APPENDIX G

Section 36

Outfall 011 – December 22 & 23, 2010 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Quarterly Outfall 011 2010

618 Michillinda Avenue, Suite 200 Quarterly Outfall 011

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 12/22/10-12/23/10

Received: 12/22/10 Issued: 02/06/11 16:56

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 3 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at 2°C, on ice and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica

Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: Results that fall between the MDL and RL are 'J' flagged.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011 Sampled: 12/22/10-12/23/10

Report Number: ITL2272 Received: 12/22/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

ADDITIONAL INFORMATION:

WATER, 1613B, Dioxins/Furans with Totals

Some analytes in this sample and the associated method blank have an ion abundance ratio that is outside of criteria. The analytes are considered as an "estimated maximum possible concentration" (EMPC) because the quantitation is based on the theoretical ion abundance ratio. Analytical results are reported with a "Q" flag.

The method blank associated with this extraction batch has a detected concentration of OCDD above the reporting limit (RL) indicating a potential high bias in the data. After discussion with the client, the data is reported with a "B" flag and no further action is required for this sample.

The laboratory control sample (LCS) associated with this extraction batch has percent recoveries for 1,2,3,4,6,7,8-HpCDF and OCDD above the established control limits indicating a potential high bias in the data. It was determined that the cause of the elevated recoveries is due the spiking solution used for the LCS had concentrated. The QC Check data is included in the sample extraction section of the raw data. After discussion with the client, the data is reported and no further action is required for this sample.

LABORATORY ID	CLIENT ID	MATRIX
ITL2272-01	Outfall 011 (Grab)	Water
ITL2272-02	Trip Blanks	Water
ITL2272-03	Outfall 011 (Composite)	Water
ITL2272-04	Trip Blank	Water

I certify under penalty of perjury that the information contained in this report and all attachments was produced in accordance with the indicated methods and laboratory standard operating procedures, except as noted, and are complete and accurate to the best of my knowledge and belief. Subcontract laboratory reports that are attached have been evaluated for completeness and quality control acceptability.

Reviewed By:

TestAmerica Irvine

Delby Wilson

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011

Report Number: ITL2272

Sampled: 12/22/10-12/23/10

Received: 12/22/10

PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ITL2272-01 (Outfall 011 (C	Grab) - Water)				Samnle	ed: 12/22/1	n		
Reporting Units: ug/l	,				эшпрк	.u. 12/22/1	o		
Benzene	EPA 624	10L2971	0.28	0.50	ND	1	ALE	12/27/10	
Carbon tetrachloride	EPA 624	10L2971	0.28	0.50	ND	1	ALE	12/27/10	
Chloroform	EPA 624	10L2971	0.33	0.50	ND	1	ALE	12/27/10	
1,1-Dichloroethane	EPA 624	10L2971	0.40	0.50	ND	1	ALE	12/27/10	
1,2-Dichloroethane	EPA 624	10L2971	0.28	0.50	ND	1	ALE	12/27/10	
1,1-Dichloroethene	EPA 624	10L2971	0.42	0.50	ND	1	ALE	12/27/10	
Ethylbenzene	EPA 624	10L2971	0.25	0.50	ND	1	ALE	12/27/10	
Tetrachloroethene	EPA 624	10L2971	0.32	0.50	ND	1	ALE	12/27/10	
Toluene	EPA 624	10L2971	0.36	0.50	ND	1	ALE	12/27/10	
1,1,1-Trichloroethane	EPA 624	10L2971	0.30	0.50	ND	1	ALE	12/27/10	
1,1,2-Trichloroethane	EPA 624	10L2971	0.30	0.50	ND	1	ALE	12/27/10	
Trichloroethene	EPA 624	10L2971	0.26	0.50	ND	1	ALE	12/27/10	
Trichlorofluoromethane	EPA 624	10L2971	0.34	0.50	ND	1	ALE	12/27/10	
Trichlorotrifluoroethane (Freon 113)	EPA 624	10L2971	0.50	5.0	ND	1	ALE	12/27/10	
Vinyl chloride	EPA 624	10L2971	0.40	0.50	ND	1	ALE	12/27/10	
Xylenes, Total	EPA 624	10L2971	0.90	1.5	ND	1	ALE	12/27/10	
Surrogate: 4-Bromofluorobenzene (80-1.	20%)				98 %				
Surrogate: Dibromofluoromethane (80-1	120%)				108 %				
Surrogate: Toluene-d8 (80-120%)					104 %				
Sample ID: ITL2272-02 (Trip Blanks -	Water)				Sample	ed: 12/22/1	0		
Reporting Units: ug/l					_				
Benzene	EPA 624	10L2971	0.28	0.50	ND	1	ALE	12/27/10	
Carbon tetrachloride	EPA 624	10L2971	0.28	0.50	ND	1	ALE	12/27/10	
Chloroform	EPA 624	10L2971	0.33	0.50	ND	1	ALE	12/27/10	
1,1-Dichloroethane	EPA 624	10L2971	0.40	0.50	ND	1	ALE	12/27/10	
1,2-Dichloroethane	EPA 624	10L2971	0.28	0.50	ND	1	ALE	12/27/10	
1,1-Dichloroethene	EPA 624	10L2971	0.42	0.50	ND	1	ALE	12/27/10	
Ethylbenzene	EPA 624	10L2971	0.25	0.50	ND	1	ALE	12/27/10	
Tetrachloroethene	EPA 624	10L2971	0.32	0.50	ND	1	ALE	12/27/10	
Toluene	EPA 624	10L2971	0.36	0.50	ND	1	ALE	12/27/10	
1,1,1-Trichloroethane	EPA 624	10L2971	0.30	0.50	ND	1	ALE	12/27/10	
1,1,2-Trichloroethane	EPA 624	10L2971	0.30	0.50	ND	1	ALE	12/27/10	
Trichloroethene	EPA 624	10L2971	0.26	0.50	ND	1	ALE	12/27/10	
Trichlorofluoromethane	EPA 624	10L2971	0.34	0.50	ND	1	ALE	12/27/10	
Trichlorotrifluoroethane (Freon 113)	EPA 624	10L2971	0.50	5.0	ND	1	ALE	12/27/10	
Vinyl chloride	EPA 624	10L2971	0.40	0.50	ND	1	ALE	12/27/10	
Xylenes, Total	EPA 624	10L2971	0.90	1.5	ND	1	ALE	12/27/10	
Surrogate: 4-Bromofluorobenzene (80-1.	20%)				97 %				
Surrogate: Dibromofluoromethane (80-1	120%)				105 %				
Surrogate: Toluene-d8 (80-120%)					102 %				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011 Sampled: 12/22/10-12/23/10

Report Number: ITL2272 Received: 12/22/10

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ITL2272-03 (Outfall 011 (Comp	posite) - Water)				Sample	ed: 12/23/10)		
Reporting Units: ug/l									
Bis(2-ethylhexyl)phthalate	EPA 625	10L2936	1.60	4.72	ND	0.943	LB	12/28/10	
2,4-Dinitrotoluene	EPA 625	10L2936	0.189	4.72	ND	0.943	LB	12/28/10	
N-Nitrosodimethylamine	EPA 625	10L2936	0.0943	4.72	ND	0.943	LB	12/28/10	
Pentachlorophenol	EPA 625	10L2936	0.0943	4.72	ND	0.943	LB	12/28/10	
2,4,6-Trichlorophenol	EPA 625	10L2936	0.0943	5.66	ND	0.943	LB	12/28/10	
Surrogate: 2,4,6-Tribromophenol (40-120%)					94 %				
Surrogate: 2-Fluorobiphenyl (50-120%)					78 %				
Surrogate: 2-Fluorophenol (30-120%)					67 %				
Surrogate: Nitrobenzene-d5 (45-120%)					74 %				
Surrogate: Phenol-d6 (35-120%)					72 %				
Surrogate: Terphenyl-d14 (50-125%)					89 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011 2010

618 Michillinda Avenue, Suite 200

Quarterly Outfall 011 Sa

Arcadia, CA 91007

Report Number: ITL2272

Sampled: 12/22/10-12/23/10

Received: 12/22/10

ORGANOCHLORINE PESTICIDES (EPA 608)

			MDL	Reporting	Sample	Dilution		Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Analyst	Analyzed	Qualifiers
Sample ID: ITL2272-03 (Outfall 011 (Comp	osite) - Water)	- cont.			Sample	d: 12/23/10)		
Reporting Units: ug/l									
alpha-BHC	EPA 608	10L3051	0.0024	0.0094	ND	0.943	CN	12/28/10	
Surrogate: Decachlorobiphenyl (45-120%)					83 %				
Surrogate: Tetrachloro-m-xylene (35-115%)					67 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quarterly Outfall 011 2010

618 Michillinda Avenue, Suite 200 Quarterly Outfall 011 Sampled: 12/22/10-12/23/10

Arcadia, CA 91007 Report Number: ITL2272 Received: 12/22/10

Attention: Bronwyn Kelly

HEXANE EXTRACTABLE MATERIAL

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ITL2272-01 (Outfall 011 (Gra	ıb) - Water)				Sample	ed: 12/22/10)		
Reporting Units: mg/l									
Hexane Extractable Material (Oil &	EPA 1664A	10L2996	1.3	4.7	ND	1	LA	12/28/10	
Grease)									

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quarterly Outfall 011 2010

618 Michillinda Avenue, Suite 200 Quarterly Outfall 011 Sampled: 12/22/10-12/23/10

Arcadia, CA 91007 Report Number: ITL2272 Received: 12/22/10

Attention: Bronwyn Kelly

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ITL2272-03 (Outfall 011 (Co	mposite) - Water)				Sample	ed: 12/23/10)		
Reporting Units: mg/l Iron	EPA 200.7	10L3131	0.015	0.040	6.4	1	DP	12/28/10	
Sample ID: ITL2272-03 (Outfall 011 (Co	mposite) - Water)				Sample	ed: 12/23/10)		
Reporting Units: ug/l									
Mercury	EPA 245.1	10L3104	0.10	0.20	ND	1	DB	12/28/10	
Cadmium	EPA 200.8	10L3064	0.10	1.0	0.16	1	RDC	12/29/10	Ja
Zinc	EPA 200.7	10L3131	6.00	20.0	28.3	1	DP	12/28/10	
Copper	EPA 200.8	10L3064	0.500	2.00	6.29	1	RDC	12/29/10	
Lead	EPA 200.8	10L3064	0.200	1.00	4.55	1	RDC	12/29/10	
Manganese	EPA 200.8	10L3064	0.70	1.0	62	1	RDC	12/29/10	
Selenium	EPA 200.8	10L3064	0.50	2.0	ND	1	RDC	12/29/10	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011 Sampled: 12/22/10-12/23/10

Report Number: ITL2272 Received: 12/22/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ITL2272-03 (Outfall 011 (C	omposite) - Water) -	cont.			Sample	ed: 12/23/10)		
Reporting Units: mg/l Iron	EPA 200.7-Diss	10L3118	0.015	0.040	0.37	1	DP	12/28/10	
Sample ID: ITL2272-03 (Outfall 011 (C	omposite) - Water)				Sample	ed: 12/23/10)		
Reporting Units: ug/l									
Mercury	EPA 245.1-Diss	10L3103	0.10	0.20	ND	1	DB	12/28/10	
Cadmium	EPA 200.8-Diss	10L3120	0.10	1.0	ND	1	RDC	12/29/10	
Zinc	EPA 200.7-Diss	10L3118	6.00	20.0	ND	1	DP	12/28/10	
Copper	EPA 200.8-Diss	10L3120	0.500	2.00	2.24	1	RDC	12/28/10	
Lead	EPA 200.8-Diss	10L3120	0.200	1.00	ND	1	RDC	12/29/10	
Manganese	EPA 200.8-Diss	10L3120	0.70	1.0	2.7	1	RDC	12/28/10	
Selenium	EPA 200.8-Diss	10L3120	0.50	2.0	ND	1	RDC	12/29/10	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011 Sampled: 12/22/10-12/23/10

Report Number: ITL2272 Received: 12/22/10

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ITL2272-03 (Outfall 011 (Composite) - Water)	- cont.			Sample	ed: 12/23/10)		
Reporting Units: mg/l									
Ammonia-N (Distilled)	SM4500NH3-C	10L3146	0.500	0.500	ND	1	TMK	12/28/10	
Biochemical Oxygen Demand	SM5210B	10L2931	0.50	2.0	1.0	1	XL	12/30/10	Ja
Chloride	EPA 300.0	10L2812	0.25	0.50	4.9	1	NN	12/23/10	
Nitrate-N	EPA 300.0	10L2812	0.060	0.11	0.22	1	NN	12/23/10	
Nitrite-N	EPA 300.0	10L2812	0.090	0.15	ND	1	NN	12/23/10	
Nitrate/Nitrite-N	EPA 300.0	10L2812	0.15	0.26	0.22	1	NN	12/23/10	Ja
Sulfate	EPA 300.0	10L2812	0.20	0.50	5.4	1	NN	12/23/10	
Surfactants (MBAS)	SM5540-C	10L2893	0.050	0.10	ND	1	SLA	12/23/10	
Total Dissolved Solids	SM2540C	10L3089	1.0	10	90	1	DC	12/28/10	
Total Suspended Solids	SM 2540D	10L3164	1.0	10	50	1	DC	12/28/10	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011

Report Number: ITL2272

Sampled: 12/22/10-12/23/10

Received: 12/22/10

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ITL2272-01 (Outfall 011 (Gr	ab) - Water)				Sample	ed: 12/22/10)		
Reporting Units: ml/l									
Total Settleable Solids	SM2540F	10L2855	0.10	0.10	ND	1	AC1	12/23/10	
Sample ID: ITL2272-03 (Outfall 011 (Co	mposite) - Water)				Sample	ed: 12/23/10)		
Reporting Units: NTU					400	_			
Turbidity	EPA 180.1	10L2924	0.20	5.0	190	5	AC1	12/24/10	
Sample ID: ITL2272-03 (Outfall 011 (Co	mposite) - Water)				Sample	ed: 12/23/10)		
Reporting Units: ug/l									
Perchlorate	EPA 314.0	10L3015	0.90	4.0	ND	1	MN	12/28/10	
Total Cyanide	SM4500CN-E	10L3114	2.2	5.0	ND	1	НН	12/28/10	
Sample ID: ITL2272-01 (Outfall 011 (Gr	ab) - Water)				Sample	ed: 12/22/10)		
Reporting Units: umhos/cm @ 25C Specific Conductance	EPA 120.1	10L2765	1.0	1.0	120	1	MC	12/23/10	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011

Report Number: ITL2272

Sampled: 12/22/10-12/23/10

Received: 12/22/10

8	6	4	9

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ITL2272-03 (Outfall 011 (Composite) - Water)					Sample	d: 12/23/10)		
Reporting Units: pCi/L Uranium, Total	8649	8649		1	0.477	1	CSS	01/20/11	Jb
Sample ID: ITL2272-04 (Trip Blank - Water	r)				Sample	d: 12/23/10)		
Reporting Units: pCi/L Uranium, Total	8649	8649		1	ND	1	CSS	01/20/11	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011

Report Number: ITL2272

Sampled: 12/22/10-12/23/10

Received: 12/22/10

			900						
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ITL2272-03 (Outfall 011 (Composite) - Water)			Sample	ed: 12/23/10	0		
Reporting Units: pCi/L									
Gross Alpha	900	8649		3	5.1	1	KT	01/06/11	
Gross Beta	900	8649		4	5.75	1	KT	01/06/11	
Sample ID: ITL2272-04 (Trip Blank -	Water)				Sample	ed: 12/23/10	0		
Reporting Units: pCi/L									
Gross Alpha	900	8649		3	0.004	1	KT	01/14/11	U
Gross Beta	900	8649		4	-0.182	1	KT	01/14/11	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011

Report Number: ITL2272

Sampled: 12/22/10-12/23/10

Received: 12/22/10

901.1

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ITL2272-03 (Outfall 011 (Co			Sample	ed: 12/23/10)				
Reporting Units: pCi/L					_				
Cesium-137	901.1	8649		20	ND	1	LS	01/05/11	U
Potassium-40	901.1	8649		25	ND	1	LS	01/05/11	U
Sample ID: ITL2272-04 (Trip Blank - W	ater)				Sample	ed: 12/23/10)		
Reporting Units: pCi/L									
Cesium-137	901.1	8649		20	ND	1	LS	01/13/11	U
Potassium-40	901.1	8649		25	ND	1	LS	01/13/11	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011 2010

618 Michillinda Avenue, Suite 200

Quarterly Outfall 011

Arcadia, CA 91007

Sampled: 12/22/10-12/23/10 Report Number: ITL2272

Received: 12/22/10

903.1

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ITL2272-03 (Outfall 011 (Composite) - Water)					Sample	ed: 12/23/10)		
Reporting Units: pCi/L Radium-226	903.1	8649		1	0.888	1	TM	01/22/11	Jb
Sample ID: ITL2272-04 (Trip Blank - W	ater)				Sample	ed: 12/23/10)		
Reporting Units: pCi/L Radium-226	903.1	8649		1	0.158	1	TM	01/22/11	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011

Report Number: ITL2272

Sampled: 12/22/10-12/23/10

Received: 12/22/10

			904						
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ITL2272-03 (Outfall 011 (C	omposite) - Water)			Sample	ed: 12/23/10)		
Reporting Units: pCi/L									
Radium-228	904	8649		1	0.262	1	ASM	01/24/11	U
Sample ID: ITL2272-04 (Trip Blank - V	Vater)				Sample	ed: 12/23/10)		
Reporting Units: pCi/L									
Radium-228	904	8649		1	0.06	1	ASM	01/26/11	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quarterly Outfall 011 2010

618 Michillinda Avenue, Suite 200 Quarterly Outfall 011 Sampled: 12/22/10-12/23/10

Arcadia, CA 91007 Report Number: ITL2272 Received: 12/22/10

Attention: Bronwyn Kelly

_	_	_
a	41	15
7	u	

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ITL2272-03 (Outfall 011						ed: 12/23/10	·	1211111, 2011	
Reporting Units: pCi/L Strontium-90	905	8649		2	-0.041	1	PAS	01/13/11	U
Sample ID: ITL2272-04 (Trip Blank Reporting Units: pCi/L	a - Water)				Sample	ed: 12/23/10)		
Strontium-90	905	8649		2	0.015	1	ASM	01/24/11	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011

Report Number: ITL2272

Sampled: 12/22/10-12/23/10

Received: 12/22/10

9	0	6	

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ITL2272-03 (Outfall 011 (Composite) - Water)					Sample	d: 12/23/10)		
Reporting Units: pCi/L Tritium	906	8649		500	49.5	1	JO	01/12/11	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011 Sampled: 12/22/10-12/23/10

Report Number: ITL2272 Received: 12/22/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

EPA-5 1613Bx

		L.	I A-3 101	JDX					
			MDL	Reporting	Sample	Dilution		Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Analyst	Analyzed	Qualifiers
Sample ID: ITL2272-03 (Outfall 011 (C	Composite) - Water) -	- cont.			Sample	d: 12/23/10)		
Reporting Units: ug/L					-				
1,2,3,4,6,7,8-HpCDD	EPA-5 1613B	363256	0.0000057	0.00005	3.7e-005	0.97	MO	12/30/10	J, B
1,2,3,4,6,7,8-HpCDF	EPA-5 1613B	363256	0.0000043	0.00005	1.3e-005	0.97	MO	12/30/10	J, Q, B
1,2,3,4,7,8,9-HpCDF	EPA-5 1613B	363256	0.0000059	0.00005	ND	0.97	MO	12/30/10	
1,2,3,4,7,8-HxCDD	EPA-5 1613B	363256	0.0000066	0.00005	ND	0.97	MO	12/30/10	
1,2,3,4,7,8-HxCDF	EPA-5 1613B	363256	0.0000059	0.00005	ND	0.97	MO	12/30/10	
1,2,3,6,7,8-HxCDD	EPA-5 1613B	363256	0.0000054	0.00005	ND	0.97	MO	12/30/10	
1,2,3,6,7,8-HxCDF	EPA-5 1613B	363256	0.0000058	0.00005	ND	0.97	MO	12/30/10	
1,2,3,7,8,9-HxCDD	EPA-5 1613B	363256	0.0000056	0.00005	ND	0.97	MO	12/30/10	
1,2,3,7,8,9-HxCDF	EPA-5 1613B	363256	0.0000065	0.00005	ND	0.97	MO	12/30/10	
1,2,3,7,8-PeCDD	EPA-5 1613B	363256	0.000011	0.00005	ND	0.97	MO	12/30/10	
1,2,3,7,8-PeCDF	EPA-5 1613B	363256	0.0000058	0.00005	ND	0.97	MO	12/30/10	
2,3,4,6,7,8-HxCDF	EPA-5 1613B	363256	0.0000054	0.00005	ND	0.97	MO	12/30/10	
2,3,4,7,8-PeCDF	EPA-5 1613B	363256	0.0000071	0.00005	ND	0.97	MO	12/30/10	
2,3,7,8-TCDD	EPA-5 1613B	363256	0.000003	0.00001	ND	0.97	MO	12/30/10	
2,3,7,8-TCDF	EPA-5 1613B	363256	0.0000021	0.00001	ND	0.97	MO	12/30/10	
OCDD	EPA-5 1613B	363256	0.000011	0.0001	0.00056	0.97	MO	12/30/10	В
OCDF	EPA-5 1613B	363256	0.000012	0.0001	2e-005	0.97	MO	12/30/10	J, Q, B
Total HpCDD	EPA-5 1613B	363256	0.0000057	0.00005	9.2e-005	0.97	MO	12/30/10	J, B
Total HpCDF	EPA-5 1613B	363256	0.000005	0.00005	3.3e-005	0.97	MO	12/30/10	J, Q, B
Total HxCDD	EPA-5 1613B	363256	0.0000054	0.00005	ND	0.97	MO	12/30/10	
Total HxCDF	EPA-5 1613B	363256	0.0000054	0.00005	ND	0.97	MO	12/30/10	
Total PeCDD	EPA-5 1613B	363256	0.000011	0.00005	ND	0.97	MO	12/30/10	
Total PeCDF	EPA-5 1613B	363256	0.0000058	0.00005	ND	0.97	MO	12/30/10	
Total TCDD	EPA-5 1613B	363256	0.000003	0.00001	ND	0.97	MO	12/30/10	
Total TCDF	EPA-5 1613B	363256	0.0000021	0.00001	ND	0.97	MO	12/30/10	
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD (2	3-140%)				83 %				
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF (2	8-143%)				70 %				
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF (2	6-138%)				74 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDD (32-	141%)				61 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDF (26-	152%)				59 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDD (28-	130%)				72 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDF (26-	123%)				62 %				
Surrogate: 13C-1,2,3,7,8,9-HxCDF (29-			60 %						
Surrogate: 13C-1,2,3,7,8-PeCDD (25-18			66 %						
Surrogate: 13C-1,2,3,7,8-PeCDF (24-18	35%)				68 %				
Surrogate: 13C-2,3,4,6,7,8-HxCDF (28-					61 %				
Surrogate: 13C-2,3,4,7,8-PeCDF (21-17	78%)				62 %				
Surrogate: 13C-2,3,7,8-TCDD (25-164%)					61 %				
Surrogate: 13C-2,3,7,8-TCDF (24-169%)	<i>(</i>)				57 %				
Surrogate: 13C-OCDD (17-157%)					66 %				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011

Report Number: ITL2272

Sampled: 12/22/10-12/23/10

Received: 12/22/10

EPA-5 1613Bx

MDL Reporting Sample Dilution Date Data

Analyte Method Batch Limit Limit Result Factor Analyst Analyzed Qualifiers

Sample ID: ITL2272-03 (Outfall 011 (Composite) - Water) - cont. Sampled: 12/23/10

Reporting Units: ug/L

Surrogate: 37Cl4-2,3,7,8-TCDD (35-197%) 94 %

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011 Sampled: 12/22/10-12/23/10

Report Number: ITL2272 Received: 12/22/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

SHORT HOLD TIME DETAIL REPORT

Sample ID: Outfall 011 (Grab) (ITL2272-01)	Hold Time (in days) - Water	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
SM2540F	2	12/22/2010 10:45	12/22/2010 18:05	12/23/2010 11:30	12/23/2010 11:30
Sample ID: Outfall 011 (Composite) (ITL227	72-03) - Water				
EPA 180.1	2	12/23/2010 10:54	12/22/2010 18:05	12/24/2010 14:00	12/24/2010 14:00
EPA 300.0	2	12/23/2010 10:54	12/22/2010 18:05	12/23/2010 20:00	12/23/2010 20:46
Filtration	1	12/23/2010 10:54	12/22/2010 18:05	12/23/2010 20:42	12/23/2010 20:43
SM5210B	2	12/23/2010 10:54	12/22/2010 18:05	12/25/2010 09:00	12/30/2010 08:00
SM5540-C	2	12/23/2010 10:54	12/22/2010 18:05	12/23/2010 20:00	12/23/2010 21:12

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011

Report Number: ITL2272

Sampled: 12/22/10-12/23/10

Received: 12/22/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L2971 Extracted: 12/27/10										
Blank Analyzed: 12/27/2010 (10L2971-	*									
Benzene	ND	0.50	ug/l							
Carbon tetrachloride	ND	0.50	ug/l							
Chloroform	ND	0.50	ug/l							
1,1-Dichloroethane	ND	0.50	ug/l							
1,2-Dichloroethane	ND	0.50	ug/l							
1,1-Dichloroethene	ND	0.50	ug/l							
Ethylbenzene	ND	0.50	ug/l							
Tetrachloroethene	ND	0.50	ug/l							
Toluene	ND	0.50	ug/l							
1,1,1-Trichloroethane	ND	0.50	ug/l							
1,1,2-Trichloroethane	ND	0.50	ug/l							
Trichloroethene	ND	0.50	ug/l							
Trichlorofluoromethane	ND	0.50	ug/l							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	ug/l							
Vinyl chloride	ND	0.50	ug/l							
Xylenes, Total	ND	1.5	ug/l							
Surrogate: 4-Bromofluorobenzene	24.7		ug/l	25.0		99	80-120			
Surrogate: Dibromofluoromethane	26.0		ug/l	25.0		104	80-120			
Surrogate: Toluene-d8	25.4		ug/l	25.0		102	80-120			
LCS Analyzed: 12/27/2010 (10L2971-B)	S1)									
Benzene	22.9	0.50	ug/l	25.0		92	70-120			
Carbon tetrachloride	28.0	0.50	ug/l	25.0		112	65-140			
Chloroform	25.4	0.50	ug/l	25.0		101	70-130			
1,1-Dichloroethane	26.0	0.50	ug/l	25.0		104	70-125			
1,2-Dichloroethane	27.4	0.50	ug/l	25.0		110	60-140			
1,1-Dichloroethene	23.3	0.50	ug/l	25.0		93	70-125			
Ethylbenzene	25.2	0.50	ug/l	25.0		101	75-125			
Tetrachloroethene	24.7	0.50	ug/l	25.0		99	70-125			
Toluene	23.8	0.50	ug/l	25.0		95	70-120			
1,1,1-Trichloroethane	29.3	0.50	ug/l	25.0		117	65-135			
1,1,2-Trichloroethane	25.0	0.50	ug/l	25.0		100	70-125			
Trichloroethene	25.0	0.50	ug/l	25.0		100	70-125			
Trichlorofluoromethane	28.3	0.50	ug/l	25.0		113	65-145			
Vinyl chloride	20.2	0.50	ug/l	25.0		81	55-135			
Xylenes, Total	74.8	1.5	ug/l	75.0		100	70-125			

TestAmerica Irvine

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011

Report Number: ITL2272

Sampled: 12/22/10-12/23/10

Received: 12/22/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

	D 1/	Reporting	T I •4	Spike	Source	A/ DEC	%REC	DDD	RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L2971 Extracted: 12/27/10										
LCS Analyzed: 12/27/2010 (10L2971-BS	1)									
Surrogate: 4-Bromofluorobenzene	25.1		ug/l	25.0		100	80-120			
Surrogate: Dibromofluoromethane	26.0		ug/l	25.0		104	80-120			
Surrogate: Toluene-d8	25.8		ug/l	25.0		103	80-120			
Matrix Spike Analyzed: 12/27/2010 (10L	.2971-MS1)				Source: I'	TL2478-0	2			
Benzene	131	0.50	ug/l	25.0	99.0	128	65-125			MI
Carbon tetrachloride	30.1	0.50	ug/l	25.0	ND	120	65-140			
Chloroform	51.8	0.50	ug/l	25.0	19.8	128	65-135			
1,1-Dichloroethane	31.2	0.50	ug/l	25.0	2.20	116	65-130			
1,2-Dichloroethane	31.0	0.50	ug/l	25.0	1.04	120	60-140			
1,1-Dichloroethene	25.5	0.50	ug/l	25.0	ND	102	60-130			
Ethylbenzene	27.2	0.50	ug/l	25.0	ND	109	65-130			
Tetrachloroethene	26.8	0.50	ug/l	25.0	ND	107	65-130			
Toluene	25.9	0.50	ug/l	25.0	ND	104	70-125			
1,1,1-Trichloroethane	33.4	0.50	ug/l	25.0	ND	134	65-140			
1,1,2-Trichloroethane	27.4	0.50	ug/l	25.0	ND	110	65-130			
Trichloroethene	26.7	0.50	ug/l	25.0	ND	107	65-125			
Trichlorofluoromethane	32.0	0.50	ug/l	25.0	ND	128	60-145			
Vinyl chloride	25.3	0.50	ug/l	25.0	ND	101	45-140			
Xylenes, Total	80.8	1.5	ug/l	75.0	ND	108	60-130			
Surrogate: 4-Bromofluorobenzene	25.0		ug/l	25.0		100	80-120			
Surrogate: Dibromofluoromethane	26.8		ug/l	25.0		107	80-120			
Surrogate: Toluene-d8	25.6		ug/l	25.0		102	80-120			
Matrix Spike Dup Analyzed: 12/27/2010	(10L2971-M	SD1)			Source: I'	TL2478-0	2			
Benzene	113	0.50	ug/l	25.0	99.0	57	65-125	15	20	M2
Carbon tetrachloride	29.0	0.50	ug/l	25.0	ND	116	65-140	4	25	
Chloroform	46.0	0.50	ug/l	25.0	19.8	105	65-135	12	20	
1,1-Dichloroethane	29.7	0.50	ug/l	25.0	2.20	110	65-130	5	20	
1,2-Dichloroethane	30.8	0.50	ug/l	25.0	1.04	119	60-140	0.6	20	
1,1-Dichloroethene	24.6	0.50	ug/l	25.0	ND	99	60-130	4	20	
Ethylbenzene	26.0	0.50	ug/l	25.0	ND	104	65-130	5	20	
Tetrachloroethene	25.4	0.50	ug/l	25.0	ND	102	65-130	5	20	
Toluene	25.2	0.50	ug/l	25.0	ND	101	70-125	3	20	
1,1,1-Trichloroethane	32.0	0.50	ug/l	25.0	ND	128	65-140	4	20	
1,1,2-Trichloroethane	28.7	0.50	ug/l	25.0	ND	115	65-130	4	25	
Trichloroethene	26.0	0.50	ug/l	25.0	ND	104	65-125	3	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011

Report Number: ITL2272

Sampled: 12/22/10-12/23/10

Received: 12/22/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L2971 Extracted: 12/27/10										
Matrix Spike Dup Analyzed: 12/27/20	10 (10L2971-M	(SD1)			Source: I	TL2478-02	2			
Trichlorofluoromethane	30.7	0.50	ug/l	25.0	ND	123	60-145	4	25	
Vinyl chloride	24.0	0.50	ug/l	25.0	ND	96	45-140	5	30	
Xylenes, Total	77.6	1.5	ug/l	75.0	ND	103	60-130	4	20	
Surrogate: 4-Bromofluorobenzene	25.4		ug/l	25.0		102	80-120			
Surrogate: Dibromofluoromethane	26.5		ug/l	25.0		106	80-120			
Surrogate: Toluene-d8	25.4		ug/l	25.0		102	80-120			

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011

Report Number: ITL2272

Sampled: 12/22/10-12/23/10

Received: 12/22/10

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10L2936 Extracted: 12/26/10										
Blank Analyzed: 12/28/2010 (10L2936-	-BLK1)									
Bis(2-ethylhexyl)phthalate	ND	5.00	ug/l							
2,4-Dinitrotoluene	ND	5.00	ug/l							
N-Nitrosodimethylamine	ND	5.00	ug/l							
Pentachlorophenol	ND	5.00	ug/l							
2,4,6-Trichlorophenol	ND	6.00	ug/l							
Surrogate: 2,4,6-Tribromophenol	18.7		ug/l	20.0		94	40-120			
Surrogate: 2-Fluorobiphenyl	7.78		ug/l	10.0		78	50-120			
Surrogate: 2-Fluorophenol	13.3		ug/l	20.0		66	30-120			
Surrogate: Nitrobenzene-d5	7.38		ug/l	10.0		74	45-120			
Surrogate: Phenol-d6	14.0		ug/l	20.0		70	35-120			
Surrogate: Terphenyl-d14	8.98		ug/l	10.0		90	50-125			
LCS Analyzed: 12/28/2010 (10L2936-E	BS1)									MNR1
Bis(2-ethylhexyl)phthalate	9.12	5.00	ug/l	10.0		91	65-130			
2,4-Dinitrotoluene	8.50	5.00	ug/l	10.0		85	65-120			
N-Nitrosodimethylamine	7.46	5.00	ug/l	10.0		75	45-120			
Pentachlorophenol	6.36	5.00	ug/l	10.0		64	24-121			
2,4,6-Trichlorophenol	9.22	6.00	ug/l	10.0		92	55-120			
Surrogate: 2,4,6-Tribromophenol	19.0		ug/l	20.0		95	40-120			
Surrogate: 2-Fluorobiphenyl	8.12		ug/l	10.0		81	50-120			
Surrogate: 2-Fluorophenol	14.2		ug/l	20.0		71	30-120			
Surrogate: Nitrobenzene-d5	7.98		ug/l	10.0		80	45-120			
Surrogate: Phenol-d6	16.0		ug/l	20.0		80	35-120			
Surrogate: Terphenyl-d14	9.02		ug/l	10.0		90	50-125			
LCS Dup Analyzed: 12/28/2010 (10L29	936-BSD1)									
Bis(2-ethylhexyl)phthalate	8.50	5.00	ug/l	10.0		85	65-130	7	20	
2,4-Dinitrotoluene	8.24	5.00	ug/l	10.0		82	65-120	3	20	
N-Nitrosodimethylamine	6.64	5.00	ug/l	10.0		66	45-120	12	20	
Pentachlorophenol	6.04	5.00	ug/l	10.0		60	24-121	5	25	
2,4,6-Trichlorophenol	8.16	6.00	ug/l	10.0		82	55-120	12	30	
Surrogate: 2,4,6-Tribromophenol	18.4		ug/l	20.0		92	40-120			
Surrogate: 2-Fluorobiphenyl	7.50		ug/l	10.0		75	50-120			
Surrogate: 2-Fluorophenol	12.8		ug/l	20.0		64	30-120			
Surrogate: Nitrobenzene-d5	7.18		ug/l	10.0		72	45-120			
Surrogate: Phenol-d6	14.2		ug/l	20.0		71	35-120			
Surrogate: Terphenyl-d14	9.16		ug/l	10.0		92	50-125			
TD 44 • T •										

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011

Report Number: ITL2272

Sampled: 12/22/10-12/23/10

Received: 12/22/10

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10L3051 Extracted: 12/28/10										
Blank Analyzed: 12/28/2010 (10L3051-B	LK1)									
alpha-BHC	ND	0.010	ug/l							
Surrogate: Decachlorobiphenyl	0.430		ug/l	0.500		86	45-120			
Surrogate: Tetrachloro-m-xylene	0.379		ug/l	0.500		76	35-115			
LCS Analyzed: 12/28/2010 (10L3051-BS	1)									MNR1
alpha-BHC	0.385	0.010	ug/l	0.500		77	45-115			
Surrogate: Decachlorobiphenyl	0.419		ug/l	0.500		84	45-120			
Surrogate: Tetrachloro-m-xylene	0.360		ug/l	0.500		72	35-115			
LCS Dup Analyzed: 12/28/2010 (10L305	1-BSD1)									
alpha-BHC	0.395	0.010	ug/l	0.500		79	45-115	2	30	
Surrogate: Decachlorobiphenyl	0.425		ug/l	0.500		85	45-120			
Surrogate: Tetrachloro-m-xylene	0.363		ug/l	0.500		73	35-115			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011

Report Number: ITL2272

Sampled: 12/22/10-12/23/10

Received: 12/22/10

METHOD BLANK/QC DATA

HEXANE EXTRACTABLE MATERIAL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10L2996 Extracted: 12/27/10										
Blank Analyzed: 12/28/2010 (10L2996-B	LK1)									
Hexane Extractable Material (Oil & Grease)	ND	5.0	mg/l							
LCS Analyzed: 12/28/2010 (10L2996-BS	1)									MNR1
Hexane Extractable Material (Oil & Grease)	18.2	5.0	mg/l	20.0		91	78-114			
LCS Dup Analyzed: 12/28/2010 (10L299	6-BSD1)									
Hexane Extractable Material (Oil & Grease)	18.0	5.0	mg/l	20.0		90	78-114	1	11	

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011

Report Number: ITL2272

Sampled: 12/22/10-12/23/10

Received: 12/22/10

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10L3064 Extracted: 12/28/10										
Blank Analyzed: 12/29/2010 (10L3064-B	LK1)									
Cadmium	ND	1.0	ug/l							
Copper	ND	2.00	ug/l							
Lead	ND	1.00	ug/l							
Manganese	ND	1.0	ug/l							
Selenium	ND	2.0	ug/l							
LCS Analyzed: 12/29/2010 (10L3064-BS)	1)									
Cadmium	83.4	1.0	ug/l	80.0		104	85-115			
Copper	83.9	2.00	ug/l	80.0		105	85-115			
Lead	83.4	1.00	ug/l	80.0		104	85-115			
Manganese	85.8	1.0	ug/l	80.0		107	85-115			
Selenium	80.1	2.0	ug/l	80.0		100	85-115			
Matrix Spike Analyzed: 12/29/2010 (10L	3064-MS1)				Source: I'	TL2444-0	1			
Cadmium	78.9	1.0	ug/l	80.0	ND	99	70-130			
Copper	69.9	2.00	ug/l	80.0	0.843	86	70-130			
Lead	73.2	1.00	ug/l	80.0	ND	91	70-130			
Manganese	74.9	1.0	ug/l	80.0	3.17	90	70-130			
Selenium	79.1	2.0	ug/l	80.0	1.25	97	70-130			
Matrix Spike Analyzed: 12/29/2010 (10L	3064-MS2)				Source: I'	TL2444-0	2			
Cadmium	81.7	1.0	ug/l	80.0	ND	102	70-130			
Copper	73.4	2.00	ug/l	80.0	0.584	91	70-130			
Lead	77.7	1.00	ug/l	80.0	ND	97	70-130			
Manganese	1820	1.0	ug/l	80.0	1750	94	70-130			MHA
Selenium	72.3	2.0	ug/l	80.0	ND	90	70-130			
Matrix Spike Dup Analyzed: 12/29/2010	(10L3064-M	SD1)			Source: I'	TL2444-0	1			
Cadmium	80.6	1.0	ug/l	80.0	ND	101	70-130	2	20	
Copper	69.9	2.00	ug/l	80.0	0.843	86	70-130	0.05	20	
Lead	75.3	1.00	ug/l	80.0	ND	94	70-130	3	20	
Manganese	75.1	1.0	ug/l	80.0	3.17	90	70-130	0.3	20	
Selenium	80.8	2.0	ug/l	80.0	1.25	99	70-130	2	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011

Report Number: ITL2272

Sampled: 12/22/10-12/23/10

Received: 12/22/10

METHOD BLANK/QC DATA

METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L3104 Extracted: 12/28/10										
Blank Analyzed: 12/28/2010 (10L3104-B	,									
Mercury	ND	0.20	ug/l							
LCS Analyzed: 12/28/2010 (10L3104-BS	1)									
Mercury	8.00	0.20	ug/l	8.00		100	85-115			
Matrix Spike Analyzed: 12/28/2010 (10L	.3104-MS1)				Source: I	TL2014-0	3			
Mercury	7.68	0.20	ug/l	8.00	ND	96	70-130			
Matrix Spike Dup Analyzed: 12/28/2010	(10L3104-M	ISD1)			Source: I	TL2014-0	3			
Mercury	7.81	0.20	ug/l	8.00	ND	98	70-130	2	20	
Batch: 10L3131 Extracted: 12/28/10										
Blank Analyzed: 12/28/2010 (10L3131-B	SLK1)									
Iron	ND	0.040	mg/l							
Zinc	ND	20.0	ug/l							
LCS Analyzed: 12/28/2010 (10L3131-BS	1)									
Iron	0.512	0.040	mg/l	0.500		102	85-115			
Zinc	497	20.0	ug/l	500		99	85-115			
Matrix Spike Analyzed: 12/28/2010 (10L	.3131-MS1)				Source: I	TL2185-0	1			
Iron	0.501	0.040	mg/l	0.500	ND	100	70-130			
Zinc	498	20.0	ug/l	500	ND	100	70-130			
Matrix Spike Analyzed: 12/28/2010 (10L	.3131-MS2)				Source: I	TL2185-0	2			
Iron	0.537	0.040	mg/l	0.500	ND	107	70-130			
Zinc	535	20.0	ug/l	500	ND	107	70-130			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011

Report Number: ITL2272

Sampled: 12/22/10-12/23/10

Received: 12/22/10

METHOD BLANK/QC DATA

METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L3131 Extracted: 12/28/10										
Matrix Spike Dup Analyzed: 12/28/20	010 (10L3131-M	ISD1)			Source: I	TL2185-0	1			
Iron	0.513	0.040	mg/l	0.500	ND	103	70-130	2	20	
Zinc	509	20.0	ug/l	500	ND	102	70-130	2	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly

518 Michilinda Avenue, Suite 20

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011

Report Number: ITL2272

Sampled: 12/22/10-12/23/10

Received: 12/22/10

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L3103 Extracted: 12/28/10										
Blank Analyzed: 12/28/2010 (10L3103-1	,									
Mercury	ND	0.20	ug/l							
LCS Analyzed: 12/28/2010 (10L3103-BS	S1)									
Mercury	8.23	0.20	ug/l	8.00		103	85-115			
Matrix Spike Analyzed: 12/28/2010 (10)	L3103-MS1)				Source: I	TL2014-0	3			
Mercury	8.27	0.20	ug/l	8.00	ND	103	70-130			
Matrix Spike Dup Analyzed: 12/28/2010	0 (10L3103-M	SD1)			Source: I	TL2014-0	3			
Mercury	8.19	0.20	ug/l	8.00	ND	102	70-130	0.9	20	
Batch: 10L3118 Extracted: 12/28/10										
Blank Analyzed: 12/28/2010 (10L3118-I	BLK1)									
Iron	ND	0.040	mg/l							
Zinc	ND	20.0	ug/l							
LCS Analyzed: 12/28/2010 (10L3118-BS	S1)									
Iron	0.519	0.040	mg/l	0.500		104	85-115			
Zinc	498	20.0	ug/l	500		100	85-115			
Matrix Spike Analyzed: 12/28/2010 (10)	L3118-MS1)				Source: I	TL2272-0	3			
Iron	0.890	0.040	mg/l	0.500	0.375	103	70-130			
Zinc	510	20.0	ug/l	500	ND	102	70-130			
Matrix Spike Dup Analyzed: 12/28/2010	0 (10L3118-M	SD1)			Source: I	TL2272-0	3			
Iron	0.887	0.040	mg/l	0.500	0.375	102	70-130	0.3	20	
Zinc	511	20.0	ug/l	500	ND	102	70-130	0.1	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011

Report Number: ITL2272

Sampled: 12/22/10-12/23/10

Received: 12/22/10

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L3120 Extracted: 12/28/10										
Blank Analyzed: 12/28/2010 (10L3120-B	LK1)									
Cadmium	ND	1.0	ug/l							
Copper	ND	2.00	ug/l							
Lead	ND	1.00	ug/l							
Manganese	ND	1.0	ug/l							
Selenium	ND	2.0	ug/l							
LCS Analyzed: 12/28/2010 (10L3120-BS	1)									
Cadmium	82.5	1.0	ug/l	80.0		103	85-115			
Copper	81.0	2.00	ug/l	80.0		101	85-115			
Lead	84.2	1.00	ug/l	80.0		105	85-115			
Manganese	80.7	1.0	ug/l	80.0		101	85-115			
Selenium	80.5	2.0	ug/l	80.0		101	85-115			
Matrix Spike Analyzed: 12/28/2010 (10L	3120-MS1)				Source: I'	ΓL2486-02	2			
Cadmium	80.1	1.0	ug/l	80.0	ND	100	70-130			
Copper	79.5	2.00	ug/l	80.0	3.50	95	70-130			
Lead	81.7	1.00	ug/l	80.0	0.379	102	70-130			
Manganese	82.3	1.0	ug/l	80.0	1.69	101	70-130			
Selenium	81.3	2.0	ug/l	80.0	ND	102	70-130			
Matrix Spike Dup Analyzed: 12/28/2010	(10L3120-MS	SD1)			Source: I'	TL2486-02	2			
Cadmium	81.2	1.0	ug/l	80.0	ND	102	70-130	1	20	
Copper	79.6	2.00	ug/l	80.0	3.50	95	70-130	0.2	20	
Lead	82.9	1.00	ug/l	80.0	0.379	103	70-130	1	20	
Manganese	83.2	1.0	ug/l	80.0	1.69	102	70-130	1	20	
Selenium	81.0	2.0	ug/l	80.0	ND	101	70-130	0.4	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

%REC

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011

Report Number: ITL2272

Reporting

Sampled: 12/22/10-12/23/10

RPD

Data

Received: 12/22/10

METHOD BLANK/QC DATA

INORGANICS

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L2765 Extracted: 12/23/10										
Blank Analyzed: 12/23/2010 (10L2765	-BLK1)									
Specific Conductance	ND	1.0	umhos/cm @ 25C							
LCS Analyzed: 12/23/2010 (10L2765-I	BS1)									
Specific Conductance	1380	1.0	umhos/cm @ 25C	1410		98	90-110			
Duplicate Analyzed: 12/23/2010 (10L2	765-DUP1)				Source: I	TL2336-0	1			
Specific Conductance	206	1.0	umhos/cm @ 25C		207			0.5	5	
Batch: 10L2812 Extracted: 12/23/10										
Blank Analyzed: 12/23/2010 (10L2812	-BLK1)									
Chloride	ND	0.50	mg/l							
Nitrate-N	ND	0.11	mg/l							
Nitrite-N	ND	0.15	mg/l							
Nitrate/Nitrite-N	ND	0.26	mg/l							
Sulfate	ND	0.50	mg/l							
LCS Analyzed: 12/23/2010 (10L2812-I	BS1)									
Chloride	4.72	0.50	mg/l	5.00		94	90-110			
Nitrate-N	1.13	0.11	mg/l	1.13		100	90-110			
Nitrite-N	1.46	0.15	mg/l	1.52		96	90-110			
Sulfate	9.90	0.50	mg/l	10.0		99	90-110			
Matrix Spike Analyzed: 12/23/2010 (1	0L2812-MS1)				Source: I	TL2365-02	2			
Chloride	9.65	0.50	mg/l	5.00	4.68	99	80-120			
Nitrate-N	1.12	0.11	mg/l	1.13	0.130	87	80-120			
Nitrite-N	1.98	0.15	mg/l	1.52	0.658	87	80-120			
Sulfate	12.7	0.50	mg/l	10.0	3.35	94	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011

Report Number: ITL2272

Sampled: 12/22/10-12/23/10

Received: 12/22/10

METHOD BLANK/QC DATA

INORGANICS

	B 1	Reporting	T T •.	Spike	Source	A/BEG	%REC	DDD	RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L2812 Extracted: 12/23/10										
Matrix Spike Dup Analyzed: 12/23/2010	(10L2812-M	ISD1)			Source: I'	ΓL2365-0	2			
Chloride	9.60	0.50	mg/l	5.00	4.68	98	80-120	0.6	20	
Nitrate-N	1.12	0.11	mg/l	1.13	0.130	88	80-120	0.4	20	
Nitrite-N	1.98	0.15	mg/l	1.52	0.658	87	80-120	0.3	20	
Sulfate	13.0	0.50	mg/l	10.0	3.35	97	80-120	3	20	
Batch: 10L2893 Extracted: 12/23/10										
Blank Analyzed: 12/23/2010 (10L2893-E	BLK1) ND	0.10	mg/l							
,		0.10	mg/i							
LCS Analyzed: 12/23/2010 (10L2893-BS										
Surfactants (MBAS)	0.254	0.10	mg/l	0.250		102	90-110			
Matrix Spike Analyzed: 12/23/2010 (10I	L2893-MS1)				Source: I'	ГL2336-0	1			
Surfactants (MBAS)	0.271	0.10	mg/l	0.250	ND	109	50-125			
Matrix Spike Dup Analyzed: 12/23/2010	(10L2893-M	ISD1)			Source: I'	ΓL2336-0	1			
Surfactants (MBAS)	0.278	0.10	mg/l	0.250	ND	111	50-125	2	20	
Batch: 10L2924 Extracted: 12/24/10										
Blank Analyzed: 12/24/2010 (10L2924-E	BLK1)									
Turbidity	ND	1.0	NTU							
Duplicate Analyzed: 12/24/2010 (10L292	24-DUP1)				Source: I'	ΓL2272-0	3			
Turbidity	170	5.0	NTU		192			13	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011

Report Number: ITL2272

Sampled: 12/22/10-12/23/10

Received: 12/22/10

METHOD BLANK/QC DATA

INORGANICS

	D 1/	Reporting	T T •4	Spike	Source	A/ DEC	%REC	DDD	RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L2931 Extracted: 12/25/10										
Blank Analyzed: 12/30/2010 (10L2931-Bl	[I Z1)									
Biochemical Oxygen Demand	ND	2.0	mg/l							
T CC A	15		C							
LCS Analyzed: 12/30/2010 (10L2931-BS) Biochemical Oxygen Demand	196	100	m a/l	198		99	85-115			
Biochemical Oxygen Demand	190	100	mg/l	190		99	05-115			
LCS Dup Analyzed: 12/30/2010 (10L293)	I-BSD1)									
Biochemical Oxygen Demand	186	100	mg/l	198		94	85-115	5	20	
Batch: 10L3015 Extracted: 12/28/10										
Blank Analyzed: 12/28/2010 (10L3015-Bl	LK1)									
Perchlorate	ND	4.0	ug/l							
LCS Analyzed: 12/28/2010 (10L3015-BS)	1)									
Perchlorate	22.7	4.0	ug/l	25.0		91	85-115			
Matrix Spike Analyzed: 12/28/2010 (10L.	3015-MS1)				Source: I'	TL2014-0	3			
Perchlorate	23.1	4.0	ug/l	25.0	ND	92	80-120			
Matrix Spike Dup Analyzed: 12/28/2010	(10L3015-M	(SD1)			Source: I'	TL2014-0	3			
Perchlorate	23.7	4.0	ug/l	25.0	ND	95	80-120	3	20	
Batch: 10L3089 Extracted: 12/28/10										
Blank Analyzed: 12/28/2010 (10L3089-Bl	LK1)									
Total Dissolved Solids	ND	10	mg/l							

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011

Report Number: ITL2272

Sampled: 12/22/10-12/23/10

Received: 12/22/10

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Oualifiers
Batch: 10L3089 Extracted: 12/28/10	Result	Ziiiit	Cints	Level	Result	/UKLE	Limits	KI D	Limit	Quanners
LCS Analyzed: 12/28/2010 (10L3089-BS	1)									
Total Dissolved Solids	992	10	mg/l	1000		99	90-110			
Duplicate Analyzed: 12/28/2010 (10L308 Total Dissolved Solids	9-DUP1) 1650	10	mg/l		Source: I	TL2438-0	1	2	10	
Batch: 10L3114 Extracted: 12/28/10										
Blank Analyzed: 12/28/2010 (10L3114-B	LK1)									
Total Cyanide	ND	5.0	ug/l							
LCS Analyzed: 12/28/2010 (10L3114-BS Total Cyanide	1) 190	5.0	ug/l	200		95	90-110			
Matrix Spike Analyzed: 12/28/2010 (10L	3114-MS1)				Source: I	TL2487-0	2			
Total Cyanide	188	5.0	ug/l	200	ND	94	70-115			
Matrix Spike Dup Analyzed: 12/28/2010					Source: I					
Total Cyanide	188	5.0	ug/l	200	ND	94	70-115	0.3	15	
Batch: 10L3146 Extracted: 12/28/10										
Blank Analyzed: 12/28/2010 (10L3146-B Ammonia-N (Distilled)	LK1) ND	0.500	mg/l							
LCS Analyzed: 12/28/2010 (10L3146-BS Ammonia-N (Distilled)	9.80	0.500	mg/l	10.0		98	80-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011

Report Number: ITL2272

Sampled: 12/22/10-12/23/10

Received: 12/22/10

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10L3146 Extracted: 12/28/10										
Matrix Spike Analyzed: 12/28/2010 (10L	3146-MS1)				Source: I	TL1994-0	1			
Ammonia-N (Distilled)	10.6	0.500	mg/l	10.0	0.840	98	70-120			
Matrix Spike Dup Analyzed: 12/28/2010	(10L3146-MS	D 1)			Source: I	TL1994-0	1			
Ammonia-N (Distilled)	10.6	0.500	mg/l	10.0	0.840	98	70-120	0	15	
Batch: 10L3164 Extracted: 12/28/10										
Blank Analyzed: 12/28/2010 (10L3164-B	LK1)									
Total Suspended Solids	ND	10	mg/l							
LCS Analyzed: 12/28/2010 (10L3164-BS)	l)									
Total Suspended Solids	998	10	mg/l	1000		100	85-115			
Duplicate Analyzed: 12/28/2010 (10L316	4-DUP1)				Source: I	TL2242-0	1			
Total Suspended Solids	63.0	10	mg/l		64.0			2	10	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011

Report Number: ITL2272

Sampled: 12/22/10-12/23/10

Received: 12/22/10

METHOD BLANK/QC DATA

EPA-5 1613Bx

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 363256 Extracted: 12/29/10										-
Blank Analyzed: 12/30/2010 (G0L29)	0000256R)				Source:					
1,2,3,4,6,7,8-HpCDD	1.7e-005	0.00005	ug/L		Source.		_			J
1,2,3,4,6,7,8-HpCDF	4.2e-006	0.00005	ug/L				_			J, Q
1,2,3,4,7,8,9-HpCDF	ND	0.00005	ug/L				_			-, £
1,2,3,4,7,8-HxCDD	ND	0.00005	ug/L				_			
1,2,3,4,7,8-HxCDF	9.5e-007	0.00005	ug/L				_			J, Q
1,2,3,6,7,8-HxCDD	ND	0.00005	ug/L				_			, 2
1,2,3,6,7,8-HxCDF	ND	0.00005	ug/L				_			
1,2,3,7,8,9-HxCDD	1.3e-006	0.00005	ug/L				_			J, Q
1,2,3,7,8,9-HxCDF	ND	0.00005	ug/L				_			_
1,2,3,7,8-PeCDD	ND	0.00005	ug/L				-			
1,2,3,7,8-PeCDF	ND	0.00005	ug/L				-			
2,3,4,6,7,8-HxCDF	ND	0.00005	ug/L				-			
2,3,4,7,8-PeCDF	ND	0.00005	ug/L				-			
2,3,7,8-TCDD	ND	0.00001	ug/L				-			
2,3,7,8-TCDF	ND	0.00001	ug/L				-			
OCDD	0.00044	0.0001	ug/L				-			
OCDF	2.1e-005	0.0001	ug/L				-			J, Q
Total HpCDD	3.6e-005	0.00005	ug/L				-			J
Total HpCDF	1.4e-005	0.00005	ug/L				-			J, Q
Total HxCDD	1.3e-006	0.00005	ug/L				-			J, Q
Total HxCDF	2e-006	0.00005	ug/L				-			J, Q
Total PeCDD	ND	0.00005	ug/L				-			
Total PeCDF	ND	0.00005	ug/L				-			
Total TCDD	ND	0.00001	ug/L				-			
Total TCDF	ND	0.00001	ug/L				-			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.0019		ug/L	0.002		96	23-140			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.0016		ug/L	0.002		80	28-143			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.0017		ug/L	0.002		87	26-138			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.0015		ug/L	0.002		74	32-141			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.0014		ug/L	0.002		70	26-152			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.0018		ug/L	0.002		89	28-130			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.0014		ug/L	0.002		71	26-123			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.0014		ug/L	0.002		68	29-147			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.0016		ug/L	0.002		79	25-181			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.0016		ug/L	0.002		80	24-185			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.0015		ug/L	0.002		73	28-136			
T										

TestAmerica Irvine

Debby Wilson Project Manager

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011

Report Number: ITL2272

Sampled: 12/22/10-12/23/10

Received: 12/22/10

METHOD BLANK/QC DATA

EPA-5 1613Bx

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
·	resure	Elimit	Cints	Level	resure	/UILE	Limits	M D	Limit	Quantiers
Batch: 363256 Extracted: 12/29/10										
Blank Analyzed: 12/30/2010 (G0L29000	0256B)				Source:					
Surrogate: 13C-2,3,4,7,8-PeCDF	0.0015		ug/L	0.002		75	21-178			
Surrogate: 13C-2,3,7,8-TCDD	0.0015		ug/L	0.002		73	25-164			
Surrogate: 13C-2,3,7,8-TCDF	0.0013		ug/L	0.002		64	24-169			
Surrogate: 13C-OCDD	0.0031		ug/L	0.004		78	17-157			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.00077		ug/L	0.0008		96	35-197			
LCS Analyzed: 12/30/2010 (G0L290000	256C)				Source:					
1,2,3,4,6,7,8-HpCDD	0.00116	0.00005	ug/L	0.001		116	70-140			
1,2,3,4,6,7,8-HpCDF	0.00125	0.00005	ug/L	0.001		125	82-122			a
1,2,3,4,7,8,9-HpCDF	0.0012	0.00005	ug/L	0.001		120	78-138			
1,2,3,4,7,8-HxCDD	0.00126	0.00005	ug/L	0.001		126	70-164			
1,2,3,4,7,8-HxCDF	0.00113	0.00005	ug/L	0.001		113	72-134			
1,2,3,6,7,8-HxCDD	0.00108	0.00005	ug/L	0.001		108	76-134			
1,2,3,6,7,8-HxCDF	0.00118	0.00005	ug/L	0.001		118	84-130			
1,2,3,7,8,9-HxCDD	0.0012	0.00005	ug/L	0.001		120	64-162			
1,2,3,7,8,9-HxCDF	0.00121	0.00005	ug/L	0.001		121	78-130			
1,2,3,7,8-PeCDD	0.00118	0.00005	ug/L	0.001		118	70-142			
1,2,3,7,8-PeCDF	0.00113	0.00005	ug/L	0.001		113	80-134			
2,3,4,6,7,8-HxCDF	0.00117	0.00005	ug/L	0.001		117	70-156			
2,3,4,7,8-PeCDF	0.00112	0.00005	ug/L	0.001		112	68-160			
2,3,7,8-TCDD	0.000227	0.00001	ug/L	0.0002		114	67-158			
2,3,7,8-TCDF	0.000218	0.00001	ug/L	0.0002		109	75-158			
OCDD	0.00297	0.0001	ug/L	0.002		149	78-144			a
OCDF	0.00208	0.0001	ug/L	0.002		104	63-170			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.002		ug/L	0.002		100	26-166			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.00166		ug/L	0.002		83	21-158			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.00183		ug/L	0.002		92	20-186			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.00144		ug/L	0.002		72	21-193			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.00134		ug/L	0.002		67	19-202			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.00168		ug/L	0.002		84	25-163			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.00135		ug/L	0.002		67	21-159			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.00139		ug/L	0.002		70	17-205			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.00165		ug/L	0.002		82	21-227			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.00162		ug/L	0.002		81	21-192			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.00139		ug/L	0.002		70	22-176			
Surrogate: 13C-2,3,4,7,8-PeCDF	0.00154		ug/L	0.002		77	13-328			

TestAmerica Irvine

Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011

Report Number: ITL2272

Sampled: 12/22/10-12/23/10

Received: 12/22/10

METHOD BLANK/QC DATA

EPA-5 1613Bx

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 363256 Extracted: 12/29/10										
LCS Analyzed: 12/30/2010 (G0L29000	00256C)				Source:					
Surrogate: 13C-2,3,7,8-TCDD	0.00144		ug/L	0.002		72	20-175			
Surrogate: 13C-2,3,7,8-TCDF	0.00125		ug/L	0.002		63	22-152			
Surrogate: 13C-OCDD	0.00348		ug/L	0.004		87	13-199			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.000761		ug/L	0.0008		95	31-191			

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011 Sampled: 12/22/10-12/23/10

Report Number: ITL2272 Received: 12/22/10

Arcadia, CA 91007 Report Number: ITL22
Attention: Bronwyn Kelly

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
ITL2272-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	0.38	4.7	15
ITL2272-01	624-Boeing 001/002Q (Fr113+X	+Fr1,1-Dichloroethene	ug/l	0	0.50	6
ITL2272-01	624-Boeing 001/002Q (Fr113+X	+Fr1,2-Dichloroethane	ug/l	0	0.50	0.5
ITL2272-01	624-Boeing 001/002Q (Fr113+X	+FrTrichloroethene	ug/l	0	0.50	5
ITL2272-01	Settleable Solids - SM2540F	Total Settleable Solids	ml/l	0	0.10	0.3

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
ITL2272-02	624-Boeing 001/0	02Q (Fr113+X+Fr1,1-Dichloroethene	ug/l	0	0.50	6
ITL2272-02	624-Boeing 001/0	02Q (Fr113+X+Fr1,2-Dichloroethane	ug/l	0	0.50	0.5
ITL2272-02	624-Boeing 001/0	02Q (Fr113+X+FrTrichloroethene	ug/l	0	0.50	5

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
<u>LabNumber</u>	Analysis	Analyte	Units	Result	MRL	Limit
ITL2272-03	608-Pest Boeing 001/002 Q (LL)	alpha-BHC	ug/l	0	0.0094	0.03
ITL2272-03	625-Boeing 001/002 Q-LL	2,4,6-Trichlorophenol	ug/l	0	5.66	13
ITL2272-03	625-Boeing 001/002 Q-LL	2,4-Dinitrotoluene	ug/l	0	4.72	18
ITL2272-03	625-Boeing 001/002 Q-LL	Bis(2-ethylhexyl)phthalate	ug/l	0.26	4.72	4
ITL2272-03	625-Boeing 001/002 Q-LL	N-Nitrosodimethylamine	ug/l	0	4.72	16
ITL2272-03	625-Boeing 001/002 Q-LL	Pentachlorophenol	ug/l	0	4.72	16.5
ITL2272-03	Ammonia-N, Titr 4500NH3-C (w/c	di:Ammonia-N (Distilled)	mg/l	0	0.500	10.1
ITL2272-03	BOD - SM5210B	Biochemical Oxygen Demand	mg/l	1.02	2.0	30
ITL2272-03	Cadmium-200.8	Cadmium	ug/l	0.16	1.0	3.1
ITL2272-03	Chloride - 300.0	Chloride	mg/l	4.90	0.50	150
ITL2272-03	Copper-200.8	Copper	ug/l	6.29	2.00	14
ITL2272-03	Cyanide, Total-4500CN-E (5ppb)	Total Cyanide	ug/l	-2	5.0	8.5
ITL2272-03	Lead-200.8	Lead	ug/l	4.55	1.00	5.2
ITL2272-03	MBAS - SM5540C	Surfactants (MBAS)	mg/l	0.0027	0.10	0.5
ITL2272-03	Mercury - 245.1	Mercury	ug/l	0	0.20	0.1
ITL2272-03	Nitrate-N, 300.0	Nitrate-N	mg/l	0.22	0.11	8
ITL2272-03	Nitrite-N, 300.0	Nitrite-N	mg/l	0	0.15	1

TestAmerica Irvine

Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly		Project ID: Report Number:	Quarterly Outfall 011 2010 Quarterly Outfall 011 ITL2272			oled: 12/22/10 ved: 12/22/10	
ITL2272-03	Nitrogen, NO3+NO2 -N EPA 3	00.0 Nitrate/Nitrite-N		mg/l	0.22	0.26	8
ITL2272-03	Perchlorate 314.0 - Default	Perchlorate		ug/l	0	4.0	6
ITL2272-03	Selenium-200.8	Selenium		ug/l	0.35	2.0	5
ITL2272-03	Sulfate-300.0	Sulfate		mg/l	5.44	0.50	300
ITL2272-03	TDS - SM2540C	Total Dissolved S	Solids	mg/l	90	10	950
ITL2272-03	TSS - SM2540D	Total Suspended	Solids	mg/l	50	10	45
ITL2272-03	Zinc-200.7	Zinc		ug/l	28	20.0	119

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011 Sampled: 12/22/10-12/23/10

Report Number: ITL2272 Received: 12/22/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

DATA QUALIFIERS AND DEFINITIONS

_	C-:1 J1-4	in and ide stated a sector 1 invited
a	Spiked analyte recovery	is outside stated control limits.

- **B** Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- J Estimated result. Result is less than the reporting limit.
- **Ja** Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
- Jb The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.
- M1 The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
- M2 The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
- MHA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery

information. See Blank Spike (LCS).

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

- **Q** Estimated maximum possible concentration (EMPC).
- U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the

limit.

- **ND** Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
- **RPD** Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quarterly Outfall 011 2010

618 Michillinda Avenue, Suite 200 Quarterly Outfall 011 Sampled: 12/22/10-12/23/10

Arcadia, CA 91007 Report Number: ITL2272 Received: 12/22/10

Attention: Bronwyn Kelly

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EPA 120.1	Water	X	X
EPA 1664A	Water	X	X
EPA 180.1	Water	X	X
EPA 200.7-Diss	Water	X	X
EPA 200.7	Water	X	X
EPA 200.8-Diss	Water	X	X
EPA 200.8	Water	X	X
EPA 245.1-Diss	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 314.0	Water	X	X
EPA 608	Water	X	X
EPA 624	Water	X	X
EPA 625	Water	X	X
Filtration	Water	N/A	N/A
SM 2540D	Water	X	X
SM2540C	Water	X	
SM2540F	Water	X	X
SM4500CN-E	Water	X	X
SM4500NH3-C	Water	X	X
SM5210B	Water	X	X
SM5540-C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chrnic

Samples: ITL2272-03

TestAmerica Irvine

Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quarterly Outfall 011 2010

618 Michillinda Avenue, Suite 200 Quarterly Outfall 011 Sampled: 12/22/10-12/23/10

Arcadia, CA 91007 Report Number: ITL2272 Received: 12/22/10

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

Eberline Services - SUB

2030 Wright Avenue - Richmond, CA 94804

Analysis Performed: Gamma Spec

Samples: ITL2272-03

Samples: ITL2272-04

Analysis Performed: Gross Alpha

Samples: ITL2272-03

Samples: ITL2272-04

Analysis Performed: Gross Beta

Samples: ITL2272-03

Samples: ITL2272-04

Analysis Performed: Radium, Combined

Samples: ITL2272-03

Samples: ITL2272-04

Analysis Performed: Strontium 90

Samples: ITL2272-03

Samples: ITL2272-04

Analysis Performed: Tritium

Samples: ITL2272-03

Analysis Performed: Uranium, Combined

Samples: ITL2272-03

Samples: ITL2272-04

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quarterly Outfall 011 2010

Quarterly Outfall 011 Sampled: 12/22/10-12/23/10

Report Number: ITL2272 Received: 12/22/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

TestAmerica Buffalo

MWH-Pasadena/Boeing

Arcadia, CA 91007

10 Hazelwood Drive, Suite 106 - Amherst, NY 14228

Method Performed: 8649

Samples: ITL2272-03, ITL2272-04

Method Performed: 900

Samples: ITL2272-03, ITL2272-04

Method Performed: 901.1

Samples: ITL2272-03, ITL2272-04

Method Performed: 903.1

Samples: ITL2272-03, ITL2272-04

Method Performed: 904

Samples: ITL2272-03, ITL2272-04

Method Performed: 905

Samples: ITL2272-03, ITL2272-04

Method Performed: 906

Samples: ITL2272-03

TestAmerica West Sacramento NELAC Cert #1119CA, Nevada Cert #CA44

880 Riverside Parkway - West Sacramento, CA 95605

Method Performed: EPA-5 1613B

Samples: ITL2272-03

CHAIN OF CUSTODY FORM

TTC 2272 Page 1 of 3

Client Name/ MWH-Arca		ANALYSIS REQUIRED																			
618 Michilline Arcadia, CA	da Ave, S	Suite 200		Boeing-SSFL I Quarterly Out GRAB																	Field readings: (Log in and include in
Test America	Contact	:: Debby Wi	Ison				113	IEM)													report Temp and pH) Temp °F = 50 pH = 7.5 DO = 0.39
Project Mana	-			Phone Number (626) 568-669 Fax Number:			4) + Freon	& Grease (1664-HEM)	Settleable Solids	£.											Time of readings
	ICICD	MAN GO		(626) 568-6515	5		s (624)	Grea	able	uctivi			-							1	= 10:45-
Sample Description	Sample Matrix	Container Type	# of Cont.	I	Preservative	Bottle #	VOCs	S IIO	Settle	Conductivity											Comments
Outfall 011	w	VOAs	5	10:32	HCI	1A, 1B, 1C, 1D, 1E	х														
Outfall 011	w	1L Amber	2		HCI	2A, 2B		х													
Outfall 011	W	1L Poly	1		None	3			х				-								
Outfall 011	w	500 mL Poly	2	*	None	4A, 4B				х											
Trip Blanks	w	VOAs	3	10:45	HCI	5A, 5B, 5C	х														
																				<u> </u>	19:35
																					12/22/10
																			<u> </u>		, Ma,
													_							1	
													\dashv						ļ	<u> </u>	
		-																			
	These	Samples a	re the	e Grab Portion	of Outfall	011 for this	storr	n eve	nt. C	omp	osite :	samn	les wi	II fo	llow a	nd ar	e to h	e add	ed to t	hie w	ork order
This Bary 13:30 Ml																					
Mats 12-22-60 18:05						Reveived By		Ψ		Dat	e/Time	:			Sample Intact:						
Relinquished By Date/Time:						Received By	Date/Time:						Data Requirements: (Check) No Level IV: All Level IV: NPDES Level IV:								
					٩				,	· · ()	11111) 1K	$\omega \gamma \Gamma$	-	No Leve	el IV:	Ali Level	IV:	NPDES	Level IV:	~

IT L2272

Client Name/Address: MWH-Arcadia 618 Michillinda Ave, Suite 200 Project: Boeing-SSFL NPDE Quarterly Outfall 0						-										AN	ALYSIS	REQUI	RED	 		
	a Ave, S	Suite 200		Quart	erly Out		e GiHt FO	Pb, Hg, Cd,				gg.							12.0			
Test America	Contact	:: Debby Wi	Ison					Recoverable Metals: Cu, P n, Fe, Mn	eners)	Û		CI', SO₄, NO₃+NO₂-N, Perchlorate					2,4,6 TCP, 2,4 Dinitrotoluene, Bis(2- ethylhexyl)phthalate, NDMA, PCP (SVOCs 625)					Comments
Project Manaç Sampler: R			A	1	Numbe			overable N., Mn	TCDD (and all congeners)	BOD ₅ (20 degrees C	Surfactants (MBAS)	IO3+NO2-I	Nitrate-N, Nitrite-N	Turbidity, TDS, TSS	Ammonia-N (350.2)	Alpha BHC (608)	, 2,4 Dinitr onthalate, N					
			.,		568-651	5		Reco	(an	(20	tant	Α, Λ	Ž,	ity,	nia-	띪	O X					
Sample Description	Sample Matrix	Container Type	# of Cont.	Sar	mpling e/Time	Preservative	Bottle #	Total Recoveral Se, Zn, Fe, Mn	тсрр	BODs	Surfac	Cľ, SC	Nitrate	Turbid	Ammo	Alpha	2,4,6 T ethylhe					
Outfall 011	w	1L Poly	1		23-2010 54	HNO ₃	6A	х														
Outfall 011 Dup	W	1L Poly	1			HNO ₃	6B	х														
Outfail 011	w	1L Amber	2			None	7A, 7B		Х													
Outfall 011	w	1L Poly	1			None	8			х												
Outfall 011	w	500 mL Poly	2			None	9A, 9B				х											
Outfall 011	w	500 mL Poly	2			None	10A, 10B					х										
Outfall 011	w	500 mL Poly	1			None	11						х									
Outfall 011	w	500 mL Poly	2			None	12A, 12B							х								
Outfall 011	w	500 mL Poly	1	4	7	H₂SO₄	13								х						-/	0
Outfall 011	W	1L Amber	2	12-	23-20/0	None	14A, 14B									х		~ .				232
Outfall 011	W	1L Amber	2	10	:54	None	15A, 15B										х					757
																					-1	
				C	OC Page	2 of 3 and	Page 3 c	of 3 are	e the	comi	nosite	sam	nles	for O	utfall	011	for this	storm 6	vent		\	<u> </u>
				Thes	se must	be added	to the sar	ne wo	rk ord	der fo	r CO	C Pag	je 1 o	f 3 fo	r Out	fall 0	11 for t	he sam	e event.			\
Relinquished By Date/Time: /1 - 2 3 - 3 o / 0						3-2010	Received By	/			Da	te/Tim	e:			Turn-arc	ound time:	(Check)		10 Day: Normal:		
Relinquished By Date/Time: 12/23/10 Vinu Cestil 1935							Received By	,				ate/Tim										
Ville Toeslih 1935						35										Sample Integrity: (Check) Intact: On Ice:						
Relinquished By Date/Time:						Received By	ed By Date/Time:								C() Gata Requirements: (Check)							
						$\searrow \nu$		_	٠	12	(23)	10	رم م	Data Re	equirement	s: (Check)		NPDES Leve	C	/		
																NO LEVE	er IV:/	ui revel iv:		NADE2 F6A	eriv:	

23/11/02

Icalen

2-60

CHAIN OF CUSTODY FORM

Client Name/Address: MWH-Arcadia 618 Michillinda Ave, Suite 200 Project: Boeing-SSFL Ni Quarterly Outfe															AN	ALYS	SIS RE	QUIF	RED		-		
										_ ~	Ι				1		П				T		
		uite 200		Q	uarteri	y Out	fall 011		ا ب <u>ن</u>	.0). .1) & .7) & .7) &													
Arcadia, CA	91007			۲	JMPO	511E,	Time NEIGHI	-60	<u>ģ</u>	900 - (0) 903 08.0													
Test America	Contact	Debby Wils	son				<i>V E V T </i>		Total Dissolved Metals: Cu, Pb, Hg, Cd, Se, Zn, Fe, Mn	Gross Alpha(900.0), Gross Beta(900.0), Tritium (H-3) (906.0), Sr-90 (905.0), Total Combined Radium 226 (903.0 or 903.1) & Radium 228 (904.0), Uranium (908.0), K- 40, CS-137 (901.0 or 901.1)													
Drain at Mana	D				N				stals	9), Gr 0), S 1226 226 0), U													Comments
Project Manag	ger: Bro	nwyn Kelly		1	one N 26) 56				ک م	000.0 906. Jium 904.													
Sampler: R	ick B	ANAGA		Fa	zo) 560 ix Num 26) 560	ber:			Dissolve n, Fe, Mr	Alpha(9 n (H-3) (n (H-3)	g e	Chronic Toxicity											
Sample Description	Sample Matrix	Container Type	# of Cont.		Sampl Date/T	ime	Preservative	Bottle #	Total Se, Zi	Gross Tritiur Comb Radiu 40, Ci	Cyanide	Chror											
Outfall 011	w	1L Poly	1		r.gg.		None	16	х														Filter w/in 24hrs of receipt at lab
Outfall 011	w	2.5 Gal Cube	1	/	0;5	4	None	17A		x													Unfiltered and unpreserved
		500 mL Amber	1	ļ.,	* * -	201	None	17B															analysis
Outfall 011	W	500 mL Poly		-			NaOH	18			X												
Outfall 011								19				Х	<u> </u>										Only test if first or second rain events of the year
				<u> </u>																			
				L																			
				L																			
				L																			
				<u> </u>	CO	C Pac	ne 2 of 3 an	d Page 3	of 3 are	the composite	a can	nles	for O	utfall	011 f	or th	is sto	rm ov	ont.				
					These	mus	t be added	to the sa	me wor	k order for CO	C Pag	ge 1 c	of 3 fo	or Out	fall 0					t.			
Relinquished By		D	ate/Tin	ne:	12	-1	3-20/8	Received B	У	Da	te/Time	e: /-	, - <u>-</u> /	1/0			Turn-arc	ound tim	e: (Che	ck)			
(Pro 12 mg)							Ux	نہ	the composite k order for CO	(4	-5/	20 17	3	2	24 Hour 48 Hour		72 Hour 5 Day:	<u></u>	10 Day: Normal:			
Relinquished By Date/Time: 1 2 //0						110	Received B	/	Da	te/Time	e:		<u> </u>										
Relinquished By Date/Time: Uma Padila 12/23/10 1936						1935										Sample Intact:	Integrity	: (Chec On Ice:	<u></u> *				
Relinquished By			ate/Tin				•	Received B		Da	te/Time	ə:											
					1		ىرك		12(23/	S	(4)	75		Data Re No Leve				NPDES	Level IV	<u> </u>		

LABORATORY REPORT

Date: December 30, 2010

Client: TestAmerica, Irvine

17461 Derian Ave., Suite 100

Irvine, CA 92614 Attn: Debby Wilson Aquatic Testing Laboratories

"dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003

(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.:

A-10122302-001

Sample I.D.:

ITL2272-03 (Outfall 011)

Sample Control:

The sample was received by ATL within the recommended hold time, chilled and with the chain of custody record attached. Testing conducted on only one sample per

client instruction (rain runoff sample).

Date Sampled:

12/23/10 - composite

Date Received:

12/23/10 5.7°C

Temp. Received: Chlorine (TRC):

0.0 mg/l

Date Tested:

12/23/10 to 12/30/10

Sample Analysis:

The following analyses were performed on your sample:

Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

Result Summary:

Ceriodaphnia Survival:

NOEC 100%

<u>TUc</u>

Ceriodaphnia Reproduction:

100%

1.0 1.0

Quality Control:

Reviewed and approved by:

Joseph A. LeMay

Laboratory Director

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

Lab No.: A-10122302-001 Date Tested: 12/23/10 to 12/30/10

Client/ID: Test America – ITL2272-03 (Outfall 011)

TEST SUMMARY

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*.

Age: < 24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 +/- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

QA/QC Batch No.: RT-101207.

Endpoints: Survival and Reproduction.

Source: In-laboratory culture. Food: .1 ml YTC, algae per day.

Test solution volume: 15 ml.

Number of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 7 days.

Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Survival	Mean Number of Young Per Female
Control	100%	25.2
100% Sample	100%	28.7
* Sample not s	tatistically significantly le	ess than Control.

CHRONIC TOXICITY

Survival NOEC	100%
Survival TUc	1.0
Reproduction NOEC	100%
Reproduction TUc	1.0

QA/QC TEST ACCEPTABILITY

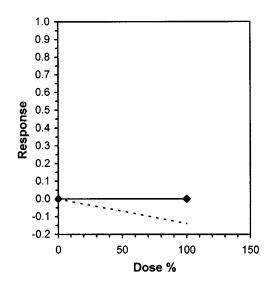
Parameter	Result
Control survival ≥80%	Pass (100% survival)
≥15 young per surviving control female	Pass (25.2 young)
≥60% surviving controls had 3 broods	Pass (100% with 3 broods)
PMSD <47% for reproduction; if >47% and no toxicity at IWC, the test must be repeated	Pass (PMSD = 8.4%)
Statistically significantly different concentrations relative difference > 13%	Pass (no concentration significantly different)
Concentration response relationship acceptable	Pass (no significant response at concentration tested)

			Cerioda	phnia Sui	rvival and	Reprodu	ction Tes	t-7 Day S	Survival		
Start Date:	12/23/201			10122302	-		Sample ID	-	Outfall 011		
End Date:	12/30/201	0 13:30	Lab ID: (CAATL-Ac	quatic Test			, p	EFF2-Indu		
Sample Date:	40/00/004	0.40.54	Destacate I		١.٨		Took Cook		CD Corios	laphnia dubia	
Sample Date.	12/23/201	0 10:54	Protocoi: I		Ά		Test Spec	ies.	CD-Celloc	iapririla dubia	
Comments:	12/23/201	0 10:54	Protocoi: i	rwon er	'A		rest Spec	ies.	CD-Celloc	iapririla dubia	
•	1	2	3	4	5	6	7	8	9	10	
Comments:	1	2 1.0000	3 1.0000	4 1.0000	5 1.0000	<u>.</u>	7 1.0000	8 1.0000	9 1.0000		

				Not			Fisher's	1-Tailed	Isot	onic
Conc-%	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Mean	N-Mean
D-Control	1.0000	1.0000	0	10	10	10			1.0000	1.0000
100	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000

	Test (1-tail,	0.05)	NOEC	LOEC	ChV	TU				
Fisher's Exa	ct Test		100	>100		1				
Treatments	vs D-Control									
						lation (2	00 Resamples)			
Point	%	SD	95%	6 CL	Skew					
IC05	>100									
IC10	>100									
IC15	>100						1.0			
IC20	>100						0.9			
IC25	>100						4			
IC40	>100						0.8			
IC50	>100						0.7			
							8 0.6 - 0.5 - 0.4 - 0.4 - 0.4			
							Ö 0.5			
							\$			
							2 0.4]			
							0.3 -			
							0.2			
							4			
							0.1 -			
							0.0 🕽 🔒			
								50	100	150
							0	50	100	

Dose %


			Cerioda	phnia Su	rvival and	Reprod	uction Tes	st-Repro	duction	
Start Date: End Date: Sample Date:	12/23/2010 12/30/2010 12/23/2010	0 13:30	Lab ID:		uatic Tes	ting Labs	Sample ID Sample Ty Test Spec	/pe:	Outfall 011 EFF2-Indu CD-Cerioo	
Conc-%	1	2	3	4	5	6	7	8	9	10
D-Control		24.000		19.000	24.000	28.000	27.000	25.000		25.000
100	26.000	27.000	29.000	32.000	28.000	32.000	27.000	33.000	29.000	24.000

			•	Transforn	n: Untran	sformed	-		1-Tailed		Isotonic		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat_	Critical	MSD	Mean	N-Mean	
D-Control	25.200	1.0000	25.200	19.000	28.000	10.212	10				26.950	1.0000	
100	28.700	1.1389	28.700	24.000	33.000	10.132	10	-2.850	1.734	2.129	26.950	1.0000	

Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.05)	0.96539		0.905		-0.564	0.3019
F-Test indicates equal variances (p = 0.72)	1.27685		6.54109			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates no significant differences	2.12928	0.0845	61.25	7.53889	0.01062	1, 18
Transfer and a va D. Cambrol						

Treatments vs D-Control

Treatments	V3 D-CONTO				
			Lir	near Interpolation	(200 Resamples)
Point	%	SD	95% CL	Skew	
IC05	>100				
IC10	>100				
IC15	>100				1.0
IC20	>100				0.9 -
IC25	>100				0.8
IC40	>100				4
IC50	>100				0.7

Reviewed by:

Page 1

CERIODAPHNIA DUBIA CHRONIC BIOASSAY **EPA METHOD 1002.0 Raw Data Sheet**

Lab No.: A-10122302-001

Client ID: TestAmerica - Outfall 011 Start Date: 12/23/2010 DAY I DAY 2 DAY 3 DAY 4 DAY 5 DAY 6 DAY 7 0 hr 24hr Analyst Initials: Time of Readings: DO 8. pН Control Temp 24.2 DO 8.2 100% pΗ 8-1 Temp Additional Parameters Control 100% Sample Conductivity (umohms) 310 90 Alkalinity (mg/l CaCO3) Hardness (mg/l CaCO₃) Ammonia (mg/l NH₃-N) 20.1 **Source of Neonates** Replicate С D G Н 2 A 213 Brood ID: 2 3G 3H IJ **Number of Young Produced** Sample Day **Total Live** No. Live Analyst В \mathbf{C} D E Young Adults G Н Initials J 1 2 3 し 4 0 O 4 25 Control 5 6 7 9 26 Total λ ጉく 25 10 2 3 1 Ü 4 24 100% 9 5 9 10 01 6 65 1 O 7 91 Total 29 $\lambda 7$ 28 77

Circled fourth brood not used in statistical analysis.

^{7&}lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

CHAIN OF CUSTODY

CHAIN OF CUSTODY FORM

Client Name/A	ddress:			Project:									ANA	ALYSI	SRE	QUIR	RED				
MWH-Arcad	dia	iite 200	Ì	Boeing-SSFL N Quarterly Out	fall 011		ρ, i)). otal ', K-													
Arcadia, CA 9		J. 100 200		COMPOSITE	IME	·	l õ	900.C)), T ₁ 903. 18.0)													
Test America		Debby Wils			weight	(FO	Total Dissolved Metals: Cu, Pb, Hg, Cd, Se, Zn, Fe, Mn	0), Gross Beta(900.0), 0), Sr-90 (905.0), Total n 226 (903.0 or 903.1) & .0), Uranium (908.0), K-													Comments
Project Manag	ger: Bror	ıwyn Kelly		Phone Number			d Met	a(900.0), G 3) (906.0), 3 Radium 22 8 (904.0), (901.0 or 9		.£											
Sampler: 🎗 ;	ck B.			(626) 568-669° Fax Number: (626) 568-6515			Dissolved	Alph. (H-C ned 1 n 222	nide	Chronic Toxicity											
Sample Description	Sample Matrix	Container Type	# of Cont	Sampling Date/Time	Preservative	Bottle #	Total Se, Z	Gross Tritium Combi Radiur 40, CS	Cyanide	Chrc											
Outfall 011	w	1L Poly	1	12.23-2010	None	16	х														Filter w/in 24hrs of receipt at lab
Outfall 011	w	2.5 Gat Cube	1	10:54	None None	17A 17B		Х													Unfiltered and unpreserved analysis
Outfall 011	w	500 mL Poly		12-23-201		18	 		×	 	 								†		
Outfall 011	W	1 Gal Poly	1		10:54 None 19				-	х											Only test if first or second rain events of the year
		<u> </u>	 				1														
		 	 																		
			\dagger				1														
						-												ļ			
			<u> </u>																		
											ļ	-						-			
			<u> </u>	COC B-	ge 2 of 2 or	nd Page 3	of 3 ar	e the composit	e sar	nples	for C	L Outfall	011	for th	is sto	rm e	vent.	1	1	L	
				These mus	st be added	to the sa	ame wo	rk order for CC	C Pa	ge 1	of 3 f	or Ou	tfall 0)11 fo	r the	same	eve	nt.			
Relinquished By			Date/Tir	me: / 2 - 1	3-20/8	Received B	Зу	Da	ate/Tim	ne: /	72	110			Tum-ar	ound tir	ne: (Ch	eck)	10.5		
Kus	13.	Th		-	2-11-20/7 R		1~	radile		4	23/		23	2	24 Hou 48 Hou	r r	_ /2 Hou_ _5 Day.	ur	Norma	y	
Relinquished By Date/Time: ()-)3-10/1 Relinquished By Date/Time: (2/23/10) Languished By Date/Time: (14/15) Relinquished By Date/Time:		Received I		My	ate/Tim	ne:	\ 	7-2, 14	3-16	/	Sample Intact:	Integr	ty. (Che _On Ice	eck)							
Relinquished By	<u>v-</u>		Date/Ti	ime:	r.17	Receipted	Ву	1/0	ate/Tin	ne:				-	1						
								V							Data R	equiren	nents: (4	Check)	_ NPDE		K
						1									1						

SUBCONTRACT ORDER

TestAmerica Irvine

ITL2272

SENDING LABORATORY:

¹ TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager:

Debby Wilson

RECEIVING LABORATORY:

Aquatic Testing Laboratories-SUB 4350 Transport Street, Unit 107

Ventura, CA 93003 Phone :(805) 650-0546

Fax: (805) 650-0756

Due	Expires	Laboratory ID	Comments
Water	Sampled: 12/23/10 10:54		
12/30/10 12:00	12/24/10 22:54		Cerio, EPA/821-R02-013, Sub to Aquatic testing
			On+611 011
	Water	Water Sampled: 12/23/10 10:54	Water Sampled: 12/23/10 10:54

Released By Date Received By Date

Received By Date

Received By Date

REFERENCE TOXICANT DATA

CERIODAPHNIA CHRONIC BIOASSAY

EPA METHOD 1002.0 REFERENCE TOXICANT - NaCl

QA/QC Batch No.: RT-101207

Date Tested: 12/07/10 to 12/13/10

TEST SUMMARY

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*.

Age: <24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 +/- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

Reference Toxicant: Sodium chloride (NaCl).

Endpoints: Survival and Reproduction.

Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 20 ml. Number of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 6 days.

Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Surv	ival	Mean Numb Young Per F	
Control	100%		23.3	
0.25 g/l	100%		25.2	
0.5 g/l	100%		23.7	
1.0 g/l	100%		16.0	*
2.0 g/l	100%		2.9	*
4.0 g/l	0%	*	0	**

^{*} Statistically significantly less than control at P=0.05 level ** Reproduction data from concentrations greater than survival NOEC are excluded from statistical analysis.

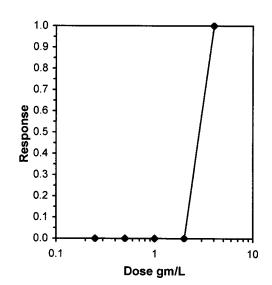
CHRONIC TOXICITY

Survival LC50	2.8 g/l
Reproduction IC25	0.86 mg/l

QA/QC TEST ACCEPTABILITY

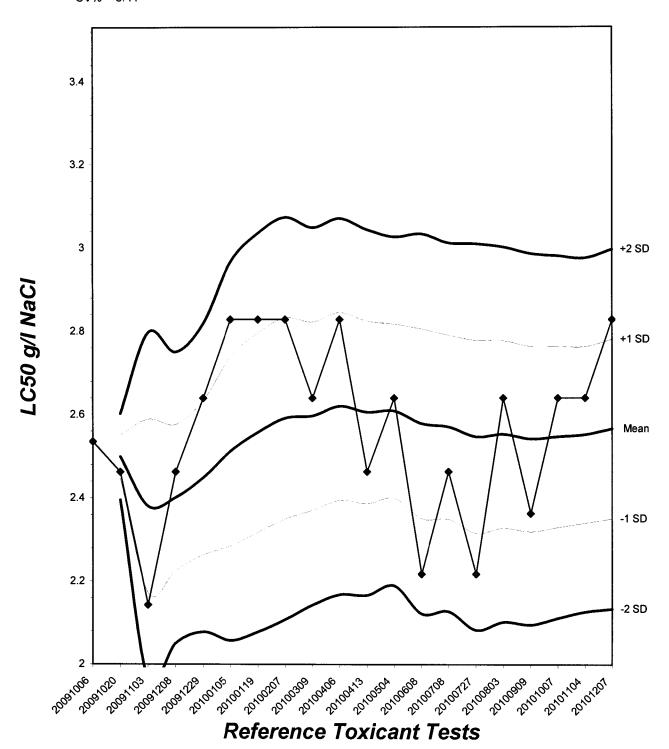
Parameter	Result
Control survival ≥80%	Pass (100% Survival)
≥15 young per surviving control female	Pass (23.3 young)
≥60% surviving controls had 3 broods	Pass (80% with 3 broods)
PMSD <47% for reproduction	Pass (PMSD = 18.9%)
Stat. sig. diff. conc. relative difference > 13%	Pass (Stat. sig. diff. conc. Relative difference = 31.3%)
Concentration response relationship acceptable	Pass (Response curve normal)

			Cerioda	aphnia Su	rvival and	Reprod	uction Tes	t-Surviv	al Day 6		
Start Date:	12/7/2010	14:00	Test ID:	RT101207	c 'c		Sample ID):	REF-Ref Toxicant		
End Date:	12/13/201	0 14:00	Lab ID:	CAATL-Ad	quatic Tes	ting Labs	Sample Ty	/pe:	NACL-Soc	dium chloride	
Sample Date: Comments:	12/6/2010		Protocol:	FWCH EF	À		Test Spec	ies:	CD-Cerioo	daphnia dubia	
Conc-gm/L	1	2	3	4	5	6	7	8	9	10	
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
0.25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
0.5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
2	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	


				Not			Fisher's	1-Tailed	Number	Total
Conc-gm/L	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Resp	Number
D-Control	1.0000	1.0000	0	10	10	10			0	10
0.25	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
0.5	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
1	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
2	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
4	0.0000	0.0000	10	0	10	10			10	10

Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	
Fisher's Exact Test	2	4	2.82843		
Treatments vs D-Control					

Graphical Method

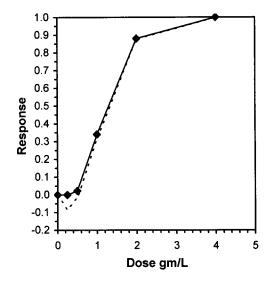

Trim Level 0.0% EC50 2.8284

2.8284

Ceriodaphnia Chronic Survival Laboratory Control Chart

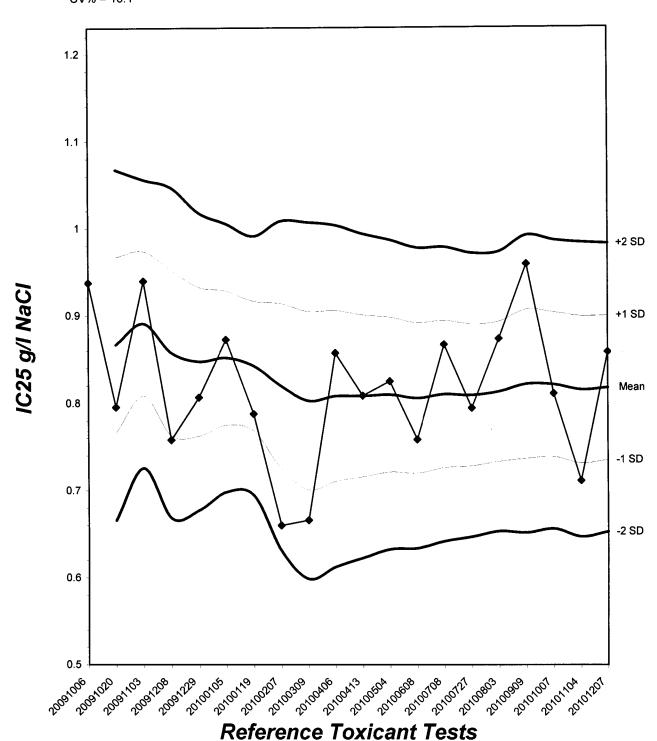
CV% = 8.41

			Cerioda	aphnia Su	rvival and	l Reprodu	iction Tes	t-Repro		
Start Date:	12/7/2010	14:00	Test ID:	RT101207	'c		Sample ID):	REF-Ref 1	oxicant
End Date:	12/13/2010	0 14:00	Lab ID:	CAATL-Ac	quatic Tes	ting Labs	Sample Ty	/pe:	NACL-Soc	lium chloride
Sample Date:	12/6/2010		Protocol:	FWCH EP	PΑ	•	Test Spec	ies:	CD-Cerioo	laphnia dubia
Comments:										
Conc-gm/L	1	2	3	4	5	6	7	8	9	10
D-Control	22.000	11.000	28.000	27.000	26.000	28.000	21.000	28.000	27.000	15.000
0.25	28.000	29.000	21.000	21.000	28.000	28.000	28.000	25.000	25.000	19.000
0.5	25.000	17.000	20.000	26.000	24.000	29.000	29.000	23.000	25.000	19.000
1	10.000	10.000	20.000	22.000	20.000	11.000	15.000	12.000	24.000	16.000
2	0.000	2.000	7.000	4.000	2.000	4.000	0.000	5.000	2.000	3.000
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000


				Transform	n: Untran	sformed			1-Tailed		Isotonic		
Conc-am/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean	
D-Control	23.300	1.0000	23.300	11.000	28.000	25.913	10				24.250	1.0000	
0.25	25.200	1.0815	25.200	19.000	29.000	14.466	10	-0.959	2.223	4.404	24.250	1.0000	
0.5	23.700	1.0172	23.700	17.000	29.000	17.000	10	-0.202	2.223	4.404	23.700	0.9773	
*1	16.000	0.6867	16.000	10.000	24.000	32.676	10	3.686	2.223	4.404	16.000	0.6598	
*2	2.900	0.1245	2.900	0.000	7.000	75.285	10	10.299	2.223	4.404	2.900	0.1196	
4	0.000	0.0000	0.000	0.000	0.000	0.000	10				0.000	0.0000	

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribu	ition (p >	0.05)		0.96459		0.947		-0.5938	0.09413
Bartlett's Test indicates equal var			·		8.97697		13.2767			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	0.5	1	0.70711		4.40372	0.189	860.47	19.6156	5.6E-15	4, 45
Transferente un D. Combrol										

Treatments vs D-Control


Linear	Interpolation	(200	Resamples)

Point	gm/L	SD	95%	CL	Skew
IC05	0.5430	0.1060	0.2194	0.6041	-1.2164
IC10	0.6218	0.0833	0.4101	0.7081	-1.1699
IC15	0.7005	0.0819	0.5141	0.8292	-0.4850
IC20	0.7792	0.0859	0.5998	0.9452	0.1951
IC25	0.8580	0.0903	0.6963	1.0439	0.3636
IC40	1.1107	0.1011	0.9055	1.2772	-0.0498
IC50	1.2958	0.0936	1.0659	1.4429	-0.4534

Ceriodaphnia Chronic Reproduction Laboratory Control Chart

CV% = 10.1

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-101207

Start Date:12/07/2010

				Nu	mber	of Y	oung	Produ	ıced			Total	No.	Analyst
Sample	Day	A	В	C	D	E	F	G	Н	I	J	Live Young	Live Adults	Initials
	1	0	0	0	0	0	Ö	0	0	0	0	Q	10	L
	2	U	0	0	0	0	0	0	0	0	0	0	10	Ru
	3	0	0	4	0	0	()	0	0	0	0	4	10	2
Camera 1	4	3	3	0	ک	u	Z	3	4	4	3	31	10	n
Control	5	9	8	6	フ	8	9	6	9	7	0	69	10	
	6	10	0	18	15	14	ワ	12	۱ >	16	12	129	10	
	7	_	ļ	~		•		(((_			
	Total	22	11	28	27	26	28	21	28	27	کرا	233	10	V
	1	0	0	0	0	0	0	0	0	0	0	0	10	R
	2	0	0	0	0	0	0	0	0	0	0	0	10	a
	3	0	0	4	0	0	0	0	0	0	0	4	IV	En
0.05 //	4	4	3	U	4	5	4	4	ろ	4	4	35	iU	m
0.25 g/l	5	6	9	フ	0	8	10	9	7	\cap	0	63	10	m
	6	18	17	10	17	15	14	15	13	14	15	150	IU	5
	7)	_	_	(•	1	(()	
	Total	28	24	21	21	26	28	28	25	25	19	252	10	7~
	1	ω	0	0	0	0	0	0	0	0	0	0	IU	Ru
	2	0	0	0	0	0	0	0	0	0	0	0	IV	R
	3	0	0	0	4	0	0	0	0	0	0	4	10	R
0.5.4	4	4	3	4	0	5	4	4	3	3	4	34	70	9
0.5 g/l	5	6	0	6	8	7	9	2	6	フ	0	5/2	iv	
	6	15	14	10	14	12	16	18	14	15	15	143	10	
	7	_	_	_				_	_	_)		
	Total	25	17	20	26	24	29	29	23	25	19	237	10	5

Circled fourth brood not used in statistical analysis.

^{7&}lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-101207

Start Date: 12/07/2010

				Nu	ımbe	r of Y	oung l	Produ	ced			Total	No. Live	Analyst
Sample	Day	A	В	C	D	E	F	G	H	I	J	Live Young	Adults Initia	Initials
	1	0	0	0	0	0	0	0	0	0	0	0	10	m
	2	0	0	0	0	0	0	0	0	0	0	0	10	Ru
	3	0	0	0	0	0	0	Ò	0	0	0	2	ιυ,	Ro
1.0 g/l	4	4	3	4	4	5	U	3	Ч	4	3	30	10	
1.0 g/1	5	0	7	6	6	7	0	0	0	6	6	38	10	n
	6	6	0	10	12	8	7	12	8	14	2	84	U	1
	7	_		_	_		-	_	1		_			
	Total	10	10	20	22	20	11	15	12	24	طا	160	IV	
	1	0	0	0	0	0	0	0	0	0	0	0	10	R
	2	0	0	0	0	0	0	0	0	0	0	Q	10	R
	3	0	0	0	0	0	0	0	0	0	0	0	10	3
2.0 ~/1	4	0	0	0	0	2	0	\mathcal{C}	ک	0	0	U	10	n
2.0 g/l	5	0	2	3	0	0	4	U	0	2	0	. []	10	
	6	Ô	0	4	4	0	0	0	3	0	3	14	10	1
	7		_	_	_	_	^	_	_	_	_			
	Total	U	2	7	4	2	4	U	5	2	3	24	10	1
	1	X	X	X	X	X	X	×	X	X	X	0	0	R
	2		_	_	_			_		_			^	
	3	_	_	_	_		_		_	_	<u> </u>			
4.0 ~/1	4	_	_	_	-		-	_						
4.0 g/l	5					_	1	_	_	_	_			
	6		_		_			_	_	_				
	7		_	_	_	-	_				 	_		
	Total	0	0	0	10	C	C	0	0	0	C	0	0	1

Circled fourth brood not used in statistical analysis.

^{7&}lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Water Chemistries Raw Data Sheet

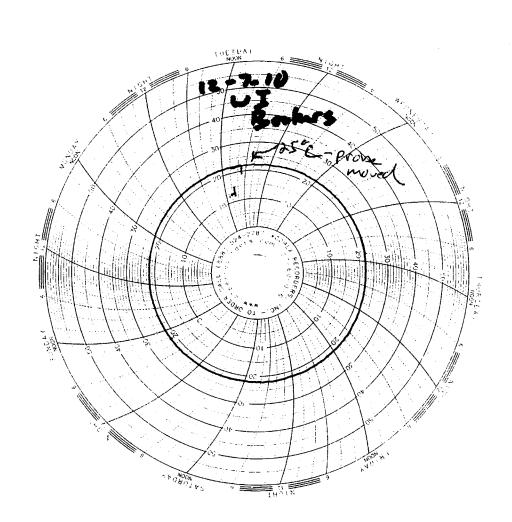
QA/QC No.: RT-101207

Start Date:12/07/2010

		DA	Y 1	DA	Y 2	DA	Y 3	DA	Y 4	DA	Y 5	DA	Υ 6	DA	Y 7
		Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
Analyst I	nitials:	£~~	R	gar.	2m	R-	£~	m	شہ	fu-	2	1	ん	~	
Time of Re	eadings:	14W	/sw	Isa	140	1400	1400	1400	1300	13a)	1330	1330	149		
	DO	8.4	8.7	8.4	8.6	8.7	8.3	8.2	8.4	8.1	75	8,2	26		1
Control	pН	8.2	8.3	8.4	79	8.2	8.0	8.2	8.0	8.1	7.5	8.2	8.2	1	1
	Temp	25.0	24.3	25.0	24.5	25.0	246	24.8	24.7	25.1	750	25.3	25-2		-
	DO	8.4	88	8.4	8.6	8.6	8.3	ς ₂	8.4	8.2	74	22	27		-
0.25 g/l	pН	8.2	8.3	8.3	7.9	8.2	8.0	82	8.0	8.1	8.1	8.2	8.2		_
	Temp	25.0	24.6	25.0	24.8	25.0	2S.U	24.8	24.8	25.1	HU	252	2\$2	_	
	DO	8.5	8.8	8.4	8.7	8.6	8.4	8,2	8.3	8,2	7.4	8.3	76		1
0.5 g/l	pН	8.2	8.2	8.3	7.9	8.2	8.0	8.2	8.0	8.1	74	8.2	8-1	(11
	Temp	25.0	24.7	25.1	24.8	25.0	25.1	24.9	24.9	25.0	261	24-6	251	(-
	DO	8.5	8.7	8.4	8.7	8.5	8.4	8.2	8.3	8,2	83	83	22	_	_
1.0 g/l	pН	8.2	8.2	8.3	7.9	8.2	8.0	8.2	8.0	8.2	74	8.2	8.1		-
	Temp	24.9	24.6	25.1	24.9	25.1	25.0	24.9	24.9	25.0	240	245	24.9	<u> </u>	_
	DO	8.6	8.6	8.5	8.8	8.3	8.4	8.2	8.5	8.2	82	8.2	74	1	_
2.0 g/l	pН	8.2	8.2	8.3	7.9	8.1	8.0	8.2	8.0	8.2	74	82	8-1		_
	Temp	24-8	24.8	25.2	24-8	25.2	24.9	25.0	24-8	24.9	244	245	25.2		
	DO	8.7	8.8		_		-		_	_		1	_		_
4.0 g/l	pН	8.1	8.2		-		_				(_	1		1
	Temp	24.6	24.8				_					_	_	_	
	Di	ssolved	Oxyge	n (DO)	reading	gs are in	mg/1 (O ₂ ; Temp	perature	(Temp)	readin	gs are in	ı°C.		

		Control		Н	igh Concentratio	n
Additional Parameters	Day 1	Day 3	Day 5	Day 1	Day 3	Day 5
Conductivity (μS)	325	329	322	6470	3690	3430
Alkalinity (mg/l CaCO ₃)	24	73	73	73	74	74
Hardness (mg/l CaCO ₃)	87	88	89	90	89	89

				Source of	Neonates					
Replicate:	A	В	С	D	Е	F	G	Н	I	J
Brood ID:	IA	2A	3A	38	16	1H	2I	15	25	35



Test Temperature Chart

Test No: RT-101207

Date Tested: 12/07/10 to 12/13/10

Acceptable Range: 25+/- 1°C

EBERLINE ANALYTICAL CORPORATION
2030 Wright Avenue
Richmond, California 94804-3849
Phone (510) 235-2633 Fax (510) 235-0438
Toll Free (800) 841-5487
www.eberlineservices.com

February 5, 2011

Ms. Debby Wilson Test America Irvine 17461 Derian Ave., Ste. 100 Irvine, CA 92614

Reference:

Test America-Irvine ITL2272

Eberline Analytical Report S120364-8649

Sample Delivery Group 8649

Dear Ms. Wilson:

Enclosed is a Level IV CLP-like data package (on CD) for two water samples received under Test America Job No. ITL2272. The sample was received on December 29, 2010.

Please call me, if you have any questions concerning the enclosed report.

Singerely,

N. Joseph Verville

Client Services Manager

RM/ljb

Enclosure: Level IV CLP-like Data Package CD

Case Narrative, page 1

February 5, 2011

1.0 General Comments

Sample delivery group 8649 consists of the analytical results and supporting documentation for two water samples. Sample ID's and reference dates/times are given in the Sample Summary section of the Summary Data report. The sample was received as stated on the chain-of-custody document. Any discrepancies are noted on the Eberline Analytical Sample Receipt Checklist. No holding times were exceeded.

Tritium and gamma analyses were performed on the sample as received i.e. the sample was not filtered. The analytical volumes for all other analyses were subjected to a full nitric acid/hydrofluoric acid dissolution, and analyses were performed on the dissolution volume.

2.0 Quality Control

For efficiency of analysis, sample ITL2272-03 was analyzed in a common prep batch with other TA samples. The QC samples from that common prep batch were assigned to SDG 8654 and are reported herein. For efficiency of analysis, sample ITL2272-03 (TRIP-BLANK) was analyzed in a common prep batch with other TA samples. The QC samples from that common prep batch were assigned to SDG 8657 and are reported herein. Quality Control Samples consisted of laboratory control samples (LCS), method blanks, duplicate analyses and matrix spike analyses. Included in the data package are copies of the Eberline Analytical radiometrics data sheets. The radiometrics data sheets for the QC LCS and QC blank samples indicate Eberline Analytical's standard QC aliquot of 1.0 sample; results for those QC types are calculated as pCi/sample. The QC LCS and QC blank sample results reported in the Summary Data Section have been divided by the appropriate method specific aliquot (see the Lab Method Summaries for specific aliquots) in order to make the results comparable to the field sample results. All QC sample results were within required control limits.

3.0 Method Errors

The error for each result is an estimate of the significant random uncertainties incurred in the measurement process. These are propagated to each final result. They include the counting (Poisson) uncertainty, as well as those intrinsic errors due to carrier or tracer standardization, aliquoting, counter efficiencies, weights, or volumes. The following method errors were propagated to the count error to calculate the 2^{σ} error (Total):

Analysis	Method Error
Gross alpha	20.6%
Gross beta	11.0%
Tritium	10.0%
Sr-90	10.4%
Ra-226	16.4%
Ra-228	10.4%
Uranium,Total	
Gamma Spec.	7.0%

Case Narrative, page 2

February 5, 2011

Analysis Notes

- 3.1 Gross Alpha/Gross Beta Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.2 Tritium Analysis** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.3 Strontium-90 Analysis -** The Sr-90 MDA in the QC Method blank is 2.02 pCi/L, greater than the required detection limit of 2.00 pCi/L. No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.4 Radium-226 Analysis -** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits
- **4.5** Radium-228 Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits
- 4.6 Total Uranium Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- 4.7 Gamma Spectroscopy The K-40 MDA for sample ITL2489-03 (53.7 pCi/L) and the duplicate of sample ITL2489-03 (53.7 pCi/L) were greater than the required detection limit of 25 pCi/L, due to an elevated K40 background in the ROI for K40 on the detector used for analysis. The K-40 MDA for the duplicate of sample ITL2724-02 (28.0 pCi/L) and sample ITL2272-03 (TRIP-BLANK)(42.5 pCi/L) were greater than the required detection limit of 25 pCi/L. No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.

Case Narrative, page 3

February 5, 2011

5.0 Case Narrative Certification Statement

"I certify that this data package is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. Release of the data obtained in this hard copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature."

N. Joseph Verville

Client Services Manager

SDG <u>8649</u>
Contact <u>N. Joseph Verville</u>

Client <u>Test America, Inc.</u> Contract <u>ITL2272</u>

SUMMARY DATA SECTION

TABLE OF	C O	N T	E N	T S	
About this section	•	•	•	•	1
Sample Summaries	•	•	•	•	3
Prep Batch Summary	•	•	•	•	5
Work Summary	•	•		•	6
Method Blanks	•	•	•	•	9
Lab Control Samples	•	•	•	• .	11
Duplicates	•	•			13
Data Sheets	•	•		. •	15
Method Summaries	•	•	•	•	17
Report Guides	•	•			32
End of Section	•	•	•	•	46

Prepared by

| Melgan
| Reviewed by

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-TOC
Version 3.06
Report date 02/05/11

SDG 8649

SDG 8649

Contact N. Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>ITL2272</u>

ABOUT THE DATA SUMMARY SECTION

The Data Summary Section of a Data Package has all data, in several useful orders, necessary for first level, routine review of the data package for a Sample Delivery Group (SDG). This section follows the Data Package Narrative, which has an overview of the data package and a discussion of special problems. It is followed by the Raw Data Section, which has full details.

The Data Summary Section has several groups of reports:

SAMPLE SUMMARIES

The Sample and QC Summary Reports show all samples, including QC samples, reported in one SDG. These reports cross-reference client and lab sample identifiers.

PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches (lab groupings reflecting how work was organized) relevant to the reported SDG with information necessary to check the completeness and consistency of the SDG.

WORK SUMMARY

The Work Summary Report shows all samples and work done on them relevant to the reported SDG.

METHOD BLANKS

The Method Blank Reports, one for each Method Blank relevant to the SDG, show all results and primary supporting information for the blanks.

LAB CONTROL SAMPLES

The Lab Control Sample Reports, one for each Lab Control Sample relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

DUPLICATES

REPORT GUIDES
Page 1
SUMMARY DATA SECTION
Page 1

SDG 8649

SDG 8649
Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract <u>ITL2272</u>

ABOUT THE DATA SUMMARY SECTION

The Duplicate Reports, one for each Duplicate and Original sample pair relevant to the SDG, show all results, differences and primary supporting information for these QC samples.

MATRIX SPIKES

The Matrix Spike Reports, one for each Spiked and Original sample pair relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

DATA SHEETS

The Data Sheet Reports, one for each client sample in the SDG, show all results and primary supporting information for these samples.

METHOD SUMMARIES

The Method Summary Reports, one for each test used in the SDG, show all results, QC and method performance data for one analyte on one or two pages. (A test is a short code for the method used to do certain work to the client's specification.)

REPORT GUIDES

The Report Guides, one for each of the above groups of reports, have documentation on how to read the associated reports.

REPORT GUIDES
Page 2
SUMMARY DATA SECTION
Page 2

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06Report date 02/05/11

SDG 8649

SDG <u>8649</u>
Contact <u>N. Joseph Verville</u>

LAB SAMPLE SUMMARY

Client <u>Test America</u>, <u>Inc.</u>

Contract ITL2272

LAB SAMPLE ID	CLIENT SAMPLE ID	LOCATION	MATRIX	TEAET	SAS NO	CHAIN OF CUSTODY	COLLECTED
S012364-01	ITL2272-03	Boeing - SSFL	WATER			ITL2272	12/23/10 10:54
S012364-02	ITL2272-03 (TRIP-BLANK)	Boeing - SSFL	WATER			ITL2272	12/23/10 10:54
S012369-03	Lab Control Sample		WATER				
S012369-04	Method Blank		WATER				
S012369-05	Duplicate (S012369-01)	Boeing - SSFL	WATER	•			12/26/10 08:58
S101004-02	Lab Control Sample		WATER				
S101004-03	Method Blank		WATER				
S101004-04	Duplicate (S101004-01)	Boeing - SSFL	WATER				12/30/10 02:55

LAB SUMMARY

Page 1

SUMMARY DATA SECTION

Page 3

SDG 8649

Contact N. Joseph Verville

SDG 8649

QC SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>ITL2272</u>

QC BATCH	CHAIN OF	CLIENT SAMPLE ID	MATRIX	% MOIST	SAMPLE AMOUNT	BASIS AMOUNT	DAYS S		LAB SAMPLE ID	DEPARTMENT SAMPLE ID
8649	ITL2272	ITL2272-03 ITL2272-03 (TRIP-BLANK)	WATER WATER		10.0 L 10.0 L		12/29/10 12/29/10	6	S012364-01 S012364-02	8649-001 8649-002
8654		Method Blank Lab Control Sample Duplicate (S012369-01)	WATER WATER WATER		10.0 L		12/29/10	3	S012369-04 S012369-03 S012369-05	8654-004 8654-003 8654-005
8657	•	Method Blank Lab Control Sample Duplicate (S101004-01)	WATER WATER WATER		10.0 L	3130411344107	12/31/10	1	S101004-03 S101004-02 S101004-04	8657-003 8657-002 8657-004

QC SUMMARY

Page 1

SUMMARY DATA SECTION

Page 4

SDG 8649

SDG 8649
Contact N. Joseph Verville

PREP BATCH SUMMARY

Client Test America, Inc.
Contract ITL2272

			PREPARATION	PREPARATION ERROR			PLANCHETS ANALYZED -						
TEST	MATRIX	METHOD	BATCH	2σ %	CLIENT	MORE	RE	BLANK	LCS	DUP/ORIG MS/ORIG	FIERS		
Beta	Counting												
AC	WATER	Radium-228 in Water	7271-037	10.4	1			1	1	1/0/1			
			7271-039	10.4	1	-		1	1	1/0/1			
sr	WATER	Strontium-90 in Water	7271-037	10.4	1			1	1	1/0/1			
			7271-039	10.4	1			1	1	1/0/1			
Gas F	roportion	al Counting											
A08	WATER	Gross Alpha in Water	7271-037	20.6	1			1	1	1/0/1			
			7271-039	20.6	1			1	1	1/0/1			
80B	WATER	Gross Beta in Water	7271-037	11.0	1.			1	1	1/0/1	_		
			7271-039	11.0	1			1	1	1/0/1			
Gamma	Spectros	сору											
GAM	WATER	Gamma Emitters in Water	7271-037	7.0	1			1	1	1/0/1			
			7271-039	7.0	1			1	1	1/0/1	-		
Kinet	ic Phosph	orimetry, ug											
U_T	WATER	Uranium, Total	7271-037		1			1	1	1/0/1			
			7271-039		1			1	1	1/0/1			
Liqui	d Scintil	lation Counting											
Н	WATER	Tritium in Water	7271-037	10.0	1			1	1	1/0/1			
Rador	Counting												
RA.	WATER	Radium-226 in Water	7271-037	16.4	1			1	1	1/0/1			
		,	7271-039	16.4	. 1			1	1	1/0/1			

Blank, LCS, Duplicate and Spike planchets are those in the same preparation batch as some Client sample. In counts like 'a/b/c', 'a' = QC planchets, 'b' = Originals in this SDG, 'c' = Originals in other SDGs.

PREP BATCH SUMMARY $\begin{array}{ccc} & \text{Page} & 1 \\ & & \text{SUMMARY} \\ & & \text{DATA} & \text{SECTION} \\ & & & \text{Page} & 5 \\ \end{array}$

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-PBS

 Version
 3.06

 Report date
 02/05/11

SDG 8649

SDG <u>8649</u>
Contact <u>N. Joseph Verville</u>

LAB WORK SUMMARY

Client <u>Test America</u>, <u>Inc</u>.

Contract ITL2272

LAB SAMPLE	CLIENT SAMPLE ID								
COLLECTED	LOCATION CUSTODY SAS no	MATRIX	PLANCHET	TEST	SUF- FIX	ANALYZED	REVIEWED	вч	METHOD
S012364-01	ITL2272-03		8649-001	80A/80		01/06/11	01/07/11	BW	Gross Alpha in Water
12/23/10	Boeing - SSFL	WATER	8649-001	80B/80		01/06/11	01/07/11	BW	Gross Beta in Water
12/29/10	ITL2272		8649-001	AC		01/24/11	01/25/11	BW	Radium-228 in Water
			8649-001	GAM		01/05/11	01/11/11	MWT	Gamma Emitters in Water
			8649-001	Н		01/12/11	01/18/11	BW	Tritium in Water
			8649-001	RA		01/22/11	01/24/11	BW	Radium-226 in Water
			8649-001	SR		01/13/11	01/25/11	BW	Strontium-90 in Water
			8649-001	U_T		01/20/11	01/24/11	BW	Uranium, Total
S012364-02	ITL2272-03 (TRIP-BLANK)		8649-002	80A/80		01/14/11	01/17/11	BW	Gross Alpha in Water
12/23/10	Boeing - SSFL	WATER	8649-002	80B/80		01/14/11	01/17/11	BW	Gross Beta in Water
12/29/10	ITL2272		8649-002	AC		01/26/11	01/31/11	BW	Radium-228 in Water
			8649-002	GAM		01/13/11	01/31/11	MWT	Gamma Emitters in Water
			8649-002	RA		01/22/11	01/28/11	BW	Radium-226 in Water
			8649-002	SR		01/24/11	01/31/11	BW	Strontium-90 in Water
			8649-002	U_T		01/20/11	01/24/11	BW	Uranium, Total
S012369-03	Lab Control Sample		8654-003	80A/80		01/06/11	01/07/11	BW	Gross Alpha in Water
		WATER	8654-003	80B/80		01/06/11	01/07/11	BW	Gross Beta in Water
			8654-003	AC		01/24/11	01/25/11	BW	Radium-228 in Water
			8654-003	GAM		01/05/11	01/11/11	MWT	Gamma Emitters in Water
			8654-003	Н		01/12/11	01/18/11	BW	Tritium in Water
			8654-003	RA		01/22/11	01/24/11	BW	Radium-226 in Water
			8654-003	SR		01/13/11	01/25/11	BW	Strontium-90 in Water
			8654-003	U_T		01/20/11	01/24/11	BW	Uranium, Total
S012369-04	Method Blank		8654-004	80A/80		01/06/11	01/07/11	BW	Gross Alpha in Water
		WATER	8654-004	80B/80		01/06/11	01/07/11	BW	Gross Beta in Water
			8654-004	AC		01/24/11	01/25/11	BW	Radium-228 in Water
			8654-004	GAM		01/05/11	01/11/11	MWT	Gamma Emitters in Water
			8654-004	Н		01/12/11	01/18/11	BW	Tritium in Water
			8654-004	RA		01/22/11	01/24/11	BW	Radium-226 in Water
			8654-004	SR		01/13/11	01/25/11	BW	Strontium-90 in Water
			8654-004	U_T		01/20/11	01/24/11	BW	Uranium, Total

WORK SUMMARY
Page 1

SUMMARY DATA SECTION

Page 6

Lab id EAS

Protocol TA

Version Ver 1.0

Form DVD-LWS

Version 3.06

Report date 02/05/11

SDG 8649

SDG 8649
Contact N. Joseph Verville

WORK SUMMARY, cont.

Client <u>Test America, Inc.</u>
Contract <u>ITL2272</u>

LAB SAMPLE	CLIENT SAMPLE ID								
COLLECTED RECEIVED	LOCATION CUSTODY SAS no	MATRIX	PLANCHET	TEST	SUF- FIX	ANALYZED	REVIEWED	вч	METHOD
S012369-05	Duplicate (S012369-01)		8654-005	80 A /80		01/06/11	01/07/11	BW	Gross Alpha in Water
12/26/10	Boeing - SSFL	WATER	8654-005	80B/80		01/06/11	01/07/11	BW	Gross Beta in Water
12/29/10			8654-005	AC,		01/24/11	01/25/11	BW	Radium-228 in Water
			8654-005	GAM		01/05/11	01/11/11	MWT	Gamma Emitters in Water
			8654-005	Н		01/12/11	01/18/11	BW	Tritium in Water
			8654-005	RA		01/22/11	01/24/11	BW	Radium-226 in Water
			8654-005	SR		01/13/11	01/25/11	BW	Strontium-90 in Water
			8654-005	U_T		01/20/11	01/24/11	BW	Uranium, Total
S101004-02	Lab Control Sample		8657-002	80A/80		01/11/11	01/12/11	BW	Gross Alpha in Water
		WATER	8657-002	80B/80		01/11/11	01/12/11	BW	Gross Beta in Water
			8657-002	AC		01/26/11	01/31/11	BW	Radium-228 in Water
			8657-002	GAM		01/10/11	01/31/11	MWT	Gamma Emitters in Water
			8657-002	RA		01/21/11	01/24/11	BW	Radium-226 in Water
			8657-002	SR		01/26/11	01/31/11	BW	Strontium-90 in Water
			8657-002	U_T		01/20/11	01/24/11	BW	Uranium, Total
S101004-03	Method Blank		8657-003	80A/80		01/11/11	01/12/11	BW	Gross Alpha in Water
		WATER	8657-003	80B/80		01/11/11	01/12/11	BW	Gross Beta in Water
		•	8657-003	AC		01/26/11	01/31/11	BW	Radium-228 in Water
			8657-003	GAM		01/10/11	01/31/11	MWT	Gamma Emitters in Water
			8657-003	RA		01/21/11	01/24/11	BW	Radium-226 in Water
			8657-003	SR		01/26/11	01/31/11	BW	Strontium-90 in Water
			8657-003	U_T		01/20/11	01/24/11	BW	Uranium, Total
S101004-04	Duplicate (S101004-01)		8657-004	80A/80		01/11/11	01/12/11	BW	Gross Alpha in Water
12/30/10	Boeing - SSFL	WATER	8657-004	80B/80		01/11/11	01/12/11	BW	Gross Beta in Water
12/31/10			8657-004	AC		01/26/11	01/31/11	BW	Radium-228 in Water
			8657-004	GAM		01/11/11	01/31/11	MWT	Gamma Emitters in Water
			8657-004	RA		01/21/11	01/24/11	BW	Radium-226 in Water
			8657-004	SR		01/26/11	01/31/11	BW	Strontium-90 in Water
			8657-004	U_T		01/20/11	01/24/11	BW	Uranium, Total

WORK SUMMARY

Page 2

SUMMARY DATA SECTION

Page 7

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LWS

 Version
 3.06

 Report date
 02/05/11

SDG 8649

SDG <u>8649</u>
Contact <u>N. Joseph Verville</u>

WORK SUMMARY, cont.

Client Test America, Inc.
Contract ITL2272

TEST	SAS no	COUNTS	OF TESTS REFERENCE	вч	SAMPLE TYPE CLIENT MORE	RE	BLANK	LCS	DUP SPIKE	TOTAL
80A/80		Gross Alpha in Water	900.0		2		2	2	2 '	8
80B/80		Gross Beta in Water	900.0		2		2	2	2	8
AC		Radium-228 in Water	904.0		2		2	2	2	8
GAM		Gamma Emitters in Water	901.1		2		2	2	2	8
н		Tritium in Water	906.0		1		1	1	1	4
RA		Radium-226 in Water	903.1		2		2	. 2	2	8
SR		Strontium-90 in Water	905.0		2		2	2	2	8
U_T		Uranium, Total	D5174		2		2	2	2	8
TOTALS					15		15	15	15	60

WORK SUMMARY
Page 3

SUMMARY DATA SECTION

Page 8

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LWS

 Version
 3.06

 Report date
 02/05/11

8654-004

METHOD BLANK

Method Blank

SDG 8649 Client <u>Test America</u>, <u>Inc</u>. Contact N. Joseph Verville Contract ITL2272

Lab sample id <u>S012369-04</u> Client sample id <u>Method Blank</u>

Dept sample id 8654-004

Material/Matrix _____ WATER

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	0.205	0.31	0.492	3.00	Ü	80A
Gross Beta	12587472	-0.321	0.59	0.999	4.00	U	80B
Tritium	10028178	22.6	160	272	500	Ū	H
Radium-226	13982633	0.034	0.34	0.640	1.00	U	RA
Radium-228	15262201	-0.118	0.17	0.473	1.00	U	AC
Strontium-90	10098972	0.064	0.30	0.666	2.00	Ū	SR
Uranium, Total		0	0.007	0.017	1.00	U	UT
Potassium-40	13966002	U		20.1	25.0	Ū	GAM
Cesium-137	10045973	Ū		1.73	20.0	υ	GAM

QC-BLANK #76729

METHOD BLANKS Page 1 SUMMARY DATA SECTION Page 9

Lab id EAS Protocol <u>TA</u> Version <u>Ver 1.0</u> Form DVD-DS Version 3.06 Report date <u>02/05/11</u>

8657-003

METHOD BLANK

Method Blank

	8649 N. Joseph Verville	Client Contract	Test America, ITL2272	Inc.	
Lab sample id Dept sample id		Client sample id Material/Matrix			WATER

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	0.035	0.30	0.620	3.00	υ	80A
Gross Beta	12587472	-0.211	0.63	1.11	4.00	U	80B
Tritium	10028178	N.A.			500		H
Radium-226	13982633	0.053	0.35	0.627	1.00	U	RA
Radium-228	15262201	-0.165	0.28	0.717	1.00	U	AC
Strontium-90	10098972	0.357	0.92	2.02	2.00	U	SR
Uranium, Total		0	0.007	0.017	1.00	U	U_T
Potassium-40	13966002	υ		22.5	25.0	U	GAM
Cesium-137	10045973	U .		0.916	20.0	Ū	GAM

QC-BLANK #76735

METHOD BLANKS
Page 2
SUMMARY DATA SECTION
Page 10

SDG 8649

8654-003

LAB CONTROL SAMPLE

Lab Control Sample

WATER

SDG 8649
Contact N. Joseph Verville

Client <u>Test America</u>, Inc.

Contract ITL2272

Lab sample id <u>S012369-03</u>

Dept sample id 8654-003

Client sample id Lab Control Sample

Material/Matrix _____

ANALYTE	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ADDED pCi/L	2σ ERR pCi/L	REC %	2σ LMTS (TOTAL)	PROTOCOL LIMITS
Gross Alpha	36.6	2.4	0.654	3.00		80A	40.4	1.6	91	80-120	70-130
Gross Beta	33.6	1.6	1.58	4.00		80B	35.0	1.4	96	88-112	70-130
Tritium	2420	260	271	500		Н	2550	100	95	86-114	80-120
Radium-226	58.4	1.9	0.577	1.00		RA	55.7	2.2	105	82-118	80-120
Radium-228	4.53	0.30	0.432	1.00		AC	4.62	0.18	98	87-113	60-140
Strontium-90	17.9	1.4	0.597	2.00		SR	17.5	0.70	102	86-114	80-120
Uranium, Total	59.8	7.2	0.174	1.00		U_T	62.5	2.5	96	88-112	80-120
Cobalt-60	94.8	4.6	2.23	10.0		GAM	102	4.1	93	91-109	80-120
Cesium-137	114	4.2	2.92	20.0		GAM	110	4.4	104	91-109	80-120

QC-LCS #76728

LAB CONTROL SAMPLES

Page 1

SUMMARY DATA SECTION

Page 11

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LCS

 Version
 3.06

 Report date
 02/05/11

SDG 8649

8657-002

LAB CONTROL SAMPLE

Lab Control Sample

SDG 8649
Contact N. Joseph Verville

Client <u>Test America, Inc.</u>

Contract ITL2272

Lab sample id <u>S101004-02</u>

Dept sample id <u>8657-002</u>

Client sample id Lab Control Sample

Material/Matrix WATER

ANALYTE	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ADDED pCi/L	2σ ERR pCi/L	REC %	2σ LMTS (TOTAL)	PROTOCOL LIMITS
Gross Alpha	36.1	2.2	0.821	3.00		80A	40.4	1.6	89	80-120	70-130
Gross Beta	33.7	1.4	1.13	4.00		80B	35.0	1.4	96	88-112	70-130
Tritium	N.A.			500		н					80-120
Radium-226	59.0	2.5	0.639	1.00		RA	55.7	2.2	106	82-118	80-120
Radium-228	4.07	0.98	0.438	1.00		AC	4.62	0.18	88	77-123	60-140
Strontium-90	17.8	1.9	1.12	2.00		SR	17.5	0.70	102	84-116	80-120
Uranium, Total	60.8	7.3	0.174	1.00		ד_ט	62.5	2.5	97	88-112	80-120
Cobalt-60	104	5.2	2.76	10.0		GAM	102	4.1	102	90-110	80-120
Cesium-137	117	4.6	3.40	20.0		GAM	110	4.4	106	91-109	80-120

QC-LCS #76734

LAB CONTROL SAMPLES
Page 2
SUMMARY DATA SECTION
Page 12

Lab id EAS
Protocol TA
Version Ver 1.0

Form DVD-LCS
Version 3.06

Report date <u>02/05/11</u>

SDG 8649

8654-005

DUPLICATE

ITL2489-03

SDG <u>8649</u>

Contact N. Joseph Verville

DUPLICATE

Lab sample id S012369-05

Dept sample id 8654-005

ORIGINAL

Lab sample id <u>S012369-01</u>

Dept sample id 8654-001

Received 12/29/10___

Client Test America, Inc.

Contract ITL2272

Client sample id ITL2489-03

Location/Matrix Boeing - SSFL

WATER

Collected/Volume <u>12/26/10 08:58</u> 10.0 L

Chain of custody id ITL2489

ANALYTE	DUPLICATE pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ORIGINAL pCi/L	2σ ERR (COUNT)	MDA pCi/L	QUALI- FIERS	RPD %	3 <i>σ</i> ΤΟΤ	DER σ
Gross Alpha	1.65	0.42	0.342	3.00	J	A08	1.89	0.47	0.400	J	14	69	0.6
Gross Beta	3.05	0.59	0.819	4.00	J	80B	3.06	0.63	0.885	J	0	48	0
Tritium	44.4	160	267	500	υ	Н	-40.3	150	270	U	-		0.8
Radium-226	-0.022	0.31	0.592	1.00	υ	RA	0.097	0.36	0.653	U	-		0.5
Radium-228	0.035	0.16	0.446	1.00	υ	AC	0.109	0.17	0.456	U	-		0.6
Strontium-90	-0.005	0.29	0.693	2.00	ŭ	SR	0.222	0.33	0.684	U	-		1.0
Uranium, Total	0.164	0.023	0.017	1.00	J	U_T	0.177	0.022	0.017	J	8	28	0.8
Potassium-40	Ū		53.7	25.0	Ū	GAM	· ŭ		53.7	υ	_		0
Cesium-137	U		2.68	20.0	U	GAM	σ		2.68	U	-		0

QC-DUP#1 76730

DUPLICATES

Page 1

SUMMARY DATA SECTION

Page 13

Lab id <u>EAS</u>
Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form DVD-DUP

Version <u>3.06</u>
Report date <u>02/05/11</u>

SDG 8649

8657-004

DUPLICATE

ITL2724-02

SDG 8649

Contact N. Joseph Verville

ORIGINAL

Contract ITL2272

Client sample id ITL2724-02

DUPLICATE

Lab sample id <u>S101004-04</u> Dept sample id <u>8657-004</u> Lab sample id <u>S101004-01</u>

Location/Matrix Boeing - SSFL

WATER

Dept sample id <u>8657-001</u>

Received <u>12/31/10</u>

Collected/Volume <u>12/30/10 02:55</u> <u>10.0 L</u>

Client <u>Test America</u>, <u>Inc</u>.

Chain of custody id ITL2724

ANALYTE	DUPLICATE pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ORIGI NA L pCi/L	2σ ERR (COUNT)	MDA pCi/L	QUALI- FIERS	RPD	3 <i>σ</i> ΤΟΤ	DER σ
Gross Alpha	0.672	0.31	0.372	3.00	J	A08	0.336	0.29	0.412	Ū	67	134	1.5
Gross Beta	1.60	0.58	0.884	4.00	J	80B	1.23	0.54	0.835	J	26	87	0.9
Tritium	N.A.			500		н	N.A.						
Radium-226	0.082	0.32	0.566	1.00	U	RA	0.146	0.31	0.541	ΰ	-		0.3
Radium-228	0.063	0.29	0.734	1.00	U	AC	0.030	0.21	0.458	υ	-		0.2
Strontium-90	-0.236	0.71	1.75	2.00	U	SR	-0.099	0.80	1.94	υ	-		0.3
Uranium, Total	0.082	0.012	0.017	1.00	J	U_T	0.093	0.013	0.017	J	13	30	1.2
Potassium-40	ΰ		28.0	25.0	σ	GAM	Ū		16.2	U	-		0.7
Cesium-137	Ω		1.50	20.0	υ	GAM	Ū		1.25	U	-		0.3

QC-DUP#1 76736

DUPLICATES Page 2 SUMMARY DATA SECTION Page 14

Lab id EAS Protocol TA

Version <u>Ver 1.0</u>

Form DVD-DUP

Version 3.06 Report date <u>02/05/11</u>

8649-001

DATA SHEET

ITL2272-03

Chain of custody id ITL2272

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	5.10	0.71	0.467	3.00		A08
Gross Beta	12587472	5.75	0.71	0.926	4.00		80B
Tritium	10028178	49.5	160	271	500	U	Н
Radium-226	13982633	0.888	0.48	0.679	1.00	J	RA
Radium-228	15262201	0.262	0.24	0.556	1.00	U	AC
Strontium-90	10098972	-0.041	0.33	0.780	2.00	U	SR
Uranium, Total		0.477	0.055	0.017	1.00	J	UT
Potassium-40	13966002	ប		16.2	25.0	Ū	GAM
Cesium-137	10045973	υ		1.28	20.0	υ	GAM

DATA SHEETS
Page 1
SUMMARY DATA SECTION
Page 15

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-DS
Version 3.06
Report date 02/05/11

8649-002

DATA SHEET

ITL2272-03 (TRIP-BLANK)

Client <u>Test America, Inc.</u> Contract <u>ITL2272</u>

Lab sample id <u>S012364-02</u> Dept sample id <u>8649-002</u>

SDG 8649

Received <u>12/29/10</u>

Contact N. Joseph Verville

Client sample id ITL2272-03 (TRIP-BLANK) Location/Matrix Boeing - SSFL

WATER Collected/Volume <u>12/23/10 10:54</u> <u>10.0 L</u>

Chain of custody id ITL2272

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	0.004	0.15	0.273	3.00	U	A08
Gross Beta	12587472	-0.182	0.47	0.788	4.00	U	80B
Radium-226	13982633	0.158	0.40	0.713	1.00	U	RA
Radium-228	15262201	0.060	0.21	0.402	1.00	U	AC
Strontium-90	10098972	0.015	0.31	0.630	2.00	U	SR
Uranium, Total		0	0.007	0.017	1.00	U	U_T
Potassium-40	13966002	Ū		42.5	25.0	U	GAM
Cesium-137	10045973	Ū		2.32	20.0	บ	GAM

DATA SHEETS Page 2 SUMMARY DATA SECTION Page 16

Lab id EAS Protocol TA Version <u>Ver 1.0</u> Form DVD-DS Version 3.06 Report date <u>02/05/11</u>

SDG 8649

Test AC Matrix WATER

SDG 8649

Contact N. Joseph Verville

LAB METHOD SUMMARY

RADIUM-228 IN WATER BETA COUNTING Client <u>Test America</u>, <u>Inc</u>.

Contract ITL2272

RESULTS

SAMPLE ID TES	SUF- T FIX PLANCHET	CLIENT SAMPLE ID	Radium-228	
Preparation bat	ch 7271-037			
S012364-01	8649-001	ITL2272-03	υ	
S012369-03	8654-003	Lab Control Sample	ok	
S012369-04	8654-004	Method Blank	υ	
S012369-05	8654-005	Duplicate (S012369-01)	- U	
Preparation bat S012364-02	ch 7271-039 8649-002	ITL2272-03 (TRIP-BLANK)	σ	
3012304-02				
S101004-02	8657-002	Lab Control Sample	ok	
	8657-002 8657-003	Lab Control Sample Method Blank	ok U	

METHOD PERFORMANCE

LAB	RAW	SUF-				MDA	ALIQ	PREP	DILU-	YIELD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST	FIX	CLIENT	SAMPLE	ID	pCi/L	L	FAC	TION	ક	왕	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation	batch	1 727	1-037	2σ pr	ep error	10.4 % Re	eference	Lab 1	Notebool	c No.	7271	pg.037	7			***		
S012364-01			ITL227	2-03	-	0.556	1.80			75		150			32	01/24/11	01/24	GRB-206
S012369-03			Lab Co	ntrol Sa	umple	0.432	1.80			74		150				01/24/11	01/24	GRB-230
S012369-04			Method	Blank		0.473	1.80			73		150				01/24/11	01/24	GRB-231
S012369-05			Duplica	ate (S01	2369-01)	0.446	1.80			73		150			29	01/24/11	01/24	GRB-232

Preparation	batch	727	1-039	2σ pr	ep error	10.4 % Re	eference	Lab 1	Notebool	s No.	7271	pg.039	•					
S012364-02			ITL227	2-03 (TF	RIP-BLANK)	0.402	1.80			76		150			34	01/26/11	01/26	GRB-232
S101004-02	4		Lab Co	ntrol Sa	mple	0.438	1.80			85		150				01/26/11	01/26	GRB-204
S101004-03			Method	Blank		0.717	1.80			88		150				01/26/11	01/26	GRB-229
S101004-04			Duplica	ate (S10	1004-01)	0.734	1.80			78		150			27	01/26/11	01/26	GRB-230
Nominal val	ues ar	nd li	mits fr	om metho	od.	1.00	1.80			30-10	5	50	·		180			

METHOD SUMMARIES

Page 1

SUMMARY DATA SECTION

Page 17

SDG 8649

Test AC Matrix SDG <u>8649</u> Contact N. Joseph Verville

LAB METHOD SUMMARY, cont.

Client <u>Test America, Inc.</u> Contract ITL2272

RADIUM-228 IN WATER BETA COUNTING

PROCEDURES REFERENCE

904.0

DWP-894

Sequential Separation of Actinium-228 and

Radium-226 in Drinking Water (>1 Liter Aliquot),

AVERAGES ± 2 SD MDA 0.525 ± 0.264 FOR 8 SAMPLES YIELD <u>78</u> ± <u>11</u>

METHOD SUMMARIES Page 2 SUMMARY DATA SECTION Page 18

Lab id EAS Protocol TA Version <u>Ver 1.0</u> Form DVD-LMS Version 3.06 Report date 02/05/11

SDG 8649

Test <u>SR</u> Matrix <u>WATER</u>

SDG 8649

Contact N. Joseph Verville

LAB METHOD SUMMARY

STRONTIUM-90 IN WATER
BETA COUNTING

Client <u>Test America</u>, <u>Inc</u>.

Contract ITL2272

RESULTS

SAMPLE ID TEST	SUF-	PLANCHET	CLIENT SAMPLE ID	Stronti	um-90		 		
Preparation bate	ch 727	1-037							
S012364-01		8649-001	ITL2272-03	Ū					
S012369-03		8654-003	Lab Control Sample	ok					
S012369-04		8654-004	Method Blank	U				•	
S012369-05		8654-005	Duplicate (S012369-01)	-	υ				
Preparation bate	ch 727	1-039							
S012364-02		8649-002	ITL2272-03 (TRIP-BLANK)	U					
S101004-02		8657-002	Lab Control Sample	ok					
S101004-03		8657-003	Method Blank	U					
S101004-04		8657-004	Duplicate (S101004-01)	-	Ū				

METHOD PERFORMANCE

LAB	RAW SU	F-		MDA	ALIQ	PREP	DILU-	YIELD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FI	X CLIENT	SAMPLE ID	pCi/L	L	FAC	TION	용	8	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation	batch 7	271-037	2σ prep error	10.4 % Re	ference	Lab N	Noteboo	k No.	7271	pg.03	7			*		
S012364-01		ITL227	2-03	0.780	0.500		•	69		50			21	01/08/11	01/13	GRB-204
S012369-03		Lab Co	ntrol Sample	0.597	0.500			83		50				01/08/11	01/13	GRB-222
S012369-04		Method	Blank	0.666	0.500			82		50				01/08/11	01/13	GRB-201
S012369-05		Duplic	ate (S012369-01)	0.693	0.500			72		50			18	01/08/11	01/13	GRB-202
Preparation	batch 7		2σ prep error			Lab N	Noteboo		7271		9		32	01/19/11	01/24	GRB-223
S012364-02 S101004-02			2-03 (TRIP-BLANK) ntrol Sample) 0.630 1.12	0.500			80 59		100 50			32	01/19/11	01/24 01/26	
S101004-03			Blank	2.02				44		50				01/19/11	01/26	GRB-230
S101004-04		Duplic	ate (S101004-01)	1.75	0.500			55		50			27	01/19/11	01/26	GRB-231
Nominal val	ues and	limits fr	om method	2.00	0.500			30-10	5	50			180			

METHOD SUMMARIES

Page 3

SUMMARY DATA SECTION

Page 19

 Lab id EAS

 Protocol TA

 Version Ver 1.0

 Form DVD-LMS

 Version 3.06

Report date <u>02/05/11</u>

SDG 8649

Test	SR Matrix
SDG	8649
Contact	N. Joseph Verville

LAB METHOD SUMMARY, cont.

Client Test America, Inc. Contract ITL2272

STRONTIUM-90 IN WATER BETA COUNTING

PROCEDURES REFERENCE 905.0 DWP-380

Strontium in Drinking Water, rev 8

AVERAGES ± 2 SD MDA <u>1.03</u> ± <u>1.11</u> YIELD 68 ± 28 FOR 8 SAMPLES

METHOD SUMMARIES Page 4 SUMMARY DATA SECTION Page 20

Lab id EAS Protocol TA Version Ver 1.0 Form DVD-LMS Version 3.06 Report date 02/05/11

SDG 8649

Test 80A Matrix WATER

SDG 8649

Contact N. Joseph Verville

LAB METHOD SUMMARY

GROSS ALPHA IN WATER
GAS PROPORTIONAL COUNTING

Client Test America, Inc.

Contract ITL2272

RESULTS

LAB	RAW SUF-				
SAMPLE ID	TEST FIX	PLANCHET	CLIENT SAMPLE ID	Gross Alpha	
Preparation	batch 727	1-037			
S012364-01	80	8649-001	ITL2272-03	5.10	
S012369-03	80	8654-003	Lab Control Sample	ok	
S012369-04	80	8654-004	Method Blank	U	
S012369-05	80	8654-005	Duplicate (S012369-01)	ok J	
Preparation	batch 727	1-039			
S012364-02	80	8649-002	ITL2272-03 (TRIP-BLANK)	υ	
S101004-02	80	8657-002	Lab Control Sample	ok	
S101004-03	80	8657-003	Method Blank	υ	
	80	8657-004	Duplicate (S101004-01)	ok J	

METHOD PERFORMANCE

LAB	RAW SUF	-	MDA	ALIQ	PREP	DILU-	RESID	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT SAMPLE ID	pCi/L	L	FAC	TION	mg	ક	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Dwannation	hatah 70	71-037 2σ prep error	20 6 % Po	forongo	Tab N	io+ ohoo	le No. 1	7271	na 025	7					
Preparation					Law F	ocesoo.		1211		,					
S012364-01	80	ITL2272-03	0.467	0.300			41		400			14	01/06/11	01/06	GRB-214
S012369-03	80	Lab Control Sample	0.654	0.250			60		400				01/06/11	01/06	GRB-107
S012369-04	80	Method Blank	0.492	0.250			62		400				01/06/11	01/06	GRB-109
S012369-05	80	Duplicate (S012369-01)	0.342	0.300			31		400			11	01/06/11	01/06	GRB-111
															
Preparation	batch 72	71-039 2σ prep error	20.6 % Re	ference	Lab N	loteboo	k No. '	7271	pg.039	•					
S012364-02	80	ITL2272-03 (TRIP-BLANK)	0.273	0.300			0		400			22	01/14/11	01/14	GRB-109
S101004-02	80	Lab Control Sample	0.821	0.250			62		400				01/11/11	01/11	GRB-214
S101004-03	80	Method Blank	0.620	0.250			61		400				01/11/11	01/11	GRB-216
S101004-04	80	Duplicate (S101004-01)	0.372	0.300			20		400			12	01/11/11	01/11	GRB-105
Nominal val	ues and l	imits from method	3.00	0.250			0-20	0	100		,	180			
110111111111111111111111111111111111111	unu 1		2.00	0.250			2 20	•							

METHOD SUMMARIES

Page 5

SUMMARY DATA SECTION

Page 21

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LMS

 Version
 3.06

 Report date
 02/05/11

SDG 8649

Test	80A Matrix
SDG	8649
Contact	N. Joseph Verville

LAB METHOD SUMMARY, cont.

Client <u>Test America</u>, <u>Inc</u>. Contract ITL2272

GROSS ALPHA IN WATER GAS PROPORTIONAL COUNTING

PROCEDURES REFERENCE 900.0

DWP-121 Gross Alpha and Gross Beta in Drinking Water,

rev 10

AVERAGES ± 2 SD $MDA = 0.505 \pm 0.366$ FOR 8 SAMPLES RESIDUE <u>42</u> ± <u>47</u>

METHOD SUMMARIES Page 6 SUMMARY DATA SECTION Page 22

Lab id EAS Protocol TA Version Ver 1.0 Form DVD-LMS Version 3.06 Report date <u>02/05/11</u>

SDG 8649

Test 80B Matrix WATER

SDG 8649

Contact N. Joseph Verville

LAB METHOD SUMMARY

GROSS BETA IN WATER
GAS PROPORTIONAL COUNTING

Client <u>Test America, Inc.</u>
Contract <u>ITL2272</u>

RESULTS

LAB	RAW SUF-			
SAMPLE ID	TEST FIX	PLANCHET	CLIENT SAMPLE ID	Gross Beta
Preparation	batch 727	1-037		
S012364-01	80	8649-001	ITL2272-03	5.75
S012369-03	80	8654-003	Lab Control Sample	ok
S012369-04	80	8654-004	Method Blank	U
S012369-05	80	8654-005	Duplicate (S012369-01)	ok J
Preparation S012364-02		1-039 8649-002	ITL2272-03 (TRIP-BLANK)	ט
3012304.02		8657-002	Lab Control Sample	ok
S101004-02				
S101004-02 S101004-03		8657-003	Method Blank	U

METHOD PERFORMANCE

	RAW SUF-	•	MDA	ALIQ	PREP	DILU-	RESID	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT SAMPLE ID	pCi/L	L	FAC	TION	mg	8	min	keV	KeV	HELLD	PREPARED	YZED	DETECTOR
Preparation	batch 727	71-037 2ø prep error	11.0 % Re	ference	Lab N	oteboo!	c No.	7271	pg.037	7	- 11				
S012364-01	80	ITL2272-03	0.926	0.300			41		400			14	01/06/11	01/06	GRB-214
S012369-03	80	Lab Control Sample	1.58	0.250			60		400				01/06/11	01/06	GRB-107
S012369-04	80	Method Blank	0.999	0.250			62		400				01/06/11	01/06	GRB-109
S 012369-05	80	Duplicate (S012369-01)	0.819	0.300			31		400			11	01/06/11	01/06	GRB-111
Preparation	hatch 727														
Freparacion	Duccii /2/	71-039 2 <i>o</i> prep error	11.0 % Re	ference	Lab N	loteboo	k No.	7271	pg.039	•					
S012364-02	80	ITL2272-03 (TRIP-BLANK)	0.788	0.300	Lab N	loteboo	0	7271	400	•		22			
-	80			0.300 0.250	Lab N	loteboo!	0 62	7271	400 400	•		22	01/11/11	01/11	GRB-214
S012364-02	80	ITL2272-03 (TRIP-BLANK)	0.788	0.300	Lab N	ioteboo	0	7271	400	•		22			GRB-214
S012364-02 S101004-02	80 80 80	ITL2272-03 (TRIP-BLANK) Lab Control Sample	0.788 1.13 1.11	0.300 0.250	Lab N	ioteboo	0 62	7271	400 400				01/11/11	01/11 01/11	GRB-214 GRB-216

METHOD SUMMARIES

Page 7

SUMMARY DATA SECTION

Page 23

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LMS

 Version
 3.06

 Report date
 02/05/11

SDG 8649

Test 80B Matrix ___ SDG 8649 Contact N. Joseph Verville

LAB METHOD SUMMARY, cont.

Client <u>Test America</u>, <u>Inc</u>. Contract ITL2272

GROSS BETA IN WATER

GAS PROPORTIONAL COUNTING

PROCEDURES REFERENCE 900.0

DWP-121

Gross Alpha and Gross Beta in Drinking Water,

rev 10

AVERAGES ± 2 SD MDA <u>1.03</u> ± <u>0.510</u> FOR 8 SAMPLES RESIDUE <u>42</u> ± <u>47</u>

METHOD SUMMARIES SUMMARY DATA SECTION Page 24

Lab id EAS Protocol TA Version Ver 1.0 Form DVD-LMS Version 3.06 Report date <u>02/05/11</u>

SDG 8649

Test GAM Matrix WATER

SDG <u>8649</u>

Contact N. Joseph Verville

LAB METHOD SUMMARY

GAMMA EMITTERS IN WATER
GAMMA SPECTROSCOPY

Client <u>Test America</u>, <u>Inc.</u>

Contract ITL2272

RESULTS

LAB RAW SAMPLE ID TES	SUF-	PLANCHET	CLIENT SAMPLE ID	Cobalt-60	Cesium-1	137
Preparation bat	ah 727	1 027		<u> </u>		AND THE PROPERTY OF THE PROPER
S012364-01	.CII 121	8649-001	ITL2272-03		υ	
S012369-03		8654-003	Lab Control Sample	ok	ok	
S012369-04		8654-004	Method Blank	OK.	U	
S012369-05		8654-005	Duplicate (S012369-01)		-	υ
Preparation bat	ch 727	1-039				
S012364-02	.011 /11/	8649-002	ITL2272-03 (TRIP-BLANK)		υ	
S101004-02		8657-002	Lab Control Sample	ok	ok	
S101004-03		8657-003	Method Blank		Ü	
S101004-04		8657-004	Duplicate (S101004-01)		-	U
	•			······································		
Nominal values	and li	mits from π	nethod RDLs (pCi/L)	10.0	20.0	

METHOD PERFORMANCE

LAB	RAW	SUF-				MDA	ALIQ	PREP	DILU-	YIELL	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST	FIX	CLIENT	SAMPLE	ID	pCi/L	L	FAC	TION	8	*	min	keV	KeV	HELLD	PREPARED	YZED	DETECTOR
Preparation	batch	7271	L-037	2σ pi	rep erro	r 7.0 %	Reference	Lab 1	Notebool	. No.	7271	pg.03	7					
S012364-01			ITL2272	2-03			2.00					539			13	01/05/11	01/05	MB,08,00
S012369-03			Lab Cor	ntrol Sa	ample		2.00					540				01/05/11	01/05	MB,02,00
S012369-04			Method	Blank			2.00					541				01/05/11	01/05	01,04,00
S012369-05			Duplica	ate (SO	L2369-01)	2.00					540			10	01/05/11	01/05	MB,05,00
		7077	020			7 0 %	Deference	Tob 1	Matabaal	. 170	7071			***************************************	***************************************			
Preparation	Datch	. /2/1		-	rep erro		Reference	rarp i	NOTEDOO	E NO.	1211		,				/	
S012364-02			ITL2272	2-03 (TF	RIP-BLAN	K)	2.00					712			21	01/10/11	01/13	MB,05,00
S101004-02			Lab Cor	ntrol Sa	ample		2.00					946				01/10/11	01/10	MB,05,00
S101004-03			Method	Blank			2.00					924				01/10/11	01/10	MB,08,00
S101004-04			Duplica	ate (S10	1004-01		2.00					596			12	01/10/11	01/11	01,02,00
Nominal valu	ıes an	d lim	nits fro	om metho	od	6.00	2.00					400		,	180			

METHOD SUMMARIES

Page 9

SUMMARY DATA SECTION

Page 25

 Lab id EAS

 Protocol TA

 Version Ver 1.0

 Form DVD-LMS

 Version 3.06

Report date <u>02/05/11</u>

SDG 8649

Test <u>GAM</u> Matrix ____ SDG <u>8649</u>

Contact N. Joseph Verville

LAB METHOD SUMMARY, cont.

GAMMA EMITTERS IN WATER
GAMMA SPECTROSCOPY

Client <u>Test America, Inc.</u>
Contract <u>ITL2272</u>

PROCEDURES REFERENCE 901.1

DWP-100

Preparation of Drinking Water Samples for Gamma

Spectroscopy, rev 5

METHOD SUMMARIES

Page 10

SUMMARY DATA SECTION

Page 26

Lab id <u>EAS</u>
Protocol <u>TA</u>

Version Ver 1.0

Form <u>DVD-LMS</u>

Version 3.06

Report date <u>02/05/11</u>

SDG 8649

Test <u>U T</u> Matrix <u>WATER</u>
SDG <u>8649</u>

Contact N. Joseph Verville

LAB METHOD SUMMARY

URANIUM, TOTAL

KINETIC PHOSPHORIMETRY, UG

Client Test America, Inc.
Contract ITL2272

RESULTS

LAB	RAW SUF-	•		Uranium,	
SAMPLE ID	TEST FIX	PLANCHET	CLIENT SAMPLE ID	Total	
Preparation	batch 727	1-037			
S012364-01		8649-001	ITL2272-03	0.477 J	
S012369-03		8654-003	Lab Control Sample	ok	
S012369-04		8654-004	Method Blank	U	
S012369-05		8654-005	Duplicate (S012369-01)	ok J	
Preparation	batch 727	71-039			
S012364-02		8649-002	ITL2272-03 (TRIP-BLANK)	υ	
S101004-02		8657-002	Lab Control Sample	ok	
S101004-03		8657-003	Method Blank	U .	
S101004-04		8657-004	Duplicate (S101004-01)	ok J	
	WANTED TO THE PARTY OF THE PART				
Nominal val	lues and li	imits from m	method RDLs (pCi/L)	1.00	

METHOD PERFORMANCE

LAB	RAW SU	-		MDA	ALIQ	PREP	DILU- TION	% ATEIT			keV	KeV		PREPARED	ANAL-	DETECTOR
SAMPLE ID	TEST FI	K CLIENT	SAMPLE ID	pCi/L	L	FAC	TION	*	*	IUTII	Kev	ver	пеш	PREFARED	12150	DETECTOR
Preparation	batch 7	271-037	2σ prep error	Re	ference	Lab N	Notebook	No.	7271	pg.037	7					
S012364-01		ITL227	2-03	0.017	0.0200								28	01/20/11	01/20	KPA-001
S012369-03		Lab Co	ntrol Sample	0.174	0.0200									01/20/11	01/20	KPA-001
S012369-04		Method	Blank	0.017	0.0200									01/20/11	01/20	KPA-001
S012369-05		Duplic	ate (S012369-01)	0.017	0.0200								25	01/20/11	01/20	KPA-001
Preparation	batch 7	271-039	2σ prep error	Re	ference	Lab 1	Notebook	No.	7271	pg.039	€					
S012364-02			FE													
		1111227	2-03 (TRIP-BLANK)	0.017	0.0200								28	01/20/11	01/20	KPA-001
S101004-02			2-03 (TRIP-BLANK) ntrol Sample	0.017 0.174									28	01/20/11 01/20/11	•	KPA-001 KPA-001
S101004-02 S101004-03		Lab Co		0.174									28		•	KPA-001
		Lab Co Method	ntrol Sample	0.174	0.0200								28	01/20/11	01/20 01/20	KPA-001 KPA-001

METHOD SUMMARIES

Page 11

SUMMARY DATA SECTION

Page 27

SDG 8649

Test	UT Matrix
SDG	8649
Contact	N. Joseph Verville

LAB METHOD SUMMARY, cont.

Client Test America, Inc.
Contract ITL2272

URANIUM, TOTAL

KINETIC PHOSPHORIMETRY, UG

PROCEDURES	REFERENCE	D5174

AVERAGES ± 2 SD MDA 0.056 ± 0.145
FOR 8 SAMPLES YIELD ±

METHOD SUMMARIES

Page 12

SUMMARY DATA SECTION

Page 28

SDG 8649

Test <u>H</u> Matrix <u>WATER</u>
SDG <u>8649</u>

Contact N. Joseph Verville

LAB METHOD SUMMARY

TRITIUM IN WATER

LIQUID SCINTILLATION COUNTING

Client <u>Test America</u>, <u>Inc</u>.

Contract ITL2272

RESULTS

LAB RAW SUF-

Preparation	batch 727	1-037			
S012364-01		8649-001	ITL2272-03	σ	
S012369-03		8654-003	Lab Control Sample	ok	
S012369-04		8654-004	Method Blank	U	
S012369-05		8654-005	Duplicate (S012369-01)	-	U

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX CLIENT SAMPLE ID	MDA pCi/I	ALIQ L	PREP FAC		YIELD	EFF %	COUNT				PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 7271-037 2σ prep error	10.0 %	Reference	Lab 1	loteboo	k No.	7271	pg.037	7					
S012364-01	ITL2272-03	271	0.0100			100		50			20	01/12/11	01/12	LSC-004
S012369-03	Lab Control Sample	271	0.100			10		50				01/12/11	01/12	LSC-004
S012369-04	Method Blank	272	0.100			10		50				01/12/11	01/12	LSC-004
S012369-05	Duplicate (S012369-01)	267	0.0100			100		50			17	01/12/11	01/12	LSC-004
Nominal val	ues and limits from method	500	0.0100					100		***************************************	180			

l	PROCEDURES	REFERENCE	906.0
		DWP-212	Tritium in Drinking Water by Distillation, rev 8

AVERAGES ± 2 SD MDA 270 ± 4.43

FOR 4 SAMPLES YIELD 55 ± 104

METHOD SUMMARIES

Page 13

SUMMARY DATA SECTION

Page 29

SDG 8649

Test RA Matrix WATER

SDG 8649

Contact N. Joseph Verville

LAB METHOD SUMMARY

RADIUM-226 IN WATER RADON COUNTING Client <u>Test America</u>, <u>Inc.</u>

Contract ITL2272

RESULTS

SAMPLE ID TEST	SUF- FIX PLANCHET	CLIENT SAMPLE IÓ	Radium-226	
Preparation bate	h 7271-037	•		
S012364-01	8649-001	ITL2272-03	0.888 J	
S012369-03	8654-003	Lab Control Sample	ok	• **
5012369-04	8654-004	Method Blank	Ū	
S012369-05	8654-005	Duplicate (S012369-01)	- U	
Preparation batc	h 7271-039 8649-002	ITL2272-03 (TRIP-BLANK)	σ΄.	
	8657-002	Lab Control Sample	ok	
S101004-02				
S101004-02 S101004-03	8657-003	Method Blank	ΰ	

METHOD PERFORMANCE

LAB	RAW	SUF-			MDA	ALIQ	PREP	DILU-	YIELD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST	FIX	CLIENT	SAMPLE ID	pCi/L	L	FAC	TION	ક	ક	min	keV	KeV	HELLD	PREPARED	YZED	DETECTOR
Preparation	batcl	n 727	1-037	2σ prep error	16.4 % Re	ference	Lab 1	loteboo!	k No.	7271	pg.03	7					
S012364-01			ITL2272	2-03	0.679	0.100			100		87			30	01/22/11	01/22	RN-013
S012369-03			Lab Cor	ntrol Sample	0.577	0.100			100		178				01/22/11	01/22	RN-009
S012369-04			Method	Blank	0.640	0.100			100		87				01/22/11	01/22	RN-010
S012369-05			Duplica	ate (S012369-01)	0.592	0.100			100		87			27	01/22/11	01/22	RN-012
Preparation	batcl	n 727	1-039	2σ prep error	16.4 % Re	ference	Lab 1	Noteboo	k No.	7271	pg.03)	······				
S012364-02			ITL227	2-03 (TRIP-BLANK	0.713	0.100			100		87			30	01/22/11	01/22	RN-014
S101004-02			Lab Cor	ntrol Sample	0.639	0.100			100		106				01/21/11	01/21	RN-011
S101004-03			Method	Blank	0.627	0.100			100		106				01/21/11	01/21	RN-015
S101004-04			Duplica	ate (S101004-01)	0.566	0.100	¥		100		106			22	01/21/11	01/21	RN-014
Nominal val	ues aı	nd li	mits fro	om method	1.00	0.100					100			180			

METHOD SUMMARIES

Page 14

SUMMARY DATA SECTION

Page 30

SDG 8649

Test	RA Matrix
SDG	8649
Contact	N. Joseph Verville

LAB METHOD SUMMARY, cont.

Client Test America, Inc. Contract ITL2272

RADIUM-226 IN WATER RADON COUNTING

PROCEDURES REFERENCE 903.1

DWP-881A Ra-226 Screening in Drinking Water, rev 6

AVERAGES ± 2 SD

MDA 0.629 ± 0.101

FOR 8 SAMPLES

YIELD 100 ± 0

METHOD SUMMARIES Page 15

SUMMARY DATA SECTION

Page 31

Lab id EAS Protocol TA Version Ver 1.0 Form DVD-LMS Version 3.06 Report date <u>02/05/11</u>

SDG 8649

SDG <u>8649</u>
Contact <u>N. Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract <u>ITL2272</u>

SAMPLE SUMMARY

The Sample and QC Summary Reports show all samples, including QC samples, reported in one Sample Delivery Group (SDG).

The Sample Summary Report fully identifies client samples and gives the corresponding lab sample identification. The QC Summary Report shows at the sample level how the lab organized the samples into batches and generated QC samples. The Preparation Batch and Method Summary Reports show this at the analysis level.

The following notes apply to these reports:

- * LAB SAMPLE ID is the lab's primary identification for a sample.
- * DEPARTMENT SAMPLE ID is an alternate lab id, for example one assigned by a radiochemistry department in a lab.
- * CLIENT SAMPLE ID is the client's primary identification for a sample. It includes any sample preparation done by the client that is necessary to identify the sample.
- * QC BATCH is a lab assigned code that groups samples to be processed and QCed together. These samples should have similar matrices.
 - QC BATCH is not necessarily the same as SDG, which reflects samples received and reported together.
- * All Lab Control Samples, Method Blanks, Duplicates and Matrix Spikes are shown that QC any of the samples. Due to possible reanalyses, not all results for all these QC samples may be relevant to the SDG. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.

REPORT GUIDES

Page 1
SUMMARY DATA SECTION

Page 32

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-RG

 Version
 3.06

 Report date
 02/05/11

SDG 8649

SDG 8649
Contact N. Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>ITL2272</u>

PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches in one Sample Delivery Group (SDG) with information necessary to check the completeness and consistency of the SDG.

The following notes apply to this report:

- * The preparation batches are shown in the same order as the Method Summary Reports are printed.
- * Only analyses of planchets relevant to the SDG are included.
- * Each preparation batch should have at least one Method Blank and LCS in it to validate client sample results.
- * The QUALIFIERS shown are all qualifiers other than U, J, B, L and H that occur on any analysis in the preparation batch. The Method Summary Report has these qualifiers on a per sample basis.

These qualifiers should be reviewed as follows:

- X Some data has been manually entered or modified. Transcription errors are possible.
- P One or more results are 'preliminary'. The data is not ready for final reporting.
- 2 There were two or more results for one analyte on one planchet imported at one time. The results in DVD may not be the same as on the raw data sheets.

Other lab defined qualifiers may occur. In general, these should be addressed in the SDG narrative.

REPORT GUIDES

Page 2
SUMMARY DATA SECTION

Page 33

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06Report date 02/05/11

SDG 8649

SDG <u>8649</u>
Contact N. Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract <u>ITL2272</u>

WORK SUMMARY

The Work Summary Report shows all samples, including QC samples, and all relevant analyses in one Sample Delivery Group (SDG). This report is often useful as supporting documentation for an invoice.

The following notes apply to this report:

- * TEST is a code for the method used to measure associated analytes. Results and related information for each analyte are on the Data Sheet Report. In special cases, a test code used in the summary data section is not the same as in associated raw data. In this case, both codes are shown on the Work Summary.
- * SUFFIX is the lab's code to distinguish multiple analyses (recounts, reworks, reanalyses) of a fraction of the sample. The suffix indicates which result is being reported. An empty suffix normally identifies the first attempt to analyze the sample.
- * The LAB SAMPLE ID, TEST and SUFFIX uniquely identify all supporting data for a result. The Method Summary Report for each TEST has method performance data, such as yield, for each lab sample id and suffix and procedures used in the method.
- * PLANCHET is an alternate lab identifier for work done for one test. It, combined with the TEST and SUFFIX, may be the best link to raw data.
- * For QC samples, only analyses that directly QC some regular sample are shown. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.
- * The SAS (Special Analytical Services) Number is a client or lab assigned code that reflects special processing for samples, such as rapid turn around. Counts of tests done are lists by SAS number since it is likely to affect prices.

REPORT GUIDES

Page 3

SUMMARY DATA SECTION

Page 34

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06Report date 02/05/11

SDG 8649

SDG <u>8649</u>
Contact <u>N. Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>ITL2272</u>

DATA SHEET

The Data Sheet Report shows all results and primary supporting information for one client sample or Method Blank. This report corresponds to both the CLP Inorganics and Organics Data Sheet.

The following notes apply to this report:

- * TEST is a code for the method used to measure an analyte. If the TEST is empty, no data is available; the analyte was not analyzed for.
- * The LAB SAMPLE ID and TEST uniquely identify work within the Summary Data Section of a Data Package. The Work Summary and Method Summary Reports further identify raw data that underlies this work.

The Method Summary Report for each TEST has method performance data, such as yield, for each Lab Sample ID and a list of procedures used in the method.

- * ERRORs can be labeled TOTAL or COUNT. TOTAL implies a preparation (non-counting method) error has been added, as square root of sum of squares, to the counting error denoted by COUNT. The preparation errors, which may vary by preparation batch, are shown on the Method Summary Report.
- * A RESULT can be 'N.R.' (Not Reported). This means the lab did this work but chooses not to report it now, possibly because it was reported at another time.
- * When reporting a Method Blank, a RESULT can be 'N.A.' (Not Applicable). This means there is no reported client sample work in the same preparation batch as the Blank's result. This is likely to occur when the Method Blank is associated with reanalyses of selected work for a few samples in the SDG.

The following qualifiers are defined by the DVD system:

U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the limit.

REPORT GUIDES

Page 4

SUMMARY DATA SECTION

Page 35

SDG 8649

SDG 8649
Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract <u>ITL2272</u>

DATA SHEET

- J The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.
- B A Method Blank associated with this sample had a result without a U flag and, after correcting for possibly different aliquots, that result is greater than or equal to the MDA for this sample.

Normally, B is not assigned if U is. When method blank subtraction is shown on this report, B flags are assigned based on the unsubtracted values while U's are assigned based on the subtracted ones. Both flags can be assigned in this case.

For each sample result, all Method Blank results in the same preparation batch are compared. The Method Summary Report documents this and other QC relationships.

- L Some Lab Control Sample that QC's this sample had a low recovery. The lab can disable assignment of this qualifier.
- H Similar to 'L' except the recovery was high.
- P The RESULT is 'preliminary'.
- X Some data necessary to compute the RESULT, ERROR or MDA was manually entered or modified.
- 2 There were two or more results available for this analyte. The reported result may not be the same as in the raw data.

Other qualifiers are lab defined. Definitions should be in the SDG narrative.

The following values are underlined to indicate possible problems:

- * An MDA is underlined if it is bigger than its RDL.
- * An ERROR is underlined if the 1.645 sigma counting error is bigger than both the MDA and the RESULT, implying that the MDA

REPORT GUIDES
Page 5
SUMMARY DATA SECTION
Page 36

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06Report date 02/05/11

SDG 8649

SDG 8649
Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>ITL2272</u>

DATA SHEET

may not be a good estimate of the 'real' minimum detectable activity.

- * A negative RESULT is underlined if it is less than the negative of its 2 sigma counting ERROR.
- * When reporting a Method Blank, a RESULT is underlined if greater than its MDA. If the MDA is blank, the 2 sigma counting error is used in the comparison.

REPORT GUIDES
Page 6
SUMMARY DATA SECTION
Page 37

SDG 8649

SDG <u>8649</u>
Contact <u>N. Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract <u>ITL2272</u>

LAB CONTROL SAMPLE

The Lab Control Sample Report shows all results, recoveries and primary supporting information for one Lab Control Sample.

The following notes apply to this report:

- * All fields in common with the Data Sheet Report have similar usage. Refer to its Report Guide for details.
- * An amount ADDED is the lab's value for the actual amount spiked into this sample with its ERROR an estimate of the error of this amount.

An amount added is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- * REC (Recovery) is RESULT divided by ADDED expressed as a percent.
- * The first, computed limits for the recovery reflect:
 - 1. The error of RESULT, including that introduced by rounding the result prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- * The second limits are protocol defined upper and lower QC limits for the recovery.
- * The recovery is underlined if it is outside either of these ranges.

REPORT GUIDES
Page 7
SUMMARY DATA SECTION
Page 38

Lab id $\frac{EAS}{Protocol}$ TA

Version $\frac{Ver 1.0}{PVD-RG}$ Version $\frac{3.06}{PVD-RG}$ Report date $\frac{02/05/11}{PVD-RG}$

SDG 8649

SDG <u>8649</u>

Contact <u>N. Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract ITL2272

DUPLICATE

The Duplicate Report shows all results, differences and primary supporting information for one Duplicate and associated Original sample.

The following notes apply to this report:

* All fields in common with the Data Sheet Report have similar usage. This applies both to the Duplicate and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Duplicate has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

* The RPD (Relative Percent Difference) is the absolute value of the difference of the RESULTs divided by their average expressed as a percent.

If both RESULTs are less than their MDAs, no RPD is computed and a '-' is printed.

For an analyte, if the lab did work for both samples but has data for only one, the MDA from the sample with data is used as the other's result in the RPD.

* The first, computed limit is the sum, as square root of sum of squares, of the errors of the results divided by the average result as a percent, hence the relative error of the difference rather than the error of the relative difference. The errors include those introduced by rounding the RESULTs prior to printing.

If this limit is labeled TOT, it includes the preparation error in the RESULTs. If labeled CNT, it does not.

This value reported for this limit is at most 999.

- * The second limit for the RPD is the larger of:
 - 1. A fixed percentage specified in the protocol.

REPORT GUIDES
Page 8
SUMMARY DATA SECTION
Page 39

SDG 8649

SDG 8649
Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>ITL2272</u>

DUPLICATE

- 2. A protocol factor (typically 2) times the average MDA as a percent of the average result. This limit applies when the results are close to the MDAs.
- * The RPD is underlined if it is greater than either limit.
- * If specified by the lab, the second limit column is replaced by the Difference Error Ratio (DER), which is the absolute value of the difference of the results divided by the quadratic sum of their one sigma errors, the same errors as used in the first limit.

Except for differences due to rounding, the DER is the same as the RPD divided by the first RPD limit with the limit scaled to 1 sigma.

* The DER is underlined if it is greater than the sigma factor, typically 2 or 3, shown in the header for the first RPD limit.

REPORT GUIDES
Page 9
SUMMARY DATA SECTION
Page 40

SDG 8649

SDG <u>8649</u>
Contact N. Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>ITL2272</u>

MATRIX SPIKE

The Matrix Spike Report shows all results, recoveries and primary supporting information for one Matrix Spike and associated Original sample.

The following notes apply to this report:

* All fields in common with the Data Sheet Report have similar usage. This applies both to the Spiked and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Spike has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

* An amount ADDED is the lab's value for the actual amount spiked into the Spike sample with its ERROR an estimate of the error of this amount.

An amount is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- * REC (Recovery) is the Spike RESULT minus the Original RESULT divided by ADDED expressed as a percent.
- * The first, computed limits for the recovery reflect:
 - 1. The errors of the two RESULTs, including those introduced by rounding them prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- * The second limits are protocol defined upper and lower QC limits for the recovery.

REPORT GUIDES
Page 10
SUMMARY DATA SECTION
Page 41

SDG 8649

SDG <u>8649</u>
Contact <u>N. Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>ITL2272</u>

MATRIX SPIKE

These limits are left blank if the Original RESULT is more than a protocol defined factor (typically 4) times ADDED. This is a way of accounting for that when the spike is small compared to the amount in the original sample, the recovery is unreliable.

* The recovery is underlined (out of spec) if it is outside either of these ranges.

REPORT GUIDES
Page 11
SUMMARY DATA SECTION
Page 42

SDG 8649

SDG 8649
Contact N. Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>ITL2272</u>

METHOD SUMMARY

The Method Summary Report has two tables. One shows up to five results measured using one method. The other has performance data for the method. There is one report for each TEST, as used on the Data Sheet Report.

The following notes apply to this report:

- * Each table is subdivided into sections, one for each preparation batch. A preparation batch is a group of aliquots prepared at roughly the same time in one work area of the lab using the same method.
 - There should be Lab Control Sample and Method Blank results in each preparation batch since this close correspondence makes the QC meaningful. Depending on lab policy, Duplicates need not occur in each batch since they QC sample dependencies such as matrix effects.
- * The RAW TEST column shows the test code used in the raw data to identify a particular analysis if it is different than the test code in the header of the report. This occurs in special cases due to method specific details about how the lab labels work.
 - The Lab Sample or Planchet ID combined with the (Raw) Test Code and Suffix uniquely identify the raw data for each analysis.
- * If a result is less than both its MDA and RDL, it is replaced by just 'U' on this report. If it is greater than or equal to the RDL but less than the MDA, the result is shown with a 'U' flag.

The J and X flags are as on the data sheet.

- * Non-U results for Method Blanks are underlined to indicate possible contamination of other samples in the preparation batch. The Method Blank Report has supporting data.
- * Lab Control Sample and Matrix Spike results are shown as: ok, No data, LOW or HIGH, with the last two underlined. 'No data' means no amount ADDED was specified. 'LOW' and 'HIGH'

REPORT GUIDES
Page 12
SUMMARY DATA SECTION
Page 43

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06Report date 02/05/11

SDG 8649

SDG 8649
Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>ITL2272</u>

METHOD SUMMARY

correspond to when the recovery is underlined on the Lab Control Sample or Matrix Spike Report. See these reports for supporting data.

- * Duplicate sample results are shown as: ok, No data, or OUT, with the last two underlined. 'No data' means there was no original sample data found for this duplicate. 'OUT' corresponds to when the RPD is underlined on the Duplicate Report. See this report for supporting data.
- * If the MDA column is labeled 'MAX MDA', there was more than one result measured by the reported method and the MDA shown is the largest MDA. If not all these results have the same RDL, the MAX MDA reflects only those results with RDL equal to the smallest one.

MDAs are underlined if greater than the printed RDL.

- * Aliquots are underlined if less than the nominal value specified for the method.
- * Prepareation factors are underlined if greater than the nominal value specified for the method.
- * Dilution factors are underlined if greater than the nominal value specified for the method.
- * Residues are underlined if outside the range specified for the method. Residues are not printed if yields are.
- * Yields, which may be gravimetric, radiometric or some type of recovery depending on the method, are underlined if outside the range specified for the method.
- * Efficiencies are underlined if outside the range specified for the method. Efficiencies are detector and geometry dependent so this test is only approximate.
- * Count times are underlined if less than the nominal value

REPORT GUIDES
Page 13
SUMMARY DATA SECTION
Page 44

SDG 8649

SDG <u>8649</u> Contact <u>N. Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract <u>ITL2272</u>

METHOD SUMMARY

specified for the method.

- * Resolutions (as FWHM; Full Width at Half Max) are underlined if greater than the method specified limit.
- * Tracer drifts are underlined if their absolute values are greater than the method specified limit. Tracer drifts are not printed if percent moistures are.
- * Days Held are underlined if greater than the holding time specified in the protocol.
- * Analysis dates are underlined if before their planchet's preparation date or, if a limit is specified, too far after it.

For some methods, ratios as percentages and error estimates for them are computed for pairs of results. A ratio column header like '1÷3' means the ratio of the first result column and the third result column.

Ratios are not computed for Lab Control Sample, Method Blank or Matrix Spike results since their matrices are not necessarily similar to client samples'.

The error estimate for a ratio of results from one planchet reflects only counting errors since other errors should be correlated. For a ratio involving different planchets, if QC limits are computed based on total errors, the error for the ratio allows for the preparation errors for the planchets.

The ratio is underlined (out of spec) if the absolute value of its difference from the nominal value is greater than its error estimate. If no nominal value is specified, this test is not done.

For Gross Alpha or Gross Beta results, there may be a column showing the sum of other Alpha or Beta emitters. This sum includes all relevant results in the DVD database, whether reported or not. Results in the sum are weighted by a particles/decay value specified by the lab for each relevant analyte. Results less than their MDA are not included.

REPORT GUIDES
Page 14
SUMMARY DATA SECTION
Page 45

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06Report date 02/05/11

SDG 8649

SDG <u>8649</u>

Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract ITL2272

METHOD SUMMARY

No sums are computed for Lab Control, Method Blank or Matrix Spike samples since their various planchets may not be physically related.

If a ratio of total isotopic to Gross Alpha or Beta is shown, the error for the ratio reflects both the error in the Gross result and the sum, as square root of sum of squares, of the errors in the isotopic results.

For total elemental uranium or thorium results, there may be a column showing the total weight computed from associated isotopic results. Ignoring results less than their MDAs, this is a weighted sum of the isotopic results. The weights depend on the molecular weight and half-life of each isotope so as to convert activities (decays) to weight (atoms).

If a ratio of total computed to measured elemental uranium or thorium is shown, the error for the ratio reflects the errors in all the measurements.

REPORT GUIDES
Page 15
SUMMARY DATA SECTION
Page 46

Lab id EAS
Protocol TA

Version Ver 1.0
Form DVD-RG
Version 3.06Report date 02/05/11

SUBCONTRACT ORDER TestAmerica Irvine

ITL2272

8649

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Debby Wilson

RECEIVING LABORATORY:

Eberline Services 2030 Wright Avenue Richmond, CA 94804 Phone: (510) 235-2633

Fax: (510) 235-0438

Project Location: California

Receipt Temperature:

Ice: Y / N

Analysis	Units	Due	Expires	Comments
Sample ID: ITL2272-03 (Outfall 011 (Co	mposite) - Wat	er) Sampled: 12/23/10 1	0-54
Gamma Spec-O	mg/kg	12/29/10	12/23/11 10:54	Out St Louis, k-40 and cs-137 only, DO NOT FILTER!
Gross Alpha-O	pCi/L	12/29/10	06/21/11 10:54	Out St Louis, Boeing permit, DO NOT FILTER!
Gross Beta-O	pCi/L	12/29/10	06/21/11 10:54	Out St Louis, Boeing permit, DO NOT FILTER!
Radium, Combined-O	pCi/L	12/29/10	12/23/11 10:54	Out St Louis, Boeing permit, DO NOT
Tritium-O	pCi/L	12/29/10	12/23/11 10:54	Out St Louis, Boeing permit, DO NOT FILTER!
Uranium, Combined-O	pCi/L	12/29/10	12/23/11 10:54	Out St Louis, Boeing permit, DO NOT FILTER!
Containers Supplied:				FILTER!
2.5 gal Poly (T)	500 mL Amb	er (U)		

Strontiom-90 added by Debby Wilson 12/30/10

Released By

Released By

FEDEX

RICHMOND, CA LABORATORY

SAMPLE RECEIPT CHECKLIST

Client	TEST	- AMER	ICA	City /P	VINE	Sta	te GA	
Date/T	ime recei	ved 12/29/10	0 10:00 Coc	No. 1TL 26	72, 2485-a	U86,2987	2488 248	9
		o. <u>N/4</u>	1		P.O. F	1	1 1	
				INSPE	CTION			
-1.	Custody	seals on ship	oping container	intaci?	A	Yes [/]	No[] N/A	4[]
2.	Custody	seals on ship	pping container	dated & sign	ed?	Yes [/	No[] N/A	
3.		* 1 to 1	ipie containers		le in	Yes [/	NO[] N/A	
4.	-		iple containers	dated & sign	ad? 7 %	Yes []	NO[] NIA	(1/1)
⁴ 5.	_	material is:		ainer:	, J. ~~		Dry []-	NAV
6.			shipping conta				TEX	
7.			per sample: _	*	. (01,000,000,	i	and the second	
8.	•	are in correc			Yes [🗸]	No[]		
9.	•	rk agrees with	' .		Yes [V]	No [v		/
10.			1	,	Rad labels []	1		- 1
11.					ng[] Broken	1 7 7	} *** *	1
12.				preserved [] pH Pn	eservative	1003	
13.	Describe	any anomalie	es:	700	prante S	Wat	woled	a d
İ		EUO IND	Cereni,)C	BLANKS	> 1007	mercia	7
	***************************************	/ 400	· C-C					
	-	· · · · · · · · · · · · · · · · · · ·						
4.4	Wes P N	A matified of s	any anomaliae?) Va	1 AM 1) Data		
14.		•	any anomalies?] Date	20	
15.	Inspecte	d by	AK		14/29/10 Time	e: <u>14:</u> 0		
15.	Inspecte	•	ion Chamber				ion Chamber	wipe
15. Cust Samp	inspecte omer le No.	d by Beta/Gamma cpm	ion Chamber mR/hr	Date: <u></u>	12429/10 Time	Beta/Gamma	Ion Chamber	wipe
15. Cust Samp	Inspecte	d by Beta/Gamma cpm	ion Chamber mR/hr	Date: <u></u>	12429/10 Time	Beta/Gamma	Ion Chamber	wipe
15. Cust Samp	inspecte omer le No.	d by Beta/Gamma cpm	ion Chamber mR/hr	Date: <u></u>	12429/10 Time	Beta/Gamma	Ion Chamber	wipe
15. Cust Samp	inspecte omer le No.	d by Beta/Gamma cpm	ion Chamber mR/hr	Date: <u></u>	12429/10 Time	Beta/Gamma	Ion Chamber	wipe
15. Cust Samp	inspecte omer le No.	d by Beta/Gamma cpm	ion Chamber mR/hr	Date: <u></u>	12429/10 Time	Beta/Gamma	Ion Chamber	wipe
15. Cust Samp	inspecte omer le No.	d by Beta/Gamma cpm	ion Chamber mR/hr	Date: <u></u>	12429/10 Time	Beta/Gamma	Ion Chamber	wipe
15. Cust Samp	inspecte omer le No.	d by Beta/Gamma cpm	ion Chamber mR/hr	Date: <u></u>	12429/10 Time	Beta/Gamma	Ion Chamber	wipe
15. Cust Samp	inspecte omer le No.	d by Beta/Gamma cpm	ion Chamber mR/hr	Date: <u></u>	12429/10 Time	Beta/Gamma	Ion Chamber	wipe
15. Cust Samp	inspecte omer le No.	d by Beta/Gamma cpm	ion Chamber mR/hr	Date: <u></u>	12429/10 Time	Beta/Gamma	Ion Chamber	wipe
15. Cust Samp	inspecte omer le No.	d by Beta/Gamma cpm	ion Chamber mR/hr	Date: <u></u>	12429/10 Time	Beta/Gamma	Ion Chamber	wipe
15. Cust Samp	inspecte omer le No.	d by Beta/Gamma cpm	ion Chamber mR/hr	Date: <u></u>	12429/10 Time	Beta/Gamma	Ion Chamber	wipe
15. Cust Samp	inspecte omer le No.	d by Beta/Gamma cpm	ion Chamber mR/hr	Date: <u></u>	12429/10 Time	Beta/Gamma	Ion Chamber	wipe
15. Custs Samp	inspecte	Beta/Gamma cpm	ion Chamber mR/hr	Date: <u></u>	12429/10 Time	Beta/Gamma cpm	Ion Chamber	wipe
15. Custo Samp ALL of	inspecte omer le No.	Beta/Gamma cpm	ion Chamber mR/hr	Date: <u></u>	Customer Sample No.	Beta/Gamma opm	Ion Chamber	wipe
On Cham	inspecte mer le No. cutty le ther Ser. No.	Beta/Gamma cpm	ion Chamber mR/hr	Date: <u></u>	Customer Sample No.	Beta/Gamma cpm	Ion Chamber	

APPENDIX G

Section 37

Outfall 018 – December 20 & 21, 2010 MEC^X Data Validation Report

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: ITL2014

Prepared by

MEC^X, LP 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: ITL2014

Project Manager: B. Kelly Matrix: Water

QC Level: IV Samples: 2

No. of Samples: 2 No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 018 (Grab)	ITL2014-01	N/A	Water	12/20/2010 11:00:00 AM	EPA 120.1
Outfall 018 (Composite)	ITL2014-03	G0L230559-001, S012314-01	Water	12/21/2010 10:17:00 AM	1613B, 900, 901.1, 903.1, 904, 905, 906, 245.1, 245.1-Diss, 200.7, 200.7-Diss, 180.1, D5174

II. Sample Management

No anomalies were observed regarding sample management. The temperature upon receipt was not noted by Eberline; however, due to the nonvolatile nature of the analytes, no qualifications were required. The samples in this SDG were received at TestAmerica-West Sacramento below the control limit; however, as the samples were not noted to be frozen or damaged, no qualifications were required. The samples in this SDG were received at TestAmerica-Irvine within the temperature limits of 4°C $\pm 2^{\circ}\text{C}$. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the samples were couriered to TestAmerica-Irvine, custody seals were not required. Custody seals were intact upon receipt at Eberline and TestAmerica West Sacramento. If necessary, the client ID was added to the sample result summary by the reviewer.

1

Data Qualifier Reference Table

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
1	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

DATA VALIDATION REPORT

Project: SSFL NPDES SDG: ITL2014

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
* , *	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

DATA VALIDATION REPORT SDG: ITL2014

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin

Date Reviewed: January 18, 2011

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - O GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed prior to the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 15 native compounds (calibration by isotope dilution) and ≤35% for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had detects between the EDL and the RL for 1,2,3,4,6,7,8-HpCDD, 1,2,3,4,6,7,8-HpCDF, 1,2,3,4,7,8,9-HpCDF, OCDD, OCDF, total HpCDD, and total HpCDF. The HpCDF isomers and total were reported as EMPCs in the method blank; however, due to the extent of the method blank contamination, the reviewer considered it appropriate to use the EMPCs to qualify sample results. The method blank

concentration of OCDD was insufficient to qualify the sample result. All other individual isomers detected in both the method blank and site sample were qualified as nondetected, "U" at the EDL, or at the level of contamination in the sample. The sample totals containing one or more peaks detected in the method blank were qualified as estimated, "J."

- Blank Spikes and Laboratory Control Samples: The LCS recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries in the sample were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating a representative number of reportable sample results. Any individual isomers reported as EMPCs previously qualified as nondetected for method blank contamination were not further qualified as EMPCs. Remaining EMPCs were qualified as estimated nondetects, "UJ," at the level of the EMPC. Any totals including EMPC peaks were qualified as estimated, "J." Any detects reported between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

B. EPA METHODS 200.7 and 245.1—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: January 14, 2011

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.7 and 245.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

 Holding Times: Analytical holding times, six months for ICP metals and 28 days for mercury, were met.

- Tuning: Not applicable to these analyses.
- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP and ICP-MS metals and 85-115% for mercury. CRDL/CRA recoveries were within the control limits of 70-130%.
- Blanks: Method blanks and CCBs had no detects.
- Interference Check Samples: Recoveries were within the method-established control limits of 80-120%. There were no target compounds present in the ICSA solution at concentrations indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed for total and dissolved mercury and the dissolved 200.7 analytes. Recoveries and RPDs were within laboratory-established QC limits.
- Serial Dilution: No serial dilution analyses were performed on the sample in this SDG.
- Internal Standards Performance: Not applicable to these analyses.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.

Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: February 2011

The samples listed in Table 1 for these analyses were validated based on the guidelines outlined in the *EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174,* and the *National Functional Guidelines for Inorganic Data Review* (10/04).

- Holding Times: The tritium sample was analyzed within 180 days of collection. The remaining aliquots were prepared within the five-day analytical holding time for unpreserved samples.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, gross alpha detected in the sample was qualified as an estimated detect, "J." The remaining detector efficiencies were greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. All chemical yields were at least 40% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis.

- Blanks: There were no analytes detected in the method blanks or the KPA CCBs.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.
- Laboratory Duplicates: Laboratory duplicate analyses were performed on the sample in this SDG for all analytes. All RPDs were within the laboratory-established control limits.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this
 data package. The sample results and MDAs reported on the sample result form were
 verified against the raw data and no calculation or transcription errors were noted. Any
 detects between the MDA and the reporting limit were qualified as estimated, "J," and
 coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are
 valid to the MDA.

A notation in the sample preparation logbook indicated that the aliquot for Radium-228 was filtered and that the filter was digested and added to the aliquot.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - o Field Duplicates: There were no field duplicate samples identified for this SDG.

D. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks

Date Reviewed: January 14, 2011

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^x Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Methods 120.1 and 180.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: Analytical holding times, 48 hours from collection for turbidity and 28 days for conductivity, were met.
- Calibration: Calibration criteria were met. The turbidity initial calibration r² value was ≥0.995 and all initial and continuing calibration recoveries were within 90-110%.
- Blanks: Method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Sample Result Verification: Calculations were verified and the sample results reported on
 the sample result summary were verified against the raw data. No transcription errors or
 calculation errors were noted. When the sample results were qualified and the reviewer
 was able to clearly determine bias, detected results were qualified as either "J+" or "J-";
 otherwise, bias was not indicated in the qualification. Any detects between the method
 detection limit and the reporting limit were qualified as estimated, "J," and coded with

DATA VALIDATION REPORT SDG: ITL2014

"DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

 Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- o Field Duplicates: There were no field duplicate samples identified for this SDG.

Validated Sample Result Forms ITL2014

Analysis Metho	od 8647							
Sample Name	Outfall 018 (C	Composite) Matr	ix Type:	WATER	7	Validation Le	vel: IV
Lab Sample Name:	ITL2014-03	Sam	ple Date:	12/21/20	010 10:17:00	AM		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Uranium, Total		0.237	1	0.017	pCi/L	Jb	J	DNQ
Analysis Metho	od 900							
Sample Name	Outfall 018 (C	Composite) Matr	ix Type:	WATER	7	Validation Le	vel: IV
Lab Sample Name:	ITL2014-03	Sam	ple Date:	12/21/20	10 10:17:00	AM		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Gross Alpha	12587461	0.948	3	0.399	pCi/L	Jb	J	DNQ,C
Gross Beta	12587472	4.3	4	0.868	pCi/L			
Analysis Metho	od 901.1							
Sample Name	Outfall 018 (C	Composite) Matr	ix Type:	WATER	7	Validation Le	vel: IV
Lab Sample Name:	ITL2014-03	Sam	ple Date:	12/21/20	010 10:17:00	AM		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Cesium-137	10045973	ND	20	1.8	pCi/L	U	U	
Potassium-40	13966002	ND	25	24	pCi/L	U	U	
Analysis Metho	od 903.1							
Sample Name	Outfall 018 (C	Composite	e) Matr	ix Type:	WATER	7	Validation Le	vel: IV
Lab Sample Name:	ITL2014-03	Sam	ple Date:	12/21/20	010 10:17:00	AM		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Radium-226	13982633	0.312	1	0.71	pCi/L	U	U	
Analysis Metho	od 904							
Sample Name	Outfall 018 (C	Composite) Matr	ix Type:	WATER	7	Validation Le	vel: IV
Lab Sample Name:	ITL2014-03	Sam	ple Date:	12/21/20	010 10:17:00	AM		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Radium-228	15262201	0.125	1	0.604	pCi/L	U	U	

Analysis Method 905

Sample Name	Outfall 018 (Composite) Matri	х Туре:	WATER	7	Validation Le	vel: IV
Lab Sample Name:	ITL2014-03	-		12/21/20	10 10:17:00 A	AM		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Strontium-90	10098972	0.018	2	0.637	pCi/L	U	U	
Analysis Method	d 906							
Sample Name	Outfall 018 (Composite) Matri	іх Туре:	WATER	7	Validation Le	vel: IV
Lab Sample Name:	ITL2014-03	Sam	ple Date:	12/21/20	10 10:17:00 A	AM		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Гritium	10028178	144	500	340	pCi/L	U	U	
Analysis Method	d EPA	120.1						
Sample Name	Outfall 018 (Grab)	Matri	іх Туре:	Water	7	Validation Le	vel: IV
Lab Sample Name:	ITL2014-01	Sam	ple Date:	12/20/20	10 11:00:00 A	AM		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Specific Conductance	NA	150	1.0	1.0	umhos/c			
Analysis Method	d EPA	180.1						
Sample Name	Outfall 018 (Composite) Matri	іх Туре:	Water	7	Validation Le	vel: IV
Lab Sample Name:	ITL2014-03	Sam	ple Date:	12/21/20	10 10:17:00 A	AM		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Γurbidity	Turb	47	2.0	0.080	NTU			
Analysis Method	d EPA	200.7						
Sample Name	Outfall 018 (Composite) Matri	іх Туре:	Water	7	Validation Le	vel: IV
Lab Sample Name:	ITL2014-03	Sam	ple Date:	12/21/20	10 10:17:00 A	AM		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
ron	7439-89-6	2.3	0.040	0.015	mg/l			
Zinc	7440-66-6	19.3	20.0	6.00	ug/l	Ja	J	DNQ

Friday, February 04, 2011 Page 2 of 4

Analysis Method EPA 200.7-Diss

Sample Name	Outfall 018 (C	Composite)	Matri	x Type:	Water	7	alidation Le	vel: IV
Lab Sample Name:	ITL2014-03	Sam	ple Date:	12/21/20	10 10:17:00	AM		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Iron	7439-89-6	0.016	0.040	0.015	mg/l	Ja	J	DNQ
Zinc	7440-66-6	8.05	20.0	6.00	ug/l	Ja	J	DNQ
Analysis Metho	od EPA 2	245.1						
Sample Name	Outfall 018 (C	Composite)	Matri	x Type:	Water	7	alidation Le	vel: IV
Lab Sample Name:	ITL2014-03	Sam	ple Date:	12/21/20	10 10:17:00	AM		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury	7439-97-6	ND	0.20	0.10	ug/l		U	
Analysis Metho	od EPA 2	245.1-D	iss					
Sample Name	Outfall 018 (C	Composite)	Matri	х Туре:	Water	7	alidation Le	vel: IV
Lab Sample Name:	ITL2014-03	Sam	ple Date:	12/21/20	10 10:17:00	AM		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury	7439-97-6	ND	0.20	0.10	ug/l		U	

Friday, February 04, 2011 Page 3 of 4

Analysis Method EPA-5 1613B

Sample Name	ple Name Outfall 018 (Composite) Matrix Type: WATER					Validation Level: IV			
Lab Sample Name:	ITL2014-03	Sam	ple Date:	12/21/2010	10:17:00	AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
1,2,3,4,6,7,8-HpCDD	35822-46-9	ND	0.00005	0.0000005	ug/L	J, B	U	В	
1,2,3,4,6,7,8-HpCDF	67562-39-4	ND	0.00005	0.0000005	ug/L	J, B	U	В	
1,2,3,4,7,8,9-HpCDF	55673-89-7	ND	0.00005	0.0000006	ug/L	J, B	U	В	
1,2,3,4,7,8-HxCDD	39227-28-6	ND	0.00005	0.0000001	ug/L	J, Q	UJ	*III	
1,2,3,4,7,8-HxCDF	70648-26-9	ND	0.00005	0.0000006	ug/L		U		
1,2,3,6,7,8-HxCDD	57653-85-7	2.6e-006	0.00005	0.0000001	ug/L	J	J	DNQ	
1,2,3,6,7,8-HxCDF	57117-44-9	ND	0.00005	0.0000003	ug/L		U		
1,2,3,7,8,9-HxCDD	19408-74-3	ND	0.00005	0.0000001	ug/L	J, Q	UJ	*III	
1,2,3,7,8,9-HxCDF	72918-21-9	ND	0.00005	0.0000001	ug/L		U		
1,2,3,7,8-PeCDD	40321-76-4	ND	0.00005	0.0000007	ug/L		U		
1,2,3,7,8-PeCDF	57117-41-6	ND	0.00005	0.0000002	ug/L		U		
2,3,4,6,7,8-HxCDF	60851-34-5	ND	0.00005	0.0000006	ug/L		U		
2,3,4,7,8-PeCDF	57117-31-4	ND	0.00005	0.0000003	ug/L		U		
2,3,7,8-TCDD	1746-01-6	ND	0.00001	0.0000004	ug/L		U		
2,3,7,8-TCDF	51207-31-9	ND	0.00001	0.0000002	ug/L		U		
OCDD	3268-87-9	0.00052	0.0001	0.0000011	ug/L	В			
OCDF	39001-02-0	ND	0.0001	0.0000005	ug/L	J, B	U	В	
Total HpCDD	37871-00-4	0.0001	0.00005	0.0000005	ug/L	J, B	J	B, DNQ	
Total HpCDF	38998-75-3	2.4e-005	0.00005	0.0000005	ug/L	J, B	J	B, DNQ	
Total HxCDD	34465-46-8	1.8e-005	0.00005	0.0000001	ug/L	J, Q	J	DNQ, *III	
Total HxCDF	55684-94-1	7.2e-006	0.00005	0.0000001	ug/L	J, Q	J	DNQ, *III	
Total PeCDD	36088-22-9	ND	0.00005	0.0000007	ug/L		U		
Total PeCDF	30402-15-4	ND	0.00005	0.0000002	ug/L		U		
Total TCDD	41903-57-5	ND	0.00001	0.0000004	ug/L		U		
Total TCDF	55722-27-5	ND	0.00001	0.0000002	ug/L		U		

Friday, February 04, 2011 Page 4 of 4

APPENDIX G

Section 38

Outfall 018 – December 20 & 21, 2010
Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Quarterly Outfall 018 2010

618 Michillinda Avenue, Suite 200 Quarterly Outfall 018

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 12/20/10-12/21/10

Received: 12/20/10 Issued: 02/01/11 16:34

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 3 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at 2°C, on ice and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica

Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: Results that fall between the MDL and RL are 'J' flagged.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: WATER, 1613B, Dioxins/Furans with Totals

Some analytes in these samples and the associated method blank have an ion abundance ratio that is outside of criteria. The analytes are considered as an "estimated maximum possible concentration" (EMPC) because the quantitation is based on the theoretical ion abundance ratio. Analytical results are reported with a "Q"

flag.

 LABORATORY ID
 CLIENT ID
 MATRIX

 ITL2014-01
 Outfall 018 (Grab)
 Water

 ITL2014-02
 Trip Blanks
 Water

 ITL2014-03
 Outfall 018 (Composite)
 Water

Reviewed By:

TestAmerica Irvine

Heather Clark For Debby Wilson Project Manager

enther Clark

THE LEADER IN ENVIRONMENTAL TESTING

Project ID: Quarterly Outfall 018 2010

618 Michillinda Avenue, Suite 200 Quarterly Outfall 018 Sampled: 12/20/10-12/21/10

Arcadia, CA 91007 Report Number: ITL2014 Received: 12/20/10

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	Reporting Limit	_	-	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITL2014-01 (Outfall 018 (Grab) -	Water)					Sampled:	12/20/10		
Reporting Units: ug/l	,					-			
Benzene	EPA 624	10L2782	0.50	0.28	ND	1	12/23/2010	12/24/2010	
Carbon tetrachloride	EPA 624	10L2782	0.50	0.28	ND	1	12/23/2010	12/24/2010	
Chloroform	EPA 624	10L2782	0.50	0.33	ND	1	12/23/2010	12/24/2010	
1,1-Dichloroethane	EPA 624	10L2782	0.50	0.40	ND	1	12/23/2010	12/24/2010	
1,2-Dichloroethane	EPA 624	10L2782	0.50	0.28	ND	1	12/23/2010	12/24/2010	
1,1-Dichloroethene	EPA 624	10L2782	0.50	0.42	ND	1	12/23/2010	12/24/2010	
Ethylbenzene	EPA 624	10L2782	0.50	0.25	ND	1	12/23/2010	12/24/2010	
Tetrachloroethene	EPA 624	10L2782	0.50	0.32	ND	1	12/23/2010	12/24/2010	
Toluene	EPA 624	10L2782	0.50	0.36	ND	1	12/23/2010	12/24/2010	
1,1,1-Trichloroethane	EPA 624	10L2782	0.50	0.30	ND	1	12/23/2010	12/24/2010	
1,1,2-Trichloroethane	EPA 624	10L2782	0.50	0.30	ND	1	12/23/2010	12/24/2010	
Trichloroethene	EPA 624	10L2782	0.50	0.26	ND	1	12/23/2010	12/24/2010	
Trichlorofluoromethane	EPA 624	10L2782	0.50	0.34	ND	1	12/23/2010	12/24/2010	
Trichlorotrifluoroethane (Freon 113)	EPA 624	10L2782	5.0	0.50	ND	1	12/23/2010	12/24/2010	
Vinyl chloride	EPA 624	10L2782	0.50	0.40	ND	1	12/23/2010	12/24/2010	
Xylenes, Total	EPA 624	10L2782	1.5	0.90	ND	1	12/23/2010	12/24/2010	
Surrogate: 4-Bromofluorobenzene (80-120%)					97 %				
Surrogate: Dibromofluoromethane (80-120%)					100 %				
Surrogate: Toluene-d8 (80-120%)					102 %				
Sample ID: ITL2014-02 (Trip Blanks - Water	·)				:	Sampled:	12/20/10		
Reporting Units: ug/l									
Benzene	EPA 624	10L2794	0.50	0.28	ND	1	12/23/2010	12/23/2010	
Carbon tetrachloride	EPA 624	10L2794	0.50	0.28	ND	1	12/23/2010	12/23/2010	
Chloroform	EPA 624	10L2794	0.50	0.33	ND	1	12/23/2010	12/23/2010	
1,1-Dichloroethane	EPA 624	10L2794	0.50	0.40	ND	1	12/23/2010	12/23/2010	
1,2-Dichloroethane	EPA 624	10L2794	0.50	0.28	ND	1	12/23/2010	12/23/2010	
1,1-Dichloroethene	EPA 624	10L2794	0.50	0.42	ND	1	12/23/2010	12/23/2010	
Ethylbenzene	EPA 624	10L2794	0.50	0.25	ND	1	12/23/2010	12/23/2010	
Tetrachloroethene	EPA 624	10L2794	0.50	0.32	ND	1	12/23/2010	12/23/2010	
Toluene	EPA 624	10L2794	0.50	0.36	ND	1	12/23/2010	12/23/2010	
1,1,1-Trichloroethane	EPA 624	10L2794	0.50	0.30	ND	1	12/23/2010	12/23/2010	
1,1,2-Trichloroethane	EPA 624	10L2794	0.50	0.30	ND	1	12/23/2010	12/23/2010	
Trichloroethene	EPA 624	10L2794	0.50	0.26	ND	1	12/23/2010	12/23/2010	
Trichlorofluoromethane	EPA 624	10L2794	0.50	0.34	ND	1	12/23/2010	12/23/2010	
Trichlorotrifluoroethane (Freon 113)	EPA 624	10L2794	5.0	0.50	ND	1	12/23/2010	12/23/2010	
Vinyl chloride	EPA 624	10L2794	0.50	0.40	ND	1	12/23/2010	12/23/2010	
Xylenes, Total	EPA 624	10L2794	1.5	0.90	ND	1	12/23/2010	12/23/2010	
Surrogate: 4-Bromofluorobenzene (80-120%)					86 %				
Surrogate: Dibromofluoromethane (80-120%)					91 %				
Surrogate: Toluene-d8 (80-120%)					107 %				

TestAmerica Irvine

Heather Clark For Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018 Sampled: 12/20/10-12/21/10

Report Number: ITL2014 Received: 12/20/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

			Reportin	g	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	MDL	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ITL2014-03 (Outfall 018 (Compos	site) - Water)				;	Sampled:	12/21/10		
Reporting Units: ug/l									
Bis(2-ethylhexyl)phthalate	EPA 625	10L2492	4.72	1.60	ND	0.943	12/21/2010	12/23/2010	
2,4-Dinitrotoluene	EPA 625	10L2492	4.72	0.189	ND	0.943	12/21/2010	12/23/2010	
N-Nitrosodimethylamine	EPA 625	10L2492	4.72	0.0943	ND	0.943	12/21/2010	12/23/2010	
Pentachlorophenol	EPA 625	10L2492	4.72	0.0943	ND	0.943	12/21/2010	12/23/2010	
2,4,6-Trichlorophenol	EPA 625	10L2492	5.66	0.0943	ND	0.943	12/21/2010	12/23/2010	
Surrogate: 2,4,6-Tribromophenol (40-120%)					86 %				
Surrogate: 2-Fluorobiphenyl (50-120%)					77 %				
Surrogate: 2-Fluorophenol (30-120%)					59 %				
Surrogate: Nitrobenzene-d5 (45-120%)					67 %				
Surrogate: Phenol-d6 (35-120%)					63 %				
Surrogate: Terphenyl-d14 (50-125%)					82 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quarterly Outfall 018 2010

618 Michillinda Avenue, Suite 200 Quarterly Outfall 018 Sampled: 12/20/10-12/21/10

Arcadia, CA 91007 Report Number: ITL2014 Received: 12/20/10

Attention: Bronwyn Kelly

ORGANOCHLORINE PESTICIDES (EPA 608)

		Reportin	g	Sample	Dilution	Date	Date	Data
Method	Batch	Limit	MDL	Result	Factor	Extracted	Analyzed	Qualifiers
site) - Water)				\$	Sampled:	12/21/10		
EPA 608	10L2628	0.0094	0.0024	ND	0.943	12/22/2010	12/22/2010	
				85 %				
				69 %				
	ite) - Water)	ite) - Water)	Method Batch Limit ite) - Water)	ite) - Water)	Method Batch Limit MDL Result ite) - Water) 5 8 10	Method Batch Limit MDL Result Factor sampled: Sampled: Sampled: 0.0094 0.0024 ND 0.943 85 % 85 % % 0.943 0.0024 0.0024 ND 0.943	Method Batch Limit MDL Result Factor Extracted ite) - Water) Sampled: 12/21/10 EPA 608 10L2628 0.0094 0.0024 ND 85 % 0.943 12/22/2010	Method Batch Limit MDL Result Factor Extracted Analyzed ite) - Water) Sampled: 12/21/10 EPA 608 10L2628 0.0094 0.0024 ND 85 % 0.943 12/22/2010 12/22/2010 12/22/2010

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Sampled: 12/20/10-12/21/10

Received: 12/20/10

HEXANE EXTRACTABLE MATERIAL

			Reporting	3	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	MDL	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ITL2014-01 (Outfall 018 (Grab)	- Water)				\$	Sampled:	12/20/10		
Reporting Units: mg/l									
Hexane Extractable Material (Oil & Grease)	EPA 1664A	10L2996	4.7	1.3	ND	1	12/27/2010	12/28/2010	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quarterly Outfall 018 2010

618 Michillinda Avenue, Suite 200 Quarterly Outfall 018 Sampled: 12/20/10-12/21/10

Arcadia, CA 91007 Report Number: ITL2014 Received: 12/20/10

Attention: Bronwyn Kelly

METALS

Analyte	Method	Batch	Reporting Limit		Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITL2014-03 (Outfall 018 (Comp	osite) - Water)				1	Sampled:	12/21/10		
Reporting Units: mg/l Iron	EPA 200.7	10L2687	0.040		2.3	1	12/22/2010	12/23/2010	
Sample ID: ITL2014-03 (Outfall 018 (Comp	osite) - Water)				1	Sampled:	12/21/10		
Reporting Units: ug/l									
Mercury	EPA 245.1	10L3104	0.20	0.10	ND	1	12/28/2010	12/28/2010	
Cadmium	EPA 200.8	10L2645	1.0	0.10	0.12	1	12/22/2010	12/22/2010	J
Zinc	EPA 200.7	10L2687	20.0	6.00	19.3	1	12/22/2010	12/23/2010	J
Copper	EPA 200.8	10L2645	2.00	0.500	4.10	1	12/22/2010	12/23/2010	
Lead	EPA 200.8	10L2645	1.0	0.20	1.8	1	12/22/2010	12/23/2010	
Manganese	EPA 200.8	10L2645	1.0		45	1	12/22/2010	12/22/2010	
Selenium	EPA 200.8	10L2645	2.0	0.50	ND	1	12/22/2010	12/22/2010	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018 Sampled: 12/20/10-12/21/10

Report Number: ITL2014 Received: 12/20/10

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

DISSOLVED METALS

Analyte	Method	Batch	Reporting Limit		Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITL2014-03 (Outfall 018 (Con	nposite) - Water)				:	Sampled:	12/21/10		
Reporting Units: mg/l									
Iron	EPA 200.7-Diss	10L2799	0.040		ND	1	12/23/2010	12/23/2010	
Sample ID: ITL2014-03 (Outfall 018 (Con	nposite) - Water)				1	Sampled:	12/21/10		
Reporting Units: ug/l									
Mercury	EPA 245.1-Diss	10L3103	0.20	0.10	ND	1	12/28/2010	12/28/2010	
Cadmium	EPA 200.8-Diss	10L2800	1.0	0.10	ND	1	12/23/2010	12/23/2010	
Zinc	EPA 200.7-Diss	10L2799	20.0	6.00	8.05	1	12/23/2010	12/23/2010	J
Copper	EPA 200.8-Diss	10L2800	2.00	0.500	2.12	1	12/23/2010	12/23/2010	
Lead	EPA 200.8-Diss	10L2800	1.0	0.20	ND	1	12/23/2010	12/23/2010	
Manganese	EPA 200.8-Diss	10L2800	1.0		8.8	1	12/23/2010	12/23/2010	
Selenium	EPA 200.8-Diss	10L2800	2.0	0.50	ND	1	12/23/2010	12/23/2010	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018 Sampled: 12/20/10-12/21/10

Report Number: ITL2014 Received: 12/20/10

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

INORGANICS

		1110	NGANI	CS					
			Reportin	g	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	MDL	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ITL2014-01 (Outfall 018 (O Reporting Units: ml/l	Grab) - Water)				;	Sampled:	12/20/10		
Total Settleable Solids	SM2540F	10L2517	0.10	0.10	ND	1	12/21/2010	12/21/2010	
Sample ID: ITL2014-01 (Outfall 018 (C	Grab) - Water)				:	Sampled:	12/20/10		
Reporting Units: umhos/cm @ 25C									
Specific Conductance	EPA 120.1	10L2408	1.0	1.0	150	1	12/21/2010	12/21/2010	
Sample ID: ITL2014-03 (Outfall 018 (Composite) - Water)				;	Sampled:	12/21/10		
Reporting Units: mg/l									
Ammonia-N (Distilled)	SM4500NH3-C	10L2867	0.500	0.500	ND	1	12/23/2010	12/23/2010	
Biochemical Oxygen Demand	SM5210B	10L2828	2.0	0.50	1.8	1	12/23/2010	12/28/2010	J
Chloride	EPA 300.0	10L2625	0.50	0.25	6.9	1	12/22/2010	12/22/2010	
Nitrate-N	EPA 300.0	10L2625	0.11	0.060	1.0	1	12/22/2010	12/22/2010	
Nitrite-N	EPA 300.0	10L2625	0.15	0.090	ND	1	12/22/2010	12/22/2010	
Nitrate/Nitrite-N	EPA 300.0	10L2625	0.26	0.15	1.0	1	12/22/2010	12/22/2010	
Sulfate	EPA 300.0	10L2625	0.50	0.20	38	1	12/22/2010	12/22/2010	
Surfactants (MBAS)	SM5540-C	10L2679	0.10	0.050	ND	1	12/22/2010	12/22/2010	
Total Dissolved Solids	SM2540C	10L2589	10	1.0	110	1	12/22/2010	12/22/2010	
Total Suspended Solids	SM 2540D	10L2850	10	1.0	22	1	12/23/2010	12/23/2010	
Sample ID: ITL2014-03 (Outfall 018 (C	Composite) - Water)				1	Sampled:	12/21/10		
Reporting Units: NTU									
Turbidity	EPA 180.1	10L2657	2.0	0.080	47	2	12/22/2010	12/22/2010	
Sample ID: ITL2014-03 (Outfall 018 (Outfall Units: ug/l	Composite) - Water)				;	Sampled:	12/21/10		
Perchlorate	EPA 314.0	10L3015	4.0	0.90	ND	1	12/28/2010	12/28/2010	
Total Cyanide	SM4500CN-E	10L2704	5.0	2.2	ND	1	12/22/2010	12/22/2010	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

TOTA 0.04.4

Report Number: ITL2014

Sampled: 12/20/10-12/21/10 Received: 12/20/10

Q	6	1	7
Λ	n4	4.	/

Analyte	Method	Batch	Reporting Limit	Sample D Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITL2014-03 (Outfall 018 (Composi	te) - Water)			Sa	mpled:	12/21/10		
Reporting Units: pCi/L Uranium, Total	8647	8647	1	0.237	1	12/30/2010	1/20/2011	Jb

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quarterly Outfall 018 2010

618 Michillinda Avenue, Suite 200 Quarterly Outfall 018 Sampled: 12/20/10-12/21/10

Arcadia, CA 91007 Report Number: ITL2014 Received: 12/20/10

Attention: Bronwyn Kelly

			900					
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITL2014-03 (Outfall 018 (C	omposite) - Water)			;	Sampled:	12/21/10		
Reporting Units: pCi/L								
Gross Alpha	900	8647	3	0.948	1	1/4/2011	1/5/2011	Jb
Gross Beta	900	8647	4	4.3	4	1/4/2011	1/5/2011	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Sampled: 12/20/10-12/21/10

Received: 12/20/10

901.1

Analyte	Method	Batch	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITL2014-03 (Outfall 018 (C	omposite) - Water)			S	ampled:	12/21/10		
Reporting Units: pCi/L								
Cesium-137	901.1	8647	20	ND	1	12/30/2010	1/6/2011	U
Potassium-40	901.1	8647	25	ND	1	12/30/2010	1/6/2011	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018 Sampled: 12/20/10-12/21/10

Report Number: ITL2014 Received: 12/20/10

903.1

Analyte	Method	Batch	Reporting Limit	Sample D Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITL2014-03 (Outfall 018 ((Composite) - Water)			Sa	mpled:	12/21/10		
Reporting Units: pCi/L								
Radium-226	903.1	8647	1	0.312	1	1/21/2011	1/21/2011	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Sampled: 12/20/10-12/21/10

Received: 12/20/10

7U4	9	0	4
------------	---	---	---

Analyte	Method	Batch	Reporting Limit	Sample D Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITL2014-03 (Outfall 018 (Compo	site) - Water)			Sa	ampled:	12/21/10		
Reporting Units: pCi/L Radium-228	904	8647	1	0.125	1	1/21/2011	1/21/2011	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Sampled: 12/20/10-12/21/10

Received: 12/20/10

905					
Reporting	Sample	Dilution	Date	Date	Data
Limit	Result	Factor	Extracted	Analyzed	Qualifiers

Analyte	Method	Batch	Reporting Limit	Sample D Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITL2014-03 (Outfall 018 (Compo	osite) - Water)			Sa	ampled:	12/21/10		
Reporting Units: pCi/L Strontium-90	905	8647	2	0.018	1	1/8/2011	1/13/2011	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quarterly Outfall 018 2010

618 Michillinda Avenue, Suite 200 Quarterly Outfall 018 Sampled: 12/20/10-12/21/10

Arcadia, CA 91007 Report Number: ITL2014 Received: 12/20/10

Attention: Bronwyn Kelly

			906					
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITL2014-03 (Outfall 018 (Composi	te) - Water)			:	Sampled:	12/21/10		
Reporting Units: pCi/L Tritium	906	8647	500	144	1	1/13/2011	1/14/2011	U

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Sampled: 12/20/10-12/21/10

Received: 12/20/10

EPA-5 1613Bx

Analyte	Method	Batch			Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITL2014-03 (Outfall 018 (C	Composite) - Water)			S	ampled:	12/21/10		
Reporting Units: ug/L	• •				•			
1,2,3,4,6,7,8-HpCDD	EPA-5 1613B	357431	0.0000 \$0.000000564.7	7e-005	0.99	12/23/2010	12/28/2010	J, B
1,2,3,4,6,7,8-HpCDF	EPA-5 1613B	357431	0.000050.0000005 96	e-006	0.99	12/23/2010	12/28/2010	J, B
1,2,3,4,7,8,9-HpCDF	EPA-5 1613B	357431	0.000050.000000063 16	e-006	0.99	12/23/2010	12/28/2010	J, B
1,2,3,4,7,8-HxCDD	EPA-5 1613B	357431	0.0000 \ 0.000000127.5	5e-007	0.99	12/23/2010	12/28/2010	J, Q
1,2,3,4,7,8-HxCDF	EPA-5 1613B	357431	0.0000 ©.00000068	ND	0.99	12/23/2010	12/28/2010	
1,2,3,6,7,8-HxCDD	EPA-5 1613B	357431	0.000050.0000001 2.6	6e-006	0.99	12/23/2010	12/28/2010	J
1,2,3,6,7,8-HxCDF	EPA-5 1613B	357431	0.0000 \$0.00000036	ND	0.99	12/23/2010	12/28/2010	
1,2,3,7,8,9-HxCDD	EPA-5 1613B	357431	0.000050.0000001 1.9	9e-006	0.99	12/23/2010	12/28/2010	J, Q
1,2,3,7,8,9-HxCDF	EPA-5 1613B	357431	0.0000 \$0.00000012	ND	0.99	12/23/2010	12/28/2010	
1,2,3,7,8-PeCDD	EPA-5 1613B	357431	0.0000 \$0.00000072	ND	0.99	12/23/2010	12/28/2010	
1,2,3,7,8-PeCDF	EPA-5 1613B	357431	0.0000 \$0.00000022	ND	0.99	12/23/2010	12/28/2010	
2,3,4,6,7,8-HxCDF	EPA-5 1613B	357431	0.000050.0000006	ND	0.99	12/23/2010	12/28/2010	
2,3,4,7,8-PeCDF	EPA-5 1613B	357431	0.0000 © .00000035	ND	0.99	12/23/2010	12/28/2010	
2,3,7,8-TCDD	EPA-5 1613B	357431	0.0000 D.00000044	ND	0.99	12/23/2010	12/28/2010	
2,3,7,8-TCDF	EPA-5 1613B	357431	0.0000 D.00000026	ND	0.99	12/23/2010	12/28/2010	
OCDD	EPA-5 1613B	357431	0.0001 0.0000011 0.0	00052	0.99	12/23/2010	12/28/2010	В
OCDF	EPA-5 1613B	357431	0.00010.00000058 1.6	6e-005	0.99	12/23/2010	12/28/2010	J, B
Total HpCDD	EPA-5 1613B	357431	0.0000 5 0.00000056 0.	.0001	0.99	12/23/2010	12/28/2010	J, B
Total HpCDF	EPA-5 1613B	357431	0.0000\$0.00000056 2.4	4e-005	0.99	12/23/2010	12/28/2010	J, B
Total HxCDD	EPA-5 1613B	357431	0.0000 5 0.00000011 1.8	8e-005	0.99	12/23/2010	12/28/2010	J, Q
Total HxCDF	EPA-5 1613B	357431	0.000050.0000001 7.2	2e-006	0.99	12/23/2010	12/28/2010	J, Q
Total PeCDD	EPA-5 1613B	357431	0.0000 \ 0.000000072	ND	0.99	12/23/2010	12/28/2010	
Total PeCDF	EPA-5 1613B	357431	0.0000 \ 0.00000022	ND	0.99	12/23/2010	12/28/2010	
Total TCDD	EPA-5 1613B	357431	0.0000 D.00000044	ND	0.99	12/23/2010	12/28/2010	
Total TCDF	EPA-5 1613B	357431	0.0000 D.00000026	ND	0.99	12/23/2010	12/28/2010	
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD (2,	3-140%)		104	%				
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF (28	8-143%)		92 %	%				
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF (20	6-138%)		99 9	%				
Surrogate: 13C-1,2,3,4,7,8-HxCDD (32-	141%)		78 %	%				
Surrogate: 13C-1,2,3,4,7,8-HxCDF (26-	152%)		77 %	%				
Surrogate: 13C-1,2,3,6,7,8-HxCDD (28-	130%)		94 %	%				
Surrogate: 13C-1,2,3,6,7,8-HxCDF (26-	123%)		79 %	%				
Surrogate: 13C-1,2,3,7,8,9-HxCDF (29-	147%)		77 %	%				
Surrogate: 13C-1,2,3,7,8-PeCDD (25-18	31%)		86 %	%				
Surrogate: 13C-1,2,3,7,8-PeCDF (24-18	5%)		94 %	%				
Surrogate: 13C-2,3,4,6,7,8-HxCDF (28-	136%)		79 %					
Surrogate: 13C-2,3,4,7,8-PeCDF (21-17	8%)		86 %					
Surrogate: 13C-2,3,7,8-TCDD (25-164%)			84 %					
Surrogate: 13C-2,3,7,8-TCDF (24-169%)	<i>(</i>)		79 %	%				
Surrogate: 13C-OCDD (17-157%)			90 %	%				
Surrogate: 37Cl4-2,3,7,8-TCDD (35-197	7%)		101	%				

TestAmerica Irvine

Heather Clark For Debby Wilson Project Manager

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018 Sampled: 12/20/10-12/21/10

Report Number: ITL2014 Received: 12/20/10

Arcadia, CA 91007 Report Number: ITL20 Attention: Bronwyn Kelly

SHORT HOLD TIME DETAIL REPORT

Sample ID: Outfall 018 (Grab) (ITL2014-01)	Hold Time (in days) - Water	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
SM2540F	2	12/20/2010 11:00	12/20/2010 20:24	12/21/2010 11:35	12/21/2010 11:35
Sample ID: Outfall 018 (Composite) (ITL201	4-03) - Water				
EPA 180.1	2	12/21/2010 10:17	12/20/2010 20:24	12/22/2010 10:30	12/22/2010 10:30
EPA 300.0	2	12/21/2010 10:17	12/20/2010 20:24	12/22/2010 09:00	12/22/2010 09:21
Filtration	1	12/21/2010 10:17	12/20/2010 20:24	12/21/2010 23:45	12/21/2010 23:45
SM5210B	2	12/21/2010 10:17	12/20/2010 20:24	12/23/2010 09:40	12/28/2010 11:00
SM5540-C	2	12/21/2010 10:17	12/20/2010 20:24	12/22/2010 10:20	12/22/2010 11:20

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Sampled: 12/20/10-12/21/10

Received: 12/20/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•	Result	Limit	Cints	Level	Result	70REC	Limits	KI D	Limit	Quanners
Batch: 10L2782 Extracted: 12/23/10										
Blank Analyzed: 12/23/2010 (10L2782-1	BLK1)									
Benzene	ND	0.50	ug/l							
Carbon tetrachloride	ND	0.50	ug/l							
Chloroform	ND	0.50	ug/l							
1,1-Dichloroethane	ND	0.50	ug/l							
1,2-Dichloroethane	ND	0.50	ug/l							
1,1-Dichloroethene	ND	0.50	ug/l							
Ethylbenzene	ND	0.50	ug/l							
Tetrachloroethene	ND	0.50	ug/l							
Toluene	ND	0.50	ug/l							
1,1,1-Trichloroethane	ND	0.50	ug/l							
1,1,2-Trichloroethane	ND	0.50	ug/l							
Trichloroethene	ND	0.50	ug/l							
Trichlorofluoromethane	ND	0.50	ug/l							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	ug/l							
Vinyl chloride	ND	0.50	ug/l							
Xylenes, Total	ND	1.5	ug/l							
Surrogate: 4-Bromofluorobenzene	23.8		ug/l	25.0		95	80-120			
Surrogate: Dibromofluoromethane	24.1		ug/l	25.0		96	80-120			
Surrogate: Toluene-d8	25.1		ug/l	25.0		100	80-120			
LCS Analyzed: 12/23/2010 (10L2782-B)	S1)									
Benzene	24.2	0.50	ug/l	25.0		97	70-120			
Carbon tetrachloride	30.1	0.50	ug/l	25.0		120	65-140			
Chloroform	26.1	0.50	ug/l	25.0		104	70-130			
1,1-Dichloroethane	26.2	0.50	ug/l	25.0		105	70-125			
1,2-Dichloroethane	28.0	0.50	ug/l	25.0		112	60-140			
1,1-Dichloroethene	24.3	0.50	ug/l	25.0		97	70-125			
Ethylbenzene	27.2	0.50	ug/l	25.0		109	75-125			
Tetrachloroethene	27.8	0.50	ug/l	25.0		111	70-125			
Toluene	25.8	0.50	ug/l	25.0		103	70-120			
1,1,1-Trichloroethane	30.3	0.50	ug/l	25.0		121	65-135			
1,1,2-Trichloroethane	26.0	0.50	ug/l	25.0		104	70-125			
Trichloroethene	27.5	0.50	ug/l	25.0		110	70-125			
Trichlorofluoromethane	29.0	0.50	ug/l	25.0		116	65-145			
Vinyl chloride	21.8	0.50	ug/l	25.0		87	55-135			
Xylenes, Total	82.0	1.5	ug/l	75.0		109	70-125			

TestAmerica Irvine

Heather Clark For Debby Wilson Project Manager

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Sampled: 12/20/10-12/21/10

Received: 12/20/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 10L2782 Extracted: 12/23/10										C 1 1 1 1
Batch. 10E2702 Extracted. 12/25/10										
LCS Analyzed: 12/23/2010 (10L2782-BS										
Surrogate: 4-Bromofluorobenzene	24.6		ug/l	25.0		98	80-120			
Surrogate: Dibromofluoromethane	24.4		ug/l	25.0		98	80-120			
Surrogate: Toluene-d8	25.3		ug/l	25.0		101	80-120			
LCS Dup Analyzed: 12/23/2010 (10L278	82-BSD1)									
Benzene	24.6	0.50	ug/l	25.0		98	70-120	2	20	
Carbon tetrachloride	30.7	0.50	ug/l	25.0		123	65-140	2	25	
Chloroform	26.4	0.50	ug/l	25.0		106	70-130	1	20	
1,1-Dichloroethane	26.7	0.50	ug/l	25.0		107	70-125	2	20	
1,2-Dichloroethane	28.5	0.50	ug/l	25.0		114	60-140	2	20	
1,1-Dichloroethene	25.4	0.50	ug/l	25.0		102	70-125	4	20	
Ethylbenzene	27.8	0.50	ug/l	25.0		111	75-125	2	20	
Tetrachloroethene	27.9	0.50	ug/l	25.0		112	70-125	0.4	20	
Toluene	25.9	0.50	ug/l	25.0		104	70-120	0.5	20	
1,1,1-Trichloroethane	30.7	0.50	ug/l	25.0		123	65-135	1	20	
1,1,2-Trichloroethane	26.4	0.50	ug/l	25.0		105	70-125	1	20	
Trichloroethene	27.8	0.50	ug/l	25.0		111	70-125	0.8	20	
Trichlorofluoromethane	29.7	0.50	ug/l	25.0		119	65-145	2	20	
Vinyl chloride	22.0	0.50	ug/l	25.0		88	55-135	0.7	30	
Xylenes, Total	83.1	1.5	ug/l	75.0		111	70-125	1	20	
Surrogate: 4-Bromofluorobenzene	24.4		ug/l	25.0		98	80-120			
Surrogate: Dibromofluoromethane	24.7		ug/l	25.0		99	80-120			
Surrogate: Toluene-d8	25.1		ug/l	25.0		100	80-120			
Matrix Spike Analyzed: 12/23/2010 (101	L2782-MS1)				Source: I'	TL2140-0	1			
Benzene	24.1	0.50	ug/l	25.0	ND	96	65-125			
Carbon tetrachloride	29.6	0.50	ug/l	25.0	ND	118	65-140			
Chloroform	25.4	0.50	ug/l	25.0	ND	101	65-135			
1,1-Dichloroethane	26.0	0.50	ug/l	25.0	ND	104	65-130			
1,2-Dichloroethane	27.6	0.50	ug/l	25.0	ND	111	60-140			
1,1-Dichloroethene	24.6	0.50	ug/l	25.0	ND	98	60-130			
Ethylbenzene	27.2	0.50	ug/l	25.0	ND	109	65-130			
Tetrachloroethene	27.0	0.50	ug/l	25.0	ND	108	65-130			
Toluene	25.5	0.50	ug/l	25.0	ND	102	70-125			
1,1,1-Trichloroethane	29.7	0.50	ug/l	25.0	ND	119	65-140			
1,1,2-Trichloroethane	26.2	0.50	ug/l	25.0	ND	105	65-130			
Trichloroethene	27.0	0.50	ug/l	25.0	ND	108	65-125			

TestAmerica Irvine

Heather Clark For Debby Wilson Project Manager TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Sampled: 12/20/10-12/21/10

Received: 12/20/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L2782 Extracted: 12/23/10										
Matrix Spike Analyzed: 12/23/2010 (101	L2782-MS1)				Source: I	TL2140-0	1			
Trichlorofluoromethane	29.1	0.50	ug/l	25.0	ND	117	60-145			
Vinyl chloride	22.1	0.50	ug/l	25.0	ND	89	45-140			
Xylenes, Total	80.6	1.5	ug/l	75.0	ND	107	60-130			
Surrogate: 4-Bromofluorobenzene	24.8		ug/l	25.0		99	80-120			
Surrogate: Dibromofluoromethane	25.0		ug/l	25.0		100	80-120			
Surrogate: Toluene-d8	25.4		ug/l	25.0		102	80-120			
Matrix Spike Dup Analyzed: 12/23/2010) (10L2782-M	SD1)			Source: I	TL2140-0	1			
Benzene	24.0	0.50	ug/l	25.0	ND	96	65-125	0.4	20	
Carbon tetrachloride	29.7	0.50	ug/l	25.0	ND	119	65-140	0.3	25	
Chloroform	25.8	0.50	ug/l	25.0	ND	103	65-135	2	20	
1,1-Dichloroethane	26.2	0.50	ug/l	25.0	ND	105	65-130	0.6	20	
1,2-Dichloroethane	27.6	0.50	ug/l	25.0	ND	110	60-140	0.1	20	
1,1-Dichloroethene	24.7	0.50	ug/l	25.0	ND	99	60-130	0.2	20	
Ethylbenzene	26.9	0.50	ug/l	25.0	ND	108	65-130	1	20	
Tetrachloroethene	27.4	0.50	ug/l	25.0	ND	109	65-130	1	20	
Toluene	25.4	0.50	ug/l	25.0	ND	102	70-125	0.6	20	
1,1,1-Trichloroethane	29.8	0.50	ug/l	25.0	ND	119	65-140	0.5	20	
1,1,2-Trichloroethane	26.7	0.50	ug/l	25.0	ND	107	65-130	2	25	
Trichloroethene	26.8	0.50	ug/l	25.0	ND	107	65-125	0.4	20	
Trichlorofluoromethane	29.0	0.50	ug/l	25.0	ND	116	60-145	0.4	25	
Vinyl chloride	22.0	0.50	ug/l	25.0	ND	88	45-140	0.8	30	
Xylenes, Total	80.1	1.5	ug/l	75.0	ND	107	60-130	0.6	20	
Surrogate: 4-Bromofluorobenzene	24.8		ug/l	25.0		99	80-120			
Surrogate: Dibromofluoromethane	24.8		ug/l	25.0		99	80-120			
Surrogate: Toluene-d8	25.3		ug/l	25.0		101	80-120			

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Sampled: 12/20/10-12/21/10

Received: 12/20/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•	Kesuit	Limit	Circs	Level	Result	70REC	Limits	KI D	Limit	Quanners
Batch: 10L2794 Extracted: 12/23/10										
Blank Analyzed: 12/23/2010 (10L2794-	BLK1)									
Benzene	ND	0.50	ug/l							
Carbon tetrachloride	ND	0.50	ug/l							
Chloroform	ND	0.50	ug/l							
1,1-Dichloroethane	ND	0.50	ug/l							
1,2-Dichloroethane	ND	0.50	ug/l							
1,1-Dichloroethene	ND	0.50	ug/l							
Ethylbenzene	ND	0.50	ug/l							
Tetrachloroethene	ND	0.50	ug/l							
Toluene	ND	0.50	ug/l							
1,1,1-Trichloroethane	ND	0.50	ug/l							
1,1,2-Trichloroethane	ND	0.50	ug/l							
Trichloroethene	ND	0.50	ug/l							
Trichlorofluoromethane	ND	0.50	ug/l							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	ug/l							
Vinyl chloride	ND	0.50	ug/l							
Xylenes, Total	ND	1.5	ug/l							
Surrogate: 4-Bromofluorobenzene	21.9		ug/l	25.0		88	80-120			
Surrogate: Dibromofluoromethane	22.9		ug/l	25.0		92	80-120			
Surrogate: Toluene-d8	26.0		ug/l	25.0		104	80-120			
LCS Analyzed: 12/23/2010 (10L2794-B	S1)									
Benzene	25.2	0.50	ug/l	25.0		101	70-120			
Carbon tetrachloride	25.6	0.50	ug/l	25.0		102	65-140			
Chloroform	23.0	0.50	ug/l	25.0		92	70-130			
1,1-Dichloroethane	24.8	0.50	ug/l	25.0		99	70-125			
1,2-Dichloroethane	24.8	0.50	ug/l	25.0		99	60-140			
1,1-Dichloroethene	24.8	0.50	ug/l	25.0		99	70-125			
Ethylbenzene	26.2	0.50	ug/l	25.0		105	75-125			
Tetrachloroethene	25.6	0.50	ug/l	25.0		102	70-125			
Toluene	26.5	0.50	ug/l	25.0		106	70-120			
1,1,1-Trichloroethane	26.0	0.50	ug/l	25.0		104	65-135			
1,1,2-Trichloroethane	25.7	0.50	ug/l	25.0		103	70-125			
Trichloroethene	24.3	0.50	ug/l	25.0		97	70-125			
Trichlorofluoromethane	25.6	0.50	ug/l	25.0		102	65-145			
Vinyl chloride	20.5	0.50	ug/l	25.0		82	55-135			
Xylenes, Total	84.9	1.5	ug/l	75.0		113	70-125			

TestAmerica Irvine

Heather Clark For Debby Wilson Project Manager

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Sampled: 12/20/10-12/21/10

Received: 12/20/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Oualifiers
·	Result	Limit	Circs	Level	Result	/UKEC	Limits	KI D	Limit	Quanners
Batch: 10L2794 Extracted: 12/23/10										
LCS Analyzed: 12/23/2010 (10L2794-BS	51)									
Surrogate: 4-Bromofluorobenzene	24.4		ug/l	25.0		98	80-120			
Surrogate: Dibromofluoromethane	23.6		ug/l	25.0		95	80-120			
Surrogate: Toluene-d8	26.3		ug/l	25.0		105	80-120			
Matrix Spike Analyzed: 12/23/2010 (10I	.2794-MS1)				Source: I'	TL1714-0	1			
Benzene	23.3	0.50	ug/l	25.0	ND	93	65-125			
Carbon tetrachloride	23.9	0.50	ug/l	25.0	ND	96	65-140			
Chloroform	22.4	0.50	ug/l	25.0	ND	90	65-135			
1,1-Dichloroethane	24.0	0.50	ug/l	25.0	ND	96	65-130			
1,2-Dichloroethane	23.3	0.50	ug/l	25.0	ND	93	60-140			
1,1-Dichloroethene	25.4	0.50	ug/l	25.0	ND	102	60-130			
Ethylbenzene	25.4	0.50	ug/l	25.0	ND	102	65-130			
Tetrachloroethene	23.6	0.50	ug/l	25.0	ND	95	65-130			
Toluene	25.1	0.50	ug/l	25.0	ND	100	70-125			
1,1,1-Trichloroethane	25.0	0.50	ug/l	25.0	ND	100	65-140			
1,1,2-Trichloroethane	23.5	0.50	ug/l	25.0	ND	94	65-130			
Trichloroethene	41.3	0.50	ug/l	25.0	ND	165	65-125			M1
Trichlorofluoromethane	25.9	0.50	ug/l	25.0	ND	104	60-145			
Vinyl chloride	21.0	0.50	ug/l	25.0	ND	84	45-140			
Xylenes, Total	81.4	1.5	ug/l	75.0	ND	109	60-130			
Surrogate: 4-Bromofluorobenzene	25.1		ug/l	25.0		100	80-120			
Surrogate: Dibromofluoromethane	9.88		ug/l	25.0		40	80-120			Z
Surrogate: Toluene-d8	26.3		ug/l	25.0		105	80-120			
Matrix Spike Dup Analyzed: 12/23/2010	(10L2794-M	SD1)			Source: I'	TL1714-0	1			
Benzene	22.7	0.50	ug/l	25.0	ND	91	65-125	3	20	
Carbon tetrachloride	23.0	0.50	ug/l	25.0	ND	92	65-140	4	25	
Chloroform	21.4	0.50	ug/l	25.0	ND	86	65-135	5	20	
1,1-Dichloroethane	23.1	0.50	ug/l	25.0	ND	92	65-130	4	20	
1,2-Dichloroethane	23.0	0.50	ug/l	25.0	ND	92	60-140	0.9	20	
1,1-Dichloroethene	25.1	0.50	ug/l	25.0	ND	101	60-130	1	20	
Ethylbenzene	24.1	0.50	ug/l	25.0	ND	96	65-130	5	20	
Tetrachloroethene	23.1	0.50	ug/l	25.0	ND	92	65-130	2	20	
Toluene	24.4	0.50	ug/l	25.0	ND	98	70-125	3	20	
1,1,1-Trichloroethane	23.4	0.50	ug/l	25.0	ND	94	65-140	7	20	
1,1,2-Trichloroethane	22.5	0.50	ug/l	25.0	ND	90	65-130	4	25	
Trichloroethene	40.4	0.50	ug/l	25.0	ND	162	65-125	2	20	MI

TestAmerica Irvine

Heather Clark For Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Sampled: 12/20/10-12/21/10

Received: 12/20/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L2794 Extracted: 12/23/10										
Matrix Spike Dup Analyzed: 12/23/2010	(10L2794-M	ISD1)			Source: I	TL1714-0	1			
Trichlorofluoromethane	24.9	0.50	ug/l	25.0	ND	100	60-145	4	25	
Vinyl chloride	19.9	0.50	ug/l	25.0	ND	80	45-140	5	30	
Xylenes, Total	77.5	1.5	ug/l	75.0	ND	103	60-130	5	20	
Surrogate: 4-Bromofluorobenzene	24.7		ug/l	25.0		99	80-120			
Surrogate: Dibromofluoromethane	6.98		ug/l	25.0		28	80-120			Z
Surrogate: Toluene-d8	26.2		ug/l	25.0		105	80-120			

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018 Sampled: 12/20/10-12/21/10

Report Number: ITL2014 Received: 12/20/10

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10L2492 Extracted: 12/21/10										
Blank Analyzed: 12/23/2010 (10L2492-	-BLK1)									
Bis(2-ethylhexyl)phthalate	ND	5.00	ug/l							
2,4-Dinitrotoluene	ND	5.00	ug/l							
N-Nitrosodimethylamine	ND	5.00	ug/l							
Pentachlorophenol	ND	5.00	ug/l							
2,4,6-Trichlorophenol	ND	6.00	ug/l							
Surrogate: 2,4,6-Tribromophenol	17.8		ug/l	20.0		89	40-120			
Surrogate: 2-Fluorobiphenyl	9.22		ug/l	10.0		92	50-120			
Surrogate: 2-Fluorophenol	13.4		ug/l	20.0		67	30-120			
Surrogate: Nitrobenzene-d5	7.36		ug/l	10.0		74	45-120			
Surrogate: Phenol-d6	14.7		ug/l	20.0		74	35-120			
Surrogate: Terphenyl-d14	8.88		ug/l	10.0		89	50-125			
LCS Analyzed: 12/23/2010 (10L2492-B	BS1)									MNR1
Bis(2-ethylhexyl)phthalate	8.72	5.00	ug/l	10.0		87	65-130			
2,4-Dinitrotoluene	8.20	5.00	ug/l	10.0		82	65-120			
N-Nitrosodimethylamine	6.74	5.00	ug/l	10.0		67	45-120			
Pentachlorophenol	5.34	5.00	ug/l	10.0		53	24-121			
2,4,6-Trichlorophenol	8.30	6.00	ug/l	10.0		83	55-120			
Surrogate: 2,4,6-Tribromophenol	17.5		ug/l	20.0		87	40-120			
Surrogate: 2-Fluorobiphenyl	7.76		ug/l	10.0		78	50-120			
Surrogate: 2-Fluorophenol	12.6		ug/l	20.0		63	30-120			
Surrogate: Nitrobenzene-d5	7.04		ug/l	10.0		70	45-120			
Surrogate: Phenol-d6	14.2		ug/l	20.0		71	35-120			
Surrogate: Terphenyl-d14	8.36		ug/l	10.0		84	50-125			
LCS Dup Analyzed: 12/23/2010 (10L24	492-BSD1)									
Bis(2-ethylhexyl)phthalate	8.88	5.00	ug/l	10.0		89	65-130	2	20	
2,4-Dinitrotoluene	7.82	5.00	ug/l	10.0		78	65-120	5	20	
N-Nitrosodimethylamine	6.80	5.00	ug/l	10.0		68	45-120	0.9	20	
Pentachlorophenol	5.10	5.00	ug/l	10.0		51	24-121	5	25	
2,4,6-Trichlorophenol	8.46	6.00	ug/l	10.0		85	55-120	2	30	
Surrogate: 2,4,6-Tribromophenol	17.6		ug/l	20.0		88	40-120			
Surrogate: 2-Fluorobiphenyl	8.06		ug/l	10.0		81	50-120			
Surrogate: 2-Fluorophenol	12.6		ug/l	20.0		63	30-120			
Surrogate: Nitrobenzene-d5	7.24		ug/l	10.0		72	45-120			
Surrogate: Phenol-d6	14.5		ug/l	20.0		72	35-120			
Surrogate: Terphenyl-d14	8.46		ug/l	10.0		85	50-125			
Toot A moving Invine										

TestAmerica Irvine

Heather Clark For Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Sampled: 12/20/10-12/21/10

Received: 12/20/10

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10L2628 Extracted: 12/22/10										
Blank Analyzed: 12/22/2010 (10L2628-B	LK1)									
alpha-BHC	ND	0.010	ug/l							
Surrogate: Decachlorobiphenyl	0.440		ug/l	0.500		88	45-120			
Surrogate: Tetrachloro-m-xylene	0.401		ug/l	0.500		80	35-115			
LCS Analyzed: 12/22/2010 (10L2628-BS	1)									
alpha-BHC	0.460	0.010	ug/l	0.500		92	45-115			
Surrogate: Decachlorobiphenyl	0.448		ug/l	0.500		90	45-120			
Surrogate: Tetrachloro-m-xylene	0.416		ug/l	0.500		83	35-115			
Matrix Spike Analyzed: 12/22/2010 (10L	.2628-MS1)				Source: I'	ΓL1847-0	1			
alpha-BHC	0.310	0.0094	ug/l	0.472	ND	66	40-120			
Surrogate: Decachlorobiphenyl	0.387		ug/l	0.472		82	45-120			
Surrogate: Tetrachloro-m-xylene	0.212		ug/l	0.472		45	35-115			
Matrix Spike Dup Analyzed: 12/22/2010	(10L2628-MS	SD1)			Source: I'	ΓL1847-0	1			
alpha-BHC	0.342	0.0094	ug/l	0.472	ND	73	40-120	10	30	
Surrogate: Decachlorobiphenyl	0.436		ug/l	0.472		92	45-120			
Surrogate: Tetrachloro-m-xylene	0.233		ug/l	0.472		49	35-115			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Sampled: 12/20/10-12/21/10

Received: 12/20/10

METHOD BLANK/QC DATA

HEXANE EXTRACTABLE MATERIAL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10L2996 Extracted: 12/27/10										
Blank Analyzed: 12/28/2010 (10L2996-B Hexane Extractable Material (Oil & Grease)	L K1) ND	5.0	mg/l							
LCS Analyzed: 12/28/2010 (10L2996-BS Hexane Extractable Material (Oil & Grease)	18.2	5.0	mg/l	20.0		91	78-114			MNR1
LCS Dup Analyzed: 12/28/2010 (10L299) Hexane Extractable Material (Oil & Grease)	6-BSD1) 18.0	5.0	mg/l	20.0		90	78-114	1	11	

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Sampled: 12/20/10-12/21/10

Received: 12/20/10

METHOD BLANK/QC DATA

METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L2645 Extracted: 12/22/10										
Blank Analyzed: 12/22/2010-12/23/2010		,								
Cadmium	ND	1.0	ug/l							
Copper	ND	2.00	ug/l							
Lead	ND	1.0	ug/l							
Manganese	ND	1.0	ug/l							
Selenium	ND	2.0	ug/l							
LCS Analyzed: 12/22/2010-12/23/2010 (10L2645-BS1)								
Cadmium	77.2	1.0	ug/l	80.0		97	85-115			
Copper	84.1	2.00	ug/l	80.0		105	85-115			
Lead	82.5	1.0	ug/l	80.0		103	85-115			
Manganese	76.2	1.0	ug/l	80.0		95	85-115			
Selenium	77.2	2.0	ug/l	80.0		97	85-115			
Matrix Spike Analyzed: 12/22/2010-12/2	23/2010 (10L2	645-MS1)			Source: I'	TL2015-0	2			
Cadmium	72.7	1.0	ug/l	80.0	ND	91	70-130			
Copper	69.7	2.00	ug/l	80.0	2.55	84	70-130			
Lead	83.3	1.0	ug/l	80.0	1.61	102	70-130			
Manganese	102	1.0	ug/l	80.0	28.6	91	70-130			
Selenium	73.0	2.0	ug/l	80.0	ND	91	70-130			
Matrix Spike Analyzed: 12/22/2010-12/2	23/2010 (10L2	645-MS2)			Source: I'	TL2014-0	3			
Cadmium	71.7	1.0	ug/l	80.0	0.123	89	70-130			
Copper	76.5	2.00	ug/l	80.0	4.10	90	70-130			
Lead	85.5	1.0	ug/l	80.0	1.82	105	70-130			
Manganese	115	1.0	ug/l	80.0	45.4	87	70-130			
Selenium	73.4	2.0	ug/l	80.0	ND	92	70-130			
Matrix Spike Dup Analyzed: 12/22/2010	0-12/23/2010 (10L2645-MSD	01)		Source: I'	TL2015-0	2			
Cadmium	74.0	1.0	ug/l	80.0	ND	93	70-130	2	20	
Copper	69.9	2.00	ug/l	80.0	2.55	84	70-130	0.4	20	
Lead	83.6	1.0	ug/l	80.0	1.61	102	70-130	0.4	20	
Manganese	102	1.0	ug/l	80.0	28.6	92	70-130	0.7	20	
Selenium	74.5	2.0	ug/l	80.0	ND	93	70-130	2	20	

TestAmerica Irvine

Heather Clark For Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Attention: Bronwyn Kelly

Arcadia, CA 91007

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Sampled: 12/20/10-12/21/10

Received: 12/20/10

METHOD BLANK/QC DATA

METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L2687 Extracted: 12/22/10										
Blank Analyzed: 12/23/2010 (10L2687-Bl	LK1)									
Iron	ND	0.040	mg/l							
Zinc	ND	20.0	ug/l							
LCS Analyzed: 12/23/2010 (10L2687-BS1	a)									
Iron	0.495	0.040	mg/l	0.500		99	85-115			
Zinc	499	20.0	ug/l	500		100	85-115			
Matrix Spike Analyzed: 12/23/2010 (10L2	2687-MS1)				Source: I	ΓL1987-0	1			
Iron	0.496	0.040	mg/l	0.500	ND	99	70-130			
Zinc	484	20.0	ug/l	500	ND	97	70-130			
Matrix Spike Analyzed: 12/23/2010 (10L2	2687-MS2)				Source: I	ГL1989-0	4			
Iron	0.505	0.040	mg/l	0.500	ND	101	70-130			
Zinc	486	20.0	ug/l	500	ND	97	70-130			
Matrix Spike Dup Analyzed: 12/23/2010	(10L2687-MS	D1)			Source: I	ΓL1987-0	1			
Iron	0.501	0.040	mg/l	0.500	ND	100	70-130	1	20	
Zinc	500	20.0	ug/l	500	ND	100	70-130	3	20	
Batch: 10L3104 Extracted: 12/28/10										
Blank Analyzed: 12/28/2010 (10L3104-Bl	LK1)									
Mercury	ND	0.20	ug/l							
LCS Analyzed: 12/28/2010 (10L3104-BS1	a)									
Mercury	8.00	0.20	ug/l	8.00		100	85-115			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Sampled: 12/20/10-12/21/10

Received: 12/20/10

METHOD BLANK/QC DATA

METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L3104 Extracted: 12/28	3/10									
Matrix Spike Analyzed: 12/28/20	10 (10L3104-MS1)				Source: I	TL2014-0	3			
Mercury	7.68	0.20	ug/l	8.00	ND	96	70-130			
Matrix Spike Dup Analyzed: 12/2	28/2010 (10L3104-M	SD1)			Source: I	TL2014-0	3			
Mercury	7.81	0.20	119/1	8 00	ND	98	70-130	2.	20	

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Sampled: 12/20/10-12/21/10

Received: 12/20/10

METHOD BLANK/QC DATA

DISSOLVED METALS

A In-A	D14	Reporting	TI24-	Spike	Source	0/ DEC	%REC	DDD	RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L2799 Extracted: 12/23/10										
Blank Analyzed: 12/23/2010 (10L2799-B	LK1)									
Iron	ND	0.040	mg/l							
Zinc	ND	20.0	ug/l							
LCS Analyzed: 12/23/2010 (10L2799-BS	1)									
Iron	0.489	0.040	mg/l	0.500		98	85-115			
Zinc	495	20.0	ug/l	500		99	85-115			
Matrix Spike Analyzed: 12/23/2010 (10L	2799-MS1)				Source: I'	ΓL2014-0	3			
Iron	0.541	0.040	mg/l	0.500	0.0159	105	70-130			
Zinc	514	20.0	ug/l	500	8.05	101	70-130			
Matrix Spike Dup Analyzed: 12/23/2010	(10L2799-MS	D1)			Source: I'	ΓL2014-0	3			
Iron	0.532	0.040	mg/l	0.500	0.0159	103	70-130	2	20	
Zinc	501	20.0	ug/l	500	8.05	99	70-130	3	20	
Batch: 10L2800 Extracted: 12/23/10										
Blank Analyzed: 12/23/2010 (10L2800-B)		1.0	Л							
Cadmium	ND	1.0	ug/l							
Copper	ND	2.00	ug/l							
Lead	ND	1.0	ug/l							
Manganese	ND	1.0	ug/l							
Selenium	ND	2.0	ug/l							
LCS Analyzed: 12/23/2010 (10L2800-BS	1)									
Cadmium	82.0	1.0	ug/l	80.0		103	85-115			
Copper	77.5	2.00	ug/l	80.0		97	85-115			
Lead	79.8	1.0	ug/l	80.0		100	85-115			
Manganese	81.1	1.0	ug/l	80.0		101	85-115			
Selenium	74.1	2.0	ug/l	80.0		93	85-115			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Sampled: 12/20/10-12/21/10

Received: 12/20/10

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L2800 Extracted: 12/23/10										
Matrix Spike Analyzed: 12/23/2010 (10I	.2800-MS1)				Source: I'	TL2015-0	2			
Cadmium	80.2	1.0	ug/l	80.0	ND	100	70-130			
Copper	69.8	2.00	ug/l	80.0	0.969	86	70-130			
Lead	73.8	1.0	ug/l	80.0	ND	92	70-130			
Manganese	75.5	1.0	ug/l	80.0	2.30	91	70-130			
Selenium	74.3	2.0	ug/l	80.0	ND	93	70-130			
Matrix Spike Dup Analyzed: 12/23/2010	(10L2800-M	SD1)			Source: I'	TL2015-0	2			
Cadmium	83.4	1.0	ug/l	80.0	ND	104	70-130	4	20	
Copper	71.9	2.00	ug/l	80.0	0.969	89	70-130	3	20	
Lead	77.1	1.0	ug/l	80.0	ND	96	70-130	4	20	
Manganese	78.5	1.0	ug/l	80.0	2.30	95	70-130	4	20	
Selenium	76.9	2.0	ug/l	80.0	ND	96	70-130	3	20	
Batch: 10L3103 Extracted: 12/28/10										
Blank Analyzed: 12/28/2010 (10L3103-E	BLK1)									
Mercury	ND	0.20	ug/l							
LCS Analyzed: 12/28/2010 (10L3103-BS	51)									
Mercury	8.23	0.20	ug/l	8.00		103	85-115			
Matrix Spike Analyzed: 12/28/2010 (10I	.3103-MS1)				Source: I'	TL2014-0	3			
Mercury	8.27	0.20	ug/l	8.00	ND	103	70-130			
Matrix Spike Dup Analyzed: 12/28/2010	(10L3103-M	SD1)			Source: I'	TL2014-0	3			
Mercury	8.19	0.20	ug/l	8.00	ND	102	70-130	0.9	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

%REC

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Reporting

Sampled: 12/20/10-12/21/10

RPD

Data

Received: 12/20/10

METHOD BLANK/QC DATA

INORGANICS

Snike

Source

		кероги	ıg	Spike	Source		70KEC		KPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L2408 Extracted: 12/21/10										
Blank Analyzed: 12/21/2010 (10L2408-	BLK1)									
Specific Conductance	ND	1.0	umhos/cm @ 25C							
LCS Analyzed: 12/21/2010 (10L2408-B	S1)									
Specific Conductance	1430	1.0	umhos/cm @ 25C	1410		101	90-110			
Duplicate Analyzed: 12/21/2010 (10L24	408-DUP1)				Source: I	TL1890-0	1			
Specific Conductance	116	1.0	umhos/cm @ 25C		115			0.8	5	
Batch: 10L2589 Extracted: 12/22/10										
Blank Analyzed: 12/22/2010 (10L2589-	BLK1)									
Total Dissolved Solids	ND	10	mg/l							
LCS Analyzed: 12/22/2010 (10L2589-B	S1)									
Total Dissolved Solids	996	10	mg/l	1000		100	90-110			
Duplicate Analyzed: 12/22/2010 (10L25	589-DUP1)				Source: I	TL2097-0	1			
Total Dissolved Solids	3380	20	mg/l		3410			1	10	
Batch: 10L2625 Extracted: 12/22/10										
Blank Analyzed: 12/22/2010 (10L2625-	BLK1)									
Chloride	ND	0.50	mg/l							
Nitrate-N	ND	0.11	mg/l							
Nitrite-N	ND	0.15	mg/l							
Nitrate/Nitrite-N	ND	0.26	mg/l							
Sulfate	ND	0.50	mg/l							

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Sampled: 12/20/10-12/21/10

Received: 12/20/10

METHOD BLANK/QC DATA

INORGANICS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L2625 Extracted: 12/22/10										
LCS Analyzed: 12/22/2010 (10L2625-BS)	1)									
Chloride	4.64	0.50	mg/l	5.00		93	90-110			
Nitrate-N	1.11	0.11	mg/l	1.13		98	90-110			
Nitrite-N	1.49	0.15	mg/l	1.52		98	90-110			
Sulfate	9.73	0.50	mg/l	10.0		97	90-110			
Matrix Spike Analyzed: 12/22/2010 (10L	2625-MS1)				Source: I'	ΓL2015-0	2			
Chloride	125	5.0	mg/l	50.0	78.6	94	80-120			
Nitrate-N	11.2	1.1	mg/l	11.3	0.420	95	80-120			
Nitrite-N	14.6	1.5	mg/l	15.2	ND	96	80-120			
Sulfate	114	5.0	mg/l	100	18.0	96	80-120			
Matrix Spike Dup Analyzed: 12/22/2010	(10L2625-MS	D1)			Source: I'	ГL2015-0	2			
Chloride	127	5.0	mg/l	50.0	78.6	98	80-120	2	20	
Nitrate-N	11.5	1.1	mg/l	11.3	0.420	98	80-120	3	20	
Nitrite-N	14.8	1.5	mg/l	15.2	ND	97	80-120	1	20	
Sulfate	115	5.0	mg/l	100	18.0	97	80-120	0.6	20	
Batch: 10L2657 Extracted: 12/22/10										
Blank Analyzed: 12/22/2010 (10L2657-Bl	LK1)									
Turbidity	ND	1.0	NTU							
Duplicate Analyzed: 12/22/2010 (10L265)	7-DUP1)				Source: I'	ΓL2028-0	1			
Turbidity	87.5	5.0	NTU		87.0			0.6	20	
Duplicate Analyzed: 12/22/2010 (10L265)	7-DUP2)				Source: I'	ΓL2089-0	9			
Turbidity	12.6	1.0	NTU		12.6			0.2	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Sampled: 12/20/10-12/21/10

Received: 12/20/10

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 10L2679 Extracted: 12/22/10										C
Blank Analyzed: 12/22/2010 (10L2679-Bl Surfactants (MBAS)	LK1) ND	0.10	mg/l							
LCS Analyzed: 12/22/2010 (10L2679-BS)	1)		J							
Surfactants (MBAS)	0.253	0.10	mg/l	0.250		101	90-110			
Matrix Spike Analyzed: 12/22/2010 (10L	2679-MS1)				Source: I'	TL2215-0	1			
Surfactants (MBAS)	0.384	0.10	mg/l	0.250	0.120	105	50-125			
Matrix Spike Dup Analyzed: 12/22/2010		D1)			Source: I'	TL2215-0	1			
Surfactants (MBAS)	0.381	0.10	mg/l	0.250	0.120	104	50-125	0.7	20	
Batch: 10L2704 Extracted: 12/22/10										
Blank Analyzed: 12/22/2010 (10L2704-B	LK1)									
Total Cyanide	ND	5.0	ug/l							
LCS Analyzed: 12/22/2010 (10L2704-BS)	1)									
Total Cyanide	195	5.0	ug/l	200		98	90-110			
Matrix Spike Analyzed: 12/22/2010 (10L	2704-MS1)					TL2014-0	3			
Total Cyanide	144	5.0	ug/l	200	ND	72	70-115			
Matrix Spike Dup Analyzed: 12/22/2010	•	,			Source: I'					
Total Cyanide	143	5.0	ug/l	200	ND	72	70-115	0.5	15	
Batch: 10L2828 Extracted: 12/23/10										
Blank Analyzed: 12/28/2010 (10L2828-B	LK1)									
Biochemical Oxygen Demand	ND	2.0	mg/l							

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Sampled: 12/20/10-12/21/10

Received: 12/20/10

METHOD BLANK/QC DATA

INORGANICS

Amalista	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	DDD	RPD Limit	Data Oualifiers
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	KPD	Limit	Quaimers
Batch: 10L2828 Extracted: 12/23/10										
LCS Analyzed: 12/28/2010 (10L2828-BS	1)									
Biochemical Oxygen Demand	194	100	mg/l	198		98	85-115			
			8	-, -						
LCS Dup Analyzed: 12/28/2010 (10L282	,									
Biochemical Oxygen Demand	204	100	mg/l	198		103	85-115	5	20	
Batch: 10L2850 Extracted: 12/23/10										
Blank Analyzed: 12/23/2010 (10L2850-B	LK1)									
Total Suspended Solids	ND	10	mg/l							
LCS Analyzed: 12/23/2010 (10L2850-BS	1)									
Total Suspended Solids	1000	10	mg/l	1000		100	85-115			
Duplicate Analyzed: 12/23/2010 (10L285	(Ո_D[[[P1]				Source: I	TL2347-0	1			
Total Suspended Solids	161	10	mg/l		160	112347-0	1	0.6	10	
Total Suspended Solids	101	10	1115/1		100			0.0	10	
Batch: 10L2867 Extracted: 12/23/10										
DI I A I I 12/22/2010 (101 20/7 D	T 171\									
Blank Analyzed: 12/23/2010 (10L2867-B	,	0.500	/1							
Ammonia-N (Distilled)	ND	0.500	mg/l							
LCS Analyzed: 12/23/2010 (10L2867-BS	1)									
Ammonia-N (Distilled)	9.80	0.500	mg/l	10.0		98	80-115			
Matrix Spike Analyzed: 12/23/2010 (10L	2867-MS1)				Source: I	TL2014-0	3			
Ammonia-N (Distilled)	9.80	0.500	mg/l	10.0	ND	98	70-120			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Sampled: 12/20/10-12/21/10

Received: 12/20/10

METHOD BLANK/QC DATA

INORGANICS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L2867 Extracted: 12/23/10										
Matrix Spike Dup Analyzed: 12/23/2010	Spike Dup Analyzed: 12/23/2010 (10L2867-MSD1)				Source: ITL2014-03					
Ammonia-N (Distilled)	9.80	0.500	mg/l	10.0	ND	98	70-120	0	15	
Batch: 10L3015 Extracted: 12/28/10										
Blank Analyzed: 12/28/2010 (10L3015-Bl	LK1)									
Perchlorate	ND	4.0	ug/l							
LCS Analyzed: 12/28/2010 (10L3015-BS)	1)									
Perchlorate	22.7	4.0	ug/l	25.0		91	85-115			
Matrix Spike Analyzed: 12/28/2010 (10L3015-MS1)					Source: ITL2014-03					
Perchlorate	23.1	4.0	ug/l	25.0	ND	92	80-120			
Matrix Spike Dup Analyzed: 12/28/2010 (10L3015-MSD1)				Source: ITL2014-03						
Perchlorate	23.7	4.0	ug/l	25.0	ND	95	80-120	3	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Sampled: 12/20/10-12/21/10

Received: 12/20/10

METHOD BLANK/QC DATA

8647

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8647 Extracted: 12/30/10										
LCS Analyzed: 01/20/2011 (S012314-02)					Source:					
Uranium, Total	56.3	1	pCi/L	56.5		100	80-120			
Blank Analyzed: 01/20/2011 (S012314-03	3)				Source:					
Uranium, Total	0	1	pCi/L				-			U
Duplicate Analyzed: 01/20/2011 (S012314-04)					Source: ITL2014-03					
Uranium, Total	0.245	1	pCi/L		0.237		-	3		Jb

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Sampled: 12/20/10-12/21/10

Received: 12/20/10

METHOD BLANK/QC DATA

900

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8647 Extracted: 01/04/11										
LCS Analyzed: 01/05/2011 (S012314-02)					Source:					
Gross Alpha	40.4	3	pCi/L	40.4		100	70-130			
Gross Beta	33.8	4	pCi/L	35		97	70-130			
Blank Analyzed: 01/05/2011 (S012314-03	3)				Source:					
Gross Alpha	-0.064	3	pCi/L				-			U
Gross Beta	-0.434	4	pCi/L				-			U
Duplicate Analyzed: 01/05/2011 (S012314-04)					Source: I	TL2014-0	3			
Gross Alpha	1.12	3	pCi/L		0.948		-	17		Jb
Gross Beta	4.03	4	pCi/L		4.3		-	6		

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Sampled: 12/20/10-12/21/10

Received: 12/20/10

METHOD BLANK/QC DATA

901.1

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8647 Extracted: 12/30/10										
LCS Analyzed: 01/06/2011 (S012314-02)					Source:					
Cobalt-60	103	10	pCi/L	102		101	80-120			
Cesium-137	118	20	pCi/L	110		107	80-120			
Blank Analyzed: 01/06/2011 (S012314-03	3)				Source:					
Cesium-137	ND	20	pCi/L				-			U
Potassium-40	ND	25	pCi/L				-			U
Duplicate Analyzed: 01/06/2011 (S012314	4-04)				Source: I'	ΓL2014-0	3			
Cesium-137	ND	20	pCi/L		0		-	0		U
Potassium-40	ND	25	pCi/L		0		-	0		U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Sampled: 12/20/10-12/21/10

Received: 12/20/10

METHOD BLANK/QC DATA

903.1

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8647 Extracted: 01/21/11										
LCS Analyzed: 01/21/2011 (S012314-02)					Source:					
Radium-226	61	1	pCi/L	55.7		110	80-120			
Blank Analyzed: 01/21/2011 (S012314-03)				Source:					
Radium-226	0.035	1	pCi/L				-			U
Duplicate Analyzed: 01/21/2011 (S012314	l-04)				Source: I'	ГL2014-03	3			
Radium-226	0.179	1	pCi/L		0.312		-	0		U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Sampled: 12/20/10-12/21/10

Received: 12/20/10

METHOD BLANK/QC DATA

904

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8647 Extracted: 01/21/11										
LCS Analyzed: 01/21/2011 (S012314-02) Radium-228	5.39	1	pCi/L	4.63	Source:	116	60-140			
Blank Analyzed: 01/21/2011 (S012314-03 Radium-228	-0.175	1	pCi/L		Source:		-			U
Duplicate Analyzed: 01/21/2011 (S01231 Radium-228	4-04) 0.01	1	pCi/L		Source: I 0.125	TL2014-0.	-	0		U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Sampled: 12/20/10-12/21/10

Received: 12/20/10

METHOD BLANK/QC DATA

905

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8647 Extracted: 01/08/11										
LCS Analyzed: 01/13/2011 (S012314-02)					Source:					
Strontium-90	17.4	2	pCi/L	17.5		99	80-120			
Blank Analyzed: 01/13/2011 (S012314-03	3)				Source:					
Strontium-90	-0.069	2	pCi/L				-			U
Duplicate Analyzed: 01/13/2011 (S01231-	4-04)				Source: I	TL2014-0	3			
Strontium-90	0.168	2	pCi/L		0.018		-	0		U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Sampled: 12/20/10-12/21/10

Received: 12/20/10

METHOD BLANK/QC DATA

906

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8647 Extracted: 01/13/11										
LCS Analyzed: 01/14/2011 (S012314-02) Tritium	2850	500	pCi/L	2550	Source:	112	80-120			
Blank Analyzed: 01/14/2011 (S012314-03 Tritium	107	500	pCi/L		Source:		-			U
Duplicate Analyzed: 01/14/2011 (S012314 Tritium	1-04) 155	500	pCi/L		Source: I	TL2014-03	3 -	0		U

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Arcadia, CA 91007

618 Michillinda Avenue, Suite 200

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Received: 12/20/10

Sampled: 12/20/10-12/21/10

METHOD BLANK/QC DATA

EPA-5 1613Bx

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
•	Result	LIIIII	Units	Levei	Kesuit	70KEC	Limits	KrD	Liiiit	Quanners
Batch: 357431 Extracted: 12/23/10										
Blank Analyzed: 12/28/2010 (G0L23	0000431B)				Source:					
1,2,3,4,6,7,8-HpCDD	1.5e-006	0.00005	ug/L				-			J
1,2,3,4,6,7,8-HpCDF	9.5e-007	0.00005	ug/L				-			J, Q
1,2,3,4,7,8,9-HpCDF	9.6e-007	0.00005	ug/L				-			J, Q
1,2,3,4,7,8-HxCDD	ND	0.00005	ug/L				-			
1,2,3,4,7,8-HxCDF	ND	0.00005	ug/L				-			
1,2,3,6,7,8-HxCDD	ND	0.00005	ug/L				-			
1,2,3,6,7,8-HxCDF	ND	0.00005	ug/L				-			
1,2,3,7,8,9-HxCDD	ND	0.00005	ug/L				-			
1,2,3,7,8,9-HxCDF	ND	0.00005	ug/L				-			
1,2,3,7,8-PeCDD	ND	0.00005	ug/L				-			
1,2,3,7,8-PeCDF	ND	0.00005	ug/L				-			
2,3,4,6,7,8-HxCDF	ND	0.00005	ug/L				-			
2,3,4,7,8-PeCDF	ND	0.00005	ug/L				-			
2,3,7,8-TCDD	ND	0.00001	ug/L				-			
2,3,7,8-TCDF	ND	0.00001	ug/L				-			
OCDD	5.9e-006	0.0001	ug/L				-			J
OCDF	2e-006	0.0001	ug/L				-			J
Total HpCDD	2.5e-006	0.00005	ug/L				-			J
Total HpCDF	1.9e-006	0.00005	ug/L				-			J, Q
Total HxCDD	ND	0.00005	ug/L				-			
Total HxCDF	ND	0.00005	ug/L				-			
Total PeCDD	ND	0.00005	ug/L				-			
Total PeCDF	ND	0.00005	ug/L				-			
Total TCDD	ND	0.00001	ug/L				-			
Total TCDF	ND	0.00001	ug/L				-			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.0021		ug/L	0.002		107	23-140			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.0018		ug/L	0.002		92	28-143			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.002		ug/L	0.002		100	26-138			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.0017		ug/L	0.002		86	32-141			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.0016		ug/L	0.002		81	26-152			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.002		ug/L	0.002		98	28-130			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.0016		ug/L	0.002		83	26-123			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.0016		ug/L	0.002		81	29-147			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.0018		ug/L	0.002		91	25-181			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.0018		ug/L	0.002		92	24-185			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.0017		ug/L	0.002		85	28-136			
m										

TestAmerica Irvine

Heather Clark For Debby Wilson Project Manager

%REC

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Reporting

Sampled: 12/20/10-12/21/10

RPD

Data

Received: 12/20/10

METHOD BLANK/QC DATA

EPA-5 1613Bx

Spike

Source

		Reporting		Spike	Source		%KEC		KPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 357431 Extracted: 12/23/10										
Blank Analyzed: 12/28/2010 (G0L23	0000431B)				Source:					
Surrogate: 13C-2,3,4,7,8-PeCDF	0.0018		ug/L	0.002		89	21-178			
Surrogate: 13C-2,3,7,8-TCDD	0.0017		ug/L	0.002		83	25-164			
Surrogate: 13C-2,3,7,8-TCDF	0.0015		ug/L	0.002		77	24-169			
Surrogate: 13C-OCDD	0.0036		ug/L	0.004		90	17-157			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.0008		ug/L	0.0008		99	35-197			
LCS Analyzed: 12/28/2010 (G0L2300	000431C)				Source:					
1,2,3,4,6,7,8-HpCDD	0.00102	0.00005	ug/L	0.001		102	70-140			B
1,2,3,4,6,7,8-HpCDF	0.00109	0.00005	ug/L	0.001		109	82-122			B
1,2,3,4,7,8,9-HpCDF	0.00108	0.00005	ug/L	0.001		108	78-138			B
1,2,3,4,7,8-HxCDD	0.00118	0.00005	ug/L	0.001		118	70-164			
1,2,3,4,7,8-HxCDF	0.00102	0.00005	ug/L	0.001		102	72-134			
1,2,3,6,7,8-HxCDD	0.000981	0.00005	ug/L	0.001		98	76-134			
1,2,3,6,7,8-HxCDF	0.00105	0.00005	ug/L	0.001		105	84-130			
1,2,3,7,8,9-HxCDD	0.00108	0.00005	ug/L	0.001		108	64-162			
1,2,3,7,8,9-HxCDF	0.00108	0.00005	ug/L	0.001		108	78-130			
1,2,3,7,8-PeCDD	0.00109	0.00005	ug/L	0.001		109	70-142			
1,2,3,7,8-PeCDF	0.000975	0.00005	ug/L	0.001		98	80-134			
2,3,4,6,7,8-HxCDF	0.00103	0.00005	ug/L	0.001		103	70-156			
2,3,4,7,8-PeCDF	0.000976	0.00005	ug/L	0.001		98	68-160			
2,3,7,8-TCDD	0.000214	0.00001	ug/L	0.0002		107	67-158			
2,3,7,8-TCDF	0.000186	0.00001	ug/L	0.0002		93	75-158			
OCDD	0.00191	0.0001	ug/L	0.002		96	78-144			B
OCDF	0.00182	0.0001	ug/L	0.002		91	63-170			B
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.00221		ug/L	0.002		111	26-166			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.00194		ug/L	0.002		97	21-158			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.00207		ug/L	0.002		104	20-186			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.00166		ug/L	0.002		83	21-193			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.00162		ug/L	0.002		81	19-202			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.00201		ug/L	0.002		100	25-163			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.00168		ug/L	0.002		84	21-159			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.0016		ug/L	0.002		80	17-205			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.00181		ug/L	0.002		91	21-227			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.00187		ug/L	0.002		93	21-192			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.00169		ug/L	0.002		85	22-176			
Surrogate: 13C-2,3,4,7,8-PeCDF	0.00177		ug/L	0.002		89	13-328			

TestAmerica Irvine

Heather Clark For Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Sampled: 12/20/10-12/21/10

Received: 12/20/10

METHOD BLANK/QC DATA

EPA-5 1613Bx

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 357431 Extracted: 12/23/10										
LCS Analyzed: 12/28/2010 (G0L23000	00431C)				Source:					
Surrogate: 13C-2,3,7,8-TCDD	0.00171		ug/L	0.002		85	20-175			
Surrogate: 13C-2,3,7,8-TCDF	0.00157		ug/L	0.002		79	22-152			
Surrogate: 13C-OCDD	0.00374		ug/L	0.004		94	13-199			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.000784		ug/L	0.0008		98	31-191			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quarterly Outfall 018 2010

618 Michillinda Avenue, Suite 200 Quarterly Outfall 018 Sampled: 12/20/10-12/21/10

Arcadia, CA 91007 Report Number: ITL2014 Received: 12/20/10

Attention: Bronwyn Kelly

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
ITL2014-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	0	4.7	15
ITL2014-01	624-Boeing 001/002Q (Fr113+X+	Fr1,1-Dichloroethene	ug/l	0	0.50	6
ITL2014-01	624-Boeing 001/002Q (Fr113+X+	FrTrichloroethene	ug/l	0	0.50	5
ITL2014-01	Settleable Solids - SM2540F	Total Settleable Solids	ml/l	0	0.10	0.3

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
ITL2014-02	624-Boeing 001/0020	Q (Fr113+X+Fr1,1-Dichloroethene	ug/l	0	0.50	6
ITL2014-02	624-Boeing 001/0020	Q (Fr113+X+FrTrichloroethene	ug/l	0	0.50	5

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
ITL2014-03	608-Pest Boeing 001/002 Q (LL)	alpha-BHC	ug/l	0	0.0094	0.03
ITL2014-03	625-Boeing 001/002 Q-LL	2,4,6-Trichlorophenol	ug/l	0	5.66	13
ITL2014-03	625-Boeing 001/002 Q-LL	2,4-Dinitrotoluene	ug/l	0	4.72	18
ITL2014-03	625-Boeing 001/002 Q-LL	Bis(2-ethylhexyl)phthalate	ug/l	0.34	4.72	4
ITL2014-03	625-Boeing 001/002 Q-LL	N-Nitrosodimethylamine	ug/l	0	4.72	16
ITL2014-03	625-Boeing 001/002 Q-LL	Pentachlorophenol	ug/l	0	4.72	16.5
ITL2014-03	Ammonia-N, Titr 4500NH3-C (w/c	li:Ammonia-N (Distilled)	mg/l	0	0.500	10.1
ITL2014-03	BOD - SM5210B	Biochemical Oxygen Demand	mg/l	1.77	2.0	30
ITL2014-03	Cadmium-200.8	Cadmium	ug/l	0.12	1.0	3.1
ITL2014-03	Chloride - 300.0	Chloride	mg/l	6.90	0.50	150
ITL2014-03	Copper-200.8	Copper	ug/l	4.10	2.00	14
ITL2014-03	Cyanide, Total-4500CN-E (5ppb)	Total Cyanide	ug/l	-1	5.0	8.5
ITL2014-03	Iron-200.7	Iron	mg/l	2.29	0.040	0.3
ITL2014-03	Lead-200.8	Lead	ug/l	1.82	1.0	5.2
ITL2014-03	MBAS - SM5540C	Surfactants (MBAS)	mg/l	0.029	0.10	0.5
ITL2014-03	Mercury - 245.1	Mercury	ug/l	0	0.20	0.1
ITL2014-03	Nitrate-N, 300.0	Nitrate-N	mg/l	1.01	0.11	8
ITL2014-03	Nitrite-N, 300.0	Nitrite-N	mg/l	0	0.15	1
ITL2014-03	Nitrogen, NO3+NO2 -N EPA 300.0) Nitrate/Nitrite-N	mg/l	1.01	0.26	8

TestAmerica Irvine

Heather Clark For Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasader 618 Michillind Arcadia, CA 9 Attention: Bro	la Avenue, Suite 200 1007	Project ID: Quarterly Outfall (Quarterly Outfall (Report Number: ITL2014		Sampled: 12/20/10-12/21/10 Received: 12/20/10				
ITL2014-03	Perchlorate 314.0 - Default	Perchlorate	ug/l	0	4.0	6		
ITL2014-03	Selenium-200.8	Selenium	ug/l	0.19	2.0	5		
ITL2014-03	Sulfate-300.0	Sulfate	mg/l	38	0.50	300		
ITL2014-03	TDS - SM2540C	Total Dissolved Solids	mg/l	112	10	950		
ITL2014-03	TSS - SM2540D	Total Suspended Solids	mg/l	22	10	45		
ITL2014-03	Zinc-200.7	Zinc	ug/l	19	20.0	119		

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018 Sampled: 12/20/10-12/21/10

Report Number: ITL2014 Received: 12/20/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

DATA QUALIFIERS AND DEFINITIONS

В	Method blank contamination	The associated method blan	nk contains the target analyte at a reportable level.	

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

Jb The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.

The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

Q Estimated maximum possible concentration (EMPC).

U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the

limit.

Z Due to sample matrix effects, the surrogate recovery was below the acceptance limits.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018

Report Number: ITL2014

Sampled: 12/20/10-12/21/10

Received: 12/20/10

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EPA 120.1	Water	X	X
EPA 1664A	Water	X	X
EPA 180.1	Water	X	X
EPA 200.7-Diss	Water	X	X
EPA 200.7	Water	X	X
EPA 200.8-Diss	Water	X	X
EPA 200.8	Water	X	X
EPA 245.1-Diss	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 314.0	Water	X	X
EPA 608	Water	X	X
EPA 624	Water	X	X
EPA 625	Water	X	X
Filtration	Water	N/A	N/A
SM 2540D	Water	X	X
SM2540C	Water	X	
SM2540F	Water	X	X
SM4500CN-E	Water	X	X
SM4500NH3-C	Water	X	X
SM5210B	Water	X	X
SM5540-C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chrnic

Samples: ITL2014-03

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quarterly Outfall 018 2010

618 Michillinda Avenue, Suite 200 Quarterly Outfall 018 Sampled: 12/20/10-12/21/10

Arcadia, CA 91007 Report Number: ITL2014 Received: 12/20/10

Attention: Bronwyn Kelly

Eberline Services - SUB

2030 Wright Avenue - Richmond, CA 94804

Analysis Performed: Gamma Spec

Samples: ITL2014-03

Analysis Performed: Gross Alpha

Samples: ITL2014-03

Analysis Performed: Gross Beta

Samples: ITL2014-03

Analysis Performed: Radium, Combined

Samples: ITL2014-03

Analysis Performed: Strontium 90

Samples: ITL2014-03

Analysis Performed: Tritium

Samples: ITL2014-03

Analysis Performed: Uranium, Combined

Samples: ITL2014-03

TestAmerica Buffalo

10 Hazelwood Drive, Suite 106 - Amherst, NY 14228

Method Performed: 8647

Samples: ITL2014-03

Method Performed: 900

Samples: ITL2014-03

Method Performed: 901.1

Samples: ITL2014-03

Method Performed: 903.1

Samples: ITL2014-03

Method Performed: 904

Samples: ITL2014-03

Method Performed: 905

Samples: ITL2014-03

Method Performed: 906

Samples: ITL2014-03

TestAmerica Irvine

Heather Clark For Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quarterly Outfall 018 2010

Quarterly Outfall 018 Sampled: 12/20/10-12/21/10

Report Number: ITL2014 Received: 12/20/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

TestAmerica West Sacramento NELAC Cert #1119CA, Nevada Cert #CA44

880 Riverside Parkway - West Sacramento, CA 95605

Method Performed: EPA-5 1613B Samples: ITL2014-03

777 2014 Page 1 of 3

OP																					<u> </u>	
Client Name/	Address:			Projec		NDDEO									A	VALY	SIS R	EQUIF	RED			
MWH-Arca					g-SSFL											ļ						
618 Michillind		Suite 200		1 '	erly Out	tali 018							ļ			•	1				ĺ	Field readings:
Arcadia, CA	91007			GRAB	•					l		l	l			1						(Log in and include in
T		5						ŀ	ľ			İ	i			1	İ					report Temp and pH)
Test America	Contact	: Debby Wi	lson								l			i		1			ł	1		
·								١	€		ŀ											Temp °F = 3
								1	🖆						l]						pH = 7.6
Project Mana	ger: Bro	nwvn Kelly		Phone	Numbe	r·		(624) + Freon 113	4													Temp °F = 3 0 pH = 7.6 DO = 0.36 1116
l vojosi mana	901. 210	intyn reny		1	568-669			F	166	န							1				1	
Samplar 10:	. 1 13	Land Co		l` ′		J		+) Me	Sol	ج ا	i					l					Time of readings
Sampler:	E 1 67	OF THE PO	,	1	umber:	_		324	eas	e e	ξ											= 11:00
Sample	Comple	Cantainas			568-651	5) s	Ō	eat	딁		İ						ļ	J		
Description	Sample Matrix	Container Type	# of Cont.		npling e/Time	Preservative	Bottle #	VOCs (Oil & Grease (1664-HEM)	Settleable Solids	Conductivity											Comments
Outfall 018	w	VOAs	5	12.3	درند. ن	нсі	1A, 1B, 1C,		Ŭ	<u> </u>	<u> </u>		\vdash	 	 		 	-		 		
Outlail 016		VOAS	L	11;	00	nu	1D, 1E	Х	<u> </u>					<u> </u>	<u> </u>		ļ					
Outfall 018	w	1L Amber	2			HCI	2A, 2B		х						ļ <u>.</u>							
Outfall 018	W	1L Poly	1			None	3			х				ļ								
Outfall 018	W	500 mL Poly	2	1	>	None	4A, 4B				х											
Trip Blanks	w	VOAs	3	177	0:3en	HCI	5A, 5B, 5C	x														
												<u> </u>			†			<u> </u>		†		
			-						<u> </u>		 	-		├	├		 -			-		
				ļ					<u> </u>	L	<u> </u>			ļ	╙					<u> </u>		
																			 -	-		
											 						<u> </u>					
																	<u> </u>		 	-		
												-		ļ <u> </u>	_		<u> </u>	-	<u> </u>	 		
																			<u> </u>			
	Those	Samples a	ra th	a Grah	Portion	of Outfall	018 for this	otorr	2010					<u></u>						-14-41		
Relinquished By	111030	oampies ai	Date/T	ime:	FOILION	Of Outlan	Received By	Storr	eve	III. C	0 -	. T			VIII TO			e: (Chec		ea to ti	1IS WO	rk order.
	1		٠ (در	20-	2016	í		- 1		1 1			01	LD								
1 int	رند د	Z					Vin	4	رپ	X //	LZ	re/ i ime _/2 !/				24 HOU	ır	/2 Hour	*/	10 Day: Normal:		-
Dell'accident De								~ 8	2-7/	<u>~</u>			 \	2		48 Hou	ır	5 Day:		Normal:		-
Kelinquisned By			Jate/T	ime: /2	2/2c	110	Received By				Dat	te/Time	:									
Pinny Relinquished By Relinquished By	- 1. ر⊾		//	,-	2	77 (1										Sample	Integrity	(Check) **	_>	· U .	('
Relinquished By	_ /	- coco	22to/*	imo:	<u>``</u>	~7	Received By				D-4	te/Time			ļ	midUl.		On ice:			•	
cqu.onou by		ı	-a.c/ 1				Neceived By									D-4 : -	1		-13			
								_			. \^	115	۱۱م	2 7	سلات	i⊃ata R 1	equireme	ents: (Che	eck)			
											• ,	1-	- (<u> </u>	No Lev	el IV:	All Level	IV:	NPDES !	_evel IV:	

Client Name/Address: Project:											ΑN	ALYSIS	REQUI	RED								
MWH-Arcad 618 Michillinda Arcadia, CA 9	a Ave, S	uite 200		Quar	g-SSFL N terly Out POSITE			b, Hg, Cd,				te					s(2- VOCs 625)					
Test America	Contact:	Debby Wils	son					fetals: Cu, P	eners)	(;		N, Perchlorate					otoluene, Bis(2- IDMA, PCP (SVOCs					Comments
Project Manag	-			(626) Fax N	e Number 568-669 Number: 568-651	1		Total Recoverable Metals: Cu, Pb, Hg, Se, Zn, Fe, Mn	TCDD (and all congeners)	BOD ₅ (20 degrees C)	Surfactants (MBAS)	SO ₄ , NO ₃ +NO ₂ -N,	Nitrate-N, Nitrite-N	Turbidity, TDS, TSS	Ammonia-N (350.2)	Alpha BHC (608)	2,4,6 TCP, 2,4 Dinitrotoluene, Bis(2.ethylnexyl)phthalate, NDMA, PCP (SVC					
Sample Description	Sample Matrix	Container Type	# of Cont.	Sa	ampling te/Time	Preservative	Bottle #	Total Re Se, Zn,	тсвр	BOD ₅ (Surfact	Cr, so	Nitrate	Turbidi	Ammo	Alpha f	2,4,6 T ethylhe:					
Outfall 018	w	1L Poly	1	12-:	1-2010	HNO ₃	6A	х														
Outfall 018 Dup	w	1L Poly	1	10	:/7	HNO ₃	6B	Х														
Outfall 018	w	1L Amber	2			None	7A, 7B		Х													
Outfall 018	w	1L Poly	1			None	8		ļ	Х			L									
Outfall 018	w	500 mL Poly	2			None	9A, 9B				х				L							20:46,
Outfall 018	W	500 mL Poly	2	-		None	10A, 10B					x										12/10/
Outfall 018	w	500 mL Poly	1	H		None	11						×									W
Outfall 018 Outfall 018	w	500 mL Poly	2	1		None H₂SO₄	12A, 12B							×	X				<u> </u>		+	
Outfall 018	w	1L Amber	2	12-3	1-2010	None	14A, 14B				 				 ^	×						
Outfall 018	w	1L Amber	2	 	:/7	None	15A, 15B									<u> </u>	х					
				10	•/																	
				L	COC Pag	e 2 of 3 an	d Page 3	oef 3 au	e the	Com	nosit	o sam	nles	for O	utfal	1 018	for this	etorm e	vent		I	
		***.				be added					r Ce	C Pac	ne 1 d	of 3 fo	or Ou	tfall 0	18 for 1	he sam	e event.			
Received by Date/Time: 12-2/-20/0 Received by 12:20 Received by								441	0	Щ		ate/Tim	12	21-1	0	Turn-ai 24 Hou 48 Hou	round time: ir: ir:	(Check) 72 Hour:	<u> </u>	10 Day: _ Normal: _		
May (May)									<u>U</u>						Sample	ntegrity:						
Rel[nquished By Date/Time: Received					Received B	2		_		ate/Tim \ ン() 1	· (1/ c	,,, ,	~			ts: (Check) All Level IV	;	NPDES Le	vel IV: 🗶			

CHAIN OF CUSTODY FORM

Client Name/A	Address:			Project:		ANALYSIS REQUIRED														
MWH-Arcad 618 Michillinda Arcadia, CA 9 Test America	a Ave, Se 91007		son	Boeing-SSFL N Quarterly Outt COMPOSITE	fall 018		Total Dissolved Metals: Cu, Pb, Hg, Cd, Se, Zn, Fe, Mn	Gross Alpha(900.0), Gross Beta(900.0), Tritium (H-3) (906.0), Sr-90 (905.0), Total Combined Radium 226 (903.0 or 903.1) & Radium 228 (904.0), Uranium (908.0), K- 40, CS-137 (901.0 or 901.1)												Comments
Project Manag Sampler: Ric	-	•	# of	Phone Number (626) 568-6691 Fax Number: (626) 568-6515 Sampling	5		al Dissolved Meta Fe, Mn	oss Alpha(900.0), ium (H-3) (906.0) nbined Radium 2 dium 228 (904.0) CS-137 (901.0 o	Cyanide	Chronic Toxicity										
Description	Matrix	Туре	Cont.	Date/Time	Preservative	Bottle #		Gr Cor A Rac 40,	Ö	-in										
Outfall 018	W	1L Poly	1		None	16	×													Filter w/in 24hrs of receipt at lab
Outfall 018	w	2.5 Gal Cube 500 mL Amber	1	10:17	None None	17A 17B		х												Unfiltered and unpreserved analysis
Outfall 018	w	500 mL Poly	1	12-21-2010	NaOH	18			х											
Outfall 018	w	1 Gal Poly	1	16:17	None	19				х										Only test if first or second rain events of the year
				1			ļ		ļ											
	ļ			,																
	<u> </u>																			
									 				\vdash						 -	
				COC Pag	e 2 of 3 an	d Page 3	of & are	e the composite	e san	ples	for O	utfall	018 f	or th	is sto	rm ev	ent.			
							n/e wo	rk opder for CO	C PA					18 fo					 	
Relinquished By Piringuished By Relinquished By	_ [[]su	w/	ate/Ti	me: 12-2/- 12:- me: 2-21-10 17:5 me:	2010	Received B	att (Juli	ate/Tim		12-	21-	10		Turn-ard 24 Hour 48 Hour Sample		72 Hou 5 Day:	<u>X</u>	: I:	
Relinquished By	<u> </u>		ate/Tii	me:	,	Received B	_ر		ite/Tim		۲ ه	7 ~	7		Data Re	quirem	ents: (C	heck)	S Level I	v: <u>X</u>

EBERLINE ANALYTICAL CORPORATION
2030 Wright Avenue
Richmond, California 94804-3849
Phone (510) 235-2633 Fax (510) 235-0438
Toll Free (800) 841-5487
www.eberlineservices.com

January 28, 2011

Ms. Debby Wilson Test America Irvine 17461 Derian Ave., Ste. 100 Irvine, CA 92614

Reference:

Test America-Irvine ITL2014

Eberline Analytical Report S012314-8647

Sample Delivery Group 8647

Dear Ms. Wilson:

Enclosed is a Level IV CLP-like data package (on CD) for one water sample received under Test America Job No. ITL2014. The sample was received on December 23, 2010.

Please call me, if you have any questions concerning the enclosed report.

Sincerely,

N. Joseph Verville

Client Services Manager

NJV/ljb

Enclosure: Level IV CLP-like Data Package CD

Case Narrative, page 1

January 26, 2011

1.0 General Comments

Sample delivery group 8647 consists of the analytical results and supporting documentation for one water sample. Sample ID's and reference dates/times are given in the Sample Summary section of the Summary Data report. The sample was received as stated on the chain-of-custody document. Any discrepancies are noted on the Eberline Analytical Sample Receipt Checklist. No holding times were exceeded.

Tritium and gamma analyses were performed on the sample as received i.e. the sample was not filtered. The analytical volumes for all other analyses were subjected to a full nitric acid/hydrofluoric acid dissolution, and analyses were performed on the dissolution volume.

2.0 Quality Control

Quality Control Samples consisted of laboratory control samples (LCS), method blanks, duplicate analyses and matrix spike analyses. Included in the data package are copies of the Eberline Analytical radiometrics data sheets. The radiometrics data sheets for the QC LCS and QC blank samples indicate Eberline Analytical's standard QC aliquot of 1.0 sample; results for those QC types are calculated as pCi/sample. The QC LCS and QC blank sample results reported in the Summary Data Section have been divided by the appropriate method specific aliquot (see the Lab Method Summaries for specific aliquots) in order to make the results comparable to the field sample results. All QC sample results were within required control limits.

3.0 Method Errors

The error for each result is an estimate of the significant random uncertainties incurred in the measurement process. These are propagated to each final result. They include the counting (Poisson) uncertainty, as well as those intrinsic errors due to carrier or tracer standardization, aliquoting, counter efficiencies, weights, or volumes. The following method errors were propagated to the count error to calculate the 2^oerror (Total):

Analysis	Method Error
Gross alpha	20.6%
Gross beta	11.0%
Tritium	10.0%
Sr-90	10.4%
Ra-226	16.4%
Ra-228	10.4%
Uranium,Total	
Gamma Spec.	7.0%

Case Narrative, page 2

January 26, 2011

4.0 Analysis Notes

- **4.1 Gross Alpha/Gross Beta Analysis** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.2 Tritium Analysis** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.3 Strontium-90 Analysis -** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.4 Radium-226 Analysis -** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits
- **4.5** Radium-228 Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits
- 4.6 Total Uranium Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- 4.7 Gamma Spectroscopy The K-40 MDA for the QC blank sample was 54.4 pCi/L, greater than the required detection limit of 25 pCi/L., due to an elevated K40 background in the ROI for K40 on the detector used for the QC blank. No other problems were encountered during the processing of the samples. All other quality control sample results were within required control limits.

5.0 Case Narrative Certification Statement

"I certify that this data package is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. Release of the data obtained in this hard copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature."

 $\frac{\text{nSwith}}{\text{N. Joseph Verville}} \qquad \frac{1/28/11}{\text{Date}}$

Client Services Manager

SDG <u>8647</u> Contact <u>N. Joseph Verville</u> Client <u>Test America, Inc.</u> Contract <u>ITL2014</u>

SUMMARY DATA SECTION

TABLE OF	CO	N T	E N	тѕ	
About this section	•	•	•	•	1
Sample Summaries	•	. •	•	•	3
Prep Batch Summary	•	•	•	•	5
Work Summary	•	٠	•	•	6
Method Blanks	•	•	•	•	8
Lab Control Samples	•	•	•	•	9
Duplicates	•	•	•	•	10
Data Sheets	•	•			11
Method Summaries	•	٠		•	12
Report Guides	•	•		•	20
End of Section	•	•			34

B

Prepared by

Reviewed by

Lab id	EAS
Protocol	TA
Version	<u>Ver 1.0</u>
Form	DVD-TOC
Version	3.06
Report date	01/26/11

SDG 8647

SDG <u>8647</u>

Contact N. Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>ITL2014</u>

ABOUT THE DATA SUMMARY SECTION

The Data Summary Section of a Data Package has all data, in several useful orders, necessary for first level, routine review of the data package for a Sample Delivery Group (SDG). This section follows the Data Package Narrative, which has an overview of the data package and a discussion of special problems. It is followed by the Raw Data Section, which has full details.

The Data Summary Section has several groups of reports:

SAMPLE SUMMARIES

The Sample and QC Summary Reports show all samples, including QC samples, reported in one SDG. These reports cross-reference client and lab sample identifiers.

PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches (lab groupings reflecting how work was organized) relevant to the reported SDG with information necessary to check the completeness and consistency of the SDG.

WORK SUMMARY

The Work Summary Report shows all samples and work done on them relevant to the reported SDG.

METHOD BLANKS

The Method Blank Reports, one for each Method Blank relevant to the SDG, show all results and primary supporting information for the blanks.

LAB CONTROL SAMPLES

The Lab Control Sample Reports, one for each Lab Control Sample relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

DUPLICATES

REPORT GUIDES

Page 1

SUMMARY DATA SECTION

Page 1

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06Report date 01/26/11

SDG 8647

SDG <u>8647</u>

Contact N. Joseph Verville

GUIDE, cont.

Client Test America, Inc.
Contract ITL2014

ABOUT THE DATA SUMMARY SECTION

The Duplicate Reports, one for each Duplicate and Original sample pair relevant to the SDG, show all results, differences and primary supporting information for these QC samples.

MATRIX SPIKES

The Matrix Spike Reports, one for each Spiked and Original sample pair relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

DATA SHEETS

The Data Sheet Reports, one for each client sample in the SDG, show all results and primary supporting information for these samples.

METHOD SUMMARIES

The Method Summary Reports, one for each test used in the SDG, show all results, QC and method performance data for one analyte on one or two pages. (A test is a short code for the method used to do certain work to the client's specification.)

REPORT GUIDES

The Report Guides, one for each of the above groups of reports, have documentation on how to read the associated reports.

REPORT GUIDES

Page 2
SUMMARY DATA SECTION

Page 2

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 01/26/11

SDG 8647

SDG 8647
Contact N. Joseph Verville

LAB SAMPLE SUMMARY

Client Test America, Inc.
Contract ITL2014

LAB SAMPLE ID	CLIENT SAMPLE ID	LOCATION	MATRIX	LEVEL	SAS NO	CHAIN OF	COLLECTED
S012314-01	ITL2014-03	Boeing-SSFL	WATER			ITL2014	12/21/10 10:17
S012314-02	Lab Control Sample		WATER				
S012314-03	Method Blank		WATER				
S012314-04	Duplicate (S012314-01)	Boeing-SSFL	WATER				12/21/10 10:17

LAB SUMMARY

Page 1

SUMMARY DATA SECTION

Page 3

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LS

 Version
 3.06

 Report date
 01/26/11

SDG 8647
Contact N. Joseph Verville

SDG 8647

QC SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>ITL2014</u>

QC BATCH	CHAIN OF	CLIENT SAMPLE ID	MATRIX	% MOIST	SAMPLE AMOUNT	BASIS AMOUNT	DAYS S		LAB SAMPLE ID	DEPARTMENT SAMPLE ID
8647	ITL2014	ITL2014-03	WATER		9.5 L		12/23/10	2	S012314-01	8647-001
		Method Blank Lab Control Sample Duplicate (S012314-01)	WATER WATER WATER		9.5 L		12/23/10	2	S012314-03 S012314-02 S012314-04	8647-003 8647-002 8647-004

QC SUMMARY

Page 1

SUMMARY DATA SECTION

Page 4

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-QS

 Version
 3.06

 Report date
 01/26/11

SDG 8647

SDG	86	47	
Contact	N.	Joseph	Verville

PREP BATCH SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>ITL2014</u>

		-	PREPARATION ERROR				PLANCHETS ANALYZED						
TEST	MATRIX	METHOD	ВАТСН	2σ %	CLIENT	MORE	RE	BLANK	LCS	DUP/ORIG MS/ORIG	FIERS		
Beta	Counting												
AC	WATER	Radium-228 in Water	7258-160	10.4	1			1	1	1/1			
SR	WATER	Strontium-90 in Water	7258-160	10.4	1			1	1	1/1			
Gas F	roportiona	l Counting											
80A	WATER	Gross Alpha in Water	7258-160	20.6	1			1	1	1/1			
80B	WATER	Gross Beta in Water	7258-160	11.0	1			1	1	1/1			
Gamma	Spectrosc	сору								•			
GAM	WATER	Gamma Emitters in Water	7258-160	7.0	1			1 .	1	1/1			
Kinet	ic Phospho	orimetry, ug											
U_T	WATER	Uranium, Total	7258-160		1			1	1	1/1			
Liqui	d Scintill	Lation Counting											
Н	WATER	Tritium in Water	7258-160	10.0	1			1	1	1/1			
Rador	Counting												
RA	WATER	Radium-226 in Water	7258-160	16.4	1			1	1	1/1			

Duplicates and Matrix Spikes are those with original (Client) sample in this Sample Delivery Group. Blank and LCS planchets are those in the same preparation batch as some Client, Duplicate or Spike sample.

PREP BATCH SUMMARY

Page 1

SUMMARY DATA SECTION

Page 5

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-PBS

 Version
 3.06

 Report date
 01/26/11

SDG 8647

SDG 8647
Contact N. Joseph Verville

LAB WORK SUMMARY

Client <u>Test America</u>, <u>Inc</u>.

Contract ITL2014

LAB SAMPLE	CLIENT SAMPLE ID								
COLLECTED	LOCATION	MATRIX	DT AMOUNDED	mnom	SUF-	3 313 T V(((11))	DIMITINA	DV.	MERIOD
RECEIVED	CUSTODY SAS no		PLANCHET	TEST	FIX	ANALYZED	REVIEWED	BY	METHOD
012314-01	ITL2014-03		8647-001	80A/80		01/05/11	01/06/11	BW	Gross Alpha in Water
12/21/10	Boeing-SSFL	WATER	8647-001	80B/80		01/05/11	01/06/11	BW	Gross Beta in Water
12/23/10	ITL2014		8647-001	AC		01/21/11	01/24/11	BW	Radium-228 in Water
			8647-001	GAM		01/06/11	01/11/11	MWT	Gamma Emitters in Water
			8647-001	H		01/14/11	01/24/11	BW	Tritium in Water
			8647-001	RA		01/21/11	01/24/11	BW	Radium-226 in Water
			8647-001	SR		01/13/11	01/24/11	BW	Strontium-90 in Water
			8647-001	U_T		01/20/11	01/24/11	BW	Uranium, Total
012314-02	Lab Control Sample		8647-002	80A/80		01/05/11	01/06/11	BW	Gross Alpha in Water
	-	WATER	8647-002	80B/80		01/05/11	01/06/11	BW	Gross Beta in Water
			8647-002	AC		01/21/11	01/24/11	BW	Radium-228 in Water
			8647-002	GAM		01/06/11	01/11/11	MWT	Gamma Emitters in Water
			8647-002	Н		01/14/11	01/24/11	вw	Tritium in Water
			8647-002	RA		01/21/11	01/24/11	BW	Radium-226 in Water
			8647-002	SR		01/13/11	01/24/11	BW	Strontium-90 in Water
			8647-002	U_T		01/20/11	01/24/11	BW	Uranium, Total
012314-03	Method Blank .		8647-003	80A/80		01/05/11	01/06/11	BW	Gross Alpha in Water
		WATER	8647-003	80B/80		01/05/11	01/06/11	BW	Gross Beta in Water
			8647-003	AC		01/21/11	01/24/11	BW	Radium-228 in Water
			8647-003	GAM		01/06/11	01/11/11	MWT	Gamma Emitters in Water
			8647-003	H		01/14/11	01/24/11	BW	Tritium in Water
			8647-003	RA		01/21/11	01/24/11	BW	Radium-226 in Water
			8647-003	SR		01/13/11	01/24/11	BW	Strontium-90 in Water
			8647-003	U_T		01/20/11	01/24/11	BW	Uranium, Total
012314-04	Duplicate (S012314-01)		8647-004	80A/80		01/05/11	01/06/11	BW	Gross Alpha in Water
12/21/10	Boeing-SSFL	WATER	8647-004	80B/80		01/05/11	01/06/11	BW	Gross Beta in Water
12/23/10			8647-004	AC		01/21/11	01/24/11	BW	Radium-228 in Water
			8647-004	GAM		01/06/11	01/11/11	MWT	Gamma Emitters in Water
			8647-004	Н		01/14/11	01/24/11	BW	Tritium in Water
	•		8647-004	RA		01/21/11	01/24/11	ВW	Radium-226 in Water
			8647-004	SR		01/13/11	01/24/11	вw	Strontium-90 in Water

WORK SUMMARY

Page 1

SUMMARY DATA SECTION

Page 6

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LWS

 Version
 3.06

 Report date
 01/26/11

SDG 8647

SDG 8647
Contact N. Joseph Verville

WORK SUMMARY, cont.

Client Test America, Inc.
Contract ITL2014

TEST	SAS no	COUNTS	OF TESTS REFERENCE	BY	SAMPLE TYPE CLIENT MORE	RE	BLANK	LCS	DUP SPIKE	TOTAL
80A/80		Gross Alpha in Water	900.0		1		1	1	1	4
80B/80		Gross Beta in Water	900.0		1		1	1	1	4
AC		Radium-228 in Water	904.0		1		1	1	1	4
GAM		Gamma Emitters in Water	901.1		1		1	1	1	4
Н		Tritium in Water	906.0		1		1	1	1	4
RA		Radium-226 in Water	903.1		1		1	1	1	4
SR		Strontium-90 in Water	905.0		1		1	1	1	4
U_T		Uranium, Total	D5174		1		1	1	1	4
TOTALS					8		8	8	8	32

WORK SUMMARY
Page 2
SUMMARY DATA SECTION
Page 7

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LWS</u>

Version <u>3.06</u>

Report date <u>01/26/11</u>

8647-003

METHOD BLANK

Method Blank

	SDG	8647	Client	Test America, Inc.	_
	Contact	N. Joseph Verville	Contract	ITL2014	
	Lab sample id	5012314-03	Client sample id	Method Blank	
-	Dept sample id		Material/Matrix		WATER

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	-0.064	0.27	0.642	3.00	U	80A
Gross Beta	12587472	-0.434	0.55	0.952	4.00	U	80B
Tritium	10028178	107	210	345	500	U	H
Radium-226	13982633	0.035	0.34	0.641	1.00	U,	RA
Radium-228	15262201	-0.175	0.20	0.544	1.00	U	AC
Strontium-90	10098972	-0.069	0.30	0.735	2.00	U	SR
Uranium, Total		0	0.007	0.017	1.00	U	UT
Potassium-40	13966002	Ū		54.4	25.0	U	GAM
Cesium-137	10045973	U		3.09	20.0	U	GAM

QC-BLANK #76684

METHOD BLANKS
Page 1
SUMMARY DATA SECTION
Page 8

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-DS</u>

Version <u>3.06</u>

Report date <u>01/26/11</u>

SDG 8647

8647-002

LAB CONTROL SAMPLE

Lab Control Sample

SDG 8647
Contact N. Joseph Verville

Client <u>Test America</u>, <u>Inc</u>.

Contract ITL2014

Lab sample id <u>S012314-02</u>
Dept sample id <u>8647-002</u>

Client sample id Lab Control Sample

Material/Matrix _____

WATER

ANALYTE	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ADDED pCi/L	2σ ERR pCi/L	REC %	2σ LMTS (TOTAL)	PROTOCOL LIMITS
Gross Alpha	40.4	2.4	0.611	3.00		A08	40.4	1.6	100	78-122	70-130
Gross Beta	33.8	1.5	1.24	4.00		80B	35.0	1.4	97	88-112	70-130
Tritium	2850	310	343	500		Н	2550	100	112	83-117	80-120
Radium-226	61.0	2.5	0.793	1.00		RA	55.7	2.2	110	81-119	80-120
Radium-228	5.39	0.63	0.530	1.00		AC	4.63	0.19	116	81-119	60-140
Strontium-90	17.4	1.2	0.548	2.00		SR	17.5	0.70	99	87-113	80-120
Uranium, Total	56.3	6.8	0.174	1.00		U_T	56.5	2.3	100	87-113	80-120
Cobalt-60	103	5.6	2.28	10.0		GAM	102	4.1	101	90-110	80-120
Cesium-137	118	4.8	3.29	20.0		GAM	110	4.4	107	90-110	80-120

QC-LCS #76683

LAB CONTROL SAMPLES
Page 1
SUMMARY DATA SECTION

Page 9

Lab id <u>EAS</u>
Protocol <u>TA</u>
Version <u>Ver 1.0</u>

Form DVD-LCS

Version 3.06

Report date 01/26/11

SDG 8647

8647-004

DUPLICATE

ORIGINAL

ITL2014-03

SDG 8647

Contact N. Joseph Verville

DUPLICATE

Lab sample id <u>S012314-04</u> Dept sample id <u>8647-004</u>

Lab sample id S012314-01_

Dept sample id 8647-001

Received 12/23/10

Client Test America, Inc.

Contract ITL2014

Client sample id ITL2014-03

Location/Matrix Boeing-SSFL

WATER

Collected/Volume <u>12/21/10 10:17 9.5 L</u>

Chain of custody id ITL2014

ANALYTE	DUPLICATE pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ORIGINAL pCi/L	2σ ERR (COUNT)	MDA pCi/L	QUALI- FIERS	RPD %	3σ TOT	DER σ
Gross Alpha	1.12	0.41	0.446	3.00	J	A08	0.948	0.36	0.399	J	17	90	0.6
Gross Beta	4.03	0.65	0.887	4.00		80B	4.30	0.65	0.868		6	41	0.5
Tritium	155	210	345	500	U	Н	144	200	340	U	-		0.1
Radium-226	0.179	0.37	0.641	1.00	U	RA	0.312	0.42	0.710	Ū	-		0.5
Radium-228	0.010	0.33	0.728	1.00	U	AC	0.125	0.26	0.604	U	-		0.5
Strontium-90	0.168	0.31	0.654	2.00	U	SR	0.018	0.28	0.637	Ū	-		0.7
Uranium, Total	0.245	0.029	0.017	1.00	J	U_T	0.237	0.028	0.017	J	3	25	0.4
Potassium-40	υ		14.3	25.0	U	GAM	Ū		24.0	U	-		0.7
Cesium-137	U		1.09	20.0	U	GAM	Ü		1.80	U	-		0.7

QC-DUP#1 76685

DUPLICATES Page 1 SUMMARY DATA SECTION

Page 10

Lab id EAS

Protocol TA Version Ver 1.0

Form DVD-DUP

Version 3.06

Report date <u>01/26/11</u>

8647-001

DATA SHEET

ITL2014-03

SDG <u>8</u> Contact <u>1</u>	8647 N. Joseph Verville	Client Contract	Test America, Inc. ITL2014	
Lab sample id Solution Dept sample id Solution Received 1	8647-001 12/23/10	Client sample id Location/Matrix Collected/Volume ain of custody id	Boeing-SSFL 12/21/10 10:17 9.5	WATER 5 L

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	0.948	0.36	0.399	3.00	J	80A
Gross Beta	12587472	4.30	0.65	0.868	4.00		80B
Tritium	10028178	144	200	340	500	U	H
Radium-226	13982633	0.312	0.42	0.710	1.00	U	RA
Radium-228	15262201	0.125	0.26	0.604	1.00	U	AC
Strontium-90	10098972	0.018	0.28	0.637	2.00	U	SR
Uranium, Total		0.237	0.028	0.017	1.00	J	U_T
Potassium-40	13966002	Ū		24.0	25.0	U	GAM
Cesium-137	10045973	ប		1.80	20.0	U	GAM

DATA SHEETS
Page 1
SUMMARY DATA SECTION
Page 11

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-DS</u>

Version <u>3.06</u>

Report date <u>01/26/11</u>

SDG 8647

Test AC Matrix WATER

SDG <u>8647</u>

Contact N. Joseph Verville

LAB METHOD SUMMARY

RADIUM-228 IN WATER BETA COUNTING Client <u>Test America, Inc.</u>
Contract ITL2014

RESULTS

T 3 D	
LAB	

RAW SUF-

Radium-228 SAMPLE ID TEST FIX PLANCHET CLIENT SAMPLE ID Preparation batch 7258-160 U ITL2014-03 S012314-01 8647-001 Lab Control Sample ok 8647-002 S012314-02 U Method Blank S012314-03 8647-003 Duplicate (S012314-01) U 8647-004 S012314-04 Nominal values and limits from method RDLs (pCi/L) 1.00

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC		YIELD %	EFF %	COUNT min			PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 7258-160 20 prep error 1	.0.4 % Ref	ference	Lab N	loteboo	k No. 7	7258	pg. 16	50				
S012314-01	ITL2014-03	0.604	1.80			82		120		31	01/21/11	01/21	GRB-221
S012314-02	Lab Control Sample	0.530	1.80			93		120			01/21/11	01/21	GRB-222
S012314-03	Method Blank	0.544	1.80			91		120			01/21/11	01/21	GRB-223
S012314-04	Duplicate (S012314-01)	0.728	1.80			76		120		 31	01/21/11	01/21	GRB-224
Nominal val	ues and limits from method	1.00	1.80			30-105	5	50		180			

PROCEDURES REFERENCE

ENCE 904.0

DWP-894

894 Sequential Separation of Actinium-228 and

Radium-226 in Drinking Water (>1 Liter Aliquot),

rev 5

AVERAGES ± 2 SD MDA 0.602 ± 0.180 FOR 4 SAMPLES YIELD 86 ± 16

METHOD SUMMARIES

Page 1

SUMMARY DATA SECTION

Page 12

Lab id <u>EAS</u>
Protocol <u>TA</u>

Version Ver 1.0
Form DVD-LMS

Version 3.06

Report date 01/26/11

SDG 8647

Test <u>SR</u> Matrix <u>WATER</u> SDG 8647

Contact N. Joseph Verville

LAB METHOD SUMMARY

STRONTIUM-90 IN WATER BETA COUNTING

Client Test America, Inc.

Contract ITL2014

RESULTS

LAB

RAW SUF-

SAMPLE ID TEST FIX PLANCHET

CLIENT SAMPLE ID

Strontium-90

Preparation batch 7258-160

S012314-01

8647-001

ITL2014-03

U ok

S012314-02 8647-002 S012314-03

8647-003

Lab Control Sample Method Blank

S012314-04 8647-004

Duplicate (S012314-01)

U

Nominal values and limits from method

RDLs (pCi/L)

2.00

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX	CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC		%	EFF %		FWHM keV	DRIFT KeV		PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 7258	3-160 2σ prep error	10.4 % Re	ference	Lab 1	Noteboo	k No. 7	7258	pg. 16	50					
S012314-01		ITL2014-03	0.637	0.500			71		60			23	01/08/11	01/13	GRB-203
S012314-02		Lab Control Sample	0.548	0.500			85		60				01/08/11	01/13	GRB-204
S012314-03		Method Blank	0.735	0.500			73		50				01/08/11	01/13	GRB-204
S012314-04		Duplicate (S012314-01)	0.654	0.500			77		50			23	01/08/11	01/13	GRB-202
Nominal val	ues and lin	mits from method	2.00	0.500			30-10	5	50			180			

PROCEDURES REFERENCE

905.0

DWP-380

Strontium in Drinking Water, rev 8

AVERAGES ± 2 SD FOR 4 SAMPLES

MDA 0.644 ± 0.153

YIELD 76 ± 12

METHOD SUMMARIES Page 2

SUMMARY DATA SECTION

Page 13

Lab id EAS

Protocol TA Version Ver 1.0

Form DVD-LMS

Version 3.06 Report date <u>01/26/11</u>

SDG 8647

Test 80A Matrix WATER

SDG <u>8647</u>

Contact N. Joseph Verville

LAB METHOD SUMMARY

GROSS ALPHA IN WATER
GAS PROPORTIONAL COUNTING

Client Test America, Inc.
Contract ITL2014

RESULTS

LAB SAMPLE ID	RAW SUF-		CLIENT SAMPLE ID	Gross Alpha
Preparation	hatah 729	59_160		
			TTT 0014 02	0.948 J
S012314-01	80	8647-001	ITL2014-03	0.940 0
S012314-02	80	8647-002	Lab Control Sample	ok
S012314-03	80	8647-003	Method Blank	U
S012314-04	80	8647-004	Duplicate (S012314-01)	ok J

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX	CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC		RESID mg	EFF %	COUNT min			PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 725	8-160 2σ prep error 2	20.6 % Re	ference	Lab 1	Noteboo	k No.	7258	pg. 16	50				
S012314-01	80	ITL2014-03	0.399	0.300			35		400		15	01/04/11	01/05	GRB-101
5012314-02	80	Lab Control Sample	0.611	0.250			60		400			01/04/11	01/05	GRB-103
S012314-03	80	Method Blank	0.642	0.250			60		400			01/04/11	01/05	GRB-104
S012314-04		Duplicate (S012314-01)	0.446	0.300			36		400		15	01/04/11	01/05	GRB-105
Nominal val	ues and li	imits from method	3.00	0.250			0-20	0	100		180			

PROCEDURES	REFERENCE	900.0

DWP-121 Gross Alpha and Gross Beta in Drinking Water,

rev 10

AVERAGES ± 2 SD MDA 0.524 ± 0.240 FOR 4 SAMPLES RESIDUE 48 ± 28

METHOD SUMMARIES

Page 3

SUMMARY DATA SECTION

Page 14

Protocol TA

Version Ver 1.0

Form DVD-LMS

Version 3.06

Lab id EAS

Report date <u>01/26/11</u>

SDG 8647

Test 80B Matrix WATER

SDG 8647

Contact N. Joseph Verville

LAB METHOD SUMMARY

GROSS BETA IN WATER
GAS PROPORTIONAL COUNTING

Client <u>Test America, Inc.</u>
Contract <u>ITL2014</u>

RESULTS

LAB	RAW	SUF-

SAMPLE ID	TEST FIX	PLANCHET	CLIENT SAMPLE ID	Gross Beta
Preparation	batch 725	8-160		·
S012314-01	80	8647-001	ITL2014-03	4.30
S012314-02	80	8647-002	Lab Control Sample	ok
S012314-03	80	8647-003	Method Blank	U
S012314-04	80	8647-004	Duplicate (S012314-01)	ok

METHOD PERFORMANCE

LAB SAMPLE ID	RAW S	SUF- FIX CLIENT	SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC	DILU- TION	RESID mg	EFF %	COUNT min			PREPARED	ANAL- YZED	DETECTOR
Preparation	batch	7258-160	2σ prep error 1	L1.0 % Rei	ference	Lab I	Noteboo	k No. '	7258	pg. 16	0				
S012314-01	80	ITL201	4-03	0.868	0.300			35		400		15	01/04/11	01/05	GRB-101
S012314-02	80	Lab Co	ntrol Sample	1.24	0.250			60		400			01/04/11	01/05	GRB-103
S012314-03	80	Method	Blank	0.952	0.250			60		400			01/04/11	01/05	GRB-104
S012314-04	80	Duplic	ate (S012314-01)	0.887	0.300			36		400		15	01/04/11	01/05	GRB-105
Nominal val	ues and	d limits fr	om method	4.00	0.250			0-20	0	100		180			

PROCEDURES REFERENCE 900.0

DWP-121 Gross Alpha and Gross Beta in Drinking Water,

rev 10

AVERAGES ± 2 SD MDA 0.987 ± 0.345 FOR 4 SAMPLES RESIDUE 48 ± 28

METHOD SUMMARIES
Page 4

SUMMARY DATA SECTION

Page 15

Lab id <u>EAS</u>

Protocol TA

Version Ver 1.0
Form DVD-LMS

Version 3.06

Report date 01/26/11

SDG 8647

Test GAM Matrix WATER

SDG 8647

Contact N. Joseph Verville

LAB METHOD SUMMARY

GAMMA EMITTERS IN WATER
GAMMA SPECTROSCOPY

Client <u>Test America, Inc.</u>
Contract <u>ITL2014</u>

RESULTS

Preparation batch	7258-160				
5012314-01	8647-001	ITL2014-03		Ū	
3012314-02	8647-002	Lab Control Sample	ok	ok	
5012314-03	8647-003	Method Blank		U	
S012314-04	8647-004	Duplicate (S012314-01)		- 1	U

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC	DILU- TION	YIELD	EFF %		FWHM keV		PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 7258-160 2σ prep erro	r 7.0 % Re	ference	Lab N	loteboo	k No.	7258	pg. 16	50				
S012314-01	ITL2014-03		2.00					401		16	12/30/10	01/06	01,04,00
S012314-02	Lab Control Sample		2.00					402			12/30/10	01/06	MB,02,00
S012314-03	Method Blank		2.00					400			12/30/10	01/06	MB,05,00
S012314-04	Duplicate (S012314-01)	2.00					708		16	12/30/10	01/06	MB,08,00
Nominal val	ues and limits from method	6.00	2.00					400		180			

PROCEDURES	REFERENCE	901.1
	DWP-100	Preparation of Drinking Water Samples for Gamma
		Spectroscopy, rev 5

METHOD SUMMARIES
Page 5

SUMMARY DATA SECTION

Page 16

 Lab id EAS

 Protocol TA

 Version Ver 1.0

 Form DVD-LMS

 Version 3.06

Report date <u>01/26/11</u>

SDG 8647

Test U T Matrix WATER

SDG 8647

Contact N. Joseph Verville

LAB METHOD SUMMARY

URANIUM, TOTAL KINETIC PHOSPHORIMETRY, UG Client Test America, Inc.
Contract ITL2014

RESULTS

LAB	RAW SUF-	-		Uranium,
SAMPLE ID	TEST FIX	PLANCHET	CLIENT SAMPLE ID	Total
Preparation	batch 725	8-160		
S012314-01		8647-001	ITL2014-03	0.237 J
S012314-02		8647-002	Lab Control Sample	ok
S012314-03		8647-003	Method Blank	U
S012314-04		8647-004	Duplicate (S012314-01)	ok J
Nominal val	lues and li	imits from m	method RDLs (pCi/L)	1.00

METHOD PERFORMANCE

SAMPLE ID	RAW SUF- TEST FIX CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC	DILU- TION	% AIETD	EFF %	COUNT min			PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 7258-160 2σ prep error	Ref	erence	Lab N	oteboo!	k No.	7258	pg. 16	50				
S012314-01	ITL2014-03	0.017 0	.0200							30	12/30/10	01/20	KPA-001
S012314-02	Lab Control Sample	0.174 0	.0200								12/30/10	01/20	KPA-001
S012314-03	Method Blank	0.017 0	.0200								12/30/10	01/20	KPA-001
S012314-04	Duplicate (S012314-01)	0.017 0	.0200							30	12/30/10	01/20	KPA-001
Nominal val	ues and limits from method	1.00 0	.0200							180			

PROCEDURES	REFERENCE	D5174		

AVERAGES ± 2 SD	MDA <u>0.056</u> ±	0.157
FOR 4 SAMPLES	YIELD ± .	

METHOD SUMMARIES

Page 6

SUMMARY DATA SECTION

Page 17

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LMS</u>

Version <u>3.06</u>

Report date <u>01/26/11</u>

SDG 8647

Test H Matrix WATER

SDG 8647

Contact N. Joseph Verville

LAB METHOD SUMMARY

TRITIUM IN WATER

LIQUID SCINTILLATION COUNTING

Tritium

U

Client <u>Test America, Inc.</u>
Contract <u>ITL2014</u>

RESULTS

LAB RAW SUF-SAMPLE ID TEST FIX PLANCHET

Preparation batch 7258-160 U S012314-01 8647-001 ITL2014-03 8647-002 Lab Control Sample ok S012314-02 U Method Blank 8647-003 S012314-03 8647-004 Duplicate (S012314-01) S012314-04

CLIENT SAMPLE ID

Nominal values and limits from method

RDLs (pCi/L)

500

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC	DILU-	% YIELD	EFF %	COUNT min			PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 7258-160 2σ prep error 1	.0.0 %	Reference	Lab 1	Noteboo!	k No. '	7258	pg. 16	50				
S012314-01	ITL2014-03	340	0.0100			100		50		24	01/13/11	01/14	LSC-005
S012314-02	Lab Control Sample	343	0.100			10		50			01/13/11	01/14	LSC-005
S012314-03	Method Blank	345	0.100			10		50			01/13/11	01/14	LSC-005
S012314-04	Duplicate (S012314-01)	345	0.0100			100		<u>50</u>		24	01/13/11	01/14	LSC-005
Nominal val	ues and limits from method	500	0.0100				-	100		180			

PROCEDURES REFERENCE 906.0

DWP-212

Tritium in Drinking Water by Distillation, rev 8

AVERAGES ± 2 SD FOR 4 SAMPLES MDA 343 ± 4.73

YIELD <u>55</u> ± <u>104</u>

METHOD SUMMARIES

Page 7

SUMMARY DATA SECTION

Page 18

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LMS

Version 3.06

Report date 01/26/11

SDG 8647

Test RA Matrix WATER

SDG 8647

Contact N. Joseph Verville

LAB METHOD SUMMARY

RADIUM-226 IN WATER RADON COUNTING

Client Test America, Inc.

Contract ITL2014

RESULTS

	NAW SUF- TEST FIX PLANCHET	CLIENT SAMPLE ID	Radium-226
Preparation h	oatch 7258-160		
S012314-01	8647-001	ITL2014-03	U
S012314-02	8647-002	Lab Control Sample	ok
S012314-03	8647-003	Method Blank	U
S012314-04	8647-004	Duplicate (S012314-01)	- U

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC	DILU- TION	% AIETD	EFF %				PREPARED	ANAL- YZED	DETECTOR
	batch 7258-160 2σ prep error 1	- 16.4 % Re	ference	Lab N	iot eboo	s No.	7258	pg. 16	50				
S012314-01	ITL2014-03	0.710				100		86		31	01/21/11	01/21	RN-010
S012314-02	Lab Control Sample	0.793	0.100			100		102			01/21/11	01/21	RN-009
S012314-03	Method Blank	0.641	0.100			100		86			01/21/11	01/21	RN-013
S012314-04	Duplicate (S012314-01)	0.641	0.100			100		86		31	01/21/11	01/21	RN-011
Nominal val	ues and limits from method	1.00	0.100					100		180			

ROCEDURES	REFERENCE	903.1
	DWP-881A	Ra-22

Ra-226 Screening in Drinking Water, rev 6

AVERAGES ± 2 SD MDA 0.696 ± 0.144

FOR 4 SAMPLES YIELD 100 ± 0

METHOD SUMMARIES
Page 8

SUMMARY DATA SECTION

Page 19

Lab id <u>EAS</u>
Protocol <u>TA</u>
Version <u>Ver 1.0</u>

Form DVD-LMS
Version 3.06

Report date <u>01/26/11</u>

SDG 8647

SDG <u>8647</u>
Contact <u>N. Joseph Verville</u>

REPORT GUIDE

Client Test America, Inc.
Contract ITL2014

SAMPLE SUMMARY

The Sample and QC Summary Reports show all samples, including QC samples, reported in one Sample Delivery Group (SDG).

The Sample Summary Report fully identifies client samples and gives the corresponding lab sample identification. The QC Summary Report shows at the sample level how the lab organized the samples into batches and generated QC samples. The Preparation Batch and Method Summary Reports show this at the analysis level.

The following notes apply to these reports:

- * LAB SAMPLE ID is the lab's primary identification for a sample.
- * DEPARTMENT SAMPLE ID is an alternate lab id, for example one assigned by a radiochemistry department in a lab.
- * CLIENT SAMPLE ID is the client's primary identification for a sample. It includes any sample preparation done by the client that is necessary to identify the sample.
- * QC BATCH is a lab assigned code that groups samples to be processed and QCed together. These samples should have similar matrices.
 - QC BATCH is not necessarily the same as SDG, which reflects samples received and reported together.
- * All Lab Control Samples, Method Blanks, Duplicates and Matrix Spikes are shown that QC any of the samples. Due to possible reanalyses, not all results for all these QC samples may be relevant to the SDG. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.

REPORT GUIDES

Page 1
SUMMARY DATA SECTION

Page 20

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>01/26/11</u>

SDG 8647

SDG <u>8647</u>

Contact N. Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>ITL2014</u>

PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches in one Sample Delivery Group (SDG) with information necessary to check the completeness and consistency of the SDG.

The following notes apply to this report:

- * The preparation batches are shown in the same order as the Method Summary Reports are printed.
- * Only analyses of planchets relevant to the SDG are included.
- * Each preparation batch should have at least one Method Blank and LCS in it to validate client sample results.
- * The QUALIFIERS shown are all qualifiers other than U, J, B, L and H that occur on any analysis in the preparation batch. The Method Summary Report has these qualifiers on a per sample basis.

These qualifiers should be reviewed as follows:

- X Some data has been manually entered or modified. Transcription errors are possible.
- P One or more results are 'preliminary'. The data is not ready for final reporting.
- 2 There were two or more results for one analyte on one planchet imported at one time. The results in DVD may not be the same as on the raw data sheets.

Other lab defined qualifiers may occur. In general, these should be addressed in the SDG narrative.

REPORT GUIDES

Page 2

SUMMARY DATA SECTION

Page 21

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>01/26/11</u>

SDG 8647

SDG 8647
Contact N. Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract <u>ITL2014</u>

WORK SUMMARY

The Work Summary Report shows all samples, including QC samples, and all relevant analyses in one Sample Delivery Group (SDG). This report is often useful as supporting documentation for an invoice.

The following notes apply to this report:

- * TEST is a code for the method used to measure associated analytes. Results and related information for each analyte are on the Data Sheet Report. In special cases, a test code used in the summary data section is not the same as in associated raw data. In this case, both codes are shown on the Work Summary.
- * SUFFIX is the lab's code to distinguish multiple analyses (recounts, reworks, reanalyses) of a fraction of the sample. The suffix indicates which result is being reported. An empty suffix normally identifies the first attempt to analyze the sample.
- * The LAB SAMPLE ID, TEST and SUFFIX uniquely identify all supporting data for a result. The Method Summary Report for each TEST has method performance data, such as yield, for each lab sample id and suffix and procedures used in the method.
- * PLANCHET is an alternate lab identifier for work done for one test. It, combined with the TEST and SUFFIX, may be the best link to raw data.
- * For QC samples, only analyses that directly QC some regular sample are shown. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.
- * The SAS (Special Analytical Services) Number is a client or lab assigned code that reflects special processing for samples, such as rapid turn around. Counts of tests done are lists by SAS number since it is likely to affect prices.

REPORT GUIDES

Page 3

SUMMARY DATA SECTION

Page 22

SDG 8647

SDG <u>8647</u> Contact <u>N. Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract <u>ITL2014</u>

DATA SHEET

The Data Sheet Report shows all results and primary supporting information for one client sample or Method Blank. This report corresponds to both the CLP Inorganics and Organics Data Sheet.

The following notes apply to this report:

- * TEST is a code for the method used to measure an analyte. If the TEST is empty, no data is available; the analyte was not analyzed for.
- * The LAB SAMPLE ID and TEST uniquely identify work within the Summary Data Section of a Data Package. The Work Summary and Method Summary Reports further identify raw data that underlies this work.

The Method Summary Report for each TEST has method performance data, such as yield, for each Lab Sample ID and a list of procedures used in the method.

- * ERRORs can be labeled TOTAL or COUNT. TOTAL implies a preparation (non-counting method) error has been added, as square root of sum of squares, to the counting error denoted by COUNT. The preparation errors, which may vary by preparation batch, are shown on the Method Summary Report.
- * A RESULT can be 'N.R.' (Not Reported). This means the lab did this work but chooses not to report it now, possibly because it was reported at another time.
- * When reporting a Method Blank, a RESULT can be 'N.A.' (Not Applicable). This means there is no reported client sample work in the same preparation batch as the Blank's result. This is likely to occur when the Method Blank is associated with reanalyses of selected work for a few samples in the SDG.

The following qualifiers are defined by the DVD system:

U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the limit.

REPORT GUIDES
Page 4
SUMMARY DATA SECTION

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06Report date 01/26/11

Page 23

SDG 8647

SDG 8647
Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract ITL2014

DATA SHEET

- J The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.
- B A Method Blank associated with this sample had a result without a U flag and, after correcting for possibly different aliquots, that result is greater than or equal to the MDA for this sample.

Normally, B is not assigned if U is. When method blank subtraction is shown on this report, B flags are assigned based on the unsubtracted values while U's are assigned based on the subtracted ones. Both flags can be assigned in this case.

For each sample result, all Method Blank results in the same preparation batch are compared. The Method Summary Report documents this and other QC relationships.

- L Some Lab Control Sample that QC's this sample had a low recovery. The lab can disable assignment of this qualifier.
- H Similar to 'L' except the recovery was high.
- P The RESULT is 'preliminary'.
- X Some data necessary to compute the RESULT, ERROR or MDA was manually entered or modified.
- 2 There were two or more results available for this analyte. The reported result may not be the same as in the raw data.

Other qualifiers are lab defined. Definitions should be in the SDG narrative.

The following values are underlined to indicate possible problems:

- * An MDA is underlined if it is bigger than its RDL.
- * An ERROR is underlined if the 1.645 sigma counting error is bigger than both the MDA and the RESULT, implying that the MDA

REPORT GUIDES

Page 5
SUMMARY DATA SECTION

Page 24

SDG 8647

SDG <u>8647</u>
Contact <u>N. Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>ITL2014</u>

DATA SHEET

may not be a good estimate of the 'real' minimum detectable activity.

- * A negative RESULT is underlined if it is less than the negative of its 2 sigma counting ERROR.
- * When reporting a Method Blank, a RESULT is underlined if greater than its MDA. If the MDA is blank, the 2 sigma counting error is used in the comparison.

REPORT GUIDES

Page 6

SUMMARY DATA SECTION

Page 25

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>01/26/11</u>

SDG 8647

SDG <u>8647</u>
Contact <u>N. Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract <u>ITL2014</u>

LAB CONTROL SAMPLE

The Lab Control Sample Report shows all results, recoveries and primary supporting information for one Lab Control Sample.

The following notes apply to this report:

- * All fields in common with the Data Sheet Report have similar usage. Refer to its Report Guide for details.
- * An amount ADDED is the lab's value for the actual amount spiked into this sample with its ERROR an estimate of the error of this amount.

An amount added is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- * REC (Recovery) is RESULT divided by ADDED expressed as a percent.
- * The first, computed limits for the recovery reflect:
 - 1. The error of RESULT, including that introduced by rounding the result prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- * The second limits are protocol defined upper and lower QC limits for the recovery.
- * The recovery is underlined if it is outside either of these ranges.

REPORT GUIDES

Page 7

SUMMARY DATA SECTION

Page 26

SDG 8647

SDG <u>8647</u>
Contact <u>N. Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>ITL2014</u>

DUPLICATE

The Duplicate Report shows all results, differences and primary supporting information for one Duplicate and associated Original sample.

The following notes apply to this report:

* All fields in common with the Data Sheet Report have similar usage. This applies both to the Duplicate and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Duplicate has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

* The RPD (Relative Percent Difference) is the absolute value of the difference of the RESULTs divided by their average expressed as a percent.

If both RESULTs are less than their MDAs, no RPD is computed and a '-' is printed.

For an analyte, if the lab did work for both samples but has data for only one, the MDA from the sample with data is used as the other's result in the RPD.

* The first, computed limit is the sum, as square root of sum of squares, of the errors of the results divided by the average result as a percent, hence the relative error of the difference rather than the error of the relative difference. The errors include those introduced by rounding the RESULTs prior to printing.

If this limit is labeled TOT, it includes the preparation error in the RESULTs. If labeled CNT, it does not.

This value reported for this limit is at most 999.

- * The second limit for the RPD is the larger of:
 - 1. A fixed percentage specified in the protocol.

REPORT GUIDES
Page 8
SUMMARY DATA SECTION
Page 27

SDG 8647

SDG <u>8647</u> Contact <u>N. Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract <u>ITL2014</u>

DUPLICATE

- 2. A protocol factor (typically 2) times the average MDA as a percent of the average result. This limit applies when the results are close to the MDAs.
- * The RPD is underlined if it is greater than either limit.
- * If specified by the lab, the second limit column is replaced by the Difference Error Ratio (DER), which is the absolute value of the difference of the results divided by the quadratic sum of their one sigma errors, the same errors as used in the first limit

Except for differences due to rounding, the DER is the same as the RPD divided by the first RPD limit with the limit scaled to 1 sigma.

* The DER is underlined if it is greater than the sigma factor, typically 2 or 3, shown in the header for the first RPD limit.

REPORT GUIDES
Page 9
SUMMARY DATA SECTION
Page 28

Lab id <u>EAS</u>
Protocol <u>TA</u>
Version <u>Ver 1.0</u>
Form <u>DVD-RG</u>
Version 3.06

Report date 01/26/11

SDG 8647

SDG <u>8647</u>
Contact <u>N. Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>ITL2014</u>

MATRIX SPIKE

The Matrix Spike Report shows all results, recoveries and primary supporting information for one Matrix Spike and associated Original sample.

The following notes apply to this report:

* All fields in common with the Data Sheet Report have similar usage. This applies both to the Spiked and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Spike has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

* An amount ADDED is the lab's value for the actual amount spiked into the Spike sample with its ERROR an estimate of the error of this amount.

An amount is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- * REC (Recovery) is the Spike RESULT minus the Original RESULT divided by ADDED expressed as a percent.
- * The first, computed limits for the recovery reflect:
 - 1. The errors of the two RESULTs, including those introduced by rounding them prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- * The second limits are protocol defined upper and lower QC limits for the recovery.

REPORT GUIDES
Page 10
SUMMARY DATA SECTION
Page 29

SDG 8647

SDG 8647
Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>ITL2014</u>

MATRIX SPIKE

These limits are left blank if the Original RESULT is more than a protocol defined factor (typically 4) times ADDED. This is a way of accounting for that when the spike is small compared to the amount in the original sample, the recovery is unreliable.

* The recovery is underlined (out of spec) if it is outside either of these ranges.

REPORT GUIDES
Page 11
SUMMARY DATA SECTION

Page 30

SDG 8647

SDG <u>8647</u>
Contact <u>N. Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract <u>ITL2014</u>

METHOD SUMMARY

The Method Summary Report has two tables. One shows up to five results measured using one method. The other has performance data for the method. There is one report for each TEST, as used on the Data Sheet Report.

The following notes apply to this report:

* Each table is subdivided into sections, one for each preparation batch. A preparation batch is a group of aliquots prepared at roughly the same time in one work area of the lab using the same method.

There should be Lab Control Sample and Method Blank results in each preparation batch since this close correspondence makes the QC meaningful. Depending on lab policy, Duplicates need not occur in each batch since they QC sample dependencies such as matrix effects.

* The RAW TEST column shows the test code used in the raw data to identify a particular analysis if it is different than the test code in the header of the report. This occurs in special cases due to method specific details about how the lab labels work.

The Lab Sample or Planchet ID combined with the (Raw) Test Code and Suffix uniquely identify the raw data for each analysis.

* If a result is less than both its MDA and RDL, it is replaced by just 'U' on this report. If it is greater than or equal to the RDL but less than the MDA, the result is shown with a 'U' flag.

The J and X flags are as on the data sheet.

- * Non-U results for Method Blanks are underlined to indicate possible contamination of other samples in the preparation batch. The Method Blank Report has supporting data.
- * Lab Control Sample and Matrix Spike results are shown as: ok, No data, LOW or HIGH, with the last two underlined. 'No data' means no amount ADDED was specified. 'LOW' and 'HIGH'

REPORT GUIDES
Page 12
SUMMARY DATA SECTION
Page 31

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>01/26/11</u>

SDG 8647

SDG <u>8647</u>
Contact <u>N. Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>ITL2014</u>

METHOD SUMMARY

correspond to when the recovery is underlined on the Lab Control Sample or Matrix Spike Report. See these reports for supporting data.

- * Duplicate sample results are shown as: ok, No data, or OUT, with the last two underlined. 'No data' means there was no original sample data found for this duplicate. 'OUT' corresponds to when the RPD is underlined on the Duplicate Report. See this report for supporting data.
- * If the MDA column is labeled 'MAX MDA', there was more than one result measured by the reported method and the MDA shown is the largest MDA. If not all these results have the same RDL, the MAX MDA reflects only those results with RDL equal to the smallest one.

MDAs are underlined if greater than the printed RDL.

- * Aliquots are underlined if less than the nominal value specified for the method.
- * Prepareation factors are underlined if greater than the nominal value specified for the method.
- * Dilution factors are underlined if greater than the nominal value specified for the method.
- * Residues are underlined if outside the range specified for the method. Residues are not printed if yields are.
- * Yields, which may be gravimetric, radiometric or some type of recovery depending on the method, are underlined if outside the range specified for the method.
- * Efficiencies are underlined if outside the range specified for the method. Efficiencies are detector and geometry dependent so this test is only approximate.
- * Count times are underlined if less than the nominal value

REPORT GUIDES

Page 13

SUMMARY DATA SECTION

Page 32

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>01/26/11</u>

SDG 8647

SDG <u>8647</u> Contact <u>N. Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>ITL2014</u>

METHOD SUMMARY

specified for the method.

- * Resolutions (as FWHM; Full Width at Half Max) are underlined if greater than the method specified limit.
- * Tracer drifts are underlined if their absolute values are greater than the method specified limit. Tracer drifts are not printed if percent moistures are.
- * Days Held are underlined if greater than the holding time specified in the protocol.
- * Analysis dates are underlined if before their planchet's preparation date or, if a limit is specified, too far after it.

For some methods, ratios as percentages and error estimates for them are computed for pairs of results. A ratio column header like ' $1\div3$ ' means the ratio of the first result column and the third result column.

Ratios are not computed for Lab Control Sample, Method Blank or Matrix Spike results since their matrices are not necessarily similar to client samples'.

The error estimate for a ratio of results from one planchet reflects only counting errors since other errors should be correlated. For a ratio involving different planchets, if QC limits are computed based on total errors, the error for the ratio allows for the preparation errors for the planchets.

The ratio is underlined (out of spec) if the absolute value of its difference from the nominal value is greater than its error estimate. If no nominal value is specified, this test is not done.

For Gross Alpha or Gross Beta results, there may be a column showing the sum of other Alpha or Beta emitters. This sum includes all relevant results in the DVD database, whether reported or not. Results in the sum are weighted by a particles/decay value specified by the lab for each relevant analyte. Results less than their MDA are not included.

REPORT GUIDES Page 14 SUMMARY DATA SECTION

Page 33

SDG 8647

SDG <u>8647</u>
Contact <u>N. Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract ITL2014

METHOD SUMMARY

No sums are computed for Lab Control, Method Blank or Matrix Spike samples since their various planchets may not be physically related.

If a ratio of total isotopic to Gross Alpha or Beta is shown, the error for the ratio reflects both the error in the Gross result and the sum, as square root of sum of squares, of the errors in the isotopic results.

For total elemental uranium or thorium results, there may be a column showing the total weight computed from associated isotopic results. Ignoring results less than their MDAs, this is a weighted sum of the isotopic results. The weights depend on the molecular weight and half-life of each isotope so as to convert activities (decays) to weight (atoms).

If a ratio of total computed to measured elemental uranium or thorium is shown, the error for the ratio reflects the errors in all the measurements.

REPORT GUIDES
Page 15
SUMMARY DATA SECTION
Page 34

SUBCONTRACT ORDER TestAmerica Irvine

ITL2014

8647

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022

Fax: (949) 260-3297

Project Manager: Debby Wilson

RECEIVING LABORATORY:

Eberline Services

2030 Wright Avenue

Richmond, CA 94804

Phone :(510) 235-2633

Fax: (510) 235-0438

Project Location: California

Receipt Temperature:_

Ice:

°C

Y / N

Analysis	Units	Due	Expires	Comments
Sample ID: ITL2014-03 (Ou	tfall 018 (Coi	mposite) - Wat	er) Sampled: 12/21/10	10:17
Gamma Spec-O	mg/kg	12/28/10	12/21/11 10:17	Out St Louis, k-40 and cs-137 only, DC NOT FILTER!
Gross Alpha-O	pCi/L	12/28/10	06/19/11 10:17	Out St Louis, Boeing permit, DO NOT FILTER!
Gross Beta-O	pCi/L	12/28/10	06/19/11 10:17	Out St Louis, Boeing permit, DO NOT FILTER!
Level 4 Data Package - Ou	t N/A	12/28/10	01/18/11 10:17	
Radium, Combined-O	pCi/L	12/28/10	12/21/11 10:17	Out St Louis, Boeing permit, DO NOT FILTER!
Strontium 90-0	pCi/L	12/28/10	12/21/11 10:17	Out St Louis, Boeing permit, DO NOT FILTER!
Tritium-O	pCi/L	12/28/10	12/21/11 10:17	Out St Louis, Boeing permit, DO NOT FILTER!
Uranium, Combined-O	pCi/L	12/28/10	12/21/11 10:17	Out St Louis, Boeing permit, DO NOT FILTER!
Containers Supplied:				
2.5 gal Poly (T)	500 mL Ami	per (U)		

Released

Released By

Date/Time

Date/Time

Received By

Received By

Data/Time

12/23/10 Date/Time

RICHMOND, CA LABORATORY SAMPLE RECEIPT CHECKLIST

TF-S	T AME	RICA 0	ity 1RV(NE I	State	A	
Client:	ved 12/23/10	12:06 - C No	ITL 2	014 1	2015		
Date/Time rece	ived 1/2	TO PERC NO.				No[]	
Container I.D. I	lo	Requested 1		TAND P.O. Rece	ived (col)		
2. Custod 3. Custod 4. Custod 5. Packir 6. Numb 7. Numb 8. Samp 9. Paper 10. Samp 11. Samp 12. Samp 13. Desc	er of containers p es are in correct work agrees with les have: Tape	ng container danse containers into e containers dans hipping container samples: container samples: [] Hazard lood condition [Vied [V] Not pross:	act? ted & signed er: abels [] F Leaking reserved [? Sample Matrix (Or see CoC Yes [\script] Yes [\script	Yes [] Yes [] Yes [] Yes [] Wet [] Wh TE No [] Propriate same Container [] Pervative	ple labels [V] Missing []]
15. Insp	ected by	Ion Chamber		2/27//O Time Customer Sample No.	Beta/Gamma	ion Chamber mR/hr	wipe
Sample No.	cpm	mR/hr	Wipe	Sample No.	'		
ALC Saeu	rls 460						
							P
						+	
						-	
Alpha Meter	Ser. No Ser. No Meter Ser. No			Calibration dat Calibration dat Calibration dat	e	20 P	

LABORATORY REPORT

Date: December 29, 2010

Client: TestAmerica, Irvine

17461 Derian Ave., Suite 100

Irvine, CA 92614 Attn: Debby Wilson Aquatic Testing Laboratories

"dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003 (805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.: A-10122103-001

Sample I.D.: ITL2014-03 (Outfall 018)

Sample Control: The sample was received by ATL within the recommended hold time, chilled and

with the chain of custody record attached. Testing conducted on only one sample per

client instruction (rain runoff sample).

Date Sampled: 12/21/10 - composite

Date Received: 12/21/10 Temp. Received: 5.5°C Chlorine (TRC): 0.0 mg/l

Date Tested: 12/21/10 to 12/27/10

Sample Analysis: The following analyses were performed on your sample:

Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

Result Summary:

Ceriodaphnia Survival: 100% 1.0 Ceriodaphnia Reproduction: 100% 1.0

Quality Control: Reviewed and approved by:

Joseph A. LeMay Laboratory Director

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

Lab No.: A-10122103-001 Date Tested: 12/21/10 to 12/27/10

Client/ID: Test America - ITL2014-03 (Outfall 018)

TEST SUMMARY

Test type: Daily static-renewal. Endpoints: Survival and Reproduction.

Species: Ceriodaphnia dubia.

Age: < 24 hrs; all released within 8 hrs.

Source: In-laboratory culture.

Food: .1 ml YTC, algae per day.

Test vessel size: 30 ml.

Test solution volume: 15 ml.

Number of test organisms per vessel: 1. Number of replicates: 10.

Temperature: 25 +/- 1°C. Photoperiod: 16/8 hrs. light/dark cycle.

Dilution water: Mod. hard reconstituted (MHRW). Test duration: 6 days.

QA/QC Batch No.: RT-101207. Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Survival	Mean Number of Young Per Female
Control	100%	22.4
100% Sample	100%	25.7
* Sample not so	atistically significantly le	ess than Control.

CHRONIC TOXICITY

Survival NOEC	100%
Survival TUc	1.0
Reproduction NOEC	100%
Reproduction TUc	1.0

QA/QC TEST ACCEPTABILITY

Parameter	Result
Control survival ≥80%	Pass (100% survival)
≥15 young per surviving control female	Pass (22.4 young)
≥60% surviving controls had 3 broods	Pass (80% with 3 broods)
PMSD <47% for reproduction; if >47% and no toxicity at IWC, the test must be repeated	Pass (PMSD = 17.6%)
Statistically significantly different concentrations relative difference > 13%	Pass (no concentration significantly different)
Concentration response relationship acceptable	Pass (no significant response at concentration tested)

			Cerioda	aphnia Sui	vival and	Reprodu	iction Tes	t-Surviv	al Day 6	
Start Date:	12/21/201	0 15:00	Test ID:	10122103	С		Sample ID);	Outfall 018	3
End Date:	12/27/201	0 15:00	Lab ID:	CAATL-Ac	uatic Tes	/pe:	EFF2-Industrial			
Sample Date:	12/21/201	0 10:17	Protocol:	FWCH EP	Α	-	Test Spec	ies:	CD-Cerioo	laphnia dubia
Comments:							•			•
Conc-%	1	2	3	4	5	6	7	8	9	10
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
100	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

,			18.1	Not			Fisher's	1-Tailed	Isot	onic
Conc-%	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Mean	N-Mean
D-Control	1.0000	1.0000	0	10	10	10		•	1.0000	1.0000
100	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000

	Test (1-tail,	0.05)	NOEC	LOEC	ChV	TU			
Fisher's Exa	ct Test		100	>100		1			
Treatments	vs D-Control								
					ar Interpo	lation (200	Resample	es)	
Point	%	SD	95%	CL	Skew				
IC05	>100							•	
IC10	>100								
IC15	>100						1.0		 ·
IC20	>100						4		
IC25	>100						0.9		
IC40	>100						0.8 -		
IC50	>100						0.7		j
							9 0.6		
							Response 0.6 - 0.5 - 0.4 - 0.4 - 0.4		
							g .		
							₩ 0.4]		
							0.3		
							0.2		
							0.1		

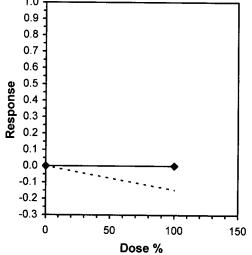
150

50

Dose %

100

			Cerioda	phnia Su	rvival and	Reprodu	uction Tes	st-Repro	duction	
Start Date: End Date: Sample Date:		0 15:00	Lab ID:		quatic Tes	ting Labs	• •	уре:	Outfall 018	ıstrial
Comments:	12/2 1/201	0 10.17	PTOLOCOL	FVVCH EF	A		Test Spec	ies:	CD-Ceriod	laphnia dubia
Conc-%	1	2	3	4	5	6	7	8	9	10
D-Control	11.000	27.000	20.000	29.000	24.000	15.000	23.000	26.000	25.000	24.000
100	26.000	29.000	28.000	25.000	25.000	26.000	14.000	31.000	28.000	25.000


		_	•	Transform	n: Untran	sformed		Rank	1-Tailed	Isot	onic
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	- Sum	Critical	Mean	N-Mean
D-Control	22.400	1.0000	22.400	11.000	29.000	24.918	10			24.050	1.0000
100	25.700	1.1473	25.700	14.000	31.000	17.789	10	128.00	82.00	24.050	1.0000

Auxiliary Tests	Statistic	Critical	Skew K	Curt
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.05)	0.85244	0.905	-1.3548 1.4	17429
F-Test indicates equal variances (p = 0.56)	1.4907	6.54109		
Hypothesis Test (1-tail 0.05)		0.04100		

Hypothesis Test (1-tail, 0.05)
Wilcoxon Two-Sample Test indicates no significant differences

Treatments vs D-Control

			Liı	near Interpolation	n (200 Resamples)	
Point	%	SD	95% CL	Skew	• ,	
IC05	>100	···				····
IC10	>100					
IC15	>100				1.0	
IC20	>100				0.9	
IC25	>100				4	
IC40	>100				0.8	
IC50	>100				0.7	
					0.6 -	
					9 0.5	l
					~ ^ 1	l l

Reviewed by:

CERIODAPHNIA DUBIA CHRONIC BIOASSAY EPA METHOD 1002.0 Raw Data Sheet

Lab No.: A-10122103-001

Client ID: TestAmerica - Outfall 018

Start Date: 12/21/2010

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

DAY:

		DA	Y 1	D.	AY 2	I	DAY 3	D,	AY 4		DAY 5		Di	AY 6	DA	AY 7
		0 hr	24hr	0 hr	24hr	0 hr	24hr	0 hr	24hr	0 hr		24hr	0 hr	24hr	0 hr	24hr
Analyst I	nitials:	<u> </u>	2-	Lu	2-	<u> </u>	1	n	1							
Time of R	eadings:	1500	1500	15W	1400	1900	Sa	1500	1430	143	Ui	400	1500	Isa		-
	DO						8.2	8.18	8-1	8.	-4/8	30	8.3	8.0		_
Control	O hr 24hr O hr 24hr St Initials:						8.1	8,2	8.2	8.	28	' 2				
	Temp	243	24.7	25.1	24.8	24.2	24.6	242	24-3	24	22	1.4.	24.2	24.4	-	_
	DO	9.7	7.7	8.1	8.10	10.	17.6	99	7-7	W-i	2 7	24	9.8	8.0	_	
100%	DO 9.7 7.7 8.1 8.6 pH 6.6 7.9 7.5 7.8 C Temp 24.6 24.2 24.7 25.3 2 Additional Parameters Conductivity (umohms) Alkalinity (mg/l CaCO ₃) Hardness (mg/l CaCO ₃) Ammonia (mg/l NH ₃ -N)						8.0	7.0	8.0	7-6	2 7	19	24	5.1		1
	Temp	<u> 24.2</u>	24.3	24.3	248	243	24-	ر 2 ک	1.3	24.2	24.5					
	Ad	ditional I	aramete	rs				Coi	Control					100% Sam	ple	
	Cor	ductivity	(umohms	s)				3/	O			_		44		
	Alk	alinity (m	ng/I CaCC)3)	<u></u>			7	7					16		
	Ha	rdness (m	g/l CaCO	3)				8	8					40		
	An	monia (m	1g/l NH ₃ -1	۷)				40)./			0.2				
	So	Source of Neonates														
Rep	Replicate: A B C								D E F G					I		J
Broo	od ID:		A	IB	10		3D 1E 2F 1G				G		1H	31		25
Sample	Sample Day					Number	of Young I	roduced				Tota	al Live	No. Live	A	nalyst
		~ 4 9	A	В	С	D	E F	G	н	l	J		oung	Adults		iitials
		1		0	U	01	2 0	0	0	0	0		2	10)		2
		2	<u> </u>	' '- '	 -/ 		00	U	0	0	0		2	10		3
		3	_	-	4	3 (0 0	3	0	4	0	1	4	10		/_
Control		4	U				4 5	5	4	0	5	3	0	10		
		5	4-	4 .		10	7 10		10	2	4	8	7	Ĭυ		
			<u> </u>) 15	10	101	30	0	12	14	13	9	3	10	1 2	
	<u> </u>		_ -			<u>- ·</u>	<u> </u>			_						
	_		一一			297		23		25	24	2	<u> 24</u>	10		
	-	1	$- \mathcal{O} $	0			2 0		0	0	0			10		
		2	9	10	0		20	0	U	0	4	C	2	10		
		3	_ -5	· -			3 4	14	9	9	9		4	10	14	
100%	 	4	46	19	-				6	\leq	4	2	3	10	1	
		6	- - /	7 9	8	9	1 /	10		$\frac{2}{1}$	8	B	21	10		
		7	14	016	12	101	2/12	0	141	16	13	13	22	10		
			7	29	28	25 2	5 26	, 14	71	28		0				7
	II	Total	/1/	, , ,,,							` / /			: / `		

^{7&}lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

CHAIN OF CUSTODY

CHAIN OF CUSTODY FORM

Client Name/A	\ddress:			Project:	· · · · · · · · · · · · · · · · · · ·								ANA	LYSI	S REC	QUIR	ED				
MWH-Arcad 618 Michillinda Arcadia, CA S Test America	dia a Ave, Si 91007 Contact:	Debby Wils		Boeing-SSFL N Quarterly Outt COMPOSITE	iall 018 40 W		Total Dissolved Metals: Cu, Pb, Hg, Cd, Se, Zn, Fe, Mn	Gross Alpha(900.0), Gross Beta(900.0), Tritium (H-3) (906.0), Sr-90 (905.0), Total Combined Radium 226 (903.0 or 903.1) & Radium 228 (904.0), Uranium (908.0), K- 40, CS-137 (901.0 or 901.1)													Comments
Project Manag Sampler: Ric Sample	K BAA	/AGF	# of			Bottle #	tal Dissolved Mei. Fe, Mn oss Alpha(900.0) itium (H-3) (906.0) indim 228 (904.0) cS-137 (901.0 c,		Cyanide	Chronic Toxicity											
Description	Matrix W	Type	Cont.	Date/Time /2-2/-26/8	None	16	X	Q E Q K A	O.	<u> </u>					\dashv	\dashv					Filter w/in 24hrs of receipt at lab
Outfall 018 Outfall 018	l w	1L Poly 2 5 Gal Cube	1	10:17	None	17A	 ^ -	x													Unfiltered and unpreserved analysis
		500 mL Amber	1	*	None	17B	ļ														
Outfall 018	W	500 mL Poly	1	12-21-2010	NaOH	18	<u> </u>		X												Only test if first or second rain
Outfall 018	W	1 Gal Poly	1	16:/7 None 19						X											events of the year
			-																		
				<u> </u>			1														
							T														
				6005	2 2 2 2 2	d Dere	050 5	e the composit		nnlas	for C	Lutfall	0184	for th	is eta	rm e	/ent	<u> </u>	<u> </u>	L	
				These mus	ge 2 of 3 ar	id Page 3	orus ar	rk opder for CC	e san	ae 1	of 3 fo	or Ou	tfall 0	18 fo	r the	same	ever	nt.			
Relinquished By Date/Time: /2-2/-20/0 Received 12-2/-20/0 Received 12-2/-10 Relinquished By Date/Time: Received Received Received Relinquished By Date/Time: Received Received Received Received Received Received Received Received Received Received Received Received Received Received Received Received Received Received Recei						att	Dun M	aterim	ne: -21	12-	21-	-10 20		Turn-ar 24 Hou 48 Hou Sample Intact:	ound tir	ne. (Chi 72 Hou 5 Day: 'y: (Che On ice	eck)	10 Day	/		
		V					\mathcal{U}								Data Requirements (Check) No Level IVAll Level IVNPDES Level IV:						

SUBCONTRACT ORDER

TestAmerica Irvine

ITL2014

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager:

Debby Wilson

RECEIVING LABORATORY:

Aquatic Testing Laboratories-SUB 4350 Transport Street, Unit 107

Ventura, CA 93003 Phone :(805) 650-0546 Fax: (805) 650-0756

Analysis	Due	Expires	Laboratory ID	Comments
Sample ID: ITL2014-03	Water	Sampled: 12/21/10 10:17		
Bioassay-7 dy Chrnic	12/28/10 15:00	12/22/10 22:17		Cerio, EPA/821-R02-013, Sub to Aquatic testing
Containers Supplied:				0 / 1/ 0 / 5
1 gal Poly (W)				Outfull 010

Released By

Date

Received By

Date

Received By

Date

Date

REFERENCE TOXICANT DATA

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

REFERENCE TOXICANT - NaCl

QA/QC Batch No.: RT-101207

Date Tested: 12/07/10 to 12/13/10

TEST SUMMARY

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*.

Age: <24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 +/- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

Reference Toxicant: Sodium chloride (NaCl).

Endpoints: Survival and Reproduction.

Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 20 ml. Number of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 6 days.

Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Survi	ival	Mean Number of Young Per Female			
Control	100%		23.3			
0.25 g/l	100%		25.2			
0.5 g/l	100%		23.7			
1.0 g/l	100%		16.0	*		
2.0 g/l	100%		2.9	*		
4.0 g/l	0%	*	0	**		

^{*} Statistically significantly less than control at P = 0.05 level

** Reproduction data from concentrations greater than survival NOEC are

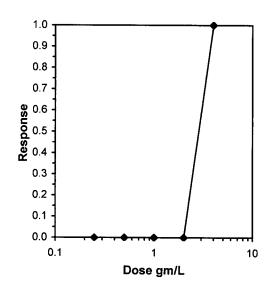
excluded from statistical analysis.

CHRONIC TOXICITY

Survival LC50	2.8 g/l
Reproduction IC25	0.86 mg/l

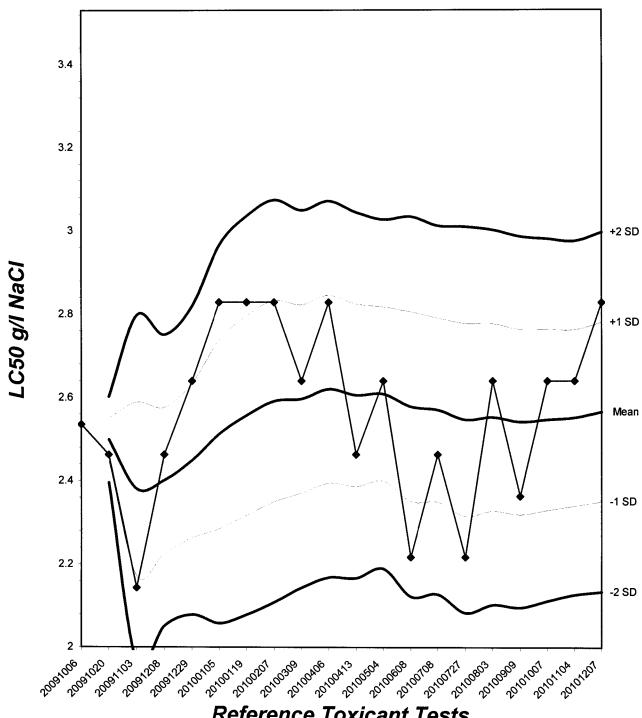
QA/QC TEST ACCEPTABILITY

Parameter	Result
Control survival ≥80%	Pass (100% Survival)
≥15 young per surviving control female	Pass (23.3 young)
≥60% surviving controls had 3 broods	Pass (80% with 3 broods)
PMSD <47% for reproduction	Pass (PMSD = 18.9%)
Stat. sig. diff. conc. relative difference > 13%	Pass (Stat. sig. diff. conc. Relative difference = 31.3%)
Concentration response relationship acceptable	Pass (Response curve normal)


			Ceriod	aphnia Su	rvival and	Reprodu	uction Tes	t-Surviv	al Day 6		
Start Date:	12/7/2010	14:00	Test ID:	RT101207	'c	-	Sample ID):	REF-Ref Toxicant		
End Date:	12/13/2010 14:00 Lab ID:			CAATL-Ad	quatic Tes	ting Labs	Sample Ty	/pe:	NACL-Soc	dium chloride	
Sample Date:	12/6/2010		Protocol:	FWCH EP	A		Test Spec	ies:	CD-Cerioo	laphnia dubia	
Comments:											
Conc-gm/L	1	2	3	4	5	6	7	8	9	10	
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
0.25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
0.5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
2	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

				Not			Fisher's	1-Tailed	Number	Total
Conc-gm/L	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Resp	Number
D-Control	1.0000	1.0000	0	10	10	10			0	10
0.25	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
0.5	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
1	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
2	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
4	0.0000	0.0000	10	0	10	10			10	10

Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	
Fisher's Exact Test	2	4	2.82843		
Treatments vs D-Control					


Trim Level 0.0% EC50 2.8284 **Graphical Method**

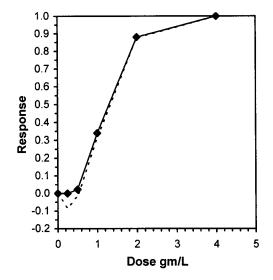
2.8284

Ceriodaphnia Chronic Survival **Laboratory Control Chart**

CV% = 8.41

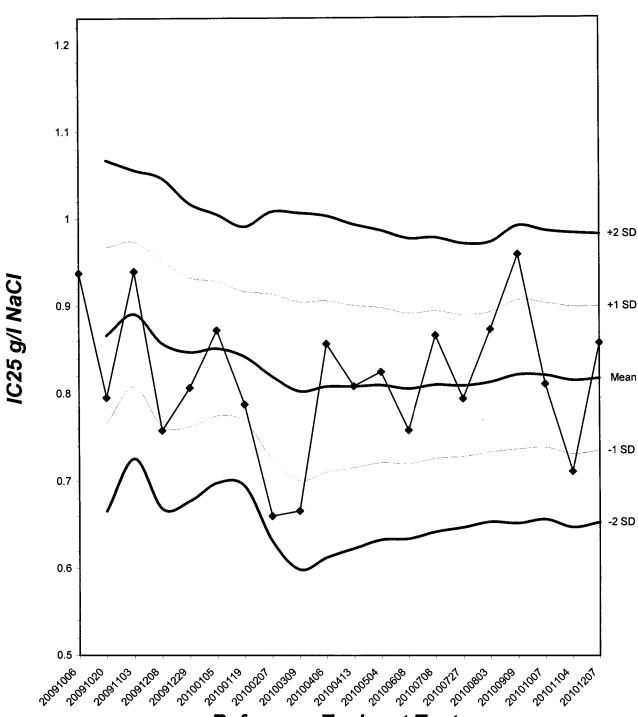
Reference Toxicant Tests

			Ceriod	aphnia Su	rvival and	i Reprodu	iction Tes	t-Repro	duction		
Start Date:	12/7/2010	14:00	Test ID:	RT101207	'c		Sample ID);	REF-Ref Toxicant		
End Date:	12/13/201	0 14:00	Lab ID:	CAATL-Ac	quatic Tes	ting Labs	Sample Ty	/pe:	NACL-Soc	dium chloride	
Sample Date:	12/6/2010		Protocol:	FWCH EP	PA	•	Test Spec	ies:	CD-Cerioo	laphnia dubia	
Comments:											
Conc-qm/L	1	2	3	4	5	6	7	8	9	10	
D-Control	22.000	11.000	28.000	27.000	26.000	28.000	21.000	28.000	27.000	15.000	
0.25	28.000	29.000	21.000	21.000	28.000	28.000	28.000	25.000	25.000	19.000	
0.5		17.000	20.000	26.000	24.000	29.000	29.000	23.000	25.000	19.000	
1	10.000	10.000	20.000	22.000	20.000	11.000	15.000	12.000	24.000	16.000	
2	0.000	2.000	7.000	4.000	2.000	4.000	0.000	5.000	2.000	3.000	
4		0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000	


			Transform: Untransformed						1-Tailed	Isotonic		
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
D-Control	23.300	1.0000	23.300	11.000	28.000	25.913	10				24.250	1.0000
0.25	25.200	1.0815	25.200	19.000	29.000	14.466	10	-0.959	2.223	4.404	24.250	1.0000
0.5	23,700	1.0172	23.700	17.000	29.000	17.000	10	-0.202	2.223	4.404	23.700	0.9773
*1	16.000	0.6867	16.000	10.000	24.000	32.676	10	3.686	2.223	4.404	16.000	0.6598
*2	2.900	0.1245	2.900	0.000	7.000	75.285	10	10.299	2.223	4.404	2.900	0.1196
4	0.000	0.0000	0.000	0.000	0.000	0.000	10				0.000	0.0000

Auxiliary Tests	.	<u> </u>			Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribu	0.05)		0.96459 0.947				-0.5938	0.09413	
Bartlett's Test indicates equal var			ŕ		8.97697		13.2767			
Hypothesis Test (1-tail, 0.05)	NOEC	LOÉC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	0.5	1	0.70711		4.40372	0.189	860.47	19.6156	5.6E-15	4, 45

Treatments vs D-Control


Linear Inter	polation	(200	Resamples)

Point	gm/L	SD	95%	Skew	
IC05	0.5430	0.1060	0.2194	0.6041	-1.2164
IC10	0.6218	0.0833	0.4101	0.7081	-1.1699
IC15	0.7005	0.0819	0.5141	0.8292	-0.4850
IC20	0.7792	0.0859	0.5998	0.9452	0.1951
IC25	0.8580	0.0903	0.6963	1.0439	0.3636
IC40	1.1107	0.1011	0.9055	1.2772	-0.0498
IC50	1.2958	0.0936	1.0659	1.4429	-0.4534

Ceriodaphnia Chronic Reproduction Laboratory Control Chart

CV% = 10.1

Reference Toxicant Tests

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-101207

Start Date: 12/07/2010

Q71 Q8 110 K1 101207		Number of Young Produced								Total	No.			
Sample	Day	A	В	C	D	E	F	G	Н	I	J	Live Young	Tivo Anar	Analyst Initials
Control	1	0	0	0	0	0	Ò	0	0	0	0	Q	10	En
	2	U	0	0	0	0	0	0	0	0	0	0	10	Ru
	3	0	0	4	0	0	()	0	0	0	0	4	10	En
	4	3	3	0	ک	U	2	3	4	4	3	31	10	n
	5	9	8	6	フ	8	9	6	9	7	0	69	10	
	6	10	0	18	15	14	ワ	12	15	16	12	129	10	
	7	-		٦		•	_)	()	())	
	Total	22	11	28	27	76	28	21	28	27	کا	233	10	V
0.25 g/l	1	0	0	0	0	0	0	0	0	0	0	0	10	L
	2	0	0	0	0	0	0	0	0	0	0	0	10	a
	3	0	0	4	0	0	0	0	0	0	0	4	IV	h
	4	4	3	U	4	5	4	4	۲	4	4	35	iv	m
	5	6	9	フ	0	8	10	9	7	7	0	63	10	m
	6	18	17	10	17	15	14	15	15	14	15	150	IU	5
	7		((_	(•	1	((•		(
	Total	28	29	21	21	28	28	28	25	25	19	252	10	1
0.5 g/l	1	ω	0	0	0	0	0	0	0	0	0	0	10	Ru
	2	0	0	0	0	0	0	0	0	0	0	0	IV	Ru
	3	0	0	0	4	0	0	0	0	0	0	Ч	10	2
	4	4	3	4	0	5	4	4	3	3	4	34	10	92
	5	6	0	6	8	7	9	2	6	フ	0	5/2	10	
	6	15	14	10	14	12	16	18	14	15	15	143	10	
	7		-	_		_		_	_	_	_			
	Total	25	17	20	26	24	29	29	<mark>ኢ</mark> ჳ	25	19	237	10	

Circled fourth brood not used in statistical analysis.

^{7&}lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-101207

Start Date: 12/07/2010

				Nu	mbe	r of Y	oung l	Produ	ced	***		Total		Analyst
Sample	Day	A	В	С	D	E	F	G	Н	I	J	Live Young		Initials
	1	0	0	0	0	0	0	0	0	0	0	0		m
·	2	0	0	0	0	0	0	0	0	0	0	0		Ru
•	3	0	0	0	0	0	0	Ô	0	0	0	\mathcal{C}	10	Ru
1.0 ~/1	4	ч	3	4	4	5	U	3	Ц	4	3	30	10	n
1.0 g/l	5	0	7	6	6	7	O	0	0	6	6	38	IV	9
	6	6	0	10	12	8	7	12	\mathcal{S}	14	7	84	U	1
	7			_	_	-	į	_	1		_			
	Total	10	10	20	22	20	11	15	12	24	طا	160	IV	
	1	0	0	0	0	0	0	0	0	0	0	0		2
	2	0	0	0	0	0	0	0	0	0	0	0	10	R
	3	0	0	0	0	0	0	0	0	0	0	0	10	Br
2.0 ~/1	4	0	0	0	C	2	.0	\mathcal{C}	ک	0	0	U	10	n
2.0 g/l	5	0	2	3	0	0	4	0	0	2	0		10	
	6	0	0	4	4	0	0	0	3	0	3	14	10	1
	7		_	_	_	_	_			_	_			
	Total	U	2	2	4	2	4	U	5	2	3	24	10	1
	1	X	X	×	X	X	X	×	X	X	×	0	0	R
	2	<u></u>	_	_	_					_			_	
	3	_	_		_			_	_	_	-		_	
4.0 ~/1	4	_	_		_	_	_	_	_	_				
4.0 g/l	5	_						_	_	_		_		
	6	_						_	_	_	_			
	7		_		_	_	_	_	_			_		
	Total	0	0	0	C	C	C	10	0	0	C	0	0	1

Circled fourth brood not used in statistical analysis.

^{7&}lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Water Chemistries Raw Data Sheet

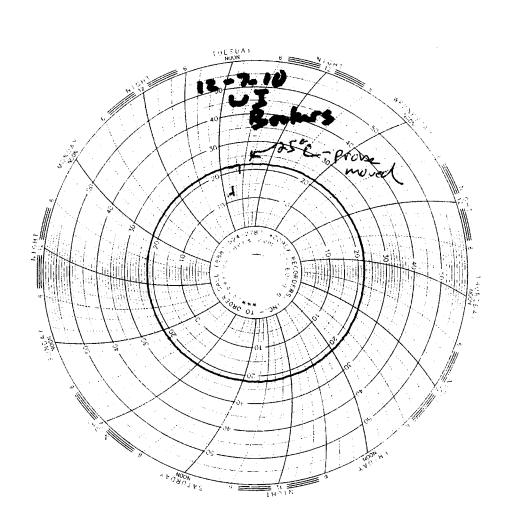
QA/QC No.: RT-101207

Start Date: 12/07/2010

	1	DA	Y 1	DA	Y 2	DA	Y 3	DA	Y 4	DA	Y 5	DA	Y 6	DA	Y 7
		Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
Analyst I	nitials:	£~~	R	2~	2m	2	£~	En	شم	fu-	2	1	2	R_	1
Time of Re	adings:	14w	/sw	Iŝw	140	1400	1400	1400	1300	1300	1330	1330	14/1	<u>/</u>	
	DO	8.4	8.7	8.4	8.6	8.7	8.3	8.2	8.4	8.1	7.9	8,2	26		_
Control	рН	8.2	8.3	8.4	79	8.2	8.0	8.2	8.0	8.1	7.5	8.2	8.2		1
	Temp	25.0	24.3	25.0	24.5	25.0	246	24.8	24.7	25.1	750	25.3	25-2		
	DO	8.4	8.4	8.4	8.6	8.6	8.3	5 2	8.4	8.2	74	82	27		_
0.25 g/l	pН	8.2	8.3	8.3	7.9	8.2	8.0	82	8.0	8.1	8.1	8-2	8-2		_
	Temp	25.0	24.6	25.0	24.8		2 <i>S.</i> U	24.8	24.8	25.1	40	252	2\$2	_	
	DO	8.5	8.8	8.4	8.7	8.6	8.4	8,2	8.3	8,2	7.4	8.3	7.6	_	-
0.5 g/l	pН	8.2	8.2	8.3	7.9	8.2	8.0	8.2	8.0	8.1	74	8.2	8.		_
	Temp	25.0	24.7	25.1	24.8	25.0	25.1	24.9	24.9	25.0	241	24-6	251		
	DO	8.5	8.7	8.4	8.7	8.5	8.4	8.2	8.3	8,2	もろ	83	22	_	_
1.0 g/l	pН	8.2	8.2	8.3	7.9	8.2	8.0	8.2	8.0	8.2	74	8.2	8.1		
	Temp	24.9	24.6	25-1	24.9	25.1	<u> 25.0</u>	24.9	24.9	25.0	240	245	24.9		
	DO	8.6	8.6	8.5	8.8	8.3	8.4	8.2	8.5	8.2	82	8.2	74	1	
2.0 g/l	pН	8.2	8.2	8.3	7.9	8.1	8.0	8.2	8.0	8.2	74	82	8-1	_	
	Temp	24.8	24.8	25.2	24-8	25.2	24.9	25.0	24-8	24.9	244	245	25,2		
	DO	8.7	8.8				_		_	_		_	_		
4.0 g/l	pН	8.1	8.2		_	_			_	_	(_	_		_
	Temp	24.6	24.8		<u> </u>						-		_		
	Di	ssolved	Oxyge	n (DO)	reading	gs are in	mg/l (O ₂ ; Temp	erature	(Temp)	reading	gs are ir	ı°C.		

		Control		High Concentration				
Additional Parameters	Day 1	Day 3	Day 5	Day 1	Day 3	Day 5		
Conductivity (μS)	325	329	322	6470	3690	3430		
Alkalinity (mg/l CaCO3)	24	73	73	73	74	74		
Hardness (mg/l CaCO ₃)	87	88	89	90	89	89		

				Source of	Neonates					
Replicate:	A	В	С	D	Е	F	G	Н	I	J
Brood ID:	11	2A	3A	3B	16	14	2.T	15	2J	35



Test Temperature Chart

Test No: RT-101207

Date Tested: 12/07/10 to 12/13/10

Acceptable Range: 25+/- 1°C

APPENDIX G

Section 39

Arroyo Simi Receiving Water – November 10, 2010 MEC^X Data Validation Report

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: ITK1155

Prepared by

MEC^X, LP 12269 East Vassar Drive Aurora, CO 80014 DATA VALIDATION REPORT SSFL NPDES

SSFL NPDES
SDG: ITK1155

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: ITK1155
Project Manager: B. Kelly

Matrix: Water

QC Level: IV No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub- Laboratory ID	Matrix	Collected	Method
Arroyo Simi-FP	ITK1155-01	NA	Water	11/10/2010 11:45:00 AM	EPA 200.7, EPA 525.2, SM2340B

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at the laboratory within the temperature limits of 4°C ±2°C. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the samples were couriered to the laboratory, custody seals were not reuqred. If necessary, the client ID was added to the sample result summary by the reviewer.

1

DATA VALIDATION REPORT SDG: SSFL NPDES
SDG: ITK1155

Data Qualifier Reference Table

Qualifi	er Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

2 Revision 0

DATA VALIDATION REPORT SDG: SSFL NPDES
SDG: ITK1155

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
1	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

DATA VALIDATION REPORT Project: SSFL NPDES SDG: ITK1155

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
* , *	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

4 Revision 0

DATA VALIDATION REPORT SSFL NPDES
SDG: ITK1155

III. Method Analyses

A. EPA METHOD 200.7—Metals

Reviewed By: P. Meeks

Date Reviewed: December 7, 2010

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Method 200.7, Standard Method 2340B, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: The analytical holding time, six months for ICP metals, was met.
- Tuning: Not applicable to this analysis.
- Calibration: Calibration criteria were met. The initial and continuing calibration recoveries were within 90-110% and the CRDL recoveries were within the control limits of 70-130%.
- Blanks: The method blank and CCBs had no detects.
- Interference Check Samples: Recoveries were within the method-established control limits of 80-120%. There were no target compounds present in the ICSA solution at concentrations indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: There were no MS/MSD analyses performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Serial Dilution: No serial dilution analyses were performed on the sample in this SDG.
- Internal Standards Performance: Not applicable to this analysis.

5 Revision 0

DATA VALIDATION REPORT SSFL NPDES
SDG: ITK1155

• Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

B. EPA METHOD 525.2—Semivolatile Organic Compounds (SVOCs)

Reviewed By: L. Calvin

Date Reviewed: December 7, 2010

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Semivolatile Organics (DVP-3, Rev. 0), EPA Method 525.2, and the National Functional Guidelines for Organic Data Review (10/99).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted within 24 hours of collection and analyzed within 30 days of extraction.
- GC/MS Tuning: The DFTPP tunes met the method abundance criteria. The sample was analyzed within 12 hours of the DFTPP injection time.
- Calibration: Calibration criteria were met. The initial calibration average RRFs were ≥0.05 and %RSD ≤30%. The ICV and continuing calibration RRFs were ≥0.05 and recoveries were within the method QC limits of 70-130%.
- Blanks: The method blank had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: The recoveries and RPDs were within laboratory-established QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.

DATA VALIDATION REPORT SSFL NPDES

SSFL NPDES
SDG: ITK1155

 Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG due to insufficient sample volume. Method accuracy and precision were evaluated based on the LCS/LCSD results.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The internal standard area counts and retention times were within the method control limits established by the continuing calibration standards of ±30% for area counts and ±five seconds for retention times.
- Compound Identification: Compound identification was verified. The laboratory analyzed for chlorpyrifos and diazinon by Method 525.2. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification
 was verified. The reporting limits were supported by the low point of the initial
 calibration and the laboratory MDLs. Any detects between the method detection limit
 and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order
 to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this analysis.
- System Performance: Review of the raw data indicated no problems with system performance.

Validated Sample Result Forms ITK1155

Analysis Metho	ed EPA	200.7							
Sample Name	Arroyo Simi		Matri	x Type:	Water	7	alidation Le	vel: IV	
Lab Sample Name	ITK1155-01	Sam	ple Date:	11/10/20	10 11:45:00 A	AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Calcium	7440-70-2	190	0.10	0.050	mg/l				
Magnesium	7439-95-4	58	0.020	0.012	mg/l				
Analysis Metho	ed EPA:	525.2							
Sample Name	Arroyo Simi		Matri	x Type:	Water	Validation Level: IV			
Lab Sample Name	ITK1155-01	Sam	ple Date:	11/10/20	10 11:45:00 A	AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Chlorpyrifos	2921-88-2	ND	1.0	0.010	ug/l		U		
Diazinon	333-41-5	ND	0.25	0.10	ug/l		U		
Analysis Metho	od SM23	840B							
Sample Name	Arroyo Simi		Matri	x Type:	Water	7	alidation Le	vel: IV	
Lab Sample Name	ITK1155-01	Sam	ple Date:	11/10/20	10 11:45:00 A	AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Hardness (as CaCO3)	NA	720	0.33	0.17	mg/l				

APPENDIX G

Section 40

Arroyo Simi Receiving Water - November 10, 2010 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Quartely Arroyo Simi-Frontier

Park

Arcadia, CA 91007 Quarterly Arroyo Simi-Frontier

Sampled: 11/10/10 Received: 11/10/10

Issued: 11/24/10 16:41

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at 3°C, on ice and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica

Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: Results that fall between the MDL and RL are 'J' flagged.

SUBCONTRACTED: No analyses were subcontracted to an outside laboratory.

618 Michillinda Avenue, Suite 200

Attention: Bronwyn Kelly

LABORATORY ID CLIENT ID MATRIX
ITK1155-01 Arroyo Simi-FP Water

I certify under penalty of perjury that the information contained in this report and all attachments was produced in accordance with the indicated methods and laboratory standard operating procedures, except as noted, and are complete and accurate to the best of my knowledge and belief. Subcontract laboratory reports that are attached have been evaluated for completeness and quality control acceptability.

Reviewed By:

TestAmerica Irvine

Debby Wilson

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quartely Arroyo Simi-Frontier Park

Quarterly Arroyo Simi-Frontier Park Sampled: 11/10/10

Report Number: ITK1155 Received: 11/10/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

ORGANIC COMPOUNDS BY GC/MS (EPA 525.2)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ITK1155-01 (Arroyo Si	mi-FP - Water)								
Reporting Units: ug/l									
Chlorpyrifos	EPA 525.2	10K1460	0.010	1.0	ND	1	PM	11/18/10	
Diazinon	EPA 525.2	10K1460	0.10	0.25	ND	1	PM	11/18/10	
Surrogate: 1,3-Dimethyl-2-nitrobenze	ene (70-130%)				101 %				
Surrogate: 1,3-Dimethyl-2-nitrobenze	ene (70-130%)				101 %				
Surrogate: Triphenylphosphate (70-1	130%)				94 %				
Surrogate: Triphenylphosphate (70-1	130%)				94 %				
Surrogate: Perylene-d12 (70-130%)					93 %				
Surrogate: Perylene-d12 (70-130%)					93 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quartely Arroyo Simi-Frontier Park

Quarterly Arroyo Simi-Frontier Park Sampled: 11/10/10

Report Number: ITK1155

Received: 11/10/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ITK1155-01 (Arroyo Simi-FP -	Water) - cont.								
Reporting Units: ug/l									
4,4'-DDD	EPA 608	10K1417	0.0038	0.0047	ND	0.943	CN	11/12/10	
4,4'-DDE	EPA 608	10K1417	0.0028	0.0047	ND	0.943	CN	11/12/10	
4,4'-DDT	EPA 608	10K1417	0.0038	0.0094	ND	0.943	CN	11/12/10	
Dieldrin	EPA 608	10K1417	0.0019	0.0047	ND	0.943	CN	11/12/10	
Chlordane	EPA 608	10K1417	0.075	0.094	ND	0.943	CN	11/12/10	
Toxaphene	EPA 608	10K1417	0.24	0.47	ND	0.943	CN	11/12/10	
Surrogate: Decachlorobiphenyl (45-120%)					86 %				
Surrogate: Tetrachloro-m-xylene (35-115%)					78 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quartely Arroyo Simi-Frontier Park

Quarterly Arroyo Simi-Frontier Park Sampled: 11/10/10

Report Number: ITK1155 Received: 11/10/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

TOTAL PCBS (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ITK1155-01 (Arroyo Simi-FP -	Water) - cont.								
Reporting Units: ug/l									
Aroclor 1016	EPA 608	10K1417	0.24	0.47	ND	0.943	JSM	11/12/10	
Aroclor 1221	EPA 608	10K1417	0.24	0.47	ND	0.943	JSM	11/12/10	
Aroclor 1232	EPA 608	10K1417	0.24	0.47	ND	0.943	JSM	11/12/10	
Aroclor 1242	EPA 608	10K1417	0.24	0.47	ND	0.943	JSM	11/12/10	
Aroclor 1248	EPA 608	10K1417	0.24	0.47	ND	0.943	JSM	11/12/10	
Aroclor 1254	EPA 608	10K1417	0.24	0.47	ND	0.943	JSM	11/12/10	
Aroclor 1260	EPA 608	10K1417	0.24	0.47	ND	0.943	JSM	11/12/10	
Surrogate: Decachlorobiphenyl (45-120%)					73 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quartely Arroyo Simi-Frontier Park

Quarterly Arroyo Simi-Frontier Park Sampled: 11/10/10

Report Number: ITK1155 Received: 11/10/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ITK1155-01 (Arroyo Simi-FF Reporting Units: mg/l	- Water) - cont.								
Hardness (as CaCO3)	SM2340B	[CALC]		0.33	720	1	LL	11/17/10	
Calcium	EPA 200.7	10K2188	0.050	0.10	190	1	LL	11/17/10	
Magnesium	EPA 200.7	10K2188	0.012	0.020	58	1	LL	11/17/10	

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quartely Arroyo Simi-Frontier Park

Quarterly Arroyo Simi-Frontier Park Sampled: 11/10/10

Report Number: ITK1155 Received: 11/10/10

SHORT HOLD TIME DETAIL REPORT

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Arroyo Simi-FP (ITK1155-0	1) - Water				
EPA 525.2	1	11/10/2010 11:45	11/10/2010 18:17	11/11/2010 10:27	11/18/2010 11:51

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quartely Arroyo Simi-Frontier Park

Quarterly Arroyo Simi-Frontier Park

Report Number: ITK1155

Sampled: 11/10/10

Received: 11/10/10

METHOD BLANK/QC DATA

ORGANIC COMPOUNDS BY GC/MS (EPA 525.2)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10K1460 Extracted: 11/11/10										
Blank Analyzed: 11/18/2010 (10K1460-	-BLK1)									
Chlorpyrifos	ND	1.0	ug/l							
Diazinon	ND	0.25	ug/l							
Surrogate: 1,3-Dimethyl-2-nitrobenzene	5.14		ug/l	5.00		103	70-130			
Surrogate: 1,3-Dimethyl-2-nitrobenzene	5.14		ug/l	5.00		103	70-130			
Surrogate: Triphenylphosphate	5.10		ug/l	5.00		102	70-130			
Surrogate: Triphenylphosphate	5.10		ug/l	5.00		102	70-130			
Surrogate: Perylene-d12	4.50		ug/l	5.00		90	70-130			
Surrogate: Perylene-d12	4.50		ug/l	5.00		90	70-130			
LCS Analyzed: 11/18/2010 (10K1460-F	BS1)									MNR1
Chlorpyrifos	5.65	1.0	ug/l	5.00		113	70-130			
Diazinon	5.72	0.25	ug/l	5.00		114	70-130			
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.89		ug/l	5.00		98	70-130			
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.89		ug/l	5.00		98	70-130			
Surrogate: Triphenylphosphate	4.91		ug/l	5.00		98	70-130			
Surrogate: Triphenylphosphate	4.91		ug/l	5.00		98	70-130			
Surrogate: Perylene-d12	4.35		ug/l	5.00		87	70-130			
Surrogate: Perylene-d12	4.35		ug/l	5.00		87	70-130			
LCS Dup Analyzed: 11/18/2010 (10K1-	460-BSD1)									
Chlorpyrifos	5.60	1.0	ug/l	5.00		112	70-130	1	30	
Diazinon	4.46	0.25	ug/l	5.00		89	70-130	25	30	
Surrogate: 1,3-Dimethyl-2-nitrobenzene	5.22		ug/l	5.00		104	70-130			
Surrogate: 1,3-Dimethyl-2-nitrobenzene	5.22		ug/l	5.00		104	70-130			
Surrogate: Triphenylphosphate	4.93		ug/l	5.00		99	70-130			
Surrogate: Triphenylphosphate	4.93		ug/l	5.00		99	70-130			
Surrogate: Perylene-d12	4.16		ug/l	5.00		83	70-130			
Surrogate: Perylene-d12	4.16		ug/l	5.00		83	70-130			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quartely Arroyo Simi-Frontier Park

Quarterly Arroyo Simi-Frontier Park

Report Number: ITK1155

Sampled: 11/10/10

Received: 11/10/10

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
•	Result	Limit	Omts	Level	resuit	70KLC	Limits	MI D	Limit	Quantiers
Batch: 10K1417 Extracted: 11/11/10										
Blank Analyzed: 11/11/2010 (10K1417-E	BLK1)									
4,4'-DDD	ND	0.0050	ug/l							
4,4'-DDE	ND	0.0050	ug/l							
4,4'-DDT	ND	0.010	ug/l							
Dieldrin	ND	0.0050	ug/l							
Chlordane	ND	0.10	ug/l							
Toxaphene	ND	0.50	ug/l							
Surrogate: Decachlorobiphenyl	0.438		ug/l	0.500		88	45-120			
Surrogate: Tetrachloro-m-xylene	0.381		ug/l	0.500		76	35-115			
LCS Analyzed: 11/11/2010 (10K1417-BS	51)									
4,4'-DDD	0.446	0.0050	ug/l	0.500		89	55-120			
4,4'-DDE	0.411	0.0050	ug/l	0.500		82	50-120			
4,4'-DDT	0.487	0.010	ug/l	0.500		97	55-120			
Dieldrin	0.454	0.0050	ug/l	0.500		91	55-115			
Surrogate: Decachlorobiphenyl	0.418		ug/l	0.500		84	45-120			
Surrogate: Tetrachloro-m-xylene	0.368		ug/l	0.500		74	35-115			
Matrix Spike Analyzed: 11/12/2010 (10k	(1417-MS1)				Source: I'	TK0956-0	1			
4,4'-DDD	0.429	0.0047	ug/l	0.472	ND	91	50-125			
4,4'-DDE	0.397	0.0047	ug/l	0.472	ND	84	45-125			
4,4'-DDT	0.450	0.0094	ug/l	0.472	ND	95	50-125			
Dieldrin	0.438	0.0047	ug/l	0.472	ND	93	50-120			
Surrogate: Decachlorobiphenyl	0.394		ug/l	0.472		83	45-120			
Surrogate: Tetrachloro-m-xylene	0.365		ug/l	0.472		77	35-115			
Matrix Spike Dup Analyzed: 11/12/2010 (10K1417-MSD1)				Source: ITK0956-01						
4,4'-DDD	0.447	0.0047	ug/l	0.472	ND	95	50-125	4	30	
4,4'-DDE	0.421	0.0047	ug/l	0.472	ND	89	45-125	6	30	
4,4'-DDT	0.479	0.0094	ug/l	0.472	ND	101	50-125	6	30	
Dieldrin	0.463	0.0047	ug/l	0.472	ND	98	50-120	5	30	
Surrogate: Decachlorobiphenyl	0.421		ug/l	0.472		89	45-120			
Surrogate: Tetrachloro-m-xylene	0.391		ug/l	0.472		83	35-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quartely Arroyo Simi-Frontier Park

Quarterly Arroyo Simi-Frontier Park

Report Number: ITK1155

Sampled: 11/10/10

Received: 11/10/10

METHOD BLANK/QC DATA

TOTAL PCBS (EPA 608)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10K1417 Extracted: 11/11/	<u>10</u>									
Blank Analyzed: 11/11/2010 (10K1	417-BLK1)									
Aroclor 1016	ND	0.50	ug/l							
Aroclor 1221	ND	0.50	ug/l							
Aroclor 1232	ND	0.50	ug/l							
Aroclor 1242	ND	0.50	ug/l							
Aroclor 1248	ND	0.50	ug/l							
Aroclor 1254	ND	0.50	ug/l							
Aroclor 1260	ND	0.50	ug/l							
Surrogate: Decachlorobiphenyl	0.378		ug/l	0.500		76	45-120			
LCS Analyzed: 11/11/2010 (10K14	17-BS2)									
Aroclor 1016	3.57	0.50	ug/l	4.00		89	50-115			
Aroclor 1260	3.49	0.50	ug/l	4.00		87	60-120			
Surrogate: Decachlorobiphenyl	0.401		ug/l	0.500		80	45-120			
Matrix Spike Analyzed: 11/11/2010) (10K1417-MS2)				Source: I	TK0956-0	1			
Aroclor 1016	3.16	0.47	ug/l	3.77	ND	84	45-120			
Aroclor 1260	3.09	0.47	ug/l	3.77	ND	82	55-125			
Surrogate: Decachlorobiphenyl	0.349		ug/l	0.472		74	45-120			
Matrix Spike Dup Analyzed: 11/11	/2010 (10K1417-M	ISD2)			Source: I	TK0956-0	1			
Aroclor 1016	3.46	0.47	ug/l	3.79	ND	91	45-120	9	30	
Aroclor 1260	3.40	0.47	ug/l	3.79	ND	90	55-125	9	25	
Surrogate: Decachlorobiphenyl	0.390		ug/l	0.474		82	45-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quartely Arroyo Simi-Frontier Park

Quarterly Arroyo Simi-Frontier Park

Report Number: ITK1155

Sampled: 11/10/10

Received: 11/10/10

METHOD BLANK/QC DATA

METALS

	I	Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10K2188 Extracted: 11/17/10										
Blank Analyzed: 11/17/2010 (10K2188-B	LK1)									
Calcium	ND	0.10	mg/l							
Magnesium	ND	0.020	mg/l							
LCS Analyzed: 11/17/2010 (10K2188-BS	1)									
Calcium	2.30	0.10	mg/l	2.50		92	85-115			
Magnesium	2.40	0.020	mg/l	2.50		96	85-115			
Matrix Spike Analyzed: 11/17/2010 (10K	2188-MS1)				Source: I'	TK1716-0	1			
Calcium	24.5	0.10	mg/l	2.50	22.3	89	70-130			MHA
Magnesium	9.51	0.020	mg/l	2.50	7.20	92	70-130			
Matrix Spike Dup Analyzed: 11/17/2010	(10K2188-MSI	D1)			Source: I'	TK1716-0	1			
Calcium	24.3	0.10	mg/l	2.50	22.3	78	70-130	1	20	MHA
Magnesium	9.29	0.020	mg/l	2.50	7.20	84	70-130	2	20	

THE LEADER IN ENVIRONMENTAL TESTING 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

Project ID: Quartely Arroyo Simi-Frontier Park

Quarterly Arroyo Simi-Frontier Park Sampled: 11/10/10

Report Number: ITK1155 Received: 11/10/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

DATA QUALIFIERS AND DEFINITIONS

MHA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery

information. See Blank Spike (LCS).

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quartely Arroyo Simi-Frontier Park

Quarterly Arroyo Simi-Frontier Park Sampled: 11/10/10

Report Number: ITK1155 Received: 11/10/10

Attention: Bronwyn Kelly

Arcadia, CA 91007

618 Michillinda Avenue, Suite 200

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California		
EDD + Level 4	Water	N/A	N/A		
EPA 200.7	Water	X	X		
EPA 525.2	Water				
EPA 608	Water	X	X		
SM2340B	Water	X	X		

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Test America Version 7/19/2010 **CHAIN OF CUSTODY FORM** ITK 1155 Page 1 of 1 ANALYSIS REQUIRED Client Name/Address Proiect: Boeing-SSFL NPDES MWH-Arcadia Field readings: (525.2)Temp = 15.9 59 Quarterly Arroyo Simi-Frontier 618 Michillinda Avenue, Suite 200 ,4-DDD, Arcadia, CA 91007 Chlorpyrifos, Diazinon Chlordane, Dieldrin, Toxaphene (608), 4,4 4,4-DDE, 4,4-DDT Test America Contact: Debby Wilson pH = 7.4 Project Manager: Bronwyn Kelly Phone Number: Water Velocity 77, 30 30 C. (626) 568-6691 Sampler: RICK BANAGA Fax Number: PCBs (608) (626) 568-6515 Time of readings = 1/;45 Sample Sample Container # of Sampling Preservative Bottle # Comments Description Date/Time Matrix Type Cont. 11-10-2010 Arroyo W 1L Poly Х HNO₃ 1 Simi-FP 11:45 Arroyo W Х 1L Amber None 2A, 2B Simi-FP Arrovo Extract within 36-Hours of W 2 1L Amber HCI 3A, 3B Х Simi-FP sampling 11-10-2010 Arrovo W 1L Amber None 4A, 4B Х Simi-FP Relipedished By 1/2/0-20/0 Date/Time: Redeived By Date/Time: Turn around Time: (check) 1314 24 Hours _____ 5 Days ____ 314 48 Hours _____ 10 Days ____ Relinguished By Date/Time: Received By Date/Time: 72 Hours _____ Normal X Sample Integrity: (check)
Intact _____ On Ice: __X Relinquished By Date/Time: Received By Date/Time:

10AP 2

01111

Data Requirements: (check)
No Level IV ____ All Level IV _

NPDES Level IV

