenzene	24.3			$u g / 1$	25.0	97	80-120

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$

Report Number: 1OA0121
Sampled: 01/04/05
Received: 01/04/05

METHOD BLANKIQC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5A05017 Extracted: 01/05/05											
LCS Analyzed: 01/05/2005 (5A05017-BS1)											
Benzene	21.5	1.0	0.28	ug/	25.0		86	70-120			
Bromodichloromethane	27.4	2.0	0.30	ug/1	25.0		110	70-140			
Bromoform	26.8	5.0	0.32	ug/	25.0		107	55-135			
Bromomethane	26.2	5.0	0.34	ug/	25.0		105	60-140			
Carbon tetrachloride	29.0	0.50	0.28	ug/	25.0		116	70-140			
Chlorobenzene	23.2	2.0	0.36	ug/	25.0		93	80-125			
Chloroethane	22.8	5.0	0.33	ug/	25.0		91	60-145			
Chloroform	25.3	2.0	0.33	ugh	25.0		101	75-130			
Chloromethane	19.5	5.0	0.30	ugh	25.0		78	40-145			
Dibromochloromethane	25.3	2.0	0.28	ug/	25.0		101	65-145			
1,2-Dichlorobenzene	24.6	2.0	0.32	ug/1	25.0		98	80-120			
1,3-Dichlorobenzene	24.1	2.0	0.35	ugh	25.0		96	80-120			
1,4 Dichlorobenzene	23.7	20	0.37	ugh	25.0		95	$80-120$			\%
1,1-Dichloroethane	21.9	2.0	0.27	uga	25.0		88	70-135			
1,2-Dichloroethane	27.6	0.50	0.28	ug/	25.0		110	60-150			
1,1-Dichloroethene	21.4	5.0	0.32	ug/	25.0		86	75-135			
trans-1,2-Dichloroethene	23.2	2.0	0.27	ug/	25.0		93	70-130			
1,2-Dichloropropane	20.8	2.0	0.35	ug/	25.0		83	70-120			
cis-1,3-Dichloropropene	23.4	2.0	0.22	ug/	25.0		94	75-130			
trans-1,3-Dichloropropene	25.6	2.0	0.24	ug/	25.0		102	75-135			
Ethylbenzene	23.6	2.0	0.25	ug/	25.0		94	80-120			
Methylene chloride	20.9	5.0	0.48	ugh	25.0		84	60-135			
1,1,2,2-Tetrachloroethane	24.6	2.0	0.24	ug / l	25.0		98	60-135			
Tetrachloroethene	24.6	2.0	0.32	ug/	25.0		98	75-125			
Toluene	23.4	2.0	0.36	ug/	25.0		94	75-120			
1,1,1-Trichloroethane	27.2	2.0	0.30	ug/	25.0		109	75-140			
1,1,2-Trichloroethane	23.4	2.0	0.30	ug/	25.0		94	70-125			
Trichloroethene	24.1	2.0	0.26	ug/	25.0		96	80-120			
Trichlorofluoromethane	27.7	5.0	0.34	ug/	25.0		111	65-145			
Vinyl chloride	23.2	0.50	0.26	ug/1	25.0		93	50-130			
Surrogate: Dibromofluoromethane	25.5			ugh	25.0		102	80-120			
Surrogate: Toluene-d8	25.7			$u g h$	25.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	25.3			$u g /$	25.0		101	80-120			

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$

Sampled: 01/04/05
Received: 01/04/05

METHOD BLANKIQC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source	\%REC		RPD	Data	
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5A05017 Extracted: 01/05/05

Matrix Spike Analyzed: 01/05/2005 (5A05017-MS1)				Source: 1OA0112-01				
Benzene	21.0	1.0	0.28	ug/	25.0	ND	84	70-120
Bromodichloromethane	26.7	2.0	0.30	$\mathrm{ug} /$	25.0	ND	107	70-140
Bromoforn	23.8	5.0	0.32	ug/	25.0	ND	95	55-140
Bromomethane	24.6	5.0	0.34	ug/	25.0	ND	98	50-145
Carbon tetrachloride	28.8	0.50	0.28	ug/	25.0	ND	115	70-145
Chlorobenzene	22.8	2.0	0.36	ug/	25.0	ND	91	80-125
Chloroethane	21.5	5.0	0.33	ug/1	25.0	ND	86	50-145
Chloroform	24.7	2.0	0.33	ug/	25.0	ND	99	70-135
Chloromethane	18.0	5.0	0.30	ug/	25.0	ND	72	35-145
Dibromochloromethane	23.9	2.0	0.28	ug/l	25.0	ND	96	65-145
1,2-Dichlorobenzene	24.0	2.0	0.32	ug/	25.0	ND	96	75-130
1,3-Dichlorobenzene	23.9	2.0	0.35	ug/	25.0	ND	96	75-130
1,4 Dichlorobenzene	23.7	2.0	0.37	ug/	25.0	ND	95	80-120
1,1-Dichloroethane	21.2	2.0	0.27	ug/l	25.0	ND	85	65-135
1,2-Dichloroethane	27.2	0.50	0.28	ug/	25.0	ND	109	60-150
1,1-Dichloroethene	21.1	5.0	0.32	ug/	25.0	ND	84	65-140
trans-1,2-Dichloroethene	22.2	2.0	0.27	ug/	25.0	ND	89	65-135
1,2-Dichloropropane	20.1	2.0	0.35	ug/	25.0	ND	80	65-130
cis-1,3-Dichloropropene	22.4	2.0	0.22	ugh	25.0	ND	90	70-140
trans-1,3-Dichloropropene	24.7	2.0	0.24	ug/	25.0	ND	99	70-140
Ethylbenzene	23.3	2.0	0.25	ug/l	25.0	ND	93	70-130
Methylene chloride	19.6	5.0	0.48	$\mathrm{ug} /$	25.0	ND	78	60-135
1,1,2,2-Tetrachloroethane	22.4	2.0	0.24	ug/	25.0	ND	90	60-145
Tetrachloroethene	24.5	2.0	0.32	ug/	25.0	ND	98	70-130
Toluene	23.2	2.0	0.36	ug/	25.0	ND	93	70-120
1,1,1-Trichloroethane	26.8	2.0	0.30	ug/	25.0	ND	107	75-140
1,1,2-Trichloroethane	21.9	2.0	0.30	ug/	25.0	ND	88	60-135
Trichloroethene	23.3	2.0	0.26	ug/l	25.0	ND	93	70-125
Trichlorofluoromethane	27.1	5.0	0.34	ugh	25.0	ND	108	55-145
Vinyl chloride	21.8	0.50	0.26	ugh	25.0	ND	87	40-135
Surrogate: Dibromofluoromethane	25.5			ug/	25.0		102	80-120
Surrogate: Toluene-d8	25.7			ug/	25.0		103	80-120
Surrogate: 4-Bromofluorobenzene	25.5			ugh	25.0		102	80-120

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 1OA0121

Sampled: 01/04/05
Received: 01/04/05

METHOD BLANKIOC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source		\%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5A05017 Extracted: 01/05/05

Matrix Spike Dup Analyzed: 01/05/2005 (5A05017-MSD1)

Benzene	22.3	1.0	0.28	ug/	25.0	ND	89	70-120	6	20
Bromodichloromethane	28.0	2.0	0.30	ug/	25.0	ND	112	70-140	5	20
Bromoform	25.6	5.0	0.32	ug/	25.0	ND	102	55-140	7	25
Bromomethane	26.4	5.0	0.34	ug/l	25.0	ND	106	50-145	7	25
Carbon tetrachloride	30.1	0.50	0.28	ug/	25.0	ND	120	70-145	4	25
Chlorobenzene	24.1	2.0	0.36	ug/	25.0	ND	96	80-125	6	20
Chloroethane	23.7	5.0	0.33	ug/	25.0	ND	95	50-145	10	25
Chloroform	25.6	2.0	0.33	ug/	25.0	ND	102	70-135	4	20
Chloromethane	19.5	5.0	0.30	ug/	25.0	ND	78	35-145	8	25
Dibromochloromethane	25.4	2.0	0.28	ug/	25.0	ND	102	65-145	6	25
1,2-Dichlorobenzene	25.5	2.0	0.32	ug/	25.0	ND	102	75-130	6	20
1,3-Dichlorobenzene	25.0	2.0	0.35	ug/1	25.0	ND	100	75-130	4	20
1,4 Dichlorobenzene	24.7	2.0	0.37	ugh	250	ND	99	80120	4	20
1,-Dichloroethane	22.4	2.0	0.27	ug/l	250	ND	90	65-135	6	20
1,2-Dichloroethane	28.1	0.50	0.28	ug/l	25.0	ND	112	60-150	3	20
1,1-Dichloroethene	22.3	5.0	0.32	ug/	25.0	ND	89	65-140	6	20
trans-1,2-Dichloroethene	23.5	2.0	0.27	ug/	25.0	ND	94	65-135	6	20
1,2-Dichloropropane	21.5	2.0	0.35	ug/	25.0	ND	86	65-130	7	20
cis-1,3-Dichloropropene	24.2	2.0	0.22	ug/	25.0	ND	97	70-140	8	20
trans-1,3-Dichloropropene	26.0	2.0	0.24	ug/	25.0	ND	104	70-140	5	25
Ethylbenzene	24.3	2.0	0.25	ug/	25.0	ND	97	70-130	4	20
Methylene chloride	20.9	5.0	0.48	ug/	25.0	ND	84	60-135	6	20
1,1,2,2-Tetrachloroethane	24.7	2.0	0.24	ug/	25.0	ND	99	60-145	10	30
Tetrachloroethene	25.3	2.0	0.32	ug/	25.0	ND	101	70-130	3	20
Toluene	24.5	2.0	0.36	ugh	25.0	ND	98	70-120	5	20
1,1,1-Trichloroethane	27.5	2.0	0.30	ug/	25.0	ND	110	75-140	3	20
1,1,2-Trichloroethane	23.5	2.0	0.30	ug/	25.0	ND	94	60-135	7	25
Trichloroethene	24.3	2.0	0.26	ug/	25.0	ND	97	70-125	4	20
Trichlorofluoromethane	27.8	5.0	0.34	ugh	25.0	ND	111	55-145	3	25
Vinyl chloride	23.3	0.50	0.26	ug/l	25.0	ND	93	40-135	7	30
Surrogate: Dibromofluoromethane	25.5			ugh	25.0		102	80-120		
Surrogate: Toluene-d8	25.7			ug/	25.0		103	80-120		
Surrogate: 4-Bromofluorobenzene	25.5			ug/	25.0		102	80-120		

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$

	Sampled: 01/04/05
Report Number: 10 A 0121	Received: $01 / 04 / 05$

METHOD BLANK/GC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDI.	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5A05012 Extracted:01/05/05											
Blank Analyzed: 01/05/2005 (5A05012-BLK1)											
Acrolein	ND	50	4.6	ug/l							
Acrylonitrile	ND	50	5.1	ug/l							
2-Chloroethyl vinyl ether	ND	5.0	1.3	ug/l							
Surrogate: Dibromofluoromethane	25.2			$u g / 1$	25.0		101	80-120			
Surrogate: Toluene-d8.	25.0			$u g / l$	25.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	24.1			$u g /$	25.0		96	80-120			
LCS Analyzed: 01/05/2005 (5A05012-BS1)											
2-Chloroethyl vinyl ether	24.3	5.0	1.3	ug/	25.0		97	20-175			
Surrogate: Dibromofluoromethane	26.1			$u g /$	25.0		104	80-120			
Surrogate: Toluene-d8	25.1			$u g / l$	25.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	25.4			$u g /$	25.0		102	80-120			

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 1OA0121

Sampled: 01/04/05
Received: 01/04/05

METHOD BLANKIOC DATA

PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5A05017 Extracted: 01/05/05											
Blank Analyzed: 01/05/2005 (5A05017-BLK1)											
1,2-Dichloro-1,1,2-trifluoroethane	ND	2.5	N/A	ug/							
Cyclohexane	ND	2.5	N/A	ug/							

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0121 Received: 01/04/05
Received: 01/04/05

MEMHOB BLANKIOC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source	\%REC		RPD	Data	
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5A05039 Extracted: 01/05/05
Blank Analyzed: 01/13/2005 (5A05039-BLK1)

Acenaphthene	ND	0.50	0.10
Acenaphthylene	ND	0.50	0.10
Aniline	ND	10	2.9
Anthracene	ND	0.50	0.083
Benzidine	ND	5.0	2.4
Benzoic acid	ND	20	3.7
Benzo(a)anthracene	ND	5.0	0.038
Benzo(a)pyrene	ND	2.0	0.14
Beazo(b)fluoranthene	ND	2.0	0.050
Benzo(g,h,i)perylene	ND	5.0	0.059
Benzo(k)fluoranthene	ND	0.50	0.053
Benzyl alcohol	ND	5.0	0.21
Bis(2-chloroethoxy)methane	ND	0.50	0.072
Bis(2-chloroethyl)ether	ND	0.50	0.084
Bis(2-chloroisopropyl)ether	ND	0.50	0.11
Bis(2-ethylhexyl)phthalate	ND	5.0	1.1
4-Bromophenyl phenyl ether	ND	1.0	0.12
Butyl benzyl phthalate	ND	5.0	0.34
4-Chloroaniline	ND	2.0	0.20
2-Chloronaphthalene	ND	0.50	0.059
4-Chloro-3-methylphenol	ND	2.0	0.34
4-Chiorophenyl phenyl ether	ND	0.50	0.056
2-Chlorophenol	ND	1.0	0.12
Chrysene	ND	0.50	0.072
Dibenz(a,h)anthracene	ND	0.50	0.083
Dibenzofuran	ND	0.50	0.075
Di-n-butyl phthalate	ND	2.0	0.26
1,2-Dichlorobenzene	ND	0.50	0.11
1,3-Dichlorobenzene	ND	0.50	0.13
1,4-Dichlorobenzene	ND	0.50	0.050
3,3-Dichlorobenzidine	ND	5.0	0.93
2,4-Dichlorophenol	ND	2.0	0.21
Diethyl phthalate	ND	1.0	0.12
2,4-Dimethylphenol	ND	2.0	0.31
Dimethyl phthalate	ND	0.50	0.081

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$

Report Number: $1040121 \quad \begin{array}{r}\text { Sampled: 01/04/05 } \\ \text { Received: 01/04/05 }\end{array}$

METHOD BLANKQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result		\%REC		RPD	$\xrightarrow{\text { Data }}$
			MDL	Units			\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5A05039 Extracted: 01/05/05
Blank Analyzed: 01/13/2005 (5A05039-BLK1)

4,6-Dinitro-2-methylphenol	ND	5.0	0.38	ug/		
2,4-Dinitrophenol	ND	5.0	2.7	ug/		
2,4-Dinitrotoluene	ND	5.0	0.23	ug/1		
2,6-Dinitrotoluene	ND	5.0	0.24	ug/		
Di-n-octyl phthalate	ND	5.0	0.17	ug/		
1,2-Diphenylhydrazine/Azobenzene	ND	1.0	0.087	ug/		
Fluoranthene	ND	0.50	0.089	ug/		
Fluorene	ND	0.50	0.075	ug/		
Hexachlorobenzene	ND	1.0	0.13	ug/t		
Hexachlorobutadiene	ND	2.0	0.38	ug/		
Hexachlorocyclopentadiene	ND	5.0	1.8	ug/		
Hexachloroethane	ND	3.0	0.51	ug/		
Indeno(1,2,3-d)pyrene	ND	20	0.19	ug/		
Isophorone	ND	1.0	0.059	ugh		
2-Methylnaphthalene	ND	1.0	0.13	ug/		
2-Methylphenol	ND	2.0	0.28	ug/		
4-Methylphenol	ND	5.0	0.20	ugl		
Naphthalene	ND	1.0	0.13	ug/		
2-Nitroaniline	ND	5.0	0.18	ug/		
3-Nitroaniline	ND	5.0	0.35	ug/l		
4-Nitroaniline	ND	5.0	0.49	$u g / 1$		
Nitrobenzene	ND	1.0	0.10	ug/		
2-Nitrophenol	ND	2.0	0.23	ug/		
4-Nitrophenol	ND	5.0	0.73	ug/		
N-Nitrosodimethylamine	ND	2.0	0.22	ug/		
N-Nitroso-di-n-propylamine	ND	2.0	0.18	ug 1		
N -Nitrosodiphenylamine	ND	1.0	0.077	ugh		
Pentachlorophenol	ND	2.0	0.78	ug/		
Phenanthrene	ND	0.50	0.071	ug/		
Phenol	ND	1.0	0.14	ug/		
Pyrene	ND	0.50	0.059	ug/l		
1,2,4-Trichlorobenzene	ND	1.0	0.10	ugh		
2,4,5-Trichlorophenol	ND	2.0	0.075	ugh		
2,4,6-Trichlorophenol	ND	1.0	0.10	ugh		
Surrogate: 2-Fluorophenol	15.2			ug/	20.0	76

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$

Sampled: 01/04/05
Report Number: IOA0121
Received: 01/04/05

METHOD BLANKIQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5A05039 Extracted: 01/05/05											
Blank Analyzed: 01/13/2005 (5A05039-BLK1)											
Sirrogate: Phenol-d6	15.8			ug/l	20.0		79	45-120			
Surrogate: 2,4,6-Tribromophenol	16.1			ug $/$	20.0		80	50-125			
Surrogate: Nitrobenzene-d5	7.68			ug $/$	10.0		77	45-120			
Surrogate: 2-Fluorobiphenyl	7.72			ug/	10.0		77	45-120			
Surrogate: Terphemyl-d14	8.24			ug/	10.0		82	45-135			
LCS Analyzed: 01/13/2005 (5A											M-NR1
Acenaphthene	8.04	0.50	0.10	ugl	10.0		80	55-120			
Acenaphthylene	8.10	0.50	0.10	ug/	10.0		81	55-120			
Aniline	8.58	10	2.9	ug/	10.0		86	30-120			J
Anthracene	8.44	0.50	0.083	ug/	10.0		84	60-120			
Benzidine	ND	5.0	2.4	ug/	10.0			20-180			L2
Benzoicacid	7.32	20	37	ug/	100		73	30-125			J
Benzo(a)antiracene	8.98	5.0	0038	ugh	10.0		90	65-120			
Benzo(a)pyrene	9.20	2.0	0.14	ug/	10.0		92	55-125			
Benzo(b)fluoranthene	8.46	2.0	0.050	ug/	10.0		85	50-125			
Benzo(g,h,i)perylene	9.04	5.0	0.059	ug/	10.0		90	35-160			
Benzo(k)fluoranthene	7.08	0.50	0.053	ug/	10.0		71	50-125			
Benzyl alcohol	9.78	5.0	0.21	ug/	10.0		98	40-130			
Bis(2-chloroethoxy)methane	8.88	0.50	0.072	ug/	10.0		89	55-120			
Bis(2-chloroethyl)ether	8.22	0.50	0.084	ug/	10.0		82	50-120			
Bis(2-chloroisopropyl)ether	8.22	0.50	0.11	ugh	10.0		82	50-120			
Bis(2-ethylhexyl)phthalate	9.64	5.0	1.1	ug/	10.0		96	65-125			
4-Bromophenyl phenyl ether	8.70	1.0	0.12	ug/	10.0		87	55-125			
Butyl benzyl phthalate	9.66	5.0	0.34	ugh	10.0		97	60-125			
4-Chloroaniline	9.02	2.0	0.20	ugh	10.0		90	55-120			
2-Chloronaphthalene	7.50	0.50	0.059	ught	10.0		75	60-120			
4-Chloro-3-methylphenol	10.0	2.0	0.34	ugh	10.0		100	60-120			
4-Chlorophenyl phenyl ether	8.56	0.50	0.056	ug/	10.0		86	55-120			
2 -Chlorophenol	8.06	1.0	0.12	ug/	10.0		81	45-120			
Chrysene	8.56	0.50	0.072	ug/	10.0		86	65-120			
Dibenz(a,h)anthracene	9.22	0.50	0.083	ug/	10.0		92	40-160			
Dibenzofuran	8.28	0.50	0.075	ug/	10.0		83	60-120			
Di-n-butyl phthalate	9.90	2.0	0.26	ugh	10.0		99	65-125			
1,2-Dichlorobenzene	5.94	0.50	0.11	ug/	10.0		59	40-120			
1,3-Dichlorobenzene	5.26	0.50	0.13	ug/	10.0		53	40-120			

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0121
Sampled: 01/04/05

MCTHOD BLANKIQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

		Reperting			Spike	Source		\%REC		RPD	Data
Analyte	Result		MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5A05039 Extracted: 01/05/05
LCS Analyzed: 01/13/2005 (5A05039-BS1)

1,4-Dichlorobenzene	5.56	0.50	0.050	ug/	10.0	56	40-120
3,3-Dichlorobenzidine	8.32	5.0	0.93	ug/	10.0	83	50-170
2,4-Dichlorophenol	9.42	2.0	0.21	ug/l	10.0	94	55-120
Diethyl phthalate	9.50	1.0	0.12	ug/l	10.0	95	60-120
2,4-Dimethylphenol	6.64	2.0	0.31	ug/	10.0	66	35-120
Dimethyl phthalate	9.00	0.50	0.081	ug/l	10.0	90	60-120
4,6-Dinitro-2-methylphenol	7.48	5.0	0.38	ug / l	10.0	75	55-120
2,4-Dinitrophenol	13.3	5.0	2.7	ug/l	10.0	133	40-140
2,4-Dinitrotoluene	9.12	5.0	0.23	ug/l	10.0	91	60-140
2,6-Dinitrotoluene	8.94	5.0	0.24	ug/l	10.0	89	65-125
Di-n-octyl phthalate	10.0	5.0	0.17	ug/l	10.0	100	60-130
1,2-Diphenylhydrazine/Azobenzene	10.0	1.0	0.087	ug/l	10.0	100	60-120
Fluoranthene	8.74	0.50	0.089	ug/l	10.0	87.	$55-125$
Fluerene	8.68	0.50	0.075	ug/l	10.0	87	60-120
Hexachlorobenzene	8.50	1.0	0.13	ug/l	10.0	85	50-120
Hexachlorobutadiene	5.00	2.0	0.38	ug/l	10.0	50	45-120
Hexachlorocyclopentadiene	5.06	5.0	1.8	ug/l	10.0	51	10-130
Hexachloroethane	4.82	3.0	0.51	ug/l	10.0	48	40-120
Indeno(1,2,3-cd)pyrene	9.04	2.0	0.19	ug/l	10.0	90	35-150
Isophorone	9.58	1.0	0.059	ug/l	10.0	96	55-120
2-Methylnaphthalene	7.52	1.0	0.13	ug/l	10.0	75	50-120
2-Methylphenol	8.78	2.0	0.28	ug/l	10.0	88	45-120
4-Methylphenol	8.94	5.0	0.20	ug/l	10.0	89	45-120
Naphthalene	7.36	1.0	0.13	ug/l	10.0	74	50-120
2-Nitroaniline	9.10	5.0	0.18	ug/l	10.0	91	60-130
3-Nitroaniline	9.40	5.0	0.35	ug/l	10.0	94	50-140
4-Nitroaniline	9.96	5.0	0.49	ug/l	10.0	100	45-160
Nitrobenzene	8.44	1.0	0.10	ug/l	10.0	84	50-120
2-Nitrophenol	8.76	2.0	0.23	ug / l	10.0	88	55-120
4-Nitrophenol	9.36	5.0	0.73	ug/l	10.0	94	50-135
N -Nitrosodimethylamine	8.98	2.0	0.22	ug/l	10.0	90	40-120
N-Nitroso-di-n-propylamine	9.28	2.0	0.18	ug/l	10.0	93	50-120
N -Nitrosodiphenylamine	8.98	1.0	0.077	ug/l	10.0	90	60-120
Pentachlorophenol	8.90	2.0	0.78	ug/l	10.0	89	50-125
Phenanthrene	8.20	0.50	0.071	ug/l	10.0	82	55-120

M-NR1

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 10 A 0121
Sampled: 01/04/05
Received: 01/04/05

METHOD BLANKQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5A05039 Extracted: 01/05/05											
LCS Analyzed: 01/13/2005 (5A05039-BS1)											M-NR1
Phenol	8.30	1.0	0.14	ug/1	10.0		83	45-120			
Pyrene	8.84	0.50	0.059	ug/	10.0		88	50-120			
1,2,4-Trichlorobenzene	6.16	1.0	0.10	ug/	10.0		62	50-120			
2,4,5-Trichlorophenol	9.28	2.0	0.075	ug/	10.0		93	60-120			
2,4,6-Trichlorophenol	9.40	1.0	0.10	ug/	10.0		94	60-120			
Surrogate: 2-Fluorophenol	14.2			ug $/$	20.0		71	35-120			
Surrogate: Phenol-d6	15.6			ug $/$	20.0		78	45-120			
Surrogate: 2,4,6-Tribromophenol	16.0			ug/t	20.0		80	50-125			
Surrogate: Nitrobenzene-d5	7.74			$u g /$	10.0		77	45-120			
Surrogate: 2-Fluorobiphenyl	7.48			$u g /$	10.0		75	45-120			
Surrogate: Terphenyl-d14	7.84			$u g /$	10.0		78	45-135			

LCS Dup Analyzed: 01/13/2005 (5A05039-BSD1)

Acenaphthene	9.26	0.50	0.10	ug/	10.0	93	55-120	14	20
Acenaphthylene	9.22	0.50	0.10	ug/	10.0	92	55-120	13	20
Aniline	8.80	10	2.9	ug/	10.0	88	30-120	3	25
Anthracene	9.46	0.50	0.083	ug/	10.0	95	60-120	11	20
Benzidine	ND	5.0	2.4	uga	10.0		20-180		35
Benzoic acid	8.04	20	3.7	ug/l	10.0	80	30-125	9	30
Benzo(a)anthracene	9.68	5.0	0.038	ugh	10.0	97	65-120	8	20
Benzo(a)pyrene	10.4	2.0	0.14	ug/	10.0	104	55-125	12	25
Benzo(b)fluoranthene	10.8	2.0	0.050	ugh	10.0	108	50-125	24	25
Benzo(g,h,i)perylene	9.96	5.0	0.059	ug/	10.0	100	35-160	10	25
Benzo(k)fluoranthene	8.28	0.50	0.053	ug/	10.0	83	50-125	16	20
Benzyl alcohol	10.9	5.0	0.21	ug/	10.0	109	40-130	11	20
Bis(2-chloroethoxy)methane	10.0	0.50	0.072	ugh	10.0	100	55-120	12	20
Bis(2-chloroethyl)ether	9.20	0.50	0.084	ugh	10.0	92	50-120	11	20
Bis(2-chloroisopropyl)ether	9.20	0.50	0.11	ug/	10.0	92	50-120	11	20
Bis(2-ethylhexyl)phthalate	10.7	5.0	1.1	ug/	10.0	107	65-125	10	20
4-Bromophenyl phenyl ether	9.66	1.0	0.12	ug/	10.0	97	55-125	10	25
Butyl benzyl phthalate	10.7	5.0	0.34	ug/	10.0	107	60-125	10	20
4-Chloroaniline	9.86	2.0	0.20	ug/	10.0	99	55-120	9	25
2-Chloronaphthalene	8.88	0.50	0.059	ug/	10.0	89	60-120	17	20
4-Chloro-3-methylphenol	10.7	2.0	0.34	ug/	10.0	107	60-120	7	25
4-Chlorophenyl phenyl ether	9.56	0.50	0.056	ug/	10.0	96	55-120	11	20
2-Chlorophenol	9.18	1.0	0.12	ug/	10.0	92	45-120	13	25

Del Mar Analytical, Irvine

Michele Harper
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$

Report Number: 1OA0121
Sampled: 01/04/05
Received: $01 / 04 / 05$

METHOD BLANKIQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source		\%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5A05039 Extracted: 01/05/05
LCS Dup Analyzed: 01/13/2005 (5A05039-BSD1)

Chrysene	9.20	0.50	0.072	ug/	10.0	92	65-120	7	20
Dibenz(a,h)anthracene	10.5	0.50	0.083	ug/1	10.0	105	40-160	13	25
Dibenzofuran	9.46	0.50	0.075	ug/	10.0	95	60-120	13	20
Di-n-butyl phthalate	10.9	2.0	0.26	ug/	10.0	109	65-125	10	20
1,2-Dichlorobenzene	6.42	0.50	0.11	ug/1	10.0	64	40-120	8	25
1,3-Dichlorobenzene	6.00	0.50	0.13	ugl	10.0	60	40-120	13	25
1,4-Dichlorobenzene	6.08	0.50	0.050	ug/	10.0	61	40-120	9	25
3,3-Dichlorobenzidine	9.06	5.0	0.93	ug/1	10.0	91	50-170	9	25
2,4-Dichlorophenol	10.3	2.0	0.21	ug/	10.0	103	55-120	9	20
Diethyl phthalate	10.3	1.0	0.12	ug/	10.0	103	60-120	8	20
2,4-Dimethylphenol	8.38	2.0	0.31	ug/	10.0	84	35-120	23	25
Dimethyl phthalate	10.1	0.50	0.081	ug/	10.0	101	60-120	12	20
4,6-Dinito-2 methylphenol	826	5.0	0.38	ugh	10.0	83	55-120	10	25
2,4-Dinitrophenol	14.5	50	2.7	ug/	10.0	145	40-140	9	25
2,4-Dinitrotoluene	10.3	5.0	0.23	ug/	10.0	103	60-140	12	20
2,6-Dinitrotoluene	10.0	5.0	0.24	ug/	10.0	100	65-125	11	20
Di-n-octyl phthalate	11.4	5.0	0.17	ug/	10.0	114	60-130	13	20
1,2-Diphenylhydrazine/Azobenzene	11.3	1.0	0.087	ugl	10.0	113	60-120	12	25
Fluoranthene	10.1	0.50	0.089	ug/	10.0	101	55-125	14	20
Fluorene	9.80	0.50	0.075	ugh	10.0	98	60-120	12	20
Hexachlorobenzene	9.06	1.0	0.13	ugl	10.0	91	50-120	6	20
Hexachlorobutadiene	6.10	2.0	0.38	ug/l	10.0	61	45-120	20	25
Hexachlorocyclopentadiene	6.92	5.0	1.8	ugl	10.0	69	10-130	31	30
Hexachloroethane	5.42	3.0	0.51	ug/l	10.0	54	40-120	12	25
Indeno($1,2,3$-cd) pyrene	10.8	2.0	0.19	ugl	10.0	108	35-150	18	25
Isophorone	10.1	1.0	0.059	ug/	10.0	101	55-120	5	20
2-Methylnaphthalene	8.18	1.0	0.13	ug/	10.0	82	50-120	8	20
2-Methylphenol	10.0	2.0	0.28	ugh	10.0	100	45-120	13	20
4-Methylphenol	9.94	5.0	0.20	ug/	10.0	99	45-120	11	20
Naphthalene	7.96	1.0	0.13	ugh	10.0	80	50-120	8	20
2-Nitroaniline	10.2	5.0	0.18	ug/	10.0	102	60-130	11	20
3-Nitroaniline	10.4	5.0	0.35	ug/	10.0	104	50-140	10	25
4-Nitroaniline	11.5	5.0	0.49	ug/1	10.0	115	45-160	14	20
Nitrobenzene	9.34	1.0	0.10	ug/	10.0	93	50-120	10	25
2-Nitrophenol	9.82	2.0	0.23	ug/	10.0	98	55-120	11	25

[^8]
Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$

Report Number: 10 A 0121

METHOD BLANKKQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5A05039 Extracted: 01/05/05											
LCS Dup Analyzed: 01/13/2005 (5A05039-BSD1)											
4-Nitrophenol	10.9	5.0	0.73	ug/	10.0		109	50-135	15	25	
N -Nitrosodimethylamine	10.6	2.0	0.22	ug/l	10.0		106	40-120	17	20	
N -Nitroso-di-n-propylamine	10.2	2.0	0.18	ug/	10.0		102	50-120	9	20	
N -Nitrosodiphenylamine	9.94	1.0	0.077	ug/	10.0		99	60-120	10	20	
Pentachlorophenol	10.0	2.0	0.78	ugh	10.0		100	50-125	12	25	
Phenanthrene	9.12	0.50	0.071	ug/	10.0		91	55-120	11	20	
Phenol	9.54	1.0	0.14	ug/	10.0		95	45-120	14	25	
Pyrene	9.74	0.50	0.059	ug/	10.0		97	50-120	10	25	
1,2,4-Trichlorobenzene	6.84	1.0	0.10	ug/l	10.0		68	50-120	10	20	
2,4,5-Trichlorophenol	10.2	2.0	0.075	ug/	10.0		102	60-120	9	20	
2,4,6-Trichlorophenol	10.9	1.0	0.10	ug/l	10.0		109	60-120	15	20	
Surrogate: 2-Fluorophenol	16.5			ug/l	20.0		82	35-120			
Surrogate Phenol-d6	17.4		\because	ug/	20.0		87	45-120	\cdots		
Surrogate: 2,4,6-Tribromophenol	17.8			ug/l	20.0		89	50-125			
Surrogate: Nitrobenzene-d5	8.50			$u g / l$	10.0		85	45-120			
Surrogate: 2-Fluorobiphenyl	8.54			ug/	10.0		85	45-120			
Surrogate: Terphenyl-d14	8.36			$u g /$	10.0		84	45-135			

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 1OA0121

Sampled: 01/04/05
Received: 01/04/05

METHOD BLANKIQC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5A05041 Extracted: 01/05/05											
Blank Analyzed: 01/05/2005 (5A05041-BLK1)											
Aldrin	ND	0.10	0.029	ug/							
alpha-BHC	ND	0.10	0.010	ug/							
beta-BHC	ND	0.10	0.011	ug/							
delta-BHC	ND	0.20	0.010	ug/							
ganma-BHC (Lindane)	ND	0.10	0.0097	ug/							
Chlordane	ND	1.0	0.18	ug/l							
4,4'-DDD	ND	0.10	0.011	ug/1							
4,4-DDE	ND	0.10	0.017	ug/							
4,4'-DDT	ND	0.10	0.015	ug/							
Dieldrin	ND	0.10	0.010	ug/							
Endosulfan I	ND	0.10	0.015	ug/							
Endosulfan II	ND	0.10	0.037	ug/							
Endosulfan sulfate	ND	0.20	0.013	ugA							
Endrin	ND	0.10	0.0082	uga							
Endrin aldehyde	ND	0.10	0.045	ug/							
Endrin ketone	ND	0.10	0.020	ugh							
Heptachlor	ND	0.10	0.030	ug/							
Heptachlor epoxide	ND	0.10	0.012	ug/							
Methoxychlor	ND	0.10	0.034	ug/							
Toxaphene	ND	5.0	0.77	ug/							
Surrogate: Tetrachloro-m-xylene	0.374			ug/l	0.500		75	35-120			
Surrogate: Decachlorobiphenyl	0.437			$u g / l$	0.500		87	45-120			
LCS Analyzed: 01/05/2005 (5											M-NR1
Aldrin	0.428	0.10	0.029	ug/1	0.500		86	45-115			
alpha-BHC	0.463	0.10	0.010	ug/	0.500		93	45-115			
beta-BHC	0.456	0.10	0.011	ugh	0.500		91	50-115			
delta-BHC	0.463	0.20	0.010	ugh	0.500		93	55-120			
gamma-BHC (Lindane)	0.459	0.10	0.0097	ug/	0.500		92	45-115			
4,4'-DDD	0.469	0.10	0.011	ug/l	0.500		94	60-120			
4,4'-DDE	0.477	0.10	0.017	ug/	0.500		95	55-120			
4,4'-DDT	0.495	0.10	0.015	ug/	0.500		99	60-130			
Dieldrin	0.469	0.10	0.010	ug/	0.500		94	55-120			
Endosulfan I	0.441	0.10	0.015	ugh	0.500		88	50-115			
Endosulfan II	0.456	0.10	0.037	ug/	0.500		91	60-125			
Endosulfan sulfate	0.455	0.20	0.013	ugh	0.500		91	60-120			

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$

Sampled: 01/04/05
Report Number: IOA0121
Received: 01/04/05

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5A05041 Extracted: 01/05/05											
LCS Analyzed: 01/05/2005 (5A											M-NR1
Endrin	0.511	0.10	0.0082	ug/	0.500		102	55-125			
Endrin aldehyde	0.474	0.10	0.045	ug/	0.500		95	55-115			
Endrin ketone	0.462	0.10	0.020	ug/1	0.500		92	60-120			
Heptachlor	0.450	0.10	0.030	ug/	0.500		90	45-115			
Heptachlor epoxide	0.443	0.10	0.012	ug/	0.500		89	50-120			
Methoxychlor	0.466	0.10	0.034	ug/	0.500		93	60-135			
Surrogate: Tetrachloro-m-xylene	0.368			ug $/$	0.500		74	35-120			
Surrogate: Decachlorobiphenyl	0.459			ug/	0.500		92	45-120			
LCS Dup Analyzed: 01/05/2005 (5A05041-BSD1)											
Aldrin	0.388	0.10	0.029	ug/l	0.500		78	45-115	10	30	
alpha-BHC	0.425	0.10	0.010	ug/	0.500		85	45-115	9	30	
beta-BHC	0.447	0.10	0.011	ug/l	0.500		89	50-115	2	30	
delta-BHC	0.467	0.20	0.010	ug/	0.500		93	55-120	1	30	
gamma-BHC (Lindane)	0.429	0.10	0.0097	ug/	0.500		86	45-115	7	30	
4,4-DDD	0.484	0.10	0.011	ug/	0.500		97	60-120	3	30	
4,4'-DDE	0.471	0.10	0.017	ug/	0.500		94	55-120	1	30	
4,4'-DDT	0.501	0.10	0.015	ug/	0.500		100	60-130	1	30	
Dieldrin	0.462	0.10	0.010	ug/	0.500		92	55-120	2	30	
Endosulfan I	0.431	0.10	0.015	ug/	0.500		86	50-115	2	30	
Endosulfan II	0.458	0.10	0.037	ugl	0.500		92	60-125	0	30	
Endosulfan sulfate	0.463	0.20	0.013	ug/	0.500		93	60-120	2	30	
Endrin	0.506	0.10	0.0082	ugh	0.500		101	55-125	1	30	
Endrin aldehyde	0.484	0.10	0.045	ugl	0.500		97	55-115	2	30	
Endrin ketone	0.470	0.10	0.020	ug/	0.500		94	60-120	2	30	
Heptachlor	0.416	0.10	0.030	ug/l	0.500		83	45-115	8	30	
Heptachlor epoxide	0.430	0.10	0.012	ugh	0.500		86	50-120	3	30	
Methoxychlor	0.477	0.10	0.034	ug/l	0.500		95	60-135	2	30	
Surrogate: Tetrachloro-m-xylene	0.331			ug/	0.500		66	35-120			
Surrogate: Decachlorobiphenyl	0.456			$u g h$	0.500		91	45-120			

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0121

Sampled: 01/04/05
Received: 01/04/05

METHOD BLANKIQC DATA

TOTAL PCBS (EPA 608)

Analyte	Result	Reporting Limit	MDL.	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5A05041 Extracted: 01/05/05											
Blank Analyzed: 01/05/2005 (5A05041-BLK1)											
Aroclor 1016	ND	1.0	0.067	ug/							
Aroclor 1221	ND	1.0	0.057	ugh							
Aroclor 1232	ND	1.0	0.13	ug/l							
Aroclor 1242	ND	1.0	0.12	ug/l							
Aroclor 1248	ND	1.0	0.21	ug/l							
Aroclor 1254	ND	1.0	0.16	ug/l							
Aroclor 1260	ND	1.0	0.17	ug/l							
Surrogate: Decachlorobiphenyl	0.459			$u g h$	0.500		92	45-120			
LCS Analyzed: 01/05/2005											M-NR1
Aroclor 1016	3.16	1.0	0.067	ug/l	4.00		79	50-115			
Aroclor 1260	3.52	1.0	0.17	ug/l	4.00		88	60-115			
Surrogate Decachlorobiphenyl	0.468	.		ug/l	0.500		94	45-120	:..		
LCS Dup Analyzed: 01/05/2005 (5A05041-BSD2)											
Aroclor 1016	2.42	1.0	0.067	ug/l	4.00		60	50-115	27	30	
Aroclor 1260	3.53	1.0	0.17	ug/t	4.00		88	60-115	0	25	
Surrogate: Decachlorobiphenyl	0.475			$u g /$	0.500		95	45-120			

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly	Project ID: Quarterly Outfall 011 + 13267
	Report Number: IOA0121

METALS											
Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5A05092 Extracted: 01/05/05											
Blank Analyzed: 01/06/2005 (5A05092-BLK1)											
Antimony	ND	2.0	0.18	ug/							
Arsenic	ND	1.0	0.49	ug/							
Barium	ND	0.0010	0.00014	$\mathrm{mg} /$							
Beryllium	ND	0.50	0.037	ug/							
Cadmium	ND	1.0	0.015	ug/							
Chromium	ND	1.0	0.26	ug/							
Cobalt	ND	1.0	0.10	ug/							
Copper	ND	2.0	0.49	ug/l							
Iron	0.00392	0.010	0.0032	mg / l							J
Lead	ND	1.0	0.13	ug/l							
Manganese	0.632	1.0	0.44	ug/l							J
Nickel	ND	1.0	0.15	ug/							
Selenium	ND	2.0	0.36	ugh							\cdots
Silver	ND	1.0	0.089	ugh							,
Thallium	ND	1.0	0.075	ug/1							
Vanadium	ND	1.0	0.86	ug/							
Zinc	ND	20	3.1	ug/							

LCS Analyzed: 01/06/2005 (5A05092-BS1)

Antimony	86.6	2.0	0.18	ugh	80.0	108	85-115
Arsenic	87.1	1.0	0.49	ug/	80.0	109	85-115
Barium	0.0825	0.0010	0.00014	$\mathrm{mg} / 1$	0.0800	103	85-115
Beryllium	81.7	0.50	0.037	ug/l	80.0	102	85-115
Cadmium	79.6	1.0	0.015	ug/	80.0	100	85-115
Chromium	82.9	1.0	0.26	ug/	80.0	104	85-115
Cobalt	81.9	1.0	0.10	ug/l	80.0	102	85-115
Copper	80.9	2.0	0.49	ugh	80.0	101	85-115
Iron	0.850	0.010	0.0032	mg / l	0.800	106	85-115
Lead	83.1	1.0	0.13	ug/	80.0	104	85-115
Manganese	83.8	1.0	0.44	ug/	80.0	105	85-115
Nickel	82.9	1.0	0.15	ug/	80.0	104	85-115
Selenium	82.7	2.0	0.36	ug/	80.0	103	85-115
Silver	82.3	1.0	0.089	ug/	80.0	103	85-115
Thallium	82.5	1.0	0.075	ug/	80.0	103	85-115
Vanadium	80.9	1.0	0.86	ug/	80.0	101	85-115
Zinc	77.9	20	3.1	ug/	80.0	97	85-115

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
$\begin{array}{lr} & \text { Sampled: 01/04/05 } \\ \text { Report Number: } 10 \mathrm{~A} 0121 & \text { Received: 01/04/05 }\end{array}$

METHOD BLANKIQC DATA

METALS

Analyte	Result	Reporting Limit			Spike	Source		\%REC		RPD	Data
Analyte	Resuit		MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5A05092 Extracted: 01/05/05

Matrix Spike Analyzed: 01/06/2005 (5A05092-MS1)				Source: 10A0121-01				
Antimony	98.6	2.0	0.18	ug/	80.0	0.87	122	70-130
Arsenic	99.7	1.0	0.49	ug/1	80.0	0.80	124	70-130
Bariam	0.118	0.0010	0.00014	mgt	0.0800	0.025	116	70-130
Beryllium	97.1	0.50	0.037	ug/l	80.0	0.14	121	70-130
Cadmium	92.2	1.0	0.015	ug/	80.0	0.25	115	70-130
Chromium	93.9	1.0	0.26	ug/	80.0	3.5	113	70-130
Cobalt	90.1	1.0	0.10	ug/	80.0	0.59	112	70-130
Copper	92.5	2.0	0.49	ug/	80.0	6.3	108	70-130
Iron	1.96	0.010	0.0032	mg / l	0.800	1.5	58	70-130
Lead	97.3	1.0	0.13	ug/	80.0	1.4	120	70-130
Manganese	113	1.0	0.44	ug/	80.0	26	109	70-130
Nickel	92.4	1.0	0.15	ugl	80.0	3.5	111	70-130
Selenium	91.6	2.0	0.36	ugl	80.0	0.63	114	70-130
Silver	93.3	1.0	0.089	ug/	80.0	ND	117	70.130
Thallium	97.9	1.0	0.075	ug/	80.0	ND	122	70-130
Vanadium	92.5	1.0	0.86	ugl	80.0	2.4	113	70-130
Zinc	101	20	3.1	ug/	80.0	22	99	70-130

Matrix Spike Dup Analyzed: 01/06/2005 (5A05092-MSD1)			Source: IOA0121-01							
Antimony	97.7	2.0	0.18	ugn	80.0	0.87	121	70-130	1	20
Arsenic	97.2	1.0	0.49	ug/	80.0	0.80	120	70-130	3	20
Barium	0.118	0.0010	0.00014	$\mathrm{mg} / 1$	0.0800	0.025	116	70-130	0	20
Beryllium	94.3	0.50	0.037	ug/	80.0	0.14	118	70-130	3	20
Cadmium	91.3	1.0	0.015	ug/	80.0	0.25	114	70-130	1	20
Chromium	93.3	1.0	0.26	ugl	80.0	3.5	112	70-130	1	20
Cobalt	89.8	1.0	0.10	ughl	80.0	0.59	112	70-130	0	20
Copper	92.4	2.0	0.49	ug/	80.0	6.3	108	70-130	0	20
Iron	1.99	0.010	0.0032	mg / l	0.800	1.5	61	70-130	2	20
Lead	97.1	1.0	0.13	ugh	80.0	1.4	120	70-130	0	20
Manganese	113	1.0	0.44	ug/	80.0	26	109	70-130	0	20
Nickel	92.2	1.0	0.15	ugh	80.0	3.5	111	70-130	0	20
Selenium	89.6	2.0	0.36	ug/	80.0	0.63	111	70-130	2	20
Silver	92.4	1.0	0.089	ug/	80.0	ND	116	70-130	1	20
Thallium	98.3	1.0	0.075	ug/	80.0	ND	123	70-130	0	20
Vanadium	92.3	1.0	0.86	ug/	80.0	2.4	112	70-130	0	20
Zinc	100	20	3.1	ug/	80.0	22	98	70-130	1	20

Del Mar Analytical, Irvine

Michele Harper

Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$

	Sampled: 01/04/05
Report Number: $10 A 0121$	Received: 01/04/05

Received: 01/04/05

METIOD BLANKIQC DATA

METALS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualiffers
Batch: 5A05093 Extracted: 01/05/05										
Blank Analyzed: 01/05/2005 (5A05093-BLK1)										
Boron ND	0.050	0.0074	mg / l							
LCS Analyzed: 01/05/2005 (5A05093-BS1)										
Boron 0.485	0.050	0.0074	mg / l	0.500		97	85-115			
Matrix Spike Analyzed: 01/05/2005 (5A05093-MS1)	Source: IOA0153-01									
Boron 0.862	0.050	0.0074	$\mathrm{mg} / 1$	0.500	0.35	102	70-130			
Matrix Spike Dup Analyzed: 01/05/2005 (5A05093-MSD1)				Source: IOA0153-01						
Boron 0.874	0.050	0.0074	mg / l	0.500	0.35	105	70-130	1	20	
Batch: 5A06051 Extracted: 01/06/05										
Bank Analyzed: 01/06/2005 (5A06051-BLK1)										
Mercury $\quad \therefore \quad \mathrm{ND}$	0.20	0.063	ug/l							
LCS Analyzed: 01/06/2005 (5A06051-BS1)										
Mercury 8.28	0.20	0.063	ug/l	8.00		104	85-115			
Matrix Spike Analyzed: 01/06/2005 (5A06051-MS1)				Source: 10A0128-01						
Mercury 8.23	0.20	0.063	ug / l	8.00	0.26	100	70-130			
Matrix Spike Dup Analyzed: 01/06/2005 (5A06051-MSD1)				Source: 10A0128-01						
Mercury 8.19	0.20	0.063	ug / l	8.00	0.26	99	70-130	1	20	

Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 1OA0121

Sampled: 01/04/05
Received: 01/04/05

METHOD BLANKIQC DATA

INORGANICS

		Reporting			Spike	Source	\%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit

Batch: 5A04042 Extracted: 01/04/05
Blank Analyzed: 01/04/2005 (5A04042-BLK1)

Chloride	ND	0.50	0.26	mg / l
Fluoride	ND	0.50	0.074	mg / l
Nitrate/Nitrite-N	ND	0.26	0.072	mg / l
Sulfate	ND	0.50	0.18	mg / l

LCS Analyzed: 01/04/2005 (5A04042-BS1)

Chloride	4.97	0.50	0.26	mg / l	5.00		99	90-110		
Fluoride	4.73	0.50	0.074	mg / l	5.00		95	90-110		
Sulfate	9.93	0.50	0.18	$\mathrm{mg} /$	10.0		99	90-110		
Matrix Spike Analyzed: 01/04/2005 (5A04042-MS1)			Source: 10A0049-01							
Chloride	5.60	0.50	0.26	mg / l	5.00	0.51	102	80-120		
Fluoride	4.78	0.50	0.074	mg / l	5.00	0.16	92	80-120		
Sulfate	10.4	0.50	0.18	mg/	10.0	0.63	98	80.120		
Matrix Spike Dup Analyzed: 01/04/2005 (5A04042-MSD1)			Source: 10A0049-01							
Chloride	5.72	0.50	0.26	mg/	5.00	0.51	104	80-120	2	20
Fluoride	4.79	0.50	0.074	mg / l	5.00	0.16	93	80-120	0	20
Sulfate	10.6	0.50	0.18	mg / l	10.0	0.63	100	80-120	2	20

Batch: 5A04104 Extracted: 01/04/05
Blank Analyzed: 01/04/2005 (5A04104-BLK1)

Surfactants (MBAS)	ND	0.10	0.044	mg / l		
LCS Analyzed: 01/04/2005 (5A04104-BS1)						
Lurfactants (MBAS)	0.236	0.10	0.044	mg / l	0.250	94

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0121
Sampled: 01/04/05
Received: 01/04/05

METHOD BIANEIOC DATA

INORGANICS

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number IOA0121 Sampled: 01/04/05
Received: 01/04/05

METHOD BLANKIQC DATA

INORGANICS

Batch: 5A05067 Extracted: 01/05/05

Blank Analyzed: 01/05/2005 (5A05067-BLK1)

| Ammonia-N (Distilled) ND | 0.50 | 0.30 | mg / l |
| :---: | :---: | :---: | :---: | :---: |

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$

Report Number: 1OA0121
Sampled: 01/04/05
Received: 01/04/05

METHOD BLANKIQC DATA

INORGANICS

Batch: 5A05078 Extracted: 01/05/05

Blank Analyzed: 01/05/2005 (5A05078-BLK1)

Total Cyanide	ND	5.0	2.2	ug/			
LCS Analyzed: 01/05/2005 (5A05078-BS1) Total Cyanide 191 5.0 2.2 ug/l 200 96	$90-110$						

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID: Quarterly Outfall $011+13267$	
300 North Lake Avenue, Suite 1200		Sampled: $01 / 04 / 05$
Pasadena, CA 91101	Report Number: IOA0121	Received: $01 / 04 / 05$
Attention: Bronwyn Kelly		

METHOD BLANKIOC DATA

INORGANICS

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID: Quarterly Outfall $011+13267$	
300 North Lake Avenue, Suite 1200		Sampled: $01 / 04 / 05$
Pasadena, CA 91101	Report Number: IOA0121	Received: 01/04/05
Attention: Bronwyn Kelly		

METHOD BLANKIQC DATA

INORGANICS

Del Mar Analytical, Irvine

Michele Harper
Project Manager
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91 101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$	
Report Number: $10 A 0121$	Sampled: 01/04/05
Received: 01/04/05	

Sampled: $01 / 04 / 05$
Received: $01 / 04 / 05$
Pasadena, CA 91101
Report Number: IOA0121
Red

METHOD BLANKIQC DATA

1,4-DIOXANE BY GC/MS (EPA 5030B/8260B)

Del Mar Analytical, Irvine

Michele Harper
Project Manager

Sampled: 01/04/05
Received: 01/04/05

Project ID: Quarterly Outfall $011+13267$	
Report Number: $10 \mathrm{Sampled}: ~ 01 / 04 / 05$	
	Received: 01/04/05

DATA QUALIFIERS AND DEFINITIONS

B	Analyte was detected in the associated Method Blank.
H-1	Sample analysis performed past the method-specified holding time per client's approval.
J	Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality. L
Laboratory Control Sample recovery was above the method control limits. Analyte not detected, data not impacted.	
L2	Laboratory Control Sample recovery was below method control limits.
M2	The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
M-NR1	There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike
R-7	LFB/icate.

ADDITIONAL COMMENTS

For TICs:

All identifications are tentative and concentrations are estimates based upon spectral comparison to the EPANIH library.

For 1,2-Diphenylhydrazine:

The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.

For GRO (C4-C12):

GRO (C4-C12) is quantitated against a gasoline standard. Quantitation begins immediately following the methanol peak.
For Extractable Fuel Hydrocarbons (EFH, DRO, ORO) :
Unless otherwise noted, Extractable Fuel Hydrocarbons (EFH, DRO, ORO) are quantitated against a Diesel Fuel Standard.

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0121
Sampled: 01/04/05
Received: 01/04/05

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	Calfornia
EPA 120.1	Water	X	X
EPA 160.2	Water	X	X
EPA 160.5	Water	X	X
EPA 180.1	Water	X	X
EPA 200.7	Water	X	X
EPA 200.8	Water	X	X
EPA 218.6	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 314.0	Water	X	X
EPA 330.5	Water	X	X
EPA 335.2	Water	X	X
EPA 350.2	Water	X	X
EPA 405.1	Water	X	X
EPA 413.1	Water	X	X
EPA 415.1	Water	X	X
EPA 418.1	Water	X	X
EPA 425.1	Water	X	X
EPA 608	Water	X	X
EPA 624 (MOD.)	Water	X	X
EPA 624	Water	X	X
EPA 625	Water	X	X
EPA 8015 Mod .	Water	X	X
EPA 8015B	Water	X	X
EPA 8260B	Water	X	X
SM2540C	Water	X	X
SM5540-C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Aquatic Testing Laboratories-SUB California Cert \#1775
4350 Transport Street, Unit 107 - Ventura, CA 93003
Analysis Performed: Bioassay-7 dy Chrnic
Samples: IOA0121-01
Analysis Performed: Bioassay-Acute 96hr
Samples: 1OA0121-01
Del Mar Analytical - Phoenix NELAC Cert \#01109CA, California Cert \#2446
9830 S. 51st Street, Suite B-120 - Phoenix, AZ 85044
Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID: Quarterly Outfall $011+13267$	
300 North Lake Avenue, Suite 1200		Sampled: $01 / 04 / 05$
Pasadena, CA 91101	Report Number: 1040121	Received: $01 / 04 / 05$
Attention: Bronwyn Kelly		

Del Mar Analytical - Phoenix NELAC Cert \#01109CA, California Cert \#2446
9830 S. 51 st Street, Suite B-120-Phoenix, AZ 85044
Method Performed: EPA 8260B
Samples: IOA0121-01

Eberline Services - SUB

2030 Wright Avenue - Richmond, CA 94804
Analysis Performed: Gross Alpha
Samples: IOA0121-01
Analysis Performed: Gross Beta
Samples: IOA0121-01
Analysis Performed: Level 3 Data Package
Samples: 1OA0121-01
Analysis Performed: Strontium 90
Samples: IOA0121-01
Analysis Performed: Tritium
Samples: IOA0121-01

Pace Analytical, MN- SUB

1700 Elm Street, Ste 200 - Minneapolis, MN 55414
Analysis Performed: 1613-Dioxin-HR
Samples: 1OA0121-01
Analysis Performed: EDD + Level 4
Samples: IOA0121-01
Truesdail Laboratories-SUB California Cert \#1237
14201 Franklin Avenue - Tustin, CA 92680
Analysis Performed: Hydrazine
Samples: 1OA0121-01
Analysis Performed: Level 4 Data Package
Samples: 1OA0121-01

Del Mar Analytical, Irvine

Michele Harper
Project Manager

amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: DIOXINS/FURANS
 SAMPLE DELIVERY GROUPS: Multiple SDGs

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple
Analysis:	DiF $/ 2$	

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 15
No. of Reanalyses/Dilutions: 0
Reviewer: K. Shadowlight
Date of Review: February 11, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Pace)	Matrix	COC Method
Outfall 003	IOA0026-01	105648001	water	1613
Outfall 004	IOA0027-01	105646001	water	1613
Outfall 005	IOA0028-01	105645001	water	1613
Outfall 007	IOA0108-01	105774001	water	1613
Outfall 008	IOA0109-01	105775001	water	1613
Outfall 009	IOA0110-01	105770001	water	1613
Outfall 010	IOA0111-01	105758001	water	1613
Outfall 002 001	IOA0112-01	105778001	water	1613
Outfall 018	IOA0119-01	105772001	water	1613
Outfall 011	IOA0122-01	105779001	water	1613
Outfall 006	IOA0131-01	105773001	water	1613
Outfall 004	IOA0458-01	106048001	water	1613
Outfall 005	IOA0460-01	106050001	water	1613
Outfall 003	$10 A 0464-01$	106052001	water	163
IOA0466-01	106051001	water	1613	

	Project:	NPDES
DATA VALIDATION REPORT	SDG No::	Multiple

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

All of the samples in these SDGs were received at Del Mar Analytical within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. Several of the samples in these SDGs were received at Pace Analytical Services below the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$; however, as none of the samples were noted to have been damaged, no qualifications were required. The samples were received in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COC and transfer COC were signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. As the samples were couriered directly to the laboratory (Del Mar Analytical), custody seals were not required. There was no information regarding custody seals upon receipt at Pace. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A column performance standard was combined with the daily calibration verification and analyzed at the beginning of each analytical sequence. The GC column performance was acceptable with the chromatographic separation of $2,3,7,8$-TCDD and other TCDD isomers resolved with a valley of $\leq 25 \%$. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance could not be evaluated as the laboratory did not provide selected ion current profiles for the lock-mass ions. No qualifications were required.

	Project:
DATA VALIDATION REPORT	NPDES
	SDG No.:
Multiple	
Analysis:	DiF

2.3 CALIBRATION

2.3.1 Initial Calibration

There was one initial calibration, analyzed 11/29/04 on Instrument 10MSHR05. The calibration consisted of five concentration level standards (CS1 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with $\%$ RSDs $\leq 20 \%$ for the 15 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the 2 native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VER was acceptable with the concentrations within the acceptance criteria listed in the Table 6 of the EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.4 BLANKS

One method blank (Blank-6202) was extracted and analyzed with the samples in these SDGs. Target compounds $1,2,3,4,6,7,8-\mathrm{HpCDD}$, total HpCDD , OCDF, and OCDD were reported in the method blank. Any detects for the aforementioned target compounds reported at concentrations $<5 x$ the concentrations reported in the method blank were qualified as estimated nondetects "UJ," at the levels of interference in the samples of these SDGs. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No further qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One LCS/LCSD pair (LCS-6203/LCSD-6204) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of the Method 1613. There were no QC limits established for RPDs. The reported RPDs were within $\pm 20 \%$. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy and precision was based on the LCS/LCSD results. No qualifications were required.

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

	Project:	NPDES D.ATA VALIDATION REPORT
SDG No.:	Multiple	
Analysis:	D/F	

2.7.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for these SDGs.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the lower method calibration limit (MCL) were qualified as estimated, "J." Any reported EMPC was qualified as an estimated nondetect, "UJ." No further qualifications were required.

Method 1613B Analysis Results

Client - Del Mar Analytical

[^9]I = Interference
$E=P C D E$ Interference
ND = Not Detected
NA $=$ Not Applicable
NC $=$ Not Calculated
$\bullet=$ See Discussion
Report No..... 105773

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA
AMEC Earth \& Environmental

550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer K. Okonzak
Analysis/Method metals

Package ID T711MT29
Task Order 313150010
SDG No. IOA0131
No. of Analyses 1
Date: $2 / 15 / 05$
Reviewer's Signature

ACTION ITEMS ${ }^{*}$

1. Case Narrative

Deficiencies

2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Qualifications were applied for detects in the bracketing ICP/MS CCB analyses.
Protocol, e.g.,
Qualifications were applied to analytes detected below the laboratory reporting limit.
Holding Times
GC/MS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Intemal Standard Performance
Compound Identification and
Quantitation
System Performance
COMMENTS ${ }^{\text {b }}$

- Subcontracted analytical laboratory is not meeting contract and/or method requirements.
${ }^{\text {b }}$ Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: METALS
SAMPLE DELIVERY GROUPS: IOA0131

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:
NPDES	
DATA VALIDATION REPORT	SDG No.:

1. INTRODUCTION

Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010
SDG\#: IOA0131
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Metals
QC Level: Level IV
No. of Samples: 1
No. of Reanalyses/Dilutions: 0
Reviewer: K. Okonzak-Lowry
Date of Review: February 15, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, SW-846 Method 6010B for Inductively Coupled Plasma, SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Project: NPDES
DATA VALIDATION REPORT SDG No.: IOA0131 Analysis: MET

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 011	Outfall 011	IOA0131-01	water	ILM04

| | Project:NPDES
 DATA VALIDATION REPORTSDG No.:
 IOA0131 |
| :---: | :---: | :---: |

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel. The COC requested only a few of the presented analytes. The remaining analytes were requested in a memo from MWH personnel dated $02 / 16 / 05$. No sample qualifications were required.

2.1.3 Holding Times

The date of collection recorded on the COC and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS and ICP metals and 28 days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. The laboratory performed the required tune solution analyses but did not report \%RSDs. The laboratory SOP states that to be acceptable, the \%RSD must be less than 5%. The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, 90-110\% for ICP and ICP/MS and 80$120 \%$ for mercury. The applicable reporting limit check standards were recovered within the AMEC control limits of $70-130 \%$. No sample qualifications were required.

	Project:
DATA VALIDATION REPORT	SDG No.:
IOA0131	
Inalysis:	MET

2.4 BLANKS

There were detects and negative results reported for the method blanks and bracketing ICBs/CCBs associated with the sample in this SDG. Arsenic and silver were detected in a bracketing CCB at 0.63305 and $0.36341 \mu \mathrm{~g} / \mathrm{L}$, respectively; therefore, the arsenic and silver detected in sample Outfall 011 were qualified "UJ." Selenium was detected in both bracketing CCBs at 0.90784 and $0.80914 \mu \mathrm{~g} / \mathrm{L}$, respectively; therefore, the selenium detected in sample Outfall 011 was qualified "UJ." No further qualifications were required due to the method and calibration blank results.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

No ICPMS interference check samples were analyzed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

An ICSA analysis was included in the raw data for the ICP boron analysis. This ICSA analysis was performed two days before the site sample analysis and was not associated with the initial calibration performed for sample Outfall 011. The laboratory's ICP SOP No. MET-200.7/6010B, Revision 8, states that the ICSA and ICSAB samples need to be run consecutively at the beginning and end of each analytical run. Due to the low level of matrix interferents in the site sample matrix, no sample qualifications were required due to the ICP ICS analysis.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP/MS LCS sample was identified as 5A05092-BS1, the ICP LCS sample was identified as 5A06063-BS1, and the Hg LCS sample was identified as 5A06051-BS1. The LCS results on the summary forms and in the raw data were within the laboratory-established ICP/MS, ICP, and Hg control limits of $85-115 \%$. No qualifications were required.

2.7 LABORATORY DUPLICATES

No MS/MSD or duplicate analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.8 MATRIX SPIKE

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

	Project:
NPDES	
DATA VALIDATIONREPORT	SDG No.:
IOAOI31	
Analysis:	MET

Furnace atomic absorption was not utilized for the analysis of this sample; therefore, furnace atomic absorption QC is not applicable.

2.10 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.11 INTERNAL STANDARDS PERFORMANCE

The ICP and ICP-MS internal standard recoveries for the site sample and associated QC sample analyses were within the $60-125 \%$ control limits and no qualifications were required.

2.12 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit were qualified as estimated, "J." No further qualifications were required.

2.13 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.13.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site sample.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronuyn Kelly

Project ID: Quarterly Outfall 011+13.267
Report Number: 10A0131

Sampled: 01:0405-01/05105
Received: 01/0405

DRAFT: METALS

AMEC VALIDATED

DRAFT REPORT
 DRAFT REPORT
 DATA SUBJECT TO CHANGE

 9484 Chesapeake Dr., Sute 805, San Diego, CA 92123 (858) 505-8556 FAX 858150504050 9830 South 51 st St, Suite B-i20, Phoenix, AZ 85044 (480) $725-0043$ F.4X $44801755-0851$ 2520 E . Sunset Rd. \#3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-362.MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0131

Sampled: 010405-010505
Received: 010405

DRAFT: METALS

animec Validated

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental

550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer L. Calvin
Analysis/Method Pesticides/PCBs by Method 608

Package ID T711PP11
Task Order 313150010
SDG No. IOA0131
No. of Analyses 1
Date: February 17, 2005
Reviewer's Signature

ACTION ITEMS ${ }^{\circ}$

- Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, e.g.,
Holding Times
GC/MS Tune/Inst. Performance
Calibration
Method blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification
Quantitation
System Performance

COMMENTS ${ }^{\text {b }}$

${ }^{2}$ Subcontracted analytical laboratory is not meeting contract and/or method requirements.
${ }^{-}$Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

$a m e c^{8}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: PESTICIDES/PCBs

SAMPLE DELIVERY GROUP: IOA0131

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project: DPDES DALIDATION REPORT
SDG:	IOA013
PestPCB	

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOA0131
Project Manager: B. McIlvaine
Matrix: Water
Analysis: Pesticides/PCBs
QC Level: Level IV
No. of Samples: 1
No. of Reanalyses/Dilutions: 0
Reviewer: L. Calvin
Date of Review: February 16, 2005

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedures (DVP-4, Rev.2), EPA Method 608, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary form as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	Method
Outfall 011	Outfall 011	IOA0131-01	water	608

	Project:	NPDES
DATA VALI	SDG:	$10 \mathrm{AOL31}$
DATA VALIDATION REPORT	Analysis:	Pest/PCB

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory on ice within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$, at 4°. The analysis did not require preservation, and no preservation was noted in the field. The case narrative noted that the sample was received intact. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by both field and laboratory personnel. The COC accounted for the analysis presented in this SDG. As the sample was couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The water sample was extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

2.2 PESTICIDES INSTRUMENT PERFORMANCE

No resolution check standards or breakdown check standards are required by Method 608 for pesticides, and according to the raw data provided, a resolution check standard was not analyzed by the laboratory. The laboratory did analyze a breakdown check standard with a breakdown of $\leq 20 \%$ for individual components (4,4-DDT and endrin) and $\leq 30 \%$ for the total, as suggested in the National Functional Guidelines. A review of the raw data indicated that the analytical run time was of sufficient length to provide adequate standard separation. The two analytical columns used in the analyses were within the guidelines specified in the methods.

According to the laboratory SOP and the initial calibration raw data, the retention time windows are ± 0.10 minutes for both surrogates and target compound calibration standards. A review of the raw data indicated that the laboratory retention time criteria were met for the surrogates and pesticide calibration standards. No qualifications were required.

2.3 CALIBRATION

2.3.1 Analytical Sequence

Based on the data provided, the analytical sequences were in accordance with the requirements of Method 608. No qualifications were required.

| | |
| :---: | :---: | :---: |
| DATA VALIDATION REPORT | Project:
 NPDES
 IOAO131 |
| SDG: | |
| PestPCB | |

2.3.2 Initial Calibration

There was one initial calibration dated $12 / 29 / 04$ associated with pesticide analysis of sample Outfall 011, which consisted of six point calibrations for all pesticide target compounds on two analytical columns. The \%RSDs were within the EPA Method 608 QC limit of $\leq 10 \%$ on both analytical columns. There was one initial calibration dated 01/04/05 associated with the PCB analysis of the sample. The PCB calibration consisted of five points for Arochlor 1016 and Arochlor 1260. Single point calibrations for Arochlor 1242, Aroclor 1248, and Aroclor 1254 were analyzed but were not provided in the data package. The average \%RSDs for the individual peaks of Aroclor 1016 and Aroclor 1260 were $\leq 10 \%$ on both analytical columns. An ICV was analyzed immediately following each of the initial calibrations. The \%Ds for all target compounds were within the QC limits of 15% on both analytical columns. A representative number of \%RSDs and ICV \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.3.3 Continuing Calibration

The pesticide sample analysis of this SDG was bracketed by four continuing calibrations. In one of the bracketing calibrations following the sample analysis \%Ds exceeded 15% on channel A for $4,4^{\prime}$-DDT and methoxychlor. As all results in this SDG were reported from channel A, nondetect results for both compounds were qualified as estimated, "UJ," in sample Outfall 011. The \%Ds were within the Method QC limit of $\pm 15 \%$ for the remaining calibrations. The PCB analysis of this sample was bracketed by two CCVs and the \%Ds for Aroclor 1016 and Aroclor 1260 were $\leq 15 \%$. A representative number of \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.4 BLANKS

2.4.1 Instrument Blanks

An instrument blank was analyzed at the beginning of the analytical sequence. Crosscontamination was not evident in the sample. No qualifications were necessary.

2.4.2 Method Blanks

One water method blank (5A07033-BLK1) was extracted and analyzed with this SDG. There were no pesticide target compounds or Aroclors detected in the method blank. Review of the chromatograms showed no false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike/blank spike duplicate pair (5A07033-BS1/BSD1) was extracted and analyzed with this SDG. The recoveries for all spiked pesticide target compounds and Aroclors were within the laboratory-established QC limits and the RPDs were $\leq 30 \%$. A representative number of recoveries were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

	Project:
DATA VALIDATION REPORT	NPDES
SDG:	IOA0131
Pest/PCB	

2.6 SURROGATE RECOVERY

The sample and all QC samples were fortified with the surrogate compounds decachlorobiphenyl and tetrachloro-m-xylene. Surrogate recoveries for this SDG were within the laboratory-established QC limits. The recoveries were calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

There were no MS/MSD analyses associated with this SDG. Method accuracy and precision were assessed based on the blank spike/blank spike duplicate results. No qualifications were required.

2.8 SAMPLE CLEANUP PERFORMANCE

According to the laboratory extraction benchsheets, no cleanups were performed on the water sample. No qualifications were required.

2.9 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.91 Field Blanks and Equipment Rinsates

There were no field QC samples associated with the sample in this SDG. No qualifications were required.

2.9.2 Field Duplicates

There were no field duplicate samples associated with the sample in this SDG.

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for pesticide target compounds and PCBs by EPA Method 608. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for the sample in this SDG. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification was verified for this SDG; however, as there were no detects reported in this SDG, quantitation was verified by recalculating a representative number of blank spike and surrogate recoveries. Reporting limits were supported by the low level standard of the

DATA VALIDATION REPORT	Project: SDG: Analysis:	NPDES IOAOI Pest/PCB

initial calibration and the laboratory MDL study. The water reporting limits were not adjusted for sample amount on the result summary, however, the dilution listed on the summary reflected the sample volume extracted. Results were reported in $\mu \mathrm{g} / \mathrm{L}(\mathrm{ppb})$. No qualifications were required.

Project D：Quarterly Ourfall $011+13267$
Report Number：IOA0131

Sampled：01／04：05－01／0505 Received：01／04：05

DRAFT：ORGANOCHLORINE PESTICIDES（EPA 608）

AMEC VALIDATED

DRAFT REPORT

DRAFT REPORT
DATA SUBJECT TO CHANGE

Del Mar Analytical

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200	Project ID: Quarterly Outfall $011+13267$	-
Pasadena, CA 91101		Sampled: 01/0465-0105 05
Attention: Bronwyn Kelly	Report Number: 10.0131	Received: 010405

DRAFT: TOTAL PCBS (EPA 608)

aniec validated

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental	Package ID T711RA2
550 South Wadsworth Boulevard	Task Order 313150010
Suite 500	SDG No. 10A0115,0121, 0131
Lakewood, CO 80226	No. of Analyses 1
Laboratory Del Mar	Date: $03 / 03 / 05$
Reviewer P. Meeks	Repjewrs Signature
Analysis/Method Radionuclides	r.anex

ACTION ITEMS	
1.	Case Narrative Deficiencies
2	Oat

2. Out of Scope Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Qualifications applied for:

Analysis Protocol, e.g., 1. Exceeded holding time
Holding Times
2. Lack of preservation

GC/MS Tune/Inst.
Performance 4. Detector efficiencies less than 20%
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification and Quantitation System Performance
\qquad
,
Performance
Compound Identification
and Quantitation
System Performance
\qquad
\qquad

COMMENIS ${ }^{\text {b }}$	

amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: RADIONUCLIDES

SAMPLE DELIVERY GROUPS:
 IOA0115, IOA0121, IOA0131

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOA0115, IOA0121, IOA0131
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Radionuclides
QC Level: Level IV
No. of Samples: 4
No. of Reanalyses/Dilutions: 0
Reviewer: P. Meeks
Date of Review: March 03, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the EPA Prescribed Procedures for Measurements of Radioactivity in Drinking Water, Methods 900.0, 905.0, and 906.0, and validation procedures outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

Table 1. Sample identification

Client ID	Del Mar ID	Eberline ID	Matrix	COC Method
Outfall 003 Unfiltered	IOA0115-01	$8149-01$	water	$900.0,905.0,906.0$
Outfall 003 Filtered	IOA0115-02	$8149-02$	water	$900.0,905.0,906.0$
Outfall 011	IOA0121-01	$8148-01$	water	$900.0,905.0,906.0$
Outfall 011-Composite	IOA0131-01	$8147-01$	water	$900.0,905.0,906.0$

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at Del Mar Analytical within the temperature limits of $4 \pm 2^{\circ} \mathrm{C}$. No temperature information was provided by Eberline, the subcontract laboratory; however, as it is not necessary to chill radiological samples, no qualifications were required. All samples were intact and in good condition.

According to the Eberline login sheet, none of the samples were received preserved. It was confirmed in correspondence with Eberline dated $01 / 31 / 05$, that the gross alpha, gross beta, and strontium samples were not preserved upon receipt. According to the Los Angeles Water Quality Control Board (LARWQCB) guidance letter dated 01/12/05, unfiltered samples should not be preserved and filtered aliquots should be preserved after filtration. As the strontium aliquot for Outfall 003 Filtered was not preserved; the nondetect strontium result was qualified as estimated, "UJ." Additionally, according to the 01/12/05 LARWQCB guidance letter, samples collected for tritium analysis should be submitted in glass containers to avoid potential loss of tritium by sorption onto the plastic container. As none of the tritium samples were submitted on glass containers, all nondetect tritium results were qualified as estimated, "UJ." No further qualifications were required.

2.1.2 Chain of Custody

The original COCs were signed and dated by field and laboratory personnel and the transfer COCs were signed by personnel from both laboratories. The original COCs for Outfall 003 did not request that an aliquot of each sample be filtered; however, the Del Mar project manager confirmed in a telephone conversation dated $1 / 31 / 05$, that this was required by MWH. The original COC for Outfall 011 (SDG IOA0121) did not request that the sample containers received be analyzed for radionuclides. A memo from MWH personnel dated $2 / 17 / 05$ requested these analyses. The transfer COCs accounted for all samples. Eberline did not list the MWH IDs on the Form Is; therefore, the reviewer edited the Form Is to reflect these IDs. No qualifications were required.

2.1.3 Holding Times

The tritium and strontium samples were analyzed within 180 days of collection. The gross alpha and gross beta samples were analyzed beyond the five day holding time for unpreserved samples; therefore, the gross alpha and gross beta results were qualified as estimated, "J," for detects and, "UJ," for nondetects. No qualifications were necessary.

2.2 CALIBRATION

The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

	Project:
DATA VALIDATION REPORT	SDG No::

Gross Alpha

The initial calibration included with the data was performed in February 2003. All detector efficiencies were below 20%; therefore, the nondetected alpha results were qualified as estimated, "UJ," for nondetects and " J ," for detects.

Tritium

No calibration standards were analyzed for this method. According to the laboratory, every sample was spiked for efficiency determination; therefore, no calibration is necessary. All detector efficiencies in the samples were at least 20% and were considered acceptable.

Gross Beta and Strontium-90

The initial calibrations were performed in June 1997. All detector efficiencies were at least 20% and were considered acceptable. All continuing calibration results were within the laboratory control limits; therefore, no qualifications were necessary.

2.3 BLANKS

No measurable activities were detected in the method blanks; therefore, no qualifications were necessary.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike (8147-002) was analyzed in association with the samples in these SDGs. All recoveries were within both 3 -sigma limits and the laboratory control limits. No qualifications were necessary.

2.5 LABORATORY DUPLICATES

The laboratory performed a duplicate analysis on Outfall 011 Composite. The RPDs for gross beta, tritium, and strontium were $\leq 20 \%$. The RPD for gross alpha was $>20 \%$; however, as the results were within the 3 sigma limit, no qualifications were necessary.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

The laboratory performed matrix spike analyses on Outfall 011 Composite for gross alpha, gross beta and tritium. The recoveries were within both 3 -sigma limits and the laboratory control limits. No qualifications were necessary.

2.7 SAMPLE RESULT VERIFICATION

An EPA Level IV review was performed for the samples in these data packages. Sample results and MDAs reported on the sample result forms were verified against the raw data and no calculation or transcription errors were noted. No qualifications were necessary.

	SDG No.:
DATA VALIDATION REPORT	Multiple

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.8.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate samples in these SDGs:

Eberline Services

ANALYSIS RESULTS

SOG 8147
Work Order R501013-01
Client DEL MAR ANAL
Contract PROJECTH IOA0131
Received Date 01/06/05
Matrix WATER

AMEC VALIDATED

1. ME M

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer M. Pokorny
Analysis/Method Semivolatiles

Package ID T711SV25
Task Order 313150010
SDG No. IOA0131
No. of Analyses 1

| Date: February 14,2005 |
| :--- | :--- |
| Reviewer's Signature |

amec ${ }^{8}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: SEMIVOLATILES

SAMPLE DELIVERY GROUP: IOA0131

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

DATA VALIDATION REPORT	Project: SDG:	NPDES IOA0131
SVOC		

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOA0131
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Semivolatiles
QC Level: Level IV
No. of Samples: 1
No. of Reanalyses/Dilutions: 0
Reviewer: M. Pokorny
Date of Review: February 14, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Semivolatile Organics (DVP-3, Rev 2), EPA Method 625, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

DATA VALIDATION REPORT	Project: SDG:
NPDES IOA0131	
SVOC	

Table 1. Sample identification

Client ID	EPA ID	Lab No.	Matrix	Method
Outfal1 011	Outfall 011	1OA0131-01	water	625

DATA VALIDATION REPORT	Project: SDG:
NPDES	
IOA0131	
SVOC	

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The sample in this SDG was received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$, at $4^{\circ} \mathrm{C}$. The analysis did not require preservation, and no preservation was noted in the field. The COC noted that the sample was received intact. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by both field and laboratory personnel. The COC accounted for the analysis presented in this SDG. As the sample was couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The water sample was extracted within seven days of collection and analyzed within 40 days of collection. No qualifications were required.

2.2 GC/MS TUNING

The DFTPP tunes met the criteria specified in Method 625, and the sample was analyzed within 12 hours of the DFTPP injection time. No qualifications were required.

2.3 CALIBRATION

The initial calibration associated with this SDG was dated $01 / 12 / 05$. The average RRFs for were ≥ 0.05 and the $\%$ RSDs were $\leq 35 \%$ or $r^{2} \geq 0.995$ for all target compounds. A representative number of average RRFs and \%RSDs were checked from the raw data, and no calculation or transcription errors were noted. The continuing calibration associated with the sample analysis was analyzed $01 / 13 / 05$. The RRFs for all target compounds were ≥ 0.05, and the $\%$ Ds were ≤ 20. A representative number of RRFs and \%Ds were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.4 BLANKS

One method blank (5A10039-BLK1) was extracted and analyzed with this SDG. There were no reportable detects for the target compounds listed on the summary form. Review of the raw data indicated no reportable false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike/ blank spike duplicate pair (5A10039-BS1/BSD1) was extracted and analyzed with this SDG. For blank spike/blank spike duplicate pairs, qualifications are applied, if necessary,

DATA VALIDATION REPORT	Project: SDG: Analysis:	NPDES IOAO131 SVOC

to the associated samples based on those recoveries consistently outside of the laboratoryestablished QC limits in both the blank spike and blank spike duplicate. Results for those compounds with recoveries not consistent within the pair, with RPDs above the QC limit, are qualified as estimated, "UJ" for nondetects and " F " for detects, in the associated samples. All percent recoveries and RPDs were within the laboratory QC limits except for the recoveries of less than 10% for benzidine in both the LCS and LCSD. Benzidine was rejected, "R," in the sample of this SDG. A representative number of recoveries and RPDs were calculated from the raw data and no calculation or transcription errors were found. No further qualifications were required.

2.6 SURROGATE RECOVERY

The sample surrogate recoveries were within the laboratory QC limits. A representative number of recoveries were calculated from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were associated with this SDG. Evaluation of method accuracy and precision was based on blank spike/blank spike duplicate results. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples.

2.8.1 Field Blanks and Equipment Rinsates

There were no field QC samples associated with this SDG. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate samples associated with this SDG.

2.9 INTERNAL STANDARDS PERFORMANCE

The internal standard area counts and retention times were within the control limits established by the continuing calibration standards: $-50 \% /+100 \%$ for internal standard areas and ± 30 seconds for retention times. A representative number of recoveries were checked from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for the semivolatile target compounds by EPA Method 625. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. No calculation or transcription errors were found. The reporting limits were supported by the low level of the initial and the method detection limit study. Detects below the reporting limit were qualified as estimated, "J," by the laboratory. No further qualifications were required.

2.12 TENTATIVELY IDENTIFIED COMPOUNDS

TICs were not reported by the laboratory for this SDG. No qualifications were required.

2.13 SYSTEM PERFORMANCE

Review of the raw data indicated no problems with system performance. No qualifications were required.

 2520 E. Sunset Fic. \#3, Las Vegas, NV 69120 (702) 798.3620 FAX (702) ;98.362

MWH-Pasadena/Boeing 300 North Lake Avenue, Suire 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly
Project ID: Quarterly Outfall $011 \div 13267$
Report Number: IOA01s1
Sampled: 01/04:05-01/05055
Received: 01:04,05

DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilutio Facto	ion Date Extracted	Date Analyzed	$\begin{array}{r} \text { D } \\ \text { Qua } \end{array}$	
Sample D: 1OA0131-01 (DRAF Reporting Units: ug/	Outfall 011	composite -	Water)		Samp	pled: 01	1/05/05		$\begin{aligned} & R U V \\ & \text { QUAL } \end{aligned}$	$\left.\right\|_{C A D E} ^{Q U A L}$
Acenaphthene	EPA 625	5A10039	0.10	0.50	ND	0.98				
Acenaphthylene	EPA 625	5A10039	0.10	0.50	ND	0.98	01/10/05	0114,05 $01 / 1405$	\cup	
Aniline	EPA 625	$5 A 10039$	2.9	10	ND	0.98	01/1005	01/14/05		
Anthracene	EPA 625	5A10039	0.083	0.50	ND	0.98	01/10105	01/14/05	\downarrow	
Benzidine	EPA 625	5A10039	2.4	5.0	ND	0.98	01/10:05	01/14/05	R12	L
Benzoic acid	EPA 625	5A10039	3.7	20	ND	0.98	01/10/05	01/14/05		2
Benzo(a)anthracene	EPA 625	5A10039	0.038	5.0	ND	0.98	01/10/05	01/14/05	U	
Benzo(a)pyrene	EPA 625	5A10039	0.14	2.0	ND	0.98	01/10/05	01/14/05		
Benzo(b)fluoranthene	EPA 625	5A10039	0.050	2.0	ND	0.98	01/10/05	01/14:05		
Benzo(g,h,i)perylene	EPA 625	5A10039	0.059	5.0	ND	0.98	01/10/05	01/14/05		
Benzo(k)fluoranthene	EPA 625	5A10039	0.053	0.50	ND	0.98	01/10/05	01/1405		
Benzyl alcohol	EPA 625	5A10039	0.21	5.0	ND	0.98	01/10/05	01/1405		
Bis(2-chloroethoxy)methane	EPA 625	5A10039	0.072	0.50	ND	0.98	01/10/05	01/14/05		
Bis(2-chloroethyl)ether	EPA 625	5A10039	0.084	0.50	ND	0.98	01/10105	01/1405		
Bis(2-chloroisopropyl)ether	EPA 625	5 A 10039	0.11	0.50	ND	0.98	01/10/05	01/14/05	\cdots	
Bis(2-ethylhexyl)phthalate	EPA 625	5A10039	1.1	5.0	1.2	0.98	$01 / 10105$	$01 / 1405$	Jj	DNQ
4-Bromophenyl phenyl ether	EPA 625	5A10039	0.12	1.0	ND	0.98	01/10/0	01/14/05	J	
Butyl benzyl phthalate	EPA 625	5A10039	0.34	50	ND	0.98	0111005	01/14/05		
4 Chloroaniline	EPA 625	5A10039	0.20	2.0	ND	0.98	$01710 / 05$	01/14/05		
2-Chloronaphthalene	EPA 625	5A10039	0.059	0.50	ND	0.98	01/10105	01/14/05		
4-Chloro-3-methylphenol	EPA 625	5 A 10039	0.34	2.0	ND	0.98	01/10/05	01/1405		
4-Chlorophenyl phenyl ether	EPA 625	5A10039	0.056	0.50	ND	0.98	01/10/0s	01/14/05		
2 -Chlorophenol	EPA 625	5A10039	0.12	1.0	ND	0.98	01/10/05	01/14/05		
Chrysene	EPA 625	5A10039	0.072	0.50	ND	0.98	01/10/05	01114/05		
Dibenz(a, h) anthracene	EPA 625	5A10039	0.083	0.50	ND	0.98	01/10/05	01/14/05		
Dibenzofuran	EPA 625	5A10039	0.075	0.50	ND	0.98	01/10/05	01/14/05		
Di-n-butyl phthalate	EPA 625	5A10039	0.26	2.0	ND	0.98	01/10/05	01/14/05		
1,2-Dichlorobenzene	EPA 625	5 A10039	0.11	0.50	ND	0.98	01/10/05	01/14/05		
1,3-Dichlorobenzene	EPA 625	5 A10039	0.13	0.50	ND	0.98	01/10/05	01/14/05		
1,4-Dichlorobenzene	EPA 625	SA10039	0.050	0.50	ND	0.98	01/10/0s	01/1405		
3,3-Dichlorobenzidine	EPA 625	5A10039	0.93	5.0	ND	0.98	01/10/05	01/14/05		
2,4-Dichlorophenol	EPA 625	5A10039	0.21	2.0	ND	0.98	0111005	01/14/05		
Diethyl phthalate	EPA 625	5A10039	0.12	1.0	ND	0.98	01/10/05	01/14/05		
2,4-Dimethylphenol	EPA 625	5A10039	0.31	2.0	ND	0.98	01/10105	01/1405		
Dimethyl phthalate	EPA 625	5A10039	0.081	0.50	ND	0.98	01/10105	0111405		
4,6-Dinitro-2-methylphenol	EPA 625	5A10039	0.38	5.0	ND	0.98	01/10105	01114:05		
2,4-Dinitrophenol	EPA 625	5A10039	2.7	5.0	ND	0.98	01/10105	0114/05		
2,4-Dinitrotoluene	EPA 625	5A10039	0.23	5.0	ND	0.98	01/10/05	01/1405		
2,6-Dinitrotoluene	EPA 625	5 A 10039	0.24	5.0	ND	0.98	01/10/05	01/1<05		
Di-r-octyl phthalate	EPA 625	$5 A 10039$	0.17	5.0	ND	0.98	01/10005	0111405		
1,2-Diphenylhydrazine/Azobenzene	EPA 625	5110039	0.087	1.0	ND		01/1005	011205		
DRAFT REPORT DRAFT REPORT DATA SUBJECT TO CHANGE										

[^10]
DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilutio Facto	on Date Extracted	$\begin{array}{r} \text { Date } \\ \text { Analyz } \end{array}$	$\underset{\text { Quali }}{\mathrm{Da}_{2}}$	
Sample D: 1OA0131-01 (DRAFT: Outfall 011 - composite - Water) - cont. Reporting Units: ug/					Sampled: 01/05/05				$\begin{aligned} & \text { REV } \\ & \text { QUAL } \end{aligned}$	QUAL
Fluoranthene Fluorene	EPA 625	5 A 10039	0.089	0.50	ND	0.98	0110:05	01/1405	$\frac{\text { QUAL }}{U}$	
Fluorene Hexachlorobenzene	EPA 625	$5 \mathrm{SA10039}$	0.075	0.50	ND	0.98	01/10/05	01/1405		
Hexachlorobutadiene	EPA 625	5A10039	0.13	1.0	ND	0.98	01/10/05	01/14/05		
Hexachlorocyclopentadiene	EPA 625	5 5A10039	0.38	2.0	ND	0.98	01/10/05	01/14/05		
Hexachloroethane	EPA 625	5A10039	0.51	5.0	ND	0.98	01/10/05	01/14/05		
Indeno($1,2,3-\mathrm{cd}$)pyrene	EPA 625	SA10039	0.19	3.0	ND	0.98	01/10/05	01/1405		
Isophorone	EPA 625	$5 A 10039$	0.059	2.0	${ }_{0}^{\text {ND }}$	0.98	01/10/05	01/14/05		
2-Methylnaphthalene	EPA 625	5A10039	0.13	1.0	ND	0.98	01/10/05	01/14/05	J	$D N Q$
2-Methylphenol	EPA 625	5A10039	0.28	2.0	ND	0.98 0.98	01/10/05	$01 / 1405$ $01 / 14 / 05$	U	
4-Methylphenol	EPA 625	5A10039	0.20	5.0	ND	0.98	01/10/05	$01 / 14 / 05$ $01 / 1405$		
Naphthalene	EPA 625	5A10039	0.13	1.0	ND	0.98	01/10/05	01/14:05		
2-Nitroaniline	EPA 625	5 A10039	0.18	5.0	ND	0.98	01/10/05	01/14/05		
3-Nitroaniline	EPA 625	5A10039	0.35	5.0	ND	0.98	01/10/05	01/14/05		
4-Nitroaniline	EPA 625	5A10039	0.49	5.0	ND	0.98	01/10/05	01/1405		
Nitrobenzene	EPA 625	5A10039	0.10	1.0	ND	0.98	01/10/05	01/14/05		
2-Nitrophenol	EPA 625	5A10039	0.23	2.0	ND	0.98	01/10/05	01/14/05		
N-Nitrosodimethylamine	EPA 625	5A10039	0.73	5.0	ND	0.98	01/10/05	01/14/05		
N-Nitrosodimethylamine	EPA 625	5 A10039	0.22	2.0	ND	0.98	01/10/05	01/14105		
N-Nitrosodiphenylamine	EPA 625	5A10039 5A10039	0.18	2.0	ND	0.98	01/10/05	01/14/05		
Pentachlorophenol	EPA 625	5A10039	0.077 0.78	1.0	ND	0.98	01/1005	01/14/05		
Phenanthrene	EPA 625	5A10039	0.071	2.0	ND	0.98	01/10/05	01/1405		
Phenol	EPA 625	5A10039	0.14	1.0	ND	0.98	01/10/05	01/1405		
Pyrene	EPA 625	5A10039	0.059	0.50	ND	0.98	01/10/05	01/14/05		
1,2,4-Trichlorobenzene	EPA 625	5A10039	0.10	1.0	ND	0.98	01/10/05	01/4405		
2,4,5-Trichlorophenol	EPA 625	5A10039	0.075	2.0	ND	0.98 0.98	01/10/05			
2,4,6-Trichlorophenol	EPA 625	5A10039	0.10	1.0	ND	0.98 0.98	01/10/05	01/14/05		
Surrogate: 2-Fluorophenol (35-120\%) . 1.0					74\%		1/10/05	1/14/05		
Surrogate: Phenol-d6 (45-120\%)					80\%					
Surrogate: 2,4,6-Tribromophenol ($50-125 \%$)					89\%					
Surrogate: Nitrobenzene-dS (45-120\%)					77\%					
Surrogate: Terphenyl-d14 (45-135\%)					82%					

DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE
level IV

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental

550 South Wadsworth Boulevard

Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer L. Calvin
Analysis/Method TPH/Extractable by Method 8015M

Package ID T711TF34
Task Order 313150010
SDG No. IOA0131
No. of Analyses 1

Date: February 17,2005
Reviewer's figpature) -

ACTION ITEMS'

Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, e.g.,
Holding Times
GC/MS Tune/Inst. Performance
Calibration
Method blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification
Quantitation
System Performance
COMMENTS ${ }^{\text {b }} \quad$ Acceptable as reviewed.

* Subcontracted analytical laboratory is not meeting contract and/or method requirements.

Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: TPH/EXTRACTABLE

SAMPLE DELIVERY GROUP. IOA0131

Prepared by

AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

Project:	NPDES	
DATA VALIDATION REPORT	SDG:	IOAOI31
Analysis:	TPH	

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOA0121
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: TPH-Extractable
QC Level: Level IV
No. of Samples: 1
No. of Reanalyses/Dilutions: 0
Reviewer: L. Calvin
Date of Review: February 17, 2005

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Extractable Total Fuel Hydrocarbons by GC (DVP-8, Rev. 2), USEPA SW-846 Method 8015M, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

DATA VALIDATION REPORT | Project: |
| :---: |
| SDG: |
| Analysis: |

Table 1. Sample identification

Client ID	EPA ID	Lab No.	Matrix	Method
Outfall 011	Outfall 011	IOA0131-01	water	$8015 \mathrm{M} / \mathrm{EFH}$

	Project: SDG:	$\begin{aligned} & \text { NPDES } \\ & \text { IOA0131 } \end{aligned}$
DATA VALIDATION REPORT	Analysis:	TPH

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at Del Mar Analytical laboratory on ice within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The Del Mar Analytical case narrative noted that the sample containers were received intact. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by both field and laboratory personnel, and accounted for the analysis presented in this SDG. As the sample was couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The sample was extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

2.2 CALIBRATION

The initial calibration associated with the sample analysis was analyzed on 12/21/04. The $\%$ RSD was within the QC limit of $\leq 20 \%$. The $\%$ Ds for the initial calibration verification (ICV) and continuing calibrations associated with the sample analysis were $\leq 15 \%$. The $\%$ RSD and $\%$ Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required

2.4 METHOD BLANKS

One method blank (5A06045-BLK1) was extracted and analyzed with the sample in this SDG. EFH (C13-C22) was not present above the MDL in the method blank or in the instrument blank analyzed at the beginning of the analytical sequence. Review of the chromatograms showed no false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One method blank spike/blank spike duplicate pair (5A06045-BS1/BSD1) was extracted and analyzed with the sample in this SDG. The recoveries of alkane range C13-C40 from spiked diesel were within the laboratory-established QC limits of $40-120 \%$, and the RPD was within the QC limit of $\leq 25 \%$. The recoveries and RPD were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

	Project: SDG:	$\begin{aligned} & \text { NPDES } \\ & \text { IOA0131 } \end{aligned}$
DATA VALIDATION REPORT	Analysis:	TPH

2.6 SURROGATE RECOVERY

The sample was fortified with the surrogate compound n-octacosane. The sample surrogate recovery was within the laboratory-established QC of $40-125 \%$. The recovery was calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

There were no MS/MSD analyses associated with the sample of this SDG. Evaluation of method accuracy and precision was based on the BS/BSD results. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.9.1 Field Blanks and Equipment Rinsates

There were no field blank or equipment rinsate samples associated with the site sample in this SDG. No qualifications were required.

2.9.2 Field Duplicates

There were no field duplicate samples associated with the samples in this SDG.

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for EFH n-alkane range C13-C22 by EPA SW846 Method 8015M. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for this SDG. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification was verified for this SDG by recalculating any sample detect, blank spike recoveries, and a representative number of surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibration and by the laboratory MDL. The reporting limit was not adjusted for sample amount; however, the dilution factor on the sample result summary reflected the sample amount extracted. No qualifications were required. 9830 South 51 St 5010 , 9830 South 51 st St., Suite B-120, Phoenix, AZ 85044 (480) $785-0043$ fAX (490) 785-085:
MWH-Pasadena/Boeing
/ 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Sampled: 010405-01/0505
Received: 01/0405

DRAFT: EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

amec valioated LEVEL IV

amec ${ }^{\text {d }}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: TPH/PURGEABLE

SAMPLE DELIVERY GROUP: IOA0131

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010
SDG\#: IOA0131
Project Manager: B. McIlvaine
Matrix: Water
Analysis: TPH-Purgeable
QC Level: Level IV
No. of Samples: 2
No. of Reanalyses/Dilutions: 0
Reviewer: L. Calvin
Date of Review: February 17, 2005

The samples listed in Table 1 were validated based on the general guidelines outined in the AMEC Data Validation Procedure for Levels C and D Extractable Total Fuel Hydrocarbons by GC (DVP-8, Rev. 2), USEPA SW-846 Method 8015 M , and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG:	IOA0131
	Analysis:	TPH

Table 1. Sample identification

Client ID	EPA ID	Lab No.	Matrix	Method
Outfall 011	Outfall 011	IOA0131-01	water	$8015 \mathrm{M} /$ GRO
Trip Blank	Trip Blank	IOA0131-02	water	$8015 \mathrm{M} /$ GRO

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in this SDG were received at Del Mar Analytical laboratory on ice within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The Del Mar Analytical case narrative noted that the samples were received intact, and the COC indicated the samples were properly preserved, without headspace in the VOA vials. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by both field and laboratory personnel. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The water samples were analyzed within 14 days of collection. No qualifications were required.

2.2 CALIBRATION

One gasoline standard initial calibration dated $08 / 26 / 04$ was associated with the sample analyses. The $\%$ RSD for GRO (C4-C12) was within the QC limit of $\leq 20 \%$. An initial calibration verification (ICV) was not provided in the data package. The \%Ds for both CCVs bracketing the sample analyses were within the Method QC limit of $\leq 15 \%$. The \%RSD and \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.4 METHOD BLANKS

One water method blank (5A06001-BLK1) was associated with the sample analyses. GRO (C4-C12) was not detected above the MDL in the method blank. Review of the raw data indicated no false negative result. No qualifications were necessary.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One water method blank spike ($5 \mathrm{~A} 06001-\mathrm{BS} 1$) was associated with the sample analyses. GRO (C4-C12) was recovered within the laboratory-established QC limits of 70-140\% in the blank spike. The recovery was checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.6 SURROGATE RECOVERY

The samples were fortified with the surrogate compound bromofluorobenzene (BFB). Surrogate recoveries were within the laboratory-established QC of $65-140 \%$ for both samples. Recoveries were calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed on the sample in this SDG; therefore, evaluation of method accuracy was based on the blank spike results. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.9.1 Trip Blanks, Field Blanks, and Equipment Rinsates

Sample Trip Blank was the trip blank associated with site sample Outfall 011, GRO (C4-C12) was not detected above the MDL in the trip blank. Review of the raw data indicated no false negative result. There were no field blank or equipment rinsate samples associated with this SDG. No qualifications were necessary.

2.9.2 Field Duplicates

There were no field duplicate samples in this SDG.

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for GRO (C4-C12) by EPA SW-846 Method 8015M. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for the samples in this SDG. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification was verified for this SDG by recalculating any sample detects, blank spike recoveries, and a representative number of surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibrations and by the laboratory MDL. No qualifications were required.

Sampled: 01/04,05-01:05:05
Received: 01:04:05

DRAFT: VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)

Analyte
Method Batch Limit $\begin{aligned} & \text { MDL } \\ & \text { Lim }\end{aligned}$
utfall 011-composite - Water) - cont.
Sample ID: IOA0131-01 (DRAFT: Outfall 011-composite - Water) - cont.
Reporting Units: mg/ GRO (C4-C12)

EPA 8015 Mod. 5 A06001 $0.050 \quad 0.10$
Surrogate: 4-BFB (FID) (65-140\%)
Sample ID: IOA0131-02 (DRAFT: Trip Blank - Water)
Reporting Units: Reporting Units: mg/
GRO (C4-Cl2) EPA $8015 \mathrm{Mod} 5 \mathrm{~A} 06001 \quad 0.050$
0.10

Sample Dilution Date

AMEC VALIDATED LEVEL IV

amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: VOLATILES

SAMPLE DELIVERY GROUP: IOA0131

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOA0131
Project Manager: B. McIlvaine
Matrix: Water
Analysis: Volatiles
QC Level: Level IV
No. of Samples: 2
No. of Reanalyses/Dilutions: 0
Reviewer: M. Pokorny
Date of Review: February 15, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Volatile Organics (DVP-2, Rev. 2), EPA Method 624, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary forms as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification

Client ID	EPA ID	Lab No.	Matrix	Method
Outfall 011	Outfall 011	IOA0131-01	water	624
Trip Blank	Trip Blank	IOA0131-02	water	624

DATA VALIDATION REPORT	Project: SDG:	$\begin{gathered} \text { NPDES } \\ \text { IOA0131 } \end{gathered}$
	Analysis:	VOC

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in this SDG were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. According to the COC, the samples were received intact, without headspace, and in good condition. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed by field and laboratory personnel and accounted for the analyses presented in this SDG. As the samples were couriered directly to the laboratory, custody seals are not required. No qualifications were required.

2.1.3 Holding Times

The samples were analyzed within 14 days of collection. No qualifications were required.

2.2 GC/MS TUNING

The ion abundance windows shown on the quantitation report were consistent with those specified in the EPA Method 624 . All ion abundances were within the established windows and were therefore acceptable. The samples and associated QC were analyzed within 12 hours of the BFB injection times. The Form Vs were verified from the raw data and no discrepancies between the summary forms and the raw data were noted. No qualifications were required.

2.3 CALIBRATION

Two initial calibrations, dated 11/03/04 and 01/04/05, were associated with this SDG. The average RRFs were ≥ 0.05 and the $\%$ RSDs were $\leq 35 \%$ for the target compounds listed on the sample summary forms. Two continuing calibrations, dated 01/07/05 (10:03 and 11:16), were associated with this SDG. The RRFs for all target compounds were ≥ 0.05 and the $\%$ Ds were $\leq 20 \%$ except for the \%Ds for chloromethane, bromomethane, Freon 113, and chloroethane. The aforementioned compounds were qualified as estimated nondetects, "UJ," in the site sample of this SDG. A representative number of \%RSDs and average RRFs from the initial calibrations, and \%Ds and RRFs from the continuing calibrations were recalculated from the raw data, and no calculation or transcription errors were found. No further qualifications were required.

2.4 BLANKS

Two water method blank (5A06024-BLK1 and 5A07016-BLK1) were associated with this SDG. There were no detects for the target compounds listed on the summary forms. The method blank raw data showed no evidence of false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

Two water blank spikes (5A06024-BS1 and 5A07016-BS1) were associated with this SDG. All spike recoveries were within the laboratory-established QC limits. A representative number of recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.6 SURROGATE RECOVERY

The surrogates were within the QC limits of $80-120 \%$. A representative number of surrogate recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

Sample Outfall 011 was the MS/MSD analyses performed with this SDG. All spike recoveries and RPDs were within the laboratory-established QC limits. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

2.8.1 Trip Blanks

Sample Trip Blank (IOA0131-02) was the trip blank associated with the site sample of this SDG. Methylene chloride was detected in the trip blank; however, methylene chloride was not reported in the sample of this SDG. No qualifications were required.

2.8.2 Field Blanks and Equipment Rinsates

There were no other field QC samples associated with this SDG. No qualifications were required.

2.8.3 Field Duplicates

There were no field duplicate samples associated with this SDG.

2.9 INTERNAL STANDARDS PERFORMANCE

Internal standard area counts and retention times for this SDG were within the control limits established by the continuing calibration standards, of $+100 \% /-50 \%$ for internal standard areas and ± 0.50 minutes for retention times. A representative number of internal standard areas and retention times were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.10 COMPOUND IDENTIFICATION

Target compound identification was verified at a Level IV data validation. The laboratory analyzed for a subset of volatile target compounds by EPA Method 624. Chromatograms, retention times, and spectra for the samples and QC were examined and no target compound identification problems were noted.

The laboratory analyzed for 1,2-dichloro-1,1,2-trifluorethane and cyclohexane as TICs for this SDG. 1,2-dichloro-1,1,2-trifluorethane was present in the calibration standards. Neither compound was reported either as a TIC or as a target compound in the samples of this SDG and were reported as estimated nondetects, "UJ."

No further qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. The reporting limits were supported by the lowest concentrations of the initial calibration standards and by MDL study. Compound quantitation was verified by recalculating any sample detect, and/or a representative number of blank spike and surrogate recoveries from the raw data. No calculation or transcription errors were noted. No qualifications were required.

2.12 TENTATIVELY IDENTIFIED COMPOUNDS

The laboratory searched for 1,2-dichloro-1,1,2-trifluorethane and cyclohexane as TICs for this SDG. Neither compound was detected as a TIC in the samples of this SDG. No qualifications were required.

2.13 SYSTEM PERFORMANCE

A review of the chromatograms and other raw data showed no identifiable problems with system performance. No qualifications were required.

Sampled: 01:0405-01:05/05 Received: 01:04:05

DRAFT: PURGEABLES BY GC/MS (EPA 624)

DRAFT REPORT
 DRAFT REPORT
 DATA SUBJECT TO CHANGE

level II

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0131

Sampled: 01 04,05-01/05/55
Received: 0104,05

DRAFT: PURGEABLES BY GC/MS (EPA 624)

(2) Del Mar Analytical

 1014 E. Cooley D., Suite A, Colton, CA 92324 9091 370.465: FAX 94947002297 9454 Chesapaske Or., Suite 805, San Diego, C4 92123 t858: 505-859i; FaX (858) :05.9689 g830 South 51 st St., Suite 8-120, Phoenix, AZ 850.44 (480) 785.0043 Fi $\times(480)-85.0851$

2520 E. Sunset tad. \#3, Laj Vegas, NV 89120 (702) $298-36.0$ FAX $1702 ;$. 98.3621

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200	Project ID: Quarterly Outfall 011-13267	
Pasadena, CA 91101	Report Number: 10A0131	Sampled: 01/0405-0105/95
Aftention: Bronwyn K	Report ${ }^{\text {amber. }} 10 \mathrm{AOH1}$	Received: 0104:05

DRAFT: FREON 113 (EPA 8260B)

level IV

ORAFT REPORT
 JRAFT REPORT
 JATA SUBJECT TO CHANGE

 0484 Chesapeake Dr. Suite 805 , San Diego, CA 92123 ; $858 ; 505-8596$ F.4Xi858) 305.0650

DRAFT: PURGEABLES BY GC/MS (EPA 624)

Level IV

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011 +13267
Report Number: IOA0131

Sampled: 01:04:05-01:05:05
Received: 010405

DRAFT: PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental 550 South Wadsworth Boulevard Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer M. Pokomy
Analysis/Method Volatiles (1,4-dioxane)

Package ID T711VO46
Task Order 313150010
SDG No. IOA0131
No. of Analyses 1
Date: February 11, 2005
Reviewfe's Signature

ACTION ITEMS

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, e.g.,
Holding Times
GC/MS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and
Quantitation
System Performance

COMMENTS 6	Acceptable as review

[^11]Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

amec ${ }^{\theta}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: VOLATILES

SAMPLE DELIVERY GROUP: IOA0131

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Analysis:

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#:
Project Manager:
Matrix: Water
Analysis: Volatiles (1,4-dioxane)
QC Level: Level IV
No. of Samples: 1
No. of Reanalyses/Dilutions: 0
Reviewer: M. Pokorny
Date of Review: February 11,2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Volatile Organics (DVP-2, Rev. 2), EPA Method SW-846 8260 B and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOA0131
	Analysis:	

Table 1. Sample identification

Client ID	EPA ID	Lab No.	Matrix	Method
Outfall 011	Outfall 011	IOA0131-01	water	624

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOA0131
	Analysis:	VOC

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the Del Mar within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The sample was properly preserved. The COC noted that the sample was received intact; however, information regarding absence of headspace was not provided. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed by field and laboratory personnel. The COCs accounted for the analysis presented in this SDG. According to the sample login sheet, custody seals were not present on the cooler. No qualifications were required.

2.1.3 Holding Times

The sample was analyzed within 14 days of collection. No qualifications were required.

2.2 GC/MS TUNING

The ion abundance windows were consistent with those specified in EPA Method 8260B. All ion abundances were within the established windows, and the sample was analyzed within 12 hours of the BFB injection time. No qualifications were required.

2.3 CALIBRATION

One initial calibration, dated 01/07/04, was associated with this SDG. The average RRF for 1,4 dioxane was ≥ 0.05 and the $\%$ RSD was $\leq 15 \%$. One continuing calibration, dated $01 / 07 / 05$ was associated with this SDG. The RRF for 1,4 -dioxane was ≥ 0.05 and the $\%$ was $\leq 20 \%$. The $\%$ RSD and average RRF for 1,4-dioxane in the initial calibration, and the $\% \mathrm{D}$ and RRF for 1,4-dioxane in the continuing calibration were recalculated from the raw data, and no calculation or transcription errors were found. No qualifications were required.

2.4 BLANKS

One water method blank (P5A1103-BLK1) was associated with this SDG. Target compound 1,4dioxane was not detected in the method blank. The method blank raw data showed no evidence of a false negative. No qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOAO131
	Analysis:	VOC

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory analyzed a blank spike/blank spike duplicate pair (P5A1105-BS1/BS1D) with this SDG. The recoveries and RPD for 1,4-dioxane were within the laboratory QC limits. A representative recovery was recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.6 SURROGATE RECOVERY

The sample and QC were fortified with dibromofluoromethane. The surrogate was recovered within the laboratory QC limits of $80-125 \%$. The surrogate recovery for this sample was recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

Sample Outfall 011 was the MS/MSD analyses performed with this SDG. The recoveries and RPD for 1,4-dioxane were within the laboratory QC limits. A representative recovery was recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

2.8.1 Trip Blanks

The sample in this SDG had no associated trip blank. No qualifications were required.

2.8.1 Field Blanks and Equipment Rinsates

The site sample in this SDG had no associated field QC samples. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate samples associated with this SDG.

2.9 INTERNAL STANDARDS PERFORMANCE

Internal standard area counts and retention times for the sample were within the control limits established by the continuing calibration standards, of $+100 \% /-50 \%$ for internal standard areas and ± 0.50 minutes for retention times. Internal standard areas and retention times were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOADI31
2.10 COMPOUND IDENT:	Analys	

2.10 COMPOUND IDENTIFICATION

Target compound identification was verified at a Level IV data validation. The laboratory analyzed for 1,4-dioxane by Method $8260 \mathrm{~B} /$ SIM. Chromatograms, retention times, and spectra for the sample and QC were examined and no target compound identification problems were noted. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. The reporting limit was supported by the lowest concentration of the initial calibration standards and by the undated MDL supplied by the laboratory. Compound quantitation was verified by recalculating blank spike and surrogate recoveries from the raw data. No calculation or transcription errors were noted. No qualifications were required.

2.12 TENTATIVELY IDENTIFIED COMPOUNDS

TICs are not typically reported for SIM methods.

2.13 SYSTEM PERFORMANCE

A review of the chromatograms and other raw data showed no identifiable problems with system performance. No qualifications were required.

DRAFT: 1,4-DIOXANE BY GC/MS (EPA 5030B/8260B)

amer validated level IV

DRAFT REPORT
 DRAFT REPORT
 DATA SUBJECT TO CHANGE

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer L. Jarusewic
Analysis/Method Perchlorate by 314.0

ACTION ITEMS ${ }^{*}$

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy Deliverables
6. Deviations from

Analysis Protocol, e.g.,
Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification and Quantitation
System Performance

Package ID T711WC62
Task Order 313150010
SDG No. IOA0131
No. of Analyses 1

amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: PERCHLORATE SAMPLE DELIVERY GROUP: IOA0131

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:	NPDES
DATA VALIDATION REPORT	SDG No::	IOA0131
	Analysis:	

1. INTRODUCTION

Task Order Title: \quad NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: IOA0131
Project Manager: B. McIlvaine
Matrix: Water
Analysis: Perchlorate
QC Level: Level IV
No. of Samples: $\quad 1$
Reviewer: L. Jarusewic
Date of Review: February 17, 2005

The sample listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 314.0, and 120.1, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOA013I
	Analysis:	Perchlorate

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 011	Outfall 011	IOA0131-01	water	Perchlorate

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOA0131
	Analysis:	Perchlorate

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel; however, the COC did not account for the sample and analysis presented in this SDG. A memo dated 02/16/05 from MWH personnel requested the perchlorate analysis for the sample in this SDG. No qualifications were required.

2.1.3 Holding Times

The holding time was assessed by comparing the date of collection with the date of analysis. The 28 day analytical holding time for perchlorate was met, and no qualifications were required.

2.2 CALIBRATION

The initial calibration correlation coefficient was ≥ 0.995. The IPC-MA recovery was within the control limits of $80-120 \%$. The ICV, CCV and IPC recoveries were within the control limits of $90-110 \%$. No qualifications were required.

2.3 BLANKS

The method blank and CCB results reported on the summary forms and in the raw data for blank analyses associated with the sample were nondetects at the reporting limit. No qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample recovery was within the method control limits of $85-115 \%$. No qualifications were required.

2.5 SURROGATES RECOVERY

Surrogate recovery is not applicable to the analysis presented in this SDG.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOA0131

2.6 LABORATORY DUPLICATES

The MS/MSD analyses were performed on water sample Outfall 011 in association with the samples in this SDG. The RPD was within the control limits of $\leq 20 \%$. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

The MS/MSD analyses were performed on water sample Outfall 011 in association with the samples in this SDG. The recoveries were within the control limits of $80-120 \%$. No qualifications were required.

2.8 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analysis of this sample; therefore, furnace atomic absorption QC is not applicable.

2.9 ICP SERIAL DILUTION

ICP serial dilution is not applicable to the analysis presented in this data validation report.

2.10 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample result reported on the Form I was verified against the raw data. No transcription errors or calculations errors were noted. No qualifications were required.

2.11 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.11.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.11.2 Field Duplicates

There were no field duplicate pairs associated with this package.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0131

Sampled: 01/04105-01/05:05
Received: 01/04:05

DRAFT: INORGANIC

amec validated

Anotysic trot Vatuar

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental

550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer P. Meeks
Analysis/Method General Minerals

Package ID T711WC61
Task Order 313150010
SDG No. IOA0131
No. of Analyses 1
Date: 02/14/05
Reviewer's Signature
P. Meers

ACIION ITEMS'

1. Case Narrative Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis Protocol, e.g.,

Qualifications applied for hexavalent chromium detected in the method blank and detects below the reporting limits.
Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Intermal Standard
Performance
Compound Identification and Quantitation
System Performance
\qquad
COMMENTS ${ }^{\text {b }}$

- Subcontracted analytical laboratory is not meeting contract and/or method requirements.

Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

amec ${ }^{\theta}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: GENERAL MINERALS SAMPLE DELIVERY GROUP: IOA0131

Prepared by

AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOA0131

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: IOA0131
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: General Minerals
QC Level: Level IV
No. of Samples: 1
Reviewer: P. Meeks
Date of Review: February 14, 2005

The sample listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 300.0, 350.2, 330.5, 405.1, 335.2, 413.1, 415.1, 418.1, 218.6, 160.2, 160.5, 180.1, and 120.1, Standard Methods for the Examination of Water and Wastewater Methods SM5540-C and SM2540C, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfal1 011	Outfall 011 Composite	IOA0131-01	water	General Minerals

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOA0131

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel. The COC requested only a few of the presented analyses. The remaining analyses were requested in a memo from MWH personnel dated $02 / 16 / 05$. No sample qualifications were required.

2.1.3 Holding Times

The holding times were assessed by comparing the date of collection with the dates of analyses. The 28 -day analytical holding time for ammonia, fluoride, chloride, sulfate, conductivity, total recoverable hydrocarbons, TOC, and oil and grease, the 14-day analytical holding time for cyanide, the seven-day holding time for total suspended solids and total dissolved solids, the 48 -hour holding time for biological oxygen demand, surfactants, turbidity, nitrate/nitrite, and total settleable solids, and the 24 -hour hexavalent chromium and residual chlorine holding time were met, and no qualifications were required.

2.2 CALIBRATION

For the applicable analyses, the initial calibration correlation coefficients were ≥ 0.995. All ICV and continuing calibration information was acceptable with \%Rs within the control limits of $90-110 \%$. For ammonia, no information regarding the standardization of the titrant was provided; however, as the LCS recovery was within the CCV control limits, no qualifications were required. For BOD, no information regarding the calibration of the oxygen meter was provided; however, as the LCS recovery was within the CCV control limits, no qualifications were required. Calibration is not applicable to residual chlorine or total settleable solids. No qualifications were required.

2.3 BLANKS

Hexavalent chromium was detected in the method blank at $0.15 \mu \mathrm{~g} / \mathrm{L}$ and in the bracketing CCB at $0.20 \mu \mathrm{~g} / \mathrm{L}$; therefore, hexavalent chromium detected in Outfall 011 (composite) was qualified as an estimated nondetect, "UJ." The remaining method blank and CCB results reported on the summary forms and in the raw data for blank analyses associated with the sample were nondetects at the reporting limit. No further qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOA0131
	Analysis:	

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample and laboratory control sample duplicate (BOD and oil and grease only) recoveries were within the laboratory-established control limits. The LCS is not applicable to turbidity, conductivity, residual chlorine, or settleable solids. No qualifications were required.

2.5 SURROGATES RECOVERY

Surrogate recovery is not applicable to the analyses presented in this SDG.

2.6 LABORATORY DUPLICATES

A duplicate analysis was performed on Outfall 011 for chloride, fluoride, and sulfate only. The RPDs were within the laboratory-established control limit of $\leq 20 \%$. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were performed on Outfall 011 for chloride, fluoride, and sulfate only. All recoveries were within the laboratory-established control limits of $80-120 \%$ and no qualifications were
required.

2.8 FURNACE ATOMIC ABSORPTION QC

 absorption QC is not applicable.
2.9 ICP SERIAL DILUTION

ICP serial dilution is not applicable to the analysis presented in this data validation report.

2.10 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculations errors were noted. MBAS was analyzed at a $10 \times$ dilution, as the sample had formed on emulsion. Analytes detected below the reporting limit were qualified as estimated, "J." No further qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOAD131
	Analysis:	

2.11 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any

2.11.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

2.11.2 Field Duplicates

There were no field duplicate pairs associated with this SDG.

1661 Derian Ave., Suite 100 , Inine, CA 92614 (949) 267 1.1022 FAX 1949: 260-3297 9484 Chesapeake Dr., Suite 805 A. Cotton, CA 92324 (909) 370 -4667 FAX (949: 370-1046 9830 South 51 st St., Suite B-120. Phoenix, AZ 85044 (480) $7505-8596$ FAX $88581505-9689$ 2520 E. Sunset Rd. \#3, Las Vegas, NV 89120 (480) $785-0042$ FAX 480) $785-085$
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011 + 13267
Report Number: IOA013!

Sampled: 01:04/05-01/05,05
Received: 01/04:05

DRAFT: TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)

AMEC VALIDATED

DRAFT: INORGANICS

AMEC VAlIDATED

2. Del Mar Analytical

17461Derian Ave., Suite 100, Irvine, CA 92614 (949) 261-1022 FAX (949) 360-3207 948. Chesapeake Dey Si., Suite A, Colton. CA 92324 (909) 370-4657 FAX (949) 170-10.46 9830 South 51 st St, Surie B-120, Phoenix AZ 8504 (85) $505-8596$ FAX (858) 305.9689

MWH-Pasadena/Boeing
300 Norti Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 10 A 0131

Sampled: 01:04/05-01/05/05
Received: 01:04:05

DRAFT: INORGANICS

AMEC VRLIDATO

)ATA SUBJECT TO CHANGE

Project ID: Quarterly Outfall 011 + 13267
Report Number: IOA0131

Sampled: 01:04/05-01:05/05
Received: 01/04:05

DRAFT: INORGANICS

AMEG MALOATED

7451 Derian dve., Suite 100. Ivine, CA 92614 (949) 267.1027 FAX
1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) $=0-4657$ F. 1949 260-3297
 9830 South 51 st St, Stite 8.120 . Phoenix, AZ 85044 (B38) $305-8590^{\circ}$ FAX $1858: 503.9639$

2520 E. Sunset Rd. \#3, Las Vegas, NiV 89120 (702) $798-3643$ FAX i480: 785-jas

MWH-Pasadena'Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011 - 13267
Report Number: IOA0131

Sampled: 01/04/05-01/05/05
Received: 01/04:05

DRAFT: INORGANICS

Analyte

Method
Batch
MDL Reporting Sample Dilution Date
Date Data
Sample ID: IOA0131-01 (DRAFT: Outfall 011 - composite - Water) - cont.
Reporting Units: ug 1
Chromium VI
Total Cyanide
Perchlorate

Ance valoniso

MWH-Pasadena/Boeing	Project ID: Quarterly Outfall 011+13267	
300 North Lake Avenue, Suite 1200 Report Number: IOA0131 Sanpled: 01/04:05-01:05.05 Pasadena, CA 91101 Received: 01/04/05		

DRAFT: INORGANICS

AMEC Vhlloated

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Quarterly Outfall $011+13267$

Sampled: 01/04/05-01/05/05
Received: 01/04/05
Issued: 03/08/05 17:21

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless. otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain(s) of Custody, 4 pages, are included and are an integral part of this report.
This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at $4^{\circ} \mathrm{C}$, on ice and with chain of custody documentation.
HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the Del Mar Analytical Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.
QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.
COMMENTS: \quad Results that fall between the MDL and $R L$ are ' J ' flagged. There was a dilution for the MBAS analysis due to emulsion.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID

IOA0131-01
IOA0131-02

CLIENT ID
Outfall 011 - composite
Trip Blank

MATRIX
Water
Water

Reviewed By:

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0131
Sampled: 01/04/05-01/05/05
Received: 01/04/05

CORRECTIVE ACTION REPORT

Department: Extractions
Method: EPA 625
QC Batch: 5A10039

Identification and Definition of Problem:
The percent recoveries for benzidine in the LCS and LCSD were below method acceptance limits.

Determination of the Cause of the Problem:
Benzidine is known to be a problematic compound. According to the EPA, it can be subject to oxidative losses during solvent extraction and its chromatographic behavior is poor.

Corrective Action Taken:

All results reported for benzidine are potentially biased low and can be considered estimates only.

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0131

Sampled: 01/04/05-01/05/05
Received: 01/04/05

TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers				
Sample ID: 10A0131-01 (Outfall 011 - composite - Water)					Sampled: 01/05/05								
Total Recoverable Hydrocarbons	EPA 418.1	5A06070	0.31	1.0					ND	1	01/06/05	01/06/05	

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0131

Sampled: 01/04/05-01/05/05
Received: 01/04/05

EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dillution Factor	Date Extracted	Date Analyzed	Data Qualifiers				
Sample ID: 1OA0131-01 (Outfall 011 - composite - Water) - cont.Reporting Units: mg					Sampled: 01/05/05								
EFH (C13-C22)	EPA 8015B	5A06045	0.082	0.50					ND	0.962	01/06/05	01/06/05	
Surrogate: n-Octacosane (40-125\%)					58%								

[^12]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$

Report Number: IOA0131

Sampled: 01/04/05-01/05/05
Received: 01/04/05

VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID: Quarterly Outfall 011 +13267	
300 North Lake Avenue, Suite 1200	Report Number: 10A0131	Sampled: 01/04/05-01/05/05 Rasadena, CA 91101
Received: $01 / 04 / 05$		

FREON 113 (EPA 8260B)

Analyte Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample 1D: 1OA0131-01 (Outfall 011 - composite - Water) Reporting Units: ugh		Sampled: 01/05/05						
Trichlorotrifluoroethane (Freon 113) EPA 8260B	5A06024	1.2	5.0	ND	1	01/06/05	01/06/05	
Surrogate: Dibromofluoromethane (80-120\%)				104\%				
Surrogate: Toluene-d8 (80-120\%)				102\%				
Surrogate: 4-Bromofluorobenzene (80-120\%)				94\%				
Sample ID: IOA0131-02 (Trip Blank - Water)		Sampled: 01/04/05						
Reporting Units: ug/ Trichlororrifluoroethane (Freon 113) EPA 8260B	5A06024							
Surrogate: Dibromofluoromethane (80-120\%)				103%				
Surrogate: Toluene-d8 (80-120\%)				103\%				
Surrogate: 4-Bromofluorobenzene (80-120\%)				96\%				

Del Mar Analytical, Irvine

Michele Harper
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing	Project ID: Quarterly Outfall 011 +13267	
300 North Lake Avenue, Suite 1200	Report Number: 1 OA0131	Sampled: $01 / 04 / 05-01 / 05 / 05$ Pasadena, CA 91101 Attention: Bronwyn Kelly

PURGEABLES BY GC/MS (EPA 624)

| | | | MDL | Reporting | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Analyte | Method | Batch | Limit | Sample
 Result | Dilution
 Factor | Date
 Extracted | Date
 Analyzed |
| Qualifiers | | | | | | | |

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID: Quarterly Outfall $011+13267$	
300 North Lake Avenue, Suite 1200	Report Number: 1OA0131	Sampled: 01/04/05-01/05/05
Pasadena, CA 91101	Received: 01/04/05	
Attention: Bronwyn Kelly		

PURGEABLES BY GC/MS (EPA 624)

[^13]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$

PURGEABLES BY GC/MS (EPA 624)

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0131

Sampled: 01/04/05-01/05/05
Received: 01/04/05

PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IOA0131-01 (Outfall Reporting Units: ug \AA	composite - Water)	- cont.			Samp	led: 01/05			
1,2-Dichloro-1,1,2-trifluoroethane	EPA 624 (MOD.)	5A06024	N/A	2.5	ND	1	01/06/05	01/06/05	
Cyclohexane	EPA 624 (MOD.)	5A06024	N/A	2.5	ND	1	01/06/05	01/06/05	
Sample ID: 1OA0131-02 (Trip Bla Reporting Units: ugA	Water)				Samp	led: 01/04			
1,2-Dichloro-1,1,2-trifluoroethane	EPA 624 (MOD.)	5A06024	N/A	2.5	ND	1	01/06/05	01/06/05	
Cyclohexane	EPA 624 (MOD.)	5A06024	N/A	2.5	ND	1	01/06/05	01/06/05	

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0131

Sampled: 01/04/05-01/05/05
Received: 01/04/05

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Del Mar Analytical, Irvine

Michele Harper
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Sampled: 01/04/05-01/05/05
Received: 01/04/05

ORGANOCHLORINE PESTICIDES (EPA 608)

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0131

Sampled: 01/04/05-01/05/05
Received: 01/04/05

TOTAL PCBS (EPA 608)

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 1OA0131

Sampled: 01/04/05-01/05/05
Received: 01/04/05

MWH-Pasadena/Boeing	Project ID: Quarterly Outfall $011+13267$	
300 North Lake Avenue, Suite 1200		Sampled: $01 / 04 / 05-01 / 05 / 05$
Pasadena, CA 91101	Report Number: $10 A 0131$	Received: $01 / 04 / 05$
Attention: Bronwyn Kelly		

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$

Report Number: 1OA0131

Sampled: 01/04/05-01/05/05
Received: 01/04/05

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers						
Sample ID: 1OA0131-01 (Outfall 011 - composite - Water) - cont. Reporting Units: mg/l			Sampled: 01/05/05												
Ammonia-N (Distilled)	EPA 350.2	5A05067							0.30	0.50	ND	1	01/05/05	01/05/05	
Biochemical Oxygen Demand	EPA 405.1	5A05054	0.59	2.0	1.3	1	01/05/05	01/10/05	J						
Chloride	EPA 300.0	5A05050	0.26	0.50	4.3	1	01/05/05	01/05/05							
Fluoride	EPA 300.0	5A05050	0.074	0.50	0.28	1	01/05/05	01/05/05	J						
Nitrate/Nitrite-N	EPA 300.0	5A05050	0.072	0.26	2.1	1	01/05/05	01/05/05							
On \& Grease	EPA 413.1	5A05068	0.94	5.0	0.95	1	01/05/05	01/05/05	J						
Residual Chlorine	EPA 330.5	5A05066	0.10	0.10	ND	1	01/05/05	01/05/05							
Sulfate	EPA 300.0	5A05050	0.18	0.50	6.0	1	01/05/05	01/05/05							
Surfactants (MBAS)	SM5540-C	5A05099	0.44	1.0	0.46	10	01/05/05	01/05/05	RL-1, J						
Total Dissolved Solids	SM2540C	5A07084	10	10	100	1	01/07/05	01/07/05							
Total Organic Carbon	EPA 415.1	5A05058	0.56	1.0	13	1	01/05/05	01/05/05							
Total Suspended Solids	EPA 160.2	5A07077	10	10	ND	1	01/07/05	01/07/05							

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 1OA0131

Sampled: 01/04/05-01/05/05
Received: 01/04/05

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 10A0131

Sampled: 01/04/05-01/05/05
Received: 01/04/05

INORGANICS

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0131

Sampled: 01/04/05-01/05/05
Received: 01/04/05

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Sampled: 01/04/05-01/05/05
Received: 01/04/05

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers				
Sample ID: 1OA0131-01 (Outfall 011 - composite - Water) - cont. Reporting Units: umhos/cm					Sampled: 01/05/05								
Specific Conductance	EPA 120.1	5A06081	1.0	1.0					110	1	01/06/05	01/06/05	

Del Mar Analytical, Irvine
Michele Harper
Project Manager
MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$

Report Number: IOA0131

Sampled: 01/04/05-01/05/05
Received: 01/04/05

1,4-DIOXANE BY GC/MS (EPA 5030B/8260B)

Del Mar Analytical, Irvine
Michele Harper
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0131

Sampled: 01/04/05-01/05/05
Received: 01/04/05

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 011 - composite (IOA0131-01) - Water					

Del Mar Analytical, Irvine

Michele Harper
Project Manager

17461Derian Ave., Suite 100, Ivine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st SL, Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. 卷3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing Project ID: Quarterly Outfall $011+13267$
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Report Number: 1OA0131

Sampled: 01/04/05-01/05/05
Received: 01/04/05

METHOD BLANKIQC DATA

TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5A06070 Extracted: 01/06/05										
Blank Analyzed: 01/06/2005 (5A06070-BLK1)										
Total Recoverable Hydrocarbons ND	1.0	0.31	mg/							
LCS Analyzed: 01/06/2005 (5A06070-BS1)										M-NR1
Total Recoverable Hydrocarbons 4.83	1.0	0.31	mg/	5.00		97	65-120			
LCS Dup Analyzed: 01/06/2005 (5A06070-BSD1)										
Total Recoverable Hydrocarbons 4.65	1.0	0.31	mg / l	5.00		93	65-120	4	20	

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 1OA0131
Sampled: 01/04/05-01/05/05
Received: 01/04/05

MEIHOD BLANKIQC DATA

EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5A06045 Extracted: 01/06/05										
Blank Analyzed: 01/06/2005 (5A06045-BLK1)										
EFH (C13-C22) ND	0.50	0.082	mg / l							
EFH (C13-C40) ND	0.50	0.082	$\mathrm{mg} /$							
Surrogate: n-Octacasane 0.131			$m \mathrm{~m} / \mathrm{l}$	0.200		66	40-125			
LCS Analyzed: 01/06/2005 (5A06045-BS1)										M-NR1
$\mathrm{EFH}(\mathrm{Cl} 3-\mathrm{C} 40) 0.671$	0.50	0.082	$\mathrm{mg} /$	0.775		87	40-120			
Surrogate: n-Octacosane 0.136			mg / l	0.200		68	40-125			
LCS Dup Analyzed: 01/06/2005 (5A06045-BSD1)										
EFH (C13-C40) 0.682	0.50	0.082	mg n	0.775		88	40-120	2	25	
Surrogate: n-Octacosane 0.149			$m g / l$	0.200		74	40-125			

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 1OA0131

Sampled: 01/04/05-01/05/05
Received: 01/04/05

METHOD BLANKIQC DATA

VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID: Quarterly Outfall $011+13267$	
300 North Lake Avenue, Suite 1200		Sampled: 01/04/05-01/05/05
Pasadena, CA 91101	Report Number: 1OA0131	Received: 01/04/05
Attention: Bronwyn Kelly		

METHOD BLANKIQC DATA

FREON 113 (EPA 8260B)

Blank Analyzed: 01/06/2005 (5A06024-BLK1)

| | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Trichlorotrifluoroethane (Freon 113) | ND | 5.0 | 1.2 | $\mathrm{ug} / 1$ | | | |
| Surrogate: Dibromofluoromethane | 25.8 | | | $u g /$ | 25.0 | 103 | $80-120$ |
| Surrogate: Toluene-d8 | 25.4 | | | $u g /$ | 25.0 | 102 | $80-120$ |
| Surrogate: 4-Bromofluorobenzene | 23.7 | | | $u g / 2$ | 25.0 | 95 | $80-120$ |

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 10A0131
Sampled: 01/04/05-01/05/05
Received: 01/04/05

METHOD BLANKIQC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5A06024 Extracted: 01/06/05											
Blank Analyzed: 01/06/2005 (5A06024-BLK1)											
Benzene	ND	2.0	0.23	ug/l							
Benzene	ND	1.0	0.28	ug/l							
Bromodichloromethane	ND	2.0	0.30	ug/							
Bromodichloromethane	ND	2.0	0.30	ug/							
Bromoform	ND	2.0	0.30	ug/l							
Bromoform	ND	5.0	0.32	ug/l							
Bromomethane	ND	5.0	0.34	ug/l							
Bromomethane	ND	5.0	0.46	ug/							
Carbon tetrachloride	ND	0.50	0.28	ug/							
Carbon tetrachloride	ND	5.0	0.29	ug/l							
Chlorobenzene	ND	2.0	0.32	ug/l							
Chlorobenzene	ND	2.0	0.36	ug/							
Chloroethane	ND	5.0	033	uga		\bigcirc	\because				
Chloroethane	ND	5.0	086	ugA							
Chloroform	ND	2.0	0.23	ug/l							
Chloroform	ND	2.0	0.33	ugh							
Chloromethane	ND	5.0	0.44	ug/l							
Chloromethane	ND	5.0	0.30	ug/l							
Dibromochloromethane	ND	2.0	0.28	ug/l							
Dibromochloromethane	ND	2.0	0.48	ug/l							
1,2-Dichlorobenzene	ND	2.0	0.32	ug/							
1,2-Dichlorobenzene	ND	2.0	0.39	ug/							
1,3-Dichlorobenzene	ND	2.0	0.28	ug/1							
1,3-Dichlorobenzene	ND	2.0	0.35	ug/l							
1,4-Dichlorobenzene	ND	2.0	0.37	ug/l							
1,4-Dichlorobenzene	ND	2.0	0.41	ug/							
1,1-Dichloroethane	ND	2.0	0.27	ug/1							
1,1-Dichloroethane	ND	2.0	0.17	ug/							
1,2-Dichloroethane	ND	0.50	0.28	ugA							
1,2-Dichloroethane	ND	2.0	0.43	ug/							
1,1-Dichloroethene	ND	5.0	0.32	ug/1							
1,1-Dichloroethene	ND	5.0	0.24	ugh							
cis-1,2-Dichloroethene	ND	2.0	0.26	ug/							
trans-1,2-Dichloroethene	ND	2.0	0.20	ug/l							
trans-1,2-Dichloroethene	ND	2.0	0.27	ugl							
Del Mar Analytical, Michele Harper Project Manager											

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 10 A 0131
Sampled: 01/04/05-01/05/05
Received: 01/04/05

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source	\%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit
Batch: 5A06024 Extracted:01/06/05										
Qualifiers										

Blank Analyzed: 01/06/2005 (5A06024-BLK1)								
1,2-Dichloropropane	ND	2.0	0.30	ug/				
1,2-Dichloropropane	ND	2.0	0.35	ug/1				
cis-1,3-Dichloropropene	ND	2.0	0.31	ug/				
cis-1,3-Dichloropropene	ND	2.0	0.22	ug/				
trans-1,3-Dichloropropene	ND	2.0	0.32	ug/				
trans-1,3-Dichloropropene	ND	2.0	0.24	ug/				
Ethylbenzene	ND	2.0	0.31	ug/				
Ethylbenzene	ND	2.0	0.25	ug/				
Methylene chloride	ND	5.0	0.48	ug/				
Methylene chloride	ND	5.0	1.2	ugh				
1,1,2,2-Tetrachloroethane	ND	2.0	0.41	ug/				
1,1,2,2-Tetrachloroethane	ND	2.0	0.24	ug/l				
Tetrachloroethene	ND	2.0	0.39	ug/				
Tetrachloroethene	ND	2.0	0.32	ugh				
Toluene	ND	2.0	0.36	ug/				
Toluene	ND	2.0	0.28	ugh				
1,1,1-Trichloroethane	ND	2.0	0.30	ug/				
1,1,1-Trichloroethane	ND	2.0	0.28	ug/1				
1,1,2-Trichloroethane	ND	2.0	0.30	ug/				
1,1,2-Trichloroethane	ND	2.0	0.41	ug/				
Trichloroethene	ND	2.0	0.26	ug/				
Trichloroethene	ND	2.0	0.38	ug/				
Trichlorofluoromethane	ND	5.0	0.34	ug/				
Trichlorofluoromethane	ND	5.0	0.37	ug/				
Vinyl chloride	ND	5.0	0.24	ug/				
Vinyl chloride	ND	0.50	0.26	ug/				
Xylenes, Total	ND	4.0	0.52	ug/				
Surrogate: Dibromofluoromethane	25.8			$u g /$	25.0	103	80-120	
Surrogate: Dibromofluoromethane	25.8			$u g /$	25.0	103	80-120	
Surrogate: Toluene-d8	25.4			$u g /$	25.0	102	80-120	
Surrogate: Toluene-d8	25.4			$u g h$	25.0	102	80-120	
Surrogate: 4-Bromofluorobenzene	23.7			ugh	25.0	95	80-120	
Surrogate: 4-Bromofluorobenzene	23.7			$u g h$	25.0	95	80-120	

Del Mar Analytical, Irvine
Michele Harper
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 1OA0131
Sampled: 01/04/05-01/05/05
Received: 01/04/05

METHOD BLANKIOC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting	I		Spike	Source		\%REC		RPD	Data
Analyte	Resuit		MDL	Units		Result	\%REC	Limits	RPD	Limit	Qualifiers

LCS Analyzed: 01/06/2005 (5A06024-BS1)

Benzene	25.5	1.0	0.28	ug/l	25.0	102	70-120
Benzene	25.5	2.0	0.23	ug/	25.0	102	70-120
Bromodichloromethane	26.5	2.0	0.30	ug/	25.0	106	70-140
Bromodichloromethane	26.5	2.0	0.30	ug/l	25.0	106	70-140
Bromoform	25.3	2.0	0.30	ug/l	25.0	101	55-135
Bromoform	25.3	5.0	0.32	ug/	25.0	101	55-135
Bromomethane	32.2	5.0	0.46	ug/	25.0	129	60-140
Bromomethane	32.2	5.0	0.34	ug/l	25.0	129	60-140
Carbon tetrachloride	26.4	5.0	0.29	ug/	25.0	106	70-140
Carbon tetrachloride	26.4	0.50	0.28	ug/	25.0	106	70-140
Chlorobenzene	25.7	2.0	0.36	ug/l	25.0	103	80-125
Chlorobenzene	25.7	2.0	0.32	ug/	25.0	103	80-125
Chloroethane	31.0	5.0	033	ugh	25.0	124	60145
Chloreethane	310	5.0	0.86	ug/!	25.0	124	$60-145$
Chloroform	26.8	2.0	0.33	ug/	25.0	107	75-130
Chloroform	26.8	2.0	0.23	ug/	25.0	107	75-130
Chloromethane	28.6	5.0	0.30	ug/l	25.0	114	40-145
Chloromethane	28.6	5.0	0.44	ug/	25.0	114	40-145
Dibromochloromethane	25.9	2.0	0.28	ug/l	25.0	104	65-145
Dibromochloromethane	25.9	2.0	0.48	ug/l	25.0	104	65-145
1,2-Dichlorobenzene	25.5	2.0	0.32	ug/l	25.0	102	80-120
1,2-Dichlorobenzene	25.5	2.0	0.39	ug/l	25.0	102	80-120
1,3-Dichlorobenzene	24.2	2.0	0.28	ug/l	25.0	97	80-120
1,3-Dichlorobenzene	24.2	2.0	0.35	ug/l	25.0	97	80-120
1,4-Dichlorobenzene	24.3	2.0	0.41	ug/l	25.0	97	80-120
1,4-Dichlorobenzene	24.3	2.0	0.37	ugh	25.0	97	80-120
1,1-Dichloroethane	27.2	2.0	0.27	ug/	25.0	109	70-135
1,1-Dichloroethane	27.2	2.0	0.17	ugh	25.0	109	70-135
1,2-Dichloroethane	25.7	0.50	0.28	ug/l	25.0	103	60-150
1,2-Dichloroethane	25.7	2.0	0.43	ug/l	25.0	103	60-150
1,1-Dichloroethene	28.2	5.0	0.32	ug/	25.0	113	75-135
1,1-Dichloroethene	28.2	5.0	0.24	ug/l	25.0	113	75-135
cis-1,2-Dichloroethene	27.3	2.0	0.26	ug/l	25.0	109	70-125
trans-1,2-Dichloroethene	28.0	2.0	0.27	ug/l	25.0	112	70-130
trans-1,2-Dichloroethene	28.0	2.0	0.20	ug/l	25.0	112	70-130

Del Mar Analytical, Irvine

Michele Harper
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 1OA0131
Sampled: 01/04/05-01/05/05
Received: 01/04/05

METHOD BLANKIQC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte \quad Result
Batch: 5A06024 Extracted: 01/06/05

Reporting			Spike	Source	\%REC		RPD	Data	
Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

LCS Analyzed: 01/06/2005 (5A06024-BS1)

1,2-Dichloropropane	26.9	2.0	0.35	ug/	25.0	108	70-120
1,2-Dichloropropane	26.9	2.0	0.30	ug/	25.0	108	70-120
cis-1,3-Dichloropropene	27.5	2.0	0.31	ug/	25.0	110	75-130
cis-1,3-Dichloropropene	27.5	2.0	0.22	ug/	25.0	110	75-130
trans-1,3-Dichloropropene	27.5	2.0	0.32	ug/	25.0	110	75-135
trans-1,3-Dichloropropene	27.5	2.0	0.24	ug/	25.0	110	75-135
Ethylbenzene	27.6	2.0	0.31	ug/	25.0	110	80-120
Ethylbenzene	27.6	2.0	0.25	ug/	25.0	110	80-120
Methylene chloride	28.4	5.0	0.48	ug/	25.0	114	60-135
Methylene chloride	28.4	5.0	1.2	ug/l	25.0	114	60-135
1,1,2,2-Tetrachloroethane	24.8	2.0	0.41	ug/	25.0	99	60-135
1,1,2,2-Tetrachloroethane	24.8	2.0	0.24	ug/	25.0	99	60-135
Tetrachloroethene	25,7.	2.0	0.39	ug/	25.0	103	75-125
Tetrachloreethene	25.7	2.0	0.32	ugit	25.0	103	75-125
Toluene	26.4	2.0	0.36	ug/	25.0	106	75-120
Toluene	26.4	2.0	0.28	ug/	25.0	106	75-120
1,1,1-Trichloroethane	27.2	2.0	0.28	ug/l	25.0	109	75-140
1,1,1-Trichloroethane	27.2	2.0	0.30	ug/	25.0	109	75-140
1,1,2-Trichloroethane	26.3	2.0	0.41	ug/	25.0	105	70-125
1,1,2-Trichloroethane	26.3	2.0	0.30	ug/	25.0	105	70-125
Trichloroethene	25.1	2.0	0.26	ug/	25.0	100	80-120
Trichloroethene	25.1	2.0	0.38	ug/l	25.0	100	80-120
Trichlorofluoromethane	28.7	5.0	0.37	ug/	25.0	115	65-145
Trichlorofluoromethane	28.7	5.0	0.34	ug/	25.0	115	65-145
Vinyl chloride	26.6	5.0	0.24	ug/	25.0	106	50-130
Vinyl chloride	26.6	0.50	0.26	ug/l	25.0	106	50-130
Surrogate: Dibromofluoromethane	26.0			ugh	25.0	104	80-120
Surrogate: Dibromofluoromethane	26.0			ugh	25.0	104	80-120
Surrogate: Tolvene-d8	25.7			ugh	25.0	103	80-120
Surrogate: Toluene-d8	25.7			ug $/$	25.0	103	80-120
Surrogate: 4-Bromofluorobenzene	26.2			ug/	25.0	105	80-120
Surrogate: 4-Bromofluorobenzene	26.2			ug/	25.0	105	80-120

Del Mar Analytical, Irvine

Michele Harper
Project Manager

```
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite }120
Pasadena, CA 91101
Attention: Bronwyn Kelly
```

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0131
Sampled: 01/04/05-01/05/05
Received: 01/04/05

```
Attention: Bronwyn Kelly
```


METHOD BLANKIQC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte
Batch: 5A06024 Extracted: 01/06/05
Matrix Spike Analyzed: 01/06/2005 (5A06024-MS1)

Reporting			Spike	Source	\%REC		RPD	Data	
Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Matrix Spike A	24-			Source: 1OA0131-81				
Benzene	25.3	1.0	0.28	ug/l	25.0	ND	101	70-120
Benzene	25.3	2.0	0.23	ug/l	25.0	ND	101	70-120
Bromodichloromethane	26.5	2.0	0.30	ug/	25.0	ND	106	$70-140$
Bromodichloromethane	26.5	2.0	0.30	ug/l	25.0	ND	106	70-140
Bromoform	24.5	5.0	0.32	ug/	25.0	ND	98	55-140
Bromoform	24.5	2.0	0.30	ug/l	25.0	ND	98	55-140
Bromomethane	33.8	5.0	0.46	ug/l	25.0	ND	135	50-145
Bromomethane	33.8	5.0	0.34	ug/l	25.0	ND	135	50-145
Carbon tetrachloride	26.2	0.50	0.28	ug/	25.0	ND	105	70-145
Carbon tetrachloride	26.2	5.0	0.29	ug/l	25.0	ND	105	70-145
Chlorobenzene	25.7	2.0	0.32	ug/l	25.0	ND	103	80-125
Chlorobenzene	25.7	2.0	0.36	ug/l	25.0	ND	103	80-125
Chloroethane	32.2	5.0	0.86	ug/l	25.0	ND	129	50-145
Chlorothane	32.2	5.0	0.33	ug/	25.0	ND	129	50-145
Chloroform	27.2	2.0	0.23	ug/	25.0	ND	109	70-135
Chloroform	27.2	2.0	0.33	ug/l	25.0	ND	109	70-135
Chloromethane	29.4	5.0	0.30	ug/l	25.0	ND	118	35-145
Chloromethane	29.4	5.0	0.44	ug/	25.0	ND	118	35-145
Dibromochloromethane	25.4	2.0	0.48	ug/l	25.0	ND	102	65-145
Dibromochloromethane	25.4	2.0	0.28	ug/l	25.0	ND	102	65-145
1,2-Dichlorobenzene	25.4	2.0	0.32	ug/l	25.0	ND	102	75-130
1,2-Dichlorobenzene	25.4	2.0	0.39	ug/	25.0	ND	102	75-130
1,3-Dichlorobenzene	24.4	2.0	0.35	ug/l	25.0	ND	98	75-130
1,3-Dichlorobenzene	24.4	2.0	0.28	ug/	25.0	ND	98	75-130
1,4-Dichlorobenzene	24.2	2.0	0.41	ug/l	25.0	ND	97	80-120
1,4-Dichlorobenzene	24.2	2.0	0.37	ug/l	25.0	ND	97	80-120
1,1-Dichloroethane	27.7	2.0	0.27	ug/l	25.0	ND	111	65-135
1,1-Dichloroethane	27.7	2.0	0.17	ug/l	25.0	ND	111	65-135
1,2-Dichloroethane	25.2	0.50	0.28	ug/l	25.0	ND	101	60-150
1,2-Dichloroethane	25.2	2.0	0.43	ug/l	25.0	ND	101	60-150
1,1-Dichloroethene	28.7	5.0	0.24	ug/	25.0	ND	115	65-140
1,1-Dichloroethene	28.7	5.0	0.32	ug/	25.0	ND	115	65-140
cis-1,2-Dichloroethene	27.9	2.0	0.26	ug/l	25.0	ND	112	65-130
trans-1,2-Dichloroethene	28.6	2.0	0.27	ug/	25.0	ND	114	65-135
trans-1,2-Dichloroethene	28.6	2.0	0.20	ug/l	25.0	ND	114	65-135

Del Mar Analytical, Irvine

Michele Harper
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0131
Sampled: 01/04/05-01/05/05
Received: 01/04/05

METHOD BL.ANKIOC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte Result

Reporting			Spike	Source	\%REC		RPD	Data	
Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5A06024 Extracted: 01/06/05

Matrix Spike Analyzed: 01/06/2005 (5A06024-MS1)				Source: 10A0131-01				
1,2-Dichloropropane	26.7	2.0	0.35	ug/	25.0	ND	107	65-130
1,2-Dichloropropane	26.7	2.0	0.30	ug/l	25.0	ND	107	65-130
cis-1,3-Dichloropropene	26.8	2.0	0.31	ug/	25.0	ND	107	70-140
cis-1,3-Dichloropropene	26.8	2.0	0.22	ug/	25.0	ND	107	70-140
trans-1,3-Dichloropropene	26.4	2.0	0.24	ug/	25.0	ND	106	70-140
trans-1,3-Dichloropropene	26.4	2.0	0.32	ug/	25.0	ND	106	70-140
Ethylbenzene	27.6	2.0	0.25	ug/	25.0	ND	110	70-130
Ethylbenzene	27.6	2.0	0.31	ug/	25.0	ND	110	70-130
Methylene chloride	28.9	5.0	1.2	ug/	25.0	ND	116	60-135
Methylene chloride	28.9	5.0	0.48	ug/1	25.0	ND	116	60-135
1,1,2,2-Tetrachloroethane	25.0	2.0	0.24	ug/	25.0	ND	100	60-145
1,1,2,2-Tetrachloroethane	25.0	2.0	0.41	ug/	25.0	ND	100	60-145
Tetrachloroethene	25.5	2.0	039	ug/	25.0	ND	102	70.130
Tetrachloroethene	25.5	2.0	0.32	ug/	25.0	ND	102	70-130
Toluene	26.2	2.0	0.36	ug/	25.0	ND	105	70-120
Toluene	26.2	2.0	0.28	ug/t	25.0	ND	105	70-120
1,1,1-Trichloroethane	27.2	2.0	0.30	ug/	25.0	ND	109	75-140
1,1,1-Trichloroethane	27.2	2.0	0.28	ug/	25.0	ND	109	75-140
1,1,2-Trichloroethane	25.6	2.0	0.41	ug/	25.0	ND	102	60-135
1,1,2-Trichloroethane	25.6	2.0	0.30	ugh	25.0	ND	102	60-135
Trichloroethene	24.6	2.0	0.26	ug/	25.0	ND	98	70-125
Trichloroethene	24.6	2.0	0.38	ug/l	25.0	ND	98	70-125
Trichlorofluoromethane	29.2	5.0	0.37	ug/	25.0	ND	117	55-145
Trichlorofluoromethane	29.2	5.0	0.34	ug/	25.0	ND	117	55-145
Vinyl chloride	27.7	5.0	0.24	ug/	25.0	ND	111	40-135
Vinyl chloride	27.7	0.50	0.26	ugh	25.0	ND	111	40-135
Surrogate: Dibromoftuoromethane	26.5			$u g /$	25.0		106	80-120
Surrogate: Dibromofluoromethane	26.5			$u g /$	25.0		106	80-120
Surrogate: Toluene-d8	25.4			ug/	25.0		102	80-120
Surrogate: Toluene-d8	25.4			ug/	25.0		102	80-120
Surrogate: 4-Bromofluorobenzene	26.4			$u g /$	25.0		106	80-120
Surrogate: 4-Bromofluorobenzene	26.4			ug 1	25.0		106	80-120

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 1OA0131

Sampled: 01/04/05-01/05/05
Received: 01/04/05

METHOD BLANKIQC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source	\%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit

Batch: 5A06024 Extracted: 01/06/05
Matrix Spike Dup Analyzed: 01/06/2005 (5A06024-MSD1)

Benzene	25.5	2.0	0.23	ug/l	25.0	ND	102	70-120	1	20
Benzene	25.5	1.0	0.28	ug/	25.0	ND	102	70-120.	1	20
Bromodichloromethane	26.2	2.0	0.30	ug/1	25.0	ND	105	70-140	1	20
Bromodichloromethane	26.2	2.0	0.30	ug/	25.0	ND	105	70-140	1	20
Bromoform	23.5	2.0	0.30	ug / l	25.0	ND	94	55-140	4	25
Bromoform	23.5	5.0	0.32	ug/l	25.0	ND	94	55-140	4	25
Bromomethane	31.6	5.0	0.46	ug/l	25.0	ND	126	50-145	7	25
Bromomethane	31.6	5.0	0.34	ug/	25.0	ND	126	50-145	7	25
Carbon tetrachloride	26.9	0.50	0.28	ug/l	25.0	ND	108	70-145	3	25
Carbon tetrachloride	26.9	5.0	0.29	ug/	25.0	ND	108	70-145	3	25
Chlorobenzene	25.5	2.0	0.36	ug/l	25.0	ND	102	80-125	1	20
Chlorobenzene	25.5	2.0	0.32	ug/	25.0	ND	102	80-125	1	20
Chloroethane	30.8	5.0	0.33	ugh	25.0	ND	123	$50-145$	4	25
Chloroethane	30.8	5.0	0.86	ug/l	25.0	ND	123	50.145	4	25
Chloroform	26.7	2.0	0.33	ug/l	25.0	ND	107	70-135	2	20
Chloroform	26.7	2.0	0.23	ug/l	25.0	ND	107	70-135	2	20
Chloromethane	29.1	5.0	0.30	ug/	25.0	ND	116	35-145	1	25
Chloromethane	29.1	5.0	0.44	ug/	25.0	ND	116	35-145	1	25
Dibromochloromethane	24.8	2.0	0.48	ug/I	25.0	ND	99	65-145	2	25
Dibromochloromethane	24.8	2.0	0.28	ug/l	25.0	ND	99	65-145	2	25
1,2-Dichlorobenzene	25.6	2.0	0.32	ug/l	25.0	ND	102	$75-130$	1	20
1,2-Dichlorobenzene	25.6	2.0	0.39	ug/l	25.0	ND	102	75-130	1	20
1,3-Dichlorobenzene	24.4	2.0	0.28	ug/l	25.0	ND	98	75-130	0	20
1,3-Dichlorobenzene	24.4	2.0	0.35	$u g / 1$	25.0	ND	98	75-130	0	20
1,4-Dichlorobenzene	24.4	2.0	0.37	ug/	25.0	ND	98	80-120	1	20
1,4-Dichlorobenzene	24.4	2.0	0.41	ug / l	25.0	ND	98	80-120	1	20
1,1-Dichloroethane	27.1	2.0	0.17	ug/l	25.0	ND	108	65-135	2	20
1,1-Dichlorocthane	27.1	2.0	0.27	ugh	25.0	ND	108	65-135	2	20
1,2-Dichloroethane	24.9	0.50	0.28	ug/	25.0	ND	100	60-150	1	20
1,2-Dichloroethane	24.9	2.0	0.43	ug/l	25.0	ND	100	60-150	1	20
1,1-Dichlorocthene	28.0	5.0	0.32	ug/l	25.0	ND	112	65-140	2	20
1,1-Dichloroethene	28.0	5.0	0.24	ug/l	25.0	ND	112	65-140	2	20
cis-1,2-Dichloroethene	27.4	2.0	0.26	ug/l	25.0	ND	110	65-130	2	20
trans-1,2-Dichloroethene	28.3	2.0	0.27	ug/	25.0	ND	113	65-135	1	20
trans-1,2-Dichloroethene	28.3	2.0	0.20	ug/l	25.0	ND	113	65-135	1	20

Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing	Project ID: Quarterly Outfall 011 +13267	
300 North Lake Avenue, Suite 1200		Report Number: IOA0131
Pasadena, CA 91101	Relled: 01/04/05-01/05/05	
Attention: Bronwyn Kelly		Received: 01/04/05

METHOD BLANKIQC DATA

PURGEABLES BY GC/MS (EPA 624)

| | | Reporting | | | Spike | Source | \%REC | | RPD | Data | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analyte | Result | Limit | MDL | Units | Level | Result | \%REC | Limits | RPD | Limit | Qualifiers |

Batch: 5A06024 Extracted: 01/06/05

Matrix Spike Dup Analyzed: 01/06/2005 (5A06024-MSD1)			Source: 10A0131-01							
1,2-Dichloropropane	26.3	2.0	0.35	ug/l	25.0	ND	105	65-130	2	20
1,2-Dichloropropane	26.3	2.0	0.30	ug/	25.0	ND	105	65-130	2	20
cis-1,3-Dichloropropene	26.8	2.0	0.22	ug/	25.0	ND	107	70-140	0	20
cis-1,3-Dichloropropene	26.8	2.0	0.31	ugh	25.0	ND	107	70-140	0	20
trans-1,3-Dichloropropene	26.2	2.0	0.24	ug/	25.0	ND	105	70-140	1	25
trans-1,3-Dichloropropene	26.2	2.0	0.32	ug/	25.0	ND	105	70-140	1	25
Ethylbenzene	27.3	2.0	0.31	ugh	25.0	ND	109	70-130	1	20
Ethylbenzene	27.3	2.0	0.25	ug/	25.0	ND	109	70-130	1	20
Methylene chloride	28.3	5.0	0.48	ug/	25.0	ND	113	60-135	2	20
Methylene chloride	28.3	5.0	1.2	ug/	25.0	ND	113	60-135	2	20
1,1,2,2-Tetrachloroethane	23.7	2.0	0.41	ug/	25.0	ND	95	60-145	5	30
1,1,2,2-Tetrachloroethane	23.7	2.0	0.24	ug/	25.0	ND	95	60-145	5	30
Tefrachloroethene	25.3	2.0	0.39	ugh	25.0	ND	101	70.130	1	20
Tetrachloroethene	25.3	2.0	0.32	ug/	250	ND	101	70-130	1	20
Toluene	25.8	2.0	0.36	ug/	25.0	ND	103	70-120	2	20
Toluene	25.8	2.0	0.28	ug/	25.0	ND	103	70-120	2	20
1,1,1-Trichloroethane	27.4	2.0	0.28	ug/l	25.0	ND	110	75-140	1	20
1,1,1-Trichloroethane	27.4	2.0	0.30	ug/	25.0	ND	110	75-140	1	20
1,1,2-Trichloroethane	24.9	2.0	0.41	ug/	25.0	ND	100	60-135	3	25
1,1,2-Trichloroethane	24.9	2.0	0.30	ug/l	25.0	ND	100	60-135	3	25
Trichloroethene	24.6	2.0	0.26	ug/	25.0	ND	98	70-125	0	20
Trichloroethene	24.6	2.0	0.38	ug/	25.0	ND	98	70-125	0	20
Trichlorofluoromethane	29.1	5.0	0.34	ug/	25.0	ND	116	55-145	0	25
Trichlorofluoromethane	29.1	5.0	0.37	ugl	25.0	ND	116	55-145	0	25
Vinyl chloride	27.5	5.0	0.24	ug/l	25.0	ND	110	40-135	1	30
Vinyl chloride	27.5	0.50	0.26	ug/l	25.0	ND	110	40-135	1	30
Surrogate: Dibromofluoromethane	25.9			$u g / t$	25.0		104	80-120		
Surrogate: Dibromofluoromethane	25.9			$u g h$	25.0		104	80-120		
Surrogate: Toluene-d8	25.5			$u g /$	25.0		102	80-120		
Surrogate: Toluene-d8	25.5			$u g / 1$	25.0		102	80-120		
Surrogate: 4-Bromofluorobenzene	25.6			$u g / 1$	25.0		102	80-120		
Surrogate: 4-Bromofluorobenzene	25.6			ug/	25.0		102	80-120		

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0131 \quad Sampled: 01/04/05

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	$\mathbf{R P D}$	RPD Limit	Data Qualifiers
Batch: 5A07016 Extracted: 01/07/05											
Blank Analyzed: 01/07/2005 (5A07016-BLK1)											
Acrolein	ND	50	4.6	ug/l							
Acrylonitrile	ND	50	5.1	$u g / 1$							
2-Chloroethyl vinyl ether	ND	5.0	1.3	ug/l							
Surrogate: Dibromofluoromethane	25.8			ug/l	25.0		103	80-120			
Surrogate: Toluene-d8	25.9			$u g / 7$	25.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	23.6			$u g / l$	25.0		94	80-120			
LCS Analyzed: 01/07/2005 (5A07016-BS1)											
2-Chloroethyl vinyl ether	27.7	5.0	1.3	ug/l	25.0		111	20-175			
Surrogate: Dibromofluoromethane	26.3			$u \mathrm{~g} / 7$	25.0		105	80-120			
Surrogate: Toluene-d8	25.7			ug/l	25.0		103	$80-120$			
Surrogate: 4-Bromofluorobenzene	26.4			$u g / 1$	25.0		106	80-120			
Matrix Spike Analyzed 01/07/2005 (5A07016MS1)					Source: 1OA0264-02				.		
2-Chloroethyl vinyl ether	23.8	5.0	1.3	ug/l	25.0	ND	95	20-175			
Surrogate: Dibromofluoromethane	26.4			$u g / l$	25.0		106	80-120			
Surrogate: Toluene-d8	25.8			ug/l	25.0		103	80-120			
Surragate: 4-Bromofluorobenzene	26.2			$u g / l$	25.0		105	80-120			
Matrix Spike Dup Analyzed: 01/07/2005 (5A07016-MSD1)					Source: IOA0264-02						
2-Chloroethyl vinyl ether	26.7	5.0	1.3	$\mathrm{ug} / 1$	25.0	ND	107	20-175	11	25	
Surrogate: Dibromofluoromethane	25.6			$u g / l$	25.0		102	80-120			
Surrogate: Toluene-d8	25.5			$u g / l$	25.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	25.3			$u g / 7$	25.0		101	80-120			

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0131

Sampled: 01/04/05-01/05/05
Received: 01/04/05

METHOD BLANKIQC DATA

PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5A06024 Extracted: 01/06/05											
Blank Analyzed: 01/06/2005 (5A06024-BLK1)											
Cyclohexane	ND	2.5	N/A	ug/							
1,2-Dichloro-1,1,2-trifluoroethane	ND	2.5	N/A.	ug/							

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$

Report Number: 1OA0131
Sampled: 01/04/05-01/05/05
Received: 01/04/05

METHOD BLANKIQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5A10039 Extracted: 01/10/05											
Blank Analyzed: 01/13/2005 (5A10039-BLK1)											
Acenaphthene	ND	0.50	0.10	ug/							
Acenaphthylene	ND	0.50	0.10	ug/							
Aniline	ND	10	2.9	ug/						.	
Anthracene	ND	0.50	0.083	ug/							
Benzidine	ND	5.0	2.4	ug/							
Benzoic acid	ND	20	3.7	ug/1							
Benzo(a)anthracene	ND	5.0	0.038	ug/							
Benzo(a)pyrene	ND	2.0	0.14	ug/							
Benzo(b)fluoranthene	ND	2.0	0.050	ug/							
Benzo(g,h,i)perylene	ND	5.0	0.059	ug/							
Benzo(k)fluoranthene	ND	0.50	0.053	ug/							
Benzyl alcohol	ND	5.0	0.21	ug/							
Bis(2-chloroethoxy)methane	ND	0.50	0.072	ug/							
Bis(2-chloroethyl)ether	ND	0.50	0.084	ug				-			
Bis(2-chloroisopropyl)ether	ND	0.50	0.11	ug/							
Bis(2-ethythexyl)phthalate	ND	5.0	1.1	ug/							
4-Bromophenyl phenyl ether	ND	1.0	0.12	ug/							
Butyl benzyl phthalate	ND	5.0	0.34	ug/							
4-Chloroaniline	ND	2.0	0.20	ug/							
2-Chloronaphthalene	ND	0.50	0.059	ug/							
4-Chloro-3-methylphenol	ND	2.0	0.34	ugh							
4-Chlorophenyl phenyl ether	ND	0.50	0.056	ug/							
2-Chiorophenol	ND	1.0	0.12	ug/l							
Chrysene	ND	0.50	0.072	ug/							
Dibenz(a,h)anthracene	ND	0.50	0.083	ug/							
Dibenzofuran	ND	0.50	0.075	ugl							
Di-n-butyl phthalate	ND	2.0	0.26	ught							
1,2-Dichlorobenzene	ND	0.50	0.11	ug/							
1,3-Dichlorobenzene	ND	0.50	0.13	ugh							
1,4-Dichlorobenzene	ND	0.50	0.050	ugl							
3,3-Dichlorobenzidine	ND	5.0	0.93	ugh							
2,4-Dichlorophenol	ND	2.0	0.21	ug/							
Diethyl phthalate	ND	1.0	0.12	ug/							
2,4-Dimethylphenol	ND	2.0	0.31	ug/1							
Dimethyl phthalate	ND	0.50	0.081	ug/l							

Del Mar Analytical, Irvine

Michele Harper
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$	
Report Number: 10 A 0131	Sampled: 01/04/05-01/05/05

Received: 01/04/05

METHOD BLANKIQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5A10039 Extracted: 01/10/05											
Blank Analyzed: 01/13/2005 (5A10039-BLK1)											
4,6-Dinitro-2-methylphenol	ND	5.0	0.38	ug/l							
2,4-Dinitrophenol	ND	5.0	2.7	ug/							
2,4-Dinitrotoluene	ND	5.0	0.23	ug/							
2,6-Dinitrotoluene	ND	5.0	0.24	ugh							
Di-n-octyl phthalate	ND	5.0	0.17	ug/							
1,2-Diphenylhydrazine/Azobenzene	ND	1.0	0.087	ug/l							
Fluoranthene	ND	0.50	0.089	ug/							
Fluorene	ND	0.50	0.075	ug/							
Hexachlorobenzene	ND	1.0	0.13	ug/							
Hexachlorobutadiene	ND	2.0	0.38	ug/							
Hexachlorocyclopentadiene	ND	5.0	1.8	ug/							
Hexachloroethane	ND	3.0	0.51	ug/							
Indeno(1,2,3-cd)pyrene	ND	2.0	0.19	ugd				\%			
Isophorone	ND	1.0	0.059	ugh							
2-Methylnaphthalene	ND	1.0	0.13	ug/							
2-Methylphenol	ND	2.0	0.28	ug/							
4-Methylphenol	ND	5.0	0.20	ug/							
Naphthalene	ND	1.0	0.13	ug/							
2-Nitroaniline	ND	5.0	0.18	ugh							
3-Nitroaniline	ND	5.0	0.35	ug/							
4-Nitroaniline	ND	5.0	0.49	ug/							
Nitrobenzene	ND	1.0	0.10	ug/							
2-Nitrophenol	ND	2.0	0.23	ugn							
4-Nitrophenol	ND	5.0	0.73	ug/							
N -Nitrosodimethylamine	ND	2.0	0.22	ugh							
N-Nitroso-di-n-propylamine	ND	2.0	0.18	ugh							
N -Nitrosodiphenylamine	ND	1.0	0.077	ug/							
Pentachlorophenol	ND	2.0	0.78	ug/							
Phenanthrene	ND	0.50	0.071	ugl							
Phenol	ND	1.0	0.14	ug/l							
Pyrene	ND	0.50	0.059	ugh							
1,2,4-Trichlorobenzene	ND	1.0	0.10	ug/l							
2,4,5-Trichlorophenol	ND	2.0	0.075	ugl							
2,4,6-Trichlorophenol	ND	1.0	0.10	ugh							
Surrogate: 2-Fluorophenol	13.2			$u g /$	20.0		66	35-120			

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 1OA0131
Sampled: 01/04/05-01/05/05
Received: 01/04/05

METHOD BLANKIQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source	\%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit

Batch: 5A10039 Extracted: 01/10/05
Blank Analyzed: 01/13/2005 (5A10039-BLK1)

Surrogate: Phenol-d6	13.6
Surrogate: $2,4,6-$ Tribromophenol	14.9
Surrogate: Nitrobenzene-d5	6.88
Surrogate: 2 2Fluorobiphenyl	6.80
Surrogate: Terphenyl-dl4	7.82

LCS Analyzed: 01/14/2005 (5A10039-BS1)

Acenaphthene	8.24	0.50	0.10	ug/	10.0	82	55-120
Acenaphthylene	8.04	0.50	0.10	ug/	10.0	80	55-120
Aniline	7.28	10	2.9	ug/	10.0	73	30-120
Anthracene	8.64	0.50	0.083	ug/1	10.0	86	60-120
Benzidine	ND	5.0	2.4	ug/1	10.0		20-180
Benzoic acid	5.84	20	3.7	ugh	10.0	58	30-125
Benzo(a)anthracene	8.76	5.0	0.038	ugl	10.0	88	65-120
Benzo(a)pyrene	9.40	2.0	0.14	ug/	10.0	94	55-125
Benzo(b)fluoranthene	8.52	2.0	0.050	ug/	10.0	85	50-125
Benzo(g,h,i)perylene	8.40	5.0	0.059	ug/	10.0	84	35-160
Benzo(k)fluoranthene	8.82	0.50	0.053	ug/	10.0	88	50-125
Benzyl alcohol	9.58	5.0	0.21	ug/	10.0	96	40-130
Bis(2-chloroethoxy)methane	8.50	0.50	0.072	ughl	10.0	85	55-120
Bis(2-chloroethyl)ether	7.66	0.50	0.084	ug/	10.0	77	50-120
Bis(2-chloroisopropyl)ether	7.62	0.50	0.11	ugh	10.0	76	50-120
Bis(2-ethylhexyl)phthalate	10.8	5.0	1.1	ugl	10.0	108	65-125
4-Bromophenyl phenyl ether	8.64	1.0	0.12	ug/	10.0	86	55-125
Butyl benzyl phthalate	9.64	5.0	0.34	ugh	10.0	96	60-125
4-Chloroaniline	8.04	2.0	0.20	ug / l	10.0	80	55-120
2-Chloronaphthalene	8.24	0.50	0.059	ugh	10.0	82	60-120
4-Chloro-3-methylphenol	8.80	2.0	0.34	ug/l	10.0	88	60-120
4-Chlorophenyl phenyl ether	8.66	0.50	0.056	ug/	10.0	87	55-120
2-Chlorophenol	8.12	1.0	0.12	ug/	10.0	81	45-120
Chrysene	8.22	0.50	0.072	ug/	10.0	82	65-120
Dibenz (a, h) anthracene	9.08	0.50	0.083	ug/	10.0	91	40-160
Dibenzofuran	8.34	0.50	0.075	ug/	10.0	83	60-120
Di-n-butyl phthalate	9.62	2.0	0.26	ug/	10.0	96	65-125
1,2-Dichlorobenzene	7.74	0.50	0.11	ug/	10.0	77	40-120
1,3-Dichlorobenzene	7.36	0.50	0.13	ug/	10.0	74	40-120

Del Mar Analytical, Irvine

Michele Harper
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 1OA0131
Sampled: 01/04/05-01/05/05

METHOD BLANKIOC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

An		Reporting			Spike	Source		\%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5A10039 Extracted: 01/10/05
LCS Analyzed: 01/14/2005 (5A10039-BS1)

1,4-Dichlorobenzene	7.56	0.50	0.050	ug/	10.0	76	40-120
33-Dichlorobenzidine	7.54	5.0	0.93	ug/	10.0	75	50-170
2,4-Dichlorophenol	8.76	2.0	0.21	ug/	10.0	88	55-120
Diethyl phthalate	8.96	1.0	0.12	ug/	10.0	90	60-120
2,4-Dimethylphenol	6.42	2.0	0.31	ug/	10.0	64	35-120
Dimethyl phthalate	8.88	0.50	0.081	ug/	10.0	89	60-120
4,6-Dinitro-2-methylphenol	8.14	5.0	0.38	ug/	10.0	81	55-120
2,4-Dinitrophenol	13.8	5.0	2.7	ug/l	10.0	138	40-140
2,4-Dinitrotoluene	9.30	5.0	0.23	ug/	10.0	93	60-140
2,6-Dinitrotoluene	8.96	5.0	0.24	ug/	10.0	90	65-125
Di-n-octyl phthalate	10.4	5.0	0.17	ug/	10.0	104	60-130
1,2-Diphenylhydrazine/Azobenzene	9.52	1.0	0.087	ug/	10.0	95	60-120
Eluoranthene	9.34	0.50	0.089	ug/	10.0	93	55-125
Fluorene	8.68	0.50	0.075	ugh	10.0	87	60-120
Hexachlorobenzene	8.30	1.0	0.13	ug/	10.0	83	50-120
Hexachlorobutadiene	7.82	2.0	0.38	ug/	10.0	78	45-120
Hexachlorocyclopentadiene	7.70	5.0	1.8	ug/	10.0	77	10-130
Hexachloroethane	7.62	3.0	0.51	ug/i	10.0	76	40-120
Indeno($1,2,3$-cd)pyrene	9.06	2.0	0.19	ug/	10.0	91	35-150
Isophorone	8.98	1.0	0.059	ug/	10.0	90	55-120
2-Methylnaphthalene	8.12	1.0	0.13	ug/	10.0	81	50-120
2-Methylphenol	8.44	2.0	0.28	ugh	10.0	84	45-120
4-Methylphenol	8.52	5.0	0.20	ug/	10.0	85	45-120
Naphthalene	8.00	1.0	0.13	ug/	10.0	80	50-120
2-Nitroaniline	8.96	5.0	0.18	ugh	10.0	90	60-130
3-Nitroaniline	8.72	5.0	0.35	ug/	10.0	87	50-140
4-Nitroaniline	9.74	5.0	0.49	ug/	10.0	97	45-160
Nitrobenzene	8.22	1.0	0.10	ugh	10.0	82	50-120
2-Nitrophenol	9.16	2.0	0.23	ugl	10.0	92	55-120
4-Nitrophenol	9.20	5.0	0.73	ug/	10.0	92	50-135
N -Nitrosodimethylamine	7.72	2.0	0.22	ug/1	10.0	77	40-120
N -Nitroso-di-n-propylamine	8.70	2.0	0.18	ug/	10.0	87	50-120
N -Nitrosodiphenylamine	9.08	1.0	0.077	ug/	10.0	91	60-120
Pentachlorophenol	10.0	2.0	0.78	ug/	10.0	100	50-125
Phenanthrene	8.40	0.50	0.071	ug/	10.0	84	55-120

Del Mar Analytical, Irvine

Michele Harper
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Project ID: Quarterly Outfall $011+13267$

Report Number: 1OA0131
Sampled: 01/04/05-01/05/05
Received: 01/04/05

METHOD BLANKIQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source	\%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit

Batch: 5A10039 Extracted: 01/10/05
LCS Analyzed: 01/14/2005 (5A10039-BS1)

Phenol	8.02	1.0	0.14	ug/l	10.0	80	45-120
Pyrene	8.78	0.50	0.059	ugh	10.0	88	50-120
1,2,4-Trichlorabenzene	8.14	1.0	0.10	ugh	10.0	81	50-120
2,4,5-Trichlorophenol	9.42	2.0	0.075	ug/1	10.0	94	60-120
2,4,6-Trichlorophenol	9.32	1.0	0.10	ugh	10.0	93	60-120
Surrogate: 2-Fluorophenol	15.0			ug $/$	20.0	75	35-120
Surrogate: Phenol-d6	15.5			ug $/$	20.0	78	45-120
Surrogate: 2,4,6-Tribromophenol	16.5			ug/	20.0	82	50-125
Surrogate: Nitrobenzene-d5	7.60			ug $/ 1$	10.0	76	45-120
Surrogate: 2-Fluorobiphenyl	7.88			$u g /$	10.0	79	45-120
Surrogate: Terphenyl-d14	7.86			$u g /$	10.0	79	45-135

M-NR1
J
$L 2$

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0131
Sampled: 01/04/05-01/05/05
Received: 01/04/05

METHOD BLANKQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source		\%REC		RPD	Da
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Batch: 5A10039 Extracted: 01/10/05

LCS Dup Analyzed: 01/13/2005 (5A10039-BSD1)										M-NR1
Chrysene	8.14	0.50	0.072	ug/	10.0	81	65-120	1	20	
Dibenz(a,h)anthracene	8.70	0.50	0.083	ugh	10.0	87	40-160	4	25	
Dibenzofuran	8.16	0.50	0.075	ug 1	10.0	82	60-120	2	20	
Di-n-butyl phthalate	9.52	2.0	0.26	ug/	10.0	95	65-125	1	20	
1,2-Dichlorobenzene	6.66	0.50	0.11	ug/	10.0	67	40-120	15	25	
1,3-Dichlorabenzene	6.26	0.50	0.13	ug/	10.0	63	40-120	16	25	
1,4-Dichlorabenzene	6.56	0.50	0.050	ug/	10.0	66	40-120	14	25	
3,3-Dichlorobenzidine	7.12	5.0	0.93	ug/	10.0	71	50-170	6	25	
2,4-Dichlorophenol	8.78	2.0	0.21	ug/	10.0	88	55-120	0	20	
Diethyl phthalate	8.84	1.0	0.12	ug/	10.0	88	60-120	1	20	
2,4-Dimethylphenol	7.56	2.0	0.31	ug/	10.0	76	35-120	16	25	
Dimethyl phthalate	8.54	0.50	0.081	ugh	10.0	85	60-120	4	20	
4,60 Dinitro-2-methylphenol	674	5.0	0.38	ugh	10.0	67.	$55-120$	19	25	
2,4 Dinitrophenol	112	5.0	2.7	ugh	10.0	112	40.140	21	25	
2,4-Dinitrotoluene	8.68	5.0	0.23	ug/	10.0	87	60-140	7	20	
2,6-Dinitrotoluene	8.58	5.0	0.24	ug/	10.0	86	65-125	4	20	
Di-n-octyl phthalate	9.86	5.0	0.17	ug/	10.0	99	60-130	5	20	
1,2-Diphenylhydrazine/Azobenzene	9.52	1.0	0.087	ug/	10.0	95	60-120	0	25	
Fluoranthene	8.50	0.50	0.089	ug/	10.0	85	55-125	9	20	
Fluorene	8.40	0.50	0.075	ug/	10.0	84	60-120	3	20	
Hexachlorobenzene	8.10	1.0	0.13	ug/	10.0	81	50-120	2	20	
Hexachlorobutadiene	7.30	2.0	0.38	ug/	10.0	73	45-120	7	25	
Hexachlorocyclopentadiene	7.92	5.0	1.8	ug/l	10.0	79	10-130	3	30	
Hexachloroethane	6.32	3.0	0.51	$\mathrm{ug} / 1$	10.0	63	40-120	19	25	
Indeno($1,2,3$-cd)pyrene	8.58	2.0	0.19	ugh	10.0	86	35-150	5	25	
Isophorone	8.86	1.0	0.059	ug/l	10.0	89	55-120	1	20	
2-Methylnaphthalene	7.82	1.0	0.13	ug/	10.0	78	50-120	4	20	
2-Methylphenol	8.42	2.0	0.28	ug/	10.0	84	45-120	0	20	
4-Methylphenol	8.58	5.0	0.20	ug/	10.0	86	45-120	1	20	
Naphthalene	7.54	1.0	0.13	ug/	10.0	75	50-120	6	20	
2-Nitroaniline	8.86	5.0	0.18	ug/	10.0	89	60-130	1	20	
3-Nitroaniline	8.56	5.0	0.35	ug/l	10.0	86	50-140	2	25	
4-Nitroaniline	9.42	5.0	0.49	ugh	10.0	94	45-160	3	20	
Nitrobenzene	8.04	1.0	0.10	ug/	10.0	80	50-120	2	25	
2-Nitrophenol	8.50	2.0	0.23	ughl	10.0	85	55-120	7	25	

Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0131
Sampled: 01/04/05-01/05/05
Received: 01/04/05

METHOD BLANKIOC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5A10039 Extracted: 01/10/05											
LCS Dup Analyzed: 01/13/2005 (5A10039-BSD1)											M-NR1
4-Nitrophenol	8.72	5.0	0.73	ug/	10.0		87	50-135	5	25	
N -Nitrosodimethylamine	9.20	2.0	0.22	ug/	10.0		92	40-120	17	20	
N-Nitroso-di-n-propylamine	8.82	2.0	0.18	ug/	10.0		88	50-120	1	20	
N -Nitrosodiphenylamine	8.58	1.0	0.077	ug/	10.0		86	60-120	6	20	
Pentachlorophenol	9.00	2.0	0.78	ug/	10.0		90	50-125	11	25	
Phenanthrene	7.96	0.50	0.071	ug/	10.0		80	55-120	5	20	
Phenol	7.98	1.0	0.14	ug/	10.0		80	45-120	1	25	
Pyrene	8.40	0.50	0.059	ug/	10.0		84	50-120	4	25	
1,2,4-Trichlorobenzene	7.34	1.0	0.10	ug/	10.0		73	50-120	10	20	
2,4,5-Trichlorophenol	8.94	2.0	0.075	ug/	10.0		89	60-120	5	20	
2,4,6-Trichlorophenol	9.46	1.0	0.10	ug/	10.0		95	60-120	1	20	
Surrogate: 2-Fluorophenol	14.3			ug/	20.0		72	35-120			
Sturogate: Phenol-d6	15.2			ug/l	20.0		76	$45-120$			
Surrogate: 2,4,6-7ribromophenol	16.3			ug/	20.0		82	50.125			
Surrogate: Nitrobenzene-d5	7.68			ug/	10.0		77	45-120			
Surrogate; 2-Fluorobiphenyl	7.62			ug/	10.0		76	45-120			
Surrogate: Terphenyl-d14	7.76			ug $/$	10.0		78	45-135			

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0131
Sampled: 01/04/05-01/05/05
Received: 01/04/05

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0131
Sampled: 01/04/05-01/05/05
Received: 01/04/05

METHOD BLANKIOC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

		Reporting			Spike	Source	\%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit

Batch: 5A07033 Extracted: 01/07/05

LCS Analyzed: 01/07/2005 (5A07033-BS1)

Endrin	0.500
Endrin aldehyde	0.443
Endrin ketone	0.456
Heptachlor	0.444
Heptachlor epoxide	0.463
Methoxychlor	0.460
Surrogate: Tetrachloro-m-xylene	0.397
Surrogate: Decachlorobiphenyl	0.496

LCS Dup Analyzed: 01/07/2005 (5A07033-BSD1)

Aldrin	0.396
alpha-BHC	0.459
beta-BHC	0.448
delta-BHC	0.503
gamma-BHC (Lindane)	0.459
4,4'-DDD	0.501
4,4-DDE	0.487
4,4-DDT	0.518
Dieldrin	0.489
Endosulfan I	0.469
Endosulfan II	0.497
Endosulfan sulfate	0.510
Endrin	0.523
Endrin aldehyde	0.495
Endrin ketone	0.507
Heptachlor	0.436
Heptachlor epoxide	0.464
Methoxychlor	0.520
Surrogate: Tetrachloro-m-xylene	0.390
Surrogate: Decachlorobiphenyl	0.546

0.10	0.029	ug $/ 1$	0.500	79	$45-115$	11	30
0.10	0.010	ug $/$	0.500	92	$45-115$	2	30
0.10	0.011	ug $/$	0.500	90	$50-115$	4	30
0.20	0.010	ug $/$	0.500	101	$55-120$	1	30
0.10	0.0097	ug $/$	0.500	92	$45-115$	0	30
0.10	0.011	ug $/$	0.500	100	$60-120$	7	30
0.10	0.017	ug $/$	0.500	97	$55-120$	3	30
0.10	0.015	ug A	0.500	104	$60-130$	9	30
0.10	0.010	ug $/$	0.500	98	$55-120$	3	30
0.10	0.015	ug $/$	0.500	94	$50-115$	1	30
0.10	0.037	ug $/ 1$	0.500	99	$60-125$	8	30
0.20	0.013	ug $/$	0.500	102	$60-120$	10	30
0.10	0.0082	ug $/ 1$	0.500	105	$55-125$	4	30
0.10	0.045	ug $/ 1$	0.500	99	$55-115$	11	30
0.10	0.020	ug $/ 1$	0.500	101	$60-120$	11	30
0.10	0.030	ug $/$	0.500	87	$45-115$	2	30
0.10	0.012	ug $/ 1$	0.500	93	$50-120$	0	30
0.10	0.034	ug $/ 1$	0.500	104	$60-135$	12	30
		$u g / l$	0.500	78	$35-120$		

M-NR1

0.10	0.0082	$\mathrm{ug} /$	0.500	100	$55-125$
0.10	0.045	$\mathrm{ug} /$	0.500	89	$55-115$
0.10	0.020	$\mathrm{ug} /$	0.500	91	$60-120$
0.10	0.030	$\mathrm{ug} /$	0.500	89	$45-115$
0.10	0.012	$\mathrm{ug} /$	0.500	93	$50-120$
0.10	0.034	$\mathrm{ug} /$	0.500	92	$60-135$
		$u g / \lambda$	0.500	79	$35-120$
		$u g /$	0.500	99	$45-120$

Del Mar Analytical, Irvine
Michele Harper
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0131
Sampled: 01/04/05-01/05/05
Received: 01/04/05

METHOD BLANKIOC DATA

TOTAL PCBS (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5A07033 Extracted: 01/07/05											
Blank Analyzed: 01/07/2005 (5A07033-BLK1)											
Aroclor 1016	ND	1.0	0.067	ug/							
Aroclor 1221	ND	1.0	0.057	ug/							
Aroclor 1232	ND	1.0	0.13	ug/							
Aroclor 1242	ND	1.0	0.12	ug/							
Aroclor 1248	ND	1.0	0.21	ug/							
Aroclor 1254	ND	1.0	0.16	ug/							
Aroclor 1260	ND	1.0	0.17	ug/							
Surrogate: Decachlorobiphenyl	0.361			ug/l	0.500		72	45-120			
LCS Analyzed: 01/07/2005											M-NR1
Aroclor 1016	2.92	1.0	0.067	ug/	4.00		73	50-115			
Aroclor 1260	3.17	1.0	0.17	ug/1	4.00		79	60-115			
Surrogate: Decachlorobiphenyl	0.407			ugh	0.500		81	45-120			
LCS Dup Analyzed: 01/07/2005 (5A07033-BSD2)											
Aroclor 1016	2.66	1.0	0.067	ug/	4.00		66	50-115	9	30	
Aroclor 1260	2.95	1.0	0.17	ug/	4.00		74	60-115	7	25	
Surrogate: Decachlorobiphenyl	0.401			ug/	0.500		80	45-120			

Del Mar Analytical, Irvine
Michele Harper
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 1OA0131
Sampled: 01/04/05-01/05/05
Received: 01/04/05

METHOD BLANK/QC DATA

METALS

Analyte
Batch: 5A05092 Extracted: 01/05/05

	Reporting			Spike	Source		\%REC		RPD	Data
Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit	Qualifiers

Blank Analyzed: 01/06/2005 (5A05092-BLK1)

Antimony	ND	2.0	0.18	$\mathrm{ug} /$
Arsenic	ND	1.0	0.49	ugh
Barium	ND	0.0010	0.00014	mg/
Beryllium	ND	0.50	0.037	ug/l
Cadmium	ND	1.0	0.015	ug/
Chromium	ND	1.0	0.26	ug/
Cobalt	ND	1.0	0.10	ug/
Copper	ND	2.0	0.49	ug/
Iron	0.00392	0.010	0.0032	mg / l
Lead	ND	1.0	0.13	ug/
Manganese	0.632	1.0	0.44	ug/
Nickel	ND	1.0	0.15	ug/
Selenium	ND	2.0	0.36	ugh
Silver	ND	10	0.089	ug/
Thallium	ND	1.0	0.075	ug/
Vanadium	ND	1.0	0.86	ug/
Zinc	ND	20	3.1	ug/

LCS Analyzed: 01/06/2005 (5A05092-BS1)

Antimony	86.6	2.0	0.18	ug/	80.0	108	85-115
Arsenic	87.1	1.0	0.49	ug/	80.0	109	85-115
Barium	0.0825	0.0010	0.00014	mg/	0.0800	103	85-115
Beryllium	81.7	0.50	0.037	ug/	80.0	102	85-115
Cadmium	79.6	1.0	0.015	ug/	80.0	100	85-115
Chromium	82.9	1.0	0.26	ug/1	80.0	104	85-115
Cobalt	81.9	1.0	0.10	ug/	80.0	102	85-115
Copper	80.9	2.0	0.49	ugh	80.0	101	85-115
Irons	0.850	0.010	0.0032	$\mathrm{mg} / 1$	0.800	106	85-115
Lead	83.1	1.0	0.13	ug/1	80.0	104	85-115
Manganese	83.8	1.0	0.44	ugh	80.0	105	85-115
Nickel	82.9	1.0	0.15	ug/	80.0	104	85-115
Selenium	82.7	2.0	0.36	ug/	80.0	103	85-115
Silver	82.3	1.0	0.089	ug/	80.0	103	85-115
Thallium	82.5	1.0	0.075	ug/	80.0	103	85-115
Vanadium	80.9	1.0	0.86	ug/l	80.0	101	85-115
Zinc	77.9	20	3.1	ug/	80.0	97	85-115

Del Mar Analytical, Irvine

Michele Harper
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Report Number: 1OA0131
Sampled: 01/04/05-01/05/05
Project ID: Quarterly Outfall $011+13267$
Received: 01/04/05

METHOD BLANKIQC DATA

Analyte
Result

		Reporting			Spike	Source	\%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	\%REC	Limits	RPD	Limit

Batch: 5A05092 Extracted: 01/05/05

Matrix Spike Analyzed: 01/06/2005 (5A05092-MS1)

Matrix Sp	92-M					ce: 10A	21-01	
Antimony	98.6	2.0	0.18	ugh	80.0	0.87	122	70-130
Arsenic	99.7	1.0	0.49	ug/l	80.0	0.80	124	70-130
Barium	0.118	0.0010	0.00014	mg/t	0.0800	0.025	116	70-130
Beryllium	97.1	0.50	0.037	ug/l	80.0	0.14	121	70-130
Cadmium	92.2	1.0	0.015	ug / l	80.0	0.25	115	70-130
Chromium	93.9	1.0	0.26	ug/	80.0	3.5	113	70-130
Cobalt	90.1	1.0	0.10	ug/1	80.0	0.59	112	70-130
Copper	92.5	2.0	0.49	ug/l	80.0	6.3	108	70-130
Iron	1.96	0.010	0.0032	mg / l	0.800	1.5	58	70-130
Lead	97.3	1.0	0.13	ug/1	80.0	1.4	120	70-130
Manganese	113	1.0	0.44	ug/1	80.0	26	109	70-130
Nickel	92.4	1.0	0.15	ug/	80.0	3.5	111	70-130
Selenium	91.6	2.0	0.36	ugh	80.0	0.63	114	70.130
Silver	93.3	1.0	0.089	ugh	80.0	ND	117	70-130
Thallium	97.9	1.0	0.075	ugh	80.0	ND	122	70-130
Vanadium	92.5	1.0	0.86	ugl	80.0	2.4	113	70-130
Zinc	101	20	3.1	ug/l	80.0	22	99	70-130

Matrix Spike Dup Analyzed: 01/06/2005 (5A05092-MSD1)

Matr Sp	(${ }^{\text {a }}$ (Source, 10A0121-01									
Antimony	97.7	2.0	0.18	ug/	80.0	0.87	121	70-130	1	20
Arsenic	97.2	1.0	0.49	ug/l	80.0	0.80	120	70-130	3	20
Barium	0.118	0.0010	0.00014	mg / l	0.0800	0.025	116	70-130	0	20
Beryllium	94.3	0.50	0.037	ug/l	80.0	0.14	118	70-130	3	20
Cadmium	91.3	1.0	0.015	ug/l	80.0	0.25	114	70-130	1	20
Chromium	93.3	1.0	0.26	ug/l	80.0	3.5	112	70-130	1	20
Cobalt	89.8	1.0	0.10	ug/	80.0	0.59	112	$70-130$	0	20
Copper	92.4	2.0	0.49	ug/l	80.0	6.3	108	70-130	0	20
Iron	1.99	0.010	0.0032	mg / l	0.800	1.5	61	70-130	2	20
Lead	97.1	1.0	0.13	ug/	80.0	1.4	120	70-130	0	20
Manganese	113	1.0	0.44	ug/l	80.0	26	109	70-130	0	20
Nickel	92.2	1.0	0.15	ug/l	80.0	3.5	111	70-130	0	20
Selenium	89.6	2.0	0.36	ug/l	80.0	0.63	111	70-130	2	20
Silver	92.4	1.0	0.089	ug/l	80.0	ND	116	70-130	1	20
Thallium	98.3	1.0	0.075	ug/l	80.0	ND	123	70-130	0	20
Vanadium	92.3	1.0	0.86	ug/	80.0	2.4	112	70-130	0	20
Zinc	100	20	3.1	ug/	80.0	22	98	70-130	1	20

Del Mar Analytical, Irvine

Michele Harper
Project Manager

METALS

MWH-Pasadena/Boeing	Project ID: Quarterly Outfall $011+13267$	
300 North Lake Avenue, Suite 1200		Sampled: 01/04/05-01/05/05
Pasadena, CA 91101	Report Number: IOA0131	Received: $01 / 04 / 05$
Attention: Bronwyn Kelly		

METHOD BLANKIQC DATA

METALS

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID: Quarterly Outfall 011+13267	
300 North Lake Avenue, Suite 1200	Report Number: 1OA0131	Sampled: $01 / 04 / 05-01 / 05 / 05$
Pasadena, CA 91101		Received: 01/04/05
Attention: Bronwy Kelly		

METHOD BLANKIQC DATA

INORGANICS

Batch: 5A05054 Extracted: 01/05/05

Blank Analyzed: 01/10/2005 (5A05054-BLK1)							
Biochemical Oxygen Demand	ND	2.0	0.59	mg / l			
LCS Analyzed: 01/10/2005 (5A05054-BS1)							
Biochemical Oxygen Demand	208	100	30	$\mathrm{mg} / 1$	198	105	85-115

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pásadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 10 A 0131

Sampled: 01/04/05-01/05/05
Received: 01/04/05

METHOD BLANKIQC DATA

INORGANICS

Analyte Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 5A05054 Extracted: 01/05/05										
LCS Dup Analyzed: 01/10/2005 (5A05054-BSD1)										
Biochemical Oxygen Demand 200	100	30	mg / l	198		101	85-115	4	20	
Batch: 5A05058 Extracted:01/05/05										
Blank Analyzed: 01/05/2005 (5A05058-BLK1)										
Total Organic Carbon ND	1.0	0.56	mg / l							
LCS Analyzed: 01/05/2005 (5A05058-BS1)										
Total Organic Carbon 11.0	1.0	0.56	mg/	10.0		110	90-110			
Matrix Spike Analyzed: 01/05/2005 (5A05058-MS1)				Sour	ce: IOA0	113-06				
Total Organic Carbon 5.62	1.0	0.56	$\mathrm{mg} / 1$	5.00	ND	112	80-120			
Matrix Spike Dup Analyzed; 01/05/2005 (5A05058-MSD1)				Source: IOA0113-06						
Total Organic Carbon, 5.39	1.0	0.56	mg / l	$5: 00$	ND	108	80-120	4	20	
Batch: 5A05064 Extracted: 01/05/05										
Blank Analyzed: 01/05/2005 (5A05064-BLK1)										
Chromium VI 0.150	1.0	0.041	ugl							J
LCS Analyzed: 01/05/2005 (5A05064-BS1)										
Chromium VI 51.9	1.0	0.041	ug/l	50.0		104	90-110			
Matrix Spike Analyzed: 01/05/2005 (5A05064-MS1)				Sour	e: 1OA0	21-01				
Chromium VI 49.3	1.0	0.041	ug/	50.0	0.17	98	90-110			

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 1OA0131
Sampled: 01/04/05-01/05/05
Received: 01/04/05

METHOD BLANKIGC DATA

INORGANICS

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing	Project ID: Quarterly Outfall $011+13267$	
300 North Lake Avenue, Suite 1200		Sampled: $01 / 04 / 05-01 / 05 / 05$ Pasadena, CA 91101 Attention: Bronwyn Kelly

METHOD BLANKIQC DATA

INORGANICS

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$

Report Number: IOA0131

Sampled: 01/04/05-01/05/05
Received: 01/04/05

METHOD BLANKIQC DATA

INORGANICS

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$

Report Number: 1OA0131

Sampled: 01/04/05-01/05/05
Received: 01/04/05

METHOD BLANKIQC DATA

INORGANICS

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: 1OA0131

Sampled: 01/04/05-01/05/05
Received: 01/04/05

METHOD BLANKQC DATA

1,4-DIOXANE BY GC/MS (EPA 5030B/8260B)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	\%REC	\%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: P5A1103 Extracted: 01/11/05											
Blank Analyzed: 01/11/2005 (P5A1103-BLK1)											
1,4-Dioxane	ND	1.0	0.49	ug/							
Surrogate: Dibromofluoromethane	1.01			$u g /$	1.00		101	80-125			
LCS Analyzed: 01/11/2005 (P5A1103-BS1)											
1,4-Dioxane	10.2	1.0	0.49	ug/1	10.0		102	70-130			
Surrogate: Dibromofluoromethane	1.10			ug/	1.00		110	80-125			
LCS Dup Analyzed: 01/11/2005 (P5A1103-BSD1)											
1,4-Dioxane	10.5	1.0	0.49	ug/	10.0		105	70-130	3	20	
Surrogate: Dibromofluoromethane	1.04			ug $/$	1.00		104	80-125			
Matrix Spike Analyzed: 01/11/2005 (P5A1103-MS1)					Source: POA0025-09						
1,4-Dioxane	8.32	1.0	0.49	ug/	10.0	0.63	77	70-150			
Surrogate: Dibromofluoromethane	1.11			ug/	1.00		111	80-125			
Matrix Spike Dup Analyzed: 01/11/2005 (P5A1103-MSD1)					Source: POA0025-09						
1,4-Dioxane	8.31	1.0	0.49	ug/l	10.0	0.63	77	70-150	0	25	
Surrogate: Dibromofluoromethane	1.09			$u g /$	1.00		109	80-125			

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0131 \quad Received: 01/04/05

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
L2 Laboratory Control Sample recovery was below method control limits.
M2 The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
RL-1 Reporting limit raised due to sample matrix effects.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

ADDITIONAL COMMENTS

For TICs:

All identifications are tentative and concentrations are estimates based upon spectral comparison to the EPA/NIH library.
For 1,2-Diphenylhydrazine:
The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.

For GRO (C4-C12):

GRO (C4-C12) is quantitated against a gasoline standard. Quantitation begins immediately following the methanol peak.
For Extractable Fuel Hydrocarbons (EFH, DRO, ORO) :
Unless otherwise noted, Extractable Fuel Hydrocarbons (EFH, DRO, ORO) are quantitated against a Diesel Fuel Standard.

[^14]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$
Report Number: IOA0131
Sampled: 01/04/05-01/05/05
Received: 01/04/05

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	Nelac	California
EPA 120.1	Water	\mathbf{X}	\mathbf{X}
EPA 160.2	Water	\mathbf{X}	\mathbf{X}
EPA 160.5	Water	\mathbf{X}	\mathbf{X}
EPA 180.1	Water	\mathbf{X}	\mathbf{X}
EPA 200.7	Water	\mathbf{X}	\mathbf{X}
EPA 200.8	Water	\mathbf{X}	\mathbf{X}
EPA 218.6	Water	\mathbf{X}	\mathbf{X}
EPA 245.1	Water	\mathbf{X}	\mathbf{X}
EPA 300.0	Water	\mathbf{X}	\mathbf{X}
EPA 314.0	Water	\mathbf{X}	\mathbf{X}
EPA 330.5	Water	\mathbf{X}	\mathbf{X}
EPA 335.2	Water	\mathbf{X}	\mathbf{X}
EPA 350.2	Water	\mathbf{X}	\mathbf{X}
EPA 405.1	Water	\mathbf{X}	\mathbf{X}
EPA 413.1	Water	\mathbf{X}	\mathbf{X}
EPA 415.1	Water	\mathbf{X}	\mathbf{X}
EPA 418.1	Water	\mathbf{X}	\mathbf{X}
EPA 608	Water	\mathbf{X}	\mathbf{X}
EPA 624 (MOD.)	Water	\mathbf{X}	\mathbf{X}
EPA 624	Water	\mathbf{X}	\mathbf{X}
EPA 625	Water	\mathbf{X}	\mathbf{X}
EPA 8015 Mod.	Water	\mathbf{X}	\mathbf{X}
EPA 8015B	Water	\mathbf{X}	\mathbf{X}
EPA 8260B	Water	\mathbf{X}	\mathbf{X}
SM2540C	Water	\mathbf{X}	\mathbf{X}
SM5540-C	Water	\mathbf{X}	\mathbf{X}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Aquatic Testing Laboratories-SUB California Cert \#1775 4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chmic
Samples: 1OA0131-01
Analysis Performed: Bioassay-Acute 96 hr
Samples: IOA0131-01
Del Mar Analytical - Phoenix NELAC Cert \#01109CA, California Cert \#2446
9830 S. 51 st Street, Suite B-120 - Phoenix, AZ 85044
Method Performed: EPA 8260B
Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Quarterly Outfall $011+13267$

Report Number: IOA0131

Sampled: 01/04/05-01/05/05
Received: 01/04/05

Del Mar Analytical - Phoenix NELAC Cert \#01109CA, California Cert \#2446
9830 S. 51st Street, Suite B-120 - Phoenix, AZ 85044
Samples: IOA0131-01
Eberline Services - SUB
2030 Wright Avenue - Richmond, CA 94804
Analysis Performed: Gross Alpha Samples: IOA0131-01
Analysis Performed: Gross Beta Samples: IOA0131-01
Analysis Performed: Level 3 Data Package Samples: [OA0131-01
Analysis Performed: Strontium 90 Samples: IOA0131-01
Analysis Performed: Tritium Samples: IOA0131-01

Pace Analytical, MN- SUB

1700 Elm Street, Ste 200 - Minneapolis, MN 55414
Analysis Performed: 1613-Dioxin-HR
Samples: IOA0131-01
Analysis Performed: EDD + Level 4
Samples: 1OA0131-01
Truesdail Laboratories-SUB California Cert \#1237
14201 Franklin Avenue - Tustin, CA 92680
Analysis Performed, Hydrazine
Samples: 1OA0131-01
Analysis Performed: Level 4 Data Package
Samples: 1OA0131-01

Del Mar Analytical, Irvine

Michele Harper
Project Manager

$F A x$
 MWH

Date: 02n7/05

300 N. Lake Ave., Suite 1200
Pasedena, California 91101
Tel: 626.568-6691
Fax: 626-568-6515

From:

Subject:

Chain-of-Custody Form Apalytical Request Change

Nu. of Pagen: 2 (iacludiag cover)

Per Request:
Tlease make the changes listed below to the chain-ni-custody anulytical request form. Include this form with the inal deliverables for those sumples.

Del Mar Work Order	Sample ID	Dute Collected	Change(*) Requested, Not Completed	Change(s) mad Methond (a) Now Requested
1080988	Outall 003	02/11/105	Annuil Consituents per 2004 NPDES Pennit - Total Rcroverable Metals: Sb, $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{Hg}, \mathrm{H}, \mathrm{V}, \mathrm{AL},+\mathrm{PP}, \mathrm{TCDO}$ (and all congeners); Oil and Gresse (EPA 413.1), $\mathrm{Cl}, \mathrm{SO}, \mathrm{N}) 3+\mathrm{NO} 2-\mathrm{N}$, Perchlorate, TDS, TSS VOCs (624); VOCs, $A+A+2 C V E$, NPDES + PP. Pooticidericks PP, Gross Alpha. Gross Bela, Titium (906.0, St-90, Total Conbined Radium 2260228; SVOCs - PP, Acute toxicity, Cyanide.	Routine Constiments per 2004 NPDES Permit - Total Recoveruble Metals: $\mathrm{Sb}, \mathrm{Cd}, \mathrm{Cu}$. Pb, Hg, TCDD (and all congeners); Oil and Grease (FPA 413.1), TDS, TSS.
1031602	Outall 104	02/11/05	Annual Congduents per 2004 NPDES Pemit-Total Recovenuble Mesals: Sb, $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{Hg}, \mathrm{H}, \mathrm{V}, \mathrm{Al}, \mathrm{PP}, \mathrm{TCDD}$ (and all congeners); Oil und Orease (EPA 4131), $\mathrm{Cl}-\mathrm{SO} 4, \mathrm{~N} 3+\mathrm{NO} 2-\mathrm{N}$, Perchlorate, TDS, TSS VOCs (624); VOCs, $1+\mathrm{A}+2 \mathrm{CVE}$; NPDES +PR ; PesticidesfChs-PP; Gross Alpha, Gross Bcta, Tritium (906.0) $\mathrm{Sr}-90$, Total Combined Radium 226e228; SVOCs - PP, Ature toxicity, Cyanide.	Routinc Constizuenzs per 2004 NPDES Pemit - Total Recoveruble Metals: $\mathrm{Sb}, \mathrm{Cd}, \mathrm{Cu}$, Pb . He: TCDD (and all congeners); Oil and Grease (FPA 413.1); TDS, TSS.
10130990	Oundition	02/11/05	Amum Consmments pu 2004 NPOES Pemint - Total Recoverable Metals: Sb, $\left.\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{H}_{\mathrm{g}} \mathrm{B}, \mathrm{V}, \mathrm{Al},+\mathrm{PR}, \mathrm{TCD}\right)$ (and all congeners); Oi and Oreave (EPA 413.1 , $\mathrm{Cl}, \mathrm{SO}, \mathrm{N}) 3+\mathrm{NO} 2-\mathrm{N}$, Perchlorate; TDS, TSS VOCs (624); VOCS, $\Lambda+\Lambda+2 C$ VF; NRDES + PP; PesticidesfCBs-PP; Gross Alpha, Gross Beta Tritium (906.0), Sr-90, Total Combined Radium 226*228; SVOC: - I'I'; Acutc toxicity, Cyanide.	Routine Consaituents per 2004 NPDES Pemit - Total Recoverable Metals: $\mathrm{Sb}_{\mathbf{1}} \mathrm{Cd}, \mathrm{Cu}$, $\mathrm{Pb}, \mathrm{Hg}: \mathrm{rCDD}$ (and all congeners); Oil and Grease (EPA 413.1), TDS, TSS.

$10 \mathrm{H0992}$	Outfall 006	02/11/05	Annual Constituents por 2004 NPDES Permit - Total Recoverable Metals: Sb, $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}_{2} \mathrm{~Hz} \mathrm{~B}, \mathrm{~V}, \mathrm{~A},+\mathrm{Pf}, \mathrm{TCDD}$ (and all congeners); Oil and Grease (EPA 413.1); $\mathrm{Cl}, \mathrm{SO}, \mathrm{N}$) $3+\mathrm{NO2-N}$, Perchlorate; TDS, TSS VOCs (624); VOCs, A+A+2CVE; NPDES + PP; Pexticides/PCBs-PP; Groos Apha, Grow Bcta, Tritum (906.0), Sr 90 , Total Combined Radium 2268228: SVOCs - PP; Acute toxiciry Cyanide.	Routine Constituents per 2004 nPDES Permir - 'Tocal Recoveratie Metals: Sb. Cid, Cu. Pb, Hg TCDD (and all conyeners); Oil and Grease (EPA 413.1); TDS, Tss.
10B100x	Outfall 018	02/11/05	Annual Constiluents per 2004 NPDES Permit - Totel Recoverable Metals: Sb, $\mathrm{CH}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{HE} \mathrm{B}, \mathrm{V}, \mathrm{Al}, \mathrm{Pp}, \mathrm{TCDD}$ (and all congeners); Oil and Grease (EPA 413.1 , $\mathrm{Cl}, \mathrm{SO} 4, \mathrm{~N}) 3+\mathrm{NO} 2 \mathrm{~N}$. Perchlorate; TDS, TSS VOCs (624); VOCs, $\Lambda+A+2 C V E ;$ NFDES + PP; Peslicidea/PCRs-PP; Gross Alpha Gross Beta Trithum (906.0), St-90, Total Combined Radium 2268228: SVOX - PP. Acutc toxicity; Cyanide.	Routinc Constituents per 2004 NPDES Pemit - Tocal Recoverable Metals: $\mathrm{Sb}, \mathrm{Cd}, \mathrm{Cu}$. Pb, He TCDD (and all cangeners): Oil und Grase (EPA 413.1): TDS. TSS.
1081014	Outfall 011	02/11/04	Chromiun lV	
10A0131	Outall 011 -Composite	01/(14/05		Ammonia BOD, Chloride, Nitrate/Nitritc as N , Oil and Grease, Sulfate MBAS, TDS, isS, TOC, Sctiteable Solids, Turbidity, Cr. Cyanide. perchlorste, Conductivity, $\mathrm{Cu}, \mathrm{H}_{6}$, TCDD
IOA0121	Outfall 011 Grab	01/04/05		Total Recoverable Hydrocarbons, Extractable Fuel Hydrocarbons. GR(), Hhoride, Kesidual Chlorine, TOC, Cir VI, 1,4-Dioxane, Monomethyl Hydrazine. Bioassays, SVOC (625)-PP list, PesUPCBHPP list (608). Total Recoverible Metaly, Cyclohexane $\&$ Frion 123a \& $A+A+2 C V F$ (624), Rindichen

The reason for these chunges:
Incorrectly marked on COC form
t.ack of sumple voiuntiz

MHHi öjice personnd require this cinange

x

This Chunge Order supersedar ull previous change orders submizted.

February 25, 2005

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention: Bronwyn Kelly
Project: $\quad 13267$ (Study 1)
Outfall 011 Composite
Sampled: 1/4/05
Del Mar Analytical Number: IOA0131

Dear Ms. Kelly:
Aquatic Testing Laboratories performed the Fathead Minnow 96hr Percent Survival Bioassay by EPA Method 2000.0 and Ceriodaphnia Survival and Reproduction Test by EPA Method 1002, Eberline Services performed Gross Alpha/Gross Beta (EPA 900.0), Tritium (H-3, EPA 906.0), and Strontium-90 (Sr-90, EPA 905.0), Pace Analytical performed the TCDD analysis by USEPA Method 1613B, and Truesdail Laboratories performed the Hydrazines by EPA 8315 B for the project referenced above. Please use the following cross-reference table when reviewing your results.

MWH ID	DEL MAR ID	ATL ID	EBERLINE ID	PACE ID	TRUESDAIL
Outfall 011-Composite	IOA0131-01	A-05010507-001/002	R501013/8147-001	105773001	$938345-1$

Attached is the original report from the subcontract laboratory. If you have any questions or require further assistance, please do not hesitate to contact me.

Sincerely yours,
DEL MAR ANALYTICAL
Miculuettior
Project Manager

LABORATORY REPORT

Date:

Client:

January 12, 2005
Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Attn: Michele Harper

Aquatic Testing Q
Laboratories
"dedicated to providing quality aquatic toxicity testing "
4350 Transport Street, Unit 107.
Ventura, CA 93003
(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.: A-05010507-001/002
Sample I.D.: IOA0131-01

Sample Control: The sample was received by ATL chilled, with the chain of custody record attached.
Date Sampled: 01/05/05
Date Received: 01/05/05
Date Tested: $\quad 01 / 05 / 05$ to $01 / 11 / 05$

Sample Analysis: The following analyses were performed on your sample:
Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0), Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

Result Summary:

Acute:	$\frac{\text { Survival }}{100 \%}$	$\frac{\text { TUa }}{0.0}$
Fathead Minnow:		
Chronic:	$\frac{\text { NOEC }}{100 \%}$	$\frac{\text { TUe }}{1.0}$
\quad Ceriodaphnia Survival:	100%	1.0

Quality Control: Reviewed and approved by:

FATHEAD MINNOW PERCENT SURVIVAL TEST

Lab No.: A-05010507-001
Client/ID: Del Mar - IOA0131-01

TEST SUMMARY
Species: Pimephales promelas.
Age: // (1-14) days.
Regulations: NPDES.
Test solution volume: $\mathbf{2 5 0} \mathbf{~ m l}$.
Feeding: prior to renewal at 48 hrs.
Number of replicates: 2.
Dilution water: Moderately hard reconstituted water.
Photoperiod: $16 / 8$ hrs light/dark.

Start Date: 01/05/2005

Source: In-laboratory Culture. Test type: Static-Renewal.
Test Protocol: EPA-821-R-02-012.
Endpoints: Percent Survival at 96 hrs.
Test chamber: 600 ml beakers.
Temperature: $20+/-1^{\circ} \mathrm{C}$.
Number of fish per chamber: 10.
QA/QC Batch No.: RT-050104.

TEST DATA

Comments:
Sample as received: Chlorine: $0 \mathrm{mg} / \mathrm{pH}: 70$; Conductivity: 93 umho; Temp: $6^{\circ} \mathrm{C}$; DO: $10.4 \mathrm{mg} /$; Alkalinity: $20 \mathrm{mg} / \mathrm{l}$; Hardness: $27 \mathrm{mg} / \mathrm{NH}, \mathrm{N}: 64 \mathrm{mg} / \mathrm{l}$.
Sample aerated moderately (approx. $500 \mathrm{ml} / \mathrm{min}$) to raise or lower DO? Yes $/$ © NO.
Control: Alkalinity: $58 \mathrm{mg} / \mathrm{l}$; Hardness: $9 \mathrm{C} \mathrm{mg} / \mathrm{l}$; Conductivity: 300 umho.
Test solution aerated (not to exceed 100 bubbles $/ \mathrm{min}$) to maintain DO $>4.0 \mathrm{mg} / 1$ Yes $/ \mathrm{No}$.
Sample used for renewal is the original sample kept at $0-6^{\circ} \mathrm{C}$ with minimal headspace.

RESULTS
Percent Survival In: Control: \qquad $\% \quad 100 \%$ Sample: \qquad $\%$

CERIODAPHNIA CHRONIC BIOASSAY
 EPA METHOD 1002.0

Lab No.: A-05010507-002
Client/ID: Del Mar IOA0131-01

Date Tested: 01/05/05 to 01/11/05

TEST SUMMARY

Endpoints: Survival and Reproduction.
Source: In-laboratory culture.
Food: . 1 ml YTC, algae per day.
Test solution volume: 15 ml .
Number of replicates: 10.
Photoperiod: $16 / 8$ hrs. light/dark cycle.
Test duration: 7 days.
Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Survival	Mean Number of Young Per Female
Control	100%	25.5
6.25%	100%	22.3
12.5%	100%	21.8
25%	100%	21.0
50%	100%	22.9
100%	100%	24.3
* Statistically significantly less than control at $P=0.05$ level.		
Reproduction data from concentrations greater than survival excluded from statistical analysis.		

CHRONIC TOXICITY

Parameter	Survival	Growth
NOEC	100%	100%
TUc	1.0	1.0

QA/QC TEST ACCEPTABILITY

$\left.\begin{array}{|c|c|}\hline \text { Parameter } & \text { Result } \\ \hline \text { Control survival } 280 \% & \text { Pass (100\% survival) } \\ \hline 215 \text { young per surviving control female } & \text { Pass (25.5 young) } \\ \hline 260 \% \text { surviving controls had } 3 \text { broods } & \text { Pass (} 90 \% \text { with } 3 \text { broods) } \\ \hline \text { PMSD }<47 \% \text { for reproduction; if }>47 \% \text { and no toxicity } \\ \text { at IWC, the test must be repeated }\end{array}\right]$ Pass (PMSD $=28.1 \%$)

SUBCONTRACT ORDER - PROJECT \# IOA0131

SENDING LABORATORY: Del Mar Analytical, Irvine 17461 Derian Avenue. Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 261-1228 Project Manager: Michele Harper	RECEIVING LABORATORY: Aquatic Testing Laboratories-SUB 4350 Transport Street, Unit 107 Ventura, CA 93003 Phone :(805) 650-0546 Fax: (805) 650-0756
Standard TAT is requested unless specific due date is requester	\Rightarrow Due Date:
Analysis Expiration	Comments
Sample ID: 1OA0131-01 Water Sampled: 01/05/05 11:30 Bioassay-7 dy Chrmic $01 / 06 / 05 ~ 23: 30$ Bioassay-Acute 96hr $01 / 06 / 0523: 30$	Instant Nofication ceriodaphnia fathead minnow
$\begin{aligned} & \text { Containers Supplied: } \\ & 1 \text { gal Poly (IOA0131-01Y) } \\ & \text { I gal Poly (IOA0131-01Z) } \\ & \hline \end{aligned}$	*

EBERLINE

February 14, 2005

Ms. Michele Harper
Project Manager
Del Mar Analytical
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Reference: Del Mar Analytical Project No. IOA0131
Eberline Services NELAP Cert \#01120CA (exp. 01/31/06)
Eberline Services Report R501013-8147
Dear Ms. Harper:
Enclosed are results from the analyses of one water sample received at Eberline Services on January 6,2005. The sample was analyzed according to the accompanying Del Mar Analytical Subcontract Order Form. The requested analyses were gross alpha/gross beta (EPA900.0), tritium (H-3, EPA906.0), and strontium-90 (Sr-90, EPA905.0). The QC LCS, blank analyses, sample duplicates, and matrix spike results for the analyses were within the limits defined in Eberline Services Quality Control Procedures Manual. Analyses that involve the yielding of an analytical tracer or carrier, such as $\mathrm{Sr}-90$, do not require matrix spike analyses to be performed.

Please call me if you have any questions concerning this report.
Regards,

Melissa Mannion
Senior Program Manager

MCM/njv
Encloware: Report
Subcontract Form
Receipt checklist
Invoice

Eberline Services

ANALYSIS RESULTS

SDG 8147	Client OEL MAR ANAL	
Work Order R501013-01	Contract PROJECT \# LOA0131	,
Received Date 01/06/05	Matrix MATER	

Client	Lab						
Sample 10	Sample 10	Collected	Analyzed	Nuclide	Results ± 20	Units	MDA
10A0131-01	8147-001	01/05/05	01/22/05	GrossAlpha	-0.671 ± 1.0	pCi/L	1.99
			01/22/05	Gross Beta	2.37 ± 1.2	PCi/L	1.80
			01/26/05	H3	-125 ± 170	PCi/L	300
			01/14/05	Sr90	0.002 ± 0.22	$\mathrm{pCi} / \mathrm{L}$	0.446

Eberline Services

QC RESULTS

	client pel mar anal Contract PROJECT \# IOAO131 Matrix Hater

Certified by
Certified by \qquad Report Date $02 / 13 / 05$ Page 2

17451 Derimin Ave. Scte t00, invine, CA 92514 1014 E Cooviny Dtw, Sune A. Covon, CA gexed

Fwx (948) 281-2228 Fixaf(90) 570-4066 fax (619) 505-96en fax f400) 7a5-0081

SUBCONTRACT ORDER - PROJECT \# IOA0131

SENDING LABORATORY:	RECEIVING LABBORATORY: Del Mar Analytical, Irvine 17461 Derian Avenue. Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 261-1228 Project Manager: Michele Harper

Standard TAT is requested unless specific due date is requested m Due Date: \qquad Initials: \qquad
Analysis:
Expiration

Comments

Sample ID: 10A0131-01 W	Water	Sampled; 01/05/65 11:30	Instant Nofication
Gross Alpha-O		01/05/06 11:30	900.0, IF RESULT $>15 \mathrm{pCl} / \mathrm{L}$, run Radium 226 \& 228
Gross Beta-O		01/05/06 11:30	900.0, IF RESULT $>15 \mathrm{pCi} / \mathrm{L}$, run Radium 226 \& 228
Level Pata Package - Out		02/02/05 11:30	**LEVELIV QC, ACCESS 7 EDD**
Radium, Combined-O		01/05/06 11:30	HOLD for Gross Alpha/Beta result;EPA 903.1 \& 904.0
Strontium 90-0		01/05/06 11:30	905.0
Tritum-O		01/05/06 11:30	906

Containers Supplied:

1 gal Poly (IOAO131-01 X)

EEEFLINE

RICHMOND, CA LABORATORY

SAMPLE RELEITT CHECXLST

Customer Sampie
No.
Alpina Merar Ser. Na . Chamber Ser. Na.
Beta/Garnma Merar Ser. Na .

Method 1613B Analysis Results

Client - Del Mar Analytical

REPORT OF LABORATORY ANALYSIS

Method 1613B Blank Analysis Results

Client - Del Mar Analytical

REPORT OF LABORATORY ANALYSIS

Method 1613B Laboratory Control Spike Results

Client - Del Mar Analytical

REPORT OF LABORATORY ANALYSIS

Method 1613B Laboratory Control Spike Results

Client - Del Mar Analytical

Lab Sample ID
Filename
Total Amount Extracted
ICAL Date
CCal Filename
Method Blank ID

LCSD-6204 F50127A_04 1000 mL 11/29/2004 F50127A 02 BLANK-6202

Matrix	Water		
Dilution	NA		
Extracted	$01 / 24 / 2005$		
Analyzed	$01 / 27 / 2005$	$12: 32$	
Injected By	MRO		

$\mathrm{Cs}=$ Concentration Spiked ($\mathrm{ng} / \mathrm{mL}$)
$\mathrm{Cr}=$ Concentration Recovered ($\mathrm{ng} / \mathrm{mL}$)
Rec. $=$ Recovery (Expressed as Percent)
Control Limit Reference: Method 1613, Table 6, $10 / 94$ Revision
X = Background subtracted value
$P=$ Recovery outside of control limits
$\mathrm{Nn}=$ Value obtained from additional analysis
Report No..... 105645

* $=$ See Discussion

REPORT OF LABORATORY ANALYSIS

Client \qquad Del Mar Analytical

SPIKE 1 ID...........................LCS-6203			
SPIKE 1 Filename................... F50127A_03			
SPIKE 2 ID............................LCSD-6204			
SPIKE 2 Filename................... F50127A_04			
	SPIKE 1 mwo 0	SPIKE 2	
COMPOUND	REC,\%	REC,\%	RPD,\%
2378-TCDF	102	99	3.0
2378-TCDD	90	88	2.2
12378-PeCDF	100	100	0.0
23478-PeCDF	97	95	2.1
12378-PeCDD	87	83	4.7
123478-HxCDF	90	93	3.3
123678-HxCDF	96	88	8.7
$234678-\mathrm{HxCDF}$	97	94	3.1
123789-HxCDF	93	90	3.3
123478-HxCDD	100	93	7.3
123678-HxCDD	103	98	5.0
123789-HxCDD	97	93	4.2
1234678-HpCDF	103	97	6.0
1234789-HpCDF	105	100	4.9
1234678-HpCDD	87	85	2.3
OCDF	90	85	5.7
OCDD	97	92	5.3

REC $=$ Percent Recovered
RPD $=$ The difference between the two values divided by the average.
NA $=$ Not Applicable
Report No..... 105645

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full. without the written consent of Pace Analytical Services, Inc.

TABLE 1. 2,3,7,8-TCDD Equivalency Factors (TEFs) for the Polychlorinated Dibenzo-p-dioxins and Dibenzofurans

Number	Compound(s)	TEF
1	2,3,7,8-TCDD	1.00
2	1,2,3,7,8-PeCDD	0.50
3	1,2,3,6,7,8-HxCDD	0.1
4	1,2,3,7,8,9-HxCDD	0.1
5	1,2,3,4,7,8-HxCDD	0.1
6	1,2,3,4,6,7,8-HpCDD	0.01
7	OCDD	0.001
8	* Total - TCDD	0.0
9	* Total - PeCDD	0.0
10	* Total - HxCDD	0.0
11	* Total - HpCDD	0.0
12	2,3,7,8-TCDF	0.10
13	1,2,3,7,8-PeCDF	0.05
14	2,3,4,7,8-PeCDF	0.5
15	1,2,3,6,7,8-HxCDF	0.1
16	1,2,3,7,8,9-HxCDF	0.1
17	1,2,3,4,7,8-HxCDF	0.1
18	2,3,4,6,7,8-HxCDF	0.1
19	1,2,3,4,6,7,8-HpCDF	0.01
20	1,2,3,4,7,8,9-HpCDF	0.01
21	OCDF	0.001
22	* Total - TCDF	0.0
23	* Total - PeCDF	0.0
24	* Total - HxCDF	0.0
25	* Total - HpCDF	0.0

*Excluding the 2,3,7,8-substituted congeners.
Reference: 1989 ITEFs

| SENDING LABORATORY： |
| :--- | :--- |
| Del Mar Analytical，Irvine |
| RECEIVING LABORATORY： |
| 17461 Derian Avenue．Suite 100 |
| Irvine，CA 92614 |
| Phone：（949）261－1022 |
| Fax：（949）261－1228 |
| Project Manager．Michele Harper |\quad| Race Analytical，MN N SUB
 1700 Elm Street，Ste 200
 Minneapolis，MN 55414
 Phone ：（612）607－1700
 Fax：（612）607－6444 |
| :--- |

Standard TAT is requested unless specific due date is requested \Rightarrow Due Date： \qquad Initials： \qquad

Analysis	Expiration	Comments	
Sample ID：1OA0131－01	Water	Sampled：01／05／05 11：30	Instant Nofication
1613－Dioxin－HR	$01 / 12 / 0511: 30$	J flags，17 congeners，no TEQ，sub to Pace－MN	
EDD＋Level 4	$02 / 02 / 0511: 30$	Excel EDD email to pm，Include Std logs for LvI IV	

Containers Supplied：

1 L Amber（IOA0131－01G）
1 L Amber（IOA0131－01H）

Truesdail Laboratories, Inc.

January 12, 2005

Client:	Del Mar Analytical
	17461 Derian Avenue, Suite 100
	Irvine, CA 92614
Attention:	Michele Harper

Project Name: $10 A 0131 \quad$ Truesdail Project: 938345
Date Received: 01/05/05
Sample Matrix: Water/1
Samples Cross-reference

Truestail ID	Client ID	Date Sampled	Time Sampled	Analusis Requested
$938345-1$	IOA0131-01	$01 / 05 / 05$	1130	Hydrazines by EPA 8315M

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Client: Del Mar Analytical
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Attention: Michele Harper

$\begin{array}{ll}\text { Project Name: } & \text { 10A0131 } \\ \text { Date Received: } & 01 / 05 / 05\end{array}$

Truesdail Project:
938345
Sample Matrix: Water/1

Case Narrative

Sample Receipt The sample was received in good condition and no anomalies were noted during check-in. The sample was kept in a locked refrigerator until analysis. Thereafter, it is being kept in ambient storage for an additional 2 months before disposal.

Analysis The analysis was perfomed as requested on the chain-of-custody.
Quality Control The analytical results for each batch of samples performed include a minimum of one set of laboratory control sample/laboratory control sample duplicate (LCS/LCSD), one matrix spike (MS) and a reagent blank (Method blank). Any exceptions or problems would be noted in the "comments" section.

> Comments The test results in this report meet all quality assurance requirements set forth by the method specification and all quality control recoveries were within the laboratory acceptance limits. No anomalies or nonconformance events occurred during the course of analysis.

Quality Control/Quality Assurance Officer

Truesdail Laboratories, Inc.
INOEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIAONMENTAL ANALYSES

Del Mar Analytical- Alt.
 17461 Derian Ave.
 Irvine, CA 92614
 Michele Harper
 Liquid / 1 Sample
 IOA0131
 8315 (Modified)
 Hydrazines in Liquid
 Client:
 Attention:
 Sample: Project Name: P.O. Number: Method Number: Investigation:

PQL: Practical Quantitation Limit, ug/L
ND: Not Detected
N/A: Not Applicable
Note: Results based on detector \#1 (UV=365nm) data.
Truesdail Laboratories, Inc.
INOEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Client: Del Mar Analytical- Alt.

REPORT

17461 Derian Ave.
Irvine, CA 92614
Client Contact: Michele Harper
Client Contact:
Sample:
Sample ID:
P.O. Number:
Method Number:
Run Batch No.:
Investigation:
Quality Control/Quallty Assurance Calibration Report

| QCS | Theoretical
 Value (ug/L) | Measured
 Value (ug/L) | \%
 Rec. | Control
 Limits | Flag |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Monomethyl Hydrazine | 50.0 | 50.9 | 102 | $85-115$ | PASS |
| U-Dimethyl Hydrazine | 50.0 | 52.1 | 104 | $85-115$ | PASS |
| Hydrazine | 10.0 | 11.0 | 110 | $85-115$ | PASS |

Quality Control/Quality Assurance Spikes Report

Parameter	Theoretical Value (ugh)	Measured Value (ugh)	$\begin{gathered} \% \\ \text { Roc. } \end{gathered}$	Control Limits	Flag
Monomethyl Hydrazine	25.0	24.9	99.8	85-115	PASS
u-Dimethyt Hydrazine	25.0	26.3	105	85-115	PASS
Hydrazine	5.0	5.08	102	85-115	PASS

Parameter	Spiked Conc. ugh	Recovered Concentration			PercentRecovery (\%)		$\begin{gathered} \text { LCSI } \\ \text { LCsD } \end{gathered}$	Flag	Control Limits		Splked Conc. ugh	Recovered Concentration			PorcentRecovery (\%)		$\begin{aligned} & \text { MSI } \\ & \text { MsD } \\ & \text { \% D } \\ & \hline \end{aligned}$	Flag	AccuracyControl Limitts	
		Lcs	LCSD	MB	LCS	LCSD			\%D	\% Rec.		MS	MSD	Sampl	MS	Misd			\%D	\% Rec.
Monomethyl Hydrazin	50.0	55.3	55.5	0.0	111	111	0.49\%	PASS	20	70-130	50.0	39.8	39.9	0.0	79.6	79.8	0.17\%	PASS	20	0-150
u-Dimethyl Hydrazine	50.0	54.1	54.2	0.0	108	108	0.11\%	PASS	20	70-130	50.0	49.1	49.4	0.0	98.3	98.7	0.45\%	PASS	20	0-150
Hydrazine	10.0	12.4	12.2	0.0	124	122	1.0\%	PASS	20	70-130	10.0	10.4	10.6	0.0	104	106	1.45\%	PASS	20	0-150

[^15]

SUBCONTRACT ORDER - PROJECT \# IOA0131

SENDING LABORATORY:	RECEIVING LABORATORY:
Del Mar Analytical, Irvine	Truesdail Laboratories-SUB
17461 Derian Avenue. Suite 100	14201 Franklin Avenue
Irvine, CA 92614	Tustin, CA 92680
Phone: (949) 261-1022	Phone :(714) 730-6239
Fax: (949) 261-1228	Fax: (714) 730-6462
Project Manager: Michele Harper	

Standard TAT is requested unless specific due date is requested \Rightarrow Dne Date: Initials: \qquad

	Analysis	Expiration	Comments
	Sample ID: 1OA0131-01	Water Sampled: 01/05/05 11:30	Instant Nofication
	Hydrazine-OUT	01/08/05 11:30	please sub to Truesdail for Monomethylhydrazine
	Level 4 Data Package	02/02/05 11:30	
	Containers Supplied: 1 L Amber (IOA0131-01T)		

$\begin{array}{cr}\text { Rec'd } & 01 / 05 / 05 \\ \text { s1469 } 38345\end{array}$

Truesdail Laboratories, Inc.

Sample Integrity \& Analysis Discrepancy Form

Client:

Lab\# 938345 Date Delivered: Of OS 05 Time: 13.15 By: sMall ם afield Service Client

1. Was a Chain of Custody received and signed?
2. Does Customer require an acknowledgement of the COC?
3. Are there any special requirements or notes on the COC?
4. If a letter was sent with the COC, does it match the COC?
5. Were all requested analyses understood and acceptable?
6. Were samples received in a chilled condition?

Temperature (if yes)? $\boldsymbol{q}^{\circ} \mathrm{C}$
7. Were samples received intact
(i.e. broken bottles, leaks, air bubbles, etc..)?

10. Did sample labels correspond with the client ID's?
11. Did sample labels indicate proper preservation? Preserved (if yes) by: aTruesdall Client
12. Were samples pH checked? $\mathrm{pH}=$ \qquad
13. Were all analyses within holding time at time of receipt? If not, notify the Project Manager.
14. Have Project due dates been checked and accepted? Turn Around Time (TAT): ם RUSH ad Std
dYes a no antA
aYes an IN/A
ayes a No \square N/ RA
aYes a No ם \quad NRA dYes a No $\square N / A$ ares ono -NRA Wiles ONo DN/A aYes an \quad - N / A dYes ONo DN/A ם Yes ם No DN/A aYes a No \quad (NRA aYes an dNA dYes an DN/A dyes ono antA
15. Sample Matrix: Liquid $\square D r i n k i n g$ Water $\square G r o u n d$ Water \square Waste Water sludge asoil sWipe aPaint asolid other WafeR
16. Comments: \qquad
17. Sample Check-In completed by Truesdail Log-In/Receiving: \qquad

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
\quad Laboratory Pace
Reviewer K. Shadowlight
Analysis/Method Dioxins

Package ID T711DF22
Task Order 313150010
SDG No. Multiple
No. of Analyses 9
Date: February 18, 2005
Revigwer's Signature

ACTION ITEMS

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, e.g.,
Holding Times
GCMS Tune/Inst. Performance
Calibration
Method blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and
Quantitation
Systen Performance

${ }^{2}$ Subcontracted analytical latoratory is not meeting contract and/or method requirements.

- Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

amec ${ }^{0}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: DIOXINS/FURANS SAMPLE DELIVERY GROUPS: Multiple SDGs

Prepared by

AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: B. McIlvaine
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 9
No. of Reanalyses/Dilutions: 0
Reviewer: K Shadowlight
Date of Review: February 18, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample Identification

Client ID	Laboratory ID (Del Mar)	Laboratory ID (Pace)	Matrix	COC Method
Outfall 001	IOA0551-01	106124001	water	1613
Outfall 002	IOA0550-01	106130001	water	1613
Outfall 007	IOA0556-01	106128001	water	1613
Outfall 008	IOA0553-01	106126001	water	1613
Outfall 009	IOA0554-01	106131001	water	1613
Outfall 010	IOA0555-01	106127001	water	1613
Outfall 011	IOA0549-01	106132001	water	1613
Outfall 011	IOA0567-01	106135001	water	1613
Outfall 018	IOA0552-01	106125001	water	1613

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at Del Mar Analytical within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. The samples were subcontracted to Pace Analytical for the dioxin/furan analyses. The samples in these SDGs were received at Pace Analytical Services within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The samples were received in good condition at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COCs and transfer COCs were signed by the appropriate field and laboratory personnel. The samples and analyses were accounted for on both the original COCs and transfer COCs. As the samples were couriered directly to the laboratory (Del Mar Analytical), custody seals were not required. There was no information regarding custody seals upon receipt at Pace. No qualifications were required.

2.1.3 Holding Times

The samples were extracted and analyzed within a year of collection. No qualifications were required.

2.2 INSTRUMENT PERFORMANCE

Following are findings associated with instrument performance:

2.2.1 GC Column Performance

A column performance standard was combined with the daily calibration verification and analyzed at the beginning of each analytical sequence. The GC column performance was acceptable with the chromatographic separation of $2,3,7,8$-TCDD and other TCDD isomers resolved with a valley of $\leq 25 \%$. No qualifications were required.

2.2.2 Mass Spectrometer Performance

The mass spectrometer performance could not be evaluated as the laboratory did not provide selected ion current profiles for the lock-mass ions. No qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2.3 CALIBRATION

2.3.1 Initial Calibration

There was one initial calibration, analyzed 11/29/04 on Instrument 10MSHR05. The calibration consisted of five concentration level standards (CS1 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with $\%$ RSDs $\leq 20 \%$ for the 15 native compounds (calibration by isotope dilution) and $\leq 35 \%$ for the 2 native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.3.2 Continuing Calibration

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VER was acceptable with the concentrations within the acceptance criteria listed in the Table 6 of the EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.4 BLANKS

One method blank (Blank-6220) was extracted and analyzed with the samples in these SDGs. Target compounds total HpCDF, $1,2,3,4,6,7,8-\mathrm{HpCDF}$, total $\mathrm{HpCDF}, \mathrm{OCDF}$, and OCDD were reported in the method blank. Any detects for the aforementioned target compounds reported at concentrations $<5 \times$ the concentrations reported in the method blank were qualified as estimated nondetects "UJ," at the levels of interference in the samples of these SDGs, A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No further qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One LCS/LCSD pair (LCS-6221/LCSD-6222) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of the Method 1613. There are no method QC limits established for RPDs. The reported RPDs were within $\pm 20 \%$. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy and precision was based on the LCS/LCSD results. No qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	Multiple

2.7 FIELD QC SAMPLES

Following are findings associated with field QC:

2.7.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.7.2 Field Duplicates

No field duplicate samples were identified for these SDGs.

2.8 INTERNAL STANDARDS

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

2.9 COMPOUND IDENTIFICATION

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the lower method calibration limit (MCL) were qualified as estimated, "J." Any reported EMPC was qualified as an estimated nondetect, "UJ." No further qualifications were required.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental

550 South Wadsworth Boulevard

Suite 500
Lakewood, CO 80226
Laboratory Truesdail
Reviewer P. Meeks
Analysis/Method Metals

Package ID T711HZ4
Task Order 313150010
SDG No. IOA0549
No. of Analyses 1

Date: 03/09/05
Requever's Signature

ACTION ITEMS

1. Case Narrative Deficiencies
2. Out of Scope Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy Deliverables
6. Deviations from

Analysis Protocol, e.g.,
Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification and Quantitation
System Performance \square

$a m e c^{\circ}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: HYDRAZINES
SAMPLE DELIVERY GROUP: IOA0549

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:	NPDES
	SDG No.:	IOA0549
DATA VALIDATION REPORT	Analysis:	Hydrazines

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: IOA0549
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Hydrazines
QC Level: Level IV
No. of Samples: 1
Reviewer: P. Meeks
Date of Review: March 09, 2005

The samples listed in Table 1 were validated based on the general guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (2/94), and USEPA SW-846 Method 8315. Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOA0549
Hydrazines		

Table 1. Sample identification

EPA ID	Del Mar ID	Laboratory ID	Matrix	COC Method
Outfall 011 Grab	1OA0549-01	938566	water	Hydrazines by 8315

	Project:	NPDES
DATA VALIDATION REPORT	SDG No:	IOA0549
Hyalysis:		
Hydrazines		

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at Del Mar Analytical and the subcontract laboratory, Truesdail Laboratories, within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The analysis did not require preservation, and no preservation was noted in the field. The case narratives for this SDG noted that the sample was received intact at both laboratories. No qualifications were required.

2.1.2 Chain of Custody

The COC from the field to Del Mar was signed and dated by field and laboratory personnel, and the transfer COC from Del Mar to Truesdail Laboratories was signed and dated by personnel from both laboratories. Both the original COC and transfer COCs requested only monomethyl hydrazine analysis; however, unsymmetrical dimethyl hydrazine and hydrazine were also reported. As the sample was transported to Del Mar and then to Truesdail by courier, no custody seals were required. Truesdail Laboratories did not list the Outfall 011 ID on the Form I; therefore, the reviewer hand-corrected the Form I to include this information. No qualifications were required.

2.1.3 Holding Times

The holding time was assessed by comparing the date of collection with the date of analysis. The three-day extraction holding time for the hydrazine analysis was met and the sample was analyzed within three days of extraction. No qualifications were required.

2.2 CALIBRATION

The five-point initial calibrations were analyzed $01 / 13 / 05$, with correlation coefficients of ≥ 0.995 for the hydrazines. The ICV and CCV bracketing the sample analyses had recoveries for the hydrazines within the QC limits of $85-115 \%$. No qualifications were required.

2.3 BLANKS

One method blank was analyzed with this SDG. The results reported on the method blank summary form and in the raw data for the instrument and method blank analyses associated with the samples were nondetects at the reporting limit. No qualifications were required.

	Project:	NPDES
DATA V.ALIDATION REPORT	SDG No.:	IOA0549
Hydrazines		

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One laboratory control sample/laboratory control sample duplicate was analyzed with this SDG. The hydrazines were recovered within the laboratory-established control limits of $70 \%-130 \%$, and the RPD was within the control limit of $\leq 20 \%$. No qualifications were required.

2.5 SURROGATES RECOVERY

Surrogates were not utilized in this analysis. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MSD/MSD analyses were performed on the Outfall 011. The recoveries for the hydrazines were within the laboratory QC limits of $0-150 \%$; however, both recoveries were $\geq 10 \%$. The RPDs were within the QC limit of $\leq 20 \%$. No qualifications were required.

2.7 FIELD QCSAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

2.7. Field Blanks and Equipment Rinsates

The site sample in this SDG had no associated field QC. No qualifications were required.

2.7.2 Field Duplicates

There were no field duplicate samples in this SDG.

2.8 COMPOUND IDENTIFICATION

The sample was analyzed by HPLC for monomethyl hydrazine, unsymmetrical dimethyl hydrazine, and hydrazine by Method 8315. Compound identification was verified, and review of the raw data indicated no compound identification errors. No qualifications were required.

2.9 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification was verified from the raw data. at a Level IV data validation by recalculating LCS/LCSD and MS/MSD detects, as there were no sample detects. No compound quantitation problems were noted. The hydrazine reporting limits were supported by the lower levels of the initial calibration. No qualifications were required.
Truesdail Laboratories, Inc.
independent testing. forensic Science, and environmental Analyses

Client: Del Mar Analytical. Alt.
 17461 Derian Ave. Irvine, CA 92614

January 14, 2005

 January 12, 2005
January 13, 2005
号
9
REPORT

 oublicitv matter without orior written authorization from these laboratories.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer P. Meeks
Analysis/Method Metals

ACTION TIEMS:
 1. Case Narrative
 Deficiencies

2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy Deliverables
5. Incorrect Hardcopy Deliverables
6. Deviations from Analysis Protocol, e.g.,

Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification
and Quantitation
System Performance

Package ID T711MT40
Task Order 313150010
SDG No. IOA0549, IOA0552
No. of Analyses 2
Date: 03/10/05
Rexieyer's Bignature
P. 10 ens

ACIION TIEMS'	
1.	Case Narrative
Deficiencies	

amec ${ }^{\circ}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: METALS

Prepared by
AMEC-Denver Operations 550 South Wadsworth Boulevard, Suite 500

Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOA0549, IOA0552
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Metals
QC Level: Level IV
No. of Samples: 2
No. of Reanalyses/Dilutions: 0
Reviewer: P. Meeks
Date of Review: March 10, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, SW-846 Method 6010B for Inductively Coupled Plasma , SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form 1 as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOA0549, 0552

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	COC Method
Outfall 011 Grab	Outfall 011 Grab	IOA0549-01	water	ILM04
Outfall 018	Outfall 018	IOA0552-01	water	ILM04

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:IOA0549, \quad Analysis:	MET

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$. No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

2.1.2 Chain of Custody

The COCs were signed and dated by field and laboratory personnel. The COC for Outfall 011 Grab requested only a few of the presented analytes. The remaining analytes were requested in a memo from MWH personnel dated 03/01/05. The COC for Outfall 018 accounted for the sample and the analytes reported. No sample qualifications were required.

2.1.3 Holding Times

The dates of collection recorded on the COCs and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS and ICP metals and 28 days for mercury. No qualifications were required.

2.2 ICP-MS TUNING

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. All \%RSDs were less than 5%. The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

2.3 CALIBRATION

The ICV and CCV results showed acceptable recoveries, $90-110 \%$ for ICP and ICP/MS and $80-$ 120% for mercury. The beryllium and nickel reporting limit check standard recoveries were above the control limit; therefore, beryllium and nickel detected in Outfall 011 Grab were qualified as estimated, "J." Thallium and antimony were not recovered in the 0.1 and 0.2 ppb reporting limit check standards, respectively; therefore, nondetected antimony in Outfall 011 Grab was qualified as estimated, "UJ," and thallium detected in Outfall 011 Grab was qualified as estimated, "J." The remaining reporting limit

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.: \quad IOA0549, 0552	

check standards were recovered within the AMEC control limits of $70-130 \%$. No further sample qualifications were required.

2.4 BLANKS

There were detects reported for the method blanks and bracketing ICBs/CCBs associated with the samples in these SDGs. Selenium and silver were detected in bracketing CCBs at 0.672 and $0.102 \mu \mathrm{~g} / \mathrm{L}$, respectively; therefore, selenium and silver detected in Outfall 011 Grab were qualified as estimated, "UJ." Chromium was detected in the method blank (5A14051-BLK1) at $0.434 \mu \mathrm{~g} / \mathrm{L}$; therefore, chromium detected in Outfall 011 Grab was qualified as estimated, "UJ."

Antimony was detected in both bracketing CCBs at approximately $0.800 \mu \mathrm{~g} / \mathrm{L}$. The CCB detects combined with the laboratory's inability to recover antimony in the 0.2 ppb reporting limit check standard indicated the laboratory could not detect antimony at the level reported in the CCBs. The reviewer, therefore, raised the MDL for antimony to the level reported in the CCBs, $0.80 \mu \mathrm{~g} / \mathrm{L}$. No further qualifications were required due to the method and calibration blank results.

2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)

ICSA and ICSAB analyses were included in the raw data for the ICP boron analysis, but were not run on the day Outfall 011 Grab was analyzed. The recoveries for the interferents and boron were within the control limits of $80-120 \%$.

ICSA and ICSAB analyses were included in the raw data for three of the four ICP-MS analytical runs. Results were not provided for spiked interferents sulfur, phosphorus, carbon, and chloride and lead was not spiked into the ICSAB solution. The results for potassium were above the calibration range of the instrument in all of the ICSA and ICSAB analyses and the results for sodium were above the calibration range in one of the ICSA/ICSAB pairs. Positive results, greater than the applicable reporting limits were reported for manganese and cobalt. The validator reviewed the raw data for the site sample ICP/MS analysis for the level of reported interferents, $\mathrm{Al}, \mathrm{Ca}, \mathrm{Fe}$, and Mg , and determined that the level of reported interferents were not high enough to cause matrix affects. No assessment could be made with respect to possible interference from sulfur, phosphorus, carbon, and chloride. No qualifications were required.

2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The ICP/MS LCS samples were identified as 5A14051-BS1 and 5A12054-BS1. The ICP LCS sample was identified as 5A14046-BS1 and the Hg LCS sample was identified as 5A12047-BS1. The LCS results on the summary forms and in the raw data were within the laboratory-established ICP/MS, ICP, and Hg control limits of $85-115 \%$. No qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOA0549, 0552

2.7 LABORATORY DUPLICATES

The MS/MSD analyses were performed on Outfall 011 Grab for antimony, cadmium, copper, lead, nickel, and zinc only. The RPDs were less than the control limit of 20% and no qualifications were required.

2.8 MATRIX SPIKE

The MS/MSD analyses were performed on Outfall 011 Grab for antimony, cadmium, copper, lead, nickel, and zinc only. The recoveries were within the AMEC control limits of $75-125 \%$ and no qualifications were required.

2.9 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

2.10 ICP/MS AND ICP SERIAL DILUTION

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

2.11 INTERNAL STANDARDS PERFORMANCE

The ICP and ICP-MS internal standard recoveries for the site samples and associated QC sample analyses were within the $60-125 \%$ control limits and no qualifications were required.

2.12 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit were qualified as estimated, "J." No further qualifications were required.

2.13 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOA0549, 0552

2.13.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.13.2 Field Duplicates

There were no field duplicate analyses performed in association with the site samples.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

```
Project ID: 13267 (Study 1)
Routine Outfall 011 - Grab
Report Number: IOA0)549
```

Sampled: 01/11/05
Received: 01/11/05

DRAFT: METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	$\begin{gathered} \text { Date } \\ \text { Analyzed } \end{gathered}$	$\begin{array}{r} \text { Da } \\ \text { d Quali } \end{array}$	
Sample ID: 10A0549-01 (DRAFT: Outfall 011-grab - Water) - cont. Reporting Units: ugn									Rew \|Qual Qal Cole	
Antimony Arsenic	EPA 200.8	5A12054	0.18	2.0	0.35	1	01/12/05	01/12/05	ज 1	3,*3,4
Arsenic	EPA 200.8	5A14051	0.49	1.0	1.6	1	01/14/05	01/18/05		
Cadmium	EPA 200.8	5A14051	0.057	0.50	0.063	1	01/14/05	01/18/05	Ј J	*3, DN
Chromium	EPA 200.8	SA12054 SA14051	0.015	1.0	0.14	1	01/12/05	01/12/05	J J	DNQ
Cobalt	EPA 200.8	5 S14051	0.10	1.0	1.8	1	01/14/05	01/18/05	05 B	B
Copper	EPA 200.8	5 A12054	0.49	2.0	0.71 4.2	1	01/14/05	01/14/05	J J	DNG
Lead	EPA 200.8	5A12054	0.13	1.0	1.2	1	$01 / 12125$	01/12/05		
Manganese	EPA 200.8	SA14051	0.44	1.0	1.0	1	01/12/05	01/12/05		
Mercury	EPA 245.1	5 A12047	0.0613	0.20	0.13	1	01/14/05	01/14/05		
Nickel	EPA 200.8	5A12054	0.15	1.0	2.3	1	01/12/05	01/12/05		$D N Q$
Selenium	EPA 200.8	5A14051	0.36	2.0	0.90	1	01/14/05	01/14/05		* 3
Silver	EPA 200.8	5 A14051	0.089	1.0	0.26	1	01/14/05	01/14/05	UJ	
Thallium	EPA 200.8	SA14051	0.0\%'5	1.0	0.90	1	01/14/05	01/14/05	JJ	
Vanadium	EPA 200.8	5A14051	0.85	1.0	3.4	1	01/14/05	01/14/05	J	$* 3,01$
Zinc	EPA 200.8	SA12054	3.1	20	18	1	01/12/05	01/12/05	J J	DNQ
		PM	3/10/05							

amec validated

 LEVELIV
DRAFT REPORT
 DRAFT REPORT
 DATA SUBJECT TO CHANGE

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:	13267 (Study 1)
Routine Outfall 011-Grab	Sampled: 01/11/05
Report Number:	IOA0549

Received: 01/11/05

DRAFT: METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor E	Date Extracted	Date Analyzed	Data Qualifiers
Sample Rep	tfall 011	- Water	- cont.						
Barium	EPA 200.8	5 A 14051	0.000114	0.0010	0.019	1	01/14/05	01/14/05	
Boron	EPA 200.7	5A14046	0.0074	0.050	0.065	1	01/14/05	01/14/05	
Iron	EPA 200.8	5 A14051	0.0032	0.010	0.98	1	01/14/05	01/14/05	

AMEC VALIDATED

LEvel iv

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical.
Reviewer L. Calvin
Analysis/Method Pesticides/PCBs by Method 608

Package ID T711PP15
Task Order 313150010 SDG No. IOA0549, IOA0552
No. of Analyses 2
Date: March 10, 2005

amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: PESTICIDES/PCBs
SAMPLE DELIVERY GROUP: IOA0549, 1OA0552

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:NPDES DATA VALIDATION REPORT SDG:IOA0549, IOA0552
Pest/PCB	

1. INTRODUCTION

Task Order Title: NPDES Monitoring Contract Task Order \#: $\quad 313150010$
SDG\#: IOA0549, IOA0552
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Pesticides/PCBs
QC Level: Level IV
No. of Samples: 2
No. of Reanalyses/Dilutions: 0
Reviewer: L. Calvin
Date of Review: March 10, 2005

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedures (DVP-4, Rev.2), EPA Method 608, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary form as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

DATA VALIDATION REPORT	Project: SDG:IOAOS49, IOA05S2 Analysis: PestiPCB

Table 1. Sample identification

Client ID	EPA ID	Laboratory ID	Matrix	Method
Outfall 011	Outfall 011	IOA0549-01	water	608
Outfall 018	Outfall 018	IOA0552-01	water	608

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The analysis did not require preservation, and no preservation was noted in the field. The COCs noted that the samples were received intact. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by both field and laboratory personnel. The COC for Outfall 018 accounted for the analysis presented in this SDG. The Method 608 analysis for Outfall 011 was not listed on the COC, however, the analysis was requested in a memo dated 03/01/05 from MWH personnel. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The water samples were extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

2.2 PESTICIDES INSTRUMENT PERFORMANCE

No resolution check standards or breakdown check standards are required by Method 608 for pesticides, and according to the raw data provided, a resolution check standard was not analyzed by the laboratory. The laboratory did analyze a breakdown check standard with a breakdown of $\leq 20 \%$ for individual components (4,4-DDT and endrin) and $\leq 30 \%$ for the total, as suggested in the National Functional Guidelines. A review of the raw data indicated that the analytical run time was of sufficient length to provide adequate standard separation. The two analytical columns used in the analyses were within the guidelines specified in the methods.

According to the laboratory SOP and the initial calibration raw data, the retention time windows are ± 0.10 minutes for both surrogates and target compound calibration standards. A review of the raw data indicated that the laboratory retention time criteria were met for the surrogates and pesticide calibration standards. No qualifications were required.

2.3 CALIBRATION

2.3.1 Analytical Sequence

Based on the data provided, the analytical sequences were in accordance with the requirements of Method 608. No qualifications were required.

2.3.2 Initial Calibration

There were two initial calibrations dated 10/26/04 and 12/29/04 associated with the pesticide analyses of the samples, which consisted of six point calibrations for all pesticide target compounds on two analytical columns. The \%RSDs were within the EPA Method 608 QC limit of $\leq 10 \%$ on both analytical columns. There was one initial calibration dated $01 / 03 / 05$ associated with the PCB analysis of sample Outfall 011, consisting of five points for Arochlor 1016 and Arochlor 1260. Single point calibrations for Arochlor 1242, Aroclor 1248, and Aroclor 1254 were also analyzed. The average \%RSDs for the individual peaks of Aroclor 1016 and Aroclor 1260 were $\leq 10 \%$ on both analytical columns. An ICV was analyzed immediately following each of the initial calibrations. The \%Ds for all target compounds were within the QC limits of 15% on both analytical columns. A representative number of \%RSDs and ICV \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.3.3 Continuing Calibration

The pesticide analysis of sample Outfall 011 was bracketed by three continuing calibrations, one preceding and two following the analysis. In one of the bracketing calibrations following the sample analysis, the $\%$ D exceeded 15% on channel A for beta-bhc. As all results for this sample were reported from channel A, the nondetect result for beta-bhc was qualified as estimated, "UJ," in sample Outfall 011. The \%Ds were within the Method QC limit of $\pm 15 \%$ for the remaining calibrations. The PCB analysis of this sample was bracketed by two CCVs and the \%Ds for Aroclor 1016 and Aroclor 1260 were $\leq 15 \%$.

The pesticide analysis of sample Outfall 018 was bracketed by three continuing calibrations. In two of the bracketing calibrations following the sample analysis, the \%D exceeded 15% on channel A for alpha-bhc. As results were reported from channel B, no qualifications were assigned.

A representative number of $\%$ Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.4 BLANKS

2.4.1 Instrument Blanks

An instrument blank was analyzed at the beginning of each analytical sequence. Crosscontamination was not evident in the samples. No qualifications were necessary.

2.4.2 Method Blanks

One water method blank (5A13049-BLK1) was extracted and analyzed with these SDGs. There were no pesticide target compounds or Aroclors detected in the method blank. Review of the chromatograms showed no false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike/blank spike duplicate pair (5A13049-BS1/BSD1) was extracted and analyzed with these SDGs. The recoveries for all spiked pesticide target compounds and Aroclors were within the laboratory-established QC limits and the RPDs were $\leq 30 \%$. A representative number of

	Project:NPDES DATA VALIDATIONREPORT\quad SDG:IOA0S49, IOA0552

recoveries were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.6 SURROGATE RECOVERY

The sample and all QC samples were fortified with the surrogate compounds decachlorobiphenyl and tetrachloro-m-xylene. Surrogate recoveries for the pesticide and PCB analyses of sample Outfall 011 were within the laboratory-established QC limits. Both surrogates were recovered below the QC limits but $\geq 10 \%$ in Outfall 018 . A notation on the extraction benchsheet and in the raw data indicated an emulsion that may have affected surrogate recoveries. The result for alpha-bhc in sample Outfall 018 was qualified as estimated, "UJ." The recoveries were calculated from the raw data and no transcription or calculation errors were noted. No further qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

There were no MS/MSD analyses associated with these SDGs. Method accuracy and precision were assessed based on the blank spike/blank spike duplicate results. No qualifications were required.

2.8 SAMPLE CLEANUP PERFORMANCE

According to the laboratory extraction benchsheets, no cleanups were performed on the water samples. No qualifications were required.

2.9 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.9.1 Field Blanks and Equipment Rinsates

There were no field QC samples associated with the samples in these SDGs. No qualifications were required.

2.9.2 Field Duplicates

There were no field duplicate samples associated with the sample in these SDGs.

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for pesticide target compounds and PCBs by EPA Method 608. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for the samples in these SDGs. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification was verified for these SDGs; however, as there were no detects reported in the samples, quantitation was verified by recalculating a representative number of blank spike and surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibration and the laboratory MDL studies. No qualifications were required.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

$$
\begin{array}{rr}
\text { Project ID: } & 13267 \text { (Study 1) } \\
\text { Routine Outfall 011-Grab } & \text { Sampled: } 01 / 11 / 05 \\
\text { Report Number: } & \text { IOA } 0549
\end{array} \quad \text { Received: } 01 / 11 / 05
$$

DRAFT: ORGANOCHLORINE PESTICIDES (EPA 608)

AMEC VALIDATED

 TMVEL IVMWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Routine Outfall 011 -Grab Sampled: 01/11/05
Report Number: 10A0549

Received: 01/11/05

DRAFT: TOTAL PCBS (EPA 608)

Anvec VAlidated LEVEL IV

DRAFT REPORT
 DRAFT REPORT
 DATA SUBJECT TO CHANGE

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA
AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical.
Reviewer L. Calvin
Analysis/Method Semivolatiles by Method 625

ACTION ITEMS ${ }^{2}$	
- Case Narrative Deficiencies	
2. Out of Scope Analyses	
3. Analyses Not Conducted	
4. Missing Hardcopy Deliverables	
5. Incorrect Hardcopy Deliverables	
6. Deviations from Analysis Protocol, e.g., Holding Times GC/MS Tune/nst. Performance Calibration Method blanks Surrogates Matrix Spike/Dup LCS Field QC Internal Standard Performance Compound Identification Quantitation System Performance	Qualification was assigned for the following:
	-initial calibration $\mathrm{r}^{2}<0.995$
	-continuing calibration $\% \mathrm{D}>20 \%$
	--method blank contamination
	--BS/BSD recoveries below the QC limits and RPDs above the QC limits
	--surrogates spiked below a recoverable level
COMMENTS ${ }^{\text {b }}$	
${ }^{2}$ Subcontracted analytical laboratory is not meeting contract and/or method requirements. ${ }^{6}$ Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.	

amec

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: SEMIVOLATILES

SAMPLE DELIVERY GROUP: IOA0549, IOA0552

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:
DATA VALIDATION REPORT	NPDES SDG: IOA0549, S52
SVOC	

1. INTRODUCTION

Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010
SDG\#: IOA0549, IOA0552
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Semivolatiles
QC Level: Level IV
No. of Samples: 2
No. of Reanalyses/Dilutions: 0
Reviewer: L. Calvin
Date of Review: March 10, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Semivolatile Organics (DVP-3, Rev. 2), EPA Method 625, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG:	IOA0549, 552
	Analysis:	SVOC

Table 1. Sample identification

Client ID	EPA ID	Lab No.	Matrix	Method
Outfall 011	Outfall 011	IOA0549-01	water	625
Outfall 011	Outfall 018	IOA0552-01	water	625

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The analysis did not require preservation, and no preservation was noted in the field. The COCs noted that the samples were received intact. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by both field and laboratory personnel. The COC for Outfall 018 accounted for the analysis presented in this SDG. The Method 625 analysis for Outfall 011 was not listed on the COC , however, the analysis was requested in a memo dated $03 / 01 / 05$ from MWH personnel. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The water samples were extracted within seven days of collection and analyzed within 40 days of extraction. No qualifications were required.

2.2 GC/MS TUNING

The DFTPP tune met the criteria specified in Method 625, and the samples were analyzed within 12 hours of the DFTPP injection time. No qualifications were required.

2.3 CALIBRATION

The initial calibration associated with these SDGs was dated 01/10/05. The average RRFs for were ≥ 0.05 and the $\%$ RSDs were $\leq 35 \%$ or $r^{2} \geq 0.995$ for all target compounds, with the exception of the r^{2} for 2,4 -dinitrophenol. The nondetect result for 2,4-dinitrophenol was qualified as estimated, " UJ ," in sample Outfall 011 . The continuing calibration associated with the sample analyses was analyzed $01 / 17 / 05$. The RRFs for all target compounds were ≥ 0.05, and the $\%$ Ds were $\leq 20 \%$, with the exception of the \%D for 2,4-dinitrophenol. The nondetect result for 2,4-dinitrophenol was qualified as estimated, "UJ," in sample Outfall 011. A representative number of average RRFs, $\%$ RSDs, and r^{2} s for the initial calibration and RRFs and \%Ds for the continuing calibration were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.4 BLANKS

One method blank (5A12027-BLK1) was extracted and analyzed with these SDGs. There were detects below the reporting limits for 2 -methylnaphthalene, di-n-butylphthalate, butylbenzylphthalate, and bis(2-ethylhexyl)phthalate. The sample detect for 2-methylnaphthalene was less than five times the method blank concentration and was therefore qualified as a nondetect,

	Project: DATA VALIDATION REPORT	NPDES
SDG:		
IOAOS49, 552		

"U," at the reporting limit. There were no sample detects for the remaining compounds detected in the method blank. Review of the raw data indicated no reportable false positives or false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike/ blank spike duplicate pair (5A12027-BS1/BSD1) was extracted and analyzed with these SDGs. For blank spike/blank spike duplicate pairs, qualifications are applied, if necessary, to the associated samples based on those recoveries consistently outside of the laboratory-established QC limits in both the blank spike and blank spike duplicate. Results for those compounds with recoveries not consistent within the pair, with RPDs above the QC limit, are qualified as estimated, "UJ" for nondetects and " J " for detects, in the associated samples.

In both 5A12027-BSI and 5A12027-BSDI, benzidine was not recovered and 3,3'dichlorobenzidine was recovered below the QC limits but $\geq 10 \%$. The RPDs for aniline, 4 chloroaniline, 3,3 'dichlorobenzidine, 2 -methylnaphthalene, and naphthalene exceeded the laboratory QC limits. The nondetect sample result for benzidine was rejected, " R," the nondetect result for 3,3 'dichlorobenzidine was qualified as estimated, "UJ," and the results for the RPD outliers were qualified as estimated, "UJ" or "J," in sample Outfall 011. Spiked compounds 2methylnaphthalene and naphthalene were recovered above the QC limits in 5A12027-BSI only, and hexachlorobutadiene in 5A12027-BS1 only and 4-chloroaniline in 5A12027-BSD1 only were recovered below the QC limits but $\geq 10 \%$. None of the aforementioned outliers were requested target compounds for sample Outfall 018. The remaining recoveries and RPDs were within the laboratory QC limits. A representative number of recoveries and RPDs were calculated from the raw data and no calculation or transcription errors were found. No further qualifications were required.

2.6 SURROGATE RECOVERY

The sample surrogate recoveries for sample Outfall 011 were within the laboratory QC limits. The case narrative for this SDG noted that the low-level preparation of sample Outfall 018 and the subsequent standard level analysis resulted in surrogate concentrations falling below the low calibration standard. The narrative further noted that even low-level analysis would have required dilution for matrix interference that would have diluted out the surrogates. As extraction efficiency could not be verified based on surrogate recoveries for sample Outfall 018, all results were qualified as estimated nondetects, "UJ." A representative number of recoveries were calculated from the raw data, and no transcription or calculation errors were noted. No further qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were associated with these SDGs. Evaluation of method accuracy and precision was based on blank spike/blank spike duplicate results. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were

	Project:	NPDES DATA VALIDATION REPORT
SDG:		
IOA0549, 552		
Analysis:	SVOC	

used to evaluate the associated site samples. Following are findings associated with field QC samples:

2.8.1 Field Blanks and Equipment Rinsates

There were no field QC samples associated with these SDGs. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate samples associated with these SDGs.

2.9 INTERNAL STANDARDS PERFORMANCE

The internal standard area counts and retention times were within the control limits established by the continuing calibration standards: $-50 \% /+100 \%$ for internal standard areas and ± 30 seconds for retention times. A representative number of recoveries were checked from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for semivolatile target compounds by EPA Method 625. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. No calculation or transcription errors were found. The reporting limits were supported by the low level of the initial and the method detection limit study. The reporting limits were not adjusted for sample amount; however, the dilution factors on the sample result summaries reflected the sample amount extracted. Results were reported in $\mu \mathrm{g} / \mathrm{L}$ (ppb). Compounds reported below the reporting limit but above the MDL were qualified as estimated, "J." No further qualifications were required.

2.12 TENTATIVELY IDENTIFIED COMPOUNDS

TICs were not reported by the laboratory for these SDGs. No qualifications were required.

2.13 SYSTEM PERFORMANCE

Review of the raw data indicated no problems with system performance. No qualifications were required.

[^16]Sampled: 01/11/05
Received: 01/11:05

DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Sampled: 01/11:05
Received: 0111105

DRAFT: ACID \& BASE/NEUTRALS BY GCMMS (EPA 625)

Analyte	Method	Batch	MOL Limit	Reporting Limit	Sample Result	Dilution Factor	D Date Extracted	Date Analyzed	Data pualifiers
Sample DD: 1OA0549-01 (DRAFT: Reporting Units: ug I	Outfall 011	rab - Water	r) - cont.					Analyzed	yalifiers
Fluoranthene	EPA 625	5 Al 2027							
Fluorene	EPA 625	SA12027	0.089 0.075	0.50	ND	0.943	01/12/05	01718/05 प	
Hexachlorobenzene	EPA 625	5A12027	0.075 0.13	0.50 1.0	ND	0.943	01/12/05	01/18/05	
Hexachlorobutadiene	EPA 625	5 5A12027	0.13	1.0	ND	0.943	01/12/05	01/18/05	
Hexachlorocyclopentadiene	EPA 625	5 S12027	1.3	5.0	ND	0.943	01/12/05	01/18/05	L2
Hexachloroethane	EPA 625	5 A 12027	0.51	5.0 3.0	ND	0.943	01/12/05	01/18/05	
Indeno((1,2,3-cd)pyrene	EPA 625	5 S 12027	0.19	3.0 2.0	ND	0.943	01/12/05	01/18/05	
Isophorone	EPA 625	5 S12027	0.059	1.0	ND	0.943	$01 / 12 / 05$ $01 / 12 / 05$	$01 / 18 / 05$ $01 / 18 / 05$	
2-Methylnaphthalene	EPA 625	5412027	0.13	1.0 N 20.74		0.943	01/12/05	$01 / 18 / 05$ $01 / 18 / 05$	
2 -Methylphenol	EPA 625	5412027	0.28			0.943	01/12/05	01/18/05 U	L. 5 J 3
4-Methylphenol	EPA 625	5412027	0.20	5.0	ND	0.943	01/12/05	01/18/05 K	
Naphthalene	EPA 625	5 SA12027	0.13	1.0	ND	0.943 0.943	01/12/05	01/18/05 \downarrow	
2-Nitroaniline	EPA 625	5412027	0.18	5.0	ND	0.943	01112/05	01/18/05 J	
3-Nitroaniline 4-Nitroaniline	EPA 625	5 512027	0.35	5.0	ND	0.943	01/12/05	01/18.05 u	
4-Nitroaniline	EPA 625	5 5A12027	0.49	5.0 50	ND	0.943	01/12/05	01/18/05	
Nitrobenzene	EPA 625	5412027	0.49 0.10	1.0	ND	0.943	01/12/05	01/18/05	
2-Nitrophenel	EPA 625	5 5A12027	0.23	1.0	ND	0.943	01/12/05	01/18/05	
4-Nitrophenol	EPA 625	5 5A12027	0.23	2.0	ND	0.943	01/12/05	01/18/05	
N-Nitrosodimethylamine	EPA 625	5412027	0.73	5.0	ND	0.943	01/12/05	01/18/05	
N Nitroso-di-n-propylamine	EPA 625	5412027	0.22	2.0	ND	0.943	0142105	$01 / 1805$	
N-Nitrosodiphenylamine	EPA 625	5.412027	0.0 .817	2.0	ND	0.943	0112/05	01/18/05	
Pentachlorophenol	EPA 625	5.412027	0.077 0.78	1.0 20	ND	0.943	01/1205	01/18/05	
Phenanthrene	EPA 625	5.412027	0.78	2.0	ND	0.943	01/12/05	01/18:05	
Phenol	EPA 625	5.412027	0.011	0.50	ND	0.943	01/12/05	01118/05	
Pyrene	EPA 625	5.412027	0.14	1.0	ND	0.943	01/1205	0118/05	
1,2,4-Trichlorobenzene	EPA 625	5.412027	0.059 0.10	0.50	ND	0.943	01/12/05	01/18/05	
2,4,5-Trichlorophenol	EPA 625	5.412027	0.10 $0.0 \% 5$	1.0	ND	0.943	01/12/05	01/18/05	
2,4,6-Trichlorophenol	EPA 625	5.412027	0.10	2.0	ND	0.943	01/12/05	01/18.05	
Siurrogate: 2-Fluorophenol (35-120\%)		5.42027	0.10	1.0	ND	0.943		01/18/05 \downarrow	
Surrogate: Phenol-d6 (45-120\%)					71\%				
Surrogate: 2,4,6-Tribromophenol (50-1	25\%)				83\%				
Surrogate: Nitrobenzene-d5 (45-120\%)					75\%				
Surrogate: Terphenyl-d 14 (45-135\%)					78%				

DRAFT REPORT
DRAFT REPORT
DATA SUBIECT TO CHANGE

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: TPH/EXTRACTABLE

SAMPLE DELIVERY GROUP: IOA0549

Prepared by

AMEC Denver Operations

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOA0549
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: TPH-Extractable
QC Level: Level IV
No. of Samples: 1
No. of Reanalyses/Dilutions: 0
Reviewer: K. Shadowlight
Date of Review: March 9, 2005

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Extractable Total Fuel Hydrocarbons by GC (DVP-8, Rev. 2), USEPA SW-846 Method 8015M, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

DATA VALIDATION REPORT	Project: SDG: NPDES IOAOS49
TPH	

Table 1. Sample identification

Client ID	EPA ID	Lab No.	Matrix	Method
Outfall 011	Outfall 011	IOA0549-01	water	8015M/EFH

	Project: DATA VALIDATION REPORT
SDG:	NPDES IOA0549
IPH	

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at Del Mar Analytical laboratory on ice within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The Del Mar Analytical case narrative noted that the sample containers were received intact. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by both field and laboratory personnel, and accounted for the analysis presented in this SDG. As the sample was couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The sample was extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

2.2 CALIBRATION

The inital calibration associated with the sample analysis was analyzed on 11/11/04. The $\%$ RSD was within the QC limit of $\leq 20 \%$. The $\%$ Ds for the initial calibration verification (ICV) and continuing calibrations associated with the sample analysis were $\leq 15 \%$. The \%RSD and \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required

2.3 METHOD BLANKS

One method blank (5A13035-BLK1) was extracted and analyzed with the sample in this SDG. EFH (C13-C22) was not present above the MDL in the method blank or in the instrument blank analyzed at the beginning of the analytical sequence. Review of the chromatograms showed no false negatives. No qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One method blank spike (5A13035-BS1) was extracted and analyzed with the sample in this SDG. The recovery of alkane range C13-C40 from spiked diesel was within the laboratoryestablished QC limits of $40-120 \%$. The recovery was checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

DATA VALIDATION REPORT	Project: SDG:	NPDES IOA0549
Analysis:	TPH	

2.5 SURROGATE RECOVERY

The sample was fortified with the surrogate compound n-octacosane. The sample surrogate recovery was within the laboratory-established QC of $40-125 \%$. The recovery was calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

There were no MS/MSD analyses associated with the sample of this SDG. Evaluation of method accuracy and precision was based on the BS/BSD results. No qualifications were required.

2.7 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.7.1 Field Blanks and Equipment Rinsates

There were no field blank or equipment rinsate samples associated with the site sample in this SDG. No qualifications were required.

2.7.2 Field Duplicates

There were no field duplicate samples associated with the samples in this SDG.

2.8 COMPOUND DENTIFICATION

The laboratory analyzed for EFH n-alkane range C13-C22 by EPA SW846 Method 8015M. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for this SDG. No qualifications were required.

2.9 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification was verified for this SDG by recalculating any sample detect, blank spike recoveries, and a representative number of surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibration and by the laboratory MDL. The reporting limit was not adjusted for sample amount; however, the dilution factor on the sample result summary reflected the sample amount extracted. No qualifications were required.

DRAFT: EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date xtracted	$\begin{gathered} \text { Date } \\ \text { Analyze } \end{gathered}$		Data lifiers
Sample ID: 1OA0549-01 (DRAFT: Reporting Units: mg/ EFH ($\mathrm{Cl} 13-\mathrm{C} 22$)	Outfall 011 -	ab - Water	- cont.							Qual code
Surrogate: n-Octacosane (40-125\%)	EPA 8015B	5.113035	0.082	0.50	$\begin{gathered} \text { ND } \\ 57 \% \end{gathered}$	0.952	01/13/05	$0114 / 05$		

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: TPH/PURGEABLE
\section*{SAMPLE DELIVERY GROUP: IOA0549}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project: SDG:	$\begin{array}{r} \text { NPDES } \\ \text { IOA0S49 } \end{array}$
DATA VALIDATION REPORT	Analysis:	TP

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOA0549
Project Manager: B. McIlvaine
Matrix: Water
Analysis: TPH-Purgeable
QC Level: Level IV
No. of Samples: 1
No. of Reanalyses/Dilutions: 0
Reviewer: K. Shadowlight
Date of Review: March 9, 2005

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Extractable Total Fuel Hydrocarbons by GC (DVP-8, Rev. 2), USEPA SW-846 Method 8015M, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project: SDG:	$\begin{gathered} \text { NPDES } \\ \text { IOAOS49 } \end{gathered}$
DATA VALIDATION REPORT	Analysis:	TPH

Table 1. Sample identification

Client ID	EPA ID	Lab No.	Matrix	Method
Outfall 011	Outfall 011	IOA0549-01	water	$8015 \mathrm{M} / \mathrm{GRO}$

DATA VALIDATION REPORT	Project: SDG:
NPDES	
IOAOS49	

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at Del Mar Analytical laboratory on ice within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The Del Mar Analytical case narrative noted that the sample was received intact, and the COC indicated the sample was properly preserved, without headspace in the VOA vials. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by both field and laboratory personnel. As the sample was couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The water sample was analyzed within 14 days of collection. No qualifications were required.

2.2 CALIBRATION

One gasoline standard initial calibration dated $08 / 20104$ was associated with the sample analysis. The \%RSD for GRO (C4-C12) was within the QC limit of $\leq 20 \%$. An initial calibration verification (ICV) was not provided in the data package. The \%Ds for both CCVs bracketing the sample analyses were within the Method QC limit of $\leq 15 \%$. The \%RSD and \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.3 METHOD BLANKS

One water method blank (5A17030-BLK1) was associated with the sample analysis. GRO (C4-C12) was not detected above the MDL in the method blank. Review of the raw data indicated no false negative result. No qualifications were necessary.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One water method blank spike (5A17030-BS1) was associated with the sample analysis. GRO (C4-C12) was recovered within the laboratory-established QC limits of $70-140 \%$ in the blank spike. The recovery was checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

	Project: DATA VALIDATION REPORT	NPDES SDG:
IOA0549		
Analysis:	IPH	

2.5 SURROGATE RECOVERY

The sample was fortified with the surrogate compound bromofluorobenzene (BFB). The surrogate recovery was within the laboratory-established QC of $65-140 \%$ for the sample. The recovery was calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed on the sample in this SDG; therefore, evaluation of method accuracy was based on the blank spike results. No qualifications were required.

2.7 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.7.1 Trip Blanks, Field Blanks, and Equipment Rinsates

There were no trip blank, field blank, or equipment rinsate samples associated with this SDG. No qualifications were required.

2.7.2 Field Duplicates

There were no field duplicate samples in this SDG.

2.8 COMPOUND IDENTIFICATION

The laboratory analyzed for GRO (C4-C12) by EPA SW-846 Method 8015M. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for the sample in this SDG. No qualifications were required.

2.9 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification was verified for this SDG by recalculating any sample detects, blank spike recoveries, and a representative number of surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibrations and by the laboratory MDL. No qualifications were required.

DRAFT: VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)
Analyze

Method Batch Limit \begin{tabular}{c}
Limit

$\underset{\text { Reporting }}{ } \quad$

Sample

Result
\end{tabular} Factor Extracted Analyzed Qualifiers

Sample ID: IOA0549-01 (DRAFT: Outfall 011 -grab - Water) - cont.
Reporting Units: mg /l
GRO (C4-Cl2) EPA $8015 \mathrm{Mod} .5 \mathrm{Al7030} 0.050$
Surrogate: 4-BFB (FID) (65-140\%)

Date
Data Result Factorextracted Analyzed Qualifiers
ND 1

01/17/05 01/17/05

ANE VALIDATED

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer K. Shadowlight
Analysis/Method Volatiles

Package ID T711VO55
Task Order 313150010
SDG No. IOA0549
No. of Analyses 1
Date March 10, 2005
Reviewer's Signature

\section*{| ACTION ITEMS | |
| :---: | :---: |
| 1. | Case Narrati |
| | Deficiencies |
| 2. | Out of Scope |}

Analyses
3. Analyses Not Conducted Continuing calibration (blank spike reported as CCV)
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

GCMS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and
Quantitation
System Performance
COMMENTS ${ }^{\text {b }}$

* Subcontracted analytical laboratory is not meeting contract and/or method requirements.
- Differences in protocol have been adopted by the laboratory but no action against the laboratory is required

amec ${ }^{9}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: VOLATILES

SAMPLE DELIVERY GROUP: IOA0549

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOAOS49

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: IOA0549
Project Manager: B. McIlvaine
Matrix: Water
Analysis: Volatiles (1,4-dioxane)
QC Level: Level IV
No. of Samples: 1
No. of Reanalyses/Dilutions: 0
Reviewer: K. Shadowlight
Date of Review: March 10,2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Volatile Organics (DVP-2, Rev. 2), EPA Method SW-846 $8260 B$ and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOAOS49

Table 1. Sample identification

Client ID	EPA ID	Lab No.	Matrix	Method
Outfall 011	Outfall 011	IOA0549-01	water	8260 B

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOAOS49

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at the Del Mar within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The sample was subcontracted to Del Mar (Phoenix) for 1,4-dioxane analysis. The sample was properly preserved. The COC and transfer COC noted that the sample was received intact; however, information regarding absence of headspace was not provided. No qualifications were required.

2.1.2 Chain of Custody

The COC and transfer COC were signed by field and laboratory personnel. 1,4-Dioxane analysis was requested by Montgomery Watson personnel in a memo dated $03 / 01 / 05$. As the sample was couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The sample was analyzed within 14 days of collection. No qualifications were required.

2.2 GC/MS TUNING

The ion abundance windows were consistent with those specified in EPA Method 8260B. All ion abundances were within the established windows, and the sample was analyzed within 12 hours of the BFB injection time. No qualifications were required.

2.3 CALIBRATION

One initial calibration, dated $01 / 06 / 05$, was associated with this SDG. The average RRF for $1,4-$ dioxane was ≥ 0.05 and the $\%$ RSD was $\leq 15 \%$. In a notation on the instrument run sequence for $01 / 15 / 05$, the CCV failed and was not reported by the laboratory. The laboratory reported the continuing calibration and the blank spike (P5A1502-BS1) from the same analysis. As the analysis cannot be reported as both a CCV and a blank spike, the reviewer reported P5A1502-BS1 as the continuing calibration. The RRF for 1,4 -dioxane was ≥ 0.05 and the $\%$ D was $\leq 20 \%$. The $\%$ RSD and average RRF for 1,4 -dioxane in the initial calibration, and the \%D and RRF for 1,4-dioxane in the continuing calibration were recalculated from the raw data, and no calculation or transcription errors were found. No qualifications were required.

	Project:	NPDES
DATA VALIDATION REPORT	SDG No.:	IOA0549

2.4 BLANKS

One water method blank (P5A1502-BLK1) was associated with this SDG. Target compound 1,4dioxane was not detected in the method blank. The method blank raw data showed no evidence of a false negative. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory analyzed a blank spike/blank spike duplicate pair (P5A1502-BS1/BS1D) with this SDG; however, P5A1502-BS1 was reported as the CCV (see section 2.3); therefore, P5A1502-BS1D was evaluated as a single blank spike. The recovery for 1,4 -dioxane was within the laboratory QC limits. The recovery was recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.6 SURROGATE RECOVERY

The samples and QC were fortified with dibromofluoromethane. The surrogate was recovered within the laboratory QC limits of $80-125 \%$. The surrogate recovery for this sample was recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were associated with this SDG. Evaluation of method accuracy was based on blank spike results. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

2.8.1 Trip Blanks

The sample in this SDG had no associated trip blank. No qualifications were required.

2.8.1Field Blanks and Equipment Rinsates

The site sample in this SDG had no associated field QC samples. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate samples associated with this SDG.

	Project:	NPDES
DATA VALIDATION REPORT	SDGNo.:	IOA0S49

2.9 INTERNAL STANDARDS PERFORMANCE

Internal standard area counts and retention times for the samples were within the control limits established by the continuing calibration standards, of $+100 \% /-50 \%$ for internal standard areas and ± 0.50 minutes for retention times. Internal standard areas and retention times were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.10 COMPOUND IDENTIFICATION

Target compound identification was verified at a Level IV data validation. The laboratory analyzed for 1,4-dioxane by Method $8260 \mathrm{~B} / \mathrm{SIM}$. Chromatograms, retention times, and spectra for the samples and QC were examined and no target compound identification problems were noted. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. The reporting limit was supported by the lowest concentration of the initial calibration standards and by the undated MDL supplied by the laboratory. Compound quantitation was verified by recalculating blank spike and surrogate recoveries from the raw data. No calculation or transcription errors were noted. No qualifications were required.

2.12 TENTATIVELY IDENTIFIED COMPOUNDS

TICs are not typically reported for SIM methods.

2.13 SYSTEM PERFORMANCE

A review of the chromatograms and other raw data showed no identifiable problems with system performance. No qualifications were required.

Del Mar Analytical - Irvine 17461 Derian Ave. Suite 100 Irvine, CA 92614
Attention: Michele Harper

Sampled: 01/n1/05
Received: 01715/05

1,4-DIOXANE BY GC/MS (EPA 5030B/8260B)

Analyte	Methed	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: POA0361-01 (1OA0549-01-W	Outfa	11						Rev
$\underset{\text { 1,4-Dioxane }}{\text { Reporting Units: ugh }}$								Quct
1,4-Dioxane Surrogate: Dibromofluoromethane (80-125\%)	EPA 8260B	PSA1502	1.0	$\begin{array}{r} \mathrm{ND} \\ 103 \% \end{array}$	1	1/15/2005	1/15/2005	4

Del Mar Analytical - Phoenix
Ken Baker
Project Manager

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer K. Shadowlight
Analysis/Method Volatiles

Package ID T711VO56
Task Order 313150010
SDG No. IOA0549, IOA552
No. of Analyses 4
Date March 10,2005
Reviexer's Signature
Shedne fet

ACTION ITEMS

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol e.g,
Holding Times
GC/MS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and
Quantitation
System Performance

COMMENTS ${ }^{\text {b }}$

Qualifications were assigned for the following:
$\begin{aligned} & \text { \%D outliers in the continuing calibration } \\ & * \text { Compounds reported as TICs (not calibrated for on instrument) }\end{aligned}$

amec ${ }^{\text {® }}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: VOLATILES

SAMPLE DELIVERY GROUP: IOA0549, IOA0552

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOA0549, IOA0552
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Volatiles
QC Level: Level IV
No. of Samples: 4
No. of Reanalyses/Dilutions: 0
Reviewer: K. Shadowlight
Date of Review: March, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Volatile Organics (DVP-2, Rev. 2), EPA Method 624, EPA SW-846 Method 8260B, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary forms as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

DATA VALIDATION REPORT	Project: SDG:IOA0549, IOA0552 NPD
Analysis:	

Table 1. Sample identification

Client ID	EPA ID	Lab No.	Matrix	Method
Outfall 011	Outfall 011	IOA0549-01	water	$624 / 8260 \mathrm{~B}$
Trip Blank	Trip Blank	IOA0549-02	water	624
Outfall 018	Outfall 018	IOA0552-01	water	624
Trip Blank	Trip Blank	IOA0552-02	water	624

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in these SDGs were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{Cv}$. The samples were properly preserved. The COCs noted that the samples were received intact; however, information regarding absence of headspace was not provided. No qualifications were required.

2.1.2 Chain of Custody

The COCs were signed and dated by both field and laboratory personnel. In a memo from Montgomery Watson dated $03 / 01 / 05$, additional target compounds trichlorotrifluoroethane (Freon 113), 1,2-dichloro-1,1,2-trifluoroethane (Freon 123), and cyclohexane were requested for volatile analysis in sample Outfall 011. The COCs accounted for the remaining analyses presented in these SDGs. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The samples were analyzed within 14 days of collection No qualifications were required.

2.2 GC/MS TUNING

The ion abundance windows shown on the quantitation reports were consistent with those specified in the EPA Method 624 and SW-846 Method 8260B, and all ion abundances were within the established windows. The samples and associated QC were analyzed within 12 hours of the BFB injection times. The Form Vs were verified from the raw data and no discrepancies between the summary forms and the raw data were noted. No qualifications were required.

2.3 CALIBRATION

Four initial calibrations dated 11/03/04 (acrolein and acrylonitrile only), 12/13/04 (GCMS36), 01/04/05 (GCMS33), and 01/04/05 (GCMS44) were associated with these SDGs. The average RRFs were ≥ 0.05 for all compounds listed on the sample result summaries. The \%RSDs were $\leq 35 \%$ for the target compounds analyzed by EPA Method 624, and the \%RSD for Freon 113 analyzed by EPA SW- 846 Method 8260 B was $\leq 15 \%$. Three continuing calibrations associated with the sample analyses were analyzed 01/12/05 (instruments GCMS33, GCMS36, and GCMS44). The RRFs were ≥ 0.05 in all of the continuing calibrations. The $\% \mathrm{Ds}$ for acrolein and acrylonitrile exceeded 20% in the continuing calibration analyzed on instrument GCMS33; therefore, the nondetect results for acrolein and acrylonitrile were qualified as estimated, "UJ," in sample Outfall 011. No qualifications were required for the Trip blank. The $\%$ Ds were $\leq 20 \%$ for the remaining

DATA VALIDATION REPORT | Project: |
| :---: |
| SDG:IOAOS49, |
| NPDES |
| Analysis: |

target compounds listed on the result summaries. A representative number of \%RSDs and average RRFs from the initial calibrations, and \%Ds and RRFs from the continuing calibrations were recalculated from the raw data, and no calculation or transcription errors were found. No further qualifications were required.

2.4 BLANKS

Three water method blanks (5A12003-BLK1, 5A12008-BLK1, and 512012-BLK1) were associated with the sample analyses. There were no detects above the MDLs for the target compounds listed on the sample result summaries. The method blank raw data showed no evidence of false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

Three water blank spikes (5A12003-BS1, 5A12008-BS1, and 5A12012-BS1) were associated with the sample analyses. All recoveries were within the laboratory-established QC limits. A representative number of recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.6 SURROGATE RECOVERY

The surrogates were recovered within the QC limits of $80-120 \%$ in the samples and associated QC. A representative number of surrogate recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were performed for samples Outfall 011 and Outfall 018 associated with these SDGs. All recoveries and RPDs were within QC limits for both MS/MSD pairs. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

2.8.1 Trip Blanks

Sample Trip Blank (IOA549) and Trip Blank (IOA552) were the trip blanks associated with site samples Outfall 011 and Outfall 018, respectively. Chlorobenzene was detected in Trip Blank (IOA549) at $0.73 \mathrm{ug} / \mathrm{L}$; however, chlorobenzene was not reported in associated sample Outfall 011. There were no other target compounds detected above the MDLs in the trip blanks. No qualifications were required.

DATA VALIDATION REPORT	Project: SDG:IOA0549, 1OA0552 Analys:

2.8.2 Field Blanks and Equipment Rinsates

There were no field QC samples associated with these SDGs. No qualifications were required.

2.8.3 Field Duplicates

There were no field duplicate samples associated with these SDGs.

2.9 INTERNAL STANDARDS PERFORMANCE

Internal standard area counts and retention times for the samples in these SDGs were within the control limits established by the continuing calibration standards, of $+100 \% /-50 \%$ for internal standard areas and ± 0.50 minutes for retention times. A representative number of internal standard areas and retention times were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.10 COMPOUND IDENTIFICATION

Target compound identification was verified at a Level IV data validation. The laboratory analyzed trichlorotrifluoroethane by EPA SW-846 8260B and the remaining volatile target compounds by EPA Method 624. A TIC search was performed for requested target compounds 1,2-dichloro-1,1,2-trichloroethane and cyclohexane, as these compounds were not included in the calibration (see section 2.11). Neither compound was detected as a TIC. Chromatograms, retention times, and spectra for the samples and QC were examined and no target compound identification problems were noted. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. The reporting limits were supported by the lowest concentrations of the initial calibration standards and by the MDL study. Calibration was not performed for target compounds 1,2 -dichloro-1,1,2-trichloroethane and cyclohexane; therefore, the laboratory performed only a TIC search for those compounds. Nondetects for both compounds were qualified as estimated, "UJ," in sample Outfall 011. Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike and surrogate recoveries from the raw data. Detects reported between the MDL and the reporting limit were qualified as estimated, "J," by the laboratory. Results were reported in $\mu \mathrm{g} / \mathrm{L}(\mathrm{ppb})$. No calculation or transcription errors were noted. No further qualifications were required.

2.12 TENTATIVELY IDENTIFIED COMPOUNDS

The laboratory did not provide TICs for these SDGs. No qualifications were required.

	NPDES
DATA VALIDATION REPORT	Project: SDG:IOA0549, IOAOS52 VOC
Analysis:	

2.13 SYSTEM PERFORMANCE

A review of the chromatograms and other raw data showed no identifiable problems with system performance. No qualifications were required.

Projecr D: 13267 (Study 1)	
Raport Routine Outfall 011-Grab	Sampled: 01/11/05
Report Number: 10.40549	Reconed: 01m105

```
MWht-Pasadenaboeing
MWht-Pasadenaboeing
    70 North Lake Avenue, Suite 1200
    70 North Lake Avenue, Suite 1200
& rasadema, CA 91101
& rasadema, CA 91101
Attention: Broawyn Kelly
Attention: Broawyn Kelly

\section*{DRAFT: FREON 113 (EPA 8260B)}


QETREPORI
DRAVTREPORT
DAWASTBILCT TO CHANGE


\section*{DRAFT: PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS}

Analyte
MDL Reporting Sample Dilution Date
Sample ID: 1OA0549-01 (DRAFT: Outfall 011-grab-Water) Limit Linii Result Factor Extracted Analyzed Qualifiers
Reporting Units: ugh (1) Outall 011-grab-Water)
1.2-Dichloro-1.1,2-tifluorocthane EPA 624 (MOD.) 5A12008

Cyclobexate
EPA 624 (MOD) 5412008 NA
120
120
ND
ND
\(\begin{array}{ll}011205 & 0112105 \\ 011205 & 011205\end{array}\)

\section*{AMEC VALIDATEO}

HT REPORT
DRAFT REPORT
DATA SuBTEETGCHAMO


() Del Mar Analytical


\section*{DRAFT: PURGEABLES BY GCMS (EPA 624)}

abvaraneb





\title{
(2) Del Mar Analytical
}



 MWh-Fasadena Boemg 300 North Lake Avenue, Sute 1200 Pasadena, CA 91101 Propent ID: 13267 (Study 1) Ronthe Ouffll 011-Grab
Repert Namber: 10 A 0549
Sampled: 011100 Received: 01H10s

\section*{DRAFT: PURGEABLES BY GC/MS (EPA 624)}


\section*{}




\section*{Data Qualifier Reference Table}
Qualifier \(\quad\) Organics \(\quad\) Inorganics

U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
\(\mathrm{N} \quad\) The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."

UJ The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accuratcly and precisely measure the analyte in the sample.

R
The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte camot be verified.

The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.

The associated value is an estimated quantity.

Not applicable.

Not applicable.

The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

The data are unusable. (Note: Analyte may or may not be present).

\section*{Qualification Code Reference Table}
\begin{tabular}{|c|c|c|}
\hline Qualifier & Organics & Inorganics \\
\hline H & Holding times were exceeded. & Holding times were excceded. \\
\hline S & Surrogate recovery was outside QC limits. & The sequence or number of standards used for the calibration was incorrect \\
\hline C & Calibration \(\% \mathrm{RSD}\) or \(\% \mathrm{D}\) were noncompliant. & Correlation coefficient is \(<0.995\). \\
\hline R & Calibration RRF was \(<0.05\). & \(\% \mathrm{R}\) for calibration is not within control limits. \\
\hline B & Presumed contamination from preparation (method) blank. & Presumed contamination from preparation (method) or calibration blank. \\
\hline L & Laboratory Blank Spike/Blank Spike Duplicate \(\%\) R was not within control limits. & Laboratory Control Sample \%R was not within control limits. \\
\hline Q & MS/MSD recovery was poor or RPD high. & MS recovery was poor. \\
\hline E & Not applicable. & Duplicates showed poor agreement. \\
\hline I & Internal standard performance was unsatisfactory. & ICP ICS results were unsatisfactory. \\
\hline A & Not applicable. & ICP Serial Dilution \%D were not within control limits. \\
\hline M & Tuning (BFB or DFTPP) was noncompliant. & Not applicable. \\
\hline T & Presumed contamination from trip blank. & Not applicable. \\
\hline \(+\) & False positive - reported compound was not present Not applicable. & \\
\hline - & False negative - compound was present but not reported. & Not applicable. \\
\hline F & Presumed contamination from FB, or ER. & Presumed contamination from FB or ER. \\
\hline \$ & Reported result or other information was incorrect. & Reported result or other information was incorrect. \\
\hline ? & TIC identity or reported retention time has been changed. & Not applicable. \\
\hline D & The analysis with this flag should not be used because another more technically sound analysis is available. & The analysis with this flag should not be used because another more technically sound analysis is available. \\
\hline P & Instrument performance for pesticides was poor. & Post Digestion Spike recovery was not within control limits. \\
\hline DNQ & The compound was detected between the MDL and the RL and, by definition, is considered an estimated value. & The compound was detected between the MDL and the RL and, by definition, is considered an estimated value. \\
\hline
\end{tabular}

Unusual problems found with the data that have been described in Section 2.\#, "Data Validation Findings." The number following the asterisk (*) will indicate the subsection where a description of the problem can be found (eg. *1 would indicate a sample was not within temperature limits).

Unusual problems found with the data that have been described in Section 2.\#, "Data Validation Findings." The number following the asterisk (*) will indicate the subsection where a description of the problem can be found (eg. *I would indicate a sample was not within temperature limits).

\title{
amec \({ }^{\text {® }}\)
}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES Monitoring
}

\section*{ANALYSIS: GENERAL MINERALS SAMPLE DELIVERY GROUP: IOA0549 \& IOA0552}

Prepared by

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: IOA0549 \& IOA0552 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: General Minerals \\ QC Level: Level IV \\ No. of Samples: 2 \\ Reviewer: L. Jarusewic \\ Date of Review: March 10, 2005
}

The sample listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 300.0, 350.2, 330.5, 405.1, 335.2, 413.1, 415.1, 418.1, 425.1, 218.6, 120.1, 160.2, 160.5, 180.I, 150.1, and 120.1, Standard Methods for the Examination of Water and Wastewater Method SM5540-C and SM2540C, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: \begin{tabular}{rl} 
IOA0549/0552 \\
General Minerals \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 011 & Outfall 011 & IOA0549-01 & Water & General Minerals \\
\hline Outfal1 018 & Outfall 018 & 1OA0552-01 & Water & General Minerals \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). No preservation problems were noted by the laboratory. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by field and laboratory personnel. The COCs accounted for all analyses present in these SDGs except fluoride for Outfall 011. The fluoride analysis was requested in a memo from MWH personnel dated 03/01/05. No sample qualifications were required.

\subsection*{2.1.3 Holding Times}

The holding times were assessed by comparing the date of collection with the dates of analyses. The 28 -day analytical holding time for ammonia, fluoride, chloride, sulfate, conductivity, total recoverable hydrocarbons, TOC, and oil and grease, the 14-day analytical holding time for cyanide, the seven-day holding time for total suspended solids and total dissolved solids, the 48 -hour holding time for surfactants, turbidity, nitrate/nitrite, biological oxygen demand, and total settleable solids, and the 24 -hour hexavalent chromium and residual chlorine holding times were met. No qualifications were required.

\subsection*{2.2 CALIBRATION}

For the applicable analyses, the initial calibration correlation coefficients were \(\geq 0.995\). Initial and continuing calibration information was acceptable with \%Rs within the control limits of \(90-110 \%\) for all analytes except hexavalent chromium. The CCV for hexavalent chromium exceeded the method control limits of \(95-105 \%\); however, as hexavalent chromium was not detected, no qualifications were required. For ammonia, no information regarding the standardization of the titrant was provided; however, as the LCS recovery was within the CCV control limits, no qualifications were required. For BOD, no information regarding the calibration of the oxygen meter was provided; however, as the LCS recovery was within the CCV control limits, no qualifications were required. Calibration is not applicable to residual chlorine or total settleable solids. The total cyanide RL check standard was recovered within the control limits of \(70-130 \%\). No qualifications were required.

\subsection*{2.3 BLANKS}

Fluoride was detected in the associated method blank at \(0.149 \mathrm{mg} / \mathrm{L}\); therefore, fluoride detected in Outfall 011 was qualified as estimated, "UJ." Oil and grease was detected in the associated method blank for Outfall 011 and Outfall 018; however, the oil and grease method blank result was insufficient to qualify
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0549/0552 \\
\hline
\end{tabular}
the Outfall 011 and Outfall 018 results. Hexavalent chromium was detected in the associated method blank for Outfall 011; however, hexavalent chromium was not detected in Outfall 011 and no qualifications were required. The remaining method blank and CCB results reported on the summary forms and in the raw data for blank analyses associated with the samples were nondetects at the reporting limit. No further qualifications were required.

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The laboratory control sample and laboratory control sample duplicate (BOD, oil and grease, and total recoverable hydrocarbons only) recoveries and RPDs were within the laboratory-established control limits. The remaining LCS results were within the laboratory-established control limits. The LCS is not applicable to turbidity, conductivity, residual chlorine, or settleable solids. No qualifications were required.

\subsection*{2.5 SURROGATES RECOVERY}

Surrogate recovery is not applicable to the analyses presented in these SDGs.

\subsection*{2.6 LABORATORY DUPLICATES}

MS/MSD analyses were performed on Outfall 011 for hexavalent chromium. The RPD was within the control limit of \(\leq 20 \%\). No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

MS/MSD analyses were performed on Outfall 011 for hexavalent chromium. The recoveries were within the laboratory-established control limits and no qualifications were required.

\subsection*{2.8 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analyses of these samples; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.9 ICP SERIAL DILUTION}

ICP serial dilution is not applicable to the analyses presented in this data validation report.

\subsection*{2.10 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. BOD results detected below the reporting limit were qualified as estimated, "J." No further qualifications were required.

\subsection*{2.11 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.11.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.11.2 Field Duplicates}

There were no field duplicate pairs associated with these SDGs.
\begin{tabular}{lrl} 
MWH-Pasadena/Boeing & Project ID: & 13267 (Study 1) \\
300 North Lake Avenue, Suite 1200 & Routine Outfall 011-Grab & Sampled: 01/11/05 \\
Pasadena, CA 91101 & Report Nunber: & IOA0549
\end{tabular}

\section*{DRAFT: INORGANICS}


\section*{AMEC VALIDATED}

\section*{LEVEL IV}

\footnotetext{
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
Project ID: 13267 (Study 1)
Routine Outfall 01]-Grab Sampled: 01/11/05
Report Number: IOA0549
Received: 01/11/05
}

DRAFT: INORGANICS


\section*{AMEC VALIDATED}

\section*{LEVEL IV}

\section*{DRAFT REPORT}

DRAFT REPORT
data subiect to change
\begin{tabular}{|c|c|c|c|}
\hline MWH-Pasadena/Boeing & \multicolumn{3}{|l|}{Project ID: 13267 (Study 1)} \\
\hline 300 North Lake Avenue, Suite 1200 & & Routine Outfall 011 - Grab & Sampled: 01/11/05 \\
\hline Pasadena, CA 91101 & Report Number: & IOAD549 & Received: 01/11/05 \\
\hline Attention: Bronwyn Kelly & & & Recerved. Olilos \\
\hline
\end{tabular}

\section*{DRAFT: INORGANICS}


Analysis Not Velidat

\section*{AMEC VALIDATED}

\section*{LEVEL IV}

\section*{DRAFT: INORGANICS}


\section*{AMEC VALIDATED}

\section*{LEVEL IV}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwryn Kelly

Project ID: 13267 (Study 1)
Routine Outfall 011-Grab
Report Nurnber: 1OAD549

Sampled: 01/11/05
Received: 01/11/05

\section*{DRAFT: TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)}


\section*{amec validated}

\section*{LEVEL IV}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Routine Outfall 011 - Grab Sampled: 01/11/05
Report Number: 10A:3549

Received: 01/11/05

\section*{DRAFT: INORGANICS}

Method
Batch
MDL Reporting Sample Dilution Date
Date Data

Sample ID: IOA0549-01 (DRAFT: Outfall 011 - grab - Water) - cont. Reporting Units: mg/ Ammonia-N (Distilled) Biochemical Oxygen Demand Chloride
Fluoride
Nitrate/Nitrite-N
Oil \& Grease
Residual Chlorine
Sulfate
Surfactants (MBAS)
Total Dissolved Solids
Total Organic Carbon
Total Suspended Solids
\begin{tabular}{|c|c|c|}
\hline EPA 350.2 & 5 A 13063 & 0.30 \\
\hline EPA 405.1 & 5 A12041 & 0.59 \\
\hline EPA 300.0 & 5.411040 & 0.26 \\
\hline EPA 300.0 & 5.115022 & 0.074 \\
\hline EPA 300.0 & 5.411040 & 0.072 \\
\hline EPA 413.1 & 5 A13065 & 0.94 \\
\hline EPA 330.5 & 5.12045 & 0.10 \\
\hline EPA 300.0 & 5 A 11040 & 0.18 \\
\hline SM5540-C & 5 A12059 & 0.044 \\
\hline SM2540C & 5.13089 & 16. \\
\hline EPA 415.1 & 5.113053 & 0.56 \\
\hline EPA 160.2 & 5A14084 & 1 C \\
\hline
\end{tabular}

\section*{AMEC VALIDATED} LEVEL IV

DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE


\title{
amec \({ }^{9}\)
}

\title{
DATA VALIDATION REPORT
}

\section*{NPDES Monitoring}

\section*{ANALYSIS: PERCHLORATE \\ SAMPLE DELIVERY GROUPS: IOA0549 \& IOA0552}

Prepared by
AMEC-Denver Operations
Lakewood, Colorado 80226
\begin{tabular}{lrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0549/0552 \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: IOA0549/IOA0552 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Perchlorate \\ QC Level: Level IV \\ No. of Samples: 2 \\ Reviewer: L. Jarusewic \\ Date of Review: March 10, 2005
}

The sample listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 314.0, and 120.1, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Forn Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{lrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0549/0552 \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 011 & Outfall 011 & IOA0549-01 & Water & Perchlorate \\
\hline Outfall 018 & Outfall 018 & IOA0552-01 & Water & Perchlorate \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). No preservation problems were noted by the laboratory. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by field and laboratory personnel, and accounted for the samples and analysis presented in these SDGs. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The holding time was assessed by comparing the date of collection with the dates of analysis. The 28day analytical holding time for perchlorate was met, and no qualifications were required.

\subsection*{2.2 CALIBRATION}

The initial calibration correlation coefficients were \(\geq 0.995\). The IPC-MA recoveries were within the control limits of \(80-120 \%\). The ICV, CCV and IPC recoveries were within the control limits of \(90-110 \%\). No qualifications were required.

\subsection*{2.3 BLANKS}

The method blank and CCB results reported on the summary forms and in the raw data for blank analyses associated with the sample were nondetects at the reporting limit. No qualifications were required.

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The laboratory control sample recoveries were within the method control limits of \(85-115 \%\). No qualifications were required.

\subsection*{2.5 SURROGATES RECOVERY}

Surrogate recovery is not applicable to the analysis presented in these SDGs.

\subsection*{2.6 LABORATORY DUPLICATES}

No MS/MSD or duplicate analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.8 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.9 ICP SERIAL DILUTION}

ICP serial dilution is not applicable to the analysis presented in this data validation report.

\subsection*{2.10 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the samples in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculations errors were noted. No qualifications were required.

\subsection*{2.11 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.11.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.11.2 Field Duplicates}

There were no field duplicate pairs associated with these SDGs.

\section*{DRAFT: NNORGANICS}
Analyte Method
\begin{tabular}{lccccccc} 
Batch & \begin{tabular}{c} 
MDL \\
Limit
\end{tabular} & \begin{tabular}{c} 
Reporting \\
Limit
\end{tabular} & \begin{tabular}{c} 
Sample \\
Result
\end{tabular} & \begin{tabular}{c} 
Dilution \\
Factor Extracted
\end{tabular} & \begin{tabular}{c} 
Date \\
Analyzed
\end{tabular} \\
b-Water)-cont. & & & & & &
\end{tabular}

\section*{AMEC VALIDATED}

\title{
LEVEL IV
}

\section*{Snalysiv Not Validate*}

\title{
LABORATORY REPORT
}

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 011 -Grab

Sampled: 01/11/05
Received: 01/11/05
Issued: 03/09/05 19:48

\section*{NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117}

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain(s) of Custody, 6 pages, are included and are an integral part of this report.
This entire report was reviewed and approved for release.

\section*{SAMPLE CROSS REFERENCE}

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

\section*{LABORATORY ID}

IOA0549-01
1OA0549-02

\section*{CLIENT ID \\ Outfall 011 - grab}

Trip Blanks

MATRIX
Water
Water

Reviewed By:


\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011 - Grab

Report Number: IOA0549

\section*{CORRECTIVE ACTION REPORT}

Department: Extractions
Method: EPA 625
QC Batch: 5A12027

Identification and Definition of Problem:
1) The percent recoveries for 3,3-dichlorobenzidine, 4-chloroaniline, benzidine, and hexachlorobutadiene in the LCS and/or LCSD were below method acceptance limits.
2) The RPD between the LCS and LCSD exceeded method acceptance limits for 2-methylnaphthalene, 3,3-dichlorobenzidine, 4-chloroaniline, aniline, naphthalene.

\section*{Determination of the Cause of the Problem:}

Benzidine is known to be a problematic compound. According to the EPA, it can be subject to oxidative losses during solvent extraction and its chromatographic behavior is poor. A definitive cause for the other QC failures has not been determined.

\section*{Corrective Action Taken:}

All results reported for 3,3-dichlorobenzidine, 4-chloroaniline, benzidine, and hexachlorobutadiene are potentially biased low and can be considered estimates only. No acceptable precision data could be reported for 2-methylnaphthalene, 3,3-dichlorobenzidine, 4-chloroaniline, aniline, and naphthalene. Samples could not be reextracted within the method-specified holding time.


\author{
Del Mar Analytical, Irvine \\ Michele Harper \\ Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
\begin{tabular}{rr} 
Project ID: Routine Outfall 011 - Grab & \\
Report Number: \(10 A 0549\) & Sampled: 01/11/05 \\
& Received: 01/11/05
\end{tabular}

TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{Sample ID: 1OA0549-01 (Outfall 011 - grab - Water)} \\
\hline Reporting Units: mg/ & & & & & & & & & \\
\hline Total Recoverable Hydrocarbons & EPA 418.1 & 5A12075 & 0.31 & 1.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011 - Grab
Sampled: 01/11/05
Received: 01/11/05

\section*{EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & Dilution Factor & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{Sample ID: 1OA0549-01 (Outfall 011 - grab - Water) - cont.} \\
\hline \multicolumn{10}{|l|}{Reporting Units: mg/l} \\
\hline EFH (C13-C22) & EPA 8015B & 5A13035 & 0.082 & 0.50 & ND & 0.952 & 01/13/05 & 01/14/05 & \\
\hline Surrogate: \(n\)-Octacosane (40-125\%) & & & & & \(57 \%\) & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
MWH-Pasadena/Boeing \\
300 North Lake Avenue, Suite 1200 \\
Pasadena, CA 91101 \\
Attention: Bronwyn Kelly
\end{tabular} & & Project ID:
Number: & Routine
10A054 & Outfall 011 - & Grab & & \begin{tabular}{l}
Samp \\
Recei
\end{tabular} & \begin{tabular}{l}
ed: \(01 / 11 / 05\) \\
01/11/05
\end{tabular} & \\
\hline \multicolumn{10}{|c|}{VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)} \\
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{Sample ID: IOA0549-01 (Outfall 011 - grab - Water) - cont.} \\
\hline \multicolumn{10}{|l|}{Reporting Units: mgh} \\
\hline GRO (C4-C12) & EPA 8015 Mod . & 5A17030 & 0.050 & 0.10 & ND & 1 & 01/17/05 & 01/17/05 & \\
\hline Surrogate: 4-BFB (FID) (65-140\%) & & & & & \[
79 \%
\] & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
MWH-Pasadena/Boeing \\
300 North Lake Avenue, Suite 1200 \\
Pasadena, CA 91101 \\
Attention: Bronwyn Kelly
\end{tabular} & \begin{tabular}{l}
Project ID: \\
Report Number:
\end{tabular} & Routine
IOA05 & Outfall 011 & Grab & & Samp Recei & \begin{tabular}{l}
ed: 01/11/05 \\
ed: 01/11/05
\end{tabular} & \\
\hline \multicolumn{9}{|c|}{FREON 113 (EPA 8260B)} \\
\hline Analyte Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & Sample Result & Dilution Factor & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
Sample ID: IOA0549-01 (Outfall 011 - grab - Water) - cont. \\
Reporting Units: \(u g /\)
\end{tabular}} \\
\hline Trichlorotrifluoroethane (Freon 113) EPA 8260B & 5A12008 & 1.2 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline \multicolumn{9}{|l|}{Surrogate: Dibromofluoromethane (80-120\%) 100} \\
\hline Surrogate: Toluene-d8 (80-120\%) & & & & 100\% & & & & \\
\hline Surrogate: 4-Bromofluorobenzene (80-120\%) & & & & 98\% & & & & \\
\hline
\end{tabular}

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Routine Outfall 011 - Grab
Report Number: 1OA0549 Sampled: 01/11/05
Received: 01/11/05

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date
Analyz \\
\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{Sample ID: IOA0549-01 (Outfall 011 - grab - Water) - cont. Reporting Units: ugh}} \\
\hline & & & & & & & & \\
\hline Benzene & EPA 624 & 5A12008 & 0.28 & 1.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline Bromodichloromethane & EPA 624 & 5A12008 & 0.30 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline Bromoform & EPA 624 & 5 A 12008 & 0.32 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline Bromomethane & EPA 624 & 5A12008 & 0.34 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline Carbon tetrachloride & EPA 624 & 5A12008 & 0.28 & 0.50 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline Chlorobenzene & EPA 624 & 5A12008 & 0.36 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline Chloroethane & EPA 624 & \(5 \mathrm{Al2008}\) & 0.33 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline Chloroform & EPA 624 & 5 A12008 & 0.33 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline Chloromethane & EPA 624 & 5A12008 & 0.30 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline Dibromochloromethane & EPA 624 & 5A12008 & 0.28 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline 1,2-Dichlorobenzene & EPA 624 & 5A12008 & 0.32 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline 1,3-Dichlorobenzene & EPA 624 & 5A12008 & 0.35 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline 1,4-Dichlorobenzene & EPA 624 & 5A12008 & 0.37 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline 1,1-Dichloroethane & EPA 624 & 5A12008 & 0.27 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline 1,2-Dichloroethane & EPA 624 & 5A12008 & 0.28 & 0.50 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline 1,1-Dichloroethene & EPA 624 & 5A12008 & 0.32 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline trans-1,2-Dichloroethene & EPA 624 & 5A12008 & 0.27 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline 1,2-Dichloropropane & EPA 624 & 5A12008 & 0.35 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline cis 1,3 -Dichloropropene & EPA 624 & SA12008 & 0.22 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline traus-1,3-Dichloropropene & EPA 624 & 5A12008 & 0.24 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline Ethylbenzene & EPA 624 & 5A12008 & 0.25 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline Methylene chloride & EPA 624 & 5A12008 & 0.48 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline 1,1,2,2-Tetrachloroethane & EPA 624 & 5A12008 & 0.24 & 2.0 & ND & , & 01/12/05 & 01/12/05 \\
\hline Tetrachloroethene & EPA 624 & 5A12008 & 0.32 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline Toluene & EPA 624 & 5A12008 & 0.36 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline 1,1,1-Trichloroethane & EPA 624 & 5A12008 & 0.30 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline 1,1,2-Trichloroethane & EPA 624 & 5A12008 & 0.30 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline Trichloroethene & EPA 624 & 5A12008 & 0.26 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline & EPA 624 & 5A12008 & 0.34 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline \begin{tabular}{l}
Vinyl chloride \\
Xylenes, Total
\end{tabular} & EPA 624
EPA 624 & 5A12008 & 0.26 & 0.50 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline \multicolumn{2}{|l|}{Surrogate: Dibromofluoromethane (80-120\%)} & 5A12008 & 0.52 & 4.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline \multicolumn{2}{|l|}{Surrogate: Toluene-d8 (80-120\%)} & & & & 100\% & & & \\
\hline \multicolumn{2}{|l|}{Surrogate: 4-Bromofluorobenzene (80-120\%)} & & & & 98\% & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager

\title{
Del Mar Analytical
}
\begin{tabular}{|lll} 
MWH-Pasadena/Boeing & Project ID: Routine Outfall 011-Grab & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05\) \\
Pasadena, CA 91101 & Report Number: 1OA0549 & Received: \(01 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

PURGEABLES BY GC/MS (EPA 624)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{Sample ID: IOA0549-02 (Trip Blanks - Water)
Reporting Units: ug/}} \\
\hline & & & & & & & & & \\
\hline Benzene & EPA 624 & 5A12008 & 0.28 & 1.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline Bromodichloromethane & EPA 624 & 5A12008 & 0.30 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline Bromoform & EPA 624 & 5A12008 & 0.32 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline Bromomethane & EPA 624 & 5A12008 & 0.34 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline Carbon tetrachloride & EPA 624 & 5A12008 & 0.28 & 0.50 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline Chlorobenzene & EPA 624 & 5A12008 & 0.36 & 2.0 & 0.73 & 1 & 01/12/05 & 01/12/05 & J \\
\hline Chloroethane & EPA 624 & 5A12008 & 0.33 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline Chloroform & EPA 624 & 5A12008 & 0.33 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline Chloromethane & EPA 624 & 5A12008 & 0.30 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline Dibromochloromethane & EPA 624 & 5A12008 & 0.28 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline 1,2-Dichlorobenzene & EPA 624 & 5A12008 & 0.32 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline 1,3-Dichlorobenzene & EPA 624 & 5A12008 & 0.35 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline 1,4-Dichlorobenzene & EPA 624 & 5A12008 & 0.37 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline 1,1-Dichloroethane & EPA 624 & 5A12008 & 0.27 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline 1,2-Dichloroethane & EPA 624 & 5A12008 & 0.28 & 0.50 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline 1,1-Dichloroethene & EPA 624 & 5A12008 & 0.32 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline trans-1,2-Dichloroethene & EPA 624 & 5A12008 & 0.27 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline 1,2-Dichloropropane & EPA 624 & 5A12008 & 0.35 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline cis-1,3-Dichlorepropene & EPA 624 & 5 Al 12008 & 0.22 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline trans-1,3-Dichloropropene & EPA 624 & 5A12008 & 0.24 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline Ethylbenzene & EPA 624 & 5A12008 & 0.25 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline Methylene chloride & EPA 624 & 5A12008 & 0.48 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline 1,1,2,2-Tetrachloroethane & EPA 624 & 5A12008 & 0.24 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline Tetrachloroethene & EPA 624 & 5A12008 & 0.32 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline Toluene & EPA 624 & 5A12008 & 0.36 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline 1,1,1-Trichloroethane & EPA 624 & 5A12008 & 0.30 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline 1,1,2-Trichloroethane & EPA 624 & 5A12008 & 0.30 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline Trichloroethene & EPA 624 & 5A12008 & 0.26 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline Trichlorofluoromethane & EPA 624 & 5A12008 & 0.34 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline Vinyl chloride & EPA 624 & 5A12008 & 0.26 & 0.50 & ND & I & 01/12/05 & 01/12/05 & \\
\hline Xylenes, Total & EPA 624 & 5A12008 & 0.52 & 4.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline \multicolumn{2}{|l|}{Surrogate: Dibromofluoromethane (80-120\%)} & & & & 96\% & & & & \\
\hline \multicolumn{2}{|l|}{Surrogate: Toluene-d8 (80-120\%)} & & & & 100\% & & & & \\
\hline \multicolumn{2}{|l|}{Surrogate: 4-Bromofluorobenzene (80-120\%)} & & & & 97\% & & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011-Grab
Report Number: IOA0549

Sampled: 01/11/05
Received: 01/11/05

PURGEABLES BY GC/MS (EPA 624)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & \begin{tabular}{l}
Date \\
Analyzed
\end{tabular} & Data Qualfiers \\
\hline \multicolumn{9}{|l|}{Sample ID: IOA0549-01 (Outfall 011 - grab - Water)} \\
\hline \multicolumn{9}{|l|}{Reporting Units: ug/} \\
\hline Acrolein EPA 624 & 5A12008 & 4.6 & 50 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline Acrylonitrile EPA 624 & 5A12008 & 5.1 & 50 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline 2-Chloroethyl vinyl ether EPA 624 & 5A12008 & 1.3 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline Surrogate: Dibromofluoromethane (80-120\%) & & & & 100\% & & & & \\
\hline Surrogate: Toluene-d8 (80-120\%) & & & & \(100 \%\) & & & & \\
\hline Siurogate: 4-Bromofluorobenzene (80-120\%) & & & & 98\% & & & & \\
\hline \multicolumn{9}{|l|}{Sample ID: 1OA0549-02 (Trip Blanks - Water)} \\
\hline \multicolumn{9}{|l|}{Reporting Units: ug/} \\
\hline Acrolein EPA 624 & 5A12008 & 4.6 & 50 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline Acrylonitrile EPA 624 & 5A12008 & 5.1 & 50 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline 2-Chloroethyl vinyl ether EPA 624 & 5A12008 & 1.3 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline Surrogate: Dibromofluoromethane (80-120\%) & & & & 96\% & & & & \\
\hline Surrogate: Toluene-d8 (80-120\%) & & & & 100\% & & & & \\
\hline Surrogate: 4-Bromofluorobenzene (80-120\%) & & & & 97\% & & & & \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Michele Harper
Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011 - Grab

Report Number: 1OA0549

Sampled: 01/11/05
Received: 01/11/05

\section*{PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilation \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{Sample ID: 10A0549-01 (Outfall 011 - grab - Water)} \\
\hline \multicolumn{10}{|l|}{Reporting Units: ug/} \\
\hline 1,2-Dichloro-1,1,2-trifluoroethane & EPA 624 (MOD.) & 5A12008 & N/A & 120 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline Cyclohexane & EPA 624 (MOD.) & 5A12008 & N/A & 120 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011-Grab
Report Number: IOA0549 Sampled: 01/11/05

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & Dllution Factor & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{Sample ID: IOA0549-01 (Ontfall 011 - grab - Water) - cont. Reporting Units: ugh}} \\
\hline & & & & & & & & & \\
\hline Acenaphthene & EPA 625 & 5A12027 & 0.10 & 0.50 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline Acenaphthylene & EPA 625 & 5A12027 & 0.10 & 0.50 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline Aniline & EPA 625 & 5A12027 & 2.9 & 10 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline Anthracene & EPA 625 & 5A12027 & 0.083 & 0.50 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline Benzidine & EPA 625 & 5A12027 & 2.4 & 5.0 & ND & 0.943 & 01/12/05 & 01/18/05 & L2 \\
\hline Benzoic acid & EPA 625 & 5A12027 & 3.7 & 20 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline Benzo(a)anthracene & EPA 625 & 5A12027 & 0.038 & 5.0 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline Benzo(a)pyrene & EPA 625 & 5A12027 & 0.14 & 2.0 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline Berizo(b)fluoranthene & EPA 625 & 5A12027 & 0.050 & 2.0 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline Benzo(g,h,i)perylene & EPA 625 & 5 A 12027 & 0.059 & 5.0 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline Benzo(k)fluoranthene & EPA 625 & 5 A12027 & 0.053 & 0.50 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline Benzyl alcohol & EPA 625 & 5 Al 2027 & 0.21 & 5.0 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline Bis(2-chloroethoxy)methane & EPA 625 & 5 A 12027 & 0.072 & 0.50 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline Bis(2-chloroethyl)ether & EPA 625 & 5A12027 & 0.084 & 0.50 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline Bis(2-chloroisopropyl)ether & EPA 625 & 5A12027 & 0.11 & 0.50 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline Bis(2-ethylhexyl)phthalate & EPA 625 & 5A12027 & 1.1 & 5.0 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline 4-Bromophenyl phenyl ether & EPA 625 & 5A12027 & 0.12 & 1.0 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline Butyl benzyl phthalate & EPA 625 & 5A12027 & 0.34 & 5,0 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline 4 Chloroaniline & EPA 625 & 5 A12027. & 0.20 & 2.0 & ND & 0.943 & 01/12/05 & 01/18/05 & L2 \\
\hline 2-Chloronaphthalene & EPA 625 & 5A12027 & 0.059 & 0.50 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline 4-Chloro-3-methylphenol & EPA 625 & 5A12027 & 0.34 & 2.0 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline 4-Chlorophenyl phenyl ether & EPA 625 & 5A12027 & 0.056 & 0.50 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline 2-Chlorophenol & EPA 625 & 5A12027 & 0.12 & 1.0 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline Chrysene & EPA 625 & 5A12027 & 0.072 & 0.50 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline Dibenz(a,h)anthracene & EPA 625 & 5A12027 & 0.083 & 0.50 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline Dibenzofuran & EPA 625 & 5A12027 & 0.075 & 0.50 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline Di-n-butyl phthalate & EPA 625 & 5 A 12027 & 0.26 & 2.0 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline 1,2-Dichlorobenzene & EPA 625 & 5 A12027 & 0.11 & 0.50 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline 1,3-Dichlorobenzene & EPA 625 & 5A12027 & 0.13 & 0.50 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline 1,4-Dichlorobenzene & EPA 625 & 5A12027 & 0.050 & 0.50 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline 3,3-Dichlorobenzidine & EPA 625 & 5A12027 & 0.93 & 5.0 & ND & 0.943 & 01/12/05 & 01/18/05 & L2 \\
\hline 2,4-Dichlorophenol & EPA 625 & 5A12027 & 0.21 & 2.0 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline Diethyl phthalate & EPA 625 & 5A12027 & 0.12 & 1.0 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline 2,4-Dimethylphenol & EPA 625 & 5A12027 & 0.31 & 2.0 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline Dimethyl phthalate & EPA 625 & 5A12027 & 0.081 & 0.50 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline 4,6-Dinitro-2-methylphenol & EPA 625 & 5A12027 & 0.38 & 5.0 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline 2,4-Dinitrophenol & EPA 625 & 5A12027 & 2.7 & 5.0 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline 2,4-Dinitrotoluene & EPA 625 & 5A12027 & 0.23 & 5.0 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline 2,6-Dinitrotoluene & EPA 625 & 5A12027 & 0.24 & 5.0 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline Di-n-octyl phthalate & EPA 625 & 5 A12027 & 0.17 & 5.0 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline 1,2-Diphenylhydrazine/Azobenzene & EPA 625 & 5A12027 & 0.087 & 1.0 & ND & 0.943 & 01/12/05 & 01/18/05 & \\
\hline \multicolumn{10}{|l|}{\begin{tabular}{l}
Michele Harper \\
Project Manager
\end{tabular}} \\
\hline
\end{tabular}

Del Mar Analytical

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Routine Outfall 011 - Grab
Report Number: IOA0549

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{llllllllll} 
& Mnalyte & Method & Batch & \begin{tabular}{c} 
MDL \\
Limit
\end{tabular} & \begin{tabular}{c} 
Reporting \\
Limit
\end{tabular} & \begin{tabular}{c} 
Sample \\
Result
\end{tabular} & \begin{tabular}{c} 
Dilution \\
Factor
\end{tabular} & \begin{tabular}{c} 
Date \\
Extracted
\end{tabular} & \begin{tabular}{c} 
Date \\
Analyzed
\end{tabular} \\
Qualifiers
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011-Grab
Report Number: IOA0549

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}
\begin{tabular}{llllllllll} 
Analyte & Method & Batch & MDL & Limit & \begin{tabular}{c} 
Reporting \\
Limit
\end{tabular} & \begin{tabular}{c} 
Sample \\
Result
\end{tabular} & \begin{tabular}{c} 
Dilution \\
Factor
\end{tabular} & \begin{tabular}{c} 
Date \\
Extracted
\end{tabular} & \begin{tabular}{c} 
Date \\
Analyzed
\end{tabular} \\
Qualifiers
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
MWH-Pasadena/Boeing \\
300 North Lake Avenue, Suite 1200 \\
Pasadena, CA 91101 \\
Attention: Bronwyn Kelly
\end{tabular} & \multicolumn{2}{|r|}{Report Number:} & Routine
IOA054 & Outfall 011 - & Grab & & \begin{tabular}{l}
Samp \\
Recei
\end{tabular} & \[
\begin{aligned}
& \text { led: } 01 / 11 / 05 \\
& \text { ved: } 01 / 11 / 05
\end{aligned}
\] & \\
\hline \multicolumn{10}{|c|}{TOTAL PCBS (EPA 608)} \\
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & \begin{tabular}{l}
Date \\
Analyzed
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{Sample ID: IOA0549-01 (Outfall 011 - grab - Water) - cont.} \\
\hline \multicolumn{10}{|l|}{Reparting Units: ug/} \\
\hline Aroclor 1016 & EPA 608 & 5A13049 & 0.067 & 1.0 & ND & 0.962 & 01/13/05 & 01/14/05 & \\
\hline Aroclor 1221 & EPA 608 & 5A13049 & 0.057 & 1.0 & ND & 0.962 & 01/13/05 & 01/14/05 & \\
\hline Aroclor 1232 & EPA 608 & 5A13049 & 0.13 & 1.0 & ND & 0.962 & 01/13/05 & 01/14/05 & \\
\hline Aroclor 1242 & EPA 608 & SA13049 & 0.12 & 1.0 & ND & 0.962 & 01/13/05 & 01/14/05 & \\
\hline Aroclor 1248 & EPA 608 & 5A13049 & 0.21 & 1.0 & ND & 0.962 & 01/13/05 & 01/14/05 & \\
\hline Aroclor 1254 & EPA 608 & 5A13049 & 0.16 & 1.0 & ND & 0.962 & 01/13/05 & 01/14/05 & \\
\hline Aroclor 1260 & EPA 608 & 5A13049 & 0.17 & 1.0 & ND & 0.962 & 01/13/05 & 01/14/05 & \\
\hline Surrogate: Decachlorobiphenyl (45-120\%) & & & & & 70\% & & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
MWH-Pasadena/Boeing \\
300 North Lake Avenue, Suite 1200 \\
Pasadena, CA 91101 \\
Attention: Bronwyn Kelly
\end{tabular} & \multicolumn{2}{|r|}{Report Number:} & \multicolumn{3}{|l|}{IOA0549} & \multicolumn{4}{|c|}{\begin{tabular}{l}
Sampled: 01/11/05 \\
Received: 01/11/05
\end{tabular}} \\
\hline & & & MET & LS & & & & & \\
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & \begin{tabular}{l}
Date \\
Analyzed
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{Sample ID: 1OA0549-01 (Outfall 011 - grab - Water) - cont. Reporting Units: mg \(\lambda\)} \\
\hline Barium & EPA 200.8 & 5A14051 & 0.00014 & 0.0010 & 0.019 & 1 & 01/14/05 & 01/14/05 & \\
\hline Boron & EPA 200.7 & 5A14046 & 0.0074 & 0.050 & 0.065 & 1 & 01/14/05 & 01/14/05 & \\
\hline Iron & EPA 200.8 & \(5 \mathrm{Al4051}\) & 0.0032 & 0.010 & 0.98 & 1 & 01/14/05 & 01/14/05 & \\
\hline
\end{tabular}
\begin{tabular}{|lc} 
MWH-Pasadena/Boeing & Project ID: Routine Outfall 011 - Grab \\
300 North Lake Avenue, Suite 1200 & \\
Pasadena, CA 91101 & Report Number: 1OA0549 \\
Attention: Bronwyn Kelly &
\end{tabular}

METALS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{Sample ID: 1OA0549-01 (Outfall 011 - grab - Water) - cont. Reporting Units: ugh}} \\
\hline & & & & & & & & & \\
\hline Antimony & EPA 200.8 & 5A12054 & 0.18 & 2.0 & 0.35 & 1 & 01/12/05 & 01/12/05 & J \\
\hline Arsenic & EPA 200.8 & SA14051 & 0.49 & 1.0 & 1.6 & 1 & 01/14/05 & 01/18/05 & \\
\hline Beryllium & EPA 200.8 & 5A14051 & 0.037 & 0.50 & 0.063 & 1 & 01/14/05 & 01/18/05 & J \\
\hline Cadmium & EPA 200.8 & 5A12054 & 0.015 & 1.0 & 0.14 & 1 & 01/12/05 & 01/12/05 & J \\
\hline Chromium & EPA 200.8 & 5A14051 & 0.26 & 1.0 & 1.8 & 1 & 01/14/05 & 01/18/05 & B \\
\hline Cobalt & EPA 200.8 & 5A14051 & 0.10 & 1.0 & 0.71 & 1 & 01/14/05 & 01/14/05 & J \\
\hline Copper & EPA 200.8 & 5A12054 & 0.49 & 2.0 & 4.2 & 1 & 01/12/05 & 01/12/05 & \\
\hline Lead & EPA 200.8 & 5A12054 & 0.13 & 1.0 & 1.0 & 1 & 01/12/05 & 01/12/05 & \\
\hline Manganese & EPA 200.8 & 5A14051 & 0.44 & 1.0 & 16 & 1 & 01/14/05 & 01/14/05 & \\
\hline Mercury & EPA 245.1 & 5A12047 & 0.063 & 0.20 & 0.13 & 1 & 01/12/05 & 01/12/05 & J \\
\hline Nickel & EPA 200.8 & 5A12054 & 0.15 & 1.0 & 2.3 & 1 & 01/12/05 & 01/12/05 & \\
\hline Selenium & EPA 200.8 & 5A14051 & 0.36 & 2.0 & 0.90 & 1 & 01/14/05 & 01/14/05 & J \\
\hline Silver & EPA 200.8 & 5A14051 & 0.089 & 1.0 & 0.26 & 1 & 01/14/05 & 01/14/05 & J \\
\hline Thallium & EPA 200.8 & 5A14051 & 0.075 & 1.0 & 0.90 & 1 & 01/14/05 & 01/16/05 & J \\
\hline Vanadium & EPA 200.8 & 5A14051 & 0.86 & 1.0 & 3.4 & 1 & 01/14/05 & 01/14/05 & \\
\hline Zinc & EPA 200.8 & 5A12054 & 3.1 & 20 & 18 & 1 & 01/12/05 & 01/12/05 & J \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager
\begin{tabular}{lrr} 
MWH-Pasadena/Boeing & Project ID: Routine Outfall 011 -Grab & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05\) \\
Pasadena, CA 91101 & Report Number: 1OA0549 & Received: \(01 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{INORGANICS} \\
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & \begin{tabular}{l}
Date \\
Analyzed
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{Sample ID: IOA0549-01 (Outfall 011 - grab - Water) - cont. Reporting Units: mgh}} \\
\hline & & & & & & & & & \\
\hline Ammonia-N (Distilled) & EPA 350.2 & 5A13063 & 0.30 & 0.50 & ND & 1 & 01/13/05 & 01/13/05 & \\
\hline Biochemical Oxygen Demand & EPA 405.1 & 5A12041 & 0.59 & 2.0 & 0.83 & 1 & 01/12/05 & 01/17/05 & J \\
\hline Chloride & EPA 300.0 & 5A11040 & 0.26 & 0.50 & 3.6 & 1 & 01/11/05 & 01/11/05 & \\
\hline Fluoride & EPA 300.0 & 5A15022 & 0.074 & 0.50 & 0.26 & 1 & 01/15/05 & 01/15/05 & B, J \\
\hline Nitrate/Nitrite-N & EPA 300.0 & 5A11040 & 0.072 & 0.26 & 0.91 & 1 & 01/11/05 & 01/11/05 & \\
\hline Oll \& Grease & EPA 413.1 & 5A13065 & 0.94 & 5.0 & 15 & 1 & 01/13/05 & 01/13/05 & \\
\hline Residual Chlorine & EPA 330.5 & 5A12045 & 0.10 & 0.10 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline Sulfate & EPA 300.0 & 5A11040 & 0.18 & 0.50 & 4.9 & 1 & 01/11/05 & 01/11/05 & \\
\hline Surfactants (MBAS) & SM5540-C & 5A12059 & 0.044 & 0.10 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline Total Dissolved Solids & SM2540C & 5A13089 & 10 & 10 & 88 & 1 & 01/13/05 & 01/13/05 & \\
\hline Total Organic Carbon & EPA 415.1 & 5A13053 & 0.56 & 1.0 & 10 & 1 & 01/12/05 & 01/12/05 & \\
\hline Total Suspended Solids & EPA 160.2 & 5A14084 & 10 & 10 & ND & 1 & 01/14/05 & 01/14/05 & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011-Grab
Report Number: IOA0549 Sampled: 01/11/05

Report Number: IOA0549

Sampled: 01/11/05
Received: 01/11/05

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{Sample ID: IOA0549-01 (Outfall 011 - grab - Water) - cont.} \\
\hline \multicolumn{10}{|l|}{Reporting Units: m//hr} \\
\hline Total Settleable Solids & EPA 160.5 & 5A12043 & 0.10 & 0.10 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline
\end{tabular}

17461Derian Ave., Suite 100, Invine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (949) \(370-1046\)


MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011-Grab
Report Number: IOA0549

Received: 01/11/05

INORGANICS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{Sample ID: 1OA0549-01 (Outfall 011 - grab - Water) - cont. Reporting Units: ug/}} \\
\hline & & & & & & & & & \\
\hline Chromium VI & EPA 218.6 & 5A11092 & 0.041 & 1.0 & ND & 1 & 01/11/05 & 01/11/05 & C \\
\hline Total Cyanide & EPA 335.2 & 5A11108 & 2.2 & 5.0 & ND & 1 & 01/11/05 & 01/11/05 & c \\
\hline Perchlorate & EPA 314.0 & 5A13051 & 0.80 & 4.0 & ND & 1 & 01/13/05 & 01/13/05 & \\
\hline
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011 - Grab
Report Number: IOA0549

Sampled: 01/11/05
Received: 01/11/05

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{Sample ID: IOA0549-01 (Outfall 011 - grab - Water) - cont.
Reporting Units: umhos/cm}} \\
\hline & & & & & & & & & \\
\hline Specific Conductance & EPA 120.1 & 5A13060 & 1.0 & 1.0 & 94 & 1 & 01/13/05 & 01/13/05 & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
MWH-Pasadena/Boeing \\
300 North Lake Avenue, Suite 1200 \\
Pasadena, CA 91101 \\
Attention: Bronwyn Kelly
\end{tabular} & \multicolumn{2}{|r|}{Project ID: Routine Outfall 011 - Grab} & Report Number: IOA0549 & \multicolumn{2}{|l|}{Sampled: \(01 / 11 / 05\)
Received: \(01 / 11 / 05\)} \\
\hline \multicolumn{6}{|c|}{SHORT HOLD TIME DETAIL REPORT} \\
\hline & Hold Time (in days) & \begin{tabular}{l}
Date/Time \\
Sampled
\end{tabular} & Date/Time Received & \begin{tabular}{l}
Date/Time \\
Extracted
\end{tabular} & Date/Time Anslyzed \\
\hline \multicolumn{6}{|l|}{Sample ID: Outfall 011 - grab (IOA0549-01) - Water} \\
\hline EPA 160.5 & 2 & 01/11/2005 10:48 & 01/11/2005 18:50 & 01/12/2005 09:30 & 01/12/2005 12:30 \\
\hline EPA 180.1 & 2 & 01/11/2005 10:48 & 01/11/2005 18:50 & 01/12/2005 11:30 & 01/12/2005 12:30 \\
\hline EPA 218.6 & 1 & 01/11/2005 10:48 & 01/11/2005 18:50 & 01/11/2005 21:36 & 01/11/2005 21:40 \\
\hline EPA 300.0 & 2 & 01/11/2005 10:48 & 01/11/2005 18:50 & 01/11/2005 21:00 & 01/11/2005 21:28 \\
\hline EPA 330.5 & 1 & 01/11/2005 10:48 & 01/11/2005 18:50 & 01/12/2005 10:00 & 01/12/2005 10:20 \\
\hline EPA 405.1 & 2 & 01/11/2005 10:48 & 01/11/2005 18:50 & 01/12/2005 11:00 & 01/17/2005 16:00 \\
\hline EPA 624 & 3 & 01/11/2005 10:48 & 01/11/2005 18:50 & 01/12/2005 00:00 & 01/12/2005 13:08 \\
\hline SM5540-C & 2 & 01/11/2005 10:48 & 01/11/2005 18:50 & 01/12/2005 13:06 & 01/12/2005 20:16 \\
\hline \multicolumn{6}{|l|}{Sample ID: Trip Blanks (1OA0549-02) - Water} \\
\hline EPA 624 & 3 & 01/11/2005 14:55 & 01/11/2005 18:50 & 01/12/2005 00:00 & 01/12/2005 12:37 \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager
\begin{tabular}{|lc|}
\hline \begin{tabular}{l} 
MWH-Pasadena/Boeing \\
300 North Lake Avenue, Suite 1200 \\
Pasadena, CA 91101 \\
Attention: Bronwyn Kelly
\end{tabular} & Project ID: Routine Outfall 011 - Grab \\
\hline & Report Number: IOA0549 \\
\hline
\end{tabular}

\section*{TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5A12075 Extracted: 01/12/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 01/12/2005 (5A12075-BLK1)} \\
\hline Total Recoverable Hydrocarbons ND & 1.0 & 0.31 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline LCS Analyzed: 01/12/2005 (5A12075-BS1) & & & & & & & & & & M-NR1 \\
\hline Total Recoverable Hydrocarbons 4.64 & 1.0 & 0.31 & \(\mathrm{mg} / \mathrm{l}\) & 5.00 & & 93 & 65-120 & & & \\
\hline \multicolumn{11}{|l|}{LCS Dup Analyzed: 01/12/2005 (5A12075-BSD1)} \\
\hline Total Recoverable Hydrocarbons 4.99 & 1.0 & 0.31 & \(\mathrm{mg} / 1\) & 5.00 & & 100 & 65-120 & 7 & 20 & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011 - Grab

Report Number: 10 A 0549

Sampled: 01/11/05
Received: 01/11/05

\section*{METHOD BLANKYQC DATA}

\section*{EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)}


MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011-Grab
Report Number: IOA0549
Sampled: 01/11/05
Received: 01/11/05

\section*{METHOD BIAMKIGC DATA}

\section*{VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)}


MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011-Grab
Report Number: 10A0549
Sampled: 01/11/05
Received: 01/11/05

\section*{METHOD BLANKKOC DATA}

\section*{FREON 113 (EPA 8260B)}
\begin{tabular}{llllllllllll} 
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

Blank Analyzed: 01/12/2005 (5A12008-BLK1)
\begin{tabular}{llllllll} 
\\
Trichlorotrifluoroethane (Freon 113) & ND & 5.0 & 1.2 & \(u g / 1\) & & & \\
Surrogate: Dibromofluoromethane & 24.6 & & & \(u g /\) & 25.0 & 98 & \(80-120\) \\
Surrogate: Toluene-d8 & 25.1 & & & \(u g / l\) & 25.0 & 100 & \(80-120\) \\
Surrogate: 4-Bromofluorobenzene & 24.8 & & & \(u g /\) & 25.0 & 99 & \(80-120\)
\end{tabular}

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly

\section*{Project ID: Routine Outfall 011-Grab}

Report Number: IOA0549
Sampled: 01/11/05
Received: 01/11/05

\section*{METHOH BLANKIOC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
Analyte Result

Batch: 5A12008 Extracted: 01/12/05
Blank Analyzed: 01/12/2005 (5A12008-BLK1)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Benzene & ND & 1.0 & 0.28 & ug/ & & & \\
\hline Bromodichloromethane & ND & 2.0 & 0.30 & ug/ & & & \\
\hline Bromoform & ND & 5.0 & 0.32 & ug/ & & & \\
\hline Bromomethane & ND & 5.0 & 0.34 & ug/ & & & \\
\hline Carbon tetrachloride & ND & 0.50 & 0.28 & ug/ & & & \\
\hline Chlorobenzene & ND & 2.0 & 0.36 & ug/ & & & \\
\hline Chloroethane & ND & 5.0 & 0.33 & ug/ & & & \\
\hline Chloroform & ND & 2.0 & 0.33 & ug/ & & & \\
\hline Chloromethane & ND & 5.0 & 0.30 & ug/ & & & \\
\hline Dibromochloromethane & ND & 2.0 & 0.28 & ug/l & & & \\
\hline 1,2-Dichlorobenzene & ND & 2.0 & 0.32 & ug/ & & & \\
\hline 1,3-Dichlorobenzene & ND & 2.0 & 0.35 & ug/ & & & \\
\hline 1,4-Dichlorobenzene & ND & 2.0 & 0.37 & ug/ & & & \\
\hline 14Dichloroethane & ND & 2.0 & 0.27 & ugh & & & \\
\hline 1,2-Dichloroethane & ND & 0.50 & 0.28 & ug/ & & & \\
\hline 1,1-Dichloroethene & ND & 5.0 & 0.32 & ug/ & & & \\
\hline trans-1,2-Dichloroethene & ND & 2.0 & 0.27 & ug/ & & & \\
\hline 1,2-Dichloropropane & ND & 2.0 & 0.35 & ug/ & & & \\
\hline cis-1,3-Dichloropropene & ND & 2.0 & 0.22 & ug/ & & & \\
\hline trans-1,3-Dichloropropene & ND & 2.0 & 0.24 & ug/ & & & \\
\hline Ethylbenzene & ND & 2.0 & 0.25 & ug/ & & & \\
\hline Methylene chloride & ND & 5.0 & 0.48 & ug/ & & & \\
\hline 1,1,2,2-Tetrachloroethane & ND & 2.0 & 0.24 & ug/ & & & \\
\hline Tetrachloroethene & ND & 2.0 & 0.32 & ug/ & & & \\
\hline Toluene & ND & 2.0 & 0.36 & ugh & & & \\
\hline 1,1,1-Trichloroethane & ND & 2.0 & 0.30 & ug/ & & & \\
\hline 1,1,2-Trichloroethane & ND & 2.0 & 0.30 & ug/ & & & \\
\hline Trichloroethene & ND & 2.0 & 0.26 & ug1 & & & \\
\hline Trichlorofluoromethane & ND & 5.0 & 0.34 & ugl & & & \\
\hline Vinyl chloride & ND & 0.50 & 0.26 & ugl & & & \\
\hline Xylenes, Total & ND & 4.0 & 0.52 & ugh & & & \\
\hline Surrogate: Dibromofluoromethane & 24.6 & & & ug/t & 25.0 & 98 & 80-120 \\
\hline Surrogate: Toluene-d8 & 25.1 & & & ug/ & 25.0 & 100 & 80-120 \\
\hline Surrogate: 4-Bromofluorobenzene & 24.8 & & & ug/ & 25.0 & 99 & 80-120 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

\title{
Del Mar Analytical
}

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Routine Outfall 011 - Grab
Report Number: IOA0549
Sampled: 01/11/05
Received: 01/11/05

\section*{METHOD BLANKIQC DATA}

\title{
PURGEABLES BY GC/MS (EPA 624)
}
\begin{tabular}{lllllllllll} 
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit
\end{tabular}

Batch: 5A12008 Extracted: 01/12/05
LCS Analyzed: 01/12/2005 (5A12008-BS1)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Benzene & 23.0 & 1.0 & 0.28 & ug/ & 25.0 & 92 & 70-120 \\
\hline Bromodichloromethane & 26.3 & 2.0 & 0.30 & \(\mathrm{ug} / \mathrm{l}\) & 25.0 & 105 & 70-140 \\
\hline Bromoform & 26.3 & 5.0 & 0.32 & ug/ & 25.0 & 105 & 55-135 \\
\hline Bromomethane & 27.1 & 5.0 & 0.34 & ug/ & 25.0 & 108 & 60-140 \\
\hline Carbon tetrachloride & 29.2 & 0.50 & 0.28 & ug/1 & 25.0 & 117 & 70-140 \\
\hline Chlorobenzene & 25.8 & 2.0 & 0.36 & ug/t & 25.0 & 103 & 80-125 \\
\hline Chloroethane & 24.9 & 5.0 & 0.33 & ug/ & 25.0 & 100 & 60-145 \\
\hline Chloroform & 24.5 & 2.0 & 0.33 & ug/ & 25.0 & 98 & 75-130 \\
\hline Chloromethane & 22.8 & 5.0 & 0.30 & ug/ & 25.0 & 91 & 40-145 \\
\hline Dibromochloromethane & 26.7 & 2.0 & 0.28 & ug/ & 25.0 & 107 & 65-145 \\
\hline 1,2-Dichlorobenzene & 25.6 & 2.0 & 0.32 & ug/ & 25.0 & 102 & 80-120 \\
\hline 1,3-Dichlorobenzene & 24.3 & 2.0 & 0.35 & ug/ & 25.0 & 97 & 80-120 \\
\hline 1,4-Dichlorobenzene & 24.0 & 2.0 & 0.37 & ugh & 25.0 & 96 & 80-120 \\
\hline 1,1-Dichloroethane & 23.8 & 2.0 & 0.27 & ugh & 25.0 & 95 & 70-135 \\
\hline 1,2-Dichloroethane & 26.9 & 0.50 & 0.28 & ugh & 25.0 & 108 & 60-150 \\
\hline 1,1-Dichloroethene & 24.2 & 5.0 & 0.32 & ug/l & 25.0 & 97 & 75-135 \\
\hline trans-1,2-Dichloroethene & 25.2 & 2.0 & 0.27 & ug/l & 25.0 & 101 & 70-130 \\
\hline 1,2-Dichloropropane & 24.3 & 2.0 & 0.35 & ug/ & 25.0 & 97 & 70-120 \\
\hline cis-1,3-Dichloropropene & 26.7 & 2.0 & 0.22 & ug/l & 25.0 & 107 & 75-130 \\
\hline trans-1,3-Dichloropropene & 27.4 & 2.0 & 0.24 & ugh & 25.0 & 110 & 75-135 \\
\hline Ethylbenzene & 26.5 & 2.0 & 0.25 & ug/ & 25.0 & 106 & 80-120 \\
\hline Methylene chloride & 24.3 & 5.0 & 0.48 & ug/ & 25.0 & 97 & 60-135 \\
\hline 1,1,2,2-Tetrachloroethane & 21.8 & 2.0 & 0.24 & \(\mathrm{ug} / \mathrm{l}\) & 25.0 & 87 & 60-135 \\
\hline Tetrachloroethene & 27.2 & 2.0 & 0.32 & ug/ & 25.0 & 109 & 75-125 \\
\hline Toluene & 24.2 & 2.0 & 0.36 & ug/ & 25.0 & 97 & 75-120 \\
\hline 1,1,1-Trichloroethane & 28.0 & 2.0 & 0.30 & ugh & 25.0 & 112 & 75-140 \\
\hline 1,1,2-Trichloroethane & 24.9 & 2.0 & 0.30 & ug/ & 25.0 & 100 & 70-125 \\
\hline Trichloroethene & 25.9 & 2.0 & 0.26 & ug/ & 25.0 & 104 & 80-120 \\
\hline Trichlorofluoromethane & 28.6 & 5.0 & 0.34 & ug/ & 25.0 & 114 & 65-145 \\
\hline Vinyl chloride & 22.0 & 0.50 & 0.26 & ug/ & 25.0 & 88 & 50-130 \\
\hline Surrogate: Dibromofluoromethane & 23.9 & & & ug/ & 25.0 & 96 & 80-120 \\
\hline Surrogate: Toluene-d8 & 24.9 & & & \(u g /\) & 25.0 & 100 & 80-120 \\
\hline Surrogate: 4-Bromofluorobenzene & 25.2 & & & ug/ & 25.0 & 101 & 80-120 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly
```

 Project ID: Routine Outfall 011 - Grab
 Report Number: IOA0549
Sampled: 01/11/05
Received: 01/11/05

```

\section*{METMOD BLANK/gC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{lccccccccccc} 
& & Reporting & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result \(\%\) REC & Limits & RPD & Limit & Qualifiers
\end{tabular}
Matrix Spike Analyzed: 01/12/2005 (5A12008-MS1)
Benzene
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & \multicolumn{5}{|c|}{Source: 10A0549-01} \\
\hline 1.0 & 0.28 & ug/ & 25.0 & ND & 104 & 70-120 \\
\hline 2.0 & 0.30 & ug/ & 25.0 & ND & 120 & 70-140 \\
\hline 5.0 & 0.32 & ug/ & 25.0 & ND & 116 & 55-140 \\
\hline 5.0 & 0.34 & ug/ & 25.0 & ND & 128 & 50-145 \\
\hline 0.50 & 0.28 & ug/ & 25.0 & ND & 131 & 70-145 \\
\hline 2.0 & 0.36 & ug/ & 25.0 & ND & 115 & 80-125 \\
\hline 5.0 & 0.33 & ug/ & 25.0 & ND & 119 & 50-145 \\
\hline 2.0 & 0.33 & ug/l & 25.0 & ND & 114 & 70-135 \\
\hline 5.0 & 0.30 & ug/ & 25.0 & ND & 110 & 35-145 \\
\hline 2.0 & 0.28 & ug/ & 25.0 & ND & 121 & 65-145 \\
\hline 2.0 & 0.32 & ug/1 & 25.0 & ND & 115 & 75-130 \\
\hline 2.0 & 0.35 & ugh & 25.0 & ND & 109 & 75-130 \\
\hline 2.0 & 0.37 & ug/ & 25.0 & ND & 108. & 80-120 \\
\hline 2.0 & 0.27 & ugh & 25.0 & ND & 111 & 65-135 \\
\hline 0.50 & 0.28 & ugh & 25.0 & ND & 121 & 60-150 \\
\hline 5.0 & 0.32 & ug/ & 25.0 & ND & 112 & 65-140 \\
\hline 2.0 & 0.27 & ug/ & 25.0 & ND & 118 & 65-135 \\
\hline 2.0 & 0.35 & ug/ & 25.0 & ND & 111 & 65-130 \\
\hline 2.0 & 0.22 & ugh & 25.0 & ND & 121 & 70-140 \\
\hline 2.0 & 0.24 & ug/ & 25.0 & ND & 122 & 70-140 \\
\hline 2.0 & 0.25 & ug/ & 25.0 & ND & 119 & 70-130 \\
\hline 5.0 & 0.48 & ug/ & 25.0 & ND & 113 & 60-135 \\
\hline 2.0 & 0.24 & ug/ & 25.0 & ND & 99 & 60-145 \\
\hline 2.0 & 0.32 & ug/l & 25.0 & ND & 122 & 70-130 \\
\hline 2.0 & 0.36 & ug/l & 25.0 & ND & 110 & 70-120 \\
\hline 2.0 & 0.30 & ug/ & 25.0 & ND & 130 & 75-140 \\
\hline 2.0 & 0.30 & ug/ & 25.0 & ND & 111 & 60-135 \\
\hline 2.0 & 0.26 & ugl & 25.0 & ND & 116 & 70-125 \\
\hline 5.0 & 0.34 & ug/ & 25.0 & ND & 133 & 55-145 \\
\hline 0.50 & 0.26 & ug/l & 25.0 & ND & 104 & 40-135 \\
\hline & & ug/ & 25.0 & & 99 & 80-120 \\
\hline & & ug/ & 25.0 & & 100 & 80-120 \\
\hline & & ug/l & 25.0 & & 101 & 80-120 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Routine Outfall 011 - Grab
Sampled: 01/11/05
Received: 01/11/05

\section*{METHOD BLANK/QCDATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{lllllllllll} 
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit \\
Batch: 5A12008 Extracted: \(01 / 12 / 05\) & & & & & & & & & & \\
Qualifiers
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Matrix Spike Dup Analyzed: 01/12/2005 (5A12008-MSD1)} & \multicolumn{8}{|c|}{Source: 1OA0549-01} \\
\hline Benzene & 22.7 & 1,0 & 0.28 & ug/ & 25.0 & ND & 91 & 70-120 & 14 & 20 \\
\hline Bromodichloromethane & 25.6 & 2.0 & 0.30 & ug/ & 25.0 & ND & 102 & 70-140 & 16 & 20 \\
\hline Bromoform & 24.9 & 5.0 & 0.32 & ug/ & 25.0 & ND & 100 & 55-140 & 16 & 25 \\
\hline Bromomethane & 28.8 & 5.0 & 0.34 & ug/ & 25.0 & ND & 115 & 50-145 & 10 & 25 \\
\hline Carbon tetrachloride & 28.3 & 0.50 & 0.28 & ug/ & 25.0 & ND & 113 & 70-145 & 15 & 25 \\
\hline Chlorobenzene & 25.4 & 2.0 & 0.36 & ug/ & 25.0 & ND & 102 & 80-125 & 13 & 20 \\
\hline Chloroethane & 26.8 & 5.0 & 0.33 & ug/ & 25.0 & ND & 107 & 50-145 & 11 & 25 \\
\hline Chloroform & 24.5 & 2.0 & 0.33 & ug/ & 25.0 & ND & 98 & 70-135 & 15 & 20 \\
\hline Chloromethane & 24.8 & 5.0 & 0.30 & ug/ & 25.0 & ND & 99 & 35-145 & 10 & 25 \\
\hline Dibromochloromethane & 26.2 & 2.0 & 0.28 & ug/ & 25.0 & ND & 105 & 65-145 & 14 & 25 \\
\hline 1,2-Dichlorobenzene & 25.2 & 2.0 & 0.32 & ug/ & 25.0 & ND & 101 & 75-130 & 13 & 20 \\
\hline 1,3-Dichlorobenzene & 24.2 & 2.0 & 0.35 & ugh & 25.0 & ND & 97 & 75-130 & 12 & 20 \\
\hline 1,4-Dichlorobenzene & 24.0 & 2.0 & 0.37 & ug/ & 25,0 & ND & 96 & 80-120 & 12 & 20 \\
\hline 1,1-Dichloroethane & 23.8 & 20 & 0.27 & ugA & 25.0 & ND & 95 & 65135 & 16 & 20 \\
\hline 1,2-Dichloroethane & 25.8 & 0.50 & 0.28 & ugn & 25.0 & ND & 103 & \(60-150\) & 16 & 20 \\
\hline 1,1-Dichloroethene & 24.4 & 5.0 & 0.32 & ug/ & 25.0 & ND & 98 & 65-140 & 14 & 20 \\
\hline trans-1,2-Dichloroethene & 25.5 & 2.0 & 0.27 & ug/ & 25.0 & ND & 102 & 65-135 & 14 & 20 \\
\hline 1,2-Dichloropropane & 24.0 & 2.0 & 0.35 & ug/ & 25.0 & ND & 96 & 65-130 & 14 & 20 \\
\hline cis-1,3-Dichloropropene & 25.9 & 2.0 & 0.22 & ug/ & 25.0 & ND & 104 & 70-140 & 15 & 20 \\
\hline trans-1,3-Dichloropropene & 26.5 & 2.0 & 0.24 & ug/ & 25.0 & ND & 106 & 70-140 & 14 & 25 \\
\hline Ethylbenzene & 26.2 & 2.0 & 0.25 & ug/ & 25.0 & ND & 105 & 70-130 & 13 & 20 \\
\hline Methylene chloride & 24.7 & 5.0 & 0.48 & ug/ & 25.0 & ND & 99 & 60-135 & 14 & 20 \\
\hline 1,1,2,2-Tetrachloroethane & 21.7 & 2.0 & 0.24 & ug/ & 25.0 & ND & 87 & 60-145 & 13 & 30 \\
\hline Tetrachloroethene & 26.8 & 2.0 & 0.32 & ug/ & 25.0 & ND & 107 & 70-130 & 13 & 20 \\
\hline Toluene & 24.0 & 2.0 & 0.36 & ugd & 25.0 & ND & 96 & 70-120 & 14 & 20 \\
\hline 1,1,1-Trichloroethane & 27.9 & 2.0 & 0.30 & ugh & 25.0 & ND & 112 & 75-140 & 16 & 20 \\
\hline 1,1,2-Trichloroethane & 23.6 & 2.0 & 0.30 & ug/ & 25.0 & ND & 94 & 60-135 & 16 & 25 \\
\hline Trichloroethene & 25.0 & 2.0 & 0.26 & ug/ & 25.0 & ND & 100 & 70-125 & 14 & 20 \\
\hline Trichlorofluoromethane & 28.6 & 5.0 & 0.34 & ugh & 25.0 & ND & 114 & 55-145 & 15 & 25 \\
\hline Vinyl chloride & 23.4 & 0.50 & 0.26 & ug/ & 25.0 & ND & 94 & 40-135 & 11 & 30 \\
\hline Surrogate: Dibromoffuoromethane & 24.3 & & & ughl & 25.0 & & 97 & 80-120 & & \\
\hline Surrogate: Toluene-d8 & 24.8 & & & ug/ & 25.0 & & 99 & 80-120 & & \\
\hline Surrogate: 4-Bromofluorobenzene & 25.3 & & & ug \(/\) & 25.0 & & 101 & 80-120 & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite 8-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 795-0851 2520 E. Sunset Rd. *3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}
Project ID: Routine Outfall 011 - Grab
Report Number: \(10 A 0549\)

Sampled: 01/11/05
Report Number: IOA0549
Received: 01/11/05

\section*{METHOD BLANKGOC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A12008 Extracted: 01/12/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/12/2005 (5A12008-BLK1)} \\
\hline Acrolein & ND & 50 & 4.6 & ug/ & & & & & & & \\
\hline Acrylonitrile & ND & 50 & 5.1 & ug/ & & & & & & & \\
\hline 2-Chloroethyl vinyl ether & ND & 5.0 & 1.3 & ugh & & & & & & & \\
\hline Surrogate: Dibromofluoromethane & 24.6 & & & ug/ & 25.0 & & 98 & 80-120 & & & \\
\hline Surrogate: Toluene-d8 & 25.1 & & & \(u g /\) & 25.0 & & 100 & 80-120 & & & \\
\hline Surrogate: 4-Bromofluorobenzene & 24.8 & & & \(u g /\) & 25.0 & & 99 & 80-120 & & & \\
\hline \multicolumn{12}{|l|}{LCS Analyzed: 01/12/2005 (5A12008-BS1)} \\
\hline 2 -Chloroethyl vinyl ether & 23.4 & 5.0 & 1.3 & ug/ & 25.0 & & 94 & 20-175 & & & \\
\hline Surrogate: Dibromofuoromethane & 23.9 & & & \(u g /\) & 25.0 & & 96 & 80-120 & & & \\
\hline Surrogate: Toluene-d8 & 24.9 & & & ug/ & 25.0 & & 100 & 80-120 & & & \\
\hline Surrogate: 4-Bromofluorobenzene & 25.2 & & & \(u g /\) & 25.0 & & 101 & 80-120 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Matrix Spike Analyzed: 01/12/2005 (5A12008-MS1)} & \multicolumn{6}{|c|}{Source: IOA0549-01} & & \\
\hline 2 Chloroethyl vinyl ether & 26.2 & 5.0 & 1.3 & ughl & 25.0 & ND & 105 & 20-175 & & \\
\hline Surrogate: Dibromoflioromethane & 24.7 & & & ug/ & 25.0 & & 99 & 80-120 & & \\
\hline Surrogate: Toluene-d8 & 25.0 & & & ug/ & 25.0 & & 100 & 80-120 & & \\
\hline Surrogate: 4-Bromofluorobenzene & 25.3 & & & \(u g /\) & 25.0 & & 101 & 80-120 & & \\
\hline \multicolumn{3}{|l|}{Matrix Spike Dup Analyzed: 01/12/2005 (5A12008-MSD1)} & \multicolumn{8}{|c|}{Source: 10A0549-01} \\
\hline 2-Chloroethyl vinyl ether & 21.8 & 5.0 & 1.3 & ug/ & 25.0 & ND & 87 & 20-175 & 18 & 25 \\
\hline Surrogate: Dibromofluoromethane & 24.3 & & & ug/ & 25.0 & & 97 & 80-120 & & \\
\hline Surrogate: Toluene-d8 & 24.8 & & & \(u g /\) & 25.0 & & 99 & 80-120 & & \\
\hline Surrogate: 4-Bromofluorobenzene & 25.3 & & & \(u g /\) & 25.0 & & 101 & 80-120 & & \\
\hline
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011-Grab
Report Number: 1OA0549 Received: 01/11/05
Received: 01/11/05

\section*{METHOD BLANKVQC DATA}

\section*{PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A12008 Extracted: 01/12/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/12/2005 (5A12008-BLK1)} \\
\hline 1,2-Dichloro-1,1,2-trifluoroethane & ND & 120 & N/A & ug/ & & & & & & & \\
\hline Cyclohexane & ND & 120 & N/A & ug/ & & & & & & & \\
\hline
\end{tabular}

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Routine Outfall 011 - Grab
Report Number: 10 A 0549
Sampled: 01/11/05
\[
\text { Received: } 01 / 11 / 05
\]

\section*{METHOD BLANKGC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \[
\begin{aligned}
& \text { RPD } \\
& \text { Limit }
\end{aligned}
\] & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A12027 Extracted: 01/12/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/17/2005 (5A12027-BLK1)} \\
\hline Acenaphthene & ND & 0.50 & 0.10 & ug/ & & & & & & & \\
\hline Acenaphthylene & ND & 0.50 & 0.10 & ug/ & & & & & & & \\
\hline Aniline & ND & 10 & 2.9 & ug/ & & & & & & & \\
\hline Anthracene & ND & 0.50 & 0.083 & ug/ & & & & & & & \\
\hline Benzidine & ND & 5.0 & 2.4 & ug/ & & & & & & & \\
\hline Benzoic acid & ND & 20 & 3.7 & ug/ & & & & & & & \\
\hline Benzo(a)anthracene & ND & 5.0 & 0.038 & ug/ & & & & & & & \\
\hline Benzo(a)pyrene & ND & 2.0 & 0.14 & ug/ & & & & & & & \\
\hline Benzo(b)fluoranthene & ND & 2.0 & 0.050 & ug/ & & & & & & & \\
\hline Benzo(g,h,i)perylene & ND & 5.0 & 0.059 & ug/ & & & & & & & \\
\hline Benzo(k)fluoranthene & ND & 0.50 & 0.053 & ug/ & & & & & & & \\
\hline Benzyl alcohol & ND & 5.0 & 0.21 & ug/1 & & & & & & & \\
\hline Bis(2-chloroethoxy)methane & ND & 0.50 & 0.072 & uga & & & & & & & \\
\hline Bis(2-chloroethyl)ether & ND & 0.50 & 0.084 & ug/ & & & & & & & \\
\hline Bis(2-chloroisopropyl)ether & ND & 0.50 & 0.11 & ug/ & & & & & & & \\
\hline Bis(2-ethylhexyl)phthalate & ND & 5.0 & 1.1 & ug/l & & & & & & & \\
\hline 4-Bromophenyl phenyl ether & ND & 1.0 & 0.12 & ug/ & & & & & & & \\
\hline Butyl benzyl phthalate & 0.340 & 5.0 & 0.34 & ug/ & & & & & & & \(J\) \\
\hline 4-Chloroaniline & ND & 2.0 & 0.20 & ug/ & & & & & & & \(J\) \\
\hline 2-Chloronaphthalene & ND & 0.50 & 0.059 & ug/ & & & & & & & \\
\hline 4-Chloro-3-methylphenol & ND & 2.0 & 0.34 & ug/ & & & & & & & \\
\hline 4-Chlorophenyl phenyl ether & ND & 0.50 & 0.056 & ug/ & & & & & & & \\
\hline 2-Chlorophenol & ND & 1.0 & 0.12 & ug/1 & & & & & & & \\
\hline Chrysene & ND & 0.50 & 0.072 & ug/l & & & & & & & \\
\hline Dibenz ( a , h)anthracene & ND & 0.50 & 0.083 & ug/1 & & & & & & & \\
\hline Dibenzofuran & ND & 0.50 & 0.075 & ug/ & & & & & & & \\
\hline Di-n-butyl phthalate & 0.400 & 2.0 & 0.26 & ug/l & & & & & & & \(J\) \\
\hline 1,2-Dichlorobenzene & ND & 0.50 & 0.11 & ug/l & & & & & & & \\
\hline 1,3-Dichlorobenzene & ND & 0.50 & 0.13 & ug/l & & & & & & & \\
\hline 1,4-Dichlorobenzene & ND & 0.50 & 0.050 & ug/l & & & & & & & \\
\hline 3,3-Dichlorobenzidine & ND & 5.0 & 0.93 & ugh & & & & & & & \\
\hline 2,4-Dichlorophenol & ND & 2.0 & 0.21 & ug/ & & & & & & & \\
\hline Diethyl phthalate & ND & 1.0 & 0.12 & ug/ & & & & & & & \\
\hline 2,4-Dimethylphenol & ND & 2.0 & 0.31 & ugh & & & & & & & \\
\hline Dimethyl phthalate & ND & 0.50 & 0.081 & ug/l & & & & & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}
```

Project ID: Routine Outfall 011-Grab
Report Number: IOA0549
Sampled: 01/11/05
Received: 01/11/05

```

\section*{METHOD BLANKGOC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A12027 Extracted: 01/12/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/17/2005 (5A12027-BLK1)} \\
\hline 4,6-Dinitro-2-methylphenol & ND & 5.0 & 0.38 & ug/ & & & & & & & \\
\hline 2,4-Dinitrophenol & ND & 5.0 & 2.7 & ug/ & & & & & & & \\
\hline 2,4-Dinitrotoluene & ND & 5.0 & 0.23 & ug/ & & & & & & & \\
\hline 2,6-Dinitrotoluene & ND & 5.0 & 0.24 & ug/ & & & & & & & \\
\hline Di-n-octyl phthalate & ND & 5.0 & 0.17 & ug/ & & & & & & & \\
\hline 1,2-Diphenylhydrazine/Azobenzene & ND & 1.0 & 0.087 & ug/ & & & & & & & \\
\hline Fluoranthene & ND & 0.50 & 0.089 & ug/ & & & & & & & \\
\hline Fluorene & ND & 0.50 & 0.075 & ug/1 & & & & & & & \\
\hline Hexachlorobenzene & ND & 1.0 & 0.13 & ug/1 & & & & & & & \\
\hline Hexachlorobutadiene & ND & 2.0 & 0.38 & ug/l & & & & & & & \\
\hline Hexachlorocyclopentadiene & ND & 5.0 & 1.8 & ug/ & & & & & & & \\
\hline Hexachloroethane & ND & 3.0 & 0.51 & ug/ & & & & & & & \\
\hline Indeno( \(1,2,3\)-cd)pyrene & ND & 2.0 & 0.19 & ug/ & & & & & * & & \\
\hline Isophorone & ND & 1.0 & 0.059 & ugl & & & & & & & \\
\hline 2-Methylnaphthalene & 0.200 & 1.0 & 0.13 & ug1 & & & & & & & \(J\) \\
\hline 2-Methylphenol & ND & 2.0 & 0.28 & ug/ & & & & & & & \\
\hline 4-Methylphenol & ND & 5.0 & 0.20 & \(\mathrm{ug} / 1\) & & & & & & & \\
\hline Naphthalene & ND & 1.0 & 0.13 & ug/ & & & & & & & \\
\hline 2-Nitroaniline & ND & 5.0 & 0.18 & ug/1 & & & & & & & \\
\hline 3-Nitroaniline & ND & 5.0 & 0.35 & ug/ & & & & & & & \\
\hline 4-Nitroaniline & ND & 5.0 & 0.49 & ugh & & & & & & & \\
\hline Nitrobenzene & ND & 1.0 & 0.10 & ug/ & & & & & & & \\
\hline 2-Nitrophenol & ND & 2.0 & 0.23 & ug/ & & & & & & & \\
\hline 4-Nitrophenol & ND & 5.0 & 0.73 & ug/ & & & & & & & \\
\hline N -Nitrosodimethylamine & ND & 2.0 & 0.22 & ug/1 & & & & & & & \\
\hline N -Nitroso-di-n-propylamine & ND & 2.0 & 0.18 & ug/ & & & & & & & \\
\hline N -Nitrosodiphenylamine & ND & 1.0 & 0.077 & ug/ & & & & & & & \\
\hline Pentachlorophenol & ND & 2.0 & 0.78 & ug/l & & & & & & & \\
\hline Phenanthrene & ND & 0.50 & 0.071 & ug/ & & & & & & & \\
\hline Phenol & ND & 1.0 & 0.14 & ugh & & & & & & & \\
\hline Pyrene & ND & 0.50 & 0.059 & ug/ & & & & & & & \\
\hline 1,2,4-Trichlorobenzene & ND & 1.0 & 0.10 & ug/ & & & & & & & \\
\hline 2,4,5-Trichlorophenol & ND & 2.0 & 0.075 & ug/ & & & & & & & \\
\hline 2,4,6-Trichlorophenol & ND & 1.0 & 0.10 & ug/ & & & & & & & \\
\hline Surrogate: 2-Fluorophenol & 14.2 & & & \(u g /\) & 20.0 & & 71 & 35-120 & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

\author{
Project ID: Routine Outfall 011-Grab \\ Report Number: IOA0549
}

Sampled: 01/11/05
Received: 01/11/05

\section*{METHOD BLANK/QC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifers \\
\hline \multicolumn{12}{|l|}{Batch: 5A12027 Extracted: 01/12/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/17/2005 (5A12027-BLK1)} \\
\hline Surrogate: Phenol-d6 & 14.7 & & & ug \(/\) & 20.0 & & 74 & 45-120 & & & \\
\hline Surrogate: 2,4,6-Tribromophenol & 14.3 & & & ug \(/\) & 20.0 & & 72 & 50-125 & & & \\
\hline Surrogate: Nitrobenzene-d5 & 6.84 & & & ug/ & 10.0 & & 68 & 45-120 & & & \\
\hline Surrogate: 2-Fluorobiphenyl & 7.60 & & & ug/ & 10.0 & & 76 & 45-120 & & & \\
\hline Surrogate: Terphenyl-d14 & 8.12 & & & ug/ & 10.0 & & 81 & 45-135 & & & \\
\hline \multicolumn{12}{|l|}{LCS Analyzed: 01/17/2005 (5A12027-BS1)} \\
\hline Acenaphthene & 7.90 & 0.50 & 0.10 & ug/ & 10.0 & & 79 & 55-120 & & & \\
\hline Acenaphthylene & 8.16 & 0.50 & 0.10 & ug/ & 10.0 & & 82 & 55-120 & & & \\
\hline Aniline & 7.02 & 10 & 2.9 & ug/ & 10.0 & & 70 & 30-120 & & & \(J\) \\
\hline Anthracene & 8.44 & 0.50 & 0.083 & ug/ & 10.0 & & 84 & 60-120 & & & \\
\hline Benzidine & ND & 5.0 & 2.4 & ug/ & 10.0 & & & 20-180 & & & L2 \\
\hline Benzoic acid & 6.80 & 20 & 3.7 & ugh & 10.0 & & 68 & 30-125 & & & \(J\) \\
\hline Benzo(a)anthracene & 8.76 & 5.0 & 0.038 & ug/ & 10.0 & & 88 & 65-120 & & & \\
\hline Benzo(a)pyrene & 8.88 & 2.0 & 0.14 & ug/1 & 10.0 & & 89 & 55-125 & & & \\
\hline Benzo(b)fluoranthene & 8.58 & 2.0 & 0.050 & ug/l & 10.0 & & 86 & 50-125 & & & \\
\hline Benzo(g,h,i)perylene & 8.94 & 5.0 & 0.059 & ug/1 & 10.0 & & 89 & 35-160 & & & \\
\hline Benzo(k)fluoranthene & 8.86 & 0.50 & 0.053 & ug/ & 10.0 & & 89 & 50-125 & & & \\
\hline Benzyl alcohol & 8.34 & 5.0 & 0.21 & ug/ & 10.0 & & 83 & 40-130 & & & \\
\hline Bis(2-chloroethoxy)methane & 7.34 & 0.50 & 0.072 & ug/ & 10.0 & & 73 & 55-120 & & & \\
\hline Bis(2-chloroethyl)ether & 6.78 & 0.50 & 0.084 & ug/ & 10.0 & & 68 & 50-120 & & & \\
\hline Bis(2-chloroisopropyl)ether & 6.88 & 0.50 & 0.11 & ugn & 10.0 & & 69 & 50-120 & & & \\
\hline Bis(2-ethylhexyl)phthalate & 8.56 & 5.0 & 1.1 & ug/l & 10.0 & & 86 & 65-125 & & & \\
\hline 4-Bromophenyl phenyl ether & 7.70 & 1.0 & 0.12 & ug/l & 10.0 & & 77 & 55-125 & & & \\
\hline Butyl benzyl phthalate & 8.84 & 5.0 & 0.34 & ugh & 10.0 & & 88 & 60-125 & & & \\
\hline 4-Chloroaniline & 6.94 & 2.0 & 0.20 & ugh & 10.0 & & 69 & 55-120 & & & \\
\hline 2-Chloronaphthalene & 7.66 & 0.50 & 0.059 & ug/ & 10.0 & & 77 & 60-120 & & & \\
\hline 4-Chloro-3-methylphenol & 8.00 & 2.0 & 0.34 & ug/ & 10.0 & & 80 & 60-120 & & & \\
\hline 4-Chlorophenyl phenyl ether & 8.30 & 0.50 & 0.056 & ugh & 10.0 & & 83 & 55-120 & & & \\
\hline 2-Chlorophenol & 7.32 & 1.0 & 0.12 & ug/ & 10.0 & & 73 & 45-120 & & & \\
\hline Chrysene & 8.32 & 0.50 & 0.072 & ug/ & 10.0 & & 83 & 65-120 & & & \\
\hline Dibenz(a,h)anthracene & 8.94 & 0.50 & 0.083 & ugh & 10.0 & & 89 & 40-160 & & & \\
\hline Dibenzofuran & 7.86 & 0.50 & 0.075 & ug/ & 10.0 & & 79 & 60-120 & & & \\
\hline Di-n-butyl phthalate & 10.2 & 2.0 & 0.26 & ugh & 10.0 & & 102 & 65-125 & & & \\
\hline 1,2-Dichlorobenzene & 5.52 & 0.50 & 0.11 & ug/ & 10.0 & & 55 & 40-120 & & & \\
\hline 1,3-Dichlorobenzene & 5.08 & 0.50 & 0.13 & ug/ & 10.0 & & 51 & 40-120 & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

\author{
Project ID: Routine Outfall 011-Grab \\ Report Number: 10 A 0549 \\ Sampled: 01/11/05 \\ Received: 01/11/05
}

\section*{METHOD BLANKIUC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & RPD & Data \\
\hline Batch: 5A12027 Extracted: 01/12/05 & & & & & & & & & & & \\
\hline
\end{tabular}

LCS Analyzed: 01/17/2005 (5A12027-BS1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1,4-Dichlorobenzene & 5.34 & 0.50 & 0.050 & ug/ & 10.0 & 53 & 40-120 & \\
\hline 3,3.Dichlorobenzidine & 3.54 & 5.0 & 0.93 & ug/ & 10.0 & 35 & 50-170 & \(L 2, J\) \\
\hline 2,4-Dichlorophenol & 8.08 & 2.0 & 0.21 & ug/1 & 10.0 & 81 & 55-120 & \\
\hline Diethyl phthalate & 8.08 & 1.0 & 0.12 & ug/l & 10.0 & 81 & 60-120 & \\
\hline 2,4-Dimethylphenol & 6.30 & 2.0 & 0.31 & ug/l & 10.0 & 63 & 35-120 & \\
\hline Dimethyl phthalate & 7.90 & 0.50 & 0.081 & ug/l & 10.0 & 79 & 60-120 & \\
\hline 4,6-Dinitro-2-methylphenol & 6.66 & 5.0 & 0.38 & ug/ & 10.0 & 67 & 55-120 & \\
\hline 2,4-Dinitrophenol & 7.08 & 5.0 & 2.7 & ug/ & 10.0 & 71 & 40-140 & \\
\hline 2,4-Dinitrotoluene & 7.36 & 5.0 & 0.23 & ug/l & 10.0 & 74 & 60-140 & \\
\hline 2,6-Dinitrotoluene & 7.58 & 5.0 & 0.24 & ug/l & 10.0 & 76 & 65-125 & \\
\hline Di-n-octyl phthalate & 8.68 & 5.0 & 0.17 & ug/ & 10.0 & 87 & 60-130 & \\
\hline 1,2-Diphenylhydrazine/Azobenzene & 8.34 & 1.0 & 0.087 & ug/l & 10.0 & 83 & 60-120 & \\
\hline Fluoranthene & 9.16 & 0.50 & 0.089 & \(u g /\) & 10.0 & 92 & 55-125 & \\
\hline Fluorene & 8.44 & 0.50 & 0.075 & ug/ & 10.0 & 84 & 60-120 & \\
\hline Hexachlorobenzene & 7.66 & 1.0 & 0.13 & ugh & 10.0 & 77 & 50-120 & \\
\hline Hexachlorobutadiene & 4.40 & 2.0 & 0.38 & ug/1 & 10.0 & 44 & 45-120 & L2 \\
\hline Hexachlorocyclopentadiene & 4.94 & 5.0 & 1.8 & ug/ & 10.0 & 49 & 10-130 & \(J\) \\
\hline Hexachloroethane & 4.18 & 3.0 & 0.51 & ug/ & 10.0 & 42 & 40-120 & \\
\hline Indeno(1,2,3-cd)pyrene & 8.74 & 2.0 & 0.19 & ug/ & 10.0 & 87 & 35-150 & \\
\hline Isophorone & 7.50 & 1.0 & 0.059 & \(\mathrm{ug} / 1\) & 10.0 & 75 & 55-120 & \\
\hline 2-Methylnaphthalene & 7.54 & 1.0 & 0.13 & ug/l & 10.0 & 75 & 50-120 & \\
\hline 2-Methylphenol & 7.68 & 2.0 & 0.28 & ug/l & 10.0 & 77 & 45-120 & \\
\hline 4-Methyiphenol & 7.36 & 5.0 & 0.20 & ug/l & 10.0 & 74 & 45-120 & \\
\hline Naphthalene & 6.88 & 1.0 & 0.13 & ug/l & 10.0 & 69 & 50-120 & \\
\hline 2-Nitroaniline & 7.88 & 5.0 & 0.18 & ug/l & 10.0 & 79 & 60-130 & \\
\hline 3-Nitroaniline & 8.02 & 5.0 & 0.35 & ug/l & 10.0 & 80 & 50-140 & \\
\hline 4-Nitroaniline & 9.10 & 5.0 & 0.49 & ug/l & 10.0 & 91 & 45-160 & \\
\hline Nitrobenzene & 6.84 & 1.0 & 0.10 & ug/l & 10.0 & 68 & 50-120 & \\
\hline 2-Nitrophenol & 7.10 & 2.0 & 0.23 & \(u g / 1\) & 10.0 & 71 & 55-120 & \\
\hline 4-Nitrophenol & 7.08 & 5.0 & 0.73 & ug/l & 10.0 & 71 & 50-135 & \\
\hline N -Nitrosodimethylamine & 7.68 & 2.0 & 0.22 & ug/l & 10.0 & 77 & 40-120 & \\
\hline N -Nitroso-di-n-propylamine & 7.14 & 2.0 & 0.18 & ug/ & 10.0 & 71 & 50-120 & \\
\hline N -Nitrosodiphenylamine & 6.74 & 1.0 & 0.077 & \(\mathrm{ug} / \mathrm{l}\) & 10.0 & 67 & 60-120 & \\
\hline Pentachlorophenol & 8.04 & 2.0 & 0.78 & \(\mathrm{ug} / \mathrm{l}\) & 10.0 & 80 & 50-125 & \\
\hline Phenanthrene & 8.16 & 0.50 & 0.071 & ug/l & 10.0 & 82 & 55-120 & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}
Project ID: Routine Outfall 011-Grab
Report Number: IOA0549
Sampled: 01/11/05
Received: 01/11/05

\section*{METHOD BLANKGC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
Analyte
Batch: 5A12027 Extracted: 01/12/05
\begin{tabular}{lcllllllllll} 
& Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

LCS Analyzed: 01/17/2005 (5A12027-BS1)
\begin{tabular}{ll} 
Phenol & 7.34 \\
Pyrene & 8.42 \\
1,2,4-Trichlorobenzene & 5.56 \\
2,4,5-Trichlorophenol & 8.66 \\
2,4,6-Trichlorophenol & 8.64 \\
Surrogate: 2-Fluorophenol & 14.5 \\
Surrogate: Phenol-d6 & 14.5 \\
Surrogate: \(2,4,6-T r i b r o m o p h e n o l\) & 14.7 \\
Surrogate: Nitrobenzene-d5 & 7.14 \\
Surrogate: 2 -Fluorobiphenyl & 7.80 \\
Surrogate: Terphenyl-dl4 & 8.56
\end{tabular}
\begin{tabular}{cc}
1.0 & 0.14 \\
0.50 & 0.059 \\
1.0 & 0.10 \\
2.0 & 0.075 \\
1.0 & 0.10 \\
& \\
& \\
& \\
&
\end{tabular}
\begin{tabular}{llll} 
ug \(/\) & 10.0 & 73 & \(45-120\) \\
ug/ & 10.0 & 84 & \(50-120\) \\
ug/ & 10.0 & 56 & \(50-120\) \\
ug \(/\) & 10.0 & 87 & \(60-120\) \\
ug \(/\) & 10.0 & 86 & \(60-120\) \\
\(u g / l\) & 20.0 & 72 & \(35-120\) \\
\(u g / l\) & 20.0 & 72 & \(45-120\) \\
\(u g / l\) & 20.0 & 74 & \(50-125\) \\
\(u g / l\) & 10.0 & 71 & \(45-120\) \\
\(u g / l\) & 10.0 & 78 & \(45-120\) \\
\(u g / l\) & 10.0 & 86 & \(45-135\)
\end{tabular}

M-NR1
\[
\begin{gathered}
R-7, J \\
L 2 \\
J
\end{gathered}
\]

L2, R-2
\begin{tabular}{lc} 
LCS Dup Analyzed: 01/17/2005 (5A12027-BSD1) \\
Acenaphthene & 8.36 \\
Acenaphthylene & 8.42 \\
Aniline & 3.20 \\
Anthracene & 8.22 \\
Benzidine & ND \\
Benzoic acid & 7.70 \\
Benzo(a)anthracene & 8.52 \\
Benzo(a)pyrene & 9.10 \\
Benzo(b)fluoranthene & 8.74 \\
Benzo(g,h,i)perylene & 9.24 \\
Benzo(k)fluoranthene & 8.88 \\
Benzyl alcohol & 8.44 \\
Bis(2-chloroethoxy)methane & 7.60 \\
Bis(2-chloreethyl)ether & 6.80 \\
Bis(2-chloroisopropyl)ether & 6.90 \\
Bis(2-ethylhexyl)phthalate & 8.24 \\
4-Bromophenyl phenyl ether & 7.72 \\
Butyl benzyl phthalate & 8.26 \\
4-Chloroaniline & 4.02 \\
2-Chloronaphthalene & 7.78 \\
4-Chloro-3-methylphenol & 8.42 \\
4-Chlorophenyl phenyl ether & 8.06 \\
2-Chlorophenol & 7.50
\end{tabular}

\section*{Del Mar Analytical, Irvine}

\section*{Michele Harper}

Project Manager

17461Derian Ave., Suite 700, Irvine, CA 92614 (949) 261-1022 FAX (949) 260-3297 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (949) 370-1046

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Routine Outfall 011-Grab
Report Number: IOA0549
Sampled: 01/11/05
Received: 01/11/05

\section*{METHOD BLANKIQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
Analyte
Batch: 5A12027 Extracted: 01/12/05

LCS Dup Analyzed: 01/17/2005 (5A12027-BSD1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline LCS Pup Analyzed: 01/172005 & - 1 & & & & & & & & & M-NR1 \\
\hline Chrysene & 8.00 & 0.50 & 0.072 & ug/l & 10.0 & 80 & 65-120 & 4 & 20 & \\
\hline Dibenz( \(\mathrm{a}, \mathrm{h}\) )anthracene & 8.96 & 0.50 & 0.083 & ug/l & 10.0 & 90 & 40-160 & 0 & 25 & \\
\hline Dibenzofuran & 8.18 & 0.50 & 0.075 & ug/l & 10.0 & 82 & 60-120 & 4 & 20 & \\
\hline Di-n-butyl phthalate & 8.66 & 2.0 & 0.26 & ug/ & 10.0 & 87 & 65-125 & 16 & 20 & \\
\hline 1,2-Dichlorobenzene & 5.72 & 0.50 & 0.11 & ug/l & 10.0 & 57 & 40-120 & 4 & 25 & \\
\hline 1,3-Dichlorobenzene & 5.26 & 0.50 & 0.13 & \(\mathrm{ug} / \mathrm{l}\) & 10.0 & 53 & 40-120 & 3 & 25 & \\
\hline 1,4-Dichlorobenzene & 5.52 & 0.50 & 0.050 & ug/l & 10.0 & 55 & 40-120 & 3 & 25 & \\
\hline 3,3-Dichlorobenzidine & 1.96 & 5.0 & 0.93 & ug/l & 10.0 & 20 & 50-170 & 57 & 25 & L2, R-2, J \\
\hline 2,4-Dichlorophenol & 8.30 & 2.0 & 0.21 & ug/ & 10.0 & 83 & 55-120 & 3 & 20 & \\
\hline Diethyl phthalate & 7.90 & 1.0 & 0.12 & ug/l & 10.0 & 79 & 60-120 & 2 & 20 & \\
\hline 2,4-Dimethylphenol & 7.02 & 2.0 & 0.31 & ug/ & 10.0 & 70 & 35-120 & 11 & 25 & \\
\hline Dimethyl phthalate & 7.72 & 0.50 & 0.081 & ug/l & 10.0 & 77 & 60-120 & 2 & 20 & \\
\hline 4,6-Dinitro-2-methylphenol & 6.48 & 5.0 & 0.38 & ug/ & 10.0 & 65 & 55-120 & 3 & 25 & \\
\hline 2,4-Dinitrophenol & 6.86 & 5.0 & 2.7 & ug/ & 10.0 & 69 & 40-140 & 3 & 25 & \\
\hline 2,4-Dinitrotoluene & 7.48 & 5.0 & 0.23 & ug/l & 10.0 & 75 & 60-140 & 2 & 20 & \\
\hline 2,6-Dinitrotoluene & 7.78 & 5.0 & 0.24 & ug/l & 10.0 & 78 & 65-125 & 3 & 20 & \\
\hline Di-n-octyl phthalate & 8.34 & 5.0 & 0.17 & ug/l & 10.0 & 83 & 60-130 & 4 & 20 & \\
\hline 1,2-Diphenylhydrazine/Azobenzene & 8.12 & 1.0 & 0.087 & ug/l & 10.0 & 81 & 60-120 & 3 & 25 & \\
\hline Fluoranthene & 8.80 & 0.50 & 0.089 & ug/ & 10.0 & 88 & 55-125 & 4 & 20 & \\
\hline Fluorene & 8.52 & 0.50 & 0.075 & ug/l & 10.0 & 85 & 60-120 & 1 & 20 & \\
\hline Hexachlorobenzene & 7.96 & 1.0 & 0.13 & ug/l & 10.0 & 80 & 50-120 & 4 & 20 & \\
\hline Hexachlorobutadiene & 5.06 & 2.0 & 0.38 & ug/l & 10.0 & 51 & 45-120 & 14 & 25 & \\
\hline Hexachlorocyclopentadiene & 5.54 & 5.0 & 1.8 & ug/l & 10.0 & 55 & 10-130 & 11 & 30 & \\
\hline Hexachloroethane & 5.06 & 3.0 & 0.51 & ug/l & 10.0 & 51 & 40-120 & 19 & 25 & \\
\hline Indeno(1,2,3-cd)pyrene & 8.80 & 2.0 & 0.19 & ug/l & 10.0 & 88 & 35-150 & 1 & 25 & \\
\hline Isophorone & 7.70 & 1.0 & 0.059 & ug/l & 10.0 & 77 & 55-120 & 3 & 20 & \\
\hline 2-Methylnaphthalene & 31.2 & 1.0 & 0.13 & ug/l & 10.0 & 312 & 50-120 & 122 & 20 & L, R-2 \\
\hline 2-Methylphenol & 7.72 & 2.0 & 0.28 & ug/l & 10.0 & 77 & 45-120 & 1 & 20 & \\
\hline 4-Methylphenol & 7.66 & 5.0 & 0.20 & ug/ & 10.0 & 77 & 45-120 & 4 & 20 & \\
\hline Naphthalene & 13.5 & 1.0 & 0.13 & ug/l & 10.0 & 135 & 50-120 & 65 & 20 & \(L, R-2\) \\
\hline 2-Nitroaniline & 8.60 & 5.0 & 0.18 & ug/l & 10.0 & 86 & 60-130 & 9 & 20 & \\
\hline 3-Nitroaniline & 7.20 & 5.0 & 0.35 & ug/l & 10.0 & 72 & 50-140 & 11 & 25 & \\
\hline 4-Nitroaniline & 8.14 & 5.0 & 0.49 & ug/l & 10.0 & 81 & 45-160 & 11 & 20 & \\
\hline Nitrobenzene & 7.28 & 1.0 & 0.10 & ug/ & 10.0 & 73 & 50-120 & 6 & 25 & \\
\hline ?-Nitrophenol & 7.86 & 2.0 & 0.23 & \(\mathrm{ug} / \mathrm{l}\) & 10.0 & 79 & 55-120 & 10 & 25 & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine Michele Harper 'roject Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011-Grab
Report Number: IOA0549
Sampled: 01/11/05
Received: 01/11/05

\section*{METIOD DIANKGC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A12027 Extracted: 01/12/05} \\
\hline \multicolumn{11}{|l|}{LCS Dup Analyzed: 01/17/2005 (5A12027-BSD1)} & \multirow[t]{18}{*}{M-NR1} \\
\hline 4-Nitrophenol & 7.28 & 5.0 & 0.73 & ug/ & 10.0 & & 73 & 50-135 & 3 & 25 & \\
\hline N -Nitrosodimethylamine & 7.20 & 2.0 & 0.22 & ug/ & 10.0 & & 72 & 40-120 & 6 & 20 & \\
\hline N -Nitroso-di-n-propylamine & 7.58 & 2.0 & 0.18 & ug/ & 10.0 & & 76 & 50-120 & 6 & 20 & \\
\hline N -Nitrosodiphenylamine & 7.94 & 1.0 & 0.077 & ug/ & 10.0 & & 79 & 60-120 & 16 & 20 & \\
\hline Pentachlorophenol & 7.68 & 2.0 & 0.78 & ug/ & 10.0 & & 77 & 50-125 & 5 & 25 & \\
\hline Phenanthrene & 8.14 & 0.50 & 0.071 & ug/l & 10.0 & & 81 & 55-120 & 0 & 20 & \\
\hline Phenol & 7.04 & 1.0 & 0.14 & ug/ & 10.0 & & 70 & 45-120 & 4 & 25 & \\
\hline Pyrene & 8.22 & 0.50 & 0.059 & ug/l & 10.0 & & 82 & 50-120 & 2 & 25 & \\
\hline 1,2,4-Trichlorobenzene & 5.90 & 1.0 & 0.10 & ug/l & 10.0 & & 59 & 50-120 & 6 & 20 & \\
\hline 2,4,5-Trichlorophenol & 8.64 & 2.0 & 0.075 & ug/l & 10.0 & & 86 & 60-120 & 0 & 20 & \\
\hline 2,4,6-Trichlorophenol & 8.76 & 1.0 & 0.10 & ug/l & 10.0 & & 88 & 60-120 & 1 & 20 & \\
\hline Surrogate: 2-Fhuorophenol & 14.3 & & & ug/ & 20.0 & & 72 & 35-120 & & & \\
\hline Surrogate: Phenol-d6 & 14.5 & & & ugh & 20.0 & & 72 & 45-120 & & & \\
\hline Surogate 2,4,6-Tibromophenol. & 15.0 & & & ug/ & 20.0 & & 75 & 50-125 & & & \\
\hline Surrogate: Nitrobenzene-d5 & 7.38 & & & ug \(h\) & 10.0 & & 74 & 45-120 & & & \\
\hline Surrogate: 2-Fluorobiphenyl & 7.66 & & & \(u g /\) & 10.0 & & 77 & 45-120 & & & \\
\hline Surrogate: Terphenyl-d14 & 9.00 & & & \(u g /\) & 10.0 & & 90 & 45-135 & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Routine Outfall 011 - Grab
Report Number: 10A0549 Sampled: 01/11/05
\begin{tabular}{ll} 
Project ID: Routine Outfall 011 - Grab & \\
Report Number: 10 A 0549 & \begin{tabular}{l} 
Sampled: 01/11/05 \\
Received: 01/11/05
\end{tabular}
\end{tabular}

Received: 01/11/05

\section*{METHOD BLANK/OC DATA}

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline Batch: 5A13049 Extracted: 01/13/05 & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Blank Analyzed: 01/13/2005 (5A13049-BLK1)} \\
\hline Aldrin & ND & 0.10 & 0.029 & ug/ & & & \\
\hline alpha-BHC & ND & 0.10 & 0.010 & ug/ & & & \\
\hline beta-BHC & ND & 0.10 & 0.011 & ugh & & & \\
\hline delta-BHC & ND & 0.20 & 0.010 & ug/ & & & \\
\hline gamma-BHC (Lindane) & ND & 0.10 & 0.0097 & ug/ & & & \\
\hline Chlordane & ND & 1.0 & 0.18 & ug/l & & & \\
\hline 4,4*-DDD & ND & 0.10 & 0.011 & ug/l & & & \\
\hline 4,4'-DDE & ND & 0.10 & 0.017 & ug/ & & & \\
\hline 4,4'-DDT & ND & 0.10 & 0.015 & ug/1 & & & \\
\hline Dieldrin & ND & 0.10 & 0.010 & ug/ & & & \\
\hline Endosulfan I & ND & 0.10 & 0.015 & ug/l & & & \\
\hline Endosulfan II & ND & 0.10 & 0.037 & ug/ & & & \\
\hline Endosulfan sulfate & ND & 0.20 & 0.013 & ugh & & & \\
\hline Endrin & ND & 0,10 & 0.0082 & ugn & & & \\
\hline Endrin aldehyde & ND & 0.10 & 0.045 & ug/ & & & \\
\hline Endrin ketone & ND & 0.10 & 0.020 & ug/ & & & \\
\hline Heptachlor & ND & 0.10 & 0.030 & ug/ & & & \\
\hline Heptachlor epoxide & ND & 0.10 & 0.012 & ug/ & & & \\
\hline Methoxychlor & ND & 0.10 & 0.034 & ug/l & & & \\
\hline Toxaphene & ND & 5.0 & 0.77 & ug/ & & & \\
\hline Surrogate: Tetrachloro-m-xylene & 0.348 & & & ug/l & 0.500 & 70 & 35-120 \\
\hline Surrogate: Decachlorobiphenyl & 0.424 & & & ug/ & 0.500 & 85 & 12 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{LCS Analyzed: 01/13/2005 (5A13049-BS1)} \\
\hline Aldrin & 0.517 & 0.10 & 0.029 & ug/ & 0.500 & 103 & 45-115 \\
\hline alpha-BHC & 0.527 & 0.10 & 0.010 & ug/ & 0.500 & 105 & 45-115 \\
\hline beta-BHC & 0.496 & 0.10 & 0.011 & ug/ & 0.500 & 99 & 50-115 \\
\hline delta-BHC & 0.564 & 0.20 & 0.010 & ugh & 0.500 & 113 & 55-120 \\
\hline gamma-BHC (Lindane) & 0.525 & 0.10 & 0.0097 & ug/l & 0.500 & 105 & 45-115 \\
\hline 4,4'-DDD & 0.537 & 0.10 & 0.011 & ugh & 0.500 & 107 & 60-120 \\
\hline 4,4-DDE & 0.534 & 0.10 & 0.017 & ugh & 0.500 & 107 & 55-120 \\
\hline 4,4'-DDT & 0.557 & 0.10 & 0.015 & ugh & 0.500 & 111 & 60-130 \\
\hline Dieldrin & 0.540 & 0.10 & 0.010 & ug/ & 0.500 & 108 & 55-120 \\
\hline Endosulfan I & 0.512 & 0.10 & 0.015 & ug/1 & 0.500 & 102 & 50-115 \\
\hline Endosulfan II & 0.525 & 0.10 & 0.037 & ug/1 & 0.500 & 105 & 60-125 \\
\hline Endosulfan sulfate & 0.528 & 0.20 & 0.013 & ug/ & 0.500 & 106 & 60-120 \\
\hline
\end{tabular}

\section*{DeI Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011-Grab
Report Number: IOA0549
Sampled: 01/11/05
Received: 01/11/05

\section*{METHOD BLANKIOC DATA}

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A13049 Extracted: 01/13/05} \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 01/13/2005 (5A13049-BS1)} & M-N \\
\hline Endrin & 0.578 & 0.10 & 0.0082 & ugh & 0.500 & & 116 & 55-125 & & & \\
\hline Endrin aldehyde & 0.553 & 0.10 & 0.045 & ug/ & 0.500 & & 111 & 55-115 & & & \\
\hline Endrin ketone & 0.513 & 0.10 & 0.020 & ug/ & 0.500 & & 103 & 60-120 & & & \\
\hline Heptachlor & 0.513 & 0.10 & 0.030 & ug/ & 0.500 & & 103 & 45-115 & & & \\
\hline Heptachlor epoxide & 0.527 & 0.10 & 0.012 & ugl & 0.500 & & 105 & 50-120 & & & \\
\hline Methoxychlor & 0.535 & 0.10 & 0.034 & ug/ & 0.500 & & 107 & 60-135 & & & \\
\hline Surrogate: Tetrachloro-m-xylene & 0.435 & & & ug \(/\) & 0.500 & & 87 & 35-120 & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.527 & & & \(u g / 1\) & 0.500 & & 105 & 45-120 & & & \\
\hline \multicolumn{12}{|l|}{LCS Dup Analyzed: 01/13/2005 (5A13049-BSD1)} \\
\hline Aldrin & 0.512 & 0.10 & 0.029 & ug/ & 0.500 & & 102 & 45-115 & 1 & 30 & \\
\hline alpha-BHC & 0.534 & 0.10 & 0.010 & ugh & 0.500 & & 107 & 45-115 & 1 & 30 & \\
\hline beta-BHC & 0.487 & 0.10 & 0.011 & ugh & 0.500 & & 97 & 50-115 & 2 & 30 & \\
\hline delta-BHC & 0.547 & 0.20 & 0.010 & ug/ & 0.500 & & 109 & 55-120 & 3 & 30 & \\
\hline gamma-BHC (Lindane) & 0.525 & 0.10 & 0.0097 & ugh & 0.500 & & 105 & 45-115 & 0 & 30 & \\
\hline 4,4'-DDD & 0.505 & 0.10 & 0.011 & ug/ & 0.500 & & 101 & 60-120 & 6 & 30 & \\
\hline 4,4'-DDE & 0.510 & 0.10 & 0.017 & ug/ & 0.500 & & 102 & 55-120 & 5 & 30 & \\
\hline 4,4'-DDT & 0.520 & 0.10 & 0.015 & ug/ & 0.500 & & 104 & 60-130 & 7 & 30 & \\
\hline Dieldrin & 0.515 & 0.10 & 0.010 & ug/1 & 0.500 & & 103 & 55-120 & 5 & 30 & \\
\hline Endosulfan I & 0.493 & 0.10 & 0.015 & ug/ & 0.500 & & 99 & 50-115 & 4 & 30 & \\
\hline Endosulfan II & 0.495 & 0.10 & 0.037 & ug/ & 0.500 & & 99 & 60-125 & 6 & 30 & \\
\hline Endosulfan sulfate & 0.498 & 0.20 & 0.013 & ug/ & 0.500 & & 100 & 60-120 & 6 & 30 & \\
\hline Endrin & 0.550 & 0.10 & 0.0082 & ug/ & 0.500 & & 110 & 55-125 & 5 & 30 & \\
\hline Endrin aldehyde & 0.511 & 0.10 & 0.045 & ug/ & 0.500 & & 102 & 55-115 & 8 & 30 & \\
\hline Endrin ketone & 0.490 & 0.10 & 0.020 & ugh & 0.500 & & 98 & 60-120 & 5 & 30 & \\
\hline Heptachlor & 0.510 & 0.10 & 0.030 & ug/l & 0.500 & & 102 & 45-115 & S & 30 & \\
\hline Heptachlor epoxide & 0.510 & 0.10 & 0.012 & ug/ & 0.500 & & 102 & 50-120 & 3 & 30 & \\
\hline Methoxychlor & 0.505 & 0.10 & 0.034 & \(u g / 1\) & 0.500 & & 101 & 60-135 & 6 & 30 & \\
\hline Surrogate: Tetrachloro-m-xylene & 0.449 & & & ugh & 0.500 & & 90 & 35-120 & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.494 & & & \(u g /\) & 0.500 & & 99 & 45-120 & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011-Grab
Report Number: IOA0549
Sampled: 01/11/05
Received: 01/11/05

\section*{METHOB MLANIIOC DATA}

\section*{TOTAL PCBS (EPA 608)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A13049 Extracted: 01/13/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/13/2005 (5A13049-BLK1)} \\
\hline Aroclor 1016 & ND & 1.0 & 0.067 & ug/ & & & & & & & \\
\hline Aroclor 1221 & ND & 1.0 & 0.057 & ug/ & & & & & & & \\
\hline Aroclor 1232 & ND & 1.0 & 0.13 & ug/ & & & & & & & \\
\hline Aroclor 1242 & ND & 1.0 & 0.12 & ug/ & & & & & & & \\
\hline Aroclor 1248 & ND & 1.0 & 0.21 & ug/ & & & & & & & \\
\hline Aroclor 1254 & ND & 1.0 & 0.16 & ug/ & & & & & & & \\
\hline Aroclor 1260 & ND & 1.0 & 0.17 & ug/l & & & & & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.387 & & & ug/ & 0.500 & & 77 & 45-120 & & & \\
\hline \multicolumn{12}{|l|}{LCS Analyzed: 01/13/2005 (5A13049-BS2) M-NR1} \\
\hline Aroclor 1016 & 2.82 & 1.0 & 0.067 & ug/1 & 4.00 & & 70 & 50-115 & & & \\
\hline Aroclor 1260 & 2.91 & 1.0 & 0.17 & ug/ & 4.00 & & 73 & 60-115 & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.389 & & & \(u g /\) & 0.500 & & 78 & 45-120 & & & \\
\hline \multicolumn{12}{|l|}{LCS Dup Analyzed: \(01 / 13 / 2005\) (5A13049-BSD2)} \\
\hline Aroclor 1016 & 2.68 & 1.0 & 0.067 & ug/ & 4.00 & & 67 & 50-115 & 5 & 30 & \\
\hline Aroclor 1260 & 2.88 & 1.0 & 0.17 & ug/ & 4.00 & & 72 & 60-115 & 1 & 25 & \\
\hline Surrogate: Decachlorobiphenyl & 0.379 & & & ug/ & 0.500 & & 76 & 45-120 & & & \\
\hline
\end{tabular}

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011-Grab
Report Number: IOA0549
Sampled: 01/11/05
Received: 01/11/05

\section*{MITHIOD BHANIMOCDATA}

\section*{METALS}


\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager
\begin{tabular}{|lll} 
MWH-Pasadena/Boeing & Project ID: Routine Outfall 011-Grab & \\
300 North Lake Avenue, Suite 1200 & & Sampled: 01/11/05 \\
Pasadena, CA 91101 & Report Number: 10A0549 & Received: 01/11/05 \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{VIETHOD BLANKIGC DATA}

\section*{METALS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & RPD
Limit \\
\hline \multicolumn{11}{|l|}{Batch: 5A12054 Extracted: 01/12/05} \\
\hline \multicolumn{3}{|l|}{Matrix Spike Analyzed: 01/12/2005 (5A12054-MS1)} & \multicolumn{6}{|c|}{Source: IOA0549-01} & & \\
\hline Antimony & 88.7 & 2.0 & 0.18 & ug/ & 80.0 & 0.35 & 110 & 70-130 & & \\
\hline Cadmium & 85.3 & 1.0 & 0.015 & ug/ & 80.0 & 0.14 & 106 & 70-130 & & \\
\hline Copper & 83.9 & 2.0 & 0.49 & ugh & 80.0 & 4.2 & 100 & 70-130 & & \\
\hline Lead & 81.3 & 1.0 & 0.13 & ugh & 80.0 & 1.0 & 100 & 70-130 & & \\
\hline Nickel & 84.7 & 1.0 & 0.15 & ug/ & 80.0 & 2.3 & 103 & 70-130 & & \\
\hline Zinc & 93.0 & 20 & 3.1 & ug/l & 80.0 & 18 & 94 & 70-130 & & \\
\hline \multicolumn{3}{|l|}{Matrix Spike Dup Analyzed: 01/12/2005 (5A12054-MSD1)} & \multicolumn{8}{|c|}{Source: 10A0549-01} \\
\hline Antimony & 90.1 & 2.0 & 0.18 & ug/ & 80.0 & 0.35 & 112 & 70-130 & 2 & 20 \\
\hline Cadmium & 86.1 & 1.0 & 0.015 & ughl & 80.0 & 0.14 & 107 & 70-130 & 1 & 20 \\
\hline Copper & 83.8 & 2.0 & 0.49 & ug/ & 80.0 & 4.2 & 100 & 70-130 & 0 & 20 \\
\hline Lead & 80.9 & 1.0 & 0.13 & ug/l & 80.0 & 1.0 & 100 & 70-130 & 1 & 20 \\
\hline Nickel & 85.0 & 1.0 & 0.15 & ug/ & 80.0 & 2.3 & 103 & 70-130 & 0 & 20 \\
\hline zinc & 93.0 & 20 & 3.1 & ug/ & 80.0 & 18 & 94 & 70.130 & 0 & 20 \\
\hline
\end{tabular}

\section*{Batch: 5A14046 Extracted: 01/14/05}

Blank Analyzed: 01/14/2005 (5A14046-BLK1)
\begin{tabular}{lllll} 
Boron & ND & 0.050 & 0.0074 & \(\mathrm{mg} / \mathrm{l}\)
\end{tabular}

LCS Analyzed: 01/14/2005 (5A14046-BS1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Boron & 0.469 & 0.050 & 0.0074 & mg/ & 0.500 & & 94 & 85-115 & & \\
\hline \multicolumn{3}{|l|}{Matrix Spike Analyzed: 01/14/2005 (5A14046-MS1)} & \multicolumn{8}{|c|}{Source: 10A0701-01} \\
\hline Boron & 0.675 & 0.050 & 0.0074 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.18 & 99 & 70-130 & & \\
\hline \multicolumn{3}{|l|}{Matrix Spike Dup Analyzed: 01/14/2005 (5A14046-MSD1)} & \multicolumn{8}{|c|}{Source: IOA0701-01} \\
\hline Boron & 0.682 & 0.050 & 0.0074 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.18 & 100 & 70-130 & 1 & 20 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\section*{Project ID: Routine Outfall 011-Grab}

Report Number: IOA0549
Sampled: 01/11/05
Received: 01/11/05

\section*{METHOD BLANKIOC DATA}

\section*{METALS}


\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Routine Outfall 011-Grab
Report Number: IOA0549
Sampled: 01/11/05
Received: 01/11/05

\section*{METHOD BLANKIQC DATA}

\section*{METALS}


Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011-Grab
Report Number: IOA0549
Sampled: 01/11/05
Received: 01/11/05

\section*{METHOD BLANKKOC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A11040 Extracted: 01/11/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/11/2005 (5A11040-BLK1)} \\
\hline Chloride & ND & 0.50 & 0.26 & \(\mathrm{mg} / 1\) & & & & & & & \\
\hline Nitrate/Nitrite-N & ND & 0.26 & 0.072 & \(\mathrm{mg} / 1\) & & & & & & & \\
\hline Sulfate & ND & 0.50 & 0.18 & \(\mathrm{mg} / 1\) & & & & & & & \\
\hline \multicolumn{12}{|l|}{LCS Analyzed: 01/11/2005 (5A11040-BS1)} \\
\hline Chloride & 4.84 & 0.50 & 0.26 & \(\mathrm{mg} / 1\) & 5.00 & & 97 & 90-110 & & & \\
\hline Sulfate & 10.1 & 0.50 & 0.18 & \(\mathrm{mg} / \mathrm{l}\) & 10.0 & & 101 & 90-110 & & & \\
\hline \multicolumn{12}{|l|}{Matrix Spike Analyzed: 01/11/2005 (5A11040-MS1) Source: IOA0494-01} \\
\hline Chloride & 24.1 & 2.5 & 1.3 & \(\mathrm{mg} / \mathrm{l}\) & 5.00 & 20 & 82 & 80-120 & & & \\
\hline Sulfate & 38.6 & 2.5 & 0.90 & \(\mathrm{mg} / 1\) & 10.0 & 29 & 96 & 80-120 & & & \\
\hline \multicolumn{12}{|l|}{Matrix Spike Dup Analyzed: 01/11/2005 (5A11040-MSD1) Source: IOA0494-01} \\
\hline Chloride & 24.1 & 2.5 & 1.3 & \(\mathrm{mg} /\) & 5.00 & 20 & 82 & 80-120 & 0 & 20 & \\
\hline Sulfate & 38.8 & 2.5 & 0.90 & mgl & 10.0 & 29 & 98 & 80-120 & 1 & 20 & \\
\hline
\end{tabular}

Batch: 5A11092 Extracted: 01/11/05
Blank Analyzed: 01/11/2005 (5A11092-BLK1)


Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011 - Grab
\begin{tabular}{lr} 
& \begin{tabular}{l} 
Sampled: \(01 / 11 / 05\) \\
Report Number: \(10 A 0549\)
\end{tabular} \\
Received: \(01 / 11 / 05\)
\end{tabular}

\section*{MHTHOB BLANKIOC DATA}

\section*{INORGANICS}


\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Routine Outfall 011-Grab
Report Number: 10 A 0549
Sampled: 01/11/05
Received: 01/11/05

\section*{METMOD DLANKIQCDATA}

\section*{INORGANICS}


MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011-Grab
Report Number: 1OA0549
Sampled: 01/11/05
Received: 01/11/05

\section*{MIUTHOD DLANKICCDATA}

\section*{INORGANICS}


\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Routine Outfall 011-Grab
Report Number: IOA0549
Sampled: 01/11/05
Received: 01/11/05

\section*{METHOD BLANKIQC DATA}

\section*{INORGANICS}


Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011-Grab
Report Number: 1OA0549 \(\quad\)\begin{tabular}{r} 
Sampled: \(01 / 11 / 05\) \\
Received: \(01 / 11 / 05\)
\end{tabular}

\section*{METHOD BLANKIQC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5A13089 Extracted: 01/13/05} \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 01/13/2005 (5A13089-BS1)} \\
\hline Total Dissolved Solids 994 & 10 & 10 & mg/ & 1000 & & 99 & 90-110 & & & \\
\hline Duplicate Analyzed: 01/13/2005 (5A13089-DUP1) & & & & & ce: IOA & 549-01 & & & & \\
\hline Total Dissolved Solids 92.0 & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & & 88 & & & 4 & 10 & \\
\hline \multicolumn{11}{|l|}{Batch: 5A14084 Extracted: 01/14/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 01/14/2005 (5A14084-BLK1)} \\
\hline Total Suspended Solids ND & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 01/14/2005 (5A14084-BS1)} \\
\hline Total Suspended Solids 949 & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & 1000 & & 95 & 85-115 & & & \\
\hline Duplicate Analyzed: 01/14/2005 (5A14084-DUP1) & & & & Sou & e: IOA0 & 607-01 & & & & \\
\hline Total Suspended Solids \(\quad \therefore\) ND & 10 & 10 & \(\mathrm{mg} / 1\) & & ND & & & & 10 & \\
\hline Batch: 5A15022 Extracted: 01/15/05. & & & & & & & & & & \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 01/15/2005 (5A15022-BLK1)} \\
\hline Fluoride 0.149 & 0.50 & 0.074 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \(J\) \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 01/15/2005 (5A15022-BS1)} \\
\hline Fluoride 4.58 & 0.50 & 0.074 & \(\mathrm{mg} / 1\) & 5.00 & & 92 & 90-110 & & & \\
\hline Matrix Spike Analyzed: 01/15/2005 (5A15022-MS1) & \multicolumn{10}{|c|}{Source: IOA0835-03} \\
\hline Fluoride 5.23 & 0.50 & 0.074 & mg/ & 5.00 & 0.31 & 98 & 80-120 & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011 - Grab
Report Number: 10 A 0549
Received: 01/11/05

\section*{METHOD BLANKIQC DATA}

\section*{INORGANICS}
\begin{tabular}{lllllllllll} 
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit \\
Batch: 5A15022 Extracted: 01/15/05 & & & & & & & & & & \\
Qualifiers
\end{tabular}

Matrix Spike Dup Analyzed: 01/15/2005 (5A15022-MSD1)
\begin{tabular}{llllllllllllll} 
Fluoride & 5.25 & 0.50 & 0.074 & \(\mathrm{mg} / \mathrm{l}\) & 5.00 & 0.31 & 99 & \(80-120\) & 0 & 20
\end{tabular}

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Routine Outfall 011-Grab
Report Number: IOA0549
Sampled: 01/11/05
Received: 01/11/05

\section*{METHOD BLANKIOC DATA}

\section*{1,4-DIOXANE BY GC/MS (EPA 5030B/8260B)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: P5A1502 Extracted: 01/15/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/15/2005 (P5A1502-BLK1)} \\
\hline 1,4-Dioxane & ND & 1.0 & 0.49 & ug/ & & & & & & & \\
\hline Surrogate: Dibromofluoromethane & 1.03 & & & \(u g /\) & 1.00 & & 103 & 80-125 & & & \\
\hline \multicolumn{12}{|l|}{LCS Analyzed: 01/15/2005 (P5A1502-BS1)} \\
\hline 1,4-Dioxane & 9.04 & 1.0 & 0.49 & ug/ & 10.0 & & 90 & 70-130 & & & \\
\hline Surrogate: Dibromofluoromethane & 0.950 & & & \(u g / 1\) & 1.00 & & 95 & 80-125 & & & \\
\hline \multicolumn{12}{|l|}{LCS Dup Analyzed: 01/15/2005 (P5A1502-BSD1)} \\
\hline 1,4-Dioxane & 9.30 & 1.0 & 0.49 & ug/ & 10.0 & & 93 & 70-130 & 3 & 20 & \\
\hline Surrogate: Dibromofluoromethane & 0.980 & & & \(u g / l\) & 1.00 & & 98 & 80-125 & & & \\
\hline \multicolumn{2}{|l|}{Matrix Spike Analyzed: 01/15/2005 (P5A1502-MS1)} & \multicolumn{10}{|c|}{Source: POA0240-01} \\
\hline 1,4-Dioxane & 10.7 & 1.0 & 0.49 & ug/l & 10.0 & ND & 107 & 70-150 & & & \\
\hline Surrogate: Dibromofluoromethane & 0.980 & & & \(u g /\) & 1.00 & & 98 & 80-125 & & & \\
\hline \multicolumn{3}{|l|}{Matrix Spike Dup Analyzed: 01/15/2005 (P5A1502-MSD1)} & & & \multicolumn{3}{|l|}{Source: POA0240-01} & & & & \\
\hline 1,4-Dioxane & 9.07 & 1.0 & 0.49 & ug/ & 10.0 & ND & 91 & 70-150 & 16 & 25 & \\
\hline Surrogate: Dibromofluoromethane & 0.940 & & & \(u g /\) & 1.00 & & 94 & 80-125 & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
```

Project ID: Routine Outfall 011 - Grab
Report Number: 1OA0549
Sampled: 01/11/05
Received: 01/11/05

```

\section*{DATA QUALIFIERS AND DEFINITIONS}

B Analyte was detected in the associated Method Blank.
C Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the
L. Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.

L2 Laboratory Control Sample recovery was below method control limits.
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike - Duplicate.

P1 Sample received and analyzed without chemical preservation.
R-2 The RPD exceeded the method control limit.
R-7 LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

\section*{ADDITIONAL COMMENTS}

\section*{For TICs:}

All identifications are tentative and concentrations are estimates based upon spectral comparison to the EPANIH library. For 1,2-Diphenylhydrazine:

The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.
For GRO (C4-C12):
GRO (C4-C12) is quantitated against a gasoline standard. Quantitation begins immediately following the methanol peak.
For Extractable Fuel Hydrocarbons (EFH, DRO, ORO) :
Unless otherwise noted, Extractable Fuel Hydrocarbons (EFH, DRO, ORO) are quantitated against a Diesel Fuel Standard.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 011-Grab
Report Number: IOA0549
Sampled: 01/11/05
Received: 01/11/05

\section*{Certification Summary}

\section*{Del Mar Analytical, Irvine}
\begin{tabular}{|c|c|c|c|}
\hline Method & Matrix & Nelac & Callfornia \\
\hline EPA 120.1 & Water & X & X \\
\hline EPA 160.2 & Water & X & X \\
\hline EPA 160.5 & Water & X & X \\
\hline EPA 180.1 & Water & X & X \\
\hline EPA 200.7 & Water & X & X \\
\hline EPA 200.8 & Water & X & X \\
\hline EPA 218.6 & Water & X & X \\
\hline EPA 245.1 & Water & X & X \\
\hline EPA 300.0 & Water & X & X \\
\hline EPA 314.0 & Water & X & X \\
\hline EPA 330.5 & Water & X & X \\
\hline EPA 335.2 & Water & X & X \\
\hline EPA 350.2 & Water & X & X \\
\hline EPA 405.1 & Water & X & X \\
\hline EPA 413.1 & Water & X & X \\
\hline EPA 415.1 & Water & X & X \\
\hline EPA 418.1 & Water & X & X \\
\hline EPA 608 & Water & X & X \\
\hline EPA 624 (MOD.) & Water & X & X \\
\hline EPA 624 & Water & X & X \\
\hline EPA 625 & Water & X & X \\
\hline EPA 8015 Mod . & Water & X & X \\
\hline EPA 8015B & Water & X & X \\
\hline EPA 8260B & Water & X & X \\
\hline SM2540C & Water & X & X \\
\hline SM5540-C & Water & X & X \\
\hline
\end{tabular}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

\section*{Subcontracted Laboratories}

\author{
Aquatic Testing Laboratories-SUB California Cert \#1775 4350 Transport Street, Unit 107 - Ventura, CA 93003 \\ Analysis Performed: Bioassay-7 dy Chrnic Samples: 10A0549-01 \\ Analysis Performed: Bioassay-Acute 96 hr \\ Samples: 1OA0549-01 \\ Del Mar Analytical - Phoenix NELAC Cert \#01109CA, California Cert \#2446 \\ 9830 S. 51 st Street, Suite B-120 - Phoenix, AZ 85044 \\ Method Performed: EPA 8260B
}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager


\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager
Del Mar Analytical varionserazas CHAIN OF CUSTODY FORM
MWH-Pasadena
300 North Lake Avenue, Suite 1200
Pasedene CA 91101 Boeing-SSFL NPDES
Outfall 011 Routine/13267
Perimeter Pond
Phone Number:
(626) 568-6691
(626) 568 -6691
Fax Number:
MWH-Pasadena
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Project Manager: Bronwyn Kelly


\section*{Sample Sample Container \#ot}
\[
\begin{array}{|c|c|c|}
\hline \begin{array}{c}
\text { Sampling } \\
\text { Dqto/rine }
\end{array} & \text { Preservative } & \begin{array}{c}
\text { Bottie } \\
0
\end{array} \\
\hline 1 / 11 / 05 / 1048 & \text { HNO3 } & 1 \mathrm{~A} \\
\hline
\end{array}
\]
BK/LA
\begin{tabular}{l|l|l|}
\hline Poly-1L & 1 \\
\hline
\end{tabular}
\begin{tabular}{l|l|}
\hline Poly-1L & 1 \\
\hline
\end{tabular}
\begin{tabular}{c}
\(1 B\) \\
2 \\
\hline \(3 A, 3 B\), \\
\(3 C\) \\
\(4 A, 4 B\) \\
\hline \(5 A, 58\) \\
\hline 6 \\
\hline 7 \\
\hline
\end{tabular}

\begin{tabular}{c}
11 \\
\hline \(12 \mathrm{~A}, 12 \mathrm{~B}\) \\
\hline \(13 \mathrm{~A}, 13\)
\end{tabular}
 14A, 14B;
14 C \(\mathrm{Fe} \cdot \mathrm{fre}\)
 \(\stackrel{\mathrm{N}}{\mathrm{N}}\)
Del Mar Analytical vasimon 5 anizo4 CHAIN OF CUSTODY FORM
Client Name/Address: \(\quad\) Project:
MWH-Pasadena Outfall 011 Routine/13267
300 North Lake Avenue, Suite 1200 Perimeter Pond
Pasadena, CA 91101
Project Manager: Bronwyn Kelly Phone Number:
Sampler: bKY LH
Fax Number:
(626) \(568-6515\)
ANALYSIS REOUIRED
\(\mathrm{mp}=57.6\)
\(=6.8\)

\section*{F A X}

300 N. Lake Ave., Suite 1200
Pasadena, Callfornia 91101
Tel: 626-568-6691
Fax: 626.568-6515

Fax No:
949-260-3297
Krissi Mcllvenna / MWH
925-975-3412

From:

Subject:

No. of Pages: 1 (including cover)

Per Request:
Please make the changes listed below to the chain-of-custody analytical request form. Include this form with the final deliverables for these samples.
\begin{tabular}{|c|c|c|c|c|}
\hline Del Mar Work Order \# & Sample ID & Date Collected & Change(s) Requested, Not Completed & Change(s) and Method (s) Now Requested \\
\hline 1040567 & Outfall 011 Composite & 01/11/05 & & NH3, BOD, C1-, N/N-N, Oil and Grease, Sulfate, MBAS, TDS, TSS, Setuleable Solids, Turbidity, CN, Clo4Conductivity, Lead, \(\mathrm{Cr}, \mathrm{Cu}, \mathrm{Ig}, \mathrm{TOC}\), TCDD. \\
\hline 10A0549 & \[
\begin{aligned}
& \text { Outfall } 011 \text { - } \\
& \text { Grab }
\end{aligned}
\] & 01/11/05 & & 608 Pest \(/ \mathrm{PCB}-\mathrm{PP}\) list, \(625-\mathrm{Pp}\) list, \(\mathrm{Sb}_{6}\) As, \(\mathrm{Ba}, \mathrm{Be}, \mathrm{B}, \mathrm{Cd}, \mathrm{Cr}, \mathrm{Co}, \mathrm{F}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{Ni}, \mathrm{Se}\), Ag, T1, V, Zn, 1,4-Dioxane, 624-Freon 113, Froon 123a, Cyclohexane \\
\hline 10 BI 004 & Outall 011 Composite & 01/11/05 & & \(\mathrm{NI} 13, \mathrm{BOD}, \mathrm{Cl}-\mathrm{N} / \mathrm{N}-\mathrm{N}, \mathrm{Oil}\) and Grease, Sulfate, MBAS, TDS, TSS, Settleable Solids, Turbidity CN, Clo4, Conductivity, Lead, \(\mathrm{Cr}, \mathrm{Cu}, \mathrm{Hg}, \mathrm{TOC}\), TCDD. \\
\hline
\end{tabular}

The reason for these changes:
Incorrectly marked on COC form
Lack of sample volume
MWH office personnel require this change \(\qquad\)

This Change Order supersedes all previous change orders submined.

Thank you

March 9, 2005

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention:
Bronwyn Kelly
Project: 13267 (Study 1)
Outfall 011 Grab
Sampled: 1/11/05
Del Mar Analytical Number: IOA0549

Dear Ms. Kelly:
Aquatic Testing Laboratories performed the Fathead Minnow 96 hr Percent Survival Bioassay by EPA Method 2000.0 and Ceriodaphnia Survival and Reproduction Test by EPA Method 1002, Eberline Services performed Gross Alpha/Gross Beta (EPA 900.0), Tritium (H-3, EPA 906.0), and Strontium -90 (Sr-90, EPA 905.0), Pace Analytical performed the TCDD analysis by USEPA Method 1613B, and Truesdail Laboratories performed the Hydrazines by EPA 8315 B for the project referenced above. Please use the following cross-reference table when reviewing your results.
\begin{tabular}{|c|c|c|c|c|c|}
\hline MWH ID & \begin{tabular}{c} 
DEL MAR \\
ID
\end{tabular} & ATL ID & EBERLINE ID & PACE ID & \begin{tabular}{c} 
TRUESDAIL \\
ID
\end{tabular} \\
\hline Outfall 011-Grab & IOA0549-01 & A-05011205-001/002 & R501122/8175-001 & 106132001 & \(938566-1\) \\
\hline
\end{tabular}

Attached is the original report from the subcontract laboratory. If you have any questions or require further assistance, please do not hesitate to contact me.

Sincerely yours,
DEL MAR ANALYTICAL
\(\underset{\text { Michele Harper }}{14}\)
Project Manager

\section*{LABORATORY REPORT}

Date:
January 19, 2005
Client: Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Attn: Michele Harper

Aquatic
Testing
Laboratories
"dedicated to providing quality aquatic toxicity testing"
4350 Transport Street, Unit 107
Ventura, CA 93003
(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.: A-05011205-001/002
Sample I.D.: IOA0549-01

Sample Control: The sample was received by ATL chilled, with the chain of custody record attached.
\begin{tabular}{ll} 
Date Sampled: & \(01 / 11 / 05\) \\
Date Received: & \(01 / 12 / 05\) \\
Date Tested: & \(01 / 12 / 05\) to 01/18/05
\end{tabular}

Sample Analysis: The following analyses were performed on your sample:
Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0),
Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).
Attached are the test data generated from the analysis of your sample.

\section*{Result Summary:}
\begin{tabular}{lcc} 
Acute: & \(\frac{\text { Survival }}{}\) & TUa \\
Fathead Minnow: & \(100 \%\) & 0.0 \\
Chronic: & \(\frac{\text { NOEC }}{}\) & TUC \\
\(\quad\) Ceriodaphnia Survival: & \(100 \%\) & 1.0 \\
\(\quad\) Ceriodaphnia Reproduction: & \(100 \%\) & 1.0
\end{tabular}

Quality Control: Reviewed and approved by:


Lab No.: A-05011205-001
Client/ID: Del Mar IOA0549-01

\section*{TEST SUMMARY}

Species: Pimephales promelas.
Age: 13 (1-14) days.
Regulations: NPDES.
Test solution volume: 250 ml .
Feeding: prior to renewal at 48 hrs.
Number of replicates: 2.
Dilution water: Moderately hard reconstituted water.
Photoperiod: \(16 / 8 \mathrm{hrs}\) light/dark.


\section*{Start Date: 01/12/2005}

Source: In-laboratory Culture.
Test type: Static-Renewal.
Test Protocol: EPA-821-R-02-012.
Endpoints: Percent Survival at 96 hrs.
Test chamber: \(\mathbf{6 0 0} \mathrm{ml}\) beakers.
Temperature: \(20+/-1^{\circ} \mathrm{C}\).
Number of fish per chamber: 10.
QA/QC Batch No.: RT-050104.

TEST DATA


Comments:
Sample as received: Chlorine: \(\square\) \(\mathrm{mg} / \mathrm{l} ; \mathrm{pH}: 6.9\). Conductivity: \(\qquad\) DO: \(9.8 \mathrm{mg} /\); Alkalinity: \(24 \mathrm{mg} /\); Hardness: \(32 \mathrm{mg} / \mathrm{l} \mathrm{NH}_{3}-\mathrm{N}: \mathrm{C} .4 \mathrm{mg} / \mathrm{l}\). Sample aerated moderately (approx. \(500 \mathrm{ml} / \mathrm{min}\) ) to raise or lower DO? Yes / (No) Control: Alkalinity: \(60 \mathrm{mg} /\); Hardness: \(100 \mathrm{mg} /\); Conductivity: \(3 \mathrm{SO}^{-}\)umho. Test solution aerated (not to exceed 100 bubbles \(/ \mathrm{min}\) ) to maintain DO \(>4.0 \mathrm{mg} / 17\) Yes \(/\) Cd.
Sample used for renewal is the original sample kept at \(0-6^{\circ} \mathrm{C}\) with minimal headspace.

\section*{RESULTS}
\(\square\) \(\%\) 100\% Sample: \(\qquad\) \(\%\)

Lab No.: A-05011205
Client/ID: Del Mar IOA0549-01

Test type: Daily static-renewal. Species: Ceriodaphnia dubia.
Age: <24 hrs; all released within 8 hrs.
Test vessel size: 30 ml .
Number of test organisms per vessel: 1 .
Temperature: \(25+/-1^{\circ} \mathrm{C}\).
Dilution water: Mod. hard reconstituted (MHRW).
QA/QC Batch No.: RT-050104.

Date Tested: 01/12/05 to 01/18/05

\section*{TEST SUMMARY}

Endpoints: Survival and Reproduction.
Source: In-laboratory culture.
Food: . 1 ml YTC, algae per day.
Test solution volume: 15 ml .
Number of replicates: 10.
Photoperiod: \(16 / 8 \mathrm{hrs}\). light/dark cycle.
Test duration: 7 days.
Statistics: ToxCalc computer program.

RESULTS SUMMARY
\begin{tabular}{|c|c|c|}
\hline Sample Concentration & Percent Survival & \begin{tabular}{c} 
Mean Number of \\
Young Per Female
\end{tabular} \\
\hline Control & \(100 \%\) & 23.0 \\
\hline \(6.25 \%\) & \(100 \%\) & 24.0 \\
\hline \(12.5 \%\) & \(100 \%\) & 29.1 \\
\hline \(25 \%\) & \(100 \%\) & 30.3 \\
\hline \(50 \%\) & \(100 \%\) & 30.5 \\
\hline \(100 \%\) & \(100 \%\) & 30.7 \\
\hline
\end{tabular}
* Statistically significantly less than control at \(\mathrm{P}=0.05\) level.
** Reproduction data from concentrations greater than survival NOEC are excluded from statistical analysis.

CHRONIC TOXICITY
\begin{tabular}{|c|c|c|}
\hline Parameter & Survival & Growth \\
\hline NOEC & \(100 \%\) & \(100 \%\) \\
\hline TUC & 1.0 & 1.0 \\
\hline
\end{tabular}

\section*{QA/QC TEST ACCEPTABILITY}
\begin{tabular}{|c|c|}
\hline Parameter & Result \\
\hline Control survival \(280 \%\) & Pass (100\% survival) \\
\hline-15 young per surviving control female & Pass (23.0 young) \\
\hline \(260 \%\) surviving controls had 3 broods & Pass (70\% with 3 broods) \\
\hline PMSD \(<47 \%\) for reproduction; if \(>47 \%\) and no toxicity \\
at IWC, the test must be repeated
\end{tabular}\(\quad\) Pass (PMSD \(=25.4 \%\) ).

\section*{SUBCONTRACT ORDER - PROJECT \# IOA0549}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
SENDING LABORATORY: \\
Del Mar Analytical, Irvine \\
17461 Derian Avenue. Suite 100 \\
Irvine, CA 92614 \\
Phone: (949) 261-1022 \\
Fax: (949) 261-1228 \\
Project Manager: Michele Harper
\end{tabular} & \begin{tabular}{l}
RECEIVING LABORATORY: \\
Aquatic Testing Laboratories-SUB \\
4350 Transport Street, Unit 107 \\
Ventura, CA 93003 \\
Phone :(805) 650-0546 \\
Fax: (805) 650-0756
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Standard TAT is requested unless specific due date is requested \(\Rightarrow\) Due Date: \(\quad\) Expiration \(\quad\) Comments
Analysis \(\quad\) Initials:}} \\
\hline & \\
\hline \begin{tabular}{cc} 
Sample ID: 1OA0549-01 & Water \(\quad\) Sampled: 01/11/05 10:48 \\
Bioassay-7 dy Chrnic & \(01 / 12 / 0522: 48\) \\
Bioassay-Acute 96 hr & \(01 / 12 / 0522: 48\)
\end{tabular} & Instant Nofication ceriodaphnia, 13267 fathead minnow, 13267 \\
\hline Containers Supplied: 1 gal Poly (IOA0549-01AP) 1 gal Poly (IOA0549-01AQ) & \\
\hline
\end{tabular}

SAMPLE INTEGRITY:


\section*{EBERLINE \\ SERVICES}

February 28, 2005

Ms. Michele Harper
Project Manager
Del Mar Analytical
17461 Derian Avenue. Suite 100
Irvine. CA 92614
Reference: Del Mar Analytical Project No. IOA0549
Eberline Services NELAP Cert \#01120CA (exp. 01/31/06)
Eberline Services Report R501122-8175
Dear Ms. Harper:
Enclosed are results from the analyses of one water sample received at Eberline Services on January 14, 2005. The sample was analyzed according to the accompanying Del Mar Analytical Subcontract Order Form. The requested analyses were gross alpha/gross beta (EPA900.0), tritium (H-3, EPA906.0), and strontium-90 (Sr-90, EPA905.0). The QC LCS, blank analyses, sample duplicates, and matrix spike results for the analyses were within the limits defined in Eberline Services Quality Control Procedures Manual. Analyses that involve the yielding of an analytical tracer or carrier, such as \(\mathrm{Sr}-90\), do not require matrix spike analyses to be performed.

Please call me if you have any questions concerning this report.
Regards.
Mwh"par"

Melissa Mannion
Senior Program Manager
\(M C M / n j v\)
Enclosure: Report
Subcontruct Form
Receipt checklist
Invoice

Analytical Servicas 2030 Wright Avenue

\section*{Eberline Services}

\section*{ANALYSIS RESULTS}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Client \\
Sample ID
\end{tabular} & \[
\begin{gathered}
\text { Lab } \\
\text { Sample ID }
\end{gathered}
\] & collected & Analyzed & Nuclide & Regults & Unitat & Mma \\
\hline TOA0545-01 & 8175-001 & 01/11/05 & 01/31/05 & Grosaxipha & \(0.850 \pm 0.70\) & pCi/L & 0.930 \\
\hline & & & 01/31/05 & Gross Eeta & \(2.40 \pm 1.2\) & pci/L & 1.86 \\
\hline & & & 02/16/05 & H3 & \(17.6 \pm 150\) & pCi/L & 249 \\
\hline & & & 01/27/05 & Sr90 & \(-0.173 \pm 0.29\) & \(\mathrm{pCi} / \mathrm{L}\) & 0.607 \\
\hline
\end{tabular}

\section*{Eberline Services \\ QC RESULTs}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample ID & Muclide & Results & Dants & Anount Adided & MpA & Evaluation \\
\hline \multicolumn{7}{|l|}{LCS} \\
\hline \multirow[t]{4}{*}{8174-002} & GrookAlpha & \(10.8 \pm 1.3\) & pCi/Smpl & 31.2 & 0.643 & 96* recovery \\
\hline & Gross Beta & \(12.0 \pm 0.83\) & pci/Smpl & 12.1 & 0.571 & 99\% recovery \\
\hline & H3 & \(246 \pm 23\) & pCi/Smpl & 260 & 24.4 & 95* recovery \\
\hline & Sr90 & \(12.4 \pm 0.44\) & pCi/Supl & 11.2 & 0.156 & 112* recovery. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline BLANK & & & & & & \\
\hline \multirow[t]{4}{*}{8174-003} & Grossalpha & \(0.293 \pm 0.33\) & pCi/Smpl & NA. & 0.511 & CMDA \\
\hline & Gross deta & \(-0.071 \pm 0.35\) & pci/Smpl & NA & 0.601 & <MDA \\
\hline & H3 & \(1.76 \pm 14\) & pci/Smpl & NA & 24.7 & <MDA \\
\hline & Sr90 & \(-0.053 \pm 0.13\) & pCi/Smpl & NA & 0.240 & <MDA \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{DUPLICATES} & \\
\hline Sample ID & Nuclide & Resultg \(\pm 20\) & MDA \\
\hline 8174-004 & Gromalpha & \(1.73 \pm 1.1\) & 1.18 \\
\hline & Gross Beta & \(2.98 \pm 1.1\) & 1.76 \\
\hline & H3 & \(-28.3 \pm 140\) & 248 \\
\hline & Sr90 & -0.048: \(\pm 0.27\) & 0.558 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Santole ID & Nuclide & Resulte \(\pm 20\) & NMA \\
\hline 8174-005 & GrossAlpha & \(84.6 \pm 5.2\) & 0.772 \\
\hline & Grose Beta & \(80.0 \pm 3.6\) & 1.75 \\
\hline & H3 & \(8830 \pm 380\) & 249 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Sample In & Regults +20 & MDA & Added & 年ecy \\
\hline 8174-002 & \(0.294 \pm 1.0\) & 1.75 & 76.6 & 210 \\
\hline & \(2.50 \pm 1.2\) & 1.78 & 74.0 & 105 \\
\hline & -71.9 \(\pm 140\) & 252 & 9490 & 94 \\
\hline
\end{tabular}


10 \(46 \downarrow \ldots\)







\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{\multirow[t]{2}{*}{SAMPLE INTEGRTTY:}} \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline All coveliners imatr: Clastody Senis Procent: & \[
\square
\] & \[
\begin{aligned}
& Y_{e s} \\
& Y_{e s}
\end{aligned}
\] & \[
\begin{aligned}
& \square \\
& \square
\end{aligned}
\] & \[
\begin{aligned}
& \text { No } \\
& \text { No }
\end{aligned}
\] & \begin{tabular}{l}
Smupie Libeli/COC agree: \\
Samplea Proverwd Proparty:
\end{tabular} & \[
\square \mathrm{Y}_{\mathbf{u}}
\] & \[
\square N_{0}
\] & \begin{tabular}{l}
Samples Fecrivad On Ioce: \\
Sumpler Receivod at (cemp):
\end{tabular} & - Ya & \(\square{ }^{\text {No}}\) \\
\hline
\end{tabular}


\section*{RICHMOND, CA LABORATORY}

SAMPLE RECEMFT CHECXLST



Ion Chamber Ser. Na. \(\qquad\) Calfibration date \(\qquad\)
Alpha Meter Ser. No.
Callbravion date \(\qquad\)
Eeta/Gamma Meter Ser. No.
Callibration date \(\qquad\)

\section*{Method 1613B Analysis Results}

\author{
Client - Del Mar Analytical
}


Conc \(=\) Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration LOD \(=\) Limit of Detection. Totals are averages of individual isomer LODs. \(D=\) Result obtained from analysis of dilited sample \(B=\) Less than 10 times higher than method blank level \(P=\) Recovery outside of method 1613 control limits \(J=\) Concentration detected is below the callibration range \(\mathrm{N} n=\) Value obtained from additional analysis

I = interference
\(\mathrm{E}=\mathrm{PCDE}\) interference
ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* \(=\) See Discussion

Report No..... 106132

\section*{REPORT OF LABORATORY ANALYSIS}

\section*{Method 1613B Blank Analysis Results}

\section*{Client - Del Mar Analytical}
Lab Sample ID
Filename
Total Amount Extracted
ICAL Date
CCal Filename(s)

\author{
BLANK-6220 \\ F501298_06 \\ 1020 mL \\ 11/29/2004 \\ F50129B_02
}
\begin{tabular}{lll} 
Matrix & Water \\
Dilution & NA \\
Extracted & \(01 / 28 / 2005\) \\
Analyzed & \(01 / 29 / 2005\) & \(23: 49\) \\
Injected By & BAL
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Native Isomers & Conc pg/L & \[
\begin{gathered}
\text { EMPC } \\
\mathrm{pg} \text {. }
\end{gathered}
\] & PRL pgh & Internal Standards & ng's Added & Percent Recovery \\
\hline 2,3,7,8-TCDF & ND & - & 1.20 & 2,3,7,8-TCDF-13C & 2.00 & 58 \\
\hline Total TCDF & ND & ---... & 1.20 & 2,3,7,8-TCDD-13C & 2.00 & 75 \\
\hline & & & & 1,2,3,7,8-PeCDF-13C & 2.00 & 65 \\
\hline 2,3,7,8-TCDD & ND & ---- & 1.20 & 2,3,4,7,8-PөCDF-13C & 2.00 & 67 \\
\hline Total TCDD & ND & -*-* & ----- & 1,2,3,7,8-PoCDD-13C & 2.00 & 80 \\
\hline & ND & & & 1,2,3,4,7,8-HxCDF-13C & 2.00 & 70 \\
\hline 2,3,4,7,8-PeCDF & ND & ---- & 1.50 & 1,2,3,6,7,8-HxCDF-13C & 2.00 & 82 \\
\hline Total PeCDF & ND & ---" & 1.20 & 2,3,4,6,7,8-HxCDF-13C & 2.00 & 77 \\
\hline & ND & ----- & - & 1,2,3,7,8,9-HxCDF-13C & 2.00 & 72 \\
\hline 1,2,3,7,8-PeCDD & ND & ----- & 1.60 & 1,2,3,4,7,8-HxCDD-13C & 2.00 & 66 \\
\hline Total PeCDD & ND & ------ & 1.60 & 1,2,3,6,7,8-HxCDD-13C & 2.00 & 88 \\
\hline & & . & - & 1,2,3,4,6,7,8-HpCDF-13C & 2.00 & 73 \\
\hline 1,2,3,4,7,8-HxCDF & ND & ---- & 0.75 & 1,2,3,4,7,8,9-HpCDF-13C & 2.00 & 63 \\
\hline 1,2,3,6,7,8-HxCDF & ND & -- & 0.75
0.86 & OCDD-13C & 2.00 & 80 \\
\hline 2,3,4,6,7,8-HxCDF & ND & ----- & 0.86
1.10 & OCDD-13C & 4.00 & 68 \\
\hline 1,2,3,7,8,9-HxCDF & ND & ---... & 1.20 & & 2.00 & NA \\
\hline Total HxCDF & ND & ------ & ---- & 1,2,3,7,8,9-HxCDD-13C & 2.00 & NA \\
\hline 1,2,3,4,7,8-HxCDD & ND & ----- & 1.10 & 2,3,7,8-TCDD-37Cl4 & 0.20 & 73 \\
\hline 1,2,3,6,7,8-HxCDD & ND & ----- & 0.99 & 2,3,7,8-TCDD-37Cl4 & 0.20 & 73 \\
\hline 1,2,3,7,8,9+4×CDD & ND & ----- & 1.00 & & & \\
\hline Total HxCDD & ND & ----- & & & & \\
\hline 1,2,3,4,6,7,8-HpCDF & ND & ----- & 2.10 & & & \\
\hline 1,2,3,4,7,8,9-HpCDF & ND & ----- & 1.90 & & & \\
\hline Total HpCDF & 2.2 & ----- & ---- & & & \\
\hline 1,2,3,4,6,7,8-HpCDD & 2.4 & ---- & 1.40 & & & \\
\hline Total HpCDD & 2.4 & ----. & ...... & & & \\
\hline OCDF & 5.2 & --- & 1.80 & & & \\
\hline OCDD & 5.6 & ---- & 2.90 & & & \\
\hline
\end{tabular}

Conc \(=\) Concentration (Totals include 2,3,7,8-substituted isomers).
I = Interference
EMPC = Estimated Maximum Possible Concentration
PRL \(=\) Pace Analytical Reporting Limit
\(A=\) Limit of Detection based on signal to noise
\(P=\) Recovery outside of method 1613 control limits
\(\mathrm{Nn}=\) Value obtained from additional analysis
\(\mathrm{E}=\mathrm{PCDE}\) interference
ND = Not Detected
NA \(=\) Not Applicable
NC = Not Calculated
\(J=\) Value below callbration range
* \(=\) See Discussion

\section*{Method 1613B Laboratory Control Spike Results}

\author{
Client - Del Mar Analytical
}
Lab Sample ID
Filiname
Total Amount Extracted
ICAL Date
CCal IFilename
Method Blank ID

LCS-6221
F50129B_03
1040 mL 11/29/2004 F50129B_02
BLANK-6220
\begin{tabular}{ll} 
Matrix & Water \\
Dilution & NA \\
Extracted & \(01 / 28 / 2005\) \\
Analyzed & \(011 / 29 / 2005\) \\
Injected By & BAL
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Compound & C8 & Cr & Lower Limit & \begin{tabular}{l}
Upper \\
Limit
\end{tabular} & \begin{tabular}{l}
\% \\
Rec.
\end{tabular} \\
\hline 2,3,7,8-TCDF & 10 & 9.9 & & & \\
\hline \[
2,3,7,8-T C D D
\] & 10 & 8.9 & 7.5
6.7 & 15.8
15.8 & 99
86 \\
\hline 1,2,3,7,8-PeCDF & 50 & 50.5 & 40.0 & 67.0 & 86
101 \\
\hline 2,3,4,7,8-PeCDF & 50 & 48.2 & 34.0 & 67.0
80.0 & 101
96 \\
\hline 1,2,3,7,8-P9CDD & 50 & 43.3 & 35.0 & 71.0 & 87 \\
\hline 1,2,3,4,7,8-HxCDF & 50 & 45.6 & 36.0 & 67.0 & 87 \\
\hline 1,2,3,6,7,8-HxCDF & 50 & 48.7 & 42.0 & 65.0 & 97 \\
\hline 2,3,4,6,7,8-HxCDF & 50 & 49.1 & 35.0 & 78.0 & 98 \\
\hline 1,2,3,7,8,9-HxCDF & 50 & 46.5 & 39.0 & 65.0 & 93 \\
\hline 1,2,3,4,7,8-HxCDD & 50 & 49.9 & 35.0 & 82.0 & 100 \\
\hline 1,2,3,6,7,8-HxCDD & 50 & 51.3 & 38.0 & 67.0 & 103 \\
\hline 1,2,3,7,8,9-HxCDD & 50 & 50.1 & 32.0 & 81.0 & 100 \\
\hline 1,2,3,4,6,7,8-HpCDF & 50 & 50.3 & 41.0 & 61.0 & 101 \\
\hline 1,2,3,4,7,8,9-HpCDF & 50 & 53.3 & 39.0 & 69.0 & 107 \\
\hline 1,2,3,4,6,7,8-HpCDD & 50 & 45.4 & 35.0 & 70.0 & 91 \\
\hline OCDF & 100 & 95.6 & 63.0 & 170.0 & 96 \\
\hline OCDD & 100 & 97.1 & 78.0 & 144.0 & 97 \\
\hline 2,3,7,8-TCDD-37Cl4 & 10 & 6.9 & 3.1 & 19.1 & \\
\hline 2,378 TCDF \(13 C\) & 100 & 51.5 & 22.0 & 152.0 & 69
52 \\
\hline 2,3,7,8-TCDD-13C & 100 & 67.8 & 20.0 & 175.0 & 68 \\
\hline 1,2,3,7,8-PeCDF-13C & 100 & 61.4 & 21.0 & 192.0 & 61 \\
\hline 2,3,4,7,8-PeCDF-13C & 100 & 65.9 & 13.0 & 328.0 & 66 \\
\hline 1,2,3,7,8-PeCDD-13C & 100 & 77.8 & 21.0 & 227.0 & 78 \\
\hline \[
1,2,3,4,7,8-\mathrm{HxCDF}-13 \mathrm{C}
\] & 100 & 70.2 & 19.0 & 202.0 & 70 \\
\hline \[
1,2,3,6,7,8-H \times C D F-13 C
\] & 100 & 78.0 & 21.0 & 159.0 & 78 \\
\hline 2,3,4,6,7,8-HxCDF-13C & 100 & 74.1 & 22.0 & 176.0 & 74 \\
\hline 1,2,3,7,8,9-HxCDF-13C & 100 & 70.4 & 17.0 & 205.0 & 70 \\
\hline \[
1,2,3,4,7,8-H \times C D D-13 \mathrm{C}
\] & 100 & 69.0 & 21.0 & 193.0 & 69 \\
\hline \[
1,2,3,6,7,8-H \times C D D-13 C
\] & 100 & 82.8 & 25.0 & 163.0 & 83 \\
\hline 1,2,3,4,6,7,8-HDCDF-13C & 100 & 72.1 & 21.0 & 158.0 & 72 \\
\hline \[
1,2,3,4,7,8,9-H \mathrm{pCDF}-13 \mathrm{C}
\] & 100 & 62.4 & 20.0 & 186.0 & 62 \\
\hline 1,2,3,4,6,7,8-HpCDD-13C & 100 & 80.1 & 26.0 & 166.0 & 80 \\
\hline OCDD-13C & 200 & 135.6 & 26.0 & 397.0 & 68 \\
\hline
\end{tabular}

Cs \(=\) Concentration Spiked ( \(\mathrm{ng} / \mathrm{mL}\) )
\(\mathrm{Cr}=\) Concentration Recovered ( \(\mathrm{ng} / \mathrm{mL}\) )
Rec. = Recovery (Expressed as Percent)
Control Limit Reference: Method 1613, Table 6, 10/94 Revision
\(X=\) Background subtracted value
\(P=\) Recovery outside of control limits
\(\mathrm{Nn}=\) Value obtained from additional analysis
* \(=\) See Discussion

Report No..... 106124

\section*{REPORT OF LABORATORY ANALYSIS}

\section*{Method 1613B Laboratory Control Spike Results}

\section*{Client - Del Mar Analytical}
Lab Sample ID
Filename
Total Amount Extracted
ICAL Date
CCal Filename
Method Blank ID

LCSD-6222
F50129B_04
1040 mL
11/29/2004
F50129B_02
BLANK-6220
\begin{tabular}{ll} 
Matrix & Water \\
Dilution & NA \\
Extracted & \(01 / 28 / 2005\) \\
Analyzed & \(01 / 29 / 2005\) \\
Injected By & BAL
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Compound & Cs & Cr & \begin{tabular}{l}
Lower \\
Limit
\end{tabular} & \begin{tabular}{l}
Upper \\
Limit
\end{tabular} & \[
\begin{gathered}
\% \\
\text { Rec. }
\end{gathered}
\] \\
\hline 2,3,7,8-TCDF & 10 & 10.6 & 7.5 & & \\
\hline 2,3,7,8-TCDD & 10 & 10.6 & 6.7 & 15.8 & 106
94 \\
\hline 1,2,3,7,8-PoCDF & 50 & 53.2 & 6.7
40.0 & 15.8
67.0 & 94
106 \\
\hline 2,3,4,7,8-PeCDF & 50 & 50.7 & 34.0 & 67.0 & 101 \\
\hline 1,2,3,7,8-P9CDD & 50 & 46.0 & 35.0 & 71.0 & 92 \\
\hline 1,2,3,4,7,8-HxCDF & 50 & 47.6 & 36.0 & 67.0 & 92 \\
\hline \[
\begin{aligned}
& 1,2,3,6,7,8-H \times C D F \\
& 2,3,4,6,8-H \times C D F
\end{aligned}
\] & 50 & 50.9 & 42.0 & 67.0
65.0 & 102 \\
\hline 2,3,4,6,7,8-HxCDF & 50 & 50.9 & 35.0 & 78.0 & 102 \\
\hline 1,2,3,7,8,9-HxCDF & 50 & 49.0 & 39.0 & 65.0 & 108 \\
\hline 1,2,3,4,7,8-HxCDD & 50 & 52.4 & 35.0 & 65.0
82.0 & r 98 \\
\hline 1,2,3,6,7,8-HxCDD & 50 & 54.2 & 38.0 & 82.0
67.0 & 105 \\
\hline 1,2,3,7,8,9-HxCDD & 50 & 52.5 & 38.0 & 67.0
81.0 & 108
105 \\
\hline 1,2,3,4,6,7,8-HpCDF & 50 & 55.0 & 41.0 & 61.0 & 110 \\
\hline 1,2,3,4,7,8,9-HpCDF & 50 & 55.7 & 39.0 & 69.0 & 111 \\
\hline 1,2,3,4,6,7,8-HpCDD & 50 & 48.0 & 35.0 & 70.0 & 111
96 \\
\hline OCDF & 100 & 100.6 & 63.0 & 170.0 & 101 \\
\hline & 100 & 101.9 & 78.0 & 144.0 & 102 \\
\hline 2,3,7,8-TCDD-37C14 & 10 & 8.7 & 3.1 & 19.1 & 87 \\
\hline 2,3,7,8-TCDF-13C & 100 & 70.4 & 22.0 & 1520 & 70 \\
\hline \[
2,3,7,8-T C D D-13 \mathrm{C}
\] & 100 & 88.6 & 20.0 & 175.0 & 89 \\
\hline 1,2,3,7,8-PөCDF-13C & 100 & 73.6 & 21.0 & 192.0 & 74 \\
\hline 2,3,4,7,8-PeCDF-13C & 100 & 79.0 & 13.0 & 328.0 & 79 \\
\hline 1,2,3,7,8-PeCDD-13C & 100 & 95.5 & 21.0 & 227.0 & 96 \\
\hline \[
1,2,3,4,7,8-\mathrm{HxCDF}-13 \mathrm{C}
\] & 100 & 84.8 & 19.0 & 202.0 & 85 \\
\hline \[
1,2,3,6,7,8-H \times C D F-13 C
\] & 100 & 89.5 & 21.0 & 159.0 & 90 \\
\hline 2,3,4,6,7,8-HxCDF-13C & 100 & 87.2 & 22.0 & 176.0 & 87 \\
\hline 1,2,3,7,8,9-HxCDF-13C & 100 & 82.1 & 17.0 & 205.0 & 82 \\
\hline 1,2,3,4,7,8-HxCDD-13C & 100 & 80.1 & 21.0 & 193.0 & 80 \\
\hline 1,2,3,6,7,8-HxCDD-13C & 100 & 97.0 & 25.0 & 163.0 & 97 \\
\hline \[
1,2,3,4,6,7,8-1 \mathrm{pCDF}-13 \mathrm{C}
\] & 100 & 84.4 & 21.0 & 158.0 & 84 \\
\hline 1,2,3,4,7,8,9-HpCDF-13C & 100 & 71.7 & 20.0 & 186.0 & 72 \\
\hline 1,2,3,4,6,7,8-HpCDD-13C & 100 & 92.4 & 26.0 & 166.0 & 92 \\
\hline OCDD-13C & 200 & 159.2 & 26.0 & 397.0 & 80 \\
\hline
\end{tabular}

Cs = Concentration Spiked ( \(\mathrm{ng} / \mathrm{mL}\) )
\(\mathrm{Cr}=\) Concentration Recovered ( \(\mathrm{ng} / \mathrm{mL}\) )
Rec. \(=\) Recovery (Expressed as Percent)
Control Limit Reference: Method 1613, Table 6, \(10 / 94\) Revision
\(X=\) Background subtracted value
\(\mathbf{P}=\) Recovery outside of control limits
\(\mathrm{Nn}=\) Value obtained from additional analysis
* \(=\) See Discussion

Report No..... 106124

\section*{REPORT OF LABORATORY ANALYSIS}

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

\section*{SPIKE RECOVERY RELATIVE PERCENT DIFFERENCE (RPD) RESULTS}

Client. \(\qquad\) Del Mar Analytical
\begin{tabular}{|c|c|}
\hline SPIKE 1 & .LCS-6221 \\
\hline SPIKE 1 Filename. & F50129B_03 \\
\hline SPIKE 2 ID. & LCSD-6222 \\
\hline SPIKE 2 Filenam & F50129B 04 \\
\hline
\end{tabular}

SPIKE 1
COMPOUND
REC,\%

SPIKE 2
REC,\%

RPD,\%
\begin{tabular}{|c|c|c|c|}
\hline 2378-TCDF & 99 & 106 & 6.8 \\
\hline 2378-TCDD & 86 & 94 & 8.9 \\
\hline 12378-PeCDF & 101 & 106 & 4.8 \\
\hline 23478-PeCDF & 96 & 101 & 5.1 \\
\hline 12378-PeCDD & 87 & 92 & 5.6 \\
\hline 123478-HxCDF & 91 & 95 & 4.3 \\
\hline 123678-HxCDF & 97 & 102 & 5.0 \\
\hline 234678-HxCDF & 98 & 102 & 4.0 \\
\hline 123789-HxCDF & 93 & 98 & 5.2 \\
\hline 123478-HxCDD & 100 & 105 & 4.9 \\
\hline \(123678-\mathrm{HxCDD}\) & 103 & 108 & 4.7 \\
\hline 123789-HxCDD & 100 & 105 & 4.9 \\
\hline 1234678-HpCDF & 101 & 110 & 8.5 \\
\hline 1234789-HpCDF & 107 & 111 & 3.7 \\
\hline 1234678-HpCDD & 91 & 96 & 5.3 \\
\hline OCDF & 96 & 101 & 5.1 \\
\hline OCDD & 97 & 102 & 5.0 \\
\hline
\end{tabular}

REC \(=\) Percent Recovered
RPD \(=\) The difference between the two values divided by the average.
\(N A=\) Not Applicable
Report No \(\qquad\) 106124, 106125, 106126
106127, 106128, 106130
106131, 106132, 106135

\section*{REPORT OF LABORATORY ANALYSIS}

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, inc.

TABLE 1. 2,3,7,8-TCDD Equivalency Factors (TEFs) for the Polychlorinated Dibenzo-p-dioxins and Dibenzofurans
\begin{tabular}{|c|c|c|}
\hline Number & Compound(s) & TEF \\
\hline 1 & 2,3,7,8-TCDD & 1.00 \\
\hline 2 & 1,2,3,7,8-PeCDD & 0.50 \\
\hline 3 & 1,2,3,6,7,8-HxCDD & 0.1 \\
\hline 4 & 1,2,3,7,8,9-HxCDD & 0.1 \\
\hline 5 & 1,2,3,4,7,8-HxCDD & 0.1 \\
\hline 6 & 1,2,3,4,6,7,8-HpCDD & 0.01 \\
\hline 7 & OCDD & 0.001 \\
\hline 8 & * Total - TCDD & 0.0 \\
\hline 9 & * Total - PeCDD & 0.0 \\
\hline 10 & * Total - HxCDD & 0.0 \\
\hline 11 & *Total - HDCDD & 0.0 \\
\hline 12 & 2,3,7,8-TCDF & 0.10 \\
\hline 13 & 1,2,3,7,8-PeCDF & 0.05 \\
\hline 14 & 2,3,4,7,8-PөCDF & 0.5 \\
\hline 15 & 1,2,3,6,7,8-HxCDF & 0.1 \\
\hline 16 & 1,2,3,7,8,9-HxCDF & 0.1 \\
\hline 17 & 1,2,3,4,7,8-HxCDF & 0.1 \\
\hline 18 & 2,3,4,6,7,8-HxCDF & 0.1 \\
\hline 19 & 1,2,3,4,6,7,8-HpCDF & 0.01 \\
\hline 20 & 1,2,3,4,7,8,9-HpCDF & 0.01 \\
\hline 21 & \[
O C D F
\] & 0.001 \\
\hline 22 & * Total - TCDF & 0.0 \\
\hline 23 & * Total - PeCDF & 0.0 \\
\hline 24 & * Total - HxCDF & 0.0 \\
\hline 25 & * Total - HpCDF & 0.0 \\
\hline
\end{tabular}
*Excluding the 2,3,7,8-substituted congeners.
Reference: 1989 ITEFs

\section*{REPORT OF LABORATORY ANALYSIS}

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

DelMarAnalyical

\section*{SUBCONTRACT ORDER - PROJECT \# IOA0549}



\section*{TrUESDAIL LABORATORIES, INC.}
independent Testing. Forensic Science, and Environmental analyses

\(\left.\begin{array}{lllll}\text { Client: } & \begin{array}{l}\text { Del Mar Analytical } \\ \\ \text { 17461 Derian Avenue, Suite } 100 \\ \text { Irvine, CA 92614 }\end{array} \\ \text { Michele Harper }\end{array}\right)\)

\section*{Samples Cross-reference}
\begin{tabular}{lllccl}
\hline Truesdail ID & Client ID & Matrix & Date Sampled & Time Sampled & Analysis Requested \\
\(938566-1\) & IOA0549-01 & Water & \(01 / 11 / 05\) & 1048 & Hydrazines by EPA 8315M \\
\hline
\end{tabular}

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.


\section*{Truesdail Laboratories, INC.}
\(\begin{array}{ll}\text { Client: } & \text { Del Mar Analytical } \\ & \begin{array}{l}\text { 17461 Derian Avenue, Suite } 100 \\ \text { Irvine, CA 92614 }\end{array} \\ \text { Attention: } & \text { Michele Harper }\end{array}\)
\(\begin{array}{ll}\text { Project Name: } & \text { IOA0549 } \\ \text { Date Received: } & 01 / 12 / 05\end{array}\)
Truesdail Project:
938566

\section*{Case Narrative}
\[
\begin{array}{ll}
\text { Sample Receipt } & \begin{array}{l}
\text { The sample was received in good condition and no anomalies were noted } \\
\text { during check-in. The sample was kept in a refrigerator until analysis. Thereafter, } \\
\text { it is being kept in ambient storage for an additional } 2 \text { months before disposal. }
\end{array} \\
\text { Analysis } & \begin{array}{l}
\text { The analysis was perfomed as requested on the chain-of-custody. }
\end{array} \\
\text { Quality Control } & \begin{array}{l}
\text { The analytical results for each batch of samples performed include a minimum of one set } \\
\text { of laboratory control sample/laboratory control sample duplicate (LCS/LCSD), one matrix } \\
\text { spike (MS) and a reagent blank (Method blank). Any exceptions or problems would be } \\
\text { noted in the "comments" section. }
\end{array}
\end{array}
\]

\section*{Comments}

The test results in this report meet all quality assurance requirements set forth by the method specification and all quality control recoveries were within the laboratory acceptance limits. No anomalies or nonconformance events occurred during the course of analysis.

On \(1 / 24 / 05\), client called to add a Level IV Data Package to the project. Since the request was made after the analysis was completed, the normal procedure for logging-in for Level IV was not followed. However, the data package for this project is completed as per the requirement.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

Truesdail Laboratories, inc.
independent Testing, Forensic science, and Environmental Analyses

\section*{Client: Del Mar Analytical- Alt.}
REPORT


\section*{Truesdail Laboratories, INC.}
INDEPENDENT TESTING. FORENSIC SCIENCE, AND ENVIRONMENTAL ANAIYSES

\section*{Client: Del Mar Analytical-Alt.}
17461 Derian Ave.
irvine, CA 92614

\section*{REPORT}
\(\frac{\text { acs }}{\text { Parm }}\)
Quality Control/Quality Assurance Calibration Report

Icv
\begin{tabular}{lcccccc}
\hline Parameter & \(\begin{array}{c}\text { Theoretical } \\
\text { Value (ug/L) }\end{array}\) & \(\begin{array}{c}\text { Measured } \\
\text { Value (ug/L) }\end{array}\) & \(\begin{array}{c}\text { \% } \\
\text { Rec. }\end{array}\) & \(\begin{array}{c}\text { Control } \\
\text { Limits }\end{array}\) & Flag \\
\hline Monomethyl Hydrazine & 25.0 & 23.5 & 94.1 & \(85-115\) & PASS \\
\hline U-Dimethyl Hydrazine & 25.0 & 23.2 & 93.0 & \(85-115\) & PASS \\
\hline Hydrazine & 5.0 & 5.00 & 100 & \(85-115\) & PASS \\
\hline
\end{tabular}

ICV: Initial Callibration Verfication
CCV: Continued Calibration Verification
LCS: Laboratory Control Spike
MS: Matrix Spike
\%D: Percent Diference
\%D: Percent Diflerance
Flag: "Pass" If within Cont
Flag: "Pass" If within Control Limits; otherwise "Faif
Note: Resutis based on detpctor \(1(U V=365 n m)\) data.

Del
MarAnaltuical
935566

\section*{SUBCONTRACT ORDER - PROJECT \# IOA0549}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ SENDING LABORATORY: } \\
\begin{tabular}{l} 
Del Mar Analytical, Irvine \\
17461 Derian Avenue. Suite 100 \\
Irvine, CA 92614 \\
Phone: (949) 261-1022 \\
Fax: (949) 261-1228 \\
Project Manager: Michele Harper
\end{tabular} & \multicolumn{1}{|c|}{\begin{tabular}{l} 
RECEIVING LABORATORY: \\
Truesdail Laboratories-SUB
\end{tabular}} \\
\hline \begin{tabular}{l} 
14201 Franklin Avenue \\
Tustin, CA 92680 \\
Phone :(714) 730-6239 \\
Fax: (714) 730-6462
\end{tabular} \\
\hline
\end{tabular}

Standard TAT is requested unless specific due date is requested \(\Rightarrow\) Due Date: \(\qquad\) Initials: \(\qquad\)
Analysis
Expiration

\section*{Comments}

Sample ID: IOA0549-01 Water Sampled: 01/11/05 10:48 Hydrazine-OUT

Fax (949) 261-4228 Fax(009)370-1040 Fax (619) 505-9589 Fax (480) 785-0854 Fax (rap) 7en-3ent

\section*{RECEIVING LABORATORY:}

Truesdail Laboratories-SUB
14201 Franklin Avenue
Tustin, CA 92680
Phone :(714) 730-6239
Fax: (714) 730-6462

\section*{Containers Supplied:}

1 L Amber (IOA0549-01AK)
- 1 L Amber (IOA0549-01AL)

Rec'd 01/12/05
s15c938566

\section*{For Sample Conditions See Form Attached}


\section*{F每 (}
 Fing (rist rusent

\section*{SUBCONTRACT ORDER - PROJECT \# IOA0549}


SAMPLE NTTEGRITY:
No
 \(\qquad\)


\section*{Sample Integrity \& Analysis Discrepancy Form}

Client: \(\square\) Lab \# 935566 Date Delivered: 1_12/05 Time:730 By: eMail afield Service client
1. Was a Chain of Custody received and signed?
2. Does Customer require an acknowledgement of the COC?
3. Are there any special requirements or notes on the COC?
4. If a letter was sent with the COC, does it match the COC?
5. Were all requested analyses understood and acceptable?
6. Were samples received in a chilled condition?

Temperature (if yes)? \(4^{\circ} \mathrm{C}\)
7. Were samples received intact (ie. broken bottles, leaks, air bubbles, etc..)?
8. Were sample custody seals intact?
9. Does the number of samples received agree with COC?
10. Did sample labels correspond with the client ID's?
11. Did sample labels indicate proper preservation? Preserved by: QTruesdail Client
12. Were samples pH checked? \(\mathrm{pH}=\mathrm{MP}\)
13. Were all analyses within holding time at time of receipt? If not, notify the Project Manager.
14. Have Project due dates been checked and accepted? Turn Around Time (TAT): Q RUSH L Std

Yes an \(\quad\) IN /A
aYes \(\square N o\) खाN/A
-Yes an 区N/A
aYes ם No खIN/A
Yes Q No DN/A
Yes oNo DN/A

Yes a No DN/A
- Yes \(\square\) No 区N/A

Yes a No IN/A
Yes a No DN/A
[]Yes dIno math

DYes ONo DN/A
Yes a no \(\square N / A\)
tres a No aNTA
15. Sample Matrix: \(\square\) Liquid Drinking Water \(\square G r o u n d\) Water a Waste Water sludge asoil aWipe apaint asolid tother water
16. Comments:
17. Sample Check-In completed by Truesdail Log-In/Receiving:



\section*{\(a m e{ }^{-}\)}

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\section*{ANALYSIS: SEMIVOLATILES}

\section*{SAMPLE DELIVERY GROUP: IOA0567}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{cc} 
DATA VALIDATION REPORT & \begin{tabular}{c} 
Project: \\
SDG:
\end{tabular} \\
NPDES \\
IOAO567 \\
SVOC
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ SDG\#: IOA0567 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Semivolatiles \\ QC Level: Level IV \\ No. of Samples: 1 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: M. Pokorny \\ Date of Review: March 2, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Semivolatile Organics (DVP-3, Rev. 2), EPA Method 625, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{cc} 
\\
DATA VALIDATION REPORT & \begin{tabular}{c} 
Project: \\
SDG: \\
NPDES \\
IOAOS67
\end{tabular} \\
SVOC
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Lab No. & Matrix & Method \\
\hline Outfall 011 & Outfall 011 & IOA0567-01 & water & 625 \\
\hline
\end{tabular}
\begin{tabular}{cc} 
& \begin{tabular}{c} 
Project: \\
DATA VALIDATION REPORT
\end{tabular} \\
SDDES \\
IOAOS67 \\
SVOC
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The sample in this SDG was received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C}\) \(\pm 2^{\circ} \mathrm{C}\), at \(2^{\circ} \mathrm{C}\). The analysis did not require preservation, and no preservation was noted in the field. The COC noted that the sample was received intact. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COC was signed and dated by both field and laboratory personnel. The COC accounted for the analysis presented in this SDG. As the sample was couriered directly to the laboratory, custody seals were not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The water sample was extracted within seven days of collection and analyzed within 40 days of collection. No qualifications were required.

\subsection*{2.2 GC/MS TUNING}

The DFTPP tunes met the criteria specified in Method 625, and the sample was analyzed within 12 hours of the DFTPP injection time. No qualifications were required.

\subsection*{2.3 CALIBRATION}

The initial calibration associated with this SDG was dated \(01 / 12 / 05\). The average RRFs for were \(\geq 0.05\) and the \(\%\) RSDs were \(\leq 35 \%\) or \(\mathrm{r}^{2} \geq 0.995\) for all target compounds. A representative number of average RRFs and \%RSDs were checked from the raw data, and no calculation or transcription errors were noted. The continuing calibration associated with the sample analysis was analyzed \(01 / 17 / 05\). The RRFs for all target compounds were \(\geq 0.05\), and the \(\%\) Ds were \(\leq 20 \%\), except for the \%D for 2,4-dinitrophenol. 2,4-Dinitrophenol was qualified as an estimated nondetect, "UJ," in the sample of this SDG. A representative number of RRFs and \%Ds were checked from the raw data, and no calculation or transcription errors were noted. No further qualifications were required.

\subsection*{2.4 BLANKS}

One method blank (5A13038-BLK1) was extracted and analyzed with this SDG. Naphthalene and 2-methylnaphthalene were reported in the method blank; however, the associated sample had the aforementioned compounds reported at more than five times the level found in the method blank and no qualifications were required. Review of the raw data indicated no reportable false negatives or false positives.
\begin{tabular}{ccc} 
& \begin{tabular}{c} 
Project: \\
DATA VALIDATION REPORT
\end{tabular} & \begin{tabular}{c} 
NPDES \\
SDG:
\end{tabular} \\
IOAO567
\end{tabular}

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One blank spike/ blank spike duplicate pair (5A13038-BS1/BSD1) was extracted and analyzed with this SDG. For blank spike/blank spike duplicate pairs, qualifications are applied, if necessary, to the associated samples based on those recoveries consistently outside of the laboratoryestablished QC limits in both the blank spike and blank spike duplicate. Results for those compounds with recoveries not consistent within the pair, with RPDs above the QC limit, are qualified as estimated, "UJ" for nondetects and " J " for detects, in the associated samples. All percent recoveries and RPDs were within the laboratory QC limits except for the RPD for hexachloroethane. The sample of this SDG had hexachloroethane qualified as an estimated nondetect, "UJ." A representative number of recoveries and RPDs were calculated from the raw data and no calculation or transcription errors were found. No further qualifications were required.

\subsection*{2.6 SURROGATE RECOVERY}

The sample surrogate recoveries were within the laboratory QC limits. A representative number of recoveries were calculated from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

No MS/MSD analyses were associated with this SDG. Evaluation of method accuracy and precision was based on blank spike/blank spike duplicate results. No qualifications were required.

\subsection*{2.8 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

\subsection*{2.8.1 Field Blanks and Equipment Rinsates}

There were no field QC samples associated with this SDG. No qualifications were required.

\subsection*{2.8.2 Field Duplicates}

There were no field duplicate samples associated with this SDG.

\subsection*{2.9 INTERNAL STANDARDS PERFORMANCE}

The internal standard area counts and retention times were within the control limits established by the continuing calibration standards: \(-50 \% /+100 \%\) for internal standard areas and \(\pm 30\) seconds for retention times. A representative number of recoveries were checked from the raw data, and no transcription or calculation errors were noted. No qualifications were required.
\begin{tabular}{lr} 
& \begin{tabular}{c} 
Project: \\
DATA VALIDAIION REPORT
\end{tabular} \\
SDG: & NPDES \\
IOAOS67
\end{tabular}

\subsection*{2.10 COMPOUND IDENTIFICATION}

The laboratory analyzed for the semivolatile target compounds by EPA Method 625. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification. No qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification is verified at a Level IV data validation. No calculation or transcription errors were found. The reporting limits were supported by the low level of the initial and the method detection limit study. Detects below the reporting limit were qualified as estimated, " J ," by the laboratory. No further qualifications were required.

\subsection*{2.12 TENTATIVELY IDENTIFIED COMPOUNDS}

TICs were not reported by the laboratory for this SDG. No qualifications were required.

\subsection*{2.13 SYSTEM PERFORMANCE}

Review of the raw data indicated no problems with system performance. No qualifications were required.

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}
```

Project ID: }13267\mathrm{ (Study 1)
Outfall 011
Report Number: IOA0567

```

Sampled: 01/11/05-01/12/05
Received: 01/11/05

DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & MDL Limit & Reporting Limit & Sample Result & Dilutio Factor & on Date Extracted & Date & \[
\underset{\text { Quali }}{\text { Da }}
\] & fiers \\
\hline Sample ID: 1OA0567-01 (DRAF Reporting Units: ug/ & Outfall 011 & Water) & & & Samp & pled: 01 & 1/12/05 & & \[
\begin{aligned}
& \text { REV } \\
& \text { QUAL }
\end{aligned}
\] & \[
\left.\right|_{\operatorname{QUAL}} \cos
\] \\
\hline Acenaphthene & EPA 625 & SA13038 & 0.10 & 0.50 & 11 & 1 & 01/13/05 & 01/18/05 & & \\
\hline Acenaphthylene & EPA 625 & 5A13038 & 0.10 & 0.50 & 0.12 & 1 & 01/13/05 & 01/18/05 & & \\
\hline Aniline & EPA 625 & 5 S13038 & 2.9 & 10 & ND & 1 & \(01 / 13 / 05\) & 01/18/05 & & DNQ \\
\hline Anthracene & EPA 625 & \(5 A 13038\) & 0.083 & 0.50 & 0.14 & 1 & 01113/05 & 01/1805 & 5 & DNQ \\
\hline \begin{tabular}{l}
Benzidine \\
Benzoic acid
\end{tabular} & EPA 625 & SA13038 & 2.4 & 5.0 & ND & 1 & 01/13/05 & 01/18/05 & U & \\
\hline Benzoic acid Benzo(a)anthracene & EPA 625 & 5 A 13038 & 3.7 & 20 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Benzo(a)anthracene
Benzo(a)pyrene & EPA 625 & 5A13038 & 0.038 & 5.0 & ND & 1 & 01/13/0s & 01/18/05 & & \\
\hline Benzo(a)pyrene & EPA 625 & 5A13038 & 0.14 & 2.0 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Benzo(b)fluoranthene & EPA 625 & 5A13038 & 0.050 & 2.0 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Benzo(g,hi)perylene & EPA 625 & 5 A 13038 & 0.059 & 5.0 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Benzo(k)fluoranthene & EPA 625 & 5A13038 & 0.053 & 0.50 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Benzyl alcohol & EPA 625 & 5A13038 & 0.21 & 5.0 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Bis(2-chloroethoxy)methane & EPA 625 & 5A13038 & 0.072 & 0.50 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Bis(2-chloroethyl)ether & EPA 625 & 5A13038 & 0.084 & 0.50 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Bis(2-chloroisopropyl)ether & EPA 625 & 5A13038 & 0.11 & 0.50 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Bis(2-ethylhexyl)phthalate & EPA 625 & 5A13038 & 1.1 & 5.0 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline 4 -Bromophenyl phenyl ether & EPA 625 & 5A13038 & 0.12 & 1.0 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Butyl benzyl phthalate & EPA 625 & \(5 \mathrm{Al3038}\) & 0.34 & 50 & ND & 1 & \(01 / 13 / 05\) & 01118705 & & \\
\hline 4 Chloroaniline & EPA 625 & 5A13038 & 0.20 & 2.0 & ND & 1. & 01/13/05 & 01118.05 & & \\
\hline 2-Chloronaphthalene & EPA 625 & 5A13038 & 0.059 & 0.50 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline 4-Chloro-3-methylphenol & EPA 625 & 5A13038 & 0.34 & 2.0 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline 4-Chlorophenyl phenyl ether & EPA 625 & 5A13038 & 0.056 & 0.50 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline 2-Chlorophenol & EPA 625 & 5A13038 & 0.12 & 1.0 & ND & 1 & 01/13/05 & 01118/0s & & \\
\hline Chrysene & EPA 625 & 5A13038 & 0.072 & 0.50 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Dibenz(a,h)anthracene & EPA 625 & 5A13038 & 0.083 & 0.50 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Dibenzofuran & EPA 625 & SA13038 & 0.075 & 0.50 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Di-r-butyl phthalate & EPA 625 & SA13038 & 0.26 & 2.0 & ND & 1 & 01/13/05 & 01118/05 & & \\
\hline 1,2-Dichlorobenzene & EPA 625 & 5A13038 & 0.11 & 0.50 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline 1,3-Dichlorobenzene & EPA 625 & 5A13038 & 0.13 & 0.50 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline 1,4-Dichlorobenzene & EPA 625 & 5 513038 & 0.050 & 0.50 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline 3,3-Dichlorobenzidine & EPA 625 & 5A13038 & 0.93 & 5.0 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline 2,4-Dichlorophenol & EPA 625 & 5A13038 & 0.21 & 2.0 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Diethyl phthalate & EPA 625 & 5A13038 & 0.12 & 1.0 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline 2,4-Dimethylphenol & EPA 625 & 5 A 13038 & 0.31 & 2.0 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Dimethyl phthalate & EPA 625 & 5A13038 & 0.081 & 0.50 & ND & & 01/13/05 & 01/18/05 & & \\
\hline 4,6-Dinitro-2-methylphenol & EPA 625 & 5A13038 & 0.38 & 5.0 & ND & & 01/13/05 & 01/18/05 & \(\downarrow\) & \\
\hline 2,4-Dinitrophenol & EPA 625 & \(5 A 13038\) & 2.7 & 5.0 & ND & & 01/13/05 & 01/18/05 & 45 & C \\
\hline 2,4-Dinitrotoluene & EPA 625 & 5A13038 & 0.23 & 5.0 & ND & 1 & 01/13/05 & 01/18/05 & E & C \\
\hline 2,6-Dinitrotoluene & EPA 625 & 5A13038 & 0.24 & 5.0 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Di-n-octyl phthalate & EPA 625 & 5A13038 & 0.17 & 5.0 & ND & & 01/13/05 & 01/18/05 & & \\
\hline 1,2-Diphenylhydrazine/Azobenzene & EPA 625 & 5A13038 & 0.087 & 1.0 & ND & & 01/13/05 & 01/18/05 & & \\
\hline DRAFT REPORT DRAFT REPORT & & & & & & & & & & \\
\hline DATA SUBJECT TO CHANGE & La &  & \[
641
\] & \[
15
\] & D & & & VEL & I & \\
\hline
\end{tabular}

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly

\author{
Project ID: 13267 (Study 1) \\ Outfall 011 \\ Report Number: IOA0567
}

Sampled: 01/11/05-01/12/05
Received: 01/11/05

DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)


CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA
AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Package ID T711TF36
Task Order 313150010
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer K. Shadowlight
Analysis/Method TPH-Extractable

SDG No. IOA0567
No. of Analyses 2
Date March 4, 2005


\section*{ACIIONITEMS}
1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, eg,
Holding Times
GC/MS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and
Quantitation
System Performance
COMMENIS \({ }^{\circ}\)
Acceptable as reviewed.

\footnotetext{
\({ }^{2}\) Subcontracted analytical laboratory is not meeting contract and/or method requirements.
\({ }^{6}\) Differences in protocol have been adopted by the laboratory but no action against the laboratory is reguired.
}

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\section*{ANALYSIS: TPH/EXTRACTABLE}

\section*{SAMPLE DELIVERY GROUP: IOA0567}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{ccc} 
& Project: & \begin{tabular}{c} 
NPDES \\
DATA VALIDATION REPORT
\end{tabular} \\
IOA0567 \\
SDG:
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: IOA0567 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: TPH-Extractable \\ QC Level: Level IV \\ No. of Samples: 1 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: K. Shadowlight \\ Date of Review: March 4, 2005
}

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Extractable Total Fuel Hydrocarbons by GC (DVP-8, Rev. 2), USEPA SW-846 Method 8015M, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.


Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Lab No. & Matrix & Method \\
\hline Outfall 011 & Outfall 011 & IOA0567-01 & water & 8015M/EFH \\
\hline
\end{tabular}
DATA VALIDATION REPORT \begin{tabular}{r} 
Project: \\
SDG: \\
NPDES \\
IOAOS67 \\
TPH
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The sample in this SDG was received at Del Mar Analytical laboratory on ice within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). The Del Mar Analytical case narrative noted that the sample containers were received intact. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COC was signed and dated by both field and laboratory personnel, and accounted for the analysis presented in this SDG. As the sample was couriered directly to the laboratory, custody seals were not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The sample was extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

\subsection*{2.2 CALIBRATION}

The intial calibration associated with the sample analysis was analyzed on \(11 / 1104\). The \(\%\) RSD was within the QC limit of \(\leq 20 \%\). The \%Ds for the initial calibration verification (ICV) and continuing calibrations associated with the sample analysis were \(\leq 15 \%\). The \%RSD and \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required

\subsection*{2.3 METHOD BLANKS}

One method blank (5A13035-BLK1) was extracted and analyzed with the sample in this SDG. EFH (C13-C22) was not present above the MDL in the method blank or in the instrument blank analyzed at the beginning of the analytical sequence. Review of the chromatograms showed no false negatives. No qualifications were required.

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One method blank spike (5A13035-BS1) was extracted and analyzed with the sample in this SDG. The recovery of alkane range C13-C40 from spiked diesel was within the laboratoryestablished QC limits of \(40-120 \%\). The recovery was checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.
DATA VALIDATION REPORT \(\quad\)\begin{tabular}{r} 
Project: \\
SDG: \\
Analysis:
\end{tabular} \begin{tabular}{r} 
NPDES \\
IOAOS67 \\
TPH
\end{tabular}

\subsection*{2.5 SURROGATE RECOVERY}

The sample was fortified with the surrogate compound n-octacosane. The sample surrogate recovery was within the laboratory-established QC of \(40-125 \%\). The recovery was calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

There were no MS/MSD analyses associated with the sample of this SDG. Evaluation of method accuracy and precision was based on the BS/BSD results. No qualifications were required.

\subsection*{2.7 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.7.1 Field Blanks and Equipment Rinsates}

There were no field blank or equipment rinsate samples associated with the site sample in this SDG. No qualifications were required.

\subsection*{2.7.2 Field Duplicates}

There were no field duplicate samples associated with the samples in this SDG.

\subsection*{2.8 COMPOUND IDENTIFICATION}

The laboratory analyzed for EFH n-alkane range C13-C22 by EPA SW846 Method 8015M. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for this SDG. No qualifications were required.

\subsection*{2.9 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification was verified for this SDG by recalculating any sample detect, blank spike recoveries, and a representative number of surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibration and by the laboratory MDL. The reporting limit was not adjusted for sample amount; however, the dilution factor on the sample result summary reflected the sample amount extracted. No qualifications were required.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOA0567

Sampled: 01/11/05-01/12/05
Received: 01/11/05

DRAFT: EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & Dilution Factor & Date Extracted & Date Analyzed & \[
\begin{array}{r}
D_{2} \\
\text { Qual }
\end{array}
\] & lifiers \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
Sample ID: IOA0567-01 (DRAFT: Outfall 011 - Water) - cont. \\
Reporting Units: mg/l
\end{tabular}} & & \multicolumn{3}{|l|}{Sampled: 01/12/05} & & & \[
\left[\begin{array}{l}
\operatorname{cim}_{\cot } \\
\operatorname{coc}
\end{array}\right.
\] \\
\hline EFH (C13-C22) & EPA 8015B & 5A13035 & 0.082 & 0.50 & ND & 0.99 & 01/13/05 & 01/13/0 & & \\
\hline Surrogate: \(n\)-Octacosane (40-125\%) & & & & & \[
65 \%
\] & 0.9 & 01/1305 & 01/13/05 & & \\
\hline
\end{tabular}

\section*{AMEC VALIDATED}

\section*{DRAFT REPORT}

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA


\section*{amec \({ }^{\text {® }}\)}

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\section*{ANALYSIS: TPH/PURGEABLE}

SAMPLE DELIVERY GROUP: IOA0567

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{lrr} 
& \begin{tabular}{c} 
Project: \\
DATA VALIDATION REPORT
\end{tabular} & \begin{tabular}{r} 
NPDES \\
IOA0567
\end{tabular} \\
Analysis: & TPH
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: IOA0567 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: TPH-Purgeable \\ QC Level: Level IV \\ No. of Samples: 2 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: K. Shadowlight \\ Date of Review: March 4, 2005
}

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Extractable Total Fuel Hydrocarbons by GC (DVP-8, Rev. 2), USEPA SW-846 Method 8015M, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.


Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Lab No. & Matrix & Method \\
\hline Outfall 011 & Outfall 011 & IOA0567-01 & water & \(8015 \mathrm{M} / \mathrm{GRO}\) \\
\hline Trip Blank & Trip Blank & IOA0567-02 & water & \(8015 \mathrm{M} / \mathrm{GRO}\) \\
\hline
\end{tabular}
\begin{tabular}{lr} 
DATA VALIDATION REPORT & \begin{tabular}{c} 
Project: \\
SDG:
\end{tabular} \\
Andys: \\
IOA0567 \\
IPH
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in this SDG were received at Del Mar Analytical laboratory on ice within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). The Del Mar Analytical case narrative noted that the samples were received intact, and the COC indicated the samples were properly preserved, without headspace in the VOA vials. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COC was signed and dated by both field and laboratory personnel. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The water samples were analyzed within 14 days of collection. No qualifications were required.

\subsection*{2.2 CALIBRATION}

One gasoline standard initial calibration dated 08/20/04 was associated with the sample analyses. The \%RSD for GRO (C4-C12) was within the QC limit of \(\leq 20 \%\). An initial calibration verification (ICV) was not provided in the data package. The \%Ds for both CCVs bracketing the sample analyses were within the Method QC limit of \(\leq 15 \%\). The \%RSD and \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.3 METHOD BLANKS}

One water method blank (5A13005-BLK1) was associated with the sample analyses. GRO (C4-C12) was not detected above the MDL in the method blank. Review of the raw data indicated no false negative result. No qualifications were necessary.

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One water method blank spike (5A13005-BS1) was associated with the sample analyses. GRO (C4-C12) was recovered within the laboratory-established QC limits of 70-140\% in the blank spike. The recovery was checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.


\subsection*{2.5 SURROGATE RECOVERY}

The samples were fortified with the surrogate compound bromofluorobenzene (BFB). Surrogate recoveries were within the laboratory-established QC of \(65-140 \%\) for both samples. Recoveries were calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

MS/MSD analyses were not performed on the samples in this SDG; therefore, evaluation of method accuracy was based on the blank spike results. No qualifications were required.

\subsection*{2.7 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.7.1 Trip Blanks, Field Blanks, and Equipment Rinsates}

Sample Trip Blank was the trip blank associated with site sample Outfall 011. GRO (C4-C12) was not detected above the MDL in the trip blank. Review of the raw data indicated no false negative result. There were no field blank or equipment rinsate samples associated with this SDG. No qualifications were necessary.

\subsection*{2.7.2 Field Duplicates}

There were no field duplicate samples in this SDG.

\subsection*{2.8 COMPOUND IDENTIFICATION}

The laboratory analyzed for GRO (C4-C12) by EPA SW-846 Method 8015M. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for the samples in this SDG. No qualifications were required.

\subsection*{2.9 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification was verified for this SDG by recalculating any sample detects, blank spike recoveries, and a representative number of surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibrations and by the laboratory MDL. No qualifications were required.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011
Report Number: IOA0567

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{DRAFT: VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & Dilution Date FactorExtracted & Date Analyz &  & \\
\hline \multicolumn{5}{|l|}{Sample ID: 1OA0567-01 (DRAFT: Outfall 011 - Water) - cont. Reporting Units: mgn} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Sampled: 01/12/05}} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
Q_{4<}
\]}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hat{Q u}^{2} 1 \\
& \operatorname{tocec}
\end{aligned}
\]} \\
\hline GRO (C4-C12) & EPA 8015 Mod . & 5A13005 & 0.050 & 0.10 & & & & & \\
\hline Surrogate: 4-BFB (FID) (65-140\%) & & & 0.050 & 0.10 & \[
93 \%
\] & 1 01/13/05 & 01/13/05 & U & \\
\hline \multicolumn{5}{|l|}{Sample D: IOA0567-02 (DRAFT: Trip Blank - Water) Reporting Units: mg} & \multicolumn{2}{|l|}{Sampled: 01/11/05} & & & \\
\hline GRO (C4-C12) & EPA 8015 Mod . & 5A13005 & 0.050 & 0.10 & & & & L & \\
\hline Surrogate: 4-BFB (FID) (65-140\%) & & & 0.050 & 0.10 & \[
94 \%
\] & 01/13/05 & 01/13/05 & & \\
\hline
\end{tabular}

\section*{GUEC VALIDATED}


CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

\section*{AMEC Earth \& Environmental}

550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Eberline
Reviewer P. Meeks
Analysis/Method Radionuclides

Package ID T711RA3
Task Order 313150010
SDG No. IOA0549, 1OA0567
No. of Analyses 2
Date: 03/09/05
Rexiewers Signature

\section*{ACTION ITEMS}
1. Case Narrative Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Qualifications were applied for:

Analysis Protocol, e.g.,
1. Incorrect sample container
2. Exceeded holding time
3. Detector efficiencies less than \(20 \%\)

Holding Times
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification
and Quantitation
System Performance
\(\qquad\)
\(\qquad\)
\(\square\)
\(\square\)
\(\square\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
COMMENTS \({ }^{\text {b }}\)

\footnotetext{
- Subcontracted analytical laboratory is not meeting contract and/or method requirements.
}
\({ }^{6}\) Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

\title{
amec \({ }^{\theta}\)
}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES \\ Monitoring
}

\section*{ANALYSIS: RADIONUCLIDES}

\section*{SAMPLE DELIVERY GROUPS: \\ IOA0549 \& IOA0567}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: 1OA0549, IOA0567 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Radionuclides \\ QC Level: Level IV \\ No. of Samples: 2 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: P. Meeks \\ Date of Review: March 09, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the EPA Prescribed Procedures for Measurements of Radioactivity in Drinking Water, Methods 900.0, 905.0, and 906.0, and validation procedures outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{lr} 
& Project: \\
DATA VALIDATION REPORT & SDG No.: 10 IOA0549, 0567 \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & Del Mar ID & Eberline ID & Matrix & COC Method \\
\hline Outfall 011 Grab & IOA0549-01 & \(8175-001\) & water & \(900.0,905.0,906.0\) \\
\hline Outfall 011 & IOA0567-01 & \(8174-001\) & water & \(900.0,905.0,906.0\) \\
\hline
\end{tabular}
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: \(10 A 0549,0567\) \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at Del Mar Analytical within the temperature limits of \(4 \pm 2^{\circ} \mathrm{C}\). No temperature information was provided by Eberline, the subcontract laboratory; however, as it is not necessary to chill radiological samples, no qualifications were required. All samples were received intact and in good condition.

According to the Eberline login sheet, none of the samples were received preserved. It was confirmed in correspondence with Eberline dated \(01 / 31 / 05\), that the gross alpha, gross beta, and strontium samples were not preserved upon receipt. According to the Los Angeles Water Quality Control Board (LARWQCB) guidance letter dated 01/12/05, unfiltered samples should not be preserved and filtered aliquots should be preserved after filtration. Neither sample in this SDG was filtered prior to analysis.

Additionally, according to the 01/12/05 LARWQCB guidance letter, samples collected for tritium analysis should be submitted in glass containers to avoid potential loss of tritium by sorption onto the plastic container. As neither of the tritium samples were submitted in glass containers, both nondetect tritium results were qualified as estimated, "UJ." No further qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The original COCs were signed and dated by field and laboratory personnel and the transfer COC for Outfall 011 was signed by personnel from both laboratories. The transfer COC for Outfall 011 (IOA0567) was not signed as received by Eberline. The original and transfer COCs accounted for the samples and analyses presented in this data package. Eberline did not list the MWH IDs on the Form Is; therefore, the reviewer edited the Form Is to reflect these IDs. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The tritium and strontium samples were analyzed within 180 days of collection. The gross alpha and gross beta samples were analyzed beyond the five day holding time for unpreserved samples; therefore, the gross alpha and gross beta results were qualified as estimated, "J," for detects and, "UJ," for nondetects. No further qualifications were necessary.

\subsection*{2.2 CALIBRATION}

The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

\section*{Gross Alpha}

The initial calibration included with the data was performed in February 2003. All detector efficiencies were below \(20 \%\); therefore, the nondetected alpha results were qualified as estimated, "UJ."

\section*{Tritium}

No calibration standards were analyzed for this method. According to the laboratory, every sample was spiked for efficiency determination; therefore, no calibration is necessary. All detector efficiencies in the samples were at least \(20 \%\) and were considered acceptable.

\section*{Gross Beta and Strontium-90}

The initial calibrations were performed in June 1997. All tritium detector efficiencies were at least \(20 \%\) and were considered acceptable. All strontium chemical yields were at least \(65 \%\) and were considered acceptable and the strontium continuing calibration results were within the laboratory control limits. No qualifications were necessary.

\subsection*{2.3 BLANKS}

No measurable activities were detected in the method blanks; therefore, no qualifications were necessary.

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One blank spike (8174-002) was analyzed in association with the samples in these SDGs. The gross alpha, gross beta, and tritium recoveries were within the 3 -sigma limits. The strontium recovery was outside of the 3 -sigma limit, but was considered acceptable at \(112 \%\). No qualifications were necessary.

\subsection*{2.5 LABORATORY DUPLICATES}

The laboratory performed a duplicate analysis on Outfall 011. The RPDs for tritium and strontium were \(\leq 20 \%\). The RPDs for gross alpha and gross beta were \(>20 \%\); however, as the results were within the 3 -sigma limit, no qualifications were necessary.

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

The laboratory performed matrix spike analyses on Outfall 011 for gross alpha, gross beta, and tritium. The recoveries were within both 3 -sigma limits. No qualifications were necessary.

\subsection*{2.7 SAMPLE RESULT VERIFICATION}

An EPA Level IV review was performed for the samples in these data packages. Sample results and MDAs reported on the sample result forms were verified against the raw data and no calculation or transcription errors were noted. No qualifications were necessary.
\begin{tabular}{lrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0549, 0567 \\
\hline
\end{tabular}

\subsection*{2.8 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

\subsection*{2.8.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.8.2 Field Duplicates}

There were no field duplicate samples in these SDGs.

\section*{Eberline Services}

\section*{ANALYSIS RESULTS}


\section*{AMEC VALIDATED}

L-vel|V


Eberline Services

\section*{ANALYSIS RESULTS}



\section*{amec vizidated}


CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer P. Meeks
Analysis/Method Metals

Package ID T711MT34
Task Order 313150010
SDG No. IOA0567
No. of Analyses 1
Date: 03/09/05
Reyiewer's Signature
P.Mues

\section*{ACTION ITEMS \({ }^{\text {a }}\)}
1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardeopy

Deliverables
6. Deviations from \(\quad\) Qualifications were applied for:

Analysis Protocol, e.g.,
1. Detects in the associated blanks

Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification and Quantitation
System Performance
2. Reporting limit standard recovery outliers
3. Analytes detected below the reporting limit
\(\qquad\)
\(\qquad\)
Q,
\(\qquad\)
\(\square\)
. . \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{COMMENTS}
\({ }^{3}\) Subcontracted analytical laboratory is not meeting contract and/or method requirements.
\({ }^{\text {b }}\) Differences in protocol have been adopted by the labortory but no action against the laboratory is required.

\section*{amec \({ }^{\theta}\)}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES \\ Monitoring
}

\author{
ANALYSIS: METALS SAMPLE DELIVERY GROUP: IOA0567
}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: 10A0567 \\ Project Manager: B. McIlvaine \\ Matrix: Water \\ Analysis: Metals \\ QC Level: Level IV \\ No. of Samples: 1 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer P. Meeks \\ Date of Review: March 08, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, SW-846 Method 6010B for Inductively Coupled Plasma, SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form 1 as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0567 \\
Analysis: & & \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 011 & Outfall 011 & IOA0567-01 & water & ILM04 \\
\hline
\end{tabular}
\begin{tabular}{rr} 
Project: & NPDES \\
SDG No.: & IOA0567 \\
Analysis: & MET \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The sample in this SDG was received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

\subsection*{2.1.2 Chain of Custody}

The COC was signed and dated by field and laboratory personnel. The COC requested only a few of the presented analytes. The remaining analytes were requested in a memo from MWH personnel dated \(03 / 01 / 05\). No sample qualifications were required.

\subsection*{2.1.3 Holding Times}

The date of collection recorded on the COC and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS and ICP metals and 28 days for mercury. No qualifications were required.

\subsection*{2.2 ICP-MS TUNING}

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. The laboratory performed the required tune solution analyses but did not report \%RSDs. The laboratory SOP states that to be acceptable, the \%RSD must be less than \(5 \%\). The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

\subsection*{2.3 CALIBRATION}

The ICV and CCV results showed acceptable recoveries, \(90-110 \%\) for ICP and ICP/MS and \(80-\) \(120 \%\) for mercury. The beryllium, cobalt, and lead reporting limit check standard recoveries were above the control limit; therefore, barium, beryllium, cobalt, copper, and lead detected in Outfall 011 were qualified as estimated, "JJ." The remaining reporting limit check standards were recovered within the AMEC control limits of \(70-130 \%\). No further sample qualifications were required.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No: & IOA0567 \\
\hline
\end{tabular}

\subsection*{2.4 BLANKS}

There were detects and negative results reported for the method blanks and bracketing ICBs/CCBs associated with the sample in this SDG. Antimony and thallium were detected in a bracketing CCB at 0.390 and \(0.101 \mu \mathrm{~g} / \mathrm{L}\), respectively, and boron was detected in a bracketing CCB at \(0.0176 \mathrm{mg} / \mathrm{L}\); therefore, antimony, boron, and thallium detected in Outfall 011 were qualified as estimated, "UJ." Cadmium and chromium were reported in the method blank (5A13044-BLK1) at 0.321 and \(0.611 \mu \mathrm{~g} / \mathrm{L}\), respectively; therefore, cadmium and chromium detected in Outfall 011 were qualified as estimated, "UJ." No further qualifications were required due to the method and calibration blank results.

\subsection*{2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)}

No ICPMS interference check samples were analyzed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

ICSA and ICSAB analyses were included in the raw data for the ICP boron analysis. The recoveries for boron and the interferents were within the control limits of \(80-120 \%\). A negative result was reported for boron in the ICSA. The validator reviewed the raw data for the site sample ICP analysis for the level of reported interferents, \(\mathrm{Al}, \mathrm{Ca}, \mathrm{Fe}\), and Mg , and determined that the concentration of interferents was not high enough to cause matrix affects. No sample qualifications were required due to the ICP ICS analysis.

\subsection*{2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The ICP/MS LCS sample was identified as 5A13044-BS1, the ICP LCS sample was identified as 5A13042-BS1, and the Hg LCS sample was identified as 5A13050-BS1. The LCS results on the summary forms and in the raw data were within the laboratory-established ICP/MS, ICP, and Hg control limits of \(85-115 \%\). No qualifications were required.

\subsection*{2.7 LABORATORY DUPLICATES}

MS/MSD analyses were performed on Outfall 011. The RPDs were less than the control limit of \(20 \%\) and no qualifications were required.

\subsection*{2.8 MATRIX SPIKE}

MS/MSD analyses were performed on Outfall 011. The recoveries were within the AMEC control limits of \(75-125 \%\) and no qualifications were required.
\begin{tabular}{rrr} 
& Project: & NPDES \\
& SDG No.: & 1OA0567 \\
DATA VALIDATION REPORT & Analysis: & MET \\
\hline
\end{tabular}

\subsection*{2.9 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analysis of this sample; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.10 ICP/MS AND ICP SERIAL DILUTION}

No serial dilution analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

\subsection*{2.11 INTERNAL STANDARDS PERFORMANCE}

The ICP and ICP-MS internal standard recoveries for the site sample and associated QC sample analyses were within the \(60-125 \%\) control limits and no qualifications were required.

\subsection*{2.12 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit were qualified as estimated, "J." No further qualifications were required.

\subsection*{2.13 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

\subsection*{2.13.1 Field Blanks and Equipment Rinsates}

The sample in this SDG had no associated field QC samples. No qualifications were required.

\subsection*{2.13.2 Field Duplicates}

There were no field duplicate analyses performed in association with the site sample.
\begin{tabular}{lll} 
MWH-Pasadena/Boeing & Project ID: 13267 (Study 1) & \\
300 North Lake Avenue, Suite 1200 & & Outfall 011
\end{tabular}

\section*{DRAFT: METALS}



DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

\section*{Project ID: 13267 (Study 1)} Outfall 011
Report Number: 10A0567

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{DRAFT: METALS}



CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical.
Reviewer L. Calvin
Analysis/Method Pesticides/PCBs by Method 608

Package ID T711PP12
Task Order 313150010
SDG No. 1040567
No. of Analyses 1
Date: February 28, 2005


\section*{amec}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES Monitoring
}

\section*{ANALYSIS: PESTICIDES/PCBs}

\section*{SAMPLE DELIVERY GROUP: IOA0567}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226


\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \# 313150010 \\ SDG\#: IOA0567 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Pesticides/PCBs \\ QC Level: Level IV \\ No. of Samples: 1 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: L. Calvin \\ Date of Review: February 28, 2005
}

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedures (DVP-4, Rev.2), EPA Method 608, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary form as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{ccc} 
\\
DATA VALIDATIONREPORT & \begin{tabular}{c} 
Project: \\
SDG:
\end{tabular} & \begin{tabular}{c} 
NPDES \\
IOA0S67 \\
PestPCB
\end{tabular} \\
Analysis:
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & Method \\
\hline Outfall 011 & Outfall 011 & IOA0567-01 & water & 608 \\
\hline
\end{tabular}
\begin{tabular}{lc} 
& \begin{tabular}{c} 
Project: \\
DATA VALIDATION REPORT
\end{tabular} \\
SDG: & NPDES \\
IOA0S67 \\
Pesu/PCB
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The sample in this SDG was received at the laboratory on ice within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\), at \(2^{\circ}\). The analysis did not require preservation, and no preservation was noted in the field. The case narrative noted that the sample was received intact. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COC was signed and dated by both field and laboratory personnel. The COC accounted for the analysis presented in this SDG. As the sample was couriered directly to the laboratory, custody seals were not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The water sample was extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

\subsection*{2.2 PESTICIDES INSTRUMENT PERFORMANCE}

No resolution check standards or breakdown check standards are required by Method 608 for pesticides, and according to the raw data provided, a resolution check standard was not analyzed by the laboratory. The laboratory did analyze a breakdown check standard with a breakdown of \(\leq 20 \%\) for individual components (4,4-DDT and endrin) and \(\leq 30 \%\) for the total, as suggested in the National Functional Guidelines. A review of the raw data indicated that the analytical run time was of sufficient length to provide adequate standard separation. The two analytical columns used in the analyses were within the guidelines specified in the methods.

According to the laboratory SOP and the initial calibration raw data, the retention time windows are \(\pm 0.10\) minutes for both surrogates and target compound calibration standards. A review of the raw data indicated that the laboratory retention time criteria were met for the surrogates and pesticide calibration standards. No qualifications were required.

\subsection*{2.3 CALIBRATION}

\subsection*{2.3.1 Analytical Sequence}

Based on the data provided, the analytical sequences were in accordance with the requirements of Method 608. No qualifications were required.


\subsection*{2.3.2 Initial Calibration}

There was one initial calibration dated \(12 / 29 / 04\) associated with pesticide analysis of sample Outfall 011 , which consisted of six point calibrations for all pesticide target compounds on two analytical columns. The \%RSDs were within the EPA Method 608 QC limit of \(\leq 10 \%\) on both analytical columns. There was one initial calibration dated 01/03/05 associated with the PCB analysis of the sample, consisting of five points for Arochlor 1016 and Arochlor 1260. Single point calibrations for Arochlor 1242, Aroclor 1248, and Aroclor 1254 were analyzed but were not provided in the data package. The average \%RSDs for the individual peaks of Aroclor 1016 and Aroclor 1260 were \(\leq 10 \%\) on both analytical columns. An ICV was analyzed immediately following each of the initial calibrations. The \%Ds for all target compounds were within the QC limits of \(15 \%\) on both analytical columns. A representative number of \%RSDs and ICV \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.3.3 Continuing Calibration}

The pesticide sample analysis of this SDG was bracketed by four continuing calibrations. In one of the bracketing calibrations following the sample analysis, the \(\%\) D exceeded \(15 \%\) on channel A for beta-bhc. As all results in this SDG were reported from channel A, the nondetect result for beta-bhc was qualified as estimated, "UJ," in sample Outfall 011. The \%Ds were within the Method QC limit of \(\pm 15 \%\) for the remaining calibrations. The PCB analysis of this sample was bracketed by two CCVs and the \%Ds for Aroclor 1016 and Aroclor 1260 were \(\leq 15 \%\). A representative number of \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.4 BLANKS}

\subsection*{2.4.1 Instrument Blanks}

An instrument blank was analyzed at the beginning of the analytical sequence. Crosscontamination was not evident in the sample. No qualifications were necessary.

\subsection*{2.4.2 Method Blanks}

One water method blank (5A13049-BLK1) was extracted and analyzed with this SDG. There were no pesticide target compounds or Aroclors detected in the method blank. Review of the chromatograms showed no false negatives. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One blank spike/blank spike duplicate pair (5A13049-BS1/BSD1) was extracted and analyzed with this SDG. The recoveries for all spiked pesticide target compounds and Aroclors were within the laboratory-established QC limits and the RPDs were \(\leq 30 \%\). A representative number of recoveries were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.


\subsection*{2.6 SURROGATE RECOVERY}

The sample and all QC samples were fortified with the surrogate compounds decachlorobiphenyl and tetrachloro-m-xylene. Surrogate recoveries for this SDG were within the laboratory-established QC limits. The recoveries were calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

There were no MS/MSD analyses associated with this SDG. Method accuracy and precision were assessed based on the blank spike/blank spike duplicate results. No qualifications were required.

\subsection*{2.8 SAMPLE CLEANUP PERFORMANCE}

According to the laboratory extraction benchsheets, no cleanups were performed on the water sample. No qualifications were required.

\subsection*{2.9 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.9.1 Field Blanks and Equipment Rinsates}

There were no field QC samples associated with the sample in this SDG. No qualifications were required.

\subsection*{2.9.2 Field Duplicates}

There were no field duplicate samples associated with the sample in this SDG.

\subsection*{2.10 COMPOUND IDENTIFICATION}

The laboratory analyzed for pesticide target compounds and PCBs by EPA Method 608. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for the sample in this SDG. No qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification was verified for this SDG; however, as there were no detects reported in this SDG, quantitation was verified by recalculating a representative number of blank spike and surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibration and the laboratory MDL study. No qualifications were required.

\footnotetext{
MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Project ID: 13267 (Study 1)
Outfall 011
Report Number: 1OA0567
}

Attention: Bronwyn Kelly
Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{DRAFT: ORGANOCHLORINE PESTICIDES (EPA 608)}


\title{
AMEC VALIDATED LEVEL IV
}

\section*{DRAFT REPORT \\ DRAFT REPORT \\ DATA SUBJECT TO CHANGE}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\section*{Project ID: 13267 (Study 1) \\ Outfall 011 \\ Report Number: IOA0567}

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{DRAFT: TOTAL PCBS (EPA 608)}


\section*{amec Validated HEVEL II}

\section*{DRAFT REPORT}

DRAFT REPORT

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}
\begin{tabular}{|c|c|}
\hline AMEC Earth \& Environmental & Package ID T711VO50 \\
\hline 550 South Wadsworth Boulevard & Task Order 313150010 \\
\hline Suite 500 & SDG No. IOA0567 \\
\hline Lakewood, CO 80226 & No. of Analyses 1 \\
\hline Laboratory Del Mar & Date: March 2, 2005 \\
\hline Reviewer M. Pokorny & Reviewer's Signature \\
\hline Analysis/Method Volatiles (1,4-dioxane) & MM thon \\
\hline
\end{tabular}

\section*{ACTION ITEMS \({ }^{*}\) \\ 1. Case Narrative \\ Deficiencies}
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, e.g.,
Holding Times
GC/MS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and
Quantitation
System Performance
COMMENTS \({ }^{\text {b }} \quad\) Acceptable as reviewed.

\footnotetext{
* Subcontracted analytical laboratory is not meeting contract and/or method requirements.
\({ }^{\text {b }}\) Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.
}

\section*{amec \({ }^{\text { }}\)}

\section*{DATA VALIDATION REPORT}

\author{
NPDES Monitoring
}

\author{
ANALYSIS: VOLATILES \\ \section*{SAMPLE DELIVERY GROUP: IOA0567}
}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0567 \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: IOA0567 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Volatiles (1,4-dioxane) \\ QC Level: Level IV \\ No. of Samples: 1 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: M. Pokorny \\ Date of Review: March 2, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Volatile Organics (DVP-2, Rev. 2), EPA Method SW-846 \(8260 B\) and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Forml as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{lrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0567 \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Lab No. & Matrix & Method \\
\hline Outfall 011 & Outfall 011 & IOA0567-01 & water & 624 \\
\hline
\end{tabular}
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOAOS67 \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The sample in this SDG was received at the Del Mar within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). The sample was properly preserved. The COC noted that the sample was received intact; however, information regarding absence of headspace was not provided. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COC was signed by field and laboratory personnel. The COC accounted for the analysis presented in this SDG. According to the sample login sheet, custody seals were not present on the cooler. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The sample was analyzed within 14 days of collection. No qualifications were required.

\subsection*{2.2 GCMS TUNING}

The ion abundance windows were consistent with those specified in EPA Method 8260B. All ion abundances were within the established windows, and the sample was analyzed within 12 hours of the BFB injection time. No qualifications were required.

\subsection*{2.3 CALIBRATION}

One initial calibration, dated 01/07/05, was associated with this SDG. The average RRF for \(1,4-\) dioxane was \(\geq 0.05\) and the \(\%\) RSD was \(\leq 15 \%\). One continuing calibration, dated \(01 / 07 / 05\) was associated with this SDG. The RRF for 1,4 -dioxane was \(\geq 0.05\) and the \(\%\) D was \(\leq 20 \%\). The \(\%\) RSD and average RRF for 1,4 -dioxane in the initial calibration, and the \(\% \mathrm{D}\) and RRF for 1,4 -dioxane in the continuing calibration were recalculated from the raw data, and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.4 BLANKS}

One water method blank (P5A1502-BLK1) was associated with this SDG. Target compound 1,4dioxane was not detected in the method blank. The method blank raw data showed no evidence of a false negative. No qualifications were required.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOAOS67 \\
\hline
\end{tabular}

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The laboratory analyzed a blank spike/blank spike duplicate pair (P5A1502-BS1/BS1D) with this SDG. The recoveries and RPD for 1,4-dioxane were within the laboratory QC limits. A representative recovery was recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.6 SURROGATE RECOVERY}

The samples and QC were fortified with dibromofluoromethane. The surrogate was recovered within the laboratory QC limits of \(80-125 \%\). The surrogate recovery for this sample was recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

No MS/MSD analyses were associated with this SDG. Evaluation of method accuracy was based on blank spike results. No qualifications were required.

\subsection*{2.8 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data, Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

\subsection*{2.8.1 Trip Blanks}

The samples in this SDG had no associated trip blank. No qualifications were required.

\subsection*{2.8.1Field Blanks and Equipment Rinsates}

The site sample in this SDG had no associated field QC samples. No qualifications were required.

\subsection*{2.8.2 Field Duplicates}

There were no field duplicate samples associated with this SDG.

\subsection*{2.9 INTERNAL STANDARDS PERFORMANCE}

Internal standard area counts and retention times for the samples were within the control limits established by the continuing calibration standards, of \(+100 \% /-50 \%\) for internal standard areas and \(\pm 0.50\) minutes for retention times. Internal standard areas and retention times were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0567 \\
\hline
\end{tabular}

\subsection*{2.10 COMPOUND IDENTIFICATION}

Target compound identification was verified at a Level IV data validation. The laboratory analyzed for 1,4-dioxane by Method 8260B/SIM. Chromatograms, retention times, and spectra for the samples and QC were examined and no target compound identification problems were noted. No qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification is verified at a Level IV data validation. The reporting limit was supported by the lowest concentration of the initial calibration standards and by the undated MDL supplied by the laboratory. Compound quantitation was verified by recalculating blank spike and surrogate recoveries from the raw data. No calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.12 TENTATIVELY IDENTIFIED COMPOUNDS}

TICs are not typically reported for SIM methods.

\subsection*{2.13 SYSTEM PERFORMANCE}

A review of the chromatograms and other raw data showed no identifiable problems with system performance. No qualifications were required.
esapeake Dr. Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505.968 9830 South 51 st St, Suite B-720, Phoenix, AZ 85044 (480) \(785-0043\) FAX (480) 785-0851 2520 E. Sunset Rd. *3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOA0567

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{DRAFT: 1,4-DIOXANE BY GC/MS (EPA 5030B/8260B)}


\section*{A睤EG VALIDATED}

Level IV

\section*{DRAFT REPORT}

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}
\begin{tabular}{|c|c|}
\hline AMEC Earth \& Environmental & Package ID T711VO51 \\
\hline 550 South Wadsworth Boulevard & Task Order 313150010 \\
\hline Suite 500 & SDG No. IOA0567 \\
\hline Lakewood, CO 80226 & No. of Analyses 2 \\
\hline Laboratory Del Mar & Date: March 4, 2005 \\
\hline Reviewer M. Pokorny & Reviewer's Signature \\
\hline Analysis/Method Volatiles & M11.40~ \\
\hline
\end{tabular}

\section*{ACTION ITEMS*}
1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables


\footnotetext{
* Subcontracted analytical laboratory is not meeting contract and/or method requirements.
\({ }^{\text {a }}\) Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.
}

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\section*{ANALYSIS: VOLATILES}

\section*{SAMPLE DELIVERY GROUP: IOA0567}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{cc} 
\\
DATA VALIDATION REPORT & \begin{tabular}{c} 
Project: \\
SDG:
\end{tabular} \\
\begin{tabular}{c} 
NPDES \\
IOA0567
\end{tabular} \\
VOC
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ SDG\#: IOA0567 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Volatiles \\ QC Level: Level IV \\ No. of Samples: 2 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: M. Pokorny \\ Date of Review: March 4, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Volatile Organics (DVP-2, Rev. 2), EPA Method 624, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary forms as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{cc} 
DATA VALIDATION REPORT & \begin{tabular}{c} 
Project: \\
SDG:
\end{tabular} \\
NPDES \\
IOAO567
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Lab No. & Matrix & Method \\
\hline Outfall 011 & Outfall 011 & IOA0567-01 & water & 624 \\
\hline Trip Blank & Trip Blank & IOA0567-02 & water & 624 \\
\hline
\end{tabular}
DATA VALIDATION REPORT \(\quad\)\begin{tabular}{c} 
Project: \\
SDG: \\
NPDES \\
IOA0567
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in this SDG were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C}\) \(\pm 2^{\circ} \mathrm{C}\). According to the COC, the samples were received intact, without headspace, and in good condition. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COC was signed by field and laboratory personnel and accounted for the analyses presented in this SDG. As the samples were couriered directly to the laboratory, custody seals are not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The samples were analyzed within 14 days of collection. No qualifications were required.

\subsection*{2.2 GC/MS TUNING}

The ion abundance windows shown on the quantitation report were consistent with those specified in the EPA Method 624 and 8260 (Freon 113). All ion abundances were within the established windows and were therefore acceptable. The samples and associated QC were analyzed within 12 hours of the BFB injection times. The Form Vs were verified from the raw data and no discrepancies between the summary forms and the raw data were noted. No qualifications were required.

\subsection*{2.3 CALIBRATION}

Two initial calibrations, dated \(11 / 10 / 04\) and \(01 / 10 / 05\), were associated with this SDG. The average RRFs were \(\geq 0.05\) and the \%RSDs were \(\leq 35 \%\) ( \(\leq 15 \%\) for Freon 113) for the target compounds listed on the sample summary forms. One continuing calibration, dated \(01 / 13 / 05\), was associated with this SDG. The RRFs for all target compounds were \(\geq 0.05\) and the \(\%\) Ds were \(\leq 20 \%\) except for the \(\% \mathrm{Ds}\) for chloromethane, methylene chloride, carbon tetrachloride, 2 chloroethylvinylether, and bromoform. The site sample of this SDG had the aforementioned compounds qualified as estimated, "UJ," for nondetects and "J," for detects. A representative number of \%RSDs and average RRFs from the initial calibrations, and \%Ds and RRFs from the continuing calibration were recalculated from the raw data, and no calculation or transcription errors were found. No further qualifications were required.
\begin{tabular}{ccc} 
& \begin{tabular}{c} 
Project: \\
DDA
\end{tabular} & \begin{tabular}{c} 
NPDES \\
IOA0567
\end{tabular} \\
DATA VALIDATION REPORT & Analysis: & VOC \\
\hline
\end{tabular}

\subsection*{2.4 BLANKS}

Two water method blanks (5A12019-BLK1 and 5A13008-BLK1) were associated with this SDG. There were no detects for the target compounds listed on the summary forms except for methylene chloride in 5A12019-BLK1; however, methylene chloride was not reported in the associated sample. The method blank raw data showed no evidence of false negatives. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

Two water blank spikes (5A12019-BS1 and 5A13008-BS1) were associated with this SDG. All spike recoveries were within the laboratory-established QC limits. A representative number of recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.6 SURROGATE RECOVERY}

The surrogates were within the QC limits of \(80-120 \%\). A representative number of surrogate recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

An MS/MSD analyses was not performed with this SDG. Evaluation of method accuracy was based on the LCS results. No qualifications were required.

\subsection*{2.8 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

\subsection*{2.8.1 Trip Blanks}

Sample Trip Blank (IOA0567-02) was the trip blank associated with the site sample of this SDG. No target compounds were detected in the trip blank. No qualifications were required.

\subsection*{2.8.2 Field Blanks and Equipment Rinsates}

There were no other field QC samples associated with this SDG. No qualifications were required.

\subsection*{2.8.3 Field Duplicates}

There were no field duplicate samples associated with this SDG.
\begin{tabular}{ccc} 
& \begin{tabular}{c} 
Project: \\
DDG:
\end{tabular} & \begin{tabular}{c} 
NPDES \\
DATA VALIDATION REPORT
\end{tabular} \\
IOAO567
\end{tabular}

\subsection*{2.9 INTERNAL STANDARDS PERFORMANCE}

Internal standard area counts and retention times for this SDG were within the control limits established by the continuing calibration standards, of \(+100 \% /-50 \%\) for intemal standard areas and \(\pm 0.50\) minutes for retention times. A representative number of intemal standard areas and retention times were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.10 COMPOUND IDENTIFICATION}

Target compound identification was verified at a Level IV data validation. The laboratory analyzed for a subset of volatile target compounds by EPA Method 624 and Freon 113 by EPA Method 8260. Chromatograms, retention times, and spectra for the samples and QC were examined and no target compound identification problems were noted.

The laboratory analyzed for 1,2 -dichloro-1,1,2-trifluorethane and cyclohexane as TICs for this SDG. 1,2-dichloro-1,1,2-trifluorethane was present in the calibration standards. Neither compound was reported either as a TIC or as a target compound in the samples of this SDG and were reported as estimated nondetects, "UJ."

No further qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification is verified at a Level IV data validation. The reporting limits were supported by the lowest concentrations of the intial calibration standards and by the MDL study. Compound quantitation was verified by recalculating any sample detect, and/or a representative number of blank spike and surrogate recoveries from the raw data. No calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.12 TENTATIVELY IDENTIFIED COMPOUNDS}

The laboratory searched for 1,2-dichloro-1,1,2-trifluorethane and cyclohexane as TICs for this SDG. Neither compound was detected as a TIC in the samples of this SDG. No qualifications were required.

\subsection*{2.13 SYSTEM PERFORMANCE}

A review of the chromatograms and other raw data showed no identifiable problems with system performance. No qualifications were required.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOA0567

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{DRAFT: PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & Dilution Factor & Date Extracted & Date Analyzed &  & \\
\hline \begin{tabular}{l}
Sample ID: 1OA0567-01 (DRAFT \\
Reporting Units: ug/l
\end{tabular} & : Outfall 011-W & ater) - cor & & & Samp & pled: 01 & 12/05 & & rev QUAL & \begin{tabular}{l}
Qual \\
CCDE
\end{tabular} \\
\hline 1,2-Dichloro-1,1,2-trifluoroethane & EPA 624 (MOD.) & 5A13008 & N/A & 2.5 & ND & 1 & 01/13/05 & 01/13/05 & N & * 10 \\
\hline Cyclohexane & EPA 624 (MOD.) & 5A13008 & N/A & 2.5 & ND & 1 & 01/13/05 & 01/13/05 & NJ & \multirow[t]{2}{*}{10} \\
\hline \begin{tabular}{l}
Sample ID: 1OA0567-02 (DRAFT \\
Reporting Units: ug/
\end{tabular} & : Trip Blank - W & & & & \multicolumn{5}{|l|}{Sampled: 01/11/05} & \\
\hline 1,2-Dichloro-1,1,2-trifluoroethane & EPA 624 (MOD.) & 5A12019 & N/A & 2.5 & ND & 1 & 01/12/05 & 01/12/05 & \(N J\) & 410 \\
\hline Cyclohexane & EPA 624 (MOD.) & 5A12019 & N/A. & 2.5 & ND & 1 & 01/12/05 & 01/12/05 & NT & +10 \\
\hline
\end{tabular}



17461Derian Ave., Suite 100, Inine, CA 92614 19491 261.1022 FAX (949) 260.3297 9484 Chit E. Cooley Dr., Sute A, Coton, CA 92324 (909) 370-4667 FAX (949) \(370-1046\) 484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX 1858 ) 505-9589 9830 South 51 st St. Suite 8-120, Phoenix, AZ 85044 [480) 785-0043 fAX (480) 785-0851 2520 E. Sunset Rd. W3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798.3621

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOA0567

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{DRAFT: FREON 113 (EPA 8260B)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & Dilution Factor & Date Extracted & Date Analyze & Qui & \[
\begin{aligned}
& \text { fiers } \\
& \text { fins }
\end{aligned}
\] \\
\hline \multicolumn{3}{|l|}{Sample ID: IOA0567-01 (DRAFT: Outfall 011 - Water) Reporting Units: ugh} & & & \multicolumn{3}{|l|}{Sampled: 01/12/05} & & \[
\begin{aligned}
& R E \\
& \text { QUAL } \\
& \hline
\end{aligned}
\] & \[
\left.\right|_{Q U A L} ^{\operatorname{Cos} E}
\] \\
\hline Trichlorotrifluoroethane (Freon 113) & EPA 8260B & 5A13008 & 1.2 & 5.0 & & & 01/13/05 & & U & \\
\hline Surrogate: Dibromofluoromethane & (2-120\%) & & & & 102\% & & 01/13/05 & 01/13/05 & & \\
\hline Surrogate: Toluene-d8 (80-120\%) & & & & & \(101 \%\) & & & & & \\
\hline Surrogate: 4-Bromofluorobensene (80 & 0-120\%) & & & & 96\% & & & & & \\
\hline \multicolumn{5}{|l|}{Sample ID: IOA 0567-02 (DRAFT: Trip Blank - Water) Reporting Units: ugh} & \multicolumn{3}{|l|}{Sampled: 01/11/05} & & & \\
\hline Trichlorotrifluoroethane (Freon 113) & EPA 8260B & 5A12019 & 1.2 & 5.0 & & 1 & 01/12/05 & 01/12/05 & U & \\
\hline \multicolumn{3}{|l|}{Surrogate: Dibromofluoromethane (80-120\%)} & & & 98\% & & & 01/2/0s & & \\
\hline \multicolumn{3}{|l|}{Surrogate: Toluene-d8 (80-120\%)} & & & 100\% & & & & & \\
\hline \multicolumn{3}{|l|}{Surrogate: 4-Bromofluorobenzene (80-120\%)} & & & 98\% & & & & & \\
\hline
\end{tabular}


DRAFT REPORT

7461 Derian Ave., Suite 100, nine, CA 92614 (949) 261-1022 FAX :949) \(260-3297\)
1014 E. Cooley Dr., Suite A, Colon, CA 92324 (909) 370-4667 FAX \(9491370-1046\) 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) \(505-9689\) 9830 South 51 st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785.0851 2520 E. Sunset Rd. *3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798.3621

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{DRAFT: PURGEABLES BY GC/MS (EPA 624)}


MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly
```

 Project ID: }13267\mathrm{ (Study 1)
 Outfall 011
 Report Number: IOA0567

```

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{DRAFT: PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & MDL Limit & Reporting Limit & Sample Result & Dilutio Facto & D Date Extracted & \[
\begin{gathered}
\text { Date } \\
\text { Analyze }
\end{gathered}
\] & \[
\mathrm{Qu}
\] & \\
\hline \begin{tabular}{l}
Sample ID: 1OA0567-01 \\
Reporting Units: ugh
\end{tabular} & Outfall 011 . & & & & Samp & led: 01 & /12/05 & & \[
\begin{aligned}
& \mathrm{REV} \\
& \text { RUAL }
\end{aligned}
\] & \[
\mathrm{L}_{\mathrm{QuAL}}^{\mathrm{CODE}}
\] \\
\hline Benzene & EPA 624 & 5A13008 & 0.28 & 1.0 & ND & 1 & 01/13/05 & 01/13/05 & U & \\
\hline Bromodichloromethane & EPA 624 & 5A13008 & 0.30 & 2.0 & ND & 1 & 01/13/05 & 01/13/05 & 0 & \\
\hline Bromoform & EPA 624 & 5A13008 & 0.32 & 5.0 & ND & 1 & 01/13/05 & 01/13/05 & UJ & \(c\) \\
\hline Bromomethane & EPA 624 & 5A13008 & 0.34 & 5.0 & ND & 1 & 01/13/05 & 01/13/05 & & c \\
\hline Carbon tetrachloride & EPA 624 & 5A13008 & 0.28 & 0.50 & ND & 1 & 01/13/05 & 01/13/05 & & \\
\hline Chlorobenzene & EPA 624 & SA13008 & 0.36 & 2.0 & ND & 1 & 01/13/05 & 01/13/05 & 0 & c \\
\hline Chloroethane & EPA 624 & 5A13008 & 0.33 & 5.0 & ND & 1 & 01/13/05 & 01/13/05 & & \\
\hline Chloroform & EPA 624 & 5A13008 & 0.33 & 2.0 & ND & 1 & 01/13/05 & 01/13/05 & \[
\downarrow
\] & \\
\hline Chloromethane & EPA 624 & 5A13008 & 0.30 & 5.0 & ND & 1 & & & \({ }^{*}\) & \\
\hline Dibromochloromethane & EPA 624 & 5A13008 & 0.28 & 2.0 & ND & 1 & 01/13/05 & \(01 / 13 / 05\)
\(01 / 13 / 05\) & \(\checkmark 5\) & \(c\) \\
\hline 1,2-Dichlorobenzene & EPA 624 & 5A13008 & 0.32 & 2.0 & ND & 1 & 01/13/05 & 01/13/05
\(01 / 13 / 05\) & & \\
\hline 1,3-Dichlorobenzene & EPA 624 & 5A13008 & 0:35 & 2.0 & ND & 1 & 01/13/05 & 01/13/05 & & \\
\hline 1,4-Dichlorobenzene & EPA 624 & 5A13008 & 0.37 & 2.0 & ND & 1 & 01/13/05 & 01/13/05 & & \\
\hline 1,1-Dichloroethane & EPA 624 & 5A13008 & 0.27 & 2.0 & ND & 1 & 01/13/05 & 01/13/05 & & \\
\hline 1,2-Dichloroethane & EPA 624 & 5A13008 & 0.28 & 0.50 & ND & 1 & 01/13/05 & 01/13/05 & & \\
\hline 1,1-Dichloroethene & EPA 624 & 5A13008 & 0.32 & 5.0 & ND & 1 & 01/13/05 & 01/13/05 & & \\
\hline trans-1,2-Dichloroethene & EPA 624 & 5A13008 & 0.27 & 2.0 & ND & 1 & 01/13/05 & 01/13/05 & & \\
\hline 1,2-Dichloropropane & EPA 624 & 5 Al3008 & 0.35 & 2.0 & ND & 1 & 01/13/05 & \(01 / 13105\) & & \\
\hline cis 1,3-Dichloropropene & EPA 624 & 5A13008 & 0.22 & 2.0 & ND & 1 & 01/3/05 & 01/13/05 & & \\
\hline trans-1,3-Dichloropropene & EPA 624 & 5 A13008 & 0.24 & 2.0 & ND & 1 & 01/13/0s & 01/13/05 & & \\
\hline Ethylbenzene & EPA 624 & 5A13008 & 0.25 & 2.0 & ND & 1 & 01/13/05 & 01/13/05 & \(\psi\) & \\
\hline Methylene chloride & EPA 624 & 5 A 13008 & 0.48 & 5.0 & 0.97 & 1 & 01/13/05 & 01/13/05 & J J & \\
\hline 1,1,2,2-Tetrachloroethane & EPA 624 & 5 A 13008 & 0.24 & 2.0 & ND & & 01/13/05 & 01/13/05 & \({ }^{3}\) & Q \\
\hline Tetrachloroethene & EPA 624 & 5A13008 & 0.32 & 2.0 & ND & & 01/13/05 & 01/13/05 & & \\
\hline Toluene & EPA 624 & 5A13008 & 0.36 & 2.0 & ND & 1 & 01/13/05 & 01/13/05 & & \\
\hline 1,1,1-Trichloroethane & EPA 624 & 5A13008 & 0.30 & 2.0 & ND & 1 & 01/13/05 & 01/13/05 & & \\
\hline 1,1,2-Trichloroethane & EPA 624 & 5A13008 & 0.30 & 2.0 & ND & 1 & 01/13/05 & 01/13/05 & & \\
\hline Trichloroethene & EPA 624 & 5A13008 & 0.26 & 2.0 & ND & 1 & 01/13/05 & 01/13/05 & & \\
\hline Trichlorofluoromethane & EPA 624 & 5A13008 & 0.34 & 5.0 & ND & 1 & 01/13/05 & 01/13/05 & & \\
\hline Vinyl chloride & EPA 624 & 5A13008 & 0.26 & 0.50 & ND & 1 & 01/13/05 & 01/13/05 & & \\
\hline Xylenes, Total & EPA 624 & 5A13008 & 0.52 & 4.0 & ND & 1 & 01/13/05 & 01/13/05 & & \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Surrogate: Dibromofluoromethane (80-120\%) \\
Surrogate: Toluene-d8 (80-120\%)
\end{tabular}}} & \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\[
102 \%
\]}} \\
\hline & & & & & & & & & & \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Surrogate: Toluene-d8 (80-120\%) \\
Surrogate: 4-Bromofluorobenzene (80-120\%)
\end{tabular}} & \multicolumn{6}{|l|}{96\%} \\
\hline
\end{tabular}

\section*{CHES VAMDAEED}

DRAFT REPORT

\section*{DRAFT REPORT}

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly
}

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOA0567

Sampled: 01/11/05-01/12/05
Received: 01/11/05

DRAFT: PURGEABLES BY GC/MS (EPA 624)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & & D Date Extracted & Date Analyze & Qu & \\
\hline \multicolumn{3}{|l|}{Sample ID: 1OA0567-02 (DRAFT: Trip Blank - Water) Reporting Units: ugh} & & & \multicolumn{3}{|l|}{Sampled: 01/11/05} & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { ReV } \\
& \text { Qual }
\end{aligned}
\]} & CUAL \\
\hline Benzene & EPA 624 & 5A12019 & 0.28 & 1.0 & ND & & & & & \\
\hline Bromodichloromethane & EPA 624 & 5A12019 & 0.30 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & L & \\
\hline Bromoform & EPA 624 & 5A12019 & 0.32 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline Bromomethane & EPA 624 & SA12019 & 0.34 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline Carbon tetrachloride & EPA 624 & 5A12019 & 0.28 & 0.50 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline Chlorobenzene & EPA 624 & 5A12019 & 0.36 & 2.0 & ND & 1 & 01/12/05 & 01/12/0s & & \\
\hline Chloroethane & EPA 624 & 5A12019 & 0.33 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline Chloroform & EPA 624 & SA12019 & 0.33 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline Chloromethane & EPA 624 & 5A12019 & 0.30 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline Dibromochloromethane & EPA 624 & SA12019 & 0.28 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline 1,2-Dichlorobenzene & EPA 624 & 5A12019 & 0.32 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline 1,3-Dichlorobenzene & EPA 624 & 5A12019 & 0.35 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline 1,4-Dichlorobenzene & EPA 624 & 5A12019 & 0.37 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline 1,1-Dichloroethane & EPA 624 & SA12019 & 0.27 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline 1,2-Dichloroethane & EPA 624 & 5A12019 & 0.28 & 0.50 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline 1,1-Dichloroethene
trans-1,2-Dichloroethene & EPA 624 & 5A12019 & 0.32 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline trans-1,2-Dichloroethene & EPA 624 & 5A12019 & 0.27 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline 1,2-Dichloropropane cis-1,3-Dichloropropene & EPA 624 & 5A12019 & 0.35 & 2.0 & ND & , & 01112/05 & 01/12/05 & & \\
\hline cis-1,3-Dichloropropene trans-1,3-Dichloropropene & EPA 624 & 5A12019
SA12019 & 0.22
0.24 & 2.0 & ND & , & 01/12/05 & 01/12/05 & & \\
\hline Ethylbenzene & EPA 624
EPA 624 & SA12019
SA12019 & 0.24
0.25 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline Methylene chloride & EPA 624 & 5A12019 & 0.48 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline 1,1,2,2-Tetrachloroethane & EPA 624 & 5A12019 & 0.24 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline Tetrachloroethene & EPA 624 & 5A12019 & 0.32 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline Toluene & EPA 624 & 5A12019 & 0.36 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline 1,1,1-Trichloroethane
1,1,2-Trichloroethane & EPA 624 & 5A12019 & 0.30 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline 1,1,2-Trichloroethane
Trichloroethene & EPA 624 & 5A12019 & 0.30 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline Trichloroethene & EPA 624 & 5A12019 & 0.26 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline Trichlorofluoromethane
Vinyl chloride & EPA 624 & 5A12019 & 0.34 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline Vinyl chloride
Xylenes, Total & EPA 624 & 5A12019 & 0.26 & 0.50 & ND & & 01/12/05 & 01/12/05 & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Surrogate: Dibromofluoromethane (80-120\%) \\
Surrogate: Toluene-d8 (80-120\%) \\
Surrogate: 4-Bromofluorobenzene (80-120\%)
\end{tabular}}} & 5A12019 & 0.52 & 4.0 & \[
\begin{gathered}
\text { ND } \\
98 \%
\end{gathered}
\] & 1 & 01/12/05 & 01/12/05 & \(\checkmark\) & \\
\hline & & & & & 100\% & & & & & \\
\hline & & & & & 98\% & & & & & \\
\hline
\end{tabular}

DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE


\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}
AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
\(\quad\) Reviewer L. Jarusewic
Analysis/Method Perchlorate by 314.0

\section*{ACTION ITEMS*}
1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis Protocol, e.g.,

Holding Times
GCMS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification
and Quantitation
System Performance

Package ID T711WC67
Task Order 313150010
SDG No. IOA0567
No. of Analyses 1
\begin{tabular}{|l|}
\hline Date: 02/24/05 \\
\hline Reviewer's Sgature \\
\hline
\end{tabular}
Analysis Protocol, e.g.,
\(\square\)
\(\qquad\)
-
\(\qquad\)
\begin{tabular}{|l|l|}
\hline COMMENTS \(^{\text {b }}\) & Acceptable as reviewed. \\
\hline & \\
\hline
\end{tabular}

\footnotetext{
- Subcontracted analytical laboratory is not meeting contract and or method requirements.
b Differences in protocol have been adopted by the laboratory but no action against the labortory is required
}

\title{
amec \({ }^{\theta}\)
}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES Monitoring
}

\section*{ANALYSIS: PERCHLORATE SAMPLE DELIVERY GROUP: IOA0567}

\section*{Prepared by}

AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0567 \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: IOA0567 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Perchlorate \\ QC Level: Level IV \\ No. of Samples: 1 \\ Reviewer: L. Jarusewic \\ Date of Review: February 24, 2005
}

The sample listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 314.0, and 120.1, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0567 \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfal1 011 & Outfall 011 & IOA0567-01 & water & Perchlorate \\
\hline
\end{tabular}
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0567 \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The sample in this SDG was received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). No preservation problems were noted by the laboratory. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COC was signed and dated by field and laboratory personnel; however, the COC did not account for the sample and analysis presented in this SDG. A memo dated 03/01/05 from MWH personnel requested the perchlorate analysis for the sample in this SDG. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The holding time was assessed by comparing the date of collection with the date of analysis. The 28 day analytical holding time for perchlorate was met, and no qualifications were required.

\subsection*{2.2 CALIBRATION}

The initial calibration correlation coefficient was \(\geq 0.995\). The IPC-MA recovery was within the control limits of \(80-120 \%\). The ICV, CCV and IPC recoveries were within the control limits of 90-110\%. No qualifications were required.

\subsection*{2.3 BLANKS}

The method blank and CCB results reported on the summary forms and in the raw data for blank analyses associated with the sample were nondetects at the reporting limit. No qualifications were required.

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The laboratory control sample recovery was within the method control limits of \(85-115 \%\). No qualifications were required.

\subsection*{2.5 SURROGATES RECOVERY}

Surrogate recovery is not applicable to the analysis presented in this SDG.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0567 \\
\hline
\end{tabular}

\subsection*{2.6 LABORATORY DUPLICATES}

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion. No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion. No qualifications were required.

\subsection*{2.8 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analysis of this sample; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.9 ICP SERIAL DILUTION}

ICP serial dilution is not applicable to the analysis presented in this data validation report.

\subsection*{2.10 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample result reported on the Form I was verified against the raw data. No transcription errors or calculations errors were noted. No qualifications were required.

\subsection*{2.11 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.11.1 Field Blanks and Equipment Rinsates}

The sample in this SDG had no associated field QC samples. No qualifications were required.

\subsection*{2.11.2 Field Duplicates}

There were no field duplicate pairs associated with this package.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1) Outfall 011
Report Number: IOA0567

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{DRAFT: INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & MDL Limit & Reporting Limit & Sample Result & Dilution FactorE & Date Extracted & Date Analyzed & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Data Qualifiers Rev olat}} \\
\hline Sample ID: IOA Reporting & utfall 011 & ater) - con & & & \multicolumn{3}{|l|}{Sampled: 01/12/05} & & & \\
\hline Chromium VI & EPA 218.6 & 5A12034 & 0.041 & 1.0 & ND & 1 & 01/12/05 & 01/12/05 & * & \\
\hline Total Cyanide & EPA 335.2 & 5A18093 & 2.2 & 5.0 & ND & 1 & 01/18/05 & 01/19/05 & , & \\
\hline Perchlorate & EPA 314.0 & 5A13051 & 0.80 & 4.0 & ND & 1 & 01/13/05 & 01/13/05 & \(\underline{\sim}\) & \\
\hline
\end{tabular}

\section*{AMEC VALIDATED}

\section*{LEVEL IV}

CONTRACT COMPLANCE SCREENING FORM FOR HARDCOPY DATA
\begin{tabular}{|c|c|}
\hline AMEC Earth \& Environmental & Package ID T711WC68 \\
\hline 550 South Wadsworth Boulevard & Task Order 313150010 \\
\hline Suite 500 & SDG No. 10A0567 \\
\hline Lakewood, CO 80226 & No. of Analyses 1 \\
\hline Laboratory Del Mar & Date: 02/28/05 \\
\hline Reviewer P. Meeks & Reviewer's Signature \\
\hline Analysis/Method General Minerals & P.Mees \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline AcIION ITEMS
\end{tabular}

\section*{Data Qualifier Reference Table}
Qualifier \(\quad\) Organics \(\quad\) Inorganics

U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

J
\(\mathrm{N} \quad\) The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."

NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

R
The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.

The associated value is an estimated quantity.

Not applicable.

Not applicable.

The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

The data are unusable. (Note: Analyte may or may not be present).

\section*{Qualification Code Reference Table}
\begin{tabular}{|c|c|c|}
\hline Qualifier & Organics & Inorganics \\
\hline H & Holding times were exceeded. & Holding times were exceeded. \\
\hline S & Surrogate recovery was outside QC limits. & The sequence or number of standards used for the calibration was incorrect \\
\hline C & Calibration \%RSD or \%D were noncompliant. & Correlation coefficient is \(<0.995\). \\
\hline R & Calibration RRF was \(<0.05\). & \(\% \mathrm{R}\) for calibration is not within control limits. \\
\hline B & Presumed contamination from preparation (method) blank. & Presumed contamination from preparation (method) or calibration blank. \\
\hline L & Laboratory Blank Spike/Blank Spike Duplicate \%R was not within control limits. & Laboratory Control Sample \%R was not within control limits. \\
\hline Q & MS/MSD recovery was poor or RPD high. & MS recovery was poor. \\
\hline E & Not applicable. & Duplicates showed poor agreement. \\
\hline 1 & Internal standard performance was unsatisfactory. & ICP ICS results were unsatisfactory. \\
\hline A & Not applicable. & ICP Serial Dilution \%D were not within control limits. \\
\hline M & Tuning (BFB or DFTPP) was noncompliant. & Not applicable. \\
\hline T & Presumed contamination from trip blank. & Not applicable. \\
\hline \(+\) & False positive-reported compound was not present. Not applicable. & \\
\hline - & False negative - compound was present but not reported. & Not applicable. \\
\hline F & Presumed contamination from FB , or ER. & Presumed contamination from FB or ER. \\
\hline \$ & Reported result or other information was incorrect. & Reported result or other information was incorrect. \\
\hline ? & TIC identity or reported retention time has been changed. & Not applicable. \\
\hline D & The analysis with this flag should not be used because another more technically sound analysis is available. & The analysis with this flag should not be used because another more technically sound analysis is available. \\
\hline P & Instrument performance for pesticides was poor. & Post Digestion Spike recovery was not within control limits. \\
\hline DNQ & The compound was detected between the MDL and the RL and, by definition, is considered an estimated value. & The compound was detected between the MDL and the RL and, by definition, is considered an estimated value. \\
\hline
\end{tabular}

Unusual problems found with the data that have been described in Section 2.\#, "Data Validation Findings." The number following the asterisk (*) will indicate the subsection where a description of the problem can be found (eg. *I would indicate a sample was not within temperature limits).

Unusual problems found with the data that have been described in Section 2.\#, "Data Validation Findings." The number following the asterisk (*) will indicate the subsection where a description of the problem can be found (eg. *1 would indicate a sample was not within temperature limits).

\title{
amec \({ }^{\circ}\)
}

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\author{
ANALYSIS: GENERAL MINERALS SAMPLE DELIVERY GROUP: IOA0567
}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0567 \\
Inalysis: & Gen. Min. \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: IOA0567 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: General Minerals \\ QC Level: Level IV \\ No. of Samples: 1 \\ Reviewer: P. Meeks \\ Date of Review: February 28, 2005
}

The sample listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 300.0, 350.2, 330.5, 405.1, 335.2, 413.1, 415.1, 418.1, 425.1, 218.6, 120.1, 160.2, 160.5, 180.1, 150.1, and 120.1, Standard Methods for the Examination of Water and Wastewater Method SM5540-C and SM2540C, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{rrr} 
& Project: & NPDES \\
& SDGNo.: & IOA0567 \\
DATA VALIDATION REPORT & Analysis: & Gen. Min. \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 011 & Outfall 011 & IOA0567-01 & water & General Minerals \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The sample in this SDG was received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). No preservation problems were noted by the laboratory. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COC was signed and dated by field and laboratory personnel. The COC requested only a few of the presented analyses. The remaining analyses were requested in a memo from MWH personnel dated \(03 / 01 / 05\). No sample qualifications were required.

\subsection*{2.1.3 Holding Times}

The holding times were assessed by comparing the date of collection with the dates of analyses. The 28-day analytical holding time for ammonia, fluoride, chloride, sulfate, conductivity, total recoverable hydrocarbons, TOC, and oil and grease, the 14 -day analytical holding time for cyanide, the seven-day holding time for total suspended solids and total dissolved solids, the 48 -hour holding time for biological oxygen demand, surfactants, turbidity, nitrate/nitrite, and total settleable solids, and the 24 -hour haxavalent chromium and residual chlorine holding times were met were met. No qualifications were required.

\subsection*{2.2 CALIBRATION}

For the applicable analyses, the initial calibration correlation coefficients were \(\geq 0.995\). All ICV and continuing calibration information was acceptable with \%Rs within the control limits of \(90-110 \%\). For ammonia, no information regarding the standardization of the titrant was provided; however, as the LCS recovery was within the CCV control limits, no qualifications were required. For BOD, no information regarding the calibration of the oxygen meter was provided; however, as the LCS recovery was within the CCV control limits, no qualifications were required. Calibration is not applicable to residual chlorine or total settleable solids.

The total cyanide \(2 \times R L\) check standard was recovered at \(54 \%\), below the control limits of \(70-130 \%\). As the total cyanide result was subsequently rejected (see section 2.7 ), no qualifications were required for this result. No qualifications were required.

\subsection*{2.3 BLANKS}

Fluoride was detected in a bracketing CCB at \(0.1461 \mathrm{mg} / \mathrm{L}\); therefore, fluoride detected in Outfall 011 was qualified as estimated, "UJ." Oil and grease and hexavalent chromium were detected in the associated
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0567 \\
\hline
\end{tabular}
method blanks; however, hexavalent chromium was not detected in Outfall 011 and the oil and grease method blank result was insufficient to qualify the Outfall 011 result. The remaining method blank and CCB results reported on the summary forms and in the raw data for blank analyses associated with the sample were nondetects at the reporting limit. No further qualifications were required.

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The laboratory control sample and laboratory control sample duplicate (BOD and oil and grease only) recoveries were within the laboratory-established control limits. The LCS is not applicable to turbidity, conductivity, residual chlorine, or settleable solids. No qualifications were required.

\subsection*{2.5 SURROGATES RECOVERY}

Surrogate recovery is not applicable to the analyses presented in this SDG.

\subsection*{2.6 LABORATORY DUPLICATES}

MS/MSD analyses were performed on Outfall 011 for cyanide. The RPD was above the control limit of \(20 \%\) at \(44 \%\); however, as the cyanide result was subsequently rejected (see section 2.7 ), no qualification was required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

MS/MSD analyses were performed on Outfall 011 for cyanide. The recoveries were \(6 \%\) and \(4 \%\), respectively; therefore, nondetected cyanide in Outfall 011 was rejected, "R." No further qualifications were required.

\subsection*{2.8 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analysis of this sample; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.9 ICP SERIAL DILUTION}

ICP serial dilution is not applicable to the analysis presented in this data validation report.
\begin{tabular}{rrr} 
& Project: & NPDES \\
& SDG No.: & IOA0567 \\
DATA VALIDATION REPORT & Analysis: & \\
\hline
\end{tabular}

\subsection*{2.10 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit were qualified as estimated, "J." No further qualifications were required.

\subsection*{2.11 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.11.1 Field Blanks and Equipment Rinsates}

The sample in this SDG had no associated field QC samples. No qualifications were required.

\subsection*{2.11.2 Field Duplicates}

There were no field duplicate pairs associated with this SDG.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOA0567

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{DRAFT: TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & Dilution Date Factor Extracted & Date Analyzed &  & \begin{tabular}{l}
ata \\
lifiers
\end{tabular} \\
\hline \begin{tabular}{l}
Sample ID: IOA0567-01 (DRAF \\
Reporting Units: mgn
\end{tabular} & Outfall 011 & & & & \multicolumn{2}{|l|}{Sampled: 01/12/05} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Rev \\
Qual
\end{tabular}}} & \begin{tabular}{l}
Qual \\
Code
\end{tabular} \\
\hline Total Recoverable Hydrocarbons & EPA 418.1 & 5A12075 & 0.31 & 1.0 & ND & \(101 / 12 / 05\) & & & \\
\hline
\end{tabular}

\section*{AMEC VALIDATED LEVELIV}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10A0567

Sampled: 01/11/05-01/12/05
Received: 01/11/05

DRAFT: INORGANICS


\section*{AMEC VALIDATED LEVELIV}

MWH-Pasadena/Bocing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOA0567

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{DRAFT: INORGANICS}


\section*{amec validated LEVELIV}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOA.0567

Sampled: 01/11/05-01/12/05
Received: 01/11/0S

\section*{DRAFT: INORGANICS}

* Analysis not validated

\section*{AMES VALIDATED} LEMELIV

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: 10A0567

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{DRAFT: INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & & ation ctor & \begin{tabular}{l}
Date \\
xtracted
\end{tabular} & Date Analyzed & \[
\begin{array}{r}
\text { D: } \\
\text { Qual }
\end{array}
\] & ata lifiers \\
\hline \multicolumn{5}{|l|}{Sample ID: IOA0567-01 (DRAFT: Outfall 011 - Water) - cont. Reporting Units: umhos/cm} & \multicolumn{4}{|l|}{Sampled: 01/12/05} & & Rev Qual & \[
\begin{aligned}
& \mid \text { Cual } \\
& \text { Code }
\end{aligned}
\] \\
\hline Specific Conductance & EPA 120.1 & 5A14087 & 1.0 & 1.0 & 94 & & 1 & 01/14/05 & 01/14/05 & & \\
\hline
\end{tabular}

\section*{AMEC VALIDAIED \\ }

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: 13267 (Study 1)
Outfall 011
Report Number: IOA0567

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{DRAFT: INORGANICS}
Analyte Method
Batch \begin{tabular}{cccccc} 
MDL & \begin{tabular}{c} 
Reporting \\
Limit
\end{tabular} & \begin{tabular}{c} 
Sample
\end{tabular} & \begin{tabular}{c} 
Dilution \\
Limit
\end{tabular} & Result & FactorExtracted
\end{tabular} \begin{tabular}{c} 
Date \\
Analyzed
\end{tabular} \begin{tabular}{c} 
Data \\
Qualifiers
\end{tabular}

Sample ID: 10A0567-01 (DRAFT: Outfall 011 - Water) - cont. Reporting Units: mg/l Ammonia-N (Distilled)
Biochemical Oxygen Demand
Chloride
Fluoride
Nitrate/Nitrite-N
Oil \& Grease
Residual Cblorine
Sulfate
Surfactants (MBAS)
Total Dissolved Solids
Total Organic Carbon
Total Suspended Solids
\begin{tabular}{ccc} 
& & \\
EPA 350.2 & 5A13063 & 0.30 \\
EPA 405.1 & 5A12041 & 0.59 \\
EPA 300.0 & 5A12036 & 0.26 \\
EPA 300.0 & SA12036 & 0.074 \\
EPA 300.0 & 5A12036 & 0.072 \\
EPA 413.1 & 5A13065 & 0.94 \\
EPA 330.5 & 5A12045 & 0.10 \\
EPA 300.0 & SA12036 & 0.18 \\
SM5540-C & 5A12059 & 0.044 \\
SM2540C & 5A13089 & 10 \\
EPA 415.1. & 5A13053 & 0.56 \\
EPA 160.2 & 5A17060 & 10
\end{tabular}

Sampled: 01/12/05

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}
\begin{tabular}{|c|c|}
\hline AMEC Earth \& Environmental & Package ID T711HZ3 \\
\hline 550 South Wadsworth Boulevard & Task Order 313150010 \\
\hline Suite 500 & SDG No. IOA0567 \\
\hline Lakewood, CO 80226 & No. of Analyses 1 \\
\hline Laboratory Truesdail & Date: 03/02/05 \\
\hline Reviewer P. Meeks & Reviewer's Signature \\
\hline Analysis/Method Hydrazines & P.mees \\
\hline
\end{tabular}

\section*{ACIION IIEMS \\ 1. Case Narrative \\ Deficiencies}
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from

Analysis Protocol, e.g.,
Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
FieldQC
Internal Standard
Performance
Compound Identification and Quantitation
System Performance
\begin{tabular}{|l|l|}
\hline COMMENTS \\
\hline & Acceptable as reviewed. \\
\hline \\
\hline & \\
\hline & \\
\hline
\end{tabular}

\title{
DATA VALIDATION REPORT
}

NPDES
Monitoring

\author{
ANALYSIS: HYDRAZINES \\ \section*{SAMPLE DELIVERY GROUP: IOA0567}
}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: IOA0576 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Hydrazines \\ QC Level: Level IV \\ No. of Samples: 1 \\ Reviewer: P. Meeks \\ Date of Review: March 01, 2005
}

The samples listed in Table 1 were validated based on the general guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (2/94), and USEPA SW-846 Method 8315. Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification codes(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0567 \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline EPA ID & Del Mar ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 011 & 1OA0567-01 & \(938627-1\) & water & Hydrazines by 8315 \\
\hline
\end{tabular}
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0567 \\
Analysis: & Hydrazines \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The sample in this SDG was received at Del Mar Analytical and the subcontract laboratory, Truesdail Laboratories, within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). The analysis did not require preservation, and no preservation was noted in the field. The case narratives for this SDG noted that the sample was received intact at both laboratories. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COC from the field to Del Mar was signed and dated by field and laboratory personnel, and the transfer COC from Del Mar to Truesdail Laboratories was signed and dated by personnel from both laboratories. Both the original COC and transfer COCs requested only monomethyl hydrazine analysis; however, unsymmetrical dimethyl hydrazine and hydrazine were also reported. As the sample was transported to Del Mar and then to Truesdail by courier, no custody seals were required. Truesdail Laboratories did not list the Outfall 011 ID on the Form I; therefore, the reviewer hand-corrected the Form I to include this information. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The holding time was assessed by comparing the date of collection with the date of analysis. The three-day extraction holding time for the hydrazine analysis was met and the sample was analyzed within three days of extraction. No qualifications were required.

\subsection*{2.2 CALIBRATION}

The five-point initial calibrations were analyzed 01/13/05, with correlation coefficients of \(\geq 0.995\) for the hydrazines. The ICV and CCV bracketing the sample analyses had recoveries for the hydrazines within the QC limits of \(85-115 \%\). The validator could not exactly reproduce the laboratory's value for the CCV for monomethyl hydrazine and unsymmetrical dimethyl hydrazine; however, as both values were acceptable and as the \(\% \mathrm{D}\) between the two values was \(<2 \%\), no qualifications were required.

\subsection*{2.3 BLANKS}

One method blank was analyzed with this SDG. The results reported on the method blank summary form and in the raw data for the instrument and method blank analyses associated with the samples were nondetects at the reporting limit. No qualifications were required.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0567 \\
\hline
\end{tabular}

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One laboratory control sample/laboratory control sample duplicate was analyzed with this SDG. The hydrazines were recovered within the laboratory-established control limits of \(70 \%-130 \%\), and the RPD was within the control limit of \(\leq 20 \%\). The validator could not exactly reproduce the laboratory's values for the LCS or LCSD for monomethyl hydrazine and unsymmetrical dimethyl hydrazine; however, as all values were acceptable and as the \(\% \mathrm{D}\) between the two values was \(<2 \%\), no qualifications were required.

\subsection*{2.5 SURROGATES RECOVERY}

Surrogates were not utilized in this analysis. No qualifications were required.

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

MSD/MSD analyses were performed on the Outfall 011. The recoveries for the hydrazines were within the laboratory QC limits of \(0-150 \%\); however, both recoveries were \(\geq 10 \%\). The RPDs were within the QC limit of \(\leq 20 \%\). The validator could not exactly reproduce the laboratory's values for the MS or MSD for monomethyl hydrazine and unsymmetrical dimethyl hydrazine; however, as all values were acceptable and as the \(\% \mathrm{D}\) between the two values was \(<2 \%\), no qualifications were required.

\subsection*{2.7 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

\subsection*{2.7.1 Field Blanks and Equipment Rinsates}

The site sample in this SDG had no associated field QC. No qualifications were required.

\subsection*{2.7.2 Field Duplicates}

There were no field duplicate samples in this SDG.

\subsection*{2.8 COMPOUND IDENTIFICATION}

The sample was analyzed by HPLC for monomethyl hydrazine, unsymmetrical dimethyl hydrazine, and hydrazine by Method 8315. Compound identification was verified, and review of the raw data indicated no compound identification errors. No qualifications were required.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0567 \\
Hyalysis: & & \\
\hline
\end{tabular}

\subsection*{2.9 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification was verified from the raw data. at a Level IV data validation by recalculating LCS/LCSD and MS/MSD detects, as there were no sample detects. No compound quantitation problems were noted. The hydrazine reporting limits were supported by the lower levels of the initial calibration. No qualifications were required.
Truesdail Laboratories, Inc.
independent testing. Forensic science, and environmental analivses
\[
\begin{aligned}
\text { Client: } & \begin{array}{l}
\text { Del Mar Analytical- Alt. } \\
\text { 17461 Derian Ave. } \\
\text { Irvine, CA 92614 }
\end{array} \\
& \\
\text { Attention: } & \text { Michele Harper } \\
\text { Sample: } & \text { Liquid / 1 Sample } \\
\text { Project Name: } & \text { IOA0567 } \\
\text { P.O. Number: } & \text { IOA0567 } \\
\text { Method Number: } & \text { 8315 (Modified) } \\
\text { Investigation: } & \text { Hydrazines in Liquid }
\end{aligned}
\]


\title{
CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA
}


\section*{amec \({ }^{0}\)}

\title{
DATA VALIDATION REPORT
}

Monitoring

\section*{ANALYSIS: DIOXINS/FURANS}

\section*{SAMPLE DELIVERY GROUPS: Multiple SDGs}

\section*{Prepared by}

AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{ll} 
& Project: \\
DATA VALIDATION REPORT & NPDES \\
SDG No.: & Multiple \\
Analysis: & D/F \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: Multiple \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Dioxins/Furans \\ QC Level: Level IV \\ No. of Samples: 9 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: K. Shadowlight \\ Date of Review: February 18, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{llr} 
& \begin{tabular}{c} 
Project: \\
DATA VALIDATION REPORT
\end{tabular} & \begin{tabular}{c} 
NPDES \\
SDG No.: \\
Multiple
\end{tabular} \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: Multiple
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Dioxins/Furans
QC Level: Level IV
No. of Samples: 9
No. of Reanalyses/Dilutions: 0
Reviewer: K. Shadowlight
Date of Review: February 18, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{llr} 
& \begin{tabular}{l} 
Project: \\
DATA VALIDATION REPORT
\end{tabular} & \begin{tabular}{c} 
NPDES \\
SDG No.: \\
Multiple
\end{tabular} \\
\hline
\end{tabular}

Table 1. Sample Identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & \begin{tabular}{c} 
Laboratory ID \\
(Del Mar)
\end{tabular} & \begin{tabular}{c} 
Laboratory ID \\
(Pace)
\end{tabular} & Matrix & COC Method \\
\hline Outfall 001 & IOA0551-01 & 106124001 & water & 1613 \\
\hline Outfall 002 & IOA0550-01 & 106130001 & water & 1613 \\
\hline Outfall 007 & IOA0556-01 & 106128001 & water & 1613 \\
\hline Outfall 008 & IOA0553-01 & 106126001 & water & 1613 \\
\hline Outfall 009 & IOA0554-01 & 106131001 & water & 1613 \\
\hline Outfall 010 & IOA0555-01 & 106127001 & water & 1613 \\
\hline Outfall 011 & IOA0549-01 & 106132001 & water & 1613 \\
\hline Outfall 011 & IOA0567-01 & 106135001 & water & 1613 \\
\hline Outfall 018 & IOA0552-01 & 106125001 & water & 1613 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
& Project: \\
DATA VALIDATION REPORT & NPDES \\
SDG No.: & Multiple \\
Analysis: & D/F \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at Del Mar Analytical within the temperature limits of \(4^{\circ} \mathrm{C}\) \(\pm 2^{\circ} \mathrm{C}\). The samples were subcontracted to Pace Analytical for the dioxin/furan analyses. The samples in these SDGs were received at Pace Analytical Services within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). The samples were received in good condition at both laboratories. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs and transfer COCs were signed by the appropriate field and laboratory personnel. The samples and analyses were accounted for on both the original COCs and transfer COCs. As the samples were couriered directly to the laboratory (Del Mar Analytical), custody seals were not required. There was no information regarding custody seals upon receipt at Pace. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The samples were extracted and analyzed within a year of collection. No qualifications were required.

\subsection*{2.2 INSTRUMENT PERFORMANCE}

Following are findings associated with instrument performance:

\subsection*{2.2.1 GC Column Performance}

A column performance standard was combined with the daily calibration verification and analyzed at the beginning of each analytical sequence. The GC column performance was acceptable with the chromatographic separation of \(2,3,7,8-\mathrm{TCDD}\) and other TCDD isomers resolved with a valley of \(\leq 25 \%\). No qualifications were required.

\subsection*{2.2.2 Mass Spectrometer Performance}

The mass spectrometer performance could not be evaluated as the laboratory did not provide selected ion current profiles for the lock-mass ions. No qualifications were required.
\begin{tabular}{llr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\subsection*{2.3 CALIBRATION}

\subsection*{2.3.1 Initial Calibration}

There was one initial calibration, analyzed \(11 / 29 / 04\) on Instrument 10 MSHROS. The calibration consisted of five concentration level standards (CS1 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with \(\%\) RSDs \(\leq 20 \%\) for the 15 native compounds (calibration by isotope dilution) and \(\leq 35 \%\) for the 2 native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.3.2 Continuing Calibration}

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VER was acceptable with the concentrations within the acceptance criteria listed in the Table 6 of the EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.4 BLANKS}

One method blank (Blank-6220) was extracted and analyzed with the samples in these SDGs. Target compounds total HpCDF, \(1,2,3,4,6,7,8-\mathrm{HpCDF}\), total HpCDF, OCDF, and OCDD were reported in the method blank. Any detects for the aforementioned target compounds reported at concentrations \(<5 \times\) the concentrations reported in the method blank were qualified as estimated nondetects "UJ," at the levels of interference in the samples of these SDGs. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No further qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One LCS/LCSD pair (LCS-6221/LCSD-6222) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of the Method 1613. There are no method QC limits established for RPDs. The reported RPDs were within \(\pm 20 \%\). No qualifications were required.

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy and precision was based on the LCS/LCSD results. No qualifications were required.
\begin{tabular}{llr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
Analysis: & D/F \\
\hline
\end{tabular}

\subsection*{2.7 FIELD QC SAMPLES}

Following are findings associated with field QC:

\subsection*{2.7.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.7.2 Field Duplicates}

No field duplicate samples were identified for these SDGs.

\subsection*{2.8 INTERNAL STANDARDS}

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

\subsection*{2.9 COMPOUND IDENTIFICATION}

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

\subsection*{2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the lower method calibration limit (MCL) were qualified as estimated, "J." Any reported EMPC was qualified as an estimated nondetect, "UJ." No further qualifications were required.

Method 1613B Analysis Results

\section*{Client - Del Mar Analytical}
Client's Sample ID
Lab Sample ID
Filename
Injected By
Total Amount Extracted
\% Moisture
Dry Weight Extracted
ICAL Date
CCal Filename(s)
Method Blank tD
\begin{tabular}{|c|c|c|}
\hline 1OA0549-01
\[
106132001
\] & Outfall 011 & \\
\hline F501298_14 & & \\
\hline BAL & & \\
\hline 1030 mL & Matrix & Water \\
\hline NA & Dilution & \\
\hline NA & Collected & 01/11/2005 \\
\hline 11/29/2004 & Received & 01/13/2005 \\
\hline F50129B_02 & Extracted & 01/28/2005 \\
\hline BLANK-6220 & Analyzed & 01/30/2005 \\
\hline
\end{tabular}


Conc \(=\) Concentration (Totals include 2,3,7,8-substituted isomers).
EMPC \(=\) Estimatod Maximum Possible Concentration
\(L O D=\) Limit of Detection. Totals are averages of individual isomer LODs.
\(\mathrm{D}=\) Result obtained from analysis of diluted sample
\(\mathrm{B}=\) Less than 10 times higher than method blank level
\(P=\) Recovery outside of method 1613 control limits
\(\mathrm{J}=\) Concentration detected is below the callbration range
\(\mathrm{Nn}=\) Value obtained from additional analysis

I=Intefference
\(E=P C D E\) Interierence
ND \(=\) Not Detected
NA \(=\) Not Applicable
NC = Not Calculated
- \(=\) See Discussion

Report No..... 106132


Conc \(=\) Concentration (Totals include 2,3,7,8-substituted isomers).
EMPC = Estimated Maximum Possible Concentration
LOD \(=\) Limit of Detection. Totals are averages of individual isomer LODs.
\(\mathrm{D}=\) Result obtained from analysis of diluted sample
\(\mathrm{B}=\) Less than 10 times higher than method blank level
\(P=\) Recovery outside of method 1613 control limits
\(\mathrm{J}=\) Concentration detected is below the calibration range
\(\mathrm{Nn}=\) Value obtained from additional analysis
= interference
\(\mathrm{E}=\mathrm{PCDE}\) Interference
ND \(=\) Not Detected
NA \(=\) Not Applicable
NC = Not Calculated
* \(=\) See Discussion

Report No..... 106135

\section*{LABORATORY REPORT}

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Outfall 011

Sampled: 01/11/05-01/12/05
Received: 01/11/05
Issued: 03/09/05 19:55

\section*{NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117}

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain(s) of Custody, 4 pages, are included and are an integral part of this report.
This entire report was reviewed and approved for release.
SAMPLE CROSS REFERENCE
SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
1OA0567-01
1OA0567-02

\section*{CLIENT ID}

Outfall 011 - composite
Trip Blank Water

Reviewed By:


\section*{CORRECTIVE ACTION REPORT}

Department: Extractions
Method: EPA 625
QC Batch: 5A13038

Identification and Definition of Problem:
The percent recoveries for benzidine in the LCS and LCSD were below method acceptance limits.

Determination of the Cause of the Problem:
Benzidine is known to be a problematic compound. According to the EPA, it can be subject to oxidative losses during solvent extraction and its chromatographic behavior is poor.

\section*{Corrective Action Taken:}

All results reported for benzidine are potentially biased low and can be considered estimates only.


MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011

Report Number: 10 A 0567

Sampled: 01/11/05-01/12/05
Received: 01/11/05

TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{5}{|l|}{Sample ID: 1OA0567-01 (Outfall 011 - composite - Water)} & \multicolumn{5}{|l|}{Sampled: 01/12/05} \\
\hline \multicolumn{10}{|l|}{Reporting Units: mg/} \\
\hline Total Recoverable Hydrocarbons & EPA 418.1 & 5A12075 & N/A & 1.0 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: 10 A 0567

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{3}{|l|}{Sample ID: 1OA0567-01 (Outfall 011 - composite - Water) - cont. Reporting Units: mgl} & \multicolumn{6}{|c|}{Sampled: 01/12/05} & \\
\hline EFH (C13-C22) & EPA 8015B & 5A13035 & N/A. & 0.50 & ND & 0.99 & 01/13/05 & 01/13/05 & \\
\hline Surrogate: \(n\)-Octacosane (40-125\%) & & & & & 65\% & & & & \\
\hline
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: 10 A 0567

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & Dilution Factor & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Sample ID: 1OA0567-01 (Outfall 011 - composite - Water) - cont. Reporting Units: mg/l}} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{Sampled: 01/12/05}} & \\
\hline & & & & & & & & & \\
\hline GRO (C4-C12) & EPA 8015 Mod. & 5A13005 & N/A & 0.10 & ND & 1 & 01/13/05 & 01/13/05 & \\
\hline Surrogate: 4-BFB (FID) (65-140\%) & & & & & \(93 \%\) & & & & \\
\hline \multicolumn{5}{|l|}{Sample 1D: 10A0567-02 (Trip Blank - Water)} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Sampled: 01/11/05}} & & \\
\hline \multirow[t]{2}{*}{Reporting Units: \(\mathrm{mg} / \mathrm{l}\)
GRO \((\mathrm{C} 4-\mathrm{Cl} 2)\)} & & & & & & & & & \\
\hline & EPA 8015 Mod. & 5A13005 & N/A & 0.10 & ND & 1 & 01/13/05 & 01/13/05 & \\
\hline Surrogate: 4-BFB (FID) (65-140\%) & & & & & 94\% & & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager
\begin{tabular}{|lll}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
300 North Lake Avenue, Suite 1200 & Report Number: 1OA0567 & \begin{tabular}{l} 
Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Pasadena, CA 91101
\end{tabular} \\
\begin{tabular}{ll} 
Received: \(01 / 11 / 05\)
\end{tabular} \\
\hline
\end{tabular}

FREON 113 (EPA 8260B)


\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

\title{
Del Mar Analytical
}
\begin{tabular}{lcl}
\begin{tabular}{l} 
MWH-Pasadena/Boeing \\
300 North Lake Avenue, Suite 1200 \\
Pasadena, CA 91101 \\
Attention: Bronwyn Kelly
\end{tabular} & Project ID: Outfall 011 & \\
\hline
\end{tabular}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & & Date Extracted & Date Analyz \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Sample ID: IOA0567-01 (Outfall 011 - composite - Water)
Reporting Units: ug/}} & & \multicolumn{5}{|c|}{\multirow[t]{2}{*}{Sampled: 01/12/05}} \\
\hline & & & & & & & & \\
\hline Benzene & EPA 624 & 5A13008 & N/A & 1.0 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline Bromodichloromethane & EPA 624 & 5A13008 & N/A & 2.0 & ND & & 01/13/05 & 01/13/05 \\
\hline Bromoform & EPA 624 & 5A13008 & N/A & 5.0 & ND & & 01/13/05 & 01/13/05 \\
\hline Bromomethane & EPA 624 & 5A13008 & N/A & 5.0 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline Carbon tetrachloride & EPA 624 & 5A13008 & N/A & 0.50 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline Chlorobenzene & EPA 624 & 5A13008 & N/A & 2.0 & ND & & 01/13/05 & 01/13/05 \\
\hline Chloroethane & EPA 624 & 5A13008 & N/A & 5.0 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline Chloroform & EPA 624 & 5A13008 & N/A & 2.0 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline Chloromethane & EPA 624 & 5 Al 3008 & N/A & 5.0 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline Dibromochloromethane & EPA 624 & 5A13008 & N/A & 2.0 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline 1,2-Dichlorobenzene & EPA 624 & 5A13008 & N/A & 2.0 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline 1,3-Dichlorobenzene & EPA 624 & 5 A13008 & N/A & 2.0 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline 1,4-Dichlorobenzene & EPA 624 & 5A13008 & N/A & 2.0 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline 1,1-Dichloroethane & EPA 624 & 5A13008 & N/A & 2.0 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline 1,2-Dichloroethane & EPA 624 & 5A13008 & N/A & 0.50 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline 1,1-Dichloroethene & EPA 624 & 5A13008 & N/A & 5.0 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline trans-1,2-Dichloroethene & EPA 624 & 5 Al 3008 & N/A & 2.0 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline 1,2-Dichloropropane & EPA 624 & 5A13008 & N/A & 2.0 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline cis 13-Dichloropropene & EPA 624 & 5 A13008 & N/A & 2.0 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline trans-1,3-Dichloropropene & EPA 624 & 5 A13008 & N/A & 2.0 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline Ethylbenzene & EPA 624 & 5A13008 & N/A & 2.0 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline Methylene chloride & EPA 624 & 5A13008 & N/A & 5.0 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline 1,1,2,2-Tetrachloroethane & EPA 624 & 5A13008 & N/A & 2.0 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline Tetrachloroethene & EPA 624 & 5A13008 & N/A & 2.0 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline Toluene & EPA 624 & 5A13008 & N/A & 2.0 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline 1,1,1-Trichloroethane & EPA 624 & 5A13008 & N/A & 2.0 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline 1,1,2-Trichloroethane & EPA 624 & 5 A13008 & N/A & 2.0 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline Trichloroethene & EPA 624 & 5A13008 & N/A & 2.0 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline Trichlorofluoromethane & EPA 624 & 5A13008 & N/A & 5.0 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline Vinyl chloride & EPA 624 & 5A13008 & N/A & 0.50 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline Xylenes, Total & EPA 624 & 5A13008 & N/A & 4.0 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline \multicolumn{2}{|l|}{Surrogate: Dibromofluoromethane (80-120\%)} & & & & 102\% & & & \\
\hline \multicolumn{2}{|l|}{Surrogate: Toluene-d8 (80-120\%)} & & & & 101\% & & & \\
\hline \multicolumn{2}{|l|}{Surrogate: 4-Bromofluorobenzene (80-120\%)} & & & & 96\% & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

\title{
Del Mar Analytical
}
\begin{tabular}{lcc} 
MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: 01/11/05-01/12/05 \\
Pasadena, CA 91101 & Report Number: IOA0567 & Received: \(01 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{PURGEABLES BY GC/MS (EPA 624)}


\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

\title{
Del Mar Analytical
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
MWH-Pasadena/Boeing \\
300 North Lake Avenue, Suite 1200 \\
Pasadena, CA 91101 \\
Attention: Bronwyn Kelly
\end{tabular} & & Project ID:
Report Number: & Outfall
IOA056 & & & \multicolumn{4}{|r|}{Sampled: 01/11/05-01/12/05} \\
\hline \multicolumn{10}{|c|}{PURGEABLES BY GC/MS (EPA 624)} \\
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & \begin{tabular}{l}
Date \\
Extracted
\end{tabular} & \begin{tabular}{l}
Date \\
Analyzed
\end{tabular} & Data Qualifiers \\
\hline Sample ID: 1OA0567-01 (Outfall 011 - comp Reporting Units: ugh & posite - W & & & & Samp & led: 01/12 & & & \\
\hline Acrolein & EPA 624 & 5A13008 & N/A & 50 & ND & 1 & 01/13/05 & 01/13/05 & \\
\hline Acrylonitrile & EPA 624 & 5A13008 & N/A & 50 & ND & 1 & 01/13/05 & 01/13/05 & \\
\hline 2-Chloroethyl vinyl ether & EPA 624 & 5A13008 & N/A & 5.0 & ND & 1 & 01/13/05 & 01/13/05 & \\
\hline \multicolumn{5}{|l|}{Surrogate: Dibromofluoromethane (80-120\%)} & 102\% & & & & \\
\hline \multicolumn{5}{|l|}{Surrogate: Toluene-d8 (80-120\%)} & 101\% & & & & \\
\hline \multicolumn{5}{|l|}{Surrogate: 4-Bromofluorobenzene (80-120\%)} & 96\% & & & & \\
\hline
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: IOA0567

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualfiers \\
\hline \begin{tabular}{l}
Sample ID: 1OA0567-01 (Outfall \\
Reporting Units: ugh
\end{tabular} & composite - Water) & - cont. & & & Samp & led: 01/12 & & & \\
\hline 1,2-Dichloro-1,1,2-trifluoroethane & EPA 624 (MOD.) & 5A13008 & N/A & 2.5 & ND & 1 & 01/13/05 & 01/13/05 & \\
\hline Cyclohexane & EPA 624 (MOD.) & 5A13008 & N/A & 2.5 & ND & 1 & 01/13/05 & 01/13/05 & \\
\hline \begin{tabular}{l}
Sample ID: 1OA0567-02 (Trip Bla \\
Reporting Units: ug/
\end{tabular} & Water) & & & & Samp & led: 01/11 & & & \\
\hline 1,2-Dichloro-1,1,2-trifluoroethane & EPA 624 (MOD.) & 5A12019 & N/A & 2.5 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline Cyclohexane & EPA 624 (MOD.) & 5A12019 & N/A & 2.5 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline
\end{tabular}

\footnotetext{
Jel Mar Analytical, Irvine Aichele Harper 'roject Manager
}
\begin{tabular}{lc}
\begin{tabular}{l} 
MWH-Pasadena/Boeing \\
300 North Lake Avenue, Suite 1200 \\
Pasaden, CA 91101 \\
Attention: Bronwyn Kelly
\end{tabular} & Project ID: Outfall 011 \\
\hline & Report Number: IOA0567
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & Dilution Factor & \begin{tabular}{l}
Date \\
Extracted
\end{tabular} & Date Analyzed & Data Qualifiers \\
\hline Sample ID: 1OA0567-01 (Outfall Reporting Units: ugh & mposite - W & & & & Samp & led: 01/12 & & & \\
\hline Acenaphthene & EPA 625 & 5A13038 & N/A & 0.50 & 11 & 1 & 01/13/05 & 01/18/05 & \\
\hline Acenaphthylene & EPA 625 & 5A13038 & N/A & 0.50 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline Aniline & EPA 625 & 5A13038 & N/A & 10 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline Anthracene & EPA 625 & 5A13038 & N/A & 0.50 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline Benzidine & EPA 625 & 5A13038 & N/A & 5.0 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline Benzoic acid & EPA 625 & 5 A13038 & N/A & 20 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline Benzo(a)anthracene & EPA 625 & 5A13038 & N/A & 5.0 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline Benzo(a)pyrene & EPA 625 & 5A13038 & N/A & 2.0 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline Benzo(b)fluoranthene & EPA 625 & 5A13038 & N/A & 2.0 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline Benzo(g,h,i)perylene & EPA 625 & 5A13038 & N/A & 5.0 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline Benzo(k)fluoranthene & EPA 625 & 5 A13038 & N/A & 0.50 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline Benzyl alcohol & EPA 625 & 5A13038 & N/A & 5.0 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline Bis(2-chloroethoxy)methane & EPA 625 & 5A13038 & N/A & 0.50 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline Bis(2-chloroethyl)ether & EPA 625 & 5A13038 & N/A & 0.50 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline Bis(2-chloroisopropyl)ether & EPA 625 & 5A13038 & N/A & 0.50 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline Bis(2-ethylhexyl)phthalate & EPA 625 & 5A13038 & N/A & 5.0 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline 4-Bromophenyl phenyl ether & EPA 625 & 5A13038 & N/A & 1.0 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline Butyl benzyl phthalate & EPA 625 & 5 Al 13038 & N/A & 5.0 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline 4-Chloroaniline & EPA 625 & 5A13038 & N/A & 2.0 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline 2-Chloronaphthalene & EPA 625 & 5A13038 & N/A & 0.50 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline 4-Chloro-3-methylphenol & EPA 625 & 5A13038 & N/A & 2.0 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline 4-Chlorophenyl phenyl ether & EPA 625 & 5A13038 & N/A & 0.50 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline 2-Chlorophenol & EPA 625 & 5A13038 & N/A & 1.0 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline Chrysene & EPA 625 & 5A13038 & N/A & 0.50 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline Dibenz(a,h)anthracene & EPA 625 & 5A13038 & N/A & 0.50 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline Dibenzofuran & EPA 625 & 5A13038 & N/A & 0.50 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline Di-n-butyl phthalate & EPA 625 & 5A13038 & N/A & 2.0 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline 1,2-Dichlorobenzene & EPA 625 & 5A13038 & N/A & 0.50 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline 1,3-Dichlorobenzene & EPA 625 & SA13038 & N/A & 0.50 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline 1,4-Dichlorobenzene & EPA 625 & 5A13038 & N/A & 0.50 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline 3,3-Dichlorobenzidine & EPA 625 & SA13038 & N/A & 5.0 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline 2,4-Dichlorophenol & EPA 625 & 5A13038 & N/A & 2.0 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline Diethyl phthalate & EPA 625 & 5A13038 & N/A & 1.0 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline 2,4-Dimethylphenol & EPA 625 & 5A13038 & N/A & 2.0 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline Dimethyl phthalate & EPA 625 & 5A13038 & N/A & 0.50 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline 4,6-Dinitro-2-methylphenol & EPA 625 & 5A13038 & N/A & 5.0 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline 2,4-Dinitrophenol & EPA 625 & 5A13038 & N/A & 5.0 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline 2,4-Dinitrotoluene & EPA 625 & 5A13038 & N/A & 5.0 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline 2,6-Dinitrotoluene & EPA 625 & 5A13038 & N/A & 5.0 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline Di-1-octyl phthalate & EPA 625 & 5A13038 & N/A & 5.0 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline 1,2-Diphenylhydrazine/Azobenzene & EPA 625 & 5A13038 & N/A & 1.0 & ND & 1 & 01/13/05 & 01/18/05 & \\
\hline Del Mar Analytical, Irvine Michele Harper Project Manager & & & & & & & & & \\
\hline
\end{tabular}

\title{
Del Mar Analytical
}
\begin{tabular}{lr} 
MWH-Pasadena/Boeing & Project ID: Outfall 011 \\
300 North Lake Avenue, Suite 1200 & \\
Pasadena, CA 91101 & Report Number: IOA0567 \\
Attention: Bronwyn Kelly &
\end{tabular}

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}


\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: 1OA0567

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}
\begin{tabular}{llllllllll} 
Analyte & Method & Batch & \begin{tabular}{c} 
MDL \\
Limit
\end{tabular} & \begin{tabular}{c} 
Reporting \\
Limit
\end{tabular} & \begin{tabular}{c} 
Sample \\
Result
\end{tabular} & \begin{tabular}{c} 
Dilution \\
Factor
\end{tabular} & \begin{tabular}{c} 
Date \\
Extracted
\end{tabular} & \begin{tabular}{c} 
Date \\
Analyzed
\end{tabular} \\
Qualifiers
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: 1OA0567

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{TOTAL PCBS (EPA 608)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & Dilution Factor & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \begin{tabular}{l}
Sample ID: 1OA0567-01 (Outfall 011 - co \\
Reporting Units: ugh
\end{tabular} & posite - & cont. & \multicolumn{7}{|c|}{Sampled: 01/12/05} \\
\hline Aroclor 1016 & EPA 608 & 5A13049 & N/A & 1.0 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline Aroclor 1221 & EPA 608 & 5A13049 & N/A & 1.0 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline Aroclor 1232 & EPA 608 & 5A13049 & N/A & 1.0 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline Aroclor 1242 & EPA 608 & 5A13049 & N/A & 1.0 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline Aroclor 1248 & EPA 608 & 5A13049 & N/A & 1.0 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline Aroclor 1254 & EPA 608 & 5A13049 & N/A & 1.0 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline Aroclor 1260 & EPA 608 & 5A13049 & N/A & 1.0 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline Surrogate: Decachlorobiphenyl (45-120\%) & & & & & \(64 \%\) & & & & \\
\hline
\end{tabular}

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly

Sampled: 01/11/05-01/12/05
Received: 01/11/05
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{METALS} \\
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \begin{tabular}{l}
Sample \\
Re
\end{tabular} & mposite - Wa & - cont. & & & Samp & led: 01/12 & \(2 / 05\) & & \\
\hline Barium & EPA 200.8 & 5A13044 & N/A & 0.0010 & 0.018 & 1 & 01/13/05 & 01/13/05 & \\
\hline Boron & EPA 200.7 & 5A13042 & N/A & 0.050 & 0.069 & 1 & 01/13/05 & 01/13/05 & \\
\hline Iron & EPA 200.8 & 5A13044 & N/A & 0.010 & 1.0 & 1 & 01/13/05 & 01/13/05 & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager

\title{
Del Mar Analytical
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: IOA0567

Sampled: 01/11/05-01/12/05
Received: 01/11/05
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{METALS} \\
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{3}{|l|}{Sample ID: IOA0567-01 (Outfall 011 - composite - Water) - cont. Reporting Units: ugh} & \multicolumn{6}{|c|}{Sampled: 01/12/05} & \\
\hline Antimony & EPA 200.8 & 5A13044 & N/A & 2.0 & ND & 1 & 01/13/05 & 01/13/05 & \\
\hline Arsenic & EPA 200.8 & 5A13044 & N/A & 1.0 & 1.8 & 1 & 01/13/05 & 01/13/05 & \\
\hline Beryllium & EPA 200.8 & 5A13044 & N/A & 0.50 & ND & 1 & 01/13/05 & 01/13/05 & \\
\hline Cadmium & EPA 200.8 & 5A13044 & N/A & 1.0 & ND & 1 & 01/13/05 & 01/13/05 & B \\
\hline Chromium & EPA 200.8 & 5A13044 & N/A & 1.0 & 2.2 & 1 & 01/13/05 & 01/13/05 & B \\
\hline Cobalt & EPA 200.8 & 5A13044 & N/A & 1.0 & ND & 1 & 01/13/05 & 01/13/05 & \\
\hline Copper & EPA 200.8 & 5A13044 & N/A & 2.0 & 7.2 & 1 & 01/13/05 & 01/13/05 & \\
\hline Lead & EPA 200.8 & 5A13044 & N/A & 1.0 & ND & 1 & 01/13/05 & 01/13/05 & \\
\hline Manganese & EPA 200.8 & 5A13044 & N/A & 1.0 & 15 & 1 & 01/13/05 & 01/13/05 & \\
\hline Mercury & EPA 245.1 & 5A13050 & N/A & 0.20 & ND & 1 & 01/13/05 & 01/13/05 & \\
\hline Nickel & EPA 200.8 & 5A13044 & N/A & 1.0 & 2.4 & 1 & 01/13/05 & 01/13/05 & \\
\hline Selenium & EPA 200.8 & 5A13044 & N/A & 2.0 & ND & 1 & 01/13/05 & 01/13/05 & \\
\hline Silver & EPA 200.8 & 5A13044 & N/A & 1.0 & ND & 1 & 01/13/05 & 01/13/05 & \\
\hline Thallium & EPA 200.8 & 5A13044 & N/A & 1.0 & ND & 1 & 01/13/05 & 01/13/05 & \\
\hline Vanadium & EPA 200.8 & 5A13044 & N/A & 1.0 & 2.7 & 1 & 01/13/05 & 01/13/05 & \\
\hline Zinc & EPA 200.8 & 5A13044 & N/A & 20 & 21 & 1 & 01/13/05 & 01/13/05 & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

\title{
Del Mar Analytical
}
\begin{tabular}{lcr} 
MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Pasadena, CA 91101 & Report Number: 1040567 & Received: \(01 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

INORGANICS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & \begin{tabular}{l}
Date \\
Extracted
\end{tabular} & Date Analyzed \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Sample ID: IOA0567-01 (Outfall 011 - composite - Water) - cont. Reporting Units: mg/l}} & & \multicolumn{5}{|c|}{\multirow[t]{2}{*}{Sampled: 01/12/05}} \\
\hline & & & & & & & & \\
\hline Ammonia-N (Distilled) & EPA 350.2 & 5A13063 & N/A & 0.50 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline Biochemical Oxygen Demand & EPA 405.1 & 5A12041 & N/A & 2.0 & ND & 1 & 01/12/05 & 01/17/05 \\
\hline Chloride & EPA 300.0 & 5A12036 & N/A & 0.50 & 3.6 & 1 & 01/12/05 & 01/12/05 \\
\hline Fluoride & EPA 300.0 & 5A12036 & N/A & 0.50 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline Nitrate/Nitrite-N & EPA 300.0 & 5A12036 & N/A & 0.26 & 0.92 & 1 & 01/12/05 & 01/12/05 \\
\hline On \& Grease & EPA 413.1 & 5A13065 & N/A & 5.0 & 43 & 1 & 01/13/05 & 01/13/05 \\
\hline Residual Chlorine & EPA 330.5 & 5A12045 & N/A & 0.10 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline Sulfate & EPA 300.0 & 5A12036 & N/A & 0.50 & 4.7 & 1 & 01/12/05 & 01/12/05 \\
\hline Surfactants (MBAS) & SM5540-C & 5A12059 & N/A & 0.10 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline Total Dissolved Solids & SM2540C & 5A13089 & N/A & 10 & 99 & 1 & 01/13/05 & 01/13/05 \\
\hline Total Organic Carbon & EPA 415.1 & 5A13053 & N/A & 1.0 & 9.2 & 1 & 01/12/05 & 01/12/05 \\
\hline Total Suspended Solids & EPA 160.2 & 5A17060 & N/A & 10 & ND & 1 & 01/17/05 & 01/17/05 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: 1040567

Sampled: 01/11/05-01/12/05
Received: 01/11/05

INORGANICS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Sample ID: 1OA0567-01 (Outfall 011 - composite - Water) - cont. Reporting Units: \(\mathbf{m} / / / \mathrm{hr}\)}} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Sampled: 01/12/05}} & \\
\hline & & & & & & & & & \\
\hline Total Settleable Solids & EPA 160.5 & 5A12043 & N/A & 0.10 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
MWH-Pasadena/Boeing \\
300 North Lake Avenue, Suite 1200 \\
Pasadena, CA 91101 \\
Attention: Bronwyn Kelly
\end{tabular} & & Project ID:
rt Number: & Outfall
IOA056 & & & \multicolumn{4}{|r|}{\begin{tabular}{l}
Sampled: 01/11/05-01/12/05 \\
Received: 01/11/05
\end{tabular}} \\
\hline \multicolumn{10}{|c|}{INORGANICS} \\
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{3}{|l|}{Sample ID: 1OA0567-01 (Outfall 011 - composite - Water) - cont. Reporting Units: NTU} & & & Samp & led: 01/12 & & & \\
\hline Turbidity & EPA 180.1 & 5A13082 & N/A & 1.0 & 18 & 1 & 01/13/05 & 01/13/05 & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: 10A0567

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{INORGANICS}


\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
MWH-Pasadena/Boeing \\
300 North Lake Avenue, Suite 1200 \\
Pasadena, CA 91101 \\
Attention: Bronwyn Kelly
\end{tabular} & \multicolumn{4}{|c|}{Report Number: IOA0567} & \multicolumn{5}{|r|}{\begin{tabular}{l}
Sampled: 01/11/05-01/12/05 \\
Received: 01/11/05
\end{tabular}} \\
\hline \multicolumn{10}{|c|}{INORGANICS} \\
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dllution \\
Factor
\end{tabular} & \begin{tabular}{l}
Date \\
Extracted
\end{tabular} & \begin{tabular}{l}
Date \\
Analyzed
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Sample ID: 1OA0567-01 (Outfall 011 - composite - Water) - cont. \\
Reparting Units: amhos/cm
\end{tabular}} & \multicolumn{3}{|l|}{Sampled: 01/12/05} & & \\
\hline Specific Conductance & EPA 120.1 & 5A14087 & N/A & 1.0 & 94 & 1 & 01/14/05 & 01/14/05 & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: 10A0567

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{1,4-DIOXANE BY GC/MS (EPA 5030B/8260B)}

\begin{tabular}{|lc}
\begin{tabular}{l} 
MWH-Pasadena/Boeing \\
300 North Lake Avenue, Suite 1200 \\
Pasadena, CA 91101 \\
Attention: Bronwyn Kelly
\end{tabular} & \\
\hline & Pro \\
& Report N \\
& SHORT H \\
& \\
Sold Time \\
Sample ID: Outfall 011 - composite (IOA0567-01) - Water \\
EPA 160.5 & 2 \\
EPA 180.1 & 2 \\
EPA 218.6 & 1 \\
EPA 300.0 & 2 \\
EPA 330.5 & 1 \\
EPA 405.1 & 2 \\
EPA 624 & 3 \\
SM5540-C & 2
\end{tabular}

Project ID: Outfall 011
Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{SHORT HOLD TIME DETAIL REPORT}
\begin{tabular}{lcccccc} 
& \begin{tabular}{c} 
Hold Time \\
(in days)
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Sampled
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Received
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Extracted
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Analyzed
\end{tabular} \\
Sample ID: Outfall 011 - composite (IOA0567-01) & Water
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: 1OA0567

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKKOC DATA}

\section*{TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5A12075 Extracted; 01/12/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 01/12/2005 (5A12075-BLK1)} \\
\hline Total Recoverable Hydrocarbons ND & 1.0 & N/A & \(\mathrm{mg} / 1\) & & & & & & & \\
\hline LCS Analyzed: 01/12/2005 (5A12075-BS1) & & & & & & & & & & M-NR1 \\
\hline Total Recoverable Hydrocarbons 4.64 & 1.0 & N/A & \(\mathrm{mg} / \mathrm{l}\) & 5.00 & & 93 & 65-120 & & & \\
\hline \multicolumn{11}{|l|}{LCS Dup Analyzed: 01/12/2005 (5A12075-BSD1)} \\
\hline Total Recoverable Hydrocarbons 4.99 & 1.0 & N/A & \(\mathrm{mg} / 1\) & 5.00 & & 100 & 65-120 & 7 & 20 & \\
\hline
\end{tabular}
\begin{tabular}{|lcc} 
MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
300 North Lake Avenue, Suite 1200 & & \begin{tabular}{l} 
Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Pasadena, CA 91101
\end{tabular} \\
\begin{tabular}{ll} 
Attention: Bronwyn Kelly & Report Number: IOA0567
\end{tabular} &
\end{tabular}

\section*{METHOD BLANKIQC DATA}

\section*{EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)}


Del Mar Analytical, Irvine
Michele Harper
Project Manager
\begin{tabular}{|lll}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Pasadena, CA 91101 & Report Number: 1040567 & Received: \(01 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{METHOD BLANKOC DATA}

\section*{VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)}


Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: 10A0567

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKIQC DATA}

FREON 113 (EPA 8260B)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A12019 Extracted: 01/12/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/12/2005 (5A12019-BLK1)} \\
\hline Trichlorotrifluoroethane (Freon 113) & ND & 5.0 & N/A & ug/l & & & & & & & \\
\hline Surrogate: Dibromofluoromethane & 24.7 & & & ug/l & 25.0 & & 99 & 80-120 & & & \\
\hline Surrogate: Toluene-d8 & 25.1 & & & \(u g /\) & 25.0 & & 100 & 80-120 & & & \\
\hline Surrogate: 4-Bromofluorobenzene & 24.5 & & & ug/l & 25.0 & & 98 & 80-120 & & & \\
\hline
\end{tabular}

\section*{Batch: 5A13008 Extracted: 01/13/05}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Blank Analyzed: 01/13/2005 (5A13008-BLK1)} \\
\hline Trichlorotrifluoroethane (Freon 113) & ND & 5.0 & N/A & ug/l & & & \\
\hline Surrogate: Dibromofluoromethane & 24.3 & & & ug/ & 25.0 & 97 & 80-120 \\
\hline Surrogate: Toluene-d8 & 24.9 & & & ug/ & 25.0 & 100 & 80-120 \\
\hline Surrogate: 4-Bromofluorobenzene & 24.1 & & & \(u g /\) & 25.0 & 96 & 80-120 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\author{
Project ID: Outfall 011 \\ Report Number: 1OA0567
}

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKIOC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & Reporting & & & Spike & Source & & \%REC & & D & Dat \\
\hline Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Oualifiers \\
\hline
\end{tabular}

Batch: 5A12019 Extracted; 01/12/05
Blank Analyzed: 01/12/2005 (5A12019-BLK1)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1,2,3-Trichloropropane & ND & 10 & N/A & ug/l & & & \\
\hline Benzene & ND & 1.0 & N/A & \(\mathrm{ug} / 1\) & & & \\
\hline Bromodichloromethane & ND & 2.0 & N/A & ug/t & & & \\
\hline Bromoform & ND & 5.0 & N/A & ug/l & & & \\
\hline Bromomethane & ND & 5.0 & N/A & ug/ & & & \\
\hline Carbon tetrachloride & ND & 0.50 & N/A & ug/l & & & \\
\hline Chlorobenzene & ND & 2.0 & N/A & ug/l & & & \\
\hline Chloroethane & ND & 5.0 & N/A & ug/ & & & \\
\hline Chloroform & ND & 2.0 & N/A & ug/ & & & \\
\hline Chloromethane & ND & 5.0 & N/A & ug/ & & & \\
\hline Dibromochloromethane & ND & 2.0 & N/A & ug/ & & & \\
\hline 1,2-Dichlorobenzene & ND & 2.0 & N/A & ug/ & & & \\
\hline 13 Dichlorobenzene & ND & 2.0 & N/A & ug/ & & & \\
\hline 144 Dichlorabenzene & ND & 2.0 & N/A & ugh & & & \\
\hline 1,1-Dichloroethane & ND & 2.0 & N/A & ug/ & & & \\
\hline 1,2-Dichloroethane & ND & 0.50 & N/A & ug/ & & & \\
\hline 1,1-Dichloroethene & ND & 5.0 & N/A & ug/ & & & \\
\hline trans-1,2-Dichloroethene & ND & 2.0 & N/A & ug/ & & & \\
\hline 1,2-Dichloropropane & ND & 2.0 & N/A & ug/ & & & \\
\hline cis-1,3-Dichloropropene & ND & 2.0 & N/A & ugh & & & \\
\hline trans-1,3-Dichloropropene & ND & 2.0 & N/A & ug/ & & & \\
\hline Ethylbenzene & ND & 2.0 & N/A & ug/ & & & \\
\hline Methylene chloride & ND & 5.0 & N/A & ug/ & & & \\
\hline 1,1,2,2-Tetrachloroethane & ND & 2.0 & N/A & ug/ & & & \\
\hline Tetrachloroethene & ND & 2.0 & N/A & ug/ & & & \\
\hline Toluene & ND & 2.0 & N/A & ug/ & & & \\
\hline 1,1,1-Trichloroethane & ND & 2.0 & N/A & ugh & & & \\
\hline 1,1,2-Trichloroethane & ND & 2.0 & N/A & ugh & & & \\
\hline Trichloroethene & ND & 2.0 & N/A & ugh & & & \\
\hline Trichlorofluoromethane & ND & 5.0 & N/A & ug/ & & & \\
\hline Vinyl chloride & ND & 0.50 & N/A & ugh & & & \\
\hline Xylenes, Total & ND & 4.0 & N/A & ug/ & & & \\
\hline Surrogate: Dibromofluoromethane & 24.7 & & & \(u g /\) & 25.0 & 99 & 80-120 \\
\hline Surrogate: Toluene-d8 & 25.1 & & & ug/ & 25.0 & 100 & 80-120 \\
\hline Surrogate: 4-Bromoffuorobenzene & 24.5 & & & ugh & 25.0 & 98 & 80-120 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager
\begin{tabular}{|lcc} 
MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Pasadena, CA 91101 & Report Number: IOA0567 & Received: \(01 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{method blankigc data}

\section*{PURGEABLES BY GC/MS (EPA 624)}
Analyte
Batch: 5A12019 Extracted: 01/12/05
\begin{tabular}{lcllllllllll} 
& Reporting & & & Spike & Source & & \%REC & & RPD & Data \\
Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

LCS Analyzed: 01/12/2005 (5A12019-BS1)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Benzene & 23.4 & 1.0 & N/A & ug/ & 25.0 & 94 & 70-120 \\
\hline Bromodichloromethane & 26.4 & 2.0 & N/A & ug/ & 25.0 & 106 & 70-140 \\
\hline Bromoform & 25.2 & 5.0 & N/A & ug/1 & 25.0 & 101 & 55-135 \\
\hline Bromomethane & 29.0 & 5.0 & N/A & ug/ & 25.0 & 116 & 60-140 \\
\hline Carbon tetrachloride & 28.8 & 0.50 & N/A & ug/l & 25.0 & 115 & 70-140 \\
\hline Chlorobenzene & 25.5 & 2.0 & N/A & ug/ & 25.0 & 102 & 80-125 \\
\hline Chloroethane & 26.8 & 5.0 & N/A. & ug/ & 25.0 & 107 & 60-145 \\
\hline Chloroform & 24.9 & 2.0 & N/A & ug/ & 25.0 & 100 & 75-130 \\
\hline Chloromethane & 24.5 & 5.0 & N/A & ug/ & 25.0 & 98 & 40-145 \\
\hline Dibromochloromethane & 26.2 & 2.0 & N/A & ug/ & 25.0 & 105 & 65-145 \\
\hline 1,2-Dichlorobenzene & 25.9 & 2.0 & N/A & ug/ & 25.0 & 104 & 80-120 \\
\hline 1,3-Dichlorobenzene & 24.9 & 2.0 & N/A & ug/ & 25.0 & 100 & 80-120 \\
\hline 1,4-Dichlorobenzene & 24.6 & 2.0 & N/A & ug/ & 25.0 & 98 & 80-120 \\
\hline 1,1-Dichloroethane & 24.4 & 2.0 & N/A & ug/ & 25.0 & 98 & 70-135 \\
\hline 1,2-Dichloroethane & 26.6 & 0.50 & N/A & ug/ & 25.0 & 106 & 60-150 \\
\hline 1,1-Dichloroethene & 25.0 & 5.0 & N/A & ug/1 & 25.0 & 100 & 75-135 \\
\hline trans-1,2-Dichloroethene & 25.9 & 2.0 & N/A & ug/ & 25.0 & 104 & 70-130 \\
\hline 1,2-Dichloropropane & 24.7 & 2.0 & N/A & ug/ & 25.0 & 99 & 70-120 \\
\hline cis-1,3-Dichloropropene & 26.9 & 2.0 & N/A & ug/ & 25.0 & 108 & 75-130 \\
\hline trans-1,3-Dichloropropene & 26.9 & 2.0 & N/A & ug/ & 25.0 & 108 & 75-135 \\
\hline Ethylbenzene & 26.6 & 2.0 & N/A & ug/ & 25.0 & 106 & 80-120 \\
\hline Methylene chloride & 26.1 & 5.0 & N/A & ug/ & 25.0 & 104 & 60-135 \\
\hline 1,1,2,2-Tetrachloroethane & 22.3 & 2.0 & N/A & ug/ & 25.0 & 89 & 60-135 \\
\hline Tetrachloroethene & 26.9 & 2.0 & N/A & ug/l & 25.0 & 108 & 75-125 \\
\hline Toluene & 24.6 & 2.0 & N/A & ughl & 25.0 & 98 & 75-120 \\
\hline 1,1,1-Trichloroethane & 28.4 & 2.0 & N/A & ugh & 25.0 & 114 & 75-140 \\
\hline 1,1,2-Trichloroethane & 24.6 & 2.0 & N/A & ug/ & 25.0 & 98 & 70-125 \\
\hline Trichloroethene & 25.2 & 2.0 & N/A & ugh & 25.0 & 101 & 80-120 \\
\hline Trichlorofluoromethane & 29.3 & 5.0 & N/A & ug/ & 25.0 & 117 & 65-145 \\
\hline Vinyl chloride & 23.7 & 0.50 & N/A & ug/l & 25.0 & 95 & 50-130 \\
\hline Surrogate: Dibromofluoromethane & 24.3 & & & \(u g / t\) & 25.0 & 97 & 80-120 \\
\hline Surrogate: Toluene-d8 & 25.0 & & & ug/t & 25.0 & 100 & 80-120 \\
\hline Surrogate: 4-Bromofluorobenzene & 25.0 & & & ug/ & 25.0 & 100 & 80-120 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine \\ Michele Harper \\ Project Manager}

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly

\author{
Project ID: Outfall 011 \\ Report Number: 1OA0567
}

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKOC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Matrix Spike Analyzed: 01/12/2005 (5A12019-MS1)} & \multicolumn{5}{|c|}{Source: 1OA0503-01} \\
\hline Benzene & 24.5 & 1.0 & N/A & ug/ & 25.0 & ND & 98 & 70-120 \\
\hline Bromodichloromethane & 27.5 & 2.0 & N/A & ugh & 25.0 & ND & 110 & 70-140 \\
\hline Bromoform & 24.0 & 5.0 & N/A & ugh & 25.0 & ND & 96 & 55-140 \\
\hline Bromomethane & 30.7 & 5.0 & N/A & ug/ & 25.0 & ND & 123 & 50-145 \\
\hline Carbon tetrachloride & 30.7 & 0.50 & N/A & ugl & 25.0 & ND & 123 & 70-145 \\
\hline Chlorobenzene & 26.9 & 2.0 & N/A & ug/ & 25.0 & ND & 108 & 80-125 \\
\hline Chloroethane & 28.5 & 5.0 & N/A & ug/ & 25.0 & ND & 114 & 50-145 \\
\hline Chloroform & 26.6 & 2.0 & N/A & ug/ & 25.0 & ND & 106 & 70-135 \\
\hline Chloromethane & 25.7 & 5.0 & N/A & ug/ & 25.0 & ND & 103 & 35-145 \\
\hline Dibromochloromethane & 26.1 & 2.0 & N/A & ugh & 25.0 & ND & 104 & 65-145 \\
\hline 1,2-Dichlorobenzene & 26.5 & 2.0 & N/A & ug/ & 25.0 & ND & 106 & 75-130 \\
\hline 1,3-Dichlorobenzene & 25.7 & 2.0 & N/A & ug/ & 25.0 & ND & 103 & 75-130 \\
\hline 1,4 Dichlorobenzene & 25.5 & 2.0 & N/A & ugh & 25.0 & ND & 102 & 80-120 \\
\hline 1,1-Dichloroethane & 25.9 & 2.0 & N/A & ug/ & 25.0 & ND & 104 & 65-135 \\
\hline 1,2-Dichloroethane & 26.9 & 0.50 & N/A & ug/ & 25.0 & ND & 108 & 60-150 \\
\hline 1,1-Dichloroethene & 26.3 & 5.0 & N/A & ug/ & 25.0 & ND & 105 & 65-140 \\
\hline trans-1,2-Dichloroethene & 27.3 & 2.0 & N/A & ug/ & 25.0 & ND & 109 & 65-135 \\
\hline 1,2-Dichloropropane & 25.7 & 2.0 & N/A & ug/ & 25.0 & ND & 103 & 65-130 \\
\hline cis-1,3-Dichloropropene & 27.3 & 2.0 & N/A & ug/l & 25.0 & ND & 109 & 70-140 \\
\hline trans-1,3-Dichloropropene & 27.0 & 2.0 & N/A & ugh & 25.0 & ND & 108 & 70-140 \\
\hline Ethylbenzene & 27.8 & 2.0 & N/A & ug/l & 25.0 & ND & 111 & 70-130 \\
\hline Methylene chloride & 27.0 & 5.0 & N/A & ugh & 25.0 & ND & 108 & 60-135 \\
\hline 1,1,2,2-Tetrachloroethane & 21.5 & 2.0 & N/A & ug/ & 25.0 & ND & 86 & 60-145 \\
\hline Tetrachloroethene & 27.9 & 2.0 & N/A & ug/l & 25.0 & ND & 112 & 70-130 \\
\hline Toluene & 25.8 & 2.0 & N/A & ugh & 25.0 & ND & 103 & 70-120 \\
\hline 1,1,1-Trichloroethane & 30.4 & 2.0 & N/A & ugh & 25.0 & ND & 122 & 75-140 \\
\hline , 1,1,2-Trichloroethane & 24.2 & 2.0 & N/A & ug/ & 25.0 & ND & 97 & 60-135 \\
\hline Trichloroethene & 26.4 & 2.0 & N/A & ugh & 25.0 & ND & 106 & 70-125 \\
\hline Trichlorofluoromethane & 31.2 & 5.0 & N/A & ug/ & 25.0 & ND & 125 & 55-145 \\
\hline Vinyl chloride & 24.9 & 0.50 & N/A & ug/ & 25.0 & ND & 100 & 40-135 \\
\hline Surrogate: Dibromofluoromethane & 24.6 & & & ug/l & 25.0 & & 98 & 80-120 \\
\hline Surrogate: Toluene-d8 & 25.0 & & & ug/ & 25.0 & & 100 & 80-120 \\
\hline Surrogate: 4-Bromofluorobenzene & 25.4 & & & ug/ & 25.0 & & 102 & 80-120 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

\title{
Del Mar Analytical
}

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Outfall 011
Report Number: IOA0567
Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKQC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{lllllllllllll} 
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

Batch: 5A12019 Extracted: 01/12/05
Matrix Spike Dup Analyzed: 01/12/2005 (5A12019-MSD1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Benzene & 24.0 & 1.0 & N/A & ug/l & 25.0 & ND & 96 & 70-120 & 2 & 20 \\
\hline Bromodichloromethane & 27.1 & 2.0 & N/A & ug/l & 25.0 & ND & 108 & 70-140 & 1 & 20 \\
\hline Bromoform & 27.6 & 5.0 & N/A & ug/l & 25.0 & ND & 110 & 55-140 & 14 & 25 \\
\hline Bromomethane & 29.8 & 5.0 & N/A & ug/l & 25.0 & ND & 119 & 50-145 & 3 & 25 \\
\hline Carbon tetrachloride & 29.9 & 0.50 & N/A & ug/ & 25.0 & ND & 120 & 70-145 & 3 & 25 \\
\hline Chlorobenzene & 26.4 & 2.0 & N/A & ug/ & 25.0 & ND & 106 & 80-125 & 2 & 20 \\
\hline Chloroethane & 28.1 & 5.0 & N/A & ug/l & 25.0 & ND & 112 & 50-145 & 1 & 25 \\
\hline Chloroform & 25.9 & 2.0 & N/A & \(\mathrm{ug} / \mathrm{l}\) & 25.0 & ND & 104 & 70-135 & 3 & 20 \\
\hline Chloromethane & 25.8 & 5.0 & N/A & ug/ & 25.0 & ND & 103 & 35-145 & 0 & 25 \\
\hline Dibromochloromethane & 28.2 & 2.0 & N/A & \(u g / 1\) & 25.0 & ND & 113 & 65-145 & 8 & 25 \\
\hline 1,2-Dichlorobenzene & 26.4 & 2.0 & N/A & ug/l & 25.0 & ND & 106 & 75-130 & 0 & 20 \\
\hline 1,3-Dichlorobenzene & 25.1 & 2.0 & N/A & ug/l & 25.0 & ND & 100 & 75-130 & 2 & 20 \\
\hline 1,4-Dichlorobenzene & 24.9 & 2.0 & N/A & ug/l & 25.0 & ND & 100 & 80.120 & 2 & 20 \\
\hline 1,1-Dichloroethane & 25.3 & 2.0 & N/A & ug/l & 25.0 & ND & 101 & 65-135 & 2 & 20 \\
\hline 1,2-Dichloroethane & 27.8 & 0.50 & N/A & ug/l & 25.0 & ND & 111 & 60-150 & 3 & 20 \\
\hline 1,1-Dichloroethene & 25.8 & 5.0 & N/A & ug/l & 25.0 & ND & 103 & 65-140 & 2 & 20 \\
\hline trans-1,2-Dichloroethene & 27.0 & 2.0 & N/A & ug/l & 25.0 & ND & 108 & 65-135 & 1 & 20 \\
\hline 1,2-Dichloropropane & 25.6 & 2.0 & N/A & ug/ & 25.0 & ND & 102 & 65-130 & 0 & 20 \\
\hline cis-1,3-Dichloropropene & 27.4 & 2.0 & N/A & ug/ & 25.0 & ND & 110 & 70-140 & 0 & 20 \\
\hline trans-1,3-Dichloropropene & 28.3 & 2.0 & N/A & \(\mathrm{ug} / \mathrm{l}\) & 25.0 & ND & 113 & 70-140 & 5 & 25 \\
\hline Ethylbenzene & 27.2 & 2.0 & N/A & ug/1 & 25.0 & ND & 109 & \(70-130\) & 2 & 20 \\
\hline Methylene chloride & 26.4 & 5.0 & N/A & ug/l & 25.0 & ND & 106 & 60-135 & 2 & 20 \\
\hline 1,1,2,2-Tetrachloroethane & 25.4 & 2.0 & N/A & ug/l & 25.0 & ND & 102 & 60-145 & 17 & 30 \\
\hline Tetrachloroethene & 27.5 & 2.0 & N/A & ug/l & 25.0 & ND & 110 & 70-130 & 1 & 20 \\
\hline Toluene & 25.3 & 2.0 & N/A & ug/ & 25.0 & ND & 101 & 70-120 & 2 & 20 \\
\hline 1,1,1-Trichloroethane & 29.2 & 2.0 & N/A & ug/ & 25.0 & ND & 117 & 75-140 & 4 & 20 \\
\hline 1,1,2-Trichloroethane & 26.0 & 2.0 & N/A & ug/ & 25.0 & ND & 104 & 60-135 & 7 & 25 \\
\hline Trichloroethene & 25.8 & 2.0 & N/A & ug/ & 25.0 & ND & 103 & \(70-125\) & 2 & 20 \\
\hline Trichlorofluoromethane & 30.5 & 5.0 & N/A & ug/l & 25.0 & ND & 122 & 55-145 & 2 & 25 \\
\hline Vinyl chloride & 24.5 & 0.50 & N/A & ug/ & 25.0 & ND & 98 & 40-135 & 2 & 30 \\
\hline Surrogate: Dibromofluoromethane & 24.7 & & & \(u g / l\) & 25.0 & & 99 & 80-120 & & \\
\hline Surrogate: Toluene-d8 & 25.0 & & & \(u g /\) & 25.0 & & 100 & 80-120 & & \\
\hline Surrogate: 4-Bromofluorobenzene & 25.4 & & & \(u g / 1\) & 25.0 & & 102 & 80-120 & & \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Michele Harper
Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: 1OA0567
Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKIOC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
Analyte Result

Batch: 5A13008 Extracted: 01/13/05
Blank Analyzed: 01/13/2005 (5A13008-BLK1)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Benzene & ND & 1.0 & N/A & ug/ & & & \\
\hline Bromodichloromethane & ND & 2.0 & N/A & ug/ & & & \\
\hline Bromoform & ND & 5.0 & N/A & ug/ & & & \\
\hline Bromomethane & ND & 5.0 & N/A & ug/ & & & \\
\hline Carbon tetrachloride & ND & 0.50 & N/A & ug/ & & & \\
\hline Chlorobenzene & ND & 2.0 & N/A & ug/ & & & \\
\hline Chioroethane & ND & 5.0 & N/A & ug/ & & & \\
\hline Chloroform & ND & 2.0 & N/A & ug/ & & & \\
\hline Chloromethane & ND & 5.0 & N/A & ug/ & & & \\
\hline Dibromochloromethane & ND & 2.0 & N/A & ug/ & & & \\
\hline 1,2-Dichlorobenzene & ND & 2.0 & N/A & ug/ & & & \\
\hline 1,3-Dichlorobenzene & ND & 2.0 & N/A & ug/ & & & \\
\hline 1,4 Dichlorobenzene & ND & 2.0 & N/A & ugh & & & \\
\hline 1,1-Dichloroethane & ND & 2.0 & N/A & ugh & & & \\
\hline 1,2-Dichloroethane & ND & 0.50 & N/A & ug/ & & & \\
\hline 1,1-Dichloroethene & ND & 5.0 & N/A & ug/ & & & \\
\hline trans-1,2-Dichloroethene & ND & 2.0 & N/A & ug/1 & & & \\
\hline 1,2-Dichloropropane & ND & 2.0 & N/A & ug/ & & & \\
\hline cis-1,3-Dichloropropene & ND & 2.0 & N/A & ug/ & & & \\
\hline trans-1,3-Dichloropropene & ND & 2.0 & N/A & ug/ & & & \\
\hline Ethylbenzene & ND & 2.0 & N/A & ug/ & & & \\
\hline Methylene chloride & ND & 5.0 & N/A & ug/l & & & \\
\hline 1,1,2,2-Tetrachloroethane & ND & 2.0 & N/A & ugh & & & \\
\hline Tetrachloroethene & ND & 2.0 & N/A & ug/ & & & \\
\hline Toluene & ND & 2.0 & N/A & ug/ & & & \\
\hline 1,1,1-Trichloroethane & ND & 2.0 & N/A & ug/l & & & \\
\hline 1,1,2-Trichloroethane & ND & 2.0 & N/A & \(\mathrm{ug} / 1\) & & & \\
\hline Trichloroethene & ND & 2.0 & N/A & ugh & & & \\
\hline Trichlorofluoromethane & ND & 5.0 & N/A & ugh & & & \\
\hline Vinyl chloride & ND & 0.50 & N/A & ug/ & & & \\
\hline Xylenes, Total & ND & 4.0 & N/A & ug/ & & & \\
\hline Surrogate: Dibromofluoromethane & 24.3 & & & ug/ & 25.0 & 97 & 80-120 \\
\hline Surrogate: Toluene-d8 & 24.9 & & & ug/ & 25.0 & 100 & 80-120 \\
\hline Surrogate: 4-Bromofluorobenzene & 24.1 & & & ug/ & 25.0 & 96 & 80-120 \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Michele Harper
Project Manager
}

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Sampled: 01/11/05-01/12/05
Received: 01/11/05
Received: 01/11/05

Report Number: 1OA0567

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\author{
Project ID: Outfall 011 \\ Report Number: 10A0567 \\ Sampled: 01/11/05-01/12/05 \\ Received: 01/11/05 \\ Receive 01/110s
}

\section*{METHOD BLANKIGC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{lllllllllll} 
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit \\
Batch: \(5 A 13008\) & Extracted: \(01 / 13 / 05\) & & & & & & & & & \\
Qulifiers
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Matrix Spike Analyzed: 01/13/2005 (5A13008-MS1)} & \multicolumn{5}{|c|}{Source: 10A0558-01} \\
\hline Benzene & 24.1 & 1.0 & N/A & ug/l & 25.0 & ND & 96 & 70-120 \\
\hline Bromodichloromethane & 31.4 & 2.0 & N/A & ug/ & 25.0 & ND & 126 & 70-140 \\
\hline Bromoform & 28.1 & 5.0 & N/A & ug/ & 25.0 & ND & 112 & 55-140 \\
\hline Bromomethane & 28.8 & 5.0 & N/A & ug/ & 25.0 & ND & 115 & 50-145 \\
\hline Carbon tetrachloride & 33.3 & 0.50 & N/A & ug/ & 25.0 & ND & 133 & 70-145 \\
\hline Chlorobenzene & 25.8 & 2.0 & N/A & ug/ & 25.0 & ND & 103 & 80-125 \\
\hline Chloroethane & 25.0 & 5.0 & N/A & ug/ & 25.0 & 0.85 & 97 & 50-145 \\
\hline Chloroform & 28.8 & 2.0 & N/A & ug/ & 25.0 & 0.74 & 112 & 70-135 \\
\hline Chloromethane & 20.4 & 5.0 & N/A & ug/1 & 25.0 & ND & 82 & 35-145 \\
\hline Dibromochloromethane & 27.3 & 2.0 & N/A & ug/ & 25.0 & ND & 109 & 65-145 \\
\hline 1,2-Dichlorobenzene & 27.3 & 2.0 & N/A & ug/ & 25.0 & ND & 109 & 75-130 \\
\hline 1,3-Dichlorobenzene & 26.9 & 2.0 & N/A & ug/ & 25.0 & ND & 108 & 75-130 \\
\hline 1,4 Dichlorobenzene & 27.4 & 2.0 & N/A & ught & 25.0 & 1.2 & 105 & 80.120 \\
\hline 1,1-Dichloroethane & 24.0 & 2.0 & N/A & ug/ & 25.0 & ND & 96 & 65-135 \\
\hline 1,2-Dichloroethane & 30.9 & 0.50 & N/A & ug/ & 25.0 & 0.30 & 122 & 60-150 \\
\hline 1,1-Dichloroethene & 23.7 & 5.0 & N/A & ug/ & 25.0 & ND & 95 & 65-140 \\
\hline trans-1,2-Dichloroethene & 24.9 & 2.0 & N/A & ug/ & 25.0 & ND & 100 & 65-135 \\
\hline 1,2-Dichloropropane & 22.8 & 2.0 & N/A & ug/ & 25.0 & ND & 91 & 65-130 \\
\hline cis-1,3-Dichloropropene & 26.5 & 2.0 & N/A & ug/ & 25.0 & ND & 106 & 70-140 \\
\hline trans-1,3-Dichloropropene & 29.0 & 2.0 & N/A & ug/ & 25.0 & ND & 116 & 70-140 \\
\hline Ethylbenzene & 26.5 & 2.0 & N/A & ug/ & 25.0 & ND & 106 & 70-130 \\
\hline Methylene chloride & 23.1 & 5.0 & N/A & ugh & 25.0 & 0.71 & 90 & 60-135 \\
\hline 1,1,2,2-Tetrachloroethane & 24.2 & 2.0 & N/A & \(\mathrm{ug} /\) & 25.0 & ND & 97 & 60-145 \\
\hline Tetrachloroethene & 27.7 & 2.0 & N/A & ug/l & 25.0 & ND & 111 & 70-130 \\
\hline Toluene & 27.1 & 2.0 & N/A & ug/ & 25.0 & ND & 108 & 70-120 \\
\hline 1,1,1-Trichloroethane & 30.7 & 2.0 & N/A & ugl & 25.0 & ND & 123 & 75-140 \\
\hline 1,1,2-Trichloroethane & 24.9 & 2.0 & N/A & ugh & 25.0 & ND & 100 & 60-135 \\
\hline Trichloroethene & 27.0 & 2.0 & N/A & ug/ & 25.0 & ND & 108 & 70-125 \\
\hline Trichlorofluoromethane & 31.0 & 5.0 & N/A & ugh & 25.0 & ND & 124 & 55-145 \\
\hline Vinyl chloride & 25.8 & 0.50 & N/A & ug/ & 25.0 & ND & 103 & 40-135 \\
\hline Surrogate: Dibromofluoromethane & 25.2 & & & ugh & 25.0 & & 101 & 80-120 \\
\hline Surrogate: Toluene-d8 & 25.9 & & & ug/ & 25.0 & & 104 & 80-120 \\
\hline Surrogate: 4-Bromofluorobenzene & 25.4 & & & \(u g / l\) & 25.0 & & 102 & 80-120 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager
\begin{tabular}{lcc} 
MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: 01/11/05-01/12/05 \\
Pasadena, CA 91101 & Report Number: IOA0567 & Received: 01/11/05 \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{METHOD BLANKIOC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A13008 Extracted; 01/13/05} \\
\hline \multicolumn{5}{|l|}{Matrix Spike Dup Analyzed: 01/13/2005 (5A13008-MSD1)} & \multicolumn{3}{|r|}{Source: 10A0558-01} & & & & \\
\hline Benzene & 25.1 & 1.0 & N/A & ug/ & 25.0 & ND & 100 & 70-120 & 4 & 20 & \\
\hline Bromodichloromethane & 32.5 & 2.0 & N/A & ug/ & 25.0 & ND & 130 & 70-140 & 3 & 20 & \\
\hline Bromoform & 30.2 & 5.0 & N/A & ug/ & 25.0 & ND & 121 & 55-140 & 7 & 25 & \\
\hline Bromomethane & 29.9 & 5.0 & N/A & \(\mathrm{ug} / \mathrm{l}\) & 25.0 & ND & 120 & 50-145 & 4 & 25 & \\
\hline Carbon tetrachloride & 34.0 & 0.50 & N/A & ug/ & 25.0 & ND & 136 & 70-145 & 2 & 25 & \\
\hline Chlorobenzene & 27.2 & 2.0 & N/A & ugn & 25.0 & ND & 109 & 80-125 & 5 & 20 & \\
\hline Chloroethane & 26.3 & 5.0 & N/A & ug/ & 25.0 & 0.85 & 102 & 50-145 & 5 & 25 & \\
\hline Chloroform & 30.4 & 2.0 & N/A & ugh & 25.0 & 0.74 & 119 & 70-135 & 5 & 20 & \\
\hline Chloromethane & 21.8 & 5.0 & N/A & ug/ & 25.0 & ND & 87 & 35-145 & 7 & 25 & \\
\hline Dibromochloromethane & 29.2 & 2.0 & N/A & ug/ & 25.0 & ND & 117 & 65-145 & 7 & 25 & \\
\hline 1,2-Dichlorobenzene & 29.4 & 2.0 & N/A & ug/ & 25.0 & ND & 118 & 75-130 & 7 & 20 & \\
\hline 1,3-Dichlorobenzene & 28.7 & 2.0 & N/A & ug/l & 25.0 & ND & 115 & 75-130 & 6 & 20 & \\
\hline 1,4-Dichlorobenzene & 29.4 & 2.0 & N/A & ug/ & 25.0 & 1.2 & 113 & 80-120 & 7 & 20 & \\
\hline 1,1-Dichloroethane & 25.3 & 2.0 & N/A & ug/ & 25.0 & ND & 101 & 65-135 & 5 & 20 & \\
\hline 1,2-Dichloroethane & 32.9 & 0.50 & N/A & ug/ & 25.0 & 0.30 & 130 & 60-150 & 6 & 20 & \\
\hline 1,1-Dichloroethene & 25.1 & 5.0 & N/A & ug/ & 25.0 & ND & 100 & 65-140 & 6 & 20 & \\
\hline trans-1,2-Dichloroethene & 26.9 & 2.0 & N/A & ug/ & 25.0 & ND & 108 & 65-135 & 8 & 20 & \\
\hline 1,2-Dichloropropane & 24.4 & 2.0 & N/A & ug/ & 25.0 & ND & 98 & 65-130 & 7 & 20 & \\
\hline cis-1,3-Dichloropropene & 28.0 & 2.0 & N/A & ug/ & 25.0 & ND & 112 & 70-140 & 6 & 20 & \\
\hline trans-1,3-Dichloropropene & 30.7 & 2.0 & N/A & ug/l & 25.0 & ND & 123 & 70-140 & 6 & 25 & \\
\hline Ethylbenzene & 27.8 & 2.0 & N/A & ug/ & 25.0 & ND & 111 & 70-130 & 5 & 20 & \\
\hline Methylene chloride & 25.0 & 5.0 & N/A & ug/ & 25.0 & 0.71 & 97 & 60-135 & 8 & 20 & \\
\hline 1,1,2,2-Tetrachloroethane & 26.7 & 2.0 & N/A & ug/ & 25.0 & ND & 107 & 60-145 & 10 & 30 & \\
\hline Tetrachloroethene & 29.1 & 2.0 & N/A & \(u g / 1\) & 25.0 & ND & 116 & 70-130 & 5 & 20 & \\
\hline Toluene & 28.5 & 2.0 & N/A & ugh & 25.0 & ND & 114 & 70-120 & 5 & 20 & \\
\hline 1,1,1-Trichloroethane & 32.0 & 2.0 & N/A & ugh & 25.0 & ND & 128 & 75-140 & 4 & 20 & \\
\hline 1,1,2-Trichloroethane & 27.0 & 2.0 & N/A & ugh & 25.0 & ND & 108 & 60-135 & 8 & 25 & \\
\hline Trichloroethene & 28.0 & 2.0 & N/A & ugl & 25.0 & ND & 112 & 70-125 & 4 & 20 & \\
\hline Trichlorofluoromethane & 31.9 & 5.0 & N/A & ugh & 25.0 & ND & 128 & 55-145 & 3 & 25 & \\
\hline Vinyl chloride & 27.3 & 0.50 & N/A & ugh & 25.0 & ND & 109 & 40-135 & 6 & 30 & \\
\hline Surrogate: Dibromofluoromethane & 25.4 & & & ug/ & 25.0 & & 102 & 80-120 & & & \\
\hline Surrogate: Toluene-d8 & 25.4 & & & ught & 25.0 & & 102 & 80-120 & & & \\
\hline Surrogate: 4-Bromofluorobenzene & 25.4 & & & ug/l & 25.0 & & 102 & 80-120 & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager
\begin{tabular}{lrr} 
MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Pasadena, CA 91101 & Report Number: 1OA0567 & Received: 01/11/05 \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{METHOD BLANK/QC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A13008 Extracted: 01/13/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/13/2005 (5A13008-BLK1)} \\
\hline Acrolein & ND & 50 & N/A & ug/l & & & & & & & \\
\hline Acrylonitrile & ND & 50 & N/A & ug/l & & & & & & & \\
\hline 2-Chloroethyl vinyl ether & ND & 5.0 & N/A & ug/l & & & & & & & \\
\hline Surrogate: Dibromofluoromethane & 24.3 & & & \(u g / l\) & 25.0 & & 97 & 80-120 & & & \\
\hline Surrogate: Toluene-d8 & 24.9 & & & \(u g / l\) & 25.0 & & 100 & \(80-120\) & & & \\
\hline Surrogate: 4-Bromofluorobenzene & 24.1 & & & \(u g / l\) & 25.0 & & 96 & 80-120 & & & \\
\hline \multicolumn{12}{|l|}{LCS Analyzed: 01/13/2005 (5A13008-BS1)} \\
\hline 2-Chloroethyl vinyl ether & 18.0 & 5.0 & N/A & ug/l & 25.0 & & 72 & 20-175 & & & \\
\hline Surrogate: Dibromofluoromethane & 25.7 & & & \(u g / l\) & 25.0 & & 103 & 80-120 & & & \\
\hline Surrogate: Toluene-d8 & 25.3 & & & \(u g / 7\) & 25.0 & & 101 & 80-120 & & & \\
\hline Surrogate: 4-Bromofluorobenzene & 25.3 & & & \(u g /\) & 25.0 & & 101 & 80-120 & & & \\
\hline \multicolumn{3}{|l|}{Matrix Spike Analyzed: 01/13/2005 (5A13008-MS1)} & & & \multicolumn{3}{|l|}{Source: 10A0558-01} & & & & \% \\
\hline 2 Chloroethyl vinyl ether & 20.5 & 5.0 & N/A & ug/l & 25.0 & ND & 82 & 20-175 & & & \\
\hline Surrogate: Dibromofluoromethane & 25.2 & & & \(u g /\) & 25.0 & & 101 & 80-120 & & & \\
\hline Surrogate: Toluene-d8 & 25.9 & & & \(u \mathrm{~g} / \mathrm{l}\) & 25.0 & & 104 & 80-120 & & & \\
\hline Surrogate: 4-Bromofluorobenzene & 25.4 & & & \(u g / l\) & 25.0 & & 102 & 80-120 & & & \\
\hline \multicolumn{3}{|l|}{Matrix Spike Dup Anaiyzed: 01/13/2005 (5A13008-MSD1)} & & & \multicolumn{3}{|l|}{Source: 10A0558-01} & & & & \\
\hline 2-Chloroethyl vinyl ether & 21.8 & 5.0 & N/A & ug/ & 25.0 & ND & 87 & 20-175 & 6 & 25 & \\
\hline Surrogate: Dibromofluoromethane & 25.4 & & & ug/ & 25.0 & & 102 & 80-120 & & & \\
\hline Surrogate: Toluene-d8 & 25.4 & & & \(u g / l\) & 25.0 & & 102 & 80-120 & & & \\
\hline Surrogate: 4-Bromofluorobenzene & 25.4 & & & \(u g h\) & 25.0 & & 102 & 80-120 & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: 1OA0567

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKIOC DATA}

\section*{PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A12019 Extracted: 01/12/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/12/2005 (5A12019-BLK1)} \\
\hline Cyclohexane & ND & 2.5 & N/A & ug/ & & & & & & & \\
\hline 1,2-Dichloro-1,1,2-trifluoroethane & ND & 2.5 & N/A & ug/ & & & & & & & \\
\hline \multicolumn{12}{|l|}{Batch: 5A13008 Extracted: 01/13/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/13/2005 (5A13008-BLK1)} \\
\hline Cyclohexane & ND & 2.5 & N/A & ug/ & & & & & & & \\
\hline 1,2-Dichloro-1,1,2-trifluoroethane & ND & 2.5 & N/A & ug/ & & & & & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\author{
Project ID: Outfall 011 \\ Report Number: IOA0567 \\ Sampled: 01/11/05-01/12/05 \\ Received: 01/11/05
}

\section*{METHOD BLANKIQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A13038 Extracted: 01/13/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/17/2005 (5A13038-BLK1)} \\
\hline Acenaphthene & ND & 0.50 & N/A & ug/l & & & & & & & \\
\hline Acenaphthylene & ND & 0.50 & N/A & ug/ & & & & & & & \\
\hline Aniline & ND & 10 & N/A & ugh & & & & & & & \\
\hline Anthracene & ND & 0.50 & N/A & ug/l & & & & & & & \\
\hline Benzidine & ND & 5.0 & N/A & ug/l & & & & & & & \\
\hline Benzoic acid & ND & 20 & N/A & ug/l & & & & & & & \\
\hline Benzo(a)anthracene & ND & 5.0 & N/A & ug/l & & & & & & & \\
\hline Benzo(a)pyrene & ND & 2.0 & N/A & ug/ \(/\) & & & & & & & \\
\hline Benzo(b)fluoranthene & ND & 2.0 & N/A & ug/ & & & & & & & \\
\hline Benzo(g, \(\mathrm{h}, \mathrm{i}\) ) perylene & ND & 5.0 & N/A & ug/l & & & & & & & \\
\hline Benzo(k)fluoranthene & ND & 0.50 & N/A & \(\mathrm{ug} / 1\) & & & & & & & \\
\hline Benzyl alcohol & ND & 5.0 & N/A & ug/l & & & & & & & \\
\hline Bis(2-chloroethoxy)methane & ND & 0.50 & N/A & ug/l & & & & & & & \\
\hline Bis(2-chloroethyl)ether & ND & 0.50 & N/A & ugh & & & . & & & & \\
\hline Bis(2-chloroisopropyl)ether & ND & 0.50 & N/A & ug/l & & & & & - & & \\
\hline Bis(2-ethylhexyl)phthalate & ND & 5.0 & N/A & ug/ & & & & & & & \\
\hline 4-Bromophenyl phenyl ether & ND & 1.0 & N/A & ug/l & & & & & & & \\
\hline Butyl benzyl phthalate & ND & 5.0 & N/A & ug/l & & & & & & & \\
\hline 4-Chloroaniline & ND & 2.0 & N/A & ug/l & & & & & & & \\
\hline 2-Chloronaphthalene & ND & 0.50 & N/A & ug/l & & & & & & & \\
\hline 4-Chloro-3-methylphenol & ND & 2.0 & N/A & ug/l & & & & & & & \\
\hline 4-Chlorophenyl phenyl ether & ND & 0.50 & N/A & ug/ & & & & & & & \\
\hline 2-Chlorophenol & ND & 1.0 & N/A & ug/l & & & & & & & \\
\hline Chrysene & ND & 0.50 & N/A & ug/l & & & & & & & \\
\hline Dibenz( \(\mathrm{a}, \mathrm{h})\) anthracene & ND & 0.50 & N/A & ugh & & & & & & & \\
\hline Dibenzofuran & ND & 0.50 & N/A & ug/l & & & & & & & \\
\hline Di-n-butyl phthalate & ND & 2.0 & N/A & ug/ & & & & & & & \\
\hline 1,2-Dichlorobenzene & ND & 0.50 & N/A & ug/l & & & & & & & \\
\hline 1,3-Dichlorobenzene & ND & 0.50 & N/A & ug/ & & & & & & & \\
\hline 1,4-Dichlorobenzene & ND & 0.50 & N/A & ug/l & & & & & & & \\
\hline 3,3-Dichlorobenzidine & ND & 5.0 & N/A & ug/ & & & & & & & \\
\hline 2,4-Dichlorophenol & ND & 2.0 & N/A & ug/ & & & & & & & \\
\hline Diethyl phthalate & ND & 1.0 & N/A & ug/l & & & & & & & \\
\hline 2,4-Dimethylphenol & ND & 2.0 & N/A & ug/l & & & & & & & \\
\hline Dimethyl phthalate & ND & 0.50 & N/A & ug/ & & & & & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Project ID: Outfall 011 \\ Report Number: IOA0567 \\ Attention: Bronwyn Kelly
}

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKIQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{llllllllllll} 
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

\section*{Batch: 5A13038 Extracted: 01/13/05}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Blank Analyzed: 01/17/2005 (5A13038-BLK1)} \\
\hline 4,6-Dinitro-2-methylphenol & ND & 5.0 & N/A & ug/ \\
\hline 2,4-Dinitrophenol & ND & 5.0 & N/A & ug/ \\
\hline 2,4-Dinitrotoluene & ND & 5.0 & N/A & ugh \\
\hline 2,6-Dinitrotoluene & ND & 5.0 & N/A & ug/ \\
\hline Di-n-octyl phthalate & ND & 5.0 & N/A & ugl \\
\hline 1,2-Diphenylhydrazine/Azobenzene & ND & 1.0 & N/A & ugh \\
\hline Fluoranthene & ND & 0.50 & N/A & ugh \\
\hline Fluorene & ND & 0.50 & N/A & ug/ \\
\hline Hexachlorobenzene & ND & 1.0 & N/A & ug/ \\
\hline Hexachlorobutadiene & ND & 2.0 & N/A & ug/ \\
\hline Hexachlorocyclopentadiene & ND & 5.0 & N/A & ug/ \\
\hline Hexachloroethane & ND & 3.0 & N/A & ug/ \\
\hline Indeno( \(1,2,3-\mathrm{cd}\) )pyrene & ND & 2.0 & N/A & ugh \\
\hline Isophorone & ND & 1.0 & N/A & ugh \\
\hline 2-Methylnaphthalene & ND & 1.0 & N/A & ug/ \\
\hline 2-Methylphenol & ND & 2.0 & N/A & ug/ \\
\hline 4-Methylphenol & ND & 5.0 & N/A & ug] \\
\hline Naphthalene & ND & 1.0 & N/A & ug/ \\
\hline 2-Nitroaniline & ND & 5.0 & N/A & ug/ \\
\hline 3-Nitroaniline & ND & 5.0 & N/A & ugh \\
\hline 4-Nitroaniline & ND & 5.0 & N/A & ugh \\
\hline Nitrobenzene & ND & 1.0 & N/A & ug/ \\
\hline 2-Nitrophenol & ND & 2.0 & N/A & ug/ \\
\hline 4-Nitrophenol & ND & 5.0 & N/A & ugl \\
\hline N -Nitrosodimethylamine & ND & 2.0 & N/A & ugl \\
\hline N -Nitroso-di-n-propylamine & ND & 2.0 & N/A & ug/ \\
\hline N-Nitrosodiphenylamine & ND & 1.0 & N/A & ug/ \\
\hline Pentachlorophenol & ND & 2.0 & N/A & ug/ \\
\hline Phenanthrene & ND & 0.50 & N/A & ug/ \\
\hline Phenol & ND & 1.0 & N/A & ug/ \\
\hline Pyrene & ND & 0.50 & N/A & ug/ \\
\hline 1,2,4-Trichlorobenzene & ND & 1.0 & N/A & ug/ \\
\hline 2,4,5-Trichlorophenol & ND & 2.0 & N/A & ug/ \\
\hline 2,4,6-Trichlorophenol & ND & 1.0 & N/A & ug/ \\
\hline Surrogate: 2-Fluorophenol & 12.7 & & & \(u g /\) \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager
\begin{tabular}{lrr} 
MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: 01/11/05-01/12/05 \\
Pasadena, CA 91101 & Report Number: \(10 A 0567\) & Received: \(01 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{METMOD MLANKUCC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}

\begin{tabular}{lr} 
Blank Analyzed: 01/17/2005 (5A13038-BLK1) \\
Surrogate: Phenol-d & 12.8 \\
Surrogate: \(2,4,6-\) Tribromophenol & 12.1 \\
Surrogate: Nitrobenzeme-d5 & 6.58 \\
Surrogate: 2 -Fluorobiphenyl & 7.08 \\
Surrogate: Terphenyl-d14 & 7.28
\end{tabular}
\begin{tabular}{llll}
\(u g / l\) & 20.0 & 64 & \(45-120\) \\
\(u g / I\) & 20.0 & 60 & \(50-125\) \\
\(u g /\) & 10.0 & 66 & \(45-120\) \\
\(u g / l\) & 10.0 & 71 & \(45-120\) \\
\(u g / l\) & 10.0 & 73 & \(45-135\)
\end{tabular}

LCS Analyzed: 01/17/2005 (5A13038-BS1)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Acenaphthene & 8.34 & 0.50 & N/A & ug/ & 10.0 & 83 & 55-120 \\
\hline Acenaphthylene & 8.12 & 0.50 & N/A & ug/l & 10.0 & 81 & 55-120 \\
\hline Aniline & 7.50 & 10 & N/A & ug/ & 10.0 & 75 & 30-120 \\
\hline Anthracene & 9.00 & 0.50 & N/A & ug/l & 10.0 & 90 & 60-120 \\
\hline Benzidine & 3.52 & 5.0 & N/A & ug/ & 10.0 & 35 & 20-180 \\
\hline Benzoic acid & 7.46 & 20 & N/A & ug/ & 10.0 & 75 & 30-125 \\
\hline Benzo(a)anthracene & 9.26 & 5.0 & N/A & uga & 10.0 & 93 & 65-120 \\
\hline Benzo(a)pyrene & 9.88 & 2.0 & N/A & ug/ & 10.0 & 99 & 55-125 \\
\hline Benzo(b)fluoranthene & 9.12 & 2.0 & N/A & ug/ & 10.0 & 91 & 50-125 \\
\hline Benzo(g,h,i)perylene & 9.74 & 5.0 & N/A & ug/ & 10.0 & 97 & 35-160 \\
\hline Berizo(k)fluoranthene & 9.76 & 0.50 & N/A & ugh & 10.0 & 98 & 50-125 \\
\hline Benzyl alcohol & 8.32 & 5.0 & N/A & ugh & 10.0 & 83 & 40-130 \\
\hline Bis(2-chloroethoxy)methane & 8.26 & 0.50 & N/A & ug/ & 10.0 & 83 & 55-120 \\
\hline Bis(2-chloroethyl)ether & 7.50 & 0.50 & N/A & ug/ & 10.0 & 75 & 50-120 \\
\hline Bis(2-chloroisopropyl)ether & 6.72 & 0.50 & N/A & ugl & 10.0 & 67 & 50-120 \\
\hline Bis(2-ethylhexyl)phthalate & 10.3 & 5.0 & N/A & ug/ & 10.0 & 103 & 65-125 \\
\hline 4-Bromophenyl phenyl ether & 8.08 & 1.0 & N/A & ug/ & 10.0 & 81 & 55-125 \\
\hline Butyl benzyl phthalate & 9.48 & 5.0 & N/A & ugh & 10.0 & 95 & 60-125 \\
\hline 4-Chloroaniline & 8.08 & 2.0 & N/A & ug/l & 10.0 & 81 & 55-120 \\
\hline 2-Chloronaphthalene & 7.98 & 0.50 & N/A & ugh & 10.0 & 80 & 60-120 \\
\hline 4-Chloro-3-methylphenol & 8.28 & 2.0 & N/A & ug/ & 10.0 & 83 & 60-120 \\
\hline 4-Chlorophenyl phenyl ether & 8.60 & 0.50 & N/A & ug/ & 10.0 & 86 & 55-120 \\
\hline 2-Chlorophenol & 7.38 & 1.0 & N/A & ugh & 10.0 & 74 & 45-120 \\
\hline Chrysene & 9.02 & 0.50 & N/A & ug/1 & 10.0 & 90 & 65-120 \\
\hline Dibenz(a,h)anthracene & 9.76 & 0.50 & N/A & ug/ & 10.0 & 98 & 40-160 \\
\hline Dibenzofuran & 8.56 & 0.50 & N/A & ug/ & 10.0 & 86 & 60-120 \\
\hline Di-n-butyl phthalate & 10.7 & 2.0 & N/A. & ug/l & 10.0 & 107 & 65-125 \\
\hline 1,2-Dichlorobenzene & 5.26 & 0.50 & N/A & ug/l & 10.0 & 53 & 40-120 \\
\hline 1,3-Dichlorobenzene & 4.68 & 0.50 & N/A & ug/ & 10.0 & 47 & 40-120 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Outfall 011
Report Number: IOA0567
Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BHANKKOC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{lllllllllll} 
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit \\
Batch: 5 A13038 Extracted: 01/13/05 & & & & & & & & & & \\
Qualifiers
\end{tabular}

LCS Analyzed: 01/17/2005 (5A13038-BS1)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1,4-Dichlorobenzene & 4.96 & 0.50 & N/A & ug/ & 10.0 & 50 & 40-120 \\
\hline 3,3-Dichlorobenzidine & 8.62 & 5.0 & N/A & ug/ & 10.0 & 86 & 50-170 \\
\hline 2,4-Dichlorophenol & 8.44 & 2.0 & N/A & ug/ & 10.0 & 84 & 55-120 \\
\hline Diethyl phthalate & 9.52 & 1.0 & N/A & ug/ & 10.0 & 95 & 60-120 \\
\hline 2,4-Dimethylphenol & 5.98 & 2.0 & N/A & ug/ & 10.0 & 60 & 35-120 \\
\hline Dimethyl phthalate & 9.04 & 0.50 & N/A & ug/ & 10.0 & 90 & 60-120 \\
\hline 4,6-Dinitro-2-methylphenol & 7.48 & 5.0 & N/A & ug/ & 10.0 & 75 & 55-120 \\
\hline 2,4-Dinitrophenol & 12.6 & 5.0 & N/A & ug/ & 10.0 & 126 & 40-140 \\
\hline 2,4-Dinitrotoluene & 8.58 & 5.0 & N/A & ug/ & 10.0 & 86 & 60-140 \\
\hline 2,6-Dinitrotoluene & 8.76 & 5.0 & N/A & ug/ & 10.0 & 88 & 65-125 \\
\hline Di-n-octyl phthalate & 10.4 & 5.0 & N/A & ug/1 & 10.0 & 104 & 60-130 \\
\hline 1,2-Diphenylhydrazine/Azobenzene & 10.1 & 1.0 & N/A & ug/ & 10.0 & 101 & 60-120 \\
\hline Fluoranthene & 9.94 & 0.50 & N/A & ug/ & 10.0 & 99 & 55-125 \\
\hline Fluorene & 9.00 & 0.50 & N/A & ugh & 10.0 & 90 & 60-120 \\
\hline Hexachlorobenzene & 8.30 & 1.0 & N/A & ug/ & 10.0 & 83 & 50-120 \\
\hline Hexachlorobutadiene & 5.36 & 2.0 & N/A & ug/ & 10.0 & 54 & 45-120 \\
\hline Hexachlorocyclopentadiene & 6.62 & 5.0 & N/A & ug/ & 10.0 & 66 & 10-130 \\
\hline Hexachloroethane & 4.20 & 3.0 & N/A & ug/ & 10.0 & 42 & 40-120 \\
\hline Indeno( \(1,2,3-\mathrm{cd}) \mathrm{pyrene}\) & 10.3 & 2.0 & N/A & ug/ & 10.0 & 103 & 35-150 \\
\hline Isophorone & 8.62 & 1.0 & N/A & ug/ & 10.0 & 86 & 55-120 \\
\hline 2-Methyluaphthalene & 7.28 & 1.0 & N/A & ug/ & 10.0 & 73 & 50-120 \\
\hline 2-Methylphenol & 7.72 & 2.0 & N/A & ug/l & 10.0 & 77 & 45-120 \\
\hline 4-Methylphenol & 7.58 & 5.0 & N/A & ug/ & 10.0 & 76 & 45-120 \\
\hline Naphthalene & 6.64 & 1.0 & N/A & ug/ & 10.0 & 66 & 50-120 \\
\hline 2-Nitroaniline & 8.46 & 5.0 & N/A & ug/l & 10.0 & 85 & 60-130 \\
\hline 3-Nitroaniline & 8.60 & 5.0 & N/A & ugl & 10.0 & 86 & 50-140 \\
\hline 4-Nitroaniline & 10.2 & 5.0 & N/A & ugl & 10.0 & 102 & 45-160 \\
\hline Nitrobenzene & 7.54 & 1.0 & N/A & ug/ & 10.0 & 75 & 50-120 \\
\hline 2-Nitrophenol & 7.50 & 2.0 & N/A & ugh & 10.0 & 75 & 55-120 \\
\hline 4-Nitrophenol & 8.32 & 5.0 & N/A & ug/ & 10.0 & 83 & 50-135 \\
\hline N -Nitrosodimethylamine & 8.04 & 2.0 & N/A & ug/l & 10.0 & 80 & 40-120 \\
\hline N -Nitroso-di-n-propylamine & 7.98 & 2.0 & N/A & ug/ & 10.0 & 80 & 50-120 \\
\hline N -Nitrosodiphenylamine & 8.90 & 1.0 & N/A & ug/ & 10.0 & 89 & 60-120 \\
\hline Pentachlorophenol & 8.72 & 2.0 & N/A & ug/ & 10.0 & 87 & 50-125 \\
\hline Phenanthrene & 8.50 & 0.50 & N/A & \(\mathrm{ug} / 1\) & 10.0 & 85 & 55-120 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: 1OA0567

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKIOCDATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
Analyte
Batch: 5A13038 Extracted: 01/13/05

LCS Analyzed: 01/17/2005 (5A13038-BS1)
\begin{tabular}{ll} 
Phenol & 7.58 \\
Pyrene & 8.70 \\
1,2,4-Trichlorobenzene & 5.92 \\
2,4,5-Trichlorophenol & 9.10 \\
2,4,6-Trichlorophenol & 8.92 \\
Surrogate: 2-Fluorophenol & 13.3 \\
Surrogate: Phenol-d6 & 13.6 \\
Surrogate: \(2,4,6\)-Tribromophenol & 14.6 \\
Surrogate: Nitrobenzene-d5 & 6.68 \\
Surrogate: 2 -Fluorobiphenyl & 7.64 \\
Surrogate: Terphenyl-dl4 & 7.30
\end{tabular}

LCS Dup Analyzed: 01/17/2005 (5A13038-BSD1)
Acenaphthene

Aniline
Anthracene
Benzidine
Benzoic acid
Benzo(a)anthracene
Benzo(a)pyrene
Benzo(b)fluoranthene
Benzo(g,h,i)perylene
Benzo(k)fluoranthene
Benzyl alcohol
Bis(2-chloroethoxy)methane
Bis(2-chloroethyl)ether
Bis(2-chloroisopropyl)ether
Bis(2-ethylhexyl)phthalate
4-Bromophenyl phenyl ether
Butyl benzyl phthalate
4-Chloroaniline
2-Chloronaphthalene
4-Chloro-3-methylphenol
4-Chlorophenyl phenyl ether
2-Chlorophenol
\begin{tabular}{|c|c|c|c|c|}
\hline 8.22 & 0.50 & N/A & ugh & 10.0 \\
\hline 8.02 & 0.50 & N/A & ug/ & 10.0 \\
\hline 7.74 & 10 & N/A & ug/ & 10.0 \\
\hline 8.74 & 0.50 & N/A & ug/ & 10.0 \\
\hline 3.88 & 5.0 & N/A & ug/ & 10.0 \\
\hline 7.34 & 20 & N/A & ug/ & 10.0 \\
\hline 9.14 & 5.0 & N/A & ugh & 10.0 \\
\hline 9.66 & 2.0 & N/A & ug/l & 10.0 \\
\hline 8.96 & 2.0 & N/A & ug/l & 10.0 \\
\hline 9.76 & 5.0 & N/A & ug/ & 10.0 \\
\hline 9.58 & 0.50 & N/A & ug/ & 10.0 \\
\hline 8.24 & 5.0 & N/A & ugh & 10.0 \\
\hline 8.04 & 0.50 & N/A & ugh & 10.0 \\
\hline 7.24 & 0.50 & N/A & ug/ & 10.0 \\
\hline 6.68 & 0.50 & N/A & ugh & 10.0 \\
\hline 10.2 & 5.0 & N/A & ugh & 10.0 \\
\hline 8.90 & 1.0 & N/A & ug/ & 10.0 \\
\hline 9.56 & 5.0 & N/A & ug/ & 10.0 \\
\hline 8.26 & 2.0 & N/A & ug/ & 10.0 \\
\hline 8.16 & 0.50 & N/A & ugh & 10.0 \\
\hline 8.32 & 2.0 & N/A & ug/ & 10.0 \\
\hline 8.50 & 0.50 & N/A & ug/1 & 10.0 \\
\hline 7.30 & 1.0 & N/A & ug/ & 10.0 \\
\hline
\end{tabular}
\begin{tabular}{cccc}
82 & \(55-120\) & 1 & 20 \\
80 & \(55-120\) & 1 & 20 \\
77 & \(30-120\) & 3 & 25 \\
87 & \(60-120\) & 3 & 20 \\
39 & \(20-180\) & 10 & 35 \\
73 & \(30-125\) & 2 & 30 \\
91 & \(65-120\) & 1 & 20 \\
97 & \(55-125\) & 2 & 25 \\
90 & \(50-125\) & 2 & 25 \\
98 & \(35-160\) & 0 & 25 \\
96 & \(50-125\) & 2 & 20 \\
82 & \(40-130\) & 1 & 20 \\
80 & \(55-120\) & 3 & 20 \\
72 & \(50-120\) & 4 & 20 \\
67 & \(50-120\) & 1 & 20 \\
102 & \(65-125\) & 1 & 20 \\
89 & \(55-125\) & 10 & 25 \\
96 & \(60-125\) & 1 & 20 \\
83 & \(55-120\) & 2 & 25 \\
82 & \(60-120\) & 2 & 20 \\
83 & \(60-120\) & 1 & 25 \\
85 & \(55-120\) & 1 & 20 \\
73 & \(45-120\) & 1 & 25
\end{tabular}

\section*{M-NR1}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: IOA0567

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKIQC DATA}

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & Reporting & & & Spike & Source & & \%REC & & RPD & Data \\
\hline Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers \\
\hline
\end{tabular}

\section*{Batch: 5A13038 Extracted: 01/13/05}

LCS Dup Analyzed: 01/17/2005 (5A13038-BSD1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Chrysene & 8.80 & 0.50 & N/A & ug/ & 10.0 & 88 & 65-120 & 2 & 20 \\
\hline Dibenz(a,h)anthracene & 9.74 & 0.50 & N/A & ug/l & 10.0 & 97 & 40-160 & 0 & 25 \\
\hline Dibenzofuran & 8.10 & 0.50 & N/A & ug/l & 10.0 & 81 & 60-120 & 6 & 20 \\
\hline Di-n-butyl phthalate & 10.2 & 2.0 & N/A & ug/ & 10.0 & 102 & 65-125 & 5 & 20 \\
\hline 1,2-Dichlorobenzene & 6.32 & 0.50 & N/A & ug/l & 10.0 & 63 & 40-120 & 18 & 25 \\
\hline 1,3-Dichlorobenzene & 5.98 & 0.50 & N/A & ug/l & 10.0 & 60 & 40-120 & 24 & 25 \\
\hline 1,4-Dichlorobenzene & 6.16 & 0.50 & N/A & ug/ & 10.0 & 62 & 40-120 & 22 & 25 \\
\hline 3,3-Dichlorobenzidine & 8.78 & 5.0 & N/A & ug/l & 10.0 & 88 & 50-170 & 2 & 25 \\
\hline 2,4-Dichlorophenol & 8.58 & 2.0 & N/A & ug/ & 10.0 & 86 & 55-120 & 2 & 20 \\
\hline Diethyl phthalate & 9.24 & 1.0 & N/A & ug/l & 10.0 & 92 & 60-120 & 3 & 20 \\
\hline 2,4-Dimethylphenol & 6.48 & 2.0 & N/A & ug/l & 10.0 & 65 & 35-120 & 8 & 25 \\
\hline Dimethyl phthalate & 8.88 & 0.50 & N/A & ugl & 10.0 & 89 & 60-120 & 2 & 20 \\
\hline 4,6-Dinitro-2-methylphenol & 7.22 & 5.0 & N/A & ug/ & 10.0 & 72 & 55-120 & 4 & 25 \\
\hline 2,4-Dinitrophenol & 12.1 & 5.0 & N/A & ug/1 & 100 & 121 & 40-140 & 4 & 25 \\
\hline 2,4-Dinitrotoluene & 8.50 & 5.0 & N/A & ug/l & 10.0 & 85 & 60-140 & 1 & 20 \\
\hline 2,6-Dinitrotoluene & 8.34 & 5.0 & N/A & ug/l & 10.0 & 83 & 65-125 & 5 & 20 \\
\hline Di-n-octyl phthalate & 9.94 & 5.0 & N/A & ug/l & 10.0 & 99 & 60-130 & 5 & 20 \\
\hline 1,2-Diphenylhydrazine/Azobenzene & 9.84 & 1.0 & N/A & ug/l & 10.0 & 98 & 60-120 & 3 & 25 \\
\hline Fluoranthene & 9.56 & 0.50 & N/A & ug/l & 10.0 & 96 & 55-125 & 4 & 20 \\
\hline Fluorene & 8.48 & 0.50 & N/A & ug/l & 10.0 & 85 & \(60-120\) & 6 & 20 \\
\hline Hexachlorobenzene & 8.24 & 1.0 & N/A & ug/l & 10.0 & 82 & 50-120 & 1 & 20 \\
\hline Hexachlorobutadiene & 6.70 & 2.0 & N/A & ug/l & 10.0 & 67 & 45-120 & 22 & 25 \\
\hline Hexachlorocyclopentadiene & 7.40 & 5.0 & N/A & ug/l & 10.0 & 74 & 10-130 & 11 & 30 \\
\hline Hexachloroethane & 5.64 & 3.0 & N/A & ug/l & 10.0 & 56 & 40-120 & 29 & 25 \\
\hline Indeno(1,2,3-cd)pyrene & 9.58 & 2.0 & N/A & ug/l & 10.0 & 96 & 35-150 & 7 & 25 \\
\hline Isophorone & 8.68 & 1.0 & N/A & ug/l & 10.0 & 87 & 55-120 & 1 & 20 \\
\hline 2-Methyinaphthalene & 7.62 & 1.0 & N/A & ug/l & 10.0 & 76 & 50-120 & 5 & 20 \\
\hline 2-Methylphenol & 7.72 & 2.0 & N/A & ug/ & 10.0 & 77 & 45-120 & 0 & 20 \\
\hline 4-Methylphenol & 7.66 & 5.0 & N/A & ug/l & 10.0 & 77 & 45-120 & 1 & 20 \\
\hline Naphthalene & 7.22 & 1.0 & N/A & ug/l & 10.0 & 72 & 50-120 & 8 & 20 \\
\hline 2-Nitroaniline & 7.98 & 5.0 & N/A & ug/ & 10.0 & 80 & 60-130 & 6 & 20 \\
\hline 3-Nitroaniline & 8.72 & 5.0 & N/A & ug/ & 10.0 & 87 & 50-140 & 1 & 25 \\
\hline 4-Nitroaniline & 9.36 & 5.0 & N/A & ug/l & 10.0 & 94 & 45-160 & 9 & 20 \\
\hline Nitrobenzene & 7.52 & 1.0 & N/A & ug/l & 10.0 & 75 & 50-120 & 0 & 25 \\
\hline 2-Nitrophenol & 7.62 & 2.0 & N/A & ug/l & 10.0 & 76 & 55-120 & 2 & 25 \\
\hline
\end{tabular}

M-NR1

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: 1040567

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKIOC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A13038 Extracted: 01/13/05} \\
\hline LCS Dup Analyzed: 01/17/20 & -BSD1) & & & & & & & & & & M-NR1 \\
\hline 4-Nitrophenol & 7.94 & 5.0 & N/A & ug/ & 10.0 & & 79 & 50-135 & 5 & 25 & \\
\hline N -Nitrosodimethylamine & 7.28 & 2.0 & N/A & ug/1 & 10.0 & & 73 & 40-120 & 10 & 20 & \\
\hline N-Nitroso-di-n-propylamine & 8.06 & 2.0 & N/A & ug/ & 10.0 & & 81 & 50-120 & 1 & 20 & \\
\hline N-Nitrosodiphenylamine & 9.00 & 1.0 & N/A & ug/ & 10.0 & & 90 & 60-120 & 1 & 20 & \\
\hline Pentachlorophenol & 8.48 & 2.0 & N/A & ug/ & 10.0 & & 85 & 50-125 & 3 & 25 & \\
\hline Phenanthrene & 8.46 & 0.50 & N/A & ug/1 & 10.0 & & 85 & 55-120 & 1 & 20 & \\
\hline Phenol & 7.40 & 1.0 & N/A & ug/ & 10.0 & & 74 & 45-120 & 2 & 25 & \\
\hline Pyrene & 8.94 & 0.50 & N/A & ug/ & 10.0 & & 89 & 50-120 & 3 & 25 & \\
\hline 1,2,4-Trichlorobenzene & 7.00 & 1.0 & N/A & ug/ & 10.0 & & 70 & 50-120 & 17 & 20 & \\
\hline 2,4,5-Trichlorophenol & 9.10 & 2.0 & N/A & ug/ & 10.0 & & 91 & 60-120 & 0 & 20 & \\
\hline 2,4,6-Trichlorophenol & 8.96 & 1.0 & N/A & ug/ & 10.0 & & 90 & 60-120 & 0 & 20 & \\
\hline Surrogate: 2-Fluorophenol & 13.2 & & & ug/l & 20.0 & & 66 & 35-120 & & & \\
\hline Surrogate: Phenol-d6 & 13.8 & & & ug/ & 20.0 & & 69 & 45-120 & & & \\
\hline Surrogate 2,4,6-Tribromophenol & 14.7 & & & ug \(/ 1\) & 20.0 & & 74 & 50-125 & & & \\
\hline Surrogate: Nitrobenzene-d5 & 6.86 & & & ug/h & 10.0 & & 69 & 45-120 & & & \\
\hline Surrogate: 2-Fluorobiphenyl & 7.66 & & & ug/ & 10.0 & & 77 & 45-120 & & & \\
\hline Surrogate: Terphenyl-d14 & 7.54 & & & ug \(/\) & 10.0 & & 75 & 45-135 & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager
\begin{tabular}{lr} 
MWH-Pasadena/Boeing & Project ID: Outfall 011 \\
300 North Lake Avenue, Suite 1200 & \\
Pasadena, CA 91101 & Report Number: 1OA0567 \\
Attention: Bronwyn Kelly &
\end{tabular}

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANK/QC DATA}

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A13049 Extracted: 01/13/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed; 01/13/2005 (5A13049-BLK1)} \\
\hline Aldrin & ND & 0.10 & N/A & ug/l & & & & & & & \\
\hline alpha-BHC & ND & 0.10 & N/A & ug/l & & & & & & & \\
\hline beta-BHC & ND & 0.10 & N/A & ug/l & & & & & & & \\
\hline delta-BHC & ND & 0.20 & N/A & ug/ & & & & & & & \\
\hline gamma-BHC (Lindane) & ND & 0.10 & N/A & ug/l & & & & & & & \\
\hline Chlordane & ND & 1.0 & N/A & ug/l & & & & & & & \\
\hline 4,4-DDD & ND & 0.10 & N/A & ug/ & & & & & & & \\
\hline 4,4'-DDE & ND & 0.10 & N/A & ug/l & & & & & & & \\
\hline 4,4-DDT & ND & 0.10 & N/A & ug/l & & & & & & & \\
\hline Dieldrin & ND & 0.10 & N/A & ug/l & & & & & & & \\
\hline Endosulfan I & ND & 0.10 & N/A & ug/l & & & & & & & \\
\hline Endosulfan II & ND & 0.10 & N/A & ug/l & & & & & & & \\
\hline Endosulfan sulfate & ND & 0.20 & N/A & ugf & & & & & & & \\
\hline Endrin & ND & 0.10 & N/A & ugh & & & & & & & : \\
\hline Endrin aldehyde & ND & 0.10 & N/A & ug/l & & & & & & & \\
\hline Endrin ketone & ND & 0.10 & N/A & ug/l & & & & & & & \\
\hline Heptachlor & ND & 0.10 & N/A & ug/ & & & & & & & \\
\hline Heptachlor epoxide & ND & 0.10 & N/A & ug/l & & & & & & & \\
\hline Methoxychlor & ND & 0.10 & N/A & ug/l & & & & & & & \\
\hline Toxaphene & ND & 5.0 & N/A & ug/ & & & & & & & \\
\hline Surrogate: Tetrachloro-m-xylene & 0.348 & & & \(u g / l\) & 0.500 & & 70 & 35-120 & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.424 & & & ug/l & 0.500 & & 85 & 45-120 & & & \\
\hline LCS Analyzed: 01/13/2005 (5 & & & & & & & & & & & M-NR1 \\
\hline Aldrin & 0.517 & 0.10 & N/A & ug/ & 0.500 & & 103 & 45-115 & & & \\
\hline alpha-BHC & 0.527 & 0.10 & N/A & ug/l & 0.500 & & 105 & 45-115 & & & \\
\hline beta-BHC & 0.496 & 0.10 & N/A & ug/l & 0.500 & & 99 & 50-115 & & & \\
\hline delta-BHC & 0.564 & 0.20 & N/A & ughl & 0.500 & & 113 & 55-120 & & & \\
\hline gamma-BHC (Lindane) & 0.525 & 0.10 & N/A & ug/1 & 0.500 & & 105 & 45-115 & & & \\
\hline 4,4'-DDD & 0.537 & 0.10 & N/A & ug/ & 0.500 & & 107 & 60-120 & & & \\
\hline 4,4'-DDE & 0.534 & 0.10 & N/A & ug/l & 0.500 & & 107 & 55-120 & & & \\
\hline 4,4'-DDT & 0.557 & 0.10 & N/A & ug/l & 0.500 & & 111 & 60-130 & & & \\
\hline Dieldrin & 0.540 & 0.10 & N/A & ug/l & 0.500 & & 108 & 55-120 & & & \\
\hline Endosulfan I & 0.512 & 0.10 & N/A & ug/l & 0.500 & & 102 & 50-115 & & & \\
\hline Endosulfan II & 0.525 & 0.10 & N/A & ug/ & 0.500 & & 105 & 60-125 & & & \\
\hline Endosulfan sulfate & 0.528 & 0.20 & N/A & ug/l & 0.500 & & 106 & 60-120 & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011

Report Number: IOA0567

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKIQC DATA}

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \[
\begin{aligned}
& \text { RPD } \\
& \text { Limit }
\end{aligned}
\] & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A13049 Extracted: 01/13/05} \\
\hline LCS Analyzed: 01/13/2005 (5A & & & & & & & & & & & M-NR1 \\
\hline Endrin & 0.578 & 0.10 & N/A & ug/ & 0.500 & & 116 & 55-125 & & & \\
\hline Endrin aldehyde & 0.553 & 0.10 & N/A & ugh & 0.500 & & 111 & 55-115 & & & \\
\hline Endrin ketone & 0.513 & 0.10 & N/A & ug/ & 0.500 & & 103 & 60-120 & & & \\
\hline Heptachlor & 0.513 & 0.10 & N/A & ug/ & 0.500 & & 103 & 45-115 & & & \\
\hline Heptachlor epoxide & 0.527 & 0.10 & N/A & ug/ & 0.500 & & 105 & 50-120 & & & \\
\hline Methoxychlor & 0.535 & 0.10 & N/A & ug/ & 0.500 & & 107 & 60-135 & & & \\
\hline Surrogate: Tetrachloro-m-xylene & 0.435 & & & ug \(n\) & 0.500 & & 87 & 35-120 & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.527 & & & \(u g /\) & 0.500 & & 105 & 45-120 & & & \\
\hline \multicolumn{12}{|l|}{LCS Dup Analyzed: 01/13/2005 (5A13049-BSD1)} \\
\hline Aldrin & 0.512 & 0.10 & N/A & ug/l & 0.500 & & 102 & 45-115 & 1 & 30 & \\
\hline alpha-BHC & 0.534 & 0.10 & N/A & ug/ & 0.500 & & 107 & 45-115 & 1 & 30 & \\
\hline beta-BHC & 0.487 & 0.10 & N/A & ug/ & 0.500 & & 97 & 50-115 & 2 & 30 & \\
\hline dela BHC & 0.547 & 0.20 & N/A & ugl & 0.500 & & 109 & 55-120 & 3 & 30 & \\
\hline gamma-BHC (Lindane) & 0.525 & 0.10 & N/A & ugh & 0.500 & & 105 & 45-115 & 0 & 30 & \\
\hline 4,4'-DDD & 0.505 & 0.10 & N/A & ug/l & 0.500 & & 101 & 60-120 & 6 & 30 & \\
\hline 4,4'-DDE & 0.510 & 0.10 & N/A & ug/ & 0.500 & & 102 & 55-120 & 5 & 30 & \\
\hline 4,4'-DDT & 0.520 & 0.10 & N/A & \(\mathrm{ug} / \mathrm{l}\) & 0.500 & & 104 & 60-130 & 7 & 30 & \\
\hline Dieldrin & 0.515 & 0.10 & N/A & ug/ & 0.500 & & 103 & 55-120 & 5 & 30 & \\
\hline Endosulfan I & 0.493 & 0.10 & N/A & ug/ & 0.500 & & 99 & 50-115 & 4 & 30 & \\
\hline Endosulfan II & 0.495 & 0.10 & N/A & ug/ & 0.500 & & 99 & 60-125 & 6 & 30 & \\
\hline Endosulfan sulfate & 0.498 & 0.20 & N/A & ug/1 & 0.500 & & 100 & 60-120 & 6 & 30 & \\
\hline Endrin & 0.550 & 0.10 & N/A & ug/l & 0.500 & & 110 & 55-125 & 5 & 30 & \\
\hline Endrin aldehyde & 0.511 & 0.10 & N/A & ugn & 0.500 & & 102 & 55-115 & 8 & 30 & \\
\hline Endrin ketone & 0.490 & 0.10 & N/A & uga & 0.500 & & 98 & 60-120 & 5 & 30 & \\
\hline Heptachlor & 0.510 & 0.10 & N/A & ug/ & 0.500 & & 102 & 45-115 & 1 & 30 & \\
\hline Heptachlor epoxide & 0.510 & 0.10 & N/A & ug/ & 0.500 & & 102 & 50-120 & 3 & 30 & \\
\hline Methoxychlor & 0.505 & 0.10 & N/A & ug/ & 0.500 & & 101 & 60-135 & 6 & 30 & \\
\hline Surrogate: Tetrachloro-m-xylene & 0.449 & & & ug/ & 0.500 & & 90 & 35-120 & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.494 & & & ug/ & 0.500 & & 99 & 45-120 & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager
\begin{tabular}{|lll}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
300 North Lake Avenue, Suite 1200 & & \\
\begin{tabular}{ll} 
Pasadena, CA 91101 & Report Number: 10 A0567
\end{tabular} & \begin{tabular}{l} 
Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Received: \(01 / 11 / 05\)
\end{tabular} \\
\hline
\end{tabular}

\section*{METHOD BLANKIQC DATA}

\section*{TOTAL PCBS (EPA 608)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A13049 Extracted: 01/13/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/13/2005 (5A13049-BLK1)} \\
\hline Aroclor 1016 & ND & 1.0 & N/A & ug/l & & & & & & & \\
\hline Aroclor 1221 & ND & 1.0 & N/A & ug/ & & & & & & & \\
\hline Arocior 1232 & ND & 1.0 & N/A & ugh & & & & & & & \\
\hline Aroclor 1242 & ND & 1.0 & N/A & ug/ & & & & & & & \\
\hline Aroclor 1248 & ND & 1.0 & N/A & ug/ & & & & & & & \\
\hline Aroclor 1254 & ND & 1.0 & N/A & ug/ & & & & & & & \\
\hline Aroclor 1260 & ND & 1.0 & N/A & ug/ & & & & & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.387 & & & ug \(/\) & 0.500 & & 77 & 45-120 & & & \\
\hline LCS Analyzed: 01/13/2005 & & & & & & & & & & & M-NR1 \\
\hline Aroclor 1016 & 2.82 & 1.0 & N/A & ug/l & 4.00 & & 70 & 50-115 & & & \\
\hline Aroclor 1260 & 2.91 & 1.0 & N/A & ug/ & 4.00 & & 73 & 60-115 & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.389 & & & \(u g /\) & 0.500 & & 78 & 45-120 & & & \\
\hline \multicolumn{12}{|l|}{LCS Dup Analyzed. 01/13/2005 (5A13049-BSD2)} \\
\hline Aroclor 1016 & 2.68 & 1.0 & N/A & ughl & 4.00 & & 67 & 50-115 & 5 & 30 & \\
\hline Aroclor 1260 & 2.88 & 1.0 & N/A & ugl & 4.00 & & 72 & 60-115 & & 25 & \\
\hline Surrogate: Decachlorobiphenyl & 0.379 & & & ug/ & 0.500 & & 76 & 45-120 & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager
\begin{tabular}{|lll}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
300 North Lake Avenue, Suite 1200 & & \\
\begin{tabular}{ll} 
Pasadena, CA 91101 & Report Number: IOA0567
\end{tabular} & \begin{tabular}{l} 
Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Rttention: Bronwyn Kelly
\end{tabular} &
\end{tabular}

\section*{METHOD BLANKIQC DATA}

\section*{METALS}


Batch: 5A13044 Extracted: 01/13/05

Blank Analyzed: 01/13/2005 (5A13044-BLK1)
\begin{tabular}{|c|c|c|c|}
\hline Antimony & ND & 2.0 & N/A \\
\hline Arsenic & ND & 1.0 & N/A \\
\hline Barium & ND & 0.0010 & N/A \\
\hline Beryllium & ND & 0.50 & N/A \\
\hline Cadmium & ND & 1.0 & N/A \\
\hline Chromium & ND & 1.0 & N/A \\
\hline Cobalt & ND & 1.0 & N/A \\
\hline Copper & ND & 2.0 & N/A \\
\hline Iron & ND & 0.010 & N/A \\
\hline Lead & ND & 1.0 & N/A \\
\hline Manganese & ND & 1.0 & N/A \\
\hline Nickel & ND & 1.0 & N/A \\
\hline Selenium & ND & 2.0 & N/A \\
\hline Silver & ND & 1.0 & N/A \\
\hline Thallium & ND & 1.0 & N/A \\
\hline Vanadium & ND & 1.0 & N/A \\
\hline Zinc & ND & 20 & N/A \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager


\section*{METHOD BLANKKIGC DATA}

\section*{METALS}
\begin{tabular}{lllllllllll} 
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result \%REC & Limits & RPD & Limit & Qualifier
\end{tabular}

LCS Analyzed: 01/13/2005 (5A13044-BS1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \% Antimony & 91.5 & 2.0 & N/A & ug/ & 80.0 & & 114 & 85-115 \\
\hline - Arsenic & 90.5 & 1.0 & N/A & ug/l & 80.0 & & 113 & 85-115 \\
\hline Barium & 0.0802 & 0.0010 & N/A & \(\mathrm{mg} / \mathrm{l}\) & 0.0800 & & 100 & 85-115 \\
\hline Beryllium & 77.4 & 0.50 & N/A & ug/ & 80.0 & & 97 & 85-115 \\
\hline Cadmium & 88.4 & 1.0 & N/A & ug/l & 80.0 & & 110 & 85-115 \\
\hline Chromium & 89.4 & 1.0 & N/A & \(\mathrm{ug} / \mathrm{l}\) & 80.0 & & 112 & 85-115 \\
\hline Cobalt & 89.1 & 1.0 & N/A & ug/ & 80.0 & & 111 & 85-115 \\
\hline Copper & 86.7 & 2.0 & N/A & ug/l & 80.0 & & 108 & 85-115 \\
\hline Iron & 0.905 & 0.010 & N/A & \(\mathrm{mg} / \mathrm{l}\) & 0.800 & & 113 & 85-115 \\
\hline Lead & 89.1 & 1.0 & N/A & ug/ & 80.0 & & 111 & 85-115 \\
\hline Manganese & 90.1 & 1.0 & N/A & ug/l & 80.0 & & 113 & 85-115 \\
\hline Nickel & 89.3 & 1.0 & N/A & ug/l & 80.0 & & 112 & 85-115 \\
\hline Selenium & 86.1 & 2.0 & N/A & ug/t & 80.0 & & 108 & 85-115 \\
\hline Silver & 87.1 & 1.0 & N/A & ug/ & 80.0 & & 109 & 85-115 \\
\hline Thallium & 87.0 & 1.0 & N/A & ug/l & 80.0 & & 109 & 85-115 \\
\hline Vanadium & 86.4 & 1.0 & N/A & ug/l & 80.0 & & 108 & 85-115 \\
\hline Zinc & 87.1 & 20 & N/A & ug/l & 80.0 & & 109 & 85-115 \\
\hline \multicolumn{2}{|l|}{Matrix Spike Analyzed: 01/13/2005 (5A13044-MS1)} & \multicolumn{7}{|c|}{Source: 10A0567-01} \\
\hline Antimony & 78.3 & 2.0 & N/A & \(u g / 1\) & 80.0 & 0.59 & 97 & 70-130 \\
\hline Arsenic & 77.0 & 1.0 & N/A & ug/l & 80.0 & 1.8 & 94 & 70-130 \\
\hline Barium & 0.100 & 0.0010 & N/A & \(\mathrm{mg} / \mathrm{l}\) & 0.0800 & 0.018 & 102 & 70-130 \\
\hline Beryllium & 78.5 & 0.50 & N/A & ug/l & 80.0 & 0.070 & 98 & 70-130 \\
\hline Cadmizm & 76.1 & 1.0 & N/A & ug/ & 80.0 & 0.15 & 95 & 70-130 \\
\hline Chromium & 77.3 & 1.0 & N/A & ug/l & 80.0 & 2.2 & 94 & 70-130 \\
\hline Cobalt & 76.4 & 1.0 & N/A & ug/l & 80.0 & 0.38 & 95 & 70-130 \\
\hline Copper & 76.8 & 2.0 & N/A & ug/l & 80.0 & 7.2 & 87 & 70-130 \\
\hline Iron & 1.65 & 0.010 & N/A & mgl & 0.800 & 1.0 & 81 & 70-130 \\
\hline Lead & 84.1 & 1.0 & N/A & ug/l & 80.0 & 0.90 & 104 & 70-130 \\
\hline Manganese & 90.7 & 1.0 & N/A & ug/ & 80.0 & 15 & 95 & 70-130 \\
\hline Nickel & 78.3 & 1.0 & N/A & ug/ & 80.0 & 2.4 & 95 & 70-130 \\
\hline Selenium & 70.4 & 2.0 & N/A & ug/l & 80.0 & ND & 88 & 70-130 \\
\hline Silver & 75.3 & 1.0 & N/A & ug/ & 80.0 & ND & 94 & 70-130 \\
\hline Thallium & 76.4 & 1.0 & N/A & ug/l & 80.0 & 0.11 & 95 & 70-130 \\
\hline Vanadium & 76.6 & 1.0 & N/A & ug/l & 80.0 & 2.7 & 92 & 70-130 \\
\hline Zinc & 88.1 & 20 & N/A & ug/ & 80.0 & 21 & 84 & 70-130 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Report Number: \(10 A 0567\) \\ Attention: Bronwyn Kelly
}

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKIOC DATA}

\section*{METALS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & MDI & & Spike & Source & & \%REC & & RPD & Data \\
\hline Analyte & Result & & MDL & Units & Level & & \%REC & & RPD & Limit & Qualifiers \\
\hline
\end{tabular}

\section*{Batch: 5A13044 Extracted: 01/13/05}

Matrix Spike Dup Analyzed: 01/13/2005 (5A13044-MSD1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Antimony & 85.0 & 2.0 & N/A & ug/ & 80.0 & 0.59 & 106 & 70-130 & 8 & 20 \\
\hline Arsenic & 83.9 & 1.0 & N/A & ugh & 80.0 & 1.8 & 103 & 70-130 & 9 & 20 \\
\hline Barium & 0.0995 & 0.0010 & N/A & \(\mathrm{mg} /\) & 0.0800 & 0.018 & 102 & 70-130 & 1 & 20 \\
\hline Beryllium & 77.8 & 0.50 & N/A & ug/l & 80.0 & 0.070 & 97 & 70-130 & 1 & 20 \\
\hline Cadmium & 82.6 & 1.0 & N/A & ug/ & 80.0 & 0.15 & 103 & 70-130 & 8 & 20 \\
\hline Chromium & 83.8 & 1.0 & N/A & ug/ & 80.0 & 2.2 & 102 & 70-130 & 8 & 20 \\
\hline Cobalt & 82.4 & 1.0 & N/A & ug/l & 80.0 & 0.38 & 103 & 70-130 & 8 & 20 \\
\hline Copper & 83.7 & 2.0 & N/A & ugh & 80.0 & 7.2 & 96 & 70-130 & 9 & 20 \\
\hline Iron & 1.88 & 0.010 & N/A & \(\mathrm{mg} / 1\) & 0.800 & 1.0 & 110 & 70-130 & 13 & 20 \\
\hline Lead & 83.1 & 1.0 & N/A & ug/l & 80.0 & 0.90 & 103 & 70-130 & 1 & 20 \\
\hline Manganese & 98.0 & 1.0 & N/A & ug/ & 80.0 & 15 & 104 & 70-130 & 8 & 20 \\
\hline Nickel & 84.7 & 1.0 & N/A & ug/ & 80.0 & 2.4 & 103 & 70-130 & 8 & 20 \\
\hline Selenium & 77.6 & 2.0 & N/A & ug/ & 80.0 & ND & 97 & 70-130 & 10 & 20 \\
\hline Silver & 80.6 & 1.0 & N/A & ug/ & 80.0 & ND & 101 & 70-130 & 7 & 20 \\
\hline Thallium & 83.6 & 1.0 & N/A & ug/ & 80.0 & 0.11 & 104 & 70-130 & 9 & 20 \\
\hline Vanadium & 82.0 & 1.0 & N/A & ug/ & 80.0 & 2.7 & 99 & 70-130 & 7 & 20 \\
\hline Zinc & 94.4 & 20 & N/A & ug/ & 80.0 & 21 & 92 & 70-130 & 7 & 20 \\
\hline
\end{tabular}

\section*{Batch: 5A13050 Extracted: 01/13/05}

Blank Analyzed: 01/13/2005 (5A13050-BLK1)


Del Mar Analytical, Irvine
vichele Harper
'roject Manager
\begin{tabular}{|lll|}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
300 North Lake Avenue, Suite 1200 & & \\
\begin{tabular}{ll} 
Pasadena, CA 91101 & Report Number: 1OA0567
\end{tabular} & \begin{tabular}{l} 
Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Attention: Bronwyn Kelly
\end{tabular} & Received: \(01 / 11 / 05\)
\end{tabular}

\section*{MEIHOD BLANKIQC DATA}

\section*{METALS}


\section*{Batch: 5A13050 Extracted: 01/13/05}
Matrix Spike Dup Analyzed: 01/13/2005 (5A13050-MSD1)

Source: IOA0567-01
\begin{tabular}{llllllllllll} 
Mercury & 8.54 & 0.20 & \(\mathrm{~N} / \mathrm{A}\) & \(\mathrm{ug} / \mathrm{l}\) & 8.00 & 0.16 & 105 & \(70-130\) & 0 & 20
\end{tabular}
\begin{tabular}{|lcc} 
MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Pasadena, CA 91101 & Report Number: IOA0567 & Received: \(01 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{method blankigc data}

\section*{INORGANICS}


\footnotetext{
Del Mar Analytical, Irvine
Michele Harper
Project Manager
}
\begin{tabular}{|lcc|}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Pasadena, CA 91101 & Report Number: 1040567 & Received: \(01 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{METHOD BLANKICC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A12036 Extracted: 01/12/05} \\
\hline \multicolumn{5}{|l|}{Matrix Spike Dup Analyzed: 01/12/2005 (5A12036-MSD1)} & \multicolumn{3}{|l|}{Source: 10A0527-01} & & & & \\
\hline Chloride & 15.1 & 2.5 & N/A & mg/ & 5.00 & 11 & 82 & 80-120 & 1 & 20 & \\
\hline Fluoride & 5.50 & 2.5 & N/A & mgh & 5.00 & 1.1 & 88 & 80-120 & 2 & 20 & \\
\hline Sulfate & 164 & 2.5 & N/A & \(\mathrm{mg} / \mathrm{l}\) & 10.0 & 150 & 140 & 80-120 & 0 & 20 & M-HA \\
\hline \multicolumn{12}{|l|}{Batch: 5A12041 Extracted: 01/12/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/17/2005 (5A12041-BLK1)} \\
\hline Biochemical Oxygen Demand & ND & 2.0 & N/A & mg/l & & & & & & & \\
\hline \multicolumn{12}{|l|}{LCS Analyzed: 01/17/2005 (5A12041-BS1)} \\
\hline Biochemical Oxygen Demand & 208 & 100 & N/A & \(\mathrm{mg} / \mathrm{l}\) & 198 & & 105 & 85-115 & & & \\
\hline \multicolumn{12}{|l|}{LCS Dup Analyzed: 01/17/2005 (5A12041-BSD1)} \\
\hline Biochemical Oxygen Demand. & 212 & 100 & N/A & mg/ & 198 & & 107 & 85-115 & 2 & 20 & \\
\hline \multicolumn{12}{|l|}{Batch: 5A12045 Extracted: \(01 / 12 / 05\)} \\
\hline \multicolumn{5}{|l|}{Duplicate Analyzed: 01/12/2005 (5A12045-DUP1)} & \multicolumn{7}{|l|}{Source: 10A0549-01} \\
\hline Residual Chlorine & ND & 0.10 & N/A & \(\mathrm{mg} / \mathrm{l}\) & & & & & & 20 & \\
\hline \multicolumn{12}{|l|}{Batch: 5A12059 Extracted: 01/12/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/12/2005 (5A12059-BLK1)} \\
\hline Surfactants (MBAS) & ND & 0.10 & N/A & mg/ & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
\begin{tabular}{lll} 
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Pasadena, CA 91101 & Report Number: IOA0567 & Received: \(01 / 11 / 05\)
\end{tabular} \\
\begin{tabular}{l} 
Attention: Bronwyn Kelly
\end{tabular} & & \\
\hline
\end{tabular}

\section*{METHOD BLANKIQC DATA}

\section*{INORGANICS}


\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager
\begin{tabular}{|lll} 
MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
\begin{tabular}{lll} 
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Pasadena, CA 91101 & Report Number: IOA0567 & Received: \(01 / 11 / 05\)
\end{tabular} \\
\hline
\end{tabular}

\section*{METHOD BLANKIQC DATA}

\section*{INORGANICS}

\begin{tabular}{|lcl}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
300 North Lake Avenue, Suite 1200 & Report Number: IOA0567 & \begin{tabular}{l} 
Sampled: 01/11/05-01/12/05 \\
Pasadena, CA 91101
\end{tabular} \\
\begin{tabular}{ll} 
Received: \(01 / 11 / 05\)
\end{tabular} \\
\hline
\end{tabular}

\section*{method blankgc data}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\[
\% \text { REC }
\] \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5A13065 Extracted: 01/13/05} \\
\hline LCS Analyzed: 01/13/2005 (5A13065-BS1) & & & & & & & & & & M-NR1 \\
\hline Oil \& Grease 18.6 & 5.0 & N/A & \(\mathrm{mg} / \mathrm{l}\) & 20.0 & & 93 & 65-120 & & & \\
\hline \multicolumn{11}{|l|}{LCS Dup Analyzed: 01/13/2005 (5A13065-BSD1)} \\
\hline Oil \& Grease 21.1 & 5.0 & N/A & \(\mathrm{mg} / \mathrm{l}\) & 20.0 & & 106 & 65-120 & 13 & 20 & \\
\hline \multicolumn{11}{|l|}{Batch: 5A13082 Extracted: 01/13/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 01/13/2005 (5A13082-BLK1)} \\
\hline Turbidity ND & 1.0 & N/A & NTU & & & & & & & \\
\hline Duplicate Analyzed: 01/13/2005 (5A13082-DUP1) & & & & Sou & 10A0 & 617-01 & & & & \\
\hline Turbidity 2.70 & 1.0 & N/A & NTU & & 2.6 & & & 4 & 20 & \\
\hline \multicolumn{11}{|l|}{Batch: 5A13089 Extracted: 01/13/05} \\
\hline \multicolumn{11}{|l|}{B1ank Analyzed: 01/13/2005 (5A13089-BLK1)} \\
\hline Total Dissolved Solids ND & 10 & N/A & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 01/13/2005 (5A13089-BS1)} \\
\hline Total Dissolved Solids 994 & 10 & N/A & \(\mathrm{mg} / \mathrm{l}\) & 1000 & & 99 & 90-110 & & & \\
\hline Duplicate Analyzed: 01/13/2005 (5A13089-DUP1) & & & & Sour & e: IOA05 & 59-01 & & & & \\
\hline Total Dissolved Solids 92.0 & 10 & N/A & \(\mathrm{mg} / \mathrm{l}\) & & 88 & & & 4 & 10 & \\
\hline \multicolumn{11}{|l|}{Batch: 5A14087 Extracted: 01/14/05} \\
\hline \multicolumn{4}{|l|}{Duplicate Analyzed: 01/14/2005 (5A14087-DUP1)} & \multicolumn{7}{|l|}{Source: 1OA0801-01} \\
\hline Specific Conductance 73.8 & 1.0 & N/A & umhos/cm & & 75 & & & 2 & 5 & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager
\begin{tabular}{lcr} 
MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Pasadena, CA 91101 & Report Number: 1040567 & Received: \(01 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{METHOD BLANKIQC BATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5A17060 Extracted: 01/17/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 01/17/2005 (5A17060-BLK1)} \\
\hline Total Suspended Solids ND & 10 & N/A & mg/ & & & & & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 01/17/2005 (5A17060-BS1)} \\
\hline Total Suspended Solids 971 & 10 & N/A & \(\mathrm{mg} / \mathrm{l}\) & 1000 & & 97 & 85-115 & & & \\
\hline Duplicate Analyzed: 01/17/2005 (5A17060-DUP1) & & & & Sour & ce: IOA0 & 673-01 & & & & \\
\hline Total Suspended Solids ND & 10 & N/A & \(\mathrm{mg} / \mathrm{l}\) & & ND & & & & 10 & \\
\hline \multicolumn{11}{|l|}{Batch: 5A18093 Extracted: 01/18/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 01/19/2005 (5A18093-BLK1)} \\
\hline Total Cyanide ND & 5.0 & N/A & ug/ & & & & & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 01/19/2005 (5A18093-BS1)} \\
\hline Totalcyanide 188 & 5.0 & N/A & ug/ & 200 & & 94 & 90-110 & & & \\
\hline Matrix Spike Analyzed: 01/19/2005 (5A18093-MS1) & & & & Sour & e: 10A05 & 567-01 & & & & \\
\hline Total Cyanide 12.7 & 5.0 & N/A & ug/t & 200 & ND & 6 & 70-115 & & & M2 \\
\hline \multicolumn{2}{|l|}{Matrix Spike Dup Analyzed: 01/19/2005 (5A18093-MSD1)} & & & Sour & : IOA05 & 567-01 & & & & \\
\hline Total Cyanide 8.08 & 5.0 & N/A & ug/ & 200 & ND & 4 & 70-115 & 44 & 15 & M2, R-3 \\
\hline
\end{tabular}
\begin{tabular}{|lll}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 011 & \\
\begin{tabular}{lll} 
300 North Lake Avenue, Suite 1200 & & \\
Pasadena, CA 91101 & Report Number: \(10 A 0567\) & \begin{tabular}{l} 
Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Received: \(01 / 11 / 05\)
\end{tabular} \\
\hline
\end{tabular} &
\end{tabular}

\section*{METHOD BLANK/QC DATA}

\section*{1,4-DIOXANE BY GC/MS (EPA 5030B/8260B)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: P5A1502 Extracted: 01/15/05} \\
\hline '.. & & & & & & & & & & & \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/15/2005 (P5A1502-BLK1)} \\
\hline 1,4-Dioxane & ND & 1.0 & 0.49 & ug/l & & & & & & & \\
\hline Surrogate: Dibromofluoromethane & 1.03 & & & \(u g /\) & 1.00 & & 103 & 80-125 & & & \\
\hline \multicolumn{12}{|l|}{LCS Analyzed: 01/15/2005 (P5A1502-BS1)} \\
\hline 1,4-Dioxane & 9.04 & 1.0 & 0.49 & ug/l & 10.0 & & 90 & 70-130 & & & \\
\hline Surrogate: Dibromofluoromethane & 0.950 & & & ugh & 1.00 & & 95 & 80-125 & & & \\
\hline \multicolumn{12}{|l|}{LCS Dup Analyzed: 01/15/2005 (P5A1502-BSD1)} \\
\hline 1,4-Dioxane & 9.30 & 1.0 & 0.49 & ug/l & 10.0 & & 93 & 70-130 & 3 & 20 & \\
\hline Surrogate: Dibromofluoromethane & 0.980 & & & \(u g / 1\) & 1.00 & & 98 & 80-125 & & & \\
\hline \multicolumn{3}{|l|}{Matrix Spike Analyzed: 01/15/2005 (P5A1502-MS1)} & & & \multicolumn{3}{|l|}{Source: POA0240-01} & & & & \\
\hline 1,4-Dioxane & 10.7 & 1.0 & 0.49 & ug/l & 10.0 & ND & 107 & 70-150 & & & \\
\hline Surrogate: Dibromofluoromethane & 0.980 & & & \(u g h\) & 1.00 & & 98. & 80-125 & - & & \\
\hline \multicolumn{3}{|l|}{Matrix Spike Dup Analyzed: 01/15/2005 (P5A1502-MSD1)} & & & \multicolumn{3}{|l|}{Source: POAO240-01} & & & & \\
\hline 1,4-Dioxane & 9.07 & 1.0 & 0.49 & \(\mathrm{ug} / \mathrm{l}\) & 10.0 & ND & 91 & 70-150 & 16 & 25 & \\
\hline Surrogate: Dibromofluoromethane & 0.940 & & & \(u g / l\) & 1.00 & & 94 & 80-125 & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 011
Report Number: 1OA0567

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{DATA QUALIFIERS AND DEFINITIONS}

B Analyte was detected in the associated Method Blank.
M2 The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
M-HA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information. See Blank Spike (LCS).
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
R-2 The RPD exceeded the method control limit.
R-3 The RPD exceeded the method control limit due to sample matrix effects.
R-7 LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

\section*{ADDITIONAL COMMENTS}

For TICs:
All identifications are tentative and concentrations are estimates based upon spectral comparison to the EPA/NIH library. For 1,2-Diphenylhydrazine:

The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.
For GRO (C4-C12):
GRO (C4-C12) is quantitated against a gasoline standard. Quantitation begins immediately following the methanol peak. For Extractable Fuel Hydrocarbons (EFH, DRO, ORO) :

Unless otherwise noted, Extractable Fuel Hydrocarbons (EFH, DRO, ORO) are quantitated against a Diesel Fuel Standard.

Project ID: Outfall 011
Report Number: IOA0567

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{Certification Summary}

\section*{Del Mar Analytical, Irvine}
\begin{tabular}{cccc} 
Method & Matrix & Nelac & Callfornia \\
EPA 120.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 160.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 160.5 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 180.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 200.7 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 200.8 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 218.6 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 245.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 300.0 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 314.0 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 330.5 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 335.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 350.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 405.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 413.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 415.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 418.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 608. & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 624 (MOD. & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 624 & Water & X & \(\mathbf{X}\) \\
EPA 625 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 8015 Mod. & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 8015B & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 8260B & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
SM2540C & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
SM5540-C & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
\hline
\end{tabular}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

\section*{Subcontracted Laboratories}

Aquatic Testing Laboratories-SUB California Cert\#1775
4350 Transport Street, Unit 107 - Ventura, CA 93003
Analysis Performed: Bioassay-7 dy Chrnic
Samples: 1OA0567-01
Analysis Performed: Bioassay-Acute 96hr
Samples: 1OA0567-01
Del Mar Analytical - Phoenix NELAC Cert \#01109CA, California Cert \#2446
9830 S. 51 st Street, Suite B-120 - Phoenix, AZ 85044
Method Performed: EPA 8260B

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51 st S., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset fid. *3, Las Vegzs, NV 89120 (702) 798-3620 FAX (702) 798-3621

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Outfall 011
Report Number: IOA0567
Sampled: 01/11/05-01/12/05
Received: 01/11/05

Del Mar Analytical - Phoenix NELAC Cert \#01109CA, California Cert \#2446
9830 S. 51st Street, Suite B-120 - Phoenix, AZ 85044
Samples: 1OA0567-01

\section*{Eberline Services - SUB}

2030 Wright Avenue - Richmond, CA 94804
Analysis Performed: Gross Alpha
Samples: 10A0567-01
Analysis Performed: Gross Beta
Samples: 10A0567-01
Analysis Performed: Level 3 Data Package Samples: IOA0567-01
Analysis Performed: Radium, Combined
Samples: 1OA0567-01
Analysis Performed: Strontium 90
Samples: 1OA0567-01
Analysis Performed: Tritium
Samples: IOA0567-01
Pace Analytical, MN- SUB
1700 Elm Street, Ste 200 - Minneapolis, MN 55414
Analysis Performed: 1613-Dioxin-HR
Samples: 1OA0567-01
Analysis Performed: EDD + Level 4
Samples: IOA0567-01
Truesdail Laboratories-SUB Calfornia Cert \#1237
14201 Franklin Avenue - Tustin, CA 92680
Analysis Performed: Hydrazine
Samples: IOA0567-01
Analysis Performed: Level 4 Data Package
Samples: 1OA0567-01

\footnotetext{
Del Mar Analytical, Irvine
Michele Harper
Project Manager
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Del & A & y & & & & & & & & & & & & & & & & Page 1 of 1 \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Client Name/Address: \\
MWH-Pasadena \\
300 North Lake Avenue, Suite 1200 \\
Pasadena, CA 9.1101 \\
Del Mar Contact: Michele Harper
\end{tabular}}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Project: \\
Boeing-SSFL NPDES \\
Outfall 011-13267 \\
Sampling \\
Perimeter Pond
\end{tabular}}} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{} & \multicolumn{7}{|l|}{ANALYSIS REQUIRED} \\
\hline & & & & & & & & & & & & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Field Readings:
\[
\begin{aligned}
& \text { Temp }=57.6 \\
& \mathrm{pH}=6.8
\end{aligned}
\]}} \\
\hline \multicolumn{4}{|l|}{Project Manager: Bronwyn Kelly Sampler:} & \multicolumn{2}{|l|}{Phone Number: (626) 568-6691 Fax Number: (626) 568-6515} & & & & & & & & &  & & & & \\
\hline \[
\begin{array}{|c|}
\hline \text { Sample } \\
\text { Description } \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline \text { Sample } \\
\text { Matrix } \\
\hline
\end{array}
\] & Container Type & \[
\begin{aligned}
& \begin{array}{l}
\text { \#of } \\
\text { cont. } \\
\hline
\end{array} \\
& \hline
\end{aligned}
\] & Sampling DaterTime & Preservative & & & & & & & & & 立 & & & & \\
\hline Outfall 011 & w & Pory -1Gal & 1 & \(1 / 1104 \%^{05}\)
1100 & None & X & x & x & x & x & x & x & x & x & x & x & x & Total Flow (gals)=314/5900 Flow (gpm) \(=1204\) \\
\hline Outtall 011 & w & Pooly -1Gal & 1 & \[
\begin{aligned}
& 1 / 111091400 \\
& 1120
\end{aligned}
\] & None & X & x & X & x & x & x & X & x & x & X & x & \(x\) & \[
\text { Flow }(\mathrm{gpm})=1272
\]
\[
\begin{aligned}
& \text { Total flow (gals) }=31 \\
& \text { Flow (opm })=12340
\end{aligned}
\] \\
\hline Outfall 011 & w & Pody - 1 Gal & 1 & \[
\begin{gathered}
111 / 84700 \\
1 / 40
\end{gathered}
\] & None & X & x & x & x & x & x & X & x & x & x & x & x & \[
\text { Total Flow (gals) } 3 \mathrm{M} / 4 \sigma 964
\]
\[
\text { How }(\mathrm{gpm})=1208
\] \\
\hline Outfall 011 & w & Poly - 1 Gal & 1 & \[
\begin{aligned}
& 1 / 11105 \\
& 1200 \\
& \hline
\end{aligned}
\] & None & X & X & X & x & x & x & x & x & x & x & x & \(x\) & \[
\begin{aligned}
& \text { Total Flow (gals) }=3148740 \\
& \text { Flow (gpm) }=1122
\end{aligned}
\] \\
\hline Outfall 011 & w & Poly - 1 Gal & 1 & 1/11/05 1220 & None & x & x & x & x & x & x & x & x & x & x & x & x & \[
\text { Total Flow (gals) }=31512100
\]
\[
\text { How }(\mathrm{gpm})=\quad 1116
\] \\
\hline Outfall 011 & w & Pody -1Gal & 1 & \(1 / 11051240\) & None & \(x\) & x & X & x & x & x & x & x & x & X & x & x & \[
\text { Total Flow (gals) }=315-29,0
\]
\[
\text { Flow (gpm) }=10>7
\] \\
\hline Outtall 011 & w & Poly -1Gal & 1 & \[
1 / 11051300
\] & None & X & x & x & x & x & x & x & x & x & x & x & x & \[
\begin{aligned}
& \text { Total Flow (gals)=3155789} \\
& \text { Flow (gpm) }=1055
\end{aligned}
\] \\
\hline Outfall 011 & w & Poly -1Gal & 1 & 111051320 & None & X & x & X & X & x & x & X & x & x & x & x & x &  \\
\hline Outfall 011 & w & Poly -1Gal & 1 & 1111051340 & None & x & x & x & x & x & x & x & x & x & X & x & x & \[
\begin{aligned}
& \text { Total fiow (gals) }=515,2700 \\
& \text { Flow (gpm) }=105
\end{aligned}
\] \\
\hline Outfall 011 & W & Poly -1Gal & 1 & \(1 / 1051400\) & None & x & x & x & x & x & x & x & x & x & x & x & x & Total Flow (galis) \(=3 / 647000\)
Flow (gpm) 9970 \\
\hline Trip Blank & w & VOAs & 9 & & HCL & & x & & X & & & X & & & & & & \\
\hline \multicolumn{5}{|l|}{} & \multicolumn{10}{|l|}{Received By} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \\
\hline  &  & pe & & \[
\% \quad \text { RSO }
\] & \multicolumn{10}{|l|}{} & & & & \\
\hline \multicolumn{5}{|l|}{Relinquished By Date/Time:} & \multicolumn{10}{|l|}{Received By Date/Time:} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Metals Only 72 Hours
\(\qquad\) \\
Sample integrity. (Check)
\end{tabular}} \\
\hline
\end{tabular}


\section*{Per Request:}

Please make the changes listed below to the chain-of-custody analytical request form. Include this form with the final deliverables for these samples.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Del Mar \\
Work Order \#
\end{tabular} & Sample ID & Date Collected & Change(s) Requested, Not Completed & Change(s) and Method (s) Now Requested \\
\hline \(10 \mathrm{A0567}\) & Ouffall 011 Composite & 01/11/05 & & NH3, BOD, Cl-, \(\mathrm{N} / \mathrm{N}-\mathrm{N}, \mathrm{Oil}\) and Grease, Sulfate, MBAS, TDS, TSS, Setuleable Solids, Turbidity, \(\mathrm{CN}_{3}\) Clo4-, Conductivity, Lead, \(\mathrm{Cr}, \mathrm{Cu}, \mathrm{IIg}\) TOC, TCDD. \\
\hline 1040549 & Outfall 011 -
Grab & 01/11/05 & & 608 Pest/PCB-PP list, \(625-\mathrm{PP}\) list, \(\mathrm{Sb}, \mathrm{As}\), \(\mathrm{Ba}, \mathrm{Be}, \mathrm{B}, \mathrm{Cd}, \mathrm{Cr}, \mathrm{Co}, \mathrm{F}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{Ni}, \mathrm{Se}\), Ag, T1, V, Zn, 1,4-Dioxane, 624-Freon 113, Freon 123a, Cyclohexane \\
\hline 1081004 & Outfali 011 Composite & 01/11/05 & : & NHI3, BOD, Cl-, N/N-N, Oil and Grease, Sulfate, MBAS, TDS, TSS, Settleable Solids Turbidity, CN, Clo4. Conductivity, Lead, \(\mathrm{Cr}, \mathrm{Cu}, \mathrm{Hg}, \mathrm{TOC}\), TCDD. \\
\hline
\end{tabular}

The reason for these changes:
Incorrectly marked on COC farm
Lack of sample volume
MWH office personnel require this change
Other: Containers mistabeled \(\qquad\)

This Change Order supersedes all previous change orders submitted.

Thank you

\author{
March 9, 2005
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention: Bronwyn Kelly
Project: \(\quad 13267\) (Study 1)
Outfall 011 Composite
Sampled: 1/12/05
Del Mar Analytical Number: IOA0567

Dear Ms. Kelly:
Aquatic Testing Laboratories performed the Fathead Minnow 96hr Percent Survival Bioassay by EPA Method 2000.0 and Ceriodaphnia Survival and Reproduction Test by EPA Method 1002, Eberline Services performed Gross Alpha/Gross Beta (EPA 900.0), Tritium (H-3, EPA 906.0), and Strontium-90 (Sr-90, EPA 905.0), Pace Analytical performed the TCDD analysis by USEPA Method 1613B, and Truesdail Laboratories performed the Hydrazines by EPA 8315 B for the project referenced above. Please use the following cross-reference table when reviewing your results.
\begin{tabular}{|c|c|c|c|c|c|}
\hline MWH ID & DEL MAR ID & ATL DD & EBERLINE ID & PACE D & \begin{tabular}{c} 
TRUESDAIL \\
ID
\end{tabular} \\
\hline Outfall 011-Composite & IOA0567-01 & A-05011310-001/002 & R501121/8174-001 & 106135001 & \(938627-1\) \\
\hline
\end{tabular}

Attached is the original report from the subcontract laboratory. If you have any questions or require further assistance, please do not hesitate to contact me.

Sincerely yours,
DEL MAR ANALYTICAL


Project Manager

\title{
LABORATORY REPORT
}

Date:
Client: Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Attn: Michele Harper

Aquatic Testing
Laboratories
"dedicated to providing quality aquatic toxicity testing "
4350 Transport Street, Unit 107
Ventura, CA 93003
(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.: A-05011310-001/002
Sample I.D.: IOA0567-01

Sample Control: The sample was received by ATL chilled, with the chain of custody record attached.
Date Sampled: 01/12/05
Date Received: 01/13/05
Date Tested: 01/13/05 to 01/19/05

Sample Analysis: The following analyses were performed on your sample:
Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0), Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

\section*{Result Summary:}
\begin{tabular}{lrr} 
Acute: & \(\frac{\text { Survival }}{100 \%}\) & \(\frac{\text { TUa }}{0.0}\) \\
\(\quad\) Fathead Minnow: & & \\
Chronic: & \(\frac{\text { NOEC }}{}\) & TUE \\
\(\quad\) Ceriodaphnia Survival: & \(100 \%\) & 1.0 \\
\(\quad\) Ceriodaphnia Reproduction: & \(100 \%\) & 1.0
\end{tabular}

Quality Control: Reviewed and approved by:


\section*{FATHEAD MINNOW PERCENT SURVIVAL TEST}

Lab No.: A-05011310-001
Client/ID: Del Mar 1OA0567-01


\section*{Start Date: 01/13/2005}

\section*{TEST SUMMARY}

Species: Pimephales promelas.
Age: 14 (1-14) days.
Regulations: NPDES.
Test solution volume: 250 ml .
Feeding: prior to renewal at 48 hrs .
Number of replicates: 2.
Dilution water: Moderately hard reconstituted water.
Photoperiod: 16/8 hrs light/dark.

Source: In-laboratory Culture.
Test type: Static-Renewal.
Test Protocol: EPA-821-R-02-012.
Endpoints: Percent Survival at 96 hrs.
Test chamber: 600 ml beakers.
Temperature: \(20+/-1^{\circ} \mathrm{C}\).
Number of fish per chamber: 10.
QA/QC Batch No.: RT-050104.


Comments:
Sample as received: Chlorine DO: \(/ / .8 \mathrm{mg} / \mathrm{l}\) Alkalinity 24 \(\mathrm{mg} /\); pH . 6.2 Conductivity: \(\qquad\) umhe; Temp: \(4^{\circ} \mathrm{C}\); Sample aerated moderate ( \(\mathrm{mg} /\); Hardness: \(34 \mathrm{mg} / ; \mathrm{NH}_{3}-\mathrm{N}: 0.4 \mathrm{mg} /\).
Control: Alkalinity: \(60 \mathrm{mg} /\); Hardness: \(58 \mathrm{mg} /\); Conductivity: 305 mho. Ng .
Test solution aerated (not to exceed 100 bubbles \(/ \mathrm{min}\) ) to maintain DO \(>4.0 \mathrm{~m}\) mo.
Sample used for renewal is the original sample kept at \(0.6^{\circ} \mathrm{C}\) with minimal hg g/? Yes / (Vo.)
RESULTS


\section*{CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0}

Lab No.: A-05011310
Client/ID: Del Mar 1OA0567-01
Date Tested: 01/13/05 to 01/19/05

\section*{TEST SUMMARY}

Test type: Daily static-renewal. Species: Ceriodaphnia dubia.
Age: <24 hrs; all released within 8 hrs . Test vessel size: 30 ml .
Number of test organisms per vessel: 1 .
Temperature: \(25+/-1^{\circ} \mathrm{C}\).
Dilution water: Mod. hard reconstituted (MHRW).
QA/QC Batch No.: RT-050104.

Endpoints: Survival and Reproduction.
Source: In-laboratory culture.
Food: . 1 ml YTC, algae per day.
Test solution volume: 15 ml .
Number of replicates: 10.
Photoperiod: \(16 / 8\) hrs. light/dark cycle.
Test duration: 7 days.
Statistics: ToxCalc computer program.

RESULTS SUMMARY
\begin{tabular}{|c|c|c|}
\hline Sample Concentration & Percent Survival & \begin{tabular}{c} 
Mean Number of \\
Young Per Female
\end{tabular} \\
\hline Control & \(100 \%\) & 21.4 \\
\hline \(6.25 \%\) & \(100 \%\) & 21.6 \\
\hline \(12.5 \%\) & \(100 \%\) & 23.1 \\
\hline \(25 \%\) & \(100 \%\) & 27.2 \\
\hline \(50 \%\) & \(100 \%\) & 26.5 \\
\hline \(100 \%\) & \(100 \%\) & 26.2 \\
\hline * Statistically significatily less than control at P = 0.05 level. \\
\hline & NOEC are \\
\hline
\end{tabular}

CHRONIC TOXICITY
\begin{tabular}{|c|c|c|}
\hline Parameter & Survival & Growth \\
\hline NOEC & \(100 \%\) & \(100 \%\) \\
\hline TUC & 1.0 & 1.0 \\
\hline
\end{tabular}

QA/QC TEST ACCEPTABHITY
\begin{tabular}{|c|c|}
\hline Parameter & Result \\
\hline Control survival \(280 \%\) & Pass (100\% survival) \\
\hline 215 young per surviving control female & Pass ( 21.4 young) \\
\hline \(260 \%\) surviving controts had 3 broods & Pass ( \(100 \%\) with 3 broods) \\
\hline PMSD \(<47 \%\) for reproductiont if \(>47 \%\) and no toxicity \\
at IWC, the test must be repeated & Pass (PMSD \(=22.4 \%\) ) \\
\hline \begin{tabular}{c|c|}
\hline Statistically significantly different concentrations relative \\
difference \(>13 \%\)
\end{tabular} & NA - No stat. sig. diff. concentrations \\
\hline Concentration response relationship acceptable & Pass (slight inverse response at conc. tested) \\
\hline
\end{tabular}
 1014E. Coctury Dr. Sulte A. Cohtan, CA sezen




Fine (945) \(251-1220\) Fax(50) 3F0-4046 Fant (619) 5 \% Fax (480) 7as-485y


\section*{SUBCONTRACT ORDER - PROJECT \# IOA0567}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
SENDING LABORATORY: \\
Del Mar Analytical, Irvine \\
17461 Derian Avenue. Suite 100 \\
Irvine, CA 92614 \\
Phone: (949) 261-1022 \\
Fax: (949) 261-1228 \\
Project Manager: Michele Harper
\end{tabular} & \begin{tabular}{l}
RECEIVING LABORATORY: \\
Aquatic Testing Laboratories-SUB \\
4350 Transport Street, Unit 107 \\
Ventura, CA 93003 \\
Phone :(805) 650-0546 \\
Fax: (805) 650-0756
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Standard TAT is requested muless specific due date is requested \(\Rightarrow\) Due Date: \(\quad\) Initials:} \\
\hline Analysis Expiration & Comments \\
\hline \begin{tabular}{ccc} 
Sample ID: 10A0567-01 & Water \(\quad\) Sampled: 01/12/05 13:00 \\
Bioassay-7 dy Chrnic & \(01 / 14 / 0501: 00\) \\
Bioassay-Acute 96 hr & \(01 / 14 / 0501: 00\)
\end{tabular} & Instant Nofication ceriodaphnia, 13267 fathead minnow, 13267 \\
\hline \[
\begin{aligned}
& \text { Containers Supplied: } \\
& 1 \text { gal Poly (IOA0567-01 AP) } \\
& 1 \text { gal Poly (10A0567-01AQ) }
\end{aligned}
\] & \\
\hline
\end{tabular}


\section*{BERLINE}

February 28, 2005

Ms. Michele Harper
Project Manager
Del Mar Analytical
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Reference: Del Mar Analytical Project No. IOA0567
Eberline Services NELAP Cert \#01120CA (exp. 01/31/06)
Eberline Services Report R501121-8174
Dear Ms. Harper:
Enclosed are results from the analyses of one water sample received at Eberline Services on January 14, 2005. The sample was analyzed according to the accompanying Del Mar Analytical Subcontract Order Form. The requested analyses were gross alpha/gross beta (EPA900.0), tritium (H-3. EPA906.0), and strontium-90 (Sr-90, EPA905.0). The QC LCS, blank analyses, sample duplicates, and matrix spike results for the analyses were within the limits defined in Eberline Services Quality Control Procedures Manual. Analyses that involve the yielding of an analytical tracer or carrier, such as \(\mathrm{Sr}-90\), do not require matrix spike analyses to be performed.

Please call me if you have any questions concerning this report.
Regards,
MenMan.

Melissa Mannion
Senior Program Manager
\(M C M / n j v\)
Enclosure: Report
Subcontract Form
Receipt checklist
Invoice

Eberline services

\section*{ANALYSIS RESULTS}


\section*{Eberline Services \\ QC RESULTS}


Lab
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sampie ID & Nuctide & Reauits & Onites & Amount Added & MDA & Evaluation \\
\hline \multicolumn{7}{|l|}{Les} \\
\hline \multirow[t]{4}{*}{8174-002} & Grossalpha & \(10.8 \pm 1.3\) & pei/Smpl & 11.2 & 0.643 & 96t recovery \\
\hline & Groses Beta & \(12.0 \pm 0.83\) & pCi/Smpl & 12.1 & 0.571 & 99* recovery \\
\hline & H3 & \(246 \pm 23\) & pCi/Smpl & 260 & 24.4 & 95* recovery \\
\hline & Sr90 & \(12.4=0.44\) & pes/Smpl & 11.1 & 0.156 & 112. recovery \\
\hline
\end{tabular}

BLavy
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 8174-003 & GrossAlpha & \(0.293 \pm 0.33\) & pCi/Smpl & NA & 0.511 & CMIDA \\
\hline & Grose Beta & \(-0.071 \pm 0.35\) & pCi/Smpl & NA & 0.602 & CMDA \\
\hline & H3 & \(2.76 \pm 14\) & \(\mathrm{pCt} / \mathrm{Smpl}\) & NA & 24.7 & CMAA \\
\hline & Sr90 & \(-0.053 \pm 0.13\) & pci/Smpl & NA & 0.240 & CMDA \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{SRIKED SAMPLE} & \multicolumn{3}{|c|}{ORIGTRAL SAMPLE.} & & \\
\hline Sample ID & Nucyide & Results \(\pm 20\) & MDA & Sample ID & Resuluta \(\pm 20\) & MDA & Added & ERecy \\
\hline 8174-005 & Grogsklpha & \(84.6 \pm 5.2\) & 0.772 & 8174-001 & \(0.294 \pm 1.0\) & 2.75 & 76.6 & 110 \\
\hline & Groas Beta & \(80.0 \pm 3.6\) & 1.75 & & \(2.50 \pm 1.2\) & 1.78 & 74.0 & 105 \\
\hline & \(\mathrm{H}_{3}\) & \(8830 \pm 300\) & 249 & & \(-71.9 \pm 140\) & 252 & 9490 & 94 \\
\hline
\end{tabular}


Fix (948) 264-1228 Fax (9009) \(370-1046\) Fan (619) 506-96*



\section*{SUBCONTRACT ORDER - PROJECT \# IOA0567}
\begin{tabular}{|c|c|}
\hline SENDING LABORATORY: & RECEIVING LABORATORY: \\
\hline Del Mar Analytical, Irvine & Eberline Services \\
\hline 17461 Derian Avenue. Suite 100 & 2030 Wright Avenue \\
\hline Irvine, CA 92614 & Richmond, CA 94804 \\
\hline Phone: (949) 261-1022 & Phone :(510) 235-2633 \\
\hline Fax: (949) 261-1228 & Fax: (510) 235-0438 \\
\hline Project Manager: Michele Harper & \\
\hline Standard TAT is requested unless specific due date is requ & Due Date: . . Initials: \\
\hline Analysis Expiration & Comments \\
\hline Sample DD: 10A0567-01 Water Sampled: 01/12/05 13:00 & Instant Nofication \\
\hline Gross Alpha-O 01/12/06 13:00 & \(900.0, \mathrm{IF}\) RESULT \(15 \mathrm{pCi} / \mathrm{L}\), run Radium 226 \& 228 \\
\hline Gross Beta-O 01/12/06 13:00 & 900.0, IF RESUL \(>15 \mathrm{pCi} /\) L, run Radium 226 \& 228 \\
\hline Level 3 Data Package - Out 02/09/05 13:00 & *LEVEL IV QC, ACCESS 7 EDD** \\
\hline Radium, Combined-O 01/12/06 13:00 & HOLD for Gross Alpha/Beta result;EPA 903.1 \& 904.0 \\
\hline Strontium 90-0 01/12/06 13:00 & 905.0 \\
\hline Tritium-O 01/12/06 13:00 & 906 \\
\hline \begin{tabular}{l}
Containers Supplied: \\
1 gal Poly (IOA0567-01AC)
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{SAMPLE INTEGRITY:} \\
\hline All containers inuct: & \(\square\) & Yes & - & & Sample labels/COC agree: & 口 & & - No & Sumples Received On lee: & - Yes & \(\square \mathrm{No}\) \\
\hline Custody Seais Present: & D & Yes & \(\square\) & No & Sumpies Preserved Property: & \(\square\) & Yes & \(\square \mathrm{N}_{0}\) & Samples Receeived at (temp): & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline  & & 1700 & 1/4y & EGerlip & 11405 & 70:00 \\
\hline Releasedizy & Date & Time & Received By & & Date & Time \\
\hline Released By & Date & Time & Received By & & Date & Time \\
\hline
\end{tabular}

\section*{RICHMOND, CA LABORATORY}

SAMPLE REGEHFT CHECXLUTT



\section*{Method 1613B Analysis Results}

Client - Del Mar Analytical


Conc \(=\) Concentration (Totals include 2,3,7,8-substituted isomers).
EMPC = Estimated Maximum Possible Concentration
LOD = Limit of Detection. Totals are averages of individuat isomer LODs.
\(\mathrm{D}=\) Result obtained from analysis of diluted sample
\(\mathrm{B}=\mathrm{Less}\) than 10 times higher than method blank level
\(P=\) Recovery outside of method 1613 control limits
\(J=\) Concentration detected is below the callbration range
\(\mathrm{Nn}=\) Value obtained from additional analysis

I = Interference
\(\mathrm{E}=\mathrm{PCDE}\) interference
ND = Not Detected
NA \(=\) Not Applicable
NC \(=\) Not Calculated
* \(=\) See Discussion

Report No..... 106135

\section*{Method 1613B Blank Analysis Results}

\author{
Client - Del Mar Analytical
}
Lab Sample ID
Filename
Total Amount Extracted
ICAL Date
CCal Filename(s)
\[
\begin{aligned}
& \text { BLANK-6220 } \\
& \text { F50129B_06 } \\
& \text { 1020 mL } \\
& 11 / 29 / 2004 \\
& \text { F50129B_02 }
\end{aligned}
\]
\begin{tabular}{ll} 
Matrix & Water \\
Dilution & NA \\
Extracted & \(01 / 28 / 2005\) \\
Analyzed & \(01 / 29 / 2005\) \\
Injected By & BAL \\
&
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Native lsomers & Conc pg/ & \[
\begin{gathered}
\text { EMPC } \\
\mathrm{pg} / \\
\hline
\end{gathered}
\] & PRL \(\mathrm{pg} / \mathrm{L}\) & Internal Standards & \begin{tabular}{l}
ng's \\
Added
\end{tabular} & Percent Recovery \\
\hline 2,3,7,8-TCDF & ND & ---- & 1.20 & 2,3,7,8-TCDF-13C & 2.00 & 58 \\
\hline Total TCDF & ND & ---- & \(\ldots\) & 2,3,7,8-TCDD-13C & 2.00 & 75 \\
\hline & & & & 1,2,3,7,8-PeCDF-13C & 2.00 & 65 \\
\hline \[
\begin{aligned}
& \text { 2,3,7,8-TCDD } \\
& \text { Total TCDD }
\end{aligned}
\] & \[
\begin{aligned}
& \text { ND } \\
& \text { ND }
\end{aligned}
\] & \(\cdots\) & 1.20 & 2,3,4,7,8-PeCDF-13C & 2.00 & 67 \\
\hline & & & & 1,2,3,7,8-PeCDD-13C & 2.00 & 80 \\
\hline 1,2,3,7,8-PeCDF & ND & \(\cdots\) & 1.50 & 1,2,3,4,7,8-HxCDF-13C & 2.00 & 70 \\
\hline 2,3,4,7,8-PeCDF & ND & ---- & 1.20 & 1,2,4,6,7,8-HxCDF-13C & 2.00
2.00 & 82 \\
\hline Total PeCDF & ND & ---- & 1.20 & 2,3,4,67,8-HxCDF-13C & 2.00
2.00 & 77 \\
\hline & & & & 1,2,3,4,7,8-HxCDD-13C & 2.00 & 72 \\
\hline 1,2,3,7,8-PeCDD & ND & ----- & 1.60 & 1,2,3,6,7,8-HxCDD-13C & 2.00 & 88 \\
\hline & ND & & ----- & 1,2,3,4,6,7,8-HpCDF-13C & 2.00 & 73 \\
\hline 1,2,3,4,78-HxCDF & & & & 1,2,3,4,7, \({ }^{\text {, }}\),9-HPCDF-13C & 2.00 & 63 \\
\hline 1,2,3,6,7,8-HxCDF & ND & \(\cdots\) & 0.75 & 1,2,3,4,6,7,8-HpCDD-13C & 2.00 & 80 \\
\hline 2,3,4,6,7,8-HxCDF & ND & .-... & 1.10 & OCDD-13C & 4.00 & 68 \\
\hline 1,2,3,7,8,9-HxCDF & ND & ----- & 1.20 & & & \\
\hline Total HxCDF & ND & --... & 1.20 & 1,2,3,7,8,9-HxCDD-13C & \[
\begin{aligned}
& 2.00 \\
& 2.00
\end{aligned}
\] & \[
\begin{aligned}
& \text { NA } \\
& \text { NA }
\end{aligned}
\] \\
\hline 1,2,3,4,7,8-HxCDD & ND & \(\cdots\) & 1.10 & 2,3,7,8-TCDD-37C14 & 0.20 & 73 \\
\hline 1,2,3,6,7,8-HxCDD & ND & ----- & 0.99 & 2,3,7,8-TCDD-37C4 & & 73 \\
\hline 1,2,3,78,9-HxCDD & ND & & 1.00 & & & \\
\hline Total HXCDD & ND & ---- & & & & \\
\hline 1,2,3,4,6,7,8-HpCDF & ND & ---- & 2.10 & & & \\
\hline 1,2,3,4,7,8,9-HpCDF & ND & ----- & 1.90 & & & \\
\hline Total HPCDF & 2.2 & \(\cdots\) & ----. & & & \\
\hline 1,2,3,4,6,7,8-HpCDD & 2.4 & ----- & 1.40 & & & \\
\hline Total HpCDD & 2.4 & --- & \(\cdots\) & & & \\
\hline \[
\begin{aligned}
& \text { OCDF } \\
& \text { OCDD }
\end{aligned}
\] & \[
5.2
\] & \(\cdots\) & \[
\begin{array}{r}
1.80 \\
2.90
\end{array}
\] & & & \\
\hline
\end{tabular}

\footnotetext{
Conc \(=\) Concentration (Totals include 2,3,7,8-substituted isomers).
EMPC = Estimated Maximum Possible Concentration PRL = Pace Analytical Reporting Limit
\(A=\) Limit of Detection based on signal to noise \(\mathbf{P}=\) Recovery outside of method 1613 control limits \(\mathrm{Nn}=\) Value obtained from additional analysis
}

I = Interference
E = PCDE Interference
ND \(=\) Not Detected
NA \(=\) Not Applicable
NC = Not Calculated
\(\mathrm{J}=\) Value below callbration range
* \(=\) See Discussion

\section*{REPORT OF LABORATORY ANALYSIS}

\section*{Method 1613B Laboratory Control Splke Results}

Client - Del Mar Analytical
Lab Sample ID
Filename
Total Amount Extracted
ICAL Date
CCal Filename
Method Blank ID
LCS-6221
F50129B_03
1040 mL
\(11 / 29 / 2004\)
F50129B_02
BLANK-6220
\begin{tabular}{ll} 
Matrix & Water \\
Dilution & NA \\
Extracted & \(01 / 28 / 2005\) \\
Analyzed & \(01 / 29 / 2005 \quad 21: 22\) \\
Injected By & BAL
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Compound & Cs & Cr & Lower Limit & \begin{tabular}{l}
Upper \\
Limit
\end{tabular} & \[
\begin{gathered}
\% \\
\text { Rec. }
\end{gathered}
\] \\
\hline 2,3,7,8-TCDF & 10 & 9.9 & 7.5 & 15.8 & \\
\hline 2,3,7,8-7CDD & 10 & 8.6 & 6.5 & 15.8 & 99
86 \\
\hline 1,2,3,7,8-P6CDF & 50 & 50.5 & 40.0 & 67.0 & 101 \\
\hline 2,3,4,7,8-PoCDF & 50 & 48.2 & 34.0 & 67.0
80.0 & +96 \\
\hline 1,2,3,7,8-PeCDD & 50 & 43.3 & 35.0 & 71.0 & 86 \\
\hline 1,2,3,4,7,8-HXCDF & 50 & 45.6 & 36.0 & 67.0 & 81 \\
\hline 1,2,3,6,7,8-HxCDF & 50 & 48.7 & 42.0 & 65.0 & 97 \\
\hline 2,3,4,6,7,8-HxCDF & 50 & 49.1 & 35.0 & 78.0 & 98 \\
\hline 1,2,3,7,8,9-HxCDF & 50 & 46.5 & 39.0 & 78.0
65.0 & 98 \\
\hline 1,2,3,4,7,8-HxCDD & 50 & 49.9 & 35.0 & 82.0 & 100 \\
\hline 1,2,3,6,7,8-HxCDD & 50 & 51.3 & 38.0 & 67.0 & 103 \\
\hline 1,2,3,7,8,9-HxCDD & 50 & 50.1 & 32.0 & 87.0
81.0 & 100 \\
\hline 1,2,3,4,6,7,8-HpCDF & 50 & 50.3 & 41.0 & 61.0 & 101 \\
\hline 1,2,3,4,7,8,9-HpCDF & 50 & 53.3 & 39.0 & 69.0 & 107 \\
\hline 1,2,3,4,6,7,8-HpCDD & 50 & 45.4 & 35.0 & 70.0 & 91 \\
\hline OCDF & 100 & 95.6 & 63.0 & 170.0 & 96 \\
\hline OCDD & 100 & 97.1 & 78.0 & 144.0 & 97 \\
\hline 2,3,2,8-TCDD-37C14 & 10 & 6.9 & 3.1 & 19.1 & 69 \\
\hline 2,3,7,8 TCDF-13C, & 100 & 51.5 & 220 & 152.0 & 52 \\
\hline 2,3,7,8-1CDD-13C & 100 & 67.8 & 20.0 & 175.0 & 68 \\
\hline 1,2,3,7,8-PeCDF-13C & 100 & 61.4 & 21.0 & 192.0 & 61 \\
\hline 2,3,4,7,8-PeCDF-13C & 100 & 65.9 & 13.0 & 328.0 & 66 \\
\hline 1,2,3,7,8-PөCDD-13C & 100 & 77.8 & 21.0 & 227.0 & 78 \\
\hline 1,2,3,4,7,8-HxCDF-13C & 100 & 70.2 & 19.0 & 202.0 & 70 \\
\hline 1,2,3,6,7,8-HxCDF-13C & 100 & 78.0 & 21.0 & 159.0 & 78 \\
\hline 2,3,4,6,7,8-HxCDF-13C & 100 & 74.1 & 22.0 & 176.0 & 74 \\
\hline 1,2,3,7,8,9-HxCDF-13C & 100 & 70.4 & 17.0 & 205.0 & 70 \\
\hline 1,2,3,4,7,8HxCDD-13C & 100 & 69.0 & 21.0 & 193.0 & 69 \\
\hline 1,2,3,6,7,8-HxCDD-13C & 100 & 82.8 & 25.0 & 163.0 & 83 \\
\hline 1,2,3,4,6,7,8-HpCDF-13C & 100 & 72.1 & 21.0 & 158.0 & 72 \\
\hline \[
1,2,3,4,7,8,9-H p C D F-13 C
\] & 100 & 62.4 & 20.0 & 186.0 & 62 \\
\hline 1,2,3,4,6,7,8-HpCDD-13C & 100 & 80.1 & 26.0 & 166.0 & 80 \\
\hline OCDD-13C & 200 & 135.6 & 26.0 & 397.0 & 68 \\
\hline
\end{tabular}

\footnotetext{
Cs = Concentration Spiked (ng/mL)
\(\mathrm{Cr}=\) Concentration Recovered ( \(\mathrm{ng} / \mathrm{mL}\) )
Rec. \(=\) Recovery (Expressed as Percent)
Control Limit Reference: Method 1613, Table 6, 10/94 Revision
\(\mathrm{X}=\mathrm{Background}\) subtracted value
\(P=\) Recovery outside of control limits
\(\mathrm{Nn}=\) Value obtained from additional analysis
= See Discussion
}

Report No..... 106124

\section*{REPORT OF LABORATORY ANALYSIS}

\section*{Method 1613B Laboratory Control Spike Results}

Client - Del Mar Analytical
Lab Sample ID
Filename
Total Amount Extracted
ICAL Date
CCal IFilename
Method Blank ID

LCSD-6222
F50129B_04
1040 mL 11/29/2004
F50129B_02
BLANK-6220
\begin{tabular}{ll} 
& \\
Matrix & Water \\
Dilution & NA \\
Extracted & \(01 / 28 / 2005\) \\
Analyzed & \(01 / 29 / 2005\) \\
Injected By & BAL
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Compound & Cs & Cr & Lower Limit & Upper Limit & \[
\begin{gathered}
\% \\
\text { Rec. }
\end{gathered}
\] \\
\hline 2,3,7,8-TCDF & 10 & 10.6 & 7.5 & & \\
\hline 2,3,7,8-TCDD & 10 & 9.4 & 6.7 & 15.8 & 106 \\
\hline 1,2,3,7,8-PeCDF & 50 & 53.2 & 40.0 & 67.0 & 106 \\
\hline 2,3,4,7,8-PeCDF & 50 & 50.7 & 34.0 & 80.0 & 101 \\
\hline 1,2,3,7,8-PeCDD & 50 & 46.0 & 35.0 & 71.0 & 92 \\
\hline 1,2,3,4,7,8-HxCDF & 50 & 47.6 & 36.0 & 67.0 & 95 \\
\hline 1,2,3,6,7,8-HxCDF & 50 & 50.9 & 42.0 & 65.0 & 102 \\
\hline 2,3,4,6,7,8-HxCDF & 50 & 50.9 & 35.0 & 78.0 & 102 \\
\hline 1,2,3,7,8,9-HxCDF & 50 & 49.0 & 39.0 & 65.0 & 98 \\
\hline 1,2,3,4,7,8-HxCDD & 50 & 52.4 & 35.0 & 82.0 & 105 \\
\hline 1,2,3,6,7,8-HxCDD & 50 & 54.2 & 38.0 & 67.0 & 108 \\
\hline 1,2,3,7,8,9-HxCDD & 50 & 52.5 & 32.0 & 81.0 & 105 \\
\hline 1,2,3,4,6,7,8-HpCDF & 50 & 55.0 & 41.0 & 61.0 & 110 \\
\hline 1,2,3,4,7,8,9-HpCDF & 50 & 55.7 & 39.0 & 69.0 & 111 \\
\hline 1,2,3,4,6,7,8-HpCDD & 50 & 48.0 & 35.0 & 70.0 & 96 \\
\hline OCDF & 100 & 100.6 & 63.0 & 170.0 & 101 \\
\hline OCDD & 100 & 101.9 & 78.0 & 144.0 & 102 \\
\hline 2,3,7,8-TCDD-37C14 & 10 & 8.7 & 3.1 & 19.1 & 87 \\
\hline 2,3,7,8-TCDF 13 C & 100. & 70.4 & 22.0 & 152.0 & 70 \\
\hline 2,3,7,8-TCDD-13C & 100 & 88.6 & 20.0 & 175.0 & 89 \\
\hline 1,2,3,7,8-PeCDF-13C & 100 & 73.6 & 21.0 & 192.0 & 74 \\
\hline 2,3,4,7,8-PeCDF-13C & 100 & 79.0 & 13.0 & 328.0 & 79 \\
\hline 1,2,3,7,8-PoCDD-13C & 100 & 95.5 & 21.0 & 227.0 & 96 \\
\hline 1,2,3,4,7,8-HxCDF-13C & 100 & 84.8 & 19.0 & 202.0 & 85 \\
\hline 1,2,3,6,7,8-HxCDF-13C & 100 & 89.5 & 21.0 & 159.0 & 90 \\
\hline 2,3,4,6,7,8-HxCDF-13C & 100 & 87.2 & 22.0 & 176.0 & 87 \\
\hline 1,2,3,7,8,9-HxCDF-13C & 100 & 82.1 & 17.0 & 205.0 & 82 \\
\hline 1,2,3,4,7,8-HxCDD-13C & 100 & 80.1 & 21.0 & 193.0 & 80 \\
\hline 1,2,3,6,7,8-HxCDD-13C & 100 & 97.0 & 25.0 & 163.0 & 97 \\
\hline 1,2,3,4,6,7,8-HpCDF-13C & 100 & 84.4 & 21.0 & 158.0 & 84 \\
\hline 1,2,3,4,7,8,9-HPCDF-13C & 100 & 71.7 & 20.0 & 186.0 & 72 \\
\hline 1,2,3,4,6,7,8-HpCDD-13C & 100 & 92.4 & 26.0 & 166.0 & 92 \\
\hline OCDD-13C & 200 & 159.2 & 26.0 & 397.0 & 80 \\
\hline
\end{tabular}

\footnotetext{
\(\mathrm{Cs}=\) Concentration Spiked ( \(\mathrm{ng} / \mathrm{mL}\) )
\(\mathrm{Cr}=\) Concentration Recovered ( \(\mathrm{ng} / \mathrm{mL}\) )
Rec. = Recovery (Expressed as Percent)
Control Limit Reference: Method 1613, Table 6, 10/94 Revision
\(X=\) Background subtracted value
\(P=\) Recovery outside of control limits
\(\mathrm{Nn}=\) Value obtained from additional analysis
\({ }^{*}=\) See Discussion
}

Report No..... 106124

\section*{REPORT OF LABORATORY ANALYSIS}

Client. \(\qquad\) Del Mar Analytical
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
SPIKE 1 ID. \(\qquad\) \\
SPIKE 1 Filenam SPIKE 2 ID. \(\qquad\) SPIKE 2 Filenam
\end{tabular} &  & & \\
\hline COMPOUND & SPIKE 1
REC,\% & SPIKE 2 REC,\% & RPD,\% \\
\hline 2378-TCDF & 99 & 106 & 6.8 \\
\hline 2378-TCDD & 86 & 94 & 8.9 \\
\hline \[
\begin{aligned}
& \text { 12378-PeCDF } \\
& \text { 23478-PeCDF }
\end{aligned}
\] & 101
96 & 106
101 & \[
\begin{aligned}
& 4.8 \\
& 5.1
\end{aligned}
\] \\
\hline 12378-PeCDD & 87 & 92 & 5.6 \\
\hline \[
\begin{aligned}
& 123478-\mathrm{HxCDF} \\
& 123678 \cdot \mathrm{HxCDF} \\
& 234678-\mathrm{HxCDF} \\
& 123789-\mathrm{HxCDF}
\end{aligned}
\] & 91
97
98
93 & 95
102
102
98 & 4.3
5.0
4.0
5.2 \\
\hline 123478-HxCDD 123678-HxCDD 123789-HxCDD & 100
103
100 & 105
108
105 & 4.9
4.7
4.9 \\
\hline 1234678-HpCDF 1234789-HpCDF & 101
107 & 110
111 & 8.5
3.7 \\
\hline 1234678-HpCDD & 91 & 96 & 5.3 \\
\hline \[
\begin{aligned}
& \text { OCDF } \\
& \text { OCDD }
\end{aligned}
\] & 96
97 & \[
\begin{aligned}
& 101 \\
& 102
\end{aligned}
\] & 5.1
5.0 \\
\hline
\end{tabular}

REC \(=\) Percent Recovered
RPD = The difference between the two values divided by the average.
NA \(=\) Not Applicable

\section*{REPORT OF LABORATORY ANALYSIS}

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

TABLE 1. 2,3,7,8-TCDD Equivalency Factors (TEFs) for the Polychlorinated Dibenzo-p-dloxins and Dibenzofurans
\begin{tabular}{|c|c|c|}
\hline Number & Compound(s) & TEF \\
\hline 1 & 2,3,7,8-TCDD & 1.00 \\
\hline 2 & 1,2,3,7,8-PeCDD & 0.50 \\
\hline 3 & 1,2,3,6,7,8-HxCDD & 0.1 \\
\hline 4 & 1,2,3,7,8,9-HxCDD & 0.1 \\
\hline 5 & 1,2,3,4,7,8-HxCDD & 0.1 \\
\hline 6 & 1,2,3,4,6,7,8-HpCDD & 0.01 \\
\hline 7 & OCDD & 0.001 \\
\hline 8 & * Total - TCDD & 0.0 \\
\hline 9 & * Total - PeCDD & 0.0 \\
\hline 10 & * Total - HxCDD & 0.0 \\
\hline 11 & * Total-HpCDD & 0.0 \\
\hline 12 & 2,3,7,8-TCDF & 0.10 \\
\hline 13 & 1,2,3,7,8-PeCDF & 0.05 \\
\hline 14 & 2,3,4,7,8-PeCDF & 0.5 \\
\hline 15 & 1,2,3,6,7,8-HxCDF & 0.1 \\
\hline 16 & 1,2,3,7,8,9-HxCDF & 0.1 \\
\hline 17 & 1,2,3,4,7,8-HxCDF & 0.1 \\
\hline 18 & 2,3,4,6,7,8-HxCDF & 0.1 \\
\hline 19 & 1,2,3,4,6,7,8-HpCDF & 0.01 \\
\hline 20 & 1,2,3,4,7,8,9-HpCDF & 0.01 \\
\hline 21 & OCDF & 0.001 \\
\hline 22 & * Total - TCDF & 0.0 \\
\hline 23 & * Total - PeCDF & 0.0 \\
\hline 24 & * Total - HxCDF & 0.0 \\
\hline 25 & * Total - HpCDF & 0.0 \\
\hline
\end{tabular}
*Excluding the 2,3,7,8-substituted congeners.
Reference: 1989 ITEFs

\section*{REPORT OF LABORATORY ANALYSIS}

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.


Ph (94) 281-1072


Standard TAT is requested unless specific due date is requested \(\Rightarrow\) Due Date: \(\qquad\) Initials: \(\qquad\)
\begin{tabular}{lll} 
Analysis & Expiration & Comments \\
\hline Sample ID: IOA0567-01 & Water & Sampled: 01/12/05 13:00 \\
1613-Dioxin-HR & \(01 / 19 / 0513: 00\) & Instant Nofication \\
EDD + Level 4 & \(02 / 09 / 0513: 00\) & Jflags, 17 congeners, no TEQ, sub to Pace-MN
\end{tabular}

\section*{Containers Supplied:}

1 L Amber (IOA0567-01G)
1 L Amber (IOA0567-01H)

Released by

\section*{Truesdail Laboratories, Inc.}

Client: Del Mar Analytical
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Attention: Michele Harper

Project Name: IOA0567
Truesdail Project:
938627
Date Received: 01/13/05
\begin{tabular}{lllll} 
Client: & \begin{tabular}{l} 
Del Mar Analytical \\
17461 Derian Avenue, Suite 100 \\
Irvine, CA 92614 \\
Michele Harper
\end{tabular} & & \\
Attention: & & & \\
Project Name: & IOA0567 & Truesdail Project: & \(\mathbf{9 3 8 6 2 7}\) \\
Date Received: & \(01 / 13 / 05\) & & &
\end{tabular}

\section*{Samples Cross-reference}
\begin{tabular}{lllccl} 
Truesdail ID & Client ID & Matrix & Date Sampled & Time Sampled & Analysis Requested \\
\(938627-1\) & IOA0567-01 & Water & \(01 / 12 / 05\) & 1300 & Hydrazines by EPA 8315M \\
\hline
\end{tabular}

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.
\(\frac{\text { K. R. P. 7ryw }}{\text { K.R.P. Iyer }}\)
Quality Control/Quality Assurance Officer


\section*{Truesdail Laboratories, Inc.}

\author{
Client: Del Mar Analytical 17461 Derian Avenue, Suite 100 \\ Irvine, CA 92614 \\ Attention: Michele Harper
}

Project Name:
1OA0567
Date Received:
01/13/05

\section*{Case Narrative}

Sample Receipt The sample was received in good condition and no anomalies were noted during check-in. The sample was kept in a locked refrigerator until analysis. Thereafter, it is being kept in ambient storage for an additional 2 months before disposal.

Analysis The analysis was perfomed as requested on the chain-of-custody.
Quality Control The analytical results for each batch of samples performed include a minimum of one set of laboratory control sample/laboratory control sample duplicate (LCS/LCSD), one matrix spike (MS) and a reagent blank (Method blank). Any exceptions or problems would be noted in the "comments" section.

\section*{Comments \\ The test results in this report meet all quality assurance requirements set forth by the} method specification and all quality control recoveries were within the laboratory acceptance limits. No anomalies or nonconformance events occurred during the course of analysis.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.


\section*{Truesdail Laboratories, Inc}
NDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

\section*{Del Mar Analytical- Alt. \\ client:}
REPORT
PQL.: Practical Quantitation Limit, ug/L
ND: Not Detected
N/A: Not Applicable
Note: Results based on detector \#1 (UV=365nm) data.

Truesdail Laboratories. Inc.
independent testing. Formensic science, and environmental analyses

Quality Control/Quality Assurance Calibration Report
Quality Control/Quality Assurance Spikes Report


ICV: initia! Calilibration Verification
cCV: Contimued Calibration Verification
LCS: Laboratory Control Splike
MS: Matrix Spike
\%D: Percent Differe
Flag: "Pass" if within Control Limits; otherwise "Fail"
Note: Results based on detector 1 (UVm365nm) data.
and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any adivertising or


\section*{SUBCONTRACT ORDER - PROJECT \# IOA0567}

\section*{SEFDDING LABORATORY:}

Del Mar Analytical, Irvine
17461 Derian Avenue. Suite 100
Irvine, CA 92614
Phone: (949) 261-1022
Fax: (949) 261-1228
Project Manager: Michele Harper

RECEIVING LABORATORY:
Truesdail Laboratories-SUB
14201 Franklin Avenue
Tustin, CA 92680
Phone :(714) 730-6239
Fax: (714) 730-6462

Standard TAT is requested unless specific due date is requested \(\Rightarrow\) Due Date: \(\qquad\) Initials: \(\qquad\)
\begin{tabular}{|c|c|c|}
\hline Analysis & Expliration & Comments \\
\hline \multicolumn{2}{|l|}{Sample ID: 10A0567-01 Water Sampled: 01/12/05 13:00} & Instant Nofication \\
\hline Hydrazine-OUT & 01/15/05 13:00 & Sub Truesdail for Monomethythydrazine 13267 \\
\hline Level 4 Data Package & 02/09/05 13:00 & Sub Mruesdail for Monomethylhydrazine, 13267 \\
\hline \multicolumn{3}{|l|}{Containers Supplied:} \\
\hline 1 L Amber (IOA0567-01AK) & & \\
\hline 1 L Amber (IOA0567-01AL) & & \\
\hline
\end{tabular}


\section*{For Sample Conditions See Form Attached}


\section*{Sample Integrity \＆Analysis Discrepancy Form}

Client：
 Lab\＃ 938627

Date Delivered：L／L\} \({ }^{5}\) Time：900 By：aMail afield Service Gefient
1．Was a Chain of Custody received and signed？
GYes ano DNA
2．Does Customer require an acknowledgement of the COC？
aYes aNo 区्रN／A
3．Are there any special requirements or notes on the COC？
םYes aNo 凹N／A
4．If a letter was sent with the COC，does it match the COC？
aYes ano aKV／A
5．Were all requested analyses understood and acceptable？
EYes aNo INA
6．Were samples received in a chilled condition？
Temperature（if yes）？ \(4^{\circ} \mathrm{C}\)
7．Were samples received intact Qres ano IN／A （i．e．broken bottles，leaks，air bubbles，etc．．）？

8．Were sample custody seals intact？
9．Does the number of samples received agree／with COC？
aYes aNo 区N／A

AI，
EYes aNo DN／A
10．Did sample labels correspond with the clientPs？\(Q E T T\) ，QYes QNO UN／A
11．Did sample labels indicate proper preservation \(\mathrm{CV} / \mathrm{TV}\) ayed aNo 巴N／A Presenved（if yes）by：DTruesdail DClient GYes ano aN／A
\[
\text { ar } \quad \text {, }
\]

Were samples pH checked？ \(\mathrm{pH}=\) NA
aYes ano EN／A
13．Were all analyses within holding time at time of receipt？ If not，notify the Project Manager．

14．Have Project due dates been checked and accepted？ Turn Around Time（TAT）：\(\square\) RUSH DStd

15．SampleMatrix：DLiquid aDrinking Water QGround Water aWaste Water asludge asoil aWipe aPaint asolid Gotherwater

16．Comments： \(\qquad\)
17．Sample Check－In completed by Truesdail Log－In／Receiving：


\section*{APPENDIX G}

\section*{Section 12}

\section*{January Outfall 015}

\section*{AMEC Data Validation Reports}

\section*{Del Mar Analytical Laboratory Report}


\section*{amec \({ }^{8}\)}

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\author{
ANALYSIS: SEMIVOLATILES \\ SAMPLE DELIVERY GROUP: IOA0454, IOA0456
}

\section*{Prepared by}

AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{ll} 
& \begin{tabular}{c} 
Project: \\
DATA VALIDATION REPORT
\end{tabular} \\
SDG:IOA0454, IOA0456 \\
SNOC
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ SDG\#: IOA0454, IOA0456 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: \(\quad\) Semivolatiles (NDMA) \\ QC Level: Level IV \\ No. of Samples: 2 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: M. Pokorny \\ Date of Review: February 23, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Semivolatile Organics (DVP-3, Rev. 2), EPA Method 1625C, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Lab No. & Matrix & Method \\
\hline Outfall 017 & Outfall 017 & 1OA0454-01 & water & 1625 C \\
\hline Outfall 015 & Outfall 015 & 1OA0456-01 & water & 1625 C \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2\), at \(4^{\circ} \mathrm{C}\). According to COCs , the samples were received intact and in good condition. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs from the field to Del Mar Analytical were signed by field and laboratory personnel and accounted for the analyses presented in these SDGs. As the samples were couriered to the laboratory, custody seals are not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The water samples were extracted within seven days of collection and analyzed within 40 days of extraction. No qualifications were required.

\subsection*{2.2 GC/MS TUNING}

Tuning is not applicable for this analysis. No qualifications were required.

\subsection*{2.3 CALIBRATION}

The initial calibration associated with these SDGs was dated \(12 / 30 / 04\). The average RRF for NDMA was \(\geq 0.05\) and the \(\%\) RSD was \(\leq 35 \%\). The continuing calibration was analyzed \(01 / 13 / 05\). The RRF for NDMA was \(\geq 0.05\), and the \(\%\) D was \(\leq 20 \%\). The RRFs, \(\%\) RSD, and \(\%\) D were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.4 BLANKS}

One method blank (5A12032-BLK1) was extracted and analyzed with these SDGs. NDMA was not reported in the method blank. Review of the raw data indicated no false negative. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One blank spike/ blank spike duplicate pair (5A12032-BS1/BSID) was extracted and analyzed with these SDGs. The NDMA recoveries and the RPD were within the laboratory QC limits. The recoveries and RPD were calculated from the raw data and no calculation or transcription errors were found. No qualifications were required.
\begin{tabular}{ll} 
& NPDES \\
DATA VALIDATION REPORT & \begin{tabular}{c} 
Project: \\
SDG:IOA0454, IOA0456
\end{tabular} \\
SVOC
\end{tabular}

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

No MS/MSD analyses were associated with the samples in these SDGs. Evaluation of method accuracy and precision was based on blank spike/blank spike duplicate results. No qualifications were required.

\subsection*{2.7 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

\subsection*{2.7.1 Field Blanks and Equipment Rinsates}

There were no field QC samples associated with these SDGs. No qualifications were required.

\subsection*{2.7.2 Field Duplicates}

There were no field duplicate samples associated with these SDGs. Field duplicate samples are required at a rate of \(10 \%\) per matrix for site samples only and may not be present in every data package. Qualifications are not routinely assigned based on field duplicate results.

\subsection*{2.8 INTERNAL STANDARDS PERFORMANCE}

The internal standard area counts were within the control limits established by the continuing calibration standards \(-50 \% /+100 \%\) for intemal standard areas. Recoveries were calculated from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.9 COMPOUND IDENTIFICATION}

The laboratory analyzed for NDMA by EPA Method 1625C. Review of sample chromatograms and retention times indicated no problems with target compound identification. No qualifications were required.

\subsection*{2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantitation was verified by recalculating any sample detects and/or blank spike/blank spike duplicate concentrations from the raw data and no calculation or transcription errors were found. The reporting limits were supported by the low level of the initial calibration. Reporting limits were not adjusted for sample amount; however, the dilution factors listed on the sample result summaries reflected the sample amount extracted. Results were reported in ug/L. No qualifications were required.

\subsection*{2.11 SYSTEM PERFORMANCE}

Review of the raw data indicated no problems with system performance. No qualifications were required.

\title{
Del Mar Analytical
}
\begin{tabular}{lcr} 
MWH-Pasadena/Boeing & Project ID: Outfall 015 & \\
300 North Lake Avenue, Suite 1200 & Report Number: 1040456 & Sampled: 01/09:05 \\
Pasadena, CA 91101 & & Received: 01/10;05
\end{tabular}

\section*{DRAFT: SEMI-VOLATILE ORGANICS BY GC/MS (EPA 3520C/1625C MOD)}

Analyse
Method
Batch \begin{tabular}{cc} 
MiL & \begin{tabular}{l} 
Reporting \\
Limit
\end{tabular} \\
Limit
\end{tabular} \begin{tabular}{c} 
Sample \begin{tabular}{l} 
Dilution Date \\
Result
\end{tabular}\(\quad\) Factor Extracted
\end{tabular}

Date Data Analyzed Qualifiers
Sample ID: 1OA0456-01 (DRAFT: Outfall 015-Grab - Water) - cont.
Reporting Units: ugh/
N -Nitrosodimethylamine

\title{

}


CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical.
Reviewer L. Calvin
Analysis/Method Volatiles by Method 624

Package ID T711VO48
Task Order 313150010 SDG No. IOA0454, IOA0456
No. of Analyses 3
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Date: February 28, 2005 \\
Reviewersignaturg .
\end{tabular}} \\
\hline \\
\hline
\end{tabular}

\section*{ACTION ITEMS' \\ Case Narrative \\ Deficiencies}
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, e.g.,
Qualification was assigned for the following:
Holding Times
GC/MS Tune/Inst. Performance
Calibration
Method blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification
Quantitation
System Performance
COMMENTS \(^{6}\),

\footnotetext{
* Subcontracted analytical laboratory is not meeting contract and/or method requirements.
b Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.
}

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\author{
ANALYSIS: VOLATILES \\ SAMPLE DELIVERY GROUP: IOA454, IOA456
}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{3}{*}{DATA VALIDATION REPORT} & Project: & NPDES \\
\hline & SDG: & 1OA454, 10A456 \\
\hline & Analvsis: & VOC \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ SDG\#: IOA454, IOA456 \\ Project Manager: B. McIlvaine \\ Matrix: Water \\ Analysis: Volatiles \\ QC Level: Level IV \\ No. of Samples: 3 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: L. Calvin \\ Date of Review: February 28, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Volatile Organics (DVP-2, Rev. 2), EPA Method 624, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary forms as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{cc} 
DATA VALIDATION REPORT & \begin{tabular}{c} 
Project: \\
SDG: \\
NPDES \\
Analysis:
\end{tabular} \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Lab No. & Matrix & Method \\
\hline Outfall 017 & Outfall 017 & IOA0454-01 & water & 624 \\
\hline Outfall 015 & Outfall 015 & IOA0456-01 & water & 624 \\
\hline Trip Blank & Trip Blank & IOA0456-02 & water & 624 \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\), at \(4^{\circ} \mathrm{C}\). The samples were properly preserved. The COCs noted that the samples were received intact; however, information regarding absence of headspace was not provided. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by both field and laboratory personnel. The Trip Blank sample associated with Outfall 015 was crossed out on the COC. The COCs accounted for the remaining analyses presented in these SDGs. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The samples were analyzed within 14 days of collection. No qualifications were required.

\subsection*{2.2 GC/MS TUNING}

The ion abundance windows shown on the quantitation report were consistent with those specified in the EPA Method 624, and all ion abundances were within the established windows. The samples and associated QC were analyzed within 12 hours of the BFB injection times. The Form Vs were verified from the raw data and no discrepancies between the summary forms and the raw data were noted. No qualifications were required.

\subsection*{2.3 CALIBRATION}

One initial calibration dated 01/04/05 was associated with these SDGs. The average RRFs were \(\geq 0.05\) and the \(\%\) RSDs were \(\leq 35 \%\) for the target compounds listed on the sample result summaries. The continuing calibrations associated with the sample analyses were analyzed \(01 / 11 / 05\) at \(08: 13\) and \(03: 52\). The RRFs were \(\geq 0.05\), and \(\%\) Ds were \(\leq 20 \%\) for all target compounds. A representative number of \%RSDs and average RRFs from the initial calibration, and \%Ds and RRFs from the continuing calibration were recalculated from the raw data, and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.4 BLANKS}

Two water method blanks (5All011-BLK1 and 5A11017-BLK1) were associated with the sample analyses. There were no detects above the MDLs for the target compounds listed on the sample result summaries. The method blank raw data showed no evidence of false negatives. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

Two water blank spikes (5A11011-BS1 and 5A11017-BS1) were associated with the sample analyses. All recoveries were within the laboratory-established QC limits. A representative number of recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.6 SURROGATE RECOVERY}

Surrogate toluene-d8 was recovered below the QC limits of \(80-120 \%\) in sample Outfall 017. According to the case narrative for this SDG, the sample was reanalyzed with similar results, indicating a matrix effect on the surrogate. The laboratory submitted only the reanalysis for Outfall 017. Results were qualified as estimated, "J," for detects and "UJ," for nondetects in Outfall 017. The remaining surrogates were recovered within the QC limits of \(80-120 \%\) in the samples and associated QC. A representative number of surrogate recoveries were recalculated from the raw data and no calculation or transcription errors were found. No further qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

MS/MSD analyses were not performed on either of the site samples in these SDGs. Method accuracy was assessed based on the LCS results. No qualifications were required.

\subsection*{2.8 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

\subsection*{2.8.1 Trip Blanks}

Sample Trip Blank was the trip blank associated with site sample Outfall 017. There were no target compounds detected above the MDLs in the trip blank. Sample Outfall 015 did not have an associated trip blank analysis; and was therefore not evaluated for possible trip blank contamination. No qualifications were required.

\subsection*{2.8.2 Field Blanks and Equipment Rinsates}

There were no field QC samples associated with these SDGs. No qualifications were required.
Project: \begin{tabular}{r} 
NPDES \\
DDG: IOA454, IOA456 \\
SALIDATION REPORT
\end{tabular}\(\quad\) VOC

\subsection*{2.8.3 Field Duplicates}

There were no field duplicate samples associated with these SDGs.

\subsection*{2.9 INTERNAL STANDARDS PERFORMANCE}

Internal standard area counts and retention times for the samples in these SDGs were within the control limits established by the continuing calibration standards, of \(+100 \% /-50 \%\) for internal standard areas and \(\pm 0.50\) minutes for retention times. A representative number of internal standard areas and retention times were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.10 COMPOUND IDENTIFICATION}

Target compound identification was verified at a Level IV data validation. The laboratory analyzed for volatile target compounds by EPA Method 624. Chromatograms, retention times, and spectra for the samples and QC were examined and no target compound identification problems were noted. Detects reported between the MDL and the reporting limit were qualified as estimated, " J ," by the laboratory. No further qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification is verified at a Level IV data validation. The reporting limits were supported by the lowest concentrations of the initial calibration standards and by the MDL study. Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike and surrogate recoveries from the raw data. Results were reported in \(\mu \mathrm{g} / \mathrm{L}\) (ppb). No calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.12 TENTATIVELY IDENTIFIED COMPOUNDS}

The laboratory did not provide TICs for these SDGs. No qualifications were required.

\subsection*{2.13 SYSTEM PERFORMANCE}

A review of the chromatograms and other raw data showed no identifiable problems with system performance. No qualifications were required.

Sampled: 010905 Received: 01:1005

DRAFT: PLRGEABLES BY GC/MS (EPA 624)
Analyte \(\quad\) Method Batch
\begin{tabular}{c} 
Sample D: 1OA0456-01 (DRAFT: Outfall 015-Grab - Water) \\
Reporting Units: ug/2
\end{tabular}

1,2,3-Trichloropropane Benzene
Bromodichloromethane
Bromoform
Bromomethane
Carbon tetrachloride
Chloroethane
Chloromethane
Dibromochloromethane
1,2-Dichlorobenzene
1,3-Dichlorobenzene
1,4-Dichlorobenzene
1,1-Dichloroethane
1,2-Dichloroethane
1,1-Dichloroethene trans-1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene
Methylene chloride 1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichloroethene
Trichlorofluoromethane
Vinyl chloride
Xylenes, Total
Surrogate: Dibromofluoromethane (80-120\%)
Surrogate: Toluene-d8 (80-120\%)
Surrogate: 4-Bromofluorobenzene ( \(80-120 \%\) )
\begin{tabular}{lll} 
EPA 624 & 5A11011 & 0.85 \\
EPA 624 & 5 A11011 & 0.28 \\
EPA 624 & 5 A11011 & 030
\end{tabular}
\(104 \%\)
\(105 \%\)

\section*{Sample ID: IOA0456-01RE1 (DRAFT: Outfall 015-Grab - Water) Keporting Units: ug/l}

\title{
CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA
}

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer M. Pokorny
Analysis/Method Volatiles (1,4-dioxane)

Package ID T711VO49
Task Order 313150010
SDG No. IOA0454, 0456
No. of Analyses 2
\begin{tabular}{|l|}
\hline Date: February 23, 2005 \\
\hline Reviewer's Signture \\
III. Whin \\
\hline
\end{tabular}
ACTIONITEMS \({ }^{2}\),
1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, e.g.,
Holding Times
GCMS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Intemal Standard Performance
Compound Identification and
Quantitation
System Performance

\section*{COMMENTS \({ }^{\text {b }}\)}

Acceptable as reviewed.
\({ }^{2}\) Subcontracted analytical laboratory is not meeting contract andor method requirements.
Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

\section*{amec \({ }^{\text {® }}\)}

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\author{
ANALYSIS: VOLATILES \\ SAMPLE DELIVERY GROUP: IOA0454, 0456
}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{ll} 
DATA VALIDATION REPORT & SDG No: \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: IOA0454, IOA456 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Volatiles (1,4-dioxane) \\ QC Level: Level IV \\ No. of Samples: 2 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: M. Pokomy \\ Date of Review: February 23, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Volatile Organics (DVP-2, Rev. 2), EPA Method SW-846 \(8260 B\) and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form 1 as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0454,0456 \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Lab No. & Matrix & Method \\
\hline Outfall 017 & Outfall 017 & IOA0454-01 & water & 624 \\
\hline Outfall 015 & Outfall 015 & IOA0456-01 & water & 624 \\
\hline
\end{tabular}
\begin{tabular}{lrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0454, 0456 \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the Del Mar within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). The samples were properly preserved. The COCs noted that the samples were received intact; however, information regarding absence of headspace was not provided. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed by field and laboratory personnel. The COCs accounted for the analyses presented in these SDGs. According to the sample login sheets, custody seals were not present on the cooler. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The samples were analyzed within 14 days of collection. No qualifications were required.

\subsection*{2.2 GC/MS TUNING}

The ion abundance windows were consistent with those specified in EPA Method 8260B. All ion abundances were within the established windows, and the samples were analyzed within 12 hours of the BFB injection time. No qualifications were required.

\subsection*{2.3 CALIBRATION}

One initial calibration, dated 01/07/05, was associated with this SDG. The average RRF for 1,4dioxane was \(\geq 0.05\) and the \(\%\) RSD was \(\leq 15 \%\). One continuing calibration, dated \(01 / 07 / 05\) was associated with this SDG. The RRF for 1,4 -dioxane was \(\geq 0.05\) and the \(\%\) D was \(\leq 20 \%\). The \(\%\) RSD and average RRF for 1,4-dioxane in the initial calibration, and the \(\% \mathrm{D}\) and RRF for 1,4-dioxane in the continuing calibration were recalculated from the raw data, and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.4 BLANKS}

One water method blank (P5A1502-BLK1) was associated with these SDGs. Target compound 1,4dioxane was not detected in the method blank. The method blank raw data showed no evidence of a false negative. No qualifications were required.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0454, 0456 \\
\hline
\end{tabular}

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The laboratory analyzed a blank spike/blank spike duplicate pair (P5A1502-BS1/BSID) with these SDGs. The recoveries and RPD for 1,4 -dioxane were within the laboratory QC limits. A representative recovery was recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.6 SURROGATE RECOVERY}

The samples and QC were fortified with dibromofluoromethane. The surrogate was recovered within the laboratory QC limits of \(80-125 \%\). The surrogate recoveries for these samples were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

Sample Outfall 015 was the MS/MSD analyses performed with these SDGs. The recoveries and RPD for 1,4-dioxane were within the laboratory QC limits. A representative recovery was recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.8 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data, Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

\subsection*{2.8.1 Trip Blanks}

The samples in these SDGs had no associated trip blank. No qualifications were required.

\subsection*{2.8.1 Field Blanks and Equipment Rinsates}

The site sample in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.8.2 Field Duplicates}

There were no field duplicate samples associated with these SDGs.

\subsection*{2.9 INTERNAL STANDARDS PERFORMANCE}

Internal standard area counts and retention times for the samples were within the control limits established by the continuing calibration standards, of \(+100 \% /-50 \%\) for internal standard areas and \(\pm 0.50\) minutes for retention times. Internal standard areas and retention times were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA. VALIDATION REPORT & SDG No.: & 1OA0454, 0456 \\
\hline
\end{tabular}

\subsection*{2.10 COMPOUND IDENTIFICATION}

Target compound identification was verified at a Level IV data validation. The laboratory analyzed for 1,4-dioxane by Method \(8260 \mathrm{~B} /\) SIM. Chromatograms, retention times, and spectra for the samples and QC were examined and no target compound identification problems were noted. No qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification is verified at a Level IV data validation. The reporting limit was supported by the lowest concentration of the initial calibration standards and by the undated MDL supplied by the laboratory. Compound quantitation was verified by recalculating blank spike and surrogate recoveries from the raw data. No calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.12 TENTATIVELY IDENTIFIED COMPOUNDS}

TICs are not typically reported for SIM methods.

\subsection*{2.13 SYSTEM PERFORMANCE}

A review of the chromatograms and other raw data showed no identifiable problems with system performance. No qualifications were required.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: IOA0456

Sampled: 01:09:05
Received: 0110:05

\section*{DRAFT: 1,4-DIOXANE BY GC/MS (EPA 5030B/8260B)}


LEVEL IV

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer P. Meeks
Analysis/Method General Minerals

Package ID T711WC65
Task Order 313150010
SDG No. IOA0454, IOA0456
No. of Analyses 2
Date: 02/22/05
Rexiewer's Signature
P. \(\#\) bit
\begin{tabular}{|c|c|}
\hline ACIION ITEMS &  \\
\hline 1. Case Narrative Deficiencies &  \\
\hline \begin{tabular}{l}
2. Out of Scope \\
Analyses
\end{tabular} & \\
\hline 3. Analyses Not Conducted & \\
\hline 4. Missing Hardcopy Deliverables & \\
\hline 5. Incorrect Hardcopy Deliverables & \\
\hline 6. Deviations from & Hexavalent chromium detected below the reporting limit was qualified as \\
\hline Analysis Protocol, e.g., & estimated. \\
\hline Holding Times & \\
\hline GC/MS Tune/Inst. & \\
\hline Calibrations & \\
\hline Blanks & \\
\hline Surrogates & \\
\hline Matrix Spike/Dup LCS & \\
\hline Field QC & \\
\hline Internal Standard & \\
\hline Performance & \\
\hline Compound Identification and Quantitation & \\
\hline System Performance & \\
\hline comMENIS \({ }^{\text {b }}\), & \\
\hline & \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
* Subcontracted analytical laboratory is not meeting contract and/or method requirements. \\
\({ }^{5}\) Differences in protocol have been adopted by the laboratory but no action against the laboratory is required
\end{tabular}}} \\
\hline & \\
\hline
\end{tabular}

\section*{Data Qualifier Reference Table}
Qualifier \(\quad\) Organics \(\quad\) Inorganics

U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
\(J \quad\) The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
\(N \quad\) The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."

NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ

R
The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.

The associated value is an estimated quantity.

Not applicable.

Not applicable.

The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

The data are unusable. (Note: Analyte may or may not be present).

\section*{Qualification Code Reference Table}
\begin{tabular}{|c|c|c|}
\hline Qualifier & Organics & Inorganics \\
\hline H & Holding times were exceeded. & Holding times were exceeded. \\
\hline S & Surrogate recovery was outside QC limits. & The sequence or number of standards used for the calibration was incorrect \\
\hline C & Calibration \%RSD or \%D were noncompliant. & Correlation coefficient is \(<0.995\). \\
\hline R & Calibration RRF was \(<0.05\). & \(\% \mathrm{R}\) for calibration is not within control limits. \\
\hline B & Presumed contamination from preparation (method) blank. & Presumed contamination from preparation (method) or calibration blank. \\
\hline L & Laboratory Blank Spike/Blank Spike Duplicate \(\%\) R was not within control limits. & Laboratory Control Sample \%R was not within control limits. \\
\hline Q & MS/MSD recovery was poor or RPD high. & MS recovery was poor. \\
\hline E & Not applicable. & Duplicates showed poor agreement. \\
\hline I & Internal standard performance was unsatisfactory. & ICP ICS results were unsatisfactory. \\
\hline A & Not applicable. & ICP Serial Dilution \%D were not within control limits. \\
\hline M & Tuning (BFB or DFTPP) was noncompliant. & Not applicable. \\
\hline T & Presumed contamination from trip blank. & Not applicable. \\
\hline \(+\) & False positiye - reported compound was not present Not applicable. & \\
\hline - & False negative - compound was present but not reported. & Not applicable. \\
\hline F & Presumed contamination from FB , or ER. & Presumed contamination from FB or ER. \\
\hline \$ & Reported result or other information was incorrect. & Reported result or other information was incorrect. \\
\hline ? & TIC identity or reported retention time has been changed. & Not applicable. \\
\hline D & The analysis with this flag should not be used because another more technically sound analysis is available. & The analysis with this flag should not be used because another more technically sound analysis is available. \\
\hline P & Instrument performance for pesticides was poor. & Post Digestion Spike recovery was not within control limits. \\
\hline DNQ & The compound was detected between the MDL and the RL and, by definition, is considered an estimated value. & The compound was detected between the MDL and the RL and, by definition, is considered an estimated value. \\
\hline
\end{tabular}
*\#
Unusual problems found with the data that have been described in Section 2.\#, "Data Validation Findings." The number following the asterisk (*) will indicate the subsection where a description of the problem can be found (eg. \({ }^{*} 1\) would indicate a sample was not within temperature limits).

Unusual problems found with the data that have been described in Section 2.\#, "Data Validation Findings." The number following the asterisk (*) will indicate the subsection where a description of the problem can be found (eg. *1 would indicate a sample was not within temperature limits).

\title{
amec \({ }^{\circ}\)
}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES Monitoring
}

\section*{ANALYSIS: GENERAL MINERALS SAMPLE DELIVERY GROUPS: IOA0454 \& IOA0456}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
Sample Delivery Group \#: IOA0454 \& IOA456
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: General Minerals
QC Level: Level IV
No. of Samples:
Reviewer: P. Meeks
Date of Review: February 22, 2005

The sample listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 300.0, 350.2, 330.5, 405.1, 335.2, 413.1, 415.1, 418.1, 218.6, 160.2, 160.5, 180.1, and 120.1, Standard Methods for the Examination of Water and Wastewater Methods SM5540-C and SM2540C, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form 1 as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{rr} 
Project: & NPDES \\
SDG No.: & IOA0454/, 0456 \\
Analysis: & Gen. Min. \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory DD & Matrix & COC Method \\
\hline Outfall 015 & Outfall 015 & 1OA0456-01 & water & General Minerals \\
\hline Outfall 017 & Outfall 017 & 10A0454-01 & \({ }^{\text {' }}\) water & General Minerals \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). No preservation problems were noted by the laboratory. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by field and laboratory personnel. The COC had been handcorrected to request settleable solids but TSS was reported. No sample qualifications were required.

\subsection*{2.1.3 Holding Times}

The holding times were assessed by comparing the date of collection with the dates of analyses. The 28 -day analytical holding time for oil and grease, the seven-day holding time for total suspended solids, and the 24 -hour hexavalent chromium and dissolved oxygen holding time were met, and no qualifications were required.

\subsection*{2.2 CALIBRATION}

For hexavalent chromium, the initial calibration correlation coefficient was \(\geq 0.995\), and the ICV and continuing calibration information was acceptable with \(\%\) Rs within the control limits of \(90-110 \%\). The dissolved oxygen probe was checked in zero water and tap water and balance calibration information was provided for TSS. Balance calibration information was not provided to oil and grease; however, as the LCS/LCSD results were within the CCV control limits, no qualifications were required. No qualifications were required.

\subsection*{2.3 BLANKS}

Oil and grease was detected in the method blank, but not at sufficient concentration to qualify the site samples. The remaining method blank and CCB results reported on the summary forms and in the raw data for blank analyses associated with the samples were nondetects at the reporting limit. No qualifications were required.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0454/, 0456 \\
\hline
\end{tabular}

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The laboratory control sample and laboratory control sample duplicate (oil and grease only) recoveries were within the laboratory-established control limits. The LCS is not applicable to diussolved oxygen. No qualifications were required.

\subsection*{2.5 SURROGATES RECOVERY}

Surrogate recovery is not applicable to the analyses presented in these SDGs.

\subsection*{2.6 LABORATORY DUPLICATES}

A duplicate analysis was performed on Outfall 017 for dissolved oxygen and MS/MSD analyses were performed on Outfall 017 for hexavalent chromium. The RPDs were within the laboratory-established control limits of \(\leq 20 \%\) and \(\leq 10 \%\), respectively. No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

MS/MSD analyses were performed on Outfall 017 for hexavalent chromium. Both recoveries were within the laboratory-established control limits of \(90-110 \%\) and no qualifications were required.

\subsection*{2.8 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.9 ICP SERIAL DILUTION}

ICP serial dilution is not applicable to the analyses presented in this data validation report.

\subsection*{2.10 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculations errors were noted. Hexavalent chromium detected below the reporting limit in Outfall 017 was qualified as estimated, "J." No further qualifications were required.

\subsection*{2.11 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.11.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.11.2 Field Duplicates}

There were no field duplicate pairs associated with these SDGs.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: 1OA0456

\section*{DR AFT: INORGANIC}



\section*{AMES VALIDATED}

\section*{LE URL \(\mathbb{V}\)}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: 10A0456

DRAFT: INORGANICS


\section*{AMEC VADDATED \\ L-سール| |V}

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer L. Jarusewic
Analysis/Method Perchlorate by 314.0

\section*{ACTION ITEMS \({ }^{2}\)}

Package ID T711WC66
Task Order 313150010
SDG No. IOA0454/IOA0456
No. of Analyses 2

1. Case Narrative Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy Deliverables
6. Deviations from \(\quad\) Qualifications were applied for MS exceeding QC limits. Analysis Protocol, e.g.,

Qualifications were applied for MS exceeding QC limits.
Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification
and Quantitation
System Performance
\(\qquad\)
\(\square\)
\begin{tabular}{ll|}
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}
\({ }^{3}\) Subcontracted analytical laboratory is not meeting contract and/or method requirements.
\({ }^{-}\)Differences in protocol have been adopted by the laboratory but no action against the labontory is required.

\section*{amec \({ }^{\text {® }}\)}

\section*{DATA VALIDATION REPORT}

NPDES Monitoring

\title{
ANALYSIS: PERCHLORATE SAMPLE DELIVERY GROUPS: IOA0454 and IOA0456
}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: IOA0454 and IOA0456 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Perchlorate \\ QC Level: Level IV \\ No. of Samples: 2 \\ Reviewer: L. Jarusewic \\ Date of Review: February 17, 2005
}

The sample listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 314.0, and 120.1, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form L as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 015 & Outfall 015 & IOA0456-01 & Water & Perchlorate \\
\hline Outfall 017 & Outfall 017 & 1OA0454-01 & Water & Perchlorate \\
\hline
\end{tabular}
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: IOA0454/IOA0456 \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). No preservation problems were noted by the laboratory. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by field and laboratory personnel, and accounted for the samples and analysis presented in these SDGs. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The holding time was assessed by comparing the date of collection with the dates of analysis. The 28day analytical holding time for perchlorate was met, and no qualifications were required.

\subsection*{2.2 CALIBRATION}

The initial calibration correlation coefficients were \(\geq 0.995\). The IPC-MA recoveries were within the control limits of \(80-120 \%\). The ICV, CCV and IPC recoveries were within the control limits of \(90-110 \%\). No qualifications were required.

\subsection*{2.3 BLANKS}

The method blank and CCB results reported on the summary forms and in the raw data for blank analyses associated with the sample were nondetects at the reporting limit. No qualifications were required.

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The laboratory control sample recoveries were within the method control limits of \(85-115 \%\). No qualifications were required.

\subsection*{2.5 SURROGATES RECOVERY}

Surrogate recovery is not applicable to the analysis presented in these SDGs.

\subsection*{2.6 LABORATORY DUPLICATES}

No MS/MSD or duplicate analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

No MS/MSD analyses were performed in association with either SDG; however, a confirmation spike was performed on sample Outfall 015 in association with SDG IOA0456. The perchlorate recovery was above the method control limits of \(80-120 \%\). Perchlorate in this sample was qualified as estimated, "J." No further qualifications were required.

\subsection*{2.8 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analysis of this sample; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.9 ICP SERIAL DILUTION}

ICP serial dilution is not applicable to the analysis presented in this data validation report.

\subsection*{2.10 SAMPLE RESULT YERIFICATION}

A Level IV review was performed for the samples in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculations errors were noted. No qualifications were required.

\subsection*{2.11 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.11.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.11.2 Field Duplicates}

There were no field duplicate pairs associated with these SDGs.


\section*{DRAFT: INORGANICS}


\section*{AMEC VALIDATED}

\section*{LEVEL \(\mathbb{V}\)}

\section*{"Anolyuis Not Vatidator}

\section*{LABORATORY REPORT}

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Outfall 015

Sampled: 01/09/05
Received: 01/10/05
Issued: 03/07/05 08:51

\section*{NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117}

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chains) of Custody, 2 pages, are included and are an integral part of this report.
This entire report was reviewed and approved for release.

\section*{CASE NARRATIVE}

SAMPLE RECEIPT: \(\quad\) Samples were received intact, at \(4^{\circ} \mathrm{C}\), on ice and with chain of custody documentation.
HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the Del Mar Analytical Sample Acceptance Policy unless otherwise noted in the report.
PRESERVATION: Samples requiring preservation were verified prior to sample analysis.
QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.
COMMENTS: Results that fall between the MDL and RL are ' J ' flagged. Total suspended solids analyzed instead of total settleable solids due to miscommunication on the COC.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.
LABORATORY ID
IOA0456-01

CLIENT ID
Outfall 015-Grab

MATRIX
Water

Reviewed By:


Del Mar Analytical, Irvine
Michele Harper
Project Manager

\title{
Del Mar Analytical
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
Project ID: Outfall 015
Report Number: 1OA0456

Sampled: 01/09/05
Received: 01/10/05

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted &  \\
\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{Sample ID: IOA0456-01 (Outfall 015-Grab - Water)
Reporting Units: ugh}} \\
\hline & & & & & & & & \\
\hline 1,2,3-Trichloropropane & EPA 624 & 5A11011 & 0.85 & 10 & ND & 1 & 01/11/05 & 01/11/05 \\
\hline Benzene & EPA 624 & 5A11011 & 0.28 & 1.0 & ND & 1 & 01/11/05 & 01/11/05 \\
\hline Bromodichloromethane & EPA 624 & 5Al1011 & 0.30 & 2.0 & 0.66 & 1 & 01/11/05 & 01/11/05 \\
\hline Bromoform & EPA 624 & 5 Al1011 & 0.32 & 5.0 & ND & 1 & 01/11/05 & 01/11/05 \\
\hline Bromomethane & EPA 624 & 5A11011 & 0.34 & 5.0 & ND & 1 & 01/11/05 & 01/11/05 \\
\hline Carbon tetrachloride & EPA 624 & 5A11011 & 0.28 & 0.50 & ND & 1 & 01/11/05 & 01/11/05 \\
\hline Chloroethane & EPA 624 & 5A11011 & 0.33 & 5.0 & ND & 1 & 01/11/05 & 01/11/05 \\
\hline Chioromethane & EPA 624 & 5A11011 & 0.30 & 5.0 & ND & 1 & 01/11/05 & 01/11/05 \\
\hline Dibromochloromethane & EPA 624 & 5A11011 & 0.28 & 2.0 & ND & 1 & 01/11/05 & 01/11/05 \\
\hline 1,2-Dichlorobenzene & EPA 624 & 5A11011 & 0.32 & 2.0 & ND & 1 & 01/11/05 & 01/11/05 \\
\hline 1,3-Dichlorobenzene & EPA 624 & 5A11011 & 0.35 & 2.0 & ND & 1 & 01/11/05 & 01/11/05 \\
\hline 1,4-Dichlorobenzene & EPA 624 & 5A11011 & 0.37 & 2.0 & ND & 1 & 01/11/05 & 01/11/05 \\
\hline 1,1-Dichloroethane & EPA 624 & 5Al1011 & 0.27 & 2.0 & ND & 1 & 01/11/05 & 01/11/05 \\
\hline 1,2-Dichloroethane & EPA 624 & 5Al1011 & 0.28 & 0.50 & ND & 1 & 01/11/05 & 01/11/05 \\
\hline 1,1-Dichloroethene & EPA 624 & 5A11011 & 0.32 & 5.0 & ND & 1 & 01/11/05 & 01/11/05 \\
\hline trans-1,2-Dichloroethene & EPA 624 & 5A11011 & 0.27 & 2.0 & ND & 1 & 01/11/05 & 01/11/05 \\
\hline 1,2-Dichloropropane & EPA 624 & \(5 \mathrm{Al1011}\) & 0.35 & 2.0 & ND & 1 & 01/11/05 & 01/11/05 \\
\hline cis-1,3-Dichloropropene & EPA 624 & 5A11011 & 0.22 & 2.0 & ND & 1 & 01/11/05 & 01/11/05 \\
\hline trans-1,3-Dichloropropene & EPA 624 & \(5 \mathrm{Al1011}\) & 0.24 & 2.0 & ND & 1 & \(01 / 11 / 05\) & 01/11/05 \\
\hline Ethylbenzene & EPA 624 & 5A11011 & 0.25 & 2.0 & ND & 1 & 01/11/05 & 01/11/05 \\
\hline Methylene chloride & EPA 624 & 5 A11011 & 0.48 & 5.0 & ND & 1 & 01/11/05 & 01/11/05 \\
\hline 1,1,2,2-Tetrachloroethane & EPA 624 & 5A11011 & 0.24 & 2.0 & ND & 1 & 01/11/05 & 01/11/05 \\
\hline Tetrachloroethene & EPA 624 & 5 A11011 & 0.32 & 2.0 & ND & 1 & 01/11/05 & 01/11/05 \\
\hline Toluene & EPA 624 & 5A11011 & 0.36 & 2.0 & ND & 1 & 01/11/05 & 01/11/05 \\
\hline 1,1,1-Trichloroethane & EPA 624 & 5A11011 & 0.30 & 2.0 & ND & 1 & 01/11/05 & 01/11/05 \\
\hline 1,1,2-Trichloroethane & EPA 624 & 5A11011 & 0.30 & 2.0 & ND & 1 & 01/11/05 & 01/11/05 \\
\hline Trichloroethene & EPA 624 & 5A11011 & 0.26 & 2.0 & 1.2 & 1 & 01/11/05 & 01/11/05 \\
\hline Trichlorofluoromethane & EPA 624 & 5A11011 & 0.34 & 5.0 & ND & 1 & 01/11/05 & 01/11/05 \\
\hline Vinyl chloride & EPA 624 & 5A11011 & 0.26 & 0.50 & ND & 1 & 01/11/05 & 01/11/05 \\
\hline Xylenes, Total & EPA 624 & 5A11011 & 0.52 & 4.0 & ND & 1 & 01/11/05 & 01/11/05 \\
\hline Surrogate: Dibromofluorom & & & & & \(88 \%\) & & & \\
\hline Surrogate: Toluene-d8 (80 & & & & & 98\% & & & \\
\hline Surrogate: 4-Bromofluorobe & & & & & 97\% & & & \\
\hline \multicolumn{9}{|l|}{Sample ID: 1OA0456-01RE1 (Outfall 015-Grab - Water)} \\
\hline \multicolumn{9}{|l|}{Reporting Units: ug/} \\
\hline Chlorobenzene & EPA 624 & 5 A11017 & 0.36 & 2.0 & ND & 1 & 01/11/05 & 01/12/05 \\
\hline Chloroform & EPA 624 & 5A11017 & 0.33 & 2.0 & 7.4 & 1 & 01/11/05 & 01/12/05 \\
\hline \multicolumn{2}{|l|}{Surrogate: Dibromofluoromethane (80-120\%)} & & & & 108\% & & & \\
\hline \multicolumn{2}{|l|}{Surrogate: Toluene-d8 (80-120\%)} & & & & 104\% & & & \\
\hline \multicolumn{2}{|l|}{Surrogate: 4-Bromofluorobenzene (80-120\%)} & & & & 106\% & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: 1OA0456 Received: 01/10/05

Sampled: 01/09/05

\section*{SEMI-VOLATILE ORGANICS BY GC/MS (EPA 3520C/1625C MOD)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & Dilution Factor & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{Sample ID: 1OA0456-01 (Outfall 015-Grab - Water) - cont.} \\
\hline \multicolumn{10}{|l|}{Reporting Units: ugh} \\
\hline N -Nitrosodimethylamine & EPA 1625C Mod & 5A12032 & 0.00070 & 0.0020 & 0.0075 & 0.995 & 01/12/05 & 01/13/05 & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: IOA0456

Sampled: 01/09/05
Received: 01/10/05

INORGANICS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{Sample ID: 1OA0456-01 (Outfall 015-Grab - Water) - cont. Reporting Units: mgI}} \\
\hline & & & & & & & & & \\
\hline Chromium VI & EPA 218.6 & 5A10086 & 0.000041 & 0.0010 & ND & 1 & 01/10/05 & 01/10/05 & \\
\hline Dissolved Oxygen & EPA 360.1 & 5A10085 & 1.0 & 1.0 & 7.4 & 1 & 01/10/05 & 01/10/05 & \\
\hline Oil \& Grease & EPA 413.1 & 5A12061 & 0.94 & 5.0 & 11 & 1 & 01/12/05 & 01/12/05 & B \\
\hline Surfactants (MBAS) & SM5540-C & 5A10079 & 0.044 & 0.10 & 0.19 & 1 & 01/10/05 & 01/10/05 & \\
\hline Total Suspended Solids & EPA 160.2 & 5A11105 & 10 & 10 & ND & 1 & 01/11/05 & 01/11/05 & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015

Report Number: IOA0456

Sampled: 01/09/05
Received: 01/10/05

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Sample ID: IOA0456-01 (Outfall 015-Grab - Water) - cont. \\
Reporting Units: ugh
\end{tabular}}} \\
\hline & & & & & & & & & \\
\hline Perchlorate & EPA 314.0 & 5A14042 & 8.0 & 40 & 150 & 10 & 01/14/05 & 01/14/05 & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: 1040456

Sampled: 01/09/05
Received: 01/10/05

1,4-DIOXANE BY GC/MS (EPA 5030B/8260B)


MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: IOA0456

SHORT HOLD TIME DETAIL REPORT
\begin{tabular}{lccccc} 
& \begin{tabular}{c} 
Hold Time \\
(in days)
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Sampled
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Received
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Extracted
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Analyzed
\end{tabular} \\
Sample ID: Outfall 015-Grab (1OA0456-01) & Water & 1 & \(01 / 09 / 200520: 25\) & \(01 / 10 / 200516: 20\) & \(01 / 10 / 200518: 08\) \\
EPA 218.6 & 1 & \(01 / 09 / 200520: 25\) & \(01 / 10 / 200516: 20\) & \(01 / 10 / 200519: 23\) \\
EPA 360.1 & 2 & \(01 / 09 / 200520: 25\) & \(01 / 10 / 200516: 20\) & \(01 / 10 / 2005\) & \(01: 39\)
\end{tabular}

\title{
Del Mar Analytical
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: 1040456
. Tecive 011005
Received: 01/10/05

\section*{METHOD BLANKIOC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
Analyte
Batch: 5A11011 Extracted: 01/11/05

Blank Analyzed: 01/11/2005 (5A11011-BLK1)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1,2,3-Trichloropropane & ND & 10 & 0.85 & ug/ & & & \\
\hline Benzene & ND & 1.0 & 0.28 & ugh & & & \\
\hline Bromodichloromethane & ND & 2.0 & 0.30 & ugh & & & \\
\hline Bromoform & ND & 5.0 & 0.32 & ug/l & & & \\
\hline Bromomethane & ND & 5.0 & 0.34 & ug/l & & & \\
\hline Carbon tetrachloride & ND & 0.50 & 0.28 & ug/ & & & \\
\hline Chlorobenzene & ND & 2.0 & 0.36 & ug/1 & & & \\
\hline Chloroethane & ND & 5.0 & 0.33 & ug/ & & & \\
\hline Chloroform & ND & 2.0 & 0.33 & ug/ & & & \\
\hline Chloromethane & ND & 5.0 & 0.30 & ug/ & & & \\
\hline Dibromochloromethane & ND & 2.0 & 0.28 & ug/1 & & & \\
\hline 1,2-Dichlorobenzene & ND & 2.0 & 0.32 & ug/ & & & \\
\hline 1,3-Dichlorobenzene & ND & 2.0 & 0.35 & ugh & & & \\
\hline 1,4 Dichlorobenzene & ND & 20 & 0.37 & ugh & & & \\
\hline 1,1-Dichloroethane & ND & 2.0 & 0.27 & ug/ & & & \\
\hline 1,2-Dichloroethane & ND & 0.50 & 0.28 & ug/ & & & \\
\hline 1,1-Dichloroethene & ND & 5.0 & 0.32 & ug/ & & & \\
\hline trans-1,2-Dichloroethene & ND & 2.0 & 0.27 & ug/ & & & \\
\hline 1,2-Dichloropropane & ND & 2.0 & 0.35 & ug/ & & & \\
\hline cis-1,3-Dichloropropene & ND & 2.0 & 0.22 & ug/ & & & \\
\hline trans-1,3-Dichloropropene & ND & 2.0 & 0.24 & ug/ & & & \\
\hline Ethylbenzene & ND & 2.0 & 0.25 & ugh & & & \\
\hline Methylene chloride & ND & 5.0 & 0.48 & ugh & & & \\
\hline 1,1,2,2-Tetrachloroethane & ND & 2.0 & 0.24 & ug/l & & & \\
\hline Tetrachloroethene & ND & 2.0 & 0.32 & ug/ & & & \\
\hline Toluene & ND & 2.0 & 0.36 & ugh & & & \\
\hline 1,1,1-Trichloroethane & ND & 2.0 & 0.30 & ug/ & & & \\
\hline 1,1,2-Trichloroethane & ND & 2.0 & 0.30 & ug/ & & & \\
\hline Trichloroethene & ND & 2.0 & 0.26 & ugh & & & \\
\hline Trichlorofluoromethane & ND & 5.0 & 0.34 & ug/ & & & \\
\hline Vinyl chloride & ND & 0.50 & 0.26 & ug/ & & & \\
\hline Xylenes, Total & ND & 4.0 & 0.52 & ugh & & & \\
\hline Surrogate: Dibromofluoromethane & 24.1 & & & ug/ & 25.0 & 96 & 80-120 \\
\hline Surrogate: Toluene-d8 & 24.9 & & & ug/ & 25.0 & 100 & 80-120 \\
\hline Surrogate: 4-Bromofluorobenzene & 24.1 & & & \(u g /\) & 25.0 & 96 & 80-120 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

\title{
Del Mar Analytical
}

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

\title{
Project ID: Outfall 015 \\ Report Number: IOA0456 \\ Sampled: 01/09/05 \\ Received: 01/10/05
}

\section*{METHOD BLANKIQC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{lllllllllll} 
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit
\end{tabular}

Batch: 5A11011 Extracted: 01/11/05
LCS Analyzed: 01/11/2005 (5A11011-BS1)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1,2,3-Trichloropropane & 22.8 & 10 & 0.85 & ug/l & 25.0 & 91 & 60-130 \\
\hline Benzene & 21.4 & 1.0 & 0.28 & ug/l & 25.0 & 86 & 70-120 \\
\hline Bromodichloromethane & 24.5 & 2.0 & 0.30 & ug/l & 25.0 & 98 & 70-140 \\
\hline Bromoform & 25.0 & 5.0 & 0.32 & ug/l & 25.0 & 100 & 55-135 \\
\hline Bromomethane & 25.4 & 5.0 & 0.34 & ug/l & 25.0 & 102 & 60-140 \\
\hline Carbon tetrachloride & 26.1 & 0.50 & 0.28 & ug/l & 25.0 & 104 & 70-140 \\
\hline Chlorobenzene & 24.2 & 2.0 & 0.36 & ug/l & 25.0 & 97 & 80-125 \\
\hline Chloroethane & 24.1 & 5.0 & 0.33 & ug/l & 25.0 & 96 & 60-145 \\
\hline Chloroform & 22.8 & 2.0 & 0.33 & ug/1 & 25.0 & 91 & 75-130 \\
\hline Chloromethane & 20.7 & 5.0 & 0.30 & ug/ & 25.0 & 83 & 40-145 \\
\hline Dibromochloromethane & 25.6 & 2.0 & 0.28 & ug/1 & 25.0 & 102 & 65-145 \\
\hline 1,2-Dichlorobenzene & 24.2 & 2.0 & 0.32 & ug/ & 25.0 & 97 & 80-120 \\
\hline 13-Dichlorobenzene & 23.3 & 2.0 & 0.35 & ug/t & 250 & 93 & 80120 \\
\hline 1,4-Dichlorobenzene & 23.2 & 2.0 & 0.37 & ug/ & 25.0 & 93 & 80-120 \\
\hline 1,1-Dichloroethane & 22.3 & 2.0 & 0.27 & ug/l & 25.0 & 89 & 70-135 \\
\hline 1,2-Dichloroethane & 24.3 & 0.50 & 0.28 & ug/ & 25.0 & 97 & 60-150 \\
\hline 1,1-Dichloroethene & 22.5 & 5.0 & 0.32 & ug/1 & 25.0 & 90 & 75-135 \\
\hline trans-1,2-Dichloroethene & 23.6 & 2.0 & 0.27 & ug/ & 25.0 & 94 & 70-130 \\
\hline 1,2-Dichloropropane & 23.0 & 2.0 & 0.35 & ug/ & 25.0 & 92 & 70-120 \\
\hline cis-1,3-Dichloropropene & 25.0 & 2.0 & 0.22 & ug/ & 25.0 & 100 & 75-130 \\
\hline trans-1,3-Dichloropropene & 25.3 & 2.0 & 0.24 & ug/l & 25.0 & 101 & 75-135 \\
\hline Ethylbenzene & 24.7 & 2.0 & 0.25 & ug/l & 25.0 & 99 & 80-120 \\
\hline Methylene chloride & 22.7 & 5.0 & 0.48 & ug/l & 25.0 & 91 & 60-135 \\
\hline 1,1,2,2-Tetrachloroethane & 21.2 & 2.0 & 0.24 & ug/l & 25.0 & 85 & 60-135 \\
\hline Tetrachloroethene & 25.4 & 2.0 & 0.32 & ug/l & 25.0 & 102 & 75-125 \\
\hline Toluene & 22.9 & 2.0 & 0.36 & ug/ & 25.0 & 92 & 75-120 \\
\hline 1,1,1-Trichloroethane & 25.3 & 2.0 & 0.30 & ug/l & 25.0 & 101 & 75-140 \\
\hline 1,1,2-Trichloroethane & 23.6 & 2.0 & 0.30 & ug/ & 25.0 & 94 & 70-125 \\
\hline Trichloroethene & 24.9 & 2.0 & 0.26 & ug/l & 25.0 & 100 & 80-120 \\
\hline Trichlorofluoromethane & 25.2 & 5.0 & 0.34 & \(\mathrm{ug} / 1\) & 25.0 & 101 & 65-145 \\
\hline Vinyl chloride & 20.2 & 0.50 & 0.26 & ug/l & 25.0 & 81 & 50-130 \\
\hline Surrogate: Dibromofluoromethane & 24.4 & & & \(u g / l\) & 25.0 & 98 & 80-120 \\
\hline Surrogate: Toluene-d8 & 25.0 & & & \(u \mathrm{~g} / \mathrm{l}\) & 25.0 & 100 & 80-120 \\
\hline Surrogate: 4-Bromofluorobenzene & 24.6 & & & \(u g /\) & 25.0 & 98 & 80-120 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

\title{
Del Mar Analytical
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: 1040456

Sampled: 01/09/05
Received: 01/10/05

\section*{METHOD BLANKIOC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}


Batch: 5A11011 Extracted: 01/11/05
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Matrix Spike Analyzed: 01/11/2005 (5A1011-MS1)} & \multicolumn{5}{|c|}{Source: 10A0480-01} \\
\hline 1,2,3-Trichloropropane & 21.1 & 10 & 0.85 & ug/ & 25.0 & ND & 84 & 55-140 \\
\hline Benzene & 19.1 & 1.0 & 0.28 & ugh & 25.0 & ND & 76 & 70-120 \\
\hline Bromodichloromethane & 21.1 & 2.0 & 0.30 & ugh & 25.0 & ND & 84 & 70-140 \\
\hline Bromoform & 23.5 & 5.0 & 0.32 & ug/ & 25.0 & ND & 94 & 55-140 \\
\hline Bromomethane & 18.1 & 5.0 & 0.34 & ug/ & 25.0 & ND & 72 & 50-145 \\
\hline Carbon tetrachloride & 21.7 & 0.50 & 0.28 & ug/ & 25.0 & ND & 87 & 70-145 \\
\hline Chlorobenzene & 23.8 & 2.0 & 0.36 & ug/ & 25.0 & 1.8 & 88 & 80-125 \\
\hline Chloroethane & 17.6 & 5.0 & 0.33 & ug/ & 25.0 & ND & 70 & 50-145 \\
\hline Chloroform & 18.4 & 2.0 & 0.33 & ug/ & 25.0 & ND & 74 & 70-135 \\
\hline Chloromethane & 14.2 & 5.0 & 0.30 & ug/ & 25.0 & ND & 57 & 35-145 \\
\hline Dibromochloromethane & 23.1 & 2.0 & 0.28 & ug/ & 25.0 & ND & 92 & 65-145 \\
\hline 1,2-Dichlorobenzene & 23.1 & 2.0 & 0.32 & ug/ & 25.0 & ND & 92 & 75-130 \\
\hline 13-Dichlorobenzene & 21.8 & 2.0 & 035 & ugh & 25.0 & ND & 87 & 75-130 \\
\hline 14- Dichlorobenzene & 21.6 & 2.0 & 037 & ug/ & 25.0 & ND & 86 & 80-120 \\
\hline 1,1-Dichloroethane & 18.2 & 2.0 & 0.27 & ug/ & 25.0 & ND & 73 & 65-135 \\
\hline 1,2-Dichloroethane & 20.9 & 0.50 & 0.28 & ug/ & 25.0 & ND & 84 & 60-150 \\
\hline 1,1-Dichloroethene & 18.4 & 5.0 & 0.32 & ug/ & 25.0 & ND & 74 & 65-140 \\
\hline trans-1,2-Dichloroethene & 19.9 & 2.0 & 0.27 & ug/ & 25.0 & ND & 80 & 65-135 \\
\hline 1,2-Dichloropropane & 20.8 & 2.0 & 0.35 & ugh & 25.0 & ND & 83 & 65-130 \\
\hline cis-1,3-Dichloropropene & 22.5 & 2.0 & 0.22 & ug/ & 25.0 & ND & 90 & 70-140 \\
\hline trans-1,3-Dichloropropene & 22.8 & 2.0 & 0.24 & ug/ & 25.0 & ND & 91 & 70-140 \\
\hline Ethylbenzene & 22.2 & 2.0 & 0.25 & ugh & 25.0 & ND & 89 & 70-130 \\
\hline Methylene chloride & 18.8 & 5.0 & 0.48 & ug/ & 25.0 & ND & 75 & 60-135 \\
\hline 1,1,2,2-Tetrachloroethane & 21.3 & 2.0 & 0.24 & ug/ & 25.0 & ND & 85 & 60-145 \\
\hline Tetrachloroethene & 24.2 & 2.0 & 0.32 & ug/ & 25.0 & ND & 97 & 70-130 \\
\hline Toluene & 20.6 & 2.0 & 0.36 & ug/1 & 25.0 & ND & 82 & 70-120 \\
\hline 1,1,1-Trichloroethane & 20.4 & 2.0 & 0.30 & ug/ & 25.0 & ND & 82 & 75-140 \\
\hline 1,1,2-Trichloroethane & 21.2 & 2.0 & 0.30 & ug/1 & 25.0 & ND & 85 & 60-135 \\
\hline Trichloroethene & 22.0 & 2.0 & 0.26 & ugl & 25.0 & ND & 88 & 70-125 \\
\hline Trichlorofluoromethane & 18.7 & 5.0 & 0.34 & ug/l & 25.0 & ND & 75 & 55-145 \\
\hline Vinyl chloride & 14.9 & 0.50 & 0.26 & ug/1 & 25.0 & ND & 60 & 40-135 \\
\hline Surrogate: Dibromofluoromethane & 22.2 & & & ug/ & 25.0 & & 89 & 80-120 \\
\hline Surrogate: Toluene-d8 & 24.6 & & & \(u g h\) & 25.0 & & 98 & 80-120 \\
\hline Surrogate: 4-Bromofluorobenzene & 23.7 & & & ug/l & 25.0 & & 95 & 80-120 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

\section*{Michele Harper}

Project Manager

\title{
Del Mar Analytical
}

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Outfall 015
Report Number: IOA0456
Sampled: 01/09/05
Received: 01/10/05

\section*{METHOD BLANK/QC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{llllllllllll} 
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

Batch: 5A11011 Extracted: 01/11/05
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Matrix Spike Dup Analyzed: 01/11/2005 (5A11011-MSD1)} & \multicolumn{8}{|c|}{Source: 10A0480-01} \\
\hline 1,2,3-Trichloropropane & 20.7 & 10 & 0.85 & ug/ & 25.0 & ND & 83 & 55-140 & 2 & 30 \\
\hline Benzene & 19.4 & 1.0 & 0.28 & ug/ & 25.0 & ND & 78 & 70-120 & 2 & 20 \\
\hline Bromodichloromethane & 21.3 & 2.0 & 0.30 & ug/ & 25.0 & ND & 85 & 70-140 & 1 & 20 \\
\hline Bromoform & 23.0 & 5.0 & 0.32 & ug/ & 25.0 & ND & 92 & 55-140 & 2 & 25 \\
\hline Bromomethane & 18.9 & 5.0 & 0.34 & ug/ & 25.0 & ND & 76 & 50-145 & 4 & 25 \\
\hline Carbon tetrachloride & 22.5 & 0.50 & 0.28 & ug/ & 25.0 & ND & 90 & 70-145 & 4 & 25 \\
\hline Chlorobenzene & 24.0 & 2.0 & 0.36 & ug/ & 25.0 & 1.8 & 89 & 80-125 & 1 & 20 \\
\hline Chloroethane & 18.5 & 5.0 & 0.33 & ug/ & 25.0 & ND & 74 & 50-145 & 5 & 25 \\
\hline Chloroform & 18.6 & 2.0 & 0.33 & ug/ & 25.0 & ND & 74 & 70-135 & 1 & 20 \\
\hline Chloromethane & 14.5 & 5.0 & 0.30 & ugh & 25.0 & ND & 58 & 35-145 & 2 & 25 \\
\hline Dibromochloromethane & 23.0 & 2.0 & 0.28 & ug/ & 25.0 & ND & 92 & 65-145 & 0 & 25 \\
\hline 1,2-Dichlorobenzene & 23.7 & 2.0 & 0.32 & ug/ & 25.0 & ND & 95 & 75-130 & 3 & 20 \\
\hline 13-Dichlorobenzene & 22.3 & 2.0 & 0.35 & ug/ & 25.0 & ND & 89 & 75130 & 2 & 20 \\
\hline 1,4-Bichlorobenzene & 22.1 & 20 & 0.37 & ug/l & 25.0 & ND & 88 & \(80-120\) & 2 & 20 \\
\hline 1,1-Dichloroethane & 18.7 & 2.0 & 0.27 & ug/l & 25.0 & ND & 75 & 65-135 & 3 & 20 \\
\hline 1,2-Dichloroethane & 20.6 & 0.50 & 0.28 & ug/l & 25.0 & ND & 82 & 60-150 & 1 & 20 \\
\hline 1,1-Dichloroethene & 19.1 & 5.0 & 0.32 & ug/ & 25.0 & ND & 76 & 65-140 & 4 & 20 \\
\hline trans-1,2-Dichloroethene & 20.3 & 2.0 & 0.27 & ugh & 25.0 & ND & 81 & 65-135 & 2 & 20 \\
\hline 1,2-Dichloropropane & 21.1 & 2.0 & 0.35 & ugh & 25.0 & ND & 84 & 65-130 & 1 & 20 \\
\hline cis-1,3-Dichloropropene & 22.3 & 2.0 & 0.22 & ug/ & 25.0 & ND & 89 & 70-140 & 1 & 20 \\
\hline trans-1,3-Dichloropropene & 22.6 & 2.0 & 0.24 & ugh & 25.0 & ND & 90 & 70-140 & 1 & 25 \\
\hline Ethylbenzene & 22.8 & 2.0 & 0.25 & ug/ & 25.0 & ND & 91 & 70-130 & 3 & 20 \\
\hline Methylene chloride & 18.7 & 5.0 & 0.48 & ug/ & 25.0 & ND & 75 & 60-135 & 1 & 20 \\
\hline 1,1,2,2-Tetrachloroethane & 21.1 & 2.0 & 0.24 & ug/ & 25.0 & ND & 84 & 60-145 & 1 & 30 \\
\hline Tetrachloroethene & 25.1 & 2.0 & 0.32 & ug/l & 25.0 & ND & 100 & 70-130 & 4 & 20 \\
\hline Toluene & 21.1 & 2.0 & 0.36 & ug/l & 25.0 & ND & 84 & 70-120 & 2 & 20 \\
\hline 1,1,1-Trichloroethane & 20.8 & 2.0 & 0.30 & ug/ & 25.0 & ND & 83 & 75-140 & 2 & 20 \\
\hline 1,1,2-Trichloroethane & 20.6 & 2.0 & 0.30 & ug/ & 25.0 & ND & 82 & 60-135 & 3 & 25 \\
\hline Trichloroethene & 22.6 & 2.0 & 0.26 & ug/l & 25.0 & ND & 90 & 70-125 & 3 & 20 \\
\hline Trichlorofluoromethane & 19.5 & 5.0 & 0.34 & ug/l & 25.0 & ND & 78 & 55-145 & 4 & 25 \\
\hline Vinyl chloride & 15.7 & 0.50 & 0.26 & ug/l & 25.0 & ND & 63 & 40-135 & 5 & 30 \\
\hline Surrogate: Dibromofluoromethane & 22.0 & & & \(u g /\) & 25.0 & & 88 & 80-120 & & \\
\hline Surrogate: Toluene-d8 & 24.8 & & & ug/ & 25.0 & & 99 & 80-120 & & \\
\hline Surrogate: 4-Bromofluorobenzene & 23.4 & & & ug/ & 25.0 & & 94 & 80-120 & & \\
\hline
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: IOA0456
Sampled: 01/09/05
Received: 01/10/05

\section*{METHOD BLANKKQC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
Analyte Result
\begin{tabular}{cccccccccc} 
Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

Batch: 5A11017 Extracted: 01/11/05


\footnotetext{
Del Mar Analytical, Irvine
Michele Harper
Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
\begin{tabular}{cr} 
Project ID: Outfall 015 & \\
& Sampled: 01/09/05 \\
Report Number: 1040456 & Received: 01/10/05
\end{tabular}

Sampled: 01/09/05
Received: 01/10/05

\section*{METHOD BLANKIQC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
Analyte Result
\begin{tabular}{ccccccccccc} 
Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular} Batch: 5A11017 Extracted: 01/11/05

LCS Analyzed: 01/11/2005 (5A11017-BS1)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1,2,3-Trichloropropane & 18.1 & 10 & 0.85 & ugh & 25.0 & 72 & 60-130 \\
\hline Benzene & 21.6 & 1.0 & 0.28 & ugh & 25.0 & 86 & 70-120 \\
\hline Bromodichloromethane & 23.1 & 2.0 & 0.30 & ugh & 25.0 & 92 & 70-140 \\
\hline Bromoform & 16.7 & 5.0 & 0.32 & ugh & 25.0 & 67 & 55-135 \\
\hline Bromomethane & 22.7 & 5.0 & 0.34 & ug/ & 25.0 & 91 & 60-140 \\
\hline Carbon tetrachloride & 24.3 & 0.50 & 0.28 & ug/l & 25.0 & 97 & 70-140 \\
\hline Chlorobenzene & 23.3 & 2.0 & 0.36 & ug/ & 25.0 & 93 & 80-125 \\
\hline Chloroethane & 21.9 & 5.0 & 0.33 & ug/ & 25.0 & 88 & 60-145 \\
\hline Chloroform & 23.4 & 2.0 & 0.33 & ugl & 25.0 & 94 & 75-130 \\
\hline Chloromethane & 19.1 & 5.0 & 0.30 & ug/l & 25.0 & 76 & 40-145 \\
\hline Dibromochloromethane & 19.4 & 2.0 & 0.28 & ug/ & 25.0 & 78 & 65-145 \\
\hline 1,2-Dichlorobenzene & 22.5 & 2.0 & 0.32 & ug/l & 25.0 & 90 & 80-120 \\
\hline 1,3Dichlorobenzene & 23.1 & 2.0 & 0.35 & ugh & 25.0 & 92 & 80-120 \\
\hline 1,4 Dichlorobenzene & 22.9 & 2.0 & 0.37 & ugh & 25.0 & 92 & 80.120 \\
\hline 1,1-Dichloroethane & 23.0 & 2.0 & 0.27 & ug/l & 25.0 & 92 & 70-135 \\
\hline 1,2-Dichloroethane & 21.5 & 0.50 & 0.28 & ug/ & 25.0 & 86 & 60-150 \\
\hline 1,1-Dichloroethene & 21.5 & 5.0 & 0.32 & ug/ & 25.0 & 86 & 75-135 \\
\hline trans-1,2-Dichloroethene & 23.3 & 2.0 & 0.27 & ugh & 25.0 & 93 & 70-130 \\
\hline 1,2-Dichloropropane & 22.8 & 2.0 & 0.35 & ugh & 25.0 & 91 & 70-120 \\
\hline cis-1,3-Dichloropropene & 22.8 & 2.0 & 0.22 & ug/ & 25.0 & 91 & 75-130 \\
\hline trans-1,3-Dichloropropene & 21.6 & 2.0 & 0.24 & ug/ & 25.0 & 86 & 75-135 \\
\hline Ethylbenzene & 24.4 & 2.0 & 0.25 & ug/l & 25.0 & 98 & 80-120 \\
\hline Methylene chloride & 21.6 & 5.0 & 0.48 & ug/ & 25.0 & 86 & 60-135 \\
\hline 1,1,2,2-Tetrachloroethane & 18.6 & 2.0 & 0.24 & ug/ & 25.0 & 74 & 60-135 \\
\hline Tetrachloroethene & 23.1 & 2.0 & 0.32 & ug/l & 25.0 & 92 & 75-125 \\
\hline Toluene & 23.0 & 2.0 & 0.36 & ug/ & 25.0 & 92 & 75-120 \\
\hline 1,1,1-Trichloroethane & 24.6 & 2.0 & 0.30 & ug/ & 25.0 & 98 & 75-140 \\
\hline 1,1,2-Trichloroethane & 19.4 & 2.0 & 0.30 & ugh & 25.0 & 78 & 70-125 \\
\hline Trichloroethene & 22.8 & 2.0 & 0.26 & ug/ & 25.0 & 91 & 80-120 \\
\hline Trichlorofluoromethane & 21.5 & 5.0 & 0.34 & ugh & 25.0 & 86 & 65-145 \\
\hline Vinyl chloride & 20.3 & 0.50 & 0.26 & ug/ & 25.0 & 81 & 50-130 \\
\hline Surrogate: Dibromofluoromethane & 24.6 & & & \(u g /\) & 25.0 & 98 & 80-120 \\
\hline Surrogate: Toluene-d8 & 25.1 & & & \(u g /\) & 25.0 & 100 & 80-120 \\
\hline Surrogate: 4-Bromofluorobenzene & 24.4 & & & \(u g /\) & 25.0 & 98 & 80-120 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine \\ Michele Harper \\ Project Manager}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: IOA0456
Sampled: 01/09/05
Received: 01/10/05

\section*{METHOD BLANKIQC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
Analyte Result

Batch: 5A11017 Extracted: 01/11/05
Matrix Spike Analyzed: 01/11/2005 (5A11017-MS1)
\begin{tabular}{cccccccccc} 
Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1,2,3-Trichloropropane & 17.8 & 10 & 0.85 & ug/ & 25.0 & ND & 71 & 55-140 \\
\hline Benzene & 21.7 & 1.0 & 0.28 & ug/ & 25.0 & ND & 87 & 70-120 \\
\hline Bromodichloromethane & 23.6 & 2.0 & 0.30 & ug/ & 25.0 & ND & 94 & 70-140 \\
\hline Bromoform & 17.0 & 5.0 & 0.32 & ug/ & 25.0 & ND & 68 & 55-140 \\
\hline Bromomethane & 22.7 & 5.0 & 0.34 & ug/ & 25.0 & ND & 91 & 50-145 \\
\hline Carbon tetrachloride & 24.5 & 0.50 & 0.28 & ug/ & 25.0 & ND & 98 & 70-145 \\
\hline Chlorobenzene & 23.5 & 2.0 & 0.36 & ug/ & 25.0 & ND & 94 & 80-125 \\
\hline Chloroethane & 22.0 & 5.0 & 0.33 & ug/ & 25.0 & ND & 88 & 50-145 \\
\hline Chloroform & 23.6 & 2.0 & 0.33 & ug/ & 25.0 & ND & 94 & 70-135 \\
\hline Chloromethane & 18.7 & 5.0 & 0.30 & ug/ & 25.0 & ND & 75 & 35-145 \\
\hline Dibromochloromethane & 19.4 & 2.0 & 0.28 & ug/ & 25.0 & ND & 78 & 65-145 \\
\hline 1,2-Dichlorobenzene & 22.0 & 2.0 & 0.32 & ug/ & 25.0 & ND & 88 & 75-130 \\
\hline 1,3-pichlorobenzene & 22.8 & 2.0 & 0.35 & ugh & 25.0 & ND & 91 & 75-130 \\
\hline 1,4 Dichlorobenzene & 22.4 & 2.0 & 0.37 & ugn & 25.0 & ND & 90 & 80-120 \\
\hline 1,1-Dichloroethane & 23.1 & 2.0 & 0.27 & ug/ & 25.0 & ND & 92 & 65-135 \\
\hline 1,2-Dichloroethane & 21.9 & 0.50 & 0.28 & ug/ & 25.0 & ND & 88 & 60-150 \\
\hline 1,1-Dichloroethene & 21.0 & 5.0 & 0.32 & ug/ & 25.0 & ND & 84 & 65-140 \\
\hline trans-1,2-Dichloroethene & 23.0 & 2.0 & 0.27 & ug/ & 25.0 & ND & 92 & 65-135 \\
\hline 1,2-Dichloropropane & 23.0 & 2.0 & 0.35 & ugh & 25.0 & ND & 92 & 65-130 \\
\hline cis-1,3-Dichloropropene & 23.1 & 2.0 & 0.22 & ugh & 25.0 & ND & 92 & 70-140 \\
\hline trans-1,3-Dichloropropene & 22.1 & 2.0 & 0.24 & ug/ & 25.0 & ND & 88 & 70-140 \\
\hline Ethylbenzene & 24.1 & 2.0 & 0.25 & ugh & 25.0 & ND & 96 & 70-130 \\
\hline Methylene chloride & 21.8 & 5.0 & 0.48 & ugl & 25.0 & ND & 87 & 60-135 \\
\hline 1,1,2,2-Tetrachloroethane & 19.3 & 2.0 & 0.24 & ug/ & 25.0 & ND & 77 & 60-145 \\
\hline Tetrachloroethene & 23.3 & 2.0 & 0.32 & ug/ & 25.0 & 0.54 & 91 & 70-130 \\
\hline Toluene & 23.2 & 2.0 & 0.36 & ug/ & 25.0 & ND & 93 & 70-120 \\
\hline 1,1,1-Trichloroethane & 24.8 & 2.0 & 0.30 & ug/ & 25.0 & ND & 99 & 75-140 \\
\hline 1,1,2-Trichloroethane & 20.0 & 2.0 & 0.30 & ug/ & 25.0 & ND & 80 & 60-135 \\
\hline Trichloroethene & 22.5 & 2.0 & 0.26 & ugh & 25.0 & ND & 90 & 70-125 \\
\hline Trichlorofluoromethane & 22.1 & 5.0 & 0.34 & ug/ & 25.0 & ND & 88 & 55-145 \\
\hline Vinyl chloride & 20.2 & 0.50 & 0.26 & ug/ & 25.0 & ND & 81 & 40-135 \\
\hline Surrogate: Dibromofluoromethane & 25.2 & & & \(u g /\) & 25.0 & & 101 & 80-120 \\
\hline Surrogate: Toluene-d8 & 25.4 & & & ug \(/ 1\) & 25.0 & & 102 & 80-120 \\
\hline Surrogate: 4-Bromofluorobenzene & 25.5 & & & ug/ & 25.0 & & 102 & 80-120 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
```

Project ID: Outfall 015
Report Number: IOA0456

```

Sampled: 01/09/05
Received: 01/10/05

\section*{METHOD BLANKKQC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{llllllllllll} 
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result \(\%\) REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

Matrix Spike Dup Analyzed: 01/11/2005 (5A11017-MSD1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1,2,3-Trichloropropane & 20.4 & 10 & 0.85 & ug/l & 25.0 & ND & 82 & 55-140 & 14 & 30 \\
\hline Benzene & 20.7 & 1.0 & 0.28 & ug/ & 25.0 & ND & 83 & 70-120 & 5 & 20 \\
\hline Bromodichloromethane & 23.0 & 2.0 & 0.30 & ug/ & 25.0 & ND & 92 & 70-140 & 3 & 20 \\
\hline Bromoform & 19.3 & 5.0 & 0.32 & ug/ & 25.0 & ND & 77 & 55-140 & 13 & 25 \\
\hline Bromomethane & 22.1 & 5.0 & 0.34 & ug/ & 25.0 & ND & 88 & 50-145 & 3 & 25 \\
\hline Carbon tetrachloride & 23.4 & 0.50 & 0.28 & ug/1 & 25.0 & ND & 94 & 70-145 & 5 & 25 \\
\hline Chlorobenzene & 22.6 & 2.0 & 0.36 & ug/ & 25.0 & ND & 90 & 80-125 & 4 & 20 \\
\hline Chloroethane & 21.6 & 5.0 & 0.33 & ug/ & 25.0 & ND & 86 & 50-145 & 2 & 25 \\
\hline Chloroform & 22.6 & 2.0 & 0.33 & ug/ & 25.0 & ND & 90 & 70-135 & 4 & 20 \\
\hline Chloromethane & 18.3 & 5.0 & 0.30 & ug/ & 25.0 & ND & 73 & 35-145 & 2 & 25 \\
\hline Dibromochloromethane & 20.3 & 2.0 & 0.28 & ug/ & 25.0 & ND & 81 & 65-145 & 5 & 25 \\
\hline 1,2-Dichlorobenzene & 21.7 & 2.0 & 0.32 & ug/ & 25.0 & ND & 87 & 75-130 & & 20 \\
\hline 1,3-Dichlorobenzene & 217 & 2.0 & 0.35 & ugd & 25.0 & ND & 87 & 75-130, & 5 & 20 \\
\hline 1,4 Dichlorobenzene & 21.6 & 2.0 & 0.37 & ug/ & 25.0 & ND & 86 & 80-120 & 4 & 20 \\
\hline 1,1-Dichloroethane & 21.9 & 2.0 & 0.27 & ug/ & 25.0 & ND & 88 & 65-135 & 5 & 20 \\
\hline 1,2-Dichloroethane & 22.2 & 0.50 & 0.28 & ug/ & 25.0 & ND & 89 & 60-150 & 1 & 20 \\
\hline 1,1-Dichloroethene & 20.6 & 5.0 & 0.32 & ug/ & 25.0 & ND & 82 & 65-140 & 2 & 20 \\
\hline trans-1,2-Dichloroethene & 22.0 & 2.0 & 0.27 & ugh & 25.0 & ND & 88 & 65-135 & 4 & 20 \\
\hline 1,2-Dichloropropane & 22.5 & 2.0 & 0.35 & ugh & 25.0 & ND & 90 & 65-130 & 2 & 20 \\
\hline cis-1,3-Dichloropropene & 23.0 & 2.0 & 0.22 & ug/ & 25.0 & ND & 92 & 70-140 & 0 & 20 \\
\hline trans-1,3-Dichloropropene & 22.7 & 2.0 & 0.24 & ugh & 25.0 & ND & 91 & 70-140 & 3 & 25 \\
\hline Ethylbenzene & 23.0 & 2.0 & 0.25 & ug/l & 25.0 & ND & 92 & 70-130 & 5 & 20 \\
\hline Methylene chloride & 21.2 & 5.0 & 0.48 & ug/ & 25.0 & ND & 85 & 60-135 & 3 & 20 \\
\hline 1,1,2,2-Tetrachloroethane & 21.6 & 2.0 & 0.24 & ug 1 & 25.0 & ND & 86 & 60-145 & 11 & 30 \\
\hline Tetrachloroethene & 22.0 & 2.0 & 0.32 & ug/ & 25.0 & 0.54 & 86 & 70-130 & 6 & 20 \\
\hline Toluene & 22.1 & 2.0 & 0.36 & ug/ & 25.0 & ND & 88 & 70-120 & 5 & 20 \\
\hline 1,1,1-Trichloroethane & 23.7 & 2.0 & 0.30 & ug/ & 25.0 & ND & 95 & 75-140 & 5 & 20 \\
\hline 1,1,2-Trichloroethane & 21.0 & 2.0 & 0.30 & ug/ & 25.0 & ND & 84 & 60-135 & 5 & 25 \\
\hline Trichloroethene & 21.8 & 2.0 & 0.26 & ug/ & 25.0 & ND & 87 & 70-125 & 3 & 20 \\
\hline Trichlorofluoromethane & 21.4 & 5.0 & 0.34 & ug/l & 25.0 & ND & 86 & 55-145 & 3 & 25 \\
\hline Vinyl chloride & 19.2 & 0.50 & 0.26 & ugh & 25.0 & ND & 77 & 40-135 & 5 & 30 \\
\hline Surrogate: Dibromofluoromethane & 25.0 & & & ugh & 25.0 & & 100 & 80-120 & & \\
\hline Surrogate: Toluene-d8 & 25.4 & & & ug/ & 25.0 & & 102 & 80-120 & & \\
\hline Surrogate: 4-Bromofluorobenzene & 25.7 & & & \(u g /\) & 25.0 & & 103 & 80-120 & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\section*{Project ID: Outfall 015}

Report Number: IOA0456

Sampled: 01/09/05
Received: 01/10/05

\section*{METHOD BLANK/QC DATA}

\section*{SEMI-vOLATILE ORGANICS BY GC/MS (EPA 3520C/1625C MOD)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & Reportin Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & \begin{tabular}{l}
Data \\
Qualifiers
\end{tabular} \\
\hline \multicolumn{11}{|l|}{Batch: 5A12032 Extracted; 01/12/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 01/13/2005 (5A12032-BLK1)} \\
\hline N-Nitrosodimethylamine ND & 0.0020 & 0.00070 & ug/ & & & & & & & \\
\hline LCS Analyzed: 01/13/2005 (5A12032-BS1) & & & & & & & & & & M-NR1 \\
\hline N -Nitrosodimethylamine 0.00961 & 0.0020 & 0.00070 & ug/ & 0.0100 & & 96 & 70-130 & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 01/13/2005 (5A12032-BS2)} \\
\hline N-Nitrosodimethylamine 0.00246 & 0.0020 & 0.00070 & ug/ & 0.00200 & & 123 & 70-130 & & & \\
\hline \multicolumn{11}{|l|}{LCS Dup Analyzed: 01/13/2005 (5A12032-BSD1)} \\
\hline N-Nitrosodimethylamine 0.00920 & 0.0020 & 0.00070 & ug/ & 0.0100 & & 92 & 70-130 & 4 & 20 & \\
\hline
\end{tabular}
\begin{tabular}{lrr} 
MWH-Pasadena/Boeing & Project ID: Outfall 015 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 09 / 05\) \\
Pasadena, CA 91101 & Report Number: 1040456 & Received: \(01 / 10 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{METHOD BLANKIQC DATA}

\section*{INORGANICS}


Del Mar Analytical, Irvine
Michele Harper
Project Manager
\begin{tabular}{lr} 
MWH-Pasadena/Boeing & Project ID: Outfall 015 \\
300 North Lake Avenue, Suite 1200 & \\
Pasadena, CA 91101 & Report Number: IOA0456 \\
Attention: Bronwyn Kelly &
\end{tabular}

Sampled: 01/09/05
Received: 01/10/05

Attention: Bronwyn Kelly

\section*{METHOD BLANKIOC DATA}

\section*{INORGANICS}


\section*{Batch: 5A14042 Extracted: 01/14/05}

Blank Analyzed: 01/14/2005 (5A14042-BLK1)
\begin{tabular}{lllll} 
Perchlorate & ND & 4.0 & 0.80 & \(\mathrm{ug} / \mathrm{l}\)
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager
\begin{tabular}{|lrl|}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 015 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: 01/09/05 \\
Pasadena, CA 91101 & Report Number: IOA0456 & Received: 01/10/05 \\
Attention: Bronwyn Kelly & & \\
\hline
\end{tabular}

\section*{METHOD BLANKIOC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5A14042 Extracted: 01/14/05} \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 01/14/2005 (5A14042-BS1)} \\
\hline Perchlorate 48.2 & 4.0 & 0.80 & ug/ & 50.0 & & 96 & 85-115 & & & \\
\hline Matrix Splke Analyzed: 01/14/2005 (5A14042-MS1) & \multicolumn{10}{|c|}{Source: 10A0742-01} \\
\hline Perchlorate 43.6 & 4.0 & 0.80 & ug/ & 50.0 & ND & 87 & 80-120 & & & \\
\hline \multicolumn{4}{|l|}{Matrix Spike Dup Analyzed: 01/14/2005 (5A14042-MSD1)} & \multicolumn{3}{|r|}{Source: 1OA0742-01} & & & & \\
\hline Perchlorate 44.2 & 4.0 & 0.80 & ug/l & 50.0 & ND & 88 & 80-120 & 1 & 20 & \\
\hline
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: IOA0456
Sampled: 01/09/05
Received: 01/10/05

\section*{METHOD BLANKIQC DATA}

\section*{1,4-DIOXANE BY GC/MS (EPA 5030B/8260B)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & Reporting & & & Spike & Source & & \%REC & & RPD & Data \\
\hline Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifers \\
\hline
\end{tabular}

Batch: P5A1502 Extracted: 01/15/05

Blank Analyzed: 01/15/2005 (P5A1502-BLK1)
1,4-Dioxane ND

LCS Analyzed: 01/15/2005 (P5A1502-BS1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1,4-Dioxane & 9.04 & 1.0 & 0.49 & ug/ & 10.0 & & 90 & 70-130 & & \\
\hline Surrogate: Dibromofluoromethane & 0.950 & & & \(u g /\) & 1.00 & & 95 & 80-125 & & \\
\hline \multicolumn{11}{|l|}{LCS Dup Analyzed: 01/15/2005 (P5A1502-BSD1)} \\
\hline 1,4-Dioxane & 9.30 & 1.0 & 0.49 & ug/ & 10.0 & & 93 & 70-130 & 3 & 20 \\
\hline Surrogate: Dibromofluoromethane & 0.980 & & & ug/ & 1.00 & & 98 & 80-125 & & \\
\hline \multicolumn{3}{|l|}{Matrix Spike Analyzed: 01/15/2005 (P5A1502-MS1)} & \multicolumn{8}{|c|}{Source: IOA0456-01} \\
\hline 1,4-Dioxane & 10.7 & 1.0 & 0.49 & ugh & 10.0 & ND & 107 & 70-150 & & \\
\hline Surrogate; Dibromofluoromethane. & 0.980 & & & ug/ & 1.00 & & 98 & 80-125 & & \\
\hline \multicolumn{3}{|l|}{Matrix Spike Dup Analyzed: 01/15/2005 (P5A1502-MSD1)} & & & \multicolumn{3}{|r|}{Source: 1OA0456-01} & & & \\
\hline 1,4-Dioxane & 9.07 & 1.0 & 0.49 & ug/l & 10.0 & ND & 91 & 70-150 & 16 & 25 \\
\hline Surrogate: Dibromofluoromethane & 0.940 & & & \(u g h\) & 1.00 & & 94 & 80-125 & & \\
\hline
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: IOA0456

Sampled: 01/09/05
Received: 01/10/05

\section*{Compliance Check}

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.
\begin{tabular}{lllcccc} 
LabNumber & Analysis & Analyte & Units & Result & MRL & Compliance \\
\hline LOA0456-01 & 413.1 Oil and Grease & Oil \& Grease & \(\mathrm{mg} / \mathrm{l}\) & \(\mathbf{1 1}\) & \(\mathbf{5 . 0}\) & \(\mathbf{1 0 . 0 0}\) \\
IOA0456-01 & MBAS - SM5540-C & Surfactants (MBAS) & \(\mathrm{mg} / 1\) & 0.19 & 0.10 & 0.50 \\
IOA0456-01 & TSS - EPA 160.2 & Total Suspended Solids & \(\mathrm{mg} / 1\) & 7.00 & 10 & 30
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
\(\begin{array}{lr} & \text { Sampled: } 01 / 09 / 05 \\ \text { Report Number: } 10 A 0456 & \text { Received: } 01 / 10 / 05\end{array}\)

\section*{DATA QUALIFIERS AND DEFINITIONS}

B Analyte was detected in the associated Method Blank.
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
P1 Sample received and analyzed without chemical preservation.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
\(\begin{array}{ll} & \text { Sampled: } 01 / 09 / 05 \\ \text { Report Number: } 10 \mathrm{~A} 0456 & \text { Received: 01/10/05 }\end{array}\)

\section*{Certification Summary}

\section*{Del Mar Analytical, Irvine}
\begin{tabular}{cccc} 
Method & Matrix & Nelac & California \\
EPA 160.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 1625C Mod & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 218.6 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 314.0 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 360.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 413.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 624 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
SM5540-C & Water & \(\mathbf{X}\) & \(\mathbf{X}\)
\end{tabular}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

\section*{Subcontracted Laboratories}

Del Mar Analytical - Phoenix NELAC Cert \#01109CA, California Cert \#2446
9830 S. 51st Street, Suite B-120 - Phoenix, AZ 85044
Method Performed: EPA 8260B
Samples: 10A0456-01
Truesdall Laboratories-SUB California Cert \#1237
14201 Franklin Avenue - Tustin, CA 92680
Analysis Performed: Fecal Coliform
Samples: IOA0456-01
Analysis Performed: Total Coliform
Samples: IOA0456-01

\section*{Del Mar Analytical, Irvine \\ Michele Harper \\ Project Manager}


January 26, 2005

\section*{MWH-San Diego}

300 North Lake Avenue, Suite 1200
Pasadena, Ca., 91101

Attention: Browyn Kelly

Project: Outfall 015
Sampled: 01/09/05
Del Mar Analytical Number: 1OA0456

Dear Ms. Kelly:
Truesdail Laboratories performed the Multiple Tube Fermentation Test for group Bacteria APHA Standard Methods for the Examination of Water and Wastewater., \(18^{\text {th }}\) Ed. Method \(9221 \mathrm{~B}, 9221 \mathrm{E}\) for the project referenced above. Please use the following table when reviewing your results.
\begin{tabular}{|c|c|c|}
\hline MWH ID & Del Mar ID & Truesdail ID \\
\hline Outfall 015- Grab & IOA0456-01 & \(938492 / \mathrm{IOA0456-01}\) \\
\hline
\end{tabular}

Attached is the final report from the subcontract laboratory. If you have any questions or require further assistance, please contact me at (949) 261-1022, extension 215.

Sincerely yours,
DEL MAR ANALYTICAL


Michele Harper
Project Manager
Enclosure

\section*{Truesdail Laboratories, Inc.}

\section*{Report}

Del Mar Analytical
Attn: Michele Harper
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Sample: One water marked IOA0456-01, 1/9/05, 20:25
\begin{tabular}{llll} 
Analysis Date: & \(1 / 10 / 05\) & Time: 1830 \\
Completion & \(1 / 13 / 05\) & Time & 1000
\end{tabular}

Investigation: Multiple Tube Fermentation Test for Coliform Group Bacteria APHA Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992 Method 9221B, 9221E

\section*{RESULTS}

\section*{Sample Designation}

\title{
Collform Group Bacteria MPN*/100ml
}

Total Fecal
1. IOA0456-01, 20:25

8
2
* Most Probable No. 100 ml
** None Detected


Respectfully submitted,
TRUESDAIL LABORATORIES, INC.


Karl W. Schiller, M.S.
Chief Microbiologist

\section*{SUBCONTRACT ORDER - PROJECT \# IOA0456}
\begin{tabular}{l}
\multicolumn{1}{|c|}{ SENDING LABORATORY: } \\
Del Mar Analytical, Irvine \\
17461 Derian Avenue. Suite 100 \\
Irvine, CA 92614 \\
Phone: (949) \\
261-1022 \\
Fax: (949) 261-1228 \\
Project Manager: Michele Harper
\end{tabular}

\section*{RECEIVING LABORATORY:}

Truesdail Laboratories-SUB
14201 Franklin Avenue
Tustin, CA 92680
Phone :(714) 730-6239
Fax: (714) 730-6462

Standard TAT is requested unless specific due date is requested \(=>\) Due Date:
Initials: \(\qquad\)
Analysis
Expiration
Comments

Sample ID: 1OA0456-01 Water
Sampled: 01/09/05 20:25
01/10/05 01:13
01/10/05 20:25

OK to run SHIs past HT
MPN/ 100 ml , Sub to Truesdail
MPN/100 ml, Sub to Truesdail

\section*{Containers Supplled:}

Bact Bottle (IOA0456-01A)
Bacti Bottle (IOA0456-01B)

GOTL MINGLIIILAL
CHAJIN OF CUSTODY FORM


January 26, 2005
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention: Bronwyn Kelly
Project:
Outfall 015
Sampled: 01/09/05
Del Mar Analytical Number: IOA0481

Dear Ms. Kelly:
Aquatic Testing Laboratories performed The Fathead Minnow 96hr Percent Survival Biossay (EPA Method 2000.0) for the project referenced above. Please use the following crossreference table when reviewing your results.
\begin{tabular}{|c|c|c|}
\hline MWH ID & DEL MAR ID & Aquatic Testing Laboratories ID \\
\hline Outfall 015 & 10A0481-01 & A-05011002-001 \\
\hline
\end{tabular}

Attached is the original report from the subcontract laboratory. If you have any questions or require further assistance, please do not hesitate to contact me.

Sincerely yours,
DEL MAR ANALYTICAL


Michele Harper
Project Manager

\section*{LABORATORY REPORT}

Date: January 14, 2005
Client: Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Attn: Michele Harper

Aquatic Testing Laboratories
Hedicated to providing quality aquatic toxicity testing "
4350 Transport Street, Unit 107
Ventura, CA 93003
(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.: A-05011002-001
Sample ID.: IOA0481-01

Sample Control: The samples were received by ATL in a chilled state, with the chain of custody record attached.

Date Sampled: 01/09/05
Date Received: 01/10/05
Date Tested: \(\quad 01 / 10 / 05\) to \(01 / 14 / 05\)

Sample Analysis: The following analyses were performed on your sample:
Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0).
Attached are the test data generated from the analysis of your sample.

\section*{Result Summary:}
\(\frac{\text { Sample ID. }}{\text { IOA0481-01 }} \quad \frac{\text { Results }}{100 \% \text { Survival }(\mathrm{TUa}=0.0)}\)

Quality Control: Reviewed and approved by:


FATHEAD MINNOW PERCENT SURVIVAL TEST

Lab No.: A-05011002-001
Chent/ID: Del Mar Outfall 015
To A \(0481-41\)

Species: Pimephales promelas.
Age: LL (1-14) days.
Regulations: NPDES.
Test solution volume: 250 ml .
Feeding: prior to renewal at 48 hrs.
Number of replicates: 2.
Dilution water: Moderately hard reconstituted water.
Photoperiod: \(16 / 8\) hrs light/dark.

\section*{Start Date: 01/10/2005}

\section*{TEST SUMMARY}


Comments: \(*\) Anchlorimatert a/sodim trio sulfur
Sample as received: Chlorine: 1 - Ung/l; \(\mathrm{pH}: \geq 0 ;\) Conductivity: 589 imho; Temp: \(4^{\circ} \mathrm{C}\);
DO: \(I\left(\mathrm{mg} / \mathrm{l}\right.\); Alkalinity: \(44 \mathrm{mg} /\); Hardness: \(67 \mathrm{mg} / ; \mathrm{NH}_{3}-\mathrm{N}: 7.9 \mathrm{mg} / \mathrm{l}\).
Sample aerated moderately (approx. \(500 \mathrm{ml} / \mathrm{min}\) ) to raise or lower DO? Yes / 80.
Control: Alkalinity: \(60 \mathrm{mg} /\); Hardness: \(1 \mathrm{mmg} /\); Conductivity: \(3 / 5\) umho.
Test solution aerated (not to exceed 100 bubbles \(/ \mathrm{min}\) ) to maintain DO \(>4.0 \mathrm{mg} /\) ? Yes / no
Sample used for renewal is the original sample kept at \(0-6^{\circ} \mathrm{C}\) with minimal headspace.

RESULTS
Percent Survival In: Control: \(100 \%\) 100\% Sample: \(\qquad\) 100 \%


\section*{CONTRACT COMPLLANCE SCREENING FORM FOR HARDCOPY DATA}

AMEC Earth \& Environmental 550 South Wadsworth Boulevard Suite 500
Lakewood, CO 80226

\author{
Laboratory Del Mar
}

Reviewer P. Meeks
Analysis/Method General Minerals

Package ID T711WC62
Task Order 313150010
SDG No. 1OA0451, 1OA0451
No. of Analyses 2
Date: 02/23/05
Reviewer's Signature


\section*{ACIION ITEMS}
1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorreet Hardcopy

Deliverables
6. Deviations from

Analysis Protocol, e.g.,
Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Intemal Standard
Performance
Compound Identification and Quantitation
System Performance
\(\square\)
\(\square\)
-
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\begin{tabular}{|l|l|}
\hline COMMENTS' & Acceptable as reviewed. \\
\hline & \\
\hline \\
\hline
\end{tabular}

\section*{amec \({ }^{\text {® }}\)}

\title{
DATA VALIDATION REPORT
}

\section*{NPDES Monitoring}

\author{
ANALYSIS: GENERAL MINERALS \\ SAMPLE DELIVERY GROUPS: IOA0451 \& IOA0452
}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: IOA0451 \& IOA452 \\ Project Manager: B. McIlvaine \\ Matrix: Water \\ Analysis: General Minerals \\ QC Level: Level IV \\ No. of Samples: 1 \\ Reviewer: P. Meeks \\ Date of Review: February 23, 2005
}

The sample listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 330.5 and 180.1, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{rrrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0451, 0452 \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 015 & Outfall 015 & IOA0451-01 & water & General Minerals \\
\hline Outfall 017 & Outfall 017 & IOA0452-01 & water & General Minerals \\
\hline
\end{tabular}
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0451, 0452 \\
\hline
\end{tabular}

\subsection*{2.6 LABORATORY DUPLICATES}

Duplicate analyses was performed on Outfall 017 for turbidity and residual chlorine. The RPDs were within the laboratory-established control limits of \(\leq 20 \%\). No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

MS/MSD analyses are not applicable to the turbidity or residual chlorine methods. No qualifications were required.

\subsection*{2.8 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.9 ICP SERIAL DILUTION}

ICP serial dilution is not applicable to the analyses presented in this data validation report.

\subsection*{2.10 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculations errors were noted. Residual chlorine in Outfall 017 was analyzed at a \(5 \times\) dilution. No qualifications were required.

\subsection*{2.11 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.11.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.11.2 Field Duplicates}

There were no field duplicate pairs associated with these SDGs.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0451, 0452 \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). No preservation problems were noted by the laboratory. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by field and laboratory personnel and accounted for the samples and analyses presented in these SDGs. No sample qualifications were required.

\subsection*{2.1.3 Holding Times}

The holding times were assessed by comparing the date of collection with the dates of analyses. The 48 -hour analytical holding time for turbidity and the 24 -hour analytical holding time for residual chlorine were met, and no qualifications were required.

\subsection*{2.2 CALIBRATION}

For turbidity, the initial calibration correlation coefficient was \(\geq 0.995\) and the continuing calibration information was acceptable with \(\%\) Rs within the control limits of \(90-110 \%\). Calibration is not applicable to the residual chlorine method, No qualifications were required.

\subsection*{2.3 BLANKS}

Turbidity was reported in the method blank and CCB, but not at sufficient concentration to qualify the site samples. Blanks are not applicable to the residual chlorine method. No qualifications were required.

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

Laboratory control samples are not applicable to the turbidity or residual chlorine methods. No qualifications were required.

\subsection*{2.5 SURROGATES RECOVERY}

Surrogate recovery is not applicable to the analyses presented in these SDGs.


\title{
AMEC VALIDAT, 1 LEVELIV
}

\section*{LABORATORY REPORT}

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Outfall 015

Sampled: 01/10/05
Received: 01/10/05
Issued: 03/19/05 17:09

\section*{NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117}

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

\section*{SAMPLE CROSS REFERENCE}

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
IOA0451-01

\section*{CLIENT ID}

Outfall 015-Grab

MATRIX
Water

Reviewed By:


\author{
Del Mar Analytical, Irvine
}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
Atention. Bronwy Kelly

Project ID: Outfall 015
Sampled: 01/10/05
Report Number: IOA0451

Received: 01/10/05

\section*{INORGANICS}


MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: IOA0451 Received: 01/10/05

Sampled: 01/10/05

SHORT HOLD TIME DETAIL REPORT
\begin{tabular}{lccccc} 
& \begin{tabular}{c} 
Hold Time \\
(in days)
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Sampled
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Received
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Extracted
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Analyzed
\end{tabular} \\
Sample ID: Outfall 015-Grab (IOA0451-01) & Water & 2 & \(01 / 10 / 200512: 22\) & \(01 / 10 / 200516: 20\) & \(01 / 11 / 200510: 00\) \\
EPA 180.1 & 1 & \(01 / 10 / 200512: 22\) & \(01 / 10 / 200516: 20\) & \(01 / 10 / 200520: 00\) & \(01 / 1 / 10 / 200511: 00\) \\
EPA 330.5 & & & & &
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: 10A0451

Sampled: 01/10/05
Received: 01/10/05

\section*{METHOD BLANKIOC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualfiers \\
\hline Batch: 5A10084 Extracted: 01/10/05 & & & & & & & & & & \\
\hline Duplicate Analyzed: 01/10/2005 (5A10084-DUP1) & \multicolumn{10}{|c|}{Source: 10A0451-01} \\
\hline Residual Chlorine 1.00 & 0.10 & 0.10 & \(\mathrm{mg} / \mathrm{l}\) & & 1.0 & & & 0 & 20 & \\
\hline \multicolumn{11}{|l|}{Batch: 5A11071 Extracted: 01/11/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 01/11/2005 (5A11071-BLK1)} \\
\hline Turbidity 0.0700 & 1.0 & 0.040 & NTU & & & & & & & \(J\) \\
\hline Duplicate Analyzed: 01/11/2005 (5A11071-DUP1) & \multicolumn{10}{|c|}{Source: IOA0451-01} \\
\hline Turbidity 30.4 & 1.0 & 0.040 & NTU & & 30 & & & 1 & 20 & \\
\hline
\end{tabular}

MWH-Pasadena/Boeing
Project ID: Outfall 015
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Report Number: 1OA0451
Sampled: 01/10/05
Received: 01/10/05

Attention: Bronwyn Kelly

\section*{Compliance Check}

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.
\begin{tabular}{lllcccc} 
& & & & Compliance \\
LabNumber & Analysis & Analyte & Units & Result & MRL & Limit \\
\hline IOA0451-01 & Chlorine, Residual & Residual Chlorine & \(\mathrm{mg} /\) & \(\mathbf{1 . 0 0}\) & \(\mathbf{0 . 1 0}\) & \(\mathbf{0 . 1 0 0}\)
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: 1OA0451 Received: 01/10/05

Sampled: 01/10/05

\section*{DATA QUALIFIERS AND DEFINITIONS}

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: IOA0451 Received: 01/10/05

\section*{Certification Summary}

\section*{Del Mar Analytical, Irvine}
\begin{tabular}{cccc} 
Method & Matrix & Nelac & Callfornia \\
EPA 180.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 330.5 & Water & \(\mathbf{X}\) & X
\end{tabular}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

\section*{Subcontracted Laboratories}

Truesdail Laboratories-SUB California Cert \#1237
14201 Franklin Avenue - Tustin, CA 92680
Analysis Performed: Fecal Coliform
Samples: IOA0451-01
Analysis Performed: Total Coliform
Samples: 1OA0451-01

Del Mar Analytical, Irvine
Michele Harper
Project Manager
CHAIN OF CUSTODY FORM
Del Mar Analytical vasomen 5 alrous
Client Name/Address:
Boeing-SSFL NPDES
Outfall 015 Effiuent -
STPI
Phone Number:
(626) 568-6691
Fax Number:
(626) \(568-6515\)
\begin{tabular}{c|c}
\(\begin{array}{c}\text { Sampling } \\
\text { Date/Time }\end{array}\) & Preservative \\
\(1-10-05-12: 22\) & \\
\hline & \\
\hline
\end{tabular}
Sample Container \# of
Sample Sample Container Cont
N
MWH-Pasadena
300 North Lake Avenue, Suite 1200
Project Manager: Bronwyn Kelly
Polocy


January 26, 2005
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention: Bronwyn Kelly
Project: Outfall 015
Sampled: 01/10/05
Del Mar Analytical Number: IOA0451

Dear Ms. Kelly:
Truesdail Laboratories Inc. performed The Multiple Tube Fermentation Test by APHA Standard Methods 9221B and9221E for the project referenced above. Please use the following cross-reference table when reviewing your results.
\begin{tabular}{|c|c|c|}
\hline MWH ID & DEL MAR ID & Truesdail Laboratories ID \\
\hline Outfall 015-Grab & IOA0451-01 & \(938489 / 10 A 0451-01\) \\
\hline
\end{tabular}

Attached is the original report from the subcontract laboratory. If you have any questions or require further assistance, please do not hesitate to contact me.

Sincerely yours,
DEL MAR ANALYTICAL


Michele Harper
Project Manager

\section*{Truesdail Laboratories, Inc.}

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 • FAX (714) 730-6462 www.truesdail.com

Del Mar Analytical
Attn: Michele Harper
17461 Derian Avenue, Suite 100 Irvine, CA 92614

Report Date:
1/13/05
Date Received:
1/10/05
Laboratory No.:
938489

Sample: One water IOA0451-01, 1/10/05, 12:22
\begin{tabular}{llll} 
Analysis Date: & \(1 / 10 / 05\) & Time: & 1830 \\
Completion Date: & \(1 / 13 / 05\) & Time: & 1030
\end{tabular}

Investigation: Multiple Tube Fermentation Test for Coliform Group Bacteria APHA Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992 Method 9221B, 9221E

\section*{RESULTS}

Sample Designation

\section*{Coliform Group Bacteria MPN*/100mI}

Total Fecal
1. IOA0451-01, 12:22
* Most Probable No. 1100 ml
** None Detected

Respectfully submitted,
TRUESDAIL LABORATORIES, INC.


Karl W. Schiller, M.S.
Chief Microbiologist

SUBCONTRACT ORDER - PROJECT \# IOA0451

SENDING LABORATORY:
Del Mar Analytical, Irvine
17461 Derian Avenue. Suite 100
Irvine, CA 92614
Phone: (949) 261-1022
Fax: (949) 261-1228
Project Manager. Michele Harper

Standard TAT is requested unless specific due date is requested \(\Rightarrow\) Due Date: \(\qquad\) Initials: \(\qquad\)
Truesdail Laboratories-SUB
14201 Franklin Avenue
Tustin, CA 92680
Phone :(714) 730-6239
Fax: (714) 730-6462
\begin{tabular}{lll} 
Analysis & \multicolumn{1}{c}{ Expiration } & Comments \\
\hline Sample 1D: 10A0451-01 & Water & Sampied: 01/10/05 12:22 \\
Fecal Coliform & \(01 / 10 / 0517: 10\) & \\
Total Coliform & \(01 / 11 / 0512: 22\) & \\
Containers Supplied: & & \\
Bacti Bottle (IOA0451-01A) & & \\
Bacti Bottle (IOA0451-01B) & & \\
\hline
\end{tabular}


CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA


\title{
amec \({ }^{\text {® }}\)
}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES \\ Monitoring
}

\section*{ANALYSIS: DIOXINS/FURANS \\ SAMPLE DELIVERY GROUPS: Multiple SDGs}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: Multiple \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Dioxins/Furans \\ QC Level: Level IV \\ No. of Samples: 4 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: K. Shadowlight \\ Date of Review: February 18, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{lrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

Table 1. Sample Identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & \begin{tabular}{c} 
Laboratory ID \\
(Del Mar)
\end{tabular} & \begin{tabular}{c} 
Laboratory ID \\
(Pace)
\end{tabular} & Matrix & COC Method \\
\hline Outfall 015 & IOA0557-02 & 106233001 & water & 1613 \\
\hline Outfall 015 & IOA0580-01 & 106237001 & water & 1613 \\
\hline Outfall 017 & IOA0558-02 & 106234001 & water & 1613 \\
\hline Outfall 017 & IOA0576-02 & 106236001 & water & 1613 \\
\hline
\end{tabular}
\begin{tabular}{lrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at Del Mar Analytical within the temperature limits of \(4^{\circ} \mathrm{C}\) \(\pm 2^{\circ} \mathrm{C}\). The samples were subcontracted to Pace Analytical for the dioxin/furan analyses. The samples in these SDGs were received at Pace Analytical Services below the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\); however, as none of the samples were noted to have been frozen or damaged, no qualifications were required. The samples were received in good condition at both laboratories. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COC and transfer COC were signed by the appropriate field and laboratory personnel. The samples and analyses were accounted for on both the original COCs and transfer COCs. As the samples were couriered directly to the laboratory (Del Mar Analytical), custody seals were not required. There was no information regarding custody seals upon receipt at Pace. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The samples were extracted and analyzed within a year of collection. No qualifications were required.

\subsection*{2.2 INSTRUMENT PERFORMANCE}

Following are findings associated with instrument performance:

\subsection*{2.2.1 GC Column Performance}

A column performance standard was combined with the daily calibration verification and analyzed at the beginning of each analytical sequence. The GC column performance was acceptable with the chromatographic separation of \(2,3,7,8-\mathrm{TCDD}\) and other TCDD isomers resolved with a valley of \(\leq 25 \%\). No qualifications were required.

\subsection*{2.2.2 Mass Spectrometer Performance}

The mass spectrometer performance could not be evaluated as the laboratory did not provide selected ion current profiles for the lock-mass ions. No qualifications were required.
\begin{tabular}{llr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\subsection*{2.3 CALIBRATION}

\subsection*{2.3.1 Initial Calibration}

There was one initial calibration, analyzed 11/29/04 on Instrument 10MSHR05. The calibration consisted of five concentration level standards (CS1 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with \%RSDs \(\leq 20 \%\) for the 15 native compounds (calibration by isotope dilution) and \(\leq 35 \%\) for the 2 native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.3.2 Continuing Calibration}

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VER was acceptable with the concentrations within the acceptance criteria listed in the Table 6 of the EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \(\% \mathrm{Ds}\) were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.4 BLANKS}

One method blank (Blank-6220) was extracted and analyzed with the samples in these SDGs. Target compounds total HpCDF, \(1,2,3,4,6,7,8-\mathrm{HpCDF}\), total HpCDF, OCDF, and OCDD were reported in the method blank. Any detects for the aforementioned target compounds reported at concentrations \(<5 \times\) the concentrations reported in the method blank were qualified as estimated nondetects "UJ," at the levels of interference in the samples of these SDGs. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No further qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One LCS/LCSD pair (LCS-6221/LCSD-6222) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of the Method 1613. There were no QC limits established for RPDs. The reported RPDs were within \(\pm 20 \%\). No qualifications were required.

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy and precision was based on the LCS/LCSD results. No qualifications were required.

\subsection*{2.7 FIELD QC SAMPLES}

Following are findings associated with field QC:

\subsection*{2.7.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.7.2 Field Duplicates}

No field duplicate samples were identified for these SDGs.

\subsection*{2.8 INTERNAL STANDARDS}

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

\subsection*{2.9 COMPOUND IDENTIFICATION}

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

\subsection*{2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the lower method calibration limit (MCL) were qualified as estimated, "J." Any reported EMPC was qualified as an estimated nondetect, "UJ." No further qualifications were required.


Conc \(=\) Concentration (Totais include 2,3,7,8-substituted isomers).
EMPC \(=\) Estimated Maximum Fossible Concentration
LOD \(=\) Limit of Detection. Totals are averages of individual isomer LODs.
\(D=\) Result obtained from analysis of diluted sample
\(\mathrm{B}=\) Less than 10 times higher than method blank level
\(P=\) Fecovery outside of method 1613 control limits
\(J=\) Concentration detected is below the calibration range
\(\mathrm{N} n=\) Value obtained from additional analysis

I = Interference
\(E=P C D E\) Interference
ND \(=\) Not Detected
NA = Not Applicable
\(\mathrm{NC}=\) Not Calculated
* \(\approx\) See Discussion

Report No..... 10623 ?



Conc \(=\) Concentration (Totals include 2,3,7,8-substituted isomers).
EMPC \(=\) Estimated Maximum Possible Concentration
\(L O D=\) Limit of Detection. Totais are averages of individual isomer LODS.
\(D=\) Result obtained from analysis of ciluted sample
\(B=\) Less than 10 times higher than method blank level
\(P=\) Recovery outside of method 1613 control limits
\(J=\) Concentration detected is below the callibration range
\(\mathrm{Nn}=\) Value obtained from additional analysis

I = Interference
\(\mathrm{E}=\mathrm{PCOE}\) interierence
NO \(=\) Not Detected
NA \(=\) Not A.pplicable
NC = Not Calculated
* \(=\) See Discussion

Feport No..... 106233

\section*{REPORT OF LABORATORY ANALYSIS}


CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA
\begin{tabular}{|c|c|}
\hline AMEC Earth \& Environmental & Package ID T711MT37 \\
\hline 550 South Wadsworth Boulevard & Task Order 313150010 \\
\hline Suite 500 & SDG No. IOA0557, IOA0580 \\
\hline Lakewood, CO 80226 & No. of Analyses 2 \\
\hline Laboratory Del Mar & Date: 03/09/05 \\
\hline Reviewer P. Meeks & Revieyer's Signature \\
\hline Analysis/Method Metals & P.MeS \\
\hline
\end{tabular}
\(\left.\begin{array}{|lll|}\hline \text { ACTION ITEMS' } \\ \hline \text { 1. } & \text { Case Narrative } \\ \text { Deficiencies }\end{array}\right]\)

\title{
amec \({ }^{\theta}\)
}

\title{
DATA VALIDATION REPORT
}

NPDES
Monitoring

\section*{ANALYSIS: METALS \\ SAMPLE DELIVERY GROUPS: IOA0557 \& IOA0580}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0557, 580 \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: IOA0557, IOA0580 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Metals \\ QC Level: Level IV \\ No. of Samples: 2 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: P. Meeks \\ Date of Review: March 08, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, SW-846 Method 6010B for Inductively Coupled Plasma , SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{lrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0557, 580 \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 015 Comp Influent & Outfall 015 Comp Influent & IOA0557-02 & water & ILM04 \\
\hline Outfall 015 Comp Effluent & Outfall 015 Comp Effluent & IOA0580-01 & water & ILM04 \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C}\) \(\pm 2^{\circ} \mathrm{C}\). No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by field and laboratory personnel. The laboratory composited the samples and named the Outfall 015 Comp Influent and Outfall 015 Comp Effluent. The COCs accounted for the analyses presented in these SDGs. No sample qualifications were required.

\subsection*{2.1.3 Holding Times}

The dates of collection recorded on the COCs and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP metals and 28 days for mercury. No qualifications were required.

\subsection*{2.2 ICP-MS TUNING}

ICP-MS was not utilized for the analysis of these samples; therefore, ICP-MS tuning criteria are not applicable.

\subsection*{2.3 CALIBRATION}

The ICV and CCV results showed acceptable recoveries, \(90-110 \%\) for ICP and \(80-120 \%\) for mercury. The silver reporting limit check standard recoveries were below the control limit; therefore, nondetected silver in Outfall 015 Comp Influent and Outfall 015 Comp Effluent was qualified as estimated, "UJ." The reporting limit check recovery for thallium analyzed 01/16/05 was recovered below the control limit; therefore, nondetected thallium in Outfall 015 Comp Effluent was qualified as estimated, "UJ." The remaining reporting limit check standards were recovered within the AMEC control limits of \(70-130 \%\). No further sample qualifications were required.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0557, 580 \\
\hline
\end{tabular}

\subsection*{2.4 BLANKS}

There were detects and negative results reported for the method blanks and bracketing ICBs/CCBs associated with the samples in these SDGs. Thallium and silver were reported in bracketing CCBs at -0.0038 and \(-0.0024 \mu \mathrm{~g} / \mathrm{L}\), respectively; therefore, nondetected thallium in Outfall 015 Comp Effluent and nondetected silver in Outfall 015 Comp Influent were qualified as estimated, "UJ." No further qualifications were required due to the method and calibration blank results.

\subsection*{2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)}

ICSA and ICSAB analyses were included in the raw data. The recoveries for the interferents and spiked analytes were within the control limits of \(80-120 \%\). Detects for chromium, lead, thallium, and zinc and negative results for arsenic, chromium, antimony, selenium that were greater than the applicable reporting limits were reported in the ICSA analyses. The validator reviewed the raw data for the site sample ICP analysis for the level of reported interferents, \(\mathrm{Al}, \mathrm{Ca}, \mathrm{Fe}\), and Mg , and determined that the concentration of interferents was not high enough to cause matrix affects. No sample qualifications were required due to the ICP ICS analysis.

\subsection*{2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The ICP LCS samples were identified as 5A14046-BS1 and 5A13042-BS1. The Hg LCS samples were identified as 5A14053-BS1 and 5A13050-BS1. The LCS results on the summary forms and in the raw data were within the laboratory-established ICP and Hg control limits of \(85-115 \%\). No qualifications were required.

\subsection*{2.7 LABORATORY DUPLICATES}

No MS/MSD or duplicate analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.8 MATRIX SPIKE}

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion. Method accuracy was assessed based on LCS results.

\subsection*{2.9 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.
\begin{tabular}{lrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No:: & IOA0557, 580 \\
\hline
\end{tabular}

\subsection*{2.10 ICP/MS AND ICP SERIAL DILUTION}

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.11 INTERNAL STANDARDS PERFORMANCE}

ICP-MS was not utilized for the analysis of these samples; therefore, ICP-MS internal standard recoveries are not applicable.

\subsection*{2.12 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit were qualified as estimated, "J." No further qualifications were required.

\subsection*{2.13 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

\subsection*{2.13.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.13.2 Field Duplicates}

There were no field duplicate analyses performed in association with the site samples.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015

Report Number: IOA0580

Sampled: 01/12/05
Received: 01/1105

\section*{DRAFT: METALS}

Method
Batch Limit Limit
Sample Dilution Date
Result Factor Extracted
Date Data Analyzed Qualifiers

Sample ID: 1OA0580-01 (DRAFT: Outfall 015-Comp Effluent - Water) - cont. Reporting Units: mg/l
Antimony
Arsenic
Beryllium
Boron
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Selenium
Silver
Thallium
Zinc
\begin{tabular}{lccccccc} 
EPA 200.7 & SA14046 & 0.0042 & 0.010 & ND & 1 & \(01 / 14 / 05\) & \(01 / 14 / 05\) \\
EPA 200.7 & SA14046 & 0.0038 & 0.0050 & 0.0048 & 1 & \(01 / 14 / 05\) & \(01 / 14 / 05\) \\
EPA 200.7 & 5A14046 & 0.00062 & 0.0020 & ND & 1 & \(01 / 14 / 05\) & \(01 / 14 / 05\) \\
EPA 200.7 & SA14046 & 0.0074 & 0.050 & 0.10 & 1 & \(01 / 14 / 05\) & \(01 / 14 / 05\) \\
EPA 200.7 & SA14046 & 0.00034 & 0.0050 & 0.00090 & 1 & \(01 / 14 / 05\) & \(01 / 14 / 05\) \\
EPA 200.7 & SA14046 & 0.00068 & 0.0050 & 0.65 & 1 & \(01 / 14 / 05\) & \(01 / 14 / 05\) \\
EPA 200.7 & 5A14046 & 0.0017 & 0.010 & 0.032 & 1 & \(01 / 14 / 05\) & \(01 / 14 / 05\) \\
EPA 200.7 & SA14046 & 0.0021 & 0.0050 & ND & 1 & \(01 / 14 / 05\) & \(01 / 14 / 05\) \\
EPA 245.1 & SA14053 0.000063 & 0.00020 & 0.00029 & 1 & \(01 / 14 / 05\) & \(01 / 14 / 05\) \\
EPA 200.7 & SA14046 & 0.0020 & 0.010 & 0.83 & 1 & \(01 / 14 / 05\) & \(01 / 14 / 05\) \\
EPA 200.7 & SA14046 & 0.0046 & 0.0050 & ND & 1 & \(01 / 14 / 05\) & \(01 / 14 / 05\) \\
EPA 200.7 & SA14046 & 0.0013 & 0.010 & ND & 1 & \(01 / 14 / 05\) & \(01 / 14 / 05\) \\
EPA 200.7 & SA14045 & 0.0031 & 0.0050 & ND & 1 & \(01 / 14 / 05\) & \(01 / 16 / 05\) \\
EPA 200.7 & SA14045 & 0.0037 & 0.020 & 0.16 & 1 & \(01 / 14 / 05\) & \(01 / 14 / 05\)
\end{tabular}
\begin{tabular}{c|c} 
Rev & Qual \\
Qual & Coda \\
\hline\(U\) & \\
\(J\) & \(J\) \\
\(U\) & \(D N Q\) \\
\(J\) & \(J\) \\
\(U\) & DNQ \\
\(U\) & \\
\(U J\) & \(\times 3\) \\
\(U J\) & \(* 3, E\)
\end{tabular}

\section*{AMEC VAZDDATED}

\section*{LEVELIV}

\section*{DRAFT REPORT}

DRAFT REPORT
DATA SUBJECT TO CHANGE

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\section*{Project ID: Ourfall 015}

Report Number: 10A0557

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METALS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & & n Date Extracted & Da Analy &  & fiers \\
\hline \begin{tabular}{l}
Sample ID: \\
Report
\end{tabular} & Composit & luent - & ater) - & & Samp & led: & /12/05 & & Rev Qual & Quad Code \\
\hline Antimony & EPA 200.7 & 5A13042 & 0.0042 & 0.010 & ND & & 01/13/05 & 01/13/05 & U-a & \\
\hline Arsenic & EPA 200.7 & SA13042 & 0.0038 & 0.0050 & ND & & 01/13/05 & 01/13/05 & U & \\
\hline Beryllium & EPA 200.7 & SA13042 & 0.00062 & 0.0020 & ND & & 01/13/05 & 01/13/05 & \(\cup\) & \\
\hline Cadmium & EPA 200.7 & 5A13042 & 0.00034 & 0.0050 & 0.00090 & & 01/13/05 & 01/13/05 & J J & \\
\hline Chromium & EPA 200.7 & SA13042 & 0.00068 & 0.0050 & 0.19 & & 01/13/05 & 01/13/05 & J J & DNC \\
\hline Copper & EPA 200.7 & 5A13042 & 0.0017 & 0.010 & 0.0094 & 1 & 01/13/05 & 01/13/05 & & \\
\hline Lead & EPA 200.7 & 5A13042 & 0.0021 & 0.0050 & 0.0034 & & 01/13/05 & 01/13/05 & 1 J & DN \\
\hline Mercury
Nickel & EPA 245.1 & 5A13050 & 0.000063 & 0.00020 & 0.00014 & & 01/13/05 & 01/13/05 & \(\downarrow\) J & \\
\hline Nickel & EPA 200.7 & 5A13042 & 0.0020 & 0.010 & 0.069 & 1 & 01/13/05 & 01/13/05 & & \\
\hline Selenium
Silver & EPA 200.7 & SA13042 & 0.0046 & 0.0050 & ND & & 01/13/05 & 01/13/05 & U & \\
\hline Siver & EPA 200.7 & 5A13042 & 0.0013 & 0.010 & ND & & 01/13/05 & 01/13/05 & UJ & F \\
\hline Thallum & EPA 200.7 & 5A13042 & 0.0031 & 0.0050 & 0.0096 & 1 & 01/13/05 & 01/13/05 & & \(\times 3 / 1\) \\
\hline Zinc & EPA 200.7 & 5A13042 & 0.0037 & 0.020 & 0.074 & 1 & 01/13/05 & 01/13/05 & & \\
\hline
\end{tabular}

\section*{AMEC VALIDATED LEVELIV}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA} \\
\hline AMEC Earth \& Environmental & Package ID T711PP14 \\
\hline 550 South Wadsworth Boulevard & Task Order 313150010 \\
\hline Suite 500 & SDG No. IOA0557, IOA0580 \\
\hline Lakewood, CO 80226 & No. of Analyses 2 \\
\hline Laboratory Del Mar Analytical. & Date: March 11, 2005 \\
\hline Reviewer L. Calvin & Reviewer's Signature \\
\hline Analysis/Method Pesticides/PCBs by Method 608 & cackun \\
\hline
\end{tabular}


\section*{\(a m e c^{\circledR}\)}

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

ANALYSIS: PESTICIDES/PCBs

\section*{SAMPLE DELIVERY GROUP: IOA0557, IOA0580}

\section*{Prepared by}

AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{|c|c|c|}
\hline & Project: & NPDES \\
\hline & SDG: 10, & OA0580 \\
\hline DATA VALIDATION REPORT & Analysis: & Pest/PCB \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ SDG\#: IOA0557, IOA0580 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Pesticides/PCBs \\ QC Level: Level IV \\ No. of Samples: 2 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: L. Calvin \\ Date of Review: March 3, 2005
}

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedures (DVP-4, Rev.2), EPA Method 608, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary form as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & Method \\
\hline \begin{tabular}{c} 
Outfall 015 Composite \\
Influent
\end{tabular} & \begin{tabular}{c} 
Outfall 015 Composite \\
Influent
\end{tabular} & IOA0557-01 & water & 608 \\
\hline \begin{tabular}{c} 
Outfall 015 Composite \\
Effluent
\end{tabular} & \begin{tabular}{c} 
Outfall 015 Composite \\
Effluent
\end{tabular} & IOA0580-01 & water & 608 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{3}{*}{DATA VALIDATION REPORT} & Project: & NPDES \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{SDG: 10A0557, 10A0580}} \\
\hline & Analysis: & \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). The analysis did not require preservation, and no preservation was noted in the field. The COCs noted that the samples were received intact. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by both field and laboratory personnel. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The water samples were extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

\subsection*{2.2 PESTICIDES INSTRUMENT PERFORMANCE}

No resolution check standards or breakdown check standards are required by Method 608 for pesticides, and according to the raw data provided, a resolution check standard was not analyzed by the laboratory. The laboratory did analyze a breakdown check standard with a breakdown of \(\leq 20 \%\) for individual components (4,4-DDT and endrin) and \(\leq 30 \%\) for the total, as suggested in the National Functional Guidelines. A review of the raw data indicated that the analytical run time was of sufficient length to provide adequate standard separation. The two analytical columns used in the analyses were within the guidelines specified in the methods.

According to the laboratory SOP and the initial calibration raw data, the retention time windows are \(\pm 0.10\) minutes for both surrogates and target compound calibration standards. A review of the raw data indicated that the laboratory retention time criteria were met for the surrogates and pesticide calibration standards. No qualifications were required.

\subsection*{2.3 CALIBRATION}

\subsection*{2.3.1 Analytical Sequence}

Based on the data provided, the analytical sequences were in accordance with the requirements of Method 608. No qualifications were required.

\subsection*{2.3.2 Initial Calibration}

The initial calibrations associated with the pesticide analyses of the samples were dated 12/29/04 and 01/14/05, and consisted of six-point calibrations for the pesticide compounds. The \%RSDs were within the EPA Method 608 QC limit of \(\leq 10 \%\) or \(r^{2} \geq 0.995\) on both analytical columns. Single point calibrations were analyzed for toxaphene and chlordane. There was one initial calibration dated \(01 / 03 / 05\) associated with the PCB analyses of the samples, consisting of five points for Arochlor 1016 and Arochlor 1260. The average \%RSDs for the individual peaks of Aroclor 1016 and Aroclor 1260 were \(\leq 10 \%\) on both analytical columns. Single point calibrations for Arochlor 1242, Aroclor 1248, and Aroclor 1254 were also analyzed. An ICV was analyzed immediately following each of the initial calibrations. The \%Ds for all target compounds were within the QC limits of \(15 \%\) on both analytical columns. A representative number of \%RSDs and ICV \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.3.3 Continuing Calibration}

The pesticide analysis of sample Outfall 015 Composite Effluent was bracketed by four continuing calibrations, two preceding and two following the analysis. In all of the bracketing calibrations, the \%Ds exceeded \(15 \%\) on one or both channels for \(4,4^{\prime}\)-DDT, methoxychlor, and endrin ketone. Results for the aforementioned compounds were qualified as estimated, "UJ," in sample Outfall 015 Composite Effluent. The \%Ds were within the Method QC limit of \(\leq 15 \%\) for the calibrations bracketing sample Outfall 015 Composite Influent. The PCB analyses of both samples were bracketed by three CCVs, with \%Ds for Aroclor 1016 and Aroclor 1260 of \(\leq 15 \%\). A representative number of \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No further qualifications were required.

\subsection*{2.4 BLANKS}

\subsection*{2.4.1 Instrument Blanks}

An instrument blank was analyzed at the beginning of each analytical sequence. Crosscontamination was not evident in the samples. No qualifications were necessary.

\subsection*{2.4.2 Method Blanks}

One water method blank (5A13049-BLK1) was extracted and analyzed with these SDGs. There were no pesticide target compounds or Aroclors detected in the method blank. Review of the chromatograms showed no false negatives. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One blank spike/blank spike duplicate pair (5A13049-BS1/BSD1) was extracted and analyzed with these SDGs. The recoveries for all spiked pesticide target compounds and Aroclors were within the laboratory-established QC limits and the RPDs were \(\leq 30 \%\). A representative number of recoveries were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.
\begin{tabular}{lr} 
DATA VALIDATION REPORT & SDG: IOA0S57, IOA0580 \\
Analysis: & Pest/PCB
\end{tabular}

\subsection*{2.6 SURROGATE RECOVERY}

The sample and all QC samples were fortified with the surrogate compounds decachlorobiphenyl and tetrachloro-m-xylene. Surrogate recoveries for the pesticide and PCB analyses of both samples were within the laboratory-established QC limits. The recoveries were calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

There were no MS/MSD analyses associated with these SDGs. Method accuracy and precision were assessed based on the blank spike/blank spike duplicate results. No qualifications were required.

\subsection*{2.8 SAMPLE CLEANUP PERFORMANCE}

According to the laboratory extraction benchsheets, no cleanups were performed on the water samples. No qualifications were required.

\subsection*{2.9 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.9.1 Field Blanks and Equipment Rinsates}

There were no field QC samples associated with the samples in these SDGs. No qualifications were required.

\subsection*{2.9.2 Field Duplicates}

There were no field duplicate samples associated with the sample in these SDGs.

\subsection*{2.10 COMPOUND IDENTIFICATION}

The laboratory analyzed for pesticide target compounds and PCBs by EPA Method 608. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for the samples in these SDGs. No qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification was verified for these SDGs; however, as there were no detects reported in the samples, quantitation was verified by recalculating a representative number of
blank spike and surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibration and the laboratory MDL studies. No qualifications were required.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project [D: Outfall 015
Report Number: IOA0580

Sampled: 01/12:05
Received: 01/11/05

DRAFT: ORGANOCHLORINE PESTICIDES (EPA 608)


\section*{AMEC VALTDATED}


\section*{DRAFT REPORT \\ DRAFT REPORT \\ DATA SUBJECT TO CHANGE}
```

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Project ID: Outfall 015
Report Number: IOA0580

```

Sampled: 0112.05
Received: 01/1/105

\section*{DRAFT: TOTAL PCBS (EPA 608)}


\section*{amec validated \\ }

DRAFT REPORT
DRAFT REPORT
DATA SLBJECT TO CHANGE
\begin{tabular}{lll} 
MWH-Pasadena/Boeing & Project ID: Outfall 015 & \\
300 North Lake Avenue, Suite 1200 & Report Number: \(10 A 0557\) & Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Pasadena, CA 91101 & Received: \(01 / 11 / 05\)
\end{tabular}

TOTAL PCBS (EPA 608)


\section*{amec validated \\ }

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

Project ID: Outfall 015
Report Number: 1OA0557

Sampled: 01/1/05-01/1205
Received: 01/1105

ORGANOCHLORINE PESTICIDES (EPA 608)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & Diluti Facto & D Date Extracted & \[
\begin{gathered}
\text { Date } \\
\text { Analyze }
\end{gathered}
\] & Data ulifiers \\
\hline \multicolumn{10}{|l|}{\begin{tabular}{l}
Sample ID: 1OA0557-02 (Outfall 015 Composite Influent - Water) - cont. \\
Reporting Units: ugh \\
Sampled: 01/12/05
\end{tabular}} \\
\hline & EPA 608 & 5 A 13049 & 0.029 & 0.10 & ND & 1.05 & \(01 / 13 / 05\) & & \\
\hline alpha-BHC & EPA 608 & 5 Al 13049 & 0.010 & 0.10 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline beta-BHC & EPA 608 & 5A13049 & 0.011 & 0.10 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline delta-BHC & EPA 608 & 5A13049 & 0.010 & 0.20 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline gamma-BHC (Lindane) & EPA 608 & 5 A13049 & 0.0097 & 0.10 & ND & 1.05 & & 01/14/05 & \\
\hline Chlordane & EPA 608 & 5 A13049 & 0.18 & 1.0 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline 4,4'-DDD
\(4,4^{\prime}-\mathrm{DDE}\) & EPA 608 & 5A13049 & 0.011 & 0.10 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline 4,4'-DDE
\(4,4-\mathrm{DDT}\) & EPA 608 & 5A13049 & 0.017 & 0.10 & ND & 1.05 & & \(01 / 14 / 05\)
\(01 / 14 / 05\) & \\
\hline 4,4'-DDT
Dieldrin & EPA 608 & 5 A13049 & 0.015 & 0.10 & ND & 1.05 & \(01 / 13 / 05\)
\(01 / 13 / 05\) & \(01 / 14 / 05\)
\(01 / 14 / 05\) & \\
\hline Dieldrin & EPA 608 & 5 A 13049 & 0.010 & 0.10 & ND & 1.05 & 01/13/05
\(01 / 13 / 05\) & \(01 / 14 / 05\)
\(01 / 14 / 05\) & \\
\hline Endosulfan I & EPA 608 & 5A13049 & 0.015 & 0.10 & ND & 1.05 & \(01 / 13 / 05\)
\(01 / 13 / 05\) & \(01 / 14 / 05\)
\(01 / 14 / 05\) & \\
\hline Endosulfan II & EPA 608 & 5 Al 3049 & 0.037 & 0.10 & ND & 1.05 & 01/13/05 & \(01 / 14 / 05\)
\(01 / 1 / 05\) & \\
\hline Endosulfan sulfate
Endrin & EPA 608 & 5A13049 & 0.013 & 0.20 & ND & 1.05 & 01/13/05 & \(01 / 14 / 05\)
\(01 / 14 / 05\) & \\
\hline Endrin & EPA 608 & 5A13049 & 0.0082 & 0.10 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline Endrin aldehyde
Endrin ketone & EPA 608 & 5A13049 & 0.045 & 0.10 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline Heptachlor & EPA 608 & 5A13049 & 0.020 & 0.10 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline Heptachlor & EPA 608 & 5A13049 & 0.030 & 0.10 & ND & 1.05 & 0111305 & 01/14/05 & \\
\hline Mehoxychlor & EPA 608 & 5 Al 3049 & 0.012 & 0.10 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline Toxphene & EPA & SA13049, & 0.034 & 0.10 & ND & 105 & \(01 / 1305\) & 01/1405 & \\
\hline \multicolumn{5}{|l|}{Surogate Tetrachloro-m-xilene (35-120\%)} & \multicolumn{5}{|l|}{\(\begin{array}{cccc}\mathrm{ND} \\ 36 \% & 1.05 & 01 / 13 / 05 & 01 / 14 / 0\end{array}\)} \\
\hline \multicolumn{5}{|l|}{Surrogate: Decachlorobiphenvl ( 45 -120\%)} & \multicolumn{5}{|l|}{\[
36 \%
\]} \\
\hline
\end{tabular}


\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager


\section*{amec \({ }^{d}\)}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES Monitoring
}

\author{
ANALYSIS: SEMIVOLATILES \\ SAMPLE DELIVERY GROUP: IOA0557, IOA0580
}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226


\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: IOA0557, IOA0580 \\ Project Manager: B. McIlvaine \\ Matrix: Water \\ Analysis: Semivolatiles \\ QC Level: Level IV \\ No. of Samples: 2 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: M. Pokorny \\ Date of Review: March 11, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Semivolatile Organics (DVP-3, Rev. 2), EPA Method 1625C, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{cc} 
\\
DATA VALIDATION REPORT & \begin{tabular}{c} 
Project: \\
SDG:IOA0557, \\
NPDES \\
IOA0580
\end{tabular} \\
SVOC
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Lab No. & Matrix & Method \\
\hline \begin{tabular}{c} 
Outfall 015 \\
Composite Influent
\end{tabular} & \begin{tabular}{c} 
Outfall 015 \\
Composite Influent
\end{tabular} & IOA0557-01 & water & 625 \\
\hline \begin{tabular}{c} 
Outfall 015 Comp \\
Effluent
\end{tabular} & \begin{tabular}{c} 
Outfall 015 Comp \\
Effluent
\end{tabular} & IOA0580-01 & water & 625 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
& \begin{tabular}{c} 
Project: \\
DATA VALIDATION REPORT. \\
SDG:IOA0557, IOA0580
\end{tabular} \\
SVOC
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2\), at \(4^{\circ} \mathrm{C}\). According to COCs , the samples were received intact and in good condition. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs from the field to Del Mar Analytical were signed by field and laboratory personnel and accounted for the analyses presented in these SDGs. As the samples were couriered to the laboratory, custody seals are not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The water samples were extracted within seven days of collection and analyzed within 40 days of extraction. No qualifications were required.

\subsection*{2.2 GC/MS TUNING}

The DFTPP tunes met the criteria specified in Method 625, and the sample was analyzed within 12 hours of the DFTPP injection time. No qualifications were required.

\subsection*{2.3 CALIBRATION}

The initial calibration associated with these SDGs was dated \(12 / 30 / 04\). The average RRFs for were \(\geq 0.05\), the \(\%\) RSDs were \(\leq 35 \%\), except for the \(\%\) RSD for 2,4 -dinitrophenol, and the \(r^{2}\) values were \(\geq 0.995\), except for the \(r^{2}\) values for bis(2-chloroethoxy)methane and 4,6-dinitro-2methylphenol. 2,4-Dinitrophenol, bis(2-chloroethoxy)methane, and 4,6-dinitro-2-methylphenol were qualified as estimated nondetects, "UJ," in both of the samples. The continuing calibration was analyzed 01/18/05. The RRFs for all target compounds were \(\geq 0.05\) and the \(\%\) Ds were \(\leq 20 \%\) except for the \%Ds for 2,4-dinitrophenol, indeno( \(1,2,3-\mathrm{cd}\) ) pyrene, and benzo(g,h,i)perylene. A representative number of the RRFs, \%RSD, \(r^{2}\) values, and \%D were checked from the raw data, and no calculation or transcription errors were noted. No further qualifications were required.

\subsection*{2.4 BLANKS}

One method blank (5A13037-BLK1) was extracted and analyzed with these SDGs. No target compounds were reported in the method blank. Review of the raw data indicated no false negatives. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One blank spike/ blank spike duplicate pair (5A13037-BSI/BSID) was extracted and analyzed with these SDGs. The recoveries and RPDs were within the laboratory QC limits, except for the RPD for benzidine. Benzidine was qualified as an estimated nondetect, "UJ," in both of the samples. A representative number of recoveries and RPDs were calculated from the raw data and no calculation or transcription errors were found. No further qualifications were required.

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

No MS/MSD analyses were associated with the samples in these SDGs. Evaluation of method accuracy and precision was based on blank spike/blank spike duplicate results. No qualifications were required.

\subsection*{2.7 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

\subsection*{2.7.1 Field Blanks and Equipment Rinsates}

There were no field QC samples associated with these SDGs. No qualifications were required.

\subsection*{2.7.2 Field Duplicates}

There were no field duplicate samples associated with these SDGs.

\subsection*{2.8 INTERNAL STANDARDS PERFORMANCE}

The internal standard area counts were within the control limits established by the continuing calibration standards: \(-50 \% /+100 \%\) for internal standard areas. A representative number of recoveries were calculated from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.9 COMPOUND IDENTIFICATION}

The laboratory analyzed for semivolatile target compounds by EPA Method 625C. Review of sample chromatograms and retention times indicated no problems with target compound identification. No qualifications were required.


\subsection*{2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantitation was verified by recalculating any sample detects and/or blank spike/blank spike duplicate concentrations from the raw data and no calculation or transcription errors were found. The reporting limits were supported by the low level of the initial calibration. Reporting limits were not adjusted for sample amount; however, the dilution factors listed on the sample result summaries reflected the sample amount extracted. Results were reported in ug/L. Results reported between the MDL and the reporting limit were qualified as estimated, "J," by the laboratory. No further qualifications were required.

\subsection*{2.11 SYSTEM PERFORMANCE}

Review of the raw data indicated no problems with system performance. No qualifications were required.

\author{
MWH-Pasadena Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly \\ Project ID: Ouffall 015 \\ Report Number: 10 A 0580
}

Sampled: 01/12/05
Received: 01/11/05

DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & MDL Limit & Reporting Limit & Sample Result & Dilution Factor & Date Extracted & Date Analyzed & \[
\begin{array}{r}
\text { Dat? } \\
\text { d Qualifi }
\end{array}
\] & \\
\hline Sample D: 1OA0580-01 (D Reporting Units: ug/I & utfall 015-C & mp Effluent & - Wat & & & & & & \begin{tabular}{l}
Res \\
qual
\end{tabular} & \[
\begin{aligned}
& Q v x+1 \\
& C=D x
\end{aligned}
\] \\
\hline Acenaphthene. & EPA 625 & 5 513037 & 4.3 & 10 & 14 & 1.05 & 01/13/05 & 0118/05 & & \\
\hline Acenaphthylene & EPA 625 & 5A13037 & 3.2 & 10 & ND & 1.05 & 01/13/05 & 01/18/05 & \(U\) & \\
\hline Aniline & EPA 625 & 5A13037 & 2.9 & 10 & ND & 1.05 & 01/13/05 & 01/18/05 & & \\
\hline Anthracene & EPA 625 & 5A13037 & 3.2 & 10 & ND & 1.05 & 01/13/05 & 01/18/05 & & \\
\hline Benzidine & EPA 625 & 5A13037 & 5.2 & 20 & ND & 1.05 & 01/13/05 & 01/18/05 & UT & 45 \\
\hline Benzoic acid. & EPA 625 & \(5 A 13037\) & 2.6 & 20 & 13 & 1.05 & 01/13/05 & 01/18/05 & \({ }^{5} \mathrm{~J}\) & DNQ \\
\hline Benzo(a)anthracene & EPA 625 & 5A13037 & 3.7 & 10 & ND & 1.05 & 01/13/05 & 01/48/05 & \(\cup\) & \\
\hline Benzo(b)fluoranthene & EPA 625 & 5A13037 & 2.7 & 10 & ND & 1.05 & 01/13/05 & 01/18/05 & \(\cup\) & \\
\hline Benzo(k)fluoranthene & EPA 625 & 5A13037 & 3.4 & 10 & ND & \(1: 05\) & 01/13/05 & 01/18/05 & \(\cup\) & \\
\hline Benzo(g, h, i) perylene & EPA 625 & 5A13037 & 5.3 & 10 & ND & 1.5 & 01/13/05 & 011805 & UJC & \(c\) \\
\hline Benzo(a)pyrene & EPA 625 & 5 A13037 & 3.5 & 10 & ND & 1.05 & 01/13:05 & 01/18/05 & \(\cup\) & \\
\hline Benzyl alcohol & EPA 625 & 5A13037 & 2.5 & 20 & ND & 1.05 & 01/13/05 & 01/18/05 & \(\cup\) & \\
\hline Bis(2-chloroethoxy)methane & EPA 625 & 5 A 13037 & 3.9 & 10 & ND & 1.05 & 01/13/05 & 01/18/05 & UJ & c \\
\hline Bis(2-chioroethyl)ether & ERA 625 & \(5 \pm 13037\) & 4.4 & 10 & ND & 1.05 & \(01113 / 05\) & 01118/05 & ut & 人 \\
\hline \(\mathrm{Bis}(2\)-chloroisopropyl)ether & EPA 625 & 5A13037 & 4.6 & 10 & ND & 1.05 & 01/13/05 & 01/18/05 & \(\cup\) & \\
\hline Bis(2-ethylhexyl)phthalate & EPA 625 & 5A13037 & 5.2 & 50 & ND & 1.05 & 01/13/05 & 01/18/05 & \(\cup\) & \\
\hline 4-Bromophenyl phenyl ether & EPA 625 & 5A13037 & 4.6 & 10 & ND & 1.05 & 01/13/05 & 01/18/05 & \(\cup\) & \\
\hline Butyl benzyl phthalate. & EPA625 & 5 Al 13037 & 3.5 & 20 & 6.0 & 1.05 & 01/13105 & 01/1805 & JJ & DNK \\
\hline 4 Chloroaniline & EPA 625 & 5A13037 & 6.0 & 10 & ND & 1.05 & 0113005 & 01/18/05 & \(\checkmark\) & \\
\hline 2-Chloronaphthalene & EPA 625 & 5 A 13037 & 4.0 & 10 & ND & 1.05 & 01/13/05 & 01/18/05 & 1 & \\
\hline 4-Chloro-3-methylphenol & EPA 625 & 5A13037 & 3.5 & 20 & ND & 1.05 & 01/13/05 & 01/18/05 & & \\
\hline 2-Chiorophenol & EPA 625 & 5A13037 & 4.2 & 10 & ND & 1.05 & 01/13/05 & 01/18/05 & & \\
\hline 4-Chlorophenyl phenyl ether & EPA 625 & 5A13037 & 3.0 & 10 & ND & 1.05 & 01/13/05 & 01/18/05 & & \\
\hline Chrysene & EPA 625 & 5A13037 & 2.8 & 10 & ND & 1.05 & 01/13/05 & 01/18/05 & & \\
\hline Dibenz(a,h)anthracene & EPA 625 & 5A13037 & 4.7 & 20 & ND & 1.05 & 01/13/05 & 01/18/05 & \(\downarrow\) & \\
\hline Dibenzofuran. & EPA 625 & 5A13037. & 2.6 & 10 & 9.8 & 1.05 & 01/13/05 & 01/18/05 & J & DNC \\
\hline Di-n-butyl phthalate. & EPA 625 & 5 S13037 & 2.8 & 20 & 5.8 & 1.05 & 01/13/05 & 01/18/05 & I & ON: \\
\hline 1,3-Dichlorobenzene & EPA 625 & 5A13037 & 4.1 & 10 & ND & 1.05 & 01/13/05 & 01/18/05 & \(\cup\) & \\
\hline 1,4-Dichlorobenzene & EPA 625 & 5A13037 & 3.9 & 10 & ND & 1.05 & 01/13/05 & 01/18/05 & 1 & \\
\hline 1.2-Dichlorobenzene & EPA 625 & 5A13037 & 4.5 & 10 & ND & 1.05 & 0111305 & 01/18/05 & & \\
\hline 3,3-Dichlorobenzidine & EPA 625 & 5A13037 & 11 & 20 & ND & 1.05 & 01/13/05 & 01/18/05 & & \\
\hline 2,4-Dichlorophenol & EPA 625 & 5A13027 & 4.1 & 10 & ND & 1.05 & 01/13/05 & 01/18/05 & & \\
\hline Diethyl phthalate & EPA 625 & 5A13037 & 3.1 & 10 & ND & 1.05 & 01/13:05 & 01/18/05 & & \\
\hline 2,4-Dimethylphenol & EPA 625 & 5A13037 & 4.4 & 20 & ND & 1.05 & 01/13/05 & 0118/05 & & \\
\hline Dimethyl phthalate & EPA 625 & 5A13037 & 3.6 & 10 & ND & 1.05 & 01/13/05 & 01/18/05 & & \\
\hline 4,6-Dinitro-2-methylphenol & EPA 625 & 5A13037. & 5.1 & 20 & ND & 1.05 & 01/13/05 & 01/18/05 & \(\downarrow\) J & C \\
\hline 2,4-Dinitrophenol & EPA 625 & \(5 \mathrm{Al3057}\) & 5.3 & 20 & ND & 1.05 & \(01 / 1305\) & 0118.05 & 45 & \\
\hline 2,4-Dinitrotoluene & EPA 625 & 5 A 13037 & 4.2 & 10 & ND & 1.05 & 01/13:05 & 01/18/05 & U & \\
\hline 2.6-Dinitrotoluene & EPA 625 & 5 A 13037 & 3.2 & 10 & ND & 1.05 & 01/13/05 & 01/18/05 & & \\
\hline Di-n-octy phthalate & EPA 625 & 5 A13037 & 4.7 & 20 & ND & 1.05 & 01/13/05 & 01/18105 & & \\
\hline Fluoranthene & EPA 625 & 5 A13037 & 4.2 & 10 & ND & 1.05 & 01/13/05 & 01/18/05 & \(\downarrow\) & \\
\hline
\end{tabular}

\section*{DRAFT REPORT}

DRAFT REPORT
DATA SUBJECT TO CHANGE

MWH-Pasadena Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Sampled: 01/12/05
Received: 01/1105

DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)


DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE


Project ID: Outall 015
Report Number: IOA0557

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\title{
ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)
}


Sampled: 01/11/05-01/12/05
Received: 01/1105

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
Analyte \(\quad\) Method Batch Limit Li
Sample ID: 10A0557-02 (Outfall 015 Composite Influent - Water) - cont.
\begin{tabular}{l} 
Reporting Units: ug/f
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Reporting Units: ug/ & - 625 & (1) & & & & & 12/05 & & Qumb & QuAl COD' \\
\hline Fluorene & EPA 625 & 5 A13037 & 3.9 & 10 & ND & 1 & & 01/18/05 & & \[
\operatorname{CODE}
\] \\
\hline Hexachlorobenzene & EPA 625 & 5 A13037 & 4.8 & 10 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Hexachlorobutadiene & EPA 625 & 5 A13037 & 4.2 & 10 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Hexachlorocyclopentadiene & EPA 625 & 5 A13037 & 3.4 & 20 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Hexachloroethane & EPA 625 & 5 A13037 & 4.2 & 10 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Indeno(1,2,3-cd)pyrene & EPA 625 & 5 A 13037 & 5.4 & 20 & ND & 1 & 01/13/05 & 01/18/05 & जJC & \\
\hline Isophorone & EPA 625 & 5 A13037 & 3.7 & 10 & ND & 1 & 01/13/05 & 01/18:05 & us & c \\
\hline 2-Methylnaphthalene & EPA 625 & SA13037 & 3.0 & 10 & ND & 1 & 01/13/05 & 01/1805 & 0 & \\
\hline 2-Methylphenol & EPA 625 & SA13037 & 3.7 & 10 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline 4-Methylphenol & EPA 625 & 5 A. 13037 & 3.8 & 10 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Naphthalene & EPA 625 & 5 A13037 & 4.5 & 10 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline 2-Nitroaniline & EPA 625 & 5 A13037 & 3.9 & 20 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline 3-Nitroaniline & EPA 625 & 5 A13037 & 4.5 & 20 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline 4-Nitroaniline & EPA 625 & 5 A13037 & 4.9 & 20 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Nitrobenzene & EPA 625 & 5 A13037 & 4.2 & 20 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline 2-Nitrophenol & EPA 625 & 5A13037 & 4.2 & 10 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline 4-Nitrophenol & EPA 625 & 5.413037 & 6.6 & 20 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline N-Nitrosodiphenylamine & EPA 625 & \$A13037 & 4.0 & 10 & ND & 1 & 0111305 & 01118105 & & \\
\hline N-Nitrosodi-n-propylamine & EPA 625 & 5 A13037 & 3.6 & 10 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Pentachlorophenol & EPA 625 & SA13037 & 4.0 & 20 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Phenanthrene
Phenol & EPA 625 & 5A13037 & 3.3 & 10 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Phenol
Pyrene & EPA 625 & 5 A13037 & 4.0 & 10 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Pyrene & EPA 625 & 5A13037 & 3.9 & 10 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline 1,2,4 Trichlorobenzene & EPA 625 & 5A13037 & 4.4 & 10 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline 2,4,5-Trichlorophenol & EPA 625 & 5 A13037 & 3.6 & 20 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline 2,4,6-Trichlorophenol & EPA 625 & 5A13037 & 4.1 & 20 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline 1,2-Diphenylhydrazine/Azobenzene & EPA 625 & SA13037 & 5.0 & 20 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline N-Nitrosodimethylamine & EPA 625 & 5A13037 & 3.7 & 20 & ND & 1 & 01/13/05 & 01/18/05 & \(\downarrow\) & \\
\hline Surrogate: 2-Fluorophenol (35-120\%) & & & & & \(56 \%\) & & & 01/1805 & & \\
\hline Surrogate: Phenol-d6 (45-120\%) & & & & & 69\% & & & & & \\
\hline Surrogate: 2,4,6-Tribromophenol (50-12 & 2\%) & & & & \(73 \%\) & & & & & \\
\hline Surrogaie: Nitrobenzene-d5 (45-120\%) & & & & & 63\% & & & & & \\
\hline Surrogate: 2-Fluorobiphenyl (45-120\%) & & & & & \(70 \%\) & & & & & \\
\hline Surrogate: Terphenyl-di4 (45-135\%) & & & & & 90\% & & & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine Michele Harper Project Manager
\(\qquad\) Level If

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA
AMEC Earth \& Environmental

550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer M. Pokorny
Analysis/Method Volatiles

Package ID T711VO54
Task Order 313150010
SDG No. IOA0557
No. of Analyses 1
Date: March 7, 2005
Reviewer's Sivipture
M.

\section*{ACTION TTEMS*}
1. Case Narrative Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy Deliverables
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
6. Deviations from Analysis \\
Protocol, e.g., \\
Holding Times \\
GC/MS Tune/Inst. Perform \\
Calibrations \\
Blanks \\
Surrogates \\
Matrix Spike/Dup LCS \\
Field QC \\
Intemal Standard Performance \\
Compound Identification and \\
Quantitation \\
System Performance
\end{tabular} & Qualifications were required for method blank contamination. \\
\hline COMMENTS \({ }^{\text {b }}\) & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \begin{tabular}{l}
\({ }^{a}\) Subcontracted analytical laboratory is n \\
\({ }^{\text {b }}\) Differences in protocol have been adopt
\end{tabular} & \begin{tabular}{l}
eting contract and/or method requirements. \\
the laboratory but no action against the laboratory is required.
\end{tabular} \\
\hline
\end{tabular}

\section*{amec \({ }^{\text {® }}\)}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES Monitoring
}

\author{
ANALYSIS: VOLATILES \\ SAMPLE DELIVERY GROUP: IOA0557
}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{lr} 
\\
DATA YALIDATION REPORT & \begin{tabular}{r} 
Project: \\
SDG:
\end{tabular} \\
NPDES \\
IOA0557
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: IOA0557 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Volatiles \\ QC Level: Level IV \\ No. of Samples: 1 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: M. Pokorny \\ Date of Review: March 7, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Volatile Organics (DVP-2, Rev. 2), EPA Method 624, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary forms as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{lrr} 
DATA VALIDATION REPORT & \begin{tabular}{r} 
Project: \\
SDG:
\end{tabular} & \begin{tabular}{c} 
NPDES \\
IOAO557
\end{tabular} \\
VOC
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Lab No. & Matrix & Method \\
\hline \begin{tabular}{c} 
Outfall 015 Grab Influent - \\
Water
\end{tabular} & \begin{tabular}{c} 
Outfall 015 Grab Influent - \\
Water
\end{tabular} & 10A0557-01 & water & 624 \\
\hline
\end{tabular}
\begin{tabular}{lrr} 
& \begin{tabular}{c} 
Project: \\
DATA VALIDATIONREPORT
\end{tabular} & \begin{tabular}{r} 
NPDES \\
SDG:
\end{tabular} \\
IOAOSS7 \\
Analysis: & VOC
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The sample in this SDG was received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm\) \(2^{\circ} \mathrm{C}\). According to the COC , the sample was received intact, without headspace, and in good condition. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COC was signed by field and laboratory personnel and accounted for the analysis presented in this SDG. As the sample was couriered to the laboratory, custody seals are not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The sample was analyzed within 14 days of collection. No qualifications were required.

\subsection*{2.2 GC/MS TUNING}

The ion abundance windows shown on the quantitation report were consistent with those specified in the EPA Method 624. All ion abundances were within the established windows and were therefore acceptable. The samples and associated QC were analyzed within 12 hours of the BFB injection times. The Form Vs were verified from the raw data and no discrepancies between the summary forms and the raw data were noted. No qualifications were required.

\subsection*{2.3 CALIBRATION}

One initial calibration, dated \(01 / 04 / 05\), was associated with this SDG. The average RRFs were \(\geq 0.05\) and the \(\%\) RSDs were \(\leq 35 \%\) for the target compounds listed on the sample summary forms. One continuing calibration, dated \(01 / 12 / 05\), was associated with this SDG. The RRFs for all target compounds were \(\geq 0.05\) and the \(\%\) Ds were \(\leq 20 \%\). A representative number of \(\%\) RSDs and average RRFs from the initial calibration, and \%Ds and RRFs from the continuing calibration were recalculated from the raw data, and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.4 BLANKS}

One water method blank (5A12019-BLK1) was associated with this SDG. Methylene chloride was reported in the method blank at \(0.71 \mathrm{ug} / \mathrm{L}\). The sample of this SDG had methylene chloride qualified as a nondetect, " \(U\)," and raised to the reporting limit. The method blank raw data showed no evidence of false negatives or false positives. No further qualifications were required.
\begin{tabular}{cc} 
\\
DATA VALIDATIONREPORT & \begin{tabular}{c} 
Project: \\
SDG:
\end{tabular} \\
APDES \\
IOADS57
\end{tabular}

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One water blank spike (5A12019-BS1) was associated with this SDG. All spike recoveries were within the laboratory-established QC limits. A representative number of recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.6 SURROGATE RECOVERY}

The surrogates were within the QC limits of \(80-120 \%\). A representative number of surrogate recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

MS/MSD analyses were not performed with this SDG. Evaluation of method accuracy was based on the LCS results. No qualifications were required.

\subsection*{2.8 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

\subsection*{2.8.1 Trip Blanks}

A trip blank was not analyzed with this SDG. No qualifications were required.

\subsection*{2.8.2 Field Blanks and Equipment Rinsates}

There were no field QC samples associated with this SDG. No qualifications were required.

\subsection*{2.8.3 Field Duplicates}

There were no field duplicate samples associated with this SDG.

\subsection*{2.9 INTERNAL STANDARDS PERFORMANCE}

Internal standard area counts and retention times for this SDG were within the control limits established by the continuing calibration standards, of \(+100 \% /-50 \%\) for internal standard areas and \(\pm 0.50\) minutes for retention times. A representative number of internal standard areas and retention times were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.
\begin{tabular}{|c|c|c|}
\hline & Project: SDG: & \[
\begin{aligned}
& \text { NPDES } \\
& \text { 10A05 }
\end{aligned}
\] \\
\hline DATA VALIDATION REPORT & Analysis: & VOC \\
\hline
\end{tabular}

\subsection*{2.10 COMPOUND IDENTIFICATION}

Target compound identification was verified at a Level IV data validation. The laboratory analyzed for a subset of volatile target compounds by EPA Method 624. Chromatograms, retention times, and spectra for the sample and QC were examined and no target compound identification problems were noted. No qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification is verified at a Level IV data validation. The reporting limits were supported by the lowest concentrations of the initial calibration standards and by the MDL study. Compound quantitation was verified by recalculating sample detects, and/or a representative number of blank spike and surrogate recoveries from the raw data. No calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.12 TENTATIVELY IDENTIFIED COMPOUNDS}

The laboratory did not provide TICs for this SDG. No qualifications were required.

\subsection*{2.13 SYSTEM PERFORMANCE}

A review of the chromatograms and other raw data showed no identifiable problems with system performance. No qualifications were required.

\section*{Project iD: Ouffall 01s}

300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Report Number: \(10 A 0557\)
Sampled: 01/11/05-01/1205
Attention: Bronurn Kelly
Received: 01/1105

PLRGEABLES BY GCMM (EPA 624)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \[
\begin{gathered}
\text { Dilu } \\
\text { Fac }
\end{gathered}
\] & on Date Extracted & \[
\begin{aligned}
& \text { Date } \\
& \text { Analyz }
\end{aligned}
\] &  & \\
\hline \begin{tabular}{l}
Sample ID: 10A0557-01 \\
Reporting Units: ugh
\end{tabular} & 5 Grab Infl & - Water) & & & Sam & led: & 1/11/05 & & \begin{tabular}{l}
12t \\
QuixL
\end{tabular} & \[
1
\] \\
\hline 1,2,3-Trichloropropane & EPA 624 & 5 A12019 & N/A & 10 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline Acrolein & EPA 624 & 5A13008 & 4.6 & 50 & ND & & 01/13/05 & 01/13/05 & & \\
\hline Acrylonitrile & EPA 624 & 5 A 13008 & 5.1 & 50 & ND & & 01/13/05 & 01/13/05 & & \\
\hline Benzene & EPA 624 & 5A12019 & 0.28 & 1.0 & ND & & 01/12/05 & 01/12/05 & & \\
\hline Bromodichloromethane & EPA 624 & SA12019 & 0.30 & 2.0 & ND & 1 & 01/12:05 & 01/12/05 & & \\
\hline Bromoform & EPA 624 & 5A12019 & 0.32 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline Bromomethane & EPA 624 & 5 A12019 & 0.34 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline Carbon tetrachloride & EPA 624 & 5A12019 & 0.28 & 0.50 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline Chlorobenzene & EPA 624 & 5 A12019 & 0.36 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline Chloroethane & EPA 624 & 5A12019 & 0.33 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline 2-Chlorocthyl vinyl ether & EPA 624 & 5A13008 & 1.3 & 5.0 & ND & 1 & 01/13/05 & 01/13/05 & & \\
\hline Chloroform & EPA 624 & 5 A12019 & 0.33 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline Chloromethane & EPA 624 & 5A12019 & 0.30 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline Dibromocbloromethane & EPA 624 & 5A12019 & 0.28 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline 1.2-Dichlorobenzene & ERA 624 & 5 A12019 & 0.32 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline 1,3-Dichlorobenzene & EPA 624 & 5 A12019 & 0.35 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline 1,4-Dichlorobenzene & EPA 624 & SA12019 & 0.37 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline 1,1-Dichloroethane & EPA 624 & 5A12019 & 0.27 & 2.0 & ND & J & 01/12/05 & 01/1205 & & \\
\hline 1.2-Dichloroethane & EPA 624 & 5 S12019 & 0.28 & 0.50 & ND & 1 & \(01 / 2 / 05\) & 01112/05 & & \\
\hline 1, Dichloroethene & EPA 624 & SA12019 & 0.32 & 50 & ND & 1 & \(01 / 12005\) & 01/12/05 & & \\
\hline trans-1,2-Dichloroethene & EPA 624 & 5 A12019 & 0.27 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline 1,2-Dichloropropane & EPA 624 & 5 A12019 & 0.35 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline cis-1,3-Dichloropropene & EPA 624 & 5 A12019 & 0.22 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline trans-1,3-Dichloropropene
Ethylbenzene & EPA 624 & 5 A12019 & 0.24 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline Ethylbenzene & EPA 624 & 5 A12019 & 0.25 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & \(\downarrow\) & \\
\hline Methylene chloride
1,1,2,2-Tetrachloroethane & EPA 624 & 5 A12019 & 0.48 & 5.0 & 071 & & \(01 / 1205\) & 01/12/05 & & \(B\) \\
\hline 1,1,2,2-Tetrachloroethane & EPA 624 & 5A12019 & 0.24 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & -B, 3 & B \\
\hline Tetrachloroethene & EPA 624 & 5A12019 & 0.32 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline Toluene & EPA 624 & 5A12019 & 0.36 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline 1,1,1-Trichloroethane & EPA 624 & 5 A12019 & 0.30 & 2.0 & ND & 1 & 01/1205 & 01/1205 & & \\
\hline 1,1,2-Trichloroethane & EPA 624 & 5 A12019 & 0.30 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 & & \\
\hline Trichloroethene & EPA 624 & 5 A12019 & 0.26 & 2.0 & 2.9 & 1 & 01/12/05 & 01/12/05 & & \\
\hline Trichlorofluoromethane & EPA 624 & 5A12019 & 0.34 & 5.0 & ND & 1 & 01/12/05 & \(01 / 1205\) & \(U\) & \\
\hline Vinyl chloride & EPA 624 & 5 A 12019 & 0.26 & 0.50 & ND & 1 & 01/12/05 & 01/12/05 & U & \\
\hline Xylenes, Total & EPA 624 & 5 A 12019 & 0.52 & 4.0 & ND & 1 & 01/12\%5 & 01/12105 & & \\
\hline \multicolumn{3}{|l|}{Surrogate: Dibromofuoromethane (80-120\%)} & & & \multicolumn{6}{|l|}{\(98 \%\) \%} \\
\hline \multicolumn{3}{|l|}{Surrogate: Dibromofuoromethane ( 80 -120\%)} & & & \multicolumn{6}{|l|}{\(100 \%\)} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Surrogate: Toluene-d8 (80-120\%)}} & \multicolumn{6}{|l|}{100\%} \\
\hline & & & & & 99\% & & & & & \\
\hline \multicolumn{5}{|l|}{Surrogat: 4-Bromofluorobenzene (80-120\%)} & \multicolumn{6}{|l|}{\(100 \%\)} \\
\hline \multicolumn{5}{|l|}{Surrogate: 4-Eromofuorobenzene ( \(80-120 \%\) )} & \multicolumn{5}{|l|}{96\%} & \\
\hline \multicolumn{3}{|l|}{Del Mar Analytical, Irvine} & \multicolumn{8}{|c|}{\multirow[b]{3}{*}{}} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Michele Harper
Project Marager}} & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}

The rentits pertain only to the samples texted in the taboratory. This renor shatl no be wopoducet

CONTRACT COMPLLANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer L. Jarusewic
Analysis/Method General Minerals

Package ID T711WC71
Task Order 313150010
SDG No. IOA0557/IOA0580
No. of Analyses 3


\section*{ACTION ITEMS \({ }^{-}\)}
1. Case Narrative Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables

Analysis Protocol, e.g.,
Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification
and Quantitation
System Performance
6. Deviations from Qualifications for cyanide RL standard recovered below QC limits
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\square\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
COMMENTS \({ }^{\text {b }}\)
\({ }^{\text {a }}\) Subcontracted analytical laboratory is not meeting contract and/or method requirements.
- Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

\section*{amec \({ }^{\theta}\)}

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\author{
ANALYSIS: GENERAL MINERALS SAMPLE DELIVERY GROUP: IOA0557 \& IOA0580
}

\author{
Prepared by
}

AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: IOA0557/IOA0580 \\ Project Manager: B. McIlvaine \\ Matrix: Water \\ Analysis: General Minerals \\ QC Level: Level IV \\ No. of Samples: 3 \\ Reviewer: L. Janusewic \\ Date of Review: March 10,2005
}

The sample listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 300.0, 405.1, 335.2, 218.6, and 160.2. Standard Methods for the Examination of Water and Wastewater Method SM5540-C and SM2540C, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Forml as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 015-Grab-Influent & Outfall 015-Grab-Influent & IOA0557-01 & Water & General Minerals \\
\hline Outfall 015-Composite-Influent & Outfall 015-Composite-Influent & IOA0557-02 & Water & General Minerals \\
\hline Outfall 015-Composite-Effluent & Outfall 015-Composite-Effuent & 1OA0580-01 & Water & General Minerals \\
\hline
\end{tabular}
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0557/0580 \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). No preservation problems were noted by the laboratory. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by field and laboratory personnel. The COCs accounted for all analyses and samples present in these SDGs. No sample qualifications were required.

\subsection*{2.1.3 Holding Times}

The holding times were assessed by comparing the date of collection with the dates of analyses. The 14-day analytical holding time for cyanide, the 7 -day holding time for total suspended solids, the 48 -hour holding time for nitrate and biological oxygen demand, and the 24 -hour hexavalent chromium holding times were met. No qualifications were required.

\subsection*{2.2 CALIBRATION}

For the applicable analyses, the initial calibration correlation coefficients were \(\geq 0.995\). Initial and continuing calibration information was acceptable with \(\%\) Rs within the control limits of \(90-110 \%\) for all analytes except hexavalent chromium. The CCV for hexavalent chromium exceeded the method control limits of \(95-105 \%\); however, as hexavalent chromium was not detected, no qualifications were required. For BOD, no information regarding the calibration of the oxygen meter was provided; however, as the LCS recovery was within the CCV control limits, no qualifications were required.

The total cyanide reporting limit check standard was recovered in Outfall 015-Composite-Influent. As per a telephone conversation dated 03/11/05 with J. Hatfield of Del Mar Analytical, it was confirmed that the analyst did not spike the reporting limit check standard. Another reporting limit check standard was run that day and was recovered within the control limits of \(70-130 \%\); therefore, the reviewer did not reject the Outfall 015-Composite-Influent result. Nondetected cyanide was qualified as estimated, "UJ." No further qualifications were required.

\subsection*{2.3 BLANKS}

Hexavalent chromium was detected in the associated method blank for Outfall 015 -Grab-Influent; however, hexavalent chromium was not detected in Outfall 015 -Grab-Influent and no qualifications were required. The remaining method blank and CCB results reported on the summary forms and in the raw data
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: \begin{tabular}{rl} 
IOA0557/0580 \\
\hline
\end{tabular} & Analysis: \\
\hline
\end{tabular}
for blank analyses associated with the samples were nondetects at the reporting limit. No qualifications were required.

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The laboratory control sample and laboratory control sample duplicate (BOD and cyanide only) recoveries and RPDs were within the laboratory-established control limits. The remaining LCS results were within the laboratory-established control limits. No qualifications were required.

\subsection*{2.5 SURROGATES RECOVERY}

Surrogate recovery is not applicable to the analyses presented in these SDGs.

\subsection*{2.6 LABORATORY DUPLICATES}

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

No MS/MSD analyses were performed in associations with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.8 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analyses of these samples; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.9 ICP SERIAL DILUTION}

ICP serial dilution is not applicable to the analyses presented in this data validation report.

\subsection*{2.10 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. No qualifications were required.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0557/0580 \\
\hline
\end{tabular}

\subsection*{2.11 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.11.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.11.2 Field Duplicates}

There were no field duplicate pairs associated with these SDGs.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Project ID: Outfall 015 9484 Chesapeake Dr, Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) \(505-96,89\) 9830 South 51 st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX \(14801785-0851\) 2520 E. Sunset Rd. \#3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) \(798-3621\)

Attention: Bronwyn Kelly

Sampled: 01/12/05
Report Number: IOA0580

Received: 01/11/05

\section*{DRAFT: INORGANICS}


\section*{AMEC VALIDAIEL}


MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: IOA0557

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{INORGANICS}


\section*{AMEC VALIDATED}

\section*{LEVEL IV}

\section*{LABORATORY REPORT}

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Outfall 015

Sampled: 01/11/05-01/12/05
Received: 01/11/05
Issued: 02/23/05 18:14

\section*{NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117}

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full; without written permission from Del Mar Analytical. The Chain of Custody, I page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

\section*{CASE NARRATIVE}

SAMPLE RECEIPT: \(\quad\) Samples were received intact, at \(2^{\circ} \mathrm{C}\), on ice and with chain of custody documentation.
HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the Del Mar Analytical Sample Acceptance Policy unless otherwise noted in the report.
PRESERVATION: Samples requiring preservation were verified prior to sample analysis.
QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.
COMMENTS: \(\quad\) Results that fall between the MDL and RL are ' \(J\) ' flagged.
SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.
ADDITIONAL
INFORMATION: The date of the composite sample is the date the compositing was performed.

\author{
LABORATORY ID \\ 1OA0557-01 \\ 10A0557-02
}
\begin{tabular}{cc} 
CLIENT ID & MATRIX \\
Outfall 015 Grab Influent & Water \\
Outfall 015 Composite Influent & Water
\end{tabular}

Reviewed By:


Del Mar Analytical, Irvine
Michele Harper
Project Manager
\begin{tabular}{lrr} 
MWH-Pasadena/Boeing & Project ID: Outfall 015 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Pasadena, CA 91101 & Report Number: 1040557 & Received: \(01 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{lllllllllll} 
& & & MDL & Reporting \\
Analyte & Method & Bample \\
Result
\end{tabular} Limit \begin{tabular}{c} 
Dilution \\
Factor \\
Extracted
\end{tabular} \begin{tabular}{c} 
Date \\
Analyzed \\
Quatifiers
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: 1OA0557

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\title{
ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & Dilution Factor & Date Extracted & Date Analyze \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Sample ID: 10A0557-02 (Outfall 015 Composite Influent - Water)
Reparting Units: ugh}} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Sampled: 01/12/05}} & \\
\hline & & & & & & & & \\
\hline Acenaphthene & EPA 625 & 5A13037 & 4.3 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Acenaphthylene & EPA 625 & 5A13037 & 3.2 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Aniline & EPA 625 & 5A13037 & 2.9 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Anthracene & EPA 625 & 5A13037 & 3.2 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Benzidine & EPA 625 & 5A13037 & 5.2 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Benzoic acid & EPA 625 & 5A13037 & 2.6 & 20 & 11 & 1 & 01/13/05 & 01/18/05 \\
\hline Benzo(a)anthracene & EPA 625 & 5A13037 & 3.7 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Benzo(b)fluoranthene & EPA 625 & 5A13037 & 2.7 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Benzo(k)fluoranthene & EPA 625 & 5A13037 & 3.4 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Benzo(g,h,i)perylene & EPA 625 & 5A13037 & 5.3 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Benzo(a)pyrene & EPA 625 & 5A13037 & 3.5 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Benzyl alcohol & EPA 625 & 5 A 13037 & 2.5 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Bis(2-chloroethoxy)methane & EPA 625 & 5A13037 & 3.9 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Bis(2-chloroethyl)ether & EPA 625 & 5A13037 & 4.4 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Bis(2-chloroisopropyl)ether & EPA 625 & 5A13037 & 4.6 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Bis(2-ethylhexyl)phthalate & EPA 625 & 5A13037 & 5.2 & 50 & 26 & 1 & 01/13/05 & 01/18/05 \\
\hline 4-Bromophenyl phenyl ether & EPA 625 & 5A13037 & 4.6 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Butyl benzyl phthalate & EPA 625 & 5 A 13037 & 3.5 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 4 Chloroaniline & EPA 625 & 5A13037 & 6.0 & 10 & ND & 1 & 01/13/05 & \(01118 / 05\) \\
\hline 2-Chloronaphthalene & EPA 625 & 5 A13037 & 4.0 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 4-Chloro-3-methylphenol & EPA 625 & 5A13037 & 3.5 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 2-Chlorophenol & EPA 625 & 5A13037 & 4.2 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 4-Chlorophenyl phenyl ether & EPA 625 & 5A13037 & 3.0 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Chrysene & EPA 625 & 5A13037 & 2.8 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Dibenz(a,h)anthracene & EPA 625 & 5A13037 & 4.7 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Dibenzofuran & EPA 625 & 5A13037 & 2.6 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Di-n-butyl phthalate & EPA 625 & 5 A13037 & 2.8 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 1,3-Dichlorobenzene & EPA 625 & 5A13037 & 4.1 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 1,4-Dichlorobenzene & EPA 625 & 5A13037 & 3.9 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 1,2-Dichlorobenzene & EPA 625 & 5A13037 & 4.5 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 3,3-Dichlorobenzidine & EPA 625 & 5A13037 & 11 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 2,4-Dichlorophenol & EPA 625 & 5A13037 & 4.1 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Diethyl phthalate & EPA 625 & SA13037 & 3.1 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 2,4-Dimethylphenol & EPA 625 & 5A13037 & 4.4 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Dimethyl phthalate & EPA 625 & 5A13037 & 3.6 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 4,6-Dinitro-2-methylphenol & EPA 625 & 5 A13037 & 5.1 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 2,4-Dinitrophenol & EPA 625 & 5 A13037 & 5.3 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 2,4-Dinitrotoluene & EPA 625 & 5A13037 & 4.2 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 2,6-Dinitrotoluene & EPA 625 & 5A13037 & 3.2 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Di-n-octyl phthalate & EPA 625 & 5A13037 & 4.7 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Fluoranthene & EPA 625 & 5A13037 & 4.2 & 10 & ND & . & 01/13/05 & 01/18/05 \\
\hline
\end{tabular}

J

C

J

Del Mar Analytical, Irvine
Michele Harper
Project Manager

\author{
Project ID: Outfall 015 \\ Report Number: IOA0557 \\ Sampled: 01/11/05-01/12/05 \\ Received: 01/11/05
}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & Dilution Factor & Date Extracted & Date Analyze \\
\hline \multicolumn{5}{|l|}{Sample ID: 1OA0557-02 (Outfall 015 Composite Influent - Water) - cont.} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Sampled: 01/12/05}} \\
\hline \multicolumn{5}{|l|}{Reporting Units: ug/} & & & & \\
\hline Fluorene & EPA 625 & 5A13037 & 3.9 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Hexachlorobenzene & EPA 625 & 5A13037 & 4.8 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Hexachlorobutadiene & EPA 625 & 5A13037 & 4.2 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Hexachlorocyclopentadiene & EPA 625 & 5A13037 & 3.4 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Hexachloroethane & EPA 625 & 5A13037 & 4.2 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Indeno(1,2,3-cd)pyrene & EPA 625 & 5A13037 & 5.4 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Isophorone & EPA 625 & 5A13037 & 3.7 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 2-Methylnaphthalene & EPA 625 & 5A13037 & 3.0 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 2-Methylphenol & EPA 625 & 5 A13037 & 3.7 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 4-Methylphenol & EPA 625 & 5A13037 & 3.8 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Naphthalene & EPA 625 & 5A13037 & 4.5 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 2-Nitroaniline & EPA 625 & 5 A13037 & 3.9 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 3-Nitroaniline & EPA 625 & 5 A13037 & 4.5 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 4-Nitroaniline & EPA 625 & 5 A13037 & 4.9 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Nitrobenzene & EPA 625 & 5A13037 & 4.2 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 2-Nitrophenol & EPA 625 & 5 A 13037 & 4.2 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 4-Nitrophenol & EPA 625 & 5A13037 & 6.6 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline N-Nitrosodiphenylamine & EPA 625 & 5 A13037 & 4.0 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline N-Nitroso-di-n-propylamine & EPA 625 & 5 A13037 & 3.6 & 10 & ND & 1 & 01/13/05 & \(0118 / 05\) \\
\hline Pentachlorophenol & EPA 625 & 5A13037 & 4.0 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Phenanthrene & EPA 625 & 5A13037 & 3.3 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Phenol & EPA 625 & 5A13037 & 4.0 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Pyrene & EPA 625 & 5A13037 & 3.9 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 1,2,4-Trichlorobenzene & EPA 625 & 5A13037 & 4.4 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 2,4,5-Trichlorophenol & EPA 625 & 5 A13037 & 3.6 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 2,4,6-Trichlorophenol & EPA 625 & 5 A13037 & 4.1 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 1,2-Diphenylhydrazine/Azobenzene & EPA 625 & 5A13037 & 5.0 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline N -Nitrosodimethylamine & EPA 625 & 5A13037 & 3.7 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Surrogate: 2-Fluorophenol (35-120\%) & & & & & \(56 \%\) & & & \\
\hline Surrogate: Phenol-d6 (45-120\%) & & & & & \(69 \%\) & & & \\
\hline Surrogate: 2,4,6-Tribromophenol (50-125\%) & & & & & \(73 \%\) & & & \\
\hline Surrogate: Nitrobenzene-d5 (45-120\%) & & & & & \(63 \%\) & & & \\
\hline Surrogate: 2-Fluorobiphenyl (45-120\%) & & & & & 70\% & & & \\
\hline Surrogate: Terphenyl-d14 (45-135\%) & & & & & 90\% & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager
\begin{tabular}{lrr} 
MWH-Pasadena/Boeing & Project ID: Outfall 015 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: 01/11/05-01/12/05 \\
Pasadena, CA 91101 & Report Number: 1OA0557 & Received: \(01 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & Dilution Factor & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Sample ID: IOA0557-02 (Outfall 015 Composite Influent - Water) - cont. \\
Reporting Units: ug/
\end{tabular}}} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Sampled: 01/12/05}} & & \\
\hline & & & & & & & & & \\
\hline Aldrin & EPA 608 & 5A13049 & 0.029 & 0.10 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline alpha-BHC & EPA 608 & 5A13049 & 0.010 & 0.10 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline beta-BHC & EPA 608 & 5A13049 & 0.011 & 0.10 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline delta-BHC & EPA 608 & 5A13049 & 0.010 & 0.20 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline gamma-BHC (Lindane) & EPA 608 & 5A13049 & 0.0097 & 0.10 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline Chlordane & EPA 608 & 5A13049 & 0.18 & 1.0 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline 4,4-DDD & EPA 608 & 5A13049 & 0.011 & 0.10 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline 4,4-DDE & EPA 608 & 5A13049 & 0.017 & 0.10 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline 4,4-DDT & EPA 608 & 5A13049 & 0.015 & 0.10 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline Dieldrin & EPA 608 & 5A13049 & 0.010 & 0.10 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline Endosulfan I & EPA 608 & 5A13049 & 0.015 & 0.10 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline Endosulfan II & EPA 608 & 5A13049 & 0.037 & 0.10 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline Endosulfan sulfate & EPA 608 & 5A13049 & 0.013 & 0.20 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline Endrin & EPA 608 & 5A13049 & 0.0082 & 0.10 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline Endrin aldehyde & EPA 608 & 5A13049 & 0.045 & 0.10 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline Endrin ketone & EPA 608 & 5A13049 & 0.020 & 0.10 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline Heptachlor & EPA 608 & 5A13049 & 0.030 & 0.10 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline Heptachlor epoxide & EPA 608 & 5A13049 & 0.012 & 0.10 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline Methoxychlor & EPA 608 & 5A13049 & 0.034 & 0.10 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline Toxaphene & EPA 608 & SA13049 & 0.77 & \(5: 0\) & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline Surrogate: Tetrachloro-m-xylene (35-120\%) & & & & & 36\% & & & & \\
\hline Surrogate: Decachlorobiphenyl (45-120\%) & & & & & \(77 \%\) & & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager
\begin{tabular}{lrr} 
MWH-Pasadena/Boeing & Project ID: Outfall 015 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Pasadena, CA 91101 & Report Number: 1040557 & Received: \(01 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{TOTAL PCBS (EPA 608)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Sample ID: 1OA0557-02 (Outfall 015 Composite Influent - Water) - cont. \\
Reporting Units: ug/l
\end{tabular}}} & \multicolumn{3}{|l|}{Sampled: 01/12/05} & & \\
\hline & & & & & & & & & \\
\hline Aroclor 1016 & EPA 608 & 5A13049 & 0.067 & 1.0 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline Aroclor 1221 & EPA 608 & 5A13049 & 0.057 & 1.0 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline Aroclor 1232 & EPA 608 & 5A13049 & 0.13 & 1.0 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline Aroclor 1242 & EPA 608 & SA13049 & 0.12 & 1.0 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline Aroclor 1248 & EPA 608 & 5A13049 & 0.21 & 1.0 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline Aroclor 1254 & EPA 608 & 5A13049 & 0.16 & 1.0 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline Aroclor 1260 & EPA 608 & 5A13049 & 0.17 & 1.0 & ND & 1.05 & 01/13/05 & 01/14/05 & \\
\hline Surrogate: Decachlorobiphenyl (45-120\%) & & & & & \(74 \%\) & & & & \\
\hline
\end{tabular}
\begin{tabular}{lcr} 
MWH-Pasadena/Boeing & Project ID: Outfall 015 & \\
300 North Lake Avenue, Suite 1200 & Report Number: \(10 A 0557\) & Sampled: 01/11/05-01/12/05 \\
Pasadena; CA 91101 & & Received: 01/11/05 \\
Attention: Bronwyn Kelly & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{METALS} \\
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Sample ID: IOA0557-02 (Outfall 015 Composite Influent - Water) - cont. Reporting Units: mgh}} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Sampled: 01/12/05}} & \\
\hline & & & & & & & & & \\
\hline Antimony & EPA 200.7 & 5A13042 & 0.0042 & 0.010 & ND & 1 & 01/13/05 & 01/13/05 & \\
\hline Arsenic & EPA 200.7 & 5A13042 & 0.0038 & 0.0050 & ND & 1 & 01/13/05 & 01/13/05 & \\
\hline Beryllium & EPA 200.7 & 5A13042 & 0.00062 & 0.0020 & ND & 1 & 01/13/05 & 01/13/05 & \\
\hline Cadmium & EPA 200.7 & 5A13042 & 0.00034 & 0.0050 & 0.00090 & 1 & 01/13/05 & 01/13/05 & J \\
\hline Chromium & EPA 200.7 & 5A13042 & 0.00068 & 0.0050 & 0.19 & 1 & 01/13/05 & 01/13/05 & \\
\hline Copper & EPA 200.7 & 5A13042 & 0.0017 & 0.010 & 0.0094 & 1 & 01/13/05 & 01/13/05 & J \\
\hline Lead & EPA 200.7 & SA13042 & 0.0021 & 0.0050 & 0.0034 & 1 & 01/13/05 & 01/13/05 & J \\
\hline Mercury & EPA 245.1 & 5A13050 & 0.000063 & 0.00020 & 0.00014 & 1 & 01/13/05 & 01/13/05 & J \\
\hline Nickel & EPA 200.7 & 5A13042 & 0.0020 & 0.010 & 0.069 & 1 & 01/13/05 & 01/13/05 & \\
\hline Selenium & EPA 200.7 & 5A13042 & 0.0046 & 0.0050 & ND & 1 & 01/13/05 & 01/13/05 & \\
\hline Silver & EPA 200.7 & 5A13042 & 0.0013 & 0.010 & ND & 1 & 01/13/05 & 01/13/05 & \\
\hline Thallium & EPA 200.7 & 5A13042 & 0.0031 & 0.0050 & 0.0096 & 1 & 01/13/05 & 01/13/05 & \\
\hline Zinc & EPA 200.7 & 5A13042 & 0.0037 & 0.020 & 0.074 & 1 & 01/13/05 & 01/13/05 & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager


\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: 10A0557

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{SHORT HOLD TIME DETAIL REPORT}
\begin{tabular}{lcccccc} 
& \begin{tabular}{c} 
Hold Time \\
(in days)
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Sampled
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Received
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Extracted
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Analyzed
\end{tabular} \\
Sample ID: Outfall 015 Grab Influent (IOA0557-01)-Water
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015

Report Number: 10 A 0557

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKIOC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
Analyte Result

Batch: 5A12019 Extracted: 01/12/05

Blank Analyzed: 01/12/2005 (5A12019-BLK1)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1,2,3-Trichloropropane & ND & 10 & N/A & ug/ & & & \\
\hline Benzene & ND & 1.0 & 0.28 & ug/ & & & \\
\hline Bromodichloromethane & ND & 2.0 & 0.30 & ug/ & & & \\
\hline Bromoform & ND & 5.0 & 0.32 & ug/ & & & \\
\hline Bromomethane & ND & 5.0 & 0.34 & ug/ & & & \\
\hline Carbon tetrachloride & ND & 0.50 & 0.28 & ug/ & & & \\
\hline Chlorobenzene & ND & 2.0 & 0.36 & ug/ & & & \\
\hline Chloroethane & ND & 5.0 & 0.33 & ug/ & & & \\
\hline Chloroform & ND & 2.0 & 0.33 & ug/ & & & \\
\hline Chloromethane & ND & 5.0 & 0.30 & ug/ & & & \\
\hline Dibromochloromethane & ND & 2.0 & 0.28 & ug/ & & & \\
\hline 1,2-Dichlorobenzene & ND & 2.0 & 0.32 & ug/ & & & \\
\hline 1,3-Dichlorobenzene & ND & 2.0 & 0.35 & ug/ & & & \\
\hline 1,40Dichlorobenzene & ND & 2.0 & 0.37 & ug/ & & & \\
\hline 1,1-Dichloroethane & ND & 2.0 & 0.27 & ug/ & & & \\
\hline 1,2-Dichloroethane & ND & 0.50 & 0.28 & ug/ & & & \\
\hline 1,1-Dichloroethene & ND & 5.0 & 0.32 & ug/l & & & \\
\hline trans-1,2-Dichloroethene & ND & 2.0 & 0.27 & ug/l & & & \\
\hline 1,2-Dichloropropane & ND & 2.0 & 0.35 & ug/ & & & \\
\hline cis-1,3-Dichloropropene & ND & 2.0 & 0.22 & ug/ & & & \\
\hline trans-1,3-Dichloropropene & ND & 2.0 & 0.24 & ug/ & & & \\
\hline Ethylbenzene & ND & 2.0 & 0.25 & ugl & & & \\
\hline Methylene chloride & 0.710 & 5.0 & 0.48 & ug/ & & & \\
\hline 1,1,2,2-Tetrachloroethane & ND & 2.0 & 0.24 & ug/ & & & \\
\hline Tetrachloroethene & ND & 2.0 & 0.32 & ug/ & & & \\
\hline Toluene & ND & 2.0 & 0.36 & ug/ & & & \\
\hline 1,1,1-Trichloroethane & ND & 2.0 & 0.30 & ug/ & & & \\
\hline 1,1,2-Trichloroethane & ND & 2.0 & 0.30 & ug/ & & & \\
\hline Trichloroethene & ND & 2.0 & 0.26 & ug/1 & & & \\
\hline Trichlorofluoromethane & ND & 5.0 & 0.34 & ug/ & & & \\
\hline Vinyl chloride & ND & 0.50 & 0.26 & ug/ & & & \\
\hline Xylenes, Total & ND & 4.0 & 0.52 & ug/ & & & \\
\hline Surrogate: Dibromofluoromethane & 24.7 & & & \(\mu g /\) & 25.0 & 99 & 80-120 \\
\hline Surrogate: Toluene-d8 & 25.1 & & & ug/ & 25.0 & 100 & 80-120 \\
\hline Surrogate: 4-Bromofluorobenzene & 24.5 & & & \(u g /\) & 25.0 & 98 & 80-120 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine \\ Michele Harper \\ Project Manager}

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

\author{
Project ID: Outfall 015 \\ Report Number: IOA0557 \\ Sampled: 01/11/05-01/12/05
Received: \(01 / 11 / 05\)
}

\section*{METHIOD BIANKICC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
Analyte
Batch: 5A12019 Extracted: 01/12/05

\section*{LCS Analyzed: 01/12/2005 (5A12019-BS1)}
\begin{tabular}{ll} 
Benzene & 23.4 \\
Bromodichloromethane & 26.4 \\
Bromoform & 25.2 \\
Bromomethane & 29.0 \\
Carbon tetrachloride & 28.8 \\
Chlorobenzene & 25.5 \\
Chloroethane & 26.8 \\
Chloroform & 24.9 \\
Chloromethane & 24.5 \\
Dibromochloromethane & 26.2 \\
1,2-Dichlorobenzene & 25.9 \\
1,3-Dichlorobenzene & 24.9 \\
1,4-Dichlorobenzene & 24.6 \\
1,1-Dichloroethane & 24.4 \\
1,2-Dichloroethane & 26.6 \\
1,1-Dichloroethene & 25.0 \\
trans-1,2-Dichloroethene & 25.9 \\
1,2-Dichloropropane & 24.7 \\
cis-1,3-Dichloropropene & 26.9 \\
trans-1,3-Dichloropropene & 26.9 \\
Ethylbenzene & 26.6 \\
Methylene chloride & 26.1 \\
1,1,2,2-Tetrachloroethane & 22.3 \\
Tetrachloroethene & 26.9 \\
Toluene & 24.6 \\
1,1,1-Trichloroethane & 28.4 \\
1,1,2-Trichloroethane & 24.6 \\
Trichloroethene & 25.2 \\
Trichlorofluoromethane & 29.3 \\
Vinyl chloride & 23.7 \\
Surrogate: Dibromofluoromethane & 24.3 \\
Surrogate: Toluene-d8 & 25.0 \\
Surrogate: 4-Bromofluorobenzene & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager
\begin{tabular}{|lrl} 
MWH-Pasadena/Boeing & Project ID: Outfall 015 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Pasadena, CA 91101 & Report Number: 1040557 & Received: 01/11/05 \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{METHOD BLANKIQC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Matrix Spike Analyzed: 01/12/2005 (5A12019-MS1)} & \multicolumn{5}{|c|}{Source: 10A0503-01} \\
\hline Benzene & 24.5 & 1.0 & 0.28 & ug/ & 25.0 & ND & 98 & 70-120 \\
\hline Bromodichloromethane & 27.5 & 2.0 & 0.30 & ug/1 & 25.0 & ND & 110 & 70-140 \\
\hline Bromoform & 24.0 & 5.0 & 0.32 & ug/ & 25.0 & ND & 96 & 55-140 \\
\hline Bromomethane & 30.7 & 5.0 & 0.34 & ug/ & 25.0 & ND & 123 & 50-145 \\
\hline Carbon tetrachloride & 30.7 & 0.50 & 0.28 & ug/ & 25.0 & ND & 123 & 70-145 \\
\hline Chlorobenzene & 26.9 & 2.0 & 0.36 & ug/ & 25.0 & ND & 108 & 80-125 \\
\hline Chloroethane & 28.5 & 5.0 & 0.33 & ug/ & 25.0 & ND & 114 & 50-145 \\
\hline Chloroform & 26.6 & 2.0 & 0.33 & ugh & 25.0 & ND & 106 & 70-135 \\
\hline Chloromethane & 25.7 & 5.0 & 0.30 & ug/ & 25.0 & ND & 103 & 35-145 \\
\hline Dibromochloromethane & 26.1 & 2.0 & 0.28 & ug/ & 25.0 & ND & 104 & 65-145 \\
\hline 1,2-Dichlorobenzene & 26.5 & 2.0 & 0.32 & ug/ & 25.0 & ND & 106 & 75-130 \\
\hline 1,3-Dichlorobenzene & 25.7 & 2.0 & 0.35 & ug/ & 25.0 & ND & 103 & 75-130 \\
\hline 1,4-Dichlorabenzene & 25.5 & 2.0 & 0.37 & ug/ & 25.0 & ND & 102 & 80-120 \\
\hline 1,1-Dichloroethane & 25.9 & 2.0 & 0.27 & ug/ & 25.0 & ND & 104 & 65-135 \\
\hline 1,2-Dichloroethane & 26.9 & 0.50 & 0.28 & ug/ & 25.0 & ND & 108 & 60-150 \\
\hline 1,1-Dichloroethene & 26.3 & 5.0 & 0.32 & ug/ & 25.0 & ND & 105 & 65-140 \\
\hline trans-1,2-Dichloroethene & 27.3 & 2.0 & 0.27 & ug/1 & 25.0 & ND & 109 & 65-135 \\
\hline 1,2-Dichloropropane & 25.7 & 2.0 & 0.35 & ug/ & 25.0 & ND & 103 & 65-130 \\
\hline cis-1,3-Dichloropropene & 27.3 & 2.0 & 0.22 & ug/1 & 25.0 & ND & 109 & 70-140 \\
\hline trans-1,3-Dichloropropene & 27.0 & 2.0 & 0.24 & ug/ & 25.0 & ND & 108 & 70-140 \\
\hline Ethylbenzene & 27.8 & 2.0 & 0.25 & ug A & 25.0 & ND & 111 & 70-130 \\
\hline Methylene chloride & 27.0 & 5.0 & 0.48 & ug/ & 25.0 & ND & 108 & 60-135 \\
\hline 1,1,2,2-Tetrachloroethane & 21.5 & 2.0 & 0.24 & ug/ & 25.0 & ND & 86 & 60-145 \\
\hline Tetrachloroethene & 27.9 & 2.0 & 0.32 & ug/ & 25.0 & ND & 112 & 70-130 \\
\hline Toluene & 25.8 & 2.0 & 0.36 & ug/ & 25.0 & ND & 103 & 70-120 \\
\hline 1,1,1-Trichloroethane & 30.4 & 2.0 & 0.30 & ug/ & 25.0 & ND & 122 & 75-140 \\
\hline 1,1,2-Trichloroethane & 24.2 & 2.0 & 0.30 & ug/ & 25.0 & ND & 97 & 60-135 \\
\hline Trichloroethene & 26.4 & 2.0 & 0.26 & ug/ & 25.0 & ND & 106 & 70-125 \\
\hline Trichlorofluoromethane & 31.2 & 5.0 & 0.34 & ugh & 25.0 & ND & 125 & 55-145 \\
\hline Vinyl chloride & 24.9 & 0.50 & 0.26 & ugh & 25.0 & ND & 100 & 40-135 \\
\hline Surrogate: Dibromofluoromethane & 24.6 & & & ugh & 25.0 & & 98 & 80-120 \\
\hline Surrogate: Toluene-d8 & 25.0 & & & ug/ & 25.0 & & 100 & 80-120 \\
\hline Surrogate: 4-Bromofluorobenzene & 25.4 & & & ug/ & 25.0 & & 102 & 80-120 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine} Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015

Report Number: 10 A 0557

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKIOC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{lllllllllll} 
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit \\
Batch: \(5 A 12019\) & Extracted: 01/12/05 & & & & & & & & & \\
Qualifiers
\end{tabular}

Matrix Spike Dup Analyzed: 01/12/2005 (5A12019-MSD1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Benzene & 24.0 & 1.0 & 0.28 & ug/ & 25.0 & ND & 96 & 70-120 & 2 & 20 \\
\hline Bromodichloromethane & 27.1 & 2.0 & 0.30 & ug/ & 25.0 & ND & 108 & 70-140 & 1 & 20 \\
\hline Bromoform & 27.6 & 5.0 & 0.32 & ug/ & 25.0 & ND & 110 & 55-140 & 14 & 25 \\
\hline Bromomethane & 29.8 & 5.0 & 0.34 & ug/ & 25.0 & ND & 119 & \(50-145\) & 3 & 25 \\
\hline Carbon tetrachloride & 29.9 & 0.50 & 0.28 & ug/ & 25.0 & ND & 120 & 70-145 & 3 & 25 \\
\hline Chlorobenzene & 26.4 & 2.0 & 0.36 & ug/ & 25.0 & ND & 106 & 80-125 & 2 & 20 \\
\hline Chioroethane & 28.1 & 5.0 & 0.33 & ug/ & 25.0 & ND & 112 & 50-145 & 1 & 25 \\
\hline Chloroform & 25.9 & 2.0 & 0.33 & ug/ & 25.0 & ND & 104 & 70-135 & 3 & 20 \\
\hline Chloromethane & 25.8 & 5.0 & 0.30 & ugh & 25.0 & ND & 103 & 35-145 & 0 & 25 \\
\hline Dibromochloromethane & 28.2 & 2.0 & 0.28 & ug/l & 25.0 & ND & 113 & 65-145 & 8 & 25 \\
\hline 1,2-Dichlorobenzene & 26.4 & 2.0 & 0.32 & ug/ & 25.0 & ND & 106 & 75-130 & 0 & 20 \\
\hline 1,3-Dichlorobenzene & 25.1 & 2.0 & 0.35 & ug/l & 25.0 & ND & 100 & 75-130 & 2 & 20 \\
\hline 1,4-Dichlorobenzene & 24.9 & 2.0 & 0.37 & ugh & 25.0 & ND & 100 & 80-120 & 2 & 20 \\
\hline 1,1-Dichtoroethane & 25.3 & 2.0 & 0.27 & ugh & 25.0 & ND & 101 & 65-135. & 2 & 20 \\
\hline 1,2-Dichloroethane & 27.8 & 0.50 & 0.28 & ugl & 25.0 & ND & 111 & 60-150 & 3 & 20 \\
\hline 1,1-Dichloroethene & 25.8 & 5.0 & 0.32 & ug/l & 25.0 & ND & 103 & 65-140 & 2 & 20 \\
\hline trans-1,2-Dichloroethene & 27.0 & 2.0 & 0.27 & ugh & 25.0 & ND & 108 & 65-135 & 1 & 20 \\
\hline 1,2-Dichloropropane & 25.6 & 2.0 & 0.35 & ug/ & 25.0 & ND & 102 & 65-130 & 0 & 20 \\
\hline cis-1,3-Dichloropropene & 27.4 & 2.0 & 0.22 & ug/l & 25.0 & ND & 110 & 70-140 & 0 & 20 \\
\hline trans-1,3-Dichloropropene & 28.3 & 2.0 & 0.24 & \(\mathrm{ug} / 1\) & 25.0 & ND & 113 & 70-140 & 5 & 25 \\
\hline Ethylbenzene & 27.2 & 2.0 & 0.25 & ug/l & 25.0 & ND & 109 & 70-130 & 2 & 20 \\
\hline Methylene chloride & 26.4 & 5.0 & 0.48 & ug/ & 25.0 & ND & 106 & 60-135 & 2 & 20 \\
\hline 1,1,2,2-Tetrachloroethane & 25.4 & 2.0 & 0.24 & ug/ & 25.0 & ND & 102 & 60-145 & 17 & 30 \\
\hline Tetrachloroethene & 27.5 & 2.0 & 0.32 & ug/ & 25.0 & ND & 110 & 70-130 & 1 & 20 \\
\hline Toluene & 25.3 & 2.0 & 0.36 & ug/ & 25.0 & ND & 101 & 70-120 & 2 & 20 \\
\hline 1,1,1-Trichloroethane & 29.2 & 2.0 & 0.30 & ug/ & 25.0 & ND & 117 & 75-140 & 4 & 20 \\
\hline 1,1,2-Trichloroethane & 26.0 & 2.0 & 0.30 & ug/ & 25.0 & ND & 104 & 60-135 & 7 & 25 \\
\hline Trichloroethene & 25.8 & 2.0 & 0.26 & ug/ & 25.0 & ND & 103 & 70-125 & 2 & 20 \\
\hline Trichlorofluoromethane & 30.5 & 5.0 & 0.34 & ug/ & 25.0 & ND & 122 & 55-145 & 2 & 25 \\
\hline Vinyl chloride & 24.5 & 0.50 & 0.26 & ug/l & 25.0 & ND & 98 & 40-135 & 2 & 30 \\
\hline Surrogate: Dibromofluoromethane & 24.7 & & & ug/ & 25.0 & & 99 & 80-120 & & \\
\hline Surrogate: Toluene-d8 & 25.0 & & & ug/l & 25.0 & & 100 & 80-120 & & \\
\hline Surrogate: 4-Bromofluorobenzene & 25.4 & & & \(u g /\) & 25.0 & & 102 & 80.120 & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
```

Project ID: Outfall 015
Report Number: 10 A 0557
Sampled: 01/11/05-01/12/05
Received: 01/11/05

```

\section*{METHOD BLANKIQC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
Analyte Result
\begin{tabular}{cccccccccc} 
Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

\section*{Batch: 5A13008 Extracted: 01/13/05}

Blank Analyzed: 01/13/2005 (5A13008-BLK1)
\begin{tabular}{lc} 
Acrolein & ND \\
Acrylonitrile & ND \\
2-Chloroethyl vinyl ether & ND \\
Surrogate: Dibromofluoromethane & 24.3 \\
Surrogate: Toluene-d8 & 24.9 \\
Surrogate: 4 -Bromofluorobenzene & 24.1
\end{tabular}
\begin{tabular}{ll} 
LCS Analyzed: \(01 / 13 / 2005\) (5A13008-BS1) \\
\hline 2-Chloroethyl vinyl ether & 18.0 \\
Surrogate: Dibromofluoromethane & 25.7 \\
Surrogate: Toluene-d8 & 25.3 \\
Surrogate: 4-Bromofluorobenzene & 25.3
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Matrix Spike Analyzed: 01/13/2005 (5A13008-MS1)} & \multicolumn{6}{|c|}{Source: 10A0558-01} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline 2 Chloroethyl vinyl ether & 20.5 & 5.0 & 1.3 & ugh & 25:0 & ND & 82 & 20.175 & & \\
\hline Surrogate: Dibromofluoromethane & 25.2 & & & \(u g /\) & 25.0 & & 101 & 80-120 & & \\
\hline Surrogate: Toluene-d8 & 25.9 & & & ug/ & 25.0 & & 104 & 80-120 & & \\
\hline Surragate: 4-Bromofluorobenzene & 25.4 & & & \(u g /\) & 25.0 & & 102 & 80-120 & & \\
\hline \multicolumn{3}{|l|}{Matrix Spike Dup Analyzed: 01/13/2005 (5A13008-MSD1)} & \multicolumn{8}{|c|}{Source: 10A0558-01} \\
\hline 2-Chloroethyl vinyl ether & 21.8 & 5.0 & 1.3 & ugh & 25.0 & ND & 87 & 20-175 & 6 & 25 \\
\hline Surrogate: Dibromofluoromethane & 25.4 & & & ug/l & 25.0 & & 102 & 80-120 & & \\
\hline Surrogate: Toluene-d8 & 25.4 & & & ug/ & 25.0 & & 102 & 80-120 & & \\
\hline Surrogate: 4-Bromofluorobenzene & 25.4 & & & ug/l & 25.0 & & 102 & 80-120 & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager
\begin{tabular}{lcr} 
MWH-Pasadena/Boeing & Project ID: Outfall 015 & \\
300 North Lake Avenue, Suite 1200 & Report Number: IOA0557 & \begin{tabular}{l} 
Sampled: 01/11/05-01/12/05 \\
Pasadena, CA 91101 \\
Attention: Bronwyn Kelly
\end{tabular}
\end{tabular}

\section*{METHOD BLANKIQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}


Blank Analyzed: 01/17/2005 (5A13037-BLK1)
\begin{tabular}{|c|c|c|c|c|}
\hline Acenaphthene & ND & 10 & 4.3 & ug/ \\
\hline Acenaphthylene & ND & 10 & 3.2 & ug/ \\
\hline Aniline & ND & 10 & 2.9 & ug/ \\
\hline Anthracene & ND & 10 & 3.2 & ug/ \\
\hline Benzidine & ND & 20 & 5.2 & \(\mathrm{ug} / 1\) \\
\hline Benzoic acid & ND & 20 & 2.6 & ug/ \\
\hline Benzo(a)anthracene & ND & 10 & 3.7 & ug/ \\
\hline Benzo(b)fluoranthene & ND & 10 & 2.7 & ug/ \\
\hline Benzo(k)fluoranthene & ND & 10 & 3.4 & ug/ \\
\hline Benzo(g,h,i)perylene & ND & 10 & 5.3 & ug/ \\
\hline Benzo(a)pyrene & ND & 10 & 3.5 & ug/l \\
\hline Benzyl alcohol & ND & 20 & 2.5 & ug/ \\
\hline Bis(2-chloroethoxy)methane & ND & 10 & 3.9 & ugh \\
\hline Bis(2-chloroethyl) ether & ND & 10 & 4.4 & ugh \\
\hline Bis(2-chloroisopropyl)ether & ND & 10 & 4.6 & ug/ \\
\hline Bis(2-ethylhexyl)phthalate & ND & 50 & 5.2 & ug/l \\
\hline 4-Bromophenyl phenyl ether & ND & 10 & 4.6 & ug/l \\
\hline Butyl benzyl phthalate & ND & 20 & 3.5 & ug/ \\
\hline 4-Chloroaniline & ND & 10 & 6.0 & ug/l \\
\hline 2-Chloronaphthalene & ND & 10 & 4.0 & ug/ \\
\hline 4-Chloro-3-methylphenol & ND & 20 & 3.5 & ug/ \\
\hline 2-Chlorophenol & ND & 10 & 4.2 & ug/l \\
\hline 4-Chlorophenyl phenyl ether & ND & 10 & 3.0 & ug/ \\
\hline Chrysene & ND & 10 & 2.8 & ugh \\
\hline Dibenz(a,h)anthracene & ND & 20 & 4.7 & ug/ \\
\hline Dibenzofuran & ND & 10 & 2.6 & ug/ \\
\hline Di-n-butyl phthalate & ND & 20 & 2.8 & ug/ \\
\hline 1,3-Dichlorobenzene & ND & 10 & 4.1 & ugh \\
\hline 1,4-Dichlorobenzene & ND & 10 & 3.9 & ug/ \\
\hline 1,2-Dichlorobenzene & ND & 10 & 4.5 & ug/ \\
\hline 3,3-Dichlorobenzidine & ND & 20 & 11 & ug/ \\
\hline 2,4-Dichlorophenol & ND & 10 & 4.1 & ug/ \\
\hline Diethyl phthalate & ND & 10 & 3.1 & ug/1 \\
\hline 2,4-Dimethylphenol & ND & 20 & 4.4 & ug/ \\
\hline Dimethyl phthalate & ND & 10 & 3.6 & ug/ \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine \\ Michele Harper \\ Project Manager}
\begin{tabular}{|lll|}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 015 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Pasadena, CA 91101 & Report Number: 1OA0557 & Received: \(01 / 11 / 05\) \\
Attention: Bronwyn Kelly & & \\
\hline
\end{tabular}

\section*{METHOD BLANKOC DATA}

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)
Analyte
Batch: 5A13037 Extracted: 01/13/05

\section*{Blank Analyzed: 01/17/2005 (5A13037-BLK1)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 4,6-Dinitro-2-methylphenol & ND & 20 & 5.1 & ug/ & & & \\
\hline 2,4-Dinitrophenol & ND & 20 & 5.3 & ug/1 & & & \\
\hline 2,4-Dinitrotoluene & ND & 10 & 4.2 & ug/ & & & \\
\hline 2,6-Dinitrotoluene & ND & 10 & 3.2 & ug/ & & & \\
\hline Di-n-octyl phthalate & ND & 20 & 4.7 & ug/ & & & \\
\hline Fluoranthene & ND & 10 & 4.2 & ug/ & & & \\
\hline Fluorene & ND & 10 & 3.9 & ug/ & & & \\
\hline Hexachlorobenzene & ND & 10 & 4.8 & ug/ & & & \\
\hline Hexachlorobutadiene & ND & 10 & 4.2 & ug/ & & & \\
\hline Hexachlorocyclopentadiene & ND & 20 & 3.4 & ug/ & & & \\
\hline Hexachloroethane & ND & 10 & 4.2 & ug/ & & & \\
\hline Indeno( \(1,2,3\)-cd)pyrene & ND & 20 & 5.4 & ug/ & & & \\
\hline Isophorone & ND & 10 & 3.7 & ug/ & & & \\
\hline 2-Methylnaphthalene & ND & 10 & 3.0 & ugl & & & \\
\hline 2-Methylphenol & ND & 10 & 3.7 & ug/ & & & \\
\hline 4-Methylphenol & ND & 10 & 3.8 & ug/ & & & \\
\hline Naphthalene & ND & 10 & 4.5 & ug/ & & & \\
\hline 2-Nitroaniline & ND & 20 & 3.9 & ugh & & & \\
\hline 3-Nitroaniline & ND & 20 & 4.5 & ug/l & & & \\
\hline 4-Nitroaniline & ND & 20 & 4.9 & ugh & & & \\
\hline Nitrobenzene & ND & 20 & 4.2 & ugl & & & \\
\hline 2-Nitrophenol & ND & 10 & 4.2 & ugl & & & \\
\hline 4-Nitrophenol & ND & 20 & 6.6 & ugh & & & \\
\hline N -Nitrosodiphenylamine & ND & 10 & 4.0 & ug/l & & & \\
\hline N-Nitroso-di-n-propylamine & ND & 10 & 3.6 & ugh & & & \\
\hline Pentachlorophenol & ND & 20 & 4.0 & ug/ & & & \\
\hline Phenanthrene & ND & 10 & 3.3 & ug/l & & & \\
\hline Phenol & ND & 10 & 4.0 & ug/ & & & \\
\hline Pyrene & ND & 10 & 3.9 & ug/ & & & \\
\hline 1,2,4-Trichlorobenzene & ND & 10 & 4.4 & ug/l & & & \\
\hline 2,4,5-Trichlorophenol & ND & 20 & 3.6 & ug/ & & & \\
\hline 2,4,6-Trichlorophenol & ND & 20 & 4.1 & ugn & & & \\
\hline 1,2-Diphenylhydrazine/Azobenzene & ND & 20 & 5.0 & ug/ & & & \\
\hline N -Nitrosodimethylamine & ND & 20 & 3.7 & ug/ & & & \\
\hline Surrogate: 2-Fluorophenol & 120 & & & \(u g /\) & 200 & 60 & 35-120 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager
\begin{tabular}{|lcl}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 015 & \\
300 North Lake Avenue, Suite 1200 & Report Number: IOA0557 & Sampled: 01/11/05-01/12/05 \\
Pasadena, CA 91101 & & Received: 01/11/05 \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{METHOD BLANKIQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & \begin{tabular}{l}
Data \\
Qualifers
\end{tabular} \\
\hline \multicolumn{12}{|l|}{Batch: 5A13037 Extracted: 01/13/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/17/2005 (5A13037-BLK1)} \\
\hline Surrogate: Phenol-d6 & 129 & & & ug/ & 200 & & 64 & 45-120 & & & \\
\hline Surrogate: 2,4,6-Tribromophenol & 160 & & & ug/ & 200 & & 80 & 50-125 & & & \\
\hline Surrogate: Nitrobenzene-d5 & 63.1 & & & ug/ & 100 & & 63 & 45-120 & & & \\
\hline Surrogate: 2-Fluorobiphenyl & 72.3 & & & ug/l & 100 & & 72 & 45-120 & & & \\
\hline Surrogate: Terphenyl-d14 & 75.6 & & & ug/ & 100 & & 76 & 45-135 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline LCS Analyzed: 01/17/200 & & & & & & & & M-NR1 \\
\hline Acenaphthene & 75.6 & 10 & 4.3 & ug/ & 100 & 76 & 55-120 & \\
\hline Acenaphthylene & 75.9 & 10 & 3.2 & ug/ & 100 & 76 & 55-120 & \\
\hline Aniline & 68.9 & 10 & 2.9 & ug/1 & 100 & 69 & 30-120 & \\
\hline Anthracene & 80.4 & 10 & 3.2 & ug/ & 100 & 80 & 60-120 & \\
\hline Benzidine & 62.5 & 20 & 5.2 & ug/ & 100 & 62 & 20-180 & \\
\hline Benzoic acid & 81.0 & 20 & 2.6 & ug/ & 100 & 81 & 30-125 & \\
\hline Benzo(a)anthracene & 81.8 & 10 & 3.7 & ughl & 100 & 82 & 65-120 & \\
\hline Benzo(b)fluoranthene & 81.3 & 10 & 2.7 & ugh & 100 & 81 & 50-125 & \\
\hline Benzo(k)fluoranthene & 77.8 & 10 & 3.4 & ugh & 100 & 78 & 50-125 & \\
\hline Benzo(g,h,i)perylene & 84.8 & 10 & 5.3 & ugl & 100 & 85 & 35-160 & \\
\hline Benzo(a)pyrene & 80.7 & 10 & 3.5 & ug/ & 100 & 81 & 55-125 & \\
\hline Benzyl alcohol & 73.4 & 20 & 2.5 & ug/ & 100 & 73 & 40-130 & \\
\hline Bis(2-chloroethoxy)methane & 73.3 & 10 & 3.9 & ug/l & 100 & 73 & 55-120 & \\
\hline Bis(2-chloroethyl)ether & 63.5 & 10 & 4.4 & ug/l & 100 & 64 & 50-120 & \\
\hline Bis(2-chloroisopropyl)ether & 69.9 & 10 & 4.6 & ug/ & 100 & 70 & 50-120 & \\
\hline Bis(2-ethylhexyl)phthalate & 77.3 & 50 & 5.2 & \(\mathrm{ug} / \mathrm{l}\) & 100 & 77 & 65-125 & \\
\hline 4-Bromophenyl phenyl ether & 70.8 & 10 & 4.6 & ug/l & 100 & 71 & 55-125 & \\
\hline Butyl benzyl phthalate & 75.0 & 20 & 3.5 & ug/ & 100 & 75 & 60-125 & \\
\hline 4-Chloroaniline & 79.0 & 10 & 6.0 & ug/ & 100 & 79 & 55-120 & \\
\hline 2-Chioronaphthalene & 75.9 & 10 & 4.0 & ug/ & 100 & 76 & 60-120 & \\
\hline 4-Chloro-3-methylphenol & 73.5 & 20 & 3.5 & ug/ & 100 & 74 & 60-120 & \\
\hline 2-Chlorophenol & 69.8 & 10 & 4.2 & ug 1 & 100 & 70 & 45-120 & \\
\hline 4-Chlorophenyl phenyl ether & 77.3 & 10 & 3.0 & ug/ & 100 & 77 & 55-120 & \\
\hline Chrysene & 81.9 & 10 & 2.8 & ug/ & 100 & 82 & 65-120 & \\
\hline Dibenz( \(\mathbf{a}, \mathrm{h}\) ) anthracene & 85.7 & 20 & 4.7 & ug/1 & 100 & 86 & 40-160 & \\
\hline Dibenzofuran & 77.5 & 10 & 2.6 & ug/ & 100 & 78 & 60-120 & \\
\hline Di-n-butyl phthalate & 71.9 & 20 & 2.8 & ug/ & 100 & 72 & 65-125 & \\
\hline 1,3-Dichlorobenzene & 66.5 & 10 & 4.1 & ug/ & 100 & 66 & 40-120 & \\
\hline 1,4-Dichlorobenzene & 62.7 & 10 & 3.9 & ug/ & 100 & 63 & 40-120 & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015

Report Number: IOA0557

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKIQC DATA}

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte
\begin{tabular}{lccccccccccc} 
& Reporting & & & Spike & Source & & \%REC & & RPD & Data \\
Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

Batch: 5A13037 Extracted: 01/13/05
LCS Analyzed: 01/17/2005 (5A13037-BS1)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1,2-Dichlorobenzene & 63.6 & 10 & 4.5 & ug/ & 100 & 64 & 40-120 \\
\hline 3,3-Dichlorobenzidine & 90.6 & 20 & 11 & ugh & 100 & 91 & 50-170 \\
\hline 2,4-Dichlorophenol & 70.8 & 10 & 4.1 & ugh & 100 & 71 & 55-120 \\
\hline Diethyl phthalate & 71.0 & 10 & 3.1 & ug/ & 100 & 71 & 60-120 \\
\hline 2,4-Dimethylphenol & 59.6 & 20 & 4.4 & ug/ & 100 & 60 & 35-120 \\
\hline Dimethyl phthalate & 69.3 & 10 & 3.6 & ug/ & 100 & 69 & 60-120 \\
\hline 4,6-Dinitro-2-methylphenol & 78.6 & 20 & 5.1 & ugh & 100 & 79 & 55-120 \\
\hline 2,4-Dinitrophenol & 86.2 & 20 & 5.3 & ug/ & 100 & 86 & 40-140 \\
\hline 2,4-Dinitrotoluene & 81.5 & 10 & 4.2 & ug/l & 100 & 82 & 60-140 \\
\hline 2,6-Dinitrotoluene & 74.3 & 10 & 3.2 & ug/ & 100 & 74 & 65-125 \\
\hline Di-n-octyl phthalate & 81.2 & 20 & 4.7 & ugh & 100 & 81 & 60-130 \\
\hline Fluoranthene & 81.4 & 10 & 4.2 & ugl & 100 & 81 & 55-125 \\
\hline Cluorene & 80.2 & 10 & 3.9 & ug/l & 100 & 80 & 60-120 \\
\hline Hexachlorobenzene & 73.6 & 10 & 4.8 & ugh & 100 & 74 & 50-120 \\
\hline Hexachlorobutadiene & 61.7 & 10 & 4.2 & ug/l & 100 & 62 & 45-120 \\
\hline Hexachlorocyclopentadiene & 54.7 & 20 & 3.4 & ugl & 100 & 55 & 10-130 \\
\hline Hexachloroethane & 60.9 & 10 & 4.2 & ug/ & 100 & 61 & 40-120 \\
\hline Indeno( \(1,2,3-\mathrm{cd}\) )pyrene & 81.9 & 20 & 5.4 & ug/ & 100 & 82 & 35-150 \\
\hline Isophorone & 65.8 & 10 & 3.7 & ug/ & 100 & 66 & 55-120 \\
\hline 2-Methylnaphthalene & 84.8 & 10 & 3.0 & ug/ & 100 & 85 & 50-120 \\
\hline 2-Methylphenol & 70.0 & 10 & 3.7 & ug/l & 100 & 70 & 45-120 \\
\hline 4-Methylphenol & 70.1 & 10 & 3.8 & ug/ & 100 & 70 & 45-120 \\
\hline Naphthalene & 76.9 & 10 & 4.5 & ug/ & 100 & 77 & 50-120 \\
\hline 2-Nitroaniline & 78.9 & 20 & 3.9 & ug/ & 100 & 79 & 60-130 \\
\hline 3-Nitroaniline & 91.3 & 20 & 4.5 & ug/ & 100 & 91 & 50-140 \\
\hline 4-Nitroaniline & 96.0 & 20 & 4.9 & ug/ & 100 & 96 & 45-160 \\
\hline Nitrobenzene & 65.6 & 20 & 4.2 & ug/ & 100 & 66 & 50-120 \\
\hline 2-Nitrophenol & 80.9 & 10 & 4.2 & ug/l & 100 & 81 & 55-120 \\
\hline 4-Nitrophenol & 67.9 & 20 & 6.6 & ug/1 & 100 & 68 & 50-135 \\
\hline N -Nitrosodiphenylamine & 71.9 & 10 & 4.0 & ug/ & 100 & 72 & 60-120 \\
\hline N -Nitroso-di-n-propylamine & 65.9 & 10 & 3.6 & ug/ & 100 & 66 & 50-120 \\
\hline Pentachlorophenol & 80.8 & 20 & 4.0 & ug/ & 100 & 81 & 50-125 \\
\hline Phenanthrene & 81.8 & 10 & 3.3 & ug/ & 100 & 82 & 55-120 \\
\hline Phenol & 66.0 & 10 & 4.0 & ug/ & 100 & 66 & 45-120 \\
\hline Pyrene & 80.9 & 10 & 3.9 & ug/ & 100 & 81 & 50-120 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager
\begin{tabular}{lcl} 
MWH-Pasadena/Boeing & Project ID: Outfall 015 & \\
300 North Lake Avenue, Suite 1200 & Report Number: IOA0557 & Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Pasadena, CA 91101 & Received: 01/11/05 \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{METHOD BLANKIOC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A13037 Extracted: 01/13/05} \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 01/17/2005 (5A13037-BS1)} & M-NR1 \\
\hline 1,2,4-Trichlorobenzene & 65.3 & 10 & 4.4 & ug/ & 100 & & 65 & 50-120 & & & \\
\hline 2,4,5-Trichlorophenol & 78.9 & 20 & 3.6 & ug/ & 100 & & 79 & 60-120 & & & \\
\hline 2,4,6-Trichlorophenol & 77.9 & 20 & 4.1 & ug/ & 100 & & 78 & 60-120 & & & \\
\hline 1,2-Diphenylhydrazine/Azobenzene & 79.5 & 20 & 5.0 & ug/ & 100 & & 80 & 60-120 & & & \\
\hline N -Nitrosodimethylamine & 66.8 & 20 & 3.7 & ug/ & 100 & & 67 & 40-120 & & & \\
\hline Surrogate: 2-Fluorophenol & 125 & & & ug/ & 200 & & 62 & 35-120 & & & \\
\hline Surrogate: Phenol-d6 & 129 & & & ug \(/\) & 200 & & 64 & 45-120 & & & \\
\hline Surrogate: 2,4,6-Tribromophenol & 160 & & & ug/ & 200 & & 80 & 50-125 & & & \\
\hline Surrogate: Nitrobenzene-d5 & 66.3 & & & ug/l & 100 & & 66 & 45-120 & & & \\
\hline Surrogate: 2-Fluorobiphenyl & 73.6 & & & ug/ & 100 & & 74 & 45-120 & & & \\
\hline Surrogate: Terphenyl-d14 & 73.4 & & & ug/l & 100 & & 73 & 45-135 & & & \\
\hline
\end{tabular}

LCS Dup Analyzed: 01/17/2005 (5A13037-BSD1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Acenaphthene & 73.9 & 10 & 4.3 & ug/ & 100 & 74 & 55-120 & 2 & 20 & \\
\hline Acenaphthylene & 74.7 & 10 & 3.2 & ug/1 & 100 & 75 & 55-120 & 2 & 20 & \\
\hline Aniline & 68.6 & 10 & 2.9 & ug/l & 100 & 69 & 30-120 & 0 & 25 & \\
\hline Anthracene & 77.5 & 10 & 3.2 & ug/1 & 100 & 78 & 60-120 & 4 & 20 & \\
\hline Benzidine & 143 & 20 & 5.2 & ug/ & 100 & 143 & 20-180 & 78 & 35 & R-7 \\
\hline Benzoic acid & 78.1 & 20 & 2.6 & ugh & 100 & 78 & 30-125 & 4 & 30 & \\
\hline Benzo(a)anthracene & 80.6 & 10 & 3.7 & ug/ & 100 & 81 & 65-120 & 1 & 20 & \\
\hline Benzo(b)fluoranthene & 77.5 & 10 & 2.7 & ug/ & 100 & 78 & 50-125 & 5 & 25 & \\
\hline Benzo(k)fluoranthene & 77.5 & 10 & 3.4 & ug/l & 100 & 78 & 50-125 & 0 & 20 & \\
\hline Benzo(g,h,i)perylene & 81.4 & 10 & 5.3 & ug/l & 100 & 81 & 35-160 & 4 & 25 & \\
\hline Benzo(a)pyrene & 80.7 & 10 & 3.5 & ug/l & 100 & 81 & 55-125 & 0 & 25 & \\
\hline Benzyl alcohol & 72.7 & 20 & 2.5 & ug/l & 100 & 73 & 40-130 & 1 & 20 & \\
\hline Bis(2-chloroethoxy)methane & 71.8 & 10 & 3.9 & ug/l & 100 & 72 & 55-120 & 2 & 20 & \\
\hline Bis(2-chloroethyl)ether & 61.1 & 10 & 4.4 & ug/l & 100 & 61 & 50-120 & 4 & 20 & \\
\hline Bis(2-chloroisopropyl)ether & 68.9 & 10 & 4.6 & ug/l & 100 & 69 & 50-120 & 1 & 20 & \\
\hline Bis(2-ethyihexyl)phthalate & 78.8 & 50 & 5.2 & ugh & 100 & 79 & 65-125 & 2 & 20 & \\
\hline 4-Bromophenyl phenyl ether & 70.6 & 10 & 4.6 & ug/l & 100 & 71 & 55-125 & 0 & 25 & \\
\hline Butyl benzyl phthalate & 75.3 & 20 & 3.5 & ug/l & 100 & 75 & 60-125 & 0 & 20 & \\
\hline 4-Chloroaniline & 77.6 & 10 & 6.0 & ug/l & 100 & 78 & 55-120 & 2 & 25 & \\
\hline 2-Chloronaphthalene & 74.3 & 10 & 4.0 & ug/l & 100 & 74 & 60-120 & 2 & 20 & \\
\hline 4-Chloro-3-methylphenol & 71.1 & 20 & 3.5 & \(\mathrm{ug} / 1\) & 100 & 71 & 60-120 & 3 & 25 & \\
\hline 2-Chlorophenol & 68.2 & 10 & 4.2 & ug/ & 100 & 68 & 45-120 & 2 & 25 & \\
\hline 4-Chlorophenyl phenyl ether & 73.3 & 10 & 3.0 & ug/l & 100 & 73 & 55-120 & 5 & 20 & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager

\title{
Project ID: Outfall 015 \\ Report Number: 1OA0557 \\ Sampled: 01/11/05-01/12/05 \\ Received: 01/11/05
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

MEIHOU BLANKIQCDATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)
Analyte
\begin{tabular}{lccccccccccc} 
& \begin{tabular}{c} 
Reporting \\
Result \\
\end{tabular} & Limit & MDL & Units & Spikel & Source & & \%REC & & RPD & Data \\
Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

\section*{Batch:5A13037 Extracted: 01/13/05}

LCS Dup Analyzed: 01/17/2005 (5A13037-BSD1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Chrysene & 80.8 & 10 & 2.8 & ug/ & 100 & 81 & 65-120 & 1 & 20 \\
\hline Dibenz(a,h)anthracene & 82.0 & 20 & 4.7 & ug/ & 100 & 82 & 40-160 & 4 & 25 \\
\hline Dibenzofuran & 74.7 & 10 & 2.6 & ug/ & 100 & 75 & 60-120 & 4 & 20 \\
\hline Di-n-butyl phthalate & 70.9 & 20 & 2.8 & ugh & 100 & 71 & 65-125 & 1 & 20 \\
\hline 1,3-Dichlorobenzene & 59.6 & 10 & 4.1 & ug/ & 100 & 60 & 40-120 & 11 & 25 \\
\hline 1,4-Dichlorobenzene & 63.5 & 10 & 3.9 & ug/ & 100 & 64 & 40-120 & 1 & 25 \\
\hline 1,2-Dichlorobenzene & 61.5 & 10 & 4.5 & ug/ & 100 & 62 & 40-120 & 3 & 25 \\
\hline 3,3-Dichlorobenzidine & 87.9 & 20 & 11 & ug/ & 100 & 88 & 50-170 & 3 & 25 \\
\hline 2,4-Dichlorophenol & 70.2 & 10 & 4.1 & ug/l & 100 & 70 & 55-120 & 1 & 20 \\
\hline Diethyl phthalate & 67.9 & 10 & 3.1 & ugl & 100 & 68 & 60-120 & 4 & 20 \\
\hline 2,4-Dimethylphenol & 62.1 & 20 & 4.4 & ug/ & 100 & 62 & 35-120 & 4 & 25 \\
\hline Dimethyl phthalate & 69.0 & 10 & 3.6 & ug/ & 100 & 69 & 60-120 & 0 & 20 \\
\hline 4,6-Dinitro-2-methylphenol & 73.8 & 20 & 5.1 & ugl & 100 & 74 & 55.120 & 6 & 25 \\
\hline 2,4-Dinitrophenol & 77.6 & 20 & 5.3 & ugh & 100 & 78 & 40-140 & 11 & 25 \\
\hline 2,4-Dinitrotoluene & 77.6 & 10 & 4.2 & ug/ & 100 & 78 & 60-140 & 5 & 20 \\
\hline 2,6-Dinitrotoluene & 72.9 & 10 & 3.2 & ug/ & 100 & 73 & 65-125 & 2 & 20 \\
\hline Di-n-octyl phthalate & 81.0 & 20 & 4.7 & ug/l & 100 & 81 & 60-130 & 0 & 20 \\
\hline Fluoranthene & 77.9 & 10 & 4.2 & ug/ & 100 & 78 & 55-125 & 4 & 20 \\
\hline Fluorene & 77.6 & 10 & 3.9 & ug/ & 100 & 78 & 60-120 & 3 & 20 \\
\hline Hexachlorobenzene & 71.6 & 10 & 4.8 & ug/ & 100 & 72 & 50-120 & 3 & 20 \\
\hline Hexachlorobutadiene & 60.3 & 10 & 4.2 & ug/ & 100 & 60 & 45-120 & 2 & 25 \\
\hline Hexachlorocyclopentadiene & 50.9 & 20 & 3.4 & ug/ & 100 & 51 & 10-130 & 7 & 30 \\
\hline Hexachloroethane & 56.9 & 10 & 4.2 & ug/ & 100 & 57 & 40-120 & 7 & 25 \\
\hline Indeno( \(1,2,3\)-cd) pyrene & 79.2 & 20 & 5.4 & ug/ & 100 & 79 & 35-150 & 3 & 25 \\
\hline Isophorone & 65.6 & 10 & 3.7 & ugh & 100 & 66 & 55-120 & 0 & 20 \\
\hline 2-Methylnaphthalene & 72.7 & 10 & 3.0 & ug/ & 100 & 73 & 50-120 & 15 & 20 \\
\hline 2-Methylphenol & 67.3 & 10 & 3.7 & ug/ & 100 & 67 & 45-120 & 4 & 20 \\
\hline 4-Methylphenol & 70.2 & 10 & 3.8 & ug/1 & 100 & 70 & 45-120 & 0 & 20 \\
\hline Naphthalene & 73.6 & 10 & 4.5 & ug/1 & 100 & 74 & 50-120 & 4 & 20 \\
\hline 2-Nitroaniline & 76.6 & 20 & 3.9 & ug/ & 100 & 77 & 60-130 & 3 & 20 \\
\hline 3-Nitroaniline & 85.4 & 20 & 4.5 & ug/l & 100 & 85 & 50-140 & 7 & 25 \\
\hline 4-Nitroaniline & 88.5 & 20 & 4.9 & ugl & 100 & 88 & 45-160 & 8 & 20 \\
\hline Nitrobenzene & 63.6 & 20 & 4.2 & ugh & 100 & 64 & 50-120 & 3 & 25 \\
\hline 2-Nitrophenol & 79.0 & 10 & 4.2 & ug/ & 100 & 79 & 55-120 & 2 & 25 \\
\hline 4-Nitrophenol & 63.6 & 20 & 6.6 & ug/ & 100 & 64 & 50-135 & 7 & 25 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: IOA0557

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANK/QC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & \begin{tabular}{l}
Data \\
Qualifiers
\end{tabular} \\
\hline \multicolumn{12}{|l|}{Batch: 5A13037 Extracted: 01/13/05} \\
\hline \multicolumn{12}{|l|}{LCS Dup Analyzed: 01/17/2005 (5A13037-BSD1)} \\
\hline N -Nitrosodiphenylamine & 69.9 & 10 & 4.0 & ug/ & 100 & & 70 & 60-120 & 3 & 20 & \\
\hline N-Nitroso-di-n-propylamine & 63.2 & 10 & 3.6 & \(\mathrm{ug} / \mathrm{l}\) & 100 & & 63 & 50-120 & 4 & 20 & \\
\hline Pentachlorophenol & 75.5 & 20 & 4.0 & ug/l & 100 & & 76 & 50-125 & 7 & 25 & \\
\hline Phenanthrene & 79.5 & 10 & 3.3 & ug/l & 100 & & 80 & 55-120 & 3 & 20 & \\
\hline Pbenol & 65.0 & 10 & 4.0 & ug/l & 100 & & 65 & 45-120 & 2 & 25 & \\
\hline Pyrene & 81.3 & 10 & 3.9 & ug/l & 100 & & 81 & 50-120 & 1 & 25 & \\
\hline 1,2,4-Trichlorobenzene & 63.8 & 10 & 4.4 & ug/l & 100 & & 64 & 50-120 & 2 & 20 & \\
\hline 2,4,5-Trichlorophenol & 76.4 & 20 & 3.6 & ug/l & 100 & & 76 & 60-120 & 3 & 20 & \\
\hline 2,4,6-Trichlorophenol & 76.4 & 20 & 4.1 & ug/l & 100 & & 76 & 60-120 & 2 & 20 & \\
\hline 1,2-Diphenylhydrazine/Azobenzene & 75.1 & 20 & 5.0 & ug/l & 100 & & 75 & 60-120 & 6 & 25 & \\
\hline N -Nitrosodimethylamine & 63.2 & 20 & 3.7 & ug/l & 100 & & 63 & 40-120 & 6 & 20 & \\
\hline Surrogate: 2-Fhiorophenol & 122 & & & \(u g /\) & 200 & & 61 & 35-120 & & & \\
\hline Surrogate: Phenol-d6 & 126 & & & ughl & 200 & & 63 & 45-120 & & & \\
\hline Surrogate 2,4,6-Tibromophenol & 154 & \(\because \because\) & & \(u g / 1\) & 200 & & 77 & \(50-125\) & & & : \\
\hline Surrogate: Nitrobenzene-d5 & 64.7 & & & ugh & 100 & & 65 & 45-120 & & & \\
\hline Surrogate: 2-Fluorobiphenyl & 70.9 & & & \(u g /\) & 100 & & 71 & 45-120 & & & \\
\hline Surrogate: Terphenyl-d14 & 73.4 & & & \(u g /\) & 100 & & 73 & 45-135 & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager
\begin{tabular}{lr} 
MWH-Pasadena/Boeing & Project ID: Outfall 015 \\
300 North Lake Avenue, Suite 1200 & \\
Pasadena, CA 91101 & Report Number: IOA0557 \\
Attention: Bronwyn Kelly &
\end{tabular}

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKIQC DATA}

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A13049 Extracted: 01/13/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/13/2005 (5A13049-BLK1)} \\
\hline Aldrin & ND & 0.10 & 0.029 & ug/ & & & & & & & \\
\hline alpha-BHC & ND & 0.10 & 0.010 & ug/ & & & & & & & \\
\hline beta-BHC & ND & 0.10 & 0.011 & ug/ & & & & & & & \\
\hline delta-BHC & ND & 0.20 & 0.010 & ug/ & & & & & & & \\
\hline gamma-BHC (Lindane) & ND & 0.10 & 0.0097 & ug/ & & & & & & & \\
\hline Chlordane & ND & 1.0 & 0.18 & ug/ & & & & & & & \\
\hline 4,4'-DDD & ND & 0.10 & 0.011 & ug/1 & & & & & & & \\
\hline 4,4'-DDE & ND & 0.10 & 0.017 & ug/ & & & & & & & \\
\hline 4,4'-DDT & ND & 0.10 & 0.015 & ug/ & & & & & & & \\
\hline Dieldrin & ND & 0.10 & 0.010 & ug/ & & & & & & & \\
\hline Endosulfan I & ND & 0.10 & 0.015 & ug/ & & & & & & & \\
\hline Endosulfan II & ND & 0.10 & 0.037 & ug/ & & & & & & & \\
\hline Endosulfan sulfate & ND & 0.20 & 0.013 & ugh & & & & & & & \\
\hline Endrin & ND & 0.10 & 0.0082 & ugh & & & & & & & \\
\hline Endrin aldehyde & ND & 0.10 & 0.045 & ug/ & & & & & & & \\
\hline Endrin ketone & ND & 0.10 & 0.020 & ug/ & & & & & & & \\
\hline Heptachior & ND & 0.10 & 0.030 & ugl & & & & & & & \\
\hline Heptachlor epoxide & ND & 0.10 & 0.012 & ugh & & & & & & & \\
\hline Methoxychlor & ND & 0.10 & 0.034 & ug/ & & & & & & & \\
\hline Toxaphene & ND & 5.0 & 0.77 & ug/ & & & & & & & \\
\hline Surrogate: Tetrachloro-m-xylene & 0.348 & & & ug/ & 0.500 & & 70 & 35-120 & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.424 & & & ug \(/\) & 0.500 & & 85 & 45-120 & & & \\
\hline \multicolumn{2}{|l|}{LCS Analyzed: 01/13/2005 (5A13049-BS1)} & & & & & & & & & & M-NR1 \\
\hline Aldrin & 0.517 & 0.10 & 0.029 & ug/ & 0.500 & & 103 & 45-115 & & & \\
\hline alpha-BHC & 0.527 & 0.10 & 0.010 & ug/ & 0.500 & & 105 & 45-115 & & & \\
\hline beta-BHC & 0.496 & 0.10 & 0.011 & ug/ & 0.500 & & 99 & 50-115 & & & \\
\hline delta-BHC & 0.564 & 0.20 & 0.010 & ug/ & 0.500 & & 113 & 55-120 & & & \\
\hline gamma-BHC (Lindane) & 0.525 & 0.10 & 0.0097 & ug/ & 0.500 & & 105 & 45-115 & & & \\
\hline \(4,4{ }^{\prime}\)-DDD & 0.537 & 0.10 & 0.011 & ug/ & 0.500 & & 107 & 60-120 & & & \\
\hline 4,44-DDE & 0.534 & 0.10 & 0.017 & ug/ & 0.500 & & 107 & 55-120 & & & \\
\hline 4,4'-DDT & 0.557 & 0.10 & 0.015 & ug/ & 0.500 & & 111 & 60-130 & & & \\
\hline Dieldrin & 0.540 & 0.10 & 0.010 & ug/ & 0.500 & & 108 & 55-120 & & & \\
\hline Endosulfan I & 0.512 & 0.10 & 0.015 & ugl & 0.500 & & 102 & 50-115 & & & \\
\hline Endosulfan II & 0.525 & 0.10 & 0.037 & ug/ & 0.500 & & 105 & 60-125 & & & \\
\hline Endosulfan sulfate & 0.528 & 0.20 & 0.013 & ug/ & 0.500 & & 106 & 60-120 & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015

Report Number: 10 A 0557

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKGC DATA}

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A13049 Extracted: 01/13/05} \\
\hline LCS Analyzed: 01/13/2005 (5 & & & & & & & & & & & M-NR1 \\
\hline Endrin & 0.578 & 0.10 & 0.0082 & ug/ & 0.500 & & 116 & 55-125 & & & \\
\hline Endrin aldehyde & 0.553 & 0.10 & 0.045 & ug/ & 0.500 & & 111 & 55-115 & & & \\
\hline Endrin ketone & 0.513 & 0.10 & 0.020 & ug/ & 0.500 & & 103 & 60-120 & & & \\
\hline Heptachlor & 0.513 & 0.10 & 0.030 & ug/1 & 0.500 & & 103 & 45-115 & & & \\
\hline Heptachlor epoxide & 0.527 & 0.10 & 0.012 & ug/ & 0.500 & & 105 & 50-120 & & & \\
\hline Methoxychlor & 0.535 & 0.10 & 0.034 & ug/1 & 0.500 & & 107 & 60-135 & & & \\
\hline Surrogate: Tetrachloro-m-xylene & 0.435 & & & \(u g /\) & 0.500 & & 87 & 35-120 & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.527 & & & \(u g /\) & 0.500 & & 105 & 45-120 & & & \\
\hline \multicolumn{12}{|l|}{LCS Dup Analyzed: 01/13/2005 (5A13049-BSD1)} \\
\hline Aldrin & 0.512 & 0.10 & 0.029 & ug/ & 0.500 & & 102 & 45-115 & 1 & 30 & \\
\hline alpha-BHC & 0.534 & 0.10 & 0.010 & ug/ & 0.500 & & 107 & 45-115 & 1 & 30 & \\
\hline beta-BHC & 0.487 & 0.10 & 0.011 & ug/ & 0.500 & & 97 & 50-115 & 2 & 30 & \\
\hline delta-BHC & 0.547 & 0.20 & 0.010 & ug/ & 0.500 & & 109 & 55-120 & 3 & 30 & \\
\hline gamma-BHC (Lindane) & 0.525 & 0.10 & 0.0097 & ug/ & 0.500 & & 105 & 45-115 & 0 & 30 & \\
\hline 4,4'-DDD & 0.505 & 0.10 & 0.011 & ug/ & 0.500 & & 101 & 60-120 & 6 & 30 & \\
\hline 4,4-DDE & 0.510 & 0.10 & 0.017 & ug/ & 0.500 & & 102 & 55-120 & 5 & 30 & \\
\hline 4,4'-DDT & 0.520 & 0.10 & 0.015 & ug/ & 0.500 & & 104 & 60-130 & 7 & 30 & \\
\hline Dieldrin & 0.515 & 0.10 & 0.010 & ug/ & 0.500 & & 103 & 55-120 & 5 & 30 & \\
\hline Endosulfan I & 0.493 & 0.10 & 0.015 & ug/ & 0.500 & & 99 & 50-115 & 4 & 30 & \\
\hline Endosulfan II & 0.495 & 0.10 & 0.037 & ug/ & 0.500 & & 99 & 60-125 & 6 & 30 & \\
\hline Endosulfan sulfate & 0.498 & 0.20 & 0.013 & ug/ & 0.500 & & 100 & 60-120 & 6 & 30 & \\
\hline Endrin & 0.550 & 0.10 & 0.0082 & ug/ & 0.500 & & 110 & 55-125 & 5 & 30 & \\
\hline Endrin aldehyde & 0.511 & 0.10 & 0.045 & ug/ & 0.500 & & 102 & 55-115 & 8 & 30 & \\
\hline Endrin ketone & 0.490 & 0.10 & 0.020 & ug/ & 0.500 & & 98 & 60-120 & 5 & 30 & \\
\hline Heptachlor & 0.510 & 0.10 & 0.030 & ugh & 0.500 & & 102 & 45-115 & 1 & 30 & \\
\hline Heptachlor epoxide & 0.510 & 0.10 & 0.012 & ug/ & 0.500 & & 102 & 50-120 & 3 & 30 & \\
\hline Methoxychlor & 0.505 & 0.10 & 0.034 & ugh & 0.500 & & 101 & 60-135 & 6 & 30 & \\
\hline Surrogate: Tetrachloro-m-xylene & 0.449 & & & ug/l & 0.500 & & 90 & 35-120 & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.494 & & & ug/l & 0.500 & & 99 & 45-120 & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager
\begin{tabular}{lrl} 
MWH-Pasadena/Boeing & Project ID: Outfall 015 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: 01/11/05-01/12/05 \\
Pasadena, CA 91101 & Report Number: IOA0557 & Received: 01/11/05 \\
Attention: Bronwyn Kelly & &
\end{tabular}

Attention: Bronwyn Kelly

\section*{METHOD BLANKIQC DATA}

\section*{TOTAL PCBS (EPA 608)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A13049 Extracted: 01/13/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/13/2005 (5A13049-BLK1)} \\
\hline Aroclor 1016 & ND & 1.0 & 0.067 & ug/l & & & & & & & \\
\hline Aroclor 1221 & ND & 1.0 & 0.057 & ug/l & & & & & & & \\
\hline Aroclor 1232 & ND & 1.0 & 0.13 & ug/l & & & & & & & \\
\hline Aroclor 1242 & ND & 1.0 & 0.12 & ug/l & & & & & & & \\
\hline Aroclor 1248 & ND & 1.0 & 0.21 & ug/l & & & & & & & \\
\hline Aroclor 1254 & ND & 1.0 & 0.16 & ug/ & & & & & & & \\
\hline Aroclor 1260 & ND & 1.0 & 0.17 & ug/l & & & & & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.387 & & & \(u g /\) & 0.500 & & 77 & 45-120 & & & \\
\hline LCS Analyzed: 01/13/2005 & & & & & & & & & & & M-NR1 \\
\hline Aroclor 1016 & 2.82 & 1.0 & 0.067 & ug/l & 4.00 & & 70 & 50-115 & & & \\
\hline Aroclor 1260 & 2.91 & 1.0 & 0.17 & ug/l & 4.00 & & 73 & 60-115 & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.389 & & & \(u \mathrm{~g} / \mathrm{l}\) & 0.500 & & 78 & 45-120 & & & \\
\hline \multicolumn{12}{|l|}{HCS Dup Analyzed: \(01 / 13 / 2005\) (5A13049-BSD2)} \\
\hline Aroclor 1016 & 2.68 & 1.0 & 0.067 & ug/l & 4.00 & & 67 & 50-115 & 5 & 30 & \\
\hline Aroclor 1260 & 2.88 & 1.0 & 0.17 & ug/l & 4.00 & & 72 & 60-115 & 1 & 25 & \\
\hline Surrogate: Decachlorobiphenyl & 0.379 & & & \(u g /\) & 0.500 & & 76 & 45-120 & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager
\begin{tabular}{lrr} 
MWH-Pasadena/Boeing & Project ID: Outfall 015 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Pasadena, CA 91101 & Report Number: IOA0557 & Received: \(01 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{METHOD BLANKGC DATA}

\section*{METALS}
\begin{tabular}{lllllllllll} 
& & Reporting & & & Spike & Source & \%REC & RPD & Data \\
Analyte & Result & Limit & MDL & Units & \begin{tabular}{c} 
Level \\
Result
\end{tabular} & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

Blank Analyzed: 01/13/2005 (5A13042-BLK1)


\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager
\begin{tabular}{|lll|}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 015 & \\
300 North Lake Avenue, Suite 1200 & Report Number: \(10 A 0557\) & Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Pasadena, CA 91101 & Received: \(01 / 11 / 05\) \\
Attention: Bronwyn Kelly & & \\
\hline
\end{tabular}

\section*{METHOD BLANKIQC DATA}

\section*{METALS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & Spike Level & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A13042 Extracted: 01/13/05} \\
\hline \multicolumn{5}{|l|}{Matrix Spike Analyzed: 01/13/2005 (5A13042-MS1)} & \multicolumn{4}{|c|}{Source: 10A0567-01} & & & \\
\hline Selenium & 0.511 & 0.0050 & 0.0046 & mg/l & 0.500 & ND & 102 & 70-130 & & & \\
\hline Silver & 0.258 & 0.010 & 0.0013 & mg/ & 0.250 & ND & 103 & 70.130 & & & \\
\hline Thallium & 0.515 & 0.0050 & 0.0031 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.0031 & 102 & 70-130 & & & \\
\hline Zinc & 0.520 & 0.020 & 0.0037 & \(\mathrm{mg} / \mathrm{I}\) & 0.500 & 0.014 & 101 & 70-130 & & & \\
\hline \multicolumn{5}{|l|}{Matrix Spike Dap Analyzed: 01/13/2005 (5A13042-MSD1)} & \multicolumn{3}{|r|}{Source: 1OA0567-01} & & & & \\
\hline Antimony & 0.517 & 0.010 & 0.0042 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & ND & 103 & 70-130 & 2 & 20 & \\
\hline Arsenic & 0.500 & 0.0050 & 0.0038 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & ND & 100 & 70-130 & 2 & 20 & \\
\hline Beryllium & 0.505 & 0.0020 & 0.00062 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & ND & 101 & 70-130 & 1 & 20 & \\
\hline Cadmium & 0.494 & 0.0050 & 0.00034 & mg/ & 0.500 & ND & 99 & 70-130 & 2 & 20 & \\
\hline Chromium & 0.505 & 0.0050 & 0.00068 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.0022 & 101 & 70-130 & 2 & 20 & \\
\hline Copper & 0.503 & 0.010 & 0.0017 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.0036 & 100 & 70-130 & 2 & 20 & \\
\hline Lead & 0.508 & 0.0050 & 0.0021 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & ND & 102 & 70-130 & 2 & 20 & \\
\hline Nickel & 0.503 & 0.010 & 0.0020 & mg/ & 0.500 & 0.0025 & 100 & 70-130 & 2 & 20 & \\
\hline Setenium & 0.499 & 0.0050 & 0.0046 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & ND & 100 & 70-130 & 2 & 20 & \\
\hline Silver & 0.253 & 0.010 & 0.0013 & \(\mathrm{mg} / \mathrm{l}\) & 0.250 & ND & 101 & 70-130 & 2 & 20 & \\
\hline Thallium & 0.502 & 0.0050 & 0.0031 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.0031 & 100 & 70-130 & 3 & 20 & \\
\hline Zinc & 0.510 & 0.020 & 0.0037 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.014 & 99 & 70-130 & 2 & 20 & \\
\hline
\end{tabular}

Batch: 5A13050 Extracted: 01/13/05
Blank Analyzed: 01/13/2005 (5A13050-BLK1)
\begin{tabular}{lllll} 
Mercury & ND & 0.00020 & 0.000063 & \(\mathrm{mg} / \mathrm{l}\)
\end{tabular}

LCS Analyzed: 01/13/2005 (5A13050-BS1)
\begin{tabular}{lllllllllll} 
Mercury & 0.00808 & 0.00020 & 0.000063 & \(\mathrm{mg} / \mathrm{l}\) & 0.00800 & 101 & \(85-115\)
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Michele Harper
Project Manager
}
\begin{tabular}{lrr} 
MWH-Pasadena/Boeing & Project ID: Outfall 015 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: 01/11/05-01/12/05 \\
Pasadena, CA 91101 & Report Number: IOA0557 & Received: 01/11/05 \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{METHOD BLANKIQC DATA}

\section*{METALS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5A13050 Extracted: 01/13/05} \\
\hline Matrix Spike Analyzed: 01/13/2005 (5A13050-MS1) & \multicolumn{10}{|c|}{Source: 10A0567-01} \\
\hline Mercury 0.00857 & 0.00020 & 0.000063 & \(\mathrm{mg} / \mathrm{l}\) & 0.00800 & 0.00016 & 105 & 70-130 & & & \\
\hline \multicolumn{2}{|l|}{Matrix Spike Dup Analyzed: 01/13/2005 (5A13050-MSD1)} & & & \multicolumn{3}{|l|}{Source: 1OA0567-01} & & & & \\
\hline Mercury 0.00854 & 0.00020 & 0.000063 & mg/ & 0.00800 & 0.00016 & 105 & 70-130 & 0 & 20 & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager
\begin{tabular}{lr} 
MWH-Pasadena/Boeing & Project ID: Outfall 015 \\
300 North Lake Avenue, Suite 1200 & \\
Pasadena, CA 91101 & Report Number: 1OA0557 \\
Attention: Bronwyn Kelly &
\end{tabular}

\footnotetext{
Sampled: 01/11/05-01/12/05
Received: 01/11/05
}

\section*{METHOD BLANKQC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reportin Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A11092 Extracted: 01/11/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/11/2005 (5A11092-BLK1)} \\
\hline Chromium VI & 0.000149 & 0.0010 & 0.000041 & mg/ & & & & & & & \(J\) \\
\hline \multicolumn{12}{|l|}{LCS Analyzed: 01/11/2005 (5A11092-BS1)} \\
\hline Chromium VI & 0.0514 & 0.0010 & 0.000041 & \(\mathrm{mg} / 1\) & 0.0500 & & 103 & 90-110 & & & \\
\hline \multicolumn{2}{|l|}{Matrix Spike Analyzed: 01/11/2005 (5A11092-MS1)} & & & & & ce: 10A & 0549-01 & & & & \\
\hline Chromium VI & 0.0485 & 0.0010 & 0.000041 & \(\mathrm{mg} / \mathrm{l}\) & 0.0500 & ND & 97 & 90-110 & & & \\
\hline \multicolumn{3}{|l|}{Matrix Spike Dup Analyzed: 01/11/2005 (5A11092-MSD1)} & & & & ce: 10A & 0549-01 & & & & \\
\hline Chromium VI & 0.0487 & 0.0010 & 0.000041 & mg/l & 0.0500 & ND & 97 & \(90-110\) & 0 & 10 & \\
\hline \multicolumn{12}{|l|}{Batch: 5A12041 Extracted: 01/12/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/17/2005 (5A12041-BLK1)} \\
\hline Biochemical Oxygen Demand & ND & 2.0 & 0.59 & mg a & & & & & & & \\
\hline \multicolumn{12}{|l|}{LCS Analyzed: 01/17/2005 (5A12041-BSI)} \\
\hline Biochemical Oxygen Demand & 208 & 100 & 30 & \(\mathrm{mg} / 1\) & 198 & & 105 & 85-115 & & & \\
\hline \multicolumn{12}{|l|}{LCS Dup Analyzed: 01/17/2005 (5A12041-BSD1)} \\
\hline Biochemical Oxygen Demand & 212 & 100 & 30 & \(\mathrm{mg} / \mathrm{l}\) & 198 & & 107 & 85-115 & 2 & 20 & \\
\hline \multicolumn{12}{|l|}{Batch: 5A17060 Extracted: 01/17/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/17/2005 (5A17060-BLK1)} \\
\hline Total Suspended Solids & ND & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager
\begin{tabular}{lrr} 
MWH-Pasadena/Boeing & Project ID: Outfall 015 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Pasadena, CA 91101 & Report Number: 1040557 & Received: \(01 / 11 / 05\)
\end{tabular}

\section*{MEYMOD BLANKICC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5A17060 Extracted: 01/17/05} \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 01/17/2005 (5A17060-BS1)} \\
\hline Total Suspended Solids 971 & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & 1000 & & 97 & 85-115 & & & \\
\hline Duplicate Analyzed: 01/17/2005 (5A17060-DUP1) & & & & & ce: IOA & 673-01 & & & & \\
\hline Total Suspended Solids ND & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & & ND & & & & 10 & \\
\hline \multicolumn{11}{|l|}{Batch: 5A17067 Extracted: 01/17/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 01/17/2005 (5A17067-BLK1)} \\
\hline Total Cyanide ND & 0.025 & 0.017 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 01/17/2005 (5A17067-BS1)} \\
\hline Total Cyanide 0.211 & 0.025 & 0.017 & \(\mathrm{mg} / \mathrm{l}\) & 0.200 & & 106 & \(90-110\) & & & \\
\hline Matrix Spike Analyzed: 01/17/2005 (5A17067-MS1) & & & & & ce: 10A0 & 715-02 & & & & \\
\hline Total Cyanide \(\quad \therefore \quad 0.0894\) & 0.025 & 0.017 & mg/l & 0.200 & ND & 45 & 70-115 & & & M2 \\
\hline \multicolumn{2}{|l|}{Matrix Spike Dup Analyzed: 01/17/2005 (5A17067-MSD1)} & & & Sou & ce: 1OA0 & 715-02 & & & & \\
\hline Total Cyanide 0.140 & 0.025 & 0.017 & \(\mathrm{mg} / \mathrm{l}\) & 0.200 & ND & 70 & 70-115 & 44 & 15 & R-3 \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: IOA0557

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{DATA QUALIFIERS AND DEFINITIONS}

B Analyte was detected in the associated Method Blank.
C Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
M2 The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
R-3 The RPD exceeded the method control limit due to sample matrix effects.
R-7 LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

\section*{ADDITIONAL COMMENTS}

\section*{For 1,2-Diphenylhydrazine:}

The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.

\author{
Del Mar Analytical, Irvine \\ Michele Harper \\ Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015

Report Number: 10 A 0557

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{Certification Summary}

\section*{Del Mar Analytical, Irvine}
\begin{tabular}{clcc} 
Method & Matrix & Nelac & California \\
EPA 160.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 200.7 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 218.6 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 245.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 335.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 405.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 608 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 624 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 625 & Water & \(\mathbf{X}\) & \(\mathbf{X}\)
\end{tabular}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

\section*{Subcontracted Laboratories}

\section*{Pace Analytical, MN- SUB}

1700 Elm Street, Ste 200 - Minneapolis, MN 55414
Analysis Performed: 1613-Dioxin-HR
Samples: IOA0557-02
Analysis Performed: EDD + Level 4
Samples: IOA0557-02

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

\title{
< Del MarAnalytical
}

February 23, 2005

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, Ca. 91101

Attention: Bronwyn Kelly
\begin{tabular}{ll} 
Project: & Routine Outfall 015 \\
& Sampled: 01/11/05-1/12/05 \\
& Del Mar Analytical Number: IOA0557
\end{tabular}

Dear Ms. Kelly:
Pace Analytical performed Method 1613B analysis for the project referenced above. Please use the following cross-reference table when reviewing your results.
\begin{tabular}{|c|c|c|}
\hline MWH ID & DEL MAR ID & Pace ID \\
\hline Outfall 015 & IOA0557-01 & 106233001 \\
\hline
\end{tabular}

Attached is the original report from the subcontract laboratory. If you have any questions or require further assistance, please do not hesitate to contact me.

Sincerely yours,
DEL MAR ANALYTICAL


Project Manager

\section*{Method 1613B Analysis Results}

Client - Del Mar Analytical

Client's Sample ID Lab Sample ID Filename Injected By Total Amount Extracted \% Moisture Dry Weight Extracted ICAL Date
CCal Filename(s)
Method Blank ID

1OA0557-02
106233001
F50130A_05
BAL
\(1050 \mathrm{~mL} \quad\) Matrix Water
NA
NA
11/29/2004
F50129B_18
BLANK-6220
\begin{tabular}{ll} 
Matrix & Water \\
Dilution & NA \\
Collected & \(01 / 12 / 2005\) \\
Received & \(01 / 14 / 2005\) \\
Extracted & \(01 / 28 / 2005\) \\
Analyzed & \(01 / 30 / 2005\)
\end{tabular}

13:58
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Native Isomers & Conc \(\mathrm{pg} / \mathrm{L}\) & \[
\begin{gathered}
\text { EMPC } \\
\text { pg/L. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { LOD } \\
& \mathrm{pg} \Lambda
\end{aligned}
\] & & Internal Standards & ng's Added & Percent Recovery \\
\hline 2,3,7,8-TCDF & ND & ---* & 0.84 & & 2,3,7,8-TCDF-13C & 2.00 & 71 \\
\hline Total TCDF & 1.6 & & 0.84 & \(J\) & 2,3,7,8-TCDD-13C & 2.00 & 89 \\
\hline & & & & & 1,2,3,7,8-PeCDF-13C & 2.00 & 75 \\
\hline 2,3,7,8-TCDD & ND & ----- & 0.80 & & 2,3,4,7,8-PoCDF-13C & 2.00 & 80 \\
\hline Total TCDD & ND & & 0.80 & & 1,2,3,7,8-PeCDD-13C & 2.00 & 94 \\
\hline & & & & & 1,2,3,4,7,8-HxCDF-13C & 2.00 & 84 \\
\hline 1,2,3,7,8-PeCDF & ND & \(\cdots\) & 0.71 & & 1,2,3,6,7,8-HxCDF-13C & 2.00 & 92 \\
\hline 2,3,4,7,8-PeCDF & ND & ---- & 0.47 & & 2,3,4,6,7,8-HxCDF-13C & 2.00 & 79 \\
\hline Total PeCDF & ND & \(\cdots\) & 0.59 & & 1,2,3,7,8,9-HxCDF-13C & 2.00 & 81 \\
\hline & & & & & 1,2,3,4,7,8-HxCDD-13C & 2.00 & 72 \\
\hline 1,2,3,7,8-PeCDD & ND & ---- & 1.00 & & 1,2,3,6,7,8-HxCDD-13C & 2.00 & 94 \\
\hline Total PeCDD & ND & ---- & 1.00 & & 1,2,3,4,6,7,8-HpCDF-13C & 2.00 & 78 \\
\hline & & & & & 1,2,3,4,7,8,9-HpCDF-13C & 2.00 & 66 \\
\hline 1,2,3,4,7,8-HxCDF & --- & 1.1 & 0.85 & 1 & 1,2,3,4,6,7,8-HpCDD-13C & 2.00 & 85 \\
\hline 1,2,3,6,7,8-HxCDF & ND & & 0.84 & & OCDD-13C & 4.00 & 72 \\
\hline 2,3,4,6,7,8-HxCDF & ND & ----- & 0.81 & & & & \\
\hline 1,2,3,7,8,9-HxCDF & ND & ----- & 0.72 & & 1,2,3,4-TCDD-13C & 2.00 & NA \\
\hline Total HxCDF & ND & \(\cdots\) & 0.80 & & 1,2,3,7,8,9-HxCDD-13C & 2.00 & NA \\
\hline 1,2,3,4,7,8-HxCDD & ND & \(\cdots\) & 1.30 & & 2,3,7,8-TCDD-37C14 & 0.20 & 87 \\
\hline 1,2,3,6,7,8-HxCDD & ND & & 1.30 & & & & \\
\hline 1,2,3,7,8,9-HxCDD & ND & ---- & 1.20 & & & & \\
\hline Total HxCDD & ND & ----- & 1.20 & & & & \\
\hline 1,2,3,4,6,7,8-HpCDF & 2.8 & \(\cdots\) & 1.80 & \(J\) & & & \\
\hline 1,2,3,4,7,8,9-HpCDF & ND & ----- & 1.30 & & & & \\
\hline Total HpCDF & 11.0 & ----- & 1.50 & BJ & & & \\
\hline 1,2,3,4,6,7,8-HpCDD & 8.4 & \(\cdots\) & 1.50 & BJ & & & \\
\hline Total HpCDD & 21.0 & ---- & 1.50 & BJ & & & \\
\hline OCDF & \[
10.0
\] & ---- & \[
1.80
\] & BJ & & & \\
\hline
\end{tabular}

Conc \(=\) Concentration (Totals include 2,3,7,8-substituted isomers).
EMPC \(=\) Estimated Maximum Possible Concentration
LOD \(=\) Limit of Detection. Totals are averages of individual isomer LODs.
\(\mathrm{D}=\) Result obtained from analysis of diluted sample
\(\mathrm{B}=\) Less than 10 times higher than method blank level
\(P=\) Recovery outside of method 1613 control limits
\(\mathrm{J}=\) Concentration detected is below the callibration range
\(\mathrm{Nn}=\) Value obtained from additional analysis

I = Interference
\(\mathrm{E}=\mathrm{PCDE}\) Interference
ND = Not Detected
NA \(=\) Not Applicable
NC = Not Calculated
* \(z\) See Discussion

Report No..... 106233

\section*{REPORT OF LABORATORY ANALYSIS}

\section*{Method 1613B Blank Analysis Results}

Client - Del Mar Analytical
\begin{tabular}{llll} 
Lab Sample ID & BLANK-6220 & Matrix & Water \\
Filename & F50129B_06 & Ditution & NA \\
Total Amount Extracted & 1020 mL & Extracted & 01/28/2005 \\
ICAL Date & \(11 / 29 / 2004\) & Analyzed & 01/29/2005 23:49 \\
CCal Filename(s) & F50129B_02 & Injected By & BAL.
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Native Isomers & Cone pg/ & EMPC \(\mathrm{pg} / \mathrm{L}\) & \[
\begin{aligned}
& \mathrm{LOD} \\
& \mathrm{pg} / \mathrm{L}
\end{aligned}
\] & Internal Standards & ng's Added & Percent Recovery \\
\hline 2,3,7,8-TCDF & ND & \(\cdots\) & 1.20 & 2,3,7,8-TCDF-13C & 2.00 & 58 \\
\hline Total TCDF & ND & ---- & ----- & 2,3,7,8-TCDD-13C & 2.00 & 75 \\
\hline & & & & 1,2,3,7,8-PeCDF-13C & 2.00 & 65 \\
\hline 2,3,7,8-TCDD & ND & ---- & 1.20 & 2,3,4,7,8-PeCDF-13C & 2.00 & 67 \\
\hline Total TCDD & ND & ----- & 1.20 & 1,2,3,7,8-PeCDD-13C & 2.00 & 80 \\
\hline & & & & 1,2,3,4,7,8-HxCDF-13C & 2.00 & 70 \\
\hline 1,2,3,7,8-PeCDF & ND & ----- & 1.50 & 1,2,3,6,7,8-HxCDF-13C & 2.00 & 82 \\
\hline 2,3,4,7,8-PeCDF & ND & ----- & 1.20 & 2,3,4,6,7,8-HxCDF-13C & 2.00 & 77 \\
\hline Total PeCDF & ND & ----- & ---* & 1,2,3,7,8,9-HxCDF-13C & 2.00 & 72 \\
\hline & & & & 1,2,3,4,7,8-HxCDD-13C & 2.00 & 66 \\
\hline 1,2,3,7,8-PeCDD & ND & ---" & 1.60 & 1,2,3,6,7,8-HxCDD-13C & 2.00 & 88 \\
\hline Total PeCDD & ND & \(\cdots\) & --. & 1,2,3,4,6,7,8-HpCDF-13C & 2.00 & 73 \\
\hline & & & & 1,2,3,4,7,8,9-HpCDF-13C & 2.00 & 63 \\
\hline 1,2,3,4,7,8-HxCDF & ND & ------ & 0.75 & 1,2,3,4,6,7,8-HpCDD-13C & 2.00 & 80 \\
\hline 1,2,3,6,7,8-HxCDF & ND & \(\cdots\) & 0.86 & OCDD-13C & 4.00 & 68 \\
\hline 2,3,4,6,7,8-HxCDF & ND & ----- & 1.10 & & & \\
\hline 1,2,3,7,8,9-HxCDF & ND & ----- & 1.20 & 1,2,3,4-TCDD-13C & 2.00 & NA \\
\hline Total HxCDF & ND & ----- & ----- & 1,2,3,7,8,9-HxCDD-13C & 2.00 & NA \\
\hline 1,2,3,4,7,8-HxCDD & ND & ----- & 1.10 & 2,3,7,8-TCDD-37Cl4 & 0.20 & 73 \\
\hline 1,2,3,67,8-HxCDD & ND & -- & 0.99 & & & \\
\hline 1,2,3,7,8,9-HxCDD & ND & - & 1.00 & & & \\
\hline Total HxCDD & ND & ----- & ----- & & & \\
\hline 1,2,3,4,6,7,8-HpCDF & ND & \(\cdots\) & 2.10
1.90 & & & \\
\hline \[
1,2,3,4,7,8,9-H p C D F
\] & ND & ---- & 1.90 & & & \\
\hline Total HpCDF & 2.2 & ----- & & & & \\
\hline 1,2,3,4,6,7,8-HpCDD & 2.4 & \(\cdots\) & 1.40 & & & \\
\hline Total HpCDD & 2.4 & --..- & & & & \\
\hline \[
\begin{aligned}
& \text { OCDF } \\
& \text { OCDD }
\end{aligned}
\] & 5.2
5.6 & \(\cdots\) & \[
\begin{aligned}
& 1.80 \\
& 2.90
\end{aligned}
\] & & & \\
\hline
\end{tabular}

Conc \(=\) Concentration (Totals include 2,3,7,8-substituted isomers).
EMPC = Estimated Maximum Possible Concentration
LOD = Limit of Detection. Totals are averages of individual isomer LODs.
\(A=\) Limit of Detection based on signal to nolse
\(P=\) Recovery outside of method 1613 control limits
\(\mathrm{Nn}=\) Value obtained from additional analysis

I = Interference
\(\mathrm{E}=\mathrm{PCDE}\) Interference
ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* \(=\) See Discussion

106233

\section*{REPORT OF LABORATORY ANALYSIS}

\section*{Method 1613B Laboratory Control Spike Results}

Client - Del Mar Analytical
Lab Sample ID
Filiname
Total Amount Extracted
ICAL Date
CCal Filename
Method Blank ID

LCS-6221

F50129B_03
1040 mL 11/29/2004
F50129B_02
BLANK-6220
\begin{tabular}{ll} 
Matrix & Water \\
Ditution & NA \\
Extracted & \(01 / 28 / 2005\) \\
Analyzed & \(01 / 29 / 2005\) \\
Injected By & BAL
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Compound & Cs & Cr & Lower Limit & Upper Limit & \[
\begin{gathered}
\% \\
\text { Rec. }
\end{gathered}
\] \\
\hline 2,3,7,8-TCDF & 10 & 9.9 & 7.5 & 15.8 & 99 \\
\hline 2,3,7,8-TCDD & 10 & 8.6 & 6.7 & 15.8 & 86 \\
\hline 1,2,3,7,8-PeCDF & 50 & 50.5 & 40.0 & 67.0 & 101 \\
\hline 2,3,4,7,8-PeCDF & 50 & 48.2 & 34.0 & 80.0 & 96 \\
\hline 1,2,3,7,8-PeCDD & 50 & 43.3 & 35.0 & 71.0 & 87 \\
\hline 1,2,3,4,7,8-HxCDF & 50 & 45.6 & 36.0 & 67.0 & 91 \\
\hline 1,2,3,6,7,8-HxCDF & 50 & 48.7 & 42.0 & 65.0 & 97 \\
\hline 2,3,4,6,7,8-HxCDF & 50 & 49.1 & 35.0 & 78.0 & 98 \\
\hline 1,2,3,7,8,9-HxCDF & 50 & 46.5 & 39.0 & 65.0 & 93 \\
\hline 1,2,3,4,7,8-HxCDD & 50 & 49.9 & 35.0 & 82.0 & 100 \\
\hline 1,2,3,6,7,8-HxCDD & 50 & 51.3 & 38.0 & 67.0 & 103 \\
\hline 1,2,3,7,8,9-HxCDD & 50 & 50.1 & 32.0 & 81.0 & 100 \\
\hline 1,2,3,4,6,7,8-HpCDF & 50 & 50.3 & 41.0 & 61.0 & 101 \\
\hline 1,2,3,4,7,8,9-HpCDF & 50 & 53.3 & 39.0 & 69.0 & 107 \\
\hline 1,2,3,4,6,7,8-HpCDD & 50 & 45.4 & 35.0 & 70.0 & 91 \\
\hline OCDF & 100 & 95.6 & 63.0 & 170.0 & 96 \\
\hline OCDD & 100 & 97.1 & 78.0 & 144.0 & 97 \\
\hline 2,3,78-TCDD-37C14 & 10 & 6.9 & 3.1 & 19.1 & 69 \\
\hline 2,3,7,8-TCDF-13C & 100 & 51.5 & 22.0 & 152.0 & 52 \\
\hline 2,3,7,8-TCDD-13C & 100 & 67.8 & 20.0 & 175.0 & 68 \\
\hline 1,2,3,7,8-PeCDF-13C & 100 & 61.4 & 21.0 & 192.0 & 61 \\
\hline 2,3,4,7,8-PeCDF-13C & 100 & 65.9 & 13.0 & 328.0 & 66 \\
\hline 1,2,3,7,8-PeCDD-13C & 100 & 77.8 & 21.0 & 227.0 & 78 \\
\hline 1,2,3,4,7,8-HxCDF-13C & 100 & 70.2 & 19.0 & 202.0 & 70 \\
\hline 1,2,3,6,7,8-HxCDF-13C & 100 & 78.0 & 21.0 & 159.0 & 78 \\
\hline 2,3,4,6,7,8-HxCDF-13C & 100 & 74.1 & 22.0 & 176.0 & 74 \\
\hline 1,2,3,7,8,9-HxCDF-13C & 100 & 70.4 & 17.0 & 205.0 & 70 \\
\hline 1,2,3,4,7,8-HxCDD-13C & 100 & 69.0 & 21.0 & 193.0 & 69 \\
\hline 1,2,3,6,7,8-HxCDD-13C & 100 & 82.8 & 25.0 & 163.0 & 83 \\
\hline 1,2,3,4,6,7,8-HpCDF-13C & 100 & 72.1 & 21.0 & 158.0 & 72 \\
\hline 1,2,3,4,7,8,9-HpCDF-13C & 100 & 62.4 & 20.0 & 186.0 & 62 \\
\hline 1,2,3,4,6,7,8-HpCDD-13C & 100 & 80.1 & 26.0 & 166.0 & 80 \\
\hline OCDD-13C & 200 & 135.6 & 26.0 & 397.0 & 68 \\
\hline
\end{tabular}
\(\mathrm{Cs}=\) Concentration Spiked (ng/mL)
\(\mathrm{Cr}=\) Concentration Recovered ( \(\mathrm{ng} / \mathrm{mL}\) )
Rec. \(=\) Recovery (Expressed as Percent)
Control Limit Reference: Method 1613, Table 6, \(10 / 94\) Revision
\(\mathrm{X}=\) Background subtracted value
\(P=\) Recovery outside of control limits
\(\mathrm{Nn}=\) Value obtained from additional analysis
Report No..... 106233
* \(=\) See Discussion

\section*{REPORT OF LABORATORY ANALYSIS}

\section*{Method 1613B Laboratory Control Spike Results}

Client - Del Mar Analytical
Lab Sample ID
Filename
Total Amount Extracted
ICAL Date
CCal Filename
Method Blank ID

LCSD-6222
F50129B_04
1040 mL
\(11 / 29 / 2004\)
F50129B-02
BLANK-6220
\begin{tabular}{ll} 
Matrix & Water \\
Dilution & NA \\
Extracted & \(01 / 28 / 2005\) \\
Analyzed & \(01 / 29 / 2005\) \\
Injected By & BAL
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Compound & Cs & Cr & Lower Limit & \begin{tabular}{l}
Upper \\
Limit
\end{tabular} & \begin{tabular}{l}
\% \\
Rec.
\end{tabular} \\
\hline 2,3,7,8-TCDF & 10 & 10.6 & 7.5 & 15.8 & 106 \\
\hline 2,3,7,8-TCDD & 10 & 9.4 & 6.7 & 15.8 & 94 \\
\hline 1,2,3,7,8-PeCDF & 50 & 53.2 & 40.0 & 67.0 & 106 \\
\hline 2,3,4,7,8-PeCDF & 50 & 50.7 & 34.0 & 80.0 & 101 \\
\hline 1,2,3,7,8-PeCDD & 50 & 46.0 & 35.0 & 71.0 & 92 \\
\hline 1,2,3,4,7,8-HxCDF & 50 & 47.6 & 36.0 & 67.0 & 95 \\
\hline 1,2,3,6,7,8-HxCDF & 50 & 50.9 & 42.0 & 65.0 & 102 \\
\hline 2,3,4,6,7,8-HxCDF & 50 & 50.9 & 35.0 & 78.0 & 102 \\
\hline 1,2,3,7,8,9-HxCDF & 50 & 49.0 & 39.0 & 65.0 & 98 \\
\hline 1,2,3,4,7,8-HxCDD & 50 & 52.4 & 35.0 & 82.0 & 105 \\
\hline 1,2,3,6,7,8-HxCDD & 50 & 54.2 & 38.0 & 67.0 & 108 \\
\hline 1,2,3,7,8,9-HxCDD & 50 & 52.5 & 32.0 & 81.0 & 105 \\
\hline 1,2,3,4,6,7,8-HpCDF & 50 & 55.0 & 41.0 & 61.0 & 110 \\
\hline 1,2,3,4,7,8,9-HpCDF & 50 & 55.7 & 39.0 & 69.0 & 111 \\
\hline 1,2,3,4,6,7,8-HpCDD & 50 & 48.0 & 35.0 & 70.0 & 96 \\
\hline OCDF & 100 & 100.6 & 63.0 & 170.0 & 101 \\
\hline OCDD & 100 & 101.9 & 78.0 & 144.0 & 102 \\
\hline 2,3,7,8-7CDD-37Cl4 & & 8.7 & 3.1 & 19.1 & 87 \\
\hline 2,3,7,8-TCDF-13C & 100 & 70.4 & 22.0 & 1520 & 70 \\
\hline 2,3,7,8-TCDD-13C & 100 & 88.6 & 20.0 & 175.0 & 89 \\
\hline 1,2,3,7,8-PeCDF-13C & 100 & 73.6 & 21.0 & 192.0 & 74 \\
\hline 2,3,4,7,8-PeCDF-13C & 100 & 79.0 & 13.0 & 328.0 & 79 \\
\hline 1,2,3,7,8-PeCDD-13C & 100 & 95.5 & 21.0 & 227.0 & 96 \\
\hline 1,2,3,4,7,8-HxCDF-13C & 100 & 84.8 & 19.0 & 202.0 & 85 \\
\hline 1,2,3,6,7,8-HxCDF-13C & 100 & 89.5 & 21.0 & 159.0 & 90 \\
\hline 2,3,4,6,7,8-HxCDF-13C & 100 & 87.2 & 22.0 & 176.0 & 87 \\
\hline 1,2,3,7,8,9-HxCDF-13C & 100 & 82.1 & 17.0 & 205.0 & 82 \\
\hline 1,2,3,4,7,8-HxCDD-13C & 100 & 80.1 & 21.0 & 193.0 & 80 \\
\hline 1,2,3,6,7,8-HxCDD-13C & 100 & 97.0 & 25.0 & 163.0 & 97 \\
\hline 1,2,3,4,6,7,8-HpCDF-13C & 100 & 84.4 & 21.0 & 158.0 & 84 \\
\hline 1,2,3,4,7,8,9-HpCDF-13C & 100 & 71.7 & 20.0 & 186.0 & 72 \\
\hline 1,2,3,4,6,7,8-HpCDD-13C & 100 & 92.4 & 26.0 & 166.0 & 92 \\
\hline OCDD-13C & 200 & 159.2 & 26.0 & 397.0 & 80 \\
\hline
\end{tabular}

\footnotetext{
Cs = Concentration Spiked ( \(\mathrm{ng} / \mathrm{mL}\) )
\(\mathrm{Cr}=\) Concentration Recovered ( \(\mathrm{ng} / \mathrm{mL}\) )
Rec. = Recovery (Expressed as Percent)
Control Limit Reference: Method 1613, Table 6, \(10 / 94\) Revision
\(\mathrm{X}=\) = Background subtracted value
\(P=\) Recovery outside of control limits
\(\mathrm{Nn}=\) Value obtained from additional analysis
* \(=\) See Discussion
}

Report No..... 106233

\section*{REPORT OF LABORATORY ANALYSIS}

Client. \(\qquad\) Del Mar Analytical
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
SPIKE 1 ID. \\
SPIKE 1 Filename SPIKE 2 ID. SPIKE 2 Filename
\end{tabular} &  & & \\
\hline COMPOUND & SPIKE 1 REC,\% & SPIKE 2 REC,\% & RPD,\% \\
\hline 2378-TCDF & 99 & 106 & 6.8 \\
\hline 2378-TCDD & 86 & 94 & 8.9 \\
\hline 12378-PeCDF & 101 & 106 & 4.8 \\
\hline 23478-PeCDF & 96 & 101 & 5.1 \\
\hline 12378-PeCDD & 87 & 92 & 5.6 \\
\hline 123478-HxCDF & 91 & 95 & 4.3 \\
\hline 123678-HxCDF & 97 & 102 & 5.0 \\
\hline 234678-HxCDF & 98 & 102 & 4.0 \\
\hline 123789-HxCDF & 93 & 98 & 5.2 \\
\hline 123478-HxCDD & 100 & 105 & 4.9 \\
\hline 123678-HxCDD & 103 & 108 & 4.7 \\
\hline 123789-HxCDD & 100 & 105 & 4.9 \\
\hline 1234678-HpCDF & 101 & 110 & 8.5 \\
\hline 1234789-HpCDF & 107 & 111 & 3.7 \\
\hline 1234678-HpCDD & 91 & 96 & 5.3 \\
\hline OCDF & 96 & 101 & 5.1 \\
\hline OCDD & 97 & 102 & 5.0 \\
\hline
\end{tabular}

REC = Percent Recovered
RPD \(=\) The difference between the two values divided by the average.
\(N A=\) Not Applicable
Report No 106233

\section*{REPORT OF LABORATORY ANALYSIS}

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.


TABLE 1. 2,3,7,8-TCDD Equivalency Factors (TEFs) for the Polychlorinated Dibenzo-p-dioxins and Dibenzofurans
\begin{tabular}{|c|c|c|}
\hline Number & Compound(s) & TEF \\
\hline 1 & 2,3,7,8-TCDD & 1.00 \\
\hline 2 & 1,2,3,7,8-PeCDD & 0.50 \\
\hline 3 & 1,2,3,6,7,8-HxCDD & 0.1 \\
\hline 4 & 1,2,3,7,8,9-HxCDD & 0.1 \\
\hline 5 & 1,2,3,4,7,8-HxCDD & 0.1 \\
\hline 6 & 1,2,3,4,6,7,8-HpCDD & 0.01 \\
\hline 7 & OCDD & 0.001 \\
\hline 8 & *Total - TCDD & 0.0 \\
\hline 9 & * Total - PeCDD & 0.0 \\
\hline 10 & *Total - HxCDD & 0.0 \\
\hline 11 & *Total - HpCDD & 0.0 \\
\hline 12 & 2,3,7,8-TCDF & 0.10 \\
\hline 13 & 1,2,3,7,8-PeCDF & 0.05 \\
\hline 14 & 2,3,4,7,8-PeCDF & 0.5 \\
\hline 15 & 1,2,3,6,7,8-HxCDF & 0.1 \\
\hline 16 & 1,2,3,7,8,9-HxCDF & 0.1 \\
\hline 17 & 1,2,3,4,7,8-HxCDF & 0.1 \\
\hline 18 & 2,3,4,6,7,8-HxCDF & 0.1 \\
\hline 19 & 1,2,3,4,6,7,8-HpCDF & 0.01 \\
\hline 20 & 1,2,3,4,7,8,9-HpCDF & 0.01 \\
\hline 21 & OCDF & 0.001 \\
\hline 22 & * Total - TCDF & 0.0 \\
\hline 23 & * Total - PeCDF & 0.0 \\
\hline 24 & * Total - HxCDF & 0.0 \\
\hline 25 & *Total - HpCDF & 0.0 \\
\hline
\end{tabular}
*Excluding the 2,3,7,8-substituted congeners.
Reference: 1989 ITEFs

\section*{REPORT OF LABORATORY ANALYSIS}

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.


\section*{SUBCONTRACT ORDER - PROJECT \# IOA0557}


Relcased By:

\section*{LABORATORY REPORT}

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Outfall 015

Sampled: 01/12/05
Received: 01/11/05
Issued: 03/10/05 12:21

\section*{NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117}

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

\section*{CASE NARRATIVE}

SAMPLE RECEIPT: Samples were received intact, at \(4^{\circ} \mathrm{C}\), on ice and with chain of custody documentation.
HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the Del Mar Analytical Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.
QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.
COMMENTS: \(\quad\) Results that fall between the MDL and RL are 'J' flagged.
SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
IOA0580-01

CLIENT ID
Outfall 015-Comp Effluent

MATRIX
Water

Reviewed By:


\footnotetext{
Del Mar Analytical, Irvine Wendy Kirkeeng For Michele Harper Project Manager
}

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200 * Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: 10 A 0580

Sampled: 01/12/05
Received: 01/11/05

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{llllllllll} 
& & & MDL & Reporting & Sample & Dllution & Date & Date \\
Analyte & Method & Batch & Limit & Limit & Result & Factor & Extracted & Analyzed \\
Qualifiers
\end{tabular}
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: IOA0580

Sampled: 01/12/05
Received: 01/11/05

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dillation \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{Sample ID: IOA0580-01 (Outfall 015-Comp Effluent - Water) - cont.
Reporting Units: ugi}} \\
\hline & & & & & & & & & \\
\hline Fluerene & EPA 625 & 5A13037 & 3.9 & 10 & 6.9 & 1.05 & 01/13/05 & 01/18/05 & J \\
\hline Hexachlorobenzene & EPA 625 & 5A13037 & 4.8 & 10 & ND & 1.05 & 01/13/05 & 01/18/05 & \\
\hline Hexachlorobutadiene & EPA 625 & 5A13037 & 4.2 & 10 & ND & 1.05 & 01/13/05 & 01/18/05 & \\
\hline Hexachlorocyclopentadiene & EPA 625 & 5A13037 & 3.4 & 20 & ND & 1.05 & 01/13/05 & 01/18/05 & \\
\hline Hexachloroethane & EPA 625 & 5A13037 & 4.2 & 10 & ND & 1.05 & 01/13/05 & 01/18/05 & \\
\hline Indeno(1,2,3-cd)pyrene & EPA 625 & 5A13037 & 5.4 & 20 & ND & 1.05 & 01/13/05 & 01/18/05 & C \\
\hline Isophorone & EPA 625 & 5A13037 & 3.7 & 10 & ND & 1.05 & 01/13/05 & 01/18/05 & \\
\hline 2-Methylnaphthalene & EPA 625 & 5A13037 & 3.0 & 10 & 9.8 & 1.05 & 01/13/05 & 01/18/05 & J \\
\hline 2-Methylphenol & EPA 625 & 5A13037 & 3.7 & 10 & ND & 1.05 & 01/13/05 & 01/18/05 & \\
\hline 4-Methylphenol & EPA 625 & 5A13037 & 3.8 & 10 & ND & 1.05 & 01/13/05 & 01/18/05 & \\
\hline Naphthalene & EPA 625 & 5A13037 & 4.5 & 10 & 8.6 & 1.05 & 01/13/05 & 01/18/05 & J \\
\hline 2-Nitroaniline & EPA 625 & 5A13037 & 3.9 & 20 & ND & 1.05 & 01/13/05 & 01/18/05 & \\
\hline 3-Nitroaniline & EPA 625 & 5A13037 & 4.5 & 20 & ND & 1.05 & 01/13/05 & 01/18/05 & \\
\hline 4-Nitroaniline & EPA 625 & 5A13037 & 4.9 & 20 & ND & 1.05 & 01/13/05 & 01/18/05 & \\
\hline Nitrobenzene & EPA 625 & 5A13037 & 4.2 & 20 & ND & 1.05 & 01/13/05 & 01/18/05 & \\
\hline 2-Nitrophenol & EPA 625 & 5A13037 & 4.2 & 10 & ND & 1.05 & 01/13/05 & 01/18/05 & \\
\hline 4-Nitrophenol & EPA 625 & 5A13037 & 6.6 & 20 & ND & 1.05 & 01/13/05 & 01/18/05 & \\
\hline N -Nitrosodiphenylamine & EPA 625 & 5A13037 & 4.0 & 10 & ND & 1.05 & 01/13/05 & 01/18/05 & \\
\hline N-Nitroso-di-n-propylamine & EPA 625 & 5A13037 & 3.6 & 10 & ND & 1.05 & 01/13/05 & 01/18/05 & \\
\hline Pentachlorophenol & EPA 625 & 5A13037 & 4.0 & 20 & ND & 1.05 & 01/13/05 & 01/18/05 & \\
\hline Phenanthrene & EPA 625 & 5A13037 & 3.3 & 10 & ND & 1.05 & 01/13/05 & 01/18/05 & \\
\hline Phenol & EPA 625 & 5A13037 & 4.0 & 10 & ND & 1.05 & 01/13/05 & 01/18/05 & \\
\hline Pyrene & EPA 625 & 5 A13037 & 3.9 & 10 & ND & 1.05 & 01/13/05 & 01/18/05 & \\
\hline 1,2,4-Trichlorobenzene & EPA 625 & 5A13037 & 4.4 & 10 & ND & 1.05 & 01/13/05 & 01/18/05 & \\
\hline 2,4,5-Trichlorophenol & EPA 625 & 5A13037 & 3.6 & 20 & ND & 1.05 & 01/13/05 & 01/18/05 & \\
\hline 2,4,6-Trichlorophenol & EPA 625 & 5 A13037 & 4.1 & 20 & ND & 1.05 & 01/13/05 & 01/18/05 & \\
\hline 1,2-Diphenylhydrazine/Azobenzene & EPA 625 & 5A13037 & 5.0 & 20 & ND & 1.05 & 01/13/05 & 01/18/05 & \\
\hline N -Nitrosodimethylamine & EPA 625 & 5A13037 & 3.7 & 20 & ND & 1.05 & 01/13/05 & 01/18/05 & \\
\hline Surrogate: 2-Fluorophenol (35-120\%) & & & & & 55\% & & & & \\
\hline Surrogate: Phenol-d6 (45-120\%) & & & & & \(76 \%\) & & & & \\
\hline Surrogate: 2,4,6-Tribromophenol (50-125\%) & & & & & \(73 \%\) & & & & \\
\hline Surrogate: Nitrobenzene-d5 (45-120\%) & & & & & \(62 \%\) & & & & \\
\hline Surrogate: 2-Fluorobiphenyl (45-120\%) & & & & & \(69 \%\) & & & & \\
\hline Surrogate: Terphenyl-d14 (45-135\%) & & & & & \(89 \%\) & & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Sampled: 01/12/05
Report Number: IOA0580

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}
\begin{tabular}{lccccccccc} 
& & & MDL & Reporting & Sample & Dilution \begin{tabular}{c} 
Date
\end{tabular} & \begin{tabular}{c} 
Date
\end{tabular} & Data \\
Analyte & Method & Batch & Limit & Limit & Result & Factor Extracted & Analyzed & Qualifiers
\end{tabular}

Sample ID: 1OA0580-01 (Outfall 015-Comp Effluent - Water) - cont.

Reporting Units: ug/
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Aldrin & EPA 608 & 5A13049 & 0.029 & 0.10 & ND & 1.02 & 01/13/05 & 01/14/05 \\
\hline alpha-BHC & EPA 608 & 5A13049 & 0.010 & 0.10 & ND & 1.02 & 01/13/05 & 01/14/05 \\
\hline beta-BHC & EPA 608 & 5A13049 & 0.011 & 0.10 & ND & 1.02 & 01/13/05 & 01/14/05 \\
\hline delta-BHC & EPA 608 & 5A13049 & 0.010 & 0.20 & ND & 1.02 & 01/13/05 & 01/14/05 \\
\hline gamma-BHC (Lindane) & EPA 608 & 5A13049 & 0.0097 & 0.10 & ND & 1.02 & 01/13/05 & 01/14/05 \\
\hline Chlordane & EPA 608 & 5A13049 & 0.18 & 1.0 & ND & 1.02 & 01/13/05 & 01/14/05 \\
\hline 4,4'-DDD & EPA 608 & 5A13049 & 0.011 & 0.10 & ND & 1.02 & 01/13/05 & 01/14/05 \\
\hline 4,4-DDE & EPA 608 & 5A13049 & 0.017 & 0.10 & ND & 1.02 & 01/13/05 & 01/14/05 \\
\hline 4,4'-DDT & EPA 608 & 5A13049 & 0.015 & 0.10 & ND & 1.02 & 01/13/05 & 01/14/05 \\
\hline Dieldrin & EPA 608 & 5A13049 & 0.010 & 0.10 & ND & 1.02 & 01/13/05 & 01/14/05 \\
\hline Endosulfan I & EPA 608 & 5A13049 & 0.015 & 0.10 & ND & 1.02 & 01/13/05 & 01/14/05 \\
\hline Endosulfan II & EPA 608 & 5A13049 & 0.037 & 0.10 & ND & 1.02 & 01/13/05 & 01/14/05 \\
\hline Endosulfan sulfate & EPA 608 & 5A13049 & 0.013 & 0.20 & ND & 1.02 & 01/13/05 & 01/14/05 \\
\hline Endrin & EPA 608 & 5A13049 & 0.0082 & 0.10 & ND & 1.02 & 01/13/05 & 01/14/05 \\
\hline Endrin aldehyde & EPA 608 & 5A13049 & 0.045 & 0.10 & ND & 1.02 & 01/13/05 & 01/14/05 \\
\hline Endrin ketone & EPA 608 & 5A13049 & 0.020 & 0.10 & ND & 1.02 & 01/13/05 & 01/14/05 \\
\hline Heptachlor & EPA 608 & 5A13049 & 0.030 & 0.10 & ND & 1.02 & 01/13/05 & 01/14/05 \\
\hline Heptachlor epoxide & EPA 608 & 5A13049 & 0.012 & 0.10 & ND & 1.02 & 01/13/05 & 01/14/05 \\
\hline Methoxychlor & EPA 608 & 5A13049 & 0.034 & 0.10 & ND & 1.02 & 01/13/05 & 01/14/05 \\
\hline Toxaphene & EPA 608 & 5A13049 & 0.77 & 5.0 & ND & 1.02 & 01/13/05 & 01/14/05 \\
\hline Surrogate: Tetrachloro-m-xylene (35-120\%) & & & & & \(101 \%\) & & & \\
\hline Surrogate: Decachlorobiphenyl (45-120\%) & & & & & 67\% & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
```

Project ID: Outfall 015
Report Number: 10 A 0580
Sampled: 01/12/05
Received: 01/11/05

```

TOTAL PCBS (EPA 608)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & Dilution Factor & Date & Date & Data \\
\hline
\end{tabular}

\section*{Sample ID: 1OA0580-01 (Outfall 015-Comp Effluent - Water) - cont.}

Reporting Units: ugh
\begin{tabular}{lcccccccc} 
Aroclor 1016 & EPA 608 & 5 A 13049 & 0.067 & 1.0 & ND & 1.02 & \(01 / 13 / 05\) & \(01 / 14 / 05\) \\
Aroclor 1221 & EPA 608 & 5 A 13049 & 0.057 & 1.0 & ND & 1.02 & \(01 / 13 / 05\) & \(01 / 14 / 05\) \\
Aroclor 1232 & EPA 608 & 5 A 13049 & 0.13 & 1.0 & ND & 1.02 & \(01 / 13 / 05\) & \(01 / 14 / 05\) \\
Aroclor 1242 & EPA 608 & 5 A 13049 & 0.12 & 1.0 & ND & 1.02 & \(01 / 13 / 05\) & \(01 / 14 / 05\) \\
Aroclor 1248 & EPA 608 & 5 A 13049 & 0.21 & 1.0 & ND & 1.02 & \(01 / 13 / 05\) & \(01 / 14 / 05\) \\
Aroclor 1254 & EPA 608 & 5 A 13049 & 0.16 & 1.0 & ND & 1.02 & \(01 / 13 / 05\) & \(01 / 14 / 05\) \\
Aroclor 1260 & EPA 608 & \(5 A 13049\) & 0.17 & 1.0 & ND & 1.02 & \(01 / 13 / 05\) & \(01 / 14 / 05\) \\
Surrogate: Decachlorobiphenyl (45-120\%) & & & & & \(76 \%\) & & &
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
```

Project ID: Outfall 015
Report Number: IOA0580

```

Sampled: 01/12/05
Received: 01/11/05
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{METALS} \\
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{Sample ID: 1OA0580-01 (Outfall 015-Comp Effluent - Water) - cont. Reporting Units: mg/} \\
\hline Antimony & EPA 200.7 & 5A14046 & 0.0042 & 0.010 & ND & 1 & 01/14/05 & 01/14/05 & \\
\hline Arsenic & EPA 200.7 & 5A14046 & 0.0038 & 0.0050 & 0.0048 & 1 & 01/14/05 & 01/14/05 & J \\
\hline Barium & EPA 200.7 & 5A14046 & 0.0028 & 0.010 & 0.023 & 1 & 01/14/05 & 01/14/05 & \\
\hline Beryllium & EPA 200.7 & 5A14046 & 0.00062 & 0.0020 & ND & 1 & 01/14/05 & 01/14/05 & \\
\hline Boron & EPA 200.7 & 5A14046 & 0.0074 & 0.050 & 0.10 & 1 & 01/14/05 & 01/14/05 & \\
\hline Cadmium & EPA 200.7 & 5A14046 & 0.00034 & 0.0050 & 0.00090 & 1 & 01/14/05 & 01/14/05 & J \\
\hline Chromium & EPA 200.7 & 5A14046 & 0.00068 & 0.0050 & 0.65 & 1 & 01/14/05 & 01/14/05 & \\
\hline Copper & EPA 200.7 & 5A14046 & 0.0017 & 0.010 & 0.032 & 1 & 01/14/05 & 01/14/05 & \\
\hline Lead & EPA 200.7 & 5A14046 & 0.0021 & 0.0050 & ND & 1 & 01/14/05 & 01/14/05 & \\
\hline Mercury & EPA 245.1 & 5A14053 & 0.000063 & 0.00020 & 0.00029 & 1 & 01/14/05 & 01/14/05 & \\
\hline Nickel & EPA 200.7 & 5A14046 & 0.0020 & 0.010 & 0.83 & 1 & 01/14/05 & 01/14/05 & \\
\hline Selenium & EPA 200.7 & 5A14046 & 0.0046 & 0.0050 & ND & 1 & 01/14/05 & 01/14/05 & \\
\hline Silver & EPA 200.7 & 5A14046 & 0.0013 & 0.010 & ND & 1 & 01/14/05 & 01/14/05 & \\
\hline Thallium & EPA 200.7 & 5A14046 & 0.0031 & 0.0050 & ND & 1 & 01/14/05 & 01/16/05 & \\
\hline Zinc & EPA 200.7 & 5A14046 & 0.0037 & 0.020 & 0.16 & 1 & 01/14/05 & 01/14/05 & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: IOA0580

Sampled: 01/12/05
Received: 01/11/05

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{Sample ID: IOA0580-01 (Outfall 015-Comp Effluent - Water)-cont.
Reporting Units: mg/}} \\
\hline & & & & & & & & & \\
\hline Ammonia-N (Distilled) & EPA 350.2 & 5A13063 & 0.30 & 0.50 & 0.56 & 1 & 01/13/05 & 01/13/05 & \\
\hline Biochemical Oxygen Demand & EPA 405.1 & 5A13052 & 0.59 & 2.0 & 17 & 1 & 01/13/05 & 01/18/05 & \\
\hline Chloride & EPA 300.0 & 5A12036 & 2.6 & 5.0 & 140 & 10 & 01/12/05 & 01/12/05 & \\
\hline Total Cyanide & EPA 335.2 & 5A13092 & 0.017 & 0.025 & ND & 1 & 01/13/05 & 01/13/05 & \\
\hline Fluoride & EPA 300.0 & 5A12036 & 0.074 & 0.50 & 0.36 & 1 & 01/12/05 & 01/12/05 & J \\
\hline Nitrate-N & EPA 300.0 & 5A12036 & 0.072 & 0.11 & 2.2 & 1 & 01/12/05 & 01/12/05 & \\
\hline Nitrite-N & EPA 300.0 & 5A12036 & 0.058 & 0.15 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline Nitrate/Nitrite-N & EPA 300.0 & 5A12036 & 0.072 & 0.26 & 2.2 & 1 & 01/12/05 & 01/12/05 & \\
\hline Sulfate & EPA 300.0 & 5A12036 & 0.18 & 0.50 & 16 & 1 & 01/12/05 & 01/12/05 & \\
\hline Total Dissolved Solids & SM2540C & 5A13089 & 10 & 10 & 400 & 1 & 01/13/05 & 01/13/05 & \\
\hline Total Suspended Solids & EPA 160.2 & 5A17060 & 10 & 10 & 22 & 1 & 01/17/05 & 01/17/05 & \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
MWH-Pasadena/Boeing \\
300 North Lake Avenue, Suite 1200 \\
Pasadena, CA 91101 \\
Attention: Bronwyn Kelly
\end{tabular}} & \multicolumn{3}{|c|}{Project ID: Outfall 015} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Sampled: 01/12/05}} \\
\hline & \multicolumn{3}{|c|}{\multirow[b]{2}{*}{Report Number: 1040580}} & & \\
\hline & & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Received: 01/11/05}} \\
\hline & & & & & \\
\hline \multicolumn{6}{|c|}{SHORT HOLD TIME DETAIL REPORT} \\
\hline & Hold Time & Date/Time & Date/Time & Date/Time & Date/Time \\
\hline & (in days) & Sampled & Received & Extracted & Analyzed \\
\hline \multicolumn{6}{|l|}{Sample ID: Outfall 015-Comp Effuent (IOA0580-01) - Water} \\
\hline EPA 300.0 & 2 & 01/12/2005 13:30 & 01/11/2005 18:50 & 01/12/2005 16:30 & 01/12/2005 16:54 \\
\hline EPA 405.1 & 2 & 01/12/2005 13:30 & 01/11/2005 18:50 & 01/13/2005 09:36 & 01/18/2005 11:30 \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: IOA0580
Sampled: 01/12/05
Received: 01/11/05

\section*{METHOD BLANKIQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & RPD & Data \\
\hline Anaiyte & Resuit & & MDL & Units & & & \%REC & & RPD & & \\
\hline
\end{tabular}

Batch: 5A13037 Extracted: 01/13/05
Blank Analyzed: 01/17/2005 (5A13037-BLK1)
\begin{tabular}{|c|c|c|c|c|}
\hline Acenaphthene & ND & 10 & 4.3 & ug/l \\
\hline Acenaphthylene & ND & 10 & 3.2 & ug/l \\
\hline Aniline & ND & 10 & 2.9 & ug/l \\
\hline Anthracene & ND & 10 & 3.2 & ug/l \\
\hline Benzidine & ND & 20 & 5.2 & ug/l \\
\hline Benzoic acid & ND & 20 & 2.6 & ug/l \\
\hline Benzo(a)anthracene & ND & 10 & 3.7 & ug/l \\
\hline Benzo(b)fluoranthene & ND & 10 & 2.7 & ug/ \\
\hline Benzo(k)fluoranthene & ND & 10 & 3.4 & ug/ \\
\hline Benzo(g,h,i)perylene & ND & 10 & 5.3 & ug/l \\
\hline Benzo(a)pyrene & ND & 10 & 3.5 & ug/l \\
\hline Benzyl alcohol & ND & 20 & 2.5 & ug/ \\
\hline Bis(2-chloroethoxy)methane & ND & 10 & 3.9 & ug/ \\
\hline Bis(2-chloroethyl)ether & ND & 10 & 4.4 & ug/l \\
\hline Bis(2-chloroisopropyl)ether & ND & 10 & 4.6 & ug/l \\
\hline Bis(2-ethylhexyl)phthalate & ND & 50 & 5.2 & ug/ \\
\hline 4-Bromophenyl phenyl ether & ND & 10 & 4.6 & ug/ \\
\hline Butyl benzyl phthalate & ND & 20 & 3.5 & ug/l \\
\hline 4-Chloroaniline & ND & 10 & 6.0 & ug/l \\
\hline 2-Chloronaphthalene & ND & 10 & 4.0 & ug/l \\
\hline 4-Chloro-3-methylphenol & ND & 20 & 3.5 & ug/l \\
\hline 2-Chlorophenol & ND & 10 & 4.2 & ug/ \\
\hline 4-Chlorophenyl phenyl ether & ND & 10 & 3.0 & ugl \\
\hline Chrysene & ND & 10 & 2.8 & ug/l \\
\hline Dibenz(a,h)anthracene & ND & 20 & 4.7 & ug/ \\
\hline Dibenzofuran & ND & 10 & 2.6 & ug/l \\
\hline Di-n-butyl phthalate & ND & 20 & 2.8 & ug/ \\
\hline 1,3-Dichlorobenzene & ND & 10 & 4.1 & ugh \\
\hline 1,4-Dichlorobenzene & ND & 10 & 3.9 & ug/ \\
\hline 1,2-Dichlorobenzene & ND & 10 & 4.5 & ug/l \\
\hline 3,3-Dichlorobenzidine & ND & 20 & 11 & ug/l \\
\hline 2,4-Dichlorophenol & ND & 10 & 4.1 & ug/l \\
\hline Diethyl phthalate & ND & 10 & 3.1 & \(u \mathrm{~g} /\) \\
\hline 2,4-Dimethylphenol & ND & 20 & 4.4 & ug/l \\
\hline Dimethyl phthalate & ND & 10 & 3.6 & ug/l \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\section*{Project ID: Outfall 015}

Report Number: IOA0580
Sampled: 01/12/05
Received: 01/11/05

\section*{METHOD BLANKIOC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & Reporting & & & Spike & Source & & \%REC & & RPD & Data \\
\hline Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers \\
\hline
\end{tabular}

Batch: 5A13037 Extracted: 01/13/05
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Blank Analyzed: 01/17/2005 (5A13037-BLK1)} \\
\hline 4,6-Dinitro-2-methylphenol & ND & 20 & 5.1 & ugd \\
\hline 2,4-Dinitrophenol & ND & 20 & 5.3 & ug/ \\
\hline 2,4-Dinitrotoluene & ND & 10 & 4.2 & ug/ \\
\hline 2,6-Dinitrotoluene & ND & 10 & 3.2 & ug/ \\
\hline Di-n-octyl phthalate & ND & 20 & 4.7 & ugh \\
\hline Fluoranthene & ND & 10 & 4.2 & ugh \\
\hline Fluorene & ND & 10 & 3.9 & ugh \\
\hline Hexachlorobenzene & ND & 10 & 4.8 & ugl \\
\hline Hexachlorobutadiene & ND & 10 & 4.2 & ug/ \\
\hline Hexachlorocyclopentadiene & ND & 20 & 3.4 & ug/ \\
\hline Hexachloroethane & ND & 10 & 4.2 & ugl \\
\hline Indeno(1,2,3-cd)pyrene & ND & 20 & 5.4 & ug/ \\
\hline Isophorone & ND & 10 & 3.7 & ug/ \\
\hline 2-Methylnaphthalene & ND & 10 & 3.0 & ug/l \\
\hline 2-Methylphenol & ND & 10 & 3.7 & ug/ \\
\hline 4-Methylphenol & ND & 10 & 3.8 & ug/ \\
\hline Naphthalene & ND & 10 & 4.5 & ugh \\
\hline 2-Nitroaniline & ND & 20 & 3.9 & ug/ \\
\hline \({ }^{3}\)-Nitroaniline & ND & 20 & 4.5 & ug/ \\
\hline 4-Nitroaniline & ND & 20 & 4.9 & ugh \\
\hline Nitrobenzene & ND & 20 & 4.2 & ugh \\
\hline 2-Nitrophenol & ND & 10 & 4.2 & ug/ \\
\hline 4-Nitrophenol & ND & 20 & 6.6 & ugh \\
\hline N -Nitrosodiphenylamine & ND & 10 & 4.0 & ugh \\
\hline N -Nitroso-di-n-propylamine & ND & 10 & 3.6 & ug/ \\
\hline Pentachlorophenol & ND & 20 & 4.0 & ug/ \\
\hline Phenanthrene & ND & 10 & 3.3 & ugh \\
\hline Phenol & ND & 10 & 4.0 & ug/ \\
\hline Pyrene & ND & 10 & 3.9 & ug/ \\
\hline 1,2,4-Trichlorobenzene & ND & 10 & 4.4 & ug/ \\
\hline 2,4,5-Trichlorophenol & ND & 20 & 3.6 & ug/ \\
\hline 2,4,6-Trichlorophenol & ND & 20 & 4.1 & ug/ \\
\hline 1,2-Diphenylhydrazine/Azobenzene & ND & 20 & 5.0 & ug/ \\
\hline N -Nitrosodimethylamine & ND & 20 & 3.7 & ug/ \\
\hline Surrogate: 2-Fluorophenol & 120 & & & \(u g /\) \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: IOA0580

Sampled: 01/12/05
Received: 01/11/05

\section*{METHOD BLANKIQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}


MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: 1040580

Sampled: 01/12/05
Received: 01/11/05

\section*{METHOD BLANKKOC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{llllllllllll} 
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

LCS Analyzed: 01/17/2005 (5A13037-BS1)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1,2-Dichlorobenzene & 63.6 & 10 & 4.5 & ug/ & 100 & 64 & 40-120 \\
\hline 3,3-Dichlorobenzidine & 90.6 & 20 & 11 & ug/ & 100 & 91 & 50-170 \\
\hline 2,4-Dichlorophenol & 70.8 & 10 & 4.1 & ug/ & 100 & 71 & 55-120 \\
\hline Diethyl phthalate & 71.0 & 10 & 3.1 & ug/l & 100 & 71 & 60-120 \\
\hline 2,4-Dimethylphenol & 59.6 & 20 & 4.4 & ug/ & 100 & 60 & 35-120 \\
\hline Dimethyl phthalate & 69.3 & 10 & 3.6 & ug/ & 100 & 69 & 60-120 \\
\hline 4,6-Dinitro-2-methylphenol & 78.6 & 20 & 5.1 & ug/ & 100 & 79 & 55-120 \\
\hline 2,4-Dinitrophenol & 86.2 & 20 & 5.3 & ug/l & 100 & 86 & 40-140 \\
\hline 2,4-Dinitrotoluene & 81.5 & 10 & 4.2 & ug/ & 100 & 82 & 60-140 \\
\hline 2,6-Dinitrotoluene & 74.3 & 10 & 3.2 & ug/ & 100 & 74 & 65-125 \\
\hline Di-n-octyl phthalate & 81.2 & 20 & 4.7 & ug/ & 100 & 81 & 60-130 \\
\hline Fluoranthene & 81.4 & 10 & 4.2 & ug/ & 100 & 81 & 55-125 \\
\hline Fluorene & 80.2 & 10 & 3.9 & ught & 100 & 80 & 60-120 \\
\hline Hexachlorobenzene & 73.6 & 10 & 4.8 & ug/I & 100 & 74 & 50-120 \\
\hline Hexachlorobutadiene & 61.7 & 10 & 4.2 & ug/ & 100 & 62 & 45-120 \\
\hline Hexachlorocyclopentadiene & 54.7 & 20 & 3.4 & ug/ & 100 & 55 & 10-130 \\
\hline Hexachloroethane & 60.9 & 10 & 4.2 & ug/ & 100 & 61 & 40-120 \\
\hline Indeno(1,2,3-cd)pyrene & 81.9 & 20 & 5.4 & ug/ & 100 & 82 & 35-150 \\
\hline Isophorone & 65.8 & 10 & 3.7 & ugh & 100 & 66 & 55-120 \\
\hline 2-Methylnaphthalene & 84.8 & 10 & 3.0 & ug/ & 100 & 85 & 50-120 \\
\hline 2-Methylphenol & 70.0 & 10 & 3.7 & ugh & 100 & 70 & 45-120 \\
\hline 4-Methyiphenol & 70.1 & 10 & 3.8 & ug/ & 100 & 70 & 45-120 \\
\hline Naphthalene & 76.9 & 10 & 4.5 & ug/ & 100 & 77 & 50-120 \\
\hline 2-Nitroaniline & 78.9 & 20 & 3.9 & ugl & 100 & 79 & 60-130 \\
\hline 3-Nitroaniline & 91.3 & 20 & 4.5 & ug/ & 100 & 91 & 50-140 \\
\hline 4-Nitroaniline & 96.0 & 20 & 4.9 & ug/l & 100 & 96 & 45-160 \\
\hline Nitrobenzene & 65.6 & 20 & 4.2 & ug/l & 100 & 66 & 50-120 \\
\hline 2-Nitrophenol & 80.9 & 10 & 4.2 & ugh & 100 & 81 & 55-120 \\
\hline 4-Nitrophenol & 67.9 & 20 & 6.6 & ugh & 100 & 68 & 50-135 \\
\hline N-Nitrosodiphenylamine & 71.9 & 10 & 4.0 & ugh & 100 & 72 & 60-120 \\
\hline N -Nitroso-di-n-propylamine & 65.9 & 10 & 3.6 & ugh & 100 & 66 & 50-120 \\
\hline Pentachlorophenol & 80.8 & 20 & 4.0 & ugh & 100 & 81 & 50-125 \\
\hline Phenanthrene & 81.8 & 10 & 3.3 & ug/ & 100 & 82 & 55-120 \\
\hline Phenol & 66.0 & 10 & 4.0 & ug/ & 100 & 66 & 45-120 \\
\hline Pyrene & 80.9 & 10 & 3.9 & ug/ & 100 & 81 & 50-120 \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\section*{Project ID: Outfall 015}

Report Number: \(10 A 0580\)

Sampled: 01/12/05
Received: 01/11/05

\section*{METHOD BLANKIOC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}


LCS Analyzed: 01/17/2005 (5A13037-BS1)
\begin{tabular}{ll} 
1,2,4-Trichlorobenzene & 65.3 \\
2,4,5-Trichlorophenol & 78.9 \\
2,4,6-Trichlorophenol & 77.9 \\
1,2-Diphenylhydrazine/Azobenzene & 79.5 \\
N-Nitrosodimethylamine & 66.8 \\
Surrogate: 2 -Fluorophenol & 125 \\
Surrogate: Phenol-d6 & 129 \\
Surrogate: \(2,4,6-\) Tribromophenol & 160 \\
Surrogate: Nitrobenzene-d5 & 66.3 \\
Surrogate: 2-Fluorobiphenyl & 73.6 \\
Surrogate: Terphenyl-d14 & 73.4
\end{tabular}

LCS Dup Analyzed: 01/17/2005 (5A13037-BSD1)
\begin{tabular}{lr} 
Acenaphthene & 73.9 \\
Acenaphthylene & 74.7 \\
Aniline & 68.6 \\
Anthracene & 77.5 \\
Benzidine & 143 \\
Benzoic acid & 78.1 \\
Benzo(a)anthracene & 80.6 \\
Benzo(b)fluoranthene & 77.5 \\
Benzo(k)fluoranthene & 77.5 \\
Benzo(g,h,i)perylene & 81.4 \\
Benzo(a)pyrene & 80.7 \\
Benzyl alcohol & 72.7 \\
Bis(2-chloroethoxy)methane & 71.8 \\
Bis(2-chloroethyl)ether & 61.1 \\
Bis(2-chloroisopropyl)ether & 68.9 \\
Bis(2-ethylhexyl)phthalate & 78.8 \\
4-Bromophenyl phenyl ether & 70.6 \\
Butyl benzyl phthalate & 75.3 \\
4-Chloroaniline & 77.6 \\
2-Chloronaphthalene & 74.3 \\
4-Chloro-3-methylphenol & 71.1 \\
2-Chlorophenol & 68.2 \\
4-Chlorophenyl phenyl ether & 73.3
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
MWH-Pasadena/Boeing
300 North Lake Avenue, S

300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: IOA0580

\section*{METHOD BLANKIOC DATA}

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)
\begin{tabular}{lllllllllll} 
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit \\
Batch: \(5 A 13037 ~ E x t r a c t e d: ~ 01 / 13 / 05 ~\) & & & & & & & & & & \\
Qualifiers
\end{tabular}

LCS Dup Analyzed: 01/17/2005 (5A13037-BSD1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Chrysene & 80.8 & 10 & 2.8 & \(\mathrm{ug} / \mathrm{l}\) & 100 & 81 & 65-120 & 1 & 20 \\
\hline Dibenz( \(\mathrm{a}, \mathrm{h}\) )anthracene & 82.0 & 20 & 4.7 & ug/ & 100 & 82 & 40-160 & 4 & 25 \\
\hline Dibenzofuran & 74.7 & 10 & 2.6 & ug/ & 100 & 75 & 60-120 & 4 & 20 \\
\hline Di-n-butyl phthalate & 70.9 & 20 & 2.8 & ug/ & 100 & 71 & 65-125 & 1 & 20 \\
\hline 1,3-Dichlorobenzene & 59.6 & 10 & 4.1 & ug/ & 100 & 60 & 40-120 & 11 & 25 \\
\hline 1,4-Dichlorobenzene & 63.5 & 10 & 3.9 & ug/ & 100 & 64 & 40-120 & 1 & 25 \\
\hline 1,2-Dichlorobenzene & 61.5 & 10 & 4.5 & ugl & 100 & 62 & 40-120 & 3 & 25 \\
\hline 3,3-Dichlorobenzidine & 87.9 & 20 & 11 & ugl & 100 & 88 & 50-170 & 3 & 25 \\
\hline 2,4-Dichlorophenol & 70.2 & 10 & 4.1 & ug/1 & 100 & 70 & 55-120 & 1 & 20 \\
\hline Diethyl phthalate & 67.9 & 10 & 3.1 & ugh & 100 & 68 & 60-120 & 4 & 20 \\
\hline 2,4-Dimethylphenol & 62.1 & 20 & 4.4 & ug/ & 100 & 62 & 35-120 & 4 & 25 \\
\hline Dimethyl phthalate & 69.0 & 10 & 3.6 & ug/1 & 100 & 69 & 60-120 & 0 & 20 \\
\hline 4,6-Dinitro-2-methylphenol & 73.8 & 20 & 5.1 & ug/ & 100 & 74 & 55-120 & 6 & 25 \\
\hline 2,4-Dinitrophenol & 77.6 & 20 & 5.3 & ug/ & 100 & 78 & 40-140 & 11 & 25 \\
\hline 2,4-Dinitrotoluene & 77.6 & 10 & 4.2 & ug/ & 100 & 78 & 60-140 & 5 & 20 \\
\hline 2,6-Dinitrotoluene & 72.9 & 10 & 3.2 & ug/ & 100 & 73 & 65-125 & 2 & 20 \\
\hline Di-n-octyl phthalate & 81.0 & 20 & 4.7 & ug/ & 100 & 81 & 60-130 & 0 & 20 \\
\hline Fluoranthene & 77.9 & 10 & 4.2 & ug/ & 100 & 78 & 55-125 & 4 & 20 \\
\hline Fluorene & 77.6 & 10 & 3.9 & ug/ & 100 & 78 & 60-120 & 3 & 20 \\
\hline Hexachlorobenzene & 71.6 & 10 & 4.8 & ug/1 & 100 & 72 & 50-120 & 3 & 20 \\
\hline Hexachlorobutadiene & 60.3 & 10 & 4.2 & ug/ & 100 & 60 & 45-120 & 2 & 25 \\
\hline Hexachlorocyclopentadiene & 50.9 & 20 & 3.4 & ug/ & 100 & 51 & 10-130 & 7 & 30 \\
\hline Hexachloroethane & 56.9 & 10 & 4.2 & ug/ & 100 & 57 & 40-120 & 7 & 25 \\
\hline Indeno( \(1,2,3\)-cd)pyrene & 79.2 & 20 & 5.4 & ug/ & 100 & 79 & 35-150 & 3 & 25 \\
\hline Isophorone & 65.6 & 10 & 3.7 & ug/ & 100 & 66 & 55-120 & 0 & 20 \\
\hline 2-Methylnaphthalene & 72.7 & 10 & 3.0 & ug/ & 100 & 73 & 50-120 & 15 & 20 \\
\hline 2-Methylphenol & 67.3 & 10 & 3.7 & ug/ & 100 & 67 & 45-120 & 4 & 20 \\
\hline 4-Methylphenol & 70.2 & 10 & 3.8 & ug/ & 100 & 70 & 45-120 & 0 & 20 \\
\hline Naphthalene & 73.6 & 10 & 4.5 & ug/ & 100 & 74 & 50-120 & 4 & 20 \\
\hline 2-Nitroaniline & 76.6 & 20 & 3.9 & ug/ & 100 & 77 & 60-130 & 3 & 20 \\
\hline 3-Nitroaniline & 85.4 & 20 & 4.5 & ug/ & 100 & 85 & 50-140 & 7 & 25 \\
\hline 4-Nitroaniline & 88.5 & 20 & 4.9 & ug/ & 100 & 88 & 45-160 & 8 & 20 \\
\hline Nitrobenzene & 63.6 & 20 & 4.2 & ug/ & 100 & 64 & 50-120 & 3 & 25 \\
\hline 2-Nitrophenol & 79.0 & 10 & 4.2 & ug/ & 100 & 79 & 55-120 & 2 & 25 \\
\hline 4-Nitrophenol & 63.6 & 20 & 6.6 & ug/ & 100 & 64 & 50-135 & 7 & 25 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine \\ Wendy Kirkeeng For Michele Harper \\ Project Manager}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: 10A0580
Sampled: 01/12/05
Received: 01/11/05

\section*{METHOD BLANKIQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{llllllllllll} 
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

Batch: 5A13037 Extracted: 01/13/05
LCS Dup Analyzed: 01/17/2005 (5A13037-BSD1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline N -Nitrosodiphenylamine & 69.9 & 10 & 4.0 & ug/ & 100 & 70 & 60-120 & 3 & 20 \\
\hline N -Nitroso-di-n-propylamine & 63.2 & 10 & 3.6 & ug/ & 100 & 63 & 50-120 & 4 & 20 \\
\hline Pentachlorophenol & 75.5 & 20 & 4.0 & ugh & 100 & 76 & 50-125 & 7 & 25 \\
\hline Phenanthrene & 79.5 & 10 & 3.3 & ug/ & 100 & 80 & 55-120 & 3 & 20 \\
\hline Phenol & 65.0 & 10 & 4.0 & ug/ & 100 & 65 & 45-120 & 2 & 25 \\
\hline Pyrene & 81.3 & 10 & 3.9 & ug/ & 100 & 81 & 50-120 & 1 & 25 \\
\hline 1,2,4-Trichlorobenzene & 63.8 & 10 & 4.4 & ug/l & 100 & 64 & 50-120 & 2 & 20 \\
\hline 2,4,5-Trichlorophenol & 76.4 & 20 & 3.6 & ug/ & 100 & 76 & 60-120 & 3 & 20 \\
\hline 2,4,6-Trichlorophenol & 76.4 & 20 & 4.1 & ug/ & 100 & 76 & 60-120 & 2 & 20 \\
\hline 1,2-Diphenylhydrazine/Azobenzene & 75.1 & 20 & 5.0 & ug/ & 100 & 75 & 60-120 & 6 & 25 \\
\hline N -Nitrosodimethylamine & 63.2 & 20 & 3.7 & ug/ & 100 & 63 & 40-120 & 6 & 20 \\
\hline Surrogate: 2-Fluorophenol & 122 & & & ug \(/\) & 200 & 61 & 35-120 & & \\
\hline Surrogate: Phenol-d6 & 126 & & & ugh & 200 & 63 & 45-120. & & \\
\hline Surrogate: 2,4,6-Tribromophenol & 154 & & & ug h & 200 & 77 & 50-125 & & \\
\hline Surrogate: Nitrobenzene-d5 & 64.7 & & & ug/l & 100 & 65 & 45-120 & & \\
\hline Surrogate: 2-Fluorohiphenyl & 70.9 & & & \(u g /\) & 100 & 71 & 45-120 & & \\
\hline Surrogate: Terphenyl-d14 & 73.4 & & & \(u g /\) & 100 & 73 & 45-135 & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: 1OA0580

Sampled: 01/12/05
Received: 01/11/05

\section*{METHOD BLANKIQC DATA}

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A13049 Extracted: 01/13/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/13/2005 (5A13049-BLK1)} \\
\hline Aldrin & ND & 0.10 & 0.029 & ug/ & & & & & & & \\
\hline alpha-BHC & ND & 0.10 & 0.010 & ugh & & & & & & & \\
\hline beta-BHC & ND & 0.10 & 0.011 & ug 1 & & & & & & & \\
\hline delta-BHC & ND & 0.20 & 0.010 & ug/ & & & & & & & \\
\hline gamma-BHC (Lindane) & ND & 0.10 & 0.0097 & ug/ & & & & & & & \\
\hline Chlordane & ND & 1.0 & 0.18 & ug/ & & & & & & & \\
\hline 4,4-DDD & ND & 0.10 & 0.011 & ug/ & & & & & & & \\
\hline 4,4-DDE & ND & 0.10 & 0.017 & ug/ & & & & & & & \\
\hline 4,4'-DDT & ND & 0.10 & 0.015 & ug/ & & & & & & & \\
\hline Dieldrin & ND & 0.10 & 0.010 & ug/ & & & & & & & \\
\hline Endosulfan I & ND & 0.10 & 0.015 & ug/ & & & & & & & \\
\hline Endosulfan II & ND & 0.10 & 0.037 & ug/ & & & & & & & \\
\hline Erdosulfan sulfate & ND & 0.20 & 0.013 & ugh & & & & & & & \\
\hline Endrin . & ND & 0.10 & 0.0082 & ugh & & & & & & & \\
\hline Endrin aldehyde & ND & 0.10 & 0.045 & ug/ & & & & & & & \\
\hline Endrin ketone & ND & 0.10 & 0.020 & ug/ & & & & & & & \\
\hline Heptachlor & ND & 0.10 & 0.030 & ug/ & & & & & & & \\
\hline Heptachlor epoxide & ND & 0.10 & 0.012 & ug/ & & & & & & & \\
\hline Methoxychlor & ND & 0.10 & 0.034 & ug/ & & & & & & & \\
\hline Toxaphene & ND & 5.0 & 0.77 & ug/ & & & & & & & \\
\hline Surrogate: Tetrachloro-m-xylene & 0.348 & & & ug/ & 0.500 & & 70 & 35-120 & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.424 & & & \(u g h\) & 0.500 & & 85 & 45-120 & & & \\
\hline \multicolumn{2}{|l|}{LCS Analyzed: 01/13/2005 (5A13049-BS1)} & & & & & & & & & & M-NR1 \\
\hline Aldrin & 0.517 & 0.10 & 0.029 & ug/ & 0.500 & & 103 & 45-115 & & & \\
\hline alpha-BHC & 0.527 & 0.10 & 0.010 & ug/l & 0.500 & & 105 & 45-115 & & & \\
\hline beta-BHC & 0.496 & 0.10 & 0.011 & ugh & 0.500 & & 99 & 50-115 & & & \\
\hline delta-BHC & 0.564 & 0.20 & 0.010 & ugh & 0.500 & & 113 & 55-120 & & & \\
\hline gamma-BHC (Lindane) & 0.525 & 0.10 & 0.0097 & ug/ & 0.500 & & 105 & 45-115 & & & \\
\hline 4,4-DDD & 0.537 & 0.10 & 0.011 & ugl & 0.500 & & 107 & 60-120 & & & \\
\hline 4,4-DDE & 0.534 & 0.10 & 0.017 & ug/l & 0.500 & & 107 & 55-120 & & & \\
\hline 4,4'-DDT & 0.557 & 0.10 & 0.015 & ugl & 0.500 & & 111 & 60-130 & & & \\
\hline Dieldrin & 0.540 & 0.10 & 0.010 & ugh & 0.500 & & 108 & 55-120 & & & \\
\hline Endosulfan I & 0.512 & 0.10 & 0.015 & ugh & 0.500 & & 102 & 50-115 & & & \\
\hline Endosulfan II & 0.525 & 0.10 & 0.037 & ugh & 0.500 & & 105 & 60-125 & & & \\
\hline Endosulfan sulfate & 0.528 & 0.20 & 0.013 & ug/ & 0.500 & & 106 & 60-120 & & & \\
\hline Del Mar Analytical, Irvine Wendy Kirkeeng For Miche Project Manager & & & & & & & & & & & \\
\hline
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: IOA0580

Sampled: 01/12/05
Received: 01/11/05

\section*{METHOD BLANKIQC DATA}

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A13049 Extracted: 01/13/05} \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 01/13/2005 (5A13049-BS1)} & M-NR1 \\
\hline Endrin & 0.578 & 0.10 & 0.0082 & ug/ & 0.500 & & 116 & 55-125 & & & \\
\hline Endrin aldehyde & 0.553 & 0.10 & 0.045 & ug/ & 0.500 & & 111 & 55-115 & & & \\
\hline Endrin ketone & 0.513 & 0.10 & 0.020 & ug/ & 0.500 & & 103 & 60-120 & & & \\
\hline Heptachlor & 0.513 & 0.10 & 0.030 & ug/ & 0.500 & & 103 & 45-115 & & & \\
\hline Heptachlor epoxide & 0.527 & 0.10 & 0.012 & ugh & 0.500 & & 105 & 50-120 & & & \\
\hline Methoxychlor & 0.535 & 0.10 & 0.034 & ug/ & 0.500 & & 107 & 60-135 & & & \\
\hline Surrogate: Tetrachloro-m-xylene & 0.435 & & & ug/l & 0.500 & & 87 & 35-120 & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.527 & & & ug/l & 0.500 & & 105 & 45-120 & & & \\
\hline
\end{tabular}

LCS Dup Analyzed: 01/13/2005 (5A13049-BSD1)
\begin{tabular}{ll} 
Aldrin & 0.512 \\
alpha-BHC & 0.534 \\
beta-BHC & 0.487 \\
delta-BHC & 0.547 \\
gamma-BHC (Lindane) & 0.525 \\
4,4'-DDD & 0.505 \\
4,4'-DDE & 0.510 \\
4,4'-DDT & 0.520 \\
Dieldrin & 0.515 \\
Endosulfan I & 0.493 \\
Endosulfan II & 0.495 \\
Endosulfan sulfate & 0.498 \\
Endrin & 0.550 \\
Endrin aldehyde & 0.511 \\
Endrin ketone & 0.490 \\
Heptachlor & 0.510 \\
Heptachlor epoxide & 0.510 \\
Methoxychlor & 0.505 \\
Surrogate: Tetrachloro-m-xylene & 0.449 \\
Surrogate: Decachlorobiphenyl & 0.494
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}
\begin{tabular}{|lcc|}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 015 \\
300 North Lake Avenue, Suite 1200 \\
Pasadena, CA 91101 \\
Attention: Bronwyn Kelly & Report Number: IOA0580 & \begin{tabular}{c} 
Sampled: 01/12/05 \\
Received: 01/11/05
\end{tabular} \\
\hline
\end{tabular}

\section*{METHOD BLANKKOC DATA}

\section*{TOTAL PCBS (EPA 608)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A13049 Extracted: 01/13/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/13/2005 (5A13049-BLK1)} \\
\hline Aroclor 1016 & ND & 1.0 & 0.067 & ug/ & & & & & & & \\
\hline Aroclor 1221 & ND & 1.0 & 0.057 & ug/ & & & & & & & \\
\hline Aroclor 1232 & ND & 1.0 & 0.13 & ug/ & & & & & & & \\
\hline Aroclor 1242 & ND & 1.0 & 0.12 & ug/ & & & & & & & \\
\hline Araclor 1248 & ND & 1.0 & 0.21 & ug/l & & & & & & & \\
\hline Aroclor 1254 & ND & 1.0 & 0.16 & ug/l & & & & & & & \\
\hline Aroclor 1260 & ND & 1.0 & 0.17 & ug/l & & & & & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.387 & & & \(u g / l\) & 0.500 & & 77 & 45-120 & & & \\
\hline LCS Analyzed: 01/13/2005 (5) & & & & & & & & & & & M-NR1 \\
\hline Aroclor 1016 & 2.82 & 1.0 & 0.067 & ug/l & 4.00 & & 70 & 50-115 & & & \\
\hline Aroclor 1260 & 2.91 & 1.0 & 0.17 & ug/ & 4.00 & & 73 & 60-115 & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.389 & & & \(u g / 1\) & 0.500 & & 78 & 45-120 & & & \\
\hline \multicolumn{12}{|l|}{LCS Dup Analyzed: 01/13/2005 (5A13049-BSD2)} \\
\hline Aroclor 1016 & 2.68 & 1.0 & 0.067 & ug/l & 4.00 & & 67 & 50-115 & 5 & 30 & \\
\hline Aroclor 1260 & 2.88 & 1.0 & 0.17 & ug/l & 4.00 & & 72 & 60-115 & 1 & 25 & \\
\hline Surrogate: Decachlorobiphenyl & 0.379 & & & \(u g /\) & 0.500 & & 76 & 45-120 & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
\begin{tabular}{|lcc|}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 015 & \\
300 North Lake Avenue, Suite 1200 & Report Number: \(10 A 0580\) & Sampled: \(01 / 12 / 05\) \\
Pasadena, CA 91101 & & Received: 01/11/05 \\
Attention: Bronwyn Kelly & & \\
\hline
\end{tabular}

\section*{METHOD BLANKIQC DATA}

\section*{METALS}


\section*{Blank Analyzed: 01/14/2005-01/16/2005 (5A14046-BLK1)}
\begin{tabular}{lcccc} 
Antimony & ND & 0.010 & 0.0042 & \(\mathrm{mg} / \mathrm{l}\) \\
Arsenic & ND & 0.0050 & 0.0038 & \(\mathrm{mg} / \mathrm{l}\) \\
Barium & ND & 0.010 & 0.0028 & \(\mathrm{mg} / \mathrm{l}\) \\
Beryllium & ND & 0.0020 & 0.00062 & \(\mathrm{mg} / \mathrm{l}\) \\
Boron & ND & 0.050 & 0.0074 & \(\mathrm{mg} / \mathrm{l}\) \\
Cadmium & ND & 0.0050 & 0.00034 & \(\mathrm{mg} / \mathrm{l}\) \\
Chromium & ND & 0.0050 & 0.00068 & \(\mathrm{mg} / \mathrm{l}\) \\
Copper & ND & 0.010 & 0.0017 & \(\mathrm{mg} / \mathrm{l}\) \\
Lead & ND & 0.0050 & 0.0021 & \(\mathrm{mg} / \mathrm{l}\) \\
Nickel & ND & 0.010 & 0.0020 & \(\mathrm{mg} / \mathrm{l}\) \\
Selenium & ND & 0.0050 & 0.0046 & \(\mathrm{mg} / \mathrm{l}\) \\
Silver & ND & 0.010 & 0.0013 & \(\mathrm{mg} / \mathrm{l}\) \\
Thallium & 0.00330 & 0.0050 & 0.0031 & \(\mathrm{mg} / \mathrm{l}\) \\
Zinc & ND & 0.020 & 0.0037 & \(\mathrm{mg} / \mathrm{l}\)
\end{tabular}

LCS Analyzed: 01/14/2005-01/16/2005 (5A14046-BS1)
\begin{tabular}{lccccccc} 
Antimony & 0.512 & 0.010 & 0.0042 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 102 & \(85-115\) \\
Arsenic & 0.490 & 0.0050 & 0.0038 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 98 & \(85-115\) \\
Barium & 0.489 & 0.010 & 0.0028 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 98 & \(85-115\) \\
Beryllium & 0.484 & 0.0020 & 0.00062 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 97 & \(85-115\) \\
Boron & 0.469 & 0.050 & 0.0074 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 94 & \(85-115\) \\
Cadmium & 0.482 & 0.0050 & 0.00034 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 96 & \(85-115\) \\
Chromium & 0.492 & 0.0050 & 0.00068 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 98 & \(85-115\) \\
Copper & 0.475 & 0.010 & 0.0017 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 95 & \(85-115\) \\
Lead & 0.490 & 0.0050 & 0.0021 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 98 & \(85-115\) \\
Nickel & 0.482 & 0.010 & 0.0020 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 96 & \(85-115\) \\
Selenium & 0.476 & 0.0050 & 0.0046 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 95 & \(85-115\) \\
Silver & 0.247 & 0.010 & 0.0013 & \(\mathrm{mg} / \mathrm{l}\) & 0.250 & 99 & \(85-115\) \\
Thallium & 0.497 & 0.0050 & 0.0031 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 99 & \(85-115\) \\
Zinc & 0.473 & 0.020 & 0.0037 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 95 & \(85-115\)
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}
\begin{tabular}{|lcr|}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 015 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 12 / 05\) \\
Pasadena, CA 91101 & Report Number: IOA0580 & Received: \(01 / 11 / 05\) \\
Attention: Bronwyn Kelly & & \\
\hline
\end{tabular}

\section*{METHOD BLANKIQC DATA}

\section*{METALS}
\begin{tabular}{llllllllll} 
& & Reporting & & & Spike & Source & \%REC & & RPD
\end{tabular} Data

Matrix Spike Analyzed: 01/14/2005-01/16/2005 (5A14046-MS1)
\begin{tabular}{lccc} 
Antimony & 0.536 & 0.010 & 0.0042 \\
Arsenic & 0.508 & 0.0050 & 0.0038 \\
Barium & 0.521 & 0.010 & 0.0028 \\
Beryllium & 0.502 & 0.0020 & 0.00062 \\
Boron & 0.675 & 0.050 & 0.0074 \\
Cadmium & 0.494 & 0.0050 & 0.00034 \\
Chromium & 0.508 & 0.0050 & 0.00068 \\
Copper & 0.509 & 0.010 & 0.0017 \\
Lead & 0.507 & 0.0050 & 0.0021 \\
Nickel & 0.498 & 0.010 & 0.0020 \\
Selenium & 0.486 & 0.0050 & 0.0046 \\
Silver & 0.252 & 0.010 & 0.0013 \\
Thallium & 0.515 & 0.0050 & 0.0031 \\
Zinc & 0.795 & 0.020 & 0.0037 \\
\hline
\end{tabular}

Matrix Spike Dup Analyzed: 01/14/2005-01/16/2005 (5A14046-MSD1)
\begin{tabular}{lcccccccccc|} 
Antimony & 0.540 & 0.010 & 0.0042 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & ND & 108 & \(70-130\) & 1 & 20 \\
Arsenic & 0.511 & 0.0050 & 0.0038 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & ND & 102 & \(70-130\) & 1 & 20 \\
Barium & 0.522 & 0.010 & 0.0028 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.022 & 100 & \(70-130\) & 0 & 20 \\
Beryllium & 0.506 & 0.0020 & 0.00062 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & ND & 101 & \(70-130\) & 1 & 20 \\
Boron & 0.682 & 0.050 & 0.0074 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.18 & 100 & \(70-130\) & 1 & 20 \\
Cadmium & 0.500 & 0.0050 & 0.00034 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.00070 & 100 & \(70-130\) & 1 & 20 \\
Chromium & 0.509 & 0.0050 & 0.00068 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.0024 & 101 & \(70-130\) & 0 & 20 \\
Copper & 0.515 & 0.010 & 0.0017 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.0028 & 102 & \(70-130\) & 1 & 20 \\
Lead & 0.510 & 0.0050 & 0.0021 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.0024 & 102 & \(70-130\) & 1 & 20 \\
Nickel & 0.503 & 0.010 & 0.0020 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.0024 & 100 & \(70-130\) & 1 & 20 \\
Selenium & 0.494 & 0.0050 & 0.0046 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & ND & 99 & \(70-130\) & 2 & 20 \\
Silver & 0.254 & 0.010 & 0.0013 & \(\mathrm{mg} / \mathrm{l}\) & 0.250 & ND & 102 & \(70-130\) & 1 & 20 \\
Thallium & 0.509 & 0.0050 & 0.0031 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & ND & 102 & \(70-130\) & 1 & 20 \\
Zinc & 0.806 & 0.020 & 0.0037 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.31 & 99 & \(70-130\) & 1 & 20
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

Source: 1OA0701-01
\begin{tabular}{ccccc}
\(\mathrm{mg} / \mathrm{l}\) & 0.500 & ND & 107 & \(70-130\) \\
\(\mathrm{mg} / \mathrm{l}\) & 0.500 & ND & 102 & \(70-130\) \\
\(\mathrm{mg} /\) & 0.500 & 0.022 & 100 & \(70-130\) \\
\(\mathrm{mg} / \mathrm{l}\) & 0.500 & ND & 100 & \(70-130\) \\
\(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.18 & 99 & \(70-130\) \\
\(\mathrm{mg} /\) & 0.500 & 0.00070 & 99 & \(70-130\) \\
\(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.0024 & 101 & \(70-130\) \\
\(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.0028 & 101 & \(70-130\) \\
\(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.0024 & 101 & \(70-130\) \\
\(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.0024 & 99 & \(70-130\) \\
\(\mathrm{mg} / \mathrm{l}\) & 0.500 & ND & 97 & \(70-130\) \\
\(\mathrm{mg} /\) & 0.250 & ND & 101 & \(70-130\) \\
\(\mathrm{mg} /\) & 0.500 & ND & 103 & \(70-130\) \\
\(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.31 & 97 & \(70-130\)
\end{tabular}
\begin{tabular}{|lr} 
MWH-Pasadena/Boeing & Project ID: Outfall 015 \\
300 North Lake Avenue, Suite 1200 & \\
\begin{tabular}{lr} 
Pasadena, CA 91101 & Report Number: \(10 A 0580\)
\end{tabular} & Sampled: \(01 / 12 / 05\) \\
Attention: Bronwyn Kelly &
\end{tabular}

\section*{METHOD BLANKIQC DATA}

\section*{METALS}
\begin{tabular}{llllllllllll} 
& & Reporting & & & Spike & Source & & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

\section*{Batch: 5A14053 Extracted: 01/14/05}

Blank Analyzed: 01/14/2005 (5A14053-BLK1)


MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\section*{Project ID: Outfall 015}

Report Number: IOA0580

Sampled: 01/12/05
Received: 01/11/05

\section*{METHOD BLANKIOC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & Spike Level & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A12036 Extracted: 01/12/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/12/2005 (5A12036-BLK1)} \\
\hline Chloride & ND & 0.50 & 0.26 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline Fluoride & ND & 0.50 & 0.074 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline Nitrate-N & ND & 0.11 & 0.072 & \(\mathrm{mg} / 1\) & & & & & & & \\
\hline Nitrite-N & ND & 0.15 & 0.058 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline Nitrate/Nitrite-N & ND & 0.26 & 0.072 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline Sulfate & ND & 0.50 & 0.18 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline \multicolumn{12}{|l|}{LCS Analyzed: 01/12/2005 (5A12036-BS1)} \\
\hline Chloride & 4.84 & 0.50 & 0.26 & \(\mathrm{mg} / \mathrm{l}\) & 5.00 & & 97 & 90-110 & & & \\
\hline Fluoride & 4.63 & 0.50 & 0.074 & \(\mathrm{mg} / \mathrm{l}\) & 5.00 & & 93 & 90-110 & & & \\
\hline Nitrate-N & 1.15 & 0.11 & 0.072 & \(\mathrm{mg} / \mathrm{l}\) & 1.13 & & 102 & 90-110 & & & M-3 \\
\hline Nitrite-N & 1.42 & 0.15 & 0.058 & \(\mathrm{mg} / \mathrm{l}\) & 1.52 & & 93 & 90-110 & & & \\
\hline Sulfate & 10.1 & 0.50 & 0.18 & \(\mathrm{mg} /\) & 10.0 & & 101 & 90-110 & & . & \\
\hline \multicolumn{3}{|l|}{Matrix Spike Analyzed: 01/12/2005 (5A12036-MS1)} & & & \multicolumn{3}{|r|}{Source: 10A0527-01} & & & & \\
\hline Chloride & 15.0 & 2.5 & 1.3 & \(\mathrm{mg} / \mathrm{l}\) & 5.00 & 11 & 80 & 80-120 & & & \\
\hline Fluoride & 5.63 & 2.5 & 0.37 & \(\mathrm{mg} / \mathrm{l}\) & 5.00 & 1.1 & 91 & 80-120 & & & \\
\hline Nitrite-N & 1.78 & 0.75 & 0.29 & \(\mathrm{mg} / \mathrm{l}\) & 1.52 & ND & 117 & 80-120 & & & \\
\hline Sulfate & 164 & 2.5 & 0.90 & \(\mathrm{mg} / \mathrm{l}\) & 10.0 & 150 & 140 & 80-120 & & & M-HA \\
\hline \multicolumn{3}{|l|}{Matrix Spike Dup Analyzed: 01/12/2005 (5A12036-MSD1)} & & & \multicolumn{3}{|l|}{Source: 10A0527-01} & & & & \\
\hline Chioride & 15.1 & 2.5 & 1.3 & \(\mathrm{mg} / \mathrm{l}\) & 5.00 & 11 & 82 & 80-120 & 1 & 20 & \\
\hline Fluoride & 5.50 & 2.5 & 0.37 & \(\mathrm{mg} / \mathrm{l}\) & 5.00 & 1.1 & 88 & 80-120 & 2 & 20 & \\
\hline Nitrite-N & 1.70 & 0.75 & 0.29 & \(\mathrm{mg} / \mathrm{l}\) & 1.52 & ND & 112 & 80-120 & 5 & 20 & \\
\hline Sulfate & 164 & 2.5 & 0.90 & \(\mathrm{mg} / 1\) & 10.0 & 150 & 140 & 80-120 & 0 & 20 & M-HA \\
\hline
\end{tabular}

\section*{Batch: 5A13052 Extracted: 01/13/05}

Blank Analyzed: 01/18/2005 (5A13052-BLK1)
\(\begin{array}{lllll}\text { Biochemical Oxygen Demand } & \text { ND } & 2.0 & 0.59 & m g / l\end{array}\)

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: 1OA0580
Sampled: 01/12/05
Received: 01/11/05

\section*{METHOD BLANKIQC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & \begin{tabular}{l}
Data \\
Qualifiers
\end{tabular} \\
\hline \multicolumn{12}{|l|}{Batch: 5A13052 Extracted: 01/13/05} \\
\hline \multicolumn{12}{|l|}{LCS Analyzed: 01/18/2005 (5A13052-BS1)} \\
\hline Biochemical Oxygen Demand & 217 & 100 & 30 & \(\mathrm{mg} / \mathrm{l}\) & 198 & & 110 & 85-115 & & & \\
\hline \multicolumn{12}{|l|}{LCS Dup Analyzed: 01/18/2005 (5A13052-BSD1)} \\
\hline Biochemical Oxygen Demand & 214 & 100 & 30 & \(\mathrm{mg} / 1\) & 198 & & 108 & 85-115 & 1 & 20 & \\
\hline
\end{tabular}


Batch: 5A13089 Extracted: 01/13/05
Blank Analyzed: 01/13/2005 (5A13089-BLK1)
Total Dissolved Solids ND
LCS Analyzed: 01/13/2005 (5A13089-BS1)
Total Dissolved Solids 994
\(10 \begin{array}{lllll}10 & \mathrm{mg} / \mathrm{l} & 1000 & 99 & 90-110\end{array}\)

\author{
Del Mar Analytical, Irvine \\ Wendy Kirkeeng For Michele Harper \\ Project Manager
}
\begin{tabular}{|lrl} 
MWH-Pasadena/Boeing & Project ID: Outfall 015 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 12 / 05\) \\
Pasadena, CA 91101 & Report Number: IOA0580 & Received: \(01 / 11 / 05\) \\
Attention: Bronwyn Kelly & & \\
\hline
\end{tabular}

\section*{METHOD BLANKKOC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5A13089 Extracted: 01/13/05} \\
\hline Duplicate Analyzed: 01/13/2005 (5A13089-DUP1) & \multicolumn{10}{|c|}{Source: 1OA0549-01} \\
\hline Total Dissolved Solids 92.0 & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & & 88 & & & 4 & 10 & \\
\hline \multicolumn{11}{|l|}{Batch: 5A13092 Extracted: 01/13/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 01/13/2005 (5A13092-BLK1)} \\
\hline Total Cyanide ND & 0.025 & 0.017 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline LCS Analyzed: 01/13/2005 (5A13092-BS1) & & & & & & & & & & M-NR1 \\
\hline Total Cyanide 0.197 & 0.025 & 0.017 & \(\mathrm{mg} / \mathrm{l}\) & 0.200 & & 98 & 90-110 & & & \\
\hline \multicolumn{11}{|l|}{LCS Dup Analyzed: 01/13/2005 (5A13092-BSD1)} \\
\hline Total Cyanide 0.188 & 0.025 & 0.017 & \(\mathrm{mg} / \mathrm{l}\) & 0.200 & & 94 & 90-110 & 5 & 10 & \\
\hline
\end{tabular}

Batch: 5A17060 Extracted: 01/17/05
Blank Analyzed: 01/17/2005 (5A17060-BLKK1)
Total Suspended Solids ND
LCS Analyzed: 01/17/2005 (5A17060-BS1)
Total Suspended Solids 97
Duplicate Analyzed: 01/17/2005 (5A17060-DUP1)
Total Suspended Solids ND
\(10 \quad 10 \quad \mathrm{mg} / 1\)
\(10 \quad 10 \quad \mathrm{mg} / \mathrm{l}\)
\(1000 \quad 97 \quad 85-115\)
Source: 1OA0673-01
ND
10

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: 1OA0580 \(\quad\) Received: 01/11/05

\section*{Compliance Check}

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.
\begin{tabular}{lllcccc} 
LabNumber & Analysis & Analyte & & Compliance \\
\hline IOA0580-01 & Barium-200.7 & Barium & Result & MRL & Limit \\
IOA0580-01 & BOD & Biochemical Oxygen Demand & \(\mathrm{mg} / \mathrm{l}\) & 0.023 & 0.010 \\
IOA0580-01 & Chloride -300.0 & Chloride & \(\mathrm{mg} / \mathrm{l}\) & 17 & 2.0 & 1.00 \\
IOA0580-01 & Fluoride-300.0 & Fluoride & \(\mathrm{mg} / \mathrm{l}\) & 140 & 5.0 & 150 \\
IOA0580-01 & Nitrite-N, 300.0 & Nitrite-N & \(\mathrm{mg} / 1\) & 0.36 & 0.50 & 1.60 \\
IOA0580-01 & Nitrogen, NO3+NO2-N & Nitrate/Nitrite-N & \(\mathrm{mg} / 1\) & 0 & 0.15 & 1.00 \\
IOA0580-01 & Sulfate-300.0 & Sulfate & \(\mathrm{mg} / 1\) & 2.20 & 0.26 & 8.00 \\
IOA0580-01 & TDS - SM 2540 C & Total Dissolved Solids & \(\mathrm{mg} / 1\) & 16 & 0.50 & 300 \\
IOA0580-01 & TSS - EPA 160.2 & Total Suspended Solids & \(\mathrm{mg} / 1\) & 400 & 10 & 950 \\
& & & \(\mathrm{mg} / \mathrm{l}\) & 22 & 10 & 30
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: 1OA0580 Received: 01/11/05

\section*{DATA QUALIFIERS AND DEFINITIONS}

C Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.
C5 Calibration Verification recovery was below the method control limit for this analyte. An additional check standard was analyzed at the reporting limit to ensure instrument sensitivity at the reporting limit. Samples ND.
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
M-3 - Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).
M-HA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information. See Blank Spike (LCS).
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
R-7 LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

\section*{ADDITIONAL COMMENTS}

\section*{For 1,2-Diphenylhydrazine:}

The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 015
Report Number: 1OA0580 Received: 01/11/05

\section*{Certification Summary}

\section*{Del Mar Analytical, Irvine}
\begin{tabular}{clcc} 
Method & Matrix & Nelac & California \\
EPA 160.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 200.7 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 245.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 300.0 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 335.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 350.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 405.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 608 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 625 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
SM2540C & Water & \(\mathbf{X}\) & \(\mathbf{X}\)
\end{tabular}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

\section*{Subcontracted Laboratories}

Aquatic Testing Laboratories-SUB California Cert \#1775
4350 Transport Street, Unit 107 - Ventura, CA 93003
Analysis Performed: Bioassay-7 dy Chric Samples. 1OA0580-01
Analysis Performed: Bioassay-Acute 96hr Samples: IOA0580-01

\section*{Pace Analytical, MN- SUB}

1700 Elm Street, Ste 200 - Minneapolis, MN 55414
Analysis Performed: 1613-Dioxin-HR Samples: IOA0580-01
Analysis Performed: \(\quad\) EDD + Level 4 Samples: IOA0580-01

\author{
Del Mar Analytical, Irvine \\ Wendy Kirkeeng For Michele Harper \\ Project Manager
}


\title{
< Del MarAnalytical
}

March 10, 2005

MWH- Pasadena/ Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Outfall 015
Sampled: 01/11/05/-01/12/05
Del Mar Analytical Number: IOA0580

Dear Ms. Kelly:
Pace Analytical performed USEPA Method 1613 B and Aquatic Testing Laboratories performed Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002) for the project referenced above. Please use the following cross-reference table when reviewing your results.
\begin{tabular}{|c|c|c|c|}
\hline KWH ID & Del Mar ID & Pace ID & ATE ID \\
\hline Outfall 015-Comp Effluent & IOA0580-01 & 106237001 & A-05011312-001 \\
\hline
\end{tabular}

Attached are the original reports from the subcontract laboratories. If you have any questions or require further assistance, please do not hesitate to contact me at (949) 261-1022, extension 215.

Sincerely yours,
DEL MAR ANALYTICAL

Michele Harper
Project Manager

\section*{Method 1613B Analysis Results}

\section*{Client - Del Mar Analytical}


Conc \(=\) Concentration (Totals include 2,3,7,8-substituted isomers).
EMPC \(=\) Estimated Maximum Possible Concentration LOD \(=\) Limit of Detection. Totals are averages of individual ksomer LODs.
\(D=\) Result obtained from analysis of diluted sample
\(B=\) Less than 10 times higher than method blank level
P = Recovery outside of method 1813 control limits
\(J=\) Concentration detected is below the callibration range
\(\mathrm{N} n=\) Value obtained from additional analysis
\(1=\operatorname{Interference}\)
\(\mathrm{E}=\mathrm{PCDE}\) interference
ND \(=\) Not Detected
NA \(=\) Not Applicable
NC = Not Calculated
* \(=\) See Discussion

Report No..... 106237

\section*{Method 1613B Blank Analysis Results}

Client - Del Mar Analytical
Lab Sample ID
Filename
Total Amount Extracted
ICAL Date
CCal Filename(s)
BLANK-6220
F50129B_06
1020 mL
\(11 / 29 / 2004\)
F50129B_02
\begin{tabular}{ll} 
Matrix & Water \\
Dilution & NA \\
Extracted & \(01 / 28 / 2005\) \\
Analyzed & \(01 / 29 / 2005 \quad 23: 49\) \\
Injected By & BAL
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Native Isomers & Conc pg/L. & \[
\begin{gathered}
\text { EMPC } \\
\text { pg/L }
\end{gathered}
\] & \[
\begin{aligned}
& \text { LOD } \\
& \mathrm{pg} / \mathrm{L}
\end{aligned}
\] & Internal Standards & ng's Added & Percent Recovery \\
\hline 2,3,7,8-TCDF & ND & ----* & 1.20 & 2,3,7,8-TCDF-13C & 2.00 & 58 \\
\hline Total TCDF & ND & ----- & -- & 2,3,7,8-TCDD-13C & 2.00 & 75 \\
\hline & & & & 1,2,3,7,8-PeCDF-13C & 2.00 & 65 \\
\hline 2,3,7,8-TCDD & ND & ----- & 1.20 & 2,3,4,7,8-PoCDF-13C & 2.00 & 67 \\
\hline Total TCDD & ND & \(\ldots\) & ---- & 1,2,3,7,8-PeCDD-13C & 2.00 & 80 \\
\hline & & & & 1,2,3,4,7,8-HxCDF-13C & 2.00 & 70 \\
\hline 1,2,3,7,8-PeCDF & ND & ----- & 1.50 & 1,2,3,6,7,8-HxCDF-13C & 2.00 & 82 \\
\hline 2,3,4,7,8-PeCDF & ND & ----- & 1.20 & 2,3,4,6,7,8-HxCDF-13C & 2.00 & 77 \\
\hline Total PeCDF & ND & ----- & \(\cdots\) & 1,2,3,7,8,9-HxCDF-13C & 2.00 & 72 \\
\hline & & & & 1,2,3,4,7,8-HxCDD-13C & 2.00 & 66 \\
\hline 1,2,3,7,8-PeCDD & ND & \(\cdots\) & 1.60 & 1,2,3,6,7,8-HxCDD-13C & 2.00 & 88 \\
\hline Total PeCDD & ND & ----- & - & 1,2,3,4,6,7,8-HpCDF-13C & 2.00 & 73 \\
\hline & & & & 1,2,3,4,7,8,9-HpCDF-13C & 2.00 & 63 \\
\hline 1,2,3,4,7,8-HxCDF & ND & ---- & 0.75 & 1,2,3,4,6,7,8-HpCDD-13C & 2.00 & 80 \\
\hline 1,2,3,6,7,8-HxCDF & ND & ----- & 0.86 & OCDD-13C & 4.00 & 68 \\
\hline 2,3,4,6,7,8-HxCDF & ND & ---* & 1.10 & & & \\
\hline 1,2,3,7,8,9-HxCDF & ND & ----- & 1.20 & 1,2,3,4-TCDD-13C & 2.00 & NA \\
\hline Total HxCDF & ND & ----- & ---- & 1,2,3,7,8,9-HxCDD-13C & 2.00 & NA \\
\hline 1,2,3,4,7,8-HxCDD & ND & \(\cdots\) & 1.10 & 2,3,7,8-TCDD-37Cl4 & 0.20 & 73 \\
\hline 1,2,3,6,7,8-HxCDD & ND & -->*) & 0.99 & & & \\
\hline 1,2,3,7,8,9HxCDD & ND & \(\cdots\) & 1.00 & & & \\
\hline Total HxCDD & ND & ----- & ---- & & & \\
\hline 1,2,3,4,6,7,8-HpCDF & ND & ---- & 2.10 & & & \\
\hline 1,2,3,4,7,8,9-HpCDF & ND & \(\cdots\) & 1.90 & & & \\
\hline Total HpCDF & 2.2 & \(\cdots\) & ----- & & & \\
\hline 1,2,3,4,6,7,8-HpCDD & 2.4 & ---- & 1.40 & & & \\
\hline Total HpCDD & 2.4 & -- & --- & & & \\
\hline OCDF & 5.2 & ---- & 1.80 & & & \\
\hline OCDD & 5.6 & ---- & 2.90 & & & \\
\hline
\end{tabular}

Conc \(=\) Concentration (Totals include 2,3,7,8-substituted isomers).
EMPC = Estimated Maximum Possible Concentration
LOD = Limit of Detection. Totals are averages of individual isomer LODs.
\(A=\) Limit of Detection based on signal to noise
\(P=\) Recovery outside of method 1613 control limits
\(\mathrm{N} n=\) Value obtained from additional analysis

I = Interference
\(E=P C D E\) interference
ND \(=\) Not Detected
NA = Not Applicable
NC = Not Calculated
* \(=\) See Discussion

\section*{Method 1613B Laboratory Control Spike Results}

Client - Del Mar Analytical
Lab Sample ID
Filename
Total Amount Extracted
ICAL Date
CCal illoname
Method Blank ID

LCS-6221
F50129B_03 Matrix Water
1040 mL
11/29/2004
F50129B_02
BLANK-6220
\begin{tabular}{ll} 
Matrix & Water \\
Dilution & NA \\
Extracted & \(01 / 28 / 2005\) \\
Analyzed & \(01 / 29 / 2005 \quad 21: 22\) \\
Injected By & BAL
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Compound & Cs & Cr & Lower Limit & Upper Limit & \[
\begin{gathered}
\% \\
\text { Rec. }
\end{gathered}
\] \\
\hline 2,3,7,8-TCDF & 10 & 9.9 & 7.5 & 15.8 & 99 \\
\hline 2,3,7,8-TCDD & 10 & 8.6 & 6.7 & 15.8 & 86 \\
\hline 1,2,3,7,8-PeCDF & 50 & 50.5 & 40.0 & 67.0 & 101 \\
\hline 2,3,4,7,8-PeCDF & 50 & 48.2 & 34.0 & 80.0 & 96 \\
\hline 1,2,3,7,8-PeCDD & 50 & 43.3 & 35.0 & 71.0 & 87 \\
\hline 1,2,3,4,7,8-HxCDF & 50 & 45.6 & 36.0 & 67.0 & 91 \\
\hline 1,2,3,6,7,8-HxCDF & 50 & 48.7 & 42.0 & 65.0 & 97 \\
\hline 2,3,4,6,7,8-HxCDF & 50 & 49.1 & 35.0 & 78.0 & 98 \\
\hline 1,2,3,7,8,9-HxCDF & 50 & 46.5 & 39.0 & 65.0 & 93 \\
\hline 1,2,3,4,7,8-HxCDD & 50 & 49.9 & 35.0 & 82.0 & 100 \\
\hline 1,2,3,6,7,8-HxCDD & 50 & 51.3 & 38.0 & 67.0 & 103 \\
\hline 1,2,3,7,8,9-HxCDD & 50 & 50.1 & 32.0 & 81.0 & 100 \\
\hline 1,2,3,4,6,7,8-HpCDF & 50 & 50.3 & 41.0 & 61.0 & 101 \\
\hline 1,2,3,4,7,8,9-HpCDF & 50 & 53.3 & 39.0 & 69.0 & 107 \\
\hline 1,2,3,4,6,7,8-HpCDD & 50 & 45.4 & 35.0 & 70.0 & 91 \\
\hline OCDF & 100 & 95.6 & 63.0 & 170.0 & 96 \\
\hline OCDD & 100 & 97.1 & 78.0 & 144.0 & 97 \\
\hline 2,3,7,8-TCDD-37C14 & 10 & 6.9 & 3.1 & 19.1 & 69 \\
\hline 2,3,7,8-TCDF-13C & 100 & 51.5 & 22.0 & 152.0 & 52 \\
\hline 2,3,7,8-TCDD-13C & 100 & 67.8 & 20.0 & 175.0 & 68 \\
\hline 1,2,3,7,8-PeCDF-13C & 100 & 61.4 & 21.0 & 192.0 & 61 \\
\hline 2,3,4,7,8-PeCDF-13C & 100 & 65.9 & 13.0 & 328.0 & 66 \\
\hline 1,2,3,7,8-PeCDD-13C & 100 & 77.8 & 21.0 & 227.0 & 78 \\
\hline 1,2,3,4,7,8-HxCDF-13C & 100 & 70.2 & 19.0 & 202.0 & 70 \\
\hline 1,2,3,6,7,8-HxCDF-13C & 100 & 78.0 & 21.0 & 159.0 & 78 \\
\hline 2,3,4,6,7,8-HxCDF-13C & 100 & 74.1 & 22.0 & 176.0 & 74 \\
\hline 1,2,3,7,8,9-HxCDF-13C & 100 & 70.4 & 17.0 & 205.0 & 70 \\
\hline 1,2,3,4,7,8-HxCDD-13C & 100 & 69.0 & 21.0 & 193.0 & 69 \\
\hline 1,2,3,6,7,8-HxCDD-13C & 100 & 82.8 & 25.0 & 163.0 & 83 \\
\hline 1,2,3,4,6,7,8-HpCDF-13C & 100 & 72.1 & 21.0 & 158.0 & 72 \\
\hline 1,2,3,4,7,8,9-HpCDF-13C & 100 & 62.4 & 20.0 & 186.0 & 62 \\
\hline 1,2,3,4,6,7,8-HpCDD-13C & 100 & 80.1 & 26.0 & 166.0 & 80 \\
\hline OCDD-13C & 200 & 135.6 & 26.0 & 397.0 & 68 \\
\hline
\end{tabular}

Cs = Concentration Spiked ( \(\mathrm{ng} / \mathrm{mL}\) )
\(\mathrm{Cr}=\) Concentration Recovered ( \(\mathrm{ng} / \mathrm{mL}\) )
Rec. \(=\) Recovery (Expressed as Percent)
Control Limit Reference: Method 1613, Table 6, 10/94 Revision
\(\mathrm{X}=\) Background subtracted value
\(P=\) Recovery outside of control limits
\(\mathrm{Nn}=\) Value obtained from additional analysis
* \(=\) See Discussion

\section*{REPORT OF LABORATORY ANALYSIS}

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

\section*{Method 1613B Laboratory Control Spike Results}

Client - Del Mar Analytical
Lab Sample ID
Filename
Total Amount Extracted
ICAL Date
CCal Filename
Method Blank ID
LCSD-6222
F50129B_04
1040 mL
\(11 / 29 / 2004\)
F50129B_02
BLANK-6220
\begin{tabular}{ll} 
Matrix & Water \\
Dilution & NA \\
Extracted & \(01 / 28 / 2005\) \\
Analyzed & \(01 / 29 / 2005 \quad 22: 09\) \\
Injected By & BAL
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Compound & Cs & Cr & Lower Limit & Upper Limit & \[
\begin{gathered}
\% \\
\text { Rec. }
\end{gathered}
\] \\
\hline 2,3,7,8-TCDF & 10 & 10.6 & 7.5 & 15.8 & 106 \\
\hline 2,3,7,8-TCDD & 10 & 9.4 & 6.7 & 15.8 & 94 \\
\hline 1,2,3,7,8-PeCDF & 50 & 53.2 & 40.0 & 67.0 & 106 \\
\hline 2,3,4,7,8-PeCDF & 50 & 50.7 & 34.0 & 80.0 & 101 \\
\hline 1,2,3,7,8-PeCDD & 50 & 46.0 & 35.0 & 71.0 & 92 \\
\hline 1,2,3,4,7,8-HxCDF & 50 & 47.6 & 36.0 & 67.0 & 95 \\
\hline 1,2,3,6,7,8-HxCDF & 50 & 50.9 & 42.0 & 65.0 & 102 \\
\hline 2,3,4,6,7,8-HxCDF & 50 & 50.9 & 35.0 & 78.0 & 102 \\
\hline 1,2,3,7,8,9-HxCDF & 50 & 49.0 & 39.0 & 65.0 & 98 \\
\hline 1,2,3,4,7,8-HxCDD & 50 & 52.4 & 35.0 & 82.0 & 105 \\
\hline 1,2,3,6,7,8-HxCDD & 50 & 54.2 & 38.0 & 67.0 & 108 \\
\hline 1,2,3,7,8,9-HxCDD & 50 & 52.5 & 32.0 & 81.0 & 105 \\
\hline 1,2,3,4,6,7,8-HpCDF & 50 & 55.0 & 41.0 & 61.0 & 110 \\
\hline 1,2,3,4,7,8,9-HpCDF & 50 & 55.7 & 39.0 & 69.0 & 111 \\
\hline 1,2,3,4,6,7,8-HpCDD & 50 & 48.0 & 35.0 & 70.0 & 96 \\
\hline OCDF & 100 & 100.6 & 63.0 & 170.0 & 101 \\
\hline OCDD & 100 & 101.9 & 78.0 & 144.0 & 102 \\
\hline & 10 & 8.7 & 3.1 & 19.1 & 87 \\
\hline 2,3,7,8-TCDF-13C & 100 & 70.4 & 22.0 & 152.0 & 70 \\
\hline 2,3,7,8-TCDD-13C & 100 & 88.6 & 20.0 & 175.0 & 89 \\
\hline 1,2,3,7,8-PeCDF-13C & 100 & 73.6 & 21.0 & 192.0 & 74 \\
\hline 2,3,4,7,8-PeCDF-13C & 100 & 79.0 & 13.0 & 328.0 & 79 \\
\hline 1,2,3,7,8-PeCDD-13C & 100 & 95.5 & 21.0 & 227.0 & 96 \\
\hline 1,2,3,4,7,8-HxCDF-13C & 100 & 84.8 & 19.0 & 202.0 & 85 \\
\hline 1,2,3,6,7,8-HxCDF-13C & 100 & 89.5 & 21.0 & 159.0 & 90 \\
\hline 2,3,4,6,7,8-HxCDF-13C & 100 & 87.2 & 22.0 & 176.0 & 87 \\
\hline 1,2,3,7,8,9-HxCDF-13C & 100 & 82.1 & 17.0 & 205.0 & 82 \\
\hline 1,2,3,4,7,8-HxCDD-13C & 100 & 80.1 & 21.0 & 193.0 & 80 \\
\hline 1,2,3,6,7,8-HxCDD-13C & 100 & 97.0 & 25.0 & 163.0 & 97 \\
\hline 1,2,3,4,6,7,8-HpCDF-13C & 100 & 84.4 & 21.0 & 158.0 & 84 \\
\hline 1,2,3,4,7,8,9-HpCDF-13C & 100 & 71.7 & 20.0 & 186.0 & 72 \\
\hline 1,2,3,4,6,7,8-HpCDD-13C & 100 & 92.4 & 26.0 & 166.0 & 92 \\
\hline OCDD-13C & 200 & 159.2 & 26.0 & 397.0 & 80 \\
\hline
\end{tabular}
\(\mathrm{Cs}=\) Concentration Spiked ( \(\mathrm{ng} / \mathrm{mL}\) )
\(\mathrm{Cr}=\) Concentration Recovered ( \(\mathrm{ng} / \mathrm{mL}\) )
Rec. \(=\) Recovery (Expressed as Percent)
Control Limit Reference: Method 1613, Table 6, 10/94 Revision
\(\mathrm{X}=\) Background subtracted value
\(P=\) Recovery outside of control limits
\(\mathrm{Nn}=\) Value obtained from additional analysis
Report No..... 106233
* \(=\) See Discussion

\section*{REPORT OF LABORATORY ANALYSIS}

TABLE 1. 2,3,7,8-TCDD Equivalency Factors (TEFs) for the Polychiorinated Dibenzo-p-dioxins and Dibenzofurans
\begin{tabular}{|c|c|c|}
\hline Number & Compound(s) & TEF \\
\hline 1 & 2,3,7,8-TCDD & 1.00 \\
\hline 2 & 1,2,3,7,8-PeCDD & 0.50 \\
\hline 3 & 1,2,3,6,7,8-HxCDD & 0.1 \\
\hline 4 & 1,2,3,7,8,9-HxCDD & 0.1 \\
\hline 5 & 1,2,3,4,7,8-HxCDD & 0.1 \\
\hline 6 & 1,2,3,4,6,7,8-HpCDD & 0.01 \\
\hline 7 & OCDD & 0.001 \\
\hline 8 & * Total - TCDD & 0.0 \\
\hline 9 & * Total - PeCDD & 0.0 \\
\hline 10 & * Total - HxCDD & 0.0 \\
\hline 11 & * Total - HpCDD & 0.0 \\
\hline 12 & 2,3,7,8-TCDF & 0.10 \\
\hline 13 & 1,2,3,7,8-PeCDF & 0.05 \\
\hline 14 & 2,3,4,7,8-PeCDF & 0.5 \\
\hline 15 & 1,2,3,6,7,8-HxCDF & 0.1 \\
\hline 16 & 1,2,3,7,8,9-HxCDF & 0.1 \\
\hline 17 & 1,2,3,4,7,8-HxCDF & 0.1 \\
\hline 18 & 2,3,4,6,7,8-HxCDF & 0.1 \\
\hline 19 & 1,2,3,4,6,7,8-HpCDF & 0.01 \\
\hline 20 & 1,2,3,4,7,8,9-HpCDF & 0.01 \\
\hline 21 & OCDF & 0.001 \\
\hline 22 & * Total - TCDF & 0.0 \\
\hline 23 & * Total - PeCDF & 0.0 \\
\hline 24 & * Total - HxCDF & 0.0 \\
\hline 25 & * Total - HpCDF & 0.0 \\
\hline
\end{tabular}
*Excluding the 2,3,7,8-substituted congeners.
Reference: 1989 ITEFs

\section*{REPORT OF LABORATORY ANALYSIS}

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.





LABORATORY REPORT

Date:
January 20, 2005

Client: Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Attn: Michele Harper

Laboratory No.: A-05011312-001
Sample I.D.: IOA0580-01

Sample Control: The sample was received by ATL chilled, with the chain of custody record attached.
\[
\begin{array}{ll}
\text { Date Sampled: } & 01 / 12 / 05 \\
\text { Date Received: } & 01 / 13 / 05 \\
\text { Date Tested: } & 01 / 13 / 05 \text { to } 01 / 19 / 05
\end{array}
\]

Sample Analysis: The following analyses were performed on your sample:
Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).
Attached are the test data generated from the analysis of your sample.

\section*{Result Summary:}
\begin{tabular}{llc} 
Chronic: & NOEC & TUc \\
Ceriodaphnia Survival: & \(<6.25 \%\) & \(>16.0\) \\
Ceriodaphnia Reproduction: & \(<6.25 \%\) & \(>16.0\)
\end{tabular}

Quality Control: Reviewed and approved by:


\title{
CERIODAPHNIA CHRONIC BIOASSAY \\ EPA METHOD 1002.0
}

Lab No.: A-05011312
Client/ID: Del Mar IOA0580-01

Date Tested: 01/13/05 to 01/19/05

\section*{TEST SUMMARY}

Test type: Daily static-renewal.
Species: Ceriodaphnia dubia.
Age: < 24 hrs; all released within 8 hrs.
Test vessel size: 30 ml .
Number of test organisms per vessel: 1.
Temperature: \(25+/-1^{\circ} \mathrm{C}\).
Dilution water: Mod. hard reconstituted (MHRW).
QA/QC Batch No.: RT-050104.

Endpoints: Survival and Reproduction.
Source: In-laboratory culture.
Food: . 1 ml YTC, algae per day.
Test solution volume: 15 ml .
Number of replicates: 10.
Photoperiod: \(16 / 8 \mathrm{hrs}\). light/dark cycle.
Test duration: 7 days.
Statistics: ToxCalc computer program.

RESULTS SUMMARY
\begin{tabular}{|c|c|c|}
\hline Sample Concentration & Percent Survival & \begin{tabular}{c} 
Mean Number of \\
Young Per Female
\end{tabular} \\
\hline Control & \(100 \%\) & 21.6 \\
\hline \(6.25 \%\) & \(0 \%^{*}\) & \(1.1^{* *}\) \\
\hline \(12.5 \%\) & \(0 \% *\) & \(0 * *\) \\
\hline \(25 \%\) & \(0 \% *\) & \(0 * *\) \\
\hline \(50 \%\) & \(0 \% *\) & \(0^{* *}\) \\
\hline \(100 \%\) & \(0 \% *\) & \(0^{* *}\) \\
\hline
\end{tabular}
* Statistically significantly less than control at \(P=0.05\) level.
** Reproduction data from concentrations greater than survival NOEC are excluded from statistical analysis.

CHRONIC TOXICITY
\begin{tabular}{|c|c|c|}
\hline Parameter & Survival & Growth \\
\hline NOEC & \(<6.25 \%\) & \(<6.25 \%\) \\
\hline TUc & \(>16.0\) & \(>16.0\) \\
\hline
\end{tabular}

QA/QC TEST ACCEPTABILITY
\begin{tabular}{|c|c|}
\hline Parameter & Result \\
\hline Control survival \(280 \%\) & Pass ( \(100 \%\) survival) \\
\hline \(\% 15\) young per surviving control female & Pass (21.6 young) \\
\hline \(260 \%\) surviving controls had 3 broods & Pass (90\% with 3 broods) \\
\hline PMSD \(<47 \%\) for reproduction; if \(>47 \%\) and no toxicity at IWC, the test must be repeated & Pass (PMSD \(=11.7 \%\) ) \\
\hline Statistically significantly different concentrations relative difference \(>13 \%\) & Pass (stat. sig. diff. conc. \(\mathbf{> 9 4 . 9 \%}\) difference) \\
\hline Concentration response relationship acceptable & Pass (significant response at conc. tested) \\
\hline
\end{tabular}



Fax (400)74S0051
Fracren mever

\section*{SUBCONTRACT ORDER - PROJECT \# IOA0580}



\section*{APPENDIX G}

\section*{Section 13}

January Outfall 017

\section*{AMEC Data Validation Reports}

Del Mar Analytical Laboratory Reports

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}

AMEC Earth \& Environmental 550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer M. Pokorny
Analysis/Method NDMA

Package ID T711SV26
Task Order 313150010
SDG No. IOA0454, 0456
No. of Analyses 2
Date: February 23, 2005
Reviewer's Signature


\section*{ACTION ITEMS*}
1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, egg.,
Holding Times
GCMS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance Compound Identification and Quantitation

System Performance
COMMENTS \(^{\text {b }}\)
Acceptable as reviewed.
* Subcontracted analytical laboratory is not meeting contract andor method requirements.
" Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\section*{ANALYSIS: SEMIVOLATILES}

\title{
SAMPLE DELIVERY GROUP: IOA0454, IOA0456
}

\section*{Prepared by}

AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{ll} 
& NPDES \\
DATA VALIDATION REPORT & \begin{tabular}{c} 
Project: \\
SDG:IOA0454, \(10 A 0456\)
\end{tabular} \\
SVOC
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ SDG\#: IOA0454, IOA0456 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Semivolatiles (NDMA) \\ QC Level: Level IV \\ No. of Samples: 2 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: M. Pokorny \\ Date of Review: February 23, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Semivolatile Organics (DVP-3, Rev. 2), EPA Method 1625C, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{|c|c|c|}
\hline & Project: SDG:I & NPDES IOA045 \\
\hline DATA VALIDATION REPORT & & \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Lab No. & Matrix & Method \\
\hline Outfall 017 & Outfall 017 & IOA0454-01 & water & 1625 C \\
\hline Outfall 015 & Outfall 015 & IOA0456-01 & water & 1625 C \\
\hline
\end{tabular}


\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2\), at \(4^{\circ} \mathrm{C}\). According to COCs , the samples were received intact and in good condition. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs from the field to Del Mar Analytical were signed by field and laboratory personnel and accounted for the analyses presented in these SDGs. As the samples were couriered to the laboratory, custody seals are not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The water samples were extracted within seven days of collection and analyzed within 40 days of extraction. No qualifications were required.

\subsection*{2.2 GC/MS TUNING}

Tuning is not applicable for this analysis. No qualifications were required.

\subsection*{2.3 CALIBRATION}

The initial calibration associated with these SDGs was dated \(12 / 30 / 04\). The average RRF for NDMA was \(\geq 0.05\) and the \(\%\) RSD was \(\leq 35 \%\). The continuing calibration was analyzed \(01 / 13 / 05\). The RRF for NDMA was \(\geq 0.05\), and the \(\% \mathrm{D}\) was \(\leq 20 \%\). The RRFs, \(\%\) RSD, and \(\%\) D were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.4 BLANKS}

One method blank (5A12032-BLK1) was extracted and analyzed with these SDGs. NDMA was not reported in the method blank. Review of the raw data indicated no false negative. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One blank spike/ blank spike duplicate pair (5A12032-BS1/BS1D) was extracted and analyzed with these SDGs. The NDMA recoveries and the RPD were within the laboratory QC limits. The recoveries and RPD were calculated from the raw data and no calculation or transcription errors were found. No qualifications were required.
\begin{tabular}{cc} 
\\
DATA VALIDATION REPORT & \begin{tabular}{c} 
Project: \\
SDG:IOA0454, IOA0456 \\
Analysis:
\end{tabular} \\
SVOC
\end{tabular}

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

No MS/MSD analyses were associated with the samples in these SDGs. Evaluation of method accuracy and precision was based on blank spike/blank spike duplicate results. No qualifications were required.

\subsection*{2.7 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

\subsection*{2.7.1 Field Blanks and Equipment Rinsates}

There were no field QC samples associated with these SDGs. No qualifications were required.

\subsection*{2.7.2 Field Duplicates}

There were no field duplicate samples associated with these SDGs. Field duplicate samples are required at a rate of \(10 \%\) per matrix for site samples only and may not be present in every data package. Qualifications are not routinely assigned based on field duplicate results.

\subsection*{2.8 INTERNAL STANDARDS PERFORMANCE}

The internal standard area counts were within the control limits established by the continuing calibration standards: \(50 \% / 100 \%\) for intenal standard areas. Recoveries were calculated from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.9 COMPOUND IDENTIFICATION}

The laboratory analyzed for NDMA by EPA Method 1625C. Review of sample chromatograms and retention times indicated no problems with target compound identification. No qualifications were required.

\subsection*{2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantitation was verified by recalculating any sample detects and/or blank spike/blank spike duplicate concentrations from the raw data and no calculation or transcription errors were found. The reporting limits were supported by the low level of the initial calibration. Reporting limits were not adjusted for sample amount; however, the dilution factors listed on the sample result summaries reflected the sample amount extracted. Results were reported in ug/L. No qualifications were required.

\subsection*{2.11 SYSTEM PERFORMANCE}

Review of the raw data indicated no problems with system performance. No qualifications were required.

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: IOA0454

Sampled: 01109/05
Received: 01/10/05

\section*{DRAFT: SEMI-VOLATILE ORGANICS BY GC/MS (EPA 3520C/1625C MOD)}

Analyte
Method Bat MD L
Reporting Sample Dilution Date
Date Data
Sample ID: 1OA0454-01 (DRAFT: Outfall 017-Grab-Water) Result Factor Extracted Analyzed Qualifiers

Reporting Units: ugh
N-Nitrosodimethylamine

Sampled: 01/09/05
0.0020


\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical.
Reviewer L. Calvin
Analysis/Method Volatiles by Method 624

Package ID T711VO48
Task Order 313150010
SDG No. IOA0454, IOA0456
No. of Analyses 3
Date: February 28, 2005
Revigwe's Signatuy


\section*{amec \({ }^{\infty}\)}

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\section*{ANALYSIS: VOLATILES}

\section*{SAMPLE DELIVERY GROUP: IOA454, IOA456}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: IOA454, IOA456 \\ Project Manager: B. McIlvaine \\ Matrix: Water \\ Analysis: Volatiles \\ QC Level: Level IV \\ No. of Samples: 3 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: L. Calvin \\ Date of Review: February 28, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Volatile Organics (DVP-2, Rev. 2), EPA Method 624, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary forms as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Lab No. & Matrix & Method \\
\hline Outfall 017 & Outfall 017 & IOA0454-01 & water & 624 \\
\hline Outfall 015 & Outfall 015 & IOA0456-01 & water & 624 \\
\hline Trip Blank & Trip Blank & IOA0456-02 & water & 624 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
& Project: \begin{tabular}{l} 
NPDES \\
DATA VALIDATION REPORT
\end{tabular}\(\quad\) SDG: IOA454, IOA456
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\), at \(4^{\circ} \mathrm{C}\). The samples were properly preserved. The COCs noted that the samples were received intact; however, information regarding absence of headspace was not provided. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by both field and laboratory personnel. The Trip Blank sample associated with Outfall 015 was crossed out on the COC. The COCs accounted for the remaining analyses presented in these SDGs. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The samples were analyzed within 14 days of collection. No qualifications were required.

\subsection*{2.2 GC/MS TUNING}

The ion abundance windows shown on the quantitation report were consistent with those specified in the EPA Method 624, and all ion abundances were within the established windows. The samples and associated QC were analyzed within 12 hours of the BFB injection times. The Form Vs were verified from the raw data and no discrepancies between the summary forms and the raw data were noted. No qualifications were required.

\subsection*{2.3 CALIBRATION}

One initial calibration dated 01/04/05 was associated with these SDGs. The average RRFs were \(\geq 0.05\) and the \(\%\) RSDs were \(\leq 35 \%\) for the target compounds listed on the sample result summaries. The continuing calibrations associated with the sample analyses were analyzed \(01 / 11 / 05\) at \(08: 13\) and \(03: 52\). The RRFs were \(\geq 0.05\), and \(\%\) Ds were \(\leq 20 \%\) for all target compounds. A representative number of \%RSDs and average RRFs from the initial calibration, and \(\%\) Ds and RRFs from the continuing calibration were recalculated from the raw data, and no calculation or transcription errors were found. No qualifications were required.
DATA VALIDATION REPORT SDG: IOA454, IOA456

\subsection*{2.4 BLANKS}

Two water method blanks (5Al1011-BLK1 and 5A11017-BLK1) were associated with the sample analyses. There were no detects above the MDLs for the target compounds listed on the sample result summaries. The method blank raw data showed no evidence of false negatives. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

Two water blank spikes (5A11011-BS1 and 5A11017-BS1) were associated with the sample analyses. All recoveries were within the laboratory-established QC limits. A representative number of recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.6 SURROGATE RECOVERY}

Surrogate toluene-d8 was recovered below the QC limits of \(80-120 \%\) in sample Outfall 017. According to the case narrative for this SDG, the sample was reanalyzed with similar results, indicating a matrix effect on the surrogate. The laboratory submitted only the reanalysis for Outfall 017. Results were qualified as estimated, "J," for detects and "UJ," for nondetects in Outfall 017. The remaining surrogates were recovered within the QC limits of \(80-120 \%\) in the samples and associated QC. A representative number of surrogate recoveries were recalculated from the raw data and no calculation or transcription errors were found. No further qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

MS/MSD analyses were not performed on either of the site samples in these SDGs. Method accuracy was assessed based on the LCS results. No qualifications were required.

\subsection*{2.8 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory \(Q C\) results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

\subsection*{2.8.1 Trip Blanks}

Sample Trip Blank was the trip blank associated with site sample Outfall 017. There were no target compounds detected above the MDLs in the trip blank. Sample Outfall 015 did not have an associated trip blank analysis; and was therefore not evaluated for possible trip blank contamination. No qualifications were required.

\subsection*{2.8.2 Field Blanks and Equipment Rinsates}

There were no field QC samples associated with these SDGs. No qualifications were required.
\begin{tabular}{|c|c|}
\hline & Project: NPDES \\
\hline DATA VALIDATION REPORT & SDG: IOA454, IOA456 \\
\hline
\end{tabular}

\subsection*{2.8.3 Field Duplicates}

There were no field duplicate samples associated with these SDGs.

\subsection*{2.9 INTERNAL STANDARDS PERFORMANCE}

Internal standard area counts and retention times for the samples in these SDGs were within the control limits established by the continuing calibration standards, of \(+100 \% /-50 \%\) for internal standard areas and \(\pm 0.50\) minutes for retention times. A representative number of internal standard areas and retention times were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.10 COMPOUND IDENTIFICATION}

Target compound identification was verified at a Level IV data validation. The laboratory analyzed for volatile target compounds by EPA Method 624. Chromatograms, retention times, and spectra for the samples and QC were examined and no target compound identification problems were noted. Detects reported between the MDL and the reporting limit were qualified as estimated, " \(J\)," by the laboratory. No further qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification is verified at a Level IV data validation. The reporting limits were supported by the lowest concentrations of the initial calibration standards and by the MDL study. Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike and surrogate recoveries from the raw data. Results were reported in \(\mu \mathrm{g} / \mathrm{L}\) (ppb). No calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.12 TENTATIVELY IDENTIFIED COMPOUNDS}

The laboratory did not provide TICs for these SDGs. No qualifications were required.

\subsection*{2.13 SYSTEM PERFORMANCE}

A review of the chromatograms and other raw data showed no identifiable problems with system performance. No qualifications were required.

MWH-Fasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 01?
Report Number: 1OA0454

Sampled: 01:09.05
Received: 0111605

\section*{DRAFT: PURGEABLES BY GC/MS (EPA 624)}


\section*{AMEC VALIDATED \\ LEVEL IV}

\section*{DRAFT REPORT \\ DRAFT REPORT \\ data subject to change}

MWH-Pasadena/Boeing
300 North Laks Avenue, Suite 1200
Pasadena, CA91101 Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: 10 A 0454

Sampled: 01,09.05
Received: 0110,05

DRAFT: PURGEABLES BY GC/MS (EPA 624)


\footnotetext{


}


\title{
amec \({ }^{\text {® }}\)
}

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\author{
ANALYSIS: VOLATILES \\ SAMPLE DELIVERY GROUP: IOA0454, 0456
}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: IOA0454, IOA456 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Volatiles (1,4-dioxane) \\ QC Level: Level IV \\ No. of Samples: 2 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: M. Pokorny \\ Date of Review: February 23, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Volatile Organics (DVP-2, Rev. 2), EPA Method SW-846 \(8260 B\) and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the form 1 as having only the / \(R\) " data qualifier and associated qualification code( \(s\) ) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{rrr} 
Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0454, 0456 \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Lab No. & Matrix & Method \\
\hline Outfall 017 & Outfall 017 & IOA0454-01 & water & 624 \\
\hline Outfall 015 & Outfall 015 & IOA0456-01 & water & 624 \\
\hline
\end{tabular}
\begin{tabular}{rr} 
Project: & NPDES \\
SDG No.: & IOA0454, 0456 \\
Analysis: & VOC
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the Del Mar within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). The samples were properly preserved. The COCs noted that the samples were received intact; however, information regarding absence of headspace was not provided. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed by field and laboratory personnel. The COCs accounted for the analyses presented in these SDGs. According to the sample login sheets, custody seals were not present on the cooler. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The samples were analyzed within 14 days of collection. No qualifications were required.

\subsection*{2.2 GC/MS TUNING}

The ion abundance windows were consistent with those specified in EPA Method 8260B. All ion abundances were within the established windows, and the samples were analyzed within 12 hours of the BFB injection time. No qualifications were required.

\subsection*{2.3 CALIBRATION}

One initial calibration, dated 01/07/05, was associated with this SDG. The average RRF for 1,4 dioxane was \(\geq 0.05\) and the \(\%\) RSD was \(\leq 15 \%\). One continuing calibration, dated \(01 / 07 / 05\) was associated with this SDG. The RRF for 1,4 -dioxane was \(\geq 0.05\) and the \(\% \mathrm{D}\) was \(\leq 20 \%\). The \(\%\) RSD and average RRF for 1,4-dioxane in the initial calibration, and the \(\% \mathrm{D}\) and RRF for 1,4-dioxane in the continuing calibration were recalculated from the raw data, and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.4 BLANKS}

One water method blank (P5A1502-BLK1) was associated with these SDGs. Target compound 1,4dioxane was not detected in the method blank. The method blank raw data showed no evidence of a false negative. No qualifications were required.
\begin{tabular}{lrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & 1OA0454, 0456 \\
\hline
\end{tabular}

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The laboratory analyzed a blank spike/blank spike duplicate pair (P5A1502-BS1/BS1D) with these SDGs. The recoveries and RPD for 1,4 -dioxane were within the laboratory QC limits. A representative recovery was recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.6 SURROGATE RECOVERY}

The samples and QC were fortified with dibromofluoromethane. The surrogate was recovered within the laboratory QC limits of \(80-125 \%\). The surrogate recoveries for these samples were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

Sample Outfall 015 was the MS/MSD analyses performed with these SDGs. The recoveries and RPD for 1,4-dioxane were within the laboratory QC limits. A representative recovery was recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.8 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

\subsection*{2.8.1 Trip Blanks}

The samples in these SDGs had no associated trip blank. No qualifications were required.

\subsection*{2.8.1 Field Blanks and Equipment Rinsates}

The site sample in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.8.2 Field Duplicates}

There were no freld duplicate samples associated with these SDGs.

\subsection*{2.9 INTERNAL STANDARDS PERFORMANCE}

Internal standard area counts and retention times for the samples were within the control limits established by the continuing calibration standards, of \(+100 \% /-50 \%\) for internal standard areas and \(\pm 0.50\) minutes for retention times. Internal standard areas and retention times were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.
\begin{tabular}{lrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0454,0456 \\
\hline
\end{tabular}

\subsection*{2.10 COMPOUND IDENTIFICATION}

Target compound identification was verified at a Level IV data validation. The laboratory analyzed for 1,4-dioxane by Method 8260 B/SIM. Chromatograms, retention times, and spectra for the samples and QC were examined and no target compound identification problems were noted. No qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification is verified at a Level IV data validation. The reporting limit was supported by the lowest concentration of the initial calibration standards and by the undated MDL supplied by the laboratory. Compound quantitation was verified by recalculating blank spike and surrogate recoveries from the raw data. No calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.12 TENTATIVELY IDENTIFIED COMPOUNDS}

TICs are not typically reported for SIM methods.

\subsection*{2.13 SYSTEM PERFORMANCE}

A review of the chromatograms and other raw data showed no identifiable problems with system performance. No qualifications were required.


\section*{DRAFT: 1,4-DIOXANE BY GC/MS (EPA 5030B/8260B)}


\section*{AR BE VALUATED}


\title{
CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA
}
\begin{tabular}{|c|c|}
\hline AMEC Earth \& Environmental & Package ID T711WC65 \\
\hline 550 South Wadsworth Boulevard & Task Order 313150010 \\
\hline Suite 500 & SDG No. IOA0454, IOA0456 \\
\hline Lakewood, CO 80226 & No. of Analyses 2 \\
\hline Laboratory Del Mar & Date: 02/22/05 \\
\hline Reviewer P. Meeks & Rexiewer's Signature \\
\hline Analysis/Method General Minerals & P. Motes \\
\hline
\end{tabular}

\section*{Action ITEMS \\ 1. Case Narrative Deficiencies}
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from
Analysis Protocol, e.g.,

Hexavalent chromium detected below the reporting limit was qualified as estimated.

Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification and Quantitation
System Performance
\begin{tabular}{l}
\hline\(\square\) \\
\hline\(\square\) \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

\section*{commeris}
* Subcontracted analytical laboratory is not meeting contract and/or method requirements.
- Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

\section*{Data Qualifier Reference Table}
\begin{tabular}{lll}
\hline Qualifier & Organics & Inorganics \\
\hline
\end{tabular}

U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
\(\mathrm{N} \quad\) The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."

NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approxmate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
\(R \quad\) The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.

The associated value is an estimated quantity.

Not applicable.

Not applicable.

The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

The data are unusable. Note: Analyte may or may not be present).

\section*{Qualification Code Reference Table}
\begin{tabular}{|c|c|c|}
\hline Qualifier & Organics & Inorganics \\
\hline H & Holding times were exceeded. & Holding times were exceeded. \\
\hline S & Surrogate recovery was outside QC limits. & The sequence or number of standards used for the calibration was incorrect \\
\hline C & Calibration \%RSD or \%D were noncompliant. & Correlation coefficient is \(<0.995\). \\
\hline R & Calibration RRF was \(<0.05\). & \(\% R\) for calibration is not within control limits. \\
\hline B & Presumed contamination from preparation (method) blank. & Presumed contamination from preparation (method) or calibration blank. \\
\hline L & Laboratory Blank Spike/Blank Spike Duplicate \(\%\) R was not within control limits. & Laboratory Control Sample \%R was not within control limits. \\
\hline Q & MS/MSD recovery was poor or RPD high. & MS recovery was poor. \\
\hline E & Not applicable. & Duplicates showed poor agreement. \\
\hline 1 & Internal standard performance was unsatisfactory. & ICP ICS results were unsatisfactory. \\
\hline A & Not applicable. & ICP Serial Dilution \%D were not within control limits. \\
\hline M & Tuning (BFB or DFTPP) was noncompliant. & Not applicable. \\
\hline T & Presumed contamination from trip blank. & Not applicable. \\
\hline + & False positive - reported compound was not present Not applicable. & \\
\hline - & False negative - compound was present but not reported. & Not applicable. \\
\hline F & Presumed contamination from FB, or ER. & Presumed contamination from FB or ER. \\
\hline \$ & Reported result or other information was incorrect. & Reported result or other information was incorrect. \\
\hline ? & TIC identity or reported retention time has been changed. & Not applicable. \\
\hline D & The analysis with this flag should not be used because another more technically sound analysis is available. & The analysis with this flag should not be used because another more technically sound analysis is available. \\
\hline P & Instrument performance for pesticides was poor. & Post Digestion Spike recovery was not within control limits. \\
\hline DNQ & The compound was detected between the MDL and the RL and, by definition, is considered an estimated value. & The compound was detected between the MDL and the RL and, by definition, is considered an estimated value. \\
\hline
\end{tabular}

Unusual problems found with the data that have been described in Section 2.\#, "Data Validation Findings." The number following the asterisk (*) will indicate the subsection where a description of the problem can be found (eg. *I would indicate a sample was not within temperature limits).

Unusual problems found with the data that have been described in Section 2.\#, "Data Validation Findings." The number following the asterisk (*) will indicate the subsection where a description of the problem can be found (cg. * 1 would indicate a sample was not within temperature limits).

\title{
\(a m e c^{\circ}\)
}

\section*{DATA VALIDATION REPORT}

\section*{NPDES Monitoring}

\section*{ANALYSIS: GENERAL MINERALS SAMPLE DELIVERY GROUPS: IOA0454 \& IOA0456}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: IOA0454 \& IOA456 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: General Minerals \\ QC Level: Level IV \\ No. of Samples: 1 \\ Reviewer: P. Meeks \\ Date of Review: February 22, 2005
}

The sample listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 300.0, 350.2, 330.5, 405.1, 335.2, 413.1, 415.1, 418.1, 218.6, 160.2, 160.5, 180.1, and 120.1, Standard Methods for the Examination of Water and Wastewater Methods SM5540-C and SM2540C, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form 1 as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: \(10 A 0454 /, 0456\) \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 015 & Outfall 015 & IOA0456-01 & water & General Minerals \\
\hline Outfall 017 & Outfall 017 & IOA0454-01 & water & General Minerals \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). No preservation problems were noted by the laboratory. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by field and laboratory personnel. The COC had been handcorrected to request settleable solids but TSS was reported. No sample qualifications were required.

\subsection*{2.1.3 Holding Times}

The holding times were assessed by comparing the date of collection with the dates of analyses. The 28 -day analytical holding time for oil and grease, the seven-day holding time for total suspended solids, and the 24-hour hexavalent chromium and dissolved oxygen holding time were met, and no qualifications were required.

\subsection*{2.2 CALIBRATION}

For hexavalent chromium, the initial calibration correlation coefficient was \(\geq 0.995\), and the ICV and continuing calibration information was acceptable with \(\%\) Rs within the control limits of \(90-110 \%\). The dissolved oxygen probe was checked in zero water and tap water and balance calibration information was provided for TSS. Balance calibration information was not provided to oil and grease; however, as the LCS/LCSD results were within the CCV control limits, no qualifications were required. No qualifications were required.

\subsection*{2.3 BLANKS}

Oil and grease was detected in the method blank, but not at sufficient concentration to qualify the site samples. The remaining method blank and CCB results reported on the summary forms and in the raw data for blank analyses associated with the samples were nondetects at the reporting limit. No qualifications were required.

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The laboratory control sample and laboratory control sample duplicate (oil and grease only) recoveries were within the laboratory-established control limits. The LCS is not applicable to diussolved oxygen. No qualifications were required.

\subsection*{2.5 SURROGATES RECOVERY}

Surrogate recovery is not applicable to the analyses presented in these SDGs.

\subsection*{2.6 LABORATORY DUPLICATES}

A duplicate analysis was performed on Outfall 017 for dissolved oxygen and MS/MSD analyses were performed on Outfall 017 for hexavalent chromium. The RPDs were within the laboratory-established control limits of \(\leq 20 \%\) and \(\leq 10 \%\), respectively. No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

MS/MSD analyses were performed on Outfall 017 for hexavalent chromium. Both recoveries were within the laboratory-established control limits of \(90-110 \%\) and no qualifications were required.

\subsection*{2.8 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.9 ICP SERIAL DILUTION}

ICP serial dilution is not applicable to the analyses presented in this data validation report.

\subsection*{2.10 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculations errors were noted. Hexavalent chromium detected below the reporting limit in Outfall 017 was qualified as estimated, "JJ." No further qualifications were required.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0454/, 0456 \\
\hline
\end{tabular}

\subsection*{2.11 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.11.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.11.2 Field Duplicates}

There were no field duplicate pairs associated with these SDGs.
\begin{tabular}{lll} 
MWH-Pasadena/Boeing & Project ID: Outfall 017 & \\
300 North Lake Avenue, Suite 1200 & Report Number: IOA0454 & Sampled: 01.09 .05 \\
Pasadena, CA 91101 & & Received: \(01 / 10,05\)
\end{tabular}

\section*{DRAFT: NORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & Dilution Factor & \begin{tabular}{l}
Date \\
Extracted
\end{tabular} & Date Analyze & \[
\begin{array}{r}
D \\
\text { d Qual }
\end{array}
\] & fiers \\
\hline \begin{tabular}{l}
Sample ID: 1OA0454-01 \\
Reporting Linits: mg/
\end{tabular} & utfall 017.C & b - Water & cont & & Sampl & led: 01/0 & 9/05 & & \begin{tabular}{l}
Rev \\
Qual
\end{tabular} & Qual \\
\hline Dissolved Oxygen & EPA 360.1 & 5A10085 & 1.0 & 1.0 & & & & & Qual & code \\
\hline Oil \& Grease & EPA 413.1 & SA12061 & 0.94 & 1.0
5.0 & 6.2 & & 01/10/05 & 01/10/05 & & \\
\hline Total Suspended Solids & EPA 160.2 & 5A11105 & 10
10 & 5.0
10 & \[
-1210
\] & 1 & \[
01 / 12 / 05
\] & \[
01 / 12 / 05
\] & E & \(\$\) \\
\hline \begin{tabular}{l}
Sample ID: IOA0454-01 \\
Reporting Units: ugh
\end{tabular} & tfall 017-G & b-Water & & & Sample & led: 01/09 & 9/05 & & & \\
\hline Chromium VI & EPA 218.6 & 5A10086 & 0.041 & & & & & & & \\
\hline Perchlorate & EPA 314.0 & 5 A13051 & 0.80 & \[
4.0
\] & \[
43
\] & 1 & \[
\begin{aligned}
& 01 / 10 / 05 \\
& 01 / 13 / 05
\end{aligned}
\] & \(01 / 10 / 05\)
\(01 / 14: 05\) & \(J J\)
\(*\) & DNG \\
\hline
\end{tabular}

\section*{AMEC VQYIDATED LEVELIV}

\section*{DRAFT REPORT \\ DRAFT REPORT \\ DATA SUBJECT TO CHANGE}

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}

AMEC Earth \& Environmental 550 South Wadsworth Boulevard Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer L. Jarusewic
Analysis/Method Perchlorate by 314.0

Package ID T711WC66
Task Order 313150010
SDG No. IOA0454/IOA0456
No. of Analyses 2

1. Case Narrative Deficiencies
2. Out of Scope Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from

Analysis Protocol, e.g.,
Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification and Quantitation
System Performance
\begin{tabular}{l} 
Qualifications were applied for MS exceeding QC limits. \\
\hline \\
\hline \\
\hline
\end{tabular}
\(\qquad\)
\(\square\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{COMMENTS \({ }^{\text {b }}\)}

\section*{1}
- Subcontracted analytical laboratory is not meeting contract and/or method requirements.
\({ }^{6}\) Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

\title{
\(a m e c^{9}\)
}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES Monitoring
}

\section*{ANALYSIS: PERCHLORATE}

\section*{SAMPLE DELIVERY GROUPS: IOA0454 and IOA0456}

Prepared by
AMEC--Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: IOA0454 and IOA0456 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Perchlorate \\ QC Level: Level IV \\ No. of Samples: 2 \\ Reviewer: L. Janusewic \\ Date of Review: February 17, 2005
}

The sample listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 314.0, and 120.1, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Fom I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 015 & Outfall 015 & IOA0456-01 & Water & Perchlorate \\
\hline Outfall 017 & Outfall 017 & IOA0454-01 & Water & Perchlorate \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handing, and Transport}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). No preservation problems were noted by the laboratory. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by field and laboratory personnel, and accounted for the samples and analysis presented in these SDGs. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The holding time was assessed by comparing the date of collection with the dates of analysis. The 28day analytical holding time for perchlorate was met, and no qualifications were required.

\subsection*{2.2 CALIBRATION}

The initial calibration correlation coefficients were \(\geq 0.995\). The IPC-MA recoveries were within the control limits of \(80-120 \%\). The ICV, CCV and IPC recoveries were within the control limits of \(90-110 \%\). No qualifications were required.

\subsection*{2.3 BLANKS}

The method blank and CCB results reported on the summary forms and in the raw data for blank analyses associated with the sample were nondetects at the reporting limit. No qualifications were required.

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The laboratory control sample recoveries were within the method control limits of \(85-115 \%\). No qualifications were required.

\subsection*{2.5 SURROGATES RECOVERY}

Surrogate recovery is not applicable to the analysis presented in these SDGs.

\subsection*{2.6 LABORATORY DUPLICATES}

No MS/MSD or duplicate analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

No MS/MSD analyses were performed in association with either SDG; however, a confirmation spike was performed on sample Outfall 015 in association with SDG IOA0456. The perchlorate recovery was above the method control limits of \(80-120 \%\). Perchlorate in this sample was qualified as estimated, "J." No further qualifications were required.

\subsection*{2.8 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analysis of this sample; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.9 ICP SERIAL DILUTION}

ICP serial dilution is not applicable to the analysis presented in this data validation report.

\subsection*{2.10 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the samples in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculations errors were noted. No qualifications were required.

\subsection*{2.11 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.11.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.11.2 Field Duplicates}

There were no field duplicate pairs associated with these SDGs.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: IOA0454 Sampled: 01/09:05
Received: 01/10/05

\section*{DRAFT: INORGANICS}


\section*{AMEC VALIDATED}

\section*{LEVEL IV}
(


\footnotetext{
\(\qquad\)
}

\title{
LABORATORY REPORT
}

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Outfall 017

Sampled: 01/09/05
Received: 01/10/05
Issued: 03/07/05 08:45

\section*{NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117}

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chains) of Custody, 2 pages, are included and are an integral part of this report.
This entire report was reviewed and approved for release.

\section*{CASE NARRATIVE}

SAMPLE RECEIPT: Samples were received intact, at \(4^{\circ} \mathrm{C}\), on ice and with chain of custody documentation.
HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the Del Mar Analytical Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.
QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.
COMMENTS: \(\quad\) Results that fall between the MDL and RL are 'J' flagged. Total suspended solids analyzed instead of total settleable solids due to miscommunication on the COC.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
1OA0454-01
1OA0454-02

CLIENT ID
Outfall 017-Grab
Trip Blank

MATRIX
Water
Water

Reviewed By:


\author{
Del Mar Analytical, Irvine \\ Michele Harper \\ Project Manager
}

Del Mar Analytical

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Outfall 017
Report Number: IOA0454

Sampled: 01/09/05
Received: 01/10/05

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{llllllllll} 
& & & MDL \\
Analyte & Method & Ratch & Limit & \begin{tabular}{c} 
Reporting \\
Limit
\end{tabular} & \begin{tabular}{c} 
Sample \\
Result
\end{tabular} & \begin{tabular}{c} 
Dillution \\
Factor
\end{tabular} & \begin{tabular}{c} 
Date \\
Extracted
\end{tabular} & \begin{tabular}{c} 
Date \\
Analyzed
\end{tabular} \\
Qualifiers
\end{tabular}

\section*{Del Mar Analytical, Irvine \\ Michele Harper \\ Project Manager}

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017

Report Number: IOA0454

Sampled: 01/09/05
Received: 01/10/05

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{llllllllll} 
& & & MDL \\
Analyte & Method & Batch & Limit & \begin{tabular}{c} 
Reporting \\
Limit
\end{tabular} & \begin{tabular}{c} 
Sample \\
Result
\end{tabular} & \begin{tabular}{c} 
Dilution \\
Factor
\end{tabular} & \begin{tabular}{c} 
Date \\
Extracted
\end{tabular} & \begin{tabular}{c} 
Date \\
Analyzed
\end{tabular} \\
Qualifiers
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: IOA0454

Sampled: 01/09/05
Received: 01/10/05

\section*{SEMI-VOLATILE ORGANICS BY GC/MS (EPA 3520C/1625C MOD)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & \begin{tabular}{l}
Data \\
Qualifiers
\end{tabular} \\
\hline \multicolumn{5}{|l|}{Sample ID: 1OA0454-01 (Ontfall 017-Grab - Water)} & \multicolumn{4}{|l|}{Sampled: 01/09/05} & \\
\hline Reporting Units: ug/ & & & & & & & & & \\
\hline N-Nitrosodimethylamine & EPA 1625C Mod & 5A12032 & 0.00070 & 0.0020 & 0.038 & 0.99 & 01/12/05 & 01/13/05 & \\
\hline
\end{tabular}
\begin{tabular}{lcr} 
MWH-Pasadena/Boeing & Project ID: Outfall 017 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 09 / 05\) \\
Pasadena, CA 91101 & Report Number: IOA0454 & Received: \(01 / 10 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200

Attention: Bronwyn Kelly

Sampled: 01/09/05
Received: 01/10/05

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \begin{tabular}{l}
Sample ID: 1OA0454-01 \\
Reporting Units: mg
\end{tabular} & - Water) & & \multicolumn{7}{|c|}{Sampled: 01/09/05} \\
\hline Chromium VI & EPA 218.6 & 5A10086 & 0.000041 & 0.0010 & 0.00013 & 1 & & & \\
\hline Dissolved Oxygen & EPA 360.1 & 5A10085 & 1.0 & 1.0 & 0.0013 & 1 & 01/10/05 & 01/10/05 & J \\
\hline Oil \& Grease & EPA 413.1 & 5A12061 & 0.94 & 5.0 & 12 & 1 & 01/12/05 & 01/10/05 & \\
\hline Surfactants (MBAS) & SM5540-C & 5A10079 & 0.044 & 0.10 & 0.044 & 1 & 01/10/05 & 01/10/05 & B \\
\hline Total Suspended Solids & EPA 160.2 & 5A11105 & 10 & 10 & 35 & 1 & 01/11/05 & \[
01 / 11 / 05
\] & J \\
\hline Sample ID: 1OA0454-01 Reporting Units: ug/ & - Water) & & & & Samp & ed: 01/09 & & & \\
\hline Perchlorate & EPA 314.0 & 5A13051 & 0.80 & 4.0 & 43 & 1 & 01/13/05 & 01/14/05 & \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Michele Harper
Project Manager
}


\begin{tabular}{lc}
\begin{tabular}{l} 
MWH-Pasadena/Boeing \\
300 North Lake Avenue, Suite 1200 \\
Pasadena, CA 91101 \\
Attention: Bronwyn Kelly
\end{tabular} & Project ID: Outfall 017 \\
\hline & Report Number: IOA0454 \\
METHOD BLANKIQC DATA
\end{tabular}

\section*{PURGEABLES BY GC/MS (EPA 624)}

\section*{Analyte \\ Batch: 5A11011 Extracted: 01/11/05}

Blank Analyzed: 01/11/2005 (5A11011-BLK1)
1,2,3-Trichloropropane
Benzene

Bromodichlorom
Bromoform
Bromomethane
Carbon tetrachloride
Chlorobenzene
Chloroethane
Chloroform
Chloromethane
Dibromochloromethane
1,2-Dichlorobenzene
1,3-Dichlorobenzene
1,4-Dichlorobenzene
1,1-Dichloroethane
1,2-Dichloroethane
1,1-Dichloroethene
trans-1,2-Dichloroethene
1,2-Dichloropropane
cis-1,3-Dichloropropene
trans-1,3-Dichloropropene
Ethylbenzene
Methylene chloride
1,1,2,2-Tetrachloroethane
Tetrachloroethene
Toluene
1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichloroethene
Trichlorofluoromethane
Vinyl chloride
Xylenes, Total
Surrogate: Dibromoffuoromethane
Surrogate: Toluene-d8
Surrogate: 4-Bromofluorobenzene

\section*{Result}
\begin{tabular}{ccccccccccc} 
Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}


Del Mar Analytical, Irvine
Michele Harper
Project Manager

Sampled: 01/09/05
Received: 01/10/05

\section*{METHOD BLANKIQC DATA}

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Outfall 017

Report Number: 1OA0454
Sampled: 01/09/05
Received: 01/10/05

\section*{METHOD BLANKIOC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}

\section*{Analyte}

Result
Batch:5A11011 Extracted: 01/11/05

\section*{LCS Analyzed: 01/11/2005 (5A11011-BS1)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1,2,3-Trichloropropane & 22.8 & 10 & 0.85 & ug/ & 25.0 & 91 & 60-130 \\
\hline Benzene & 21.4 & 1.0 & 0.28 & ug/ & 25.0 & 86 & 70-120 \\
\hline Bromodichloromethane & 24.5 & 2.0 & 0.30 & ug/ & 25.0 & 98 & 70-140 \\
\hline Bromoform & 25.0 & 5.0 & 0.32 & ug/l & 25.0 & 100 & 55-135 \\
\hline Bromomethane & 25.4 & 5.0 & 0.34 & ug/ & 25.0 & 102 & 60-140 \\
\hline Carbon tetrachloride & 26.1 & 0.50 & 0.28 & ug/ & 25.0 & 104 & 70-140 \\
\hline Chlorobenzene & 24.2 & 2.0 & 0.36 & ug/l & 25.0 & 97 & 80-125 \\
\hline Chloroethane & 24.1 & 5.0 & 0.33 & ug/ & 25.0 & 96 & 60-145 \\
\hline Chloroform & 22.8 & 2.0 & 0.33 & ug/ & 25.0 & 91 & 75-130 \\
\hline Chloromethane & 20.7 & 5.0 & 0.30 & ug/ & 25.0 & 83 & 40-145 \\
\hline Dibromochloromethane & 25.6 & 2.0 & 0.28 & ug/1 & 25.0 & 102 & 65-145 \\
\hline 1,2-Dichlorobenzene & 24.2 & 2.0 & 0.32 & ug/1 & 25.0 & 97 & 80-120 \\
\hline 13- Dichlorobenzene & 23.3 & 2.0 & 0.35 & ug/ & 25.0 & 93 & \(80-120\) \\
\hline 1,4 Dichlorobenzene & 23.2 & 2.0 & 0.37 & ugf & 25.0 & 93 & 80-120 \\
\hline 1,1-Dichloroethane & 22.3 & 2.0 & 0.27 & ug/ & 25.0 & 89 & 70-135 \\
\hline 1,2-Dichloroethane & 24.3 & 0.50 & 0.28 & ug/ & 25.0 & 97 & 60-150 \\
\hline 1,1-Dichloroethene & 22.5 & 5.0 & 0.32 & ug/ & 25.0 & 90 & 75-135 \\
\hline trans-1;2-Dichloroethene & 23.6 & 2.0 & 0.27 & ug/ & 25.0 & 94 & 70-130 \\
\hline 1,2-Dichloropropane & 23.0 & 2.0 & 0.35 & ug/ & 25.0 & 92 & 70-120 \\
\hline cis-1,3-Dichloropropene & 25.0 & 2.0 & 0.22 & ug/l & 25.0 & 100 & 75-130 \\
\hline trans-1,3-Dichloropropene & 25.3 & 2.0 & 0.24 & ugl & 25.0 & 101 & 75-135 \\
\hline Ethylbenzene & 24.7 & 2.0 & 0.25 & ughl & 25.0 & 99 & 80-120 \\
\hline Methylene chloride & 22.7 & 5.0 & 0.48 & ug/l & 25.0 & 91 & 60-135 \\
\hline 1,1,2,2-Tetrachloroethane & 21.2 & 2.0 & 0.24 & ug/ & 25.0 & 85 & 60-135 \\
\hline Tetrachloroethene & 25.4 & 2.0 & 0.32 & ugh & 25.0 & 102 & 75-125 \\
\hline Toluene & 22.9 & 2.0 & 0.36 & ug/l & 25.0 & 92 & 75-120 \\
\hline 1,1,1-Trichloroethane & 25.3 & 2.0 & 0.30 & ug/1 & 25.0 & 101 & 75-140 \\
\hline 1,1,2-Trichloroethane & 23.6 & 2.0 & 0.30 & ugh & 25.0 & 94 & 70-125 \\
\hline Trichloroethene & 24.9 & 2.0 & 0.26 & ug/ & 25.0 & 100 & 80-120 \\
\hline Trichlorofluoromethane & 25.2 & 5.0 & 0.34 & ug/ & 25.0 & 101 & 65-145 \\
\hline Vinyl chloride & 20.2 & 0.50 & 0.26 & ug/ & 25.0 & 81 & 50-130 \\
\hline Surrogate: Dibromofluoromethane & 24.4 & & & ug/ & 25.0 & 98 & 80-120 \\
\hline Surrogate: Toluene-d8 & 25.0 & & & ug/ & 25.0 & 100 & 80-120 \\
\hline Surrogate: 4-Bromofluorobenzene & 24.6 & & & ug/ & 25.0 & 98 & 80-120 \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager
\begin{tabular}{cccccccccc} 
Reporting & & & \begin{tabular}{l} 
Spike
\end{tabular} & \begin{tabular}{l} 
Source
\end{tabular} & \begin{tabular}{l} 
\%REC
\end{tabular} & & RPD & Data \\
Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

\section*{MWH-Pasadena/Boeing}

300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017

Report Number: 10A0454

Sampled: 01/09/05
Received: 01/10/05

\section*{METHOD BLANKIOC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}

\section*{Analyte \\ Batch: 5A11011 Extracted: 01/11/05}

Reporting Limit

RPD Limit

Data Qualifiers

Matrix Spike Analyzed: 01/11/2005 (5A11011-MS1)

Source: IOA0480-01
P1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & \\
\hline 1,2,3-Trichloropropane & 21.1 & 10 & 0.85 & ug/ & 25.0 & ND & 84 & 55-140 \\
\hline Benzene & 19.1 & 1.0 & 0.28 & ug/ & 25.0 & ND & 76 & 70-120 \\
\hline Bromodichloromethane & 21.1 & 2.0 & 0.30 & ug/ & 25.0 & ND & 84 & 70-140 \\
\hline Bromoform & 23.5 & 5.0 & 0.32 & ug/ & 25.0 & ND & 94 & 55-140 \\
\hline Bromomethane & 18.1 & 5.0 & 0.34 & ug/ & 25.0 & ND & 72 & 50-145 \\
\hline Carbon tetrachloride & 21.7 & 0.50 & 0.28 & ug/ & 25.0 & ND & 87 & 70-145 \\
\hline Chlorobenzene & 23.8 & 2.0 & 0.36 & ug/ & 25.0 & 1.8 & 88 & 80-125 \\
\hline Chloroethane & 17.6 & 5.0 & 0.33 & ug/ & 25.0 & ND & 70 & 50-145 \\
\hline Chloroform & 18.4 & 2.0 & 0.33 & ug/ & 25.0 & ND & 74 & 70-135 \\
\hline Chloromethane & 14.2 & 5.0 & 0.30 & ug/ & 25.0 & ND & 57 & 35-145 \\
\hline Dibromochloromethane & 23.1 & 2.0 & 0.28 & ug/ & 25.0 & ND & 92 & 65-145 \\
\hline 1,2-Dichlorobenzene & 23.1 & 2.0 & 0.32 & ug/ & 25.0 & ND & 92 & 75-130 \\
\hline 1,3-Dichlorobenzene & 21.8 & 2.0 & 0.35 & ugh & 25.0 & ND & 87 & 75-130 \\
\hline 1,4-Dichlorobenzene & 21.6 & 2.0 & 0.37 & ugl & 25.0 & ND & 86 & 80-120 \\
\hline 1,1-Dichloroethane & 18.2 & 2.0 & 0.27 & ug/ & 25.0 & ND & 73 & 65-135 \\
\hline 1,2-Dichloroethane & 20.9 & 0.50 & 0.28 & ugh & 25.0 & ND & 84 & 60-150 \\
\hline 1,1-Dichloroethene & 18.4 & 5.0 & 0.32 & ug/l & 25.0 & ND & 74 & 65-140 \\
\hline trans-1,2-Dichloroethene & 19.9 & 2.0 & 0.27 & ug/ & 25.0 & ND & 80 & 65-135 \\
\hline 1,2-Dichloropropane & 20.8 & 2.0 & 0.35 & ug/ & 25.0 & ND & 83 & 65-130 \\
\hline cis-1,3-Dichloropropene & 22.5 & 2.0 & 0.22 & ug/l & 25.0 & ND & 90 & 70-140 \\
\hline trans-1,3-Dichloropropene & 22.8 & 2.0 & 0.24 & ug/1 & 25.0 & ND & 91 & 70-140 \\
\hline Ethylbenzene & 22.2 & 2.0 & 0.25 & ug/ & 25.0 & ND & 89 & 70-130 \\
\hline Methylene chloride & 18.8 & 5.0 & 0.48 & ug/ & 25.0 & ND & 75 & 60-135 \\
\hline 1,1,2,2-Tetrachloroethane & 21.3 & 2.0 & 0.24 & ug/ & 25.0 & ND & 85 & 60-145 \\
\hline Tetrachloroethene & 24.2 & 2.0 & 0.32 & ug/l & 25.0 & ND & 97 & 70-130 \\
\hline Toluene & 20.6 & 2.0 & 0.36 & ug/l & 25.0 & ND & 82 & 70-120 \\
\hline 1,1,1-Trichloroethane & 20.4 & 2.0 & 0.30 & ug/l & 25.0 & ND & 82 & 75-140 \\
\hline 1,1,2-Trichloroethane & 21.2 & 2.0 & 0.30 & ug/ & 25.0 & ND & 85 & 60-135 \\
\hline Trichloroethene & 22.0 & 2.0 & 0.26 & ug/ & 25.0 & ND & 88 & 70-125 \\
\hline Trichlorofluoromethane & 18.7 & 5.0 & 0.34 & ug/ & 25.0 & ND & 75 & 55-145 \\
\hline Vinyl chloride & 14.9 & 0.50 & 0.26 & ug/ & 25.0 & ND & 60 & 40-135 \\
\hline Surrogate: Dibromofluoromethane & 22.2 & & & ug \(/\) & 25.0 & & 89 & 80-120 \\
\hline Surrogate: Toluene-d8 & 24.6 & & & ug/I & 25.0 & & 98 & 80-120 \\
\hline Surrogate: 4-Bromofluorobenzene & 23.7 & & & ug/ & 25.0 & & 95 & 80-120 \\
\hline
\end{tabular}
MWH-Pasadena/Boeing300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: 1OA0454

\section*{METHOD BLANKIQC DATA}

Sampled: 01/09/05
Received: 01/10/05

\section*{PURGEABLES BY GC/MS (EPA 624)}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Matrix Spike Dup Analyzed: 01/11/2005 (5A11011-MSD1)} & \multicolumn{8}{|c|}{Source: 1OA0480-01} \\
\hline 1,2,3-Trichloropropane & 20.7 & 10 & 0.85 & ug/l & 25.0 & ND & 83 & 55-140 & 2 & 30 \\
\hline Benzene & 19.4 & 1.0 & 0.28 & ug/ & 25.0 & ND & 78 & 70-120 & 2 & 20 \\
\hline Bromodichloromethane & 21.3 & 2.0 & 0.30 & ug/1 & 25.0 & ND & 85 & 70-140 & 1 & 20 \\
\hline Bromoform & 23.0 & 5.0 & 0.32 & ug/l & 25.0 & ND & 92 & 55-140 & 2 & 25 \\
\hline Bromomethane & 18.9 & 5.0 & 0.34 & ug/l & 25.0 & ND & 76 & 50-145 & 4 & 25 \\
\hline Carbon tetrachloride & 22.5 & 0.50 & 0.28 & ug/ & 25.0 & ND & 90 & 70-145 & 4 & 25 \\
\hline Chlorobenzene & 24.0 & 2.0 & 0.36 & ug/ & 25.0 & 1.8 & 89 & 80-125 & 1 & 20 \\
\hline Chloroethane & 18.5 & 5.0 & 0.33 & ug/1 & 25.0 & ND & 74 & 50-145 & 5 & 25 \\
\hline Chloroform & 18.6 & 2.0 & 0.33 & ug/ & 25.0 & ND & 74 & 70-135 & 1 & 20 \\
\hline Chioromethane & 14.5 & 5.0 & 0.30 & ug/ & 25.0 & ND & 58 & 35-145 & 2 & 25 \\
\hline Dibromochloromethane & 23.0 & 2.0 & 0.28 & ugh & 25.0 & ND & 92 & 65-145 & 0 & 25 \\
\hline 1,2-Dichlorobenzene & 23.7 & 2.0 & 0.32 & ug/ & 25.0 & ND & 95 & 75-130 & 3 & 20 \\
\hline 1,3-Dichlorobenzene & 22.3 & 2.0 & 035 & ugh: & 25.0 & ND & 89 & 75.130 & 2 & 20 \\
\hline 1,4-Dichlorobenzene & 22.1 & 2.0 & 0.37 & ugn & 25.0 & ND & 88 & 80-120 & 2 & 20 \\
\hline 1,1-Dichloroethane & 18.7 & 2.0 & 0.27 & ugh & 25.0 & ND & 75 & 65-135 & 3 & 20 \\
\hline 1,2-Dichloroethane & 20.6 & 0.50 & 0.28 & ug/ & 25.0 & ND & 82 & 60-150 & 1 & 20 \\
\hline 1,1-Dichloroethene & 19.1 & 5.0 & 0.32 & ug/ & 25.0 & ND & 76 & 65-140 & 4 & 20 \\
\hline trans-1,2-Dichloroethene & 20.3 & 2.0 & 0.27 & ug/ & 25.0 & ND & 81 & 65-135 & 2 & 20 \\
\hline 1,2-Dichloropropane & 21.1 & 2.0 & 0.35 & ug/ & 25.0 & ND & 84 & 65-130 & 1 & 20 \\
\hline cis-1,3-Dichloropropene & 22.3 & 2.0 & 0.22 & ug/ & 25.0 & ND & 89 & 70-140 & 1 & 20 \\
\hline trans-1,3-Dichloropropene & 22.6 & 2.0 & 0.24 & ugl & 25.0 & ND & 90 & 70-140 & 1 & 25 \\
\hline Ethylbenzene & 22.8 & 2.0 & 0.25 & ug/ & 25.0 & ND & 91 & 70-130 & 3 & 20 \\
\hline Methylene chloride & 18.7 & 5.0 & 0.48 & ug/ & 25.0 & ND & 75 & 60-135 & 1 & 20 \\
\hline 1,1,2,2-Tetrachloroethane & 21.1 & 2.0 & 0.24 & ug/l & 25.0 & ND & 84 & 60-145 & 1 & 30 \\
\hline Tetrachloroethene & 25.1 & 2.0 & 0.32 & ugl & 25.0 & ND & 100 & 70-130 & 4 & 20 \\
\hline Toluene & 21.1 & 2.0 & 0.36 & ugh & 25.0 & ND & 84 & 70-120 & 2 & 20 \\
\hline 1,1,1-Trichloroethane & 20.8 & 2.0 & 0.30 & ugh & 25.0 & ND & 83 & 75-140 & 2 & 20 \\
\hline 1,1,2-Trichloroethane & 20.6 & 2.0 & 0.30 & ug/ & 25.0 & ND & 82 & 60-135 & 3 & 25 \\
\hline Trichloroethene & 22.6 & 2.0 & 0.26 & ugh & 25.0 & ND & 90 & 70-125 & 3 & 20 \\
\hline Trichlorofluoromethane & 19.5 & 5.0 & 0.34 & ugh & 25.0 & ND & 78 & 55-145 & 4 & 25 \\
\hline Vinyl chloride & 15.7 & 0.50 & 0.26 & ugh & 25.0 & ND & 63 & 40-135 & S & 30 \\
\hline Surrogate: Dibromoftuoromethane & 22.0 & & & ug/ & 25.0 & & 88 & 80-120 & & \\
\hline Surrogate: Toluene-d8 & 24.8 & & & ug/ & 25.0 & & 99 & 80-120 & & \\
\hline Surrogate: 4-Bromofluorobenzene & 23.4 & & & ug/ & 25.0 & & 94 & 80-120 & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager
\begin{tabular}{|lc} 
MWH-Pasadena/Boeing \\
300 North Lake Avenue, Suite 1200 \\
Pasadena, CA 91101 \\
Attention: Bronwyn Kelly & Project ID: Outfall 017 \\
\hline
\end{tabular}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A11017 Extracted; 01/11/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/11/2005 (5A11017-BLK1)} \\
\hline 1,2,3-Trichloropropane & ND & 10 & 0.85 & ug/ & & & & & & & \\
\hline Benzene & ND & 1.0 & 0.28 & ug/ & & & & & & & \\
\hline Bromodichloromethane & ND & 2.0 & 0.30 & ug/ & & & & & & & \\
\hline Bromoform & ND & 5.0 & 0.32 & ug/ & & & & & & & \\
\hline Bromomethane & ND & 5.0 & 0.34 & ug/ & & & & & & & \\
\hline Carbon tetrachloride & ND & 0.50 & 0.28 & ug/ & & & & & & & \\
\hline Chlorobenzene & ND & 2.0 & 0.36 & ug/ & & & & & & & \\
\hline Chloroethane & ND & 5.0 & 0.33 & ug/ & & & & & & & \\
\hline Chloroform & ND & 2.0 & 0.33 & ug/l & & & & & & & \\
\hline Chloromethane & ND & 5.0 & 0.30 & ug/ & & & & & & & \\
\hline Dibromochloromethane & ND & 2.0 & 0.28 & ug/ & & & & & & & \\
\hline 1,2-Dichlorobenzene & ND & 2.0 & 0.32 & ug/ & & & & & & & \\
\hline 1,3-Dichlorobenzene & ND & 2.0 & 0.35 & ugA & & & & & & & \\
\hline 1,4-Dichlorobenzene & ND & 2.0 & 0.37 & ugh & & & & & & & \% \\
\hline 1,1-Dichloroethane & ND & 2.0 & 0.27 & ug/ & & & & & & & \\
\hline 1,2-Dichloroethane & ND & 0.50 & 0.28 & ug/ & & & & & & & \\
\hline 1,1-Dichloroethene & ND & 5.0 & 0.32 & ug/ & & & & & & & \\
\hline trans-1,2-Dichloroethene & ND & 2.0 & 0.27 & ug/ & & & & & & & \\
\hline 1,2-Dichloropropane & ND & 2.0 & 0.35 & ug/ & & & & & & & \\
\hline cis-1,3-Dichloropropene & ND & 2.0 & 0.22 & ug/ & & & & & & & \\
\hline trans-1,3-Dichloropropene & ND & 2.0 & 0.24 & ug/ & & & & & & & \\
\hline Ethylbenzene & ND & 2.0 & 0.25 & ug/ & & & & & & & \\
\hline Methylene chloride & ND & 5.0 & 0.48 & ug/ & & & & & & & \\
\hline 1,1,2,2-Tetrachloroethane & ND & 2.0 & 0.24 & ug/l & & & & & & & \\
\hline Tetrachloroethene & ND & 2.0 & 0.32 & ug/ & & & & & & & \\
\hline Toluene & ND & 2.0 & 0.36 & ug/ & & & & & & & \\
\hline 1,1,1-Trichloroethane & ND & 2.0 & 0.30 & ug/ & & & & & & & \\
\hline 1,1,2-Trichloroethane & ND & 2.0 & 0.30 & ug/ & & & & & & & \\
\hline Trichloroethene & ND & 2.0 & 0.26 & ug/l & & & & & & & \\
\hline Trichlorofluoromethane & ND & 5.0 & 0.34 & ug/ & & & & & & & \\
\hline Vinyl chloride & ND & 0.50 & 0.26 & ugh & & & & & & & \\
\hline Xylenes, Total & ND & 4.0 & 0.52 & ug/ & & & & & & & \\
\hline Surrogate: Dibromofluoromethane & 25.0 & & & ugh & 25.0 & & 1008 & 80-120 & & & \\
\hline Surrogate: Toluene-d8 & 24.9 & & & ug/ & 25.0 & & 1008 & 80-120 & & & \\
\hline Surrogate: 4-Bromofluorobenzene & 24.7 & & & \(u g /\) & 25.0 & & \(99 \quad 8\) & 80-120 & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine \\ Michele Harper \\ Project Manager}

\author{
MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Outfall 017

Report Number: 1OA0454
Sampled: 01/09/05
Received: 01/10/05

\section*{METHOD BLANKIOC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
Analyte
Batch: 5A11017 Extracted: 01/11/05

Result
\begin{tabular}{cccccccccc} 
Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

LCS Analyzed: 01/11/2005 (5A11017-BS1)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1,2,3-Trichloropropane & 18.1 & 10 & 0.85 & ug/l & 25.0 & 72 & 60-130 \\
\hline Benzene & 21.6 & 1.0 & 0.28 & ug/l & 25.0 & 86 & 70-120 \\
\hline Bromodichloromethane & 23.1 & 2.0 & 0.30 & ug/l & 25.0 & 92 & \(70-140\) \\
\hline Bromoform & 16.7 & 5.0 & 0.32 & ug/l & 25.0 & 67 & 55-135 \\
\hline Bromomethane & 22.7 & 5.0 & 0.34 & ug/ & 25.0 & 91 & 60-140 \\
\hline Carbon tetrachloride & 24.3 & 0.50 & 0.28 & ug/ & 25.0 & 97 & 70-140 \\
\hline Chlorobenzene & 23.3 & 2.0 & 0.36 & ug/l & 25.0 & 93 & 80-125 \\
\hline Chloroethane & 21.9 & 5.0 & 0.33 & ug/ & 25.0 & 88 & 60-145 \\
\hline Chloroform & 23.4 & 2.0 & 0.33 & ug/l & 25.0 & 94 & 75-130 \\
\hline Chloromethane & 19.1 & 5.0 & 0.30 & ug/ & 25.0 & 76 & 40-145 \\
\hline Dibromochloromethane & 19.4 & 2.0 & 0.28 & ug/l & 25.0 & 78 & 65-145 \\
\hline 1,2-Dichlorobenzene & 22.5 & 2.0 & 0.32 & ug/ & 25.0 & 90 & 80-120 \\
\hline 1,3-Dichlorobenzene & 23.1 & 2.0 & 0.35 & ug/ & 25.0 & 92 & 80120 \\
\hline 1,4-Dichlorobenzene & - 22.9 & 2.0 & 0.37 & ug/t & 25.0 & 92 & 80-120 \\
\hline 1,1-Dichloroethane & 23.0 & 2.0 & 0.27 & ug/ & 25.0 & 92 & 70-135 \\
\hline 1,2-Dichloroethane & 21.5 & 0.50 & 0.28 & ug/ & 25.0 & 86 & 60-150 \\
\hline 1,1-Dichloroethene & 21.5 & 5.0 & 0.32 & ug/I & 25.0 & 86 & \(75-135\) \\
\hline trans-1,2-Dichloroethene & 23.3 & 2.0 & 0.27 & ug/ & 25.0 & 93 & 70-130 \\
\hline 1,2-Dichloropropane & 22.8 & 2.0 & 0.35 & ug/ & 25.0 & 91 & 70-120 \\
\hline cis-1,3-Dichloropropene & 22.8 & 2.0 & 0.22 & ug/ & 25.0 & 91 & 75-130 \\
\hline trans-1,3-Dichloropropene & 21.6 & 2.0 & 0.24 & ug/ & 25.0 & 86 & 75-135 \\
\hline Ethylbenzene & 24.4 & 2.0 & 0.25 & ug/ & 25.0 & 98 & 80-120 \\
\hline Methylene chloride & 21.6 & 5.0 & 0.48 & ug/l & 25.0 & 86 & 60-135 \\
\hline 1,1,2,2-Tetrachloroethane & 18.6 & 2.0 & 0.24 & ug/l & 25.0 & 74 & 60-135 \\
\hline Tetrachlorocthene & 23.1 & 2.0 & 0.32 & \(\mathrm{ug} / 1\) & 25.0 & 92 & 75-125 \\
\hline Toluene & 23.0 & 2.0 & 0.36 & ug/ & 25.0 & 92 & 75-120 \\
\hline 1,1,1-Trichloroethane & 24.6 & 2.0 & 0.30 & ug/l & 25.0 & 98 & 75-140 \\
\hline 1,1,2-Trichloroethane & 19.4 & 2.0 & 0.30 & ug/l & 25.0 & 78 & 70-125 \\
\hline Trichloroethene & 22.8 & 2.0 & 0.26 & \(\mathrm{ug} / \mathrm{l}\) & 25.0 & 91 & 80-120 \\
\hline Trichlorofluoromethane & 21.5 & 5.0 & 0.34 & ug/ & 25.0 & 86 & 65-145 \\
\hline Vinyl chloride & 20.3 & 0.50 & 0.26 & ug/l & 25.0 & 81 & 50-130 \\
\hline Surrogate: Dibromofluoromethane & 24.6 & & & \(u g / 7\) & 25.0 & 98 & 80-120 \\
\hline Surrogate: Toluene-d8 & 25.1 & & & ug/ & 25.0 & 100 & 80-120 \\
\hline Surogate: 4-Bromofluorobenzene & 24.4 & & & \(u g /\) & 25.0 & 98 & 80-120 \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager
\begin{tabular}{lc}
\begin{tabular}{l} 
MWH-Pasadena/Boeing \\
300 North Lake Avenue, Suite 1200 \\
Pasadena, CA 91101 \\
Attention: Bronwyn Kelly
\end{tabular} & Project ID: Outfall 017 \\
\hline & Report Number: IOA0454 \\
METHOD BLANKIOC DATA
\end{tabular}

\section*{PURGEABLES BY GC/MS (EPA 624)}
Analyte
Batch: 5A11017 Extracted: 01/11/05

Matrix Spike Analyzed: 01/11/2005 (5A11017-MS1)
\begin{tabular}{cccccccccc} 
Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

Source: IOA0497-08
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 10 & 0.85 & ug/ & 25.0 & ND & 71 & 55-140 \\
\hline 1.0 & 0.28 & ug/ & 25.0 & ND & 87 & 70-120 \\
\hline 2.0 & 0.30 & ug/ & 25.0 & ND & 94 & 70-140 \\
\hline 5.0 & 0.32 & ug/1 & 25.0 & ND & 68 & 55-140 \\
\hline 5.0 & 0.34 & ug/ & 25.0 & ND & 91 & 50-145 \\
\hline 0.50 & 0.28 & ug/ & 25.0 & ND & 98 & 70-145 \\
\hline 2.0 & 0.36 & ug/ & 25.0 & ND & 94 & 80-125 \\
\hline 5.0 & 0.33 & ug/ & 25.0 & ND & 88 & 50-145 \\
\hline 2.0 & 0.33 & ug/ & 25.0 & ND & 94 & 70-135 \\
\hline 5.0 & 0.30 & ug/ & 25.0 & ND & 75 & 35-145 \\
\hline 2.0 & 0.28 & ug/ & 25.0 & ND & 78 & 65-145 \\
\hline 2.0 & 0.32 & ug/ & 25.0 & ND & 88 & 75-130 \\
\hline 2.0 & 0.35 & ug/ & 25.0 & ND & 91 & 75-130 \\
\hline 2.0 & 0.37 & ug/1 & 25.0 & ND & 90 & 80-120 \\
\hline 2.0 & 0.27 & ug/ & 25.0 & ND & 92 & 65-135 \\
\hline 0.50 & 0.28 & ug/ & 25.0 & ND & 88 & 60-150 \\
\hline 5.0 & 0.32 & ug/ & 25.0 & ND & 84 & 65-140 \\
\hline 2.0 & 0.27 & ug/ & 25.0 & ND & 92 & 65-135 \\
\hline 2.0 & 0.35 & ug/ & 25.0 & ND & 92 & 65-130 \\
\hline 2.0 & 0.22 & ug/ & 25.0 & ND & 92 & 70-140 \\
\hline 2.0 & 0.24 & ug/ & 25.0 & ND & 88 & 70-140 \\
\hline 2.0 & 0.25 & ug/ & 25.0 & ND & 96 & 70-130 \\
\hline 5.0 & 0.48 & ug/ & 25.0 & ND & 87 & 60-135 \\
\hline 2.0 & 0.24 & ug/ & 25.0 & ND & 77 & 60-145 \\
\hline 2.0 & 0.32 & ug/ & 25.0 & 0.54 & 91 & 70-130 \\
\hline 2.0 & 0.36 & ug/ & 25.0 & ND & 93 & 70-120 \\
\hline 2.0 & 0.30 & ug/ & 25.0 & ND & 99 & 75-140 \\
\hline 2.0 & 0.30 & ug/ & 25.0 & ND & 80 & 60-135 \\
\hline 2.0 & 0.26 & ug/ & 25.0 & ND & 90 & 70-125 \\
\hline 5.0 & 0.34 & ug/ & 25.0 & ND & 88 & 55-145 \\
\hline \multirow[t]{4}{*}{0.50} & \multirow[t]{4}{*}{0.26} & ug/ & 25.0 & \multirow[t]{4}{*}{ND} & 81 & 40-135 \\
\hline & & ug/ & 25.0 & & 101 & 80-120 \\
\hline & & ug/ & 25.0 & & 102 & 80-120 \\
\hline & & ug/ & 25.0 & & 102 & 80-120 \\
\hline
\end{tabular}

Sampled: 01/09/05
Received: 01/10/05

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Outfall 017

Report Number: IOA0454
Sampled: 01/09/05
Received: 01/10/05

\section*{METHOD BLANKIOC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data \\
\hline Batch: 5A11017 Extracted; 01/11/05 & & & & & & & & & & & \\
\hline
\end{tabular}

Matrix Spike Dup Analyzed: 01/11/2005 (5A11017-MSD1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & \\
\hline 1,2,3-Trichloropropane & 20.4 & 10 & 0.85 & ug/l & 25.0 & ND & 82 & 55-140 & 14 & 30 \\
\hline Benzene & 20.7 & 1.0 & 0.28 & ug/ & 25.0 & ND & 83 & 70-120 & 5 & 20 \\
\hline Bromodichloromethane & 23.0 & 2.0 & 0.30 & ug/ & 25.0 & ND & 92 & 70-140 & 3 & 20 \\
\hline Bromoform & 19.3 & 5.0 & 0.32 & ug/l & 25.0 & ND & 77 & 55-140 & 13 & 25 \\
\hline Bromomethane & 22.1 & 5.0 & 0.34 & ugl & 25.0 & ND & 88 & 50-145 & 3 & 25 \\
\hline Carbon tetrachloride & 23.4 & 0.50 & 0.28 & ug/ & 25.0 & ND & 94 & 70-145 & 5 & 25 \\
\hline Chlorobenzene & 22.6 & 2.0 & 0.36 & ug/ & 25.0 & ND & 90 & 80-125 & 4 & 20 \\
\hline Chloroethane & 21.6 & 5.0 & 0.33 & ug/ & 25.0 & ND & 86 & 50-145 & 2 & 25 \\
\hline Chloroform & 22.6 & 2.0 & 0.33 & ug/ & 25.0 & ND & 90 & 70-135 & 4 & 20 \\
\hline Chloromethane & 18.3 & 5.0 & 0.30 & ug/ & 25.0 & ND & 73 & 35-145 & 2 & 25 \\
\hline Dibromochloromethane & 20.3 & 2.0 & 0.28 & ug/ & 25.0 & ND & 81 & 65-145 & 5 & 25 \\
\hline 1,2-Dichlorobenzene & 21.7 & 2.0 & 0.32 & ug/ & 25.0 & ND & 87 & 75-130 & 1 & 20 \\
\hline 1,3-Dichlorobenzene & 21.7 & 20 & 0.35 & ug/ & 25.0 & ND & 87 & 75-130 & 5 & 20 \\
\hline 1,4-Dichlorobenzene & 21.6 & 2.0 & 0.37 & ug/ & 25.0 & ND & 86 & 80-120 & 4 & 20 \\
\hline 1,1-Dichloroethane & 21.9 & 2.0 & 0.27 & ug/ & 25.0 & ND & 88 & 65-135 & 5 & 20 \\
\hline 1,2-Dichloroethane & 22.2 & 0.50 & 0.28 & ug/ & 25.0 & ND & 89 & 60-150 & 1 & 20 \\
\hline 1,1-Dichloroethene & 20.6 & 5.0 & 0.32 & ug/ & 25.0 & ND & 82 & 65-140 & 2 & 20 \\
\hline trans-1,2-Dichloroethene & 22.0 & 2.0 & 0.27 & ug/ & 25.0 & ND & 88 & 65-135 & 4 & 20 \\
\hline 1,2-Dichloropropane & 22.5 & 2.0 & 0.35 & ug/1 & 25.0 & ND & 90 & 65-130 & 2 & 20 \\
\hline cis-1,3-Dichloropropene & 23.0 & 2.0 & 0.22 & \(\mathrm{ug} / 1\) & 25.0 & ND & 92 & 70-140 & 0 & 20 \\
\hline trans-1,3-Dichloropropene & 22.7 & 2.0 & 0.24 & ughl & 25.0 & ND & 91 & 70-140 & 3 & 25 \\
\hline Ethylbenzene & 23.0 & 2.0 & 0.25 & ugh & 25.0 & ND & 92 & 70-130 & 5 & 20 \\
\hline Methylene chloride & 21.2 & 5.0 & 0.48 & ug/ & 25.0 & ND & 85 & 60-135 & 3 & 20 \\
\hline 1,1,2,2-Tetrachloroethane & 21.6 & 2.0 & 0.24 & ugh & 25.0 & ND & 86 & 60-145 & 11 & 30 \\
\hline Tetrachloroethene & 22.0 & 2.0 & 0.32 & ug/l & 25.0 & 0.54 & 86 & 70-130 & 6 & 20 \\
\hline Toluene & 22.1 & 2.0 & 0.36 & ugh & 25.0 & ND & 88 & 70-120 & 5 & 20 \\
\hline 1,1,1-Trichloroethane & 23.7 & 2.0 & 0.30 & ug/l & 25.0 & ND & 95 & 75-140 & 5 & 20 \\
\hline 1,1,2-Trichloroethane & 21.0 & 2.0 & 0.30 & ugh & 25.0 & ND & 84 & 60-135 & 5 & 25 \\
\hline Trichloroethene & 21.8 & 2.0 & 0.26 & ugh & 25.0 & ND & 87 & 70-125 & 3 & 20 \\
\hline Trichlorofluoromethane & 21.4 & 5.0 & 0.34 & ug/ & 25.0 & ND & 86 & 55-145 & 3 & 25 \\
\hline Vinyl chloride & 19.2 & 0.50 & 0.26 & ug/ & 25.0 & ND & 77 & 40-135 & 5 & 30 \\
\hline Surrogate: Dibromofluoromethane & 25.0 & & & ugh & 25.0 & & 100 & 80-120 & & \\
\hline Surrogate: Toluene-d8 & 25.4 & & & ug/ & 25.0 & & 102 & 80-120 & & \\
\hline Surrogate: 4-Bromofluorobenzene & 25.7 & & & \(u g /\) & 25.0 & & 103 & 80-120 & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager
\begin{tabular}{lrr} 
MWH-Pasadena/Boeing & Project ID: Outfall 017 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 09 / 05\) \\
Pasadena, CA 91101 & Report Number: IOA0454 & Received: \(01 / 10 / 05\)
\end{tabular}

\section*{METHOD DLANKIOC DATA}

\section*{SEMI-VOLATILE ORGANICS BY GC/MS (EPA 3520C/1625C MOD)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & \begin{tabular}{l}
Reportin \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Oualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5A12032 Extracted: 01/12/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 01/13/2005 (5A12032-BLK1)} \\
\hline N-Nitrosodimethylamine \(\quad\) ND & 0.0020 & 0.00070 & ug/ & & & & & & & \\
\hline LCS Analyzed: 01/13/2005 (5A12032-BS1) & & & & & & & & & & M-NR1 \\
\hline N-Nitrosodimethylamine 0.00961 & 0.0020 & 0,00070 & ug/ & 0.0100 & & 96 & 70-130 & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 01/13/2005 (5A12032-BS2)} \\
\hline N -Nitrosodimethylamine 0.00246 & 0.0020 & 0.00070 & \(u g / 1\) & 0.00200 & & 123 & 70-130 & & & \\
\hline \multicolumn{11}{|l|}{LCS Dup Analyzed: 01/13/2005 (5A12032-BSD1)} \\
\hline N -Nitrosodimethylamine 0.00920 & 0.0020 & 0.00070 & \(\mathrm{ug} / 1\) & 0.0100 & & 92 & 70-130 & 4 & 20 & \\
\hline
\end{tabular}
\begin{tabular}{lrr} 
MWH-Pasadena/Boeing & Project ID: Outfall 017 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 09 / 05\) \\
Pasadena, CA 91101 & Report Number: 1OA0454 & Received: \(01 / 10 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

METHOD BLAMIIGC DATA

\section*{INORGANICS}

\begin{tabular}{lcr} 
MWH-Pasadena/Boeing & Project ID: Outfall 017 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 09 / 05\) \\
Pasadena, CA 91101 & Report Number: IOA0454 & Received: \(01 / 10 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{METHOD BLANKIQC DATA}

\section*{INORGANICS}

\begin{tabular}{|lc}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 017 \\
300 North Lake Avenue, Suite 1200 \\
Pasadena, CA 91101 & Report Number: 1OA0454 \\
Attention: Bronwyn Kelly & \\
\hline
\end{tabular}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5A13051 Extracted: 01/13/05} \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 01/13/2005 (5A13051-BS1)} \\
\hline Perchlorate 50.0 & 4.0 & 0.80 & ug/ & 50.0 & & 100 & 85-115 & & & \\
\hline \multicolumn{11}{|l|}{Matrix Spike Analyzed: 01/13/2005 (5A1305i-MS1) Source: 1OA0417-02} \\
\hline Perchlorate 49.6 & 4.0 & 0.80 & ug/ & 50.0 & 0.93 & 97 & 80-120 & & & \\
\hline \multicolumn{11}{|l|}{Matrix Spike Dup Analyzed: 01/13/2005 (5A13051-MSD1) Source: 10A0417-02} \\
\hline Perchlorate 50.7 & 4.0 & 0.80 & ug/ & 50.0 & 0.93 & 100 & 80-120 & 2 & 20 & \\
\hline
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: 10A0454

Sampled: 01/09/05
Received: 01/10/05

\section*{METHOD BLANKIQC DATA}

\section*{1,4-DIOXANE BY GC/MS (EPA 5030B/8260B)}

\begin{tabular}{lrr} 
MWH-Pasadena/Boeing & Project ID: Outfall 017 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 09 / 05\) \\
Pasadena, CA 91101 & Report Number: IOA0454 & Received: \(01 / 10 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{Compliance Check}

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline LabNumber & Analysis & Analyte & Units & Result & MRL & Compliance Limit \\
\hline 1OA0454-01 & 413.1 Oil and Grease & Oil \& Grease & \(\mathrm{mg} / 1\) & 12 & 5.0 & 10.00 \\
\hline 1OA0454-01 & MBAS - SM5540-C & Surfactants (MBAS) & \(\mathrm{mg} / \mathrm{l}\) & 0.044 & 0.10 & 0.50 \\
\hline IOA0454-01 & TSS - EPA 160.2 & Total Suspended Solids & mgh & 35 & 10 & 0.50
30 \\
\hline
\end{tabular}

Project ID: Outfall 017
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Sampled: 01/09/05
Report Number: IOA0454 Received: 01/10/05

\section*{DATA QUALIFIERS AND DEFINITIONS}
A-01 Low surrogate confirmed on GC/MS \#33 (01/11/05)
B
J Analyte was detected in the associated Method Blank.
Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the
M-NR1 \(\quad\)\begin{tabular}{l} 
Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality, \\
There was no MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike \\
Duplicate.
\end{tabular}
P1 \(\quad\)\begin{tabular}{l} 
Sample received and analyzed without chemical preservation. \\
Z
\end{tabular}\(\quad\)\begin{tabular}{l} 
Due to sample matrix effects, the surrogate recovery was below the acceptance limits. \\
ND \\
Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified. \\
RPD
\end{tabular} Relative Percent Difference

\author{
Del Mar Analytical, Irvine \\ Michele Harper \\ Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017

Report Number: IOA0454

Sampled: 01/09/05
Received: 01/10/05

\section*{Certification Summary}

\section*{Del Mar Analytical, Irvine}
\begin{tabular}{cccc} 
Method & Matrix & Nelac & California \\
EPA 160.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 1625C Mod & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 218.6 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 314.0 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 360.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 413.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 624 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
SM5540-C & Water & \(\mathbf{X}\) & \(\mathbf{X}\)
\end{tabular}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

\section*{Subcontracted Laboratories}

Del Mar Analytical - Phoenix NELAC Cert \#01109CA, California Cert \#2446
9830 S. 5 1st Street, Suite B-120 - Phoenix, AZ 85044
Method Performed: EPA 8260B
Samples: 1OA0454-01
Truesdail Laboratories-SUB California Cert \(\# 1237\)
14201 Franklin Avenue - Tustin, CA 92680
Analysis Performed: Fecal Coliform
Samples: IOA0454-01
Analysis Performed: Total Coliform
Samples: 1OA0454-01

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager
 1014E Cocioy Dr., Suinat Colion CA g2xe4 gren Chempenkn Diva, Suta 806 , Sm Dimpo, CA 98123



Ph(904) 264-1002
Pn (1689) \(370-4867\)
Ph (6t9) G0c-8036
Pn (400) 785-0043


 Fix (818) E0c-9B4



\section*{SUBCONTRACT ORDER - PROJECT \# IOA0454}




February 7, 2005

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, Ca. 91101

Attention: Bronwyn Kelly
Project:
Outfall 017
Sampled: 01/10/05
Del Mar Analytical Number: IOA0454

Dear Ms. Kelly:
Truesdail Laboratories, Inc. performed the Total and Fecal Coliform analyses by EPA 9221B and 9221 E for the project referenced above. Please use the following cross-reference table when reviewing your results.
\begin{tabular}{|c|c|c|}
\hline MWH ID & DEL MAR ID & Truesdail ID \\
\hline Outfall 017-Grab & IOA0454-01 & \(938491 / 10 A 0454-01\) \\
\hline
\end{tabular}

Attached is the original report from the subcontract laboratory. If you have any questions or require further assistance, please do not hesitate to contact me.

Sincerely yours,
DEL MAR ANALYTICAL


Michele Harper
Project Manager

\section*{Truesdail Laboratories, Inc.}

\section*{REPORT}

Del Mar Analytical
Attn: Michele Harper
17461 Derian Avenue, Suite 100
Irvine, CA 92614


14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 • FAX (714) 730-6462 www.truesdail.com

Report Date:
1/13/05
Date Received: 1/10/05

Laboratory No.:
938491

Sample: One water marked IOA0454-01, taken 1/9/04, 20:48
\begin{tabular}{llll} 
Analysis Date: & \(1 / 10 / 05\) & Time: & 1830 \\
Completion Date: & \(1 / 13 / 05\) & Time: & 1000
\end{tabular}

Investigation: Multiple Tube Fermentation Test for Coliform Group Bacteria APHA Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992 Method 9221B, 9221E

\section*{RESULTS}

\section*{Sample Designation}
1. IOA0454-01, 20:48

\footnotetext{
* Most Probable No. 100 ml
** None Detected
}

\section*{Coliform Group Bacteria MPN \({ }^{*} / 100 \mathrm{mI}\) \\ Total Fecal}

\section*{SUBCONTRACT ORDER - PROJECT \# IOA0454}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
SENDING LABORATORY: \\
Del Mar Analytical, Irvine \\
17461 Derian Avenue. Suite 100 \\
Irvine, CA 92614 \\
Phone: (949) 261-1022 \\
Fax: (949) 261-1228 \\
Project Manager: Michele Harper
\end{tabular} & \begin{tabular}{l}
RECEIVING LABORATORY: \\
Truesdail Laboratories-SUB \\
14201 Franklin Avenue \\
Tustin, CA 92680 \\
Phone :(714) 730-6239 \\
Fax: (714) 730-6462
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Standard TAT is requested unless specific due date is requested \(\Rightarrow\) Due Date:} \\
\hline Analysis Expiration & Comments \\
\hline Sample ID: 10A0454-01 Water Sampled: 01/09/05 20:48 & OK to run SHs past HT \\
\hline Fecal Coliform 01/10/05 01:36 & MPN/100 ml, Sub to Truesdail \\
\hline Total Coliform 01/10/05 20:48 & MPN/100 ml, Sub to Truesdail \\
\hline Containers Supplied: & \\
\hline Bacti Bottle (IOA0454-01A) & . \\
\hline Bacti Bottle (IOA0454-01B) & \\
\hline
\end{tabular}

SAMPLE INTEGRITY:


SORLMNGLIIIGAL
CHAIN OF CUSTODY FORM



January 26, 2005
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention: Bronwyn Kelly
Project: Outfall 017
Sampled: 01/09/05
Del Mar Analytical Number: IOA0482

Dear Ms. Kelly:
Aquatic Testing Laboratories performed The Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0)for the project referenced above. Please use the following crossreference table when reviewing your results.
\begin{tabular}{|c|c|c|}
\hline MWH ID & DEL MAR ID & Aquatic Testing Laboratories ID \\
\hline Outfall 017 & IOA0482-01 & A-05011002-002 \\
\hline
\end{tabular}

Attached is the original report from the subcontract laboratory. If you have any questions or require further assistance, please do not hesitate to contact me.

Sincerely yours,
DEL MAR ANALYTICAL

Project Manager

LABORATORY REPORT

Date:
January 14, 2005
Client: Del Mar Analytical, Irvine 17461 Derian Avenue, Suite 100
Irvine, CA 92614
Attn: Michele Harper

Aquatic

Laboratory No.: A-05011002-002
Sample ID.: IOA0482-01

Sample Control: The samples were received by ATL in a chilled state, with the chain of custody record attached.

Date Sampled: 01/09/05
Date Received: 01/10/05
Date Tested: \(\quad 01 / 10 / 05\) to \(01 / 14 / 05\)

Sample Analysis: The following analyses were performed on your sample:
Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0).
Attached are the test data generated from the analysis of your sample.

Result Summary:
\(\frac{\text { Sample ID. }}{\text { IOA0482-01 }} \quad \frac{\text { Results }}{100 \% \text { Survival }(T U a=0.0)}\)

Quality Control: Reviewed and approved by:


FATHEAD MINNOW PERCENT SURVIVAL TEST
Lab No.: A-05011002-002
Client/ID: Del Mar Outfall 017
TOA प482-C1

Species: Pimephales promelas.
Age: If (1-14) days.
Regulations: NPDES.
Test solution volume: 250 ml .
Feeding: prior to renewal at 48 hrs.
Number of replicates: 2.
Dilution water: Moderately hard reconstituted water.
Photoperiod: \(16 / 8\) hrs light/dark.

\section*{Start Date: 01/10/2005}

\section*{TEST SUMMARY}

Source: In-laboratory Culture.
Test type: Static-Renewal.
Test Protocol: EPA-821-R-02-012.
Endpoints: Percent Survival at 96 hrs.
Test chamber: \(\mathbf{6 0 0} \mathbf{~ m l}\) beakers.
Temperature: \(20+/-1^{\circ} \mathrm{C}\).
Number of fish per chamber: 10.
QA/QC Batch No.: RT-050104.


RESULTS
SSFL ANALYTICAL
CHAIN OF CUSTODY FORM



CONTRACT COMPLLANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental 550 South Wadsworth Boulevard Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer P. Meeks
Analysis/Method General Minerals

Package ID T711WC62
Task Order 313150010
SDG No. IOA0451, IOA045T 452
No. of Analyses 2
Date: 02/23/05
Reviewer's Signature
P. mats

\section*{ACIION TTEMS}

\section*{1. Case Narrative} Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from

Analysis Protocol, e.g.,
Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification
and Quantitation
System Performance
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

COMMENTS \({ }^{\text {b }}\)
Acceptable as reviewed.
\({ }^{2}\) Subcontracted analytical laboratory is not meeting contract and'or method requirements.
- Differences in protocol have been adopted by the laboratory but no action against the laboratory is reguired.

\section*{amec \({ }^{9}\)}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES Monitoring
}

\section*{ANALYSIS: GENERAL MINERALS SAMPLE DELIVERY GROUPS: IOA0451 \& IOA0452}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: \(\quad\) NPDES Monitoring Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: IOA0451 \& IOA452 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: General Minerals \\ QC Level: Level IV \\ No. of Samples: 1 \\ Reviewer: P. Meeks \\ Date of Review: February 23, 2005
}

The sample listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 330.5 and 180.1, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form las having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATIONREPORT & SDG No.: & IOA0451, 0452 \\
& Analysis: & Gen. Min. \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 015 & Outfall 015 & IOA0451-01 & water & General Minerals \\
\hline Outfall 017 & Outfall 017 & IOA0452-01 & water & General Minerals \\
\hline
\end{tabular}
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0451, 0452 \\
\hline & Analysis: & Gen. Min. \\
\hline
\end{tabular}

\subsection*{2.6 LABORATORY DUPLICATES}

Duplicate analyses was performed on Outfall 017 for turbidity and residual chlorine. The RPDs were within the laboratory-established control limits of \(\leq 20 \%\). No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

MS/MSD analyses are not applicable to the turbidity or residual chlorine methods. No qualifications were required.

\subsection*{2.8 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.9 ICP SERIAL DILUTION}

ICP serial dilution is not applicable to the analyses presented in this data validation report.

\subsection*{2.10 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculations errors were noted. Residual chlorine in Outfall 017 was analyzed at a \(5 \times\) dilution. No qualifications were required.

\subsection*{2.11 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with
field QC samples:

\subsection*{2.11.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.11.2 Field Duplicates}

There were no field duplicate pairs associated with these SDGs.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0451, 0452 \\
\hline & Analysis: & Gen. Min. \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). No preservation problems were noted by the laboratory. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by field and laboratory personnel and accounted for the samples and analyses presented in these SDGs. No sample qualifications were required.

\subsection*{2.1.3 Holding Times}

The holding times were assessed by comparing the date of collection with the dates of analyses. The 48 -hour analytical holding time for turbidity and the 24 -hour analytical holding time for residual chlorine were met, and no qualifications were required.

\subsection*{2.2 CALIBRATION}

For turbidity, the initial calibration correlation coefficient was \(\geq 0.995\) and the continuing calibration information was acceptable with \(\%\) Rs within the control limits of \(90-110 \%\). Calibration is not applicable to the residual chlorine method, No qualifications were required.

\subsection*{2.3 BLANKS}

Turbidity was reported in the method blank and CCB, but not at sufficient concentration to qualify the site samples. Blanks are not applicable to the residual chlorine method. No qualifications were required.

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

Laboratory control samples are not applicable to the turbidity or residual chlorine methods. No qualifications were required.

\subsection*{2.5 SURROGATES RECOVERY}

Surrogate recovery is not applicable to the analyses presented in these SDGs.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suice 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: 10A0452

Sampled: 01/10/05
Received: 01/10/05

\section*{DRAFT: INORGANICS}


\section*{AMEC Validaisd}


\title{
LABORATORY REPORT
}

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Outfall 017

Sampled: 01/10/05
Received: 01/10/05
Issued: 03/19/05 17:10

\section*{NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117}

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, I page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

\section*{SAMPLE CROSS REFERENCE}

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY DD
IOA0452-01

\section*{CLIENT ID}

Outfall 017-Grab

MATRIX
Water

Reviewed By:


\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: IOA0452

Sampled: 01/10/05
Received: 01/10/05

\section*{INORGANICS}


\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: IOA0452

Sampled: 01/10/05
Received: 01/10/05

\section*{SHORT HOLD TIME DETAIL REPORT}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Hold Time (in days) & \begin{tabular}{l}
Date/Time \\
Sampled
\end{tabular} & Date/Time Received & Date/Time .Extracted & Date/Time Analyzed \\
\hline \multicolumn{6}{|l|}{Sample ID: Outfall 017-Grab (IOA0452-01) - Water Anaiyzed} \\
\hline EPA 180.1 & 2 & 01/10/2005 12:46 & 01/10/2005 16:20 & 01/11/2005 10:00 & 01/11/2005 11:00 \\
\hline EPA 330.5 & 1 & 01/10/2005 12:46 & 01/10/2005 16:20 & 01/10/2005 20:00 & 01/10/2005 20:15 \\
\hline
\end{tabular}

\author{
Del Mar Analytical, Irvine \\ Michele Harper \\ Project Manager
}

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}
\begin{tabular}{rr} 
Project ID: Outfall 017 & \\
Report Number: 10 A0452 & Sampled: 01/10/05 \\
& Received: 01/10/05
\end{tabular}

\section*{METHOD BLANKIQC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \[
\begin{aligned}
& \text { RPD } \\
& \text { Limit }
\end{aligned}
\] & Data Qualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5A10084 Extracted: 01/10/05} \\
\hline Duplicate Analyzed: 01/10/2005 (5A10084-DUP1) & \multicolumn{10}{|c|}{Source: IOA0451-01} \\
\hline Residual Chlorine 1.00 & 0.10 & 0.10 & \(\mathrm{mg} / \mathrm{l}\) & & 1.0 & & & 0 & 20 & \\
\hline \multicolumn{11}{|l|}{Batch: 5A11071 Extracted: 01/11/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 01/11/2005 (5A11071-BLK1)} \\
\hline Turbidity 0.0700 & 1.0 & 0.040 & NTU & & & & & & & \(J\) \\
\hline Duplicate Analyzed: 01/11/2005 (5A11071-DUP1) & & & & Sou & ce: IOA0 & 451-01 & & & & \\
\hline Turbidity 30.4 & 1.0 & 0.040 & NTU & & 30 & & & 1 & 20 & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: 10 A 0452

Sampled: 01/10/05
Received: 01/10/05

\section*{Compliance Check}

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.
\begin{tabular}{lllcccc} 
LabNumber & Analysis & Analyte & & & Compliance \\
\hline IOA0452-01 & Chlorine, Residual & Residual Chlorine & Units & Result & MRL & Limit \\
& & mg \(/\) & 5.00 & 0.50 & 0.100
\end{tabular}
\begin{tabular}{lc}
\begin{tabular}{l} 
MWH-Pasadena/Boeing \\
300 North Lake Avenue, Suite 1200 \\
Pasadena, CA 91101 \\
Attention: Bronwyn Kelly
\end{tabular} & Project ID: Outfall 017 \\
\hline & Report Number: IOA0452 \\
DATA QUALIFIERS AND DEFINITIONS
\end{tabular}
Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the
Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017

Report Number: 1OA0452

Sampled: 01/10/05
Received: 01/10/05

\section*{Certification Summary}

\section*{Del Mar Analytical, Irvine}
\begin{tabular}{cccc} 
Method & Matrix & Nelac & California \\
EPA 180.1 & Water & \(\mathbf{X}\) & X \\
EPA 330.5 & Water & X & X
\end{tabular}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

\section*{Subcontracted Laboratories}

Truesdail Laboratories-SUB California Cert \#1237
14201 Franklin Avenue - Tustin, CA 92680
Analysis Performed: Fecal Coliform Samples: 1OA0452-01
Analysis Performed: Total Coliform Samples: IOA0452-01

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager
Del Mar Analytical vemenon sarizes CHAIN OF CUSTODY FORM


January 26, 2005
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101

Attention: Bronwyn Kelly
Project: Outfall 017
Sampled: 01/10/05
Del Mar Analytical Number: IOA0452

Dear Ms. Kelly:
Truesdail Laboratories Inc. performed The Multiple Tube Fermentation Test by APHA Standard Methods 9221B and 9221E for the project referenced above. Please use the following cross-reference table when reviewing your results.
\begin{tabular}{|c|c|c|}
\hline MWH ID & DEL MAR ID & Truesdail Laboratories ID \\
\hline Outfall 017-Grab & IOA0452-01 & \(938490 /\) /OA0452-01 \\
\hline
\end{tabular}

Attached is the original report from the subcontract laboratory. If you have any questions or require further assistance, please do not hesitate to contact me.

Sincerely yours,
DEL MAR ANALYTICAL


Michele Harper
Project Manager

\section*{Truesdail Laboratories, INC.}

Del Mar Analytical
Attn: Michele Harper
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Sample: One water marked IOA0452-01, 1/10/05, 12:46
\begin{tabular}{llll} 
Analysis Date: & \(1 / 10 / 05\) & Time: & 1830 \\
Completion Date: & \(1 / 12 / 05\) & Time: & 1800
\end{tabular}

Investigation: Multiple Tube Fermentation Test for Coliform Group Bacteria APHA Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992 Method 9221B, 9221E

\section*{RESULTS}

Sample Designation
Coliform Group Bacteria MPN*/100ml
Total Fecal
1. IOA0452-01, 12:46 <2** <2
* Most Probable No. 1100 ml
** None Detected


TRUESDAIL LABORATORIES, INC.


Karl W. Schiller, M.S.
Chief Microbiologist

\section*{SUBCONTRACT ORDER - PROJECT \# IOA0452}




\section*{amec \({ }^{\theta}\)}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES \\ Monitoring
}

\section*{ANALYSIS: DIOXINS/FURANS SAMPLE DELIVERY GROUPS: Multiple SDGs}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{lrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: Multiple \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Dioxins/Furans \\ QC Level: Level IV \\ No. of Samples: 4 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: K. Shadowlight \\ Date of Review: February 18, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{llr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

Table 1. Sample Identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & \begin{tabular}{c} 
Laboratory ID \\
(Del Mar)
\end{tabular} & \begin{tabular}{c} 
Laboratory ID \\
(Pace)
\end{tabular} & Matrix & COC Method \\
\hline Outfall 015 & IOA0557-02 & 106233001 & water & 1613 \\
\hline Outfall 015 & IOA0580-01 & 106237001 & water & 1613 \\
\hline Outfall 017 & IOA0558-02 & 106234001 & water & 1613 \\
\hline Outfall 017 & IOA0576-02 & 106236001 & water & 1613 \\
\hline
\end{tabular}
\begin{tabular}{llr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at Del Mar Analytical within the temperature limits of \(4^{\circ} \mathrm{C}\) \(\pm 2^{\circ} \mathrm{C}\). The samples were subcontracted to Pace Analytical for the dioxin/furan analyses. The samples in these SDGs were received at Pace Analytical Services below the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\); however, as none of the samples were noted to have been frozen or damaged, no qualifications were required. The samples were received in good condition at both laboratories. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COC and transfer COC were signed by the appropriate field and laboratory personnel. The samples and analyses were accounted for on both the original COCs and transfer COCs. As the samples were couriered directly to the laboratory (Del Mar Analytical), custody seals were not required. There was no information regarding custody seals upon receipt at Pace. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The samples were extracted and analyzed within a year of collection. No qualifications were required.

\subsection*{2.2 INSTRUMENT PERFORMANCE}

Following are findings associated with instrument performance:

\subsection*{2.2.1 GC Column Performance}

A column performance standard was combined with the daily calibration verification and analyzed at the beginning of each analytical sequence. The GC column performance was acceptable with the chromatographic separation of \(2,3,7,8-\mathrm{TCDD}\) and other TCDD isomers resolved with a valley of \(\leq 25 \%\). No qualifications were required.

\subsection*{2.2.2 Mass Spectrometer Performance}

The mass spectrometer performance could not be evaluated as the laboratory did not provide selected ion current profiles for the lock-mass ions. No qualifications were required.
\begin{tabular}{ll} 
& Project: \\
DATA VALIDATION REPORT & SDGNOS No.: \\
\hline
\end{tabular}

\subsection*{2.3 CALIBRATION}

\subsection*{2.3.1 Initial Calibration}

There was one initial calibration, analyzed 11/29/04 on Instrument 10MSHR05. The calibration consisted of five concentration level standards (CS1 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with \(\%\) RSDs \(\leq 20 \%\) for the 15 native compounds (calibration by isotope dilution) and \(\leq 35 \%\) for the 2 native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.3.2 Continuing Calibration}

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VER was acceptable with the concentrations within the acceptance criteria listed in the Table 6 of the EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.4 BLANKS}

One method blank (Blank-6220) was extracted and analyzed with the samples in these SDGs. Target compounds total \(\mathrm{HpCDF}, 1,2,3,4,6,7,8-\mathrm{HpCDF}\), total HpCDF , OCDF, and OCDD were reported in the method blank. Any detects for the aforementioned target compounds reported at concentrations \(<5 \times\) the concentrations reported in the method blank were qualified as estimated nondetects "UJ," at the levels of interference in the samples of these SDGs. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No further qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One LCS/LCSD pair (LCS-6221/LCSD-6222) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of the Method 1613. There were no QC limits established for RPDs. The reported RPDs were within \(\pm 20 \%\). No qualifications were required.

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy and precision was based on the LCS/LCSD results. No qualifications were required.
\begin{tabular}{lll} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
Analysis: & D/F \\
\hline
\end{tabular}

\subsection*{2.7 FIELD QC SAMPLES}

Following are findings associated with field QC:

\subsection*{2.7.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.7.2 Field Duplicates}

No field duplicate samples were identified for these SDGs.

\subsection*{2.8 INTERNAL STANDARDS}

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

\subsection*{2.9 COMPOUND IDENTIFICATION}

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

\subsection*{2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the lower method calibration limit (MCL) were qualified as estimated, "J." Any reported EMPC was qualified as an estimated nondetect, "UJ." No further qualifications were required.


Conc \(=\) Concentration (Totals include \(2,3,7,8\)-substituted isomers).
EMPC = Estimated Maximum Possible Concentration
\(L O D=\) Limit of Detection. Totals are averages of individual isomer LODs
\(0=\) Result obtained from analysis of diluted sample
\(B=\) Less than 10 times higher than mathod blank level
\(P=\) Recovery outside of method 1613 control limits
\(\mathrm{J}=\) Concentration detected is below the calibration range
\(1=\) Interference
\(E=\) PCDE Interference
ND = Not Detected
NA = Not Applicable
\(N C=\) Not Calculated
* \(=\) See Discussion

Report No..... 106236

REPORT OF LABORATORY ANALYSIS


\section*{Method 1613B Analysis Results}

\author{
Client - Det Mar Analytical
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & \begin{tabular}{l}
Client's Sample ID \\
Lab Sample ID \\
Filename \\
Injected By \\
Total Amount Extracted \\
\% Moisture \\
Dry Weight Extracted \\
ICAL Date \\
CCal Filename(s) \\
Method Blank ID
\end{tabular} & 10
10
F
B
98
N
N
11
F & 558-02 34001 30A_06 mL &  & ( & \begin{tabular}{ll} 
Matrix & Wate \\
Dilition & NA \\
Collected & 0112 \\
Received & \(01 / 14\) \\
Extracted & \(01 / 28\) \\
Analyzed & \(01 / 30\)
\end{tabular} & 05 & \\
\hline Pual & & Native Isomers & Conc \(\mathrm{pg} / \mathrm{L}\) & \[
\begin{gathered}
\mathrm{EMPC} \\
\mathrm{pg} / \mathrm{L} \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{LOD} \\
& \mathrm{pg} / \mathrm{L} \\
& \hline
\end{aligned}
\] & & Internal Standards & \begin{tabular}{l}
ng's \\
Added
\end{tabular} & Percent Recovery \\
\hline U & \multirow[t]{11}{*}{OMQ} & 2,3,7,8-TCDF & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { ND } \\
1.8
\end{gathered}
\]} & \multirow[t]{2}{*}{\(\cdots\)} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{0.88
0.88}} & \multirow[t]{2}{*}{2,3,7,8-TCDF-13C} & & \\
\hline & & & & & & & & 2.00
2.00 & 67 \\
\hline 4 & & & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { ND } \\
& \text { ND }
\end{aligned}
\]} & \multirow{3}{*}{\(\cdots\)} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\[
\begin{aligned}
& 0.60 \\
& 0.60
\end{aligned}
\]}} & 1,2,3,7,8-PeCDF-13C & 2.00 & 84
71 \\
\hline ts & & Total TCDD & & & & & 2,3,4,7,8-PeCDF-13C & 2.00 & 74 \\
\hline & & & ND & & & & 1,2,3,7,8-PeCDD-13C & 2.00 & 89 \\
\hline u & & 1,2,3,7,8-PeCDF & ND & ----- & \multicolumn{2}{|l|}{0.81} & \(1,2,3,4,7,8\)-HxCDF-13C & 2.00 & 82 \\
\hline V & & 2,3,4,7,8-PeCDF & \multirow[t]{2}{*}{ND} & \(\cdots\) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& 0.81 \\
& 0.74 \\
& 0.78
\end{aligned}
\]}} & \[
1,2,3,6,7,8-H \times C D F-13 \mathrm{C}
\] & 2.00 & 82 \\
\hline & & Total PeCDF & & & & & \begin{tabular}{l}
2,3,4,6,7,8-HxCDF-13C \\
1,2,3,7,8,9-HxCDF-13C
\end{tabular} & 2.00
2.00 & 78 \\
\hline 4 & & 1,2,3,7,8-PeCDD & \multirow[t]{2}{*}{ND} & \multirow{3}{*}{-----} & \multicolumn{2}{|l|}{\multirow{3}{*}{\[
\begin{aligned}
& 1.20 \\
& 1.20
\end{aligned}
\]}} & 1,2,3,4,7,8-HxCDD-13C & 2.00 & 73 \\
\hline i & & Total PeCDD & & & & & \multirow[t]{2}{*}{\(1,2,3,6,7,8-\mathrm{HxCDD}-13 \mathrm{C}\)
\(1,2,3,4,6,8-\mathrm{HoCDF}-13 \mathrm{C}\)} & 2.00 & 85 \\
\hline & & & ND & & & \[
1.20
\] & & 2.00 & 72 \\
\hline " & \multirow[t]{4}{*}{Ma} & 1,2,3,4,7,8-HxCDF & 1.7 & \multirow[t]{2}{*}{\(\cdots\)} & \multicolumn{2}{|l|}{0.64 J} & \[
\begin{aligned}
& 1,2,3,4,7,8,9-\mathrm{HpCDF}-13 \mathrm{C} \\
& 12,4678 \mathrm{HDCDO}
\end{aligned}
\] & 2.00 & 64 \\
\hline 4 & & 1,2,3,6,7,8-HxCDF & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { ND } \\
& \text { ND }
\end{aligned}
\]} & & 0.70 & J & \multirow[t]{2}{*}{\[
\begin{aligned}
& 1,2,3,4,6,7,8-\mathrm{HDCDD}-13 \mathrm{C} \\
& \mathrm{OCDD}-18 \mathrm{C}
\end{aligned}
\]} & 2.00
4.00 & 82 \\
\hline & & 2,3,4,6,7,8-HxCDF & & & \multicolumn{2}{|l|}{0.60} & & & \multirow[t]{2}{*}{} \\
\hline 4 & & \(1,2,3,7,8,9-\mathrm{HxCDF}\) & \[
\begin{aligned}
& \text { ND } \\
& \text { ND }
\end{aligned}
\] & \multirow[t]{2}{*}{-} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{1000}} & 1,2,3,4-TCDD \(13 C\) & & \\
\hline & Qres & Total HxCDF & 1.7 & & & & 1,2,3,7,8,9-HxCDD-13C. & 2.00 & NA \\
\hline 4 & * 10 & 1,2,3,4,7,8-HxCDD & \(\ldots\) & \multirow[t]{2}{*}{1.1} & \multicolumn{2}{|l|}{0.951} & \multirow[t]{2}{*}{2,3,7,8-TCDD-37Cl4} & \multirow[t]{2}{*}{0.20} & \multirow[t]{4}{*}{83} \\
\hline & \(1 \times\) & 1,2,3,6,7,8-HxCDD & 1.9 & & 0.74 J & & & & \\
\hline - & \(\pm 10\) & 1,2,3,7,8,9-HxCDD & & 1.7 & 0.75 । & & & & \\
\hline J & das & Total HxCDD & 1.9 & --.-. & 0.81 J & & & & \\
\hline 5 & Das & 1,2,3,4,6,7,8-HpCDF & \multirow[t]{2}{*}{\[
\begin{gathered}
4.7 \\
\mathrm{ND}
\end{gathered}
\]} & \multirow[t]{2}{*}{-----} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{1.20 J}} & & & \\
\hline & & 1,2,3,4,7,8,9-HpCDF & & & & & & & \\
\hline 5 & LW & Total HpCDF & 4.7 & \(\cdots\) & \multicolumn{2}{|l|}{1.40 BJ} & & & \\
\hline 3 & Ond & 1,2,3,4,6,7,8-HpCDD & \multirow[t]{2}{*}{\[
\begin{aligned}
& 22.0 \\
& 43.0
\end{aligned}
\]} & \multirow[t]{2}{*}{------} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& 1.80 \mathrm{BJ} \\
& 1.80 \mathrm{~J}
\end{aligned}
\]}} & & & \\
\hline 5 & Dra & Total HpCDD & & & & & & & \\
\hline 125 & O & OCDF & \multirow[t]{2}{*}{\[
\begin{array}{r}
11.0 \\
190.0
\end{array}
\]} & \multirow[b]{2}{*}{\(--\)} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\[
\begin{aligned}
& 2.00 \mathrm{BJ} \\
& 3.70
\end{aligned}
\]}} & & & \\
\hline & & OCDD & & & & & & & \\
\hline
\end{tabular}

Conc \(=\) Concentration (Totals include 2,3,7,8-substituted isomers).
EMPC = Estimated Maximum Possible Concentration
\(L O D=\) Limit of Detection. Totals are averages of individual isomer LODS.
\(\mathrm{D}=\) Result obtained from analysis of diluted sample
\(B=\) Less than 10 times higher than method blank level
\(P=\) Recovery outside of method 1613 control limits
\(\mathrm{J}=\) Concentration detected is below the calibration range
\(\mathrm{Nn}=\) Value obtained from additional analysis
\(1=\) interference
\(E=P C D E\) Interference
ND \(=\) Not Detected
NA = Not Applicable
NC = Not Calculated
* \(=\) See Discussion

Report No..... 106234


\title{
amec \({ }^{9}\)
}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES \\ Monitoring
}

\author{
ANALYSIS: METALS \\ SAMPLE DELIVERY GROUP: IOA0558 \& IOA0576
}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0558/0576 \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: IOA0558/IOA0576 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Metals \\ QC Level: Level IV \\ No. of Samples: 2 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: L. Jarusewic \\ Date of Review: March 11, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, SW-846 Method 6010B for Inductively Coupled Plasma, SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0558/0576 \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 017-Composite-Influent & Outfall 017-Composite-Influent & IOA0558-02 & water & ILM04 \\
\hline Outfall 017-Composite Effluent & Outfall 017-Composite Effluent & IOA0576-02 & water & ILM04 \\
\hline
\end{tabular}
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0558/0576 \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C}\) \(\pm 2^{\circ} \mathrm{C}\). No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by field and laboratory personnel. The COCs accounted for the analyses and samples presented in these SDGs. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The dates of collection recorded on the COCs and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP metals and 28 days for mercury. No qualifications were required.

\subsection*{2.2 ICP-MS TUNING}

ICP-MS tuning was not applicable to the analyses presented in these SDGs.

\subsection*{2.3 CALIBRATION}

The ICV and CCV results showed acceptable recoveries, \(90-110 \%\) for ICP and \(80-120 \%\) for mercury. The silver reporting limit check standard recoveries were below the control limit; therefore, nondetected silver in Outfall 017 -Composite-Influent and Outfall 017-Composite-Effluent was qualified as estimated, "UJ." The thallium reporting limit check standard for Outfall 017-Composite-Effluent was recovered below the control limit; therefore, thallium in Outfall 017-Composite-Effluent was qualified as estimated, "UJ." The remaining reporting limit check standards were recovered within the AMEC control limits of \(70-130 \%\). No further sample qualifications were required.

\subsection*{2.4 BLANKS}

There were detects and negative results reported for the method blanks and bracketing ICBs/CCBs associated with the samples in these SDGs. Silver was reported in the associated method blank
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0558/0576 \\
\hline
\end{tabular}
(5A13042-BLK1) for Outfall 017-Composite-Influent at \(-0.0023 \mathrm{mg} / \mathrm{L}\); therefore, nondetected silver in Outfall 017-Composite-Influent was qualified as estimated, "UJ." Boron was detected in a bracketing CCB at \(0.0084 \mathrm{mg} / \mathrm{L}\); however, the boron CCB result was insufficient to qualify the Outfall 017 -Composite-Effluent result. Thallium was reported in a bracketing CCB at \(-0.0038 \mathrm{mg} / \mathrm{L}\); therefore, nondetected thallium in Outfall 017-Composite-Effluent was qualified as estimated, "UJ." No further qualifications were required due to the method and calibration blank results.

\subsection*{2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)}

ICP-MS interference check samples were not applicable to the analyses presented in these SDGs.
ICSA and ICSAB analyses were included in the raw data for the ICP analysis. The recoveries for the interferents were within the control limits of \(80-120 \%\). There were detects and negative results reported for antimony, arsenic, chromium, lead, selenium, and zinc in the ICSA. The validator reviewed the raw data for the site sample ICP analysis for the level of reported interferents, \(\mathrm{Al}, \mathrm{Ca}, \mathrm{Fe}\), and Mg , and determined that the concentration of interferents was not high enough to cause matrix affects. No sample qualifications were required due to the ICP ICS analysis.

\subsection*{2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The ICP LCS samples were identified as 5A13042-BS1 and 5A14046-BS1, and the Hg LCS samples were identified as 5A13050-BS1 and 5A14053-BS1. The LCS results on the summary forms and in the raw data were within the laboratory established ICP and Hg control limits of 85-115\%. No qualifications were required.

\subsection*{2.7 LABORATORY DUPLICATES}

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.8 MATRIX SPIKE}

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.9 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0558/0576 \\
\hline
\end{tabular}

\subsection*{2.10 ICP/MS AND ICP SERIAL DILUTION}

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.11 INTERNAL STANDARDS PERFORMANCE}

Internal standards were not applicable to the analyses presented in these SDGs.

\subsection*{2.12 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit were qualified as estimated, "J." No further qualifications were required.

\subsection*{2.13 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

\subsection*{2.13.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.13.2 Field Duplicates}

There were no field duplicate analyses performed in association with the site sample.

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwya Kelly

Project ID: Outfall 017
Report Number: IOA0576

Sampled: 01/11/05-01/1205
Received: 01/11/05

\section*{DRAFT: METALS}

Analyte
Method
\begin{tabular}{cccc} 
& MiL & Reporting & \begin{tabular}{c} 
Sample \\
Batch
\end{tabular} Dilution Date \\
Limit & Limit & Result & Factor Extracted
\end{tabular}

Date Data Analyzed Qualifiers

Sample ID: IOA0576-02 (DRAFT: Outfall 017-Comp Effluent - Water) - cont. Reporting Units: mg
Antimony
Arsenic
Beryllium
Boron
Cadmium
Chromium
Copper
Lead
Mercury
Nickel
Selenium
Silver
Thallium
Zinc

Sampled: 01/12/05


\section*{AMES VALIDATE}

\title{
LEVEL IV
}

\section*{DRAFT REPORT}

DRAFT REPORT
DATA SUBJECT TO CHANGE 434 Chesap
 2520 E. Sunset Rd. \#3, Las Vegas, Ni 89120 7021 798.3640 Filifoo:

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101
}

Project ID: Outfall 017
Report Number: IOA0558
Sampled: 01/1105-01.1205

\section*{METALS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & & Date Extracted & Date Analyze &  & \begin{tabular}{l}
ata \\
lifiers
\end{tabular} \\
\hline Sample ID: Reporti & 7 Composit & flluent - & (ater) - co & & Sam & led: & 2/05 & & \[
\begin{aligned}
& \text { Rev } \\
& \text { Quat }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Qute } \\
& \text { CODE }
\end{aligned}
\] \\
\hline Antimony & EPA 200.7 & 5A13042 & 0.0042 & 0.010 & ND & 1 & 01/13/05 & 01/1305 & & \\
\hline Arsenic & EPA 200.7 & 5 A 13042 & 0.0038 & 0.0050 & ND & & 01/13/05 & 01/13/05 & & \\
\hline Beryllium & EPA 200.7 & 5 A13042 & 0.00062 & 0.0020 & ND & & 01/13/05 & 01/13/05 & & \\
\hline Cadmium & EPA 200.7 & 5 A 13042 & 0.00034 & 0.0050 & 0.00060 & 1 & 01/13/05 & 01/13/05 & & \(J D N Q\) \\
\hline Chromium & EPA 200.7 & 5.413042 & 0.00068 & 0.0050 & 0.30 & 1 & 01/13/05 & 01/13/05 & & JDNQ \\
\hline Copper & EPA 200.7 & 5A13042 & 0.0017 & 0.010 & 0.015 & & 01/13/05 & 01/13/05 & & \\
\hline Lead & EPA 200.7 & 5A13042 & 0.0021 & 0.0050 & 0.0029 & & 01/13/05 & 01/13/05 & J & DNQ \\
\hline Mercury & EPA 245.1 & 5 A 13050 & 0.000063 & 0.00020 & ND & 1 & 01/13/05 & 01/13/05 & & \\
\hline Nickel & EPA 200.7 & 5 A13042 & 0.0020 & 0.010 & 0.22 & 1 & 01/13/05 & 01/13/05 & & \\
\hline Selenium & EPA 200.7 & 5A13042 & 0.0046 & 0.0050 & ND & 1 & 01/13/05 & 01/13/05 & U & \\
\hline Silver & EPA 200.7 & 5A13042 & 0.0013 & 0.010 & ND & 1 & 01/13/05 & 01/13/05 & UJ & \(B * 3\) \\
\hline Thallium & EPA 200.7 & 5A13042 & 0.0031 & 0.0050 & 0.0052 & 1 & 01/13/05 & 01/13/05 & & \\
\hline Zine & EPA 200.7 & 5A13042 & 0.0037 & 0.020 & 0.13 & 1 & 01/13/05 & 01/13/05 & & \\
\hline
\end{tabular}

\section*{AMEC VALidatien}

\section*{LEVEL IV}

Del Mar Analytical, Irvine
Michele Harper
Project Manager

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental 550 South Wadsworth Boulevard Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical.
Reviewer L. Calvin
Analysis/Method Pesticides/PCBs by Method 608

Package ID T711PP13
Task Order 313150010
SDG No. IOA0558, IOA0576
No. of Analyses 2
Date: March 11, 2005
Reviewers Signatyfe


\section*{amec \({ }^{\text {® }}\)}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES Monitoring
}

\section*{ANALYSIS: PESTICIDES/PCBs}

\section*{SAMPLE DELIVERY GROUP: IOA0558, IOA0576}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOA0558, IOA0576
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Pesticides/PCBs
QC Level: Level IV
No. of Samples: 2
No. of Reanalyses/Dilutions: 0
Reviewer: L. Calvin
Date of Review: March 11, 2005

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedures (DVP-4, Rev.2), EPA Method 608, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary form as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & Method \\
\hline \begin{tabular}{c} 
Outfall 017 Composite \\
Influent
\end{tabular} & \begin{tabular}{c} 
Outfall 017 Composite \\
Influent
\end{tabular} & IOA0558-02 & water & 608 \\
\hline \begin{tabular}{c} 
Outfall 017 Composite \\
Effluent
\end{tabular} & \begin{tabular}{c} 
Outfall 017 Composite \\
Effluent
\end{tabular} & IOA0576-01 & water & 608 \\
\hline
\end{tabular}
DATA VALIDATION REPORT \begin{tabular}{c} 
Project: \\
SPDES IOA0558, IOA0576 \\
SDG: Analysis: Pest/PCB
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). The analysis did not require preservation, and no preservation was noted in the field. The COCs noted that the samples were received intact. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by both field and laboratory personnel. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The water samples were extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

\subsection*{2.2 PESTICIDES INSTRUMENT PERFORMANCE}

No resolution check standards or breakdown check standards are required by Method 608 for pesticides, and according to the raw data provided, a resolution check standard was not analyzed by the laboratory. The laboratory did analyze a breakdown check standard with a breakdown of \(\leq 20 \%\) for individual components ( 4,4 -DDT and endrin) and \(\leq 30 \%\) for the total, as suggested in the National Functional Guidelines. A review of the raw data indicated that the analytical run time was of sufficient length to provide adequate standard separation. The two analytical columns used in the analyses were within the guidelines specified in the methods.

According to the laboratory SOP and the initial calibration raw data, the retention time windows are \(\pm 0.10\) minutes for both surrogates and target compound calibration standards. A review of the raw data indicated that the laboratory retention time criteria were met for the surrogates and pesticide calibration standards. No qualifications were required.

\subsection*{2.3 CALIBRATION}

\subsection*{2.3.1 Analytical Sequence}

Based on the data provided, the analytical sequences were in accordance with the requirements of Method 608. No qualifications were required.

\subsection*{2.3.2 Initial Calibration}

The initial calibration associated with the pesticide analyses of the samples was dated \(12 / 29 / 04\), and consisted of six-point calibrations for the pesticide compounds. The \(\%\) RSDs were within the EPA Method 608 QC limit of \(\leq 10 \%\) on both analytical columns. Single point calibrations were analyzed for toxaphene and chlordane. There was one initial calibration dated 01/03/05 associated with the PCB analyses of the samples, consisting of five points for Arochlor 1016 and Arochlor 1260. Single point calibrations for Arochlor 1242, Aroclor 1248, and Aroclor 1254 were also analyzed. The average \%RSDs for the individual peaks of Aroclor 1016 and Aroclor 1260 were \(\leq 10 \%\) on both analytical columns. An ICV was analyzed immediately following each of the initial calibrations. The \%Ds for all target compounds were within the QC limits of \(15 \%\) on both analytical columns. A representative number of \%RSDs and ICV \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.3.3 Continuing Calibration}

The pesticide analysis of sample Outfall 017 Composite Influent was bracketed by four continuing calibrations, two preceding and two following the analysis. In all of the bracketing calibrations, the \%Ds exceeded \(15 \%\) on one or both channels for \(4,4^{\prime}\)-DDT, methoxychlor, and endrin ketone. Results for the aforementioned compounds were qualified as estimated, "UJ," in sample Outfall 017 Composite Influent. The \%Ds were within the Method QC limit of \(\leq 15 \%\) for the calibrations bracketing sample Outfall 017 Composite Effluent. The PCB analyses of both samples were bracketed by three CCVs, with \%Ds for Aroclor 1016 and Aroclor 1260 of \(\leq 15 \%\). A representative number of \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No further qualifications were required.

\subsection*{2.4 BLANKS}

\subsection*{2.4.1 Instrument Blanks}

An instrument blank was analyzed at the beginning of each analytical sequence. Crosscontamination was not evident in the samples. No qualifications were necessary.

\subsection*{2.4.2 Method Blanks}

One water method blank (5A13049-BLK1) was extracted and analyzed with these SDGs. There were no pesticide target compounds or Aroclors detected in the method blank. Review of the chromatograms showed no false negatives. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One blank spike/blank spike duplicate pair (5A13049-BS1/BSD1) was extracted and analyzed with these SDGs. The recoveries for all spiked pesticide target compounds and Aroclors were within the laboratory-established QC limits and the RPDs were \(\leq 30 \%\). A representative number of recoveries were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.
DATA VALIDATION REPORT \begin{tabular}{c} 
Project: \\
SPG: IOA0558, IOA0576 \\
SDG
\end{tabular}

\subsection*{2.6 SURROGATE RECOVERY}

The sample and all QC samples were fortified with the surrogate compounds decachlorobiphenyl and tetrachloro-m-xylene. Surrogate recoveries for the pesticide and PCB analyses of both samples were within the laboratory-established QC limits. The recoveries were calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

There were no MS/MSD analyses associated with these SDGs. Method accuracy and precision were assessed based on the blank spike/blank spike duplicate results. No qualifications were required.

\subsection*{2.8 SAMPLE CLEANUP PERFORMANCE}

According to the laboratory extraction benchsheets, no cleanups were performed on the water samples. No qualifications were required.

\subsection*{2.9 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.9.1 Field Blanks and Equipment Rinsates}

There were no field QC samples associated with the samples in these SDGs. No qualifications were required.

\subsection*{2.9.2 Field Duplicates}

There were no field duplicate samples associated with the sample in these SDGs.

\subsection*{2.10 COMPOUND IDENTIFICATION}

The laboratory analyzed for pesticide target compounds and PCBs by EPA Method 608. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for the samples in these SDGs. No qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification was verified for these SDGs; however, as there were no detects reported in the samples, quantitation was verified by recalculating a representative number of

\section*{DATA VALIDATION REPORT}
blank spike and surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibration and the laboratory MDL studies. No qualifications were required.

\author{
MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Outfall 017
Report Number: 10A0576

Sampled: 01/11/05-01/12/05

\section*{DRAFT: ORGANOCHLORINE PESTICIDES (EPA 608)}


\section*{AMEC VALIDATED}


\section*{DRAFT REPORT \\ DRAFT REPORT \\ DATA SUBJECT TOCHANGE}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID:. Outfall 017
Report Number: IOA0576 Sampled: 01/11/05-01/1205
Receivec: 01111/05

\section*{DRAFT: TOTAL PCBS (EPA 608)}

MDL Reporting Sample Dilution Date Method Batch Limit Limit \(\begin{gathered}\text { MDL } \\ \text { Result }\end{gathered}\) FactorExtracted
Analyte
Sample ID: IOA0576-02 (DRAFT: Outfall 017-Comp Effluent - Water) - cont.
Reporting Units: ugl
Aroclor 1016
Aroclor 1221
Aroclor 1232
Aroclor 1242
Aroclor 1248
Aroclor 1254
Aroclor 1260
Surrogate: Decachlorobiphenyl (45-120\%)

Sampled: 01/12/05
\begin{tabular}{cccc} 
EPA 608 & 5 A13049 & 0.067 & 1.0 \\
EPA 608 & \(5 A 13049\) & 0.057 & 1.0 \\
EPA 608 & 5 A. 13049 & 0.13 & 1.0 \\
EPA 608 & 5 A13049 & 0.12 & 1.0 \\
EPA 608 & SA13049 & 0.21 & 1.0 \\
EPA 608 & 5 A13049 & 0.16 & 1.0 \\
EPA 608 & 5 A13049 & 0.17 & 1.0
\end{tabular}

Date Data Analyzed Qualifiers
\begin{tabular}{|c|c|c|}
\hline MWH-Pasadena/Boeing & \multicolumn{2}{|l|}{Project ID: Outfall 017} \\
\hline 300 North Lake Avenue, Suite 1200 & & \\
\hline Pasadena, CA 91101 & Report Number: IOA0558 & Sampled: 01/1105-01/1205 \\
\hline (Attention: Bronwyn Kelly & Report Number. IOAOSS8 & Received: 0111105 \\
\hline
\end{tabular}

ORGANOCHLORINE PESTICIDES (EPA 608)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & Dilution Factor & Date Extracted & \begin{tabular}{l}
Date \\
Analyzed
\end{tabular} & Data ualifiers \\
\hline Sample ID: IOA0558Reporting Units: & \[
7 \text { Composite }
\] & Influent - W & ater) - & & Samp & led: 01/1 & 12/05 & veit &  \\
\hline Aldrin & EPA 608 & 5A13049 & 0.029 & 0.10 & ND & & & & \\
\hline alpha-BHC & EPA 608 & 5A13049 & 0.010 & 0.10 & ND & & & 01/14105 & \\
\hline beta-BHC & EPA 608 & 5A13049 & 0.011 & 0.10 & ND & & 01/13/05 & 01/14/05 & \\
\hline delta-BHC & EPA 608 & 5A13049 & 0.010 & 0.20 & ND & , & 01/13/05 & 01/14/05 & \\
\hline gamma-BHC (Lindane) & EPA 608 & 5A13049 & 0.0097 & 0.10 & ND & 1 & 01/13/05 & 01/1405 & \\
\hline Chlordane & EPA 608 & 5A13049 & 0.18 & 1.0 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline 4,4'-DDD & EPA 608 & 5A13049 & 0.011 & 0.10 & ND & 1 & 01/13/05 & & \\
\hline 4,4'-DDE & EPA 608 & 5A13049 & 0.017 & 0.10 & ND & & 01/13/05 & 01/14/05 & \\
\hline 4,4'-DDT & EPA 608 & 5A13049 & 0.015 & 0.10 & ND & & 01/13/05 & 01/14/05 \(\downarrow\) UJ & \\
\hline Dieldrin & EPA 608 & 5A13049 & 0.010 & 0.10 & ND & & 01/13/05 & 01/14/05 kJ & csc \\
\hline Endosulfan I & EPA 608 & 5A13049 & 0.015 & 0.10 & ND & & 01/13:05 & 01/14105 K & \\
\hline Endosulfan II & EPA 608 & 5A13049 & 0.037 & 0.10 & ND & & 01/13/05 & 01/14.05 & \\
\hline Endosulfan sulfate & EPA 608 & 5A13049 & 0.013 & & ND & & 01/13/05 & 01/14/05 & \\
\hline Endrin & EPA 608 & 5 A 13049 & 0.0082 & 0.20 & ND & & 01/13/05 & 01/14/05 & \\
\hline Endrin aldehyde & EPA 608 & 5A13049 & 0.045 & 0.10 & ND & & 0111305 & 01/14/05 & \\
\hline Endrin ketone & EPA 608 & 5413049 & 0.020 & 0.10 & ND & & & 01/1405 \({ }^{\text {01/ }}\) & \\
\hline Heptachlor & EPA 608 & \(5 \mathrm{Al3049}\) & 0.030 & 0.10 & ND & 10 & 011131305 & 01/1405 us & \\
\hline Heptachlor epoxide & EPA 608 & 5A13049 & 0.012 & 0.10 & ND & 1 1 & \(01 / 13 / 05\) & 01/14/05 U & \\
\hline Methoxychlor & EPA 608 & 5813049 & 0.034 & 0.10 & ND & 1.0 & \(01 / 13 / 05\) & 011400 Us & \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Surrogate: Tetrachloro-m-xylene (35-120\%) 5.0}} & ND & 10 & 01/13/05 & 01/14/05 \(u\) & \\
\hline & & & & & \multicolumn{5}{|l|}{\(41 \%\) l} \\
\hline
\end{tabular}

\section*{AMEC VALUDATED}


Del Mar Analytical, Irvine
Michele Harper
Project Manager

14610erian Ave, Suite 100 , inine, C4 92614 (949) \(261-1022\) FAX \(549: 260.26\) 1014 E. Cooley Dr., Suite A, Cotion, CA 92324 (909) \(370-4667\) FAX \((949) 370-10\).
 9830 South 51 st St, Suite B-130. Phoenix, A2. 85044 (480) \(785-0043\) F.AX \(1+80\} 785.635\)
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200

\section*{TOTAL PCBS (EPA 608)}



\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}


\section*{amec \({ }^{\text {d }}\)}

\section*{DATA VALIDATION REPORT}

NPDES Monitoring

\section*{ANALYSIS: SEMIVOLATILES}

\section*{SAMPLE DELIVERY GROUP: IOA0558, IOA0576}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: IOA0558, IOA0576 \\ Project Manager: B. McIlvaine \\ Matrix: Water \\ Analysis: Semivolatiles \\ QC Level: Level IV \\ No. of Samples: 2 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: M. Pokorny \\ Date of Review: March 11, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Semivolatile Organics (DVP-3, Rev. 2), EPA Method 1625C, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{cc} 
DATA VALIDATION REPORT & \begin{tabular}{c} 
Project: \\
SDG:IOA0558, \\
NPDES \\
Analysis: \\
SVOC
\end{tabular} \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Lab No. & Matrix & Method \\
\hline \begin{tabular}{c} 
Outfall 017 \\
Composite Influent
\end{tabular} & \begin{tabular}{c} 
Outfall 017 \\
Composite Influent
\end{tabular} & IOA0558-02 & water & 625 \\
\hline \begin{tabular}{c} 
Outfall 017 \\
Composite Effluent
\end{tabular} & \begin{tabular}{c} 
Outfall 017 \\
Composite Effluent
\end{tabular} & IOA0576-02 & water & 625 \\
\hline
\end{tabular}
\begin{tabular}{cc} 
DALA VALIDATION REPORT & \begin{tabular}{c} 
Project: \\
SDG:IOA0558, IOA0576 \\
Snalysis: \\
SVOC
\end{tabular} \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2\), at \(4^{\circ} \mathrm{C}\). According to COCs, the samples were received intact and in good condition. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs from the field to Del Mar Analytical were signed by field and laboratory personnel and accounted for the analyses presented in these SDGs. As the samples were couriered to the laboratory, custody seals are not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The water samples were extracted within seven days of collection and analyzed within 40 days of extraction. No qualifications were required.

\subsection*{2.2 GC/MS TUNING}

The DFTPP tunes met the criteria specified in Method 625, and the sample was analyzed within 12 hours of the DFTPP injection time. No qualifications were required.

\subsection*{2.3 CALIBRATION}

The initial calibration associated with these SDGs was dated \(12 / 30 / 04\). The average RRFs for all target compounds were \(\geq 0.05\), the \%RSDs were \(\leq 35 \%\), except for the \%RSD for 2,4 dinitrophenol, and the \(r^{2}\) values were \(\geq 0.995\), except for the \(r^{2}\) values for bis( 2 chloroethoxy)methane and 4,6-dinitro-2-methylphenol. 2,4-Dinitrophenol, bis(2chloroethoxy)methane, and 4,6-dinitro-2-methylphenol were qualified as estimated nondetects, "UJ," in both of the samples. The continuing calibration was analyzed 01/18/05. The RRFs for all target compounds were \(\geq 0.05\) and the \(\%\) Ds were \(\leq 20 \%\) except for the \(\%\) Ds for 2,4-dinitrophenol, indeno( \(1,2,3\)-cd)pyrene, and benzo(g,h,i)perylene. A representative number of the RRFs, \%RSD, \(\mathrm{r}^{2}\) values, and \(\% \mathrm{D}\) were checked from the raw data, and no calculation or transcription errors were noted. No further qualifications were required.

\subsection*{2.4 BLANKS}

One method blank (5A13037-BLK1) was extracted and analyzed with these SDGs. No target compounds were reported in the method blank. Review of the raw data indicated no false negatives. No qualifications were required.
\begin{tabular}{ll} 
\\
DATA VALIDATION REPORT & \begin{tabular}{c} 
Project: \\
SDG:IOA0558, IOA0576
\end{tabular} \\
SVOC
\end{tabular}

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One blank spike/ blank spike duplicate pair (SA13037-BS1/BS1D) was extracted and analyzed with these SDGs. The recoveries and RPDs were within the laboratory QC limits, except for the RPD for benzidine. Benzidine was qualified as an estimated nondetect, "UJ," in both of the samples. A representative number of recoveries and RPDs were calculated from the raw data and no calculation or transcription errors were found. No further qualifications were required.

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

No MS/MSD analyses were associated with the samples in these SDGs. Evaluation of method accuracy and precision was based on blank spike/blank spike duplicate results. No qualifications were required.

\subsection*{2.7 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

\subsection*{2.7.1 Field Blanks and Equipment Rinsates}

There were no field QC samples associated with these SDGs. No qualifications were required.

\subsection*{2.7.2 Field Duplicates}

There were no field duplicate samples associated with these SDGs.

\subsection*{2.8 INTERNAL STANDARDS PERFORMANCE}

The internal standard area counts were within the control limits established by the continuing calibration standards: \(-50 \% /+100 \%\) for internal standard areas. A representative number of recoveries were calculated from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.9 COMPOUND IDENTIFICATION}

The laboratory analyzed for semivolatile target compounds by EPA Method 625C. Review of sample chromatograms and retention times indicated no problems with target compound identification. No qualifications were required.

\subsection*{2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantitation was verified by recalculating any sample detects and/or blank spike/blank spike duplicate concentrations from the raw data and no calculation or transcription errors were found. The reporting limits were supported by the low level of the initial calibration. Reporting limits were not adjusted for sample amount; however, the dilution factors listed on the sample result summaries reflected the sample amount extracted. Results were reported in ug/L. Results reported between the MDL and the reporting limit were qualified as estimated, "J," by the laboratory. No further qualifications were required.

\subsection*{2.11 SYSTEM PERFORMANCE}

Review of the raw data indicated no problems with system performance. No qualifications were required.

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: \(10 A 0576\)

Sampled: 01/11/05-01/12/05
Received: 01/11/05

DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & & ion Date or Extracted & Date Analyzed & d & Data alifiers \\
\hline \begin{tabular}{l}
Sample ID: 10A0576-02 \\
Reporting Units: ugl
\end{tabular} & Outfall 017 & Comp Efflue & - Wat & & Samp & led: & 01/12/05 & & &  \\
\hline Acenaphthene & EPA 625 & 5A13037 & 4.3 & 10 & & & & & & \\
\hline Acenaphthylene
Aniline & EPA 625 & 5 S13037 & 3.2 & 10 & ND & & 01/13/05 & 5 01/18/05 & & \\
\hline Aniline & EPA 625 & 5 5A13037 & 2.9 & 10 & ND & & 01/13/05 & 01/18/05 & & \\
\hline \begin{tabular}{l}
Anthracene \\
Benzidine
\end{tabular} & EPA 625 & 5413037 & 3.2 & 10 & ND & & 01/13/05 & 5 01/18/05 & & \\
\hline Benzoic acid & EPA 625 & \(5 \mathrm{SA13037}\) & 5.2 & 20 & ND & 1 & 01/13/0s & \(501 / 18 / 05\) & UJ & \\
\hline Benzo(a)anthracene & EPA 625 & SA13037 & 2.6 & 20 & 13 & , & 01/13/05 & 01/18/05 & 5 & IDNQ \\
\hline Benzo(b)fluoranthene & EPA 625 & SA13037
5413037 & 3.7 & 10 & ND & & 01/13/05 & 01/18/05 U & & \\
\hline Benzo(k)fluoranthene & EPA 625 & 5 513037 & 2.7
3.4 & 10 & ND & & 01/13/05 & 01/18/05 & & \\
\hline Benzo(g,h,i)perylene & EPA 625 & SA13037 & 3.4
5.3 & 10 & ND & 1 & 01/13/05 & 01/18/05 \(\downarrow\) & & \\
\hline Benzo(a)pyrene & EPA 625 & 5A13037 & 3.5 & 10 & ND & 1 & 01/13/05 & 01/18/05 & UJ & \\
\hline Benzyl alcohol & EPA 625 & SA13037 & 3.5 & 10 & ND & 1 & 01/13/05 & 01/18/05 U & \(\cup\) & \\
\hline Bis(2-chloroethoxy)methane & ERA 625 & 5 SA13037 & 2.5
3.9 & 20
10 & ND & 1 & 01/13/05 & 01/18/05 U & \(\cup\) & \\
\hline Bis(2-chioroethyl)ether & EPA 625 & 5 A13037 & 4.4 & 10 & ND & 1 & 01/13/05 & 01/18/05 & UT & \\
\hline Bis(2-chloroisopropyl)ether & EPA 625 & SA13037 & 4.4 & 10 & ND & 1 & 01/13/05 & 01/18/05 U & & \\
\hline Bis(2-ethylhexyl)phthalate & EPA 625 & SA13037 & 5.2 & 50 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline 4-Bromophenyl phenyl ether & EPA 625 & SA13037 & 4.6 & 10 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Butyl benzyl phthalate & EPA 625 & 5 A13037. & 3.5 & 20 & ND & 1 & \(01 / 13 / 05\)
\(01 / 13 / 05\) & 01/18/05 & & \\
\hline 4 Chloroaniline & EPA 625 & 5 A13037 & 6.0 & 10 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline 2 Chloronaphthalene & EPA 625 & 5 A 13037 & 4.0 & 10 & ND & 1 & \(01 / 13 / 05\) & 01/18/05 & & \\
\hline 4-Chloro-3-methylphenol & EPA 625 & 5A13037 & 3.5 & 20 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline 2-Chlorophenol & EPA 625 & 5A13037 & 4.2 & 10 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline 4-Chlorophenyl phenyl ether & EPA 625 & SA13037 & 4.2
3.0 & 10 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Chrysene & EPA 625 & 5 513037 & 28 & 10 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Dibenz(a,h)anthracene & EPA 625 & 5 A 130 & 4.7 & 10 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Dibenzofuran & EPA 625 & 5A13037 & 4.7 & 20 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Di-n-butyl phthalate & EPA 625 & SA13037 & 2.6 & 10 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline 1,3-Dichlorobenzene & EPA 625 & 5 A 13037 & 4.1 & 20
10 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline 1,4-Dichlorobenzene & EPA 625 & SA13037 & 3.1 & 10 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline 1,2-Dichlorobenzene & EPA 625 & SA13037 & 4.5 & 10 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline 3,3-Dichlorobenzidine & EPA 625 & 5A13037 & 4.5 & 10 & ND & 1 & 01/13/05 0 & 01/18/05 & & \\
\hline 2,4-Dichlorophenol & EPA 625 & 5A13037 & 4.1 & 20 & ND & 1 & 01/13/05 0 & 01/18/05 & & \\
\hline Diethyl phthalate & EPA 625 & 5 5A13037 & 3.1 & 10 & ND & 1 & 01/13/05 0 & 01/18/05 & & \\
\hline 2,4-Dimethylphenol & EPA 625 & 5A13037 & 4.1 & 10 & ND & 1 & 01/13/05 0 & 01/18/05 & & \\
\hline Dimethyl phthalate & EPA 625 & 5A13037 & 4.4
3.6 & 20
10 & ND & 1 & 01/13/05 0 & 01/18/05 & & \\
\hline 4,6-Dinitro-2-methylphenol & EPA 625 & 5A13037 & 3.6
5.1 & 10 & ND & 1 & 01/13/05 0 & 01/18/05 f & & \\
\hline 2,4-Dinitrophenol & EPA 625 & 5 SA13037 & \(\frac{5.1}{5.3}\) & 20 & ND & 1 & 01/13/05 0 & 01/18/05 U5 & & \\
\hline 2,4-Dinitrotoluene & EPA 625 & 5 SA13037 & 4.2 & 10 & \(\cdots\) & 1 & 01/13/05 0 & 01/18/05 UT & & \\
\hline 2,6-Dinitrotoluene & EPA 625 & 5 SA13037 & 4.2
3.2 & 10 & ND & 1 & 01/13/05 0 & 01/18/05 U & & \\
\hline Di-n-octyl phthalate & EPA 625 & 5A13037 & 3.2 & 10 & ND & & 01/13/05 0 & 01/18/05 & & \\
\hline Fluoranthene & EPA 625 & 5 S13037 & 4.7 & 20 & ND & & 01/13/05 01/18 & 01/18/05 & & \\
\hline \begin{tabular}{l}
DRAFT REPORT \\
DRAFT REPORT \\
DATA SUBIECT TO CHA
\end{tabular} & & \[
0
\] & 等 &  & & & 01/13/05 01/18 & 01/18/05 \(\downarrow\) & & \\
\hline
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: IOA0576

Sampled: 01/11/05-01/12/05 Received: 01/11/05

\section*{DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}


\section*{DRAFT REPORT \\ DRAFT REPORT \\ DATA SUBJECT TO CHANGE}


\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronurn Kelly
}

Project 1D: Outfall 017
Report Number: 10 A0558

Sampled: 01/11/05-01/12/05
Received: 01/1105

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

 9830 South 515t St, 5wite B-120, Pnoenix, AZ \(85044480 ; 785-096\) FAx \(68581505-9089\)


MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Atrention: Bronuyn Kelly

Project ID: Outfall 017
Report Number: IOA0558

Sampled: 01/1105-01/12.05 Received: 0111/05

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & MDL Limit & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilutio \\
Facto
\end{tabular} & Date Extracted & Date Analyze & \[
\begin{array}{r}
\mathrm{D}_{2} \\
\text { Qual }
\end{array}
\] & \\
\hline Sample DD: IOA0558-02 (Outfall Reporting Units: ug/ & Composit & Influent - W & ater) - & & Samp & led: 0 & 1/12/05 & & REV QUAL & Qua \\
\hline Fluorene & EPA 625 & 5 A 13037 & 3.9 & 10 & & & & & & \\
\hline Hexachlorobenzene & EPA 625 & 5A13037 & 4.8 & 10 & ND & 1 & 01/13/05 & 01/1805 & \(\cup\) & \\
\hline Hexachlorobutadiene & EPA 625 & 5A13037 & 4.2 & 10 & ND & 1 & \(011 / 13 / 05\) & 01/18/05 & & \\
\hline Hexachlorocyclopentadiene & EPA 625 & 5 A13037 & 3.4 & 20 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Hexachloroethane & EPA 625 & 5A13037 & 4.2 & 10 & ND & 1 & & 01/1805 & & \\
\hline Indeno( \(1,2,3\)-cd)pyrene & EPA 625 & \(5 \mathrm{Al3037}\) & 5.4 & 20 & ND & 1 & 01/13/05 & 01/18/05 & UTC & \\
\hline Isophorone & EPA 625 & 5A13037 & 3.7 & 10 & ND & 1 & \(01113 / 05\) & 01/18/05 & UTC & \\
\hline 2-Methylnaphthalene & EPA 625 & 5A13037 & 3.0 & 10 & ND & 1 & 01/13/05 & 01118105 & U & \\
\hline 2-Merhylphenol & EPA 625 & 5A13037 & 3.7 & 10 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline 4-Methylphenol & EPA 625 & 5A13037 & 3.8 & 10 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline Naphthalene & EPA 625 & 5A13037 & 4.5 & 10 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline 2-Nitroaniline & EPA 625 & 5 A 13037 & 3.9 & 20 & ND & 1 & 01/13/0 & 01/18/05 & & \\
\hline 3-Nitroaniline & EPA 625 & \(5 \mathrm{Al3037}\) & 4.5 & 20 & ND & 1 & 01/13/05 & 01/18:05 & & \\
\hline 4-Nitroaniline & EPA 625 & 5A13037 & 4.9 & 20 & ND & 1 & 01/13/05 & \(01 / 18 / 05\) & & \\
\hline Nitrobenzene & EPA 625 & 5A13037 & 4.2 & 20 & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline 2-Nitrophenol & EPA 625 & 5 A 13037 & 4.2 & 10 & ND & 1 & 01/13/05 & 01/18:05 & & \\
\hline 4 -Nitrophenol & EPA 625 & 5A13037 & 6.6 & 20 & ND & 1 & \(01 / 13 / 05\) & 01/18.05 & & \\
\hline N-Nitosodiphenylamine & EPA 625 & \(5 \mathrm{Al3037}\) & 4.0 & 10 & ND & 1 & \(01 / 13105\) & 01118705 & & \\
\hline N-Nitroso-di-n-propylamine & EPA 625 & SA13037 & 3.6 & 10 & ND & 1 & \(01 / 1305\) & 01/18105 & & \\
\hline Pentachlorophenol & EPA 625 & 5A13037 & 4.0 & 20 & ND & 1 & 01/13/05 & 01/18,05 & & \\
\hline Phenanthrene & EPA 625 & 5 A 13037 & 3.3 & 10 & ND & 1 & 01/13/05 & 01118:05 & & \\
\hline Phenol & EPA 625 & SA13037 & 4.0 & 10 & ND & 1 & & & & \\
\hline Pyrene & EPA 625 & 5 A 13037 & 3.9 & 10 & ND & & 01/113/05 & 01/18/05 & & \\
\hline 1,2,4-Trichlorobenzene & EPA 625 & 5 A13037 & 4.4 & 10 & ND & & \(01 / 13 / 05\) & 01/18/05 & & \\
\hline 2,4,5-Trichlorophenol & EPA 625 & 5A13037 & 3.6 & 20 & ND & 1 & 01/13/05 & 0171805 & & \\
\hline 2,4,6-Trichlorophenol & EPA 625 & 5 A 13037 & 4.1 & 20 & ND & 1 & 01113/05 & 0171805 & & \\
\hline 1,2-Diphenylhydrazine/Azobenzene & EPA 625 & 5A13037 & 5.0 & 20 & ND & & 01/13/05 & 01/18/0s & & \\
\hline \multicolumn{5}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Surrogate: 2-Fluorophenol (35-120\%) \\
Surrogate: Phenol-a 6 ( \(45-120 \%\) )
\end{tabular}}} & ND & 1 & 01/13/05 & 01/18/05 & & \\
\hline & & & & & \multicolumn{6}{|l|}{54\%} \\
\hline & & & & & \multicolumn{6}{|l|}{61\%} \\
\hline \multicolumn{5}{|l|}{Surrogate: Nitrobenzene-d5 (45-120\%)} & \multicolumn{6}{|l|}{\[
\begin{aligned}
& 70 \% \\
& 60 \%
\end{aligned}
\]} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Surrogate: 2-Fuorobiphenyl ( 4 S-120\%)}} & \multicolumn{6}{|l|}{68\%} \\
\hline & & & & & 85\% & & & & & \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Michele Harper
Project Manager
}


10A0558 <Page 4 offl>


\section*{\(a m e{ }^{\circ}\)}

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\section*{ANALYSIS: VOLATILES}

\section*{SAMPLE DELIVERY GROUP: IOA0558}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{|c|c|c|}
\hline DATA VALIDATION REPORT & Project: SDG: & \\
\hline & Analysis: & VOC \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ SDG\#: IOA0558 \\ Project Manager: B. McIlvaine \\ Matrix: Water \\ Analysis: Volatiles \\ QC Level: Level IV \\ No. of Samples: 1 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: M. Pokorny \\ Date of Review: March 4, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Volatile Organics (DVP-2, Rev. 2), EPA Method 624, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary forms as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{cc} 
DATA VALIDATIONREPORT & \begin{tabular}{c} 
Project: \\
SDG:
\end{tabular} \\
\begin{tabular}{c} 
NPDES \\
IOA0558
\end{tabular} \\
Analysis: & VOC
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Lab No. & Matrix & Method \\
\hline \begin{tabular}{c} 
Outfall 017 Grab Influent - \\
Water
\end{tabular} & \begin{tabular}{c} 
Outfall 017 Grab Influent - \\
Water
\end{tabular} & IOA0558-01 & water & 624 \\
\hline
\end{tabular}
\begin{tabular}{cc} 
DATA VALIDATION REPORT & \begin{tabular}{c} 
Project: \\
SDG: \\
NPDES \\
IOAOS58
\end{tabular} \\
Analysis: & VOC
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The sample in this SDG was received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm\) \(2^{\circ} \mathrm{C}\). According to the COC, the sample was received intact, without headspace, and in good condition. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COC was signed by field and laboratory personnel and accounted for the analysis presented in this SDG. As the sample was couriered to the laboratory, custody seals are not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The sample was analyzed within 14 days of collection. No qualifications were required.

\subsection*{2.2 GC/MS TUNING}

The ion abundance windows shown on the quantitation report were consistent with those specified in the EPA Method 624. All ion abundances were within the established windows and were therefore acceptable. The samples and associated QC were analyzed within 12 hours of the BFB injection times. The Form Vs were verified from the raw data and no discrepancies between the summary forms and the raw data were noted. No qualifications were required.

\subsection*{2.3 CALIBRATION}

One initial calibration, dated 01/04/05, was associated with this SDG. The average RRFs were \(\geq 0.05\) and the \(\%\) RSDs were \(\leq 35 \%\) for the target compounds listed on the sample summary forms. One continuing calibration, dated \(01 / 12 / 05\), was associated with this SDG. The RRFs for all target compounds were \(\geq 0.05\) and the \(\%\) Ds were \(\leq 20 \%\). A representative number of \%RSDs and average RRFs from the initial calibration, and \%Ds and RRFs from the continuing calibration were recalculated from the raw data, and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.4 BLANKS}

One water method blank (5A12019-BLK1) was associated with this SDG. Methylene chloride was reported in the method blank at \(0.71 \mathrm{ug} / \mathrm{L}\). the sample of this SDG had methylene chloride qualified as a nondetect, "U." The method blank raw data showed no evidence of false negatives or false positives. No further qualifications were required.
\begin{tabular}{cc} 
& Project: \\
DATA VALIDATION REPORT & SDG: \\
NPDES \\
IOA0558 \\
VOC
\end{tabular}

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One water blank spike (5A12019-BS1) was associated with this SDG. All spike recoveries were within the laboratory-established QC limits. A representative number of recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.6 SURROGATE RECOVERY}

The surrogates were within the QC limits of \(80-120 \%\). A representative number of surrogate recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

An MS/MSD analyses was not performed with this SDG. Evaluation of method accuracy was based on the LCS results. No qualifications were required.

\subsection*{2.8 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

\subsection*{2.8.1 Trip Blanks}

A trip blank was not analyzed with this SDG. No qualifications were required.

\subsection*{2.8.2 Field Blanks and Equipment Rinsates}

There were no field QC samples associated with this SDG. No qualifications were required.

\subsection*{2.8.3 Field Duplicates}

There were no field duplicate samples associated with this SDG.

\subsection*{2.9 INTERNAL STANDARDS PERFORMANCE}

Internal standard area counts and retention times for this SDG were within the control limits established by the continuing calibration standards, of \(+100 \% /-50 \%\) for internal standard areas and \(\pm 0.50\) minutes for retention times. A representative number of internal standard areas and retention times were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.
\begin{tabular}{ccc} 
\\
DATA VALIDATIONREPORT & \begin{tabular}{c} 
Project: \\
SDG:
\end{tabular} & \begin{tabular}{c} 
NPDES \\
IOAOS58
\end{tabular} \\
Analysis: & VOC
\end{tabular}

\subsection*{2.10 COMPOUND IDENTIFICATION}

Target compound identification was verified at a Level IV data validation. The laboratory analyzed for a subset of volatile target compounds by EPA Method 624. Chromatograms, retention times, and spectra for the sample and QC were examined and no target compound identification problems were noted. No qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification is verified at a Level IV data validation. The reporting limits were supported by the lowest concentrations of the initial calibration standards and by the MDL study. Compound quantitation was verified by recalculating sample detects, and/or a representative number of blank spike and surrogate recoveries from the raw data. No calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.12 TENTATIVELY IDENTIFIED COMPOUNDS}

The laboratory did not provide TICs for this SDG. No qualifications were required.

\subsection*{2.13 SYSTEM PERFORMANCE}

A review of the chromatograms and other raw data showed no identifiable problems with system performance. No qualifications were required.

MWH-Pasadena/Boeing
Project ID: Outfall 017
Report Number: 10A0558
Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{PURGEABLES BY GC/MS (EPA 624)}



\title{
amec \({ }^{9}\)
}

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\section*{ANALYSIS: GENERAL MINERALS SAMPLE DELIVERY GROUP: IOA0558 \& IOA0576}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: IOA0558/IOA0576 \\ Project Manager: B. McIlvaine \\ Matrix: Water \\ Analysis: General Minerals \\ QC Level: Level IV \\ No. of Samples: \(\quad 4\) \\ Reviewer: L. Jarusewic \\ Date of Review: March 10, 2005
}

The sample listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 300.0, 330.5, 405.1, 335.2, 218.6, 160.2, and 180.1. Standard Methods for the Examination of Water and Wastewater Method SM5540-C and SM2540C, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form L as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{rrr} 
DATA VALIDATION REPORT & Project: & NPDES \\
\hline & SDG No.: & Analysis: \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 017-Grab-Influent & Outfall 017-Grab-Influent & 1OA0558-01 & Water & General Minerals \\
\hline Outfall 017-Composite-Influent & Outfall 017-Composite-Influent & 10A0558-02 & Water & General Minerals \\
\hline Outfall 017-Grab-Effluent & Outfall 017-Grab-Effluent & IOA0576-01 & Water & General Minerals \\
\hline Outfall 017-Composite-Effluent & Outfall 017-Composite-Effluent & IOA0576-02 & Water & General Minerals \\
\hline
\end{tabular}
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0558/0576 \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). No preservation problems were noted by the laboratory. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by field and laboratory personnel. The COCs accounted for the analyses and samples presented in these SDGs. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The holding times were assessed by comparing the date of collection with the dates of analyses. The 14-day analytical holding time for cyanide, the seven-day holding time for total suspended solids, the 48 hour holding time for turbidity, nitrate, and biological oxygen demand, and the 24 -hour haxavalent chromium and residual chlorine holding times were met were met. No qualifications were required.

\subsection*{2.2 CALIBRATION}

For the applicable analyses, the initial calibration correlation coefficients were \(\geq 0.995\). The initial and continuing calibration verification information was acceptable with \(\%\) Rs within the control limits of 90 \(110 \%\) except for hexavalent chromium. The CCV for hexavalent chromium exceeded the method control limits of \(95-105 \%\); however, hexavalent chromium was not detected in Outfall 017 and no qualifications were required. For BOD, no information regarding the calibration of the oxygen meter was provided; however, as the LCS recovery was within the CCV control limits, no qualifications were required. Calibration is not applicable to residual chlorine or total suspended solids.

The total cyanide reporting limit check standard was recovered in Outfall 015 -Composite-Influent. As per a telephone conversation dated 03/11/05 with J. Hatfield of Del Mar Analytical, it was confirmed that the analyst did not spike the reporting limit check standard. Another reporting limit check standard was run that day and was recovered within the control limits of \(70-130 \%\); therefore, the reviewer did not reject the Outfall 015 -Composite-Influent result. Nondetected cyanide was qualified as estimated, "UJ." No further qualifications were required.

\subsection*{2.3 BLANKS}

Hexavalent chromium was detected in the associated method blank; however, as the hexavalent chromium result was not retained, no qualifications were required. The remaining method blank and CCB
\begin{tabular}{rrr} 
& Project: & NPDES \\
D.ATA VALIDATION REPORT & SDG No.: & IOA0558/0576 \\
\hline
\end{tabular}
results reported on the summary forms and in the raw data for blank analyses associated with the sample were nondetects at the reporting limit. No further qualifications were required.

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The laboratory control sample and laboratory control sample duplicate (BOD and cyanide only) recoveries were within the laboratory-established control limits. The LCS is not applicable to turbidity or residual chlorine. No qualifications were required.

\subsection*{2.5 SURROGATES RECOVERY}

Surrogate recovery is not applicable to the analyses presented in these SDGs.

\subsection*{2.6 LABORATORY DUPLICATES}

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.8 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analyses of these samples; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.9 ICP SERIAL DILUTION}

ICP serial dilution is not applicable to the analyses presented in this data validation report.

\subsection*{2.10 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. No qualifications were required.

\subsection*{2.11 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.11.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.11.2 Field Duplicates}

There were no field duplicate pairs associated with these SDGs.

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: IOA0576

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{DRAFT: INORGANICS}


\section*{AMEC VALIDATED}
LEVELIV

\section*{DRAFT REPORT \\ DRAFT REPORT \\ DATA SUBJECT TO CHANGE}
\begin{tabular}{|c|c|c|}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 017 & \\
\hline 300 North Lake Avenue, Suite 1200 & & Sampled: 01/11/05-01/12/05 \\
\hline Pasadena, CA 91101 & Report Number: IOA0558 & Received: 01111/05 \\
\hline \({ }_{4}\) Attention: Bronwyn Kelly & & \\
\hline
\end{tabular}

\section*{INORGANICS}

\title{
MDL Reporting Sample Dilution Date Date Data
}


\title{
AMEC VALIDATED
}

\section*{LEVEL IV}

\section*{LABORATORY REPORT}

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Outfall 017

Sampled: 01/11/05-01/12/05
Received: 01/11/05
Issued: 02/23/05 18:21

\section*{NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117}

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, I page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

\section*{CASE NARRATIVE}

SAMPLE RECEIPT: \(\quad\) Samples were received intact, at \(2^{\circ} \mathrm{C}\), on ice and with chain of custody documentation.
HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the Del Mar Analytical Sample Acceptance Policy unless otherwise noted in the report.
PRESERVATION: Samples requiring preservation were verified prior to sample analysis.
QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.
COMMENTS: \(\quad\) Results that fall between the MDL and RL are 'J' flagged.
SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.
ADDITIONAL
INFORMATION: The date of the composite sample is the date the compositing was performed.

\author{
LABORATORY ID \\ 1OA0558-01 \\ 1OA0558-02
}

Reviewed By:


\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager
\begin{tabular}{lc} 
MWH-Pasadena/Boeing & Project ID: Outfall 017 \\
300 North Lake Avenue, Suite 1200 \\
Pasadena, CA 91101 \\
Attention: Bronwyn Kelly & Report Number: IOA0558 \\
\hline
\end{tabular}


MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017

Report Number: IOA0558

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\title{
ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)
}

\begin{tabular}{lrr} 
MWH-Pasadena/Boeing & Project ID: Outfall 017 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Pasadena, CA 91101 & Report Number: 1040558 & Received: \(01 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & Dilution Factor & Date Extracted & Date Analyze \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Sample ID: IOA0558-02 (Outfall 017 Composite Influent - Water) - cont.
Reporting Units: ug/}} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Sampled: 01/12/05}} & \\
\hline & & & & & & & & \\
\hline Fluorene & EPA 625 & 5A13037 & 3.9 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Hexachlorobenzene & EPA 625 & 5A13037 & 4.8 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Hexachlorobutadiene & EPA 625 & 5A13037 & 4.2 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Hexachlorocyclopentadiene & EPA 625 & 5A13037 & 3.4 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Hexachloroethane & EPA 625 & 5A13037 & 4.2 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Indeno(1,2,3-cd)pyrene & EPA 625 & 5A13037 & 5.4 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Isophorone & EPA 625 & 5A13037 & 3.7 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 2-Methyinaphthalene & EPA 625 & 5A13037 & 3.0 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 2-Methylphenol & EPA 625 & 5A13037 & 3.7 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 4-Methylphenol & EPA 625 & 5A13037 & 3.8 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Naphthalene & EPA 625 & 5A13037 & 4.5 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 2-Nitroaniline & EPA 625 & 5A13037 & 3.9 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 3-Nitroaniline & EPA 625 & 5A13037 & 4.5 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 4-Nitroaniline & EPA 625 & 5A13037 & 4.9 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Nitrobenzene & EPA 625 & 5A13037 & 4.2 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 2-Nitrophenol & EPA 625 & 5A13037 & 4.2 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 4-Nitrophenol & EPA 625 & 5A13037 & 6.6 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline N-Nitrosodiphenylamine & EPA 625 & 5A13037 & 4.0 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline N-Nitroso-di-n-propylamine & EPA 625 & 5A13037 & 3.6 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Pentachlorophenol & EPA 625 & 5A13037 & 4.0 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Phenanthrene & EPA 625 & 5A13037 & 3.3 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Phenol & EPA 625 & 5A13037 & 4.0 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Pyrene & EPA 625 & 5A13037 & 3.9 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 1,2,4-Trichlorobenzene & EPA 625 & 5A13037 & 4.4 & 10 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 2,4,5-Trichlorophenol & EPA 625 & 5A13037 & 3.6 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 2,4,6-Trichlorophenol & EPA 625 & 5A13037 & 4.1 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline 1,2-Diphenylhydrazine/Azobenzene & EPA 625 & 5A13037 & 5.0 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline N -Nitrosodimethylamine & EPA 625 & 5A13037 & 3.7 & 20 & ND & 1 & 01/13/05 & 01/18/05 \\
\hline Surrogate: 2-Fluorophenol (35-120\%) & & & & & \(54 \%\) & & & \\
\hline Surrogate: Phenol-d6 (45-120\%) & & & & & 61\% & & & \\
\hline Surrogate: 2,4,6-Tribromophenol (50-125\%) & & & & & \(70 \%\) & & & \\
\hline Surrogate: Nitrobenzene-d5 (45-120\%) & & & & & 60\% & & & \\
\hline Surrogate: 2-Fluorobiphenyl (45-120\%) & & & & & 68\% & & & \\
\hline Surrogate: Terphenyl-d14 (45-135\%) & & & & & 85\% & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: 10 A 0558

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Sample ID: IOA0558-02 (Outfall 017 Compesite Influent - Water) - cont. Reporting Units: ugh}} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Sampled: 01/12/05}} & & \\
\hline & & & & & & & & & \\
\hline Aldrin & EPA 608 & 5A13049 & 0.029 & 0.10 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline alpha-BHC & EPA 608 & 5A13049 & 0.010 & 0.10 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline beta-BHC & EPA 608 & 5A13049 & 0.011 & 0.10 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline delta-BHC & EPA 608 & 5A13049 & 0.010 & 0.20 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline gamma-BHC (Lindane) & EPA 608 & 5A13049 & 0.0097 & 0.10 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline Chlordane & EPA 608 & 5A13049 & 0.18 & 1.0 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline 4,4-DDD & EPA 608 & 5A13049 & 0.011 & 0.10 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline 4,4-DDE & EPA 608 & 5A13049 & 0.017 & 0.10 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline 4,4-DDT & EPA 608 & 5A13049 & 0.015 & 0.10 & ND & 1 & 01/13/05 & 01/14/05 & C5 \\
\hline Dieldrin & EPA 608 & 5A13049 & 0.010 & 0.10 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline Endosulfan I & EPA 608 & 5A13049 & 0.015 & 0.10 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline Endosulfan II & EPA 608 & 5A13049 & 0.037 & 0.10 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline Endosulfan sulfate & EPA 608 & 5A13049 & 0.013 & 0.20 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline Endrin & EPA 608 & 5A13049 & 0.0082 & 0.10 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline Endrin aldehyde & EPA 608 & 5A13049 & 0.045 & 0.10 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline Endrin ketone & EPA 608 & 5A13049 & 0.020 & 0.10 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline Heptachlor & EPA 608 & 5A13049 & 0.030 & 0.10 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline Heptachlor epoxide & EPA 608 & 5A13049 & 0.012 & 0.10 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline Methoxychlor & EPA 608 & 5 A13049 & 0.034 & 0.10 & ND & 1 & 01/13/05 & 01/14/05 & C5 \\
\hline Toxaphene & EPA 608 & 5A13049 & 0.77 & 5.0 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline Surrogate: Tetrachloro-m-xylene (35-120\%) & & & & & 41\% & & & & \\
\hline Surrogate: Decachlorobiphenyl (45-120\%) & & & & & \(59 \%\) & & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: 1OA0558

Sampled: 01/11/05-01/12/05
Received: 01/11/05

TOTAL PCBS (EPA 608)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{5}{|l|}{Sample ID: 10A0558-02 (Outfall 017 Composite Influent - Water) - cont.} & \multicolumn{3}{|l|}{Sampled: 01/12/05} & & \\
\hline \multicolumn{10}{|l|}{Reporting Units: ug/} \\
\hline Aroclor 1016 & EPA 608 & 5A13049 & 0.067 & 1.0 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline Aroclor 1221 & EPA 608 & 5A13049 & 0.057 & 1.0 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline Aroclor 1232 & EPA 608 & 5A13049 & 0.13 & 1.0 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline Aroclor 1242 & EPA 608 & 5A13049 & 0.12 & 1.0 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline Aroclor 1248 & EPA 608 & 5A13049 & 0.21 & 1.0 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline Aroclor 1254 & EPA 608 & 5A13049 & 0.16 & 1.0 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline Aroclor 1260 & EPA 608 & 5A13049 & 0.17 & 1.0 & ND & 1 & 01/13/05 & 01/14/05 & \\
\hline Surrogate: Decachlorobiphenyl (45-120\%) & & & & & \(69 \%\) & & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager
\begin{tabular}{|lll}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 017 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Pasadena, CA 91101 & Report Number: \(10 A 0558\) & Received: \(01 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

METALS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Sample ID: IOA0558-02 (Outfall 017 Composite Infuent - Water) - cont. Reporting Units: mg/l}} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Sampled: 01/12/05}} & \\
\hline & & & & & & & & \\
\hline Antimony & EPA 200.7 & 5A13042 & 0.0042 & 0.010 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline Arsenic & EPA 200.7 & 5A13042 & 0.0038 & 0.0050 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline Beryllium & EPA 200.7 & 5A13042 & 0.00062 & 0.0020 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline Cadmium & EPA 200.7 & 5A13042 & 0.00034 & 0.0050 & 0.00060 & 1 & 01/13/05 & 01/13/05 \\
\hline Chromium & EPA 200.7 & 5A13042 & 0.00068 & 0.0050 & 0.30 & 1 & 01/13/05 & 01/13/05 \\
\hline Copper & EPA 200.7 & 5 A13042 & 0.0017 & 0.010 & 0.015 & 1 & 01/13/05 & 01/13/05 \\
\hline Lead & EPA 200.7 & 5A13042 & 0.0021 & 0.0050 & 0.0029 & 1 & 01/13/05 & 01/13/05 \\
\hline Mercury & EPA 245.1 & 5A13050 & 0.000063 & 0.00020 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline Nickel & EPA 200.7 & 5A13042 & 0.0020 & 0.010 & 0.22 & 1 & 01/13/05 & 01/13/05 \\
\hline Selenium & EPA 200.7 & 5A13042 & 0.0046 & 0.0050 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline Silver & EPA 200.7 & 5A13042 & 0.0013 & 0.010 & ND & 1 & 01/13/05 & 01/13/05 \\
\hline Thallium & EPA 200.7 & 5A13042 & 0.0031 & 0.0050 & 0.0052 & 1 & 01/13/05 & 01/13/05 \\
\hline Zinc & EPA 200.7 & 5A13042 & 0.0037 & 0.020 & 0.13 & 1 & 01/13/05 & 01/13/05 \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager
\begin{tabular}{lcr|}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 017 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Pasadena, CA 91101 & Report Number: IOA0558 & Received: 01/11/05 \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{5}{|l|}{Sample ID: 1OA0558-01 (Outfall 017 Grab Influent - Water)} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Sampled: 01/11/05}} & \\
\hline \multicolumn{6}{|l|}{Reporting Units: mg/} & & & & \\
\hline Chromium VI & EPA 218.6 & 5A11092 & 0.000041 & 0.0010 & ND & 1 & 01/11/05 & 01/11/05 & C \\
\hline \multicolumn{5}{|l|}{Sample ID: 1OA0558-02 (Outfall 017 Composite Influent - Water)} & \multicolumn{4}{|l|}{Sampled: 01/12/05} & \\
\hline \multicolumn{10}{|l|}{Reporting Units: mg/} \\
\hline Biochemical Oxygen Demand & EPA 405.1 & 5A12041 & 0.59 & 2.0 & 24 & 1 & 01/12/05 & 01/17/05 & \\
\hline Total Cyanide & EPA 335.2 & 5A17067 & 0.017 & 0.025 & ND & 1 & 01/17/05 & 01/17/05 & \\
\hline Total Suspended Solids & EPA 160.2 & 5A17060 & 10 & 10 & 28 & 1 & 01/17/05 & 01/17/05 & \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Michele Harper
Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: IOA0558

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{SHORT HOLD TIME DETAIL REPORT}
\begin{tabular}{lcccccc} 
& \begin{tabular}{c} 
Hold Time \\
(in days)
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Sampled
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Received
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Extracted
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Analyzed
\end{tabular} \\
Sample ID: Outfall 017 Grab Influent (IOA0558-01)-Water
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager
\begin{tabular}{lcr} 
MWH-Pasadena/Boeing & Project ID: Outfall 017 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Pasadena, CA 91101 & Report Number: \(10 A 0558\) & Received: \(01 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{METHOD BI ANKIQC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
Analyte
Batch: 5A12019 Extracted: 01/12/05

Blank Analyzed: 01/12/2005 (5A12019-BLK1)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1,2,3-Trichloropropane & ND & 10 & N/A & ug/ & & & \\
\hline Benzene & ND & 1.0 & 0.28 & ugd & & & \\
\hline Bromodichloromethane & ND & 2.0 & 0.30 & ugh & & & \\
\hline Bromoform & ND & 5.0 & 0.32 & ug/ & & & \\
\hline Bromomethane & ND & 5.0 & 0.34 & ug/ & & & \\
\hline Carbon tetrachloride & ND & 0.50 & 0.28 & ug/ & & & \\
\hline Chlorobenzene & ND & 2.0 & 0.36 & ug/ & & & \\
\hline Chloroethane & ND & 5.0 & 0.33 & ug/ & & & \\
\hline Chloroform & ND & 2.0 & 0.33 & ug/ & & & \\
\hline Chloromethane & ND & 5.0 & 0.30 & ug/ & & & \\
\hline Dibromochloromethane & ND & 2.0 & 0.28 & ug/1 & & & \\
\hline 1,2-Dichlorobenzene & ND & 2.0 & 0.32 & ug/ & & & \\
\hline 1,3-Dichlorobenzene & ND & 2.0 & 0.35 & ug/ & & & \\
\hline 1,4-Dichlorobenzene & ND & 2.0 & 0.37 & ug/ & & & \\
\hline 1,1-Dichloroethane & ND & 2.0 & 0.27 & ug/ & & & \\
\hline 1,2-Dichloroethane & ND & 0.50 & 0.28 & ug/ & & & \\
\hline 1,1-Dichloroethene & ND & 5.0 & 0.32 & ug/ & & & \\
\hline trans-1,2-Dichloroethene & ND & 2.0 & 0.27 & ug/1 & & & \\
\hline 1,2-Dichloropropane & ND & 2.0 & 0.35 & ug/ & & & \\
\hline cis-1,3-Dichloropropene & ND & 2.0 & 0.22 & ug/1 & & & \\
\hline trans-1,3-Dichloropropene & ND & 2.0 & 0.24 & ugn & & & \\
\hline Ethylbenzene & ND & 2.0 & 0.25 & ug/ & & & \\
\hline Methylene chloride & 0.710 & 5.0 & 0.48 & ugh & & & \\
\hline 1,1,2,2-Tetrachloroethane & ND & 2.0 & 0.24 & ugh & & & \\
\hline Tetrachloroethene & ND & 2.0 & 0.32 & ugh & & & \\
\hline Toluene & ND & 2.0 & 0.36 & ug/ & & & \\
\hline 1,1,1-Trichloroethane & ND & 2.0 & 0.30 & ug/ & & & \\
\hline 1,1,2-Trichloroethane & ND & 2.0 & 0.30 & ug/ & & & \\
\hline Trichloroethene & ND & 2.0 & 0.26 & ug/ & & & \\
\hline Trichlorofluoromethane & ND & 5.0 & 0.34 & ug/ & & & \\
\hline Vinyl chloride & ND & 0.50 & 0.26 & ug/1 & & & \\
\hline Xylenes, Total & ND & 4.0 & 0.52 & ug/ & & & \\
\hline Surrogate: Dibromofluoromethane & 24.7 & & & ug \(/\) & 25.0 & 99 & 80-120 \\
\hline Surrogate: Toluene-d8 & 25.1 & & & ug/ & 25.0 & 100 & 80-120 \\
\hline Surrogate: 4-Bromofluorobenzene & 24.5 & & & \(u g /\) & 25.0 & 98 & 80-120 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017

Report Number: 10 A 0558
Report Nuber.

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANK/QC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
Analyte Result

Reporting Limit

Source Result \%REC
\%REC Limits

\section*{RPD} Limit

Data Qualifiers

Batch: 5A12019 Extracted: 01/12/05

LCS Analyzed: 01/12/2005 (5A12019-BS1)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Benzene & 23.4 & 1.0 & 0.28 & ug/l & 25.0 & 94 & 70-120 \\
\hline Bromodichloromethane & 26.4 & 2.0 & 0.30 & ug/ & 25.0 & 106 & 70-140 \\
\hline Bromoform & 25.2 & 5.0 & 0.32 & ug/l & 25.0 & 101 & 55-135 \\
\hline Bromomethane & 29.0 & 5.0 & 0.34 & ug/l & 25.0 & 116 & 60-140 \\
\hline Carbon tetrachloride & 28.8 & 0.50 & 0.28 & ugh & 25.0 & 115 & 70-140 \\
\hline Chlorobenzene & 25.5 & 2.0 & 0.36 & ug/ & 25.0 & 102 & 80-125 \\
\hline Chloroethane & 26.8 & 5.0 & 0.33 & ug/ & 25.0 & 107 & 60-145 \\
\hline Chloroform & 24.9 & 2.0 & 0.33 & ugh & 25.0 & 100 & 75-130 \\
\hline Chloromethane & 24.5 & 5.0 & 0.30 & ug/l & 25.0 & 98 & 40-145 \\
\hline Dibromochloromethane & 26.2 & 2.0 & 0.28 & ug/ & 25.0 & 105 & 65-145 \\
\hline 1,2-Dichlorobenzene & 25.9 & 2.0 & 0.32 & ug/ & 25.0 & 104 & 80-120 \\
\hline 1,3-Dichlorobenzene & 24.9 & 2.0 & 0.35 & ug/ & 25.0 & 100 & 80-120 \\
\hline 1,4-Dichlorobenzene & 24.6 & 2.0 & 037 & ug 1 & 25.0 & 98. & 80-120 \\
\hline 1,1-Dichloroethane & 24.4 & 2.0 & 0.27 & ugh & 25.0 & 98 & \(70-135\) \\
\hline 1,2-Dichloroethane & 26.6 & 0.50 & 0.28 & ugh & 25.0 & 106 & 60-150 \\
\hline 1,1-Dichloroethene & 25.0 & 5.0 & 0.32 & ugl & 25.0 & 100 & 75-135 \\
\hline trans-1,2-Dichloroethene & 25.9 & 2.0 & 0.27 & ug/ & 25.0 & 104 & 70-130 \\
\hline 1,2-Dichloropropane & 24.7 & 2.0 & 0.35 & ughl & 25.0 & 99 & 70-120 \\
\hline cis-1,3-Dichloropropene & 26.9 & 2.0 & 0.22 & ugl & 25.0 & 108 & 75-130 \\
\hline trans-1,3-Dichloropropene & 26.9 & 2.0 & 0.24 & ug/ & 25.0 & 108 & 75-135 \\
\hline Ethylbenzene & 26.6 & 2.0 & 0.25 & ugh & 25.0 & 106 & 80-120 \\
\hline Methylene chloride & 26.1 & 5.0 & 0.48 & ugh & 25.0 & 104 & 60-135 \\
\hline 1,1,2,2-Tetrachloroethane & 22.3 & 2.0 & 0.24 & ug/ & 25.0 & 89 & 60-135 \\
\hline Tetrachloroethene & 26.9 & 2.0 & 0.32 & ugl & 25.0 & 108 & 75-125 \\
\hline Toluene & 24.6 & 2.0 & 0.36 & ugh & 25.0 & 98 & 75-120 \\
\hline 1,1,1-Trichloroethane & 28.4 & 2.0 & 0.30 & ugl & 25.0 & 114 & 75-140 \\
\hline 1,1,2-Trichloroethane & 24.6 & 2.0 & 0.30 & ugh & 25.0 & 98 & 70-125 \\
\hline Trichloroethene & 25.2 & 2.0 & 0.26 & ug/ & 25.0 & 101 & 80-120 \\
\hline Trichlorofluoromethane & 29.3 & 5.0 & 0.34 & ug/ & 25.0 & 117 & 65-145 \\
\hline Vinyl chloride & 23.7 & 0.50 & 0.26 & ugl & 25.0 & 95 & 50-130 \\
\hline Surrogate: Dibromofluoromethane & 24.3 & & & ug/ & 25.0 & 97 & 80-120 \\
\hline Surrogate: Toluene-d8 & 25.0 & & & ug/ & 25.0 & 100 & 80-120 \\
\hline Surrogate: 4-Bromofluorobenzene & 25.0 & & & ug/l & 25.0 & 100 & 80-120 \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager
\begin{tabular}{|lrl} 
MWH-Pasadena/Boeing & Project ID: Outfall 017 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Pasadena, CA 91101 & Report Number: IOA0558 & Received: \(01 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{METHOD BLANKIQC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & Reporting & & & Spike & Source & & \%REC & & RPD & Data \\
\hline Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers \\
\hline
\end{tabular}

\section*{Batch: 5A12019 Extracted: 01/12/05}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Matrix Spike Analyzed: 01/12/2005 (5A12019-MS1)} & \multicolumn{5}{|c|}{Seurce: 1OA0503-01} \\
\hline Benzene & 24.5 & 1.0 & 0.28 & ug/ & 25.0 & ND & 98 & 70-120 \\
\hline Bromodichloromethane & 27.5 & 2.0 & 0.30 & ug/ & 25.0 & ND & 110 & 70-140 \\
\hline Bromoform & 24.0 & 5.0 & 0.32 & ug/ & 25.0 & ND & 96 & 55-140 \\
\hline Bromomethane & 30.7 & 5.0 & 0.34 & ug 1 & 25.0 & ND & 123 & 50-145 \\
\hline Carbon tetrachloride & 30.7 & 0.50 & 0.28 & ug/ & 25.0 & ND & 123 & 70-145 \\
\hline Chlorobenzene & 26.9 & 2.0 & 0.36 & ug/ & 25.0 & ND & 108 & 80-125 \\
\hline Chloroethane & 28.5 & 5.0 & 0.33 & ug/ & 25.0 & ND & 114 & 50-145 \\
\hline Chloroform & 26.6 & 2.0 & 0.33 & ug/l & 25.0 & ND & 106 & 70-135 \\
\hline Chloromethane & 25.7 & 5.0 & 0.30 & ugh & 25.0 & ND & 103 & 35-145 \\
\hline Dibromochloromethane & 26.1 & 2.0 & 0.28 & ug/l & 25.0 & ND & 104 & 65-145 \\
\hline 1,2-Dichlorobenzene & 26.5 & 2.0 & 0.32 & ug/l & 25.0 & ND & 106 & 75-130 \\
\hline 1,3-Dichlorobenzene & 25.7 & 2.0 & 0.35 & ug/ & 25.0 & ND & 103 & 75-130 \\
\hline 14-Dichlorobenzene & 25.5 & 2.0 & 0.37 & ug/ & 25.0 & ND & 102 & 80-120 \\
\hline 1,1-Dichloroethane & 25.9 & 2.0 & 0.27 & ug/ & 25.0 & ND & 104 & 65-135 \\
\hline 1,2-Dichloroethane & 26.9 & 0.50 & 0.28 & ug/ & 25.0 & ND & 108 & \(60-150\) \\
\hline 1,1-Dichloroethene & 26.3 & 5.0 & 0.32 & ug/l & 25.0 & ND & 105 & 65-140 \\
\hline trans-1,2-Dichloroethene & 27.3 & 2.0 & 0.27 & ug/l & 25.0 & ND & 109 & 65-135 \\
\hline 1,2-Dichloropropane & 25.7 & 2.0 & 0.35 & ug/l & 25.0 & ND & 103 & 65-130 \\
\hline cis-1,3-Dichloropropene & 27.3 & 2.0 & 0.22 & ug/ & 25.0 & ND & 109 & 70-140 \\
\hline trans-1,3-Dichloropropene & 27.0 & 2.0 & 0.24 & ugh & 25.0 & ND & 108 & 70-140 \\
\hline Ethylbenzene & 27.8 & 2.0 & 0.25 & ug/l & 25.0 & ND & 111 & 70-130 \\
\hline Methylene chloride & 27.0 & 5.0 & 0.48 & ugh & 25.0 & ND & 108 & 60-135 \\
\hline 1,1,2,2-Tetrachloroethane & 21.5 & 2.0 & 0.24 & ug/ & 25.0 & ND & 86 & 60-145 \\
\hline Tetrachloroethene & 27.9 & 2.0 & 0.32 & ug/ & 25.0 & ND & 112 & 70-130 \\
\hline Toluene & 25.8 & 2.0 & 0.36 & ug/ & 25.0 & ND & 103 & 70-120 \\
\hline 1,1,1-Trichloroethane & 30.4 & 2.0 & 0.30 & ug/ & 25.0 & ND & 122 & 75-140 \\
\hline 1,1,2-Trichloroethane & 24.2 & 2.0 & 0.30 & ug/ & 25.0 & ND & 97 & 60-135 \\
\hline Trichloroethene & 26.4 & 2.0 & 0.26 & ug/ & 25.0 & ND & 106 & 70-125 \\
\hline Trichlorofluoromethane & 31.2 & 5.0 & 0.34 & ug/1 & 25.0 & ND & 125 & 55-145 \\
\hline Vinyl chloride & 24.9 & 0.50 & 0.26 & ug/l & 25.0 & ND & 100 & 40-135 \\
\hline Surrogate: Dibromofluoromethane & 24.6 & & & \(u g /\) & 25.0 & & 98 & 80-120 \\
\hline Surrogate: Toluene-d8 & 25.0 & & & \(u g /\) & 25.0 & & 100 & 80-120 \\
\hline Surrogate: 4-Bromofluorobenzene & 25.4 & & & \(u g /\) & 25.0 & & 102 & 80-120 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: IOA0558
Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKKQC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \[
\begin{aligned}
& \text { RPD } \\
& \text { Limit }
\end{aligned}
\] & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A12019 Extracted: 01/12/05} \\
\hline \multicolumn{5}{|l|}{Matrix Spike Dup Analyzed: 01/12/2005 (5A12019-MSD1)} & \multicolumn{3}{|r|}{Source: 10A0503-01} & & & & \\
\hline Benzene & 24.0 & 1.0 & 0.28 & ug/ & 25.0 & ND & 96 & 70-120 & 2 & 20 & \\
\hline Bromodichloromethane & 27.1 & 2.0 & 0.30 & ug/ & 25.0 & ND & 108 & 70-140 & 1 & 20 & \\
\hline Bromoform & 27.6 & 5.0 & 0.32 & ugl & 25.0 & ND & 110 & 55-140 & 14 & 25 & \\
\hline Bromomethane & 29.8 & 5.0 & 0.34 & ug/ & 25.0 & ND & 119 & 50-145 & 3 & 25 & \\
\hline Carbon tetrachloride & 29.9 & 0.50 & 0.28 & ug/ & 25.0 & ND & 120 & 70-145 & 3 & 25 & \\
\hline Chlorobenzene & 26.4 & 2.0 & 0.36 & ugh & 25.0 & ND & 106 & 80-125 & 2 & 20 & \\
\hline Chloroethane & 28.1 & 5.0 & 0.33 & ug/ & 25.0 & ND & 112 & 50-145 & 1 & 25 & \\
\hline Chloroform & 25.9 & 2.0 & 0.33 & ug/ & 25.0 & ND & 104 & 70-135 & 3 & 20 & \\
\hline Chloromethane & 25.8 & 5.0 & 0.30 & ug/ & 25.0 & ND & 103 & 35-145 & 0 & 25 & \\
\hline Dibromochloromethane & 28.2 & 2.0 & 0.28 & ug/ & 25.0 & ND & 113 & 65-145 & 8 & 25 & \\
\hline 1,2-Dichlorobenzene & 26.4 & 2.0 & 0.32 & ug/ & 25.0 & ND & 106 & 75-130 & 0 & 20 & \\
\hline 1,3-Dichlorobenzene & 25.1 & 2.0 & 0.35 & ug/ & 25.0 & ND & 100 & 75-130 & 2 & 20 & \\
\hline 1,4-Dichlorobenzene & 24.9 & 2.0 & 0.37 & ug/ & 25.0 & ND & 100 & 80.120 & 2 & 20 & \\
\hline 1,1-Dichloroethane & 25.3 & 2.0 & 0.27 & ug/ & 25.0 & ND & 101 & 65-135 & 2 & 20 & \\
\hline 1,2-Dichloroethane & 27.8 & 0.50 & 0.28 & ug/ & 25.0 & ND & 111 & \(60-150\) & 3 & 20 & \\
\hline 1,1-Dichloroethene & 25.8 & 5.0 & 0.32 & ug/ & 25.0 & ND & 103 & 65-140 & 2 & 20 & \\
\hline trans-1,2-Dichloroethene & 27.0 & 2.0 & 0.27 & ugd & 25.0 & ND & 108 & 65-135 & 1 & 20 & \\
\hline 1,2-Dichloropropane & 25.6 & 2.0 & 0.35 & ug/ & 25.0 & ND & 102 & 65-130 & 0 & 20 & \\
\hline cis-1,3-Dichloropropene & 27.4 & 2.0 & 0.22 & ug/ & 25.0 & ND & 110 & 70-140 & 0 & 20 & \\
\hline trans-1,3-Dichloropropene & 28.3 & 2.0 & 0.24 & ug/ & 25.0 & ND & 113 & 70-140 & 5 & 25 & \\
\hline Ethylbenzene & 27.2 & 2.0 & 0.25 & ug/ & 25.0 & ND & 109 & 70-130 & 2 & 20 & \\
\hline Methylene chloride & 26.4 & 5.0 & 0.48 & ug/ & 25.0 & ND & 106 & 60-135 & 2 & 20 & \\
\hline 1,1,2,2-Tetrachloroethane & 25.4 & 2.0 & 0.24 & ug/l & 25.0 & ND & 102 & 60-145 & 17 & 30 & \\
\hline Tetrachloroethene & 27.5 & 2.0 & 0.32 & ugl & 25.0 & ND & 110 & 70-130 & 1 & 20 & \\
\hline Toluene & 25.3 & 2.0 & 0.36 & ugl & 25.0 & ND & 101 & 70-120 & 2 & 20 & \\
\hline 1,1,1-Trichloroethane & 29.2 & 2.0 & 0.30 & ugl & 25.0 & ND & 117 & 75-140 & 4 & 20 & \\
\hline 1,1,2-Trichloroethane & 26.0 & 2.0 & 0.30 & ugl & 25.0 & ND & 104 & 60-135 & 7 & 25 & \\
\hline Trichloroethene & 25.8 & 2.0 & 0.26 & ugh & 25.0 & ND & 103 & 70-125 & 2 & 20 & \\
\hline Trichlorofluoromethane & 30.5 & 5.0 & 0.34 & ugh & 25.0 & ND & 122 & 55-145 & 2 & 25 & \\
\hline Vinyl chloride & 24.5 & 0.50 & 0.26 & ug/ & 25.0 & ND & 98 & 40.135 & 2 & 30 & \\
\hline Surrogate: Dibromofluoromethane & 24.7 & & & ug/ \(/\) & 25.0 & & 99 & 80-120 & & & \\
\hline Surrogate: Toluene-d8 & 25.0 & & & ugh & 25.0 & & 100 & 80-120 & & & \\
\hline Surrogate: 4-Bromofluorobenzene & 25.4 & & & ug/ & 25.0 & & 102 & 80-120 & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine \\ Michele Harper \\ Project Manager}
\begin{tabular}{|lcc|}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 017 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Pasadena, CA 91101 & Report Number: IOA0558 & Received: 01/11/05 \\
Attention: Bronwyn Kelly & & \\
\hline
\end{tabular}

\section*{METHOD BLANK/QC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{lccccccccccc} 
& & Reporting & & & Spike & Source & \%REC & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

\section*{Blank Analyzed: 01/13/2005 (5A13008-BLK1)}
\begin{tabular}{ll} 
Acrolein & ND \\
Acrylonitrile & ND \\
2-Chloroethyl vinyl ether & ND \\
Surrogate: Dibromofluoromethane & 24.3 \\
Surrogate: Toluene-d8 & 24.9 \\
Surrogate: 4 -Bromofluorobenzene & 24.1
\end{tabular}
\begin{tabular}{ll} 
LCS Analyzed: \(\mathbf{0 1 / 1 3 / 2 0 0 5}\) (5A13008-BS1) & \\
2-Chloroethyl vinyl ether & 18.0 \\
Surrogate: Dibromofluoromethane & 25.7 \\
Surrogate: Toluene-d8 & 25.3 \\
Surrogate: 4 -Bromofluorobenzene & 25.3
\end{tabular}


Del Mar Analytical, Irvine
Michele Harper
Project Manager

\author{
Project ID: Outfall 017 \\ Report Number: IOA0558 \\ Sampled: 01/11/05-01/12/05 \\ Received: 01/11/05
}

\section*{METHOD BLANKIOC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{lllllllllll} 
& & Reperting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit
\end{tabular}

Batch: 5A13037 Extracted: 01/13/05

\section*{Blank Analyzed: 01/17/2005 (5A13037-BLK1)}
\begin{tabular}{|c|c|c|c|c|}
\hline Acenaphthene & ND & 10 & 4.3 & ug/ \\
\hline Acenaphthylene & ND & 10 & 3.2 & ug/ \\
\hline Aniline & ND & 10 & 2.9 & ug/ \\
\hline Anthracene & ND & 10 & 3.2 & ug/ \\
\hline Benzidine & ND & 20 & 5.2 & ug/ \\
\hline Benzoic acid & ND & 20 & 2.6 & ug/ \\
\hline Benzo(a)anthracene & ND & 10 & 3.7 & ug/ \\
\hline Benzo(b)fluoranthene & ND & 10 & 2.7 & ugl \\
\hline Benzo(k)fluoranthene & ND & 10 & 3.4 & ug/l \\
\hline Benzo(g,h,i)perylene & ND & 10 & 5.3 & ug/ \\
\hline Benzo(a)pyrene & ND & 10 & 3.5 & ug/1 \\
\hline Benzyl alcohol & ND & 20 & 2.5 & ug/l \\
\hline Bis(2-chloroethoxy)methane & ND & 10 & 3.9 & ug/ \\
\hline Bis (2-chloroethyl)ether & ND & 10 & 4.4 & ugh \\
\hline Bis(2-chloroisopropyl)ether & ND & 10 & 4.6 & ugl \\
\hline Bis(2-ethythexyl)phthalate & ND & 50 & 5.2 & ug/ \\
\hline 4-Bromophenyl phenyl ether & ND & 10 & 4.6 & ug/ \\
\hline Butyl benzyl phthalate & ND & 20 & 3.5 & ug/ \\
\hline 4-Chloroaniline & ND & 10 & 6.0 & ug/ \\
\hline 2-Chloronaphthalene & ND & 10 & 4.0 & ug/ \\
\hline 4-Chloro-3-methylphenol & ND & 20 & 3.5 & ug/ \\
\hline 2-Chlorophenol & ND & 10 & 4.2 & ugh \\
\hline 4-Chlorophenyl phenyl ether & ND & 10 & 3.0 & ug/ \\
\hline Chrysene & ND & 10 & 2.8 & ug/ \\
\hline Dibenz(a,h)anthracene & ND & 20 & 4.7 & ug/ \\
\hline Dibenzofuran & ND & 10 & 2.6 & ug/ \\
\hline Di-n-butyl phthalate & ND & 20 & 2.8 & g/1 \\
\hline 1,3-Dichlorobenzene & ND & 10 & 4.1 & ug/ \\
\hline 1,4-Dichlorobenzene & ND & 10 & 3.9 & ug/ \\
\hline 1,2-Dichlorobenzene & ND & 10 & 4.5 & ug/ \\
\hline 3,3-Dichlorobenzidine & ND & 20 & 11 & ug/ \\
\hline 2,4-Dichlorophenol & ND & 10 & 4.1 & \(\mathrm{g} / 1\) \\
\hline Diethyl phthalate & ND & 10 & 3.1 & g/1 \\
\hline 2,4-Dimethylphenol & ND & 20 & 4.4 & \(\mathrm{g} / 1\) \\
\hline Dimethyl phthalate & ND & 10 & 3.6 & ug/ \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager
\begin{tabular}{|lcl}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 017 & \\
300 North Lake Avenue, Suite 1200 & Report Number: IOA0558 & Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
\begin{tabular}{l} 
Pasadena, CA 91101 \\
Attention: Bronwyn Kelly
\end{tabular} & & Received: \(01 / 11 / 05\)
\end{tabular}

\section*{METHOD BLANK/QC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \[
\begin{aligned}
& \text { \%REC } \\
& \text { Limits }
\end{aligned}
\] & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & \begin{tabular}{l}
Data \\
Qualifiers
\end{tabular} \\
\hline \multicolumn{12}{|l|}{Batch: 5A13037 Extracted: 01/13/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/17/2005 (5A13037-BLK1)} \\
\hline 4,6-Dinitro-2-methylphenol & ND & 20 & 5.1 & ug/l & & & & & & & \\
\hline 2,4-Dinitrophenol & ND & 20 & 5.3 & ug/l & & & & & & & \\
\hline 2,4-Dinitrotoluene & ND & 10 & 4.2 & ug/l & & & & & & & \\
\hline 2,6-Dinitrotoluene & ND & 10 & 3.2 & ug/l & & & & & & & \\
\hline Di-n-octyl phthalate & ND & 20 & 4.7 & ug/l & & & & & & & \\
\hline Fluoranthene & ND & 10 & 4.2 & ug/l & & & & & & & \\
\hline Fluorene & ND & 10 & 3.9 & ug/l & & & & & & & \\
\hline Hexachlorobenzene & ND & 10 & 4.8 & ug/l & & & & & & & \\
\hline Hexachlorobutadiene & ND & 10 & 4.2 & ug/l & & & & & & & \\
\hline Hexachlorocyclopentadiene & ND & 20 & 3.4 & ug/l & & & & & & & \\
\hline Hexachloroethane & ND & 10 & 4.2 & ug/ & & & & & & & \\
\hline Indeno(1,2,3-cd)pyrene & ND & 20 & 5.4 & ug/l & & & & & & & \\
\hline Isophorone & ND & 10 & 3.7 & ug/1 & & & & & & & \\
\hline 2-Methylnaphthalene & ND & 10 & 3.0 & ugl & & & & & & & \\
\hline 2-Methylphenol & ND & 10 & 3.7 & ug/l & & & & & & & \\
\hline 4-Methylphenol & ND & 10 & 3.8 & ug/l & & & & & & & \\
\hline Naphthalene & ND & 10 & 4.5 & ug/l & & & & & & & \\
\hline 2-Nitroaniline & ND & 20 & 3.9 & ug/l & & & & & & & \\
\hline 3-Nitroaniline & ND & 20 & 4.5 & ug/l & & & & & & & \\
\hline 4-Nitroaniline & ND & 20 & 4.9 & ug/l & & & & & & & \\
\hline Nitrobenzene & ND & 20 & 4.2 & ug/l & & & & & & & \\
\hline 2-Nitrophenol & ND & 10 & 4.2 & ug/l & & & & & & & \\
\hline 4-Nitrophenol & ND & 20 & 6.6 & ug/l & & & & & & & \\
\hline N -Nitrosodiphenylamine & ND & 10 & 4.0 & ug/l & & & & & & & \\
\hline N-Nitroso-di-n-propylamine & ND & 10 & 3.6 & ug/ & & & & & & & \\
\hline Pentachlorophenol & ND & 20 & 4.0 & ug/l & & & & & & & \\
\hline Phenanthrene & ND & 10 & 3.3 & ug/ & & & & & & & \\
\hline Phenol & ND & 10 & 4.0 & ug/l & & & & & & & \\
\hline Pyrene & ND & 10 & 3.9 & ug/l & & & & & & & \\
\hline 1,2,4-Trichlorobenzene & ND & 10 & 4.4 & ugh & & & & & & & \\
\hline 2,4,5-Trichlorophenol & ND & 20 & 3.6 & ug/l & & & & & & & \\
\hline 2,4,6-Trichlorophenol & ND & 20 & 4.1 & ug/l & & & & & & & \\
\hline 1,2-Diphenylhydrazine/Azobenzene & ND & 20 & 5.0 & ug/ & & & & & & & \\
\hline N -Nitrosodimethylamine & ND & 20 & 3.7 & ug/ & & & & & & & \\
\hline Surrogate: 2-Fluorophenol & 120 & & & \(u g / l\) & 200 & & 60 & 35-120 & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

\author{
Project ID: Outfall 017 \\ Report Number: 10A0558 \\ Sampled: 01/11/05-01/12/05 \\ Received: 01/11/05
}

\section*{METHOD BLANKVQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A13037 Extracted: 01/13/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/17/2005 (5A13037-BLK1)} \\
\hline Surrogate: Phenol-d6 & 129 & & & ug/ & 200 & & 64 & 45-120 & & & \\
\hline Surrogate: 2,4,6-Tribromophenol & 160 & & & ug/ & 200 & & 80 & 50-125 & & & \\
\hline Surrogate: Nitrobenzene-d5 & 63.1 & & & ug \(/\) & 100 & & 63 & 45-120 & & & \\
\hline Surrogate: 2-Fluorobiphenyl & 72.3 & & & ug/l & 100 & & 72 & 45-120 & & & \\
\hline Surrogate: Terphenyl-d14 & 75.6 & & & ug \(/\) & 100 & & 76 & 45-135 & & & \\
\hline LCS Analyzed: 01/17/2005 (5A & & & & & & & & & & & M-NR1 \\
\hline Acenaphthene & 75.6 & 10 & 4.3 & ug/ & 100 & & 76 & 55-120 & & & \\
\hline Acenaphthylene & 75.9 & 10 & 3.2 & ug/ & 100 & & 76 & 55-120 & & & \\
\hline Aniline & 68.9 & 10 & 2.9 & ug/ & 100 & & 69 & 30-120 & & & \\
\hline Anthracene & 80.4 & 10 & 3.2 & ug/ & 100 & & 80 & 60-120 & & & \\
\hline Benzidine & 62.5 & 20 & 5.2 & ug/ & 100 & & 62 & 20-180 & & & \\
\hline Benzoic acid & 81.0 & 20 & 2.6 & ug/ & 100 & & 81 & 30-125 & & & \\
\hline Benzo(a)anthracene & 81.8 & 10 & 3.7 & ug/ & 100 & & 82 & 65120 & & & \\
\hline Benzo(b)fluoranthene & 81.3 & 10 & 2.7 & ug/ & 100 & & 81 & 50-125 & & & \\
\hline Benzo(k)fluoranthene & 77.8 & 10 & 3.4 & ug/ & 100 & & 78 & 50-125 & & & \\
\hline Benzo(g,h,i)perylene & 84.8 & 10 & 5.3 & ug/ & 100 & & 85 & 35-160 & & & \\
\hline Benzo(a)pyrene & 80.7 & 10 & 3.5 & ug/ & 100 & & 81 & 55-125 & & & \\
\hline Benzyl alcohol & 73.4 & 20 & 2.5 & ug/ & 100 & & 73 & 40-130 & & & \\
\hline Bis(2-chloroethoxy)methane & 73.3 & 10 & 3.9 & ug/ & 100 & & 73 & 55-120 & & & \\
\hline Bis(2-chloroethyl)ether & 63.5 & 10 & 4.4 & ug/ & 100 & & 64 & 50-120 & & & \\
\hline Bis(2-chloroisopropyl)ether & 69.9 & 10 & 4.6 & ug/ & 100 & & 70 & 50-120 & & & \\
\hline Bis(2-ethylhexyl)phthalate & 77.3 & 50 & 5.2 & ug/ & 100 & & 77 & 65-125 & & & \\
\hline 4-Bromophenyl phenyl ether & 70.8 & 10 & 4.6 & ug/ & 100 & & 71 & 55-125 & & & \\
\hline Butyl benzyl phthalate & 75.0 & 20 & 3.5 & ug/ & 100 & & 75 & 60-125 & & & \\
\hline 4-Chloroaniline & 79.0 & 10 & 6.0 & ug/ & 100 & & 79 & 55-120 & & & \\
\hline 2-Chloronaphthalene & 75.9 & 10 & 4.0 & ug/ & 100 & & 76 & 60-120 & & , & \\
\hline 4-Chloro-3-methylphenol & 73.5 & 20 & 3.5 & ug1 & 100 & & 74 & 60-120 & & & \\
\hline 2-Chlorophenol & 69.8 & 10 & 4.2 & ug/ & 100 & & 70 & 45-120 & & & \\
\hline 4-Chlorophenyl phenyl ether & 77.3 & 10 & 3.0 & ug/ & 100 & & 77 & 55-120 & & & \\
\hline Chrysene & 81.9 & 10 & 2.8 & ughl & 100 & & 82 & 65-120 & & & \\
\hline Dibenz(a,h)anthracene & 85.7 & 20 & 4.7 & ugh & 100 & & 86 & 40-160 & & & \\
\hline Dibenzofuran & 77.5 & 10 & 2.6 & ug/ & 100 & & 78 & 60-120 & & & \\
\hline Di-n-butyl phthalate & 71.9 & 20 & 2.8 & ug/ & 100 & & 72 & 65-125 & & & \\
\hline 1,3-Dichlorobenzene & 66.5 & 10 & 4.1 & ugl & 100 & & 66 & 40-120 & & & \\
\hline 1,4-Dichlorobenzene & 62.7 & 10 & 3.9 & ugl & 100 & & 63 & 40-120 & & & \\
\hline Del Mar Analytical, Irvine Michele Harper Project Manager & & & & & & & & & & & \\
\hline
\end{tabular}

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

\author{
Project ID: Outfall 017 \\ Report Number: 10 A 0558 \\ Sampled: 01/11/05-01/12/05 \\ Received: 01/11/05
}

\section*{METHOD BLANKIOC DATA}

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)
\begin{tabular}{llllllllllll} 
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

Batch: 5A13037 Extracted: 01/13/05

LCS Analyzed: 01/17/2005 (5A13037-BS1)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1,2-Dichlorobenzene & 63.6 & 10 & 4.5 & ug/ & 100 & 64 & 40-120 \\
\hline 3,3-Dichlorobenzidine & 90.6 & 20 & 11 & ug/ & 100 & 91 & 50-170 \\
\hline 2,4-Dichlorophenol & 70.8 & 10 & 4.1 & ug/1 & 100 & 71 & 55-120 \\
\hline Diethyl phthalate & 71.0 & 10 & 3.1 & ug/l & 100 & 71 & 60-120 \\
\hline 2,4-Dimethylphenol & 59.6 & 20 & 4.4 & ug/ & 100 & 60 & 35-120 \\
\hline Dimethyl phthalate & 69.3 & 10 & 3.6 & ug/ & 100 & 69 & 60-120 \\
\hline 4,6-Dinitro-2-methylphenol & 78.6 & 20 & 5.1 & ug/ & 100 & 79 & 55-120 \\
\hline 2,4-Dinitrophenol & 86.2 & 20 & 5.3 & ug/ & 100 & 86 & 40-140 \\
\hline 2,4-Dinitrotoluene & 81.5 & 10 & 4.2 & ugh & 100 & 82 & 60-140 \\
\hline 2,6-Dinitrotoluene & 74.3 & 10 & 3.2 & ug/ & 100 & 74 & 65-125 \\
\hline Di-n-octyl phthalate & 81.2 & 20 & 4.7 & ug/l & 100 & 81 & 60-130 \\
\hline Fluoranthene & 81.4 & 10 & 4.2 & ug/ & 100 & 81 & 55-125 \\
\hline Fluorene & 80.2 & 10 & 3.9 & ug/ & 100 & 80 & 60-120 \\
\hline Hexachlorobenzene & 73.6 & 10 & 4.8 & ug/l & 100 & 74 & 50-120 \\
\hline Hexachlorobutadiene & 61.7 & 10 & 4.2 & ugh & 100 & 62 & 45-120 \\
\hline Hexachlorocyclopentadiene & 54.7 & 20 & 3.4 & ug/ & 100 & 55 & 10-130 \\
\hline Hexachloroethane & 60.9 & 10 & 4.2 & ug/1 & 100 & 61 & 40-120 \\
\hline Indeno(1,2,3-cd)pyrene & 81.9 & 20 & 5.4 & ug/1 & 100 & 82 & 35-150 \\
\hline Isophorone & 65.8 & 10 & 3.7 & ug/l & 100 & 66 & 55-120 \\
\hline 2-Methylnaphthalene & 84.8 & 10 & 3.0 & ug/ & 100 & 85 & 50-120 \\
\hline 2-Methylphenol & 70.0 & 10 & 3.7 & ug/ & 100 & 70 & 45-120 \\
\hline 4-Methylphenol & 70.1 & 10 & 3.8 & ugh & 100 & 70 & 45-120 \\
\hline Naphthalene & 76.9 & 10 & 4.5 & ug/ & 100 & 77 & 50-120 \\
\hline 2-Nitroaniline & 78.9 & 20 & 3.9 & ug/ & 100 & 79 & 60-130 \\
\hline 3-Nitroaniline & 91.3 & 20 & 4.5 & ug/ & 100 & 91 & 50-140 \\
\hline 4-Nitroaniline & 96.0 & 20 & 4.9 & ug/ & 100 & 96 & 45-160 \\
\hline Nitrobenzene & 65.6 & 20 & 4.2 & ugh & 100 & 66 & 50-120 \\
\hline 2-Nitrophenol & 80.9 & 10 & 4.2 & ug/ & 100 & 81 & 55-120 \\
\hline 4-Nitrophenol & 67.9 & 20 & 6.6 & ug/ & 100 & 68 & 50-135 \\
\hline N-Nitrosodiphenylamine & 71.9 & 10 & 4.0 & ug/ & 100 & 72 & 60-120 \\
\hline N-Nitroso-di-n-propylamine & 65.9 & 10 & 3.6 & ug/ & 100 & 66 & 50-120 \\
\hline Pentachlorophenol & 80.8 & 20 & 4.0 & ug/ & 100 & 81 & 50-125 \\
\hline Phenanthrene & 81.8 & 10 & 3.3 & ug/ & 100 & 82 & 55-120 \\
\hline Phenol & 66.0 & 10 & 4.0 & ug/ & 100 & 66 & 45-120 \\
\hline Pyrene & 80.9 & 10 & 3.9 & ug/ & 100 & 81 & 50-120 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017

Report Number: 1OA0558
Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKIQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A13037 Extracted: 01/13/05} \\
\hline LCS Analyzed: 01/17/2005 (5A1 & & & & & & & & & & & M-NR1 \\
\hline 1,2,4-Trichlorobenzene & 65.3 & 10 & 4.4 & ug/ & 100 & & 65 & 50-120 & & & \\
\hline 2,4,5-Trichlorophenol & 78.9 & 20 & 3.6 & ugh & 100 & & 79 & 60-120 & & & \\
\hline 2,4,6-Trichlorophenol & 77.9 & 20 & 4.1 & ug/ & 100 & & 78 & 60-120 & & & \\
\hline 1,2-Diphenylhydrazine/Azobenzene & 79.5 & 20 & 5.0 & ug/l & 100 & & 80 & 60-120 & & & \\
\hline N -Nitrosodimethylamine & 66.8 & 20 & 3.7 & ug/ & 100 & & 67 & 40-120 & & & \\
\hline Surrogate: 2-Fluorophenol & 125 & & & ug/ & 200 & & 62 & 35-120 & & & \\
\hline Surrogate: Phenol-d6 & 129 & & & ug/ & 200 & & 64 & 45-120 & & & \\
\hline Surrogate: 2,4,6-Tribromophenol & 160 & & & ug/ & 200 & & 80 & 50-125 & & & \\
\hline Surrogate: Nitrobenzene-d5 & 66.3 & & & ug/ & 100 & & 66 & 45-120 & & & \\
\hline Surrogate: 2-Fluorobiphenyl & 73.6 & & & ug/ & 100 & & 74 & 45-120 & & & \\
\hline Surrogate: Terphenyl-d14 & 73.4 & & & ug \(/\) & 100 & & 73 & 45-135 & & & \\
\hline \multicolumn{12}{|l|}{LCS Dup Analyzed: 01/17/2005 (5A13037-BSD1)} \\
\hline Acenaphthene & 73.9 & 10 & 4.3 & ugh & 100 & & 74 & 55-120 & 2 & 20 & \\
\hline Acenaphthylene & 74.7 & 10 & 3.2 & uga & 100 & & 75 & 55-120 & 2 & 20 & \\
\hline Aniline & 68.6 & 10 & 2.9 & ug/ & 100 & & 69 & 30-120 & 0 & 25 & \\
\hline Anthracene & 77.5 & 10 & 3.2 & ug/ & 100 & & 78 & 60-120 & 4 & 20 & \\
\hline Benzidine & 143 & 20 & 5.2 & ug/ & 100 & & 143 & 20-180 & 78 & 35 & R-7 \\
\hline Benzoic acid & 78.1 & 20 & 2.6 & ug/l & 100 & & 78 & 30-125 & 4 & 30 & \\
\hline Benzo(a)anthracene & 80.6 & 10 & 3.7 & ug/l & 100 & & 81 & 65-120 & 1 & 20 & \\
\hline Benzo(b)fluoranthene & 77.5 & 10 & 2.7 & ug/ & 100 & & 78 & 50-125 & 5 & 25 & \\
\hline Benzo(k)fluoranthene & 77.5 & 10 & 3.4 & ug/l & 100 & & 78 & 50-125 & 0 & 20 & \\
\hline Benzo( \(\mathrm{g}, \mathrm{h}, \mathrm{i}\) ) perylene & 81.4 & 10 & 5.3 & ug/ & 100 & & 81 & 35-160 & 4 & 25 & \\
\hline Benzo(a)pyrene & 80.7 & 10 & 3.5 & ug/ & 100 & & 81 & 55-125 & 0 & 25 & \\
\hline Benzyl alcohol & 72.7 & 20 & 2.5 & ug/ & 100 & & 73 & 40-130 & 1 & 20 & \\
\hline Bis(2-chloroethoxy)methane & 71.8 & 10 & 3.9 & ug/ & 100 & & 72 & 55-120 & 2 & 20 & \\
\hline Bis(2-chloroethyl)ether & 61.1 & 10 & 4.4 & ug/ & 100 & & 61 & 50-120 & 4 & 20 & \\
\hline Bis(2-chloroisopropyl)ether & 68.9 & 10 & 4.6 & ugh & 100 & & 69 & 50-120 & 1 & 20 & \\
\hline Bis(2-ethylhexyl)phthalate & 78.8 & 50 & 5.2 & ug/ & 100 & & 79 & 65-125 & 2 & 20 & \\
\hline 4-Bromophenyl phenyl ether & 70.6 & 10 & 4.6 & ug/ & 100 & & 71 & 55-125 & 0 & 25 & \\
\hline Butyl benzyl phthalate & 75.3 & 20 & 3.5 & ug/1 & 100 & & 75 & 60-125 & 0 & 20 & \\
\hline 4-Chloroaniline & 77.6 & 10 & 6.0 & ug/ & 100 & & 78 & 55-120 & 2 & 25 & \\
\hline 2-Chloronaphthalene & 74.3 & 10 & 4.0 & ug/ & 100 & & 74 & 60-120 & 2 & 20 & \\
\hline 4-Chloro-3-methylphenol & 71.1 & 20 & 3.5 & ug/ & 100 & & 71 & 60-120 & 3 & 25 & \\
\hline 2-Chlorophenol & 68.2 & 10 & 4.2 & ug/ & 100 & & 68 & 45-120 & 2 & 25 & \\
\hline 4-Chlorophenyl phenyl ether & 73.3 & 10 & 3.0 & ug/ & 100 & & 73 & 55-120 & 5 & 20 & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: IOA0558

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKIQC DATA}

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)
\begin{tabular}{llllllllllll} 
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

LCS Dup Analyzed: 01/17/2005 (5A13037-BSD1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Chrysene & 80.8 & 10 & 2.8 & ugh & 100 & 81 & 65-120 & 1 & 20 \\
\hline Dibenz(a,h)anthracene & 82.0 & 20 & 4.7 & ug/ & 100 & 82 & 40-160 & 4 & 25 \\
\hline Dibenzofuran & 74.7 & 10 & 2.6 & ug/ & 100 & 75 & 60-120 & 4 & 20 \\
\hline Di-n-butyl phthalate & 70.9 & 20 & 2.8 & ug/ & 100 & 71 & 65-125 & 1 & 20 \\
\hline 1,3-Dichlorobenzene & 59.6 & 10 & 4.1 & \(\mathrm{ug} / \mathrm{l}\) & 100 & 60 & 40-120 & 11 & 25 \\
\hline 1,4-Dichlorobenzene & 63.5 & 10 & 3.9 & ug/ & 100 & 64 & 40-120 & 1 & 25 \\
\hline 1,2-Dichlorobenzene & 61.5 & 10 & 4.5 & ug/ & 100 & 62 & 40-120 & 3 & 25 \\
\hline 3,3-Dichlorobenzidine & 87.9 & 20 & 11 & ug/ & 100 & 88 & 50-170 & 3 & 25 \\
\hline 2,4-Dichlorophenol & 70.2 & 10 & 4.1 & ug/ & 100 & 70 & 55-120 & 1 & 20 \\
\hline Diethyl phthalate & 67.9 & 10 & 3.1 & ug/l & 100 & 68 & 60-120 & 4 & 20 \\
\hline 2,4-Dimethylphenol & 62.1 & 20 & 4.4 & ug/ & 100 & 62 & 35-120 & 4 & 25 \\
\hline Dimethyl phthalate & 69.0 & 10 & 3.6 & ug/ & 100 & 69 & 60-120 & 0 & 20 \\
\hline 4,6-Dinitro 2 -methylphenol & 73.8 & 20 & 5.1 & ugh & 100 & 74 & 55-120 & 6 & 25 \\
\hline 2,4-Dinitrophenol & 77.6 & 20 & 53 & ugh & 100 & 78 & 40.140 & 11 & 25 \\
\hline 2,4-Dinitrotoluene & 77.6 & 10 & 4.2 & ugh & 100 & 78 & 60-140 & 5 & 20 \\
\hline 2,6-Dinitrotoluene & 72.9 & 10 & 3.2 & ugh & 100 & 73 & 65-125 & 2 & 20 \\
\hline Di-n-octyl phthalate & 81.0 & 20 & 4.7 & ug/ & 100 & 81 & 60-130 & 0 & 20 \\
\hline Fluoranthene & 77.9 & 10 & 4.2 & ug 1 & 100 & 78 & 55-125 & 4 & 20 \\
\hline Fluorene & 77.6 & 10 & 3.9 & ug/1 & 100 & 78 & 60-120 & 3 & 20 \\
\hline Hexachlorobenzene & 71.6 & 10 & 4.8 & ug/ & 100 & 72 & 50-120 & 3 & 20 \\
\hline Hexachlorobutadiene & 60.3 & 10 & 4.2 & ugh & 100 & 60 & 45-120 & 2 & 25 \\
\hline Hexachlorocyclopentadiene & 50.9 & 20 & 3.4 & ug/ & 100 & 51 & 10-130 & 7 & 30 \\
\hline Hexachloroethane & 56.9 & 10 & 4.2 & ug/ & 100 & 57 & 40-120 & 7 & 25 \\
\hline Indeno(1,2,3-cd)pyrene & 79.2 & 20 & 5.4 & ug/ & 100 & 79 & 35-150 & 3 & 25 \\
\hline Isophorone & 65.6 & 10 & 3.7 & ug/ & 100 & 66 & 55-120 & 0 & 20 \\
\hline 2-Methylnaphthalene & 72.7 & 10 & 3.0 & ug/ & 100 & 73 & 50-120 & 15 & 20 \\
\hline 2-Methylphenol & 67.3 & 10 & 3.7 & ug/ & 100 & 67 & 45-120 & 4 & 20 \\
\hline 4-Methylphenol & 70.2 & 10 & 3.8 & ug/ & 100 & 70 & 45-120 & 0 & 20 \\
\hline Naphthalene & 73.6 & 10 & 4.5 & ug/ & 100 & 74 & 50-120 & 4 & 20 \\
\hline 2-Nitroaniline & 76.6 & 20 & 3.9 & ug/ & 100 & 77 & 60-130 & 3 & 20 \\
\hline 3-Nitroaniline & 85.4 & 20 & 4.5 & ug/ & 100 & 85 & 50-140 & 7 & 25 \\
\hline 4-Nitroaniline & 88.5 & 20 & 4.9 & ug/ & 100 & 88 & 45-160 & 8 & 20 \\
\hline Nitrobenzene & 63.6 & 20 & 4.2 & ug/ & 100 & 64 & 50-120 & 3 & 25 \\
\hline 2-Nitrophenol & 79.0 & 10 & 4.2 & ug/ & 100 & 79 & 55-120 & 2 & 25 \\
\hline 4-Nitrophenol & 63.6 & 20 & 6.6 & ug/l & 100 & 64 & 50-135 & 7 & 25 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine \\ Michele Harper \\ Project Manager}
\begin{tabular}{lll}
\begin{tabular}{ll} 
MWH-Pasadena/Boeing & Project ID: Outfall 017 \\
300 North Lake Avenue, Suite 1200 & \\
Pasadena, CA 91101 & Report Number: IOA0558
\end{tabular} & \begin{tabular}{l} 
Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Attention: Bronwyn Kelly
\end{tabular} &
\end{tabular}

\section*{METHOD BLANKYOCDATA}

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)
\begin{tabular}{lllllllllll} 
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit
\end{tabular} Qualifiers

LCS Dup Analyzed: 01/17/2005 (5A13037-BSD1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline N -Nitrosodiphenylamine & 69.9 & 10 & 4.0 & ug/ & 100 & 70 & 60-120 & 3 & 20 \\
\hline N -Nitroso-di-n-propylamine & 63.2 & 10 & 3.6 & ug/ & 100 & 63 & 50-120 & 4 & 20 \\
\hline Pentachlorophenol & 75.5 & 20 & 4.0 & ugh & 100 & 76 & 50-125 & 7 & 25 \\
\hline Phenanthrene & 79.5 & 10 & 3.3 & ugh & 100 & 80 & 55-120 & 3 & 20 \\
\hline Phenol & 65.0 & 10 & 4.0 & ug/l & 100 & 65 & 45-120 & 2 & 25 \\
\hline Pyrene & 81.3 & 10 & 3.9 & ug/ & 100 & 81 & 50-120 & 1 & 25 \\
\hline 1,2,4-Trichlorobenzene & 63.8 & 10 & 4.4 & ugh & 100 & 64 & 50-120 & 2 & 20 \\
\hline 2,4,5-Trichlorophenol & 76.4 & 20 & 3.6 & ug/l & 100 & 76 & 60-120 & 3 & 20 \\
\hline 2,4,6-Trichlorophenol & 76.4 & 20 & 4.1 & ug/l & 100 & 76 & 60-120 & 2 & 20 \\
\hline 1,2-Diphenylhydrazine/Azobenzene & 75.1 & 20 & 5.0 & ugh & 100 & 75 & 60-120 & 6 & 25 \\
\hline N -Nitrosodimethylamine & 63.2 & 20 & 3.7 & ug/l & 100 & 63 & 40-120 & 6 & 20 \\
\hline Surrogate: 2-Fluorophenol & 122 & & & ugh & 200 & 61 & 35-120 & & \\
\hline Surrogate Phenol-d6 & 126 & & & \(u g /\) & 200 & 63 & 45-120 & & \\
\hline Surrogate. 2,4,6-7ribromophenol & 154 & & & ug \(n\) & 200 & 77 & 50-125 & & \\
\hline Surrogate: Nitrobenzene-d5 & 64.7 & & & ugl & 100 & 65 & 45-120 & & \\
\hline Surrogate: 2-Fluorobiphenyl & 70.9 & & & ug/ & 100 & 71 & 45-120 & & \\
\hline Surrogate: Terphenyl-d14 & 73.4 & & & ug/ & 100 & 73 & 45-135 & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

\author{
Project ID: Outfall 017 \\ Report Number: 1OA0558 \\ Sampled: 01/11/05-01/12/05 \\ Received: 01/11/05
}

\section*{METHOD BLANKIQC DATA}

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}
Analyte
Batch: 5A13049 Extracted: 01/13/05

\section*{Blank Analyzed: 01/13/2005 (5A13049-BLK1)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Aldrin. & ND & 0.10 & 0.029 & ug/ & & & \\
\hline alpha-BHC & ND & 0.10 & 0.010 & ug/ & & & \\
\hline beta-BHC & ND & 0.10 & 0.011 & ug/ & & & \\
\hline delta-BHC & ND & 0.20 & 0.010 & ug/ & & & \\
\hline gamma-BHC (Lindane) & ND & 0.10 & 0.0097 & ug/ & & & \\
\hline Chlordane & ND & 1.0 & 0.18 & ug/ & & & \\
\hline 4,4-DDD & ND & 0.10 & 0.011 & ug/ & & & \\
\hline 4,4'-DDE & ND & 0.10 & 0.017 & ug/1 & & & \\
\hline 4,4'-DDT & ND & 0.10 & 0.015 & ug/ & & & \\
\hline Dieldrin & ND & 0.10 & 0.010 & ug/ & & & \\
\hline Endosulfan I & ND & 0.10 & 0.015 & ug/ & & & \\
\hline Endosulfan II & ND & 0.10 & 0.037 & ug/ & & & \\
\hline Endosulfan sulfate & ND & 0.20 & 0.013 & ug/ & & & \\
\hline Endrin & ND & 0.10 & 0.0082 & ug/ & & & \\
\hline Endrin aldehyde & ND & 0.10 & 0.045 & ug/ & & & \\
\hline Endrin ketone & ND & 0.10 & 0.020 & ug/ & & & \\
\hline Heptachlor & ND & 0.10 & 0.030 & ug/ & & & \\
\hline Heptachlor epoxide & ND & 0.10 & 0.012 & ug/ & & & \\
\hline Methoxychlor & ND & 0.10 & 0.034 & ugh & & & \\
\hline Toxaphene & ND & 5.0 & 0.77 & ug/1 & & & \\
\hline Sturrogate: Tetrachloro-m-xylene & 0.348 & & & ug/ & 0.500 & 70 & 35-120 \\
\hline Surrogate: Decachlorobiphenyl & 0.424 & & & ug/l & 0.500 & 85 & 45-120 \\
\hline \multicolumn{8}{|l|}{LCS Analyzed: 01/13/2005 (5A13049-BS1)} \\
\hline Aldrin & 0.517 & 0.10 & 0.029 & ug/ & 0.500 & 103 & 45-115 \\
\hline alpha-BHC & 0.527 & 0.10 & 0.010 & ug/ & 0.500 & 105 & 45-115 \\
\hline beta-BHC & 0.496 & 0.10 & 0.011 & ug/ & 0.500 & 99 & 50-115 \\
\hline delta-BHC & 0.564 & 0.20 & 0.010 & ug/ & 0.500 & 113 & 55-120 \\
\hline gamma-BHC (Lindane) & 0.525 & 0.10 & 0.0097 & ug/ & 0.500 & 105 & 45-115 \\
\hline 4,4*-DDD & 0.537 & 0.10 & 0.011 & ug/ & 0.500 & 107 & 60-120 \\
\hline 4,4'-DDE & 0.534 & 0.10 & 0.017 & ug/ & 0.500 & 107 & 55-120 \\
\hline 4,4'-DDT & 0.557 & 0.10 & 0.015 & ug/ & 0.500 & 111 & 60-130 \\
\hline Dieldrin & 0.540 & 0.10 & 0.010 & ug/ & 0.500 & 108 & 55-120 \\
\hline Endosulfan I & 0.512 & 0.10 & 0.015 & ug/ & 0.500 & 102 & 50-115 \\
\hline Endosulfan II & 0.525 & 0.10 & 0.037 & ug/ & 0.500 & 105 & 60-125 \\
\hline Endosulfan sulfate & 0.528 & 0.20 & 0.013 & ug/ & 0.500 & 106 & 60-120 \\
\hline
\end{tabular}

M-NR1

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: IOA0558

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKIOC DATA}

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}
Analyte Result

Batch: 5A13049 Extracted: 01/13/05
\begin{tabular}{lr} 
LCS Analyzed: 01/13/2005 (5A13049-BS1) \\
Endrin & 0.578 \\
Endrin aldehyde & 0.553 \\
Endrin ketone & 0.513 \\
Heptachlor & 0.513 \\
Heptachlor epoxide & 0.527 \\
Methoxychlor & 0.535 \\
Surrogate: Tetrachloro-m-xylene & 0.435 \\
Surrogate: Decachlorobiphenyl & 0.527
\end{tabular}
\begin{tabular}{cccccc}
0.10 & 0.0082 & ug/l & 0.500 & 116 & \(55-125\) \\
0.10 & 0.045 & ugl & 0.500 & 111 & \(55-115\) \\
0.10 & 0.020 & ugh & 0.500 & 103 & \(60-120\) \\
0.10 & 0.030 & ug/ & 0.500 & 103 & \(45-115\) \\
0.10 & 0.012 & ug/ & 0.500 & 105 & \(50-120\) \\
0.10 & 0.034 & ug/ & 0.500 & 107 & \(60-135\) \\
& & ug/ & 0.500 & 87 & \(35-120\) \\
& & ug/ & 0.500 & 105 & \(45-120\)
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager
\begin{tabular}{lrr} 
MWH-Pasadena/Boeing & Project ID: Outfall 017 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Pasadena, CA 91101 & Report Number: IOA0558 & Received: \(01 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{METHOD BLANIKQC DATA}

\section*{TOTAL PCBS (EPA 608)}
\begin{tabular}{llllllllllll} 
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

\section*{Batch: 5A13049 Extracted: 01/13/05}

Blank Analyzed: 01/13/2005 (5A13049-BLK1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Arocior 1016 & ND & 1.0 & 0.067 & ug/ & & & & & & \\
\hline Aroclor 1221 & ND & 1.0 & 0.057 & ug/l & & & & & & \\
\hline Aroclor 1232 & ND & 1.0 & 0.13 & ug/ & & & & & & \\
\hline Aroclor 1242 & ND & 1.0 & 0.12 & ug/l & & & & & & \\
\hline Aroclor 1248 & ND & 1.0 & 0.21 & \(\mathrm{ug} / 1\) & & & & & & \\
\hline Aroclor 1254 & ND & 1.0 & 0.16 & ug/ & & & & & & \\
\hline Aroclor 1260 & ND & 1.0 & 0.17 & ug/l & & & & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.387 & & & \(u g / l\) & 0.500 & 77 & 45-120 & & & \\
\hline LCS Analyzed: 01/13/2005 ( & & & & & & & & & & M-NR1 \\
\hline Aroclor 1016 & 2.82 & 1.0 & 0.067 & ug/ & 4.00 & 70 & 50-115 & & & \\
\hline Aroclor 1260 & 2.91 & 1.0 & 0.17 & ug/l & 4.00 & 73 & 60-115 & & & \\
\hline Surragate: Decachlorobiphenyl & 0.389 & & & ug/l & 0.500 & 78 & 45-120 & & & \\
\hline \multicolumn{11}{|l|}{LCS Dup Analyzed: \(01 / 13 / 2005\) (5A13049-BSD2)} \\
\hline Aroclor 1016 & 2.68 & 1.0 & 0.067 & ug/l & 4.00 & 67 & 50-115 & 5 & 30 & \\
\hline Aroclor 1260 & 2.88 & 1.0 & 0.17 & ug/l & 4.00 & 72 & 60-115 & 1 & 25 & \\
\hline Surrogate: Decachlorobiphenyl & 0.379 & & & \(u g /\) & 0.500 & 76 & 45-120 & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager
\begin{tabular}{lrr} 
MWH-Pasadena/Boeing & Project ID: Outfall 017 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Pasadena, CA 91101 & Report Number: 1040558 & Received: \(01 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{METHOD BLANKIQC DATA}

\section*{METALS}


\section*{Blank Analyzed: 01/13/2005 (5A13042-BLK1)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Antimony & ND & 0.010 & 0.0042 & \(\mathrm{mg} / \mathrm{l}\) & & & \\
\hline Arsenic & ND & 0.0050 & 0.0038 & \(\mathrm{mg} / 1\) & & & \\
\hline Beryllium & ND & 0.0020 & 0.00062 & \(\mathrm{mg} /\) & & & \\
\hline Cadmium & ND & 0.0050 & 0.00034 & \(\mathrm{mg} / \mathrm{l}\) & & & \\
\hline Chromium & ND & 0.0050 & 0.00068 & \(\mathrm{mg} /\) & & & \\
\hline Copper & ND & 0.010 & 0.0017 & \(\mathrm{mg} / \mathrm{l}\) & & & \\
\hline Lead & ND & 0.0050 & 0.0021 & \(\mathrm{mg} / 1\) & & & \\
\hline Nickel & ND & 0.010 & 0.0020 & \(\mathrm{mg} / 1\) & & & \\
\hline Selenium & ND & 0.0050 & 0.0046 & \(\mathrm{mg} / 1\) & & & \\
\hline Silver & ND & 0.010 & 0.0013 & \(\mathrm{mg} / \mathrm{l}\) & & & \\
\hline Thallium & ND & 0.0050 & 0.0031 & \(\mathrm{mg} / \mathrm{l}\) & & & \\
\hline Zinc & ND & 0.020 & 0.0037 & \(\mathrm{mg} / \mathrm{l}\) & & & \\
\hline \multicolumn{8}{|l|}{LCS Analyzed: 01/13/2005 (5A13042-BS1)} \\
\hline Antimony & 0.514 & 0.010 & 0.0042 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 103 & 85-115 \\
\hline Arsenic & 0.490 & 0.0050 & 0.0038 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 98 & 85-115 \\
\hline Beryllium & 0.494 & 0.0020 & 0.00062 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 99 & 85-115 \\
\hline Cadmium & 0.482 & 0.0050 & 0.00034 & \(\mathrm{mg} / 1\) & 0.500 & 96 & 85-115 \\
\hline Chromium & 0.499 & 0.0050 & 0.00068 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 100 & 85-115 \\
\hline Copper & 0.469 & 0.010 & 0.0017 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 94 & 85-115 \\
\hline Lead & 0.502 & 0.0050 & 0.0021 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 100 & 85-115 \\
\hline Nickel & 0.484 & 0.010 & 0.0020 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 97 & 85-115 \\
\hline Selenium & 0.492 & 0.0050 & 0.0046 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 98 & 85-115 \\
\hline Silver & 0.252 & 0.010 & 0.0013 & \(\mathrm{mg} /\) & 0.250 & 101 & 85-115 \\
\hline Thallium & 0.504 & 0.0050 & 0.0031 & \(\mathrm{mg} /\) & 0.500 & 101 & 85-115 \\
\hline
\end{tabular}
\begin{tabular}{lcccccccc} 
Matrix Spike Analyzed: 01/13/2005 (5A13042-MS1) & & & \multicolumn{4}{c}{ Source: 1OA0567-01 } \\
Antimony & 0.528 & 0.010 & 0.0042 & \(\mathrm{mg} /\) & 0.500 & ND & 106 & \(70-130\) \\
Arsenic & 0.508 & 0.0050 & 0.0038 & \(\mathrm{mg} /\) & 0.500 & ND & 102 & \(70-130\) \\
Beryllium & 0.511 & 0.0020 & 0.00062 & \(\mathrm{mg} /\) & 0.500 & ND & 102 & \(70-130\) \\
Cadmium & 0.503 & 0.0050 & 0.00034 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & ND & 101 & \(70-130\) \\
Chromium & 0.517 & 0.0050 & 0.00068 & \(\mathrm{mg} /\) & 0.500 & 0.0022 & 103 & \(70-130\) \\
Copper & 0.514 & 0.010 & 0.0017 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.0036 & 102 & \(70-130\) \\
Lead & 0.518 & 0.0050 & 0.0021 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & ND & 104 & \(70-130\) \\
Nickel & 0.511 & 0.010 & 0.0020 & \(\mathrm{mg} /\) & 0.500 & 0.0025 & 102 & \(70-130\)
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager
\begin{tabular}{|lcc|}
\hline \begin{tabular}{lc} 
MWH-Pasadena/Boeing & Project ID: Outfall 017 \\
300 North Lake Avenue, Suite 1200 & Report Number: IOA0558
\end{tabular} & \begin{tabular}{l} 
Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Rasadena, CA 91101 \\
Rttention: Bronwyn Kelly
\end{tabular} & \\
\hline
\end{tabular}

\section*{METHOD BLANKIOC DATA}

\section*{METALS}
\begin{tabular}{llllllllllll} 
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

Batch: 5A13042 Extracted: 01/13/05
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Matrix Spike Analyzed: 01/13/2005 (5A13042-MS1)} & \multicolumn{8}{|c|}{Source: 1OA0567-01} \\
\hline Selenium & 0.511 & 0.0050 & 0.0046 & mg/ & 0.500 & ND & 102 & 70-130 & & \\
\hline Silver & 0.258 & 0.010 & 0.0013 & \(\mathrm{mg} / \mathrm{l}\) & 0.250 & ND & 103 & 70-130 & & \\
\hline Thallium & 0.515 & 0.0050 & 0.0031 & \(\mathrm{mg} / 1\) & 0.500 & 0.0031 & 102 & 70-130 & & \\
\hline Zinc & 0.520 & 0.020 & 0.0037 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.014 & 101 & 70-130 & & \\
\hline \multicolumn{3}{|l|}{Matrix Spike Dup Analyzed: 01/13/2005 (5A13042-MSD1)} & \multicolumn{8}{|c|}{Source: 10A0567-01} \\
\hline Antimony & 0.517 & 0.010 & 0.0042 & \(\mathrm{mg} /\) & 0.500 & ND & 103 & 70-130 & 2 & 20 \\
\hline Arsenic & 0.500 & 0.0050 & 0.0038 & \(\mathrm{mg} / 1\) & 0.500 & ND & 100 & 70-130 & 2 & 20 \\
\hline Beryllium & 0.505 & 0.0020 & 0.00062 & \(\mathrm{mg} /\) & 0.500 & ND & 101 & 70-130 & 1 & 20 \\
\hline Cadmium & 0.494 & 0.0050 & 0.00034 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & ND & 99 & 70-130 & 2 & 20 \\
\hline Chromium & 0.505 & 0.0050 & 0.00068 & mg/ & 0.500 & 0.0022 & 101 & 70-130 & 2 & 20 \\
\hline Copper & 0.503 & 0.010 & 0.0017 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.0036 & 100 & 70-130 & 2 & 20 \\
\hline Lead & 0.508 & 0.0050 & 0.0021 & \(\mathrm{mg} /\) & 0.500 & ND & 102 & 70-130 & 2 & 20 \\
\hline Nickel & 0.503 & 0.010 & 0.0020 & mg / & 0,500 & 0.0025 & 100 & 70.130 & 2 & 20 \\
\hline Selenium & 0.499 & 0.0050 & 0.0046 & \(\mathrm{mg} / 1\) & 0.500 & ND & 100 & 70.130 & 2 & 20 \\
\hline Silver & 0.253 & 0.010 & 0.0013 & mg / & 0.250 & ND & 101 & 70-130 & 2 & 20 \\
\hline Thallium & 0.502 & 0.0050 & 0.0031 & \(\mathrm{mg} / 1\) & 0.500 & 0.0031 & 100 & 70-130 & 3 & 20 \\
\hline Zinc & 0.510 & 0.020 & 0.0037 & \(\mathrm{mg} /\) & 0.500 & 0.014 & 99 & 70-130 & 2 & 20 \\
\hline
\end{tabular}

Batch: 5A13050 Extracted: 01/13/05
Blank Analyzed: 01/13/2005 (5A13050-BLK1)
\begin{tabular}{lllllllll} 
Mercury & ND & 0.00020 & 0.000063 & \(\mathrm{mg} / \mathrm{l}\) & & & \\
LCS Analyzed: 01/13/2005 (5A13050-BS1) & & & & & & \\
Mercury & 0.00808 & 0.00020 & 0.000063 & \(\mathrm{mg} / \mathrm{l}\) & 0.00800 & 101 & \(85-115\)
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager
\begin{tabular}{|lll|}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 017 & \\
300 North Lake Avenue, Suite 1200 & Report Number: 1OA0558 & Sampled: 01/11/05-01/12/05 \\
Pasadena, CA 91101 & & Received: 01/11/05 \\
Attention: Bronwyn Kelly & & \\
\hline
\end{tabular}

\section*{METHOD BLANKIOC DATA}

\section*{METALS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & Reporting & & Units & Spike & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \%REC & RPD & RPD & Data \\
\hline Analyte & Result & & MDL & Units & & & \%REC & & RPD & & Qualifiers \\
\hline
\end{tabular}

\section*{Batch: 5A13050 Extracted: 01/13/05}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Matrix Spike Analyzed: 01/13/2005 (5A13050-MS1)} & \multicolumn{8}{|c|}{Source: 1OA0567-01} \\
\hline Mercury & 0.00857 & 0.00020 & 0.000063 & \(\mathrm{mg} / 1\) & 0.00800 & 0.00016 & 105 & 70-130 & & \\
\hline \multicolumn{3}{|l|}{Matrix Spike Dup Analyzed: 01/13/2005 (5A13050-MSD1)} & \multicolumn{8}{|c|}{Source: 10A0567-01} \\
\hline Mercury & 0.00854 & 0.00020 & 0.000063 & \(\mathrm{mg} /\) & 0.00800 & 0.00016 & 105 & 70-130 & 0 & 20 \\
\hline
\end{tabular}
MWH-Pasadena/Boeing Project ID: Outfall 017

300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Report Number: IOA0558
Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKIOC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reportin Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A11092 Extracted: 01/11/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/11/2005 (5A11092-BLK1)} \\
\hline Chromium VI & 0.000149 & 0.0010 & 0.000041 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \(J\) \\
\hline \multicolumn{12}{|l|}{LCS Analyzed: 01/11/2005 (5A11092-BS1)} \\
\hline Chromium VI & 0.0514 & 0.0010 & 0.000041 & \(\mathrm{mg} / \mathrm{l}\) & 0.0500 & & 103 & 90-110 & & & \\
\hline \multicolumn{2}{|l|}{Matrix Spike Analyzed: 01/11/2005 (5A11092-MS1)} & & & & & ce: IOA & 549-01 & & & & \\
\hline Chromium VI & 0.0485 & 0.0010 & 0.000041 & \(\mathrm{mg} / \mathrm{l}\) & 0.0500 & ND & 97 & 90-110 & & & \\
\hline \multicolumn{3}{|l|}{Matrix Spike Dup Analyzed: 01/11/2005 (5A11092-MSD1)} & & & \multicolumn{3}{|r|}{Source: IOA0549-01} & & & & \\
\hline Chromium VI & 0.0487 & 0.0010 & 0.000041 & \(\mathrm{mg} / 1\) & 0.0500 & ND & 97 & \(90-110\) & 0 & 10 & \\
\hline \multicolumn{12}{|l|}{Batch: 5A12041 Extracted: 01/12/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/17/2005 (5A12041-BLK1)} \\
\hline Biochemical Oxygen Demand & ND & 2.0 & 0.59 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline \multicolumn{12}{|l|}{LCS Analyzed: 01/17/2005 (5A12041-BS1)} \\
\hline Biochemical Oxygen Demand & 208 & 100 & 30 & mg/ & 198 & & 105 & 85-115 & & & \\
\hline \multicolumn{12}{|l|}{LCS Dup Analyzed: 01/17/2005 (5A12041-BSD1)} \\
\hline Biochemical Oxygen Demand & 212 & 100 & 30 & \(\mathrm{mg} / \mathrm{l}\) & 198 & & 107 & 85-115 & 2 & 20 & \\
\hline \multicolumn{12}{|l|}{Batch: 5A17060 Extracted: 01/17/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/17/2005 (5A17060-BLK1)} \\
\hline Total Suspended Solids & ND & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: 1OA0558

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKIOC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5A17060 Extracted: 01/17/05} \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 01/17/2005 (5A17060-BS1)} \\
\hline Total Suspended Solids 971 & 10 & 10 & mg/ & 1000 & & 97 & 85-115 & & & \\
\hline Duplicate Analyzed: 01/17/2005 (5A17060-DUP1) & & & & & ce: 10A0 & 673-01 & & & & \\
\hline Total Suspended Solids ND & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & & ND & & & & 10 & \\
\hline \multicolumn{11}{|l|}{Batch: 5A17067 Extracted: 01/17/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 01/17/2005 (5A17067-BLK1)} \\
\hline Total Cyanide ND & 0.025 & 0.017 & mg/ & & & & & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 01/17/2005 (5A17067-BS1)} \\
\hline Total Cyanide 0.211 & 0.025 & 0.017 & mg/ & 0.200 & & 106 & 90-110 & & & \\
\hline Matrix Spike Analyzed: 01/17/2005 (5A17067-MS1) & & & & & ce: 10A0 & 715-02 & & & & \\
\hline Total Cyanide 00894 & 0.025 & 0.017 & mg 4 & 0.200 & ND & 45 & 70-115 & & & \(\because M 2\) \\
\hline \multicolumn{2}{|l|}{Matrix Spike Dup Analyzed: 01/17/2005 (5A17067-MSD1)} & & & & ce: 10A0 & 715-02 & & & & \\
\hline Total Cyanide 0.140 & 0.025 & 0.017 & \(\mathrm{mg} / \mathrm{l}\) & 0.200 & ND & 70 & 70-115 & 44 & 15 & R-3 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

\section*{DATA QUALIFIERS AND DEFINITIONS}

B Analyte was detected in the associated Method Blank.
C Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.
C5 Calibration Verification recovery was below the method control limit for this analyte. An additional check standard was analyzed at the reporting limit to ensure instrument sensitivity at the reporting limit. Samples ND.
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
M2 The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
R-3 The RPD exceeded the method control limit due to sample matrix effects.
R-7 LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

\section*{ADDITIONAL COMMENTS}

\section*{For 1,2-Diphenylhydrazine:}

The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\section*{Project ID: Outfall 017}

Report Number: 10 A 0558

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{Certification Summary}

\section*{Del Mar Analytical, Irvine}
\begin{tabular}{clcc} 
Method & Matrix & Nelac & California \\
EPA 160.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 200.7 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 218.6 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 245.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 335.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 405.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 608 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 624 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 625 & Water & \(\mathbf{X}\) & \(\mathbf{X}\)
\end{tabular}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

\section*{Subcontracted Laboratories}

\section*{Pace Analytical, MN- SUB}

1700 Elm Street, Ste 200 - Minneapolis, MN 55414
Analysis Performed: 1613-Dioxin-HR
Samples IOA0558-02
Analysis Performed: EDD + Level 4
Samples: IOA0558-02

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager
Page 1 of 1

CHAIN OF CUSTODY FORM
Del Mar Analytical vasion 5atrous
Client Name/Address:
MWH-Pasadena
MWH-Pasadena
300 North Lake Avenu
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
\begin{tabular}{l|l} 
Project Manager: Bronwyn Kelly & \(\left.\begin{array}{l}\text { Phone Number: } \\
(626) \\
\end{array}\right)\) 568-6691
\end{tabular}
(626) 568-6515

Date/T 5
7525
1850
5Days
5
8 Hours ___ 10 Days
72 Hours _ Normal
Perchlorate Only 72 Hours
Metals Only 72 Hours ___


February 23, 2005

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, Ca. 91101
Attention: Bronwyn Kelly

Project: \(\quad\) Routine Outfall 017
Sampled: 01/11/05-1/12/05
Del Mar Analytical Number: IOA0558

Dear Ms. Kelly:
Pace Analytical performed Method 1613B analysis for the project referenced above. Please use the following cross-reference table when reviewing your results.
\begin{tabular}{|c|c|c|}
\hline MWH ID & DEL MAR ID & Pace ID \\
\hline Outfall 017 & IOA0558-01 & 106234001 \\
\hline
\end{tabular}

Attached is the original report from the subcontract laboratory. If you have any questions or require further assistance, please do not hesitate to contact me.

Sincerely yours,
DEL MAR ANALYTICAL


\author{
Michele Harper
}

Project Manager

\section*{Method 1613B Analysis Results}

Client - Del Mar Analytical


Conc \(=\) Concentration (Totals include 2,3,7,8-substituted isomens).
EMPC \(=\) Estimated Maximum Possible Concentration
LOD \(=\) Limit of Detection. Totals are averages of individual isomer LODs.
\(\mathrm{D}=\) Resutt obtained from analysis of diluted sample
\(B=\) Less than 10 times higher than method blank level
\(P=\) Recovery outside of method 1613 control limits \(J=\) Concentration detected is below the calibration range
\(\mathrm{N} \mathrm{n}=\) Value obtained from additional analysis

I = Interference
\(\mathrm{E}=\mathrm{PCDE}\) Interference
ND = Not Detected
NA \(=\) Not Applicable
NC \(=\) Not Calculated
* \(=\) See Discussion

Report No..... 106234

\section*{REPORT OF LABORATORY ANALYSIS}

\section*{Method 1613B Blank Analysis Results}

Client - Del Mar Analytical

Lab Sample ID
Filename
Total Amount Extracted ICAL Date
CCal Filename(s)

BLANK-6220
F50129B_06
1020 mL
\(11 / 29 / 2004\)
F50129B_02
\begin{tabular}{ll} 
Matrix & Water \\
Dilution & NA \\
Extracted & \(01 / 28 / 2005\) \\
Analyzed & \(01 / 29 / 2005\) \\
23:49 \\
Injected By & BAL
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Native Isomers & Cone pg/L. & EMPC pg / & \[
\begin{aligned}
& \text { LOD } \\
& \text { pg } \Lambda
\end{aligned}
\] & Internal Standards & ng's Added & Percent Recovery \\
\hline 2,3,7,8-TCDF & ND & \(\cdots\) & 1.20 & 2,3,7,8-TCDF-13C & 2.00 & 58 \\
\hline Total TCDF & ND & ----- & \(\underline{-}\) & 2,3,7,8-TCDD-13C & 2.00 & 75 \\
\hline & & & & 1,2,3,7,8-PeCDF-13C & 2.00 & 65 \\
\hline 2,3,7,8-TCDD & ND & \(\cdots\) & 1.20 & 2,3,4,7,8-PeCDF-13C & 2.00 & 67 \\
\hline Total TCDD & ND & ---.. & & 1,2,3,7,8-PeCDD-13C & 2.00 & 80 \\
\hline & & & & 1,2,3,4,7,8-HxCDF-13C & 2.00 & 70 \\
\hline 1,2,3,7,8-PeCDF & ND & \(\cdots\) & 1.50 & 1,2,3,6,7,8-HxCDF-13C & 2.00 & 82 \\
\hline 2,3,4,7,8-PeCDF & ND & ---- & 1.20 & 2,3,4,6,7,8-HxCDF-13C & 2.00 & 77 \\
\hline Total PeCDF & ND & ---- & 20 & 1,2,3,7,8,9-HxCDF-13C & 2.00 & 72 \\
\hline & & & & 1,2,3,4,7,8-HxCDD-13C & 2.00 & 66 \\
\hline 1,2,3,7,8-PeCDD & ND & \(\cdots\) & 1.60 & 1,2,3,6,7,8-HxCDD-13C & 2.00 & 88 \\
\hline Total PeCDD & ND & ---- & ----- & 1,2,3,4,6,7,8-HpCDF-13C & 2.00 & 73 \\
\hline & & & & 1,2,3,4,7,8,9-HpCDF-13C & 2.00 & 63 \\
\hline 1,2,3,4,7,8-HxCDF & ND & \(\cdots\) & 0.75 & 1,2,3,4,6,7,8-HpCDD-13C & 2.00 & 80 \\
\hline 1,2,3,6,7,8-HxCDF & ND & \(\ldots\) & 0.86 & OCDD-13C & 4.00 & 68 \\
\hline 2,3,4,6,7,8-HxCDF & ND & \(\cdots\) & 1.10 & & & \\
\hline 1,2,3,7,8,9-HxCDF & ND & ---- & 1.20 & 1,2,3,4-TCDD-13C & 2.00 & NA \\
\hline Total HxCDF & ND & & ----- & 1,2,3,7,8,9-HxCDD-13C & 2.00 & NA \\
\hline 1,2,3,4,7,8-HxCDD & ND & ---- & 1.10 & 2,3,7,8-TCDD-37C14 & 0.20 & 73 \\
\hline 1,2,3,6,7,8HxCDD & ND & - & 0.99 & & & \\
\hline 1,2,3,7,8,9-HxCDD & ND & - & 1.00 & & & \\
\hline Total HxCDD & ND & ---- & \(\cdots\) & & & \\
\hline 1,2,3,4,6,7,8-HpCDF & ND & \(\cdots\) & 2.10 & & & \\
\hline 1,2,3,4,7,8,9-HpCDF & ND & ----- & 1.90 & & & \\
\hline Total HpCDF & 2.2 & ---- & & & & \\
\hline 1,2,3,4,6,7,8-HpCDD & 2.4 & \(\cdots\) & 1.40 & & & \\
\hline Total HpCDD & 2.4 & ----- & & & & \\
\hline \[
\begin{aligned}
& \text { OCDF } \\
& \text { OCDD }
\end{aligned}
\] & \[
5.2
\] & \(\cdots\) & \[
\begin{aligned}
& 1.80 \\
& 2.90
\end{aligned}
\] & & & \\
\hline
\end{tabular}

Conc \(=\) Concentration (Totals include 2,3,7,8-substituted isomers).
EMPC = Estimated Maximum Possible Concentration
LOD = Limit of Detection. Totals are averages of individual isomer LODs.
\(A=\) Limit of Detection based on signal to noise
\(P=\) Recovery outside of method 1613 control limits
\(\mathrm{Nn}=\) Value obtained from additional analysis

I = Interference
\(\mathrm{E}=\mathrm{PCDE}\) Interference
ND = Not Detected
NA \(=\) Not Applicable
NC = Not Calculated
* \(=\) See Discussion

\section*{Method 1613B Laboratory Control Splke Results}

Client - Del Mar Analytical
\begin{tabular}{llll} 
Lab Sample ID & LCS-6221 & & \\
Filename & F50129B_03 & Matrix & Water \\
Total Amount Extracted & 1040 mL & Dilution & NA \\
ICAL Date & \(11 / 29 / 2004\) & Extracted & \(01 / 28 / 2005\) \\
CCal Filename & F50198 02 & Analyzed & \(01 / 29 / 2005\) \\
Method Blank ID & BLANK-6220 & Injected By & BAL
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Compound & Cs & Cr & Lower LImit & Upper Limit & \% Rec. \\
\hline 2,3,7,8-TCDF & 10 & 9.9 & 7.5 & 15.8 & 99 \\
\hline 2,3,7,8-TCDD & 10 & 8.6 & 6.7 & 15.8 & 86 \\
\hline 1,2,3,7,8-PeCDF & 50 & 50.5 & 40.0 & 67.0 & 101 \\
\hline 2,3,4,7,8-PeCDF & 50 & 48.2 & 34.0 & 80.0 & 96 \\
\hline 1,2,3,7,8-PeCDD & 50 & 43.3 & 35.0 & 71.0 & 87 \\
\hline 1,2,3,4,7,8 HxCDF & 50 & 45.6 & 36.0 & 67.0 & 91 \\
\hline 1,2,3,6,7,8-HxCDF & 50 & 48.7 & 42.0 & 65.0 & 97 \\
\hline 2,3,4,6,7,8-HxCDF & 50 & 49.1 & 35.0 & 78.0 & 98 \\
\hline 1,2,3,7,8,9-HxCDF & 50 & 46.5 & 39.0 & 65.0 & 93 \\
\hline 1,2,3,4,7,8-HxCDD & 50 & 49.9 & 35.0 & 82.0 & 100 \\
\hline 1,2,3,6,7,8-HxCDD & 50 & 51.3 & 38.0 & 67.0 & 103 \\
\hline 1,2,3,7,8,9-HxCDD & 50 & 50.1 & 32.0 & 81.0 & 100 \\
\hline 1,2,3,4,6,7,8-HpCDF & 50 & 50.3 & 41.0 & 61.0 & 101 \\
\hline 1,2,3,4,7,8,9-HpCDF & 50 & 53.3 & 39.0 & 69.0 & 107 \\
\hline 1,2,3,4,6,7,8-HpCDD & 50 & 45.4 & 35.0 & 70.0 & 91 \\
\hline OCDF & 100 & 95.6 & 63.0 & 170.0 & 96 \\
\hline OCDD & 100 & 97.1 & 78.0 & 144.0 & 97 \\
\hline 2,3,7,8-TCDD 37 Cl 4 & 10 & 6.9 & 3.1 & 19.1 & 69 \\
\hline 2,3,7,8,TCDF 13 C & 100 & 51.5 & 22.0 & 1520 & 52 \\
\hline 2,3,7,8-TCDD-130 & 100 & 67.8 & 20.0 & 175.0 & 68 \\
\hline 1,2,3,7,8-PeCDF-13C & 100 & 61.4 & 21.0 & 192.0 & 61 \\
\hline 2,3,4,7,8-PeCDF-13C & 100 & 65.9 & 13.0 & 328.0 & 66 \\
\hline 1,2,3,7,8-PeCDD-13C & 100 & 77.8 & 21.0 & 227.0 & 78 \\
\hline 1,2,3,4,7,8-HXCDF-13C & 100 & 70.2 & 19.0 & 202.0 & 70 \\
\hline 1,2,3,6,7,8-HxCDF-13C & 100 & 78.0 & 21.0 & 159.0 & 78 \\
\hline 2,3,4,6,7,8-HxCDF-13C & 100 & 74.1 & 22.0 & 176.0 & 74 \\
\hline 1,2,3,7,8,9-HxCDF-13C & 100 & 70.4 & 17.0 & 205.0 & 70 \\
\hline 1,2,3,4,7,8-HxCDD-13C & 100 & 69.0 & 21.0 & 193.0 & 69 \\
\hline 1,2,3,6,7,8-HxCDD-13C & 100 & 82.8 & 25.0 & 163.0 & 83 \\
\hline 1,2,3,4,6,7,8-HpCDF-13C & 100 & 72.1 & 21.0 & 158.0 & 72 \\
\hline 1,2,3,4,7,8,9-HpCDF-13C & 100 & 62.4 & 20.0 & 186.0 & 62 \\
\hline 1,2,3,4,6,7,8-HpCDD-13C & 100 & 80.1 & 26.0 & 166.0 & 80 \\
\hline OCDD-13C & 200 & 135.6 & 26.0 & 397.0 & 68 \\
\hline
\end{tabular}

Cs = Concentration Spiked ( \(\mathrm{ng} / \mathrm{mL}\) )
\(\mathrm{Cr}=\) Concentration Recovered ( \(\mathrm{ng} / \mathrm{mL}\) )
Fiec. = Recovery (Expressed as Percent)
Control Limit Reterence: Method 1613, Table 6, 10/94 Revision
\(X=\) Background subtracted value
\(P=\) Recovery outside of control limits
\(\mathrm{Nn}=\) Value obtained from additional analysis
Report No..... 106233
* \(=\) See Discussion

\section*{REPORT OF LABORATORY ANALYSIS}

\section*{Method 1613B Laboratory Control Spike Results}

Client - Del Mar Analytical
Lab Sample ID
Filename
Total Amount Extracted
ICAL Date
CCal Filename
Method Blank ID

LCSD-6222
F50129B_04
1040 mL 11/29/2004
F50129B_02
BLANK-6220
\begin{tabular}{ll} 
& \\
Matrix & Water \\
Ditution & NA \\
Extracted & \(01 / 28 / 2005\) \\
Analyzed & \(01 / 29 / 2005\) \\
22:09 \\
Injected By & BAL
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Compound & Cs & Cr & Lower Limit & Upper Limit & \begin{tabular}{l}
\% \\
Rec.
\end{tabular} \\
\hline 2,3,7,8-TCDF & 10 & 10.6 & 7.5 & 15.8 & 106 \\
\hline 2,3,7,8-TCDD & 10 & 9.4 & 6.7 & 15.8 & 94 \\
\hline 1,2,3,7,8 PeCDF & 50 & 53.2 & 40.0 & 67.0 & 106 \\
\hline 2,3,4,7,8-PoCDF & 50 & 50.7 & 34.0 & 80.0 & 101 \\
\hline 1,2,3,7,8-PoCDD & 50 & 46.0 & 35.0 & 71.0 & 92 \\
\hline 1,2,3,4,7,8-HxCDF & 50 & 47.6 & 36.0 & 67.0 & 95 \\
\hline 1,2,3,6,7,8-HxCDF & 50 & 50.9 & 42.0 & 65.0 & 102 \\
\hline 2,3,4,6,7,8-HxCDF & 50 & 50.9 & 35.0 & 78.0 & 102 \\
\hline 1,2,3,7,8,9-HxCDF & 50 & 49.0 & 39.0 & 65.0 & 98 \\
\hline 1,2,3,4,7,8-HxCDD & 50 & 52.4 & 35.0 & 82.0 & 105 \\
\hline 1,2,3,6,7,8-HxCDD & 50 & 54.2 & 38.0 & 67.0 & 108 \\
\hline 1,2,3,7,8,9-HxCDD & 50 & 52.5 & 32.0 & 81.0 & 105 \\
\hline 1,2,3,4,6,7,8-HpCDF & 50 & 55.0 & 41.0 & 61.0 & 110 \\
\hline 1,2,3,4,7,8,9-HpCDF & 50 & 55.7 & 39.0 & 69.0 & 111 \\
\hline 1,2,3,4,6,7,8-HpCDD & 50 & 48.0 & 35.0 & 70.0 & 96 \\
\hline OCDF & 100 & 100.6 & 63.0 & 170.0 & 101 \\
\hline OCDD & 100 & 101.9 & 78.0 & 144.0 & 102 \\
\hline 2,37,81000 37Cl4 & 10 & 8.7 & 31 & 191 & 87 \\
\hline 2,3,8-TCDF \(13 C\) & 100 & 70.4 & 22.0 & 1520 & 70 \\
\hline 2,3,7,8-TCDD-13C & 100 & 88.6 & 20.0 & 175.0 & 89 \\
\hline 1,2,3,7,8-PeCDF-13C & 100 & 73.6 & 21.0 & 192.0 & 74 \\
\hline 2,3,4,7,8-PeCDF-13C & 100 & 79.0 & 13.0 & 328.0 & 79 \\
\hline 1,2,3,7,8-POCOD 13C & 100 & 95.5 & 21.0 & 227.0 & 96 \\
\hline 1,2,3,4,7,8-4xCDF-13C & 100 & 84.8 & 19.0 & 202.0 & 85 \\
\hline 1,2,3,6,7,8-HXCDF-13C & 100 & 89.5 & 21.0 & 159.0 & 90 \\
\hline 2,3,4,6,7,8-HxCDF-13C & 100 & 87.2 & 22.0 & 176.0 & 87 \\
\hline 1,2,3,7,8,9 HxCDF-13C & 100 & 82.1 & 17.0 & 205.0 & 82 \\
\hline 1,2,3,4,7,8-HxCDD-13C & 100 & 80.1 & 21.0 & 193.0 & 80 \\
\hline 1,2,3,6,7,8-HXCDD-13C & 100 & 97.0 & 25.0 & 163.0 & 97 \\
\hline 1,2,3,4,6,7,8-4pCDF-13C & 100 & 84.4 & 21.0 & 158.0 & 84 \\
\hline 1,2,3,4,7,8,9-1pCDF-13C & 100 & 71.7 & 20.0 & 186.0 & 72 \\
\hline 1,2,3,4,6,7,8-HpCDD-13C & 100 & 92.4 & 26.0 & 166.0 & 92 \\
\hline OCDD-13C & 200 & 159.2 & 26.0 & 397.0 & 80 \\
\hline
\end{tabular}
\(\mathrm{Cs}=\) Concentration Spiked ( \(\mathrm{ng} / \mathrm{mL}\) )
\(\mathrm{Cr}=\) Concentration Recovered ( \(\mathrm{ng} / \mathrm{mL}\) )
Rec. \(=\) Recovery (Expressed as Percent)
Control Limit Reference: Method 1613, Table 6, \(10 / 94\) Revision
\(X=\) Background subtracted value
\(P=\) Recovery outside of control limits
\(\mathrm{Nn}=\) Value obtained from additional analysis
Report No..... 106233
* \(=\) See Discussion

\section*{REPORT OF LABORATORY ANALYSIS}

Client. \(\qquad\) Del Mar Analytical
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{SPIKE 1 ID...............................LCS-6221} \\
\hline \multicolumn{4}{|l|}{SPIKE 1 Filename...................... F50129B_03} \\
\hline \multicolumn{4}{|l|}{SPIKE 2 ID...............................LCSD-6222} \\
\hline \multicolumn{4}{|l|}{} \\
\hline COMPOUND & SPIKE 1 REC,\% & SPIKE 2 REC,\% & RPD,\% \\
\hline 2378-TCDF & 99 & 106 & 6.8 \\
\hline 2378-TCDD & 86 & 94 & 8.9 \\
\hline 12378-PeCDF & 101 & 106 & 4.8 \\
\hline 23478-PeCDF & 96 & 101 & 5.1 \\
\hline 12378-PeCDD & 87 & 92 & 5.6 \\
\hline 123478-HxCDF & 91 & 95 & 4.3 \\
\hline 123678-HxCDF & 97 & 102 & 5.0 \\
\hline 234678-HxCDF & 98 & 102 & 4.0 \\
\hline 123789-HxCDF & 93 & 98 & 5.2 \\
\hline \(123478-\mathrm{HxCDD}\) & 100 & 105 & 4.9 \\
\hline \(123678-\mathrm{HxCDD}\) & 103 & 108 & 4.7 \\
\hline 123789-HxCDD & 100 & 105 & 4.9 \\
\hline 1234678-HpCDF & 101 & 110 & 8.5 \\
\hline 1234789-HpCDF & 107 & 111 & 3.7 \\
\hline 1234678-HpCDD & 91 & 96 & 5.3 \\
\hline OCDF & 96 & 101 & 5.1 \\
\hline OCDD & 97 & 102 & 5.0 \\
\hline
\end{tabular}

REC = Percent Recovered
RPD \(=\) The difference between the two values divided by the average.
\(N A=\) Not Applicable
Report No \(\qquad\) 106233

\section*{REPORT OF LABORATORY ANALYSIS}

This report shall not be reproduced, except in full. without the written consent of Pace Analytical Services, Inc.


TABLE 1. 2,3,7,8-TCDD Equivalency Factors (TEFs) for the Polychlorinated Dibenzo-p-dioxins and Dibenzofurans
\begin{tabular}{|c|c|c|}
\hline Number & Compound(s) & TEF \\
\hline 1 & 2,3,7,8-TCDD & 1.00 \\
\hline 2 & 1,2,3,7,8-PeCDD & 0.50 \\
\hline 3 & 1,2,3,6,7,8-HxCDD & 0.1 \\
\hline 4 & 1,2,3,7,8,9-HxCDD & 0.1 \\
\hline 5 & 1,2,3,4,7,8-HxCDD & 0.1 \\
\hline 6 & 1,2,3,4,6,7,8-HpCDD & 0.01 \\
\hline 7 & OCDD & 0.001 \\
\hline 8 & *Total - TCDD & 0.0 \\
\hline 9 & * Total - PeCDD & 0.0 \\
\hline 10 & * Total - HxCDD & 0.0 \\
\hline 11 & * Total - HpCDD & 0.0 \\
\hline 12 & 2,3,7,8-TCDF & 0.10 \\
\hline 13 & 1,2,3,7,8-PeCDF & 0.05 \\
\hline 14 & 2,3,4,7,8-PeCDF & 0.5 \\
\hline 15 & 1,2,3,6,7,8-HxCDF & 0.1 \\
\hline 16 & 1,2,3,7,8,9-HxCDF & 0.1 \\
\hline 17 & 1,2,3,4,7,8-HxCDF & 0.1 \\
\hline 18 & 2,3,4,6,7,8-HxCDF & 0.1 \\
\hline 19 & 1,2,3,4,6,7,8-HpCDF & 0.01 \\
\hline 20 & 1,2,3,4,7,8,9-HpCDF & 0.01 \\
\hline 21 & OCDF & 0.001 \\
\hline 22 & *Total - TCDF & 0.0 \\
\hline 23 & * Total - PeCDF & 0.0 \\
\hline 24 & * Total - HxCDF & 0.0 \\
\hline 25 & * Total - HpCDF & 0.0 \\
\hline
\end{tabular}
*Excluding the 2,3,7,8-substituted congeners.
Reference: 1989 ITEFs

\section*{REPORT OF LABORATORY ANALYSIS}

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.


\section*{SENDING LABORATORY:}

Del Mar Analytical, Irvine
17461 Derian Avenue. Suite 100
Irvine, CA 92614
Phone: (949) 261-1022
Fax: (949) 261-1228
Project Manager: Michele Harper

\section*{RECEIVING LABORATORY:}

Pace Analytical, MN- SUB
1700 Elm Street, Ste 200
Minneapolis, MN 55414
Phone :(612) 607-1700
Fax: (612) 607-6444

Standard TAT is requested unless specific due date is requested \(=>\) Due Date: \(\qquad\) Initials: \(\qquad\)

\section*{Analysis}

\section*{Expiration}

Comments

Sample ID: 1OA0558-02 Water
Sampled: 01/12/05 13:30
01/19/05 13:30
J flags, 17 congeners, no TEQ, sub to Pace-MN

\section*{Containers Supplied:}

1 L Amber (1OA0558-02A)
1 L Amber (IOA0558-02B)


\section*{LABORATORY REPORT}

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Outfall 017

Sampled: 01/11/05-01/12/05
Received: 01/11/05
Issued: 03/10/05 12:19

\section*{NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117}

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, I page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

\section*{CASE NARRATIVE}

SAMPLE RECEIPT: Samples were received intact, at \(4^{\circ} \mathrm{C}\), on ice and with chain of custody documentation.
HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the Del Mar Analytical Sample Acceptance Policy unless otherwise noted in the report.
PRESERVATION: Samples requiring preservation were verified prior to sample analysis.
QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.
COMMENTS: Results that fall between the MDL and RL are 'J' flagged.
SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
IOA0576-01
IOA0576-02

CLIENT ID
Outfall 017-Grab Effluent
Outfall 017-Comp Effluent

MATRIX
Water
Water

Reviewed By:


\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Project ID: Outfall 017 \\ Report Number: 10 A 0576 \\ Attention: Bronwyn Kelly
}

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}


MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017

Report Number: 10 A 0576

Sampled: 01/11/05-01/12/05
Received: 01/11/05

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)


Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: IOA0576

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}
\begin{tabular}{llllllllll} 
Analyte & Method & Batch & \begin{tabular}{c} 
MDL \\
Limit
\end{tabular} & \begin{tabular}{c} 
Reporting \\
Limit
\end{tabular} & \begin{tabular}{c} 
Sample \\
Result
\end{tabular} & \begin{tabular}{c} 
Dilution \\
Factor \\
Extracted
\end{tabular} & \begin{tabular}{c} 
Date \\
Analyzed
\end{tabular} \\
Qualifiers
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: 10A0576

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{TOTAL PCBS (EPA 608)}
\begin{tabular}{lccccccccc} 
& Method & Batch & \begin{tabular}{c} 
MDL \\
Limit
\end{tabular} & \begin{tabular}{c} 
Reporting \\
Limit
\end{tabular} & \begin{tabular}{c} 
Sample \\
Result
\end{tabular} & \begin{tabular}{c} 
Dilution \\
Factor
\end{tabular} & \begin{tabular}{c} 
Date \\
Extracted
\end{tabular} & \begin{tabular}{c} 
Date \\
Analyzed
\end{tabular} \\
Qualifiers
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager
\begin{tabular}{|lll} 
MWH-Pasadena/Boeing & Project ID: Outfall 017 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Pasadena, CA 91101 & Report Number: 1040576 & Received: 01/11/05 \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{METALS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \[
\begin{aligned}
& \text { MDL } \\
& \text { Limit }
\end{aligned}
\] & Reporting Limit & Sample Result & Dilution Factor & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Sample ID: 1OA0576-02 (Outfall 017-Comp Effluent - Water) - cont. Reporting Units: mg/l}} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{Sampled: 01/12/05}} & \\
\hline & & & & & & & & & \\
\hline Antimony & EPA 200.7 & 5A14046 & 0.0042 & 0.010 & ND & 1 & 01/14/05 & 01/14/05 & \\
\hline Arsenic & EPA 200.7 & 5A14046 & 0.0038 & 0.0050 & ND & 1 & 01/14/05 & 01/14/05 & \\
\hline Barium & EPA 200.7 & 5A14046 & 0.0028 & 0.010 & 0.021 & 1 & 01/14/05 & 01/14/05 & \\
\hline Beryllium & EPA 200.7 & 5A14046 & 0.00062 & 0.0020 & ND & 1 & 01/14/05 & 01/14/05 & \\
\hline Boron & EPA 200.7 & 5A14046 & 0.0074 & 0.050 & 0.093 & 1 & 01/14/05 & 01/14/05 & \\
\hline Cadmium & EPA 200.7 & 5A14046 & 0.00034 & 0.0050 & 0.00050 & 1 & 01/14/05 & 01/14/05 & J \\
\hline Chromium & EPA 200.7 & 5A14046 & 0.00068 & 0.0050 & 0.11 & 1 & 01/14/05 & 01/14/05 & \\
\hline Copper & EPA 200.7 & 5A14046 & 0.0017 & 0.010 & 0.0079 & 1 & 01/14/05 & 01/14/05 & J \\
\hline Lead & EPA 200.7 & 5A14046 & 0.0021 & 0.0050 & ND & 1 & 01/14/05 & 01/14/05 & \\
\hline Mercury & EPA 245.1 & 5A14053 & 0.000063 & 0.00020 & 0.00030 & 1 & 01/14/05 & 01/14/05 & \\
\hline Nickel & EPA 200.7 & 5A14046 & 0.0020 & 0.010 & 0.12 & 1 & 01/14/05 & 01/14/05 & \\
\hline Selenium & EPA 200.7 & 5A14046 & 0.0046 & 0.0050 & ND & 1 & 01/14/05 & 01/14/05 & \\
\hline Silver & EPA 200.7 & 5A14046 & 0.0013 & 0.010 & ND & 1 & 01/14/05 & 01/14/05 & \\
\hline Thallium & EPA 200.7 & 5A14046 & 0.0031 & 0.0050 & ND & 1 & 01/14/05 & 01/16/05 & \\
\hline Zinc & EPA 200.7 & 5A14046 & 0.0037 & 0.020 & 0.099 & 1 & 01/14/05 & 01/14/05 & \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: 1OA0576 Received: 01/1 1/05

Sampled: 01/11/05-01/12/05


Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: IOA0576

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{SHORT HOLD TIME DETAIL REPORT}
\begin{tabular}{lcccccc} 
& \begin{tabular}{c} 
Hold Time \\
(in days)
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Sampled
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Received
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Extracted
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Analyzed
\end{tabular} \\
Sample ID: Outfall 017-Grab Effluent (IOA0576-01)- Water
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: IOA0576

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKIQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
Analyte

Result

Reporting
Limit
Limit

MDL Units \(\begin{array}{ll}\text { Spike } \\ \text { Level }\end{array}\)
\begin{tabular}{lllll} 
Source & \%REC & & RPD \\
Result & \%REC & Limits & RPD & Limit
\end{tabular}

Data Qualifiers

\section*{Batch: 5A13037 Extracted: 01/13/05}

Blank Analyzed: 01/17/2005 (5A13037-BLK1)
\begin{tabular}{|c|c|c|c|c|}
\hline Acenaphthene & ND & 10 & 4.3 & ugl \\
\hline Acenaphthylene & ND & 10 & 3.2 & ug/ \\
\hline Aniline & ND & 10 & 2.9 & ug/ \\
\hline Anthracene & ND & 10 & 3.2 & ug/ \\
\hline Benzidine & ND & 20 & 5.2 & ug/ \\
\hline Benzoic acid & ND & 20 & 2.6 & ug/1 \\
\hline Benzo(a)anthracene & ND & 10 & 3.7 & ug/1 \\
\hline Benzo(b)fluoranthene & ND & 10 & 2.7 & ug \\
\hline Benzo(k)fluoranthene & ND & 10 & 3.4 & ug/ \\
\hline Benzo(g,h,i)perylene & ND & 10 & 5.3 & ug/ \\
\hline Benzo(a)pyrene & ND & 10 & 3.5 & ug/ \\
\hline Benzyl alcohol & ND & 20 & 2.5 & g / \\
\hline Bis (2-chloroethoxy)methane & ND & 10 & 39 & g/l \\
\hline Bis(2-chloroethyl)ether & ND & 10 & 4.4 & ug/ \\
\hline Bis(2-chloroisopropyl)ether & ND & 10 & 4.6 & ug/ \\
\hline Bis(2-ethylhexyl)phthalate & ND & 50 & 5.2 & ugl \\
\hline 4-Bromophenyl phenyl ether & ND & 10 & 4.6 & ug/ \\
\hline Butyl benzyl phthalate & ND & 20 & 3.5 & ugl \\
\hline 4-Chloroaniline & ND & 10 & 6.0 & ug/ \\
\hline 2-Chloronaphthalene & ND & 10 & 4.0 & ug/ \\
\hline 4-Chloro-3-methylphenol & ND & 20 & 3.5 & ugl \\
\hline 2-Chlorophenol & ND & 10 & 4.2 & ug/ \\
\hline 4-Chlorophenyl phenyl ether & ND & 10 & 3.0 & ug/ \\
\hline Chrysene & ND & 10 & 2.8 & ug/ \\
\hline Dibenz(a,h)anthracene & ND & 20 & 4.7 & ug/ \\
\hline Dibenzofuran & ND & 10 & 2.6 & ug/ \\
\hline Di-n-butyl phthalate & ND & 20 & 2.8 & ugh \\
\hline 1,3-Dichlorobenzene & ND & 10 & 4.1 & ug/ \\
\hline 1,4-Dichlorobenzene & ND & 10 & 3.9 & g/l \\
\hline 1,2-Dichlorobenzene & ND & 10 & 4.5 & ug/ \\
\hline 3,3-Dichlorobenzidine & ND & 20 & 11 & ug/ \\
\hline 2,4-Dichlorophenol & ND & 10 & 4.1 & g/ \\
\hline Diethyl phthalate & ND & 10 & 3.1 & g/l \\
\hline 2,4-Dimethylphenol & ND & 20 & 4.4 & ug/ \\
\hline Dimethyl phthalate & ND & 10 & 3.6 & ug/ \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: IOA0576

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKIQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Resalt & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A13037 Extracted: 01/13/05} \\
\hline & & & & & & & & & & & \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/17/2005 (5A13037-BLK1)} \\
\hline 4,6-Dinitro-2-methylphenol & ND & 20 & 5.1 & ug/ & & & & & & & \\
\hline 2,4-Dinitrophenol & ND & 20 & 5.3 & ug/l & & & & & & & \\
\hline 2,4-Dinitrotoluene & ND & 10 & 4.2 & ug/ & & & & & & & \\
\hline 2,6-Dinitrotoluene & ND & 10 & 3.2 & ug/l & & & & & & & \\
\hline Di-n-octyl phthalate & ND & 20 & 4.7 & ug/l & & & & & & & \\
\hline Flueranthene & ND & 10 & 4.2 & ug/l & & & & & & & \\
\hline Fluorene & ND & 10 & 3.9 & ug/l & & & & & & & \\
\hline Hexachlorobenzene & ND & 10 & 4.8 & ug/l & & & & & & & \\
\hline Hexachlorobutadiene & ND & 10 & 4.2 & ug/ & & & & & & & \\
\hline Hexachlorocyclopentadiene & ND & 20 & 3.4 & ug/l & & & & & & & \\
\hline Hexachloroethane & ND & 10 & 4.2 & ug/l & & & & & & & \\
\hline Indeno(1,2,3-cd)pyrene & ND & 20 & 5.4 & ug/l & & & & & & & \\
\hline Isophorone & ND & 10 & 3.7 & ug/ & & & & & & \(\therefore\) & \\
\hline 2-Methylnaphthalene & ND & 10 & 3.0 & ug/l & & & & & & & , \\
\hline 2-Methylphenol & ND & 10 & 3.7 & ug/l & & & & & & & \\
\hline 4-Methylphenol & ND & 10 & 3.8 & ug/1 & & & & & & & \\
\hline Naphthatene & ND & 10 & 4.5 & ug/l & & & & & & & \\
\hline 2-Nitroaniline & ND & 20 & 3.9 & ug/l & & & & & & & \\
\hline 3-Nitroaniline & ND & 20 & 4.5 & ug/ & & & & & & & \\
\hline 4-Nitroaniline & ND & 20 & 4.9 & ug/l & & & & & & & \\
\hline Nitrobenzene & ND & 20 & 4.2 & ug/l & & & & & & & \\
\hline 2-Nitrophenol & ND & 10 & 4.2 & ug/l & & & & & & & \\
\hline 4-Nitrophenol & ND & 20 & 6.6 & ug/ & & & & & & & \\
\hline N -Nitrosodiphenylamine & ND & 10 & 4.0 & ug/l & & & & & & & \\
\hline N-Nitroso-di-n-propylamine & ND & 10 & 3.6 & ug/l & & & & & & & \\
\hline Pentachlorophenol & ND & 20 & 4.0 & ug/l & & & & & & & \\
\hline Phenanthrene & ND & 10 & 3.3 & ug/ & & & & & & & \\
\hline Phenol & ND & 10 & 4.0 & ugh & & & & & & & \\
\hline Pyrene & ND & 10 & 3.9 & ug/l & & & & & & & \\
\hline 1,2,4-Trichlorobenzene & ND & 10 & 4.4 & ug/l & & & & & & & \\
\hline 2,4,5-Trichlorophenol & ND & 20 & 3.6 & ug/l & & & & & & & \\
\hline 2,4,6-Trichlorophenol & ND & 20 & 4.1 & ug/l & & & & & & & \\
\hline 1,2-Diphenylhydrazine/Azobenzene & ND & 20 & 5.0 & ug/l & & & & & & & \\
\hline N -Nitrosodimethylamine & ND & 20 & 3.7 & ug/l & & & & & & & \\
\hline Surrogate: 2-Fluorophenol & 120 & & & \(u g / l\) & 200 & & 60 & 35-120 & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: IOA0576

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKIOC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
Analyte
Batch: 5A13037 Extracted: 01/13/05
Blank Analyzed: 01/17/2005 (5A13037-BLK1)
Surrogate: Phenol-d6
\begin{tabular}{ll} 
Surrogate: Phenol-d6 & 129 \\
Surrogate: \(2,4,6\)-Tribromophenol & 160 \\
Surrogate: Nitrobenzene-d5 & 63.1 \\
Surrogate: 2 -Fluorobiphenyl & 72.3 \\
Surrogate: Terphenyl-dl4 & 75.6
\end{tabular}

LCS Analyzed: 01/17/2005 (5A13037-BS1)
\begin{tabular}{lr} 
Acenaphthene & 75.6 \\
Acenaphthylene & 75.9 \\
Aniline & 68.9 \\
Anthracene & 80.4 \\
Benzidine & 62.5 \\
Benzoic acid & 81.0 \\
Benzo(a)antiracene & 81.8 \\
Benzo(b)fluoranthene & 81.3 \\
Benzo(k)fluoranthene & 77.8 \\
Benzo(g,h,i)perylene & 84.8 \\
Benzo(a)pyrene & 80.7 \\
Benzyl alcohol & 73.4 \\
Bis(2-chloroethoxy)methane & 73.3 \\
Bis(2-chloroethyl)ether & 63.5 \\
Bis(2-chloroisopropyl)ether & 69.9 \\
Bis(2-ethylhexyl)phthalate & 77.3 \\
4-Bromophenyl phenyl ether & 70.8 \\
Butyl benzyl phthalate & 75.0 \\
4-Chloroaniline & 79.0 \\
2-Chloronaphthalene & 75.9 \\
4-Chloro-3-methylphenol & 73.5 \\
2-Chlorophenol & 69.8 \\
\hline 4-Chlorophenyl phenyl ether & 77.3 \\
Chrysene & 81.9 \\
Dibenz(a,h)anthracene & 85.7 \\
Dibenzofuran & 77.5 \\
Di-n-butyl phthalate & 71.9 \\
1,3-Dichlorobenzene & 66.5 \\
1,4-Dichlorobenzene & 62.7 \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager
\begin{tabular}{|lll}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 017 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: 01/11/05-01/12/05 \\
Pasadena, CA 91101 & Report Number: 1OA0576 & Received: \(01 / 1 / 1 / 05\) \\
Attention: Bronwyn Kelly & & \\
\hline
\end{tabular}

\section*{METHOD BLANKIQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
Analyte
Batch: 5A13037 Extracted: 01/13/05

LCS Analyzed: 01/17/2005 (5A13037-BS1)
\begin{tabular}{lr} 
1,2-Dichlorobenzene & 63.6 \\
3,2-Dichlorobenzidine & 90.6 \\
2,4-Dichlorophenol & 70.8 \\
Diethyl phthalate & 71.0 \\
2,4-Dimethylphenol & 59.6 \\
Dimethyl phthalate & 69.3 \\
4,6-Dinitro-2-methylphenol & 78.6 \\
2,4-Dinitrophenol & 86.2 \\
2,4-Dinitrotoluene & 81.5 \\
2,6-Dinitrotoluene & 74.3 \\
Di-n-octyl phthalate & 81.2 \\
Fluoranthene & 81.4 \\
Fluorene & 80.2 \\
Hexachlorobenzene & 73.6 \\
Hexachlorobutadiene & 61.7 \\
Hexachlorocyclopentadiene & 54.7 \\
Hexachloroethane & 60.9 \\
Indeno(1,2,3-cd)pyrene & 81.9 \\
Isophorone & 65.8 \\
2-Methylnaphthalene & 84.8 \\
2-Methylphenol & 70.0 \\
4-Methylphenol & 70.1 \\
Naphthalene & 76.9 \\
2-Nitroaniline & 78.9 \\
3-Nitroaniline & 91.3 \\
4-Nitroaniline & 96.0 \\
Nitrobenzene & 65.6 \\
2-Nitrophenol & 80.9 \\
4-Nitrophenol & 67.9 \\
N-Nitrosodiphenylamine & 71.9 \\
N-Nitroso-di-n-propylamine & 65.9 \\
Pentachlorophenol & 80.8 \\
Phenanthrene & 81.8 \\
Phenol & 66.0 \\
Pyrene & 80.9 \\
& \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: IOA0576

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKIOC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}

\section*{Analyte}

Result
\begin{tabular}{cccccccccc} 
Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

Batch: 5A13037 Extracted: 01/13/05
LCS Analyzed: 01/17/2005 (5A13037-BS1)
\begin{tabular}{ll} 
1,2,4-Trichlorobenzene & 65.3 \\
2,4,5-Trichlorophenol & 78.9 \\
2,4,6-Trichlorophenol & 77.9 \\
1,2-Diphenylhydrazine/Azobenzene & 79.5 \\
N-Nitrosodimethylamine & 66.8 \\
Surrogate: 2 -Fluorophenol & 125 \\
Surrogate: Phenol-d6 & 129 \\
Surrogate: 2,4,6-Tribromophenol & 160 \\
Surrogate: Nitrobenzene-dS & 66.3 \\
Surrogate: 2 -Fluorobiphenyl & 73.6 \\
Surrogate: Terphenyl-d14 & 73.4
\end{tabular}

LCS Dup Analyzed: 01/17/2005 (5A13037-BSD1)
\begin{tabular}{lr} 
Acenaphthene & 73.9 \\
Acenaphthylene & 74.7 \\
Aniline & 68.6 \\
Anthracene & 77.5 \\
Benzidine & 143 \\
Benzoic acid & 78.1 \\
Benzo(a)anthracene & 80.6 \\
Benzo(b)fluoranthene & 77.5 \\
Benzo(k)fluoranthene & 77.5 \\
Benzo(g,h,i)perylene & 81.4 \\
Benzo(a)pyrene & 80.7 \\
Benzyl alcohol & 72.7 \\
Bis(2-chloroethoxy)methane & 71.8 \\
Bis(2-chloroethyl)ether & 61.1 \\
Bis(2-chloroisopropyl)ether & 68.9 \\
Bis(2-ethylhexyl)phthalate & 78.8 \\
4-Bromophenyl phenyl ether & 70.6 \\
Butyl benzyl phthalate & 75.3 \\
4-Chloroaniline & 77.6 \\
2-Chloronaphthalene & 74.3 \\
4-Chloro-3-methylphenol & 71.1 \\
2-Chlorophenol & 68.2 \\
4-Chlorophenyl phenyl ether & 73.3
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: 10 A 0576

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKIQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{llllllllllll} 
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

LCS Dup Analyzed: 01/17/2005 (5A13037-BSD1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Chrysene & 80.8 & 10 & 2.8 & ug/ & 100 & 81 & 65-120 & 1 & 20 \\
\hline Dibenz(a,h)anthracene & 82.0 & 20 & 4.7 & ug/ & 100 & 82 & 40-160 & 4 & 25 \\
\hline Dibenzofuran & 74.7 & 10 & 2.6 & ug/ & 100 & 75 & 60-120 & 4 & 20 \\
\hline Di-n-butyl phthalate & 70.9 & 20 & 2.8 & ug/ & 100 & 71 & 65-125 & 1 & 20 \\
\hline 1,3-Dichlorobenzene & 59.6 & 10 & 4.1 & ug/ & 100 & 60 & 40-120 & 11 & 25 \\
\hline 1,4-Dichlorobenzene & 63.5 & 10 & 3.9 & ug/ & 100 & 64 & 40-120 & 1 & 25 \\
\hline 1,2-Dichlorobenzene & 61.5 & 10 & 4.5 & ug/ & 100 & 62 & 40-120 & 3 & 25 \\
\hline 3,3-Dichlorobenzidine & 87.9 & 20 & 11 & ug/l & 100 & 88 & 50-170 & 3 & 25 \\
\hline 2,4-Dichlorophenol & 70.2 & 10 & 4.1 & ug/ & 100 & 70 & 55-120 & 1 & 20 \\
\hline Diethyl phthalate & 67.9 & 10 & 3.1 & ug/ & 100 & 68 & 60-120 & 4 & 20 \\
\hline 2,4-Dimethylphenol & 62.1 & 20 & 4.4 & ug/ & 100 & 62 & 35-120 & 4 & 25 \\
\hline Dimethyl phthalate & 69.0 & 10 & 3.6 & ug/ & 100 & 69 & 60-120 & 0 & 20 \\
\hline 4,6-Dinitro-2-methylphenol & 73.8 & 20 & 5.1 & ug/ & 100 & 74 & 55-120 & 6 & 25 \\
\hline 2,4-Dinitrophenol & 77.6 & 20 & 5.3 & ug/ & 100 & 78 & 40-140 & 11 & 25 \\
\hline 2,4-Dinitrotoluene & 77.6 & 10 & 4.2 & ug/l & 100 & 78 & 60-140 & 5 & 20 \\
\hline 2,6-Dinitrotoluene & 72.9 & 10 & 3.2 & ug/I & 100 & 73 & 65-125 & 2 & 20 \\
\hline Di-n-octyl phthalate & 81.0 & 20 & 4.7 & ug/ & 100 & 81 & 60-130 & 0 & 20 \\
\hline Fluoranthene & 77.9 & 10 & 4.2 & ug/ & 100 & 78 & 55-125 & 4 & 20 \\
\hline Fluorene & 77.6 & 10 & 3.9 & ug/ & 100 & 78 & 60-120 & 3 & 20 \\
\hline Hexachlorobenzene & 71.6 & 10 & 4.8 & ug/ & 100 & 72 & 50-120 & 3 & 20 \\
\hline Hexachlorobutadiene & 60.3 & 10 & 4.2 & ugh & 100 & 60 & 45-120 & 2 & 25 \\
\hline Hexachlorocyclopentadiene & 50.9 & 20 & 3.4 & ug/ & 100 & 51 & 10-130 & 7 & 30 \\
\hline Hexachloroethane & 56.9 & 10 & 4.2 & ug/ & 100 & 57 & 40-120 & 7 & 25 \\
\hline Indeno( \(1,2,3-\mathrm{cd}\) ) pyrene & 79.2 & 20 & 5.4 & ug/ & 100 & 79 & 35-150 & 3 & 25 \\
\hline Isophorone & 65.6 & 10 & 3.7 & ugh & 100 & 66 & 55-120 & 0 & 20 \\
\hline 2-Methylnaphthalene & 72.7 & 10 & 3.0 & ug/ & 100 & 73 & 50-120 & 15 & 20 \\
\hline 2-Methylphenol & 67.3 & 10 & 3.7 & ugh & 100 & 67 & 45-120 & 4 & 20 \\
\hline 4-Methylphenol & 70.2 & 10 & 3.8 & ugh & 100 & 70 & 45-120 & 0 & 20 \\
\hline Naphthalene & 73.6 & 10 & 4.5 & ug/ & 100 & 74 & 50-120 & 4 & 20 \\
\hline 2-Nitroaniline & 76.6 & 20 & 3.9 & ugh & 100 & 77 & 60-130 & 3 & 20 \\
\hline 3-Nitroaniline & 85.4 & 20 & 4.5 & ug/l & 100 & 85 & 50-140 & 7 & 25 \\
\hline 4-Nitroaniline & 88.5 & 20 & 4.9 & ug/ & 100 & 88 & 45-160 & 8 & 20 \\
\hline Nitrobenzene & 63.6 & 20 & 4.2 & ug/ & 100 & 64 & 50-120 & 3 & 25 \\
\hline 2-Nitrophenol & 79.0 & 10 & 4.2 & ug/1 & 100 & 79 & 55-120 & 2 & 25 \\
\hline 4-Nitrophenol & 63.6 & 20 & 6.6 & ug/ & 100 & 64 & 50-135 & 7 & 25 \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: 10 A 0576

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKIQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{lcccccccccc} 
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit \\
Batch: \(5 \mathrm{SA13037}\) & Extracted: \(01 / 13 / 05\) & & & & & & & & & \\
\hline
\end{tabular}

\section*{LCS Dup Analyzed: 01/17/2005 (5A13037-BSD1)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline N-Nitrosodiphenylamine & 69.9 & 10 & 4.0 & ug/ & 100 & 70 & 60-120 & 3 & 20 \\
\hline N-Nitroso-di-n-propylamine & 63.2 & 10 & 3.6 & ugh & 100 & 63 & 50-120 & 4 & 20 \\
\hline Pentachlorophenol & 75.5 & 20 & 4.0 & ugh & 100 & 76 & 50-125 & 7 & 25 \\
\hline Phenanthrene & 79.5 & 10 & 3.3 & ug/ & 100 & 80 & 55-120 & 3 & 20 \\
\hline Phenol & 65.0 & 10 & 4.0 & ug/ & 100 & 65 & 45-120 & 2 & 25 \\
\hline Pyrene & 81.3 & 10 & 3.9 & ug/ & 100 & 81 & 50-120 & 1 & 25 \\
\hline 1,2,4-Trichlorobenzene & 63.8 & 10 & 4.4 & ug/l & 100 & 64 & 50-120 & 2 & 20 \\
\hline 2,4,5-Trichlorophenol & 76.4 & 20 & 3.6 & ugl & 100 & 76 & 60-120 & 3 & 20 \\
\hline 2,4,6-Trichlorophenol & 76.4 & 20 & 4.1 & ug/ & 100 & 76 & 60-120 & 2 & 20 \\
\hline 1,2-Diphenylhydrazine/Azobenzene & 75.1 & 20 & 5.0 & ug/l & 100 & 75 & 60-120 & 6 & 25 \\
\hline N -Nitrosodimethylamine & 63.2 & 20 & 3.7 & ug/l & 100 & 63 & 40-120 & 6 & 20 \\
\hline Surrogate: 2-Fluorophenol & 122 & & & ug/l & 200 & 61 & 35-120 & & \\
\hline Surrogate: Phenol-d6 & 126 & & & ugh & 200 & 63 & 45-120 & & \\
\hline Surragate 2,4,6-Tribromophenol & 154 & & & ugh & 200 & 77 & 50-125 & & \\
\hline Surrogate: Nitrobenzene-d5 & 64.7 & & & ug/ & 100 & 65 & 45-120 & & \\
\hline Surrogate: 2-Fluorobiphenyl & 70.9 & & & ug/ & 100 & 71 & 45-120 & & \\
\hline Surrogate: Terphenyl-d14 & 73.4 & & & ug \(/\) & 100 & 73 & 45-135 & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
\(\begin{array}{cc}\text { Project ID: Outfall } 017 & \\ & \\ \text { Report Number: } 10 A 0576 & \text { Sampled: 01/11/05-01/12/05 } \\ \text { Received: 01/11/05 }\end{array}\)

\section*{METHOD BLANKOC DATA}

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \[
\begin{aligned}
& \text { RPD } \\
& \text { Limit }
\end{aligned}
\] & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A13049 Extracted: 01/13/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/13/2005 (5A13049-BLK1)} \\
\hline Aldarin & ND & 0.10 & 0.029 & ug/ & & & & & & & \\
\hline alpha-BHC & ND & 0.10 & 0.010 & ug/ & & & & & & & \\
\hline beta-BHC & ND & 0.10 & 0.011 & ug/ & & & & & & & \\
\hline delta-BHC & ND & 0.20 & 0.010 & ug/ & & & & & & & \\
\hline gamma-BHC (Lindane) & ND & 0.10 & 0.0097 & ug/ & & & & & & & \\
\hline Chlordane & ND & 1.0 & 0.18 & ug/ & & & & & & & \\
\hline 4,4*-DDD & ND & 0.10 & 0.011 & ug/ & & & & & & & \\
\hline 4,4-DDE & ND & 0.10 & 0.017 & ug/ & & & & & & & \\
\hline 4,4'-DDT & ND & 0.10 & 0.015 & ugh & & & & & & & \\
\hline Dieldrin & ND & 0.10 & 0.010 & ug/ & & & & & & & \\
\hline Endosulfan I & ND & 0.10 & 0.015 & ug/ & & & & & & & \\
\hline Endosulfan II & ND & 0.10 & 0.037 & ug/ & & & & & & & \\
\hline Endosulfan sulfate & ND & 020 & 0.013 & ug/ & & & & & & & \\
\hline Endrin & ND & 0.10 & 0,0082 & ugh & & & & & & & \\
\hline Endrin aldehyde & ND & 0.10 & 0.045 & ugl & & & & & & & \\
\hline Endrin ketone & ND & 0.10 & 0.020 & ug/ & & & & & & & \\
\hline Heptachlor & ND & 0.10 & 0.030 & ug/ & & & & & & & \\
\hline Heptachlor epoxide & ND & 0.10 & 0.012 & ug/ & & & & & & & \\
\hline Methoxychlor & ND & 0.10 & 0.034 & ug/ & & & & & & & \\
\hline Toxaphene & ND & 5.0 & 0.77 & ug/ & & & & & & & \\
\hline Surrogate: Tetrachloro-m-xylene & 0.348 & & & ug/ & 0.500 & & 70 & 35-120 & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.424 & & & ug/ & 0.500 & & 85 & 45-120 & & & \\
\hline \multicolumn{2}{|l|}{LCS Analyzed: 01/13/2005 (5A13049-BS1)} & & & & & & & & & & M-NR1 \\
\hline Aldrin & 0.517 & 0.10 & 0.029 & ug/ & 0.500 & & 103 & 45-115 & & & \\
\hline alpha-BHC & 0.527 & 0.10 & 0.010 & ug/ & 0.500 & & 105 & 45-115 & & & \\
\hline beta-BHC & 0.496 & 0.10 & 0.011 & ug/ & 0.500 & & 99 & 50-115 & & & \\
\hline delta-BHC & 0.564 & 0.20 & 0.010 & ug/ & 0.500 & & 113 & 55-120 & & & \\
\hline gamma-BHC (Lindane) & 0.525 & 0.10 & 0.0097 & ug/ & 0.500 & & 105 & 45-115 & & & \\
\hline 4,4'-DDD & 0.537 & 0.10 & 0.011 & ug/ & 0.500 & & 107 & 60-120 & & & \\
\hline 4,4'-DDE & 0.534 & 0.10 & 0.017 & ug/ & 0.500 & & 107 & 55-120 & & & \\
\hline 4,4'-DDT & 0.557 & 0.10 & 0.015 & ugh & 0.500 & & 111 & 60-130 & & & \\
\hline Dieldrin & 0.540 & 0.10 & 0.010 & ug/ & 0.500 & & 108 & 55-120 & & & \\
\hline Endosulfan I & 0.512 & 0.10 & 0.015 & ug/ & 0.500 & & 102 & 50-115 & & & \\
\hline Endosulfan II & 0.525 & 0.10 & 0.037 & ug/ & 0.500 & & 105 & 60-125 & & & \\
\hline Endosulfan sulfate & 0.528 & 0.20 & 0.013 & ug/ & 0.500 & & 106 & 60-120 & & & \\
\hline Del Mar Analytical, Irvin Wendy Kirkeeng For Mich Project Manager & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|lll}
\begin{tabular}{lll} 
MWH-Pasadena/Boeing & Project ID: Outfall 017 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: 01/11/05-01/12/05 \\
Pasadena, CA 91101 & Report Number: \(10 A 0576\) & Received: \(01 / 1 / 05\) \\
Attention: Bronwyn Kelly & & \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{METHOD BLANKIOC DATA}

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}
\begin{tabular}{lr} 
Analyte & \\
Batch: 5 A13049 Extracted: 01/13/05 & \\
\hline \multicolumn{2}{l}{ Result } \\
LCS Analyzed: 01/13/2005 (5A13049-BS1) & \\
Endrin & 0.578 \\
Endrin aldehyde & 0.553 \\
Endrin ketone & 0.513 \\
Heptachlor & 0.513 \\
Heptachlor epoxide & 0.527 \\
Methoxychlor & 0.535 \\
Surrogate: Tetrachloro-m-xylene & 0.435 \\
Surrogate: Decachlorobiphenyl & 0.527
\end{tabular}

LCS Dup Analyzed: 01/13/2005 (5A13049-BSD1)
\begin{tabular}{lr} 
Aldrin & 0.512 \\
alpha-BHC & 0.534 \\
beta-BHC & 0.487 \\
delta-BHC & 0.547 \\
gamma-BHC (Lindane) & 0.525 \\
4,4-DDD & 0.505 \\
4,4-DDE & 0.510 \\
4,4-DDT & 0.520 \\
Dieldrin & 0.515 \\
Endosulfan I & 0.493 \\
Endosulfan II & 0.495 \\
Endosulfan sulfate & 0.498 \\
Endrin & 0.550 \\
Endrin aldehyde & 0.511 \\
Endrin ketone & 0.490 \\
Heptachlor & 0.510 \\
Heptachlor epoxide & 0.510 \\
Methoxychlor & 0.505 \\
Surrogate: Tetrachloro-m-xylene & 0.449 \\
Surrogate: Decachlorobiphenyl & 0.494
\end{tabular}
\begin{tabular}{cccccccccc} 
Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}
\begin{tabular}{|lcl}
\hline MWH-Pasadena/Boeing & Project ID: Outfall 017 & \\
300 North Lake Avenue, Suite 1200 & Report Number: 1040576 & Sampled: \(01 / 11 / 05-01 / 12 / 05\) \\
Pasadena, CA 91101 & & Received: \(01 / 1 / 1 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{MEHHOD BLANKVQC DATA}

\section*{TOTAL PCBS (EPA 608)}
\begin{tabular}{llllllllllll} 
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers
\end{tabular}

Batch: 5A13049 Extracted: 01/13/05
Blank Analyzed: 01/13/2005 (5A13049-BLK1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Aroclor 1016 & ND & 1.0 & 0.067 & ug/l & & & & & & \\
\hline Aroclor 1221 & ND & 1.0 & 0.057 & ug/l & & & & & & \\
\hline Aroclor 1232 & ND & 1.0 & 0.13 & ug/ & & & & & & \\
\hline Aroclor 1242 & ND & 1.0 & 0.12 & ugh & & & & & & \\
\hline Aroclor 1248 & ND & 1.0 & 0.21 & ug/l & & & & & & \\
\hline Aroclor 1254 & ND & 1.0 & 0.16 & ug/l & & & & & & \\
\hline Aroclor 1260 & ND & 1.0 & 0.17 & ug/l & & & & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.387 & & & \(u g /\) & 0.500 & 77 & 45-120 & & & \\
\hline LCS Analyzed: 01/13/2005 ( & & & & & & & & & & M-NR1 \\
\hline Aroclor 1016 & 2.82 & 1.0 & 0.067 & ug/l & 4.00 & 70 & 50-115 & & & \\
\hline Aroclor 1260 & 2.91 & 1.0 & 0.17 & \(\mathrm{ug} / \mathrm{l}\) & 4.00 & 73 & 60-115 & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.389 & & & \(u g /\) & 0.500 & 78 & 45-120 & & & \\
\hline \% \(\because\) & & & \(\cdots\) & \(\because\) & .. & & \(\cdots\) & & & \\
\hline LCS Dup Analyzed: 01/13/2 & BSD2) & & & & & & & & & \\
\hline Aroclor 1016 & 2.68 & 1.0 & 0.067 & ug/l & 4.00 & 67 & 50-115 & 5 & 30 & \\
\hline Arocior 1260 & 2.88 & 1.0 & 0.17 & ug/l & 4.00 & 72 & 60-115 & 1 & 25 & \\
\hline Surrogate: Decachlorobiphemyl & 0.379 & & & \(u \mathrm{~g} / \mathrm{l}\) & 0.500 & 76 & 45-120 & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: 1OA0576

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKIQC DATA}

\section*{METALS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & Reporting & & & Spike & Source & & \%REC & & RPD & Data \\
\hline Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers \\
\hline
\end{tabular}

\section*{Batch: 5A14046 Extracted: 01/14/05}

Blank Analyzed: 01/14/2005-01/16/2005 (5A14046-BLK1)
\begin{tabular}{lcccc} 
Antimony & ND & 0.010 & 0.0042 & \(\mathrm{mg} / \mathrm{l}\) \\
Arsenic & ND & 0.0050 & 0.0038 & \(\mathrm{mg} / \mathrm{l}\) \\
Barium & ND & 0.010 & 0.0028 & \(\mathrm{mg} / \mathrm{l}\) \\
Beryllium & ND & 0.0020 & 0.00062 & \(\mathrm{mg} / \mathrm{l}\) \\
Boron & ND & 0.050 & 0.0074 & \(\mathrm{mg} /\) \\
Cadmium & ND & 0.0050 & 0.00034 & \(\mathrm{mg} /\) \\
Chromium & ND & 0.0050 & 0.00068 & \(\mathrm{mg} /\) \\
Copper & ND & 0.010 & 0.0017 & \(\mathrm{mg} / \mathrm{l}\) \\
Lead & ND & 0.0050 & 0.0021 & \(\mathrm{mg} / \mathrm{l}\) \\
Nickel & ND & 0.010 & 0.0020 & \(\mathrm{mg} / \mathrm{l}\) \\
Selenium & ND & 0.0050 & 0.0046 & \(\mathrm{mg} / \mathrm{l}\) \\
Siver & ND & 0.010 & 0.0013 & \(\mathrm{mg} / \mathrm{l}\) \\
Thallium & 0.00330 & 0.0050 & 0.0031 & \(\mathrm{mg} / \mathrm{l}\) \\
Zinc & ND & 0.020 & 0.0037 & \(\mathrm{mg} /\)
\end{tabular}

LCS Analyzed: 01/14/2005-01/16/2005 (5A14046-BS1)
\begin{tabular}{lccccccc} 
Antimony & 0.512 & 0.010 & 0.0042 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 102 & \(85-115\) \\
Arsenic & 0.490 & 0.0050 & 0.0038 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 98 & \(85-115\) \\
Barium & 0.489 & 0.010 & 0.0028 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 98 & \(85-115\) \\
Berylium & 0.484 & 0.0020 & 0.00062 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 97 & \(85-115\) \\
Boron & 0.469 & 0.050 & 0.0074 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 94 & \(85-115\) \\
Cadmium & 0.482 & 0.0050 & 0.00034 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 96 & \(85-115\) \\
Chromium & 0.492 & 0.0050 & 0.00068 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 98 & \(85-115\) \\
Copper & 0.475 & 0.010 & 0.0017 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 95 & \(85-115\) \\
Lead & 0.490 & 0.0050 & 0.0021 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 98 & \(85-115\) \\
Nickel & 0.482 & 0.010 & 0.0020 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 96 & \(85-115\) \\
Selenium & 0.476 & 0.0050 & 0.0046 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 95 & \(85-115\) \\
Silver & 0.247 & 0.010 & 0.0013 & \(\mathrm{mg} / \mathrm{l}\) & 0.250 & 99 & \(85-115\) \\
Thallium & 0.497 & 0.0050 & 0.0031 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 99 & \(85-115\) \\
Zinc & 0.473 & 0.020 & 0.0037 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 95 & \(85-115\)
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: 10A0576

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKIOC DATA}

\section*{METALS}
\begin{tabular}{lllllllllll} 
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit \\
Batch: 5 S14046 Extracted: 01/14/05 & & & & & & & & & & \\
Qualifiers
\end{tabular}

Matrix Spike Analyzed: 01/14/2005-01/16/2005 (5A14046-MS1)
\begin{tabular}{lcccccccc} 
Antimony & 0.536 & 0.010 & 0.0042 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & ND & 107 & \(70-130\) \\
Arsenic & 0.508 & 0.0050 & 0.0038 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & ND & 102 & \(70-130\) \\
Barium & 0.521 & 0.010 & 0.0028 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.022 & 100 & \(70-130\) \\
Beryllium & 0.502 & 0.0020 & 0.00062 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & ND & 100 & \(70-130\) \\
Boron & 0.675 & 0.050 & 0.0074 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.18 & 99 & \(70-130\) \\
Cadmium & 0.494 & 0.0050 & 0.00034 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.00070 & 99 & \(70-130\) \\
Chromium & 0.508 & 0.0050 & 0.00068 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.0024 & 101 & \(70-130\) \\
Copper & 0.509 & 0.010 & 0.0017 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.0028 & 101 & \(70-130\) \\
Lead & 0.507 & 0.0050 & 0.0021 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.0024 & 101 & \(70-130\) \\
Nickel & 0.498 & 0.010 & 0.0020 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.0024 & 99 & \(70-130\) \\
Selenium & 0.486 & 0.0050 & 0.0046 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & ND & 97 & \(70-130\) \\
Silver & 0.252 & 0.010 & 0.0013 & \(\mathrm{mg} / \mathrm{l}\) & 0.250 & ND & 101 & \(70-130\) \\
Thallium & 0.515 & 0.0050 & 0.0031 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & ND & 103 & \(70-130\) \\
Zinc & 0.795 & 0.020 & 0.0037 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.31 & 97 & \(70-130\)
\end{tabular}

Matrix Spike Dup Analyzed: 01/14/2005-01/16/2005 (5A14046-MSD1)
\begin{tabular}{lcccccccccc} 
\\
Antimony & 0.540 & 0.010 & 0.0042 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & ND & 108 & \(70-130\) & 1 & 20 \\
Arsenic & 0.511 & 0.0050 & 0.0038 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & ND & 102 & \(70-130\) & 1 & 20 \\
Barium & 0.522 & 0.010 & 0.0028 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.022 & 100 & \(70-130\) & 0 & 20 \\
Beryllium & 0.506 & 0.0020 & 0.00062 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & ND & 101 & \(70-130\) & 1 & 20 \\
Boron & 0.682 & 0.050 & 0.0074 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.18 & 100 & \(70-130\) & 1 & 20 \\
Cadmium & 0.500 & 0.0050 & 0.00034 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.00070 & 100 & \(70-130\) & 1 & 20 \\
Chromium & 0.509 & 0.0050 & 0.00068 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.0024 & 101 & \(70-130\) & 0 & 20 \\
Copper & 0.515 & 0.010 & 0.0017 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.0028 & 102 & \(70-130\) & 1 & 20 \\
Lead & 0.510 & 0.0050 & 0.0021 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.0024 & 102 & \(70-130\) & 1 & 20 \\
Nickel & 0.503 & 0.010 & 0.0020 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.0024 & 100 & \(70-130\) & 1 & 20 \\
Selenium & 0.494 & 0.0050 & 0.0046 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & ND & 99 & \(70-130\) & 2 & 20 \\
Silver & 0.254 & 0.010 & 0.0013 & \(\mathrm{mg} / \mathrm{l}\) & 0.250 & ND & 102 & \(70-130\) & 1 & 20 \\
Thallium & 0.509 & 0.0050 & 0.0031 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & ND & 102 & \(70-130\) & 1 & 20 \\
Zinc & 0.806 & 0.020 & 0.0037 & \(\mathrm{mg} / \mathrm{l}\) & 0.500 & 0.31 & 99 & \(70-130\) & 1 & 20
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: 1OA0576
Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKIOC DATA}

\section*{METALS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & \begin{tabular}{l}
Data \\
Qualifiers
\end{tabular} \\
\hline \multicolumn{11}{|l|}{Batch: 5A14053 Extracted: 01/14/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 01/14/2005 (5A14053-BLK1)} \\
\hline Mercury ND & 0.00020 & 0.000063 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 01/14/2005 (5A14053-BS1)} \\
\hline Mercury 0.00785 & 0.00020 & 0.000063 & mg/l & 0.00800 & & 98 & 85-115 & & & \\
\hline Matrix Spike Analyzed: 01/14/2005 (5A14053-MS1) & & & & & ce: 10A0 & 701-01 & & & & \\
\hline \(\begin{array}{ll}\text { Mercury } & 0.00838\end{array}\) & 0.00020 & 0.000063 & mg/l & 0.00800 & ND & 105 & 70-130 & & & \\
\hline \multicolumn{2}{|l|}{Matrix Spike Dup Analyzed: 01/14/2005 (5A14053-MSD1)} & & & Sou & ce: 10A0 & 701-01 & & & & \\
\hline Mercury 0.00823 & 0.00020 & 0.000063 & mg/l & 0.00800 & ND & 103 & 70-130 & 2 & 20 & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017

Report Number: 1OA0576

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKIQC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reportin Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A12036 Extracted: 01/12/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/12/2005 (5A12036-BLK1)} \\
\hline Chloride & ND & 0.50 & 0.26 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline Fluoride & ND & 0.50 & 0.074 & mg/ & & & & & & & \\
\hline Nitrate-N & ND & 0.11 & 0.072 & \(\mathrm{mg} / 1\) & & & & & & & \\
\hline Nitrite-N & ND & 0.15 & 0.058 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline Nitrate/Nitrite-N & ND & 0.26 & 0.072 & \(\mathrm{mg} /\) & & & & & & & \\
\hline Sulfate & ND & 0.50 & 0.18 & mg/ & & & & & & & \\
\hline \multicolumn{12}{|l|}{LCS Analyzed: 01/12/2005 (5A12036-BS1)} \\
\hline Chloride & 4.84 & 0.50 & 0.26 & \(\mathrm{mg} / 1\) & 5.00 & & 97 & 90-110 & & & \\
\hline Fluoride & 4.63 & 0.50 & 0.074 & mgl & 5.00 & & 93 & 90-110 & & & \\
\hline Nitrate-N & 1.15 & 0.11 & 0.072 & \(\mathrm{mg} / \mathrm{l}\) & 1.13 & & 102 & 90-110 & & & M-3 \\
\hline Nitrite-N & 1.42 & 0.15 & 0.058 & \(\mathrm{mg} /\) & 1.52 & & 93 & 90-110 & & & \\
\hline Sulfate & 10.1 & 0.50 & 0.18 & \(\mathrm{mg} / 1\) & 10.0 & & 101 & 90-110 & & & \\
\hline \multicolumn{12}{|l|}{Matrix Spike Analyzed: 01/12/2005 (5A12036-MS1) Source: IOA0527-01} \\
\hline Chloride & 15.0 & 2.5 & 1.3 & \(\mathrm{mg} / \mathrm{l}\) & 5.00 & 11 & 80 & 80-120 & & & \\
\hline Fluoride & 5.63 & 2.5 & 0.37 & \(\mathrm{mg} / \mathrm{l}\) & 5.00 & 1.1 & 91 & 80-120 & & & \\
\hline Nitrite-N & 1.78 & 0.75 & 0.29 & \(\mathrm{mg} / \mathrm{l}\) & 1.52 & ND & 117 & 80-120 & & & \\
\hline Sulfate & 164 & 2.5 & 0.90 & \(\mathrm{mg} / \mathrm{l}\) & 10.0 & 150 & 140 & 80-120 & & & M-HA \\
\hline \multicolumn{12}{|l|}{Matrix Spike Dup Analyzed: 01/12/2005 (5A12036-MSD1) Source: 1OA0527-01} \\
\hline Chloride & 15.1 & 2.5 & 1.3 & mg/ & 5.00 & 11 & 82 & 80-120 & 1 & 20 & \\
\hline Fluoride & 5.50 & 2.5 & 0.37 & mg/ & 5.00 & 1.1 & 88 & 80-120 & 2 & 20 & \\
\hline Nitrite-N & 1.70 & 0.75 & 0.29 & mg/ & 1.52 & ND & 112 & 80-120 & 5 & 20 & \\
\hline Sulfate & 164 & 2.5 & 0.90 & \(\mathrm{mg} / 1\) & 10.0 & 150 & 140 & 80-120 & 0 & 20 & M-HA \\
\hline
\end{tabular}

Batch: 5A12045 Extracted: 01/12/05

Duplicate Analyzed: 01/12/2005 (5A12045-DUP1)
Residual Chlorine ND
\(0.10 \quad 0.10 \mathrm{mg} / \mathrm{l}\)
Source: 1OA0549-01
ND
20

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: 1OA0576

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{MEIHOD BLANK/QC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & \begin{tabular}{l}
Data \\
Qualifiers
\end{tabular} \\
\hline \multicolumn{12}{|l|}{Batch: 5A13052 Extracted: 01/13/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/18/2005 (5A13052-BLK1)} \\
\hline Biochemical Oxygen Demand & ND & 2.0 & 0.59 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline \multicolumn{12}{|l|}{LCS Analyzed: 01/18/2005 (5A13052-BS1)} \\
\hline Biochemical Oxygen Demand & 217 & 100 & 30 & \(\mathrm{mg} / \mathrm{l}\) & 198 & & 110 & 85-115 & & & \\
\hline \multicolumn{12}{|l|}{LCS Dup Analyzed: 01/18/2005 (5A13052-BSD1)} \\
\hline Biochemical Oxygen Demand & 214 & 100 & 30 & mg/l & 198 & & 108 & 85-115 & 1 & 20 & \\
\hline \multicolumn{12}{|l|}{Batch: 5A13063 Extracted: 01/13/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/13/2005 (5A13063-BLK1)} \\
\hline Ammonia-N (Distilled) & ND & 0.50 & 0.30 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline \multicolumn{12}{|l|}{LCS Analyzed: 01/13/2005 (5A13063-BS1)} \\
\hline Ammonia-N (Distilled) & 9.80 & 0.50 & 0.30 & \(\mathrm{mg} /\) & 10.0 & & 98 & \(80-115\) & & & \\
\hline \multicolumn{3}{|l|}{Matrix Splke Analyzed: 01/13/2005 (5A13063-MS1)} & & & Sou & ce: IOA0 & 632-01 & & & & \\
\hline Ammonia-N (Distilled) & 11.5 & 0.50 & 0.30 & \(\mathrm{mg} / \mathrm{l}\) & 10.0 & 0.56 & 109 & 70-120 & & & \\
\hline \multicolumn{3}{|l|}{Matrix Spike Dup Analyzed: 01/13/2005 (5A13063-MSD1)} & & & Sou & ce: IOA0 & 632-01 & & & & \\
\hline Ammonia-N (Distilled) & 11.2 & 0.50 & 0.30 & \(\mathrm{mg} / 1\) & 10.0 & 0.56 & 106 & 70-120 & 3 & 15 & \\
\hline \multicolumn{12}{|l|}{Batch: 5A13082 Extracted: 01/13/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/13/2005 (5A13082-BLK1)} \\
\hline Turbidity & ND & 1.0 & 0.040 & NTU & & & & & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
\begin{tabular}{lrl} 
MWH-Pasadena/Boeing & Project ID: Outfall 017 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: 01/11/05-01/12/05 \\
Pasadena, CA 91101 & Report Number: IOA0576 & Received: 01/11/05 \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{METHOD BLANKIQC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5A13082 Extracted: 01/13/05} \\
\hline Duplicate Analyzed: \(01 / 13 / 2005\) (5A13082-DUP1) & \multicolumn{10}{|c|}{Source: 10A0617-01} \\
\hline Turbidity 2.70 & 1.0 & 0.040 & NTU & & 2.6 & & & 4 & 20 & \\
\hline \multicolumn{11}{|l|}{Batch: 5A13089 Extracted: 01/13/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 01/13/2005 (5A13089-BLK1)} \\
\hline Total Dissolved Solids ND & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 01/13/2005 (5A13089-BS1)} \\
\hline Total Dissolved Solids 994 & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & 1000 & & 99 & 90-110 & & & \\
\hline Daplicate Analyzed: 01/13/2005 (5A13089-DUP1) & & & & & ce: 1OA & 549-01 & & & & \\
\hline Total Dissolved Solids 92.0 & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & & 88 & & & 4 & 10 & \\
\hline \multicolumn{11}{|l|}{Batch: 5A13092 Extracted: 01/13/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 01/13/2005 (5A13092-BLK1)} \\
\hline Total Cyanide ND & 0.025 & 0.017 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline LCS Analyzed: 01/13/2005 (5A13092-BS1) & & & & & & & & & & M-NR1 \\
\hline Total Cyanide 0.197 & 0.025 & 0.017 & \(\mathrm{mg} / \mathrm{l}\) & 0.200 & & 98 & 90-110 & & & \\
\hline \multicolumn{11}{|l|}{LCS Dup Analyzed: 01/13/2005 (5A13092-BSD1)} \\
\hline Total Cyanide 0.188 & 0.025 & 0.017 & \(\mathrm{mg} / \mathrm{l}\) & 0.200 & & 94 & 90-110 & 5 & 10 & \\
\hline \multicolumn{11}{|l|}{Batch: 5A17060 Extracted: 01/17/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 01/17/2005 (5A17060-BLK1)} \\
\hline Total Suspended Solids ND & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: IOA0576

Sampled: 01/11/05-01/12/05
Received: 01/11/05

\section*{METHOD BLANKIQC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5A17060 Extracted: 01/17/05} \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 01/17/2005 (5A17060-BS1)} \\
\hline Total Suspended Solids 971 & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & 1000 & & 97 & 85-115 & & & \\
\hline Duplicate Analyzed: 01/17/2005 (5A17060-DUP1) & \multicolumn{10}{|c|}{Source: IOA0673-01} \\
\hline Total Suspended Solids ND & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & & ND & & & & 10 & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Wendy Kirkeeng For Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: IOA0576

\section*{Compliance Check}

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline LabNumber & Analysis & Analyte & Units & Result & MRL & Compliance Limit \\
\hline 10A0576-01 & Chlorine, Residual & Residual Chlorine & mg/ & 1.00 & 0.10 & 0.100 \\
\hline 1OA0576-02 & Barium-200.7 & Barium & \(\mathrm{mg} / \mathrm{l}\) & 0.021 & 0.010 & 1.00 \\
\hline 1OA0576-02 & BOD & Biochemical Oxygen Demand & \(\mathrm{mg} / \mathrm{l}\) & 14 & 2.0 & 30 \\
\hline 10A0576-02 & Chloride - 300.0 & Chloride & \(\mathrm{mg} / 1\) & 140 & 5.0 & 150 \\
\hline 10A0576-02 & Fluoride-300.0 & Fluoride & \(\mathrm{mg} / \mathrm{l}\) & 0.33 & 0.50 & 1.60 \\
\hline IOA0576-02 & Nitrite-N, 300.0 & Nitrite-N & \(\mathrm{mg} /\) & 0 & 0.15 & 1.00 \\
\hline 1OA0576-02 & Nitrogen, \(\mathrm{NO} 3+\mathrm{NO} 2-\mathrm{N}\) & Nitrate/Nitrite-N & \(\mathrm{mg} / \mathrm{l}\) & 1.60 & 0.26 & 8.00 \\
\hline IOA0576-02 & Sulfate-300.0 & Sulfate & \(\mathrm{mg} / \mathrm{l}\) & 38 & 0.50 & 300 \\
\hline 1OA0576-02 & TDS - SM 2540C & Total Dissolved Solids & \(\mathrm{mg} / \mathrm{l}\) & 440 & 10 & 950 \\
\hline 1OA0576-02 & TSS - EPA 160.2 & Total Suspended Solids & \(\mathrm{mg} / \mathrm{l}\) & 4.00 & 10 & 30 \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Wendy Kirkeeng For Michele Harper
Project Manager

Sampled: 01/11/05-01/12/05
Received: 01/11/05

Attention: Bronwyn Kelly

\section*{DATA QUALIFIERS AND DEFINITIONS}

C Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).
M-HA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information. See Blank Spike (LCS).
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
R-7 LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

\section*{ADDITIONAL COMMENTS}

For 1,2-Diphenylhydrazine:
The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.

\author{
Del Mar Analytical, Irvine \\ Wendy Kirkeeng For Michele Harper \\ Project Manager
}

MWH- Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Outfall 017
Report Number: 1OA0576

Sampled: 01/11/05-01/12/05
Received 01/11/05

\section*{Certification Summary}

\section*{Del Mar Analytical, Irvine}
\begin{tabular}{cccc} 
Method & Matrix & Nelac & Calfornia \\
EPA 160.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 180.1. & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 2007. & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 245. & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 3000 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 330.5 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 3352 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 3502 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 405.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 608 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 625 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
SM2540C & Water & \(\mathbf{X}\) & \(\mathbf{X}\)
\end{tabular}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www dmalabs.com.

\section*{Subcontracted Laboratories}

\section*{Aquatic Testing Laboratories SUB California Cert 1775}

4350 Transport Street Uni 107 -Ventira, CA 93003
Analysis Performed: Bioassay-7 dy Chrnic Samples: 10A0576-02
Analysis Performed, Bioassay-Acute 96 hr Samples. 10A0576-02
Pace Analytical, MN-SUB
1700 Elm Street, Ste 200 - Minneapolis, MN 55414
Analysis Performed, 1613 -Dioxin-HR Samples: 10A0576-02
Analysis Performed: \(\quad\) EDD + Level 4 Samples: 10A0576-02
Truesdail Laboratories-SUB Califormia Cert \#1237
14201 Franklin Avenue - Tustin, CA 92680
Analysis Performed. Fecal Coliform Samples: 10A0576-01
Analysis Performed: Total Coliform Samples: IOA0576-01

\author{
Del Mar Analytical, Irvine \\ Wendy Kirkeeng For Michele Harper Project Manager
}


March 10, 2005

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, Ca. 91101

Attention: Bronwyn Kelly
Project: \(\quad\) Routine Outfall 017
Sampled: 01/11/05(Grab), 01/11/05-01/12/05 (Comp)
Del Mar Analytical Number: IOA0576

Dear Ms. Kelly:
Pace Analytical performed Method 1613B, Truesdail Laboratories performed Multiple Tube Fermentation Test for Coliform Group Bacteria APHA Standard Methods for the Examination of Water and Wastewater, \(18^{\text {th }}\) ED., 1992 Method \(9221 \mathrm{~B}, 9221 \mathrm{E}\) and Aquatic Testing Laboratories performed the Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002) analysis for the project referenced above. Please use the following crossreference table when reviewing your results.
\begin{tabular}{|c|c|c|c|c|}
\hline MWH D & DEL MAR ID & Pace ID & ATL ID & Truesdail ID \\
\hline Outfall 017-Grab Effluent & IOA0576-01 & N/A & N/A & 938561 \\
\hline Outfall 017-Comp Effluent & IOA0576-02 & 106236001 & A-05011311-001 & N/A \\
\hline
\end{tabular}

Attached are the original reports from the subcontract laboratories. If you have any questions or require further assistance, please do not hesitate to contact me at (949) 261-1022, extension 215.

Sincerely yours,
DEL MAR ANALYTICAL


Michele Harper
Project Manager

\section*{Method 1613B Analysis Results}

Client - Del Mar Analytical
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Client's Sample ID & \multicolumn{2}{|r|}{10A0576-02} & & & & & \\
\hline Lab Sample ID & \multicolumn{2}{|r|}{106236001} & & & & & \\
\hline Filename & \multicolumn{2}{|r|}{F50130A_07} & & & & & \\
\hline Injected By & \multicolumn{2}{|c|}{BAL} & & & & & \\
\hline Total Amount Extracted & \multicolumn{2}{|c|}{973 mL} & & & Matrix Water & & \\
\hline \% Moisture & \multicolumn{2}{|l|}{NA} & & & Dilution NA & & \\
\hline Dry Weight Extracted & \multicolumn{2}{|l|}{NA} & & & Collected 01/12/ & & \\
\hline ICAL Date & \multicolumn{2}{|r|}{11/29/2004} & & & Received 01/14/2 & & \\
\hline CCal Filename(s) & \multicolumn{2}{|r|}{F50129B_18} & & & Extracted 01/28/ & & \\
\hline Method Blank ID & \multicolumn{2}{|r|}{BLANK-6220} & & & Analyzed 01/30/20 & 15:39 & \\
\hline Native Isomers & Cone pg/ & \[
\begin{gathered}
\text { EMPC } \\
\text { pg/L }
\end{gathered}
\] & \[
\begin{aligned}
& \text { LOD } \\
& \text { pgh }
\end{aligned}
\] & & Internal Standards & ng's Added & Percent Recovery \\
\hline 2,3,7,8-TCDF & ND & ----- & 0.69 & & 2,3,7,8-TCDF-13C & 2.00 & 66 \\
\hline Total TCDF & ND & ----- & 0.69 & & 2,3,7,8-TCDD-13C & 2.00 & 82 \\
\hline & & & & & 1,2,3,7,8-PeCDF-13C & 2.00 & 74 \\
\hline 2,3,7,8-TCDD & ND & ----- & 0.80 & & 2,3,4,7,8-PoCDF-13C & 2.00 & 75 \\
\hline Total TCDD & ND & ---- & 0.80 & & 1,2,3,7,8-PeCDD-13C & 2.00 & 91 \\
\hline & & & & & 1,2,3,4,7,8-HxCDF-13C & 2.00 & 76 \\
\hline 1,2,3,7,8-PeCDF & ND & - & 1.00 & & 1,2,3,6,7,8-HxCDF-13C & 2.00 & 82 \\
\hline 2,3,4,7,8-PeCDF & ND & ----- & 0.91 & & 2,3,4,6,7,8-HxCDF-13C & 2.00 & 77 \\
\hline Total PeCDF & 1.70 & ---- & 0.96 & \(J\) & 1,2,3,7,8,9-HxCDF-13C & 2.00 & 76 \\
\hline & & & & & 1,2,3,4,7,8-HxCDD-13C & 2.00 & 70 \\
\hline 1,2,3,7,8-PeCDD & ND & \(\cdots\) & 0.76 & & 1,2,3,6,7,8-HxCDD-13C & 2.00 & 85 \\
\hline Total PeCDD & ND & ----- & 0.76 & & 1,2,3,4,6,7,8-HpCDF-13C & 2.00 & 73 \\
\hline & & & & & 1,2,3,4,7,8,9-HpCDF-13C & 2.00 & 64 \\
\hline 1,2,3,4,7,8-HxCDF & 0.92 & \(\cdots\) & 0.62 & \(J\) & 1,2,3,4,6,7,8-HpCDD-13C & 2.00 & 80 \\
\hline 1,2,3,6,7,8-HxCDF & ND & ----- & 0.69 & & OCDD-13C & 4.00 & 72 \\
\hline 2,3,4,6,7,8-HxCDF & ND & ----- & 0.54 & & & & \\
\hline 1,2,3,7,8,9-HxCDF & ND & ---- & 0.76 & & 1,2,3,4-TCDD-13C & 2.00 & NA \\
\hline Total HxCDF & 3.90 & ---- & 0.65 & J & 1,2,3,7,8,9-HxCDD-13C & 2.00 & NA \\
\hline 1,2,3,4,7,8-HxCDD & 1.20 & - & & J & 2,3,7,8-TCDD-37Cl4 & 0.20 & 84 \\
\hline 1,2,3,6,7,8-HxCDD & 1.80 & \(\cdots\) & 0.60 & J & & & \\
\hline 1,2,3,7,8,9-HxCDD & \(\cdots\) & 1.7 & 0.73 & & & & \\
\hline Total HxCDD & 8.80 & ---- & 0.69 & \(J\) & & & \\
\hline 1,2,3,4,6,7,8-HpCDF & 6.30 & \(\cdots\) & 1.10 & \(J\) & & & \\
\hline 1,2,3,4,7,8,9-HpCDF & ND & ---- & 1.20 & & & & \\
\hline Total HpCDF & 8.40 & -- & 1.10 & B. & & & \\
\hline 1,2,3,4,6,7,8-HpCDD & 28.00 & ---- & 1.50 & J & & & \\
\hline Total HpCDD & 58.00 & \(\cdots\) & 1.50 & & & & \\
\hline \[
\begin{aligned}
& \text { OCDF } \\
& \text { OCDD }
\end{aligned}
\] & \[
\begin{array}{r}
16.00 \\
250.00
\end{array}
\] & \(\cdots\) & \[
\begin{aligned}
& 1.50 \\
& 2.30
\end{aligned}
\] & B. & & & \\
\hline
\end{tabular}

\footnotetext{
Conc m Concentration (Totals include 2,3,7,8-substituted isomers).
EMPC \(=\) Estimated Maximum Possible Concentration
LOD \(=\) Limit of Detection. Totals are averages of individual isomer LODs.
D = Result obtained from analysis of dilluted sample
\(8=\) Less than 10 times hlgher than method blank level
\(P=\) Recovery outside of method 1613 control limits
\(\mathrm{J}=\) Concentration detected is below the calibration range \(\mathrm{Nh}=\) Value obtained from additional analysis
}

I \(=\) interference
\(\mathrm{E}=\mathrm{PCDE}\) Interierence
ND \(=\) Not Detected
NA = Not Applicable
NC = Not Calculated
* \(=\) See Discussion

Report No..... 106236

REPORT OF LABORATORY ANALYSIS

\section*{Method 1613B Blank Analysis Results}

Client - Del Mar Analytical
Lab Sample ID
Filename
Total Amount Extracted
ICAL Date
CCal Filename(s)
BLANK-6220
F50129B_06
1020 mL
\(11 / 29 / 2004\)
F50129B_02
\begin{tabular}{ll} 
Matrix & Water \\
Dilution & NA \\
Extracted & \(01 / 28 / 2005\) \\
Analyzed & \(01 / 29 / 2005\) \\
23:49 \\
Injected By & BAL
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Native Isomers & Conc pg / & \[
\begin{gathered}
\text { EMPC } \\
\mathrm{pg} \Lambda \\
\hline
\end{gathered}
\] & LOD & Internal Standards & ng's Added & Percent Recovery \\
\hline 2,3,7,8-TCDF & ND & \(\cdots\) & 1.20 & 2,3,7,8-TCDF-13C & 2.00 & 58 \\
\hline Total TCDF & ND & ---- & \(\ldots\) & 2,3,7,8-TCDD-13C & 2.00 & 75 \\
\hline & & & & 1,2,3,7,8-PeCDF-13C & 2.00 & 65 \\
\hline 2,3,7,8-TCDD & ND & \(\cdots\) & 1.20 & 2,3,4,7,8-PeCDF-13C & 2.00 & 67 \\
\hline Total TCDD & ND & ---- & \(\ldots\) & 1,2,3,7,8-PeCDD-13C & 2.00 & 80 \\
\hline & & & & 1,2,3,4,7,8-HxCDF-13C & 2.00 & 70 \\
\hline 1,2,3,7,8-PeCDF & ND & ---- & 1.50 & 1,2,3,6,7,8-HxCDF-13C & 2.00 & 82 \\
\hline 2,3,4,7,8-PeCDF & ND & ---- & 1.20 & 2,3,4,6,7,8-HxCDF-13C & 2.00 & 77 \\
\hline Total PeCDF & ND & ---- & ---- & 1,2,3,7,8,9-HxCDF-13C & 2.00 & 72 \\
\hline & & & & 1,2,3,4,7,8-HxCDD-13C & 2.00 & 66 \\
\hline 1,2,3,7,8-PeCDD & ND & \(\cdots\) & 1.60 & 1,2,3,6,7,8-HxCDD-13C & 2.00 & 88 \\
\hline Total PeCDD & ND & ----- & ----- & 1,2,3,4,6,7,8-HpCDF-13C & 2.00 & 73 \\
\hline & & & & 1,2,3,4,7,8,9-HpCDF-13C & 2.00 & 63 \\
\hline 1,2,3,4,7,8-HxCDF & ND & ---- & 0.75 & 1,2,3,4,6,7,8-HpCDD-13C & 2.00 & 80 \\
\hline 1,2,3,6,7,8-HxCDF & ND & ----- & 0.86 & OCDD-13C & 4.00 & 68 \\
\hline 2,3,4,6,7,8-HxCDF & ND & ---- & 1.10 & & & \\
\hline 1,2,3,7,8,9-HxCDF & ND & ----- & 1.20 & 1,2,3,4-TCDD-13C & 2.00 & NA \\
\hline Total HxCDF & ND & ----- & ---- & 1,2,3,7,8,9-HxCDD-13C & 2.00 & NA \\
\hline 1,2,3,4,7,8-HxCDD & ND & \(\cdots\) & 1.10 & 2,3,7,8-TCDD-37C14 & 0.20 & 73 \\
\hline 1,2,3,6,7,8-HxCDD & ND & --- & 0.99 & & & \\
\hline 1,2,3,7,8,9-HxCDD & ND & & 1.00 & & & \\
\hline Total HxCDD & ND & ----- & & & & \\
\hline 1,2,3,4,6,7,8-HpCDF & ND & \(\cdots\) & 2.10 & & & \\
\hline 1,2,3,4,7,8,9-HpCDF & ND & --- & 1.90 & & & \\
\hline Total HpCDF & 2.2 & ---- & ---- & & & \\
\hline 1,2,3,4,6,7,8-HpCDD & 2.4 & \(\cdots\) & 1.40 & & & \\
\hline Total HpCDD & 2.4 & \(\cdots\) & ---- & & & \\
\hline \[
\begin{aligned}
& \text { OCDF } \\
& \text { OCDD }
\end{aligned}
\] & \[
\begin{aligned}
& 5.2 \\
& 5.6
\end{aligned}
\] & \(\cdots\) & \[
\begin{aligned}
& 1.80 \\
& 2.90
\end{aligned}
\] & & & \\
\hline
\end{tabular}

Conc \(=\) Concentration (Totals include 2,3,7,8-substituted isomers).
EMPC = Estimated Maximum Possible Concentration
LOD = Limit of Detection. Totals are averages of individual isomer LODs.
\(A=\) Limit of Detection based on signal to noise
\(P=\) Recovery outside of method 1613 control limits
\(\mathrm{Nn}=\) Value obtained from additional analysis
\(1=\) Interference
\(E=P C D E\) Interference
ND = Not Detected
NA \(=\) Not Applicable
NC = Not Calculated
* \(=\) See Discussion

Report No..... 106233

\section*{REPORT OF LABORATORY ANALYSIS}

\section*{Method 1613B Laboratory Control Spike Results}

Client - Del Mar Analytical
Lab Sample ID
Filename
Total Amount Extracted
ICAL Date
CCal Filename
Method Blank ID

LCS-6221
F50129B_03
1040 mL
11/29/2004
F50129B_02
BLANK-6220
\begin{tabular}{ll} 
Matrix & Water \\
Dilution & NA \\
Extracted & \(01 / 28 / 2005\) \\
Analyzed & \(01 / 29 / 2005 \quad 21: 22\) \\
Injected By & BAL
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Compound & Cs & Cr & Lower Limit & \begin{tabular}{l}
Upper \\
Limit
\end{tabular} & \begin{tabular}{l}
\% \\
Rec.
\end{tabular} \\
\hline 2,3,7,8-TCDF & 10 & 9.9 & 7.5 & 15.8 & 99 \\
\hline 2,3,7,8-TCDO & 10 & 8.6 & 6.7 & 15.8 & 86 \\
\hline 1,2,3,7,8-PeCDF & 50 & 50.5 & 40.0 & 67.0 & 101 \\
\hline 2,3,4,7,8-PeCDF & 50 & 48.2 & 34.0 & 80.0 & 96 \\
\hline 1,2,3,7,8-PeCDD & 50 & 43.3 & 35.0 & 71.0 & 87 \\
\hline 1,2,3,4,7,8-HxCDF & 50 & 45.6 & 36.0 & 67.0 & 91 \\
\hline 1,2,3,6,7,8-HxCDF & 50 & 48.7 & 42.0 & 65.0 & 97 \\
\hline 2,3,4,6,7,8-HxCDF & 50 & 49.1 & 35.0 & 78.0 & 98 \\
\hline 1,2,3,7,8,9-HxCDF & 50 & 46.5 & 39.0 & 65.0 & 93 \\
\hline 1,2,3,4,7,8-HxCDD & 50 & 49.9 & 35.0 & 82.0 & 100 \\
\hline 1,2,3,6,7,8-HxCDD & 50 & 51.3 & 38.0 & 67.0 & 103 \\
\hline 1,2,3,7,8,9-HxCDD & 50 & 50.1 & 32.0 & 81.0 & 100 \\
\hline 1,2,3,4,6,7,8-HpCDF & 50 & 50.3 & 41.0 & 61.0 & 101 \\
\hline 1,2,3,4,7,8,9-HpCDF & 50 & 53.3 & 39.0 & 69.0 & 107 \\
\hline 1,2,3,4,6,7,8-HpCDD & 50 & 45.4 & 35.0 & 70.0 & 91 \\
\hline OCDF & 100 & 95.6 & 63.0 & 170.0 & 96 \\
\hline OCDD & 100 & 97.1 & 78.0 & 144.0 & 97 \\
\hline 2,3,7,8-TCOD-37Cl4 & 10 & 6.9 & 31 & 19.1 & 69 \\
\hline 2,3,7,8-TCDF-13C & 100 & 51.5 & 22.0 & 152.0 & 52 \\
\hline 2,3,7,8-TCDD-13C & 100 & 67.8 & 20.0 & 175.0 & 68 \\
\hline 1,2,3,7,8-PeCDF-13C & 100 & 61.4 & 21.0 & 192.0 & 61 \\
\hline 2,3,4,7,8-PeCDF-13C & 100 & 65.9 & 13.0 & 328.0 & 66 \\
\hline 1,2,3,7,8-PeCDD-13C & 100 & 77.8 & 21.0 & 227.0 & 78 \\
\hline 1,2,3,4,7,8-HxCDF-13C & 100 & 70.2 & 19.0 & 2020 & 70 \\
\hline 1,2,3,6,7,8-HxCDF-13C & 100 & 78.0 & 21.0 & 159.0 & 78 \\
\hline 2,3,4,6,7,8-HxCDF-13C & 100 & 74.1 & 22.0 & 176.0 & 74 \\
\hline 1,2,3,7,8,9 HxCDF-13C & 100 & 70.4 & 17.0 & 205.0 & 70 \\
\hline 1,2,3,4,7,8-HxCDD-13C & 100 & 69.0 & 21.0 & 193.0 & 69 \\
\hline 1,2,3,6,7,8-HxCDD-13C & 100 & 82.8 & 25.0 & 163.0 & 83 \\
\hline 1,2,3,4,6,7,8-HpCDF-13C & 100 & 72.1 & 21.0 & 158.0 & 72 \\
\hline 1,2,3,4,7,8,9-HpCDF-13C & 100 & 62.4 & 20.0 & 186.0 & 62 \\
\hline 1,2,3,4,6,7,8-HpCDD-13C & 100 & 80.1 & 26.0 & 166.0 & 80 \\
\hline OCDD-13C & 200 & 135.6 & 26.0 & 397.0 & 68 \\
\hline
\end{tabular}

\footnotetext{
Cs = Concentration Spiked ( \(\mathrm{ng} / \mathrm{mL}\) )
\(\mathrm{Cr}=\) Concentration Recovered ( \(\mathrm{ng} / \mathrm{mL}\) )
Rec. \(=\) Recovery (Expressed as Percent)
Control Limit Reference: Method 1613, Table 6, 10/94 Revision
\(\mathrm{X}=\) Background subtracted value
\(P=\) Recovery outside of control limits
\(\mathrm{Nn}=\) Value obtained from additional analysis
* \(=\) See Discussion
}

Report No..... 106233

\section*{Method 1613B Laboratory Control Spike Results}

Client - Del Mar Analytical


\footnotetext{
Cs \(=\) Concentration Spiked (ng/mL)
\(\mathrm{Cr}=\) Concentration Fecovered ( \(\mathrm{ng} / \mathrm{mL}\) )
Rec. \(=\) Recovery (Expressed as Percent)
Control Limit Reference: Method 1613, Table 6, \(10 / 94\) Revision
\(X=\) Background subtracted value
\(P=\) Recovery outside of control limits
\(\mathrm{Nn}=\) Value obtained from additional analysis
* \(=\) See Discussion
}

Report No..... 106233

\section*{REPORT OF LABORATORY ANALYSIS}

\section*{TABLE 1. 2,3,7,8-TCDD Equilvalency Factors (TEFs) for the Polychlorinated Dibenzo-p-dioxins and Dibenzofurans}
\begin{tabular}{|c|c|c|}
\hline Number & Compound(s) & TEF \\
\hline 1 & 2,3,7,8-TCDD & 1.00 \\
\hline 2 & 1,2,3,7,8-PeCDD & 0.50 \\
\hline 3 & 1,2,3,6,7,8-HxCDD & 0.1 \\
\hline 4 & 1,2,3,7,8,9-HxCDD & 0.1 \\
\hline 5 & 1,2,3,4,7,8-HxCDD & 0.1 \\
\hline 6 & 1,2,3,4,6,7,8-HpCDD & 0.01 \\
\hline 7 & OCDD & 0.001 \\
\hline 8 & * Total - TCDD & 0.0 \\
\hline 9 & * Total-PeCDD & 0.0 \\
\hline 10 & * Total - HxCDD & 0.0 \\
\hline 11 & * Total-HpCDD & 0.0 \\
\hline 12 & 2,3,7,8-TCDF & 0.10 \\
\hline 13 & 1,2,3,7,8-PeCDF & 0.05 \\
\hline 14 & 2,3,4,7,8-PeCDF & 0.5 \\
\hline 15 & 1,2,3,6,7,8-HxCDF & 0.1 \\
\hline 16 & 1,2,3,7,8,9-HxCDF & 0.1 \\
\hline 17 & 1,2,3,4,7,8-HxCDF & 0.1 \\
\hline 18 & 2,3,4,6,7,8-HxCDF & 0.1 \\
\hline 19 & 1,2,3,4,6,7,8HpCDF & 0.01 \\
\hline 20 & 1,2,3,4,7,8,9-HpCDF & 0.01 \\
\hline 21 & OCDF & 0.001 \\
\hline 22 & * Total - TCDF & 0.0 \\
\hline 23 & * Total - PeCDF & 0.0 \\
\hline 24 & * Total - HxCDF & 0.0 \\
\hline 25 & * Total - HpCDF & 0.0 \\
\hline
\end{tabular}
*Excluding the 2,3,7,8-substituted congeners.
Reference: 1989 ITEFs

\section*{REPORT OF LABORATORY ANALYSIS}

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.


\section*{SUBCONTRACT ORDER - PROJECT \# IOA0576}


SAMPLE INTEGRITY:
\begin{tabular}{lllll} 
All containers intact: & \(\square\) & Yes & \(\square\) & No \\
Custody Seals Present: & \(\square\) & Yes & \(\square\) & No
\end{tabular}
\begin{tabular}{llll} 
Sample labeisfCOC agree: & \(\square\) & Yes & \(\square\)
\end{tabular}
\begin{tabular}{ll} 
Samples Received On lee:: & \(\square\) Yes \(\square\) No \\
Samples Received at (lemp): &
\end{tabular}


Date:

Client: Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Attn: Michele Harper

Aquatic Testing


Laboratories
"dedicated to providing quality aquatic toxicity testing"
4350 Transport Street, Unit 107
Ventura, CA 93003
(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.: A-05011311-001
Sample I.D.: IOA0576-01

Sample Control: The sample was received by ATL chilled, with the chain of custody record attached.
\[
\begin{array}{ll}
\text { Date Sampled: } & 01 / 12 / 05 \\
\text { Date Received: } & 01 / 13 / 05 \\
\text { Date Tested: } & 01 / 13 / 05 \text { to } 01 / 19 / 05
\end{array}
\]

Sample Analysis: The following analyses were performed on your sample:

\section*{Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).}

Attached are the test data generated from the analysis of your sample.

Result Summary:
\begin{tabular}{lcc} 
Chronic: & NOES & TUm \\
Ceriodaphnia Survival: & \(12.5 \%\) & 8.0 \\
Ceriodaphnia Reproduction: & \(<6.25 \%\) & \(>16.0\)
\end{tabular}

Quality Control: Reviewed and approved by:


Lab No.: A-05011311
Date Tested: 01/13/05 to 01/19/05
Client/ID: Del Mar IOA0576-01

\section*{TEST SUMMARY}

Endpoints: Survival and Reproduction.
Source: In-laboratory culture.
Food: . 1 ml YTC, algae per day.
Test solution volume: 15 ml .
Number of replicates: 10.
Photoperiod: \(16 / 8 \mathrm{hrs}\). light/dark cycle.
Test duration: 7 days.
Statistics: ToxCalc computer program.
RESULTS SUMMARY
\begin{tabular}{|c|c|c|}
\hline Sample Concentration & Percent Survival & \begin{tabular}{c} 
Mean Number of \\
Young Per Female
\end{tabular} \\
\hline Control & \(100 \%\) & 22.5 \\
\hline \(6.25 \%\) & \(90 \%\) & \(11.5 *\) \\
\hline \(12.5 \%\) & \(70 \%\) & \(10.0^{*}\) \\
\hline \(25 \%\) & \(0 \% *\) & \(3.5 * *\) \\
\hline \(50 \%\) & \(0 \% *\) & \(2.4^{* *}\) \\
\hline \(100 \%\) & \(0 \% *\) & \(0.0 * *\) \\
\hline * Statistically significantly less than control at \(\mathrm{P}=0.05\) level \\
\hline
\end{tabular}
* Statistically significantly less than control at \(\mathbf{P}=0.05\) level.
** Reproduction data from concentrations greater than survival NOEC are excluded from statistical analysis.

CHRONIC TOXICITY
\begin{tabular}{|c|c|c|}
\hline Parameter & Survival & Growth \\
\hline NOEC & \(12.5 \%\) & \(<6.25 \%\) \\
\hline TUc & 8.0 & \(>16.0\) \\
\hline
\end{tabular}

\section*{QA/QC TEST ACCEPTABILITY}
\(\left.\begin{array}{|c|c|}\hline \text { Parameter } & \text { Result } \\ \hline \text { Control survival } 280 \% & \text { Pass ( } 100 \% \text { survival) } \\ \hline z 15 \text { young per surviving control female } & \text { Pass (22.5 young) } \\ \hline z 60 \% \text { surviving controls had } 3 \text { broods } & \text { Pass ( } 100 \% \text { with } 3 \text { broods) } \\ \hline \text { PMSD }<47 \% \text { for reproduction; if }>47 \% \text { and no toxicity } \\ \text { at IWC, the test must be repeated }\end{array}\right]\) Pass (PMSD \(=15.0 \%\) ).

\section*{SUBCONTRACT ORDER - PROJECT \# IOA0576}




\section*{Truesdail Laboratories, Inc.}

\section*{REPORT}


Report Date:
1/13/05
Date Received: 1/11/05

Laboratory No.: 938561

Sample: One water marked IOA0576-01, 1/11/05, 15:05
\begin{tabular}{llll} 
Analysis Date: & \(1 / 11 / 05\) & Time: & 1830 \\
Completion Date: & \(1 / 13 / 05\) & Time: & 1600
\end{tabular}

Investigation: Multiple Tube Fermentation Test for Coliform Group Bacteria APHA Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992 Method 9221B, 9221E

\section*{RESULTS}

\section*{Sample Designation}
1. IOA0576-01, 15:50
* Most Probable No. 100 ml
** None Detected

\section*{Coliform Group Bacteria MPN*/100mI}

Total Fecal
\(<2^{* *}<2\)

Respectfully submitted,
TRUESDAIL LABORATORIES, INC.



Karl W. Schiller, M.S.
Chief Microbiologist

\(\square\)



Bacti Bottle (IOA0576-01B)


\title{
APPENDIX G
}

\author{
Section 14 \\ January Outfall 018
}

AMEC Data Validation Reports
Del Mar Analytical Laboratory Reports


\section*{amec \({ }^{0}\)}

\title{
DATA VALIDATION REPORT
}

NPDES
Monitoring

\author{
ANALYSIS: DIOXINS/FURANS SAMPLE DELIVERY GROUPS: Multiple SDGs
}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{llr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: Multiple \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Dioxins/Furans \\ QC Level: Level IV \\ No. of Samples: 15 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: K. Shadowlight \\ Date of Review: February 11, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{llr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

Table 1. Sample Identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & \begin{tabular}{c} 
Laboratory ID \\
(Del Mar)
\end{tabular} & \begin{tabular}{c} 
Laboratory ID \\
(Pace)
\end{tabular} & Matrix & COC Method \\
\hline Outfall 003 & IOA0026-01 & 105648001 & water & 1613 \\
\hline Outfall 004 & IOA0027-01 & 105646001 & water & 1613 \\
\hline Outfall 005 & IOA0028-01 & 105645001 & water & 1613 \\
\hline Outfall 007 & IOA0108-01 & 105774001 & water & 1613 \\
\hline Outfall 008 & IOA0109-01 & 105775001 & water & 1613 \\
\hline Outfall 009 & IOA0110-01 & 105770001 & water & 1613 \\
\hline Outfall 010 & IOA0111-01 & 105758001 & water & 1613 \\
\hline Outfall 001 & IOA0112-01 & 105778001 & water & 1613 \\
\hline Outfall 002 & IOA0119-01 & 105772001 & water & 1613 \\
\hline Outfall 018 & IOA0122-01 & 105779001 & water & 1613 \\
\hline Outfall 006 & IOA0131-01 & 105773001 & water & 1613 \\
\hline Outfall 004 & IOA0458-01 & 106048001 & water & 1613 \\
\hline Outfall 005 & IOA0460-01 & 106050001 & water & 1613 \\
\hline Outfall 003 & IOA0464-01 & 106052001 & water & 1613 \\
\hline\(\%\) & IOA0466-01 & 106051001 & water & 1613 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
& Project: \\
DATA VALIDATION REPORT & \begin{tabular}{c} 
NPDES \\
SDG No.: \\
Multiple
\end{tabular} \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

All of the samples in these SDGs were received at Del Mar Analytical within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). Several of the samples in these SDGs were received at Pace Analytical Services below the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\); however, as none of the samples were noted to have been damaged, no qualifications were required. The samples were received in good condition at both laboratories. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COC and transfer COC were signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. As the samples were couriered directly to the laboratory (Del Mar Analytical), custody seals were not required. There was no information regarding custody seals upon receipt at Pace. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The samples were extracted and analyzed within a year of collection. No qualifications were required.

\subsection*{2.2 INSTRUMENT PERFORMANCE}

Following are findings associated with instrument performance:

\subsection*{2.2.1 GC Column Performance}

A column performance standard was combined with the daily calibration verification and analyzed at the beginning of each analytical sequence. The GC column performance was acceptable with the chromatographic separation of \(2,3,7,8-\mathrm{TCDD}\) and other TCDD isomers resolved with a valley of \(\leq 25 \%\). No qualifications were required.

\subsection*{2.2.2 Mass Spectrometer Performance}

The mass spectrometer performance could not be evaluated as the laboratory did not provide selected ion current profiles for the lock-mass ions. No qualifications were required.
\begin{tabular}{lrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\subsection*{2.3 CALIBRATION}

\subsection*{2.3.1 Initial Calibration}

There was one initial calibration, analyzed 11/29/04 on Instrument 10MSHR05. The calibration consisted of five concentration level standards (CS1 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with \(\%\) RSDs \(\leq 20 \%\) for the 15 native compounds (calibration by isotope dilution) and \(\leq 35 \%\) for the 2 native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \%RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.3.2 Continuing Calibration}

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VER was acceptable with the concentrations within the acceptance criteria listed in the Table 6 of the EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \(\%\) Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.4 BLANKS}

One method blank (Blank-6202) was extracted and analyzed with the samples in these SDGs. Target compounds \(1,2,3,4,6,7,8-\mathrm{HpCDD}\), total HpCDD , OCDF, and OCDD were reported in the method blank. Any detects for the aforementioned target compounds reported at concentrations \(<5 x\) the concentrations reported in the method blank were qualified as estimated nondetects "UJ," at the levels of interference in the samples of these SDGs. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No further qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One LCS/LCSD pair (LCS-6203/LCSD-6204) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of the Method 1613. There were no QC limits established for RPDs. The reported RPDs were within \(\pm 20 \%\). No qualifications were required.

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy and precision was based on the LCS/LCSD results. No qualifications were required.

\subsection*{2.7 FIELD QC SAMPLES}

Following are findings associated with field QC:
\begin{tabular}{lll} 
& Project: & \begin{tabular}{c} 
NPDES \\
DATA VALIDATION REPORT
\end{tabular} \\
SDG No.: & Multiple \\
Snalysis: & D/F \\
\hline
\end{tabular}

\subsection*{2.7.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.7.2 Field Duplicates}

No field duplicate samples were identified for these SDGs.

\subsection*{2.8 INTERNAL STANDARDS}

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

\subsection*{2.9 COMPOUND IDENTIFICATION}

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

\subsection*{2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the lower method calibration limit (MCL) were qualified as estimated, "J." Any reported EMPC was qualified as an estimated nondetect, "UJ." No further qualifications were required.

\section*{Method 1613B Analysis Results}

\author{
Client - Del Mar Analytical
}

Client's Sample ID
Lab Sample ID
Filename
Injected By
Total Amount Extracted
\% Moisture
Dry Weight Extracted
ICAL Date
CCal Filename(s)
Rew
Method Blank ID
\(u\)
\(u\)
\(\pm 5 \rightarrow 55\)


\footnotetext{
Conc \(=\) Concentration (Totals include 2,3,7,8-substituted isomers).
EMPC = Estimated Maximum Possible Concentration
LOD = Limit of Detection. Totals are averages of individual isomer LODs.
\(D=\) Result obtained from analysis of diluted sample
\(B=\) Less than 10 times higher than method blank level
\(P=\) Recovery outside of method 1613 control limits
\(\mathrm{J}=\) Concentration detected is below the calibration range
\(\mathrm{Nn}=\) Value obtained from additional analysis
}

I = Interference
\(\mathrm{E}=\mathrm{PCDE}\) Interference
ND \(=\) Not Detected
NA \(=\) Not Applicable
NC = Not Calculated
* = See Discussion

Report No..... 105779

REPORT OF LABORATORY ANALYSIS
This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, he

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}

AMEC Earth \& Environmental 550 South Wadsworth Boulevard Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer P. Meeks
Analysis/Method Metals

Package ID T711MT24
Task Order 313150010
SDG No. IOA0122
No. of Analyses 1
Date: 02/04/05
Reyiewer's Signature
P.MeSS

ACIION ITEMS
1. Case Narrative Deficiencies
2. Out of Scope Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Qualifications applied for detects below the reporting limit.

Analysis Protocol, e.g.,
Holding Times.
GC/MS Tune/Inst.
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification and Quantitation
System Performance
\(\square\)

\section*{Performance}
\(\square\)
\(\qquad\)
\(\square\)
\(\square\)
\(\square\)
\(\qquad\)

\section*{COMMENTS}
* Subcontracted analytical laboratory is not meeting contract and/or method requirements.
- Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

\title{
amec \({ }^{\theta}\)
}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES \\ Monitoring
}

\author{
ANALYSIS: METALS \\ SAMPLE DELIVERY GROUP: IOA0122
}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: IOA0122 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Metals \\ QC Level: Level IV \\ No. of Samples: 1 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: P. Meeks \\ Date of Review: February 04, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma - Mass Spectrometry, SW-846 Method 6010B for Inductively Coupled Plasma , SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0122 \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 018 & Outfall 018 & IOA0122-01 & water & ILM04 \\
\hline
\end{tabular}
\begin{tabular}{rr} 
& Project: \\
DATA VALIDATION REPORT & SDG No.: \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in this SDG was received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

\subsection*{2.1.2 Chain of Custody}

The COC was signed and dated by field and laboratory personnel. The COC listed a duplicate samples for metals analyses; however, duplicate analyses were not required. No sample qualifications were required.

\subsection*{2.1.3 Holding Times}

The date of collection recorded on the COC and the date of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS metals and 28 days for mercury. No qualifications were required.

\subsection*{2.2 ICP-MS TUNING}

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. The laboratory performed the required tune solution analyses but did not report \%RSDs. The laboratory SOP states that to be acceptable, the \%RSD must be less than \(5 \%\). The mass calibrations were within 0.1 amu of the true mass and an the instrument resolutions were less than 0.75 amu at 10 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

\subsection*{2.3 CALIBRATION}

The ICV and CCV results showed acceptable recoveries, \(90-110 \%\) for the ICP/MS and \(80-120 \%\) for mercury. The reporting limit check standards were recovered within the AMEC control limits of 70\(130 \%\). No qualifications were required.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOAOI22 \\
\hline
\end{tabular}

\subsection*{2.4 BLANKS}

There were no detects in the method blanks or CCBs associated with the sample in this SDG. No qualifications were required.

\subsection*{2.5 ICP INTERFERENCE CHECK SAMPLE (ICS AVAB)}

No ICPMS interference check samples were analyzed in association with the sample in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The ICP/MS LCS sample was identified as 5A05052-BS1 and the mercury LCS sample was identified as 5A05061-BSI. The LCS results on the summary forms and in the raw data were within the laboratory-established ICP/MS and mercury control limits of \(85-115 \%\). No qualifications were required.

\subsection*{2.7 LABORATORY DUPLICATES}

No MS/MSD or duplicate analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

\subsection*{2.8 MATRIX SPIKE}

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

\subsection*{2.9 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analysis of this sample; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.10 ICP/MS SERIAL DILUTION}

No serial dilution analysis was performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0122 \\
\hline
\end{tabular}

\subsection*{2.11 INTERNAL STANDARDS PERFORMANCE}

The copper internal standard recovery was above the control limit in the LCS; however, as the LCS copper recovery was acceptable, no qualification was required. The remaining ICP-MS internal standard recoveries for the site sample and associated QC sample analyses were within the \(60-125 \%\) control limits and no qualifications were required.

\subsection*{2.12 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample results reported on the Form I were verified against the raw data. No transcription errors or calculation errors were noted. Detects below the reporting limit were qualified as estimated, "J." No further qualifications were required.

\subsection*{2.13 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

\subsection*{2.13.1 Field Blanks and Equipment Rinsates}

The sample in this SDG had no associated field QC samples. No qualifications were required.

\subsection*{2.13.2 Field Duplicates}

There were no field duplicate analyses performed in association with the site sample.
\begin{tabular}{|ll|} 
MWH-Pasadena/Boeing & Project \(\mathrm{D}:\) Routine Outfall 018 \\
300 North Lake Avenue, Suite 1200 & Report Number: \(10 A 0122\)
\end{tabular}

DRAFT: METALS
MDL Reporting Sample Dilution Date Date Data Batch Limit Limit Result Factorextracted Analyzed Qualifiers


\section*{AMEC VALIDATED}

\section*{LEVELIV}

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer K. Shadowlight
Analysis/Method Pesticides

Package ID T711PP9
Task Order 313150010
SDG No. \(10 A 0122\)
No. of Analyses 1
Date February 2, 2005
Reviewer's Signature

\section*{ACTION ITEMS \({ }^{+}\)}

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis Protocol, egg.
Holding Times
GC/MS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and Quantitation

System Performance

\section*{COMMENTS \({ }^{\text {b }}\)}

Acceptable as reviewed.
* Subcontracted analytical laboratory is not meeting contract and/or method requirements.
- Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

\section*{\(a m e c^{\text {® }}\)}

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\section*{ANALYSIS: PESTICIDES}

\section*{SAMPLE DELIVERY GROUP: IOA0122}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226


\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ SDG\#: 1OA0122 \\ Project Manager: B. McIlvaine \\ Matrix: Water \\ Analysis: PCBs \\ QC Level: Level IV \\ No. of Samples: 1 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: K. Shadowlight \\ Date of Review: February 2, 2005
}

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedures (DVP-4, Rev.2), EPA Method 608, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary form as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.


Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & Method \\
\hline Outfall 018 & Outfall 018 & IOA0122-01 & water & 608 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & Project: SDG: & \[
\begin{aligned}
& \text { NPDES } \\
& \text { IOA0122 }
\end{aligned}
\] \\
\hline DATA VALIDATION REPORT & Analysis: & Pest \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handing, and Transport}

The sample in this SDG was received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C}\) \(\pm 2^{\circ} \mathrm{C}\), at \(5^{\circ}\). The analysis did not require preservation, and no preservation was noted in the field. The COC noted that the sample was received intact. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COC was signed and dated by both field and laboratory personnel. The COC accounted for the analysis presented in this SDG. As the sample was couriered directly to the laboratory, custody seals were not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The water sample was extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

\subsection*{2.2 PESTICIDES INSTRUMENT PERFORMANCE}

No resolution check standards or breakdown check standards are required by Method 608 for pesticides, and according to the raw data provided, a resolution check standard was not analyzed by the laboratory. The laboratory did analyze a breakdown check standard; however, as alpha-BHC was the only compound of interest, the breakdown check standard was not necessary. A review of the raw data indicated that the analytical run time was of sufficient length to provide adequate standard separation. The two analytical columns used in the analyses were within the guidelines specified in the methods.

According to the laboratory SOP and the initial calibration raw data, the retention time windows are \(\pm 0.10\) minutes for both surrogates and alpha-BHC calibration standards. A review of the raw data indicated that the laboratory retention time criteria were met for the surrogates and pesticide calibration standards. No qualifications were required.

\subsection*{2.3 CALIBRATION}

\subsection*{2.3.1 Analytical Sequence}

Based on the data provided, the analytical sequences were in accordance with the requirements of Method 608. No qualifications were required.
\begin{tabular}{ccc} 
& \begin{tabular}{c} 
Project: \\
DATA VALIDATION REPORT
\end{tabular} & \begin{tabular}{c} 
NPDES \\
SDG: \\
IOA0122
\end{tabular} \\
Pest
\end{tabular}

\subsection*{2.3.2 Initial Calibration}

There was one initial calibration dated 10/26/04 associated with this SDG, which consisted of six point calibrations for alpha-BHC on two analytical columns. The laboratory provided an overlay of the sample chromatogram and the pesticide standard for identification purposes. The \%RSD was within the EPA Method 608 QC limit of \(\leq 10 \%\). An ICV was analyzed immediately following the initial calibration. The \%D for alpha-BHC was within the QC limit of \(\leq 15 \%\) on both analytical columns. The \%RSD and ICV \%D for alpha-BHC were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.3.3 Continuing Calibration}

The sample analysis of this SDG was bracketed by the daily ICV and one closing continuing calibration standard. The applicable \%Ds were within the Method QC limit of \(\pm 15 \%\) for both calibrations. One \(\% \mathrm{D}\) exceeded \(15 \%\) on channel A with high response; however, as all results were reported from channel B , no qualifications were assigned. A representative number of \(\% \mathrm{Ds}\) were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.4 BLANKS}

\subsection*{2.4.1 Instrument Blanks}

An instrument blank was analyzed at the beginning of the analytical sequence. Crosscontamination was not evident in the sample. No qualifications were necessary.

\subsection*{2.4.2 Method Blanks}

One water method blank (5A05041-BLK1) was extracted and analyzed with this SDG. Target compound alpha-BHC was not detected in the method blank. Review of the chromatograms showed no false negative. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One blank spike/blank spike duplicate pair (5A05041-BSI/SA05041-BSD1) was extracted and analyzed with this SDG. The recoveries for alpha-BHC were within the laboratory-established QC limits of \(45-115 \%\) and the RPD was \(\leq 30 \%\). The recoveries were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.6 SURROGATE RECOVERY}

The sample and all QC samples were fortified with the surrogate compounds decachlorobiphenyl and tetrachloro-m-xylene. Surrogate recoveries for this SDG were within the laboratory-established QC limits. The recoveries were calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.
\begin{tabular}{ll} 
& \begin{tabular}{c} 
Project: \\
DATA VALIDATION REPORT
\end{tabular} \\
SDG: & \begin{tabular}{c} 
NPDES \\
IOA012
\end{tabular} \\
Inalysis: & Pest
\end{tabular}

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

There were no MS/MSD analyses associated with this SDG. Accuracy and precision were assessed based on the blank spike/blank spike duplicate results. No qualifications were required.

\subsection*{2.8 SAMPLE CLEANUP PERFORMANCE}

According to the laboratory extraction benchsheet, no cleanups were performed on the water sample. No qualifications were required.

\subsection*{2.9 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.9.1 Field Blanks and Equipment Rinsates}

There were no field QC samples associated with the sample in this SDG. No qualifications were required.

\subsection*{2.9.2 Field Duplicates}

There were no field duplicate samples associated with the sample in this SDG.

\section*{210 COMPOUND IDENTIFICATION}

The laboratory analyzed for alpha-BHC by EPA Method 608. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for the sample in this SDG. No qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification was verified for this SDG however, as there were no detects reported in this SDG, quantitation was verified by recalculating blank spike and surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibration and the laboratory MDL study. The water reporting limit for alpha-BHC was not adjusted for sample amount on the result summary; however, the dilution factor listed on the summary reflected the sample volume extracted. Results were reported in ug \(/ \mathrm{L}\) (ppb). No qualifications were required.

17451 Derian Ave., Suite 100. Irvine, CA 92614 (949) 281.1022 FAX (949) 230.3297 1014 E. Cooiey Dr, Sulte A, Colton, CA 52324 (909) \(370-4667\) FAX \((949,370\), 3704 E 9484 Chesapeake Dr., Suito 805 , San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9589 9830 South 51st St., Suite B-120, Phoerix, AZ 85044 (430) 785-0C43 FAX (480; 785-9859 2520 E. Sunset Rd. \#3, Las Vegas, NV 89120 (702) 798-3t20 FAX (702; 798-3621

\footnotetext{
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 018
Report Number: IOA0122

Sampled: 01/0405
Received: 01/04:05
}

\section*{DRAFT: ORGANOCHLORINE PESTICIDES (EPA 608)}


\section*{AMEC VALIDATED}


\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer M. Pokorny
Analysis/Method Semivolatiles

Package ID T711SV23
Task Order 313150010
SDG No. IOA0122
No. of Analyses 1
\begin{tabular}{|l|}
\hline Date: February 4,2005 \\
\hline Reviewers Signature \\
\hline
\end{tabular}
we s signature
II. Mun

\section*{ACTION ITEMS}
1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, e.g.,
Holding Times
GCMS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Intemal Standard Pefformance
Compound Identification and Quantitation
System Performance

\section*{COMMENTS \({ }^{\text {b }}\)}

Acceptable as reviewed.

\footnotetext{
- Subcontracted analytical laboratory is not meeting contract andor method requirements.
\({ }^{n}\) Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.
}

\section*{amec \({ }^{\varnothing}\)}

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\section*{ANALYSIS: SEMIVOLATILES}

\section*{SAMPLE DELIVERY GROUP: IOA0122}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{cc} 
DATA VALIDATION REPORT & \begin{tabular}{r} 
Project: \\
SDG:
\end{tabular} \\
Andes \\
IOAOI22
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ SDG\#: IOA0122 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Semivolatiles \\ QC Level: Level IV \\ No. of Samples: 1 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: M. Pokorny \\ Date of Review: February 4, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Semivolatile Organics (DVP-3, Rev. 2), EPA Method 625, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{lr} 
& \begin{tabular}{c} 
Project: \\
DATA VALIDATION REPORT
\end{tabular} \\
SDG: & \begin{tabular}{c} 
NPDES \\
IOAOI22
\end{tabular} \\
SVOC
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Lab No. & Matrix & Method \\
\hline Outfall 018 & Outfall 018 & IOA0122-01 & water & 625 \\
\hline
\end{tabular}
\begin{tabular}{cc} 
& \begin{tabular}{c} 
Project: \\
SDG:
\end{tabular} \\
DATA VALIDATION REPORT & \begin{tabular}{c} 
NPDES \\
IOAO122
\end{tabular} \\
Analysis: & SVOC
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The sample in this SDG was received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C}\) \(\pm 2^{\circ} \mathrm{C}\), at \(5^{\circ} \mathrm{C}\). The analysis did not require preservation, and no preservation was noted in the field. The COC noted that the sample was received intact. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COC was signed and dated by both field and laboratory personnel. The COC accounted for the analysis presented in this SDG. As the sample was couriered directly to the laboratory, custody seals were not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The water sample was extracted within seven days of collection and analyzed within 40 days of collection. No qualifications were required.

\subsection*{2.2 GC/MS TUNING}

The DFTPP tunes met the criteria specified in Method 625, and the sample was analyzed within 12 hours of the DFTPP injection time. No qualifications were required.

\subsection*{2.3 CALIBRATION}

The initial calibration associated with this SDG was dated 01/12/05. The average RRFs for were \(\geq 0.05\) and the \(\%\) RSDs were \(\leq 35 \%\) or \(r^{2} \geq 0.995\) for all target compounds. A representative number of average RRFs and \%RSDs were checked from the raw data, and no calculation or transcription errors were noted. The continuing calibration associated with the sample analysis was analyzed \(01 / 13 / 05\). The RRFs for all target compounds were \(\geq 0,05\), and the \(\%\) Ds were \(\leq 20\). A representative number of RRFs and \%Ds were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.4 BLANKS}

One method blank (5A03039-BLK1) was extracted and analyzed with this SDG. There were no reportable detects for the target compounds listed on the summary form. Review of the raw data indicated no reportable false negatives. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One blank spike/ blank spike duplicate pair (5A03039-BS1/BSD1) was extracted and analyzed with this SDG. For blank spike/blank spike duplicate pairs, qualifications are applied, if necessary,
\begin{tabular}{|c|c|c|}
\hline DATA VALIDATION REPORT & & \[
\begin{array}{r}
\text { NPDES } \\
\text { IOA0122 }
\end{array}
\] \\
\hline DAIA VALIDAIION REPORT & Analysis: & SVOC \\
\hline
\end{tabular}
to the associated samples based on those recoveries consistently outside of the laboratoryestablished QC limits in both the blank spike and blank spike duplicate. Results for those compounds with recoveries not consistent within the pair, with RPDs above the QC limit, are qualified as estimated, "UJ" for nondetects and "J" for detects, in the associated samples. All percent recoveries and RPDs were within the laboratory QC limits. A representative number of recoveries and RPDs were calculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.6 SURROGATE RECOVERY}

The sample surrogate recoveries were within the laboratory QC limits. A representative number of recoveries were calculated from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

No MS/MSD analyses were associated with this SDG. Evaluation of method accuracy and precision was based on blank spike/blank spike duplicate results. No qualifications were required.

\subsection*{2.8 FIELD QCSAMPLES}

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

\subsection*{2.8.1 Field Blanks and Equipment Rinsates}

There were no field QC samples associated with this SDG. No qualifications were required.

\subsection*{2.8.2 Field Duplicates}

There were no field duplicate samples associated with this SDG.

\subsection*{2.9 INTERNAL STANDARDS PERFORMANCE}

The internal standard area counts and retention times were within the control limits established by the continuing calibration standards: \(-50 \% /+100 \%\) for internal standard areas and \(\pm 30\) seconds for retention times. A representative number of recoveries were checked from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.10 COMPOUND IDENTIFICATION}

The laboratory analyzed for five semivolatile target compounds by EPA Method 625. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification. No qualifications were required.
\begin{tabular}{rrr} 
& \begin{tabular}{c} 
Project: \\
DATA VALIDATION REPORT
\end{tabular} & \begin{tabular}{c} 
NPDES \\
IOAO122
\end{tabular} \\
SDG:
\end{tabular}

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification is verified at a Level IV data validation. No calculation or transcription errors were found. The reporting limits were supported by the low level of the initial and the method detection limit study. No qualifications were required.

\subsection*{2.12 TENTATIVELY IDENTIFIED COMPOUNDS}

TICs were not reported by the laboratory for this SDG. No qualifications were required.

\subsection*{2.13 SYSTEM PERFORMANCE}

Review of the raw data indicated no problems with system performance. No qualifications were required.

MWI-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly

Project ID: Routine Outfall 018
Report Number: IOA.0122

Sampled: 01.04/05
Received: 01:04:05

\section*{DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}


\section*{AlEC VALIDATED}
level IV

\section*{DRAFT REPORT}

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer M. Pokorny
Analysis/Method Volatiles

Package ID T711VO40
Task Order 313150010
SDG No. IOA0122
No. of Analyses 2
Date: February 2, 2005
Reviewer's Signature


\section*{ACTION ITEMS:}
1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, egg.,
Holding Times
GCMS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and
Quantitation
System Performance
COMMENTS \({ }^{\text {b }}\)

\footnotetext{
\({ }^{\text {a }}\) Subcontracted analytical laboratory is not meeting contract and/or method requirements.
\({ }^{\text {b }}\) Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.
}

\section*{\(a m e c^{\text {® }}\)}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES Monitoring
}

\author{
ANALYSIS: VOLATILES
}

\section*{SAMPLE DELIVERY GROUP: IOA0122}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{cc} 
\\
DATA VALIDATION REPORT & \begin{tabular}{c} 
Project: \\
SDG:
\end{tabular} \\
NPDES \\
IOA0122
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ SDG\#: IOA0122 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Volatiles \\ QC Level: Level IV \\ No. of Samples: 2 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: M. Pokorny \\ Date of Review: February 2, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Volatile Organics (DVP-2, Rev. 2), EPA Method 624, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary forms as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.


Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Lab No. & Matrix & Method \\
\hline Outfall 018 & Outfall 018 & IOA0122-01 & water & 624 \\
\hline Trip Blank & Trip Blank & IOA0122-02 & water & 624 \\
\hline
\end{tabular}


\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in this SDG were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). According to the COC , the samples were received intact, without headspace, and in good condition. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COC was signed by field and laboratory personnel and accounted for the analyses presented in this SDG. As the samples were couriered to the laboratory, custody seals are not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The samples were analyzed within 14 days of collection. No qualifications were required.

\subsection*{2.2 GC/MS TUNING}

The ion abundance windows shown on the quantitation report were consistent with those specified in the EPA Method 624 . All ion abundances were within the established windows and were therefore acceptable. The samples and associated QC were analyzed within 12 hours of the BFB injection times. The Form Vs were verified from the raw data and no discrepancies between the summary forms and the raw data were noted. No qualifications were required.

\subsection*{2.3 CALIBRATION}

One initial calibration, dated \(11 / 10 / 04\), was associated with this SDG. The average RRFs were \(\geq 0.05\) and the \(\%\) RSDs were \(\leq 35 \%\) for the target compounds listed on the sample summary forms. One continuing calibration, dated 01/05/05, was associated with this SDG. The RRFs for all target compounds were \(\geq 0.05\) and the \(\%\) Ds were \(\leq 20 \%\). A representative number of \(\%\) RSDs and average RRFs from the initial calibration, and \(\% \mathrm{Ds}\) and RRFs from the continuing calibration were recalculated from the raw data, and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.4 BLANKS}

One water method blank (5A05017-BLK1) was associated with this SDG. There were no detects for the target compounds listed on the summary form. The method blank raw data showed no evidence of false negatives. No qualifications were required.
\begin{tabular}{cc} 
& Project: \\
DATA VALIDATION REPORT & SDG: \\
NPDES \\
IOAOI22
\end{tabular}

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One water blank spike (5A05017-BS1) was associated with this SDG. All spike recoveries were within the laboratory-established QC limits. A representative number of recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.6 SURROGATE RECOVERY}

The surrogates were within the QC limits of \(80-120 \%\). A representative number of surrogate recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

The MS/MSD analyses were performed for sample Outfall 018 for this SDG. All spike recoveries and RPDs were within the laboratory-established QC limits. No qualifications were required.

\subsection*{2.8 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

\subsection*{2.8.1 Trip Blanks}

Sample Trip Blank (IOA0122-02) was the trip blank associated with the site sample of this SDG. There were no target compounds detected in the trip blank. No qualifications were required.

\subsection*{2.8.2 Field Blanks and Equipment Rinsates}

There were no other field QC samples associated with this SDG. No qualifications were required.

\subsection*{2.8.3 Field Duplicates}

There were no field duplicate samples associated with this SDG.

\subsection*{2.9 INTERNAL STANDARDS PERFORMANCE}

Internal standard area counts and retention times for this SDG were within the control limits established by the continuing calibration standards, of \(+100 \% /-50 \%\) for internal standard areas and \(\pm 0.50\) minutes for retention times. A representative number of internal standard areas and retention times were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.
\begin{tabular}{ccc} 
& \begin{tabular}{c} 
Project: \\
DATA VALIDATION REPORT
\end{tabular} & \begin{tabular}{c} 
NPDES \\
IOAOI22
\end{tabular} \\
SDG:
\end{tabular}

\subsection*{2.10 COMPOUND IDENTIFICATION}

Target compound identification was verified at a Level IV data validation. The laboratory analyzed for a subset of volatile target compounds by EPA Method 624. Chromatograms, retention times, and spectra for the samples and QC were examined and no target compound identification problems were noted. No qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification is verified at a Level IV data validation. The reporting limits were supported by the lowest concentrations of the initial calibration standards and by MDL study. Compound quantitation was verified by recalculating any sample detect, and/or a representative number of blank spike and surrogate recoveries from the raw data. No calculation or transcription errors were noted. Target compounds detected below the reporting limit were qualified as estimated, "J," by the laboratory. No further qualifications were required.

\subsection*{2.12 TENTATIVELY IDENTIFIED COMPOUNDS}

The laboratory did not provide TICs for this SDG. No qualifications were required.

\subsection*{2.13 SYSTEM PERFORMANCE}

A review of the chromatograms and other raw data showed no identifiable problems with system performance. No qualifications were required.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Atuention: Bronwyn Kelly

Project ID: Routine Outfall 018
Report Number; IOA0122

Sampled: 01:04/05
Received: 01:04:05

DRAFT: PURGEABLES BY GC/MS (EPA 624)


\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}

AMEC Earth \& Environmental 550 South Wadsworth Boulevard Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer L. Jarusewic
Analysis/Method Perchlorate

Package ID T711WC55
Task Order 313150010
SDG No. IOA0122
No. of Analyses 1
Date: 02/02/05.


\section*{ACTION ITEMS}
1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from

Analysis Protocol, e.g.,
Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix SpikeDup LCS
Field QC
Internal Standard
Performance
Compound Identification and Quantitation
System Performance
\(\square\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
COMMENTS \({ }^{\text {b }} \quad \square\)

\footnotetext{
- Subcontracted analytical laboratory is not meeting contract and/or method requirements.
}
- Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

\section*{amec \({ }^{\theta}\)}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES Monitoring
}

\section*{ANALYSIS: PERCHLORATE SAMPLE DELIVERY GROUP: IOA0122}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0122 \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: IOA0122 \\ Project Manager: B. McIlvaine \\ Matrix: Water \\ Analysis: Perchlorate \\ QC Level: Level IV \\ No. of Samples: 1 \\ Reviewer: L. Jarusewic \\ Date of Review: February 2, 2005
}

The sample listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 314.0, and 120.1, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form l as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0122 \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 018 & Outfall 018 & IOA0122-01 & water & Perchlorate \\
\hline
\end{tabular}
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0122 \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The sample in this SDG was received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). No preservation problems were noted by the laboratory. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COC was signed and dated by field and laboratory personnel, and accounted for the sample and analysis presented in this SDG. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The holding time was assessed by comparing the date of collection with the date of analysis. The 28day analytical holding time for perchlorate was met, and no qualifications were required.

\subsection*{2.2 CALIBRATION}

The initial calibration correlation coefficient was \(\geq 0.995\). The IPC-MA recovery was within the control limits of \(80-120 \%\). The ICV and IPC recoveries were within the control limits of \(90-110 \%\). The CCV recovery was above the control limits of \(90-110 \%\). Perchlorate was qualified as estimated, "J," in sample Outfall 018. No further qualifications were required.

\subsection*{2.3 BLANKS}

The method blank and CCB results reported on the summary forms and in the raw data for blank analyses associated with the sample were nondetects at the reporting limit. No qualifications were required.

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The laboratory control sample recovery was within the method control limits of \(85-115 \%\). No qualifications were required.

\subsection*{2.5 SURROGATES RECOVERY}

Surrogate recovery is not applicable to the analysis presented in this SDG.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0122 \\
\hline
\end{tabular}

\subsection*{2.6 LABORATORY DUPLICATES}

The MS/MSD analyses were performed on sample Outfall 018. The RPD was within the control limit of \(\leq 20 \%\). No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

The MS/MSD analyses were performed on sample Outfall 018. The recoveries were within the control limits of \(80-120 \%\). No qualifications were required.

\subsection*{2.8 FURNACE ATOMIC ABSORPTION QC}

Fumace atomic absorption was not utilized for the analysis of this sample; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.9 ICP SERIAL DILUTION}

ICP serial dilution is not applicable to the analysis presented in this data validation report.

\subsection*{2.10 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample result reported on the Form I was verified against the raw data. No transcription errors or calculations errors were noted. No qualifications were required.

\subsection*{2.11 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.11.1 Field Blanks and Equipment Rinsates}

The sample in this SDG had no associated field QC samples. No qualifications were required.

\subsection*{2.11.2 Field Duplicates}

There were no field duplicate pairs associated with this package.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 018
Report Number: 10A0122

Sampled: 01/04:05
Received: 01/04/05

\section*{DRAFT: INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & Dilution Factor & n Date Extracted &  &  & ta fiers \\
\hline Sample ID: IOA0122-01 (DRA Reporting Units: mg/l & Outfall 018 . & Vater) - cont & & & Sam & led: 01/ & /04/05 & & & \\
\hline Ammonia-N (Distilled) & EPA 350.2 & 5 A05067 & 0.30 & 0.50 & ND & & & & * & \\
\hline Biochemical Oxygen Demand & EPA 405.1 & 5 A 05054 & 0.59 & 0.50
2.0 & 1.5 & & \(01 / 05 / 05\)
\(01 / 05 / 05\) & 01/05/05 & & \\
\hline Chloride & EPA 300.0 & 5A04042 & 0.26 & 0.50 & 1.5 & & 01/05/05 & \(01 / 10 / 05\)
\(01 / 04 / 05\) & - & \\
\hline Total Cyanide & EPA 335.2 & 5A05078 & 0.0022 . & 0.0050 & 8.4
ND & & 01/04/05
01/05/05 & 01/04/05 & & \\
\hline Nitrate/Nitrite-N & EPA 300.0 & 5A04042 & 0.072 & 0.26 & 1.1 & 1 & 01/04/05 & 01/05/05 & & \\
\hline Oil \& Grease & EPA 413.1 & 5A05068 & 0.94 & 0.26
5.0 & 1.1 & 1 & 01/05/05 & 01/04/05 & & \\
\hline Sulfate & EPA 300.0 & 5A04042 & 0.18 & 0.50 & 2.1 & 1 & 01/04/05 & 01/05/05 & - & \\
\hline Surfactants (MBAS) & EPA 425.1 & 5A04104 & 4.4 & 10 & ND & 100 & 01/04/05 & 01/04/05 & & \\
\hline Total Dissolved Solids & EPA 160.1 & 5 A 06082 & 10 & 10 & 170 & 1 & 01/06/05 & \[
01 / 06 / 05
\] & & \\
\hline Total Suspended Solids & EPA 160.2 & 5 A 07077 & 10 & 10 & ND & 1 & 01/07/05 & \[
01 / 07 / 05
\] & & \\
\hline Sample ID: IOA0122-01 (DRA Reporting Units: m///hr & Outfall 018 - & & & & Samp & ed: 01/0 & 04/05 & & & \\
\hline Total Settleable Solids & EPA 160.5 & 5A05055 & 0.10 & 0.10 & ND & 1 & 01/05/05 & 01/05\%5 & & \\
\hline Sample ID: IOA0122-01 (DRA Reporting Units: NTU & Outfall 018 - & & & & Samp & ed: 01/0 & 04/05 & & & \\
\hline Turbidity & EPA 180.1 & 5A05079 & 0.040 & 1.0 & 14 & 1 & 01/05:05 & 01.05.05 & & \\
\hline Sample 1D: 10A0122-01 (DRA. Kleporting Units: ug/ & Outfall 018 - & ter) & & & Samp & d: 01/0 & 04/05 & & & \\
\hline Perchlorate & EPA 314.0 & 5A06055 & 0.80 & 4.0 & 5.8 & 1 & 01/06/05 & 01:06/05 & & \\
\hline Sample ID: IOA0122-01 (DRAF Reporting Units: umbos/cm & utfall 018 - W & ter) & & & Sampl & d: 01/0 & 4/05 & & & \\
\hline Specific Conductance & EPA 120.1 & 5 A 06081 & 1.0 & 1.0 & 210 & 1. & 01/0605 & 01:06:05 & & \\
\hline
\end{tabular}

\section*{amec validated}

\title{
LEVEL IV
}

\section*{DRAFT REPORT}

DRAET REPORT
Data subject to Change

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA
AMEC Earth \& Environmental

550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer P. Meeks
Analysis/Method General Minerals

Package ID T711WC56
Task Order 313150010
SDG No. IOA0122
No. of Analyses 1
Date: 02/04/05
Reviewer's Signature
P. Mo

\section*{ACIION ITEMS:}
1. Case Narrative Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

\section*{Deliverables}
5. Incorrect Hardcopy Deliverables
6. Deviations from
Analysis Protocol, e.g., Qualifications applied for detects below the reporting limit.

Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field OC
Internal Standard
Performance
Compound Identification and Quantitation
System Performance
\(\longrightarrow \longrightarrow\)

\(\longrightarrow\)

\(\qquad\)
\(\square\)
\(\qquad\)

\section*{COMMENTS}

\footnotetext{
- Subcontracted analytical laboratory is not meeting contract and/or method requirements.
\({ }^{6}\) Differences in protocol have been adopted by the laboratory but no action against the laboratory is reguired.
}

\section*{amec \({ }^{\circ}\)}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES Monitoring
}

\author{
ANALYSIS: GENERAL MINERALS \\ SAMPLE DELIVERY GROUP: IOA0122
}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0122 \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: IOA0122 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: General Minerals \\ QC Level: Level IV \\ No. of Samples: 1 \\ Reviewer: P. Meeks \\ Date of Review: February 04, 2005
}

The sample listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 425.1, 350.2, 180.1, and 120.1, Standard Methods for the Examination of Water and Wastewater Method SM5540-C, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0122 \\
\hline & Analysis: & \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 018 & Outfall 018 & IOA0122-01 & water & General Minerals \\
\hline
\end{tabular}
\begin{tabular}{lcc} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0122 \\
\hline & Analysis: & Gen. Min. \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The sample in this SDG was received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). No preservation problems were noted by the laboratory. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COC was signed and dated by field and laboratory personnel and accounted for the samples and analyses presented. No sample qualifications were required.

\subsection*{2.1.3 Holding Times}

The holding times were assessed by comparing the date of collection with the dates of analyses. The 28 -day analytical holding time for ammonia, chloride, sulfate, specific conductance, and oil and grease, the 14-day analytical holding time for cyanide, the seven-day holding time for total suspended solids and total dissolved solids, and the 48 -hour holding time for biological oxygen demand, surfactants, turbidity, nitrate/nitrite, and total settleable solids were met, and no qualifications were required.

\subsection*{2.2 CALIBRATION}

For the applicable analyses, the initial calibration correlation coefficients were \(\geq 0.995\). All ICV and continuing calibration information was acceptable with recoveries within the control limits of \(90-110 \%\). For the titration method, ammonia, no information regarding the standardization of the titrant was provided; however, as the LCS recovery for ammonia was within the CCV control limits, no qualifications were required. No qualifications were required.

\subsection*{2.3 BLANKS}

The method blank and CCB results reported on the summary forms and in the raw data for blank analyses associated with the sample were nondetects at the reporting limit. No further qualifications were required.

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

For the applicable methods, the laboratory control sample recoveries were within the laboratoryestablished control limits. The LCS is not applicable to turbidity or specific conductance. No qualifications were required.
\begin{tabular}{lr} 
& Project: \\
DATA VALIDATION REPORT & SDG No.: \\
\hline
\end{tabular}

\subsection*{2.5 SURROGATES RECOVERY}

Surrogate recovery is not applicable to the analyses presented in this SDG.

\subsection*{2.6 LABORATORY DUPLICATES}

No MS/MSD or duplicate analyses were performed in association with the samples in this SDG; therefore, no assessment was made with respect to this criterion.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

\subsection*{2.8 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analysis of this sample; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.9 ICP SERIAL DILUTION}

ICP serial dilution is not applicable to the analyses presented in this data validation report.

\subsection*{2.10 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample results reported on the Form I were verified against the raw data. No transcription errors or calculations errors were noted. MBAS for Outfall 018 was reported from a \(100 \times\) dilution as the sample had formed an emulsion. BOD and oil and grease detected below the reporting limit were qualified as estimated, " \(J\)." No further qualifications were required.

\subsection*{2.11 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.11.1 Field Blanks and Equipment Rinsates}

The sample in this SDG had no associated field QC samples. No qualifications were required.
\begin{tabular}{ccc} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0122 \\
\hline
\end{tabular}

\subsection*{2.11.2 Field Duplicates}

There were no field duplicate pairs associated with this SDG.

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101 Attention: Bronwyn Kelly

Project ID: Routine Outfall 018
Report Number: 1OA0122

Sampled: 01/04:05
Received: 01/(14/0s

\section*{DRAFT: INORGANICS}

Analyte

\section*{Method}

MDL Batch Limit Limit
Sample D: 1OA0122-01 (DRAFT
\(\quad\) Reporting Units: mg/1
Ammonia-N (Distilled)
Biochemical Oxygen Demand
Chloride
Total Cyanide
Nitrate/Nitrite-N
Oil \& Grease
Sulfate
Surfactants (MBAS)
Total Dissolved Solids
Total Suspended Solids

Sample ID: IOA0122-01 (DRAFT: Outfall 018 - Water) Reporting Units: m/V/hr
\(\begin{array}{lllllllllll}\text { Total Settleable Solids } & \text { EPA } 160.5 & 5 A 05055 & 0.10 & 0.10 & \text { ND } & 1 & 01 / 05 / 05 & 01 / 05 / 05\end{array}\)
Sample ID: 1OA0122-01 (DRAFT: Outfall 018 - Water) Reporting Units: NTU
Turbidity
EPA 180.1 SA05079 0.040
\(\begin{array}{lllll}1.0 & 14 & 1 & 01 / 05 / 05 & 01 / 05 / 05\end{array}\)
Sample 1D: IOA0122-01 (DRAFT: Outfall 018 - Water) Reporting Unitse ugh
Perchlorate \(\quad\) EPA 314.0 5A06055 0.8
4.

Sample ID: 1OA0122-01 (DRAFT: Outfall 018 - Water) Reporting Units: umbos/cm
\begin{tabular}{lccc} 
EPA 350.2 & 5 A05067 & 0.30 & 0.50 \\
EPA 405.1 & 5A05054 & 0.59 & 2.0 \\
EPA 300.0 & \(5 A 04042\) & 0.26 & 0.50 \\
EPA 335.2 & 5 A05078 & 0.0022 & 0.0050 \\
EPA 300.0 & \(5 A 04042\) & 0.072 & 0.26 \\
EPA 413.1 & 5 A05068 & 0.94 & 5.0 \\
EPA 300.0 & \(5 A 04042\) & 0.18 & 0.50 \\
EPA 425.1 & \(5 A 04104\) & 4.4 & 10 \\
EPA 160.1 & 5 A0.6082 & 10 & 10 \\
EPA 160.2 & \(5 A 07077\) & 10 & 10
\end{tabular}


\title{
LABORATORY REPORT
}

Prepared For: MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 018

Sampled: 01/04/05
Received: 01/04/05
Issued: 02/21/05 12:06

\section*{NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117}

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, I page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

\section*{SAMPLE CROSS REFERENCE}

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID
IOA0122-01
IOA0122-02

CLIENT ID
Outfall 018
Trip Blank

MATRIX
Water
Water

\section*{Reviewed By:}


\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\author{
Project ID: Routine Outfall 018 \\ Report Number: 10 A 0122 \\ Sampled: 01/04/05 \\ Received: 01/04/05
}

\section*{PURGEABLES BY GC/MS (EPA 624)}


\footnotetext{
Del Mar Analytical, Irvine
Michele Harper
Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

\section*{Project ID: Routine Outfall 018}

Report Number: 10 AO 122

Sampled: 01/04/05
Received: 01/04/05

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}


\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 018
Report Number: 10 A 0122

Sampled: 01/04/05
Received: 01/04/05

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}


MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 018
Report Number: IOA0122

> Sampled: 01/04/05

Received: 01/04/05

\section*{METALS}


\title{
Del Mar Analytical
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Report Number: IOA0122

Sampled: 01/04/05
Received: 01/04/05

\section*{INORGANICS}


Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 018
Report Number: \(10 A 0122\) Sampled: 01/04/05

\section*{SHORT HOLD TIME DETAIL REPORT}
\begin{tabular}{lccccc} 
& \begin{tabular}{c} 
Hold Time \\
(in days)
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Sampled
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Received
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Extracted
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Analyzed
\end{tabular} \\
Sample ID: Outfall 018 (IOA0122-01) - Water & & & & & \\
EPA 160.5 & 2 & \(01 / 04 / 200513: 22\) & \(01 / 04 / 200518: 30\) & \(01 / 05 / 200509: 28\) & \(01 / 05 / 200511: 00\) \\
EPA 180.1 & 2 & \(01 / 04 / 200513: 22\) & \(01 / 04 / 200518: 30\) & \(01 / 05 / 200514: 00\) & \(01 / 05 / 200515: 00\) \\
EPA 300.0 & 2 & \(01 / 04 / 200513: 22\) & \(01 / 04 / 200518: 30\) & \(01 / 04 / 200522: 30\) & \(01 / 04 / 200523: 36\) \\
EPA 405.1 & 2 & \(01 / 04 / 200513: 22\) & \(01 / 04 / 200518: 30\) & \(01 / 05 / 200514: 00\) & \(01 / 10 / 200519: 00\) \\
EPA 425.1 & 2 & \(01 / 04 / 200513: 22\) & \(01 / 04 / 200518: 30\) & \(01 / 04 / 200521: 33\) & \(01 / 04 / 200522: 04\)
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 018
Report Number: 10A0122
Sampled: 01/04/05
Received: 01/04/05

\section*{METHOD BLANKIQC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
Analyte Result

Batch: 5A05017 Extracted: 01/05/05
Blank Analyzed: 01/05/2005 (5A05017-BLK1)
\begin{tabular}{lc} 
Benzene & ND \\
Carbon tetrachloride & ND \\
Chloroform & ND \\
1,1-Dichloroethane & ND \\
1,2 -Dichloroethane & ND \\
1,1 -Dichloroethene & ND \\
Ethylbenzene & ND \\
Tetrachloroethene & ND \\
Toluene & ND \\
1,1,1-Trichloroethane & ND \\
1,1,2-Trichloroethane & ND \\
Trichloroethene & ND \\
Trichlorofluoromethane & ND \\
Vinylabloride & ND \\
Xylenes, Total & ND \\
Surrogate: Dibromofluoromethane & 25.2 \\
Surrogate: Toluene-d8 & 25.2 \\
Simrogate: 4 -Bromofluorobenzene & 24.3
\end{tabular}

LCS Analyzed: 01/05/2005 (5A05017-BS1)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Berzene & 21.5 & 2.0 & 0.28 & ug/ & 25.0 & 86 & 70-120 \\
\hline Carbon tetrachloride & 29.0 & 5.0 & 0.28 & ug/l & 25.0 & 116 & 70-140 \\
\hline Chloroform & 25.3 & 2.0 & 0.33 & ug/l & 25.0 & 101 & 75-130 \\
\hline 1,1-Dichloroethane & 21.9 & 2.0 & 0.27 & \(\mathrm{ug} / \mathrm{l}\) & 25.0 & 88 & 70-135 \\
\hline 1,2-Dichloroethane & 27.6 & 2.0 & 0.28 & ug/l & 25.0 & 110 & 60-150 \\
\hline 1,1-Dichloroethene & 21.4 & 3.0 & 0.32 & ug/l & 25.0 & 86 & 75-135 \\
\hline Ethylbenzene & 23.6 & 2.0 & 0.25 & ug/ & 25.0 & 94 & 80-120 \\
\hline Tetrachloroethene & 24.6 & 2.0 & 0.32 & ug/l & 25.0 & 98 & 75-125 \\
\hline Toluene & 23.4 & 2.0 & 0.36 & ug/ & 25.0 & 94 & 75-120 \\
\hline 1,1,1-Trichloroethane & 27.2 & 2.0 & 0.30 & ug/ & 25.0 & 109 & 75-140 \\
\hline 1,1,2-Trichloroethane & 23.4 & 2.0 & 0.30 & ug/ & 25.0 & 94 & 70-125 \\
\hline Trichloroethene & 24.1 & 5.0 & 0.26 & ug/l & 25.0 & 96 & 80-120 \\
\hline Trichlorofluoromethane & 27.7 & 5.0 & 0.34 & ug/l & 25.0 & 111 & 65-145 \\
\hline Vinyl chloride & 23.2 & 5.0 & 0.26 & ug/ & 25.0 & 93 & 50-130 \\
\hline Surrogate: Dibromofluoromethane & 25.5 & & & ug/l & 25.0 & 102 & 80-120 \\
\hline Surrogate: Toluene-d8 & 25.7 & & & \(u g /\) & 25.0 & 103 & 80-120 \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Routine Outfall 018
Report Number: 10 A 0122
Sampled: 01/04/05
Received: 01/04/05

\section*{METHOD BLANKGQC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}


\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing Project ID: Routine Outfall 018
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Report Number: IOA0122
Sampled: 01/04/05
Attention: Bronwyn Kelly

\section*{METHOD BLANKIOC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reportin Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A05017 Extracted: 01/05/05} \\
\hline \multicolumn{5}{|l|}{Matrix Spike Dup Analyzed: 01/05/2005 (5A05017-MSD1)} & \multicolumn{4}{|c|}{Source: 1OA0112-01} & & & \\
\hline Surrogate: Dibromofluoromethane & 25.5 & & & ug/l & 25.0 & & 102 & 80-120 & & & \\
\hline Surrogate: Toluene-d8 & 25.7 & & & ug/l & 25.0 & & 103 & 80-120 & & & \\
\hline Surrogate: 4-Bromofluorobenzene & 25.5 & & & ug/ & 25.0 & & 102 & 80-120 & & & \\
\hline
\end{tabular}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 018
Report Number: IOA0122
Sampled: 01/04/05
Received: 01/04/05

\section*{METHOD BLANKGQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch:5A05039 Extracted: 01/05/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/13/2005 (5A05039-BLK1)} \\
\hline Bis(2-ethylhexyl)phthalate & ND & 5.0 & 1.1 & ug/ & & & & & & & \\
\hline 2,4-Dinitrotoluene & ND & 9.0 & 0.23 & ug/ & & & & & & & \\
\hline N-Nitrosodimethylamine & ND & 8.0 & 0.22 & ug/ & & & & & & & \\
\hline Pentachlorophenol & ND & 8.0 & 0.78 & ug/ & & & & & & & \\
\hline 2,4,6-Trichlorophenol & ND & 6.0 & 0.10 & ug/ & & & & & & & \\
\hline Surrogate: 2-Fluorophenol & 15.2 & & & ug/l & 20.0 & & 76 & 35-120 & & & \\
\hline Surrogate: Phenol-d6 & 15.8 & & & ug/l & 20.0 & & 79 & 45-120 & & & \\
\hline Surrogate: 2,4,6-Tribromophenol & 16.1 & & & ug/l & 20.0 & & 80 & 50-125 & & & \\
\hline Surrogate: Nitrobenzene-d5 & 7.68 & & & ug \(/\) & 10.0 & & 77 & 45-120 & & & \\
\hline Surrogate: 2-Fluorobiphenyl & 7.72 & & & ug/ & 10.0 & & 77 & 45-120 & & & \\
\hline Surrogate: Terphenyl-d14 & 8.24 & & & ug/ & 10.0 & & 82 & 45-135 & & & \\
\hline LCS Analyzed: 01/13/2005 (5) & & & & & & & & & & & M-NR1 \\
\hline Bis(2-ethylhexyl)phthalate & 9.64 & 5.0 & 1.1 & ugn & 10.0 & & 96 & 65-125 & & & \\
\hline 2,4-Dinitrotoluene & 9.12 & 9.0 & 0.23 & ug/1 & 10.0 & & 91 & 60-140 & & & \\
\hline N-Nitrosodimethylamine & 8.98 & 8.0 & 0.22 & ug/ & 10.0 & & 90 & 40-120 & & & \\
\hline Pentachlorophenol & 8.90 & 8.0 & 0.78 & ug/ & 10.0 & & 89 & 50-125 & & & \\
\hline 2,4,6-Trichlorophenol & 9.40 & 6.0 & 0.10 & ug/ & 10.0 & & 94 & 60-120 & & & \\
\hline Surrogate: 2-Fluorophenol & 14.2 & & & ug/ & 20.0 & & 71 & 35-120 & & & \\
\hline Surrogate: Phenol-d6 & 15.6 & & & ugh & 20.0 & & 78 & 45-120 & & & \\
\hline Surrogate: 2,4,6-Tribromophenol & 16.0 & & & \(u g /\) & 20.0 & & 80 & 50-125 & & & \\
\hline Surrogate: Nitrobenzene-d5 & 7.74 & & & ug \(/\) & 10.0 & & 77 & 45-120 & & & \\
\hline Surrogate: 2-Fluorobiphenyl & 7.48 & & & ug 1 & 10.0 & & 75 & 45-120 & & & \\
\hline Surrogate: Terphenyl-d14 & 7.84 & & & \(u g h\) & 10.0 & & 78 & 45-135 & & & \\
\hline \multicolumn{12}{|l|}{LCS Dup Analyzed: 01/13/2005 (5A05039-BSD1)} \\
\hline Bis(2-ethylhexyl)phthalate & 10.7 & 5.0 & 1.1 & ug/ & 10.0 & & 107 & 65-125 & 10 & 20 & \\
\hline 2,4-Dinitrotoluene & 10.3 & 9.0 & 0.23 & ugh & 10.0 & & 103 & 60-140 & 12 & 20 & \\
\hline N -Nitrosodimethylamine & 10.6 & 8.0 & 0.22 & ug/ & 10.0 & & 106 & 40-120 & 17 & 20 & \\
\hline Pentachlorophenol & 10.0 & 8.0 & 0.78 & ug/ & 10.0 & & 100 & 50-125 & 12 & 25 & \\
\hline 2,4,6-Trichlorophenol & 10.9 & 6.0 & 0.10 & ugl & 10.0 & & 109 & 60-120 & 15 & 20 & \\
\hline Surrogate: 2-Fluorophenol & 16.5 & & & \(u g /\) & 20.0 & & 82 & 35-120 & & & \\
\hline Surrogate: Phenol-d6 & 17.4 & & & \(u g / l\) & 20.0 & & 87 & 45-120 & & & \\
\hline Surrogate: 2,4,6-Tribromophenol & 17.8 & & & \(u g h\) & 20.0 & & 89 & 50-125 & & & \\
\hline Surrogate: Nitrobenzene-d5 & 8.50 & & & ug/ & 10.0 & & 85 & 45-120 & & & \\
\hline Surrogate: 2-Fluorobiphenyl & 8.54 & & & ugh & 10.0 & & 85 & 45-120 & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 018
Report Number: IOA0122

Sampled: 01/04/05
Received: 01/04/05

\section*{METHOD BLANKJQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A05039 Extracted: 01/05/05} \\
\hline \multicolumn{12}{|l|}{LCS Dup Analyzed: 01/13/2005 (5A05039-BSD1)} \\
\hline Surrogate: Terphenyl-d14 & 8.36 & & & ug \(/\) & 10.0 & & 84 & 45-135 & & & \\
\hline
\end{tabular}
\begin{tabular}{lcr} 
MWH-Pasadena/Boeing & Project ID: Routine Outfall 018 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: 01/04/05 \\
Pasadena, CA 91101 & Report Number: IOA0122 & Received: 01/04/05
\end{tabular}

\section*{METHOD BLANKKOC DATA}

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & \begin{tabular}{l}
Reportin \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A05041 Extracted: 01/05/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/05/2005 (5A05041-BLK1)} \\
\hline alpha-BHC & ND & 0.010 & 0.00049 & ug/ & & & & & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.437 & & & ug \(n\) & 0.500 & & 87 & 45-120 & & & \\
\hline Surrogate: Tetrachloro-m-xylene & 0.374 & & & \(u g /\) & 0.500 & & 75 & 35-120 & & & \\
\hline \multicolumn{12}{|l|}{LCS Analyzed: 01/05/2005 (5A05041-BS1)} \\
\hline & 0.463 & 0.010 & 0.00049 & ug/l & 0.500 & & 93 & 45-115 & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.459 & & & ug/l & 0.500 & & 92 & 45-120 & & & \\
\hline Surrogate: Tetrachloro-m-xylene & 0.368 & & & \(u g /\) & 0.500 & & 74 & 35-120 & & & \\
\hline \multicolumn{12}{|l|}{LCS Dup Analyzed: 01/05/2005 (5A05041-BSD1)} \\
\hline alpha-BHC & 0.425 & 0.010 & 0.00049 & ug/ & 0.500 & & 85 & & 9 & 30 & \\
\hline Surrogate: Decachlorobiphenyl & 0.456 & & & ug/l & 0.500 & & 91 & 45-120 & & & \\
\hline Surrogate: \(\mathrm{Tetrachloro-m-xylene}\) & 0.331 & & & ug/l & 0.500 & & 66 & 35-120 & & & \\
\hline
\end{tabular}
\begin{tabular}{|lcr|}
\hline MWH-Pasadena/Boeing & Project ID: Routine Outfall 018 & \\
300 North Lake Avenue, Suite 1200 & Report Number: IOA0122 & Sampled: 01/04/05 \\
Pasadena, CA 91101 & & Received: 01/04/05 \\
Attention: Bronwyn Kelly & & \\
\hline
\end{tabular}

\section*{METHOD BLANKIQC DATA}

\section*{METALS}


Batch: 5A05061 Extracted: 01/05/05
Blank Analyzed: 01/05/2005 (5A05061-BLK1)


Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 018
Report Number: IOA0122

\section*{METHOD BLANKYQC DATA}

\section*{METALS}


MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Report Number: \(10 A 0122\)

Sampled: 01/04/05
Received: 01/04/05

\section*{METHOD BLANKIQC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5A04042 Extracted: 01/04/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 01/04/2005 (5A04042-BLK1)} \\
\hline Chloride ND & 0.50 & 0.26 & \(\mathrm{mg} /\) & & & & & & & \\
\hline Nitrate/Nitrite-N ND & 0.26 & 0.072 & mg/ & & & & & & & \\
\hline Sulfate ND & 0.50 & 0.18 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 01/04/2005 (5A04042-BS1)} \\
\hline Chloride 4.97 & 0.50 & 0.26 & mg/ & 5.00 & & 99 & 90-110 & & & \\
\hline Sulfate 9.93 & 0.50 & 0.18 & mg/ & 10.0 & & 99 & 90-110 & & & \\
\hline Matrix Spike Analyzed: 01/04/2005 (5A04042-MS1) & \multicolumn{10}{|l|}{\multirow[t]{2}{*}{0.50 Source: IOA0049-01}} \\
\hline Chloride 5.60 & & & & 5.00 & 0.51 & 102 & 80-120 & & & \\
\hline Sulfate 10.4 & 0.50 & 0.18 & \(\mathrm{mg} / \mathrm{l}\) & 10.0 & 0.63 & 98 & 80-120 & & & \\
\hline \multicolumn{4}{|l|}{Matrix Spike Dup Analyzed: 01/04/2005 (5A04042-MSD1)} & \multicolumn{3}{|l|}{Source: IOA0049-01} & & & & \\
\hline Chloride \(\quad 5.72\) & 0.50 & 0.26 & \(\mathrm{mg} /\) & 5.00 - & 0.51 & 104 & \(80-120\) & 2 & 20 & \\
\hline Sulfate \(\quad 10.6\) & 0.50 & 0.18 & \(\mathrm{mg} / \mathrm{l}\) & 10.0 & 0.63 & 100 & 80-120 & 2 & 20 & \\
\hline \multicolumn{11}{|l|}{Batch: 5A04104 Extracted: 01/04/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 01/04/200S (5A04104-BLK1)} \\
\hline Surfactants (MBAS) ND & 0.10 & 0.044 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 01/04/2005 (5A04104-BS1)} \\
\hline Surfactants (MBAS) 0.236 & 0.10 & 0.044 & mg/ & 0.250 & & 94 & 90-110 & & & \\
\hline Matrix Spike Analyzed: 01/04/2005 (5A04104-MS1) & & & & Sour & : 10A00 & 69-02 & & & & \\
\hline Surfactants (MBAS) 0.199 & 0.10 & 0.044 & \(\mathrm{mg} / \mathrm{l}\) & 0.250 & ND & 80 & 50-125 & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 018
Sampled: 01/04/05
Report Number: IOA0122 Received: 01/04/05

\section*{METHOD BLANKIQC DATA}

\section*{INORGANICS}


\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager
\begin{tabular}{|lrr|}
\hline MWH-Pasadena/Boeing & Project ID: Routine Outfall 018 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 04 / 05\) \\
Pasadena, CA 91101 & Report Number: IOA0122 & Received: 01/04/05 \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{METHOD BLANKIOC DATA}

\section*{INORGANICS}


\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 018
Report Number: 10 A 0122

Sampled: 01/04/05
Received: 01/04/05

\section*{METHOD BLANKIQC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5A05079 Extracted; 01/05/05} \\
\hline Duplicate Analyzed: 01/05/2005 (5A05079-DUP1) & \multicolumn{10}{|c|}{Source: 1OA0069-02} \\
\hline Turbidity 0.0900 & 1.0 & 0.040 & NTU & & 0.10 & & & 11 & 20 & \(J\) \\
\hline Batch: 5A06055 Extracted: 01/06/05. & & & & & & & & & & \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 01/06/2005 (5A06055-BLK1)} \\
\hline Perchlorate ND & 4.0 & 0.80 & ug/ & & & & & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 01/06/2005 (5A06055-BS1)} \\
\hline Perchlorate 51.3 & 4.0 & 0.80 & ug/ & 50.0 & & 103 & 85-115 & & & \\
\hline Matrix Spike Analyzed: 01/06/2005 (5A06055-MS1) & \multicolumn{10}{|c|}{Source: IOA0122-01} \\
\hline Perchlorate 54.1 & 4.0 & 0.80 & ug/ & 50.0 & & & 80-120 & & & \\
\hline Matrix Spike Dup Analyzed: 01/06/2005 (5A06055-M & \multicolumn{10}{|l|}{\(1)\) Source: 10A0122-01} \\
\hline Perchlorate. \(6,53.2\) & 4.0 & 0.80 & ug/ & 50.0 & 5.8 & 95 & 80-120 & 2 & 20 & \\
\hline \multicolumn{11}{|l|}{Batch: 5A06081 Extracted: 01/06/05} \\
\hline Duplicate Analyzed: 01/06/2005 (5A06081-DUP1) & \multicolumn{10}{|c|}{Source: 1OA0117-11} \\
\hline Specific Conductance 865 & 1.0 & 1.0 & umhos/cm & & 880 & & & 2 & 5 & \\
\hline \multicolumn{11}{|l|}{Batch: 5A06082 Extracted: 01/06/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 01/06/2005 (5A06082-BLK1)} \\
\hline Total Dissolved Solids ND & 10 & 10 & mg/ & & & & & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}
\begin{tabular}{lr} 
Project ID: Routine Outfall 018 & \\
Report Number: IOA0122 & Sampled: 01/04/05 \\
& Received: 01/04/05
\end{tabular}

\section*{METHOD BLANKQC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5A06082 Extracted: 01/06/05} \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 01/06/2005 (5A06082-BS1)} \\
\hline Total Dissolved Solids 904 & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & 1000 & & 90 & 90-110 & & & \\
\hline Duplicate Analyzed: 01/06/2005 (5A06082-DUP1) & & & & & ce: 10A & 119-01 & & & & \\
\hline Total Dissolved Solids 198 & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & & 200 & & & 1 & 10 & \\
\hline \multicolumn{11}{|l|}{Batch: 5A07077 Extracted: 01/07/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 01/07/2005 (5A07077-BLK1)} \\
\hline Total Suspended Solids ND & 10 & 10 & \(\mathrm{mg} / 1\) & & & & & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 01/07/2005 (5A07077-BS1)} \\
\hline Total Suspended Solids 989 & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & 1000 & & 99 & 85-115 & & & \\
\hline \multicolumn{11}{|l|}{Duplicate Analyzed: 01/07/2005 (5A07077-DUP1) Source: 10A0210-01} \\
\hline Total Suspended Solids \(\quad \therefore \quad\) ND & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & & ND & & & ' & 10 & \\
\hline
\end{tabular}

\footnotetext{
Del Mar Analytical, Irvine
Michele Harper
Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 018
Report Number: 1OA0122

Sampled: 01/04/05
Received: 01/04/05

\section*{DATA QUALIFIERS AND DEFINITIONS}
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the
Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
M-NR1 \(\quad\) There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike
Duplicate.
RL-1 Reporting limit raised due to sample matrix effects.
ND
Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 018
Report Number: 1OA0122

Sampled: 01/04/05
Received: 01/04/05

\section*{Certification Summary}

\section*{Del Mar Analytical, Irvine}
\begin{tabular}{clcc} 
Method & Matrix & Nelac & California \\
EPA 120.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 160.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 160.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 160.5 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 180.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 200.8 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 245.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 300.0 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 314.0 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 335.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 350.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 405.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 413.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 425.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 608 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 624 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 625 & Water & \(\mathbf{X}\) & \(\mathbf{X}\)
\end{tabular}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

\section*{Subcontracted Laboratories}

\section*{Pace Analytical, MN- SUB}

1700 Elm Street, Ste 200 - Minneapolis, MN 55414
Analysis Performed: 1613-Dioxin-HR
Samples: 1OA0122-01
Analysis Performed: EDD + Level 4
Samples: \(\mathrm{FOA} 0122-01\)


February 3, 2005

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, Ca. 91101

Attention: Bronwyn Kelly
\(\begin{array}{ll}\text { Project: } & \text { Routine Outfall } 018 \\ & \text { Sampled: 01/04/05 } \\ & \text { Del Mar Analytical Number: IOA0122 }\end{array}\)

Dear Ms. Kelly:
Pace Analytical performed Method 1613B analysis for the project referenced above. Please use the following cross-reference table when reviewing your results.
\begin{tabular}{|c|c|c|}
\hline MWH ID & DEL MAR ID & Pace ID \\
\hline Outfall 018 & IOA0122-01 & 105779001 \\
\hline
\end{tabular}

Attached is the original report from the subcontract laboratory. If you have any questions or require further assistance, please do not hesitate to contact me.

Sincerely yours,
DEL MAR ANALYTICAL
Middle ty pr
Michele Harper
Project Manager

\section*{Method 1613B Analysis Results}

Client - Del Mar Analytical


\footnotetext{
Conc \(=\) Concentration (Totals include 2,3,7,8-substituted isomers).
EMPC \(=\) Estimated Maximum Possible Concentration
LOD \(=\) Limit of Detection. Totals are averages of individual isomer LODs.
\(D=\) Result obtained from analysis of diluted sample
\(\mathrm{B}=\) Less than 10 times higher than method blank level
\(P=\) Recovery outside of method 1613 control limits \(\mathrm{J}=\) Concentration detected is below the calibration range \(\mathrm{Nn}=\) Value obtained from additional analysis
}
\(1=\) interference
\(E=P C D E\) Interference
ND \(=\) Not Detected
NA = Not Applicable
NC = Not Calculated
" \(=\) See Discussion
Report No..... 105779

REPORT OF LABORATORY ANALYSIS

\footnotetext{
This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.
}

\section*{Method 1613B Blank Analysis Results}

Client - Del Mar Analytical
Lab Sample ID
Filename
Total Amount Extracted
ICAL Date
CCal Filename(s)
BLANK-6202
F50127A_06
982 mL
11/29/2004
F50127A_02
\begin{tabular}{ll} 
Matrix & Water \\
Dilution & NA \\
Extracted & \(01 / 24 / 2005\) \\
Analyzed & \(01 / 27 / 2005 \quad 14: 13\) \\
Injected By & MRO
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Native Isomers & Conc \(\mathrm{pg} / \mathrm{L}\) & EMPC pg/ & \[
\underset{\mathrm{pg} / \mathrm{L}}{\mathrm{LOD}}
\] & Internal Standards & ng's Added & Percent Recovery \\
\hline 2,3,7,8-TCDF & ND & \(\cdots\) & 4.7 & 2,3,7,8-TCDF-13C & 2.00 & 33 \\
\hline Total TCDF & ND & & -- & 2,3,7,8-TCDD-13C & 2.00 & 45 \\
\hline & & & & 1,2,3,7,8-PeCDF-13C & 2.00 & 68 \\
\hline 2,3,7,8-TCDD & ND & & 5.1 & 2,3,4,7,8-PeCDF-13C & 2.00 & 70 \\
\hline Total TCDD & ND & -- & - & 1,2,3,7,8-PeCDD-13C & 2.00 & 81 \\
\hline & & & & 1,2,3,4,7,8-HxCDF-13C & 2.00 & 75 \\
\hline 1,2,3,7,8-PeCDF & ND & - & 2.2 & 1,2,3,6,7,8-H×CDF-13C & 2.00 & 95 \\
\hline 2,3,4,7,8-PeCDF & ND & & 1.5 & 2,3,4,6,7,8-HxCDF-13C & 2.00 & 98 \\
\hline Total PeCDF & ND & & - & 1,2,3,7,8,9-HXCDF-13C & 2.00 & 85 \\
\hline & & & & 1,2,3,4,7,8-HxCDD-13C & 2.00 & 78 \\
\hline 1,2,3,7,8-PeCDD & ND & - & 1.6 & 1, 2,3,6,7,8-HxCDD-13C & 2.00 & 94 \\
\hline Total PeCDD & ND & & & 1,2,3,4,6,7,8-HpCDF-13C & 2.00 & 85 \\
\hline & & & & 1,2,3,4,7,8,9-HpCDF-13C & 2.00 & 78 \\
\hline 1,2,3,4,7,8-HxCDF & ND & - & 1.6 & 1,2,3,4,6,7,8-HpCDD-13C & 2.00 & 99 \\
\hline 1,2,3,6,7,8-HxCDF & ND & -- & 1.4 & OCDD-13C & 4.00 & 97 \\
\hline 2,3,4,6,7,8-HxCDF & ND & --- & 1.1 & & & \\
\hline 1,2,3,7,8,9-HxCDF & ND & --- & 1.6 & 1,2,3,4-TCDD-13C & 2.00 & NA \\
\hline Total HxCDF & ND & & --- & 1,2,3,7,8,9-HxCDD-13C & 2.00 & NA \\
\hline 1,2,3,4,7,8-HxCDD & ND & - & 1.6 & 2,3,7,8-TCDD-37C14 & 0.20 & 40 \\
\hline 12,3,67,8-HxCDD & ND & & 12 & & & \\
\hline 1,2,3,7,8,9H×CDD & NO & - & 17 & & & \\
\hline Total HxCDD & ND & & - & & & \\
\hline 1,2,3,4,6,7,8-HpCDF & ND & \(\cdots\) & 1.5 & & & \\
\hline 1,2,3,4,7,8,9-HpCDF & ND & & 1.4 & & & \\
\hline Total HpCDF & ND & & & & & \\
\hline 1,2,3,4,6,7,8-HpCDD & 1.9 & - & 1.3 & & & \\
\hline Total HPCDD & 1.9 & \(\cdots\) & \(\cdots\) & & & \\
\hline OCDF & 8.3 & & & & & \\
\hline OCDD & 26.0 & & & & & \\
\hline \multicolumn{5}{|l|}{} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Conc \(=\) Concentration (Totals include 2,3,7,8-substituted isomers). \\
EMPC = Estimated Maximum Possible Concentration
\end{tabular}} & & \\
\hline \multicolumn{5}{|l|}{LOD \(=\) Limit of Detection. Totals are averages of individual isomer LODs.} & \multicolumn{2}{|l|}{= PCDE Interference} \\
\hline \multicolumn{5}{|l|}{A = Limit of Detection based on signal to noise} & \multicolumn{2}{|l|}{\(N A=\) Not Applicable} \\
\hline \multicolumn{5}{|l|}{\(\mathrm{P}=\) Recovery outside of method 1613 control limits N.} & \multicolumn{2}{|l|}{NC \(=\) Not Calculated} \\
\hline \multicolumn{5}{|l|}{\(\mathrm{N} \mathrm{n}=\) Value obtained from adiditional analysis \({ }^{\text {a }}\) *} & \multicolumn{2}{|l|}{= See Discussion} \\
\hline
\end{tabular}

\footnotetext{
This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.
}

\section*{Method 1613B Laboratory Control Spike Results}

Client - Del Mar Analytical
Lab Sample ID
Filename
Total Amount Extracted
ICAL Date
CCal Filename
Method Blank ID

\author{
LCS-6203 \\ F50127A 03
1030 mL
11/29/2004
F50127A 02
BLANK- \(\mathbf{6 2 0 2}\)
}
\begin{tabular}{llll} 
& & \\
Matrix & Water & & \\
Dilution & NA & \\
Extracted & \(01 / 24 / 2005\) & \\
Analyzed & \(01 / 27 / 2005\) & \(11: 44\) \\
Injected By & MRO & \\
& &
\end{tabular}


\section*{REPORT OF LABORATORY ANALYSIS}

\section*{Method 1613B Laboratory Control Spike Results}

Client - Del Mar Analytical
Lab Sample ID
Filename
Total Amount Extracted
ICAL Date
CCal Ifiename
Method Blank ID
LCSD-6204
F50127A_04
1000 mL
11/29/2004
F50127A 02
BLANK-6202
\begin{tabular}{llll} 
& & \\
Matrix & Water & \\
Dilution & NA & \\
Extracted & \(01 / 24 / 2005\) & \\
Analyzed & \(01 / 27 / 2005\) & \(12: 32\) \\
Injected By & MRO & \\
& & &
\end{tabular}
\begin{tabular}{|c|c|}
\hline & Compound \\
\hline & 2,3,7,8-TCDF \\
\hline & 2,3,7,8-TCDD \\
\hline & 1,2,3,7,8-PeCDF \\
\hline & 2,3,4,7,8-PeCDF \\
\hline & 1,2,3,7,8-PeCDD \\
\hline & 1,2,3,4,7.8-HxCDF \\
\hline & 1,2,3,6,7,8-HxCDF \\
\hline & 2,3,4,6,7,8-HxCDF \\
\hline & 1,2,3,7,8,9-HxCDF \\
\hline & 1,2,3,4,7,8-HxCDD \\
\hline & 1,2,3,6,7,8-HxCDD \\
\hline & 1,2,3,7,8,9-HxCDD \\
\hline & 1,2,3,4,6,7,8-HpCDF \\
\hline & 1,2,3,4,7,8,9-HpCDF \\
\hline & 1,2,3,4,6,7,8-HpCDD \\
\hline & OCDF \\
\hline & OCDD \\
\hline
\end{tabular}

2,3,7,8-TCDD-37C14
2,3,7,8-TCDF-13C
2,3,7,8-TCDD-13C
1,2,3,7,8-PeCDF-13C
2,3,4,7,8-PeCDF-13C
1,2,3,7,8-PeCDD-13C
\(1,2,3,4,7,8\) - \(\mathrm{HXCDF}-13 \mathrm{C}\)
1,2,3,6,7,8-HXCDF-13C
2,3,4,6,7,8-HxCDF-13C
1,2,3,7,8,9-HxCDF-13C
1,2,3,4,7,8-HxCDD-13C
1,2,3,6,7,8-HxCDD-13C
1,2,3,4,6,7,8-HpCDF-13C
1,2,3,4,7,8,9-HpCDF-13C
1,2,3,4,6,7,8-HpCDD-13C OCDD-13C
\begin{tabular}{rrr} 
& & Lower \\
Cs & Cr & Limit \\
10 & 9.9 & 7.5 \\
10 & 8.8 & 6.7 \\
50 & 49.8 & 40.0 \\
50 & 47.6 & 34.0 \\
50 & 41.4 & 35.0 \\
50 & 46.6 & 36.0 \\
50 & 44.0 & 42.0 \\
50 & 47.2 & 35.0 \\
50 & 44.8 & 39.0 \\
50 & 46.5 & 35.0 \\
50 & 48.9 & 38.0 \\
50 & 46.7 & 32.0 \\
50 & 48.7 & 41.0 \\
50 & 49.9 & 39.0 \\
50 & 42.7 & 35.0 \\
100 & 84.8 & 63.0 \\
100 & 92.5 & 78.0 \\
& & 3.0 \\
10 & 7.5 & 20.0 \\
100 & 65.7 & 20.0 \\
100 & 83.8 & 13.0 \\
100 & 84.9 & 21.0 \\
100 & 85.6 & 19.0 \\
100 & 105.3 & 21.0 \\
100 & 82.6 & 22.0 \\
100 & 96.7 & 17.0 \\
100 & 92.3 & 21.0 \\
100 & 84.5 & 25.0 \\
100 & 81.9 & 21.0 \\
100 & 102.0 & 20.0 \\
100 & 90.1 & 26.0 \\
100 & 78.6 & 26.0 \\
100 & 106.1 & \\
200 & 196.4 &
\end{tabular}
\begin{tabular}{|c|c|}
\hline Upper Limit & \(\%\) Rec \\
\hline 15.8 & 99 \\
\hline 15.8 & 88 \\
\hline 67.0 & 100 \\
\hline 80.0 & 95 \\
\hline 71.0 & 83 \\
\hline 67.0 & 93 \\
\hline 65.0 & 88 \\
\hline 78.0 & 94 \\
\hline 65.0 & 90 \\
\hline 82.0 & 93 \\
\hline 67.0 & 98 \\
\hline 81.0 & 93 \\
\hline 61.0 & 97 \\
\hline 69.0 & 100 \\
\hline 70.0 & 85 \\
\hline 170.0 & 85 \\
\hline 144.0 & 92 \\
\hline 19.1 & 75 \\
\hline 1520 & 66 \\
\hline 175.0 & 84 \\
\hline 192.0 & 85 \\
\hline 328.0 & 86 \\
\hline 227.0 & 105 \\
\hline 202.0 & 83 \\
\hline 159.0 & 97 \\
\hline 176.0 & 92 \\
\hline 205.0 & 84 \\
\hline 193.0 & 82 \\
\hline 163.0 & 102 \\
\hline 158.0 & 90 \\
\hline 186.0 & 79 \\
\hline 166.0 & 106 \\
\hline 397.0 & 98 \\
\hline
\end{tabular}
\(\mathrm{Cs}=\) Concentration Spiked (ng/mL)
\(\mathrm{Cr}=\) Concentration Recovered ( \(\mathrm{ng} / \mathrm{mL}\) )
Rec. \(=\) Recovery (Expressed as Percent)
Control Limit Reference: Method 1613, Table 6, \(10 / 94\) Revision
\(X=\) Background subtracted value
\(\mathrm{P}=\) Recovery outside of control limits
\(\mathrm{Nn}=\) Value obtained from additional analysis
Report No..... 105645
* \(=\) See Discussion

REPORT OF LABORATORY ANALYSIS

SPIKE RECOVERY RELATIVE PERCENT DIFFERENCE (RPD) RESULTS

Client \(\qquad\) Del Mar Analytical

SPIKE 1 ID. LCS-6203
SPIKE 1 Filename..................... F50127A_03
SPIKE 2 ID. \(\qquad\) LCSD-6204
SPIKE 2 Filename F50127A_04
\begin{tabular}{|c|c|c|c|}
\hline COMPOUND & SPIKE 1 REC,\% & SPIKE 2 REC, \% & RPD,\% \\
\hline 2378-TCDF & 102 & 99 & 3.0 \\
\hline 2378-TCDD & 90 & 88 & 2.2 \\
\hline 12378-PeCDF & 100 & 100 & 0.0 \\
\hline 23478-PeCDF & 97 & 95 & 2.1 \\
\hline 12378-PeCDD & 87 & 83 & 4.7 \\
\hline 123478-HxCDF & 90 & 93 & 3.3 \\
\hline 123678-HxCDF & 96 & 88 & 8.7 \\
\hline 234678-HxCDF & 97 & 94 & 3.1 \\
\hline 123789-HxCDF & 93 & 90 & 3.3 \\
\hline 123478-HxCDD & 100 & 93 & 7.3 \\
\hline 123678-HxCDD & 103 & 98 & 5.0 \\
\hline 123789-HxCDD & 97 & 93 & 4.2 \\
\hline 1234678-HpCDF & 103 & 97 & 6.0 \\
\hline 1234789-HpCDF & 105 & 100 & 4.9 \\
\hline 1234678-HpCDD & 87 & 85 & 2.3 \\
\hline OCDF & 90 & 85 & 5.7 \\
\hline OCDD & 97 & 92 & 5.3 \\
\hline
\end{tabular}

REC \(=\) Percent Recovered
RPD \(=\) The difference between the two values divided by the average.
NA \(=\) Not Applicable
Report No..... 105645

\section*{REPORT OF LABORATORY ANALYSIS}

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

TABLE 1. 2,3,7,8-TCDD Equivalency Factors (TEFs) for the Polychlorinated Dibenzo-p-dioxins and Dibenzofurans
\begin{tabular}{|c|c|c|}
\hline Number & Compound(s) & TEF \\
\hline 1 & 2,3,7,8-TCDD & 1.00 \\
\hline 2 & 1,2,3,7,8-PeCDD & 0.50 \\
\hline 3 & 1,2,3,6,7,8-HxCDD & 0.1 \\
\hline 4 & 1,2,3,7,8,9-HxCDD & 0.1 \\
\hline 5 & 1,2,3,4,7,8-HxCDD & 0.1 \\
\hline 6 & 1,2,3,4,6,7,8-HpCDD & 0.01 \\
\hline 7 & OCDD & 0.001 \\
\hline 8 & * Total - TCDD & 0.0 \\
\hline 9 & * Total - PeCDD & 0.0 \\
\hline 10 & * Total - HxCDD & 0.0 \\
\hline 11 & * Total - HpCDD & 0.0 \\
\hline 12 & 2,3,7,8-TCDF & 0.10 \\
\hline 13 & 1,2,3,7,8-PeCDF & 0.05 \\
\hline 14 & 2,3,4,7,8-PeCDF & 0.5 \\
\hline 15 & 1,2,3,6,7,8-HxCDF & 0.1 \\
\hline 16 & 1,2,3,7,8,9-HxCDF & 0.1 \\
\hline 17 & 1,2,3,4,7,8-HxCDF & 0.1 \\
\hline 18 & 2,3,4,6,7,8-14×CDF & 0.1 \\
\hline 19 & 1,2,3,4,6,7,8-HpCDF & 0.01 \\
\hline 20 & 1,2,3,4,7,8,9-HpCDF & 0.01 \\
\hline 21 & OCDF & 0.001 \\
\hline 22 & * Total - TCDF & 0.0 \\
\hline 23 & * Total - PeCDF & 0.0 \\
\hline 24 & * Total - HxCDF & 0.0 \\
\hline 25 & * Total - HpCDF & 0.0 \\
\hline
\end{tabular}
*Excluding the 2,3,7,8-substituted congeners.
Reference: 1989 ITEFs

\section*{REPORT OF LABORATORY ANALYSIS}

This report shall not be reproduced, except in full. without the written consent of Pace Analytical Services, Inc.


Ph (949) 261-1022 P(1909) 370-4667 Pn (619) \(505-859\) Ph (480) 785-0043 Ph (702) 70e-3850



\begin{tabular}{lcccc} 
Released By & Date \(\quad\) Time & Received By & Date & Time \\
& & Page 1 of 1
\end{tabular}

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}


\section*{amec \({ }^{\theta}\)}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES \\ Monitoring
}

\section*{ANALYSIS: DIOXINS/FURANS SAMPLE DELIVERY GROUPS: Multiple SDGs}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{ll} 
& Project: \\
DATA VALIDATION REPORT & \begin{tabular}{c} 
NPDES \\
SDG No.: \\
Multiple
\end{tabular} \\
Analysis: & D/F \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: Multiple \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Dioxins/Furans \\ QC Level: Level IV \\ No. of Samples: 9 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: K. Shadowlight \\ Date of Review: February 18, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{ll} 
& Project: \\
DATA VALIDATION REPORT & NPDES \\
SDG No.: & Multiple \\
Analysis: & D/F \\
\hline
\end{tabular}

Table 1. Sample Identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & \begin{tabular}{c} 
Laboratory ID \\
(Del Mar)
\end{tabular} & \begin{tabular}{c} 
Laboratory ID \\
(Pace)
\end{tabular} & Matrix & COC Method \\
\hline Outfall 001 & IOA0551-01 & 106124001 & water & 1613 \\
\hline Outfall 002 & IOA0550-01 & 106130001 & water & 1613 \\
\hline Outfall 007 & IOA0556-01 & 106128001 & water & 1613 \\
\hline Outfall 008 & IOA0553-01 & 106126001 & water & 1613 \\
\hline Outfall 009 & IOA0554-01 & 106131001 & water & 1613 \\
\hline Outfall 010 & IOA0555-01 & 106127001 & water & 1613 \\
\hline Outfall 011 & IOA0549-01 & 106132001 & water & 1613 \\
\hline Outfall 011 & IOA0567-01 & 106135001 & water & 1613 \\
\hline Outfall 018 & IOA0552-01 & 106125001 & water & 1613 \\
\hline
\end{tabular}


\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at Del Mar Analytical within the temperature limits of \(4^{\circ} \mathrm{C}\) \(\pm 2^{\circ} \mathrm{C}\). The samples were subcontracted to Pace Analytical for the dioxin/furan analyses. The samples in these SDGs were received at Pace Analytical Services within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). The samples were received in good condition at both laboratories. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs and transfer COCs were signed by the appropriate field and laboratory personnel. The samples and analyses were accounted for on both the original COCs and transfer COCs. As the samples were couriered directly to the laboratory (Del Mar Analytical), custody seals were not required. There was no information regarding custody seals upon receipt at Pace. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The samples were extracted and analyzed within a year of collection. No qualifications were required.

\subsection*{2.2 INSTRUMENT PERFORMANCE}

Following are findings associated with instrument performance:

\subsection*{2.2.1 GC Column Performance}

A column performance standard was combined with the daily calibration verification and analyzed at the beginning of each analytical sequence. The GC column performance was acceptable with the chromatographic separation of \(2,3,7,8\)-TCDD and other TCDD isomers resolved with a valley of \(\leq 25 \%\). No qualifications were required.

\subsection*{2.2.2 Mass Spectrometer Performance}

The mass spectrometer performance could not be evaluated as the laboratory did not provide selected ion current profiles for the lock-mass ions. No qualifications were required.
\begin{tabular}{lrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\subsection*{2.3 CALIBRATION}

\subsection*{2.3.1 Initial Calibration}

There was one initial calibration, analyzed 11/29/04 on Instrument 10MSHR05. The calibration consisted of five concentration level standards (CS1 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with \(\%\) RSDs \(\leq 20 \%\) for the 15 native compounds (calibration by isotope dilution) and \(\leq 35 \%\) for the 2 native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \(\%\) RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.3.2 Continuing Calibration}

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VER was acceptable with the concentrations within the acceptance criteria listed in the Table 6 of the EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \%Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.4 BLANKS}

One method blank (Blank-6220) was extracted and analyzed with the samples in these SDGs. Target compounds total HpCDF, 1,2,3,4,6,7,8-HpCDF, total HpCDF, OCDF, and OCDD were reported in the method blank. Any detects for the aforementioned target compounds reported at concentrations \(<5 \times\) the concentrations reported in the method blank were qualified as estimated nondetects "UJ," at the levels of interference in the samples of these SDGs. A review of the method blank raw data and chromatograms indicated no false negatives or false positives. No further qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One LCS/LCSD pair (LCS-6221/LCSD-6222) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of the Method 1613. There are no method QC limits established for RPDs. The reported RPDs were within \(\pm 20 \%\). No qualifications were required.

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy and precision was based on the LCS/LCSD results. No qualifications were required.
\begin{tabular}{lrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
D/F \\
\hline
\end{tabular}

\subsection*{2.7 FIELD QC SAMPLES}

Following are findings associated with field QC:

\subsection*{2.7.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.7.2 Field Duplicates}

No field duplicate samples were identified for these SDGs.

\subsection*{2.8 INTERNAL STANDARDS}

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

\subsection*{2.9 COMPOUND IDENTIFICATION}

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data and no false negatives or positives were noted. No qualifications were required.

\subsection*{2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the lower method calibration limit (MCL) were qualified as estimated, "J." Any reported EMPC was qualified as an estimated nondetect, "UJ." No further qualifications were required.


Conc \(=\) Concentration (Totals include 2,3,7,8-substituted isomers).
EMPC = Estimated Maximum Possible Concentration
LOD = Limit of Detection. Totals are averages of individual isomer LODs.
\(D=\) Fesult obtained from analysis of dilluted sample
\(\mathrm{B}=\) Less than 10 times higher than method blank level
\(P=\) Recovery outside of method 1613 control limits
\(\mathrm{J}=\) Concentration detected is below the calibration range
\(\mathrm{N} n=\) Value obtained from additional analysis

I = Interference
\(\mathrm{E}=\mathrm{PCDE}\) interference
ND = Not Detected
NA = Not Applicable
NC = Not Calculated
- \(=\) See Discussion

Report No..... 106125

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer P. Meeks
Analysis/Method Metals

\section*{Package ID T711MT40}

Task Order 313150010
SDG No. IOA0549, IOA0552
No. of Analyses 2
\begin{tabular}{l} 
Date: 03/10/05 \\
Rexieyers Signature \\
\hline
\end{tabular}

\section*{ACIION ITEMS}

\section*{1. Case Narrative}

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Qualifications were applied for:

Analysis Protocol, e.g.,
1. Detects in the associated blanks

Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification and Quantitation
System Performance
2. Reporting limit standard recovery outliers
3. Analytes detected below the reporting limit
4. Antimony result raised to level of bracketing CCB results

\title{
amec \({ }^{9}\)
}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES \\ Monitoring
}

\author{
ANALYSIS: METALS \\ SAMPLE DELIVERY GROUP: IOA0549 \& IOA0552
}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{lrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No:: & IOA0549, 0552 \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: IOA0549, IOA0552 \\ Project Manager: B. McIlvaine \\ Matrix: Water \\ Analysis: Metals \\ QC Level: Level IV \\ No. of Samples: 2 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: P. Meeks \\ Date of Review: March 10, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6020B for Inductively Coupled Plasma-Mass Spectrometry, SW-846 Method 6010B for Inductively Coupled Plasma, SW-846 Method 7471A for Mercury (Manual Cold-Vapor Technique), and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0549, 0552 \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 011 Grab & Outfall 011 Grab & IOA0549-01 & water & ILM04 \\
\hline Outfall 018 & Outfall 018 & IOA0552-01 & water & ILM04 \\
\hline
\end{tabular}
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOAO549, 0552 \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C}\) \(\pm 2^{\circ} \mathrm{C}\). No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by field and laboratory personnel. The COC for Outfall 011 Grab requested only a few of the presented analytes. The remaining analytes were requested in a memo from MWH personnel dated 03/01/05. The COC for Outfall 018 accounted for the sample and the analytes reported. No sample qualifications were required.

\subsection*{2.1.3 Holding Times}

The dates of collection recorded on the COCs and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP/MS and ICP metals and 28 days for mercury. No qualifications were required.

\subsection*{2.2 ICP-MS TUNING}

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. All \%RSDs were less than \(5 \%\). The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

\subsection*{2.3 CALIBRATION}

The ICV and CCV results showed acceptable recoveries, \(90-110 \%\) for ICP and ICP/MS and 80 \(120 \%\) for mercury. The beryllium and nickel reporting limit check standard recoveries were above the control limit; therefore, beryllium and nickel detected in Outfall 011 Grab were qualified as estimated, "J." Thallium and antimony were not recovered in the 0.1 and 0.2 ppb reporting limit check standards, respectively; therefore, nondetected antimony in Outfall 011 Grab was qualified as estimated, "UJ," and thallium detected in Outfall 011 Grab was qualified as estimated, "J." The remaining reporting limit
\begin{tabular}{lrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0549, 0552 \\
\hline
\end{tabular}
check standards were recovered within the AMEC control limits of \(70-130 \%\). No further sample qualifications were required.

\subsection*{2.4 BLANKS}

There were detects reported for the method blanks and bracketing ICBs/CCBs associated with the samples in these SDGs. Selenium and silver were detected in bracketing CCBs at 0.672 and \(0.102 \mu \mathrm{~g} / \mathrm{L}\), respectively; therefore, selenium and silver detected in Outfall 011 Grab were qualified as estimated, "UJ." Chromium was detected in the method blank (5A14051-BLK1) at \(0.434 \mu \mathrm{~g} / \mathrm{L}\); therefore, chromium detected in Outfall 011 Grab was qualified as estimated, "UJ."

Antimony was detected in both bracketing CCBs at approximately \(0.800 \mu \mathrm{~g} / \mathrm{L}\). The CCB detects combined with the laboratory's inability to recover antimony in the 0.2 ppb reporting limit check standard indicated the laboratory could not detect antimony at the level reported in the CCBs. The reviewer, therefore, raised the MDL for antimony to the level reported in the CCBs, \(0.80 \mu \mathrm{~g} / \mathrm{L}\). No further qualifications were required due to the method and calibration blank results.

\subsection*{2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)}

ICSA and ICSAB analyses were included in the raw data for the ICP boron analysis, but were not run on the day Outfall 011 Grab was analyzed. The recoveries for the interferents and boron were within the control limits of \(80-120 \%\).

ICSA and ICSAB analyses were included in the raw data for three of the four ICP-MS analytical runs. Results were not provided for spiked interferents sulfur, phosphorus, carbon, and chloride and lead was not spiked into the ICSAB solution. The results for potassium were above the calibration range of the instrument in all of the ICSA and ICSAB analyses and the results for sodium were above the calibration range in one of the ICSA/ICSAB pairs. Positive results, greater than the applicable reporting limits were reported for manganese and cobalt. The validator reviewed the raw data for the site sample ICP/MS analysis for the level of reported interferents, \(\mathrm{Al}, \mathrm{Ca}, \mathrm{Fe}\), and Mg , and determined that the level of reported interferents were not high enough to cause matrix affects. No assessment could be made with respect to possible interference from sulfur, phosphorus, carbon, and chloride. No qualifications were required.

\subsection*{2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The ICP/MS LCS samples were identified as 5A14051-BS1 and 5A12054-BS1. The ICP LCS sample was identified as 5A14046-BS1 and the Hg LCS sample was identified as 5A12047-BS1. The LCS results on the summary forms and in the raw data were within the laboratory-established ICP/MS, ICP, and Hg control limits of \(85-115 \%\). No qualifications were required.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No:: & IOA0549, 0552 \\
\hline
\end{tabular}

\subsection*{2.7 LABORATORY DUPLICATES}

The MS/MSD analyses were performed on Outfall 011 Grab for antimony, cadmium, copper, lead, nickel, and zinc only. The RPDs were less than the control limit of \(20 \%\) and no qualifications were required.

\subsection*{2.8 MATRIX SPIKE}

The MS/MSD analyses were performed on Outfall 011 Grab for antimony, cadmium, copper, lead, nickel, and zinc only. The recoveries were within the AMEC control limits of \(75-125 \%\) and no qualifications were required.

\subsection*{2.9 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.10 ICP/MS AND ICP SERIAL DILUTION}

No serial dilution analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.11 INTERNAL STANDARDS PERFORMANCE}

The ICP and ICP-MS internal standard recoveries for the site samples and associated QC sample analyses were within the \(60-125 \%\) control limits and no qualifications were required.

\subsection*{2.12 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Analytes detected below the reporting limit were qualified as estimated, "J." No further qualifications were required.

\subsection*{2.13 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.
\begin{tabular}{|c|c|c|}
\hline & Project: & NPDES \\
\hline & SDG No.: & IOA0549, 0552 \\
\hline DATA VALIDATION REPORT & Analysis: & MET \\
\hline
\end{tabular}

\subsection*{2.13.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.13.2 Field Duplicates}

There were no field duplicate analyses performed in association with the site samples.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
MWH-Pasadena/Boeing \\
300 North Lake Avenue, Suite 1200
\end{tabular} & \multicolumn{2}{|l|}{Project ID: Routine Outfall 018} \\
\hline Pasadena, CA 91101 & & Sampled: 01/11:05 \\
\hline Attention: Bronwyn Kelly & Report Number: 10A05s2 & Received: 01/11/05 \\
\hline
\end{tabular}

\section*{DRAFT: METALS}


\title{
AMEC VARHDATED LEVELIV
}

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical.
Reviewer L. Calvin
Analysis/Method Pesticides/PCBs by Method 608

Package ID T711PP15
Task Order 313150010
SDG No. IOA0549, IOA0552
No. of Analyses 2
Date: March 10,2005
Reviewer's Signature


\title{
amec \({ }^{\text {® }}\)
}

\section*{DATA VALIDATION REPORT}

NPDES Monitoring

\section*{ANALYSIS: PESTICIDES/PCBs}

\section*{SAMPLE DELIVERY GROUP: IOA0549, IOA0552}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: IOA0549, IOA0552 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Pesticides/PCBs \\ QC Level: Level IV \\ No. of Samples: 2 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: L. Calvin \\ Date of Review: March 10, 2005
}

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedures (DVP-4, Rev.2), EPA Method 608, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary form as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Project:

\section*{Table 1. Sample identification}
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & Method \\
\hline Outfall 011 & Outfall 011 & IOA0549-01 & water & 608 \\
\hline Outfall 018 & Outfall 018 & IOA0552-01 & water & 608 \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). The analysis did not require preservation, and no preservation was noted in the field. The COCs noted that the samples were received intact. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by both field and laboratory personnel. The COC for Outfall 018 accounted for the analysis presented in this SDG. The Method 608 analysis for Outfall 011 was not listed on the COC; however, the analysis was requested in a memo dated \(03 / 01 / 05\) from MWH personnel. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The water samples were extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

\subsection*{2.2 PESTICIDES INSTRUMENT PERFORMANCE}

No resolution check standards or breakdown check standards are required by Method 608 for pesticides, and according to the raw data provided, a resolution check standard was not analyzed by the laboratory. The laboratory did analyze a breakdown check standard with a breakdown of \(\leq 20 \%\) for individual components ( 4,4 -DDT and endrin) and \(\leq 30 \%\) for the total, as suggested in the National Functional Guidelines. A review of the raw data indicated that the analytical run time was of sufficient length to provide adequate standard separation. The two analytical columns used in the analyses were within the guidelines specified in the methods.

According to the laboratory SOP and the initial calibration raw data, the retention time windows are \(\pm 0.10\) minutes for both surrogates and target compound calibration standards. A review of the raw data indicated that the laboratory retention time criteria were met for the surrogates and pesticide calibration standards. No qualifications were required.

\subsection*{2.3 CALIBRATION}

\subsection*{2.3.1 Analytical Sequence}

Based on the data provided, the analytical sequences were in accordance with the requirements of Method 608. No qualifications were required.

\subsection*{2.3.2 Initial Calibration}

There were two initial calibrations dated 10/26/04 and 12/29/04 associated with the pesticide analyses of the samples, which consisted of six point calibrations for all pesticide target compounds on two analytical columns. The \%RSDs were within the EPA Method 608 QC limit of \(\leq 10 \%\) on both analytical columns. There was one initial calibration dated 01/03/05 associated with the PCB analysis of sample Outfall 011, consisting of five points for Arochlor 1016 and Arochlor 1260. Single point calibrations for Arochlor 1242, Aroclor 1248, and Aroclor 1254 were also analyzed. The average \%RSDs for the individual peaks of Aroclor 1016 and Aroclor 1260 were \(\leq 10 \%\) on both analytical columns. An ICV was analyzed immediately following each of the initial calibrations. The \%Ds for all target compounds were within the QC limits of \(15 \%\) on both analytical columns. A representative number of \%RSDs and ICV \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.3.3 Continuing Calibration}

The pesticide analysis of sample Outfall 011 was bracketed by three continuing calibrations, one preceding and two following the analysis. In one of the bracketing calibrations following the sample analysis, the \%D exceeded \(15 \%\) on channel A for beta-bhc. As all results for this sample were reported from channel A, the nondetect result for beta-bhe was qualified as estimated, "UJ," in sample Outfall 011. The \%Ds were within the Method QC limit of \(\pm 15 \%\) for the remaining calibrations. The PCB analysis of this sample was bracketed by two CCVs and the \%Ds for Aroclor 1016 and Aroclor 1260 were \(\leq 15 \%\).

The pesticide analysis of sample Outfall 018 was bracketed by three continuing calibrations. In two of the bracketing calibrations following the sample analysis, the \(\% \mathrm{D}\) exceeded \(15 \%\) on channel A for alpha-bhc. As results were reported from channel B, no qualifications were assigned.

A representative number of \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.4 BLANKS}

\subsection*{2.4.1 Instrument Blanks}

An instrument blank was analyzed at the beginning of each analytical sequence. Crosscontamination was not evident in the samples. No qualifications were necessary.

\subsection*{2.4.2 Method Blanks}

One water method blank (5A13049-BLK1) was extracted and analyzed with these SDGs. There were no pesticide target compounds or Aroclors detected in the method blank. Review of the chromatograms showed no false negatives. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One blank spike/blank spike duplicate pair (5A13049-BS1/BSD1) was extracted and analyzed with these SDGs. The recoveries for all spiked pesticide target compounds and Aroclors were within the laboratory-established QC limits and the RPDs were \(\leq 30 \%\). A representative number of
recoveries were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.6 SURROGATE RECOVERY}

The sample and all QC samples were fortified with the surrogate compounds decachlorobiphenyl and tetrachloro-m-xylene. Surrogate recoveries for the pesticide and PCB analyses of sample Outfall 011 were within the laboratory-established QC limits. Both surrogates were recovered below the QC limits but \(\geq 10 \%\) in Outfall 018. A notation on the extraction benchsheet and in the raw data indicated an emulsion that may have affected surrogate recoveries. The result for alpha-bhc in sample Outfall 018 was qualified as estimated, "UJ." The recoveries were calculated from the raw data and no transcription or calculation errors were noted. No further qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

There were no MS/MSD analyses associated with these SDGs. Method accuracy and precision were assessed based on the blank spike/blank spike duplicate results. No qualifications were required.

\subsection*{2.8 SAMPLE CLEANUP PERFORMANCE}

According to the laboratory extraction benchsheets, no cleanups were performed on the water samples. No qualifications were required.

\subsection*{2.9 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.9.1 Field Blanks and Equipment Rinsates}

There were no field QC samples associated with the samples in these SDGs. No qualifications were required.

\subsection*{2.9.2 Field Duplicates}

There were no field duplicate samples associated with the sample in these SDGs.

\subsection*{2.10 COMPOUND IDENTIFICATION}

The laboratory analyzed for pesticide target compounds and PCBs by EPA Method 608. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for the samples in these SDGs. No qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification was verified for these SDGs; however, as there were no detects reported in the samples, quantitation was verified by recalculating a representative number of blank spike and surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibration and the laboratory MDL studies. No qualifications were required.

 2484 Chesquake Dr., Sute 805 , San Dieso. CA 92123 (838; 50r-8506 FAX (949) 370.1046



\footnotetext{
MWH-Pasadena/Boeing
} 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 018
Report Number: 10A0552

Sampled: 01/11/05
Received: 01/11/05

\section*{DRAFT: ORGANOCHLORINE PESTICIDES (EPA 608)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data palifiers \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
Sample ID: 1OA0552-01 (DRAFT: Outfall 018 - Water) - cont. \\
Reporting Units: ugh \\
alpha-BHC
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Surrogate: Decachlorobiphenyl (45-120\%) 0.010}} & ND & 0.962 & 01/13/05 & 01/14/05 & \\
\hline & & & & \(38 \%\) & & (13.0s & 1/105 & \\
\hline \multicolumn{4}{|l|}{Surrogate: Tetrachloro-m-xylene (35-120\%)} & \(14 \%\) & & & & Z \\
\hline
\end{tabular}


\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical.
Reviewer L. Calvin
Analysis/Method Semivolatiles by Method 625

Package ID T711SV30
Task Order 313150010
SDG No. IOA0549, IOA0552
No. of Analyses 2
\begin{tabular}{|l|l|}
\hline Date: March 10,2005 \\
\hline Reviewerfsignature \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{ACTION ITEMS \({ }^{\text {P }}\)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{. Case Narrative Deficiencies}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{2. Out of Scope Analyses}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{3. Analyses Not Conducted} \\
\hline \multicolumn{2}{|l|}{\multirow[b]{3}{*}{4. Missing Hardcopy Deliverables}} \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{5. Incorrect Hardcopy Deliverables}} \\
\hline & \\
\hline \multirow[t]{13}{*}{\begin{tabular}{l}
6. Deviations from Analysis \\
Protocol, e.g., \\
Holding Times \\
GC/MS Tune/Inst. Performance \\
Calibration \\
Method blanks \\
Surrogates \\
Matrix Spike/Dup LCS \\
Field QC \\
Internal Standard Performance Compound Identification \\
Quantitation \\
System Performance
\end{tabular}} & Qualification was assigned for the following: \\
\hline & -initial calibration \(\mathrm{r}^{2}<0.995\) \\
\hline & --continuing calibration \(\% \mathrm{D}>20 \%\) \\
\hline & \(\rightarrow\) method blank contamination \\
\hline & -BS/BSD recoveries below the QC limits and RPDs above the QC limits \\
\hline & -surrogates spiked below a recoverable level \\
\hline & \\
\hline COMMENTS \({ }^{\text {b }}\) & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
- Subcontracted analytical laboratory is not meeting contract and/or method requirements. \\
\({ }^{6}\) Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.
\end{tabular}} \\
\hline
\end{tabular}

\title{
DATA VALIDATION REPORT
}

\section*{NPDES Monitoring}

\author{
ANALYSIS: SEMIVOLATILES
}

\section*{SAMPLE DELIVERY GROUP: IOA0549, IOA0552}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{lr} 
& Project: \\
DATA VALIDATION REPORT & SPDES \\
SDG: & IOA0549, 552 \\
Analysis: & SVOC \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ SDG\#: IOA0549, IOA0552 \\ Project Manager: B. McIlvaine \\ Matrix: Water \\ Analysis: Semivolatiles \\ QC Level: Level IV \\ No. of Samples: 2 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: L. Calvin \\ Date of Review: March 10, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Semivolatile Organics (DVP-3, Rev. 2), EPA Method 625, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{|c|c|c|}
\hline & Project: SDG: & NPDES 1OAOS49, 552 \\
\hline DATA VALIDATION REPORT & Analysis: & SVOC \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Lab No. & Matrix & Method \\
\hline Outfall 011 & Outfall 011 & IOA0549-01 & water & 625 \\
\hline Outfall 011 & Outfall 018 & IOA0552-01 & water & 625 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & Project: SDG: & \[
\begin{array}{r}
\text { NPDES } \\
\text { IOAOS49, } 552
\end{array}
\] \\
\hline DATA VALIDATION REPORT & Analysis: & SVOC \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). The analysis did not require preservation, and no preservation was noted in the field. The COCs noted that the samples were received intact. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by both field and laboratory personnel. The COC for Outfall 018 accounted for the analysis presented in this SDG. The Method 625 analysis for Outfall 011 was not listed on the COC; however, the analysis was requested in a memo dated 03/01/05 from MWH personnel. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The water samples were extracted within seven days of collection and analyzed within 40 days of extraction. No qualifications were required.

\subsection*{2.2 GC/MS TUNING}

The DFTPP tune met the criteria specified in Method 625, and the samples were analyzed within 12 hours of the DFTPP injection time. No qualifications were required.

\subsection*{2.3 CALIBRATION}

The initial calibration associated with these SDGs was dated 01/10/05. The average RRFs for were \(\geq 0.05\) and the \(\%\) RSDs were \(\leq 35 \%\) or \(r^{2} \geq 0.995\) for all target compounds, with the exception of the \(\mathrm{r}^{2}\) for 2,4 -dinitrophenol. The nondetect result for 2,4-dinitrophenol was qualified as estimated, "UJ," in sample Outfall 011. The continuing calibration associated with the sample analyses was analyzed \(01 / 17 / 05\). The RRFs for all target compounds were \(\geq 0.05\), and the \(\%\) Ds were \(\leq 20 \%\), with the exception of the \%D for 2,4-dinitrophenol. The nondetect result for 2,4-dinitrophenol was qualified as estimated, "UJ," in sample Outfall 011. A representative number of average RRFs, \%RSDs, and \(r^{2}\) s for the initial calibration and RRFs and \%Ds for the continuing calibration were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.4 BLANKS}

One method blank (5A12027-BLK1) was extracted and analyzed with these SDGs. There were detects below the reporting limits for 2 -methylnaphthalene, di-n-butylphthalate, butylbenzylphthalate, and bis(2-ethylhexyl)phthalate. The sample detect for 2-methylnaphthalene was less than five times the method blank concentration and was therefore qualified as a nondetect,
\begin{tabular}{rrr} 
& \begin{tabular}{r} 
Project: \\
DATA VALIDATION REPORT
\end{tabular} \begin{tabular}{r} 
NPDES \\
SDG: \\
IOA0549, 552
\end{tabular} \\
SVOC
\end{tabular}
"U," at the reporting limit. There were no sample detects for the remaining compounds detected in the method blank. Review of the raw data indicated no reportable false positives or false negatives. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One blank spike/ blank spike duplicate pair (5A12027-BS1/BSD1) was extracted and analyzed with these SDGs. For blank spike/blank spike duplicate pairs, qualifications are applied, if necessary, to the associated samples based on those recoveries consistently outside of the laboratory-established QC limits in both the blank spike and blank spike duplicate. Results for those compounds with recoveries not consistent within the pair, with RPDs above the QC limit, are qualified as estimated, "UJ" for nondetects and " J " for detects, in the associated samples.

In both 5A12027-BSI and 5A12027-BSD1, benzidine was not recovered and 3,3'dichlorobenzidine was recovered below the QC limits but \(\geq 10 \%\). The RPDs for aniline, 4chloroaniline, 3,3 '-dichlorobenzidine, 2 -methylnaphthalene, and naphthalene exceeded the laboratory QC limits. The nondetect sample result for benzidine was rejected, " \(R\)," the nondetect result for 3,3 dichlorobenzidine was qualified as estimated, "UJ," and the results for the RPD outliers were qualified as estimated, "UJ" or "J," in sample Outfall 011. Spiked compounds 2methylnaphthalene and naphthalene were recovered above the QC limits in 5A12027-BSI only, and hexachlorobutadiene in 5A12027-BS1 only and 4-chloroaniline in 5A12027-BSD1 only were recovered below the QC limits but \(\geq 10 \%\). None of the aforementioned outliers were requested target compounds for sample Outfall 018. The remaining recoveries and RPDs were within the laboratory QC limits. A representative number of recoveries and RPDs were calculated from the raw data and no calculation or transcription errors were found. No further qualifications were required.

\subsection*{2.6 SURROGATE RECOVERY}

The sample surrogate recoveries for sample Outfall 011 were within the laboratory QC limits. The case narrative for this SDG noted that the low-level preparation of sample Outfall 018 and the subsequent standard level analysis resulted in surrogate concentrations falling below the low calibration standard. The narrative further noted that even low-level analysis would have required dilution for matrix interference that would have diluted out the surrogates. As extraction efficiency could not be verified based on surrogate recoveries for sample Outfall 018, all results were qualified as estimated nondetects, "UJ." A representative number of recoveries were calculated from the raw data, and no transcription or calculation errors were noted. No further qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

No MS/MSD analyses were associated with these SDGs. Evaluation of method accuracy and precision was based on blank spike/blank spike duplicate results. No qualifications were required.

\subsection*{2.8 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were
\begin{tabular}{|c|c|c|}
\hline & Project: SDG: & NPDES IOA0549, 552 \\
\hline DATA VALIDATION REPORT & Analysis: & - SVOC \\
\hline
\end{tabular}
used to evaluate the associated site samples. Following are findings associated with field QC samples:

\subsection*{2.8.1 Field Blanks and Equipment Rinsates}

There were no field QC samples associated with these SDGs. No qualifications were required.

\subsection*{2.8.2 Field Duplicates}

There were no field duplicate samples associated with these SDGs.

\subsection*{2.9 INTERNAL STANDARDS PERFORMANCE}

The internal standard area counts and retention times were within the control limits established by the continuing calibration standards: \(-50 \% /+100 \%\) for internal standard areas and \(\pm 30\) seconds for retention times. A representative number of recoveries were checked from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.10 COMPOUND IDENTIFICATION}

The laboratory analyzed for semivolatile target compounds by EPA Method 625. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification. No qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification is verified at a Level IV data validation. No calculation or transcription errors were found. The reporting limits were supported by the low level of the initial and the method detection limit study. The reporting limits were not adjusted for sample amount; however, the dilution factors on the sample result summaries reflected the sample amount extracted. Results were reported in \(\mu \mathrm{g} / \mathrm{L}\) (ppb). Compounds reported below the reporting limit but above the MDL were qualified as estimated, "J." No further qualifications were required.

\subsection*{2.12 TENTATIVELY IDENTIFIED COMPOUNDS}

TICs were not reported by the laboratory for these SDGs. No qualifications were required.

\subsection*{2.13 SYSTEM PERFORMANCE}

Review of the raw data indicated no problems with system performance. No qualifications were required.

Project ID: Routine Outfall 018
Report Number: 10A0552

Sampled: 01/11/05
Received: 01/11/05

DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & Dilution Factor & Date Extracted & Date Analyzed & Data lalifieds \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Sample ID: 1OA0552-01 (DRAFT: Outfall 018-Water) \\
Reporting Units: ug/ \\
Bis(2-ethylhexyl)phthalate \\
EPA 625 \\
\(5 A 12027\)
\end{tabular}}} \\
\hline & & & & & & & & & \\
\hline 2,4-Dinitrotoluene & EPA 625 & 5A12027 & 5.2 & 6.0 & ND & 0.948 & 01/12/05 & 01/17/05 UJ & \\
\hline N -Nitrosodimethylamine & EPA 625 & 5A12027 & 4.2 & 9.0 & ND & 0.948 & 01/12/05 & 01/17/05 & \\
\hline Pentachlorophenol & EPA 625 & 5A12027 & 3.7
4.0 & 8.0 & ND & 0.948 & 01/12/05 & 01/17/05 & \\
\hline 2,4,6-Trichlorophenol & EPA 625 & 5 S1202 & 4.0 & 10 & ND & 0.948 & 01/12/05 & 01/17/05 & \\
\hline \multicolumn{3}{|l|}{Surrogate: 2-Fluorophenol (35-120\%) \({ }^{\text {S }}\) ) 12027} & 4.1 & 6.0 & ND & 0.948 & 01/12/05 & 01/17/05 & \(\downarrow\) \\
\hline Surrogate Phenol-d6 (45-120\%) & & & & & 17\% & & & & \(Z\) \\
\hline \multicolumn{3}{|l|}{Surrogate: 2,4,6-Tribromophenol (50-125\%)} & & & 8\% & & & & 7 \\
\hline \multicolumn{3}{|l|}{Surrogate: Nitrobenzene-d5 (45-120\%)} & & & \(13 \%\) & . & & & \(Z\) \\
\hline \multicolumn{3}{|l|}{Surrogate: 2-Fluorobiphenyl (45-120\%)} & & & \(1 \%\) & & & & \(Z\) \\
\hline \multicolumn{3}{|l|}{Surrogate: Terphenyl-dl 4 (45-135\%)} & & & * \({ }^{*}\) & & & & \(Z\) \\
\hline
\end{tabular}

\title{
AMEC VALIDATED LEVEL I
}

\section*{DRAFT REPORT \\ DRAFT REPORT \\ DATA SUBJECT TO CHANGE}

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer K. Shadowlight
Analysis/Method Volatiles

Package ID T711VO56
Task Order 313150010
SDG No. IOA0549, IOA552
No. of Analyses 4


\section*{ACTION ITEMS*}

\section*{1. Case Narrative}

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

Protocol, e.g,
Holding Times
GC/MS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and
Quantitation
System Performance
COMMENTS \({ }^{\text {b }}\)

\footnotetext{
* Subcontracted analytical laboratory is not meeting contract and/or method requirements.
\({ }^{5}\) Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.
}

\section*{amec \({ }^{\text {® }}\)}

\section*{DATA VALIDATION REPORT}

NPDES Monitoring

\author{
ANALYSIS: VOLATILES
}

\section*{SAMPLE DELIVERY GROUP: IOA0549, IOA0552}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
DATA VALIDATION REPORT
NPDES
Project:
SDG:IOA0549, IOA0552
Analysis:

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: IOA0549, IOA0552 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Volatiles \\ QC Level: Level IV \\ No. of Samples: 4 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: K. Shadowlight \\ Date of Review: March, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Volatile Organics (DVP-2, Rev. 2), EPA Method 624, EPA SW-846 Method 8260B, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary forms as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Lab No. & Matrix & Method \\
\hline Outfall 011 & Outfall 01I & IOA0549-01 & water & \(624 / 8260 \mathrm{~B}\) \\
\hline Trip Blank & Trip Blank & IOA0549-02 & water & 624 \\
\hline Outfall 018 & Outfall 018 & IOA0552-01 & water & 624 \\
\hline Trip Blank & Trip Blank & IOA0552-02 & water & 624 \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{Cv}\). The samples were properly preserved. The COCs noted that the samples were received intact; however, information regarding absence of headspace was not provided. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by both field and laboratory personnel. In a memo from Montgomery Watson dated 03/01/05, additional target compounds trichlorotrifluoroethane (Freon 113), 1,2-dichloro-1,1,2-trifluoroethane (Freon 123), and cyclohexane were requested for volatile analysis in sample Outfall 011. The COCs accounted for the remaining analyses presented in these SDGs. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The samples were analyzed within 14 days of collection. No qualifications were required.

\subsection*{2.2 GC/MS TUNING}

The ion abundance windows shown on the quantitation reports were consistent with those specified in the EPA Method 624 and SW- 846 Method 8260 B , and all ion abundances were within the established windows. The samples and associated QC were analyzed within 12 hours of the BFB injection times. The Form Vs were verified from the raw data and no discrepancies between the summary forms and the raw data were noted. No qualifications were required.

\subsection*{2.3 CALIBRATION}

Four initial calibrations dated 11/03/04 (acrolein and acrylonitrile only), 12/13/04 (GCMS36), 01/04/05 (GCMS33), and 01/04/05 (GCMS44) were associated with these SDGs. The average RRFs were \(\geq 0.05\) for all compounds listed on the sample result summaries. The \%RSDs were \(\leq 35 \%\) for the target compounds analyzed by EPA Method 624, and the \%RSD for Freon 113 analyzed by EPA SW- 846 Method 8260 B was \(\leq 15 \%\). Three continuing calibrations associated with the sample analyses were analyzed 01/12/05 (instruments GCMS33, GCMS36, and GCMS44). The RRFs were \(\geq 0.05\) in all of the continuing calibrations. The \%Ds for acrolein and acrylonitrile exceeded \(20 \%\) in the continuing calibration analyzed on instrument GCMS33; therefore, the nondetect results for acrolein and acrylonitrile were qualified as estimated, "UJ," in sample Outfall 011. No qualifications were required for the Trip blank. The \(\%\) Ds were \(\leq 20 \%\) for the remaining

target compounds listed on the result summaries. A representative number of \%RSDs and average RRFs from the initial calibrations, and \%Ds and RRFs from the continuing calibrations were recalculated from the raw data, and no calculation or transcription errors were found. No further qualifications were required.

\subsection*{2.4 BLANKS}

Three water method blanks (5A12003-BLK1, 5A12008-BLK1, and 512012-BLK1) were associated with the sample analyses. There were no detects above the MDLs for the target compounds listed on the sample result summaries. The method blank raw data showed no evidence of false negatives. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

Three water blank spikes (5A12003-BS1, 5A12008-BS1, and 5A12012-BS1) were associated with the sample analyses. All recoveries were within the laboratory-established QC limits. A representative number of recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.6 SURROGATE RECOVERY}

The surrogates were recovered within the QC limits of 80-120\% in the samples and associated QC. A representative number of surrogate recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

MS/MSD analyses were performed for samples Outfall 011 and Outfall 018 associated with these SDGs. All recoveries and RPDs were within QC limits for both MS/MSD pairs. No qualifications were required.

\subsection*{2.8 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

\subsection*{2.8.1 Trip Blanks}

Sample Trip Blank (IOA549) and Trip Blank (IOA552) were the trip blanks associated with site samples Outfall 011 and Outfall 018, respectively. Chlorobenzene was detected in Trip Blank (IOAS49) at \(0.73 \mathrm{ug} / \mathrm{L}\); however, chlorobenzene was not reported in associated sample Outfall 011. There were no other target compounds detected above the MDLs in the trip blanks. No qualifications were required.
\begin{tabular}{cc} 
\\
DATA VALIDATION REPORT & \begin{tabular}{c} 
Project: \\
SDG:IOAO549, \\
NPDES
\end{tabular} \\
Analysis:
\end{tabular}

\subsection*{2.8.2 Field Blanks and Equipment Rinsates}

There were no field QC samples associated with these SDGs. No qualifications were required.

\subsection*{2.8.3 Field Duplicates}

There were no field duplicate samples associated with these SDGs.

\subsection*{2.9 INTERNAL STANDARDS PERFORMANCE}

Internal standard area counts and retention times for the samples in these SDGs were within the control limits established by the continuing calibration standards, of \(+100 \% /-50 \%\) for internal standard areas and \(\pm 0.50\) minutes for retention times. A representative number of internal standard areas and retention times were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.10 COMPOUND IDENTIFICATION}

Target compound identification was verified at a Level IV data validation. The laboratory analyzed trichlorotrifluoroethane by EPA SW-846 8260B and the remaining volatile target compounds by EPA Method 624. A TIC search was performed for requested target compounds 1,2-dichloro-1,1,2-trichloroethane and cyclohexane, as these compounds were not included in the calibration (see section 2.11). Neither compound was detected as a TIC. Chromatograms, retention times, and spectra for the samples and QC were examined and no target compound identification problems were noted No qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification is verified at a Level IV data validation. The reporting limits were supported by the lowest concentrations of the initial calibration standards and by the MDL study. Calibration was not performed for target compounds 1,2 -dichloro-1,1,2-trichloroethane and cyclohexane; therefore, the laboratory performed only a TIC search for those compounds. Nondetects for both compounds were qualified as estimated, "UJ;" in sample Outfall 011. Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike and surrogate recoveries from the raw data. Detects reported between the MDL and the reporting limit were qualified as estimated, "J," by the laboratory. Results were reported in \(\mu \mathrm{g} / \mathrm{L}(\mathrm{ppb})\). No calculation or transcription errors were noted. No further qualifications were required.

\subsection*{2.12 TENTATIVELY IDENTIFIED COMPOUNDS}

The laboratory did not provide TICs for these SDGs. No qualifications were required.
\begin{tabular}{|c|c|}
\hline & Project: NPDES \\
\hline & SDG:IOA0549, IOA0552 \\
\hline DATA VALIDATION REPORT & Analysis: VOC \\
\hline
\end{tabular}

\subsection*{2.13 SYSTEM PERFORMANCE}

A review of the chromatograms and other raw data showed no identifiable problems with system performance. No qualifications were required.

Profect :D R Roune Ouffall 018

Repon Number: Mans52

Sampled: \(01 / 105\)
Received: \(01 / 1105\)

\section*{DRAFT: PURGEABLES BY GCMS (EPA 624)}


\section*{DRAFIREMOR \\ }


\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}
\begin{tabular}{l} 
AMEC Earth \& Environmental \\
550 South Wadsworth Boulevard \\
Suite 500 \\
Lakewood, CO 80226 \\
\(\quad\) Laboratory Del Mar Analytical \\
\(\quad\) Reviewer L. Jarusewic \\
Analysis/Method General Minerals \\
\hline
\end{tabular}

Package ID T711WC74
Task Order 313150010
SDG No. IOA0549/IOA0552
No. of Analyses 2
\begin{tabular}{|l|}
\hline Date: \(03 / 10 / 05 \times\) \\
\hline Reviewer's Signature \\
\(\square \ll\) \\
\hline
\end{tabular}

\section*{ACTION ITEMS \({ }^{-}\)}
1. Case Narrative Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Qualifications for:

Analysis Protocol, e.g.,
1) Detects between the MDL and reporting limit
2) Detects in associated method blanks

Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification and Quantitation
System Performance
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\square\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)


\footnotetext{
* Subcontracted analytical laboratory is not meeting contract and/or method requirements.
- Differences in protocol have been adopted by the laboratory but no action against the laboratory is reguired.
}

\section*{Data Qualifier Reference Table}
Qualifier Organics \(\quad\) Inorganics

U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."

NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

UJ The analyte was not deemed above the reported sample quantitation limit: However, the reported quantitation limit is approximate and may or may not represent the actual limit of quanitation necessary to accurately and precisely measure the analyte in the sample.

R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria The presence or absence of the analyte cannot be verified.

The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.

The associated value is an estimated quantity.

Not applicable.

Not applicable.

The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

The data are unusable. (Note: Analyte may or may not be present).

\section*{Qualification Code Reference Table}
\begin{tabular}{|c|c|c|}
\hline Qualifier & Organics & Inorganics \\
\hline H & Holding times were exceeded. & Holding times were exceeded. \\
\hline S & Surrogate recovery was outside QC limits. & The sequence or number of standards used for the calibration was incorrect \\
\hline C & Calibration \%RSD or \%D were noncompliant. & Correlation coefficient is \(<0.995\). \\
\hline R & Calibration RRF was \(<0.05\). & \(\% \mathrm{R}\) for calibration is not within control limits. \\
\hline B & Presumed contamination from preparation (method) blank. & Presumed contamination from preparation (method) or calibration blank. \\
\hline L & Laboratory Blank Spike/Blank Spike Duplicate \%R was not within control limits. & Laboratory Control Sample \%R was not within control limits. \\
\hline Q & MS/MSD recovery was poor or RPD high. & MS recovery was poor. \\
\hline E & Not applicable. & Duplicates showed poor agreement. \\
\hline I & Internal standard performance was unsatisfactory. & ICP ICS results were unsatisfactory. \\
\hline A & Not applicable. & ICP Serial Dilution \%D were not within control limits. \\
\hline M & Tuning (BFB or DFTPP) was noncompliant. & Not applicable. \\
\hline T & Presumed contamination from trip blank. & Not applicable. \\
\hline + & False positive - reported compound was not present. Not applicable. & \\
\hline - & False negative - compound was present but not reported. & Not applicable. \\
\hline F & Presumed contamination from FB, or ER. & Presumed contamination from FB or ER. \\
\hline \$ & Reported result or other information was incorrect. & Reported result or other information was incorrect \\
\hline ? & TIC identity or reported retention time has been changed. & Not applicable. \\
\hline D & The analysis with this flag should not be used because another more technically sound analysis is available. & The analysis with this flag should not be used because another more technically sound analysis is available. \\
\hline P & Instrument performance for pesticides was poor. & Post Digestion Spike recovery was not within control limits. \\
\hline DNQ & The compound was detected between the MDL and the RL and, by definition, is considered an estimated value. & The compound was detected between the MDL and the RL and, by definition, is considered an estimated value. \\
\hline
\end{tabular}

Unusual problems found with the data that have been described in Section 2.\#, "Data Validation Findings." The number following the asterisk (*) will indicate the subsection where a description of the problem can be found (eg. \({ }^{*} 1\) would indicate a sample was not within temperature limits).

Unusual problems found with the data that have been described in Section 2.\#, "Data Validation Findings." The number following the asterisk (*) will indicate the subsection where a description of the problem can be found (eg. *I would indicate a sample was not within temperature limits).

\title{
amec \({ }^{\theta}\)
}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES Monitoring
}

\author{
ANALYSIS: GENERAL MINERALS SAMPLE DELIVERY GROUP: IOA0549 \& IOA0552
}

\section*{Prepared by}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: IOA0549 \& IOA0552 \\ Project Manager: B. McIlvaine \\ Matrix: Water \\ Analysis: General Minerals \\ QC Level: Level IV \\ No. of Samples: 2 \\ Reviewer: L. Jarusewic \\ Date of Review: March 10,2005
}

The sample listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 300.0, 350.2, 330.5, 405.1, 335.2, 413.1, 415.1, 418.1, 425.1, 218.6, 120.1, 160.2, 160.5, 180.1, 150.1, and 120.1, Standard Methods for the Examination of Water and Wastewater Method SM5540-C and SM2540C, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 011 & Outfall 011 & 1OA0S49-01 & Water & General Minerals \\
\hline Outfall 018 & Outfall 018 & IOA0552-01 & Water & General Minerals \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). No preservation problems were noted by the laboratory. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by field and laboratory personnel. The COCs accounted for all analyses present in these SDGs except fluoride for Outfall 011. The fluoride analysis was requested in a memo from MWH personnel dated 03/01/05. No sample qualifications were required.

\subsection*{2.1.3 Holding Times}

The holding times were assessed by comparing the date of collection with the dates of analyses. The 28 -day analytical holding time for ammonia, fluoride, chloride, sulfate, conductivity, total recoverable hydrocarbons, TOC, and oil and grease, the 14-day analytical holding time for cyanide, the seven-day holding time for total suspended solids and total dissolved solids, the 48 -hour holding time for surfactants, turbidity, nitrate/nitrite, biological oxygen demand, and total settleable solids, and the 24 -hour hexavalent chromium and residual chlorine holding times were met. No qualifications were required.

\subsection*{2.2 CALIBRATION}

For the applicable analyses, the initial calibration correlation coefficients were \(\geq 0.995\). Initial and continuing calibration information was acceptable with \(\%\) Rs within the control limits of \(90-110 \%\) for all analytes except hexavalent chromium. The CCV for hexavalent chromium exceeded the method control limits of \(95-105 \%\); however, as hexavalent chromium was not detected, no qualifications were required. For ammonia, no information regarding the standardization of the titrant was provided; however, as the LCS recovery was within the CCV control limits, no qualifications were required. For BOD, no information regarding the calibration of the oxygen meter was provided; however, as the LCS recovery was within the CCV control limits, no qualifications were required. Calibration is not applicable to residual chlorine or total settleable solids. The total cyanide RL check standard was recovered within the control limits of \(70-130 \%\). No qualifications were required.

\subsection*{2.3 BLANKS}

Fluoride was detected in the associated method blank at \(0.149 \mathrm{mg} / \mathrm{L}\); therefore, fluoride detected in Outfall 011 was qualified as estimated, "UJ." Oil and grease was detected in the associated method blank for Outfall 011 and Outfall 018; however, the oil and grease method blank result was insufficient to qualify
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No: & IOA0549/0552 \\
\hline
\end{tabular}
the Outfall 011 and Outfall 018 results. Hexavalent chromium was detected in the associated method blank for Outfall 011; however, hexavalent chromium was not detected in Outfall 011 and no qualifications were required. The remaining method blank and CCB results reported on the summary forms and in the raw data for blank analyses associated with the samples were nondetects at the reporting limit. No further qualifications were required.

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The laboratory control sample and laboratory control sample duplicate (BOD, oil and grease, and total recoverable hydrocarbons only) recoveries and RPDs were within the laboratory-established control limits. The remaining LCS results were within the laboratory-established control limits. The LCS is not applicable to turbidity, conductivity, residual chlorine, or settleable solids. No qualifications were required.

\subsection*{2.5 SURROGATES RECOVERY}

Surrogate recovery is not applicable to the analyses presented in these SDGs.

\subsection*{2.6 LABORATORY DUPLICATES}

MS/MSD analyses were performed on Outfall 011 for hexavalent chromium. The RPD was within the control limit of \(\leq 20 \%\). No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

MS/MSD analyses were performed on Outfall 011 for hexavalent chromium. The recoveries were within the laboratory-established control limits and no qualifications were required.

\subsection*{2.8 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analyses of these samples; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.9 ICP SERIAL DILUTION}

ICP serial dilution is not applicable to the analyses presented in this data validation report.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0549/0552 \\
General Minerals \\
\hline
\end{tabular}

\subsection*{2.10 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the samples in these data packages. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. BOD results detected below the reporting limit were qualified as estimated, "J." No further qualifications were required.

\subsection*{2.11 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.11.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.11.2 Field Duplicates}

There were no field duplicate pairs associated with these SDGs.

\footnotetext{
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 018
Report Number: 1OA0552

Sampled: 01/11/05
Received: 01/11/05
}

\section*{DRAFT: INORGANICS}


\section*{AMEC VALIDATED}

DRAFT REPORT
DRAFT REPORT
data subject To CHANGE

\section*{* Amalysis Not Validater \\ LEVEI \\ }

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer L. Jarusewic
Analysis/Method Perchlorate

Package ID T711WC75
Task Order 313150010
SDG No. IOA0549/IOA0552
No. of Analyses 2


\section*{ACTION ITEMS:}
1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

\section*{Deliverables}
5. Incorrect Hardcopy

Deliverables
6. Deviations from

Analysis Protocol, e.g.,
Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification and Quantitation
System Performance
\(\qquad\)
\(\qquad\)
\(\qquad\)
- . .
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\square\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Acceptable as reviewed.
\({ }^{2}\) Subcontracted analytical laboratory is not meeting contract and/or method requirements.
\({ }^{\text {b }}\) Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

\section*{amec \({ }^{\theta}\)}

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\section*{ANALYSIS: PERCHLORATE SAMPLE DELIVERY GROUPS: IOA0549 \& IOA0552}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0549/0552 \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: IOA0549/IOA0552 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Perchlorate \\ QC Level: Level IV \\ No. of Samples: 2 \\ Reviewer: L Jarusewic \\ Date of Review: March 10, 2005
}

The sample listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 314.0, and 120.1, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form \(I\) as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 011 & Outfall 011 & IOA0549-01 & Water & Perchlorate \\
\hline Outfall 018 & Outfall 018 & IOA0552-01 & Water & Perchlorate \\
\hline
\end{tabular}
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0549/0552 \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The samples in these SDGs were received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). No preservation problems were noted by the laboratory. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COCs were signed and dated by field and laboratory personnel, and accounted for the samples and analysis presented in these SDGs. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The holding time was assessed by comparing the date of collection with the dates of analysis. The 28 day analytical holding time for perchlorate was met, and no qualifications were required.

\subsection*{2.2 CALIBRATION}

The initial calibration correlation coefficients were \(\geq 0.995\). The IPC-MA recoveries were within the control limits of \(80-120 \%\). The ICV, CCV and IPC recoveries were within the control limits of \(90-110 \%\). No qualifications were required.

\subsection*{2.3 BLANKS}

The method blank and CCB results reported on the summary forms and in the raw data for blank analyses associated with the sample were nondetects at the reporting limit. No qualifications were required.

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The laboratory control sample recoveries were within the method control limits of \(85-115 \%\). No qualifications were required.

\subsection*{2.5 SURROGATES RECOVERY}

Surrogate recovery is not applicable to the analysis presented in these SDGs.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOA0549/0552 \\
\hline
\end{tabular}

\subsection*{2.6 LABORATORY DUPLICATES}

No MS/MSD or duplicate analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

No MS/MSD analyses were performed in association with the samples in these SDGs; therefore, no assessment was made with respect to this criterion.

\subsection*{2.8 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analysis of these samples; therefore, furnace atomic absorption QC is not applicable.

\subsection*{2.9 ICP SERIAL DILUTION}

ICP serial dilution is not applicable to the analysis presented in this data validation report.

\subsection*{2.10 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the samples in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculations errors were noted. No qualifications were required.

\subsection*{2.11 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.11.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.

\subsection*{2.11.2 Field Duplicates}

There were no field duplicate pairs associated with these SDGs.

\footnotetext{
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 018
Report Number: IOA0552

Sampled: 01/11/05
Received: 01/11/05
}

\section*{DRAFT: INORGANICS}


\title{
AMEC VALIDATED
} LEVEL V

\section*{Analyais Not Validates}

\section*{DRAFT REPORT \\ DRAFT REPORT \\ DATA SUBJECT TO CHANGE}


\title{
LABORATORY REPORT
}

Prepared For: MWH-Pasadena/Boeing
Project: Routine Outfall 018
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
Sampled: 01/11/05
Received: 01/11/05
Issued: 03/09/05 19:07

\section*{NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117}

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.
This entire report was reviewed and approved for release.

\section*{CASE NARRATIVE}
SAMPLE RECEIPT: Samples were received intact, at \(2^{\circ} \mathrm{C}\), on ice and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the Del Mar Analytical Sample Acceptance Policy unless otherwise noted in the report.
PRESERVATION:
Samples requiring preservation were verified prior to sample analysis.
QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.
COMMENTS: \(\quad\) Results that fall between the MDL and RL are ' \(J\) ' flagged.
SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report:

\section*{ADDITIONAL}

INFORMATION: Due to instruction from the client to analyze samples from Outfall 018 the same as Outfalls \(001 \& 002\), the specified reporting limits in the permit require preparation for low level analysis. During the screening process, high hydrocarbon interference was noted. Due to potential instrument contamination problems, the sample was analyzed at no dilution on the standard level instrument. The low surrogate recoveries are due to spike levels below the instrument ICAL and is the result of sample preparation for low level analysis. The surrogate recoveries would have been out of limits on the low level instrument as well, due to a necessary dilution to account for matrix interference's.

> LABORATORY ID
> IOA0552-01
> IOA0552-02
\begin{tabular}{lc} 
CLIENT ID & MATRIX \\
Outfall 018 & Water \\
Trip Blank & Water
\end{tabular}

\section*{Reviewed By:}


Del Mar Analytical, Irvine
Michele Harper
Project Manager
```

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite }120
Pasadena, CA 91101
Attention: Bronwyn Kelly

```

\author{
Project ID: Routine Outfall 018
}
```

Attention: Bronwyn Kelly

```

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date
Analyz \\
\hline \multicolumn{9}{|l|}{Sample ID: 1OA0552-01 (Outfall 018 - Water)} \\
\hline \multicolumn{9}{|l|}{Reporting Units: ugh} \\
\hline Benzene & EPA 624 & 5A12003 & 0.28 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline Carbon tetrachloride & EPA 624 & 5A12003 & 0.28 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline Chloroform & EPA 624 & 5A12003 & 0.33 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline 1,1-Dichloroethane & EPA 624 & 5A12003 & 0.27 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline 1,2-Dichloroethane & EPA 624 & 5A12003 & 0.28 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline 1,1-Dichloroethene & EPA 624 & 5A12003 & 0.32 & 3.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline Ethylbenzene & EPA 624 & 5A12003 & 0.25 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline Tetrachloroethene & EPA 624 & 5 A12003 & 0.32 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline Toluene & EPA 624 & \(5 \mathrm{Al2003}\) & 0.36 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline 1,1,1-Trichloroethane & EPA 624 & 5A12003 & 0.30 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline 1,1,2-Trichloroethane & EPA 624 & 5A12003 & 0.30 & 2.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline Trichloroethene & EPA 624 & 5A12003 & 0.26 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline Trichlorofluoromethane & EPA 624 & 5 Al 2003 & 0.34 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline Vinyl chloride & EPA 624 & 5A12003 & 0.26 & 5.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline Xylenes, Total & EPA 624 & 5A12003 & 0.52 & 4.0 & ND & 1 & 01/12/05 & 01/12/05 \\
\hline \multicolumn{2}{|l|}{Surrogate: Dibromofluoromethane (80-120\%)} & & & & 98\% & & & \\
\hline Surrogate: Toluene-d8 (80 & & & & & \(93 \%\) & & & \\
\hline Surrogate: 4-Bromofluor & & & & & \(99 \%\) & & & \\
\hline \multicolumn{9}{|l|}{Sample 10-10A0552-02 (Trip Blank - Water)} \\
\hline Benzene & EPA 624 & 5 Al 2012 & 0.28 & 2.0 & ND & 1 & 01/12/05 & 01/13/05 \\
\hline Carbon tetrachloride & EPA 624 & 5 A 12012 & 0.28 & 5.0 & ND & 1 & 01/12/05 & 01/13/05 \\
\hline Chloroform & EPA 624 & 5 A12012 & 0.33 & 2.0 & ND & 1 & 01/12/05 & 01/13/05 \\
\hline 1,1-Dichloroethane & EPA 624 & 5 A12012 & 0.27 & 2.0 & ND & 1 & 01/12/05 & 01/13/05 \\
\hline 1,2-Dichloroethane & EPA 624 & 5A12012 & 0.28 & 2.0 & ND & 1 & 01/12/05 & 01/13/05 \\
\hline 1,1-Dichloroethene & EPA 624 & SA12012 & 0.32 & 3.0 & ND & 1 & 01/12/05 & 01/13/05 \\
\hline Ethylbenzene & EPA 624 & 5A12012 & 0.25 & 2.0 & ND & 1 & 01/12/05 & 01/13/05 \\
\hline Tetrachloroethene & EPA 624 & 5A12012 & 0.32 & 2.0 & ND & 1 & 01/12/05 & 01/13/05 \\
\hline Toluene & EPA 624 & 5A12012 & 0.36 & 2.0 & ND & 1 & 01/12/05 & 01/13/05 \\
\hline 1,1,1-Trichloroethane & EPA 624 & 5A12012 & 0.30 & 2.0 & ND & 1 & 01/12/05 & 01/13/05 \\
\hline 1,1,2-Trichloroethane & EPA 624 & 5A12012 & 0.30 & 2.0 & ND & 1 & 01/12/05 & 01/13/05 \\
\hline Trichloroethene & EPA 624 & 5A12012 & 0.26 & 5.0 & ND & 1 & 01/12/05 & 01/13/05 \\
\hline Trichlorofluoromethane & EPA 624 & 5A12012 & 0.34 & 5.0 & ND & 1 & 01/12/05 & 01/13/05 \\
\hline Vinyl chloride & EPA 624 & 5A12012 & 0.26 & 5.0 & ND & 1 & 01/12/05 & 01/13/05 \\
\hline Xylenes, Total & EPA 624 & 5A12012 & 0.52 & 4.0 & ND & 1 & 01/12/05 & 01/13/05 \\
\hline \multicolumn{2}{|l|}{Surrogate: Dibromofluoromethane (80-120\%)} & & & & 108\% & & & \\
\hline \multicolumn{2}{|l|}{Surrogate: Toluene-d8 (80-120\%)} & & & & \(104 \%\) & & & \\
\hline \multicolumn{2}{|l|}{Surrogate: 4-Bromofluorobenzene (80-120\%)} & & & & \(102 \%\) & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Report Number: IOA0552 Received: 01/11/05

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & Dilution Factor & Date Extracted & Date Analyzed & Data Qualfiers \\
\hline \multicolumn{9}{|l|}{Sample ID: 1OA0552-01 (Outfall 018 - Water)} & N-1 \\
\hline \multicolumn{10}{|l|}{Reporting Units: ug/} \\
\hline Bis(2-ethylhexyl)phthalate & EPA 625 & 5A12027 & 5.2 & 6.0 & ND & 0.948 & 01/12/05 & 01/17/05 & \\
\hline 2,4-Dinitrotoluene & EPA 625 & 5A12027 & 4.2 & 9.0 & ND & 0.948 & 01/12/05 & 01/17/05 & \\
\hline N -Nitrosodimethylamine & EPA 625 & 5A12027 & 3.7 & 8.0 & ND & 0.948 & 01/12/05 & 01/17/05 & \\
\hline Pentachlorophenol & EPA 625 & 5A12027 & 4.0 & 10 & ND & 0.948 & 01/12/05 & 01/17/05 & \\
\hline 2,4,6-Trichlorophenol & EPA 625 & 5A12027 & 4.1 & 6.0 & ND & 0.948 & 01/12/05 & 01/17/05 & \\
\hline \multicolumn{5}{|l|}{Surrogate: 2-Fluorophenol (35-120\%)} & \(17 \%\) & & & & \(Z\) \\
\hline \multicolumn{5}{|l|}{Surrogate: Phenol-d6 (45-120\%)} & 8\% & & & & \(Z\) \\
\hline \multicolumn{5}{|l|}{Surrogate: 2,4,6-Tribromophenol (50-125\%)} & \(13 \%\) & & & & \(Z\) \\
\hline \multicolumn{5}{|l|}{Surrogate: Nitrobenzene-d5 (45-120\%)} & 1\% & & & & \(Z\) \\
\hline \multicolumn{5}{|l|}{Surrogate: 2-Fluorobiphenyl (45-120\%)} & * & & & & \(Z\) \\
\hline \multicolumn{5}{|l|}{Surrogate: Terphenyl-d14 (45-135\%)} & \(67 \%\) & & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager
\begin{tabular}{lrr} 
MWH-Pasadena/Boeing & Project ID: Routine Outfall 018 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05\) \\
\begin{tabular}{ll} 
Pasadena, CA 91101 & Report Number: 1040552
\end{tabular} & Received: \(01 / 11 / 05\)
\end{tabular}

ORGANOCHLORINE PESTICIDES (EPA 608)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{Sample ID: 1OA0552-01 (Outfall 018 - Water) - cont.} \\
\hline \multicolumn{10}{|l|}{Reporting Units: ugh} \\
\hline alpha-BHC & EPA 608 & 5A13049 & 0.00049 & 0.010 & ND & 0.962 & 01/13/05 & 01/14/05 & \\
\hline Surrogate: Decachlorobiphenyl (45-120\%) & & & & & \(38 \%\) & & & & 2 \\
\hline Surrogate: Tetrachloro-m-xylene (35-120\%) & & & & & \(14 \%\) & & & & Z \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 018
Sampled: 01/11/05
Report Number: IOA0552

Received: 01/11/05
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & & MET & LS & & & & & \\
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & Dilution Factor & Date Extracted & Date Analyzed & Data Qualfiers \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{Sample ID: IOA0552-01 (Outfall 018 - Water) - cont.}} \\
\hline & & & & & & & & & \\
\hline Copper & EPA 200.8 & 5A12054 & 0.49 & 2.0 & 3.5 & 1 & 01/12/05 & 01/12/05 & \\
\hline Lead & EPA 200.8 & 5A12054 & 0.13 & 1.0 & 0.82 & 1 & 01/12/05 & 01/12/05 & J \\
\hline Mercury & EPA 245.1 & 5A12047 & 0.063 & 0.20 & 0.16 & 1 & 01/12/05 & 01/12/05 & J \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

\author{
Project ID: Routine Outfall 018 \\ Report Number: 10 A 0552 \\ Sampled: 01/11/05 \\ Received: 01/11/05
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{INORGANICS} \\
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
Factor
\end{tabular} & Date Extracted & Date Analyzed & Data Qualifiers \\
\hline \multicolumn{10}{|l|}{Sample ID: 1OA0552-01 (Outfall 018 - Water) - cont. Reporting Units: mgl} \\
\hline Ammonia-N (Distilled) & EPA 350.2 & 5A13063 & 0.30 & 0.50 & ND & 1 & 01/13/05 & 01/13/05 & \\
\hline Biochemical Oxygen Demand & EPA 405.1 & 5A12041 & 0.59 & 2.0 & 1.1 & 1 & 01/12/05 & 01/17/05 & J \\
\hline Chloride & EPA 300.0 & 5A11041 & 0.26 & 0.50 & 6.0 & 1 & 01/11/05 & 01/11/05 & \\
\hline Nitrate/Nitrite-N & EPA 300.0 & 5A11041. & 0.072 & 0.26 & 0.76 & 1 & 01/11/05 & 01/11/05 & \\
\hline Oil \& Grease & EPA 413.1 & 5A13065 & 0.94 & 5.0 & 19 & 1 & 01/13/05 & 01/13/05 & \\
\hline Sulfate & EPA 300.0 & 5A11041 & 0.18 & 0.50 & 14 & 1 & 01/11/05 & 01/11/05 & \\
\hline Surfactants (MBAS) & EPA 425.1 & 5A12059 & 0.044 & 0.10 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline Total Dissolved Solids & EPA 160.1 & 5A13089 & 10 & 10 & 140 & 1 & 01/13/05 & 01/13/05 & \\
\hline Total Suspended Solids & EPA 160.2 & 5A14084 & 10 & 10 & ND & 1 & 01/14/05 & 01/14/05 & \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{Sample ID: IOA0552-01 (Outfall 018 - Water)
Reporting Units: m1/hr}} \\
\hline & & & & & & & & & \\
\hline Total Settleable Solids & EPA 160.5 & 5A12043 & 0.10 & 0.10 & ND & 1 & 01/12/05 & 01/12/05 & \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{Sample ID: IOA0552-01 (Outfall 018 - Water)}} \\
\hline & & & & & & & & & \\
\hline Turbidity & EPA 180.1 & 5A12058 & 0.040 & 1.0 & 19 & 1 & 01/12/05 & 01/12/05 & \\
\hline \multicolumn{10}{|l|}{Sample ID: 1OA0552-01 (Outfall 018 - Water)} \\
\hline \multicolumn{10}{|l|}{Reporting Units: ug/} \\
\hline Total Cyanide & EPA 335.2 & 5 S11108 & 2.2 & 5.0 & ND & 1 & 01/11/05 & 01/11/05 & \\
\hline Perchlorate & EPA 314.0 & 5A13051 & 0.80 & 4.0 & ND & 1 & 01/13/05 & 01/13/05 & \\
\hline \multicolumn{10}{|l|}{Sample ID: 1OA0552-01 (Outfall 018 - Water)} \\
\hline Reporting Units: umhos/em & & & & & & & & & \\
\hline Specific Conductance & EPA 120.1 & 5A13060 & 1.0 & 1.0 & 160 & 1 & 01/13/05 & 01/13/05 & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 018
Sampled: 01/11/05
Report Number: 10 A 0552

Received: 01/11/05

\section*{SHORT HOLD TIME DETAIL REPORT}
\begin{tabular}{lccccc} 
& \begin{tabular}{c} 
Hold Time \\
(in days)
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Sampled
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Received
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Extracted
\end{tabular} & \begin{tabular}{c} 
Date/Time \\
Analyzed
\end{tabular} \\
Sample ID: Outfall 018 (IOA0552-01)- Water & & & & & \\
EPA 160.5 & 2 & \(01 / 11 / 200511: 38\) & \(01 / 11 / 200518: 50\) & \(01 / 12 / 200509: 30\) & \(01 / 12 / 200512: 30\) \\
EPA 180.1 & 2 & \(01 / 11 / 200511: 38\) & \(01 / 11 / 200518: 50\) & \(01 / 12 / 200511: 30\) & \(01 / 12 / 200512: 30\) \\
EPA 300.0 & 2 & \(01 / 11 / 200511: 38\) & \(01 / 11 / 200518: 50\) & \(01 / 11 / 200521: 00\) & \(01 / 11 / 200521: 43\) \\
EPA 405.1 & 2 & \(01 / 11 / 200511: 38\) & \(01 / 11 / 200518: 50\) & \(01 / 12 / 200511: 00\) & \(01 / 17 / 200516: 00\) \\
EPA 425.1 & 2 & \(01 / 11 / 200511: 38\) & \(01 / 11 / 200518: 50\) & \(01 / 12 / 200513: 06\) & \(01 / 12 / 200520: 16\)
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 018
Sampled: 01/11/05
Report Number: 1OA0552 Received: 01/11/05

\section*{METHOD BLANKIOC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A12003 Extracted: 01/12/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/12/2005 (5A12003-BLK1)} \\
\hline Benzene & ND & 2.0 & 0.28 & ug/ & & & & & & & \\
\hline Carbon tetrachloride & ND & 5.0 & 0.28 & ug/ & & & & & & & \\
\hline Chloroform & ND & 2.0 & 0.33 & ug/ & & & & & & & \\
\hline 1,1-Dichloroethane & ND & 2.0 & 0.27 & ug/ & & & & & & & \\
\hline 1,2-Dichloroethane & ND & 2.0 & 0.28 & ug/ & & & & & & & \\
\hline 1,1-Dichloroethene & ND & 3.0 & 0.32 & ug/ & & & & & & & \\
\hline Ethylbenzene & ND & 2.0 & 0.25 & ug/1 & & & & & & & \\
\hline Tetrachloroethene & ND & 2.0 & 0.32 & ug/ & & & & & & & \\
\hline Toluene & ND & 2.0 & 0.36 & ug/ & & & & & & & \\
\hline 1,1,1-Trichloroethane & ND & 2.0 & 0.30 & ug/ & & & & & & & \\
\hline 1,1,2-Trichloroethane & ND & 2.0 & 0.30 & ugh & & & & & & & \\
\hline Trichloroethene & ND & 5.0 & 0.26 & ug/ & & & & & & & \\
\hline Trichlorofluoromethane & ND & 5.0 & 0.34 & ug/ & & & & & & & \\
\hline Vinyl chloride & ND & 5.0 & 0.26 & ug/ & & & & & & & \\
\hline Xylenes, Total & ND & 4.0 & 0.52 & ug/ & & & & & & & \\
\hline Surrogate: Dibromofluoromethane & 25.0 & & & ug/l & 25.0 & & 100 & 80-120 & & & \\
\hline Surrogate: Toluene-d8 & 23.8 & & & ug/ & 25.0 & & 95 & 80-120 & & & \\
\hline Surrogate: 4-Bromofluorobenzene & 25.2 & & & ug/ & 25.0 & & 101 & 80-120 & & & \\
\hline \multicolumn{12}{|l|}{LCS Analyzed: 01/12/2005 (5A12003-BS1)} \\
\hline Benzene & 23.1 & 2.0 & 0.28 & ug/ & 25.0 & & 92 & 70-120 & & & \\
\hline Carbon tetrachloride & 24.6 & 5.0 & 0.28 & ug/1 & 25.0 & & 98 & 70-140 & & & \\
\hline Chloroform & 26.8 & 2.0 & 0.33 & ug/ & 25.0 & & 107 & 75-130 & & & \\
\hline 1,1-Dichloroethane & 24.2 & 2.0 & 0.27 & ug/ & 25.0 & & 97 & 70-135 & & & \\
\hline 1,2-Dichloroethane & 27.6 & 2.0 & 0.28 & ug/ & 25.0 & & 110 & 60-150 & & & \\
\hline 1,1-Dichloroethene & 22.5 & 3.0 & 0.32 & ug/l & 25.0 & & 90 & 75-135 & & & \\
\hline Ethylbenzene & 25.4 & 2.0 & 0.25 & ug/ & 25.0 & & 102 & 80-120 & & & \\
\hline Tetrachloroethene & 22.3 & 2.0 & 0.32 & ugh & 25.0 & & 89 & 75-125 & & & \\
\hline Toluene & 23.0 & 2.0 & 0.36 & ug/l & 25.0 & & 92 & 75-120 & & & \\
\hline 1,1,1-Trichloroethane & 28.0 & 2.0 & 0.30 & ug/ & 25.0 & & 112 & 75-140 & & & \\
\hline 1,1,2-Trichloroethane & 24.5 & 2.0 & 0.30 & ugh & 25.0 & & 98 & 70-125 & & & \\
\hline Trichloroethene & 19.9 & 5.0 & 0.26 & ugh & 25.0 & & 80 & 80-120 & & & \\
\hline Trichlorofluoromethane & 26.8 & 5.0 & 0.34 & ughl & 25.0 & & 107 & 65-145 & & & \\
\hline Vinyl chloride & 23.4 & 5.0 & 0.26 & ug/l & 25.0 & & 94 & 50-130 & & & \\
\hline Surrogate: Dibromofluoromethane & 25.0 & & & ug/ & 25.0 & & 100 & 80-120 & & & \\
\hline Surrogate: Toluene-d8 & 23.7 & & & \(u g /\) & 25.0 & & 95 & 80-120 & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Project ID: Routine Outfall 018 \\ Attention: Bronwyn Kelly \\ Report Number: IOA0552 \\ Sampled: 01/11/05 \\ Received: 01/11/05
}

\section*{METHOD HLANKQC DATA}

PURGEABLES BY GC/MS (EPA 624)


\section*{Del Mar Analytical, Irvine \\ Michele Harper \\ Project Manager}
\begin{tabular}{lrr} 
MWH-Pasadena/Boeing & Project ID: Routine Outfall 018 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05\) \\
Pasadena, CA 91101 & Report Number: 1040552 & Received: \(01 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{METHOD BLANKIOC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A12003 Extracted: 01/12/05} \\
\hline \multicolumn{3}{|l|}{Matrix Spike Dup Analyzed: 01/12/2005 (5A12003-MSD1)} & \multicolumn{6}{|c|}{Source: 10A0552-01} & & & \\
\hline Surrogate: Dibromofluoromethane & 24.6 & & & ug/ & 25.0 & & 98 & 80-120 & & & \\
\hline Surrogate: Toluene-d8 & 23.6 & & & ugh & 25.0 & & 94 & 80-120 & & & \\
\hline Surrogate: 4-Bromofluorobenzene & 25.0 & & & ugh & 25.0 & & 100 & 80-120 & & & \\
\hline
\end{tabular}

\section*{Batch: 5A12012 Extracted: 01/12/05}

Blank Analyzed: 01/12/2005 (5A12012-BLK1)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Benzene & ND & 2.0 & 0.28 & ug/ & & & \\
\hline Carbon tetrachloride & ND & 5.0 & 0.28 & ug/l & & & \\
\hline Chloroform & ND & 2.0 & 0.33 & ug/ & & & \\
\hline 1,1-Dichloroethane & ND & 2.0 & 0.27 & ugh & & & \\
\hline 1,2-Dichloroethane & ND & 2.0 & 0.28 & ug/ & & & \\
\hline 1,1-Dichloroethene & ND & 3.0 & 0.32 & ug/ & & & \\
\hline Ethylbenzene & ND & 2.0 & 0.25 & uga & & & \\
\hline Tetrachloreethene & ND & 2.0 & 0.32 & ugh & & & \\
\hline Toluene & ND & 2.0 & 0.36 & ug/ & & & \\
\hline 1,1,1-Trichloroethane & ND & 2.0 & 0.30 & ug/l & & & \\
\hline 1,1,2-Trichloroethane & ND & 2.0 & 0.30 & ug/ & & & \\
\hline Trichloroethene & ND & 5.0 & 0.26 & ug/ & & & \\
\hline Trichlorofluoromethane & ND & 5.0 & 0.34 & ug/ & & & \\
\hline Vinyl chloride & ND & 5.0 & 0.26 & ug/ & & & \\
\hline Xylenes, Total & ND & 4.0 & 0.52 & ug/ & & & \\
\hline Surrogate: Dibromofluoromethane & 26.2 & & & ug/ & 25.0 & 105 & 80-120 \\
\hline Surrogate: Toluene-d8 & 26.3 & & & ug/ & 25.0 & 105 & 80-120 \\
\hline Surrogate: 4-Bromofuorobenzene & 25.7 & & & \(u g / l\) & 25.0 & 103 & 80-120 \\
\hline \multicolumn{8}{|l|}{LCS Analyzed: 01/12/2005 (5A12012-BS1)} \\
\hline Benzene & 26.8 & 2.0 & 0.28 & ug/l & 25.0 & 107 & 70-120 \\
\hline Carbon tetrachloride & 27.0 & 5.0 & 0.28 & ug/ & 25.0 & 108 & 70-140 \\
\hline Chloroform & 28.6 & 2.0 & 0.33 & ug/1 & 25.0 & 114 & 75-130 \\
\hline 1,1-Dichloroethane & 27.9 & 2.0 & 0.27 & ug/ & 25.0 & 112 & 70-135 \\
\hline 1,2-Dichloroethane & 29.3 & 2.0 & 0.28 & ug/ & 25.0 & 117 & 60-150 \\
\hline 1,1-Dichloroethene & 25.6 & 3.0 & 0.32 & ug/l & 25.0 & 102 & 75-135 \\
\hline Ethylbenzene & 28.3 & 2.0 & 0.25 & ug/ & 25.0 & 113 & 80-120 \\
\hline Tetrachloroethene & 27.8 & 2.0 & 0.32 & ug/ & 25.0 & 111 & 75-125 \\
\hline Toluene & 27.8 & 2.0 & 0.36 & ug/ & 25.0 & 111 & 75-120 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Routine Outfall 018
Sampled: 01/11/05
Report Number: IOA0552 Received: 01/11/05

\section*{METHOD BLANKIQC DATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & Reporting Limit & & & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & \begin{tabular}{l}
Data \\
Oualifiers
\end{tabular} \\
\hline Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers \\
\hline
\end{tabular}

LCS Analyzed: 01/12/2005 (5A12012-BS1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1,1,1-Trichloroethane & 30.7 & 2.0 & 0.30 & ug/ & 25.0 & & 123 & 75-140 \\
\hline 1,1,2-Trichloroethane & 29.1 & 2.0 & 0.30 & ug/ & 25.0 & & 116 & 70-125 \\
\hline Trichloroethene & 27.9 & 5.0 & 0.26 & ug/ & 25.0 & & 112 & 80-120 \\
\hline Trichlorofluoromethane & 31.0 & 5.0 & 0.34 & ug/ & 25.0 & & 124 & 65-145 \\
\hline Vinyl chloride & 27.3 & 5.0 & 0.26 & ug/ & 25.0 & & 109 & 50-130 \\
\hline Surrogate: Dibromofluoromethane & 26.7 & & & \(u g h\) & 25.0 & & 107 & 80-120 \\
\hline Surrogate: Toluene-d8 & 26.5 & & & \(u g h\) & 25.0 & & 106 & 80-120 \\
\hline Surrogate: 4-Bromofluorobenzene & 26.4 & & & \(u g /\) & 25.0 & & 106 & 80-120 \\
\hline \multicolumn{5}{|l|}{Matrix Spike Analyzed: 01/12/2005 (5A12012-MS1)} & \multicolumn{4}{|c|}{Source: IOA0521-04} \\
\hline Benzene & 26.6 & 2.0 & 0.28 & ugh & 25.0 & 0.34 & 105 & 70-120 \\
\hline Carbon tetrachloride & 27.0 & 5.0 & 0.28 & ug/ & 25.0 & ND & 108 & 70-145 \\
\hline Chloroform & 27.8 & 2.0 & 0.33 & ug/ & 25.0 & ND & 111 & 70-135 \\
\hline 1,1-Dichloroethane & 26.5 & 2.0 & 0.27 & ugh & 25.0 & ND & - 106 & 65-135 \\
\hline 1,2-Dichloroethane & 28.4 & 2.0 & 0.28 & ug/ & 25.0 & ND & 114 & 60-150 \\
\hline 1,1-Dichloroethene & 23.2 & 3.0 & 0.32 & ug/ & 25.0 & ND & 93 & 65-140 \\
\hline Ethylbenzene & 28.1 & 2.0 & 0.25 & ug/l & 25.0 & 0.42 & 111 & 70-130 \\
\hline Tetrachloroethene & 26.7 & 2.0 & 0.32 & ug/ & 25.0 & ND & 107 & 70-130 \\
\hline Toluene & 28.1 & 2.0 & 0.36 & ug/ & 25.0 & 1.1 & 108 & 70-120 \\
\hline 1,1,1-Trichloroethane & 28.9 & 2.0 & 0.30 & ug/ & 25.0 & ND & 116 & 75-140 \\
\hline 1,1,2-Trichloroethane & 28.0 & 2.0 & 0.30 & ug/ & 25.0 & ND & 112 & 60-135 \\
\hline Trichloroethene & 27.1 & 5.0 & 0.26 & ug/ & 25.0 & ND & 108 & 70-125 \\
\hline Trichlorofluoromethane & 28.0 & 5.0 & 0.34 & ugh & 25.0 & ND & 112 & 55-145 \\
\hline Vinyl chloride & 30.7 & 5.0 & 0.26 & ugh & 25.0 & ND & 123 & 40-135 \\
\hline Surrogate: Dibromofluoromethane & 27.0 & & & \(u g / l\) & 25.0 & & 108 & 80-120 \\
\hline Surrogate: Toluene-d8 & 26.5 & & & \(u g /\) & 25.0 & & 106 & 80-120 \\
\hline Surrogate: 4-Bromofluorobenzene & 26.5 & & & ugh & 25.0 & & 106 & 80-120 \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager
\begin{tabular}{lrr} 
MWH-Pasadena/Boeing & Project ID: Routine Outfall 018 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05\) \\
Pasadena, CA 91101 & Report Number: 1040552 & Received: \(01 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{MIMHOD BLANKIOCDATA}

\section*{PURGEABLES BY GC/MS (EPA 624)}
\begin{tabular}{lllllllllll} 
& & Reporting & & & Spike & Source & \%REC & & RPD & Data \\
Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit
\end{tabular}

Batch: 5A12012 Extracted: 01/12/05
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Matrix Spike Dup Analyzed: 01/12/2005 (5A12012-MSD1)} & \multicolumn{8}{|c|}{Source: 10A0521-04} \\
\hline Benzene & 27.1 & 2.0 & 0.28 & ug/l & 25.0 & 0.34 & 107 & 70-120 & 2 & 20 \\
\hline Carbon tetrachloride & 28.1 & 5.0 & 0.28 & \(\mathrm{ug} /\) & 25.0 & ND & 112 & 70-145 & 4 & 25 \\
\hline Chioroform & 28.0 & 2.0 & 0.33 & ugh & 25.0 & ND & 112 & 70-135 & 1 & 20 \\
\hline 1,1-Dichloroethane & 26.8 & 2.0 & 0.27 & ug/l & 25.0 & ND & 107 & 65-135 & 1 & 20 \\
\hline 1,2-Dichloroethane & 28.8 & 2.0 & 0.28 & ugh & 25.0 & ND & 115 & 60-150 & 1 & 20 \\
\hline 1,1-Dichloroethene & 23.4 & 3.0 & 0.32 & ug/ & 25.0 & ND & 94 & 65-140 & 1 & 20 \\
\hline Ethylbenzene & 28.7 & 2.0 & 0.25 & ug/ & 25.0 & 0.42 & 113 & 70-130 & 2 & 20 \\
\hline Tetrachloroethene & 27.5 & 2.0 & 0.32 & ug/ & 25.0 & ND & 110 & 70-130 & 3 & 20 \\
\hline Toluene & 28.8 & 2.0 & 0.36 & ug/ & 25.0 & 1.1 & 111 & 70-120 & 2 & 20 \\
\hline 1,1,1-Trichloroethane & 29.3 & 2.0 & 0.30 & ug/ & 25.0 & ND & 117 & 75-140 & 1 & 20 \\
\hline 1,1,2-Trichloroethane & 28.2 & 2.0 & 0.30 & ug/ & 25.0 & ND & 113 & 60-135 & 1 & 25 \\
\hline Trichloroethene & 27.7 & 5.0 & 0.26 & ug/l & 25.0 & ND & 111 & 70-125 & 2 & 20 \\
\hline Trichlorofluoromethane & 28.6 & 5.0 & 0.34 & ugh & 25.0 & ND & 114 & 55-145 & 2 & 25 \\
\hline Vinylchloride & 30.6 & 5.0 & 0.26 & ug/ & 25.0 & ND & 122 & 40-135 & 0 & 30 \\
\hline Surrogate: Dibromofluoromethane & 26.4 & & & \(u g /\) & 25.0 & & 106 & 80-120 & & \\
\hline Surrogate: Toluene-d8 & 26.6 & & & \(u g / 1\) & 25.0 & & 106 & 80-120 & & \\
\hline Surrogate: 4-Bromofluorobenzene & 26.6 & & & \(u g /\) & 25.0 & & 106 & 80-120 & & \\
\hline
\end{tabular}

\title{
Del Mar Analytical
}

\author{
MWH-Pasadena/Boeing \\ 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101 \\ Attention: Bronwyn Kelly
}

Project ID: Routine Outfall 018

\author{
Sampled: 01/11/05 \\ Report Number: 10 A 0552 \\ Received: 01/11/05
}

\section*{METHOD BLANK/QC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{12}{|l|}{Batch: 5A12027 Extracted: 01/12/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/17/2005 (5A12027-BLK1)} \\
\hline Bis(2-ethylhexyl)phthalate & ND & 5.0 & 1.1 & ug/ & & & & & & & \\
\hline 2,4-Dinitrotoluene & ND & 9.0 & 0.23 & ug/ & & & & & & & \\
\hline N-Nitrosodimethylamine & ND & 8.0 & 0.22 & ugh & & & & & & & \\
\hline Pentachlorophenol & ND & 8.0 & 0.78 & ug/ & & & & & & & \\
\hline 2,4,6-Trichlorophenol & ND & 6.0 & 0.10 & ug/ & & & & & & & \\
\hline Surrogate: 2-Fluorophenol & 14.2 & & & ug/ & 20.0 & & 71 & 35-120 & & & \\
\hline Surrogate: Phenol-d6 & 14.7 & & & ug 1 & 20.0 & & 74 & 45-120 & & & \\
\hline Surrogate: 2,4,6-Tribromophenol & 14.3 & & & ug \(n\) & 20.0 & & 72 & 50-125 & & & \\
\hline Surrogate: Nitrobenzene-d5 & 6.84 & & & ug \(h\) & 10.0 & & 68 & 45-120 & & & \\
\hline Surrogate: 2-Fluorobiphenyl & 7.60 & & & \(u g /\) & 10.0 & & 76 & 45-120 & & & \\
\hline Surrogate: Terphenyl-d14 & 8.12 & & & ug/ & 10.0 & & 81 & 45-135 & & & \\
\hline LCS Analyzed: 01/17/2005 (5 & & & & & & & & & & & M-NR1 \\
\hline Bis( 2 ethylhexy ) phthalate & 8.56 & 50 & 11 & ugh & 10.0 & & 86 & 65-125 & & & \\
\hline 2,4-Dinitrotoluene & 736 & 9.0 & 0.23 & uga & 10.0 & & 74 & 60-140 & & & \(J\) \\
\hline N-Nitrosodimethylamine & 7.68 & 8.0 & 0.22 & ug/l & 10.0 & & 77 & 40-120 & & & \(J\) \\
\hline Pentachlorophenol & 8.04 & 8.0 & 0.78 & ug/ & 10.0 & & 80 & 50-125 & & & \\
\hline 2,4,6-Trichlorophenol & 8.64 & 6.0 & 0.10 & ugh & 10.0 & & 86 & 60-120 & & & \\
\hline Surrogate: 2-Fluorophenol & 14.5 & & & ug \(n\) & 20.0 & & 72 & 35-120 & & & \\
\hline Surrogate: Phenol-d6 & 14.5 & & & ug \(/\) & 20.0 & & 72 & 45-120 & & & \\
\hline Surragate: 2,4,6-Tribromophenol & 14.7 & & & ugh & 20.0 & & 74 & 50-125 & & & \\
\hline Surrogate: Nitrobenzene-d5 & 7.14 & & & \(u g h\) & 10.0 & & 71 & 45-120 & & & \\
\hline Surrogate: 2-Fluorobiphenyt & 7.80 & & & ug/l & 10.0 & & 78 & 45-120 & & & \\
\hline Surrogate: Terphenyl-d14 & 8.56 & & & \(u g /\) & 10.0 & & 86 & 45-135 & & & \\
\hline \multicolumn{12}{|l|}{LCS Dup Analyzed: 01/17/2005 (5A12027-BSD1)} \\
\hline Bis(2-ethylhexyl)phthalate & 8.24 & 5.0 & 1.1 & \(u g / 1\) & 10.0 & & 82 & 65-125 & 4 & 20 & \\
\hline 2,4-Dinitrotoluene & 7.48 & 9.0 & 0.23 & ug/ & 10.0 & & 75 & 60-140 & 2 & 20 & \(J\) \\
\hline N -Nitrosodimethylamine & 7.20 & 8.0 & 0.22 & ugh & 10.0 & & 72 & 40-120 & 6 & 20 & \(J\) \\
\hline Pentachlorophenol & 7.68 & 8.0 & 0.78 & ugh & 10.0 & & 77 & 50-125 & 5 & 25 & \(J\) \\
\hline 2,4,6-Trichlorophenol & 8.76 & 6.0 & 0.10 & ugh & 10.0 & & 88 & 60-120 & 1 & 20 & \\
\hline Surrogate: 2-Fluorophenol & 14.3 & & & ug/ & 20.0 & & 72 & 35-120 & & & \\
\hline Surrogate: Phenol-d6 & 14.5 & & & ug/ & 20.0 & & 72 & 45-120 & & & \\
\hline Surrogate: 2,4,6-Tribromophenol & 15.0 & & & ugh & 20.0 & & 75 & 50-125 & & & \\
\hline Surrogate: Nitrobenzene-ds & 7.38 & & & \(u g /\) & 10.0 & & 74 & 45-120 & & & \\
\hline Surrogate: 2-Fluorobiphenyl & 7.66 & & & \(u g /\) & 10.0 & & 77 & 45-120 & & & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine \\ Michele Harper \\ Project Manager}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 018
Report Number: 1OA0552 Received: 01/11/05

\section*{METHOD BLANKIQC DATA}

\section*{ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & & & Spike & Source & & \%REC & & RPD & Data \\
\hline Analyte & Result & Limit & MDL & Units & Level & Result & \%REC & Limits & RPD & Limit & Qualifiers \\
\hline
\end{tabular}

\section*{Batch: 5A12027 Extracted: 01/12/05}

LCS Dup Analyzed: 01/17/2005 (5A12027-BSD1)
Surrogate: Terphenyl-d14 9.00
\begin{tabular}{llll}
\(u g / l\) & 10.0 & 90 & \(45-135\)
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 018
Report Number: 1OA0552

Sampled: 01/11/05
Received: 01/11/05

\section*{METIOD DIANKIOC DATA}

\section*{ORGANOCHLORINE PESTICIDES (EPA 608)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & Reportin Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & \begin{tabular}{l}
Data \\
Qualifiers
\end{tabular} \\
\hline \multicolumn{12}{|l|}{Batch: 5A13049 Extracted: 01/13/05} \\
\hline \multicolumn{12}{|l|}{Blank Analyzed: 01/14/2005 (5A13049-BLK1)} \\
\hline alpha-BHC & ND & 0.010 & 0.00049 & ug/ & & & & & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.456 & & & \(u g /\) & 0.500 & & 91 & 45-120 & & & \\
\hline Surrogate: Tetrachloro-m-xylene & 0.349 & & & \(u g /\) & 0.500 & & 70 & 35-120 & & & \\
\hline LCS Analyzed: 01/14/2005 (5) & & & & & & & & & & & M-NR1 \\
\hline alpha-BHC & 0.427 & 0.010 & 0.00049 & ug/ & 0.500 & & 85 & 45-115 & & & \\
\hline Surrogate: Decachlorobiphenyl & 0.432 & & & \(u g / l\) & 0.500 & & 86 & 45-120 & & & \\
\hline Surrogate: Tetrachloro-m-xylene & 0.347 & & & \(u g / l\) & 0.500 & & 69 & 35-120 & & & \\
\hline \multicolumn{12}{|l|}{LCS Dup Analyzed: 01/14/2005 (5A13049-BSD1)} \\
\hline alpha-BHC & 0.433 & 0.010 & 0.00049 & ug/l & 0.500 & & 87 & 45-115 & 1 & 30 & \\
\hline Surrogate: Decachlorobiphenyl & 0.407 & & & \(u g / 1\) & 0.500 & & 81 & 45-120 & & & \\
\hline Surrogate: Tetrachloro-m-xylene & 0.364 & & & \(u g / 1\) & 0.500 & & 73 & 35-120 & & & \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 018
Sampled: 01/11/05
Report Number: IOA0552 \(\quad\) Received: 01/11/05

\section*{METHOD BLANKIOC DATA}

\section*{METALS}


Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 018
Sampled: 01/11/05
Report Number: 1OA0552 Received: 01/11/05

\section*{METHOD BLANKIQC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Result & \begin{tabular}{l}
Reporting \\
Limit
\end{tabular} & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \begin{tabular}{l}
Source \\
Result
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & RPD
Limit \\
\hline \multicolumn{11}{|l|}{Batch: 5A11041 Extracted: 01/11/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 01/11/2005 (5A11041-BLK1)} \\
\hline Chloride & ND & 0.50 & 0.26 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & \\
\hline Nitrate/Nitrite-N & ND & 0.26 & 0.072 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & \\
\hline Sulfate & ND & 0.50 & 0.18 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 01/11/2005 (5A11041-BS1)} \\
\hline Chloride & 5.00 & 0.50 & 0.26 & \(\mathrm{mg} / \mathrm{l}\) & 5.00 & & 100 & 90-110 & & \\
\hline Sulfate & 10.8 & 0.50 & 0.18 & mg/ & 10.0 & & 108 & 90-110 & & \\
\hline \multicolumn{3}{|l|}{Matrix Spike Analyzed: 01/11/2005 (5A11041-MS1)} & \multicolumn{8}{|c|}{Source: IOA0551-01} \\
\hline Chloride & 8.89 & 0.50 & 0.26 & mg/ & 5.00 & 4.2 & 94 & 80-120 & & \\
\hline Sulfate & 17.1 & 0.50 & 0.18 & \(\mathrm{mg} / 1\) & 10.0 & 6.8 & 103 & 80-120 & & \\
\hline \multicolumn{3}{|l|}{Matrix Spike Dup Analyzed: 01/11/2005 (5A11041-MSD1)} & \multicolumn{8}{|c|}{Source: 10A0551-01} \\
\hline Chloride & 9.11 & 0.50 & 0.26 & \(\mathrm{mg} / \mathrm{l}\) & 5.00 & 4.2 & 98 & 80-120 & 2 & 20 \\
\hline Sulfate & 17.2 & 0.50 & 0.18 & mg/ & 10.0 & 6.8 & 104 & 80-120 & 1 & 20 \\
\hline
\end{tabular}

Batch: 5A11108 Extracted: 01/11/05
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Blank Analyzed: 01/11/2005 (5A1108-BLK1)} \\
\hline Total Cyanide ND & 5.0 & 2.2 & ug/ & & & & \\
\hline \multicolumn{8}{|l|}{LCS Analyzed: 01/11/2005 (5A11108-BS1)} \\
\hline Total Cyanide 184 & 5.0 & 2.2 & ug/ & 200 & & 92 & 90-110 \\
\hline Matrix Spike Analyzed: 01/11/2005 (5A11108-MS1) & & & \multicolumn{5}{|c|}{Source: IOA0214-01} \\
\hline Total Cyanide 171 & 5.0 & 2.2 & ug/ & 200 & ND & 86 & 70-115 \\
\hline
\end{tabular}

Del Mar Analytical, Irvine
Michele Harper
Project Manager
\begin{tabular}{lrr} 
MWH-Pasadena/Boeing & Project ID: Routine Outfall 018 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05\) \\
Pasadena, CA 91101 & Report Number: 1OA0552 & Received: \(01 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{METHOD BLANKIGC DATA}

\section*{INORGANICS}


Del Mar Analytical, Irvine
Michele Harper
Project Manager

\author{
MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 \\ Pasadena, CA 91101
}

Project ID: Routine Outfall 018
Report Number: 1OA0552 \(\quad \begin{aligned} & \text { Sampled: 01/11/05 } \\ & \text { Received: 01/11/05 }\end{aligned}\)

\section*{METHOD BLANKIQC DATA}

\section*{INORGANICS}


\footnotetext{
Del Mar Analytical, Irvine
Michele Harper
Project Manager
}
\begin{tabular}{|lll} 
MWH-Pasadena/Boeing & Project ID: Routine Outfall 018 & \\
300 North Lake Avenue, Suite 1200 & Report Number: 10 A0552 & Sampled: \(01 / 11 / 05\) \\
Pasadena, CA 91101 & & Received: \(01 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{METHOD BLANKOC DATA}

\section*{INORGANICS}


Del Mar Analytical, Irvine
Michele Harper
Project Manager
\begin{tabular}{lrr} 
MWH-Pasadena/Boeing & Project ID: Routine Outfall 018 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05\) \\
Pasadena, CA 91101 & Report Number: 10 Pa552 & Received: \(01 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{MLTMOD BLANMQC DATA}

\section*{INORGANICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Resalt & Reporting Limit & MDL & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & Source Result & \[
\% \text { REC }
\] & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & \(\mathbf{R P D}\) & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} & Data Qualifiers \\
\hline \multicolumn{11}{|l|}{Batch: 5A13089 Extracted: 01/13/05} \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 01/13/2005 (5A13089-BS1)} \\
\hline Total Dissolved Solids 994 & 10 & 10 & mg/l & 1000 & & 99 & \(90-110\) & & & \\
\hline Duplicate Analyzed: 01/13/2005 (5A13089-DUP1) & & & & & ce: IOA & 549-01 & & & & \\
\hline Total Dissolved Solids 92.0 & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & & 88 & & & 4 & 10 & \\
\hline \multicolumn{11}{|l|}{Batch: 5A14084 Extracted: 01/14/05} \\
\hline \multicolumn{11}{|l|}{Blank Analyzed: 01/14/2005 (5A14084-BLK1)} \\
\hline Total Suspended Solids ND & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & & & & & & & \\
\hline \multicolumn{11}{|l|}{LCS Analyzed: 01/14/2005 (5A14084-BS1)} \\
\hline Total Suspended Solids 949 & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & 1000 & & 95 & 85-115 & & & \\
\hline Duplicate Analyzed: 01/14/2005 (5A14084-DUP1) & & & & & ce: IOA0 & 607-01 & & & & \\
\hline Total Suspended Solids \(\quad \therefore \quad\) ND & 10 & 10 & \(\mathrm{mg} / \mathrm{l}\) & & ND & & & & 10 & \\
\hline
\end{tabular}

\section*{Del Mar Analytical, Irvine}

Michele Harper
Project Manager
\begin{tabular}{lrr} 
MWH-Pasadena/Boeing & Project ID: Routine Outfall 018 & \\
300 North Lake Avenue, Suite 1200 & & Sampled: \(01 / 11 / 05\) \\
Pasadena, CA 91101 & Report Number: 1040552 & Received: \(01 / 11 / 05\) \\
Attention: Bronwyn Kelly & &
\end{tabular}

\section*{DATA QUALIFIERS AND DEFINITIONS}

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
N-1 See case narrative.
Z Due to sample matrix effects, the surrogate recovery was below the acceptance limits.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

\author{
Del Mar Analytical, Irvine \\ Michele Harper \\ Project Manager
}

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Routine Outfall 018
Sampled: 01/11/05
Report Number: IOA0552 Received: 01/11/05

\section*{Certification Summary}

\section*{Del Mar Analytical, Irvine}
\begin{tabular}{clcc} 
Method & Matrix & Nelac & California \\
EPA 120.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 160.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 160.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 160.5 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 180.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 200.8 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 245.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 300.0 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 314.0 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 335.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 350.2 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 405.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 413.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 425.1 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 608 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 624 & Water & \(\mathbf{X}\) & \(\mathbf{X}\) \\
EPA 625 & Water & \(\mathbf{X}\) & \(\mathbf{X}\)
\end{tabular}

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs com.

\section*{Subcontracted Laboratories}

\section*{Pace Analytical, MN- SUB}

1700 Elm Street, Ste 200 - Minneapolis, MN 55414
Analysis Performed: 1613-Dioxin-HR
Samples: 1OA0552-01
Analysis Performed: EDD + Level 4
Samples: 1OA0552-01

\section*{Del Mar Analytical, Irvine \\ Michele Harper \\ Project Manager}


\title{
< Del MarAnalytical
}

March 9, 2005

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, Ca. 91101
Attention: Bronwyn Kelly

Project: Routine Outfall 018
Sampled: 01/11/05
Del Mar Analytical Number: IOA0552

Dear Ms. Kelly:
Pace Analytical performed Method 1613B analysis for the project referenced above. Please use the following cross-reference table when reviewing your results.
\begin{tabular}{|c|c|c|}
\hline MWH ID & DEL MAR ID & Pace ID \\
\hline Outfall 018 & IOA0552-01 & 106125001 \\
\hline
\end{tabular}

Attached is the original report from the subcontract laboratory. If you have any questions or require further assistance, please do not hesitate to contact me.

Sincerely yours,
DEL MAR ANALYTICAL


Michele Harper
Project Manager

\section*{Method 16138 Analysis Results}

Client - Del Mar Analytical


Conc \(=\) Concentration (Totals include 2,3,7,8-substituted isomers).
EMPC = Estimated Maximum Possible Concentration
LOD \(=\) Limit of Detection. Totals are averages of individual isomer LODs.
D = Result obtained from analysis of diluted sample
\(\mathrm{B}=\) Less than 10 times higher than method blank level
\(P=\) Recovery outside of method 1613 control limits
\(\mathrm{J}=\) Concentration detected is below the calibration range
\(\mathrm{Nn}=\) Value obtained from additional analysis

I = Interference
E = PCDE Interference
ND \(=\) Not Detected
NA = Not Applicable
NC = Not Calculated
* \(=\) See Discussion

Report No..... 106125

\section*{REPORT OF LABORATORY ANALYSIS}

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

\section*{Method 1613B Blank Analysis Results}

Client - Del Mar Analytical
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Lab Sample ID \\
Filename \\
Total Amount Extracted \\
ICAL Date CCal Filename(s)
\end{tabular} & & \[
\begin{aligned}
& \text { VK-6220 } \\
& \text { 29B_06 } \\
& \text { mL } \\
& \text { /2004 } \\
& \text { 29B_02 }
\end{aligned}
\] & & Matrix Dilution Extracted Analyzed injected By & Water NA 01/28/ 01/29/2 BAL & \[
\begin{aligned}
& 25 \\
& 25: 4 \\
& 23
\end{aligned}
\] & \\
\hline Native Isomers & Conc pg/ & EMPC pg/ & \[
\begin{aligned}
& \text { PRL } \\
& \text { pg } \mathrm{L} \\
& \hline
\end{aligned}
\] & Internal Standards & & ng's Added & Percent Recovery \\
\hline 2,3,7,8-TCDF & ND & \(\cdots\) & 1.20 & 2,3,7,8-TCDF- & & 2.00 & 58 \\
\hline Total TCDF & ND & ---- & --...- & 2,3,7,8-TCDD- & & 2.00 & 75 \\
\hline & & & & 1,2,3,7,8-PeCD & & 2.00 & 65 \\
\hline 2,3,7,8-TCDD & ND & ---- & 1.20 & 2,3,4,7,8-PeCD & 3C & 2.00 & 67 \\
\hline Total TCDD & ND & ---- & & 1,2,3,7,8-PeCD & 13C & 2.00 & 80 \\
\hline & & & & 1,2,3,4,7,8-HxC & -13C & 2.00 & 70 \\
\hline 1,2,3,7,8-PeCDF & ND & \(\cdots\) & 1.50 & 1,2,3,6,7,8-HxC & -13C & 2.00 & 82 \\
\hline 2,3,4,7,8-PeCDF & ND & ---- & 1.20 & 2,3,4,6,7,8-HxC & -13C & 2.00 & 77 \\
\hline Total PeCDF & ND & ----- & ---- & 1,2,3,7,8,9-HxC & -13C & 2.00 & 72 \\
\hline & & & & 1,2,3,4,7,8-Hx & -13C & 2.00 & 66 \\
\hline 1,2,3,7,8-PeCDD & ND & \(\cdots\) & 1.60 & 1,2,3,6,7,8-HxC & -13C & 2.00 & 88 \\
\hline Total PeCDD & & ---" & & 1,2,3,4,6,7,8-H & F-13C & 2.00 & 73 \\
\hline & & & & 1,2,3,4,7,8,9-H & DF-13C & 2.00 & 63 \\
\hline 1,2,3,4,7,8-HxCDF & ND & \(\cdots\) & 0.75 & 1,2,3,4,6,7,8-H & D-13C & 2.00 & 80 \\
\hline 1,2,3,6,7,8-HxCDF & ND & ----- & 0.86 & OCDD-13C & & 4.00 & 68 \\
\hline 2,3,4,6,7,8-HxCDF & ND & ----- & 1.10 & & & & \\
\hline 1,2,3,7,8,9-HxCDF & ND & ---- & 1.20 & 1,2,3,4-TCDD- & & 2.00 & NA \\
\hline Total HxCDF & ND & ---- & ----- & 1,2,3,7,8,9-HxC & -13C & 2.00 & NA \\
\hline 1,2,3,4,7,8-HxCDD & ND & \(\cdots\) & 1.10 & 2,3,7,8-TCDD-37 & & 0.20 & 73 \\
\hline 1,2,3,6,7,8-HxCDD & ND & ----- & 0.99 & & & & \\
\hline 1,2,3,7,8,9HxCDD & ND & \(\cdots\) & 1.00 & & & & \\
\hline Total HxCDD & ND & & & & & & \\
\hline 1,2,3,4,6,7,8-HpCDF & ND & ---- & 2.10 & & & & \\
\hline 1,2,3,4,7,8,9-HpCDF & ND & ----- & 1.90 & & & & \\
\hline Total HpCDF & 2.2 & ----- & & & & & \\
\hline 1,2,3,4,6,7,8-HpCDD & 2.4 & ---- & & & & & \\
\hline Total HpCDD & 2.4 & ..... & & & & & \\
\hline OCDF & 5.2 & ---* & & & & & \\
\hline OCDD & 5.6 & .-.-- & 2.90 & & & & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{7}{*}{\begin{tabular}{l}
Conc \(=\) Concentration (Totals include 2,3,7,8-substituted isomers). \\
EMPC = Estimated Maximum Possible Concentration \\
PRL \(=\) Pace Analytical Reporting Limit \\
\(A=\) Lirnit of Detection based on signal to noise \\
\(P=\) Recovery outside of method 1613 control limits \\
\(\mathrm{Nn}=\) Value obtained from additional analysis
\end{tabular}}} & \multicolumn{3}{|l|}{\multirow[t]{7}{*}{\[
\begin{aligned}
& I=\text { Interference } \\
& E=P C D E \text { Interference } \\
& N D=\text { Not Detected } \\
& N A=\text { Not Applicable } \\
& N C=\text { Not Calculated } \\
& J=\text { Value below calibration range } \\
& \text { = See Discussion }
\end{aligned}
\]}} & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

\section*{Method 1613B Laboratory Control Spike Results}

Client - Del Mar Analytical
Lab Sample ID
Filename
Total Amount Extracted
ICAL Date
CCal Filename
Method Blank ID
LCS-6221
F50129B 03
1040 mL
\(11 / 29 / 2004\)
F50198 02
BLANK-6220
\begin{tabular}{ll} 
& \\
Matrix & Water \\
Dilution & NA \\
Extracted & \(01 / 28 / 2005\) \\
Analyzed & \(01 / 29 / 2005 \quad 21: 22\) \\
Injected By & BAL
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Compound & Cs & Cr & Lower Limit & Upper Limit & \[
\begin{gathered}
\% \\
\text { Rec. }
\end{gathered}
\] \\
\hline 2,3,7,8-TCDF & 10 & 9.9 & 7.5 & 15.8 & 99 \\
\hline 2,3,7,8-TCDD & 10 & 8.6 & 6.7 & 15.8 & 86 \\
\hline 1,2,3,7,8-PeCDF & 50 & 50.5 & 40.0 & 67.0 & 101 \\
\hline 2,3,4,7,8-PeCDF & 50 & 48.2 & 34.0 & 80.0 & 96 \\
\hline 1,2,3,7,8-PeCDD & 50 & 43.3 & 35.0 & 71.0 & 87 \\
\hline 1,2,3,4,7,8-HxCDF & 50 & 45.6 & 36.0 & 67.0 & 91 \\
\hline 1,2,3,6,7,8HxCDF & 50 & 48.7 & 42.0 & 65.0 & 97 \\
\hline 2,3,4,6,7,8-HxCDF & 50 & 49.1 & 35.0 & 78.0 & 98 \\
\hline 1,2,3,7,8,9-HxCDF & 50 & 46.5 & 39.0 & 65.0 & 93 \\
\hline 1,2,3,4,7,8-HxCDD & 50 & 49.9 & 35.0 & 82.0 & 100 \\
\hline 1,2,3,6,7,8-HxCDD & 50 & 51.3 & 38.0 & 67.0 & 103 \\
\hline 1,2,3,7,8,9-HxCDD & 50 & 50.1 & 32.0 & 81.0 & 100 \\
\hline 1,2,3,4,6,7,8-HPCDF & 50 & 50.3 & 41.0 & 61.0 & 101 \\
\hline 1,2,3,4,7,8,9-HpCDF & 50 & 53.3 & 39.0 & 69.0 & 107 \\
\hline 1,2,3,4,6,7,8-HpCDD & 50 & 45.4 & 35.0 & 70.0 & 91 \\
\hline OCDF & 100 & 95.6 & 63.0 & 170.0 & 96 \\
\hline OCDD & 100 & 97.1 & 78.0 & 144.0 & 97 \\
\hline 2,3,7,8-TCDD-37Cl4 & 10 & 6.9 & 3.1 & 19.1 & 69 \\
\hline 2,3,78-TCDF 13 C & 100 & 51.5 & 22.0 & 1520 & 52 \\
\hline 2,3,7,8-TCDD-13C & 100 & 67.8 & 20.0 & 175.0 & 68 \\
\hline 1,2,3,7,8-PeCDF-13C & 100 & 61.4 & 21.0 & 192.0 & 61 \\
\hline 2,3,4,7,8-PeCDF-13C & 100 & 65.9 & 13.0 & 328.0 & 66 \\
\hline 1,2,3,7,8-PeCDD-13C & 100 & 77.8 & 21.0 & 227.0 & 78 \\
\hline 1,2,3,4,7,8-HxCDF-13C & 100 & 70.2 & 19.0 & 202.0 & 70 \\
\hline 1,2,3,6,7,8-HxCDF-13C & 100 & 78.0 & 21.0 & 159.0 & 78 \\
\hline 2,3,4,6,7,8-HxCDF-13C & 100 & 74.1 & 22.0 & 176.0 & 74 \\
\hline 1,2,3,7,8,9-HxCDF-13C & 100 & 70.4 & 17.0 & 205.0 & 70 \\
\hline 1,2,3,4,7,8-HxCDD-13C & 100 & 69.0 & 21.0 & 193.0 & 69 \\
\hline 1,2,3,6,7,8-HxCDD-13C & 100 & 82.8 & 25.0 & 163.0 & 83 \\
\hline 1,2,3,4,6,7,8-HpCDF-13C & 100 & 72.1 & 21.0 & 158.0 & 72 \\
\hline 1,2,3,4,7,8,9-HpCDF-13C & 100 & 62.4 & 20.0 & 186.0 & 62 \\
\hline 1,2,3,4,6,7,8-HpCDD-13C & 100 & 80.1 & 26.0 & 166.0 & 80 \\
\hline OCDD-13C & 200 & 135.6 & 26.0 & 397.0 & 68 \\
\hline
\end{tabular}

\footnotetext{
\(\mathrm{Cs}=\) Concentration Spiked (ng/mL)
\(\mathrm{Cr}=\) Concentration Recovered ( \(\mathrm{ng} / \mathrm{mL}\) )
Rec. \(=\) Recovery (Expressed as Percent)
Control Limit Reference: Method 1613, Table 6, 10/94 Revision
\(X=\) Background subtracted value
\(P=\) Recovery outside of control limits
\(\mathrm{Nn}=\) Value obtained from additional analysis
* \(=\) See Discussion
}

Report No..... 106124

REPORT OF LABORATORY ANALYSIS
This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

\section*{Method 1613B Laboratory Control Splke Results}

Client - Del Mar Analytical


\footnotetext{
Cs \(=\) Concentration Spiked (ng/mL)
\(\mathrm{Cr}=\) Concentration Recovered ( \(\mathrm{ng} / \mathrm{mL}\) )
Rec. \(=\) Recovery (Expressed as Percent)
Control Limit Reference: Method 1613, Table 6, 10/94 Revision
\(X=\) Background subtracted value
\(P=\) Recovery outside of control limits
\(\mathrm{Nn}=\) Value obtained from additional analysis
* \(=\) See Discussion
}

Report No..... 106124

\section*{SPIKE RECOVERY RELATIVE PERCENT DIFFERENCE (RPD) RESULTS}

Client. \(\qquad\) Del Mar Analytical
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{SPIKE 1 ID...............................LCS-6221} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & & \\
\hline & & & \\
\hline COMPOUND & SPIKE 1 REC,\% & \begin{tabular}{l}
SPIKE 2 \\
REC,\%
\end{tabular} & RPD,\% \\
\hline 2378-TCDF & 99 & 106 & 6.8 \\
\hline 2378-TCDD & 86 & 94 & 8.9 \\
\hline 12378-PeCDF & 101 & 106 & 4.8 \\
\hline 23478-PeCDF & 96 & 101 & 5.1 \\
\hline 12378-PeCDD & 87 & 92 & 5.6 \\
\hline 123478-HxCDF & 91 & 95 & 4.3 \\
\hline 123678-HxCDF & 97 & 102 & 5.0 \\
\hline 234678-HxCDF & 98 & 102 & 4.0 \\
\hline 123789-HxCDF & 93 & 98 & 5.2 \\
\hline 123478 - \(1 \times\) CDD & 100 & 105 & 4.9 \\
\hline 123678-HxCDD & 103 & 108 & 4.7 \\
\hline 123789-HxCDD & 100 & 105 & 4.9 \\
\hline 1234678-HpCDF & 101 & 110 & 8.5 \\
\hline 1234789-HpCDF & 107 & 111 & 3.7 \\
\hline 1234678-HpCDD & 91 & 96 & 5.3 \\
\hline OCDF & 96 & 101 & 5.1 \\
\hline OCDD & 97 & 102 & 5.0 \\
\hline
\end{tabular}

REC \(=\) Percent Recovered
RPD \(=\) The difference between the two values divided by the average.
NA \(=\) Not Applicable
Report No....... 106124, 106125, 106126
106127, 106128, 106130
106131, 106132, 106135

\section*{REPORT OF LABORATORY ANALYSIS}

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, inc.

TABLE 1. 2,3,7,8-TCDD Equivalency Factors (TEFs) for the Polychlorinated Dibenzo-p-dioxins and Dibenzofurans
\begin{tabular}{|c|c|c|}
\hline Number & Compound(s) & TEF \\
\hline 1 & 2,3,7,8-TCDD & 1.00 \\
\hline 2 & 1,2,3,7,8-PeCDD & 0.50 \\
\hline 3 & 1,2,3,6,7,8-HxCDD & 0.1 \\
\hline 4 & 1,2,3,7,8,9-HxCDD & 0.1 \\
\hline 5 & 1,2,3,4,7,8-HxCDD & 0.1 \\
\hline 6 & 1,2,3,4,6,7,8-HpCDD & 0.01 \\
\hline 7 & OCDD & 0.001 \\
\hline 8 & * Total - TCDD & 0.0 \\
\hline 9 & * Total - PeCDD & 0.0 \\
\hline 10 & * Total - HxCDD & 0.0 \\
\hline 11 & * Total - HpCDD & 0.0 \\
\hline 12 & 2,3,7,8-TCDF & 0.10 \\
\hline 13 & 1,2,3,7,8-PeCDF & 0.05 \\
\hline 14 & 2,3,4,7,8-PeCDF & 0.5 \\
\hline 15 & 1,2,3,6,7,8-HxCDF & 0.1 \\
\hline 16 & 1,2,3,7,8,9-HxCDF & 0.1 \\
\hline 17 & 1,2,3,4,7,8-HxCDF & 0.1 \\
\hline 18 & 2,3,4,6,7,8-HxCDF & 0.1 \\
\hline 19 & 1,2,3,4,6,7,8-HpCDF & 0.01 \\
\hline 20 & 1,2,3,4,7,8,9-HpCDF & 0.01 \\
\hline 21 & OCDF & 0.001 \\
\hline 22 & * Total - TCDF & 0.0 \\
\hline 23 & * Total - PeCDF & 0.0 \\
\hline 24 & * Total - HxCDF & 0.0 \\
\hline 25 & * Total - HpCDF & 0.0 \\
\hline
\end{tabular}
*Excluding the 2,3,7,8-substituted congeners.
Reference: 1989 ITEFs

\section*{REPORT OF LABORATORY ANALYSIS}

This report shall not be reproduced, except in full. without the written consent of Pace Analytical Services, Inc.

\section*{SUBCONTRACT ORDER - PROJECT \# IOA0552 \(106 / 125\)}


SAMPLE INTEGRITY:


\section*{APPENDIX G}

\section*{Section 15}

February Outfall 001

\section*{AMEC Data Validation Reports}

Del Mar Analytical Laboratory Reports

\section*{CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA}
\begin{tabular}{|c|c|c|}
\hline AMEC Earth \& Environmental & Package ID & T711DF30 \\
\hline 550 South Wadsworth Boulevard & Task Order & 313150010 \\
\hline Suite 500 & SDG No. & Multi \\
\hline Lakewood, CO 80226 & No. of Analyses & 13 \\
\hline Laboratory Alta Analytical Perspective & Date: March & 8,2005 \\
\hline Reviewer H. Chang & Reviewer's S & gnature \\
\hline Analysis/Method Dioxin\&Furans/1613 & dx. al & \\
\hline
\end{tabular}

\section*{ACTION ITEMS \({ }^{\wedge}\) \\ 1. Case Narrative \\ Deficiencies}
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables


\footnotetext{
\({ }^{2}\) Subcontracted analytical laboratory is not meeting contract and/or method requirements.
\({ }^{6}\) Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.
}

\section*{amec \({ }^{\theta}\)}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES Monitoring
}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{lll} 
& Project: & NPDES \\
DATA VALIDATION REPORT & \begin{tabular}{c} 
SDG No.: \\
Multiple
\end{tabular} \\
\hline
\end{tabular}

\title{
1. INTRODUCTION
}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: Multiple SDGs \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Dioxins/Furans \\ QC Level: Level IV \\ No. of Samples: 13 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: H. Chang \\ Date of Review: March 18, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 1), EPA Method 1613, and the National National Functional Guidelines For Chlorinated Dioxin/Furan Data Review (8/02). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{ll} 
& Project: \\
DATA VALIDATION REPORT & SDDES \\
\hline
\end{tabular}

Table 1. Sample Identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & \begin{tabular}{c} 
Laboratory ID \\
(Del Mar)
\end{tabular} & \begin{tabular}{c} 
Laboratory ID \\
(Alta AP)
\end{tabular} & Matrix & COC Method \\
\hline Outfall 001 & IOB0980-01 & P5072_2989_007 & water & 1613 B \\
\hline Outfall 002 & IOB0981-01 & P5072_2989_013 & water & 1613B \\
\hline Outfall 003 & IOB0988-01 & P5072_2989_012 & water & 1613 B \\
\hline Outfall 004 & IOB1002-01 & P5072_2989_009 & water & 1613 B \\
\hline Outfall 005 & IOB0990-01 & P5072_2989_006 & water & 1613 B \\
\hline Outfall 006 & IOB0992-01 & P5072_2989_010 & water & 1613 B \\
\hline Outfall 007 & IOB0993-01 & P5072_2989_002 & water & 1613 B \\
\hline Outfall 008 & IOB0997-01 & P5072_2989_004 & water & 1613 B \\
\hline Outfall 009 & IOB0996-01 & P5072_2989_003 & water & 1613 B \\
\hline Outfall 010 & IOB1001-01 & P5072_2989_001 & water & 1613 B \\
\hline Outfall 011 Composite & IOB1004-01 & P5072_2989_011 & water & 1613 B \\
\hline Outfall 011 & IOB1014-01 & P5072_2989_005 & water & 1613 B \\
\hline Outfall 018 & IOB1008-01 & P5072_2989_008 & water & 1613 B \\
\hline
\end{tabular}
\begin{tabular}{llr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

All of the samples in these SDGs were received at Del Mar Analytical within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\) except sample Outfall 009 which was at \(8^{\circ} \mathrm{C}\). Due to non-volatile nature of the analytes, no qualifications were necessary for the elevated cooler temperature. The samples were received at Pace Analytical with cooler temperatures of \(1.6^{\circ} \mathrm{C}, 2.3^{\circ} \mathrm{C}\), and \(3^{\circ} \mathrm{C}\). The samples were received at Alta Analytical Perspectives with cooler temperatures of \(1^{\circ} \mathrm{C}\) and \(3^{\circ} \mathrm{C}\). According to the laboratory login sheets, all samples were received intact and in good condition at Del Mar and Alta AP. No sample conditions were available for review for the sample receipt at Pace. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

It appears that the samples were initially sent from Del Mar Analytical to Pace Analytical then subsequently shipped to Alta Analytical Perspectives. The COCs from the field to Del Mar, Del Mar to Pace, and Pace to Alta were available for review. The COCs were legible and signed by the appropriate field and laboratory personnel, and accounted for the analyses presented in these SDGs. The custody seals were not present on the coolers upon receipt at either Del Mar or Alta. No custody seal information was available for Pace. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The samples were extracted and analyzed within a year of collection. No qualifications were required.

\subsection*{2.2 INSTRUMENT PERFORMANCE}

Following are findings associated with instrument performance:

\subsection*{2.2.1 GC Column Performance}

A Column Performance Check Standard (CPSM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed prior to initial calibration analysis. A separate CPSM was not analyzed for daily analytical sequence; instead, CPSM compounds were added to OPR analysis. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and \(2,3,7,8\)-TCDD reported as less than \(25 \%\). No qualifications were required.

\subsection*{2.2.2 Mass Spectrometer Performance}

The mass spectrometer performance was acceptable with the static resolving power greater than 10,000 . No qualifications were required.
\begin{tabular}{ll} 
& Project: \\
DATA VALIDATION REPORT & \begin{tabular}{l} 
NPDES \\
SDG No.: \\
Multiple
\end{tabular} \\
\hline
\end{tabular}

\subsection*{2.3 CALIBRATION}

\subsection*{2.3.1 Initial Calibration}

There was one initial calibrations, analyzed \(08 / 12 / 04\). The calibrations each consisted of six concentration level standards (CS0 through CS5) analyzed to verify instrument linearity. The initial calibration was acceptable with \(\%\) RSDs \(\leq 20 \%\) for the native compounds and \(\leq 35 \%\) for the labeled compounds. The relative retention times and ion abundance ratios were within the QC limits listed in Method 1613 for all standards. A representative number of \(\%\) RSDs were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.3.2 Continuing Calibration}

Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits. A representative number of \(\%\) Ds were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.4 BLANKS}

One method blank (0_2989_MB001) was extracted and analyzed with the samples in these SDGs. There were no detects reported in the method blank. A review of the method blank raw data and chromatograms indicated no false negatives. No qualifications were required.

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One Ongoing Precision Recovery (OPR) sample (0_2989_OPR001) was extracted and analyzed with the samples in these SDGs. All recoveries were within the acceptance criteria listed in Table 6 of the Method 1613. No qualifications were required.

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

MS/MSD analyses were not performed in these SDGs. Evaluation of method accuracy was based on the OPR results. No qualifications were required.

\subsection*{2.7 FIELD QC SAMPLES}

Following are findings associated with field QC:

\subsection*{2.7.1 Field Blanks and Equipment Rinsates}

The samples in these SDGs had no associated field QC samples. No qualifications were required.
\begin{tabular}{lll} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & Multiple \\
\hline
\end{tabular}

\subsection*{2.7.2 Field Duplicates}

No field duplicate samples were identified for these SDGs.

\subsection*{2.8 INTERNAL STANDARDS}

The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613. No qualifications were required.

\subsection*{2.9 COMPOUND IDENTIFICATION}

The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. The compound identifications were verified from the raw data. The laboratory reported total PeCDFs detects in samples Outfall 005, Outfall 006, Oufall 007, and Outfall 011 . The reviewer deemed the signals used to be below the signal-to-noise ratio of 2.5 and the results were changed to nondetects. A false negative for total HxCDD was noted in sample Outfall 001 and was changed to a detect. No further qualifications were required.

\subsection*{2.10 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantitation was verified from the raw data. The laboratory calculated and reported compound-specific detection limits. Any detects below the lower method calibration level (MCL) were qualified as estimated, "J." The laboratory did not flag OCDD in samples Outfall 002 and Outfall 003 although the reported concentrations were below the lower MCL. OCDD in these samples was qualified as estimated, "F." The laboratory did not notate detects below the lower MCL for totals. These totals were qualified as estimated, " J " The "DNQ" qualification code was applied only if all components of the totals were below the lower MCL.

The laboratory indicated that one of the non-2,3,7,8 substituted HxCDD detect, present in majority of the samples, was due to recovery standard ( \(13 \mathrm{C}-1,2,3,4,6,7-\mathrm{HxCDD}\) ) contribution. This compound was also present in the method blank. This compound was not included in the total HxCDD concentration. Several total HxCDD results could not be reproduced from the raw data by the reviewer and were hand-corrected on the Form I. No further qualifications were required.


CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Truesdail
Reviewer P. Meeks
Analysis/Method Hydrazines

\section*{ACTION ITEMS \({ }^{*}\)}
1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis Protocol, e.g.

Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identifica-
1
and Quantitation
System Performance

COMMENTS \({ }^{\text {b }}\)
Acceptable as reviewed.

\footnotetext{
* Subcontracted analytical laboratory is not meeting contract and/or method requirements.
}

Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

\section*{amec \({ }^{\theta}\)}

\section*{DATA VALIDATION REPORT}

\author{
NPDES \\ Monitoring
}

\author{
ANALYSIS: HYDRAZINES SAMPLE DELIVERY GROUP: IOB0980
}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ Sample Delivery Group \#: IOB0980 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Hydrazines \\ QC Level: Level IV \\ No. of Samples: 1 \\ Reviewer: P. Meeks \\ Date of Review: March 29, 2005
}

The samples listed in Table 1 were validated based on the general guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (2/94), and USEPA SW-846 Method 8315. Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " \(R\) " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOB0980 \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline EPA ID & Del Mar ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 001 & IOB0980-01 & 939702 & water & Hydrazines by 8315 \\
\hline
\end{tabular}
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOB0980 \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The sample in this SDG was received at Del Mar Analytical and the subcontract laboratory, Truesdail Laboratories, within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). The analysis did not require preservation, and no preservation was noted in the field. The case narratives for this SDG noted that the sample was received intact at both laboratories. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COC from the field to Del Mar was signed and dated by field and laboratory personnel, and the transfer COC from Del Mar to Truesdail Laboratories was signed and dated by personnel from both laboratories. Both the original COC and transfer COCs requested only monomethyl hydrazine analysis; however, unsymmetrical dimethyl hydrazine and hydrazine were also reported. As the sample was transported to Del Mar and then to Truesdail by courier, no custody seals were required. Truesdail Laboratories did not list the Outfall 001 ID on the Form I; therefore, the reviewer hand-corrected the Form I to include this information. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The holding time was assessed by comparing the date of collection with the date of analysis. The three-day extraction holding time for the hydrazine analysis was met and the sample was analyzed within three days of extraction. No qualifications were required.

\subsection*{2.2 CALIBRATION}

The five-point initial calibrations were analyzed \(02 / 14 / 05\), with correlation coefficients of \(\geq 0.995\) for the hydrazines. The ICV and CCV bracketing the sample analyses had recoveries for the hydrazines within the QC limits of \(85-115 \%\). No qualifications were required.

\subsection*{2.3 BLANKS}

One method blank was analyzed with this SDG. The results reported on the method blank summary form and in the raw data for the instrument and method blank analyses associated with the sample were nondetects at the reporting limit. No qualifications were required.
\begin{tabular}{rr} 
& Project: \\
DATA VALIDATION REPORT & SDG No.: \\
\hline
\end{tabular}

\subsection*{2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One laboratory control sample/laboratory control sample duplicate was analyzed with this SDG. The hydrazines were recovered within the laboratory-established control limits of \(70 \%-130 \%\), and the RPD was within the control limit of \(\leq 20 \%\). No qualifications were required.

\subsection*{2.5 SURROGATES RECOVERY}

Surrogates were not utilized in this analysis. No qualifications were required.

\subsection*{2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

MSD/MSD analyses were performed on Outfall 001. The recoveries for the hydrazines were within the laboratory QC limits of \(0-150 \%\); however, both recoveries were \(\geq 10 \%\). The RPDs were within the QC limit of \(\leq 20 \%\). No qualifications were required.

\subsection*{2.7 FIELD QC SAMPLES}

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

\subsection*{2.7.1 Field Blanks and Equipment Rinsates}

The site sample in this SDG had no associated field QC. No qualifications were required.

\subsection*{2.7.2 Field Duplicates}

There were no field duplicate samples in this SDG.

\subsection*{2.8 COMPOUND IDENTIFICATION}

The sample was analyzed by HPLC for monomethyl hydrazine, unsymmetrical dimethyl hydrazine, and hydrazine by Method 8315. Compound identification was verified, and review of the raw data indicated no compound identification errors. No qualifications were required.

\subsection*{2.9 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification was verified from the raw data at a Level IV data validation by recalculating LCS/LCSD and MS/MSD detects, as there were no sample detects. No compound quantitation problems were noted. The hydrazine reporting limits were supported by the lower levels of the initial calibration. No qualifications were required.
Truesdail Laboratories, Inc.
INDEPENDENT TESTING, FOAENSIC SCIENCE. AND ENVIAONMENTAL ANALYSES
\[
\begin{aligned}
\text { Client: } & \begin{array}{l}
\text { Del Mar Analytical } \\
\\
\\
\\
\\
\text { Irvine, CA 92614 }
\end{array} \\
\text { Attention: } & \begin{aligned}
\text { Michele Harper }
\end{aligned} \\
\text { Sample: } & \text { Liquid/1 Sample } \\
\text { Project Name: } & \text { IOB0980 } \\
\text { P.O. Number: } & \text { IOB0980 } \\
\text { Method Number: } & 8315 \text { (Modified) } \\
\text { Investigation: } & \text { Hydrazines in Liquid }
\end{aligned}
\]
REPORT

\section*{Analytical Results}

MDL: Method Detection Limit, ug/L
PQL: Practical Quantitation Limit, ugh
ND: Not Detected at or above the MDL value. N/A: Not Applicable
Note: Results based on detector \#1 \((U V=365 \mathrm{~nm})\) data.
ATEE VORDATED

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer P. Meeks
Analysis/Method Metals

Task Order 313150010
SDG No. IOB0980
No. of Analyses 1 \& 2RE
Date: 03/30/05
Reviewer's Signature

\begin{tabular}{|ll|}
\hline ACTION ITEMS \\
\hline 1. & \begin{tabular}{l} 
Case Narrative \\
Deficiencies
\end{tabular} \\
\hline 2. & \begin{tabular}{l} 
Out of Scope \\
Analyses
\end{tabular} \\
\hline 3. & \begin{tabular}{l} 
Analyses Not \\
Conducted
\end{tabular} \\
\hline 4. & \begin{tabular}{l} 
Missing Hardcopy \\
Deliverables
\end{tabular} \\
\hline
\end{tabular}
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis Protocol, e.g.,
Qualifications were applied for CCB detect and reanalysis results were rejected
In favor of the original results.

Holding Times.
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification and Quantitation
System Performance
\(\qquad\)
\(\square\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{COMMENTS \({ }^{6}\)}

2 Subcontracted analytical laboratory is not meeting contract and/or method requirements.
- Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

\title{
amec \({ }^{\circ}\)
}

\title{
DATA VALIDATION REPORT
}

\author{
NPDES \\ Monitoring
}

\author{
ANALYSIS: METALS SAMPLE DELIVERY GROUP: IOB0980
}

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOB0980 \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring \\ Contract Task Order \#: 313150010 \\ SDG\#: IOB0980 \\ Project Manager: B. McIlvaine \\ Matrix: Water \\ Analysis: Metals \\ QC Level: Level IV \\ No. of Samples: 1 \\ No. of Reanalyses/Dilutions: 2 \\ Reviewer: P. Meeks \\ Date of Review: March 30, 2005
}

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels III and IV ICP-MS Metals, (DVP-5-A, Rev.0), AMEC Data Validation Procedure for Levels III and IV ICP Metals (DVP-5, Rev. 0), SW-846 Method 6010B for Inductively Coupled Plasma, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOB0980 \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline & & & & \\
\hline Client ID & EPA ID & Laboratory ID & Matrix & COC Method \\
\hline Outfall 001 & Outfall 001 & IOB09801-01 & water & ILM04 \\
\hline Outfall 001 RE1 & Outfall 001 RE1 & IOB09801-01 & water & ILM04 \\
\hline Outfall 001 RE2 & Outfall 001 RE2 & IOB09801-01 & water & ILM04 \\
\hline
\end{tabular}
\begin{tabular}{rr} 
& Project: \\
DATA VALIDATION REPORT & SDG No.: \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

Following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The sample in this SDG was received at the laboratory within the temperature limits of \(4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\). No sample preservation, handling, or transport problems were noted, and no qualifications were necessary.

\subsection*{2.1.2 Chain of Custody}

The COC was signed and dated by field and laboratory personnel and accounted for the sample and analyses presented in this SDG. As the laboratory did not append the client IDs with RE1 or RE2, the reviewer added this information to the Form Is. No sample qualifications were required.

\subsection*{2.1.3 Holding Times}

The date of collection recorded on the COC and the dates of analyses recorded in the raw data, documented that the sample analyses were performed within the specified holding times of six months for the ICP and ICP/MS metals. No qualifications were required.

\subsection*{2.2 ICP-MS TUNING}

A precalibration routine must be completed prior to calibrating the instrument, which consists of analyzing a tuning solution to verify resolution, mass calibration, and thermal stability. The solution must be analyzed a minimum of five times and must contain isotopes representing all mass regions of interest. All \%RSDs were less than \(5 \%\). The mass calibrations were within 0.1 amu of the true mass and the instrument resolutions were less than 0.75 amu at 5 percent peak height for all analytes in the tune solution. No site sample qualifications were required.

\subsection*{2.3 CALIBRATION}

The ICV and CCV results showed acceptable recoveries, \(90-110 \%\) for the ICP and ICP/MS metals. Copper was not recovered in the 1.0 ppb reporting limit standard and was recovered at \(66 \%\) in the 2.0 ppb reporting limit check standard; however, the associated (and retained) copper result was \(\geq 3 \times R L\), and no qualifications were required. The reporting limit check standards associated with the retained results were recovered within the AMEC control limits of \(70-130 \%\). No sample qualifications were required.
\begin{tabular}{lrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOB0980 \\
\hline
\end{tabular}

\subsection*{2.4 BLANKS}

Boron was detected in a bracketing CCB at \(0.0248 \mathrm{mg} / \mathrm{L}\); therefore, boron detected in Outfall 001 was qualified as estimated, "UJ." Chromium was reported in the method blank at \(0.670 \mu \mathrm{~g} / \mathrm{L}\); however, this was insufficient to qualify the retained chromium result. No other detects were reported in the method blanks or CCBs and no further qualifications were required due to the method and calibration blank results.

\subsection*{2.5 ICP INTERFERENCE CHECK SAMPLE (ICS A/AB)}

ICSA and ICSAB analyses were included in the raw data for the ICP analyses, but were not run on the day the site sample was analyzed. The recoveries for the interferents and the other spiked analytes were within the control limits of 80-120\%. No ICP/MS ICSA and ICSAB analyses reported with the retained ICP/MS results; therefore, no assessment was made with respect to this criterion. No qualifications were required.

\subsection*{2.6 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

The ICP LCS and ICP/MS samples associated with the retained results were identified as 5B12044BS1 and 5B12041-BS1, respectively. The LCS results on the summary forms and in the raw data were within the laboratory-established ICP and ICP/MS control limits of \(85-115 \%\). No qualifications were required.

\subsection*{2.7 LABORATORY DUPLICATES}

No MS/MSD or laboratory duplicate analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

\subsection*{2.8 MATRIX SPIKE}

No MS/MSD analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion. Method accuracy was evaluated based on LCS results.

\subsection*{2.9 FURNACE ATOMIC ABSORPTION QC}

Furnace atomic absorption was not utilized for the analysis of this sample; therefore, furnace atomic absorption QC is not applicable.
\begin{tabular}{rrr} 
& Project: & NPDES \\
DATA VALIDATION REPORT & SDG No.: & IOB0980 \\
\hline
\end{tabular}

\subsection*{2.10 ICP/MS AND ICP SERIAL DILUTION}

No serial dilution analyses were performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

\subsection*{2.11 INTERNAL STANDARDS PERFORMANCE}

Scandium was recovered above the control limit in Outfall 001; however, as scandium was not the internal standard associated with the reported analytes, no qualifications were required. The remaining ICP-MS internal standard recoveries for the site sample and associated QC sample analyses were within the \(60-125 \%\) control limits and no qualifications were required.

\subsection*{2.12 SAMPLE RESULT VERIFICATION}

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Cobalt detected below the reporting limit in Outfall 001 was qualified as estimated, "J."

The laboratory twice reanalyzed Outfall 001 for iron, chromium, copper, lead, manganese, and zinc, and reported the results as Outfall 001 RE1 and Outfall 001 RE2. As the reanalyzes yielded results similar to the original analysis, the reviewer rejected, "R," the results in both reanalyses, Outfall 001 RE1 and Outfall 001 RE2, in favor of the original results, Outfall 001 . No further qualifications were required.

\subsection*{2.13 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated sample.

\subsection*{2.13.1 Field Blanks and Equipment Rinsates}

The sample in this SDG had no associated field QC samples. No qualifications were required.

\subsection*{2.13.2 Field Duplicates}

There were no field duplicate analyses performed in association with the site sample.

\section*{D Del Mar Analytical}
```

 Projecr ID: Annual Outfall 001
 Sampled: 021105
 Fepor: Number: $10 B 0980$
Received: 021105

```

\section*{DRAFT: METALS}

MDL Reporting Sample Dilution Date Date Data
Analyte Method Batch Limit Limit Result FactorExtracted Analyzed Qualifiers

Sample ID: IOB0980-01 (DRAFT: Outfall 001 - Water) - cont.
Reporting Units: mg/
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Boron & EPA 200.7 & SB12044 & 0.0074 & 0.050 & 0.054 & 1 & \(02112 / 05021205\) & UJ B & & B \\
\hline Iron & EPA 200.7 & SB12044 & 0.0088 & 0.040 & 27 & 1 & \(02 / 12 / 05021205\) & & & \\
\hline
\end{tabular}

\section*{AMEG VAZIDATED}


```

MWH-Pasadena/Booing Froject 10: Anmual Outrall 001

```

300 North Lake Avenue, Suite 1200
Pasadena, CA91101
Attention: Bronwyn Kelly

Froject 1D: Annual Outfall 001
Repor: Number: IOB0980

Sampled: 021165
Received: 2211105
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & \[
\text { all Method } 001
\] & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
Dilution \\
FactorE
\end{tabular} & Date Extracted & Date Analyzed & \[
\frac{\mathrm{D}}{\mathrm{~d}} \mathrm{Qual}
\] & \begin{tabular}{l}
ata \\
lifiers
\end{tabular} \\
\hline \begin{tabular}{l}
Sample ID: IOB0980-01RE1 \\
Reporting Units: mg/
\end{tabular} & T: Outfall & - Water) & cont. & & & & & & Row & \begin{tabular}{l}
Qua \\
Code
\end{tabular} \\
\hline Iron & EPA 200.7 & 5B14113 & 0.0088 & 0.040 & 27 & ! & 02:4105 & 02.1505 & \(R\) & D \\
\hline
\end{tabular}

AMECO MOATED

\footnotetext{
DRAFT REPORT
DRAFT REPORT
DATASUBIECT TO CHANGE
}




```

MWH-Pasadena/Boeing Froject ID: Amnual Outfall 001
300 Norh Lake Averuz, Suite 1200
Pasadena, CA 91101
Actention: Bronwyn Kelly

```

Project ID: Ampual Outfall 001
Report Number: IOB0980

Sampled: 021105
Received: 02/11/0s

\section*{DRAFT: METALS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & \begin{tabular}{l}
MDL \\
Limit
\end{tabular} & Reporting Limit & Sample Result & Dilution Factor & Date Extracted & Date
Analyze & \[
\begin{array}{r}
\text { D } \\
\text { Qual }
\end{array}
\] & Data alifiers \\
\hline Sample ID: 1OB0980-01RE2 (DRAF Reporting Units: mg/ & \begin{tabular}{l}
0 otfal \\
T: Outfall 0
\end{tabular} & \[
\begin{aligned}
& 601 R E \\
& -W, \text { Water) }
\end{aligned}
\] & & & & & & & Qual & Qual
code \\
\hline Iren & ERA 200.7 & 5817052 & 0.0088 & 0.040 & 29 & 1 & 02.1205 & 021705 & \(R\) & D \\
\hline
\end{tabular}

AMrec reanown





MWH-Pasadena'Boeing 300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001
Report Number: \(10 B 0980\)

Sampled: 0211105
Received: 021110s

\section*{DRAFT: METALS}

MDL Reporting Sample Dilution Date Date Data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Batch & MDL Limit & Reporting Limit & Sample Result & Dilution Date Factor Extracted & Date Analyzed &  & ta fifers \\
\hline Sample D: Reporti & utfall 001 - & ater) - cont & & & & & & 3u & Quo
\[
\cot
\] \\
\hline Chromium & EPA 200.7 & 5B12044 & 0.68 & 5.0 & 27 & \(102 / 205\) & \(02 / 1205\) & & \\
\hline Cobalt & EPA 200.7 & \(5 \mathrm{B12044}\) & 0.89 & 10 & 6.8 & \(02 / 12105\) & 021205 & \(J\) & DNE \\
\hline Copper & EPA 200.8 & 5812041 & 0.49 & 2.0 & 13 & 02/12:05 & 02/14/05 & & \\
\hline Lead & EPA 200.8 & \(5 \mathrm{B12041}\) & 0.13 & 1.0 & 9.7 & \(02 / 1205\) & 02/14/05 & & \\
\hline Manganese & EPA 200.7 & \(5 \mathrm{B12044}\) & 3.2 & 20 & 370 & 02/12,05 & 02/12:05 & & \\
\hline Vanadium & EPA 200.7 & 5 B 12044 & 1.4 & 10 & 48 & \(102 / 1205\) & 02/12/05 & & \\
\hline Zinc & EPA 200.7 & 5B12044 & 3.7 & 20 & 90 & \(102 / 12 / 05\) & 02/1205 & & \\
\hline
\end{tabular}

AMEC UAMSATED


\section*{DRAFT REPORT}

DRAFT REPORT
DATA SUBIECT TOCHANCE
\begin{tabular}{lll} 
MWH-Pasadena Boeing & Project ID: Annual Outfall 001 & \\
300 North Lake Avenue, Suite 1200 & Repor Number: \(10 B 0980\) & Sampled: \(02 / 1105\) \\
Pasaden, CA 9ll01 & Received: \(02 / 1105\)
\end{tabular}

\section*{DRAFT: METALS}


DRAFT REPORT
DRAFT REPORT
DATA SUBTECT TOGHANGE

\title{
2. Del Mar Analytical
}
```

MWH-Pasadena/Boeing
Project ID: Annual Outfall 001
Sampled: 02:11/05

```

300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Repor Number: \(10 \mathrm{B0980}\)
Project ID: Annual Outfall 001
```

Received: 02:11/05

```

\section*{DRAFT: METALS}

AMECVALIOATED

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA
AMEC Earth \& Environmental

\section*{550 South Wadsworth Boulevard}

Suite 500
Lakewood, CO 80226
Laboratory Del Mar
\(\begin{aligned} & \text { Reviewer H. Chang } \\ & \text { Analysis/Method Pesticides PCBs/608 }\end{aligned}\)
\begin{tabular}{|cc|}
\hline ACTION ITEMS \\
\hline 1. & Case Narrative \\
& Deficiencies
\end{tabular}
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
\begin{tabular}{|c|c|}
\hline 6. Deviations from Analysis & Sample was qualified due to \(\% \mathrm{D}\) above \(15 \%\) in continuing calibration. \\
\hline Protecol, e.g., & \\
\hline Holding Times & \\
\hline GCMS Tune/Inst. Perform & \\
\hline Calibrations & \\
\hline Blanks & \\
\hline Surrogates & \\
\hline Matrix Spike/Dup LCS & \\
\hline Field QC & \\
\hline Internal Standard Performance & \\
\hline Compound Identification and & \\
\hline Quantitation & \\
\hline System Performance & \\
\hline COMMENTS \({ }^{\text {b }}\) & \\
\hline
\end{tabular}

\footnotetext{
\({ }^{2}\) Subcontracted analytical laboratory is not meeting contract and/or method requirements.
\({ }^{6}\) Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.
}

\title{
amec \({ }^{\theta}\)
}

\title{
DATA VALIDATION REPORT
}

NPDES Monitoring

\section*{ANALYSIS: PESTICIDES/PCBs}

\section*{SAMPLE DELIVERY GROUP: IOB0980}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226
\begin{tabular}{ll} 
DATA VALIDATION REPORT & SDG: \\
\hline & Analysis: \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

\author{
Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010 \\ SDG\#: IOB0980 \\ Project Manager: B. Mcllvaine \\ Matrix: Water \\ Analysis: Pesticides/PCBs \\ QC Level: Level IV \\ No. of Samples: 1 \\ No. of Reanalyses/Dilutions: 0 \\ Reviewer: H. Chang \\ Date of Review: March 31, 2005
}

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedures (DVP-4, Rev.2), EPA Method 608, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary form as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.
\begin{tabular}{lr} 
Droject: \begin{tabular}{r} 
NPDES \\
DATA VALIDATION REPORT
\end{tabular} \begin{tabular}{l} 
SDG: \\
\hline
\end{tabular}\(\quad\)\begin{tabular}{l} 
IOB0980 \\
P/PCB
\end{tabular} \\
\hline
\end{tabular}

Table 1. Sample identification
\begin{tabular}{|c|c|c|c|c|}
\hline Client ID & EPA ID & Laboratory ID & Matrix & Method \\
\hline Outfall 001 & Outfall 001 & IOB0980-01 & water & 608 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
& \begin{tabular}{l} 
Project: \\
DPDES \\
DATA VALIDATION REPORT
\end{tabular} \\
\hline
\end{tabular}

\section*{2. DATA VALIDATION FINDINGS}

\subsection*{2.1 SAMPLE MANAGEMENT}

The following are findings associated with sample management:

\subsection*{2.1.1 Sample Preservation, Handling, and Transport}

The sample was received at the laboratory with cooler temperature within limits of \(4^{\circ} \mathrm{C}\) \(\pm 2^{\circ} \mathrm{C}\). The analysis did not require preservation, and no preservation was noted in the field. The COC noted that the samples were received intact. No qualifications were required.

\subsection*{2.1.2 Chain of Custody}

The COC was signed and dated by both field and laboratory personnel. The COC accounted for the analysis presented in this SDG. As the sample was couriered directly to the laboratory, custody seals were not required. No qualifications were required.

\subsection*{2.1.3 Holding Times}

The water sample was extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

\subsection*{2.2 PESTICIDES INSTRUMENT PERFORMANCE}

No resolution check standards or breakdown check standards are required by Method 608 for pesticides, and according to the raw data provided, a resolution check standard was not analyzed by the laboratory. The laboratory analyzed a endrin/DDT breakdown check standard with a breakdown of \(\leq 20 \%\) for individual components ( \(4,4-\) DDT and endrin) and \(\leq 30 \%\) for the total, as suggested in the National Functional Guidelines. A review of the raw data indicated that the resolution of the pesticide compounds were adequate.

According to the laboratory SOP and the initial calibration raw data, the retention time windows are \(\pm 0.10\) minutes for both surrogates and target compound calibration standards. A review of the raw data indicated that the laboratory retention time criteria were met for the surrogates and pesticide calibration standards. No qualifications were required.

\subsection*{2.3 CALIBRATION}

\subsection*{2.3.1 Analytical Sequence}

Based on the data provided, the analytical sequences were in accordance with the requirements of Method 608. No qualifications were required.
\begin{tabular}{ll} 
& \begin{tabular}{l} 
Project: \\
DATA VALIDATION REPORT
\end{tabular} \\
\begin{tabular}{l} 
SDGES \\
IOB0980 \\
Analysis:
\end{tabular} \\
\hline
\end{tabular}

\subsection*{2.3.2 Initial Calibration}

There was one initial calibration dated 02/15/05 associated with the pesticide analysis of this SDG, which consisted of six point calibrations for the single component pesticides on two analytical columns. The \%RSDs were within the EPA Method 608 QC limit of \(\leq 10 \%\) or the \(r^{2}\) values were \(\geq 0.995\) on both analytical columns. There was no initial calibration reported for toxaphene; however, a toxaphene ICV was analyzed prior to sample analysis and was utilized as the identification standard. An ICV was analyzed immediately following each of the initial calibrations. The \%Ds for all target compounds were within the QC limits of \(15 \%\) on both analytical columns. A representative number of \%RSDs and ICV \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

There was one initial calibration dated 02/11/05 associated with the PCB analysis in this SDG which consisted of five points for Aroclor 1016 and Aroclor 1260. The average \%RSD for Aroclor 1016 and Aroclor 1260 were \(\leq 10 \%\). There were no initial calibration data for Aroclors 1221, 1232, 1248, and 1254. An ICV containing Aroclors 1016 and 1260 was analyzed immediately following each of the initial calibrations. The \(\% \mathrm{Ds}\) for all target compounds were within the QC limits of \(15 \%\) on both analytical columns. A representative number of \%RSDs and ICV \(\%\) Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.3.3 Continuing Calibration}

There were four continuing calibration analyses; two preceding and two following the sample analysis. The \(\% \mathrm{D}\) for heptachlor was above \(15 \%\) in one of the continuing calibrations on the primary column (channel B). This compound was qualified as an estimated nondetect, "UJ." All other \%Ds were \(\leq 15 \%\) in the primary column in the other continuing calibrations. Since there were no detects in the sample requiring confirmation, confirmation column (channel A) data were not assessed.

The PCB analysis for this SDG was bracketed by two CCVs with the \%Ds for Aroclor 1016 and Aroclor 1260 in both CCVs \(\leq 15 \%\) on the primary column (channel B). A representative number of \%Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.4 BLANKS}

\subsection*{2.4.1 Instrument Blanks}

An instrument blank was analyzed at the beginning of the analytical sequence. There were no target compound detects in the instrument blank. No qualifications were necessary.

\subsection*{2.4.2 Method Blanks}

One water method blank (5B14073-BLK1) was extracted and analyzed with the sample in this SDG. There were no detects for target compounds in the method blank. Review of the chromatograms showed no false negatives. No qualifications were required.
\begin{tabular}{ll} 
& Project: \begin{tabular}{r} 
NPDES \\
DATA VALIDATION REPORT
\end{tabular} \begin{tabular}{r} 
SDG: \\
IOB0980 \\
Analysis: \\
P/PCB
\end{tabular} \\
\hline
\end{tabular}

\subsection*{2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES}

One blank spike/blank spike duplicate pair (5B14073-BS1/BSD1) was extracted and analyzed with this SDG. The recoveries for all spiked pesticide target compounds and Aroclors were within the laboratory-established QC limits and the RPDs were \(\leq 30 \%\). A representative number of recoveries were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

\subsection*{2.6 SURROGATE RECOVERY}

The sample and all QC samples were fortified with the surrogate compounds decachlorobiphenyl and tetrachloro-m-xylene. Surrogate recoveries for the pesticide and PCB analyses of the samples were within the laboratory-established QC limits. The recoveries were calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

\subsection*{2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE}

There were no MS/MSD analyses associated with this SDG. Method accuracy and precision were assessed based on the blank spike/blank spike duplicate results. No qualifications were required.

\subsection*{2.8 SAMPLE CLEANUP PERFORMANCE}

According to the laboratory extraction benchsheets, PCB extracts were acid washed. No other cleanups were performed. No qualifications were required.

\subsection*{2.9 FIELD QC SAMPLES}

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

\subsection*{2.9.1 Field Blanks and Equipment Rinsates}

There were no field QC samples associated with the samples in this SDG. No qualifications were required.

\subsection*{2.9.2 Field Duplicates}

There were no field duplicate samples associated with the sample in this SDG.
\begin{tabular}{ll} 
& Project: \begin{tabular}{c} 
NPDES \\
DATA VALIDATION REPORT
\end{tabular} \\
\hline
\end{tabular}

\subsection*{2.10 COMPOUND IDENTIFICATION}

The laboratory analyzed for pesticide target compounds and PCBs by EPA Method 608. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for the samples in this SDG. No qualifications were required.

\subsection*{2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS}

Compound quantification was verified for this SDG. Since there were no detects reported in the samples, quantitation was verified by recalculating a representative number of blank spike and surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibration and the laboratory MDL studies. The water reporting limits were not adjusted for the sample volume; however, the dilution factor listed on the summaries reflects the actual volume. Results were reported in ug \(/ \mathrm{L}\) (ppb). No qualifications were required.





```

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwry Kelly

```
```

 ?roject ID: Annual Outfall 001
    ```
    ?roject ID: Annual Outfall 001
Sampled: 02:11/05
```

```
Repoit Number: IOB0980 Received: 0211105
```

```
Repoit Number: IOB0980 Received: 0211105
```


DRAFT: ORGANOCHLORINE PESTICIDES (EPA 608)

MDL Reporting Sample Dilution Date Batch Limit Limit Result Factor Extracted

Date Date Data
Analyzed Qualifier

Sample ID: 1OB0980-01 (DRAFT: Outfall 001 ~ Water) - cont. Reporting Units: ugh $/$

AMES VALIDATED

level IV

DRAFT REPORT

DRAFT REPORT
DATA SUBJECT TO CHANGE
MWH-Pasadena/Bocing

| Froject ID: Annual Outfall 001 | |
| :--- | :--- |
| 300 North Lake Avenue, Suite 1200 | Repor Number: $10 B 0980$ |\quad Sampled: 02:11/05

Pasadena, CA 91101
Attention: Bronwyn Kelly

DRAFT: TOTAL PCBS (EPA 608)

AMEC VAlIDATED

LEVEL IT

DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE

CONTRACT COMPLLANCE SCREENING FORM FOR HARDCOPY DATA

| AMEC Earth \& Environmental | Package ID T711RA4 |
| :---: | :---: |
| 550 South Wadsworth Boulevard | Task Order 313150010 |
| Suite 500 | SDG No. Multiple |
| Lakewood, CO 80226 | No. of Analyses 11 |
| Laboratory Del Mar | Date: 03/24/05 |
| Reviewer P. Meeks | Reviewer's Signature |
| Analysis/Method Radionuclides | P. Mel |

$\left.\begin{array}{|lll|}\hline \text { AClION IIEMS' } \\ \hline \text { 1. } & \text { Case Narrative } \\ \text { Deficiencies }\end{array}\right]$

amec ${ }^{9}$

DATA VALIDATION REPORT

NPDES
Monitoring

ANALYSIS: RADIONUCLIDES

SAMPLE DELIVERY GROUPS:
 IOB0418, IOB0980, IOB0993, IOB0996, IOB0997, IOB1001, IOB1004, IOB1014, \& IOB1069

Prepared by
AMEC--Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

| | | Project: | NPDES |
| :---: | :---: | :---: | :---: |
| DATA VALIDATION REPORT | | SDG No.: | Multiple |
| DATA VALIDATION REPORT | | Analysis: | Rad |

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOB0418, IOB0980, IOB0993, IOB0996, IOB0997, IOB1001, IOB1004, IOB1014, \& IOB1069
Project Manager: B. McIlvaine
Matrix: Water
Analysis: Radionuclides
QC Level: Level IV
No. of Samples: 11
No. of Reanalyses/Dilutions: 0
Reviewer: P. Meeks
Date of Review: March 23, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the EPA Prescribed Procedures for Measurements of Radioactivity in Drinking Water, Methods 900.0, 905.0, and 906.0, and validation procedures outlined in the USEPA CLP National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

| | Project: | NPDES |
| ---: | ---: | ---: |
| DATA VALIDATION REPORT | SDG No.: | Multiple |

Table 1. Sample identification

| Client ID | Del Mar ID | Eberline ID | Matrix | COC Method |
| :---: | :---: | :---: | :---: | :---: |
| Outfall 002 | IOB0418-01 | $8237-001$ | water | $900.0,905.0,906.0$ |
| Outfall 001 | IOB0980-01 | $8265-001$ | water | $900.0,905.0,906.0$ |
| Outfall 001RE1 | IOB0980-01RE1 | $8265-001$ | water | 900.0 |
| Outfall 007 | IOB0993-01 | $8261-001$ | water | $900.0,905.0,906.0$ |
| Outfall 009 | IOB0996-01 | $8262-001$ | water | $900.0,905.0,906.0$ |
| Outfall 008 | IOB0997-01 | $8266-001$ | water | $900.0,905.0,906.0$ |
| Outfall 010 | IOB1001-01 | $8267-001$ | water | $900.0,905.0,906.0$ |
| Outfall 011 | IOB1004-01 | $8263-001$ | water | $900.0,905.0,906.0$ |
| Outfall 011 | IOB1014-01 | $8264-001$ | water | $900.0,905.0,906.0$ |
| Outfall 003 Filtered | IOB1069-01 | $8268-001$ | water | $900.0,905.0,906.0$ |
| Outfall 003 Unfiltered | IOB1069-02 | $8268-002$ | water | $900.0,905.0,906.0$ |
| Outfall 003 Substrate | IOB1069-03 | $8269-001$ | water | |

| | Project: |
| :--- | ---: |
| DATA VALIDATION REPORT | SDG No.: |

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

Most samples in these SDGs were received at Del Mar Analytical within the temperature limits of $4 \pm 2^{\circ} \mathrm{C}$. After the analyses were complet, Del Mar Analytical sent extra volume of Outfall 001 to Eberline for gross alpha reanalysis. No temperature information was provided by Eberline, the subcontract laboratory; however, as it is not necessary to chill radiological samples, no qualifications were required. All samples were received intact and in good condition.

According to the Eberline login sheet, Outfall 002 was received unpreserved. It was confirmed in correspondence with Eberline dated $01 / 31 / 05$, that the gross alpha, gross beta, and strontium samples were not preserved upon receipt; therefore, the nondetected strontium result for Outfall 002 was qualified as estimated, "UJ." According to the Los Angeles Water Quality Control Board (LARWQCB) guidance letter dated $01 / 12 / 05$, unfiltered samples should not be preserved and filtered aliquots should be preserved after filtration.

Eberline noted on their login sheets that Outfall 007, Outfall 008, Outfall 009 and Outfall 010 were received preserved, in plastic containers. Per the method, tritium samples should not be preserved. Per a telephone conversation with M. Mannion of Eberline, the pH of these samples was adjusted back to about 7 upon receipt at Eberline. Due to the improper pH adjustments, the tritium results for Outfall 007, Outfall 008 , Outfall 009 , and Outfall 010 were rejected, "R." Additional, unpreserved aliquots of Outfall 007 , Outfall 008, Outfall 009, and Outfall 010 were sent from Del Mar to Eberline for tritium reanalysis. These results were not available at the time of this report.

Additionally, according to the 01/12/05 LARWQCB guidance letter, samples collected for tritium analysis should be submitted in glass containers to avoid potential loss of tritium by sorption onto the plastic container. As the Outfall 007, Outfall 008, Outfall 009 and Outfall 010 tritium samples were previously rejected, no further qualifications were required.

2.1.2 Chain of Custody

The original COCs were signed and dated by field and laboratory personnel and the transfer COCs were signed by personnel from both laboratories. Filtered, unfiltered, and substrate analyses were requested for Outfall 011 (IOB1014) on the original COC from the field to Del Mar. There instructions did not appear on the transfer COC to Eberline and subsequently only filtered unanalyses were preformed. The remaining original and transfer COCs accounted for the samples and analyses presented in this data package. Eberline did not list the MWH IDs on the Form Is; therefore, the reviewer edited the Form Is to reflect these IDs. A reanalyses for gross alpha was requested for Outfall 001. To distinguish between the two results, the reviewer added an "RE1," suffix to the Outfall 001 and Del Mar Analytical IDs. No qualifications were required.

| | Project:
 DATA VALIDATION REPORT | SDG No.: |
| ---: | ---: | ---: |
| Nultiple | | |
| Mnalysis: | RAD | |

2.1.3 Holding Times

The tritium and strontium samples were analyzed within 180 days of collection. The Outfall 002 and Outfall 003 Unfiltered gross alpha and gross beta samples were analyzed beyond the five day holding time for unpreserved samples; therefore, these gross alpha and gross beta results were qualified as estimated, "J," for detects and, "UJ," for nondetects. No further qualifications were necessary.

2.2 CALIBRATION

The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

Gross Alpha

The initial calibration included with the data was performed in February 2003. All detector efficiencies were below 20%; therefore, the gross alpha results were qualified as estimated, "UJ," for nondetects and, "J," for detects, unless otherwise rejected (see section 2.10).

Tritium

No calibration standards were analyzed for this method. According to the laboratory, every sample was spiked for efficiency determination; therefore, no calibration is necessary. All detector efficiencies in the samples were at least 20% and were considered acceptable. All internal spike efficiency to default efficiency ratios were near 1 , indicating that quenching did not occur.

Gross Beta and Strontium-90

The initial calibrations were performed in June 1997. All gross beta detector efficiencies were at least 20% and were considered acceptable. All strontium chemical yields were at least 65% and were considered acceptable and the strontium continuing calibration results were within the laboratory control limits. No qualifications were necessary.

Cesium

The reviewer confirmed that the 662 KeV peak was used for quantitation, with an efficiency of 85%. No qualifications were necessary.

2.3 BLANKS

No measurable activities were detected in the method blanks; therefore, no qualifications were necessary.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

Three blank spikes (8261-002, 8237-002, 8269-002) were analyzed in association with the samples in these SDGs. The gross alpha, gross beta, and strontium recoveries for $8261-002$ were outside of the 3 sigma limits, but all had acceptable recoveries of $80 \%, 88 \%$, and 108%, respectively. The remaining blank spike results were within the 3 -sigma limits. No qualifications were necessary.

| | Project:
 DATA VALIDATION REPORT | SDG No.: |
| ---: | ---: | ---: |
| Nultiple | | |
| Analysis: | RAD | |

2.5 LABORATORY DUPLICATES

The laboratory performed duplicate analysis on Outfall 002, Outfall 007, and Outfall 003 Substrate. The gross alpha and tritium RPDs were greater than 20% for Outfall 007 . The gross alpha results were within 3 -sigma and were considered acceptable, but the tritium result was just above 3 -sigma; however, as no tritium detects were retained (see section 2.1.1), no qualifications were required. The remaining RPD were $\leq 20 \%$. No further qualifications were necessary.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

The laboratory performed matrix spike analyses on Outfall 002 and Outfall 007 for gross alpha, gross beta, and tritium. The Outfall 002 recovery for gross alpha was below 3 -sigma; therefore, the gross alpha results in all samples except Outfall 007 were qualified as estimated, "J," for detects and, "UJ," for nondetects. As Outfall 007 had an acceptable recovery for gross alpha, no qualifications were applied. The remaining recoveries were within the 3 -sigma limits. No further qualifications were necessary.

2.7 SAMPLE RESULT VERIFICATION

An EPA Level IV review was performed for the samples in these data packages. Sample results and MDAs reported on the sample result forms were verified against the raw data and no calculation or transcription errors were noted.

The original planchet for gross alpha in Outfall 001 was recounted once per a request from MWH personnel. The recount yielded an equivalent result as the original count and was not reported. The sample was later reanalyzed from extra sample volume provided by Del Mar Analytical, and was reported as Outfall 001 RE1. As the two gross alpha results were similar, the reviewer rejected, " R," the reanalysis, Outfall $001 \mathrm{RE1}$, in favor of the original result, Outfall 001 . No further qualifications were necessary.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples.

2.8.1 Field Blanks and Equipment Rinsates

The samples in these SDGs had no associated field QC samples. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate samples in these SDGs.

Eberline Services
ANALYSIS RESULTS

| SDG 2265 | Client DEL MAR ANAL |
| :---: | :---: |
| Work Order R502136-01 | Contract EROJECTH TOgO980 |
| Received Date $02 / 25 / 05$ | Matrix WATER |

Client Lab

[^17]

AMEC VALIDATED

Eberline Services
ANALYSIS RESULTS

SDG 8384
Work Order R503234-01
Received Date 03/30/05

Client DEL MAR ANAL
Contract RROJECTE IOBO980
Matrix WATER

AMEC VALIDATED
 LEVEL TT

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar
Reviewer M. Pokorny
Analysis/Method Semivolatiles

Package ID T711SV39
Task Order 313150010
SDG No. IOB0980
No. of Analyses 1
Date: March 31, 2005

ACTION ITEMS*
 1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables

| 6. Deviations from Analysis | Qualifications required for calibration and LCS outtiers. |
| :---: | :---: |
| Protocol, e.g.,
 Holding Times | |
| GCMMS Tune/finst. Perform | |
| Calibrations | |
| Blanks | |
| Surrogates | |
| Matrix Spike/Dup LCS | |
| Field QC | |
| Internal Standard Performance | |
| Compound Identification and | |
| Quantitation | |
| System Performance | |
| COMMENTS ${ }^{\text {b }}$ | |
| | |
| | |
| | |
| * Subcontracted analytical laboratory is not meeting contract andor method requirements.
 - Differences in protocol have been adopted by the laboratory but no action against the laboratory is required. | |
| | |

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: SEMIVOLATILES
\section*{SAMPLE DELIVERY GROUP: IOB0980}

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

| DATA VALIDATION REPORT | Project: SDG: | NPDES 1OB0980 |
| :---: | :---: | :---: |
| DAIA VALIDATIO rePORT | Analysis: | SVOC |

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOB0980
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Semivolatiles
QC Level: Level IV
No. of Samples: 1
No. of Reanalyses/Dilutions: 0
Reviewer: M. Pokorny
Date of Review: March 31, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Semivolatile Organics (DVP-3, Rev. 2), EPA Method 625, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the "R" data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

| | Project:
 DATA VALIDATION REPORT |
| :--- | :--- |
| AnG: | NPDES
 IOBO980 |
| SVOC | |

Table 1. Sample identification

| Client ID | EPA ID | Lab No. | Matrix | Method |
| :---: | :---: | :---: | :---: | :---: |
| Outfall 001 | Outfall 001 | IOB0980-01 | water | 625 |

| | Project:
 SDG: | NPDES
 IOB0980 |
| :---: | :---: | :---: |
| DATA VALIDATION REPORT | Analysis: | SVOC |

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The sample in this SDG was received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$, at $2^{\circ} \mathrm{C}$. The analysis did not require preservation, and no preservation was noted in the field. The COC noted that the sample was received intact. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by both field and laboratory personnel. The COC accounted for the analysis presented in this SDG. As the sample was couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The water sample was extracted within seven days of collection and analyzed within 40 days of collection. No qualifications were required.

2.2 GC/MS TUNING

The DFTPP tunes met the criteria specified in Method 625, and the sample was analyzed within 12 hours of the DFTPP injection time. No qualifications were required.

2.3 CALIBRATION

The initial calibration associated with this SDG was dated $02 / 17 / 05$. The average RRFs for were ≥ 0.05 and the $\%$ RSDs were $\leq 35 \%$ or $r^{2} \geq 0.995$ for all target compounds except for the r^{2} values for 2,4-dinitrophenol, 4-nitroaniline, and 4,6-dinitro-2-methylphenol. 2,4-Dinitrophenol, 4nitroaniline, and 4,6-dinitro-2-methylphenol were qualified as estimated nondetects, "UJ," in the sample of this SDG. A representative number of average RRFs and \%RSDs were checked from the raw data, and no calculation or transcription errors were noted. The continuing calibration associated with the sample analysis was analyzed $02 / 18 / 05$. The RRFs for all target compounds were ≥ 0.05, and the $\%$ Ds were $\leq 20 \%$, except for the $\% \mathrm{Ds}$ for n-nitrosodimethylamine, benzoic acid, and 4-nitrophenol. N-Nitrosodimethylamine, benzoic acid, and 4-nitrophenol were qualified as estimated nondetects, "UJ," in the sample of this SDG, unless otherwise rejected. A representative number of RRFs and \%Ds were checked from the raw data, and no calculation or transcription errors were noted. No further qualifications were required.

2.4 BLANKS

One method blank (5B14010-BLK1) was extracted and analyzed with this SDG. Diethylphthalate, fluorene, 2-methylnaphthalene, naphthalene, and phenanthrene were detected in the method blank. 2-Methylnaphthalene was qualified as a nondetect, "U," in the sample of this

DATA VALIDATION REPORT \begin{tabular}{r}
Project:

SDG:

Analysis:

NPDES

IOB0980

SVOC
\end{tabular}

SDG. Review of the raw data indicated no reportable false negatives. No further qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One blank spike/ blank spike duplicate pair (5B14010-BS1/BSD1) was extracted and analyzed with this SDG. For blank spike/blank spike duplicate pairs, qualifications are applied, if necessary, to the associated samples based on those recoveries consistently outside of the laboratoryestablished QC limits in both the blank spike and blank spike duplicate. Results for those compounds with recoveries not consistent within the pair, with RPDs above the QC limit, are qualified as estimated, "UJ," for nondetects, and "J," for detects, in the associated samples. All percent recoveries and RPDs were within the laboratory QC limits except for benzidine which was not recovered in the BSD and the RPDs for benzidine and NDMA. The sample of this SDG had benzidine and NDMA qualified as estimated nondetects, "UJ." A representative number of recoveries and RPDs were calculated from the raw data and no calculation or transcription errors were found. No further qualifications were required.

2.6 SURROGATE RECOVERY

The sample surrogate recoveries were within the laboratory QC limits. A representative number of recoveries were calculated from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

No MS/MSD analyses were associated with this SDG. Evaluation of method accuracy and precision was based on blank spike/blank spike duplicate results. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

2.8.1 Field Blanks and Equipment Rinsates

There were no field QC samples associated with this SDG. No qualifications were required.

2.8.2 Field Duplicates

There were no field duplicate samples associated with this SDG.

| DATA VALIDATION REPORT | Project: SDG: | NPDES 10B0980 |
| :---: | :---: | :---: |
| DAIA MALIDAIION REPORT | Analysis: | |

2.9 INTERNAL STANDARDS PERFORMANCE

The internal standard area counts and retention times were within the control limits established by the continuing calibration standards: $-50 \% /+100 \%$ for internal standard areas and ± 30 seconds for retention times. A representative number of recoveries were checked from the raw data, and no transcription or calculation errors were noted. No qualifications were required.

2.10 COMPOUND IDENTIFICATION

The laboratory analyzed for the semivolatile target compounds by EPA Method 625. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. No calculation or transcription errors were found. The reporting limits were supported by the low level of the initial calibration and the method detection limit study. No qualifications were required.

2.12 TENTATIVELY IDENTIFIED COMPOUNDS

TICs were not reported by the laboratory for this SDG. No qualifications were required.

2.13 SYSTEM PERFORMANCE

Review of the raw data indicated no problems with system performance. No qualifications were required.

MWH-Pasadena/Bocing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001
Report Number: $10 B 0980$

Sampled: 02:11/05
Received: 02,11/05

DRAFT: ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)


```
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite }120
Pasadena, CA 91101
Repo:t Number: IOB0980
Sampled: 02:11/05
Artention: Bronuyn Kelly
```


DRAFT: ACID \&: BASE/NEUTRALS BY GC/MS (EPA 625)

DRAFT REPORT
 DRAFT REPORT
 DATA SUBJECT TO CHANGE

The resths fertain ond to ite tamples twsed in the iaboratory. This report shall nor be fppordiced. csecpat hith. whou writen fermisson from Del Mar Analtical.

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

| AMEC Earth \& Environmental | Package ID T711TF44 |
| :---: | :---: |
| 550 South Wadsworth Boulevard | Task Order 313150010 |
| Suite 500 | SDG No. 1 IOB0980 |
| Lakewood, CO 80226 | No. of Analyses 2 |
| Laboratory Del Mar Analytical | Date April 1, 2005 |
| Reviewer K. Shadowlight | Reviewer's Signature |
| Analysis/Method TPH-Purgeable | KShadn lit |

ACTION ITEMS

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

GC/MS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and
Quantitation
System Performance
COMMENTS ${ }^{\text {b }}$
Acceptable as reviewed

[^18]
amec $^{\circledR}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: TPH/PURGEABLE

SAMPLE DELIVERY GROUP: IOB0980

Prepared by
AMEC Denver Operations 550 South Wadsworth Boulevard, Suite 500

Lakewood, Colorado 80226

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOB0980
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: TPH-Purgeable
QC Level: Level IV
No. of Samples: 2
No. of Reanalyses/Dilutions: 0
Reviewer: K. Shadowlight
Date of Review: April 1, 2005

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Extractable Total Fuel Hydrocarbons by GC (DVP-8, Rev. 2), USEPA SW-846 Method 8015M, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

| | Project:
 DATA VALIDATION REPORT | NPDES
 IOBO980 |
| :--- | ---: | ---: |
| Analysis: | TPH | |

Table 1. Sample identification

| Client ID | EPA ID | Lab No. | Matrix | Method |
| :---: | :---: | :---: | :---: | :---: |
| Outfall 001 | Outfall 001 | IOB0980-01 | water | $8015 \mathrm{M} / \mathrm{GRO}$ |
| Trip Blank | Trip Blank | IOB0980-02 | water | $8015 \mathrm{M} / \mathrm{GRO}$ |

DATA VALIDATION REPORT \quad| Project: |
| ---: |
| SDG: |
| Analysis: |

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in this SDG were received at Del Mar Analytical laboratory on ice within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The Del Mar Analytical case narrative noted that the samples were received intact, and the COC indicated the samples were properly preserved; however, information regarding absence of headspace was not provided. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by both field and laboratory personnel. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The water samples were analyzed within 14 days of collection. No qualifications were required.

2.2 CALIBRATION

One gasoline standard initial calibration dated $08 / 26 / 04$ was associated with this SDG. The $\%$ RSD for GRO (C4-C12) was within the QC limit of $\leq 20 \%$. An intial calibration verification (ICV) was not provided in the data package. The \%Ds for the CCVs bracketing the sample analyses were within the Method QC limit of $\leq 15 \%$. The $\%$ RSD and $\%$ Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.3 METHOD BLANKS

One water method blank (5B18031-BLK1) was associated with this SDG. GRO (C4-C12) was not detected above the MDL in the method blank. Review of the raw data indicated no false negative result. No qualifications were necessary.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One water method blank spike (5B18031-BS1) was associated with this SDG. GRO (C4-C12) was recovered within the laboratory-established QC limits of $70-140 \%$ in the blank spike. The recovery was checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

| | Project:
 DATA VALIDATION REPORT | NPDES
 IOBO980 |
| :--- | ---: | ---: |
| Analysis: | TPH | |

2.5 SURROGATE RECOVERY

The samples and QC were fortified with the surrogate compound bromofluorobenzene (BFB). The surrogate recovery was within the laboratory QC limits of $65-140 \%$ for the samples. The recovery was calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were not performed for this SDG; therefore, evaluation of method accuracy was based on the blank spike results. No qualifications were required.

2.7 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field QC samples:

2.7.1 Trip Blanks, Field Blanks, and Equipment Rinsates

Sample Trip Blank was the trip blank associated with this SDG. Target compound GRO was not detected in the trip blank. There were no other field QC samples associated with this SDG. No qualifications were required.

2.7.2 Field Duplicates

There were no field duplicate samples in this SDG.

2.8 COMPOUND IDENTIFICATION

The laboratory analyzed for GRO (C4-C12) by EPA SW-846 Method 8015M. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for the samples in this SDG. No qualifications were required.

2.9 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification was verified for this SDG by recalculating any sample detects, blank spike recoveries, and a representative number of surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibrations and by the laboratory MDL. No qualifications were required.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001
Repoit Number: 1OB0980

Sampled: 0211/05
Received: 02/11/05

DRAFT: VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)

DRAFT REPORT

DRAFT REPORT
D.ATA SUBJECT TO CHANGE

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA
AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer K. Shadowlight
Analysis/Method TPH-Extractable

Package ID T711TF45
Task Order 313150010
SDG No. IOB0980
No. of Analyses 1

ACTION ITEMS ${ }^{*}$

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

GC/MS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Intemal Standard Performance
Compound Identification and
Quantitation
System Performance

Acceptable as reviewed
${ }^{2}$ Subcontracted analytical laboratory is not meeting contract and or method requirements.

- Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

amec ${ }^{\text {Q }}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: TPH/EXTRACTABLE

SAMPLE DELIVERY GROUP: IOB0980

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

| DALA VALIDATION REPORT | Project:
 SDG: | NPDES
 IOBO980 |
| :---: | :---: | :---: |
| TPH | | |

1. INTRODUCTION

Task Order Title: NPDES Monitoring
Contract Task Order \#: 313150010
SDG\#: IOB0980
Project Manager: B. McIlvaine
Matrix: Water
Analysis: TPH-Extractable
QC Level: Level IV
No. of Samples: 1
No. of Reanalyses/Dilutions: 0
Reviewer: K. Shadowlight
Date of Review: April 1, 2005

The samples listed in Table 1 were validated based on the general guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Extractable Total Fuel Hydrocarbons by GC (DVP-8, Rev. 2), USEPA SW-846 Method 8015M, and validation guidelines outlined in the USEPA CLP National Functional Guidelines for Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form I as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

Table 1. Sample identification

| Client ID | EPA D | Lab No. | Matrix | Method |
| :---: | :---: | :---: | :---: | :---: |
| Outfall 001 | Outfall 001 | IOB0980-01 | water | $8015 \mathrm{M} / \mathrm{EFH}$ |

| | Project:
 DATA VALIDATION REPORT | NPDES
 SDG:
 IOBO80 |
| ---: | ---: | ---: |
| Analysis: | TPH | |

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The sample in this SDG was received at Del Mar Analytical laboratory on ice within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. The Del Mar Analytical case narrative noted that the sample containers were received intact. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by both field and laboratory personnel, and accounted for the analysis presented in this SDG. As the sample was couriered directly to the laboratory from the field, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The sample was extracted within seven days of sample collection and analyzed within 40 days of extraction. No qualifications were required.

2.2 CALIBRATION

The initial calibration associated with the sample analysis was analyzed on 11/11/04. The $\%$ RSD was within the QC limit of $\leq 20 \%$. The \%Ds for the initial calibration verification (ICV) and continuing calibrations associated with the sample analysis were $\leq 15 \%$. The $\%$ RSD and $\%$ Ds were recalculated from the raw data and no transcription or calculation errors were noted. No qualifications were required

2.3 METHOD BLANKS

One method blank (5B12001-BLK1) was extracted and analyzed with the sample in this SDG. EFH (C13-C22) was not present above the MDL in the method blank or in the instrument blank analyzed at the beginning of the analytical sequence. Review of the chromatograms showed no false negatives. No qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

One method blank spike/blank spike duplicate pair (5B12001-BS1/5B12001-BSID) was extracted and analyzed with the sample in this SDG. The recoveries of alkane range C13-C40 from spiked diesel was within the laboratory-established QC limits of $40-120 \%$ and the RPD was $\leq 25 \%$. The recoveries and RPD were checked from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.5 SURROGATE RECOVERY

The sample and QC were fortified with the surrogate compound n-octacosane. The surrogate recoveries were within the laboratory-established QC limits of $40-125 \%$. The recovery was calculated from the raw data and no transcription or calculation errors were noted. No qualifications were required.

2.6 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

There were no MS/MSD analyses associated with the sample of this SDG. Evaluation of method accuracy and precision was based on the BS/BSD results. No qualifications were required.

2.7 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based on method blanks and laboratory QC samples for usability. Any remaining detects are used to evaluate the associated sample. The following are findings associated with field QC samples:

2.7.1 Field Blanks and Equipment Rinsates

There were no field blank or equipment rinsate samples associated with the site sample in this SDG. No qualifications were required.

2.7.2 Field Duplicates

There were no field duplicate samples associated with this SDG.

2.8 COMPOUND IDENTIFICATION

The laboratory analyzed for EFH n-alkane range C13-C22 by EPA SW846 Method 8015M. Compound identification is verified at a Level IV validation. Review of chromatograms and retention times indicated no problems with compound identification for this SDG. No qualifications were required.

2.9 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification was verified for this SDG by recalculating any sample detect, blank spike recoveries, and a representative number of surrogate recoveries. Reporting limits were supported by the low level standard of the initial calibration and by the laboratory MDL. The reporting limit was not adjusted for sample amount; however, the dilution factor on the sample result summary reflected the sample amount extracted. No qualifications were required.

Whec Validated

DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA
AMEC Earth \& Environmental
550 South Wadsworth Boulevard
Suite 500
Lakewood, CO 80226
Laboratory Del Mar Analytical
Reviewer K. Shadowlight
Analysis/Method Volatiles

Package ID T711VO69
Task Order 313150010
SDG No. IOB0980
No. of Analyses 2
Date April 01, 2005

ACTION ITEMS ${ }^{*}$

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from Analysis

GCMS Tune/Inst. Perform
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard Performance
Compound Identification and
Quantitation
System Performance
COMMENTS ${ }^{\text {b }}$
${ }^{\text {a }}$ Subcontracted analytical laboratory is not meeting contract andor method requirements.
${ }^{6}$ Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

$a m e c^{\text {® }}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: VOLATILES
SAMPLE DELIVERY GROUP: IOB0980

Prepared by
AMEC Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

| | Project:
 DATA VALIDATION REPORT | NPDES
 IOB0980 |
| :---: | :---: | :---: |
| And: | | |

1. INTRODUCTION

Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010
SDG\#: IOB0980
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: Volatiles
QC Level: Level IV
No. of Samples: 2
No. of Reanalyses/Dilutions: 0
Reviewer: K. Shadowlight
Date of Review: March 31, 2005

The samples listed in Table 1 were validated based on the guidelines outlined in the AMEC Data Validation Procedure for Levels C and D Volatile Organics (DVP-2, Rev. 2), EPA Method 624, SW846 Method 8260B, and the National Functional Guidelines For Organic Data Review (2/94). Any deviations from these procedures are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the summary forms as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

| | Project:
 DATA VALIDATION REPORT |
| :--- | ---: |
| SDG: | NPDES |
| IOBO980 | |

Table 1. Sample identification

| Client ID | EPA ID | Lab No. | Matrix | Method |
| :---: | :---: | :---: | :---: | :---: |
| Outfall 001 | Outfall 001 | IOB0980-01 | water | 624 |
| Trip Blank | Trip Blank | IOB0980-02 | water | 624 |

| | Project:
 SDG:
 DATA VALIDATION REPORT |
| :--- | :--- |
| NPDES | |
| IOBO980 | |
| VOC | |

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

The following are findings associated with sample management:

2.1.1 Sample Preservation, Handling, and Transport

The samples in this SDG were received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$, at $4^{\circ} \mathrm{C}$. The samples were properly preserved. The COC noted that the samples were received intact; however, information regarding absence of headspace was not provided. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by both field and laboratory personnel. The COC accounted for the analyses presented in this SDG. As the samples were couriered directly to the laboratory, custody seals were not required. No qualifications were required.

2.1.3 Holding Times

The samples were analyzed within 14 days of collection. No qualifications were required.

2.2 GC/MS TUNING

The ion abundance windows shown on the quantitation reports were consistent with those specified in EPA Method 624, and all ion abundances were within the established windows. The samples and associated QC were analyzed within 12 hours of the BFB injection times. The Form Vs were verified from the raw data and no discrepancies between the summary forms and the raw data were noted. No qualifications were required.

2.3 CALIBRATION

Two initial calibrations dated 10/14/04 (trichlorotrifluoroethane, acrolein, and acrylonitrile only) and 02/07/05 were associated with this SDG. The average RRF for acrolein was <0.05 in the initial calibration dated 10/14/04; therefore, the nondetect results for acrolein were rejected, "R," in the samples of this SDG. The remaining average RRFs were ≥ 0.05 for all compounds listed on the sample result summaries. The $\%$ RSDs were $\leq 35 \%$ for the target compounds analyzed by EPA Method 624. There were two continuing calibrations dated 02/12/05 and 02/17/05 associated with the sample analyses. The RRF for acrolein was <0.05 in the continuing calibration dated $02 / 12 / 05$; therefore, the nondetect results for acrolein were rejected, "R," acrolein in the samples of this SDG. The RRFs were ≥ 0.05 for the remaining target compounds listed on the sample result summaries. The $\%$ Ds for acrolein, and acrylonitrile exceeded 20% in the continuing calibration dated $02 / 12 / 05$ and the $\% \mathrm{D}$ for trichlorotrifluoroethane exceeded 20% in the continuing calibration dated $02 / 17 / 05$; therefore, the nondetect results for trichlorotrifluoroethane, acrolein, and acrylonitrile were qualified as estimated, "UJ," in sample Outfall 001 . No qualifications were required for the Trip Blank. A

| | Project:
 DATA VALIDATION REPORT | NPDES
 SDG:
 IOBO980 |
| ---: | ---: | ---: |
| Analysis: | VOC | |

representative number of \%RSDs and average RRFs from the initial calibrations, and \%Ds and RRFs from the continuing calibrations were recalculated from the raw data, and no calculation or transcription errors were found. No further qualifications were required.

2.4 BLANKS

Two water method blanks (5B17020-BLK1 and 5B12011-BLK1) were associated with the sample analyses. There were no detects above the MDLs for the target compounds listed on the sample result summaries. The method blank raw data showed no evidence of false negatives. No qualifications were required.

2.5 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

Two water blank spikes (5B17020-BS1 and 5B12011-BS1) were associated with the sample analyses. All recoveries were within the laboratory-established QC limits. A representative number of recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.6 SURROGATE RECOVERY

The surrogates were recovered within the QC limits of $80-120 \%$ in the samples and associated QC. A representative number of surrogate recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD analyses were performed for sample Outfall 001 for this SDG. Recoveries and RPDs were within the laboratory-established control limits. A representative number of recoveries were recalculated from the raw data and no calculation or transcription errors were found. No qualifications were required.

2.8 FIELD QC SAMPLES

Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site sample. Following are findings associated with field QC samples:

2.8.1 Trip Blanks

Sample Trip Blank was the trip blank associated with this SDG. There were no target compounds detected above the MDLs in the trip blank. No qualifications were required.

| | |
| :---: | :---: |
| DATA VALIDATION REPORT | Project:
 SDG: |
| NPDES | |
| IOB0980 | |
| Analysis: | VOC |

2.8.2 Field Blanks and Equipment Rinsates

There were no field QC samples associated with this SDG. No qualifications were required.

2.8.3 Field Duplicates

There were no field duplicate samples associated with this SDG.

2.9 INTERNAL STANDARDS PERFORMANCE

Internal standard area counts and retention times for the samples in this SDG were within the control limits established by the continuing calibration standards: $+100 \% /-50 \%$ for internal standard areas and ± 0.50 minutes for retention times. A representative number of internal standard areas and retention times were verified from the raw data, and no calculation or transcription errors were noted. No qualifications were required.

2.10 COMPOUND DENTIFICATION

Target compound identification was verified at a Level IV data validation. The laboratory analyzed the volatile target compounds by EPA Method 624. A TIC search was performed for requested target compounds 1,2-dichloro-1,1,2-trifluororoethane and cyclohexane, as these compounds were not included in the calibration (see section 2.11). Neither compound was detected as a TIC. Chromatograms, retention times, and spectra for the samples and QC were examined and no target compound identification problems were noted. No qualifications were required.

2.11 COMPOUND QUANTIFICATION AND REPORTED DETECTION LIMITS

Compound quantification is verified at a Level IV data validation. The reporting limits were supported by the lowest concentrations of the initial calibration standards and by the MDL study. Calibration was not performed for target compounds 1,2-dichloro-1,1,2-trifluoroethane and cyclohexane; therefore, the laboratory performed only a TIC search for those compounds. Nondetects for both compounds were qualified as estimated, "UJ," in sample Outfall 001. Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike and surrogate recoveries from the raw data. Results were reported in $\mu \mathrm{g} / \mathrm{L}$ (ppb). No calculation or transcription errors were noted. No further qualifications were required.

2.12 TENTATIVELY IDENTIFIED COMPOUNDS

The laboratory did not provide TICs for this SDG. No qualifications were required.

2.13 SYSTEM PERFORMANCE

A review of the chromatograms and other raw data showed no identifiable problems with system performance. No qualifications were required.

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Ouffall 001
Repot Number: IOB0980

Sampled: 02:11/05
Received: 02:11/05

DRAFT: PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS
Analyte

Method
MDL Reporting Sample Dilution Date Limit Result FactorExtracted Date Data Analyzed Qualifiers Sample ID: 1OB0980-01 (DRAFT: Outfall 001-Water) Reporting Units: ug h

| 1,2-Dichloro-1,1,2-rifluoroethane | EPA 624 (MOD.) 5B17020 | N/A | 2.5 | ND | 1 | 02/17/05 0217:05 | U5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cyclohexane | EPA 624 (MOD | N/A | | | | - | |

Sample ID: 1OB0980-02 (DRAFT: Trip Blank - W ater) Reporting Units: ug/l
$\begin{array}{llllllllll}1,2 \text {-Dichloro-1,1,2-rifluoroethane EPA } 624 \text { (MOD.1 } 5 \mathrm{~B} 17020 & \mathrm{~N} / \mathrm{A} & 2.5 & \mathrm{ND} & 1 & 02 / 17 / 05 & 02 / 17 / 05\end{array}$


```
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
```

Project ID: Annual Outfall 001
Repot Number: IOB0980

Sampled: 021105
Received: 0211105

DRAFT: PURGEABLES BY GCMS (EPA 624)

DRAFT REPORT

AMECV MAED
DRAFT REPORT
DAT: SUBEECTTOCHANGE


```
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite }120
Pasadena, CA 91101
Attention: Bronwyn Kelly
```

Project 1D: Annual Outfall 001
Feport Number: $10 B 0980$

Sampled: 02\%1105
Received: 0211105

DRAFT: PERGEABLES BY GC/MS (EPA 624)

| | RAF | RGE. | LE | BY GC/ | S (E | A 624 | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analyte | Method | Batch | MDL
 Limit | Reporting Limit | Sample Result | Dilutio Factor | n Date Extracted | Date Analyzed | Data Qualifiers | 10 |
| Sample ID: 1OB0980-01 (DRAFT: Outfall 001 - Water) Reporting Units: ug $/$ | | | | | | | | | | |
| Bromodichloromethane | EPA 624 | 5817020 | 0.30 | 2.0 | ND | 1 | $02 / 1705$ | 0311705 | l | |
| Bromoform | EPA 624 | 5B17020 | 0.32 | 5.0 | ND | 1 | 02/17/05 | 02:17.05 | χ | |
| Bromomethane | EPA 624 | 5 B 17020 | 0.34 | 5.0 | ND | 1 | 02/17/05 | 0217.05 | | |
| Chlorobenzene | EPA 624 | 5B17020 | 0.36 | 2.0 | ND | 1 | 02/17/05 | 02/17:05 | | |
| Chloroethane | EPA 624 | 5B17020 | 0.33 | 5.0 | ND | 1 | 02/17/05 | 02/17/05 | | |
| Chloromethane | EPA 624 | 5B17020 | 0.30 | 5.0 | ND | 1 | 02/17/05 | 02:17\%5 | | |
| Dibromochloromethane | EPA 624 | 5817020 | 0.28 | 2.0 | ND | 1 | 02/17/05 | 02:17.05 | | |
| 1,2-Dichlorobenzene | EPA 624 | $5 \mathrm{B17020}$ | 0.32 | 2.0 | ND | 1 | 02/17/05 | 02/1705 | | |
| 1,3-Dichlorobenzene | EPA 624 | 5B17020 | 0.35 | 2.0 | ND | 1 | 02/17105 | 02/17:05 | | |
| 1,4-Dichlorobenzene | EPA 624 | 5B17020 | 0.37 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 | | |
| trans-1,2-Dichlorocthene | EPA 624 | 5B17020 | 0.27 | 2.0 | ND | 1 | 02/17/05 | 02/1705 | | |
| 1,2-Dichloropropane | EPA 624 | 5B17020 | 0.35 | 2.0 | ND | 1 | 02/17/05 | 02/17:05 | | |
| cis-1,3-Dichloropropene | EPA 624 | 5B17020 | 0.22 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 | | |
| trans-1,3-Dichloropropene | EPA 624 | 5B17020 | 0.24 | 2.0 | ND | 1 | 02/17/05 | 0217105 | | |
| Methylene chloride | EPA 624 | 5B17020 | 0.48 | 5.0 | ND | 1 | 02/17/05 | 02/17:05 | | |
| 1,1,2,2-Tetrachloroethane | EPA 624 | 5B17020 | 0.24 | 2.0 | ND | 1 | 02/17/05 | 02/1705 | \checkmark | |
| Surrogate: Dibromofluoromethane (80-120\%) | | | | | 111\% | | | | | |
| Surrogate: Toluene-d8 (80-120\%) | | | | | 109% | | | | | |
| Surrogate: 4-Bromofluorobentene (80-120\%) | | | | | 104\% | | | | | |
| Sample 1D. $10 B 0980-02$ (DRAFT: Trip Blank - Water) Reporting Units: ugh | | | | | | | | | | |
| Bromodichloromethane | EPA 624 | 5B17020 | 0.30 | 2.0 | ND | 1 | 02/17/05 | 02/1705 | u | |
| Bromoform | EPA 624 | 5B17020 | 0.32 | 5.0 | ND | 1 | 02/17105 | 02/17/05 | | |
| Bromomethane | EPA 624 | 5B17020 | 0.34 | 5.0 | ND | 1 | 0217105 | 02:1705 | | |
| Chlorobenzene | EPA 624 | 5B17020 | 0.36 | 2.0 | ND | 1 | 02117/05 | 02/1705 | | |
| Chloroethane | EPA 624 | 5B17020 | 0.33 | 5.0 | ND | 1 | 0211705 | 02/17/05 | | |
| Chloromethane | EPA 624 | 5B17020 | 0.30 | 5.0 | ND | 1 | 02/17/05 | 02/17/05 | | |
| Dibromochloromethane | EPA 624 | 5817020 | 0.28 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 | | |
| 1,3-Dichlorobenzene | EPA 624 | 5R17020 5B17020 | 0.32 0.35 | 2.0 | ND | 1 | 02/17/05 | 02.17/05 | | |
| 1,4-Dichlorobenzene | EPA 624 | 5B17020 | 0.37 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 | | |
| trans-1,2-Dichloroethene | EPA 624 | 5B17020 | 0.27 | 2.0 | ND | 1 | 02/1705 | 02/17/05 | | |
| 1,2-Dichloropropane | EPA 624 | 5B17020 | 0.35 | 2.0 | ND | 1 | 02/17/05 | 02.17:05 | | |
| cis-1,3-Dichloropropenc | EPA 624 | 5B17020 | 0.22 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 | | |
| trans-1,3-Dichloropropene | EPA 624 | 5B17020 | 0.24 | 2.0 | ND | 1 | 02.1705 | 02:17/05 | | |
| Methylene chloride | EPA 624 | 5B17020 | 0.48 | 5.0 | ND | 1 | 02/17105 | 02.17105 | | |
| 1,1,2,2-Tetrachloroethane | EPA 624 | 5B17020 | 0.24 | 2.0 | ND | 1 | 02/1705 | 02/17105 | \checkmark | |
| Surrogate: Dibromofluoromethane ($80-120 \%$) | | | | | 105\% | | | | | |
| Surrogate: Toluene-d8 (80-120\%) | | | | | 108% | | | | | |
| Surrogate: 4-Bromofuorobenzene (80-120\%) | | | | | 101% | | | | | |

DRAFT REPORT
 DRAFT REPORT
 DATA SUBJECT TO CHANGE

DRAFT: PURGEABLES BY GC/MS (EPA 624)

Analyse

Method Batch
MDL Reporting Sample Dilution Date Limit Limit Result Factor Extracted

Date Data
Analyzed Qualifier

Sample ID: IOB0980-01 (DRAFT: Outfall 001 - Water)

 Reporting Units: ugh/

DRAFT REPORT

DRAFT REPORT
DATA SUBJECT TO CHANGE

CONTRACT COMPLIANCE SCREENING FORM FOR HARDCOPY DATA

1. Case Narrative

Deficiencies
2. Out of Scope

Analyses
3. Analyses Not

Conducted
4. Missing Hardcopy

Deliverables
5. Incorrect Hardcopy

Deliverables
6. Deviations from

Analysis Protocol, e.g.,
Holding Times
GC/MS Tune/Inst.
Performance
Calibrations
Blanks
Surrogates
Matrix Spike/Dup LCS
Field QC
Internal Standard
Performance
Compound Identification and Quantitation
System Performance
\qquad
\square
\qquad

COMMENTS ${ }^{\text {b }} \quad . \quad |$| Acceptable as reviewed. |
| :--- |

- Subcontracted analytical laboratory is not meeting contract and/or method requirements.
* Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

amec ${ }^{\theta}$

DATA VALIDATION REPORT

NPDES Monitoring

ANALYSIS: GENERAL MINERALS SAMPLE DELIVERY GROUP: IOB0980

Prepared by
AMEC-Denver Operations
550 South Wadsworth Boulevard, Suite 500
Lakewood, Colorado 80226

| | Project: | NPDES. |
| ---: | ---: | ---: |
| DATA VALIDATION REPORT | SDG No.: | |
| IOB0980 | | |

1. INTRODUCTION

Task Order Title: NPDES Monitoring Contract Task Order \#: 313150010
Sample Delivery Group \#: IOB0980
Project Manager: B. Mcllvaine
Matrix: Water
Analysis: General Minerals
QC Level: Level IV
No. of Samples: 1
Reviewer: L. Jarusewic
Date of Review: March 30, 2005

The sample listed in Table 1 was validated based on the guidelines outlined in the AMEC Data Validation Procedures SOP DVP-6, Rev. 2, USEPA Methods for Chemical Analysis of Water and Wastes Method 350.2, 415.1, 160.2, 120.1 418.1. and 180.1. Standard Methods for the Examination of Water and Wastewater Method SM5540-C, and validation guidelines outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (2/94). Any deviations from these procedures and guidelines are documented herein. Qualifiers were applied in cases where the data did not meet the required QC criteria or where special consideration by the data user is required. Data qualifiers were placed on Form Is with the associated qualification codes. Analytes that were rejected for any reason are denoted on the Form L as having only the " R " data qualifier and associated qualification code(s) denoting the reason for rejection. Any additional problems with the data that may have resulted in an estimated value were not denoted by a qualification code since the data had already been rejected.

| Droject: | NPDES | |
| ---: | ---: | ---: |
| DATA VALIDATION REPORT | SDG No.: | IOB0980 |

Table 1. Sample identification

| Client ID | EPA ID | Laboratory ID | Matrix | COC Method |
| :---: | :---: | :---: | :---: | :---: |
| Outfall 001 | Outfall 001 | IOB0980-01 | Water | General Minerals |

| | Project: | NPDES |
| ---: | ---: | ---: |
| DATA VALIDATION REPORT | SDG No.: | IOB0980 |

2. DATA VALIDATION FINDINGS

2.1 SAMPLE MANAGEMENT

Following are findings associated with sample management:

2.1.1 Sample Preservation, Handing, and Transport

The sample in this SDG was received at the laboratory within the temperature limits of $4^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$. No preservation problems were noted by the laboratory. No qualifications were required.

2.1.2 Chain of Custody

The COC was signed and dated by field and laboratory personnel. The COC accounted for all analyses presented in this SDG. No sample qualifications were required.

2.1.3 Holding Times

The holding times were assessed by comparing the date of collection with the dates of analyses. The 28 -day analytical holding time for ammonia, total organic carbon, total recoverable hydrocarbons, and conductivity and the 7 -day holding time for total suspended solids, and the 48 -hour holding time for turbidity and surfactants were met. No qualifications were required.

2.2 CALIBRATION

For the applicable analyses, the initial calibration correlation coefficients were ≥ 0.995. Initial and continuing calibration information was acceptable with recoveries within the control limits of $90-110 \%$. For ammonia, no information regarding the standardization of the titrant was provided; however, as the LCS recovery was within the CCV control limits, no qualifications were required. Calibration is not applicable to total suspended solids. No qualifications were required.

2.3 BLANKS

Turbidity was detected in the method blank (5B12055-BLK1) for Outfall 001 at 0.040 NTU; however, the turbidity method blank result was insufficient to qualify the Outfall 001 result. The remaining method blank and CCB results reported on the summary forms and in the raw data for blank analyses associated with the sample were nondetects at the reporting limit. No qualifications were required.

2.4 BLANK SPIKES AND LABORATORY CONTROL SAMPLES

The laboratory control sample and laboratory control duplicate sample (total recoverable hydrocarbons only) recoveries were within the laboratory-established control limits. The LCS is not applicable to turbidity or conductivity. No qualifications were required.

| | Project: | NPDES |
| ---: | ---: | ---: |
| DATA VALIDATION REPORT | SDG No.: | IOB0980 |

2.5 SURROGATES RECOVERY

Surrogate recovery is not applicable to the analyses presented in this SDG.

2.6 LABORATORY DUPLICATES

There were no MS/MSD or duplicate analyses performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.7 MATRIX SPIKE/MATRIX SPIKE DUPLICATE

There were no MS/MSD analyses performed in association with the sample in this SDG; therefore, no assessment was made with respect to this criterion.

2.8 FURNACE ATOMIC ABSORPTION QC

Furnace atomic absorption was not utilized for the analyses of this sample; therefore, furnace atomic absorption QC is not applicable.

2.9 ICP SERIAL DILUTION

ICP serial dilution is not applicable to the analyses presented in this data validation report.

2.10 SAMPLE RESULT VERIFICATION

A Level IV review was performed for the sample in this data package. Calculations were verified, and the sample results reported on the Form I were verified against the raw data. No transcription errors or calculation errors were noted. No qualifications were required.

2.11 FIELD QC SAMPLES

Field QC samples are evaluated, and if necessary, qualified based only on laboratory blanks. Any remaining detects are used to evaluate the associated samples. The following are findings associated with field $Q C$ samples:

2.11.1 Field Blanks and Equipment Rinsates

The sample in this SDG had no associated field QC samples. No qualifications were required.

| | Project: | NPDES |
| ---: | ---: | ---: |
| DATA VALIDATIONREPORT | SDG No.: | IOB0980 |

2.11.2 Field Duplicates

There were no field duplicate pairs associated with this SDG.

NWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronuyn Kelly

Project ID: Annual Outfall 001

Repor Number: $10 B 0980$

DRAFT: TOTAL RECOYERABLE PETROLEUM HYDROCARBONS (EPA 418.1)

MDL Reporting Sample Dilution Date Date Data

Sample ID: IOB0980-01 (DRAFT: Outfall 001 - Water) Reporting Units: mg/

AMEC VARILATEU

 2520 E. Sunset Rd. *3, Las Vegas, NV 89120 (702) 798-3620 FAX Cot 798.3621

```
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
```

Project ID: Annual Outfall 001
Pepar Number $10 B 0980$ Sampled: 02111/05
Report Number: $10 B 0980$

Received: 0211/05

DRAFT: INORGANICS

MDL Reporting Sample Dilution Date Date Data Analyte Method Batch Limit Limit Resu

Sample ID: 1OB0980-01 (DRAFT: Outfall 001 - Water) - cont.

Reporting Units: NTU

Turbidity

AMEC VALIDATED

 2520 E. Sunsel Rd. 3, Las Vegas, NV 89120 (702) 798-36.20 FAX 4.702$) 790-3621$
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001
Report Number: IOB0980

Sampled: 0211/05
Received: 02111/05

DRAFT: INORGANICS

AMEC VALIDmicu

Project ID: Annual Outfall 001
Sampled: 02/11/05
Received: 02/1/05

DRAFT: INORGANICS

| Analyte | Method | Batch | MDL
 Limit | Reporting Limit | Sample Result | Dilution Factor | Date
 Extracted | Date Analyze |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID: IOB0980-01 (DRAFT: Outfall 001 - Water) - cont. Reporting Units: mg/ | | | | | | | | |
| Ammonia-N (Distilled) | EPA 350.2 | 5 B 11117 | 0.30 | 0.50 | 4 | | | 0211105 |
| Surfactants (MBAS) | SM5540-C | 5B12050 | 0.44 | 1.0 | 1.0 | 10 | 02/12/05 | 0212105 |
| Total Organic Carbon | EPA 415.1 | 5B17130 | 0.25 | 1.0 | 9.3 | 10 | $02 / 1705$ | 02/12.05 |
| Total Suspended Solids | EPA 160.2 | SB16128 | 10 | 10 | 460 | 1 | 02/16/05 | 02/16:05 |

AMEC VALIDATED

DRAFT REPORT
DRAFT REPORT
DATA SUBJECT TO CHANGE

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing
Project: Annual Outfall 001
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly
Sampled: 02/11/05
Received: 02/11/05
Issued: 04/02/05 15:39

NELAP \#01108CA California ELAP\#1197 CSDLAC \#10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chains) of Custody, 3 pages, are included and are an integral part of this report:
This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at $2^{\circ} \mathrm{C}$, on ice and with chain of custody documentation.
HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the Del Mar Analytical Sample Acceptance Policy unless otherwise noted in the report.
PRESERVATION: Samples requiring preservation were verified prior to sample analysis.
QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.
COMMENTS: \quad Results that fall between the MDL and RL are 'I' flagged.
SUBCONTRACTED:
Refer to the last page for specific subcontract laboratory information included in this report.
ADDITIONAL INFORMATION:

The metals results for sample IOB0980-01RE1 are confirmations and the aliquot used was taken from the original container and re-prepared for the analysis. The metals results for sample 1OB0980-01RE2 are confirmations and the aliquot used was taken from an unpreserved container that was preserved, allowed to acclimate for 24 hours, then was prepared and analyzed.

LABORATORY ID
1OB0980-01
IOB0980-02

| CLIENT ID | MATRIX |
| :--- | :---: |
| Outfall 001 | Water |
| Trip Blank | Water |

Reviewed By:

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001
Report Number: IOB0980
Sampled: 02/11/05
Received: 02/11/05

CORRECTIVE ACTION REPORT

Department: Extractions
Method: EPA 625
QC Batch: 5B14010

Date: 02/22/2005
Matrix: Water

Identification and Definition of Problem:

The percent recovery for benzidine in the BSD was below method acceptance limits.

Determination of the Cause of the Problem:

Benzidine is known to be a problematic compound. According to the EPA, it can be subject to oxidative losses during solvent extraction and its chromatographic behavior is poor.

Corrective Action Taken:

The percent recovery in the BS was within the acceptance limits. All results reported for benzidine are potentially biased low and can be considered estimates only.

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Report Number: IOB0980
Sampled: 02/11/05
Received: 02/11/05

CORRECTIVE ACTION REPORT

Department: Extractions
Method: EPA 625
QC Batch: 5B14010

Identification and Definition of Problem:
The Method Blank result for 2-Methylnaphthalene was above the reporting limit (8.7ppb).

Determination of the Cause of the Problem:
A definitive cause for the QC failure has not been determined.

Corrective Action Taken:

There was insufficient sample volume for re-analysis. Samples had J-flag hits and were flagged with 'B' qualifier.

Del Mar Analytical, Irvine

Michele Harper
Project Manager

| MWH-Pasadena/Boeing
 300 North Lake Avenue, Suite 1200
 Pasadena, CA 91101
 Attention: Bronwyn Kelly | | Project ID:
 Report Number: | Annual IOB0980 | Outfall 001 | | | | $\begin{aligned} & \text { ed: } 02 / 11 / 05 \\ & \text { ed: } 02 / 11 / 05 \end{aligned}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1) | | | | | | | | | |
| Analyte | Method | Batch | MDL
 Limit | Reporting Limit | Sample
 Result | Dilution
 Factor | Date Extracted | Date Analyzed | Data Qualifiers |
| Sample ID: 1OB0980-01 (Outfall 001-Water) | | | | | | | | | |
| Reporting Units: mg/ | | | | | | | | | |
| Total Recoverable Hydrocarbons | EPA 418.1 | 5B15078 | 0.31 | 1.0 | ND | 1 | 02/15/05 | 02/15/05 | |

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001
Report Number: $10 B 0980$
Sampled: 02/11/05

EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

| Analyte | Method | Batch | MDL
 Limit | Reporting Limit | Sample
 Result | Dilution
 Factor | Date Extracted | Date Analyzed | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID: IOB0980-01 (Outfall 001 - Water) - cont.
 Reporting Units: mg/ | | | | | | | | | |
| EFH (C13-C22)
 Surrogate: n-Octacosane (40-125\%) | EPA 8015B | 5B12001 | 0.082 | 0.50 | $\begin{aligned} & \text { ND } \\ & 74 \% \end{aligned}$ | 0.971 | 02/12/05 | 02/15/05 | |

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001
Sampled: 02/11/05
Received: 02/11/05

VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)

| Analyte | Method | Batch | MDL
 Limit | Reporting Limit | Sample
 Result | Dilution
 Factor | Date Extracted | Date Analyzed | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID: 1OB0980-01 (Outfall 001 - Water) - cont. Reporting Units: mg/l | | | | | | | | | |
| GRO (C4-C12)
 Surrogate: 4-BFB (FID) (65-140\%) | EPA 8015 Mod | 5B18031 | 0.050 | 0.10 | $\begin{aligned} & \text { ND } \\ & 96 \% \end{aligned}$ | 1 | 02/18/05 | 02/18/05 | |
| Sample ID: 1OB0980-02 (Trip Blank - Water) | | | | | | | | | |
| GRO (C4-C12)
 Surrogate: 4-BFB (FID) (65-140\%) | EPA 8015 Mod . | 5B18031 | 0.050 | 0.10 | $\begin{aligned} & \text { ND } \\ & 81 \% \end{aligned}$ | 1 | 02/18/05 | 02/18/05 | |

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001
Report Number: $10 B 0980 \quad \begin{array}{r}\text { Sampled: 02/11/05 } \\ \text { Received: } 02 / 11 / 05\end{array}$

PURGEABLES BY GC/MS (EPA 624)

Analyte
Method

Batch $\begin{array}{ll} & \text { MDL } \\ \text { Limit }\end{array}$

| Date | Data |
| :---: | :---: |
| Analyzed | Qualifiers |

Sample ID: IOB0980-01 (Outfall 001 - Water)

Reporting Units: ugh

| Benzene | EPA 624 | 5B17020 | 0.28 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Trichlorotrifluoroethane (Freon 113) | EPA 624 | 5B17020 | 1.2 | 5.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Carbon tetrachloride | EPA 624 | 5B17020 | 0.28 | 5.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Chloroform | EPA 624 | 5B17020 | 0.33 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| 1,1-Dichloroethane | EPA 624 | 5B17020 | 0.27 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| 1,2-Dichloroethane | EPA 624 | 5B17020 | 0.28 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| 1,1-Dichloroethene | EPA 624 | 5B17020 | 0.32 | 3.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Ethylbenzene | EPA 624 | 5B17020 | 0.25 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Tetrachloroethene | EPA 624 | 5B17020 | 0.32 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Toluene | EPA 624 | 5B17020 | 0.36 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| 1,1,1-Trichloroethane | EPA 624 | 5B17020 | 0.30 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| 1,1,2-Trichloroethane | EPA 624 | 5B17020 | 0.30 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Trichloroethene | EPA 624 | $5 \mathrm{B17020}$ | 0.26 | 5.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Trichlorofluoromethane | EPA 624 | 5B17020 | 0.34 | 5.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Vinyl chloride | EPA 624 | 5B17020 | 0.26 | 5.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Xylenes, Total | EPA 624 | 5B17020 | 0.52 | 4.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Surrogate: Dibromofluoromethane (80-120\%) | | | | | 111\% | | | |
| Surrogate: Toluene-d8 (80-120\%) | | | | | 109\% | | | |
| Surrogate: 4-Bromofluorobenzene ($80-120 \%$) | | | | | 104\% | | | |

Sample ID: IOB0980-02 (Trip Blank - Water)
 Reporting Units: ugh

| Benzene | EPA 624 | 5B17020 | 0.28 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Trichlorotrifluoroethane (Freon 113) | EPA 624 | 5B17020 | 1.2 | 5.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Carbon tetrachloride | EPA 624 | 5B17020 | 0.28 | 5.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Chloroform | EPA 624 | 5B17020 | 0.33 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| 1,1-Dichloroethane | EPA 624 | 5B17020 | 0.27 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| 1,2-Dichloroethane | EPA 624 | 5B17020 | 0.28 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| 1,1-Dichloroethene | EPA 624 | 5B17020 | 0.32 | 3.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Ethylbenzene | EPA 624 | 5B17020 | 0.25 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Tetrachloroethene | EPA 624 | 5B17020 | 0.32 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Toluene | EPA 624 | 5B17020 | 0.36 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| 1,1,1-Trichloroethane | EPA 624 | 5B17020 | 0.30 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| 1,1,2-Trichloroethane | EPA 624 | 5B17020 | 0.30 | 2.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Trichloroethene | EPA 624 | 5B17020 | 0.26 | 5.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Trichlorofluoromethane | EPA 624 | 5B17020 | 0.34 | 5.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Vinyl chloride | EPA 624 | 5817020 | 0.26 | 5.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Xylenes, Total | EPA 624 | 5B17020 | 0.52 | 4.0 | ND | 1 | 02/17/05 | 02/17/05 |
| Surrogate: Dibromofluoromethane (80-120\%) | | | | | 105% | | | |
| Surrogate: Toluene-d8 (80-120\%) | | | | | 108\% | | | |
| Surrogate: 4-Bromofluorobenzene (80-120\%) | | | | | 101% | | | |

Del Mar Analytical, Irvine

Michele Harper
Project Manager

| MWH-Pasadena/Boeing | Project ID: Annual Outfall 001 | |
| :--- | :--- | :--- |
| 300 North Lake Avenue, Suite 1200 | | Sampled: $02 / 11 / 05$ |
| Pasadena, CA 91101 | Report Number: 1OB0980 | Received: $02 / 11 / 05$ |
| Attention: Bronwyn Kelly | | |

PURGEABLES BY GC/MS (EPA 624)

| | | | MDL | Reporting | Sample | Dilution | Date | Date |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Analyte | Method | Batch | Limit | Limit | Result | Factor | Extracted | Analyzed |
| Qualifiers | | | | | | | | |

Del Mar Analytical, Irvine

Michele Harper
Project Manager

| MWH-Pasadena/Boeing
 300 North Lake Avenue, Suite 1200
 Pasadena, CA 91101
 Attention: Bronwyn Kelly | Project ID:
 Report Number: | Annual IOB0980 | Outfall 001 | | | Sampled: 02/11/05
 Received: 02/11/05 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PURGEABLES BY GC/MS (EPA 624) | | | | | | | | |
| Analyte Method | Batch | MDL
 Limit | Reporting Limit | Sample
 Result | Dilution
 Factor | Date Extracted | Date Analyzed | Data Qualifiers |
| Sample ID: IOB0980-01 (Outfall 001 - Water) Reporting Units: ug/ | | | | | | | | |
| Acrolein EPA 624 | 5B12011 | 4.6 | 50 | ND | 1 | 02/12/05 | 02/12/05 | |
| Acrylonitrile EPA 624 | 5B12011 | 5.1 | 50 | ND | 1 | 02/12/05 | 02/12/05 | |
| 2-Chloroethyl vinyl ether EPA 624 | 5B12011 | 1.3 | 5.0 | ND | 1 | 02/12/05 | 02/12/05 | |
| Surrogate: Dibromofluoromethane (80-120\%) | | | | 87\% | | | | |
| Surrogate: Toluene-d8 (80-120\%) | | | | 105\% | | | | |
| Surrogate: 4-Bromofluorobenzene (80-120\%) | | | | 98\% | | | | |
| Sample ID: IOB0980-02 (Trip Blank - Water) Reporting Units: ugI | | | | | | | | |
| | | | | | | | | |
| Acrolein EPA 624 | 5B12011 | 4.6 | 50 | ND | 1 | 02/12/05 | 02/12/05 | |
| Acrylonitrile EPA 624 | 5B12011 | 5.1 | 50 | ND | 1 | 02/12/05 | 02/12/05 | |
| 2-Chloroethyl vinyl ether EPA 624 | 5B12011 | 1.3 | 5.0 | ND | 1 | 02/12/05 | 02/12/05 | |
| Surrogate: Dibromofluoromethane (80-120\%) | | | | 84\% | | | | |
| Surrogate: Toluene-d8 (80-120\%) | | | | 104% | | | | |
| Surrogate: 4-Bromofluorobenzene (80-120\%) | | | | 94% | | | | |

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Sampled: 02/11/05
Report Number: IOB0980

PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS

| Analyte | Method | Batch | MDL
 Limit | Reporting Limit | Sample Result | Dilution
 Factor | Date Extracted | Date Analyzed | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID: 1OB0980-01 (Outfall 001 - Water) | | | | | | | | | |
| Reporting Units: ug/ | | | | | | | | | |
| 1,2-Dichloro-1,1,2-trifluoroethane | EPA 624 (MOD.) | 5B17020 | N/A | 2.5 | ND | 1 | 02/17/05 | 02/17/05 | |
| Cyclohexane | EPA 624 (MOD.) | 5B17020 | N/A | 2.5 | ND | 1 | 02/17/05 | 02/17/05 | |
| Sample ID: 1OB0980-02 (Trip Blank - Water) | | | | | | | | | |
| Reporting Units: ug/ | | | | | | | | | |
| 1,2-Dichloro-1,1,2-trifluoroethane | EPA 624 (MOD.) | 5B17020 | N/A | 2.5 | ND | , | 02/17/05 | 02/17/05 | |
| Cyclohexane | EPA 624 (MOD.) | 5B17020 | N/A | 2.5 | ND | 1 | 02/17/05 | 02/17/05 | |

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001
Report Number: IOB0980

Sampled: 02/11/05
Received: 02/11/05

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

| Analyte | Method | Batch | MDL
 Limit | Reporting Limit | Sample Result | Dllution
 Factor | Date Extracted | Date Analyzed | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID: 1OB0980-01 (Outfall 001 - Water) | | | | | | | | | |
| Reporting Units: ugh | | | | | | | | | |
| Acenaphthene | EPA 625 | 5814010 | 0.10 | 0.50 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Acenaphthylene | EPA 625 | 5B14010 | 0.10 | 0.50 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Aniline | EPA 625 | 5B14010 | 2.9 | 10 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Anthracene | EPA 625 | 5B14010 | 0.083 | 0.50 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Benzidine | EPA 625 | 5 B 14010 | 2.4 | 5.0 | ND | 0.962 | 02/14/05 | 02/18/05 | L2 |
| Benzoic acid | EPA 625 | 5B14010 | 3.7 | 20 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Benzo(a)anthracene | EPA 625 | 5B14010 | 0.038 | 5.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Benzo(a)pyrene | EPA 625 | 5B14010 | 0.14 | 2.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Benzo(b)fluoranthene | EPA 625 | 5B14010 | 0.050 | 2.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Benzo(g,h,i)perylene | EPA 625 | 5B14010 | 0.059 | 5.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Benzo(k)fluoranthene | EPA 625 | 5B14010 | 0.053 | 0.50 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Benzyl alcohol | EPA 625 | 5 B 14010 | 0.21 | 5.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Bis(2-chloroethoxy)methane | EPA 625 | 5B14010 | 0.072 | 0.50 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Bis(2-chloroethyl)ether | EPA 625 | 5B14010 | 0.084 | 0.50 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Bis(2-chloroisopropyl)ether | EPA 625 | 5B14010 | 0.11 | 0.50 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Bis(2-ethylhexyl)phthalate | EPA 625 | 5814010 | 1.1 | 5.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| 4-Bromophenyl phenyl ether | EPA 625 | $5 \mathrm{B14010}$ | 0.12 | 1.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Butyl benzyl phthalate | EPA 625 | 5814010 | 0.34 | 5.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| 4 Chloroaniline | EPA 625 | SB14010 | 0.20 | 2.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| 2-Chloronaphthalene | EPA 625 | 5B14010 | 0.059 | 0.50 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| 4-Chloro-3-methylphenol | EPA 625 | 5B14010 | 0.34 | 2.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| 4-Chlorophenyl phenyl ether | EPA 625 | SB14010 | 0.056 | 0.50 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| 2-Chlorophenol | EPA 625 | 5B14010 | 0.12 | 1.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Chrysene | EPA 625 | 5 B 14010 | 0.072 | 0.50 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Dibenz(a,h)anthracene | EPA 625 | 5814010 | 0.083 | 0.50 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Dibenzofuran | EPA 625 | 5B14010 | 0.075 | 0.50 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Di-n-butyl phthalate | EPA 625 | 5B14010 | 0.26 | 2.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| 1,2-Dichlorobenzene | EPA 625 | 5B14010 | 0.11 | 0.50 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| 1,3-Dichlorobenzene | EPA 625 | 5B14010 | 0.13 | 0.50 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| 1,4-Dichlorobenzene | EPA 625 | 5B14010 | 0.050 | 0.50 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| 3,3-Dichlorobenzidine | EPA 625 | 5B14010 | 0.93 | 5.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| 2,4-Dichlorophenol | EPA 625 | 5B14010 | 0.21 | 2.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Diethyl phthalate | EPA 625 | 5B14010 | 0.12 | 1.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| 2,4-Dimethylphenol | EPA 625 | 5B14010 | 0.31 | 2.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Dimethyl phthalate | EPA 625 | 5B14010 | 0.081 | 0.50 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| 4,6-Dinitro-2-methylphenol | EPA 625 | 5B14010 | 0.38 | 5.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| 2,4-Dinitrophenol | EPA 625 | 5B14010 | 2.7 | 5.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| 2,4-Dinitrotoluene | EPA 625 | 5B14010 | 0.23 | 5.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| 2,6-Dinitrotoluene | EPA 625 | 5B14010 | 0.24 | 5.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Di-n-octyl phthalate | EPA 625 | 5B14010 | 0.17 | 5.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| 1,2-Diphenylhydrazine/Azobenzene | EPA 625 | 5B14010 | 0.087 | 1.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Del Mar Analytical, Irvine Michele Harper Project Manager | | | | | | | | | |

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

| Project ID: Annual Outfall 001 | |
| :---: | ---: |
| Report Number: $10 B 0980$ | Sampled: $02 / 11 / 05$
 Received: $02 / 11 / 05$ |

Received: 02/11/05

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

| Analyte | Method | Batch | MDL
 Limit | Reporting Limit | Sample Result | Dilution
 Factor | Date Extracted | Date Analyzed | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID: 1OB0980-01 (Outfall 001 - Water) - cont. Reporting Units: ug/ | | | | | | | | | |
| | | | | | | | | | |
| Fluoranthene | EPA 625 | 5B14010 | 0.089 | 0.50 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Fluorene | EPA 625 | 5B14010 | 0.075 | 0.50 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Hexachlorobenzene | EPA 625 | $5 \mathrm{B14010}$ | 0.13 | 1.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Hexachlorobutadiene | EPA 625 | 5B14010 | 0.38 | 2.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Hexachlorocyclopentadiene | EPA 625 | 5B14010 | 1.8 | 5.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Hexachloroethane | EPA 625 | 5B14010 | 0.51 | 3.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Indeno(1,2,3-cd)pyrene | EPA 625 | $5 \mathrm{B1} 14010$ | 0.19 | 2.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Isophorone | EPA 625 | 5B14010 | 0.059 | 1.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| 2-Methylnaphthalene | EPA 625 | 5B14010 | 0.13 | 1.0 | 0.15 | 0.962 | 02/14/05 | 02/18/05 | B, J |
| 2-Methylphenol | EPA 625 | 5B14010 | 0.28 | 2.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| 4-Methylphenol | EPA 625 | 5B14010 | 0.20 | 5.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Naphthalene | EPA 625 | 5B14010 | 0.13 | 1.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| 2-Nitroaniline | EPA 625 | 5B14010 | 0.18 | 5.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| 3-Nitroaniline | EPA 625 | 5B14010 | 0.35 | 5.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| 4-Nitroaniline | EPA 625 | 5B14010 | 0.49 | 5.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Nitrobenzene | EPA 625 | 5B14010 | 0.10 | 1.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| 2-Nitrophenol | EPA 625 | 5B14010 | 0.23 | 2.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| 4-Nitrophenol | EPA 625 | 5B14010 | 0.73 | 5.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| N- Nitrosodimethylamine | EPA 625 | SB14010 | 0.22 | 2.0 | ND | 0.962 | 02/14/05 | 02/18/05 | C |
| N-Nitroso-di-n-propylamine | EPA 625 | 5 B 14010 | 0.18 | 2.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| N -Nitrosodiphenylamine | EPA 625 | 5B14010 | 0.077 | 1.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Pentachlorophenol | EPA 625 | 5B14010 | 0.78 | 2.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Phenanthrene | EPA 625 | 5B14010 | 0.071 | 0.50 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Phenol | EPA 625 | 5B14010 | 0.14 | 1.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Pyrene | EPA 625 | 5B14010 | 0.059 | 0.50 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| 1,2,4-Trichlorobenzene | EPA 625 | 5B14010 | 0.10 | 1.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| 2,4,5-Trichlorophenol | EPA 625 | 5B14010 | 0.075 | 2.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| 2,4,6-Trichlorophenol | EPA 625 | 5B14010 | 0.10 | 1.0 | ND | 0.962 | 02/14/05 | 02/18/05 | |
| Surrogate: 2-Fluorophenol (35-120\%) | | | | | 81% | | | | |
| Surrogate: Phenol-d6 (45-120\%) | | | | | 77\% | | | | |
| Surrogate: 2,4,6-Tribromophenol (50-125\%) | | | | | 84\% | | | | |
| Surrogate: Nitrobenzene-d5 (45-120\%) | | | | | 78% | | | | |
| Surrogate: 2-Fluorobiphenyl (45-120\%) | | | | | 81\% | | | | |
| Surrogate: Terphemyl-d14 (45-135\%) | | | | | 80\% | | | | |

[^19]
Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001
Report Number: IOB0980

Sampled: 02/11/05
Received: 02/11/05

ORGANOCHLORINE PESTICIDES (EPA 608)

| Analyte | Method | Batch | MDL
 Limit | Reporting Limit | Sample Result | Dilution
 Factor | Date Extracted | Date Analyzed | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID: 1OB0980-01 (Outfall 001 - Water) - cont.
 Reporting Units: ugh | | | | | | | | | |
| Aldrin | EPA 608 | 5B14073 | 0.030 | 0.10 | ND | 0.98 | 02/14/05 | 02/15/05 | |
| alpha-BHC | EPA 608 | 5B14073 | 0.00049 | 0.010 | ND | 0.98 | 02/14/05 | 02/15/05 | |
| beta-BHC | EPA 608 | 5B14073 | 0.015 | 0.10 | ND | 0.98 | 02/14/05 | 02/15/05 | |
| delta-BHC | EPA 608 | 5B14073 | 0.020 | 0.20 | ND | 0.98 | 02/14/05 | 02/15/05 | |
| gamma-BHC (Lindane) | EPA 608 | 5B14073 | 0.015 | 0.10 | ND | 0.98 | 02/14/05 | 02/15/05 | |
| Chlordane | EPA 608 | 5B14073 | 0.20 | 1.0 | ND | 0.98 | 02/14/05 | 02/15/05 | |
| 4,4'-DDD | EPA 608 | 5B14073 | 0.015 | 0.10 | ND | 0.98 | 02/14/05 | 02/15/05 | |
| 4,4-DDE | EPA 608 | 5B14073 | 0.020 | 0.10 | ND | 0.98 | 02/14/05 | 02/15/05 | |
| 4,4-DDT | EPA 608 | 5B14073 | 0.030 | 0.10 | ND | 0.98 | 02/14/05 | 02/15/05 | |
| Dieldrin | EPA 608 | 5B14073 | 0.015 | 0.10 | ND | 0.98 | 02/14/05 | 02/15/05 | |
| Endosulfan I | EPA 608 | 5B14073 | 0.015 | 0.10 | ND | 0.98 | 02/14/05 | 02/15/05 | |
| Endosulfan II | EPA 608 | 5B14073 | 0.040 | 0.10 | ND | 0.98 | 02/14/05 | 02/15/05 | |
| Endosulfan sulfate | EPA 608 | 5B14073 | 0.015 | 0.20 | ND | 0.98 | 02/14/05 | 02/15/05 | |
| Endrin | EPA 608 | 5B14073 | 0.015 | 0.10 | ND | 0.98 | 02/14/05 | 02/15/05 | |
| Endrin aldehyde | EPA 608 | 5B14073 | 0.045 | 0.10 | ND | 0.98 | 02/14/05 | 02/15/05 | |
| Endrin ketone | EPA 608 | 5B14073 | 0.020 | 0.10 | ND | 0.98 | 02/14/05 | 02/15/05 | |
| Heptachlor | EPA 608 | 5B14073 | 0.030 | 0.10 | ND | 0.98 | 02/14/05 | 02/15/05 | |
| Heptachlor epoxide | EPA 608 | 5B14073 | 0.020 | 0.10 | ND | 0.98 | 02/14/05 | 02/15/05 | |
| Methoxychlor | EPA 608 | 5B14073 | 0.035 | 0.10 | ND | 0.98 | 02/14/05 | 02/15/05 | |
| Toxaphene | EPA 608 | 5B14073 | 1.5 | 5.0 | ND | 0.98 | 02/14/05 | 02/15/05 | |
| Surrogate: Tetrachloro-m-xylene (35-120\%) | | | | | 52\% | | | | |
| Surrogate: Decachlorobiphenyl (45-120\%) | | | | | 61\% | | | | |
| Surrogate: Tetrachloro-m-xylene (35-120\%) | | | | | 52% | | | | |
| Surrogate: Decachlorobiphenyl (45-120\%) | | | | | 61\% | | | | |

Del Mar Analytical, Irvine

Michele Harper
Project Manager

| MWH-Pasadena/Boeing | Project ID: Annual Outfall 001 | |
| :--- | :--- | :--- |
| 300 North Lake Avenue, Suite 1200 | | Sampled: $02 / 11 / 05$ |
| Pasadena, CA 91101 | Report Number: $10 B 0980$ | Received: $02 / 11 / 05$ |
| Attention: Bronwyn Kelly | | |

TOTAL PCBS (EPA 608)

| Analyte | Method | Batch | MDL
 Limit | Reporting Limit | Sample Result | Dllution
 Factor | Date Extracted | Date Analyzed | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID: IOB0980-01 (Outfall 001 - Water) - cont.Reporting Units: ug/l | | | | | | | | | |
| | | | | | | | | | |
| Aroclor 1016 | EPA 608 | 5B14073 | 0.20 | 1.0 | ND | 0.98 | 02/14/05 | 02/15/05 | |
| Aroclor 1221 | EPA 608 | 5B14073 | 0.10 | 1.0 | ND | 0.98 | 02/14/05 | 02/15/05 | |
| Aroclor 1232 | EPA 608 | 5B14073 | 0.15 | 1.0 | ND | 0.98 | 02/14/05 | 02/15/05 | |
| Aroclor 1242 | EPA 608 | 5 B 14073 | 0.15 | 1.0 | ND | 0.98 | 02/14/05 | 02/15/05 | |
| Aroclor 1248 | EPA 608 | 5B14073 | 0.25 | 1.0 | ND | 0.98 | 02/14/05 | 02/15/05 | |
| Aroclor 1254 | EPA 608 | 5814073 | 0.25 | 1.0 | ND | 0.98 | 02/14/05 | 02/15/05 | |
| Aroclor 1260 | EPA 608 | 5B14073 | 0.40 | 1.0 | ND | 0.98 | 02/14/05 | 02/15/05 | |
| Surrogate: Decachlorobiphenyl (45-120\%) | | | | | 66\% | | | | |

| MWH-Pasadena/Boeing
 300 North Lake Avenue, Suite 1200
 Pasadena, CA 91101
 Attention: Bronwyn Kelly | Project ID:Report Number: | | Annual IOB0980 | Outfall 001 | | | Samp
 Recei | ed: $02 / 11 / 05$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | METALS | | | | | | |
| Analyte | Method | Batch | MDL
 Limit | Reporting Limit | Sample
 Result | Dilution
 Factor | Date Extracted | Date Analyzed | Data Qualifiers |
| Sample ID: 1OB0980-01 (Outfall 001 - Water) - cont. Reporting Units: mg/l | | | | | | | | | |
| Barium | EPA 200.7 | 5B12044 | 0.0028 | 0.010 | 0.14 | 1 | 02/12/05 | 02/12/05 | |
| Boron | EPA 200.7 | 5B12044 | 0.0074 | 0.050 | 0.054 | 1 | 02/12/05 | 02/12/05 | B |
| Iron | EPA 200.7 | 5B12044 | 0.0088 | 0.040 | 27 | 1 | 02/12/05 | 02/12/05 | |

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001
Report Number: IOB0980

| | | | MET | LS | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analyte | Method | Batch | MDL
 Limit | Reporting Limit | Sample
 Result | Dilution
 Factor | Date Extracted | Date
 Analyzed | Data Qualifiers |
| Sample ID: IOB0980-01RE1 (Outfall 001 - Water) - cont. Reporting Units: mgll | | | | | | | | | |
| Iron | EPA 200.7 | 5B14113 | 0.0088 | 0.040 | 27 | 1 | 02/14/05 | 02/15/05 | |

| MWH-Pasadena/Boeing
 300 North Lake Avenue, Suite 1200
 Pasadena, CA 91101
 Attention: Bronwyn Kelly | Report Number: | | IOB0980 | | Sampled: 02/11/05
 Received: 02/11/05 | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | MET | LS | | | | | |
| Analyte | Method | Batch | MDL
 Limit | Reporting Limit | Sample Result | Dilution
 Factor | Date Extracted | Date Analyzed | Data Qualifiers |
| Sample ID: IOB0980-01RE2 (Outfall 001 - Water) - cont.
 Reporting Units: mg/ | | | | | | | | | |
| Iron | EPA 200.7 | 5B17052 | 0.0088 | 0.040 | 29 | 1 | 02/12/05 | 02/17/05 | |

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

| | Sampled: $02 / 11 / 05$ |
| :--- | ---: |
| Report Number: $10 B 0980$ | Received: $02 / 11 / 05$ |

| MWH-Pasadena/Boeing
 300 North Lake Avenue, Suite 1200
 Pasadena, CA 91101
 Attention: Bronwyn Kelly | Report Number: | | Annual IOB0980 | utfall 001 | | | Sampled: 02/11/05
 Received: 02/11/05 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| METALS | | | | | | | | | |
| Analyte | Method | Batch | MDL
 Limit | Reporting Limit | Sample Result | Dilution
 Factor | Date
 Extracted | Date Analyzed | Data Qualifiers |
| Sample ID: 1OB0980-01RE1 (Outfall 001 - Water) - cont. Reporting Units: ugh | | | | | | | | | |
| Chromium | EPA 200.7 | 5 B 14113 | 0.68 | 5.0 | 26 | 1 | 02/14/05 | 02/15/05 | |
| Copper | EPA 200.8 | 5B14104 | 0.49 | 2.0 | 17 | 1 | 02/14/05 | 02/15/05 | |
| Lead | EPA 200.8 | 5B14104 | 0.13 | 1.0 | 13 | 1 | 02/14/05 | 02/15/05 | |
| Manganese | EPA 200.7 | 5B14113 | 3.2 | 20 | 350 | 1 | 02/14/05 | 02/15/05 | |
| Zinc | EPA 200.7 | 5B14113 | 3.7 | 20 | 98 | 1 | 02/14/05 | 02/15/05 | |

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001
Report Number: IOB0980 \quad Sampled: 02/11/05

| | | | MET | LS | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analyte | Method | Batch | MDL
 Limit | Reporting Limit | Sample
 Result | Dilution
 Factor | Date Extracted | Date Analyzed | Data Qualifiers |
| Sample ID: 1OB0980-01RE2 (Outfall 001-Water) - cont. | | | | | | | | | |
| Reporting Units: ugh | | | | | | | | | |
| Chromium | EPA 200.7 | 5B17052 | 0.68 | 5.0 | 28 | 1 | 02/12/05 | 02/17/05 | |
| Copper | EPA 200.8 | 5B17051 | 0.98 | 4.0 | 16 | 2 | 02/12/05 | 02/17/05 | |
| Lead | EPA 200.8 | 5B17051 | 0.26 | 2.0 | 11 | 2 | 02/12/05 | 02/17/05 | |
| Manganese | EPA 200.7 | 5B17052 | 3.2 | 20 | 360 | 1 | 02/12/05 | 02/17/05 | |
| Zinc | EPA 200.7 | 5B17052 | 3.7 | 20 | 82 | 1 | 02/12/05 | 02/17/05 | |

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Report Number: IOB0980 \quad| Sampled: $02 / 11 / 05$ |
| ---: |
| Received: $02 / 11 / 05$ |

| INORGANICS | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analyte | Method | Batch | MDL
 Limit | Reporting Limit | Sample Result | Dilution
 Factor | Date Extracted | Date Analyzed | Data Qualifiers |
| Sample ID: IOB0980-01 (Outfall 001 - Water) - cont. Reporting Units: mg/ | | | | | | | | | |
| Ammonia-N (Distilled) | EPA 350.2 | 5 B 11117 | 0.30 | 0.50 | 4.2 | 1 | 02/11/05 | 02/11/05 | |
| Biochemical Oxygen Demand | EPA 405.1 | 5B11108 | 0.59 | 2.0 | 3.0 | 1 | 02/11/05 | 02/16/05 | K |
| Chloride | EPA 300.0 | 5B11120 | 0.26 | 0.50 | 11 | 1 | 02/11/05 | 02/12/05 | |
| Fluoride | EPA 300.0 | 5B11120 | 0.10 | 0.50 | 0.29 | 1 | 02/11/05 | 02/12/05 | J |
| Nitrate/Nitrite-N | EPA 300.0 | 5B11120 | 0.072 | 0.26 | 0.94 | 1 | 02/11/05 | 02/12/05 | |
| Oil \& Grease | EPA 413.1 | 5B14044 | 0.94 | 5.0 | 3.8 | 1 | 02/14/05 | 02/14/05 | J |
| Residual Chlorine | EPA 330.5 | 5B11072 | 0.10 | 0.10 | ND | 1 | 02/11/05 | 02/11/05 | |
| Sulfate | EPA 300.0 | 5B11120 | 0.18 | 0.50 | 29 | 1 | 02/11/05 | 02/12/05 | |
| Surfactants (MBAS) | SM5540-C | 5B12050 | 0.44 | 1.0 | 1.0 | 10 | 02/12/05 | 02/12/05 | |
| Total Dissolved Solids | SM2540C | 5B16118 | 10 | 10 | 190 | 1 | 02/16/05 | 02/16/05 | |
| Total Organic Carbon | EPA 415.1 | 5 B 17130 | 0.25 | 1.0 | 9.3 | 1 | 02/17/05 | 02/17/05 | |
| Total Suspended Solids | EPA 160.2 | 5B16128 | 10 | 10 | 460 | 1 | 02/16/05 | 02/16/05 | |

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001
Report Number: IOB0980

Sampled: 02/11/05
Received: 02/11/05

INORGANICS

| Analyte | Method | Batch | MDL
 Limit | Reporting Limit | Sample
 Result | Dilution Factor | Date Extracted | Date Analyzed | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID: 1OB0980-01 (Outfall 001 - Water) - cont. | | | | | | | | | |
| Reporting Units: | | | | | | | | | |
| Total Settleable Solids | EPA 160.5 | 5B11071 | 0.10 | 0.10 | ND | 1 | 02/11/05 | 02/11/05 | |

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Report Number: IOB0980

Sampled: 02/11/05
Received: 02/11/05

INORGANICS

| Analyte | Method | Batch | MDL
 Limit | Reporting Limit | Sample Result | Dilution
 Factor | Date Extracted | Date Analyzed | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID: 1OB0980-01 (Outfall 001 - Water) - cont. | | | | | | | | | |
| | | | | | | | | | |
| Turbidity | EPA 180.1 | 5B12055 | 0.80 | 20 | 530 | 20 | 02/12/05 | 02/12/05 | |

| MWH-Pasadena/Boeing
 300 North Lake Avenue, Suite 1200
 Pasadena, CA 91101
 Attention: Bronwyn Kelly | Report Number: 1OB0980 | | | | Sampled: 02/11/05
 Received: 02/11/05 | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INORGANICS | | | | | | | | | |
| Analyte | Method | Batch | MDL
 Limit | Reporting Limit | Sample Result | Dilution
 Factor | Date Extracted | Date Analyzed | Data Qualifiers |
| Sample ID: 1OB0980-01 (Outfall 001 - Water) - cont. Reporting Units: agh | | | | | | | | | |
| | | | | | | | | | |
| Total Cyanide | EPA 335.2 | 5B12048 | 2.2 | 5.0 | ND | 1 | 02/12/05 | 02/12/05 | |
| Perchlorate | EPA 314.0 | 5B16069 | 0.80 | 4.0 | ND | 1 | 02/16/05 | 02/16/05 | |

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001
Report Number: $10 B 0980 \quad$ Sampled: $02 / 11 / 05$

INORGANICS

Del Mar Analytical

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Report Number: $10 B 0980$

Received: 02/11/05

SHORT HOLD TIME DETAIL REPORT

| | Hold Time (in days) | Date/Time
 Sampled | Date/Time Received | Date/Time
 Extracted | Date/Time
 Analyzed |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID: Outfall 001 (IOB0980-01) - Water | | | | | |
| EPA 160.5 | 2 | 02/11/2005 10:56 | 02/11/2005 18:15 | 02/11/2005 22:00 | 02/11/2005 22:00 |
| EPA 180.1 | 2 | 02/11/2005 10:56 | 02/11/2005 18:15 | 02/12/2005 12:00 | 02/12/2005 13:00 |
| EPA 300.0 | 2 | 02/11/2005 10:56 | 02/11/2005 18:15 | 02/11/2005 23:00 | 02/12/2005 01:10 |
| EPA 330.5 | 1 | 02/11/2005 10:56 | 02/11/2005 18:15 | 02/11/2005 18:06 | 02/11/2005 21:00 |
| EPA 405.1 | 2 | 02/11/2005 10:56 | 02/11/2005 18:15 | 02/11/2005 22:20 | 02/16/2005 13:30 |
| EPA 624 | 3 | 02/11/2005 10:56 | 02/11/2005 18:15 | 02/12/2005 00:00 | 02/12/2005 13:19 |
| SM5540-C | 2 | 02/11/2005 10:56 | 02/11/2005 18:15 | 02/12/2005 13:09 | 02/12/2005 17:41 |
| Sample ID: Trip Blank (IOB0980-02) - Water | | | | | |
| EPA 624 | 3 | 02/11/2005 14:20 | 02/11/2005 18:15 | 02/12/2005 00:00 | 02/12/2005 11:46 |

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Report Number: IOB0980
Sampled: 02/11/05
Received: 02/11/05

METHOD BLANIGIQC DATA

TOTAL RECOVERABLE PETROLEUM HYDROCARBONS (EPA 418.1)

| Analyte Result | Reporting
 Limit | MDL | Units | Spike
 Level | Source Result | \%REC | \%REC
 Limits | RPD | RPD
 Limit | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5B15078 Extracted: 02/15/05 | | | | | | | | | | |
| Blank Analyzed: 02/15/2005 (5B15078-BLK1) | | | | | | | | | | |
| Total Recoverable Hydrocarbons ND | 1.0 | 0.31 | mg/ | | | | | | | |
| LCS Analyzed: 02/15/2005 (5B15078-BS1) | | | | | | | | | | M-NR1 |
| Total Recoverable Hydrocarbons 4.46 | 1.0 | 0.31 | mg/ | 5.00 | | 89 | 65-120 | | | |
| LCS Dup Analyzed: 02/15/2005 (5B15078-BSD1) | | | | | | | | | | |
| Total Recoverable Hydrocarbons 4.21 | 1.0 | 0.31 | $\mathrm{mg} / 1$ | 5.00 | | 84 | 65-120 | 6 | 20 | |

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001
$\begin{array}{lr} & \begin{array}{r}\text { Sampled: } 02 / 11 / 05 \\ \text { Received: }\end{array} 02 / 11 / 05\end{array}$

METHOD BLANKIQC DATA

EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

| Analyte Result | Reporting Limit | MDL | Units | Spike
 Level | Source
 Result | \%REC | \%REC
 Limits | RPD | RPD
 Limit | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5B12001 Extracted: 02/12/05 | | | | | | | | | | |
| Blank Analyzed: 02/14/2005 (5B12001-BLK1) | | | | | | | | | | |
| EFH (C13-C22) ND | 0.50 | 0.082 | $\mathrm{mg} /$ | | | | | | | |
| EFH (C13-C40) ND | 0.50 | 0.082 | mg / l | | | | | | | |
| Surrogate: n-Octacosane 0.104 | | | mg / l | 0.200 | | 52 | 40-125 | | | |
| LCS Analyzed: 02/14/2005 (5B12001-BS1) | | | | | | | | | | M-NR1 |
| EFH (C13-C40) 0.547 | 0.50 | 0.082 | mg / l | 0.775 | | 71 | 40-120 | | | |
| Surrogate: n-Octacosane 0.125 | | | $m g /$ | 0.200 | | 62 | 40-125 | | | |
| LCS Dup Analyzed: 02/14/2005 (5B12001-BSD1) | | | | | | | | | | |
| $\mathrm{EFH}(\mathrm{Cl} 3-\mathrm{C40}) \quad 0.439$ | 0.50 | 0.082 | $\mathrm{mg} / 1$ | 0.775 | | 57 | 40-120 | 22 | 25 | J |
| Surrogate: n-Octacosane 0.0969 | | | $m g / l$ | 0.200 | | 48 | 40-125 | | | |

MWH-Pasadena/Boeing

300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Report Number: IOB0980
Sampled: 02/11/05
Received: 02/11/05

MEIIIODBLANKIOC DATA

VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)

| Analyte | Result | Reportin Limit | MDL | Units | Spike
 Level | Source
 Result | \%REC | \%REC
 Limits | RPD | RPD
 Limit | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5B18031 Extracted: 02/18/05 | | | | | | | | | | | |
| Blank Analyzed: 02/18/2005 (5B18031-BLK1) | | | | | | | | | | | |
| GRO (C4-C12) | ND | 0.10 | 0.050 | mg/ | | | | | | | |
| Surrogate: 4-BFB (FID) | 0.00817 | | | mg/ | 0.0100 | | 82 | 65-140 | | | |
| LCS Analyzed: 02/18/2005 (5B18031-BS1) | | | | | | | | | | | |
| GRO (C4-C12) | 0.644 | 0.10 | 0.050 | mg/ | 0.800 | | 80 | 70-140 | | | |
| Surrogate: 4-BFB (FID) | 0.0262 | | | $m \mathrm{~m} / \mathrm{l}$ | 0.0300 | | 87 | 65-140 | | | |
| Matrix Spike Analyzed: 02/18/2005 (5B18031-MS1) | | | | | Source: 1OB0897-01 | | | | | | |
| GRO (C4-C12) | 0.199 | 0.10 | 0.050 | mg/ | 0.220 | ND | 90 | 60-140 | | | |
| Surrogate: 4-BFB (FID) | 0.00979 | | | $m \mathrm{~m} / \mathrm{l}$ | 0.0100 | | 98 | 65-140 | | | |
| Matrix Spike Dup Analyzed: 02/18/2005 (5B18031-MSD1) | | | | | Source: IOB0897-01 | | | | | | |
| GRO (C4-C12) | 0.203 | 0.10 | 0.050 | $\mathrm{mg} / 1$ | 0.220 | ND | 92 | 60-140 | 2 | 20 | |
| Surrogate: 4-BFB (FID) | 0.00967 | | | $m g / t$ | 0.0100 | | 97 | 65-140 | | | |

[^20]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001
Report Number: IOB0980
Sampled: 02/11/05
Received: 02/11/05

METIIOD BLANKOC DATA

PURGEABLES BY GC/MS (EPA 624)

| Analyte | Result | Reporting
 Limit | MDL | Units | Spike
 Level | Source
 Result | \%REC | \%REC
 Limits | RPD | RPD
 Limit | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5817020 Extracted: 02/17/05 | | | | | | | | | | | |
| Blank Analyzed: 02/17/2005 (5B17020-BLK1) | | | | | | | | | | | |
| Benzene | ND | 2.0 | 0.28 | ug/ | | | | | | | |
| Trichlorotrifluoreethane (Freon 113) | ND | 5.0 | 1.2 | ug/ | | | | | | | |
| Carbon tetrachloride | ND | 5.0 | 0.28 | ug/ | | | | | | | |
| Chloroform | ND | 2.0 | 0.33 | ug/ | | | | | | | |
| 1,1-Dichloroethane | ND | 2.0 | 0.27 | ug/ | | | | | | | |
| 1,2-Dichloroethane | ND | 2.0 | 0.28 | ug/ | | | | | | | |
| 1,1-Dichloroethene | ND | 3.0 | 0.32 | ug/ | | | | | | | |
| Ethylbenzene | ND | 2.0 | 0.25 | ug/ | | | | | | | |
| Tetrachloroethene | ND | 2.0 | 0.32 | ug/ | | | | | | | |
| Toluene | ND | 2.0 | 0.36 | ug/ | | | | | | | |
| 1,1,1-Trichloroethane | ND | 2.0 | 0.30 | ug/ | | | | | | | |
| 1,1,2-Trichloroethane | ND | 2.0 | 0.30 | ug/ | | | | | | | |
| Trchloreethene | ND | 5.0 | 0.26 | ugA | | | \cdots | \% | | | : |
| Trichlorofluoromethane | ND | 5.0 | 0.34 | ug 1 | | | | | | | |
| Vinyl chloride | ND | 5.0 | 0.26 | ug/ | | | | | | | |
| Xylenes, Total | ND | 4.0 | 0.52 | ug/ | | | | | | | |
| Surrogate: Dibromofluoromethane | 27.0 | | | ug/ | 25.0 | | 108 | 80-120 | | | |
| Surrogate: Toluene-d8 | 26.8 | | | ug/ | 25.0 | | 107 | 80-120 | | | |
| Surrogate: 4-Bromofluorobenzene | 26.0 | | | ug/l | 25.0 | | 104 | 80-120 | | | |
| LCS Analyzed: 02/17/2005 (5B17020-BS1) | | | | | | | | | | | |
| Benzene | 24.5 | 2.0 | 0.28 | ug/ | 25.0 | | 98 | 70-120 | | | |
| Carbon tetrachloride | 24.4 | 5.0 | 0.28 | ug/ | 25.0 | | 98 | 70-140 | | | |
| Chloroform | 25.0 | 2.0 | 0.33 | ug/ | 25.0 | | 100 | 75-130 | | | |
| 1,1-Dichloroethane | 24.1 | 2.0 | 0.27 | ug/ | 25.0 | | 96 | 70-135 | | | |
| 1,2-Dichloroethane | 26.6 | 2.0 | 0.28 | ug/ | 25.0 | | 106 | 60-150 | | | |
| 1,1-Dichloroethene | 24.8 | 3.0 | 0.32 | ug/ | 25.0 | | 99 | 75-135 | | | |
| Ethylbenzene | 25.7 | 2.0 | 0.25 | ugh | 25.0 | | 103 | 80-120 | | | |
| Tetrachloroethene | 23.0 | 2.0 | 0.32 | ug/ | 25.0 | | 92 | 75-125 | | | |
| Toluene | 25.0 | 2.0 | 0.36 | ug / l | 25.0 | | 100 | 75-120 | | | |
| 1,1,1-Trichloroethane | 23.8 | 2.0 | 0.30 | ug/l | 25.0 | | 95 | 75-140 | | | |
| 1,1,2-Trichloroethane | 25.6 | 2.0 | 0.30 | ug/l | 25.0 | | 102 | 70-125 | | | |
| Trichloroethene | 24.0 | 5.0 | 0.26 | ug/ | 25.0 | | 96 | 80-120 | | | |
| Trichlorofluoromethane | 24.1 | 5.0 | 0.34 | ug/ | 25.0 | | 96 | 65-145 | | | |
| Vinyl chloride | 25.3 | 5.0 | 0.26 | ug/ | 25.0 | | 101 | 50-130 | | | |
| Surrogate: Dibromofluoromethane | 27.1 | | | $u g /$ | 25.0 | | 108 | 80-120 | | | |
| Del Mar Analytical, Irvine Michele Harper Project Manager | | | | | | | | | | | |

| MWH-Pasadena/Boeing | Project ID: Annual Outfall 001 | |
| :--- | :--- | :--- |
| 300 North Lake Avenue, Suite 1200 | Report Number: $10 B 0980$ | Sampled: $02 / 11 / 05$
 Pasadena, CA 91101 |
| Received: $02 / 11 / 05$ | | |

METHOD BLANKIQC DATA

PURGEABLES BY GC/MS (EPA 624)

Del Mar Analytical, Irvine

Michele Harper
Project Manager

| MWH-Pasadena/Boeing
 300 North Lake Avenue, Suite 1200
 Pasadena, CA 91101
 Attention: Bronwyn Kelly | Project ID: Annual Outfall 001 |
| :--- | :---: |

Sampled: 02/11/05
Received: 02/11/05

PURGEABLES BY GC/MS (EPA 624)

| Matrix Spike Dup Analyzed: 02/17/2005 (5817020-MSD1) | | | Source: 10B0980-01 | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vinyl chloride | 27.6 | 5.0 | 0.26 | $\mathrm{ug} /$ | 25.0 | ND | 110 | 40-135 | 4 | 30 |
| Surrogate: Dibromofluoromethane | 27.1 | | | ug/ | 25.0 | | 108 | 80-120 | | |
| Surrogate: Toluene-d8 | 27.2 | | | ug/ | 25.0 | | 109 | 80-120 | | |
| Surrogate: 4-Bromofluorobenzene | 26.9 | | | ugh | 25.0 | | 108 | 80-120 | | |

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

| Project ID: Annual Outfall 001 |
| :---: |
| Report Number: $10 B 0980$ | | Sampled: 02/11/05 |
| ---: |
| Received: $02 / 11 / 05$ |

METHOD BLANKIQC DATA

PURGEABLES BY GC/MS (EPA 624)

| Analyte | Result | Reporting Limit | MDL | Units | Spike
 Level | Source
 Result | \%REC | \%REC
 Limits | RPD | RPD
 Limit | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5B17020 Extracted: 02/17/05 | | | | | | | | | | | |
| Blank Analyzed: 02/17/2005 (5B17020-BLK1) | | | | | | | | | | | |
| Benzene | ND | 1.0 | 0.28 | ug/1 | | | | | | | |
| Bromodichloromethane | ND | 2.0 | 0.30 | ugh | | | | | | | |
| Bromoform | ND | 5.0 | 0.32 | ug/ | | | | | | | |
| Bromomethane | ND | 5.0 | 0.34 | ug/ | | | | | | | |
| Carbon tetrachloride | ND | 0.50 | 0.28 | ug/ | | | | | | | |
| Chlorobenzene | ND | 2.0 | 0.36 | ug/ | | | | | | | |
| Chloroethane | ND | 5.0 | 0.33 | ug/ | | | | | | | |
| Chloroform | ND | 2.0 | 0.33 | ug/ | | | | | | | |
| Chloromethane | ND | 5.0 | 0.30 | ug/ | | | | | | | |
| Dibromochloromethane | ND | 2.0 | 0.28 | ug/ | | | | | | | |
| 1,2-Dichlorobenzene | ND | 2.0 | 0.32 | ug/ | | | | | | | |
| 1,3-Dichlorobenzene | ND | 2.0 | 0.35 | ugh | | | | | | | |
| 1,4-Dichlorobenzene | ND | 2.0 | 0.37 | ugl | | | | | \because | | |
| 1,1-bichloroethane | ND | 2.0 | 0.27 | ugi | | | | | | | |
| 1,2-Dichloroethane | ND | 0.50 | 0.28 | ug/ | | | | | | | |
| 1,1-Dichloroethene | ND | 5.0 | 0.32 | $\mathrm{ug} / 1$ | | | | | | | |
| trans-1,2-Dichloroethene | ND | 2.0 | 0.27 | ug/ | | | | | | | |
| 1,2-Dichloropropane | ND | 2.0 | 0.35 | ug/ | | | | | | | |
| cis-1,3-Dichloropropene | ND | 2.0 | 0.22 | ug/ | | | | | | | |
| trans-1,3-Dichloropropene | ND | 2.0 | 0.24 | ug/ | | | | | | | |
| Ethylbenzene | ND | 2.0 | 0.25 | ug/ | | | | | | | |
| Methylene chloride | ND | 5.0 | 0.48 | ug/ | | | | | | | |
| 1,1,2,2-Tetrachloroethane | ND | 2.0 | 0.24 | ug/1 | | | | | | | |
| Tetrachloroethene | ND | 2.0 | 0.32 | ugh | | | | | | | |
| Toluene | ND | 2.0 | 0.36 | ug/ | | | | | | | |
| 1,1,1-Trichloroethane | ND | 2.0 | 0.30 | ugh | | | | | | | |
| 1,1,2-Trichloroethane | ND | 2.0 | 0.30 | $\mathrm{ug} / 1$ | | | | | | | |
| Trichloroethene | ND | 2.0 | 0.26 | ughl | | | | | | | |
| Trichlorofluoromethane | ND | 5.0 | 0.34 | ugl | | | | | | | |
| Vinyl chloride | ND | 0.50 | 0.26 | ug/l | | | | | | | |
| Xylenes, Total | ND | 4.0 | 0.52 | ug/1 | | | | | | | |
| Surrogate: Dibromofluoromethane | 27.0 | | | ug/ | 25.0 | | 108 | 80-120 | | | |
| Surrogate: Toluene-d8 | 26.8 | | | ug n | 25.0 | | 107 | 80-120 | | | |
| Surrogate: 4-Bromofluorobenzene | 26.0 | | | ugh | 25.0 | | 104 | 80-120 | | | |

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001
Report Number: IOB0980
Sampled: 02/11/05
Received: 02/11/05

METHOD BLANKIQC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte
Batch: 5B17020 Extracted: 02/17/05

LCS Analyzed: 02/17/2005 (5B17020-BS1)

| Benzene | 24.5 | 1.0 | 0.28 | ug/ | 25.0 | 98 | 70-120 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bromodichloromethane | 24.6 | 2.0 | 0.30 | ug/ | 25.0 | 98 | 70-140 |
| Bromoform | 25.2 | 5.0 | 0.32 | ug/ | 25.0 | 101 | 55-135 |
| Bromomethane | 26.6 | 5.0 | 0.34 | ug/ | 25.0 | 106 | 60-140 |
| Carbon tetrachloride | 24.4 | 0.50 | 0.28 | ug/ | 25.0 | 98 | 70-140 |
| Chlorobenzene | 24.2 | 2.0 | 0.36 | ug/ | 25.0 | 97 | 80-125 |
| Chloroethane | 25.7 | 5.0 | 0.33 | ug/ | 25.0 | 103 | 60-145 |
| Chloroform | 25.0 | 2.0 | 0.33 | ug/ | 25.0 | 100 | 75-130 |
| Chloromethane | 24.1 | 5.0 | 0.30 | ug/1 | 25.0 | 96 | 40-145 |
| Dibromochloromethane | 25.0 | 2.0 | 0.28 | ug/ | 25.0 | 100 | 65-145 |
| 1,2-Dichlorobenzene | 24.4 | 2.0 | 0.32 | ug/ | 25.0 | 98 | 80-120 |
| 1,3-Dichlorobenzene | 23.6 | 2.0 | 0.35 | ug/ | 25.0 | 94 | 80-120 |
| 14- Dichlorobenzene | 23.8 | 20 | 0.37 | ugh | 25.0 | 95 | 80.120 |
| 1,1-Dichloroethane | 24.1 | 2.0 | 0.27 | ug/ | 25.0 | 96 | 70-135 |
| 1,2-Dichloroethane | 26.6 | 0.50 | 0.28 | ug/ | 25.0 | 106 | 60-150 |
| 1,1-Dichloroethene | 24.8 | 5.0 | 0.32 | ug/ | 25.0 | 99 | 75-135 |
| trans-1,2-Dichloroethene | 24.5 | 2.0 | 0.27 | ug/ | 25.0 | 98 | 70-130 |
| 1,2-Dichloropropane | 24.2 | 2.0 | 0.35 | ugh | 25.0 | 97 | 70-120 |
| cis-1,3-Dichloropropene | 25.3 | 2.0 | 0.22 | ug/ | 25.0 | 101 | 75-130 |
| trans-1,3-Dichloropropene | 26.2 | 2.0 | 0.24 | ug/ | 25.0 | 105 | 75-135 |
| Ethylbenzene | 25.7 | 2.0 | 0.25 | ug/ | 25.0 | 103 | 80-120 |
| Methylene chloride | 25.2 | 5.0 | 0.48 | ug/ | 25.0 | 101 | 60-135 |
| 1,1,2,2-Tetrachloroethane | 26.7 | 2.0 | 0.24 | ug/ | 25.0 | 107 | 60-135 |
| Tetrachloroethene | 23.0 | 2.0 | 0.32 | ug/ | 25.0 | 92 | 75-125 |
| Toluene | 25.0 | 2.0 | 0.36 | ug/ | 25.0 | 100 | 75-120 |
| 1,1,1-Trichloroethane | 23.8 | 2.0 | 0.30 | ugl | 25.0 | 95 | 75-140 |
| 1,1,2-Trichloroethane | 25.6 | 2.0 | 0.30 | ug/t | 25.0 | 102 | 70-125 |
| Trichloroethene | 24.0 | 2.0 | 0.26 | ug / l | 25.0 | 96 | 80-120 |
| Trichloroflyoromethane | 24.1 | 5.0 | 0.34 | ugh | 25.0 | 96 | 65-145 |
| Vinyl chloride | 25.3 | 0.50 | 0.26 | ugh | 25.0 | 101 | 50-130 |
| Surrogate: Dibromofluoromethane | 27.1 | | | ug/ | 25.0 | 108 | 80-120 |
| Surrogate: Toluene-d8 | 27.1 | | | ug $/$ | 25.0 | 108 | 80-120 |
| Surrogate: 4-Bromofluorobenzene | 27.3 | | | $u g /$ | 25.0 | 109 | 80-120 |

Del Mar Analytical, Irvine
Michele Harper
Project Manager

| MWH-Pasadena/Boeing | Project ID: Annual Outfall 001 | |
| :--- | ---: | ---: |
| 300 North Lake Avenue, Suite 1200 | | Sampled: $02 / 11 / 05$ |
| Pasadena, CA 91101 | Report Number: $10 B 0980$ | Received: $02 / 11 / 05$ |
| Attention: Bronwyn Kelly | | |

METHOD BLANKMC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte
Batch: 5B17020 Extracted: 02/17/05

Del Mar Analytical, Irvine

Michele Harper
Project Manager

| MWH-Pasadena/Boeing | Project ID: Annual Outfall 001 | |
| :--- | :---: | ---: |
| $\mathbf{3 0 0}$ North Lake Avenue, Suite 1200 | | Sampled: $02 / 11 / 05$ |
| Pasadena, CA 91101 | Report Number: $\operatorname{IOB0980}$ | Received: $02 / 11 / 05$ |
| Attention: Bronwyn Kelly | \ldots | |

METHOD BLANKKOC DATA

PURGEABLES BY GC/MS (EPA 624)

| | | | Reporting | | | Spike | Source | \%REC | | RPD |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Data |
| :--- |

Matrix Spike Dup Analyzed: 02/17/2005 (5B17020-MSD1)

| Benzene | 26.0 | 1.0 | 0.28 | ug/ | 25.0 | ND | 104 | 70-120 | 3 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bromodichloromethane | 26.1 | 2.0 | 0.30 | ug/l | 25.0 | ND | 104 | 70-140 | 5 | 20 |
| Bromoform | 25.4 | 5.0 | 0.32 | ug/l | 25.0 | ND | 102 | 55-140 | 12 | 25 |
| Bromomethane | 28.7 | 5.0 | 0.34 | ug/l | 25.0 | ND | 115 | 50-145 | 4 | 25 |
| Carbon tetrachloride | 25.6 | 0.50 | 0.28 | ug / l | 25.0 | ND | 102 | 70-145 | 6 | 25 |
| Chlorobenzene | 25.1 | 2.0 | 0.36 | ug/ | 25.0 | ND | 100 | 80-125 | 5 | 20 |
| Chloroethane | 27.9 | 5.0 | 0.33 | ug/ | 25.0 | ND | 112 | 50-145 | 4 | 25 |
| Chloroform | 26.0 | 2.0 | 0.33 | ug/l | 25.0 | ND | 104 | 70-135 | 7 | 20 |
| Chloromethane | 26.0 | 5.0 | 0.30 | ug/ | 25.0 | ND | 104 | 35-145 | 1 | 25 |
| Dibromochloromethane | 25.4 | 2.0 | 0.28 | ug/l | 25.0 | ND | 102 | 65-145 | 10 | 25 |
| 1,2-Dichlorobenzene | 25.7 | 2.0 | 0.32 | ug/l | 25.0 | ND | 103 | 75-130 | 5 | 20 |
| 1,3-Dichlorobenzene | 24.9 | 2.0 | 0.35 | ug/ | 25.0 | ND. | 100 | 75-130 | 4 | 20 |
| 1,4-Dichlorobenzene: | 24.9 | 20 | 0.37 | ug/l | 25.0 | ND | 100 | 80-120 | 5 | 20 |
| 1,1-Dichloroethane | 25.4 | 2.0 | 0.27 | ug/l | 25.0 | ND | 102 | 65-135 | 6 | 20 |
| 1,2-Dichloroethane | 25.0 | 0.50 | 0.28 | ug/l | 25.0 | ND | 100 | 60-150 | 10 | 20 |
| 1,1-Dichloroethene | 26.9 | 5.0 | 0.32 | ug/l | 25.0 | ND | 108 | 65-140 | 3 | 20 |
| trans-1,2-Dichloroethene | 26.3 | 2.0 | 0.27 | ug/l | 25.0 | ND | 105 | 65-135 | 3 | 20 |
| 1,2-Dichloropropane | 25.8 | 2.0 | 0.35 | ug/ | 25.0 | ND | 103 | 65-130 | 3 | 20 |
| cis-1,3-Dichloropropene | 25.9 | 2.0 | 0.22 | ug/ | 25.0 | ND | 104 | 70-140 | 5 | 20 |
| trans-1,3-Dichloropropene | 26.5 | 2.0 | 0.24 | ug/1 | 25.0 | ND | 106 | 70-140 | 6 | 25 |
| Ethylbenzene | 26.3 | 2.0 | 0.25 | ug/l | 25.0 | ND | 105 | 70-130 | 8 | 20 |
| Methylene chloride | 26.4 | 5.0 | 0.48 | $u g / l$ | 25.0 | ND | 106 | 60-135 | 5 | 20 |
| 1,1,2,2-Tetrachloroethane | 27.2 | 2.0 | 0.24 | ug/ | 25.0 | ND | 109 | 60-145 | 7 | 30 |
| Tetrachloroethene | 23.9 | 2.0 | 0.32 | ug/ | 25.0 | ND | 96 | $70-130$ | 5 | 20 |
| Toluene | 26.3 | 2.0 | 0.36 | ug/l | 25.0 | ND | 105 | 70-120 | 3 | 20 |
| 1,1,1-Trichloroethane | 24.6 | 2.0 | 0.30 | ug/l | 25.0 | ND | 98 | 75-140 | 8 | 20 |
| 1,1,2-Trichloroethane | 25.8 | 2.0 | 0.30 | ug/l | 25.0 | ND | 103 | 60-135 | 7 | 25 |
| Trichloroethene | 25.0 | 2.0 | 0.26 | ug/l | 25.0 | ND | 100 | 70-125 | 4 | 20 |
| Trichlorofluoromethane | 25.7 | 5.0 | 0.34 | ug/l | 25.0 | ND | 103 | 55-145 | 8 | 25 |
| Vinyl chloride | 27.6 | 0.50 | 0.26 | ug / l | 25.0 | ND | 110 | 40-135 | 4 | 30 |
| Surrogate: Dibromofluoromethane | 27.1 | | | ugh | 25.0 | | 108 | 80-120 | | |
| Surrogate: Toluene-d8 | 27.2 | | | ug/l | 25.0 | | 109 | 80-120 | | |
| Surrogate: 4-Bromofluorobenzene | 26.9 | | | ug/l | 25.0 | | 108 | 80-120 | | |

Del Mar Analytical, Irvine

Michele Harper
Project Manager

| MWH-Pasadena/Boeing | Project ID: Annual Outfall 001 | |
| :---: | :---: | :---: |
| 300 North Lake Avenue, Suite 1200 | | Sampled: 02/11/05 |
| Pasadena, CA 91101 | Report Number: IOB0980 | Received: 02/11/05 |
| Attention: Bronwyn Kelly | | |

METHOD BLANKKQC DATA

PURGEABLES BY GC/MS (EPA 624)

| Analyte | Result | Reporting Limit | MDL | Units | Spike
 Level | Source Result | \%REC | $\begin{aligned} & \text { \%REC } \\ & \text { Limits } \end{aligned}$ | RPD | RPD
 Limit | Data
 Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5312011 Extracted: 02/12/05 | | | | | | | | | | | |
| Blank Analyzed: 02/12/2005 (5B12011-BLK1) | | | | | | | | | | | |
| Acrolein | ND | 50 | 4.6 | ug/l | | | | | . | | |
| Acrylonitrile | ND | 50 | 5.1 | ug/l | | | | | | | |
| 2-Chloroethyl vinyl ether | ND | 5.0 | 1.3 | ug/l | | | | | | | |
| Surrogate: Dibromofluoromethane | 21.9 | | | $u g /$ | 25.0 | | 88 | 80-120 | | | |
| Surrogate: Toluene-d8 | 26.4 | | | $u g / 1$ | 25.0 | | 106 | 80-120 | | | |
| Surrogate: 4-Bromofluorobenzene | 24.3 | | | $u g /$ | 25.0 | | 97 | 80-120 | | | |
| LCS Analyzed: 02/12/2005 (5B12011-BS1) | | | | | | | | | | | |
| 2-Chloroethyl vinyl ether | 26.8 | 5.0 | 1.3 | ug/l | 25.0 | | 107 | 20-175 | | | |
| Surrogate: Dibromofluoromethane | 21.8 | | | $u g / l$ | 25.0 | | 87 | 80-120 | | | |
| Surrogate: Toluene-d8 | 26.6 | | | ug/ | 25.0 | | 106 | 80-120 | | | |
| Surrogate: 4-Bromofluorobenzene | 24.8 | | | $u g / l$ | 25.0 | | 99 | 80-120 | | | |
| Matrix Splke Analyzedt 02/12/2005 (5B12011-MS1) Source 1080980-01 | | | | | | | | | | | |
| 2-Chloroethyl vinyl ether | 27.2 | 5.0 | 1.3 | ug/t | 25.0 | ND | 109 | 20-175 | | | |
| Surrogate: Dibromofluoromethane | 22.6 | | | $u g /$ | 25.0 | | 90 | 80-120 | | | |
| Surrogate: Toluene-d8 | 26.3 | | | $u g h$ | 25.0 | | 105 | 80-120 | | | |
| Surrogate: 4-Bromofluorobenzene | 25.1 | | | $u g h$ | 25.0 | | 100 | 80-120 | | | |
| Matrix Splke Dup Analyzed: 02/12/2005 (5B12011-MSD1) | | | | | Source: IOR0980-01 | | | | | | |
| 2-Chloroethyl vinyl ether | 27.5 | 5.0 | 1.3 | ug/l | 25.0 | ND | 110 | 20-175 | 1 | 25 | |
| Surrogate: Dibromofluoromethane | 22.7 | | | ug/ | 25.0 | | 91 | 80-120 | | | |
| Surrogate: Toluene-d8 | 26.4 | | | $u g h$ | 25.0 | | 106 | 80-120 | | | |
| Surrogate: 4-Bromofluorobenzene | 24.8 | | | $u g /$ | 25.0 | | 99 | 80-120 | | | |

Del Mar Analytical, Irvine
Michele Harper
Project Manager
MWH-Pasadena/Boeing Project ID: Annual Outfall 001

300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Report Number: 1OB0980

Sampled: 02/11/05
Received: 02/11/05

METHOD BLANKIOCDATA

PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS

| Analyte | Result | Reporting Limit | MDL | Units | Spike Level | Source Result | \%REC | \%REC
 Limits | RPD | RPD
 Limit | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5817020 Extracted: 02/17/05 | | | | | | | | | | | |
| Blank Analyzed: 02/17/2005 (5B17020-BLK1) | | | | | | | | | | | |
| 1,2-Dichloro-1,1,2-trifluoroethane | ND | 2.5 | N/A | ug/ | | | | | | | |
| Cyclohexane | ND | 2.5 | N/A | ugh | | | | | | | |

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001
Report Number: IOB0980
Sampled: 02/11/05
Received: 02/11/05

METHOD BLANKIQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

| Analyte | Result | Reporting Limit | MDL | Units | Spike
 Level | Source
 Result | \%REC | \%REC
 Limits | RPD | $\begin{aligned} & \text { RPD } \\ & \text { Limit } \end{aligned}$ | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5B14010 Extracted; 02/14/05 | | | | | | | | | | | |
| Blank Analyzed: 02/18/2005 (5B14010-BLK1) | | | | | | | | | | | |
| Acenaphthene | ND | 0.50 | 0.10 | ug/ | | | | | | | |
| Acenaphthylene | ND | 0.50 | 0.10 | ugh | | | | | | | |
| Aniline | ND | 10 | 2.9 | ug/ | | | | | | | |
| Anthracene | ND | 0.50 | 0.083 | ugh | | | | | | | |
| Benzidine | ND | 5.0 | 2.4 | ug/ | | | | | | | |
| Benzoic acid | ND | 20 | 3.7 | ug/l | | | | | | | |
| Benzo(a)anthracene | ND | 5.0 | 0.038 | ug/ | | | | | | | |
| Benzo(a)pyrene | ND | 2.0 | 0.14 | ug/ | | | | | | | |
| Benzo(b)fluoranthene | ND | 2.0 | 0.050 | ugh | | | | | | | |
| Benzo(g,h,i)perylene | ND | 5.0 | 0.059 | ug/ | | | | | | | |
| Benzo(k)fluoranthene | ND | 0.50 | 0.053 | ugh | | | | | | | |
| Benzyl alcohol | ND | 5.0 | 0.21 | ug/ | | | | | | | |
| Bis(2-chloroethoxy)methane | ND | 0.50 | 0.072 | ug 1 | | | | | | | |
| Bis(2 -chloroethyl)ether | ND | 0.50 | 0.084 | ug/ | | | | | | | |
| Bis(2-chloroisopropyl)ether | ND | 0.50 | 0.11 | ug/l | | | | | | | |
| Bis(2-ethylhexyl)phthalate | ND | 5.0 | 1.1 | ug/ | | | | | | | |
| 4-Bromophenyl phenyl ether | ND | 1.0 | 0.12 | ug/ | | | | | | | |
| Butyl benzyl phthalate | ND | 5.0 | 0.34 | ug/ | | | | | | | |
| 4-Chloroaniline | ND | 2.0 | 0.20 | ugh | | | | | | | |
| 2-Chloronaphthalene | ND | 0.50 | 0.059 | ug/ | | | | | | | |
| 4-Chloro-3-methylphenol | ND | 2.0 | 0.34 | ug/ | | | | | | | |
| 4-Chlorophenyl phenyl ether | ND | 0.50 | 0.056 | ug/1 | | | | | | | |
| 2-Chlorophenol | ND | 1.0 | 0.12 | ug/ | | | | | | | |
| Chrysene | ND | 0.50 | 0.072 | ug/1 | | | | | | | |
| Dibenz(a, h) anthracene | ND | 0.50 | 0.083 | ug/ | | | | | | | |
| Dibenzofuran | ND | 0.50 | 0.075 | ug/ | | | | | | | |
| Di-n-butyl phthatate | ND | 2.0 | 0.26 | ug/l | , | | | | | | |
| 1,2-Dichlorobenzene | ND | 0.50 | 0.11 | ugh | | | | | | | |
| 1,3-Dichlorobenzene | ND | 0.50 | 0.13 | ugh | | | | | | | |
| 1,4-Dichlorobenzene | ND | 0.50 | 0.050 | ug/l | | | | | | | |
| 3,3-Dichlorobenzidine | ND | 5.0 | 0.93 | ug/ | | | | | | | |
| 2,4-Dichlorophenol | ND | 2.0 | 0.21 | ug/ | | | | | | | |
| Diethyl phthalate | 0.200 | 1.0 | 0.12 | ug/l | | | | | | | J |
| 2,4-Dimethyiphenol | ND | 2.0 | 0.31 | ug/ | | | | | | | |
| Dimethyl phthalate | ND | 0.50 | 0.081 | ug/l | | | | | | | |

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwya Kelly

Project ID: Annual Outfall 001
Report Number: IOB0980
Sampled: 02/11/05
Received: 02/11/05

METHOD BLANKKCDATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

| Analyte | Result | Reporting
 Limit | MDL | Units | Spike
 Level | Source
 Result | \%REC | \%REC
 Limits | RPD | RPD
 Limit | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5B14010 Extracted: 02/14/05 | | | | | | | | | | | |
| Blank Analyzed: 02/18/2005 (5B14010-BLK1) | | | | | | | | | | | |
| 4,6-Dinitro-2-methylphenol | ND | 5.0 | 0.38 | ug/ | | | | | | | |
| 2,4 Dinitrophenol | ND | 5.0 | 2.7 | ug/ | | | | | | | |
| 2,4-Dinitrotoluene | ND | 5.0 | 0.23 | ug 1 | | | | | | | |
| 2,6-Dinitrotoluene | ND | 5.0 | 0.24 | ug/ | | | | | | | |
| Di-n-octyl phthalate | ND | 5.0 | 0.17 | ug/ | | | | | | | |
| 1,2-Diphenylhydrazine/Azobenzene | ND | 1.0 | 0.087 | ug/ | | | | | | | |
| Fluoranthene | ND | 0.50 | 0.089 | ug/ | | | | | | | |
| Fluorene | 0.200 | 0.50 | 0.075 | ug/ | | | | | | | J |
| Hexachlorobenzene | ND | 1.0 | 0.13 | ug/ | | | | | | | |
| Hexachlorobutadiene | ND | 2.0 | 0.38 | ug/l | | | | | | | |
| Hexachlorocyclopentadiene | ND | 5.0 | 1.8 | ug/ | | | | | | | |
| Hexachloroethane | ND | 3.0 | 0.51 | ug/l | | | | | | | |
| Indeno(1,2,-cd)pyrene | ND | 2.0 | 0.19 | ugn | | | , | | | | |
| Isophorone | ND | 1.0 | 0.059 | ugh | | | | | | | |
| 2-Methylnaphthalene | 8.70 | 1.0 | 0.13 | ug/ | | | | | | | B |
| 2-Methylphenol | ND | 2.0 | 0.28 | ug/ | | | | | | | |
| 4-Methylphenol | ND | 5.0 | 0.20 | ug/ | | | | | | | |
| Naphthalene | 0.300 | 1.0 | 0.13 | ug/ | | | | | | | J |
| 2-Nitroaniline | ND | 5.0 | 0.18 | ug/ | | | | | | | |
| 3-Nitroaniline | ND | 5.0 | 0.35 | ug/ | | | | | | | |
| 4 Nitroaniline | ND | 5.0 | 0.49 | ug/ | | | | | | | |
| Nitrobenzene | ND | 1.0 | 0.10 | ug/ | | | | | | | |
| 2-Nitrophenol | ND | 2.0 | 0.23 | ug/ | | | | | | | |
| 4-Nitrophenol | ND | 5.0 | 0.73 | ugh | | | | | | | |
| N-Nitrosodimethylamine | ND | 2.0 | 0.22 | ug/ | | | | | | | |
| N-Nitroso-di-n-propylamine | ND | 2.0 | 0.18 | ug/ | | | | | | | |
| N-Nitrosodiphenylamine | ND | 1.0 | 0.077 | ug/ | | | | | | | |
| Pentachloropherel | ND | 2.0 | 0.78 | ug/l | | | | | | | |
| Phenanthrene | 0.120 | 0.50 | 0.071 | ug/l | | | | | | | J |
| Phenol | ND | 1.0 | 0.14 | ug/l | | | | | | | |
| Pyrene | ND | 0.50 | 0.059 | ug/l | | | | | | | |
| 1,2,4-Trichlorobenzene | ND | 1.0 | 0.10 | ugh | | | | | | | |
| 2,4,5-Trichlorophenol | ND | 2.0 | 0.075 | ug/l | | | | | | | |
| 2,4,6-Trichlorophenol | ND | 1.0 | 0.10 | ug/l | | | | | | | |
| Surrogate: 2-Fluorophenol | 15.9 | | | ug/ $/$ | 20.0 | | 803 | 35-120 | | | |

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention; Bronwyn Kelly

Project ID: Annual Outfall 001

Report Number: IOB0980

Sampled: 02/11/05
Received: 02/11/05

METHOD BLANKQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

| Analyte | Result | Reporting
 Limit | MDL | Units | Spike
 Level | Source
 Result | \%REC | \%REC
 Limits | RPD | RPD
 Limit | Data Qualifers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5B14010 Extracted: 02/14/05 | | | | | | | | | | | |
| Blank Analyzed: 02/18/2005 (5B14010-BLK1) | | | | | | | | | | | |
| Surrogate: Phenol-d6 | 15.5 | | | ug/ | 20.0 | | 78 | 45-120 | | | |
| Surrogate: 2,4,6-Tribromophenol | 14.0 | | | ug/ | 20.0 | | 70 | 50-125 | | | |
| Surrogate: Nitrobenzene-ds | 7.44 | | | ug/ | 10.0 | | 74 | 45-120 | | | |
| Surrogate: 2-Fluorobiphenyl | 7.50 | | | ug A | 10.0 | | 75 | 45-120 | | | |
| Surrogate: Terphenyl-d14 | 8.10 | | | ug/ | 10.0 | | 81 | 45-135 | | | |
| LCS Analyzed: 02/18/2005 (5B | | | | | | | | | | | M-NR1 |
| Acenaphthene | 7.94 | 0.50 | 0.10 | ug/ | 10.0 | | 79 | 55-120 | | | |
| Acenaphthylene | 8.16 | 0.50 | 0.10 | ug/1 | 10.0 | | 82 | 55-120 | | | |
| Aniline | 8.24 | 10 | 2.9 | ug/ | 10.0 | | 82 | 30-120 | | | J |
| Anthracene | 8.12 | 0.50 | 0.083 | ug/ | 10.0 | | 81 | 60-120 | | | |
| Benzidine | 4.50 | 5.0 | 2.4 | ug/ | 10.0 | | 45 | 20-180 | | | J |
| Benzoic acid | 4.86 | 20 | 3.7 | ug/ | 10.0 | | 49 | 30.125 | | | J |
| Benzo(a)anthracene | 828 | 5.0 | 0.038 | ugh | 10.0 | | 83 | 65-120 | | | |
| Benzo(a)pyrene | 9.18 | 2.0 | 0.14 | ug/ | 10.0 | | 92 | 55-125 | | | |
| Benzo(b)fluoranthene | 8.00 | 2.0 | 0.050 | ug/ | 10.0 | | 80 | 50-125 | | | |
| Benzo(g, h ,) perylene | 8.04 | 5.0 | 0.059 | ug/ | 10.0 | | 80 | 35-160 | | | |
| Benzo(k)fluoranthene | 8.44 | 0.50 | 0.053 | ug/ | 10.0 | | 84 | 50-125 | | | |
| Benzyl alcohol | 7.34 | 5.0 | 0.21 | ug/ | 10.0 | | 73 | 40-130 | | | |
| Bis(2-chloroethoxy)methane | 7.30 | 0.50 | 0.072 | ug/ | 10.0 | | 73 | 55-120 | | | |
| Bis(2-chloroethyl)ether | 6.84 | 0.50 | 0.084 | ug/ | 10.0 | | 68 | 50-120 | | | |
| Bis(2-chloroisopropyl)ether | 7.40 | 0.50 | 0.11 | ug/ | 10.0 | | 74 | 50-120 | | | |
| Bis(2-ethylhexyl)phthalate | 7.70 | 5.0 | 1.1 | ug/ | 10.0 | | 77 | 65-125 | | | |
| 4-Bromophenyl phenyl ether | 7.56 | 1.0 | 0.12 | ug/ | 10.0 | | 76 | 55-125 | | | |
| Butyl benzyl phthalate | 7.22 | 5.0 | 0.34 | ug/ | 10.0 | | 72 | 60-125 | | | |
| 4-Chloroaniline | 7.90 | 2.0 | 0.20 | ug/ | 10.0 | | 79 | 55-120 | | | |
| 2-Chloronaphthalene | 7.86 | 0.50 | 0.059 | ug/ | 10.0 | | 79 | 60-120 | | | |
| 4-Chloro-3-methylphenol | 7.90 | 2.0 | 0.34 | ug/ | 10.0 | | 79 | 60-120 | | | |
| 4-Chlorophenyl phenyl ether | 8.28 | 0.50 | 0.056 | ug/ | 10.0 | | 83 | 55-120 | | | |
| 2-Chlorophenol | 7.16 | 1.0 | 0.12 | ug/ | 10.0 | | 72 | 45-120 | | | |
| Chrysene | 8.20 | 0.50 | 0.072 | ugh | 10.0 | | 82 | 65-120 | | | |
| Dibenz(a, a anthracene $^{\text {a }}$ | 7.62 | 0.50 | 0.083 | ugh | 10.0 | | 76 | 40-160 | | | |
| Dibenzofuran | 8.14 | 0.50 | 0.075 | ug/ | 10.0 | | 81 | 60-120 | | | |
| Di-n-butyl phthalate | 7.96 | 2.0 | 0.26 | ug/ | 10.0 | | 80 | 65-125 | | | |
| 1,2-Dichlorobenzene | 6.54 | 0.50 | 0.11 | ugh | 10.0 | | 65 | 40-120 | | | |
| 1,3-Dichlorobenzene | 6.38 | 0.50 | 0.13 | ug/ | 10.0 | | 64 | 40-120 | | | |

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001
Report Number: IOB0980

Sampled: 02/11/05
Received: 02/11/05

METHOD BLANKIOC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte
Batch: 5B14010 Extracted: 02/14/05

LCS Analyzed: 02/18/2005 (5B14010-BS1)

| 1,4-Dichlorobenzene | 6.22 | 0.50 | 0.050 | ug/ | 10.0 | 62 | 40-120 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3,3-Dichlorobenzidine | 7.52 | 5.0 | 0.93 | ug/ | 10.0 | 75 | 50-170 |
| 2,4-Dichlorophenol | 7.64 | 2.0 | 0.21 | ug/ | 10.0 | 76 | 55-120 |
| Diethyl phthalate | 7.58 | 1.0 | 0.12 | ug/ | 10.0 | 76 | 60-120 |
| 2,4-Dimethylphenol | 5.34 | 2.0 | 0.31 | ug/ | 10.0 | 53 | 35-120 |
| Dimethyl phthalate | 7.42 | 0.50 | 0.081 | ug/ | 10.0 | 74 | 60-120 |
| 4,6-Dinitro-2-methylphenol | 6.64 | 5.0 | 0.38 | ugl | 10.0 | 66 | 55-120 |
| 2,4-Dinitrophenel | 6.02 | 5.0 | 2.7 | ug/ | 10.0 | 60 | 40-140 |
| 2,4-Dinitrotoluene | 6.68 | 5.0 | 0.23 | ug/ | 10.0 | 67 | 60-140 |
| 2,6-Dinitrotoluene | 7.44 | 5.0 | 0.24 | ug/ | 10.0 | 74 | 65-125 |
| Di-i-octyl phthalate | 6.72 | 5.0 | 0.17 | ug/ | 10.0 | 67 | 60-130 |
| 1,2-Diphenylhydrazine/Azobenzene | 8.52 | 1.0 | 0.087 | ug/ | 10.0 | 85 | 60-120 |
| Fluoranthene | 934 | 0.50 | 0.089 | ug/ | 10.0 | 93 | 55-125 |
| Fluorene | 8.32 | 0.50 | 0.075 | ug/ | 10.0 | 83 | 60-120 |
| Hexachlorobenzene | 7.70 | 1.0 | 0.13 | ug 1 | 10.0 | 77 | 50-120 |
| Hexachlorobutadiene | 6.44 | 2.0 | 0.38 | ug/ | 10.0 | 64 | 45-120 |
| Hexachlorocyclopentadiene | 7.70 | 5.0 | 1.8 | ug/ | 10.0 | 77 | 10-130 |
| Hexachloroethane | 6.90 | 3.0 | 0.51 | ug/ | 10.0 | 69 | 40-120 |
| Indeno(1,2,3-cd)pyrene | 7.40 | 2.0 | 0.19 | ug/ | 10.0 | 74 | 35-150 |
| Isophorone | 6.42 | 1.0 | 0.059 | ugh | 10.0 | 64 | 55-120 |
| 2-Methylnaphthalene | 8.02 | 1.0 | 0.13 | ugh | 10.0 | 80 | 50-120 |
| 2-Methylphenol | 7.06 | 2.0 | 0.28 | ug/ | 10.0 | 71 | 45-120 |
| 4-Methylphenol | 7.38 | 5.0 | 0.20 | ugh | 10.0 | 74 | 45-120 |
| Naphthalene | 7.88 | 1.0 | 0.13 | ug/ | 10.0 | 79 | 50-120 |
| 2-Nitroaniline | 7.54 | 5.0 | 0.18 | ug/ | 10.0 | 75 | 60-130 |
| 3-Nitroaniline | 7.72 | 5.0 | 0.35 | ug/ | 10.0 | 77 | 50-140 |
| 4-Nitroaniline | 7.48 | 5.0 | 0.49 | ugh | 10.0 | 75 | 45-160 |
| Nitrobenzene | 7.26 | 1.0 | 0.10 | ugh | 10.0 | 73 | 50-120 |
| 2-Nitrophenol | 8.06 | 2.0 | 0.23 | ugh | 10.0 | 81 | 55-120 |
| 4-Nitrophenol | 6.82 | 5.0 | 0.73 | ugh | 10.0 | 68 | 50-135 |
| N -Nitrosodimethylamine | 5.44 | 2.0 | 0.22 | ugh | 10.0 | 54 | 40-120 |
| N -Nitroso-di-n-propylamine | 6.94 | 2.0 | 0.18 | ugh | 10.0 | 69 | 50-120 |
| N -Nitrosodiphenylamine | 7.04 | 1.0 | 0.077 | $\mathrm{ug} /$ | 10.0 | 70 | 60-120 |
| Pentachlorophenol | 7.14 | 2.0 | 0.78 | ug/ | 10.0 | 71 | 50-125 |
| Phenanthrene | 7.92 | 0.50 | 0.071 | ug/ | 10.0 | 79 | 55-120 |

Del Mar Analytical, Irvine

Michele Harper
Project Manager
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

| Project ID: Annual Outfall 001 | |
| :--- | ---: |
| Report Number: $10 B 0980$ | Sampled: 02/11/05 |
| | Received: 02/11/05 |

METHOD BLANKIQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte
Batch: 5B14010 Extracted: 02/14/05

LCS Analyzed: 02/18/2005 (5B14010-BS1)

| Phenol | 7.54 | 1.0 | 0.14 |
| :--- | :---: | :---: | :---: |
| Pyrene | 7.86 | 0.50 | 0.059 |
| 1,2,4-Trichlorobenzene | 6.84 | 1.0 | 0.10 |
| 2,4,5-Trichlorophenol | 8.44 | 2.0 | 0.075 |
| 2,4,6-Trichlorophenol | 7.90 | 1.0 | 0.10 |
| Surrogate: 2 -Fluorophenol | 13.9 | | |
| Surrogate: Phenol-d6 | 14.3 | | |
| Surrogate: $2,4,6-T$ Tribromophenol | 14.7 | | |
| Surrogate: Nitrobenzene-d5 | 7.24 | | |
| Surrogate: 2 -Fluorobiphenyl | 7.38 | | |
| Surrogate: Terphenyl-dl4 | 6.90 | | |

| ugl | 10.0 |
| :---: | :---: |
| ugh | 10.0 |
| ugl | 10.0 |
| ughl | 10.0 |
| ug/l | 10.0 |
| ug/l | 20.0 |
| ug $/$ | 20.0 |
| ugh | 20.0 |
| ug/ | 10.0 |
| ug/ | 10.0 |
| $u g /$ | 10.0 |

LCS Dup Analyzed: 02/18/2005 (5B14010-BSD1)

| Acenaphthene | 788 | 0.50 | 0.10 | ug/l | 10.0 | 79 | 55-120 | 1 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Acenaphthylene | 8.12 | 0.50 | 0.10 | ug/l | 10.0 | 81 | 55-120 | 1 | 20 |
| Aniline | 8.62 | 10 | 2.9 | ug/l | 10.0 | 86 | 30-120 | 5 | 25 |
| Anthracene | 8.18 | 0.50 | 0.083 | ug/l | 10.0 | 82 | 60-120 | 1 | 20 |
| Benzidine | ND | 5.0 | 2.4 | ug/ | 10.0 | | 20-180 | | 35 |
| Benzoic acid | 4.38 | 20 | 3.7 | ug/ | 10.0 | 44 | 30-125 | 10 | 30 |
| Benzo(a)anthracene | 8.50 | 5.0 | 0.038 | ug/ | 10.0 | 85 | 65-120 | 3 | 20 |
| Benzo(a)pyrene | 9.16 | 2.0 | 0.14 | ug/l | 10.0 | 92 | 55-125 | 0 | 25 |
| Benzo(b)fluoranthene | 8.60 | 2.0 | 0.050 | ug/ | 10.0 | 86 | 50-125 | 7 | 25 |
| Benzo(g,h,i)perylene | 7.20 | 5.0 | 0.059 | ug/ | 10.0 | 72 | 35-160 | 11 | 25 |
| Benzo(k)fluoranthene | 8.40 | 0.50 | 0.053 | ug/l | 10.0 | 84 | 50-125 | 1 | 20 |
| Benzyl alcohol | 8.70 | 5.0 | 0.21 | ug/l | 10.0 | 87 | 40-130 | 17 | 20 |
| Bis(2-chloroethoxy)methane | 7.60 | 0.50 | 0.072 | ug/ | 10.0 | 76 | 55-120 | 4 | 20 |
| Bis(2-chloroethyl)ether | 7.02 | 0.50 | 0.084 | ug/ | 10.0 | 70 | 50-120 | 3 | 20 |
| Bis(2-chloroisopropyl)ether | 7.66 | 0.50 | 0.11 | ug/ | 10.0 | 77 | 50-120 | 3 | 20 |
| Bis(2-ethylhexyl)phthalate | 7.78 | 5.0 | 1.1 | ug/1 | 10.0 | 78 | 65-125 | 1 | 20 |
| 4-Bromophenyl phenyl ether | 7.50 | 1.0 | 0.12 | ug/ | 10.0 | 75 | 55-125 | 1 | 25 |
| Butyl benzyl phthalate | 7.26 | 5.0 | 0.34 | ug/l | 10.0 | 73 | 60-125 | 1 | 20 |
| 4-Chloroaniline | 8.46 | 2.0 | 0.20 | ug/ | 10.0 | 85 | 55-120 | 7 | 25 |
| 2-Chloronaphthalene | 7.72 | 0.50 | 0.059 | ug/ | 10.0 | 77 | 60-120 | 2 | 20 |
| 4-Chloro-3-methylphenol | 8.48 | 2.0 | 0.34 | ug/l | 10.0 | 85 | 60-120 | 7 | 25 |
| 4-Chlorophenyl phenyl ether | 7.90 | 0.50 | 0.056 | ug/l | 10.0 | 79 | 55-120 | 5 | 20 |
| 2-Chlorophenol | 7.54 | 1.0 | 0.12 | ug/l | 10.0 | 75 | 45-120 | 5 | 25 |

| 75 | $45-120$ |
| :--- | :--- |
| 79 | $50-120$ |
| 68 | $50-120$ |
| 84 | $60-120$ |
| 79 | $60-120$ |
| 70 | $35-120$ |
| 72 | $45-120$ |
| 74 | $50-125$ |
| 72 | $45-120$ |
| 74 | $45-120$ |
| 69 | $45-135$ |

J
$L 2$
J

Del Mar Analytical, Irvine
Michele Harper
Project Manager

M-NR1
Data
Qualifiers

| Reporting | | | Spike | Source | \%REC | | RPD | Data | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Limit | MDL | Units | Level | Result | \%REC | Limits | RPD | Limit | Qualifiers |

M-NR1

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Report Number: IOB0980
Sampled: 02/11/05
Received: 02/11/05

METHOD BLANKKQC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte
Batch: 5B14010 Extracted: 02/14/05

LCS Dup Analyzed: 02/18/2005 (5B14010-BSD1)

| Chrysene | 8.04 | 0.50 | 0.072 | ug/ | 10.0 | 80 | 65-120 | 2 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dibenz(a,h)anthracene | 7.18 | 0.50 | 0.083 | ug/ | 10.0 | 72 | 40-160 | 6 | 25 |
| Dibenzofuran | 8.06 | 0.50 | 0.075 | ug/ | 10.0 | 81 | 60-120 | 1 | 20 |
| Di-n-butyl phthalate | 8.06 | 2.0 | 0.26 | ug/ | 10.0 | 81 | 65-125 | 1 | 20 |
| 1,2-Dichlorobenzene | 6.78 | 0.50 | 0.11 | ug/l | 10.0 | 68 | 40-120 | 4 | 25 |
| 1,3-Dichlorobenzene | 6.54 | 0.50 | 0.13 | ug/ | 10.0 | 65 | 40-120 | 2 | 25 |
| 1,4-Dichlorobenzene | 6.60 | 0.50 | 0.050 | ug/ | 10.0 | 66 | 40-120 | 6 | 25 |
| 3,3-Dichlorobenzidine | 7.96 | 5.0 | 0.93 | ug/ | 10.0 | 80 | 50-170 | 6 | 25 |
| 2,4-Dichlorophenol | 8.34 | 2.0 | 0.21 | ug/l | 10.0 | 83 | 55-120 | 9 | 20 |
| Diethyl phthalate | 7.90 | 1.0 | 0.12 | ug/l | 10.0 | 79 | 60-120 | 4 | 20 |
| 2,4-Dimethylphenol | 6.10 | 2.0 | 0.31 | ug/l | 10.0 | 61 | 35-120 | 13 | 25 |
| Dimethyl phthalate | 7.50 | 0.50 | 0.081 | ug/ | 10.0 | 75 | 60-120 | 1. | 20 |
| 4,6-Dinitro-2-methylphenol | 764 | 50 | 0.38 | ugh | 10.0 | 76 | $55-120$ | 14 | 25 |
| 2,4 Dinitrophenol | 6.88 | 5.0 | 2.7 | ug/l | 10.0 | 69 | 40-140 | 13 | 25 |
| 2,4-Dinitrotoluene | 7.20 | 5.0 | 0.23 | ug/ | 10.0 | 72 | 60-140 | 7 | 20 |
| 2,6-Dinitrotoluene | 7.78 | 5.0 | 0.24 | ug/l | 10.0 | 78 | 65-125 | 4 | 20 |
| Di-n-octyl phthalate | 7.08 | 5.0 | 0.17 | ug/l | 10.0 | 71 | 60-130 | 5 | 20 |
| 1,2-Diphenylhydrazine/Azobenzene | 8.36 | 1.0 | 0.087 | ug/l | 10.0 | 84 | 60-120 | 2 | 25 |
| Fluoranthene | 9.12 | 0.50 | 0.089 | ug/l | 10.0 | 91 | 55-125 | 2 | 20 |
| Fluorene | 8.50 | 0.50 | 0.075 | ug/l | 10.0 | 85 | 60-120 | 2 | 20 |
| Hexachlorobenzene | 7.62 | 1.0 | 0.13 | ug/l | 10.0 | 76 | 50-120 | 1 | 20 |
| Hexachlorobutadiene | 6.72 | 2.0 | 0.38 | ug/ | 10.0 | 67 | 45-120 | 4 | 25 |
| Hexachlorocyclopentadiene | 7.88 | 5.0 | 1.8 | ug/l | 10.0 | 79 | 10-130 | 2 | 30 |
| Hexachloroethane | 6.98 | 3.0 | 0.51 | ug/ | 10.0 | 70 | 40-120 | 1 | 25 |
| Indeno(1,2,3-cd)pyrene | 7.64 | 2.0 | 0.19 | ug/ | 10.0 | 76 | 35-150 | 3 | 25 |
| Isophorone | 7.28 | 1.0 | 0.059 | ugh | 10.0 | 73 | 55-120 | 13 | 20 |
| 2-Methylnaphthalene | 8.84 | 1.0 | 0.13 | ug/l | 10.0 | 88 | 50-120 | 10 | 20 |
| 2-Methylphenol | 8.02 | 2.0 | 0.28 | ug/l | 10.0 | 80 | 45-120 | 13 | 20 |
| 4-Methylphenol | 8.32 | 5.0 | 0.20 | ug/ | 10.0 | 83 | 45-120 | 12 | 20 |
| Naphthalene | 7.78 | 1.0 | 0.13 | ug/ | 10.0 | 78 | 50-120 | 1 | 20 |
| 2-Nitroaniline | 7.58 | 5.0 | 0.18 | ug/ | 10.0 | 76 | 60-130 | I | 20 |
| 3-Nitroaniline | 7.74 | 5.0 | 0.35 | ug/l | 10.0 | 77 | 50-140 | 0 | 25 |
| 4-Nitroaniline | 8.56 | 5.0 | 0.49 | ug/l | 10.0 | 86 | 45-160 | 13 | 20 |
| Nitrobenzene | 7.48 | 1.0 | 0.10 | ug/l | 10.0 | 75 | 50-120 | 3 | 25 |
| 2-Nitrophenol | 8.62 | 2.0 | 0.23 | ug/l | 10.0 | 86 | 55-120 | 7 | 25 |

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001
Report Number: $10 B 0980$

Sampled: 02/11/05
Received: 02/11/05

METHOD BLANKIOC DATA

ACID \& BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte
Batch: 5B14010 Extracted: 02/14/05

LCS Dup Analyzed: 02/18/2005 (5B14010-BSD1)

| 4 Nitrophenol | 7.58 | 5.0 | 0.73 | ugh | 10.0 | 76 | 50-135 | 11 | 25 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N-Nitrosodimethylamine | 8.36 | 2.0 | 0.22 | ug/ | 10.0 | 84 | 40-120 | 42 | 20 |
| N-Nitroso-di-n-propylamine | 7.70 | 2.0 | 0.18 | ugh | 10.0 | 77 | 50-120 | 10 | 20 |
| N-Nitrosodiphenylamine | 7.34 | 1.0 | 0.077 | ugl | 10.0 | 73 | 60-120 | 4 | 20 |
| Pentachlorophenol | 7.76 | 2.0 | 0.78 | ug/ | 10.0 | 78 | 50-125 | 8 | 25 |
| Phenanthrene | 8.06 | 0.50 | 0.071 | ughl | 10.0 | 81 | 55-120 | 2 | 20 |
| Phenol | 7.90 | 1.0 | 0.14 | ug/ | 10.0 | 79 | 45-120 | 5 | 25 |
| Pyrene | 8.10 | 0.50 | 0.059 | ug/ | 10.0 | 81 | 50-120 | 3 | 25 |
| 1,2,4-Trichlorobenzene | 6.66 | 1.0 | 0.10 | ug/ | 10.0 | 67 | 50-120 | 3 | 20 |
| 2,4,5-Trichlorophenol | 8.32 | 2.0 | 0.075 | ug/ | 10.0 | 83 | 60-120 | 1 | 20 |
| 2,4,6-Trichlorophenol | 8.22 | 1.0 | 0.10 | ug/ | 10.0 | 82 | 60-120 | 4 | 20 |
| Surrogate: 2-Fluorophenol | 14.0 | | | ug/ | 20.0 | 70 | 35-120 | | |
| Surrogate Phenol-d6 | 151 | | | ug/ | 20.0 | 76 | $45-120$ | | |
| Surrogate 1,4,6-Tribromophenol | 15.1 | | | ugh | 20.0 | 76 | 90-125 | | |
| Surrogate: Nitrobenzene-d5 | 7.54 | | | ug $/$ | 10.0 | 75 | 45-120 | | |
| Surrogate: 2-Fluorobiphenyl | 7.30 | | | ug/l | 10.0 | 73 | 45-120 | | |
| Surrogate: Terphenyl-d14 | 7.24 | | | ug $/$ | 10.0 | 72 | 45-135 | | |

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001
$\begin{array}{ll}\text { Report Number: } 10 B 0980 & \text { Sampled: 02/11/05 } \\ \text { Received: 02/11/05 }\end{array}$

METHOD BLANKIOC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

| Analyte | Result | Reporting Limit | MDL | Units | Spike
 Level | Source
 Result | \%REC | \%REC
 Limits | RPD | RPD
 Limit | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5814073 Extracted: 02/14/05 | | | | | | | | | | | |
| Blank Analyzed: 02/15/2005 (5B14073-BLK1) | | | | | | | | | | | |
| Aldrin | ND | 0.10 | 0.030 | ug/ | | | | | | | |
| alpha-BHC | ND | 0.010 | 0.00049 | ugh | | | | | | | |
| alpha-BHC | ND | 0.10 | 0.015 | ugd | | | | | | | |
| beta-BHC | ND | 0.10 | 0.015 | ugh | | | | | | | |
| delta-BHC | ND | 0.20 | 0.020 | ug/1 | | | | | | | |
| gamma-BHC (Lindane) | ND | 0.10 | 0.015 | ug/ | | | | | | | |
| Chiordane | ND | 1.0 | 0.20 | ug/ | | | | | | | |
| 4,44-DDD | ND | 0.10 | 0.015 | ug/ | | | | | | | |
| 4,4--DDE | ND | 0.10 | 0.020 | ug/ | | | | | | | |
| 4,4 ${ }^{\text {- DDT }}$ | ND | 0.10 | 0.030 | ug/ | | | | | | | |
| Dieldrin | ND | 0.10 | 0.015 | ug/ | | | | | | | |
| Endosulfan I | ND | 0.10 | 0.015 | ug/ | | | | | | | |
| Endosulfan 1- | ND | 0.10 | 0.040 | ugh | | | - | | | | |
| Endosulfan sulfate | ND | 0.20 | 0.015 | ugh | | | | | | | |
| Endrin | ND | 0.10 | 0.015 | ug/ | | | | | | | |
| Endrin aldehyde | ND | 0.10 | 0.045 | ug/1 | | | | | | | |
| Endrin ketone | ND | 0.10 | 0.020 | ug/ | | | | | | | |
| Heptachlor | ND | 0.10 | 0.030 | ug/ | | | | | | | |
| Heptachlor epoxide | ND | 0.10 | 0.020 | ug/ | | | | | | | |
| Methoxychlor | ND | 0.10 | 0.035 | ug/ | | | | | | | |
| Toxaphene | ND | 5.0 | 1.5 | ug/ | | | | | | | |
| Surrogate: Tetrachloro-m-xylene | 0.302 | | | ug/ | 0.500 | | 60 | 35-120 | | | |
| Surrogate: Decachlorobiphenyl | 0.370 | | | ug/l | 0.500 | | 74 | 45-120 | | | |
| Surrogate: Tetrachloro-m-xylene | 0.302 | | | ug/l | 0.500 | | 60 | 35-120 | | | |
| Surrogate: Decachlorobiphenyl | 0.370 | | | $u g /$ | 0.500 | | 74 | 45-120 | | | |

| LCS Analyzed: 02/15/2005 (5B14073-BS1) | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Aldrin | 0.399 | 0.10 | 0.030 | ug/l | 0.500 | 80 | $45-115$ |
| alpha-BHC | 0.427 | 0.10 | 0.015 | ug/ | 0.500 | 85 | $45-115$ |
| alpha-BHC | 0.427 | 0.010 | 0.00049 | ug/ | 0.500 | 85 | $45-115$ |
| beta-BHC | 0.398 | 0.10 | 0.015 | ug/ | 0.500 | 80 | $50-115$ |
| delta-BHC | 0.409 | 0.20 | 0.020 | ug/l | 0.500 | 82 | $55-120$ |
| gamma-BHC (Lindane) | 0.429 | 0.10 | 0.015 | ug/ | 0.500 | 86 | $45-115$ |
| 4,4-DDD | 0.443 | 0.10 | 0.015 | ug/ | 0.500 | 89 | $60-120$ |
| 4,4-DDE | 0.439 | 0.10 | 0.020 | ug $/$ | 0.500 | 88 | $55-120$ |
| 4,4-DDT | 0.374 | 0.10 | 0.030 | ug/l | 0.500 | 75 | $60-130$ |

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

| Project ID: Annual Outfall 001 | |
| ---: | ---: |
| Report Number: $10 B 0980$ | Sampled: 02/11/05 |

METHOD BLANKIOC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

| Analyte | Result | Reporting Limit | MDL | Units | Spike
 Level | Source Result | \%REC | \%REC
 Limits | RPD | RPD
 Limit | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5B14073 Extracted: 02/14/05 | | | | | | | | | | | |
| LCS Analyzed: 02/15/2005 (5 | | | | | | | | | | | M-NR1 |
| Dieldrin | 0.428 | 0.10 | 0.015 | ugh | 0.500 | | 86 | 55-120 | | | |
| Endosulfan I | 0.410 | 0.10 | 0.015 | ug/ | 0.500 | | 82 | 50-115 | | | |
| Endosulfan II | 0.402 | 0.10 | 0.040 | ug/ | 0.500 | | 80 | 60-125 | | | |
| Endosulfan sulfate | 0.399 | 0.20 | 0.015 | ug/ | 0.500 | | 80 | 60-120 | | | |
| Endrin | 0.467 | 0.10 | 0.015 | ug/ | 0.500 | | 93 | 55-125 | | | |
| Endrin aldehyde | 0.377 | 0.10 | 0.045 | ug/1 | 0.500 | | 75 | 55-115 | | | |
| Endrin ketone | 0.396 | 0.10 | 0.020 | ug/l | 0.500 | | 79 | 60-120 | | | |
| Heptachlor | 0.439 | 0.10 | 0.030 | ug/1 | 0.500 | | 88 | 45-115 | | | |
| Heptachlor epoxide | 0.409 | 0.10 | 0.020 | ug/ | 0.500 | | 82 | 50-120 | | | |
| Methoxychlor | 0.409 | 0.10 | 0.035 | ug/ | 0.500 | | 82 | 60-135 | | | |
| Surrogate: Tetrachloro-m-xylene | 0.363 | | | ug n | 0.500 | | 73 | 35-120 | | | |
| Surrogate: Decachlorobiphenyl | 0.397 | | | ug $/$ | 0.500 | | 79 | 45-120 | | | |
| Sumogate Tetrachloro-m-xylene | 0.363 | \% | | ug/ | 0500 | | 73 | 35-120 | | | |
| Surrogate Decachlorobiphenyl | 0.397 | | | ug $/$ | 0.500 | | 79 | 45-120 | | | |
| LCS Dup Analyzed: 02/15/2005 (5B14073-BSD1) | | | | | | | | | | | |
| Aldrin | 0.416 | 0.10 | 0.030 | ug/ | 0.500 | | 83 | 45-115 | 4 | 30 | |
| alpha-BHC | 0.444 | 0.010 | 0.00049 | ug/ | 0.500 | | 89 | 45-115 | 4 | 30 | |
| alpha-BHC | 0.444 | 0.10 | 0.015 | ug/ | 0.500 | | 89 | 45-115 | 4 | 30 | |
| beta-BHC | 0.425 | 0.10 | 0.015 | ug/ | 0.500 | | 85 | 50-115 | 7 | 30 | |
| delta-BHC | 0.443 | 0.20 | 0.020 | ug/ | 0.500 | | 89 | 55-120 | 8 | 30 | |
| gamma-BHC (Lindane) | 0.450 | 0.10 | 0.015 | ug/ | 0.500 | | 90 | 45-115 | 5 | 30 | |
| 4,4-DDD | 0.496 | 0.10 | 0.015 | ug/ | 0.500 | | 99 | 60-120 | 11 | 30 | |
| 4,4'-DDE | 0.477 | 0.10 | 0.020 | ug/ | 0.500 | | 95 | 55-120 | 8 | 30 | |
| 4,4'-DDT | 0.437 | 0.10 | 0.030 | ug/l | 0.500 | | 87 | 60-130 | 16 | 30 | |
| Dieldrin | 0.467 | 0.10 | 0.015 | ugh | 0.500 | | 93 | 55-120 | 9 | 30 | |
| Endosulfan I | 0.515 | 0.10 | 0.015 | ughl | 0.500 | | 103 | 50-115 | 23 | 30 | |
| Endosulfan II | 0.448 | 0.10 | 0.040 | ugl | 0.500 | | 90 | 60-125 | 11 | 30 | |
| Endosulfan sulfate | 0.475 | 0.20 | 0.015 | ug/ | 0.500 | | 95 | 60-120 | 17 | 30 | |
| Endrin | 0.514 | 0.10 | 0.015 | ugh | 0.500 | | 103 | 55-125 | 10 | 30 | |
| Endrin aldehyde | 0.425 | 0.10 | 0.045 | ugh | 0.500 | | 85 | 55-115 | 12 | 30 | |
| Endrin ketone | 0.454 | 0.10 | 0.020 | ug/l | 0.500 | | 91 | 60-120 | 14 | 30 | |
| Heptachlor | 0.460 | 0.10 | 0.030 | $\mathrm{ug} / 1$ | 0.500 | | 92 | 45-115 | 5 | 30 | |
| Heptachlor epoxide | 0.441 | 0.10 | 0.020 | ug/l | 0.500 | | 88 | 50-120 | 8 | 30 | |
| Methoxychlor | 0.494 | 0.10 | 0.035 | ug/t | 0.500 | | 99 | 60-135 | 19 | 30 | |
| Surrogate: Tetrachloro-m-xylene | 0.363 | | | ugh | 0.500 | | 73 | 35-120 | | | |

Del Mar Analytical, Irvine

Michele Harper
Project Manager

| MWH-Pasadena/Boeing | Project ID; Annual Outfall 001 | |
| :--- | :--- | :--- |
| 300 North Lake Avenue, Suite 1200 | Report Number: 10B0980 | Sampled: $02 / 11 / 05$ |
| Pasadena, CA 91101 | | Received: $02 / 11 / 05$ |
| Attention: Bronwyn Kelly | | |

METHOD BLANKGQC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

| Analyte | Result | Reporting
 Limit | MDL | Units | Spike
 Level | Source Result | \%REC | \%REC
 Limits | RPD | RPD
 Limit | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5814073 Extracted: 02/14/05 | | | | | | | | | | | |
| LCS Dup Analyzed: 02/15/2005 (5B14073-BSD1) | | | | | | | | | | | |
| Surrogate: Decachlorobiphenyl | 0.455 | | | ug/ | 0.500 | | 91 | 45-120 | | | |
| Surrogate: Tetrachloro-m-xylene | 0.363 | | | ug/l | 0.500 | | 73 | 35-120 | | | |
| Surrogate: Decachlorobiphenyl | 0.455 | | | ug/ | 0.500 | | 91 | 45-120 | | | |

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Report Number: IOB0980
Sampled: 02/11/05
Received: 02/11/05

METHOD BLANIKOC DATA

TOTAL PCBS (EPA 608)

| Analyte | Result | Reporting Limit | MDL | Units | Spike
 Level | Source
 Result | \%REC | \%REC
 Limits | RPD | RPD
 Limit | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5B14073 Extracted: 02/14/05 | | | | | | | | | | | |
| Blank Analyzed: 02/15/2005 (5B14073-BLK1) | | | | | | | | | | | |
| Aroclor 1016 | ND | 1.0 | 0.20 | ug/ | | | | | | | |
| Aroclor 1221 | ND | 1.0 | 0.10 | ug/ | | | | | | | |
| Aroclor 1232 | ND | 1.0 | 0.15 | ug $/$ | | | | | | | |
| Aroclor 1242 | ND | 1.0 | 0.15 | ug/ | | | | | | | |
| Aroclor 1248 | ND | 1.0 | 0.25 | ug/ | | | | | | | |
| Aroclor 1254 | ND | 1.0 | 0.25 | ug/ | | | | | | | |
| Arocior 1260 | ND | 1.0 | 0.40 | ugh | | | | | | | |
| Surrogate: Decachlorobiphenyl | 0.357 | | | $u g /$ | 0.500 | | 71 | 45-120 | | | |
| LCS Analyzed: 02/15/2005 (5B14073-BS2) M-NR1 | | | | | | | | | | | |
| Aroclor 1016 | 2.85 | 1.0 | 0.20 | ug/ | 4.00 | | 71 | 50-115 | | | M-NR1 |
| Areclor 1260 | 3.02 | 1.0 | 0.40 | ug/l | 4.00 | | 76 | 60-115 | | | |
| Surrogate: Decachlorobiphenyl | 0.400 | | | ugh | 0.500 | | 80 | 45-120 | | | \% |
| LCS Dup Analyzed: 02/15/2005 (5B14073-BSD2) | | | | | | | | | | | |
| Aroclor 1016 | 2.72 | 1.0 | 0.20 | ug/ | 4.00 | | 68 | 50-115 | | | |
| Aroclor 1260 | 2.96 | 1.0 | 0.40 | ug/ | 4.00 | | 74 | 60-115 | 2 | 25 | |
| Surrogate: Decachlorobiphenyl | 0.384 | | | ug/ | 0.500 | | 77 | 45-120 | | | |

| MWH-Pasadena/Boeing | Project ID: Annual Outfall 001 | |
| :--- | ---: | ---: |
| 300 North Lake Avenue, Suite 1200 | | Sampled: $02 / 11 / 05$ |
| Pasadena, CA 91101 | Report Number: IOB0980 | Received: 02/11/05
 Attention: Bronwyn Kelly |

METHOD BLANKIQC DATA

METALS

| Analyte | Result | Reporting
 Limit | MDL | Units | Spike
 Level | Source
 Result | \%REC | \%REC
 Limits | RPD | RPD
 Limit | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5B12033 Extracted: 02/12/05 | | | | | | | | | | | |
| Blank Analyzed: 02/12/2005 (5B12033-BLK1) | | | | | | | | | | | |
| Mercury | ND | 0.20 | 0.063 | ug/ | | | | | | | |
| LCS Analyzed: 02/12/2005 (5B12033-BS1) | | | | | | | | | | | |
| Mercury | 7.92 | 0.20 | 0.063 | ug/ | 8.00 | | 99 | 85-115 | | | |
| Matrix Spike Analyzed: 02/12/2005 (5B12033-MS1) Source: 10B0983-01 | | | | | | | | | | | |
| Mercury | 8.00 | 0.20 | 0.063 | ug/ | 8.00 | ND | 100 | 70-130 | | | |
| Matrix Spike Dup Analyzed: 02/12/2005 (5B12033-MSD1) Source: 10B0983-01 | | | | | | | | | | | |
| Mercury | 7.77 | 0.20 | 0.063 | ug/ | 8.00 | ND | 97 | 70-130 | 3 | 20 | |
| Batch: 5B12041 Extracted: 02/12/05 | | | | | | | | | | | |
| Blank Analyzed: 02/14/2005 (5B12041-BLK1) | | | | | | | | | | | |
| Antimony | ND | 2.0 | 0.18 | ug1 | | | | | | | |
| Cadmium | ND | 1.0 | 0.015 | ug/ | | | | | | | |
| Copper | ND | 2.0 | 0.49 | ug/l | | | | | | | |
| Lead | ND | 1.0 | 0.13 | ug/ | | | | | | | |
| Selenium | ND | 2.0 | 0.36 | ugh | | | | | | | |
| Silver | ND | 1.0 | 0.089 | ug/ | | | | | | | |
| Thallium | ND | 1.0 | 0.075 | ug/l | | | | | | | |
| LCS Analyzed: 02/14/2005 (5B12041-BS1) | | | | | | | | | | | |
| Antimony | 87.7 | 2.0 | 0.18 | ug/l | 80.0 | | 110 | 85-115 | | | |
| Cadmium | 79.7 | 1.0 | 0.015 | ug/l | 80.0 | | 100 | 85-115 | | | |
| Copper | 81.5 | 2.0 | 0.49 | $\mathrm{ug} / 1$ | 80.0 | | 102 | 85-115 | | | |
| Lead | 83.2 | 1.0 | 0.13 | ug/1 | 80.0 | | 104 | 85-115 | | | |
| Selenium | 84.2 | 2.0 | 0.36 | ug/ | 80.0 | | 105 | 85-115 | | | |
| Silver | 79.8 | 1.0 | 0.089 | ug/ | 80.0 | | 100 | 85-115 | | | |
| Thallium | 81.7 | 1.0 | 0.075 | ug/ | 80.0 | | 102 | 85-115 | | | |

Del Mar Analytical, Irvine

Michele Harper
Project Manager

Del Mar Analytical

| MWH-Pasadena/Boeing | Project ID: Annual Outfall 001 | |
| :--- | ---: | ---: |
| 300 North Lake Avenue, Suite 1200
 Pasadena, CA 91101 Report Number: $10 B 0980$ | Sampled: $02 / 11 / 05$
 Attention: Bronwyn Kelly | Received: $02 / 11 / 05$ |

METHOD BLANKIOC DATA

| METALS | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analyte | Result | Reporting
 Limit | MDL | Units | Spike
 Level | Source
 Result | \%REC | \%REC
 Limits | RPD | RPD
 Limit | Data Qualifiers |
| Batch: 5B12041 Extracted: 02/12/05 | | | | | | | | | | | |
| Matrix Spike Analyzed: 02/14/2005 (5B12041-MS1) | | | | | Source: IOB0878-01 | | | | | | |
| Antimony | 93.0 | 2.0 | 0.18 | ug/ | 80.0 | ND | 116 | 70-130 | | | |
| Cadmium | 82.9 | 1.0 | 0.015 | ug/ | 80.0 | ND | 104 | 70-130 | | | |
| Copper | 81.6 | 2.0 | 0.49 | ug/ | 80.0 | ND | 102 | 70-130 | | | |
| Lead | 85.4 | 1.0 | 0.13 | ug/ | 80.0 | ND | 107 | 70-130 | | | |
| Selenium | 84.3 | 2.0 | 0.36 | ugh | 80.0 | ND | 105 | 70-130 | | | |
| Silver | 80.3 | 1.0 | 0.089 | ug/ | 80.0 | ND | 100 | 70-130 | | | |
| Thallium | 87.9 | 1.0 | 0.075 | ugh | 80.0 | 0.17 | 110 | 70-130 | | | |
| Matrix Spike Analyzed: 02/14/2005 (5B12041-MS2) | | | | | Source: 1OB0573-02 | | | | | | |
| Antimony | 88.7 | 2.0 | 0.18 | ug/ | 80.0 | ND | 111 | 70-130 | | | |
| Cadmium | 75.6 | 1.0 | 0.015 | ug/ | 80.0 | 0.065 | 94 | 70-130 | | | |
| Copper | 90.6 | 2.0 | 0.49 | ug/ | 80.0 | 14 | 96 | 70-130 | | | |
| Lead | 81.3 | 10 | 0.13 | ug/ | 80.0 | 0.28 | 101 | 70-130 | | | |
| Selenium | 80.4 | 2.0 | 0.36 | ugn | 80.0 | 2.0 | 98 | $70-130$ | | | |
| Silver | 72.9 | 1.0 | 0.089 | ugh | 80.0 | ND | 91 | 70-130 | | | |
| Thallium | 87.1 | 1.0 | 0.075 | ug/ | 80.0 | 0.16 | 109 | 70-130 | | | |
| Matrix Spike Dup Analyzed: 02/14/2005 (5B12041-MSD1) | | | | | Source: IOB0878-01 | | | | | | |
| Antimony | 93.1 | 2.0 | 0.18 | ugh | 80.0 | ND | 116 | 70-130 | 0 | 20 | |
| Cadmium | 82.9 | 1.0 | 0.015 | ugh | 80.0 | ND | 104 | 70-130 | 0 | 20 | |
| Copper | 79.9 | 2.0 | 0.49 | ugh | 80.0 | ND | 100 | 70-130 | 2 | 20 | |
| Lead | 83.8 | 1.0 | 0.13 | ug/l | 80.0 | ND | 105 | 70-130 | 2 | 20 | |
| Selenium | 82.8 | 2.0 | 0.36 | ug/l | 80.0 | ND | 104 | 70-130 | 2 | 20 | |
| Silver | 79.7 | 1.0 | 0.089 | ug/ | 80.0 | ND | 100 | 70-130 | 1 | 20 | |
| Thallium | 88.0 | 1.0 | 0.075 | ugh | 80.0 | 0.17 | 110 | 70-130 | 0 | 20 | |

Batch: 5B12044 Extracted: 02/12/05

Blank Analyzed: 02/12/2005 (5B12044-BLK1)

| Arsenic | ND | 5.0 | 3.8 | ug / l |
| :--- | :---: | :---: | :---: | :---: |
| Barium | ND | 0.010 | 0.0028 | mg / l |
| Beryllium | ND | 2.0 | 0.62 | ug / l |
| Boron | 0.00980 | 0.050 | 0.0074 | mg / l |
| Chromium | ND | 5.0 | 0.68 | ug / l |
| Cobalt | ND | 10 | 0.89 | ug / l |
| Iron | 0.0110 | 0.040 | 0.0088 | mg / l |

Del Mar Analytical, Irvine

Michele Harper
Project Manager

Del Mar Analytical

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001
Report Number: IOB0980
Sampled: 02/11/05
Received: 02/11/05

METHOD BLANKGQC DATA

METALS

| Analyte | Result | Reportin Limit | MDL | Units | Spike Level | Source
 Result | \%REC | \%REC
 Limits | RPD | $\begin{aligned} & \text { RPD } \\ & \text { Limit } \end{aligned}$ | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5B12044 Extracted: 02/12/05 | | | | | | | | | | | |
| Blank Analyzed: 02/12/2005 (5B12044-BLK1) | | | | | | | | | | | |
| Manganese | ND | 20 | 3.2 | ug/l | | | | | | | |
| Nickel | ND | 10 | 2.0 | ug/1 | | | | | | | |
| Vanadium | ND | 10 | 1.4 | ugd | | | | | | | |
| Zinc | ND | 20 | 3.7 | ug/ | | | | | | | |
| LCS Analyzed: 02/12/2005 (5B12044-BS1) | | | | | | | | | | | |
| Arsenic | 517 | 5.0 | 3.8 | ug/ | 500 | | 103 | 85-115 | | | |
| Barium | 0.505 | 0.010 | 0.0028 | mg / l | 0.500 | | 101 | 85-115 | | | |
| Beryllium | 505 | 2.0 | 0.62 | ug/ | 500 | | 101 | 85-115 | | | |
| Boron | 0.496 | 0.050 | 0.0074 | $\mathrm{mg} /$ | 0.500 | | 99 | 85-115 | | | |
| Chromium | 510 | 5.0 | 0.68 | ug/1 | 500 | | 102 | 85-115 | | | |
| Cobalt | 541 | 10 | 0.89 | ug/ | 500 | | 108 | 85-115 | | | |
| Iron | 0.522 | 0.040 | 0.0088 | mgh | 0.500 | | 104 | 85-115 | | | |
| Manganese | 524 | 20 | 32 | ugn | 500 | - \quad | 105 | $85-115$ | | | |
| Nickel - | 505 | 10 | 2.0 | ug/ | 500 | | 101 | 85-115 | | | |
| Vanadium | 498 | 10 | 1.4 | ug/l | 500 | | 100 | 85.115 | | | |
| Zinc | 490 | 20 | 3.7 | ug/l | 500 | | 98 | 85-115 | | | |
| Matrix Spike Analyzed: 02/12/2005 (5B12044-MS1) | | Source: IOB0991-02 | | | | | | | | | |
| Arsenic | 532 | 5.0 | | ugh | 500 | ND | 106 | 70-130 | | | |
| Batium | 0.519 | 0.010 | 0.0028 | mg / l | 0.500 | 0.0073 | 102 | 70-130 | | | |
| Beryllium | 511 | 2.0 | 0.62 | ugh | 500 | ND | 102 | 70-130 | | | |
| Boron | 0.502 | 0.050 | 0.0074 | $\mathrm{mg} / 1$ | 0.500 | 0.012 | 98 | 70-130 | | | |
| Chromium | 522 | 5.0 | 0.68 | ugh | 500 | ND | 104 | 70-130 | | | |
| Cobalt | 552 | 10 | 0.89 | ugh | 500 | ND | 110 | 70-130 | | | |
| Iron | 0.758 | 0.040 | 0.0088 | $\mathrm{mg} /$ | 0.500 | 0.21 | 110 | 70-130 | | | |
| Manganese | 534 | 20 | 3.2 | ug/ | 500 | 5.0 | 106 | 70-130 | | | |
| Nickel | 518 | 10 | 2.0 | ug/ | 500 | ND | 104 | 70-130 | | | |
| Vanadium | 508 | 10 | 1.4 | ugh | 500 | ND | 102 | 70-130 | | | |
| Zinc | 544 | 20 | 3.7 | ugh | 500 | 44 | 100 | 70-130 | | | |

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001
eport Number: 1OB0980
Sampled: 02/11/05

| Project ID: Annual Outfall 001 | |
| :---: | ---: |
| Report Number: $10 B 0980$ | Sampled: $02 / 11 / 05$
 Received: $02 / 11 / 05$ |

Received: 02/11/05

METHOD BLANKIQC DATA

METALS

| Analyte | Result | Reportin Limit | MDL | Units | Spike Level | Source
 Result | \%REC | \%REC
 Limits | RPD | RPD
 Limit | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5812044 Extracted: 02/12/05 | | | | | | | | | | | |
| Matrix Spike Dup Analyzed: 02/12/2005 (5B12044-MSD1) | | | | | Source: 1OB0991-02 | | | | | | |
| Arsenic | 524 | 5.0 | 3.8 | ugh | 500 | ND | 105 | 70-130 | 2 | 20 | |
| Barium | 0.516 | 0.010 | 0.0028 | mg / l | 0.500 | 0.0073 | 102 | 70-130 | 1 | 20 | |
| Beryllium | 506 | 2.0 | 0.62 | ug/ | 500 | ND | 101 | 70-130 | 1 | 20 | |
| Boron | 0.503 | 0.050 | 0.0074 | $\mathrm{mg} /$ | 0.500 | 0.012 | 98 | 70-130 | 0 | 20 | |
| Chromium | 514 | 5.0 | 0.68 | ug/ | 500 | ND | 103 | 70-130 | 2 | 20 | |
| Cobalt | 544 | 10 | 0.89 | ug/ | 500 | ND | 109 | 70-130 | 1 | 20 | |
| Iron | 0.735 | 0.040 | 0.0088 | mg / l | 0.500 | 0.21 | 105 | 70-130 | 3 | 20 | |
| Manganese | 530 | 20 | 3.2 | ughl | 500 | 5.0 | 105 | 70-130 | 1 | 20 | |
| Nickel | 510 | 10 | 2.0 | ug/l | 500 | ND | 102 | 70-130 | 2 | 20 | |
| Vanadium | 500 | 10 | 1.4 | ug/ | 500 | ND | 100 | 70-130 | 2 | 20 | |
| Zinc | 537 | 20 | 3.7 | ug/l | 500 | 44 | 99 | 70-130 | 1 | 20 | |

Batch: 5B14104 Extracted: 02/14/05
Blank Analyzed: 02/15/2005 (5B14104-BLK1)

| Copper | ND | 2.0 | 0.49 | ug/l | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Lead | ND | 1.0 | 0.13 | ugh | | | |
| LCS Analyzed: | $\mathbf{0 2 / 1 5 / 2 0 0 5}$ | (5B14104-BS1) | | | | | |
| Copper | 83.3 | 2.0 | 0.49 | ug/l | 80.0 | 104 | $85-115$ |
| Lead | 85.4 | 1.0 | 0.13 | ugh | 80.0 | 107 | $85-115$ |

| Matrix Spike Analyzed: 02/15/2005 (5B14104-MS1) | | | | Source: 10B0599-01 | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Copper | 74.2 | 2.0 | 0.49 | ug/1 | 80.0 | 0.54 | 92 | 70-130 |
| Lead | 80.7 | 1.0 | 0.13 | ug/ | 80.0 | ND | 101 | 70-130 |
| Matrix Spike Analyzed: 02/15/2005 (5B14104-MS2) | | | | Source: IOB0599-07 | | | | |
| Copper | 76.1 | 2.0 | 0.49 | ug/ | 80.0 | 1.6 | 93 | 70-130 |
| Lead | 79.5 | 1.0 | 0.13 | ug/ | 80.0 | ND | 99 | 70-130 |

| MWH-Pasadena/Boeing | Project ID: Annual Outfall 001 | |
| :--- | :--- | :--- |
| 300 North Lake Avenue, Suite 1200
 Pasadena, CA 91101 Report Number: $10 B 0980$
 Attention: Bronwyn Kelly | Sampled: 02/11/05
 Received: $02 / 11 / 05$ | |

METHOD BLANKICC DATA

Batch: 5B14113 Extracted: 02/14/05

| Blank Analyzed: 02/15/2005 (5B14113-BLK1) | | | | |
| :---: | :---: | :---: | :---: | :---: |
| Chromium | ND | 5.0 | 0.68 | ug/l |
| Iron | ND | 0.040 | 0.0088 | mg/ |
| Manganese | ND | 20 | 3.2 | ug/ |
| Zinc | ND | 20 | 3.7 | ug/l |

LCS Analyzed: 02/15/2005 (5B14113-BS1)

| Chromium | 500 | 5.0 | 0.68 | ug/ | 500 | 100 | $85-115$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Iron | 0.511 | 0.040 | 0.0088 | $\mathrm{mg} /$ | 0.500 | 102 | $85-115$ |
| Manganese | 505 | 20 | 3.2 | ug/ | 500 | 101 | $85-115$ |
| Zinc | 495 | 20 | 3.7 | ug/ | 500 | 99 | $85-115$ |

| Matrix Spike Analyzed: 02/15/2005 (5B14113-MS1) | | | | Source: 10B0599-01 | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chromium | 495 | 5.0 | 0.68 | ugh | 500 | ND | 99 | 70-130 |
| Iron | 0.652 | 0.040 | 0.0088 | $\mathrm{mg} / 1$ | 0.500 | 0.14 | 102 | 70-130 |
| Manganese | 665 | 20 | 3.2 | ug/ | 500 | 170 | 99 | 70-130 |
| Zinc | 519 | 20 | 3.7 | ug/ | 500 | 23 | 99 | 70-130 |

Matrix Spike Dup Analyzed: 02/15/2005 (5B14113-MSD1) Source: IOB0599-01

| Chromium | 490 | 5.0 | 0.68 | $u g / 1$ | 500 | ND | 98 | $70-130$ | 1 | 20 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Iron | 0.636 | 0.040 | 0.0088 | mg / l | 0.500 | 0.14 | 99 | $70-130$ | 2 | 20 |
| Manganese | 654 | 20 | 3.2 | $\mathrm{ug} /$ | 500 | 170 | 97 | $70-130$ | 2 | 20 |
| Zinc | 504 | 20 | 3.7 | ug/ | 500 | 23 | 96 | $70-130$ | 3 | 20 |

Del Mar Analytical, Irvine

Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

Report Number: $10 B 0980$
Sampled: 02/11/05
Received: 02/11/05

METHOD BLANKIOC DATA

METALS

Batch: 5B17052 Extracted: 02/17/05
Blank Analyzed: 02/17/2005 (5B17052-BLK1)

| Chromium | ND | 5.0 | 0.68 | ug / l |
| :--- | :---: | :---: | :---: | :---: |
| Iron | ND | 0.040 | 0.0088 | $\mathrm{mg} /$ |
| Manganese | ND | 20 | 3.2 | ug/ |
| Zinc | ND | 20 | 3.7 | ug / l |

LCS Analyzed: 02/17/2005 (5B17052-BS1)

| Chromium | 523 | 5.0 | 0.68 | $\mathrm{ug} /$ | 500 | 105 | $85-115$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Iron | 0.520 | 0.040 | 0.0088 | mg / l | 0.500 | 104 | $85-115$ |
| Manganese | 519 | 20 | 3.2 | ug / l | 500 | 104 | $85-115$ |
| Zinc | 505 | 20 | 3.7 | ug / l | 500 | 101 | $85-115$ |

Del Mar Analytical, Irvine

Michele Harper
Project Manager

| MWH-Pasadena/Boeing | Project ID: Annual Outfall 001 | |
| :---: | :---: | :---: |
| 300 North Lake Avenue, Suite 1200 | | Sampled: 02/11/05 |
| Pasadena, CA 91101 | Report Number: IOB0980 | Received: 02/11/05 |
| Attention: Bronwyn Kelly | | |

METHOD BLANKIQC DATA

METALS

| | | Reporting | | | Spike | Source | \%REC | | RPD | Data |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Analyte | Result | Limit | MDL | Units | Level | Result | \%REC | Limits | RPD | Limit |

Batch: 5B17052 Extracted: 02/17/05

| Matrix Spike Analyzed: 02/17/2005 (5B17052-MS1) | | | | Source: IOB1301-01 | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chromium | 508 | 5.0 | 0.68 | ug/ | 500 | ND | 102 | 70-130 |
| Iron | 0.925 | 0.040 | 0.0088 | mg / l | 0.500 | 0.40 | 105 | 70-130 |
| Manganese | 605 | 20 | 3.2 | ugh | 500 | 100 | 101 | 70-130 |
| Zinc | 511 | 20 | 3.7 | ug/ | 500 | 6.6 | 101 | 70-130 |

| Matrix Spike Dup Analyzed: 02/17/2005 (5B17052-MSD1) | | | Source: 1OB1301-01 | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chromium | 514 | 5.0 | 0.68 | ug/ | 500 | ND | 103 | 70-130 | 1 | 20 |
| Iron | 0.955 | 0.040 | 0.0088 | $\mathrm{mg} / 1$ | 0.500 | 0.40 | 111 | 70-130 | 3 | 20 |
| Manganese | 611 | 20 | 3.2 | ug/ | 500 | 100 | 102 | 70-130 | 1 | 20 |
| Zinc | 518 | 20 | 3.7 | ug / l | 500 | 6.6 | 102 | 70-130 | 1 | 20 |

MWH-Pasadena/Boeing 300 North Lake Avenue, Suite 1200 Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001
Sampled: 02/11/05
Report Number: $10 B 0980 \quad$ Received: 02/11/05

METHOD BLANKIQC DATA

INORGANICS

Batch: 5B11108 Extracted: 02/11/05
Blank Analyzed: 02/16/2005 (5B11108-BLK1)

| Biochemical Oxygen Demand | ND | 2.0 | 0.59 | mg / l | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LCS Analyzed: 02/16/2005 (5B11108-BS1) | | | | | | | | |
| Biochemical Oxygen Demand | 206 | 100 | 30 | $\mathrm{mg} / 1$ | 198 | 104 | 85-115 | |
| LCS Dup Analyzed: 02/16/2005 (5B11108-BSD1) | | | | | | | | |
| Biochemical Oxygen Demand | 204 | 100 | 30 | $\mathrm{mg} /$ | 198 | 103 | 85-115 | 1 |

Batch: 5B11117 Extracted: 02/11/05
Blank Analyzed: $02 / 11 / 2005$ (5B11117-BLK1)

| Ammonia-N (Distilled) | ND | 0.50 | 0.30 | $\mathrm{mg} / 1$ | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LCS Analyzed: 02/11/2005 (5B11117-BS1) | | | | | | | | | | |
| Ammonia-N (Distilled) | 9.52 | 0.50 | 0.30 | mg / l | 10.0 | | 95 | 80-115 | | |
| Matrix Spike Analyzed: 02/11/2005 (5B11117-MS1) | | | Source: 10B0942-01 | | | | | | | |
| Ammonia- N (Distilled) | 9.24 | 0.50 | 0.30 | mg / l | 10.0 | ND | 92 | 70-120 | | |
| Matrix Spike Dup Analyzed: 02/11/2005 (5B11117-MSD1) | | | Source: IOB0942-01 | | | | | | | |
| Ammonia-N (Distilled) | 9.52 | 0.50 | 0.30 | mg/l | 10.0 | ND | 95 | 70-120 | 3 | 15 |

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001
Report Number: IOB0980
Sampled: 02/11/05
Received: 02/11/05

METHOD BLANKIQC DATA

INORGANICS

| Analyte | Result | Reporting
 Limit | MDL | Units | Spike
 Level | Source
 Result | \%REC | \%REC
 Limits | RPD | RPD Limit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5811120 Extracted: 02/11/05 | | | | | | | | | | |
| Blank Analyzed: 02/11/2005 (5B11120-BLK1) | | | | | | | | | | |
| Chloride | ND | 0.50 | 0.26 | mg / l | | | | | | |
| Fluoride | ND | 0.50 | 0.10 | mg / l | | | | | | |
| Nitrate/Nitrite-N | ND | 0.26 | 0.072 | $\mathrm{mg} /$ | | | | | | |
| Sulfate | ND | 0.50 | 0.18 | mg / l | | | | | | |
| LCS Analyzed: 02/11/2005 (5B11120-BS1) | | | | | | | | | | |
| Chloride | 4.84 | 0.50 | 0.26 | mg/ | 5.00 | | 97 | 90-110 | | |
| Fluoride | 4.87 | 0.50 | 0.10 | $\mathrm{mg} / 1$ | 5.00 | | 97 | 90-110 | | |
| Sulfate | 10.0 | 0.50 | 0.18 | mg / l | 10.0 | | 100 | 90-110 | | |
| Matrix Spike Analyzed: 02/12/2005 (5B11120-MS1) | | | Source: 10B0980-01 | | | | | | | |
| Chloride | 15.6 | 0.50 | 0.26 | mg / l | 5.00 | 11 | 92 | 80-120 | | |
| Fluoride | 5.03 | 0.50 | 0.10 | mg / l | 5.00 | 0.29 | 95 | 80-120 | | |
| Sulfate | 38.7 | 0.50 | 0.18 | mg / l | 10.0 | 29 | 97 | 80-120 | | |
| Matrix Spike Dup Analyzed: 02/12/2005 (5B11120-MSD1) | | | Source: 1OB0980-01 | | | | | | | |
| Chloride | 15.8 | 0.50 | 0.26 | mg / l | 5.00 | 11 | 96 | 80-120 | 1 | 20 |
| Fluoride | 5.10 | 0.50 | 0.10 | mg / l | 5.00 | 0.29 | 96 | 80-120 | 1 | 20 |
| Sulfate | 39.3 | 0.50 | 0.18 | $\mathrm{mg} / 1$ | 10.0 | 29 | 103 | 80-120 | 2 | 20 |

Batch: 5B12048 Extracted: 02/12/05
Blank Analyzed: 02/12/2005 (5B12048-BLK1)
Total Cyanide ND
$5.0 \quad 2.2 \quad \mathrm{ug} / 1$

LCS Analyzed: 02/12/2005 (5B12048-BS1)
Total Cyanide
$\begin{array}{llllll}5.0 & 2.2 & \text { ug/l } & 200 & 96 & 90-110\end{array}$

Del Mar Analytical, Irvine
Michele Harper
Project Manager

| MWH-Pasadena/Boeing | Project ID: Annual Outfall 001 | |
| :--- | :--- | :--- |
| 300 North Lake Avenue, Suite 1200 | Report Number: IOB0980 | Sampled: 02/11/05
 Peceived:
 Pasadena, CA 91101 |
| Attention: Bronwyn Kelly | \cdots | |

METHOD BLANIKIOC DATA

INORGANICS

Del Mar Analytical, Irvine

Michele Harper
Project Manager

| MWH-Pasadena/Boeing | Project ID: Annual Outfall 001 | |
| :--- | ---: | ---: |
| 300 North Lake Avenue, Suite 1200 | | Sampled: $02 / 11 / 05$ |
| Pasadena, CA 91101 | Report Number: $10 B 0980$ | Received: $02 / 11 / 05$ |

Attention: Bronwyn Kelly

METHOD BLANKIQC DATA

INORGANICS

Del Mar Analytical, Irvine
Michele Harper
Project Manager
MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

| Project ID: Annual Outfall 001 | |
| :--- | ---: |
| Report Number: $10 B 0980$ | Sampled: 02/11/05 |
| Received: 02/11/05 | |

Received: 02/11/05

MIDTHOD BIANKIOC DATA

INORGANICS

| Analyte Result | Reporting Limit | MDL | Units | Spike
 Level | Source Result | \%REC | \%REC
 Limits | RPD | RPD
 Limit | Data
 Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5B16118 Extracted: 02/16/05 | | | | | | | | | | |
| LCS Analyzed: 02/16/2005 (5B16118-BS1) | | | | | | | | | | |
| Total Dissolved Solids 1050 | 10 | 10 | $\mathrm{mg} / 1$ | 1000 | | 105 | 90-110 | | | |
| Duplicate Analyzed: 02/16/2005 (5B16118-DUP1) | Source: 1OB1205-06 | | | | | | | | | |
| Total Dissolved Solids 756 | 10 | 10 | mg / l | | 750 | | | 1 | 10 | |
| Batch: 5B16120 Extracted: 02/16/05 | | | | | | | | | | |
| Duplicate Analyzed: 02/16/2005 (5B16120-DUP1) | Source: IOB0937-02 | | | | | | | | | |
| Specific Conductance 95.3 | 1.0 | 1.0 | umhos/cm | | 95 | | | 0 | 5 | |
| Batch: 5B16128 Extracted; 02/16/05 | | | | | | | | | | |
| Blank Analyzed: 02/16/2005 (5B16128-BLK1) | | | | | | | | | | |
| Total Suspended Solids $\quad \therefore \therefore$ ND | 10 | 10 | mg / l | | | , | | | | \because |
| LCS Analyzed: 02/16/2005 (5B16128-BS1) | | | | | | | | | | |
| Total Suspended Solids 978 | 10 | 10 | mg / l | 1000 | | 98 | 85-115 | | | |
| Duplicate Analyzed: 02/16/2005 (5B16128-DUP1) | Source: IOB1206-01 | | | | | | | | | |
| Total Suspended Solids ND | 10 | 10 | mg / l | | ND | | | | 10 | |
| Batch: 5B17130 Extracted: 02/17/05 | | | | | | | | | | |
| Blank Analyzed: 02/17/2005 (5817130-BLK1) | | | | | | | | | | |
| Total Organic Carbon ND | 1.0 | 0.25 | mg / l | | | | | | | |

Del Mar Analytical, Irvine
Michele Harper
Project Manager

| MWH-Pasadena/Boeing | Project ID: Annual Outfall 001 | |
| :--- | :---: | ---: |
| 300 North Lake Avenue, Suite 1200 | | Sampled: $02 / 11 / 05$ |
| Pasadena, CA 91101 | Report Number: $10 B 0980$ | Received: $02 / 11 / 05$ |
| Attention: Bronwyn Kelly | | |

METHOD BLANKIOC DATA

INORGANICS

| Analyte Result | Reporting Limit | MDL | Units | Spike
 Level | Source
 Result | $\% \text { REC }$ | \%REC
 Limits | RPD | RPD
 Limit | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: 5817130 Extracted: 02/17/05 | | | | | | | | | | |
| LCS Analyzed: 02/17/2005 (5B17130-BS1) | | | | | | | | | | |
| Total Organic Carbon 10.0 | 1.0 | 0.25 | mg / l | 10.0 | | 100 | $90-110$ | | | |
| Matrix Spike Analyzed: 02/17/2005 (5B17130-MS1) | Source: 1080931-02 | | | | | | | | | |
| Total Organic Carbon 10.6 | 1.0 | 0.25 | mg / l | 5.00 | 5.6 | 100 | 80-120 | | | |
| Matrix Spike Dup Analyzed: 02/17/2005 (5B17130-MSD1) | | | | Source: 1OB0931-02 | | | | | | |
| Total Organic Carbon 10.9 | 1.0 | 0.25 | mg / l | 5.00 | 5.6 | 106 | 80-120 | 3 | 20 | |

[^21]MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001

| | Sampled:
 Report Number:
 02/11/05 |
| :--- | ---: |
| Received: | $02 / 11 / 05$ |

MEIHOD BEANKIOC DATA

1,4-DIOXANE BY GC/MS (EPA 5030B/8260B)

| Analyte | Result | Reporting
 Limit | MDL | Units | Spike
 Level | Source
 Result | \%REC | \%REC
 Limits | RPD | RPD
 Limit | Data Qualifiers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Batch: P5B1701 Extracted: 02/17/05 | | | | | | | | | | | |
| Blank Analyzed: 02/17/2005 (P5B1701-BLK1) | | | | | | | | | | | |
| 1,4-Dioxane | ND | 1.0 | 0.49 | ug/ | | | | | | | |
| Surrogate: Dibromofluoromethane | 0.930 | | | ugh | 1.00 | | 93 | 80-125 | | | |
| LCS Analyzed: 02/17/2005 (P5B1701-BS1) | | | | | | | | | | | |
| 1,4-Dioxane | 10.9 | 1.0 | 0.49 | ug/ | 10.0 | | 109 | 70-130 | | | |
| Surrogate: Dibromofluoromethane | 0.920 | | | ug/ | 1.00 | | 92 | 80-125 | | | |
| LCS Dup Analyzed: 02/17/2005 (P5B1701-BSD1) | | | | | | | | | | | |
| 1,4-Dioxane | 12.3 | 1.0 | 0.49 | ug/ | 10.0 | | 123 | 70-130 | 12 | 20 | |
| Surrogate: Dibromofluoromethane | 0.950 | | | $u g /$ | 1.00 | | 95 | 80-125 | | | |
| Matrix Spike Analyzed: 02/17/2005 (P5B1701-MS1) | | | | | Source: POB0398-01 | | | | | | |
| 1,4-Dioxane | 11.1 | 1.0 | 0.49 | ug/ | 10.0 | ND | 111 | 70-150 | | | |
| Surrogate Dibromoflioromethane | 0980 | | | | 1.00 | | 98 | 80-125 | | | |
| Matrix Spike Dup Analyzed: 02/17/2005 (P5B1701-MSD1) | | | | | Source: POB0398-01 | | | | | | |
| 1,4-Dioxane | 11.0 | 1.0 | 0.49 | ug/l | 10.0 | ND | 110 | 70-150 | 1 | 25 | |
| Surrogate: Dibromofluoromethane | 1.00 | | | $u g /$ | 1.00 | | 100 | 80-125 | | | |

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

```
Project ID: Annual Outfall 001
Report Number: IOB0980
Sampled: 02/11/05
Received: 02/11/05
```


Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

| LabNumber | Analysis | Analyte | Units | Result | MRL | Compliance Limit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IOB0980-01 | 413.1 Oil and Grease | Oil \& Grease | mg/l | 3.80 | 5.0 | 10.00 |
| 1OB0980-01 | 608-Pest Boeing 001/002 Q (LL) | alpha-BHC | ug/ | 0 | 0.010 | 0.0100 |
| 10B0980-01 | 624-Boeing 001/002 Q (Fr113+X) | 1,1-Dichloroethene | ug/l | 0 | 3.0 | 3,20 |
| 1OB0980-01 | 624-Boeing 001/002 Q (Fr113+X) | Trichloroethene | ug/l | 0 | 5.0 | 5.00 |
| IOB0980-01 | $625+$ NDMA, LL | 2,4,6-Trichlorophenol | ug/1 | 0 | 1.0 | 6.50 |
| 1OB0980-01 | 625+NDMA, LL | 2,4-Dinitrotoluene | ug/l | 0 | 5.0 | 9.10 |
| 10B0980-01 | 625+NDMA, LL | Bis(2-ethylhexyl)phthalate | ug/1 | 0.35 | 5.0 | 4.00 |
| 10B0980-01 | 625+NDMA, LL | N -Nitrosodimethylamine | ug/ | 0 | 2.0 | 8.10 |
| IOB0980-01 | 625+NDMA, LL | Pentachlorophenol | ug/l | 0 | 2.0 | 8.20 |
| 1OB0980-01 | Antimony-200.8 | Antimony | ug/l | 0.20 | 2.0 | 6.00 |
| 1OB0980-01 | Arsenic-200.7 | Arsenic | ug/l | 6.70 | 5.0 | 50 |
| 1OB0980-01 | Barium-200.7 | Barium | mg/l | 0.14 | 0.010 | 1.00 |
| IOB0980-01 | Beryllium-200.7 | Beryllium | ug/l | 1.30 | 2.0 | 4.00 |
| 10B0980-01 | BOD | Biochemical Oxygen Demand | mg / l | 3.00 | 2.0 | 20 |
| 10B0980-01 | Cadmium-200.8 | Cadmium | ug/l | 0.19 | 1.0 | 2.00 |
| 10B0980-01 | Chloride - 300.0 | Chloride | mg / l | 11 | 0.50 | 150 |
| IOB0980-01 | Chlorine, Residual | Residual Chlorine | mg / l | 0 | 0.10 | 0.100 |
| 1080980-01 | Chromium-200.7 | Chromum | ugh | 27 | 5.0 | 810 |
| 1OB0980-01 | Copper-200.8 | Copper | ug/1 | 13 | 2.0 | 7.10 |
| IOB0980-01 | Cyanide-335.2 5ppb | Total Cyanide | ug/ | -2 | 5.0 | 4.30 |
| IOB0980-01 | Fluoride-300.0 | Fluoride | mg / l | 0.29 | 0.50 | 1.60 |
| 10B0980-01 | Iron-200.7 | Iron | mg/ | 27 | 0.040 | 0.30 |
| 1080980-01 | Lead-200.8 | Lead | ug/ | 9.70 | 1.0 | 2.60 |
| 1080980-01 | Manganese-200.7 | Manganese | ug/l | 370 | 20 | 50 |
| 1080980-01 | MBAS - SM5540-C | Surfactants (MBAS) | mg / l | 1.00 | 1.0 | 0.50 |
| 1OB0980-01 | Mercury - 245.1 | Mercury | ug/l | 0.16 | 0.20 | 0.20 |
| 1OB0980-01 | Nickel-200.7 | Nickel | ug/l | 23 | 10 | 35 |
| 1OB0980-01 | Nitrogen, $\mathrm{NO} 3+\mathrm{NO} 2-\mathrm{N}$ | Nitrate/Nitrite-N | mg / l | 0.94 | 0.26 | 8.00 |
| 1OB0980-01 | Perchlorate 314.0 | Perchlorate | ug/ | 0 | 4.0 | 6.00 |
| 1OB0980-01 | Selenium-200.8 | Selenium | ug/ | 0.37 | 2.0 | 4.10 |
| 1OB0980-01 | Settleable Solids | Total Settleable Solids | $\mathrm{ml} / / / \mathrm{hr}$ | 0 | 0.10 | 0.100 |
| 10B0980-01 | Silver-200.8 | Silver | ug/1 | 0.100 | 1.0 | 2.00 |
| 10B6980-01 | Sulfate-300.0 | Sulfate | mg / l | 29 | 0.50 | 300 |
| 1080980-01 | TDS - SM 2540C | Total Dissolved Solids | mg / l | 190 | 10 | 950 |
| 1OB0980-01 | Thallium-200.8 | Thallium | ug/l | 0.46 | 1.0 | 2.00 |
| 10B0980-01 | TSS - EPA 160.2 | Total Suspended Solids | mg/ | 460 | 10 | 15 |
| 1OB0980-01 | Zinc-200.7 | Zinc | ug/ | 90 | 20 | 54 |
| 1OB0980-01RE1 | Chromium-200.7 | Chromiun | ug/ | 26 | 5.0 | 8.10 |
| 1OB0980-01RE1 | Copper-200.8 | Copper | ug/ | 17 | 2.0 | 7.10 |
| 1OB0980-01RE1 | Iron-200.7 | Iron | mg / l | 27 | 0.040 | 0.30 |

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001
Report Number: IOB0980 Received: 02/11/05

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

| LabNumber | Analysis | Analyte | Units | Result | MRL | Compliance Limit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IOB0980-01RE1 | Lead-200.8 | Lead | ug/l | 13 | 1.0 | 2.60 |
| IOB0980-01RE1 | Manganese-200.7 | Manganese | ugh | 350 | 20 | 50 |
| IOB0980-01RE1 | Zinc-200.7 | Zinc | ug/ | 98 | 20 | 54 |
| 1OB0980-01RE2 | Chromium-200.7 | Chromium | ugh | 28 | 5.0 | 8.10 |
| 1OB0980-01RE2 | Copper-200.8 | Copper | ug/l | 16 | 4.0 | 7.10 |
| 10B0980-01RE2 | Iron-200.7 | Iron | mg/ | 29 | 0.040 | 0.30 |
| 10B0980-01RE2 | Lead-200.8 | Lead | ugh | 11 | 2.0 | 2.60 |
| 1OB0980-01RE2 | Manganese-200.7 | Manganese | ug/ | 360 | 20 | 50 |
| IOB0980-01RE2 | Zinc-200.7 | Zinc | ug/ | 82 | 20 | 54 |
| IOB0980-02 | 624-Boeing 001/002 Q (Fr1 13+X) | 1,1-Dichloroethene | ug/l | 0 | 3.0 | 3.20 |
| IOB0980-02 | 624-Boeing 001/002 Q (Fr113+X) | Trichloroethene | ug/ | 0 | 5.0 | 5.00 |

Del Mar Analytical, Irvine
Michele Harper
Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001
Report Number: $10 B 0980 \quad$ Received: 02/11/05

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.
C Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.
J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of unknown quality.
K The sample dilutions set-up for the BOD analysis did not meet the oxygen depletion criteria of at least $2 \mathrm{mg} /$. Therefore the reported result is an estimated value only.
L2 Laboratory Control Sample recovery was below method control limits.
M-NR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
R-7 LFB/LFBD RPD exceeded the method control limit. Recovery met acceptance criteria.
ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD Relative Percent Difference

ADDITIONAL COMMENTS

For TICs:

All identifications are tentative and concentrations are estimates based upon spectral comparison to the EPA/NIH library.
For 1,2-Diphenylhydrazine:
The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.

For GRO (C4C12):

GRO (C4-C12) is quantitated against a gasoline standard Quantitation begins immediately following the methanol peak.

For Extractable Fuel Hydrocarbons (EFH, DRO, ORO) :

Unless otherwise noted, Extractable Fuel Hydrocarbons (EFH, DRO, ORO) are quantitated against a Diesel Fuel Standard.

Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project ID: Annual Outfall 001
Report Number: $10 B 0980 \quad$ Received: 02/11/05

Certification Summary

Del Mar Analytical, Irvine

| Methed | Matrix | Nelac | California |
| :---: | :--- | :---: | :---: |
| EPA 120.1 | Water | \mathbf{X} | \mathbf{X} |
| EPA 160.2 | Water | \mathbf{X} | \mathbf{X} |
| EPA 160.5 | Water | \mathbf{X} | \mathbf{X} |
| EPA 180.1 | Water | \mathbf{X} | \mathbf{X} |
| EPA 200.7 | Water | \mathbf{X} | \mathbf{X} |
| EPA 200.8 | Water | \mathbf{X} | \mathbf{X} |
| EPA 245.1 | Water | \mathbf{X} | \mathbf{X} |
| EPA 300.0 | Water | \mathbf{X} | \mathbf{X} |
| EPA 314.0 | Water | \mathbf{X} | \mathbf{X} |
| EPA 330.5 | Water | \mathbf{X} | \mathbf{X} |
| EPA 335.2 | Water | \mathbf{X} | \mathbf{X} |
| EPA 350.2 | Water | \mathbf{X} | \mathbf{X} |
| EPA 405.1 | Water | \mathbf{X} | \mathbf{X} |
| EPA 413.1 | Water | \mathbf{X} | \mathbf{X} |
| EPA 415.1 | Water | \mathbf{X} | \mathbf{X} |
| EPA 418.1 | Water | \mathbf{X} | \mathbf{X} |
| EPA 608 | Water | \mathbf{X} | \mathbf{X} |
| EPA 624 (MOD.) | Water | \mathbf{X} | \mathbf{X} |
| EPA 624 | Water | \mathbf{X} | \mathbf{X} |
| EPA 625 | Water | \mathbf{X} | \mathbf{X} |
| EPA 8015 Mod. | Water | \mathbf{X} | \mathbf{X} |
| EPA 8015B | Water | \mathbf{X} | \mathbf{X} |
| SM2540C | Water | \mathbf{X} | \mathbf{X} |
| SM5540-C | Water | \mathbf{X} | \mathbf{X} |

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Subcontracted Laboratories

Alta Analytical Perspectives

Analysis Performed: 1613-Dioxin-HR Samples: 1OB0980-01
Analysis Performed: EDD + Level 4 Samples: 1OB0980-01
Aquatic Testing Laboratories-SUB California Cert \#1775 4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chrnic Samples: 1OB0980-01
Analysis Performed: Bioassay-Acute 96hr Samples: IOB0980-01

Del Mar Analytical, Irvine
Michele Harper
Project Manager

Del Mar Analytical, Irvine

Michele Harper
Project Manager

March 31,2005

MWH-Pasadena/Boeing
300 North Lake Avenue, Suite 1200
Pasadena, CA 91101
Attention: Bronwyn Kelly

Project: Annual Outfall 001
Sampled: 02/11/05
Del Mar Analytical Number: IOB0980
Dear Ms. Kelly:
Alta Analytical Laboratory performed EPA Method 1613 for Dioxin, Aquatic Testing Laboratories tested Fathead Minnow 96 hr Percent Survival Bioassay (EPA Method 2000.0) and Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002), Eberline Services performed gross alpha/ gross beta (EPA 900.0), tritium (H-3, EPA906.0), and strontium-90 (Sr-90, EPA 905.0) and Truesdail Laboratories tested Hydrazines by EPA 8315 M for the project referenced above. Please use the following cross-reference table when reviewing your results.

| MWH ID | DEL MAR
 ID | ALTA ID | ATL ID | EBERLINE ID | TRUESDAIL
 ID |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Outfall 001 | IOB0980-01 | P5072_2989_007 | A-05021203-001/002 | R502136-8265 | 939702-1 |

Attached are the original reports from the subcontract laboratories. If you have any questions or require further assistance, please do not hesitate to contact me at (949) 261-1022 at extension 215.

Sincerely yours,
DEL MAR ANALYTICAL

Project Manager

3 March 2005
Scott Unze
Pace Analytical Services
1700 Elm Street
Minneapolis, MN 55414
Ph.: 612-607-1700
Fax: 612-607-6444
Subject: Certificate of Results

Dear Scott;

Attached to this narrative are the analytical results you requested on the samples submitted for the determination of polychlorinated dibenzo-p-dioxins and dibenzofurans. The insert below summarizes the relevant information pertaining to your project. In particular, the QC annotations bring to your attention specific analytical observations and assessments made during the sample handling and data interpretation phases. A brief description of the report's components is provided on the next page.

| Project Information Summary | When applicable, see QC Annotations for details |
| :---: | :---: |
| Client Project No. | |
| AAP Project No. | P5072 |
| Analytical Protocol | Method 1613B |
| No. Samples Submitted | 13 |
| No. Samples Analyzed | 13 |
| No. Laboratory Method Blanks | 1 |
| No. OPRs / Batch CS3 | 1 |
| No. Outstanding Samples | 0 |
| Date Received | 1-Mar-2005 |
| Condition Received | good |
| Temperature upon Receipt (C) | 1-3 |
| Extraction within Holding Time | yes |
| Analysis within Holding TIme | yes |
| Data meet QANCC Requirements | yes |
| Exceptions | none |
| Analytical Difficulties | none |

[^22]
QC Annotations:

1. A " J " data qualifier is used for analytes with a concentration below the reporting limit.

Alta Analytical Perspectives remains committed to serving you in the most effective manner. Should you have any questions or need additional information and technical support, please, do not hesitate to contact us. We wanted to thank you for choosing Alta Analytical Perspectives as part of your analytical support team.

Sincerely,

Amy J. Boehm
Project Manager

Sample ID: 10B0980-01

Method 1613

| Cllent Datie | | Sample Dita | | Laborrtonv Dit | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name:
 Project ID:
 Date Collected: | Pace inc. Gemorad Andyticat Hfans 11 Feb 05 | Matrix: Weight Nolume: pH | $\begin{gathered} \text { Aqueous } \\ 1.00 \mathrm{~L} \\ 6 \\ \hline \end{gathered}$ | Project No.: Sample ID: QC Batch No.: | P5072 P5072_2909_007 2989 | Date Received: Date Extracted: Date Analyzed: | 01 Mar 05 01 Mat 05 03 Mar 05 |
| Analyte | Conc. | DL | EmPC | Qualtior | | Recoverite | |
| | pg / L | pgh | pg / L | | ES | CS | |
| 23,7.8.7C0D | ND | 2.55 | | | 72.2 | 78.1 | |
| 1,2,3,7,8-P\%CDD | ND | 1.89 | | | 75.2 | 89.4 | |
| 1,2,3,4,7,8+4xCOD | ND | 2.42 | | | 74.8 | 83.1 | |
| 1,2,3,6,7,8+ $\mathrm{x} \times \mathrm{CDD}$ | ND | 2.41 | | | 84.7 | 83.1 | |
| 1,2,3,7,8, ${ }^{\text {, }}$ H2000 | ND | 2.88 | | | 76.5 | 83.1 | |
| 1,2,3,4,5,7,8-HpCDD | 49.8 | 7.48 | | | 67 | 62.4 | |
| 0 CDO | 471 | 6.38 | | | 57.8 | 82.4 | |
| 2,3,7,8-TCOF | ND | 1.84 | | | 74.8 | 78.1 | |
| 1,2,3,7,8-PaCDF | ND | 1.98 | | | 82.6 | 83.9 | |
| 2,3,47,0+9CDF | ND | 2.03 | | | 75.2 | 83.9 | |
| 1,2,3,4,7,8-4xCDF | ND | 1.47 | | | -73.6 | 83.1 | . |
| 1,2,9,6,7.9-4女CDE | ND | 1.51 | | | - 77.5 | 83.1 | |
| 2,3,4,6,7,8-4xCDF | ND | 1.9 | | | 71.7 | 83.1 | |
| 1,2,3,7,8,9-4xCDF | ND | 2.85 | | | 67.8 | 83.1 | |
| 1,2,3,4,8,7,8-HpCDF | 10.8 | 1.71 | | \downarrow | 56.2 | . 62.4 | |
| 1,2,3,4,7,8,9-HpCDF | ND | 2.58 | | | 59.7 | $\cdots 624$ | |
| OCDF | 34.9 | 12 | | J | 58.6 | 62.4 | |
| Totals \& TEQ | | | | | | | |
| TCOD: | ND | 2.55 | | | A Alta | NALYTTCAL | SPactives |
| PeCDOs | ND | 4.89 | | | 2 | | |
| HxCDDs | ND | 2.58 | 8.86 | | | 114 Exchange D | |
| HpCDDs | 101 | 7.48 | | | | Wilmington orth Carolina 28 | |
| TCDF: | ND | 1.64 | 2.21 | | | USA | |
| PeCDFs | NO | 2.01 | 0.368 | . | | | |
| HxCDFs | 4.13 | 1.87 | 7.22 | | | Tel: 910 794-1613 | |
| HpCDFs | 36.5 | 2.12 | | | | Fax: 910 794-39 | |
| Total PCDD/Fs | 648 | | 663 | | | all: ytoultratrace : www. ultratrace | |

Checkcode: 0067

AAP 2005 Rev. B

P5072 - Totals

Project ID: General Analytical HRMS

| Sample Summary Part 2 | If aman | ammarrean mater | nomervee | | | | | | | | | | Method 1613 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analyse | | 1081001.01 P9R | 1080993.01 pon | $1080996-04$
 pof | 1080047.01 p9/ | 1081014.01 | 1080000001 | | 1081008-91 | 1089602-01 | 1030992-01 | 108100401
 got | $\begin{gathered} 10 a 0986-01 \\ \mathrm{pg} 2 \\ \hline \end{gathered}$ | $\begin{gathered} 1000861-0 t \\ \quad \mathrm{OPR} \\ \hline \end{gathered}$ |
| TC00: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4.77 | 0 | 0 | 0 | 0 | 0 |
| $\mathrm{PaCDOS}^{\text {chen }}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15.5 | 0 | 0 | 0 | 0 | 0 |
| HxCOO | 0 | 7.38 | 4.44 | 0 | 0 | 0 | 0 | 0 | 39.8 | 0 | 0 | 0 | 0 | 0 |
| Hocosor | 0 | 153 | 85.1 | 25.2 | 9.48 | 29.8 | 0 | 104 | 415 | 12.1 | | 43.1 | 12.2 | 0 |
| OCDO | 0 | 883 | 267 | 134 | 70.4 | 157 | 56.1 | 474 | 2120 | 183 | 70.2 | 213 | 50.3 | 50 |
| TCOO_{3} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.53 | 0 | 0 | 0 | 0 | 0 |
| PeCDFs | 0 | 0 | 0.858 | 0 | | 0.76 | 0.258 | 0 | 2.57 | 0 | 0.458 | 0 | 0 | 0 |
| $\mathrm{H} \times \mathrm{COF}=$ | 0 | 2.68 | 0 | 0 | 0 | 0 | 0 | 4.13 | 32.8 | 0 | 0 | 0 | 0 | 0 |
| Hocors | 0 | 92.9 | 0 | 0 | 0 | 10.2 | 0 | 36.5 | 98.7 | 5.98 | 0 | 0 | 0 | 0 |
| OCof | 0 | 155 | 0 | 0 | 0 | 0 | 0 | 34.8 | 67.1 | 0 | 0 | 0 | 0 | 0 |
| | 0.00 | 1,290 | 338 | 158 | 79.9 | 497 | 56.4 | 548 | 2,800 | 482 | 70.7 | 254 | 62.6 | 50 |
| TOTE PCDOUFS (ND=0; EMPC=EMPC) | 0.00 | 1.300 | 342 | 160 | 79.0 | 197 | 56.4 | 863 | 2,830 | 193 | 70.7 | 256 | 62.6 | 50 |
| | 42.2 | 1,330 | 384 | 215 | 128 | 238 | 198 | 891 | 2,840 | 229 | 144 | 370 | 121 | 114 |
| | 0.00 | 1,130 | 289 | 144 | 70.4 | 173 | 56.1 | 587 | 2,440 | 170 | 70.2 | 234 | 50.3 | 50 |
| | 24.1 | 1,140 | 319 | 172 | 94.6 | 193 | 87.5 | 581 | 2.450 | 193 | 107 | 291 | 79.5 | 82 |
| | 42.2 | 1,180 | 338 | 200 | 118 | 214 | 140 | 595 | 2.450 | 211 | 144 | 348 | 108 | 414 |
| | 0.00 | 1,130 | 299 | 144 | 70.4 | 173 | 36.1 | 567 | 2,440 | 176 | 70.2 | 234 | 50.3 | 50 |
| | 21.1 | 1,140 | 319 | 172 | 94.6 | 193 | 87.5 | 589 | 2,450 | 483 | 107 | 291 | 78.5 | 82 |
| | 422 | 1,180 | 338 | 200 | 119 | 214 | 119 | 395 | 2,450 | 211 | 144 | 348 | 109 | 114 |
| Oneckeode | 3385 | 4351 | 4884 | 4.965 | 5239 | 5527 | 5797 | 0067 | 0335 | 0812 | 3929 | 4355 | 4822 | 4900 |

P5072 . Others
Project ID: General Analytical HRMS

| | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analyte | | $\begin{gathered} 10 a+001-01 \\ p \mathrm{pg} \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { 1OBopus.as } \\ \mathrm{Bg} / 2 \\ \hline \end{array}$ | $\begin{gathered} 1080006-01 \\ \quad \mathrm{pgR} \\ \hline \end{gathered}$ | $\begin{array}{c\|} 1080907-81 \\ p: 4 \\ \hline \end{array}$ | $\begin{array}{r} 1081094-04 \\ \hline 001 / 2 \\ \hline \end{array}$ | | | | 1081002-0
 poh | $\begin{gathered} 1030983-01 \\ \\ \mathrm{pof} \\ \hline \end{gathered}$ | \qquad | $\begin{gathered} 1080956-04 \\ \mathrm{pof} \\ \hline \end{gathered}$ | $\begin{gathered} 1080001-0 \\ \mathrm{gg} 2 \\ \hline \end{gathered}$ |
| Other PCDE
 Orinempocos
 Other $\mathrm{H} \times \mathrm{COD}$
 Otwer HpCOD | 0 0 0 0 | 0 0 7.38 77.2 | 0 0 4.4 33.8 | 0 0 0 15.2 | 0 0 0 9.46 | 0 0 0 17.4 | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{gathered} 0 \\ 0 \\ 0 \\ 01.5 \end{gathered}$ | $\begin{aligned} & 4.77 \\ & 15.5 \\ & 22.5 \\ & 208 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{gathered} 0 \\ 0 \\ 0 \\ 02.3 \end{gathered}$ | $\begin{gathered} 0 \\ 0 \\ 0 \\ 12.2 \end{gathered}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |
| Onw TCDF Other PeCDF Othe HaCDF OMer MDCDF | 0 0 0 0 | 0 0 2.68 76.1 | 0 0.858 0 0 | 0 0 0 0 | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{gathered} 0 \\ 0.78 \\ 0 \\ 0.16 \end{gathered}$ | 0 0.256 0 0 | 0 0 4.43 25.7 | 6.53 2.58 32.8 71.8 | $\begin{gathered} 0 \\ 0 \\ 0 \\ 0.98 \end{gathered}$ | 0 0.458 0 0 | 0 0 0 0 | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |
| | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | 0 0 7.38 77.2 | 0 0 8.57 33.8 | 0 0 0 15.2 | 0 0 0 9.48 | 0 0 0 17.4 | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | 0 0 8.88 51.5 | $\begin{aligned} & 4.77 \\ & 15.5 \\ & 47.7 \\ & 208 \end{aligned}$ | $\begin{gathered} 0 \\ 0 \\ 0 \\ 11.3 \end{gathered}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{gathered} 0 \\ 0 \\ 0 \\ 02.3 \end{gathered}$ | $\begin{gathered} 0 \\ 0 \\ 0 \\ 12.2 \end{gathered}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |
| Obum TCDF
 Othe Pecof
 Oinar HxCDF
 Other KpCDF | 0 0 0 0 | 0 0 9.88 76.1 | 0 0.858 0 0 | $\begin{gathered} 0 \\ 0.293 \\ 0 \\ 0 \end{gathered}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{gathered} 0 \\ 0.76 \\ 0 \\ 8.16 \end{gathered}$ | $\begin{gathered} 0 \\ 0.256 \\ 0 \\ 0 \end{gathered}$ | $\begin{aligned} & 2.21 \\ & 0.368 \\ & 7.22 \\ & 25.7 \end{aligned}$ | $\begin{aligned} & 6.53 \\ & 2.57 \\ & 32.8 \\ & 71.6 \end{aligned}$ | $\begin{gathered} 0 \\ 0 \\ 0 \\ 5.96 \end{gathered}$ | $\begin{gathered} 0 \\ 0.458 \\ 0 \\ 0 \end{gathered}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | 0 0 0 0 |
| Checkeoss | 3385 | 4364 | 4681 | 4965 | 5239 | 5527 | 5797 | 0087 | 0335 | 0612 | 3929 | 4355 | 4622 | 4900 |

Totals
Project ID: General Analytical HRMS P5072
\square Total PCDD/Fs (ND=0; EMPC=0) \square Total PCDDFs ($\mathrm{ND}=0$; EMPC=EMPC) ©Total PCDD/Fs (2378 -X ND=DL; EMPC=EMPC)

SUBCONTRACT ORDER - PROJECT \# IOB0980

| SENDING LABORATORY: |
| :--- |
| Del Mar Analytical, Irvine |
| 17461 Derian Avenue. Suite 100 |
| Irvine, CA 92614 |
| Phone: (949) 261-1022 |
| Fax: (949) 261-1228 |
| Project Manager. Michele Harper |

RECEIVING LABORATORY:

Pace Analytical, MN SUB
1700 Elm Street, Ste 200
Minneapolis, MN 55414
Phone :(612) 607-1700
107696
Fax: (612) 607-6444

Standard TAT is requested unless specific due date is requested \Rightarrow Due Date: \qquad Initials: \qquad
Analysis
Expiration

Comments

| Sample ID: 1OB0980-01 Water | Sampled: 02/11/05 10:56 |
| :---: | :---: |
| 1613-Dioxin-HR | $02 / 18 / 0510: 56$ |

J flags, 17 congeners, no TEQ, sub to Pace-MN
Excel EDD email to pm,Include Std logs for LvI IV

Containers Supplied:
1 L Amber (IOB0980-01I)
1 L Amber (1OB0980-01.J)

Released By
CHAIN-OF-CUSTODY / Analytical Request Document 814593
Section Section C

$*$
CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All rolevant fields must be completod accurately.

ction C | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | | |
| | | | | | | | | | | |

 Required Cliont indommion: Section \mathbf{B}
814592
\square -
Procet Manager CoTT UNZE Propact: Profio f;

LABORATORY REPORT

Date:
Client: \quad Del Mar Analytical, Irvine
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Attn: Michele Harper

Aquatic
Testing
Laboratories
"dedicated to providing quality aquatic toxicity testing"
4350 Transport Street, Unit 107
Ventura, CA 93003
(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.: A-05021203-001/002
Sample I.D.: IOB0980-01

Sample Control: The sample was received by ATL chilled, with the chain of custody record attached.
Date Sampled: $\quad 02 / 11 / 05$
Date Received: $\quad 02 / 12 / 05$
Date Tested: $\quad 02 / 12 / 05$ to $02 / 18 / 05$

Sample Analysis: The following analyses were performed on your sample:
Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0), Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

Result Summary:

| Acute:
 Fathead Minnow: | $\frac{\text { Survival }}{100 \%}$ | $\frac{\text { TUa }}{0.0}$ |
| :--- | ---: | ---: |
| Chronic: | | |
| \quad NOEC | TUc | |
| \quad Ceriodaphnia Survival: | $\frac{100 \%}{1.0}$ | |
| Ceriodaphnia Reproduction: | 100% | 1.0 |

Quality Control: Reviewed and approved by:

FATHEAD MINNOW PERCENTT SURVIVAL TEST

Lab No.: A-05021203-001
Client/ID: Del Mar IOB0980-01

TEST SUMMARY

Species: Pimephales promelas.
Age: 13 (1-14) days.
Regulations: NPDES.
Test solution volume: 250 ml .
Feeding: prior to renewal at $\mathbf{4 8}$ hrs.
Number of replicates: 2.
Dilution water: Moderately hard reconstituted water.
Photoperiod: $16 / 8 \mathrm{hrs}$ light/dark.

Start Date: 02/12/2005

Source: In-laboratory Culture.
Test type: Static-Renewal.
Test Protocol: EPA-821-R-02-012.
Endpoints: Percent Survival at 96 hrs.
Test chamber: 600 ml beakers.
Temperature: $20+/-1^{\circ} \mathrm{C}$.
Number of fish per chamber: 10.
QA/QC Batch No.: RT-050208.

TEST DATA

| | | ${ }^{\circ} \mathrm{C}$ | DO | pH | \# Dead | | Analyst \& Time of Readings |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | A | B | |
| INITIAL | Control | 20.2 | 8.1 | 7.8 | 0 | 0 | $\overbrace{1200}$ |
| | 100\% | 19.8 | 9.1 | 10.8 | L) | 0 | |
| 24 Hr | Control | 20.3 | 6.5 | $7-7$ | 0 | d | 1100 |
| | 100\% | $70-2$ | 6.9 | 7.4 | 0 | 0 | |
| 48 Hr | Control | 24.4 | 7.4 | 2-5 | C | 0 | 2 |
| | 100\% | 243 | 2.0 | 7-C | C. | C | |
| Renewal | Control | 920.4 | 8.0 | 7.7 | C | C | $\frac{2}{12} 0$ |
| | 100\% | 202 | 8.7 | 6.9 | C | 0 | |
| 72 Hr | Control | 17.8 | 28 | 7.4 | 0 | 0 | ∞_{1100}^{∞} |
| | 100\% | 196 | 24 | 70 | 0 | 0 | |
| 96 Hr | Control | 20.2 | 2.8 | 2.4 | 0 | 0 | R1100 |
| | 100\% | 20.5 | 7.6 | 20 | 0 | 0 | |

Comments:
Sample as received: Chlorine: $0 \mathrm{mg} / \mathrm{pH}: 6.8 ;$ Conductivity: 180 umho; Temp: $4^{\circ} \mathrm{C}$;
DO: $91 \mathrm{mg} / \mathrm{l}$: Alkalinity: $36 \mathrm{mg} / \mathrm{f}$ Hardness: $73 \mathrm{mg} / \mathrm{l}, \mathrm{NH}_{3}-\mathrm{N}: 0.5 \mathrm{mg} / \mathrm{l}$.
Sample aerated moderately (approx. $500 \mathrm{ml} / \mathrm{min}$) to raise or lower DO? Yes $/$ Q
Control: Alkalinity: $54 \mathrm{mg} / \mathrm{l}$; Hardness: $82 \mathrm{mg} /$; Conductivity: 295 umho.
Test solution aerated (not to exceed 100 bubbles $/ \mathrm{min}$) to maintain DO $>4.0 \mathrm{mg} / 17$ Yes $/ \mathrm{No}$.
Sample used for renewal is the original sample kept at $0-6^{\circ} \mathrm{C}$ with minimal headspace.

RESULTS

Percent Survival In: Control: \qquad \% 100\% Sample: \qquad \%

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

Lab No.: A-05021203
Client/ID: Del Mar IOB0980-01
Date Tested: 02/12/05 to 02/18/05

TEST SUMMARY

Test type: Daily static-renewal. Species: Ceriodaphnia dubia.
Age: <24 hrs; all released within 8 hrs .
Test vessel size: 30 ml .
Number of test organisms per vessel: 1.
Temperature: $25+/-1^{\circ} \mathrm{C}$.
Dilution water: Mod. hard reconstituted (MHRW).
QA/QC Batch No.: RT-050204.

Endpoints: Survival and Reproduction. Source: In-laboratory culture.
Food: . I ml YTC, algae per day.
Test solution volume: 15 ml .
Number of replicates: 10 .
Photoperiod: $16 / 8 \mathrm{hrs}$. light/dark cycle.
Test duration: 7 days.
Statistics: ToxCalc computer program.

RESULTS SUMMARY

| Sample Concentration | Percent Survival | Mean Number of
 Young Per Female |
| :---: | :---: | :---: |
| Control | 100% | 24.7 |
| 6.25% | 100% | 28.1 |
| 12.5% | 100% | 27.1 |
| 25% | 100% | 28.1 |
| 50% | 100% | 27.0 |
| 100% | 100% | 23.4 |

* Statistically significantly less than control at $\mathrm{P}=0.05$ level.
** Reproduction data from concentrations greater than survival NOEC are excluded from statistical analysis.

CHRONIC TOXICITY

| Parameter | Survival | Growth |
| :---: | :---: | :---: |
| NOEC | 100% | 100% |
| TUc | 1.0 | 1.0 |

QA/QC TEST ACCEPTABILITY

| Parameter | Result |
| :---: | :---: |
| Control survival 280% | Pass (100% survival) |
| >15 young per surviving control female | Pass (24.7 young) |
| 260% surviving controls had 3 broods | Pass (100% with 3 broods) |
| PMSD $<47 \%$ for reproduction; if $>47 \%$ and no toxicity at IWC, the test must be repeated | Pass ($\mathrm{PMSD}=11.8 \%$) |
| Statistically significantly different concentrations relative difference $>13 \%$ | NA - No stat. sig. diff. concentrations |
| Concentration response relationship acceptable | Pass (slight response at conc. tested) |

SUBCONTRACT ORDER - PROJECT \# IOB0980

| SENDING LABORATORY:
 Del Mar Analytical, Irvine
 17461 Derian Avenue. Suite 100
 Irvine, CA 92614
 Phone: (949) 261-1022
 Fax: (949) 261-1228
 Project Manager. Michele Harper | RECEIVING LABORATORY:
 Aquatic Testing Laboratories-SUB
 4350 Transport Street, Unit 107
 Ventura, CA 93003
 Phone :(805) 650-0546
 Fax: (805) 650-0756 |
| :---: | :---: |
| Standard TAT is requested unless specific due date is requested \Rightarrow Due Date: \quad Initials: | |
| Analysis Expiration | Comments |
| Sample ID: IOB0980-01 Water Sampled: 02/11/05 10:56 | |
| Bioassay-7 dy Chrnic 02/12/05 22:56 | Cerio, EPA/821-R02-013, Sub to AqTox Labs |
| Bioassay-Acute 96hr 02/12/05 22:56 | FH minnow, EPA/821-R02-012, Sub to A.qTox Labs |
| Containers Supplied: | |
| 1 gal Poly (IOB0980-01AT) | |
| 1 gal Poly (IOB0980-01AU) | |

EEEPRIDNE

March 8.2005

Ms. Michele Harper
Project Manager
Del Mar Analytical
17461 Derian Avenue, Suite 100
Irvine, CA 92614

Reference: Del Mar Analytical Project No. IOB0980
Eberline Services NELAP Cert \#01120CA (exp. 01/31/06)
Eberline Services Report R502136-8265

Dear Ms. Harper:
Enclosed are results from the analyses of one water sample received at Eberline Services on February 15.2005. The sample was analyzed according to the accompanying Del Mar Analytical Subcontract Order Form. The requested analyses were gross alpha/gross beta (EP A900.0), tritium (H-3. EPA906.0), and strontium-90 (Sr-90, EPA905.0). The QC LCS, blank analyses, sample duplicates, and matrix spike results for the analyses were within the limits defined in Eberline Services Quality Control Procedures Manual. Analyses that involve the yielding of an analytical tracer or carrier, such as $\mathrm{Sr}-90$, do not require matrix spike analyses to be performed.

Please call me if you have any questions concerning this report.
Regards.

Melissa Mannion
Senior Program Manager

MCMinjv
Enclosure: Report
Subcontract Form
Receipt checklist
Invoice

Eberline Services

ANALYSIS RESULTS

| client
 Sample ID | $\begin{gathered} \text { Lab } \\ \text { Sample ID } \end{gathered}$ | Collected | Analyzed | Nuclide | Results $\pm 2 \sigma$ | Onits | MDA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TO80980-01 | 8265-001 | 02/11/05 | 03/01/05 | GrossAlpha | 17.3 ± 4.5 | pCi/L | 2.78 |
| | | | 03/01/05 | Gross Beta | 20.0 ± 3.4 | pci/L | 3.94 |
| | | | 03/03/05 | H3 | 157 ± 150 | pci/L | 244 |
| | | | 02/25/05 | Sr90 | 0.034 ± 0.20 | $\mathrm{pCi} / \mathrm{L}$ | 0.392 |

QC RESULTS

| SDG 8265 | Client DEL MAR ANAL |
| :---: | :---: |
| Work Order R502136-01 | Contract prowectil tosog80 |
| Received Date 02/15/05 | Matrix WatER |

| Sample ID | Nuclide | Regulta | Onits | Amount Added | Na | Evaluation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Les | | | | | | |
| 8261-002 | GrossAlpha | 8.92 ± 3.1 | pCi/Smpl | 11.2 | 0.403 | 80\% recovery |
| | Gross Beta | 10.6 ± 0.77 | pCi/Smpl | 12.1 | 0.556 | 88\% recovery |
| | H3 | 281 ± 24 | pCi/Smpl | 259 | 23.4 | 108\% recovery |
| | S×90 | 12.0 ± 0.59 | pCi/Snepl | 11.1 | 0.238 | 108\% recovery |

BLANK

8261-003

| GrossAlpha | -0.032 ± 0.15 | pci/Smpl | NA | 0.374 | <MDA |
| :--- | :---: | :--- | :--- | :--- | :--- |
| Gross Beta | -0.073 ± 0.30 | pCi/Smpl | NA | 0.554 | <MDA |
| H3 | 13.6 ± 15 | $\mathrm{pCi} / \mathrm{Smpl}$ | NA | 23.9 | <MDA |
| Sr90 | -0.091 ± 0.10 | $\mathrm{pCi} / \mathrm{SmpI}$ | NA | 0.234 | <MDA |

| DUPLICATES | | |
| :---: | :---: | :---: |
| Sample ID NuClide | | |
| $8261-004$ GrossAlpha | 3.40 ± 1.4 | 0.926 |
| Grose Beta | 6.02 ± 1.4 | 1.80 |
| H3 | 393 ± 160 | 242 |
| Sr90 | 0.186 ± 0.19 | 0.431 |

| SEIKED SAMPLE | | | | ORTGINAL SAMPLE | | | Adided | 2Recy |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample ID | Nuclicae | Regults +20 | MDA | Sample ID | Regults $+2 \sigma$ | MDA | | |
| 8261-005 | GrossAlpha | 81.8 ± 5.3 | 1.04 | 8261-001 | 1.64 ± 1.0 | 0.936 | 76.6 | 105 |
| | Gross Beta | 82.0 ± 3.7 | 1.81 | | 5.18 ± 1.3 | 1.80 | 73.9 | 104 |
| | H3 | 17800 ± 520 | 243 | | 71.9 ± 150 | 246 | 18900 | 94 |

SUBCONTRACT ORDER - PROJECT \# IOB0980

| SENDING LABORATORY: |
| :--- |
| Del Mar Analytical, Irvine |
| 17461 Derian Avenue. Suite 100 |
| Irvine, CA 92614 |
| Phone: (949) 261-1022 |
| Fax: (949) 261-1228 |
| Project Manager: Michele Harper |

Standard TAT is requested unless specific due date is requested \Rightarrow Due Date: \qquad Initials: \qquad

| Analysis | Expiration | Comments |
| :---: | :---: | :---: |
| Sample ID: 10B0980-01 | Water Sampled: 02/11/05 10:56 | |
| EDD + Level 4-OUT | 03/11/05 10:56 | **LEVEL IV QC, ACCESS 7 EDD** |
| Gross Alpha-O | 02/11/06 10:56 | 900.0, IF RESULT>15 pCi/L, run Radium 226 \& 228 |
| Gross Beta-O | 02/11/06 10:56 | 900.0 , IF RESULT $>50 \mathrm{pCi} / \mathrm{L}$, run Radium 226 \& 228 |
| Radium, Combined-O | 02/11/06 10:56 | HOLD for Gross Alpha/Beta resultepe 903.1 \& 904.0 |
| Strontium 90-0 | 02/11/06 10:56 | 905.0 |
| Tritium-O | 02/11/06 10:56 | 906 |
| Containers Supplied: | | |
| 1 gal Poly (1OB0980-01 40 ml Voa Vial (1OB098 40 ml Voa Vial (IOB0980 | $\begin{aligned} & A F)+\mathrm{H}^{2} \mathrm{NO}_{3} \\ & 0-01 \mathrm{AG}) \\ & 0-01 \mathrm{AH}) \end{aligned}$ | |

SAMPIE RECEIPT CHECXLIST

Truesdail Laboratories, Inc.

February 18, 2005

| Client: | Del Mar Analytical

 17461 Derian Avenue, Suite 100
 Irvine, CA 92614 |
| :--- | :--- |
| Attention: | Michele Harper |

Project Name: $10 B 0980$
Truesdail Project:
939702
Date Received: 02/14/05

Samples Cross-reference

| Truesdail ID | Client ID | Matrix | Date Sampled | Time Sampled | Analvsis Requested |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 939702-1 | 1OB0980-01 | Water | 02/11/05 | 10:56 | Hydrazines by EPA 8315M |

Respectfully Submitted,
TRUESDAIL LABORATORIES, INC.
\qquad
K.R.P. lyer

Quality Control/Quality Assurance Officer

Truesdail Laboratories, Inc.

Client: Del Mar Analytical
17461 Derian Avenue, Suite 100
Irvine, CA 92614
Attention: Michele Harper

Project Name: $10 B 0980$
Truesdail Project: 939702
Date Received: 02/14/05

Case Narrative

Sample Receipt The sample was received in good condition and no anomalies were noted during check-in. The sample was kept in a locked refrigerator until analysis. Thereafter, it is being kept in ambient storage for an additional 2 months before disposal.

Analysis The analysis was perfomed as requested on the chain-of-custody.
Quality Control The analytical results for each batch of samples performed include a minimum of one set of laboratory control sample/laboratory control sample duplicate (LCS/LCSD), one matrix spike (MS) and a reagent blank (Method blank). Any exceptions or problems would be noted in the "comments" section.

Comments The test results in this report meet all quality assurance requirements set forth by the method specification and all quality control recoveries were within the laboratory acceptance limits. No anomalies or nonconformance events occurred during the course of analysis.

The analytes were quantitated down to the Method Detection Limit (J flags) per client's request.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.
$K \hat{R} \cdot P \cdot / y<$

| K.R.P. Iyer |
| :--- |
| Quality Control/Quality Assurance Officer |

TRUESDAIL LABORATORIES, INC.
indespendent Testing, Forensic science. and environmental analyses

\section*{REPORT

Analytical Results
 Analytical Resuits}

PQL: Practical Quantitation Limit, ugh
ND: Not Detected at or above the MDL N/A: Not Applicable
Note: Results based on detector $\# 1(U V=365 \mathrm{~nm})$ data.

Client: Del Mar Analytical

Client:

Attention:
Sample:
Project Name:
P.O. Number:
Method Number:
Investigation:
Hydrazines in Liquid

TRUESDAIL LABORATORIES, INC.
independent testing, Forensic science, and environmental annivses

$$
\begin{aligned}
\text { Client: } & \begin{array}{l}
\text { Del Mar Analytical } \\
\text { 17461 Derlan Ave. } \\
\text { Irvine, CA 92614 }
\end{array} \\
& \\
\text { Cilent Contact: } & \text { Michele Harper } \\
\text { Sample: } & \text { Lquid / } 1 \text { Sample } \\
\text { Sample ID: } & \text { IOB0980 } \\
\text { P.O. Number: } & \text { IOB0980 } \\
\text { Method Number: } & 8315 \text { (Modified) } \\
\text { Run Batch No.: } & \text { Extraction: 2968; Analysis: } 365 \\
\text { Investigation: } & \text { Hydrazines in Liquid }
\end{aligned}
$$

Quality Control/Quality Assurance Calibration Report

| Parameter | Theoretical
 Value (ug/L) | Measured
 Value (ugh) | \%
 Rec. | Control
 Limits | Flag |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Monomethyl Hydrazine | 50.0 | 49.9 | 100 | $85-115$ | PASS |
| u-Dimethyl Hydrazine | 50.0 | 46.8 | 93.5 | $85-115$ | PASS |
| Hydrazine | 10.0 | 10.9 | 109 | $85-115$ | PASS |

Quality Control/Quality Assurance Spikes Report

| Spliked Conc. ugh | Recovered Concentration | | | Percent Recovery (\%) | | $\begin{aligned} & \text { MSI } \\ & \text { MSD } \\ & \% \mathrm{D} \\ & \hline \end{aligned}$ | Flag | Accuracy Control Limita | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | MS | MSD | Sampl | MS | MSD | | | \%D | \%Rac. |
| 50.0 | 37.4 | 35.3 | 0.0 | 74.8 | 70.6 | 5.67\% | PASS | 20 | 0-150 |
| 50.0 | 44.3 | 44.7 | 0.0 | 88.6 | 89.3 | 0.82\% | PASS | 20 | 0-150 |
| 10.0 | 7.61 | 7.27 | 0.0 | 76.1 | 72.7 | 4.52\% | PASS | 20 | $0-15$ |

| Parameter | Spiked Conc. ugh | Recovered Concentration | | | PercentRecovery (\%) | | $\begin{aligned} & \text { LCSS } \\ & \text { LCSD } \end{aligned}$ | Flag | Control Limits | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | LCS | LCSD | MB | LCS | LCSD | | | \%D | \% Rec. |
| Monomethyl Hydrazine | 50.0 | 51.2 | 50.8 | 0.0 | 102 | 102 | 0.68\% | PASS | 20 | 70-130 |
| u-Dimethyl Hydrazine | 50.0 | 47.3 | 47.3 | 0.0 | 94.6 | 94.6 | 0.01\% | PASS | 20 | 70-130 |
| Hydrazine | 10.0 | 11.5 | 11.6 | 0.0 | 115 | 116 | 1.07\% | PASS | 20 | 70-130 |

ICV: Initsal Califration Verification
acs: Quality Control Standard
LCS: Laboratory Control Spike
MS: Matix Spike
\%D: Percent Difierence
Mag: "Pass" II within Contr
Note: Results based on detector ${ }^{* 1}$ (UV $\mathbf{3 6 5 5 m m}$) data.
REPORT
This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutuarprotection to clients, the public,

SUBCONTRACT ORDER - PROJECT \# IOB0980

| SENDING LABORATORY: |
| :--- |
| Del Mar Analytical, Irvine |
| 17461 Derian Avenue. Suite 100 |
| Irvine, CA 92614 |
| Phone: (949) 261-1022 |
| Fax: (949) 261-1228 |
| Project Manager: Michele Harper |

RECEIVING LABORATORY:

Truesdail Laboratories-SUB
14201 Frankin Avenue
Tustin, CA 92680
Phone :(714) 730-6239
Fax: (714) 730-6462
Rec'd 02/4,05
s23c 939702

Standard TAT is requested unless specific due date is requested \Rightarrow Due Date \qquad Initials: \qquad Analysis Expiration Comments

Sample ID: 1OB0980-01 Water Sampled: 02/11/05 10:56

Hydrazine-OUT ,
Level 4 Data Package

02/14/05 10:56
03/11/05 10:56

Sub Truesdail for Monomethylhydrazine, I flags

Containers Supplied:

1 L Amber (IOB0980-01AR)
1 L Amber (1OB0980-01AS)

For Sample Conditions See Form Attached

Sample Integrity \& Analysis Discrepancy Form

Client:

$$
\text { Lab\# } 939702
$$

Date Delivered U1/4/05 Time: 07.23 By: eMail aField Service orient

1. Was a Chain of Custody received and signed?
2. Does Customer require an acknowledgement of the COC?
3. Are there any special requirements or notes on the COC?
4. If a letter was sent with the COC, does it match the COC?
5. Were all requested analyses understood and acceptable?
6. Were samples received in a chilled condition? Temperature (if yes)? $Y^{\circ} \mathrm{C}$
7. Were samples received intact
(ie. broken bottles, leaks, air bubbles, etc..)?
8. Were sample custody seals intact?
9. Does the number of samples received agree with COC?
10. Did sample labels correspond with the client ID's?
11. Did sample labels indicate proper preservation?

Preserved (if yes) by : atruesdail Client
12. Were samples pH checked? $\mathrm{pH}=$ \qquad
13. Were all analyses within holding time at time of receipt? If not, notify the Project Manager.
14. Have Project due dates been checked and accepted? Turn Around Time (TAT): \square RUSH Std
dyes an anA
aYes aN dNA
aYes oNo GŃNA aYes no anta dyes ant aNTA DYes an antA ayes an aNA aYes an $\square N / A$ dYes oNo ON/A dYes a no aNTA aYes and ©N/A aYes Ono dNA ares ono DNA EYes a No \square IN /A
15. Sample Matrix: 口 Liquid Drinking Water \square Ground Water sludge asoil sWipe paint asolid tother Waled
16. Comments:
17. Sample Check-In completed by Truesdail Log-In/Receiving:

UDALL LABORATORIES, INC.

Internal Chain of Custody Logbook

| Storage
 Date | Shelf No. For
 Storage | Printed Name | Initials | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \cdot | | | | Discharge Date | Printed Name | Initials |

[^0]: Conc $=$ Concentration (Totals include 2,3,7,8-substituted isomers).
 EMPC = Estimated Maximum Possible Concentration
 LOD $=$ Limit of Detection. Totals are averages of individual isomer LODs.
 $\mathrm{D}=$ Result obtained from analysis of diluted sample
 $\mathrm{B}=$ Less than 10 times higher than method blank level
 $P=$ Recovery outside of method 1613 control limits
 $\mathrm{J}=$ Concentration detected is below the calibration range
 $\mathrm{Nn}=$ Value obtained from additional analysis

[^1]: Conc $=$ Concentration (Totals include 2,3,7,8-substituted isomers). EMPC $=$ Estimated Maximum Possible Concentration
 $L O D=$ Limit of Detection. Totals are averages of individual isomer LODS
 $\mathrm{D}=$ Result obtained from analysis of diluted sample
 $B=$ Less than 10 times higher than method blank level
 $P=$ Recovery outside of method 1613 control limits
 $\mathrm{J}=$ Concentration detected is below the calibration range
 $\mathrm{N} n=$ Value obtained from additional analysis

[^2]: * Subconiracted analytical laboratory is not meeting contract and/or method requirements.
 - Differences in potocol have been adopted by the laboratory but no action against the laboratory is required.

[^3]: 2 Subcontracted analytical laboratory is not meeting contract and/or method requirements.
 ${ }^{6}$ Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

[^4]: ${ }^{2}$ Subcontracted analytical laboratory is not meeting contract and/or method requirements.
 ${ }^{\text {b }}$ Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

[^5]: Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

[^6]: Dave Dawes

[^7]: Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

[^8]: L

[^9]: Conc $=$ Concentration (Totals include 2,3,7,8-substituted isomers).
 EMPC = Estimated Maximum Possible Concentration
 LOD = Limit of Detection. Totals are averages of individual isomer LODs.
 $D=$ Result obtained from analysis of diluted sample
 $8=$ Less than 10 times higher than method blank level
 $P=$ Recovery outside of method 1613 control limits
 $\mathrm{J}=$ Concentration detected is below the calibration range
 $\mathrm{Nn}=$ Value obtained from additional analysis

[^10]: MWH-Pasadena Boeing 300 North Lake Avenue, Suite 1200
 Pasadena, CA 91101 Attention: Bronwyn Kelly

 Project ID: Quarterly Ourfall $011+13267$
 Report Number: IOA0131

 Sampled: 01/04/05-01/0505
 Received: 01:04\% 05

[^11]: Subcontracted analytical laboratory is not meeting contract and/or method requirements.

[^12]: Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

[^13]: Del Mar Analytical, Irvine
 Michele Happer
 Project Manager

[^14]: Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

[^15]: ICV: misial Callibration Verification
 cCV : Continued Callibration Verification
 LCS: Laboratory Control Spike
 MS: Matrix Spike
 LCS: Laboratory Control Splike
 MS: Matix Spike
 Flag: "Pass" If within Control Limits; otherwise "Fail"
 Note: Resuitu based on detector "1 (UV=365nm) data,
 \%D: Percent Difierence

[^16]: Project ID: 13267 (Study I) Routine Outfall 011-Grab Report Number: IOA0549

[^17]: Sample ID
 Outfall 001 1080980-01

[^18]: ${ }^{3}$ Subcontracted analytical laboratory is not meeting contract and or method requirements.

 - Differences in protocol have been adopted by the laboratory but no action against the laboratory is required.

[^19]: Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

[^20]: Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

[^21]: Del Mar Analytical, Irvine
 Michele Harper
 Project Manager

[^22]: 2714 ExCHANGE DRIVE
 WILMINGTON
 NORTH CAROLINA 28405
 TEL: 910-794-1613 FAX 910-794-3919
 $1 / 2$

