APPENDIX G

Section 21

Outfall 009 – October 6, 2010 MEC^X Data Validation Report THIS PAGE LEFT INTENTIONALLY BLANK

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: ITJ0796

Prepared by

MEC^X, LP 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title:	Boeing SSFL NPDES
Contract Task Order:	1261.100D.00
Sample Delivery Group:	ITJ0796
Project Manager:	B. Kelly
Matrix:	Water
QC Level:	IV
No. of Samples:	1
No. of Reanalyses/Dilutions:	0
Laboratory:	TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 009	ITJ0796-01	140790-01	WATER	10/6/2010 8:00:00 AM	100.2

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at the laboratory within the temperature limits of $4^{\circ}C \pm 2^{\circ}C$. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. Custody seals were intact. If necessary, the client ID was added to the sample result summary by the reviewer.

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	er Organics Inorganics				
Н	Holding times were exceeded.	Holding times were exceeded.			
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect			
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.			
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.			
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.			
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.			
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.			
Е	Not applicable.	Duplicates showed poor agreement.			
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.			
A	Not applicable.	ICP Serial Dilution %D were not within control limits.			
Μ	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.			
т	Presumed contamination as indicated by the trip blank results.	Not applicable.			
+	False positive – reported compound was not present.	Not applicable.			
-	False negative – compound was present but not reported.	Not applicable.			
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.			
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.			
?	TIC identity or reported retention time has been changed.	Not applicable.			

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Ρ	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 100.2—Asbestos

Reviewed By: P. Meeks Date Reviewed: October 21, 2010

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Method 100.2, and the National Functional Guidelines for Inorganic Data Review (07/02).

- Holding Times: There is no established holding time for asbestos analysis; however, the sample was ozonated and filtered within 48 hours of collection and the sample was analyzed within 30 days of collection.
- Calibration: The laboratory did not provide magnification calibration information.
- Blanks: Method blanks are not applicable to this analysis. The laboratory provided documentation indicating that all supplies used in the analysis of the sample were checked and found to be free from asbestos contamination.
- Blank Spikes and Laboratory Control Samples: Not applicable to this analysis.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: Not applicable to this analysis.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample result reported on the sample result form was verified against the raw data and no transcription errors were noted.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: There were no field blank or equipment rinsate samples associated with this SDG.
 - Field Duplicates: There were no filed duplicate samples identified in this SDG.

Validated Sample Result Forms ITJ0796

Analysis Method TEM

Sample Name	Outfall 009	Matrix Type: WATER Validation Level: IV						
Lab Sample Name	ITJ0796-01	Sam	ple Date:	10/6/2010) 8:00:00 AM	1		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
ASBESTOS	1332-21-4	< 0.4			MFL		U	

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: ITJ0820

Prepared by

MEC^x, LP 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Contract Task Order:	Boeing SSFL NPDES 1261.100D.00
Sample Delivery Group:	ITJ0820
Project Manager:	B. Kelly
Matrix:	Water
QC Level:	IV
No. of Samples:	1
No. of Reanalyses/Dilutions:	0
Laboratory:	TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 009 (COMPOSITE)	ITJ0820	G0J110459-001, S010089-01	WATER	10/6/2010 11:50	245.1, 245.1 (Diss), ASTM 5174- 91, 900.0 MOD, 901.1 MOD, 903.1 MOD, 904 MOD, 905 MOD, 906.0 MOD, 1613, SM2540D

II. Sample Management

No anomalies were observed regarding sample management. Eberline did not note the temperature upon receipt; however, due to the nonvolatile nature of the analytes, no qualifications were required. The samples in this SDG were received at the remaining laboratories within the temperature limits of 4°C ±2°C. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. Custody seals were intact upon receipt at TestAmerica-Sacramento and Eberline. As the samples were couriered to TestAmerica-Irvine, custody seals were not required. If necessary, the client ID was added to the sample result summary by the reviewer.

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
Ι	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
А	Not applicable.	ICP Serial Dilution %D were not within control limits.
Μ	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

- D The analysis with this flag should not be used because another more technically sound analysis is available.
- P Instrument performance for pesticides was poor.
- DNQ The reported result is above the method detection limit but is less than the reporting limit.
- *II, *III Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

The analysis with this flag should not be used because another more technically sound analysis is available.

Post Digestion Spike recovery was not within control limits.

The reported result is above the method detection limit but is less than the reporting limit.

Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin Date Reviewed: December 5, 2010

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (9/05).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed with the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had detects between the EDL and the RL for total TCDD, total HPCDD, and OCDD. Total TCDD and OCDD were reported as EMPCs in the method blank. The associated sample had no TCDD detected, and the method blank concentrations for total HpCDD and OCDD were insufficient to qualify the sample results.

- Blank Spikes and Laboratory Control Samples: OPR recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating a representative number of reportable sample results. All individual isomers reported as EMPCs were qualified as nondetected and the EDL raised to the level of the EMPC. Any totals including EMPC peaks were qualified as estimated, "J." Any detects reported between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

B. EPA METHODS 200.8 & 245.1—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: December 6, 2010

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the *MEC[×]* Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.8 and 245.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: The analytical holding times, 6 months for ICP-MS metals and 28 days for mercury, were met.
- Tuning: Not applicable to this method.
- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all mercury initial and continuing calibration recoveries were within 85-115%. The ICP-MS initial and continuing calibration recoveries were within 90-100%. The copper 1.0

ppb CRDL recovery was above the control limit at 136%; therefore, dissolved copper detected in the sample was qualified as estimated, "J." The remaining CDRL recoveries and all mercury CRI recoveries were within the control limits of 70-130%.

- Blanks: Antimony was reported in a bracketing CCB at -0.30 µg/L; therefore, nondetected dissolved antimony was qualified as estimated, "UJ." Method blanks and CCBs had no other applicable detects.
- Interference Check Samples: Copper and cadmium were detected in the ICSA; however, the reviewer was unable to determine if the detects were due to matrix interference or to low level contamination in the ICSA standard. The ICSA and ICSAB recoveries were within 80-120%..
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Serial Dilution: No serial dilution analyses were performed on the sample in this SDG.
- Internal Standards Performance: Not applicable to this method.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks Date Reviewed: December 6, 2010

The sample listed in Table 1 for these analyses were validated based on the guidelines outlined in the *EPA Methods* 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (10/04).

- Holding Times: The tritium sample was analyzed within 180 days of collection. All remaining aliquots were prepared beyond the five-day analytical holding time for unpreserved samples; therefore, all results all results, except for tritium were qualified as estimated, "UJ," for nondetects and , "J," for detects.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability. The detector efficiencies were greater than 20%. The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. All chemical yields were at least 40% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.
- Blanks: There were no analytes detected in the method blanks.
- Blank Spikes and Laboratory Control Samples: Radium-228 was recovered above the control limit; however, as radium-228 was not detected in the site sample, no qualifications were required. The remaining recoveries were within laboratory-established control limits.
- Laboratory Duplicates: Laboratory duplicate analyses were performed on the sample in this SDG. The RPDs were within the laboratory-established control limits or within ± the reporting limit if the result or duplicate were less than the reporting limit.
- Matrix Spike/Matrix Spike Duplicate: No matrix spike or MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. Any detects between the MDA and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDA. Total uranium, normally reported in aqueous units, was converted to pCi/L using the conversion factor of 0.67 for naturally occurring uranium
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC

data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- Field Duplicates: There were no field duplicate samples identified for this SDG.

D. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks Date Reviewed: December 6, 2010

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{x} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), Standard Method 2540D, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: The analytical holding time, seven days from collection, was met.
- Calibration: Balance calibration logs were provided and found to be acceptable.
- Blanks: TSS was not detected in the method blank.
- Blank Spikes and Laboratory Control Samples: The recovery was within laboratoryestablished QC limits.
- Laboratory Duplicates: A laboratory duplicate analysis was performed on the sample in this SDG. The RPD was within the laboratory-established control limit.
- Matrix Spike/Matrix Spike Duplicate: Not applicable to this analysis.
- Sample Result Verification: Calculations were verified and the sample result reported on the sample result summary was verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- Field Duplicates: There were no field duplicate samples identified for this SDG.

Validated Sample Result Forms ITJ0820

Sample Name	Outfall 009 C	omposite	Matri	х Туре:	WATER	۷	alidation Le	vel: IV
Lab Sample Name	ITJ0820-01	Sam	ple Date:	10/6/201	0 7:30:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Uranium, Total		0.208	1	0.023	pCi/L	Jb	J	H, DNQ
Analysis Method	d 900							
Sample Name	Outfall 009 C	omposite	Matri	x Type:	WATER	V	alidation Le	vel: IV
Lab Sample Name	ITJ0820-01 Sample Date: 10/6/2010 7:30:00 PM							
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Gross Alpha	12587461	0.865	3	0.481	pCi/L	Jb	J	H, DNQ
Gross Beta	12587472	3.81	4	1.93	pCi/L	Jb	J	H, DNQ
Analysis Method	d 901.1							
Sample Name	Outfall 009 C	omposite	Matri	x Type:	WATER	۲	alidation Le	vel: IV
Lab Sample Name	ITJ0820-01	Sam	ple Date:	10/6/201	0 7:30:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Cesium-137	10045973	ND	20	1.62	pCi/L	U	UJ	Н
Potassium-40	13966002	ND	25	20.3	pCi/L	U	UJ	H
Analysis Method	d 903.1							
Sample Name	Outfall 009 C	omposite	Matri	x Type:	WATER	V	alidation Le	vel: IV
Lab Sample Name	ITJ0820-01	Sam	ple Date:	10/6/201	0 7:30:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Radium-226	13982633	0.181	1	0.619	pCi/L	U	UJ	Н
Analysis Method	d 904							
G I N	Outfall 009 C	omposite	Matri	x Type:	WATER	۲	alidation Le	vel: IV
Sample Name				10/6/201	0 7:30:00 PM			
Sample Name Lab Sample Name	ITJ0820-01	Sam	ple Date:	10/0/201				
-	ITJ0820-01 САЅ No	Sam Result Value	ple Date: RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes

Thursday, December 09, 2010

Sample Name	Outfall 009 C	Outfall 009 Composite			WATER	V	Validation Level: IV		
Lab Sample Name	ITJ0820-01	Sam	ple Date:	10/6/201	0 7:30:00 PM				
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Strontium-90	10098972	-0.13	2	0.879	pCi/L	U	UJ	Н	
Analysis Metho	od 906								
Sample Name	Outfall 009 C	omposite	Matri	x Type:	WATER	V	alidation Le	vel: IV	
Lab Sample Name	ITJ0820-01	Sam	ple Date:	10/6/201	0 7:30:00 PM				
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Tritium	10028178	-13.6	200	162	pCi/L	U	U		
Analysis Metho	od EPA	200.8							
Sample Name	Matri	x Type:	Water	١	alidation Le	vel: IV			
Lab Sample Name	ITJ0820-01	Sam	ple Date:	10/6/201	0 7:30:00 PM				
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validatior Notes	
Antimony	7440-36-0	0.73	2.0	0.30	ug/l	J	J	DNQ	
Cadmium	7440-43-9	0.18	1.0	0.10	ug/l	J	J	DNQ	
Copper	7440-50-8	9.6	2.0	0.50	ug/l				
Lead	7439-92-1	11	1.0	0.20	ug/l				
Гhallium	7440-28-0	ND	1.0	0.20	ug/l		U		
Analysis Metho	od EPA	200.8-L	Diss						
Sample Name	Outfall 009 C	omposite	Matri	x Type:	Water	V	alidation Le	vel: IV	
Lab Sample Name	ITJ0820-01	Sam	ple Date:	10/6/201	0 7:30:00 PM				
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validatior Notes	
Antimony, dissolved	7440-36-0	ND	2.0	0.30	ug/l		UJ	В	
Cadmium, dissolved	7440-43-9	0.11	1.0	0.10	ug/l	J	J	DNQ	
Copper, dissolved	7440-50-8	7.1	2.0	0.50	ug/l		J	С	
Lead, dissolved	7439-92-1	7.1	1.0	0.20	ug/l				
Thallium, dissolved	7440-28-0	ND	1.0	0.20	ug/l	С	U		

Analysis Method 905

Sample Name	Outfall 009 C	omposite	Matri	rix Type: Water		۷	alidation Le	vel: IV
Lab Sample Name	ITJ0820-01	Sam	ple Date:	10/6/2010	0 7:30:00 PM	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury	7439-97-6	ND	0.20	0.10	ug/l		U	
Analysis Metho	od EPA	245.1-L	Diss					
Sample Name	Outfall 009 C	omposite	Matri	x Type:	Water	٧	alidation Le	vel: IV
Lab Sample Name	ITJ0820-01	Sam	ple Date:	10/6/2010) 7:30:00 PM			
Lub Sumple Rume			pie Dutei					
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes

Analysis Method EPA 245.1

Sample Name	Outfall 009 Co	Outfall 009 Composite Matrix Type: WATER					Validation Level: IV			
Lab Sample Name	ITJ0820-01	ITJ0820-01 Samp		10/6/2010	7:30:00 PM					
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validatior Notes		
,2,3,4,6,7,8-HpCDD	35822-46-9	7.6e-005	0.00005	0.0000027	ug/L					
,2,3,4,6,7,8-HpCDF	67562-39-4	2.1e-005	0.00005	0.0000018	ug/L	J	J	DNQ		
,2,3,4,7,8,9-HpCDF	55673-89-7	ND	0.00005	0.0000028	ug/L		U			
,2,3,4,7,8-HxCDD	39227-28-6	3.5e-006	0.00005	0.0000021	ug/L	J	J	DNQ		
,2,3,4,7,8-HxCDF	70648-26-9	ND	0.00005	0.0000025	ug/L		U			
,2,3,6,7,8-HxCDD	57653-85-7	ND	0.00005	0.0000017	ug/L	J, Q	UJ	*Ш		
,2,3,6,7,8-HxCDF	57117-44-9	ND	0.00005	0.0000022	ug/L		U			
,2,3,7,8,9-HxCDD	19408-74-3	3.9e-006	0.00005	0.0000017	ug/L	J	J	DNQ		
,2,3,7,8,9-HxCDF	72918-21-9	ND	0.00005	0.0000031	ug/L		U			
,2,3,7,8-PeCDD	40321-76-4	ND	0.00005	0.0000026	ug/L		U			
,2,3,7,8-PeCDF	57117-41-6	ND	0.00005	0.0000053	ug/L		U			
2,3,4,6,7,8-HxCDF	60851-34-5	ND	0.00005	0.0000024	ug/L		U			
2,3,4,7,8-PeCDF	57117-31-4	ND	0.00005	0.0000058	ug/L		U			
2,3,7,8-TCDD	1746-01-6	ND	0.00001	0.000001	ug/L		U			
2,3,7,8-TCDF	51207-31-9	ND	0.00001	0.0000047	ug/L		U			
OCDD	3268-87-9	0.001	0.0001	0.000011	ug/L	В				
OCDF	39001-02-0	5.3e-005	0.0001	0.0000022	ug/L	J	J	DNQ		
Fotal HpCDD	37871-00-4	0.00023	0.00005	0.0000027	ug/L	J, B	J	*III, DNQ		
Fotal HpCDF	38998-75-3	5.3e-005	0.00005	0.0000018	ug/L	J				
Fotal HxCDD	34465-46-8	2.9e-005	0.00005	0.0000017	ug/L	J, Q	J	DNQ, *III		
Fotal HxCDF	55684-94-1	1.5e-005	0.00005	0.0000022	ug/L	J	J	DNQ		
Fotal PeCDD	36088-22-9	ND	0.00005	0.0000026	ug/L		U			
Fotal PeCDF	30402-15-4	ND	0.00005	0.0000029	ug/L		U			
Fotal TCDD	41903-57-5	ND	0.00001	0.000001	ug/L		U			
oun robb			0.00001	0.0000047	ug/L		U			

Analysis Method EPA-5 1613B

Sample Name	Outfall 009 C	Composite	Matri	іх Туре:	Water	Validation Level: IV		
Lab Sample Name	ITJ0820-01	Sam	ple Date:	10/6/2010) 7:30:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Total Suspended Solids	TSS	56	10	1.0	mg/l			

APPENDIX G

Section 22

Outfall 009 – October 6, 2010 Test America Analytical Laboratory Report THIS PAGE LEFT INTENTIONALLY BLANK

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project: Northern Drainage-DTSC Requirement Surface Water Sampling Sampled: 10/06/10 Received: 10/06/10

Issued: 10/20/10 21:13

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is

included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID

ITJ0796-01

CLIENT ID Outfall 009 MATRIX Water

I certify under penalty of perjury that the information contained in this report and all attachments was produced in accordance with the indicated methods and laboratory standard operating procedures, except as noted, and are complete and accurate to the best of my knowledge and belief. Subcontract laboratory reports that are attached have been evaluated for completeness and quality control acceptability.

Reviewed By:

Debby Wilson

TestAmerica Irvine Debby Wilson Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Northern Drainage-DTSC Requirement Surface Water Sampling Report Number: ITJ0796

Sampled: 10/06/10 Received: 10/06/10

EPA 600 R 94 134, 100.2

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ITJ0796-01 (Outfall 009 - Wa	ter)								
Reporting Units: MFL ASBESTOS	TEM	140790		NA	<0.4		LK	10/14/10	

TestAmerica Irvine

Debby Wilson Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Northern Drainage-DTSC Requirement Surface Water Sampling Report Number: ITJ0796

Sampled: 10/06/10 Received: 10/06/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

DATA QUALIFIERS AND DEFINITIONS

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

TestAmerica Irvine

Debby Wilson Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Northern Drainage-DTSC Requirement Surface Water Sampling Report Number: ITJ0796

Sampled: 10/06/10 Received: 10/06/10

Certification Summary

Subcontracted Laboratories

EMS Laboratories California Cert #1119, Nevada Cert #NJ003372008A 117 W. Bellevue Drive - Pasadena, CA 91105

Method Performed: TEM Samples: ITJ0796-01

TestAmerica Irvine

Debby Wilson Project Manager

est An	neric	a cao no.	R4-20	007-0054 CH	IAIN O	F CUS	STODY FORM ETJ0796				Page 1 of 1			
ient Nam WH-Arc	cadia		Project: Boeing-SSFL Northern Drainag ite 200 Surface Water Sampling –							ANALYS	SIS REQ	UIRE	D	
cadia, CA	91007	ue, Suite 20		DTSC Requi		iig –	2)							Field readings: Temp = 5 8 5
		: Debby Wil					00							рн = 7. 8
-	-	Bronwyn k התרוציי	-	(626) 568-66	91		Asbestos (EPA 100.2)							Time of readings =
Sample escription	Sample Matrix	Container Type	# of Cont.	Sampling Date/Time	Preservative	Bottle #	Ast							Commenta
	W	500 ml Poly	1	10-6-2010 08:00	None	1	X							
														0.0.11
														1010.20
						· · · · · · · · · · · · · · · · · · ·								И
elinquished	17	2		Date/Time: 10	:30	7-5			i O C C	_о 1	ЧЧЧ		24 Ho	round Time: (check) urs 5 Days
elinquished	By	\sum		Date/Time:	0551	Received B		LA IE		17	n'di	2	72 Ho	urs 10 Days urs Normal
elinquished	BY	<u> </u>		Date/Time:		Received E	Sy Sy	<u> </u>	ate/Time:				Sampl Intact	le Integrity: (check) On Ice: <u>2</u> -9

井116

DATE:	October 15, 2010
CUSTOMER:	Test America-Irvine 17461 Derian Avenue, Suite 100 Irvine, CA 92614
ATTENTION:	Debby Wilson
REPORT NO:	140790
REFERENCE:	ITJ0796
RECEIVED:	October 8, 2010 at 0932
DATE ANALYZED:	October 14, 2010
SUBJECT:	ANALYSIS OF WATER SAMPLES FOR ASBESTOS BY TEM
ACCREDITATION:	California Dept. of Health Services ELAP 1119

The date and times of collection, ozonation and filtration are as follows:

Sample	Date/Time of Collection	Date/Time of Ozonation	Date/Time of Filtration
ITJ0796-01	10/6/10 0800	10/8/10 1000-1300	10/8/10 1322

In the drinking water document, EPA 600 R 94 134, 100.2, samples are analyzed for fibers >10 um in length. The regulation calls for ar MCL (maximum contaminant level) of 7 MFL (million of fibers per liter) and an analytical sensitivity of 0.2 MFL.

The analytical sensitivity of 0.2 MFL was not reached due to turbidity.

The results of the analysis and the detection limit(s) are summarized on the following page(s), accompanied by the chain of custody.

Respectfully submitted, EMS Laboratories, Inc.

BMKolk

B.M. Kolk Laboratory Director BMK/vm

Note: The report shall not be reproduced, except in full without the written approval of EMS Laboratories, Inc.

Note: The results of the analysis are based upon the sample submitted to the laboratory. No representation is made regarding the sampling area other than that implied by the analytical results for the immediate vicinity of the samples analyzed as calculated from the data presented with those samples. All the analytical quality control data meet the requirement of the procedure unless otherwise indicated. Any deviation or exclusion from the test method is noted in this cover letter. Unless otherwise noted in this cover letter the samples were received properly packaged, clearly identified and intact.

ANALYSIS OF WATER BY TEM (EPA-600 R 94 134) EPA 100.2

LAB NO:	140790
CUSTOMER:	Test America-Irvine
	10/14/2010

			FILTER	MEDIA DATA			
Laboratory	Client	Туре	Diameter	Effective Area	No. of G.O.	Analyzed	Sample
I.D.	I.D.		mm	mm^2			Volume (ml)
140790-01	ITJ0796-01*	PC	47	1017	10	0.094	30
			L				
							_
							L

* FOR FIBERS > 10um ONLY

ANALYTICAL RESULTS

Laboratory	Client	No.	of Asbesto	os Str.	Detection	CONCENTRATION (MFL)		
I.D.	1.D.	All Sizes	5-9.9um	>10um	Limit (MFL)	All Sizes	5-9.9um	>10um
140790-01	ITJ0796-01*	-	-	N.D.	0.4	•	-	<0.4

* FOR FIBERS > 10um ONLY

The analysis was carried out to the approved TEM method. This laboratory is in compliance with the quality specified by the method.

Authorized Signature

PC - Polycarbonate MCE - Mixed cellulose ester G.O. - Grid Openings Str - Structures MFL - Millions of fibers per liter TEM-7A (2009Rev.)

Page 3 of 9

Analysis of Water by Transmission Electron Microscopy (EPA-600 R 94 134) EPA 100.2

EMS No.	140790	Customer	Test America-Irvine	
Sample No. IT	J0796-01		Date Analyzed	10/14/2010
Fibers > 10 µm	in length (chrysotile)		BDL*	MFL
Mass (chrysotile	9)		0	ug/L
More/Less than				
in Sample (chry	sotile)		LESS	
Poisson 95% C	onfidence Interval		<u> </u>	MFL
Detection Limit			0.4	MFL

* BDL : Below Detection Limit; MFL: Million Fibers per Liter

Particle Size Distribution (Chrysotile)

Particle Length - Microns

O -0.49	0.50 - 0.99	1.00 - 1.49	1.50 - 1.99	2.00 - 2.49	2.5 - 4.99	5.00 - 9.99	10 & UP				
0	0	0	0	0	0	0	0				
Particle Width - Microns											
O04	.0509	.114	.1519	.224	.2549	.5099	1 & UP				
0	0	0	0	0	0	0	0				
	Aspect Ratio L/W										
0 - 9.9	10 - 19.9	20 - 29.9	30 - 39.9	40 - 49.9	50 - 99	100 - 199	200 & UP				
0	00	0	0	0	0	0	0				

TEM 7B (1994)

	TEM - 1	A (1-08)	: 	 	- 7		- <u>-</u>				,		··					Page	<u>4 of 9</u>	···÷······	
								-	144	A	H			Opening		<u></u>	20	<u>rei</u>		NG	TI
OB									K	NS1	N/X	RE		Structure	EPA/600		-	1 Chrysotile Amphibole	EPA 6004	• •	M
OBSERVATIONS:														Structure	'R-94/134	<u>.</u>	ASPECT RATIO	LEVEL OF AVALYSIS	VIETHOD OF ANALYSIS	Air Di SAAIPLE Air Di SAAIPLE Soil Diker Qi Other	TEM ASBESTOS ANALYSIS
S:													Width	Umens		ב	5		0 X	• • •	ES
													Length	Dumensions (mm)	100.2	Į	·	⊥ CM Kallge: [_] "(≥0.25 μm width ≥50 μm length)		LENGTHS (µm) ≥0.5 □ ≥1.0 □	TOS
Clean Debris: Gypsum:													NAM TM]	No. of C				· · ·	S Ai
: ă; ă; ă 1000		 		<u> </u>									CM CD (No. of G.O. to Analyze		0.45 µm	Other		NAI
Very Light													CÓ CMQ CDQ	di j		F		율 .	PORE SIZE	FILTER TYPE / AREA (mm±) MCE C 385 C MCN C 314 C MCN C 107 C	LYS
\· -													QUIN	Fiber Classification		1 1	P			400ë	SI
			+	· ·							· · ·		X	ation	Prepa Date	Ashe	•	+	50	10-8-	Client Sample
· -													VIX VO VIDO		Prepared By K Date 10-1	Ashed Area	Weight	ne Ine Volume	mia ~ 10 ~ 1201	DIREC INDIREC	Client <u>Test</u> Sample No. 1
Moderate)							ADO AZO AZZ		13-10	~	99		12 - 12	DIRECT PREP	America TJ070
Moderate													Na Me	EDS					2 103 - 120Pa		0-9146-0
Heavy											-+-	1		EDS Analysis	K-Factor: Analyst	Accel	Scree	Grid Ac	ĸ		
										$\frac{1}{1}$			<u>7</u>		K-Factor: Analyst	Accelerating Voltage:	Screen Magnification:		ERGY DIS		EMS Lab No. Page
Very Heavy													Com		Dut Date	iltage:	cation:	- Model No. 3600-0206-0146	ENERGY DISPERSIVE X-RAY SYSTEM	MICROSCOPE H600A - Serial No. 542-36-01 H600B - Serial No. 542-05-06 H600C - Serial No. 542-24-03	o. 140791
\$ \$][]													Comments		Date (Del	JOOKV		0206-01	LAY SYST	03 92 5 19 10 10 10 10 10 10 10 10 10 10 10 10 10	<u>76 t</u> (

					T									5	N.	D		Grid	RECEIVING Page 5 or 9
-		.0		ŀ										KM				Structure	- M
ENND	. 	OBSERVATIONS:			- . .			-			 					/ <u>}</u>			-
_		ATION																Structure	SB
רת	Conditi	NS:															Width	Dimens	ES
	Gypsum: Condition of the Grid;	Cle													-+		Length	Dimensions (mm)	TEM ASBESTOS ANALYSIS
כ ם		Clean													1		NAM		
Ĩ	\ \ e	Ì	•					•						•	<u> </u>		TM CM		
117	Very Light	A Linht															co Q		AL
Most		╵┟) CMQ CDQ	F	S X
117 West Rellevice	Light Scrappy																TOQ UF	Fiber Classification	SI
ie Drive						·											ß	sificatio	
D D D	Undisa								-								AX ADX		Client Sample No.
ahese	Moc Moc						. 				 						AQ AD		ANALYSIS
earlana California	Moderate												 				ZZV DZV DDV		
lifornia	· · ·	^\ L 	<u></u>											L	<u> </u> 		ZZ Na		America Grid Address: Screen Magnification Camera Constant: Camera Constant: Camera Constant: Accelerating Voltage: Beam Current: K-Factor.
	Heavy Heavy Folded	:					· .										Mg	EDS A	
01105_2502								·			 				:		Si Ca	EDS Analysis	Page Page
•	Very H	Ľ													<u> .</u> T		Fe		Page No.
18781 588_1085	Very Heavy					×				•								-	No
1022													 .				Connictio		of $\underline{14074}$ MICROSCOPE Scrial No. 542-36 Scrial No. 542-35 Scrial No. 542-25 Scrial No. 542-24 Scrial No. 542-24 Model No. 3200-010 Model No. 3200-010 Quantum System
·																	ctits	ento	o. 140790 of
												i							

		ſ			1	Ť	Г		1			1	Т		1	K-T	2		<u></u>	
	·			ľ					.		·				44			Upening	Grid	RECEIVING
					1			.	\uparrow	- i	ļ.	1			R	C	M		Structure	
	. (}			[<u> </u>	<u> </u>	 	-			<u> </u> .			Ř	B	K	nber	cture	_
		ER												-					Stru	······································
		OBSERVATIONS:	•		· .						.								Structure	
2								T	I. T	+								5	Ē	
nditio																		Width	Dimensions (mm)	
Condition of the Grid.	<u>م</u>																	Length	m) Suid	
() poult.	Debris:					<u> </u> .			<u> </u>	<u> </u>	<u> </u>								3	
- קנ	ЪС рС	□			<u> </u>			–						-	-			NAM TM		
	< <)	_		\vdash	┼─	 	<u> </u>		<u>_</u>		-		-				M CM		
2		f		•		<u> </u>	\uparrow	 		+								8		
														-				8]	
7									. 	: 				<u> </u>				CO CMO CDO	F	
<u>^</u>								<u> </u>			<u> </u>			<u> </u>					Fiber C	
		-				· .							-					UF A	Classification	
٦F	<u> </u>	╞												$\left\{-\right\}$				AD AX	ation	
5							-											ADX		
ndieen									†—									ð		
would Filter	Mode	Ē																VDO VZO VZZ		ANALYSIS
I Indisented Filter	Moderate					L	ļ		.									AZQ A		Grid Addres Screen Mag Camera Cor Acceleratin Beam Curre K-Factor: Analyst
Ŀ			<u></u>					<u> </u>			<u>.</u>		<u> </u>							Grid Address:
נים	ΕI	$\left \right $. 								<u> </u>						•	Na Mg	E	
Mad	Heavy	\mathbf{F}							+									Si	EDS Analysis	
ככ		┢				 										:			ualysis	
	< < <	Ē																Fe		
י איז דופ	N N	Ē																		
zavy L										ľ										H600A - S H600B - S H600C - S ENERGY Kevex - N Kevex - N
. L	┙└─┘						ŀ								.					MICROSCOPE H600A - Serial No. 542-36-01 H600B - Serial No. 542-05-06 H600C - Serial No. 542-24-03 H600C - Serial No. 542-24-03 ENERGY DISPERSIVE X-RAY SYSTEM Kevex - Model No. 3200-0106-0367 Cuantum System Date $(D - (U - $
																			Comments	MICROSCOPE Serial No. 542-36-01 \swarrow Serial No. 542-05-06 Serial No. 542-05-06 Serial No. 542-24-03 Serial No. 542-24-03 Model No. 3200-0106-0360 Model No. 3200-000000 Model No. 3200000 Model No.
																			5	00PE 2-36-0 2-24-0 2-24-0 2-24-0 2-24-0 0-0106-0 0-0106-0 0-0106-0 0-0106-0 0-0106-0
		÷																		

Analysis of Water by Transmission Electron Microscopy (EPA-600/4-83-043)

EMS No.	140790	Date Analyzed	10/14/2010
Customer	Test America-Irvine		
Sample No.	EMS BLANK		
Fibers (chrysot	ile)	ND	MFL
> 5 Micron leng	gth (chrysotile)	ND	MFL
Mass (chrysoti	le)	0	ug/L
More/Less that in Sample (chr		LESS	
Sensitivity Leve	el	0.01	MFL

Particle Size Distribution (Chrysotile)

Particle Length - Microns													
O -0.49	0.50 - 0.99	1.00 - 1.49	1.50 - 1.99	2.00 - 2.49	2.5 & UP								
00	0	00	00	00	00								
		Particle Width	- Microns										
O04	.0509	.114	.1519	.224	.25 & UP								
0	00	0	0	00	0								
		Aspect Rat	io L/W										
0 - 9.9	10 - 19.9	20 - 29.9	30 - 39.9	40 - 49.9	50 & UP								
0	0	0	00	0	0								

TEM ASBESTOS ANALYSIS Clean Clean <th< th=""><th>11</th><th></th><th></th><th><u>ы</u> н. н.а</th><th>2</th><th></th><th></th><th></th><th> </th><th>ļ</th><th></th><th>ļ</th><th>ŀ</th><th>l</th><th>Pa </th><th>ige 8</th><th>8 of 9 </th><th>, </th><th></th></th<>	11			<u>ы</u> н. н.а	2					ļ		ļ	ŀ	l	Pa 	ige 8	8 of 9 	, 	
Client Lus Purper Direct Muse Find Mine Find M		MCROSCOPE terial No. 542-36-01 terial No. 542-05-06 terial No. 542-24-03 DISPERSIVE X-RAY SYSTEM	Model No. 3200-0106-0365 C Model No. 3600-0206-0146 C Quantum System \$8:	14:00 14:00 14:00	Aray	Comments													Very Heavy
Client Curs Burger Direct Pres		H600A - S H600B - S H600C - S ENERGY	· – – – – – – – – – – – – – – – – – – –	Sciccn Mag Camera Co Acceleratin Beam Curr KFactor	Analyst C		3												Heavy [Heavy [
Client Sample No. Sample No. Light Light Light Client	BLANVIL						BW W												Moderate
Client - Cli	No. WES	DIRECT PREP		7-10-1	-hi-al														
Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Solution of ANNE Image: Soluti			· · ·		· •														Light Light
IM ASBESTOS ANAL ITPE OF SAMPLE TTPE OF SAMPLE TTPE OF SAMPLE ITTPE OF SAMPLE Ait II Wate III Ait III Wate IIII Ait IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	SISY					Fiber Classif	3												/ery LightZ /ery Light∏
M ASBESTOS A The of sailth a sub- soil a bit where sailth and a sub- soil a bit where side and a soil a bit a soil a soil a bit a bi	NAL						3												
M ASBEST TYPE OF SAMPLE AIT = Water = AIT Soil = Bulk = Water = AIT Soil = Bulk = Water = AIT Other = Water = AIT Other = AIT ARPEGT BATTO 31 = 51 = 100.1 ARPEGT BATTO ARPEGT BATTO 31 = 51 = 100.1 ARPEGT BATTO 31 = 51 = 100.1 ARPEGT BATTO ARPEGT BATTO ARPEG	DS A	aγ ΩDDDD	2000								<u>·</u>					<u>.</u>			0 - 3
MASB TYPE OF SAMP AND AND Obter NATHOD OF ANALY AND Obter AND ASPECT RAT ASPECT	EST	. II				Dimensions													NS:
OB OB	ASB	Air C SAMP Air C Water-{ Soil C Bulk (Other	HOU OF ANALY			Structure													SERVATIO
	N		600/48 Sotie	hibole • const		ructure	<i>k</i> 0	5	E	N S	120	S S	20	50	NS(N	<u>\</u>			80

-

\mathbf{N}													•	90		
Page of MICROSCOPE MICROSCOPE H600A - Serial No. 542-36-01 H600B - Serial No. 542-35-06 H600C - Serial No. 542-05-06 H600C - Serial No. 542-05-06 H600C - Serial No. 542-05-06 MICROSCOPE MICROSCOPE H600C - Serial No. 542-05-06 H600C - Serial No. 542-05-06 MICROSCOPE MICROSCOPE <t< th=""><th></th><th>Comments</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Very Heavy ⊟ Very Heavy ⊟</th></t<>		Comments														Very Heavy ⊟ Very Heavy ⊟
Page	S	E	-				-									^{>} >
R 1 Ftran	EDS Analysis	Na Mg Si Ca	2													Heavy
Vo. CO XI V Grid Address: Screen Magnification: 1 Screen Magnification: 1 Accelerating Voltage: Ream Current: K-Pactor.		AQ ADQ AZQ AZZ	_													Moderate
Sample No.		AX ADX AQ AI														Moderate Moderate
	Fiber Classification	Q														
3	er Class	o ur	<u> </u>				<u> </u>		. 					<u> </u>		
<u>c</u>	FID	MOCD							. 				-	-	ŀ	
		CD CQ CMQ CDQ							ļ						+	
		CM CM													 ┝╌┥	Very Light
		M														
		NAN									ļ					Clean Debris:
5	Dimensions (mm)	Length														Gypsum
	Dimens	Width														S:
	Ctructure	או תכוחוב														OBSERVATIONS:
	Structure	Number	SU	<u>257</u>	, S V	UND I	NSN N	NSU/) L	50	A BY	<i>SW</i>	- -			OB
	Grid	Dening	\$33	33.6	22	36	K	26	33	136	77	13	2			

Page 9 of 9

THE LEADER IN ENVIRONMENTAL TESTING

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project: Semi-Annual Outfall 009 2010 Semi-Annual Outfall 009

Sampled: 10/06/10 Received: 10/07/10 Issued: 12/02/10 10:22

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 2 pages, are

included and are an integral part of this report. This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

Refer to the last page for specific subcontract laboratory information included in this report. SUBCONTRACTED: ADDITIONAL **INFORMATION:** WATER, 1613B, Dioxins/Furans with Totals Some analytes in this sample and the associated method blank have an ion abundance ratio that is outside of criteria. The analytes are considered as an "estimated maximum possible concentration" (EMPC) because the quantitation is based on the theoretical ion abundance ratio. Analytical results are reported with a "Q" flag. Revised report to include analyst initials for radchem data. CLIENT ID LABORATORY ID MATRIX ITJ0820-01 Outfall 009 Composite Water ITJ0820-02 Outfall 009 Grab Water

I certify under penalty of perjury that the information contained in this report and all attachments was produced in accordance with the indicated methods and laboratory standard operating procedures, except as noted, and are complete and accurate to the best of my knowledge and belief. Subcontract laboratory reports that are attached have been evaluated for completeness and quality control acceptability.

Reviewed By:

Debby Wilson

TestAmerica Irvine Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 009 2010 Semi-Annual Outfall 009 Report Number: ITJ0820

Sampled: 10/06/10 Received: 10/07/10

HEXANE EXTRACTABLE MATERIAL												
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers			
Sample ID: ITJ0820-02 (Outfall 009 Grab - Water)												
Reporting Units: mg/l												
Hexane Extractable Material (Oil &	EPA 1664A	10J2232	1.3	4.8	ND	1	DA	10/20/10				
Grease)												

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 009 2010 Semi-Annual Outfall 009 Report Number: ITJ0820

Sampled: 10/06/10 Received: 10/07/10

METALS											
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers		
Sample ID: ITJ0820-01 (Outfall 009 Con	nposite - Water)										
Reporting Units: ug/l											
Mercury	EPA 245.1	10J1223	0.10	0.20	ND	1	DB	10/12/10			
Antimony	EPA 200.8	10J1993	0.30	2.0	0.73	1	NH	10/19/10	J		
Cadmium	EPA 200.8	10J1993	0.10	1.0	0.18	1	NH	10/19/10	J		
Copper	EPA 200.8	10J1993	0.50	2.0	9.6	1	NH	10/19/10			
Lead	EPA 200.8	10J1993	0.20	1.0	11	1	NH	10/19/10			
Thallium	EPA 200.8	10J1993	0.20	1.0	ND	1	NH	10/19/10			

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 009 2010 Semi-Annual Outfall 009 Report Number: ITJ0820

Sampled: 10/06/10 Received: 10/07/10

DISSOLVED METALS												
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers			
Sample ID: ITJ0820-01 (Outfall 009 C	omposite - Water) - c	ont.										
Reporting Units: ug/l												
Mercury	EPA 245.1-Diss	10J1224	0.10	0.20	ND	1	DB	10/12/10				
Antimony	EPA 200.8-Diss	10J1068	0.30	2.0	ND	1	RDC	10/16/10				
Cadmium	EPA 200.8-Diss	10J1068	0.10	1.0	0.11	1	NH	10/13/10	J			
Copper	EPA 200.8-Diss	10J1068	0.50	2.0	7.1	1	NH	10/13/10				
Lead	EPA 200.8-Diss	10J1068	0.20	1.0	7.1	1	FR	10/14/10				
Thallium	EPA 200.8-Diss	10J1068	0.20	1.0	ND	1	NH	10/13/10	С			

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 009 2010 Semi-Annual Outfall 009 Report Number: ITJ0820

Sampled: 10/06/10 Received: 10/07/10

INORGANICS												
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers			
Sample ID: ITJ0820-01 (Outfall 009 Con	nposite - Water) - c	cont.										
Reporting Units: mg/l												
Chloride	EPA 300.0	10J0693	0.25	0.50	2.0	1	KS	10/08/10				
Nitrate/Nitrite-N	EPA 300.0	10J0693	0.15	0.26	0.77	1	KS	10/08/10				
Sulfate	EPA 300.0	10J0693	0.20	0.50	3.2	1	KS	10/08/10				
Total Dissolved Solids	SM2540C	10J1321	1.0	10	27	1	NN	10/13/10				
Total Suspended Solids	SM 2540D	10J1131	1.0	10	56	1	DK	10/11/10				
Sample ID: ITJ0820-01 (Outfall 009 Cor	nposite - Water)											
Reporting Units: ug/l												
Perchlorate	EPA 314.0	10J0794	0.90	4.0	ND	1	mn	10/08/10				
Total Cyanide	SM4500CN-E	10J2189	2.2	5.0	ND	1	HH	10/19/10				

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly	Project ID: Semi-Annual Outfall 009 2010 Semi-Annual Outfall 009 Report Number: ITJ0820							: 10/06/10 : 10/07/10	
			8639						
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ITJ0820-01 (Outfall 009 Con	nposite - Water) -	cont.							
Reporting Units: pCi/L Uranium, Total	8639	8639	0.023	1	0.208	1	CSS	10/26/10	Jb

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly		Project ID: rt Number:	Semi-Annu	aal Outfall 00 aal Outfall 00		1	10/06/10 10/07/10		
			900						
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ITJ0820-01 (Outfall 009 Con Reporting Units: pCi/L	nposite - Water) -	cont.							
Gross Alpha	900	8639	0.481	3	0.865	1	DVP	10/26/10	Jb
Gross Beta	900	8639	1.93	4	3.81	1	DVP	10/26/10	Jb

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly		Project ID: t Number:	Semi-Annu	al Outfall 00 al Outfall 00		1	10/06/10 10/07/10		
			901.1 mdl	Reporting	Sample	Dilution		Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Analyst	Analyzed	Qualifiers
Sample ID: ITJ0820-01 (Outfall 009 Con Reporting Units: pCi/L	nposite - Water) -	cont.							
Cesium-137	901.1	8639	1.62	20	ND	1	CSS	11/04/10	U
Potassium-40	901.1	8639	20.3	25	ND	1	CSS	11/04/10	U

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly		Project ID: rt Number:	Semi-Annu	ual Outfall 00 ual Outfall 00		r r	mpled: 10/06/10 ceived: 10/07/10			
Analyte	Method	Batch	903.1 MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Oualifiers	
Analyte Sample ID: ITJ0820-01 (Outfall 009 Com Reporting Units: pCi/L Radium-226			0.619	1	0.181	ractor 1	Analyst TM	10/30/10	U	

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly		Project ID: rt Number:	Semi-Annu	ual Outfall 00 ual Outfall 00		1	Sampled: 10/06/10 Received: 10/07/10			
			904 MDL	Reporting	Sample	Dilution		Date	Data	
Analyte	Method	Batch	Limit	Limit	Result	Factor	Analyst	Analyzed	Qualifiers	
Sample ID: ITJ0820-01 (Outfall 009 Con Beneriting United and 1	nposite - Water) -	cont.								
Reporting Units: pCi/L Radium-228	904	8639	0.753	1	0.071	1	TAC	11/04/10	U	

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly		Project ID: rt Number:	Semi-Annu	ual Outfall 00 ual Outfall 00			ampled: 10/06/10 eceived: 10/07/10			
Analyte	Method	Batch	905 MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers	
Sample ID: ITJ0820-01 (Outfall 009 Con Reporting Units: pCi/L Strontium-90	nposite - Water) - 905	cont. 8639	0.879	2	-0.13	1	WL	10/26/10	U	

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly		Project ID: rt Number:	Semi-Ann	ual Outfall 00 ual Outfall 00		1	10/06/10 10/07/10			
			906 mdl	Reporting	Sample	Dilution		Date	Data	
Analyte	Method	Batch		Limit	Result	Factor	Analyst	Analyzed	Qualifiers	
Sample ID: ITJ0820-01 (Outfall 009 Cor	nposite - Water) -	- cont.								
Reporting Units: pCi/L										
Tritium	906	8639	162	200	-13.6	1	JO	11/05/10	U	

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 009 2010 Semi-Annual Outfall 009 Report Number: ITJ0820

Sampled: 10/06/10 Received: 10/07/10

EPA-5 1613Bx											
				Reporting	Sample			Date	Data		
Analyte	Method	Batch	Limit	Limit	Result	Factor	Analyst	Analyzed	Qualifiers		
Sample ID: ITJ0820-01 (Outfall 009 Co Reporting Units: ug/L	omposite - Water) - c	cont.									
1,2,3,4,6,7,8-HpCDD	EPA-5 1613B	286459	0.0000027	0.00005	7.6e-005	1.02	SK	10/16/10			
1,2,3,4,6,7,8-HpCDF	EPA-5 1613B		0.0000018		2.1e-005	1.02	SK	10/16/10	J		
1,2,3,4,7,8,9-HpCDF	EPA-5 1613B		0.0000028		ND	1.02	SK	10/16/10			
1,2,3,4,7,8-HxCDD	EPA-5 1613B	286459	0.0000021	0.00005	3.5e-006	1.02	SK	10/16/10	J		
1,2,3,4,7,8-HxCDF	EPA-5 1613B		0.0000025		ND	1.02	SK	10/16/10			
1,2,3,6,7,8-HxCDD	EPA-5 1613B		0.0000017		3e-006	1.02	SK	10/16/10	J, Q		
1,2,3,6,7,8-HxCDF	EPA-5 1613B		0.0000022		ND	1.02	SK	10/16/10			
1,2,3,7,8,9-HxCDD	EPA-5 1613B		0.0000017		3.9e-006	1.02	SK	10/16/10	J		
1,2,3,7,8,9-HxCDF	EPA-5 1613B		0.0000031		ND	1.02	SK	10/16/10			
1,2,3,7,8-PeCDD	EPA-5 1613B		0.0000026		ND	1.02	SK	10/16/10			
1,2,3,7,8-PeCDF	EPA-5 1613B		0.0000053		ND	1.02	SK	10/16/10			
2,3,4,6,7,8-HxCDF	EPA-5 1613B		0.0000024		ND ND	1.02 1.02	SK SK	10/16/10 10/16/10			
2,3,4,7,8-PeCDF	EPA-5 1613B EPA-5 1613B	286459		0.00003	ND	1.02	SK SK	10/16/10			
2,3,7,8-TCDD 2,3,7,8-TCDF	EPA-5 1613B		0.000001		ND	1.02	SK	10/16/10			
OCDD	EPA-5 1613B	286459		0.00001	0.001	1.02	SK	10/16/10	В		
OCDF	EPA-5 1613B		0.0000022		5.3e-005	1.02	SK	10/16/10	J		
Total HpCDD	EPA-5 1613B		0.0000027		0.00023	1.02	SK	10/16/10	J, B		
Total HpCDF	EPA-5 1613B		0.0000018		5.3e-005	1.02	SK	10/16/10	J		
Total HxCDD	EPA-5 1613B	286459	0.0000017	0.00005	2.9e-005	1.02	SK	10/16/10	J, Q		
Total HxCDF	EPA-5 1613B	286459	0.0000022	0.00005	1.5e-005	1.02	SK	10/16/10	J		
Total PeCDD	EPA-5 1613B	286459	0.0000026	0.00005	ND	1.02	SK	10/16/10			
Total PeCDF	EPA-5 1613B	286459	0.0000029	0.00005	ND	1.02	SK	10/16/10			
Total TCDD	EPA-5 1613B	286459		0.00001	ND	1.02	SK	10/16/10			
Total TCDF	EPA-5 1613B	286459	0.0000047	0.00001	ND	1.02	SK	10/16/10			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD (2					97 %						
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF (2					84 %						
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF (2					77 %						
Surrogate: 13C-1,2,3,4,7,8-HxCDD (32-					56 %						
Surrogate: 13C-1,2,3,4,7,8-HxCDF (26- Surrogate: 13C-1,2,3,6,7,8-HxCDD (28-					74 % 86 %						
Surrogate: 13C-1,2,3,6,7,8-HxCDD (28- Surrogate: 13C-1,2,3,6,7,8-HxCDF (26-					80 % 98 %						
Surrogate: 13C-1,2,3,7,8,9-HxCDF (29-	· · · · · · · · · · · · · · · · · · ·				89 %						
Surrogate: 13C-1,2,3,7,8-PeCDD (25-18					70 %						
Surrogate: 13C-1,2,3,7,8-PeCDF (24-18					62 %						
Surrogate: 13C-2,3,4,6,7,8-HxCDF (28-					92 %						
Surrogate: 13C-2,3,4,7,8-PeCDF (21-17					61 %						
Surrogate: 13C-2,3,7,8-TCDD (25-164%					72 %						
Surrogate: 13C-2,3,7,8-TCDF (24-169%	<i>()</i>				63 %						
Surrogate: 13C-OCDD (17-157%)					78 %						
Surrogate: 37Cl4-2,3,7,8-TCDD (35-19)	7%)				77 %						

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 009 2010 Semi-Annual Outfall 009 Report Number: ITJ0820

Sampled: 10/06/10 Received: 10/07/10

SHORT HOLD TIME DETAIL REPORT

Sample ID: Outfall 009 Composite (ITJ0820	Hold Time (in days) -01) - Water	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
EPA 300.0	2	10/06/2010 19:30	10/07/2010 18:40	10/07/2010 22:00	10/08/2010 02:01
Filtration	1	10/06/2010 19:30	10/07/2010 18:40	10/08/2010 23:00	10/08/2010 23:00

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 009 2010 Semi-Annual Outfall 009 Report Number: ITJ0820

Sampled: 10/06/10 Received: 10/07/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

HEXANE EXTRACTABLE MATERIAL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10J2232 Extracted: 10/20/10										
Blank Analyzed: 10/20/2010 (10J2232-B	BLK1)									
Hexane Extractable Material (Oil & Grease)	ND	5.0	mg/l							
LCS Analyzed: 10/20/2010 (10J2232-BS	51)									MNR1
Hexane Extractable Material (Oil & Grease)	19.3	5.0	mg/l	20.0		96	78-114			
LCS Dup Analyzed: 10/20/2010 (10J223	2-BSD1)									
Hexane Extractable Material (Oil & Grease)	19.0	5.0	mg/l	20.0		95	78-114	2	11	

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 009 2010 Semi-Annual Outfall 009 Report Number: ITJ0820

Sampled: 10/06/10 Received: 10/07/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10J1223 Extracted: 10/12/10										
Blank Analyzed: 10/12/2010 (10J1223-Bl	LK1)									
Mercury	ND	0.20	ug/l							
LCS Analyzed: 10/12/2010 (10J1223-BS)	l)									
Mercury	7.86	0.20	ug/l	8.00		98	85-115			
Matrix Spike Analyzed: 10/12/2010 (10J	1223-MS1)				Source: I	TJ0896-01	[
Mercury	7.79	0.20	ug/l	8.00	ND	97	70-130			
Matrix Spike Dup Analyzed: 10/12/2010	(10J1223-M	SD1)			Source: I	TJ0896-01				
Mercury	7.63	0.20	ug/l	8.00	ND	95	70-130	2	20	
Batch: 10J1993 Extracted: 10/18/10										
Blank Analyzed: 10/19/2010 (10J1993-B	LK1)									
Antimony	ND	2.0	ug/l							
Cadmium	ND	1.0	ug/l							
Copper	ND	2.0	ug/l							
Lead	ND	1.0	ug/l							
Thallium	ND	1.0	ug/l							
LCS Analyzed: 10/19/2010 (10J1993-BS)	l)									
Antimony	83.3	2.0	ug/l	80.0		104	85-115			
Cadmium	80.3	1.0	ug/l	80.0		100	85-115			
Copper	81.3	2.0	ug/l	80.0		102	85-115			
Lead	82.5	1.0	ug/l	80.0		103	85-115			
Thallium	81.4	1.0	ug/l	80.0		102	85-115			

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Semi-Annual Outfall 009 2010 Semi-Annual Outfall 009 Report Number: ITJ0820

Sampled: 10/06/10 Received: 10/07/10

METHOD BLANK/QC DATA

METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10J1993 Extracted: 10/18/10										
Matrix Spike Analyzed: 10/19/2010 (10J	1993-MS1)				Source: I	TJ1263-01	l			
Antimony	82.8	2.0	ug/l	80.0	ND	104	70-130			
Cadmium	79.8	1.0	ug/l	80.0	ND	100	70-130			
Copper	81.4	2.0	ug/l	80.0	4.68	96	70-130			
Lead	84.2	1.0	ug/l	80.0	1.73	103	70-130			
Thallium	82.2	1.0	ug/l	80.0	ND	103	70-130			
Matrix Spike Analyzed: 10/19/2010 (10J	1993-MS2)				Source: I	TJ0820-01	L			
Antimony	62.6	2.0	ug/l	80.0	0.730	77	70-130			
Cadmium	82.5	1.0	ug/l	80.0	0.182	103	70-130			
Copper	91.5	2.0	ug/l	80.0	9.60	102	70-130			
Lead	89.2	1.0	ug/l	80.0	10.6	98	70-130			
Thallium	79.2	1.0	ug/l	80.0	ND	99	70-130			
Matrix Spike Dup Analyzed: 10/19/2010	(10J1993-MS	SD1)			Source: I	TJ1263-01	L			
Antimony	83.0	2.0	ug/l	80.0	ND	104	70-130	0.2	20	
Cadmium	80.0	1.0	ug/l	80.0	ND	100	70-130	0.2	20	
Copper	81.6	2.0	ug/l	80.0	4.68	96	70-130	0.3	20	
Lead	84.2	1.0	ug/l	80.0	1.73	103	70-130	0.004	20	
Thallium	82.2	1.0	ug/l	80.0	ND	103	70-130	0.1	20	

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Semi-Annual Outfall 009 2010 Semi-Annual Outfall 009 Report Number: ITJ0820

Sampled: 10/06/10 Received: 10/07/10

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10J1068 Extracted: 10/11/10	Itosuit		emis	20,01	1105411	, under	21111105	111 2		Quanto 5
Datth. 1091000 Extracted. 10/11/10										
Blank Analyzed: 10/13/2010 (10J1068-B	LK1)									
Antimony	ND	2.0	ug/l							
Cadmium	ND	1.0	ug/l							
Copper	ND	2.0	ug/l							
Lead	ND	1.0	ug/l							
Thallium	ND	1.0	ug/l							
LCS Analyzed: 10/13/2010 (10J1068-BS	1)									
Antimony	83.3	2.0	ug/l	80.0		104	85-115			
Cadmium	82.8	1.0	ug/l	80.0		103	85-115			
Copper	82.5	2.0	ug/l	80.0		103	85-115			
Lead	85.9	1.0	ug/l	80.0		107	85-115			
Thallium	85.0	1.0	ug/l	80.0		106	85-115			
Matrix Spike Analyzed: 10/13/2010 (10J	1068-MS1)				Source: I	TJ0701-0 1	l			
Antimony	83.4	2.0	ug/l	80.0	ND	104	70-130			
Cadmium	80.5	1.0	ug/l	80.0	ND	101	70-130			
Copper	82.6	2.0	ug/l	80.0	0.997	102	70-130			
Lead	82.0	1.0	ug/l	80.0	ND	102	70-130			
Thallium	81.7	1.0	ug/l	80.0	ND	102	70-130			
Matrix Spike Dup Analyzed: 10/13/2010	(10J1068-M	SD1)			Source: I	TJ0701-0 1	l			
Antimony	89.4	2.0	ug/l	80.0	ND	112	70-130	7	20	
Cadmium	87.0	1.0	ug/l	80.0	ND	109	70-130	8	20	
Copper	89.6	2.0	ug/l	80.0	0.997	111	70-130	8	20	
Lead	88.6	1.0	ug/l	80.0	ND	111	70-130	8	20	
Thallium	88.2	1.0	ug/l	80.0	ND	110	70-130	8	20	

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 009 2010 Semi-Annual Outfall 009 Report Number: ITJ0820

Sampled: 10/06/10 Received: 10/07/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10J1224 Extracted: 10/12/10										
Blank Analyzed: 10/12/2010 (10J1224-B	LK1)									
Mercury	ND	0.20	ug/l							
LCS Analyzed: 10/12/2010 (10J1224-BS	1)									
Mercury	7.87	0.20	ug/l	8.00		98	85-115			
Matrix Spike Analyzed: 10/12/2010 (10J	1224-MS1)				Source: I	TJ0820-01	l			
Mercury	7.82	0.20	ug/l	8.00	ND	98	70-130			
Matrix Spike Dup Analyzed: 10/12/2010	(10J1224-MS	D1)			Source: I	TJ0820-01	l			
Mercury	7.79	0.20	ug/l	8.00	ND	97	70-130	0.3	20	

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 009 2010 Semi-Annual Outfall 009 Report Number: ITJ0820

Sampled: 10/06/10 Received: 10/07/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

INORGANICS

D Data it Qualifiers
<i>M-3</i>
<i>M-3</i>
)
)

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 009 2010 Semi-Annual Outfall 009 Report Number: ITJ0820

Sampled: 10/06/10 Received: 10/07/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10J0794 Extracted: 10/08/10										
Matrix Spike Dup Analyzed: 10/08/2010		· · ·			Source: I				• •	
Perchlorate	28.0	4.0	ug/l	25.0	1.26	107	80-120	2	20	
Batch: 10J1131 Extracted: 10/11/10										
Blank Analyzed: 10/11/2010 (10J1131-B Total Suspended Solids	L K1) ND	10	mg/l							
LCS Analyzed: 10/11/2010 (10J1131-BS) Total Suspended Solids	l) 998	10	mg/l	1000		100	85-115			
Duplicate Analyzed: 10/11/2010 (10J113		10	ilig/1	1000	Source: I	TJ0820-01				
Total Suspended Solids	57.0	10	mg/l		56.0	130820-01	L	2	10	
Batch: 10J1321 Extracted: 10/13/10										
Blank Analyzed: 10/13/2010 (10J1321-B	,		a							
Total Dissolved Solids	ND	10	mg/l							
LCS Analyzed: 10/13/2010 (10J1321-BS) Total Dissolved Solids	1) 1000	10	mg/l	1000		100	90-110			
Duplicate Analyzed: 10/13/2010 (10J132	,				Source: I	TJ0957-04	1			
Total Dissolved Solids	2360	10	mg/l		2350			0.3	10	
Batch: 10J2189 Extracted: 10/19/10										
Blank Analyzed: 10/19/2010 (10J2189-B	,	5.0	/1							
Total Cyanide	ND	5.0	ug/l							

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 009 2010 Semi-Annual Outfall 009 Report Number: ITJ0820

Sampled: 10/06/10 Received: 10/07/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

INORGANICS

Analyte Batch: 10J2189 Extracted: 10/19/10	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
LCS Analyzed: 10/19/2010 (10J2189-BS) Total Cyanide	208	5.0	ug/l	200		104	90-110			
Matrix Spike Analyzed: 10/19/2010 (10J	2189-MS1)				Source: I	ГЈ1444-02	2			
Total Cyanide	206	5.0	ug/l	200	ND	103	70-115			
Matrix Spike Dup Analyzed: 10/19/2010 Total Cyanide	(10J2189-MS) 207	D1) 5.0	ug/l	200	Source: I'	FJ1444-02 104	2 70-115	0.4	15	

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 009 2010 Semi-Annual Outfall 009 Report Number: ITJ0820

Sampled: 10/06/10 Received: 10/07/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

			900							
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8639 Extracted: 10/25/10										
LCS Analyzed: 10/26/2010 (S010089-02)					Source:					
Gross Alpha	51.8	3	pCi/L	40.4		128	70-130			
Gross Beta	35	4	pCi/L	35.2		99	70-130			
Blank Analyzed: 10/26/2010 (S010089-03	3)				Source:					
Gross Alpha	-0.012	3	pCi/L				-			U
Gross Beta	-0.296	4	pCi/L				-			U
Duplicate Analyzed: 10/26/2010 (801008	9-04)				Source: I	ТЈ0820-01	L			
Gross Alpha	1.22	3	pCi/L		0.865		-	34		Jb
Gross Beta	2.16	4	pCi/L		3.81		-	55		Jb

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 009 2010 Semi-Annual Outfall 009 Report Number: ITJ0820

Sampled: 10/06/10 Received: 10/07/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

901.1

Analyte <u>Batch: 8639 Extracted: 10/25/10</u>	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
LCS Analyzed: 11/05/2010 (S010089-02) Cesium-137	115	20	pCi/L	111	Source:	104	80-120			
Blank Analyzed: 11/05/2010 (S010089-0	3)				Source:					
Cesium-137	ND	20	pCi/L				-			U
Potassium-40	ND	25	pCi/L				-			U
Duplicate Analyzed: 11/05/2010 (S01008	89-04)				Source: I	TJ0820-0	1			
Cesium-137	ND	20	pCi/L		0		-	0		U
Potassium-40	ND	25	pCi/L		0		-	0		U

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 009 2010 Semi-Annual Outfall 009 Report Number: ITJ0820

Sampled: 10/06/10 Received: 10/07/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

903.1

Analyte Batch: 8639 Extracted: 10/30/10	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
LCS Analyzed: 10/30/2010 (S010089-02) Radium-226	60	1	pCi/L	55.7	Source:	108	80-120			
Blank Analyzed: 10/30/2010 (S010089-03 Radium-226	3) 0.09	1	pCi/L		Source:		-			U
Duplicate Analyzed: 10/30/2010 (S01008 Radium-226	9-04) 0.287	1	pCi/L		Source: I 0.181	TJ0820-0 1	l -	0		U

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 009 2010 Semi-Annual Outfall 009 Report Number: ITJ0820

Sampled: 10/06/10 Received: 10/07/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

904 Reporting Spike %REC RPD Data Source Analyte Result Limit Units Level Result %REC Limits RPD Limit Qualifiers Batch: 8639 Extracted: 11/04/10 LCS Analyzed: 11/04/2010 (S010089-02) Source: Radium-228 5.68 1 pCi/L 4.75 120 60-140 Blank Analyzed: 11/04/2010 (S010089-03) Source: URadium-228 -0.175 1 pCi/L Duplicate Analyzed: 11/04/2010 (S010089-04) Source: ITJ0820-01 Radium-228 0.132 1 pCi/L 0.071 0 U

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 009 2010 Semi-Annual Outfall 009 Report Number: ITJ0820

Sampled: 10/06/10 Received: 10/07/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

905 Reporting Spike %REC RPD Data Source Analyte Result Limit Units Level Result %REC Limits RPD Limit Qualifiers Batch: 8639 Extracted: 10/26/10 LCS Analyzed: 10/26/2010 (S010089-02) Source: Strontium-90 17.9 2 pCi/L 17.6 102 80-120 Blank Analyzed: 10/26/2010 (S010089-03) Source: 2 UStrontium-90 0.102 pCi/L Duplicate Analyzed: 10/26/2010 (S010089-04) Source: ITJ0820-01 Strontium-90 0.09 2 pCi/L -0.13 0 U

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 009 2010 Semi-Annual Outfall 009 Report Number: ITJ0820

Sampled: 10/06/10 Received: 10/07/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

906										
Analyte <u>Batch: 8639 Extracted: 11/04/10</u>	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
LCS Analyzed: 11/05/2010 (S010089-02) Tritium	2490	200	pCi/L	2570	Source:	97	80-120			
Blank Analyzed: 11/05/2010 (S010089-03 Tritium	-27.5	200	pCi/L		Source:		-			U
Duplicate Analyzed: 11/05/2010 (S01008) Tritium	9-04) 27.6	200	pCi/L		Source: I -13.6	TJ0820-01	-	0		U

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Semi-Annual Outfall 009 2010 Semi-Annual Outfall 009 Report Number: ITJ0820

Sampled: 10/06/10 Received: 10/07/10

METHOD BLANK/QC DATA

EPA-5 1613Bx

Analyta	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Analyte	Kesun	Linnt	Units	Level	Result	70KEU	Linnts	KF D	Linnt	Quaimers
Batch: 286459 Extracted: 10/13/10										
Blank Analyzed: 10/15/2010 (G0J130	000459B)				Source:					
1,2,3,4,6,7,8-HpCDD	ND	0.00005	ug/L				-			
1,2,3,4,6,7,8-HpCDF	ND	0.00005	ug/L				-			
1,2,3,4,7,8,9-HpCDF	ND	0.00005	ug/L				-			
1,2,3,4,7,8-HxCDD	ND	0.00005	ug/L				-			
1,2,3,4,7,8-HxCDF	ND	0.00005	ug/L				-			
1,2,3,6,7,8-HxCDD	ND	0.00005	ug/L				-			
1,2,3,6,7,8-HxCDF	ND	0.00005	ug/L				-			
1,2,3,7,8,9-HxCDD	ND	0.00005	ug/L				-			
1,2,3,7,8,9-HxCDF	ND	0.00005	ug/L				-			
1,2,3,7,8-PeCDD	ND	0.00005	ug/L				-			
1,2,3,7,8-PeCDF	ND	0.00005	ug/L				-			
2,3,4,6,7,8-HxCDF	ND	0.00005	ug/L				-			
2,3,4,7,8-PeCDF	ND	0.00005	ug/L				-			
2,3,7,8-TCDD	ND	0.00001	ug/L				-			
2,3,7,8-TCDF	ND	0.00001	ug/L				-			
OCDD	5e-006	0.0001	ug/L				-			J, Q
OCDF	ND	0.0001	ug/L				-			
Total HpCDD	1.8e-006	0.00005	ug/L				-			J
Total HpCDF	ND	0.00005	ug/L				-			
Total HxCDD	ND	0.00005	ug/L				-			
Total HxCDF	ND	0.00005	ug/L				-			
Total PeCDD	ND	0.00005	ug/L				-			
Total PeCDF	ND	0.00005	ug/L				-			
Total TCDD	3.2e-006	0.00001	ug/L				-			J, Q
Total TCDF	ND	0.00001	ug/L				-			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.0022		ug/L	0.002		110	23-140			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.0018		ug/L	0.002		92	28-143			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.0017		ug/L	0.002		86	26-138			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.0014		ug/L	0.002		70	32-141			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.0016		ug/L	0.002		80	26-152			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.0017		ug/L	0.002		85	28-130			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.0019		ug/L	0.002		96	26-123			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.0018		ug/L	0.002		91	29-147			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.0014		ug/L	0.002		68	25-181			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.0011		ug/L	0.002		56	24-185			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.002		ug/L	0.002		98	28-136			

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 009 2010 Semi-Annual Outfall 009 Report Number: ITJ0820

Sampled: 10/06/10 Received: 10/07/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

EPA-5 1613Bx

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 286459 Extracted: 10/13/10										
	0004500				C					
Blank Analyzed: 10/15/2010 (G0J130	,			0.002	Source:	50	21-178			
Surrogate: 13C-2,3,4,7,8-PeCDF	0.0012 0.0012		ug/L ug/L	0.002 0.002		58 62	21-178 25-164			
Surrogate: 13C-2,3,7,8-TCDD Surrogate: 13C-2,3,7,8-TCDF	0.0012		ug/L ug/L	0.002		62 54	23-104 24-169			
Surrogate: 13C-2,5,7,8-1CDF Surrogate: 13C-OCDD	0.0011		ug/L ug/L	0.002		91	24-109 17-157			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.00057		ug/L ug/L	0.0004		91 84	35-197			
Surrogue. 57Cl4-2,5,7,8-1CDD	0.00007		ug/L	0.0000		04	55-197			
LCS Analyzed: 10/19/2010 (G0J1300	00459C)				Source:					
1,2,3,4,6,7,8-HpCDD	0.00112	0.00005	ug/L	0.001		112	70-140			
1,2,3,4,6,7,8-HpCDF	0.00116	0.00005	ug/L	0.001		116	82-122			
1,2,3,4,7,8,9-HpCDF	0.00117	0.00005	ug/L	0.001		117	78-138			
1,2,3,4,7,8-HxCDD	0.00119	0.00005	ug/L	0.001		119	70-164			
1,2,3,4,7,8-HxCDF	0.00115	0.00005	ug/L	0.001		115	72-134			
1,2,3,6,7,8-HxCDD	0.00113	0.00005	ug/L	0.001		113	76-134			
1,2,3,6,7,8-HxCDF	0.00114	0.00005	ug/L	0.001		114	84-130			
1,2,3,7,8,9-HxCDD	0.00114	0.00005	ug/L	0.001		114	64-162			
1,2,3,7,8,9-HxCDF	0.00117	0.00005	ug/L	0.001		117	78-130			
1,2,3,7,8-PeCDD	0.00109	0.00005	ug/L	0.001		109	70-142			
1,2,3,7,8-PeCDF	0.00113	0.00005	ug/L	0.001		113	80-134			
2,3,4,6,7,8-HxCDF	0.00114	0.00005	ug/L	0.001		114	70-156			
2,3,4,7,8-PeCDF	0.00114	0.00005	ug/L	0.001		114	68-160			
2,3,7,8-TCDD	0.000216	0.00001	ug/L	0.0002		108	67-158			
2,3,7,8-TCDF	0.000213	0.00001	ug/L	0.0002		106	75-158			
OCDD	0.00224	0.0001	ug/L	0.002		112	78-144			В
OCDF	0.00219	0.0001	ug/L	0.002		110	63-170			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.00183		ug/L	0.002		92	26-166			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.00163		ug/L	0.002		82	21-158			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.00185		ug/L	0.002		93	20-186			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.00162		ug/L	0.002		81	21-193			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.00153		ug/L	0.002		77	19-202			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.00161		ug/L	0.002		80	25-163			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.00156		ug/L	0.002		78	21-159			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.0016		ug/L	0.002		80	17-205			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.00146		ug/L	0.002		73	21-227			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.00127		ug/L	0.002		63	21-192			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.00164		ug/L	0.002		82	22-176			
Surrogate: 13C-2,3,4,7,8-PeCDF	0.00131		ug/L	0.002		65	13-328			

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 009 2010 Semi-Annual Outfall 009 Report Number: ITJ0820

Sampled: 10/06/10 Received: 10/07/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

EPA-5 1613Bx

	D L	Reporting	TT •4	Spike	Source	0/ DEC	%REC	DDD	RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 286459 Extracted: 10/13/10										
LCS Analyzed: 10/19/2010 (G0J13000	0459C)				Source:					
Surrogate: 13C-2,3,7,8-TCDD	0.0013		ug/L	0.002		65	20-175			
Surrogate: 13C-2,3,7,8-TCDF	0.0012		ug/L	0.002		60	22-152			
Surrogate: 13C-OCDD	0.00478		ug/L	0.004		120	13-199			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.000685		ug/L	0.0008		86	31-191			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 009 2010 Semi-Annual Outfall 009 Report Number: ITJ0820

Sampled: 10/06/10 Received: 10/07/10

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
ITJ0820-01	Antimony-200.8	Antimony	ug/l	0.73	2.0	6
ITJ0820-01	Cadmium-200.8	Cadmium	ug/l	0.18	1.0	4
ITJ0820-01	Chloride - 300.0	Chloride	mg/l	2.04	0.50	150
ITJ0820-01	Copper-200.8	Copper	ug/l	9.60	2.0	14
ITJ0820-01	Cyanide, Total-4500CN-E (5ppb)	Total Cyanide	ug/l	-2	5.0	9.5
ITJ0820-01	Lead-200.8	Lead	ug/l	11	1.0	5.2
ITJ0820-01	Mercury - 245.1	Mercury	ug/l	0.022	0.20	0.13
ITJ0820-01	Nitrogen, NO3+NO2 -N EPA 300.0	0 Nitrate/Nitrite-N	mg/l	0.77	0.26	10
ITJ0820-01	Perchlorate 314.0 - Default	Perchlorate	ug/l	0	4.0	6
ITJ0820-01	Sulfate-300.0	Sulfate	mg/l	3.22	0.50	250
ITJ0820-01	TDS - SM2540C	Total Dissolved Solids	mg/l	27	10	850
ITJ0820-01	Thallium-200.8	Thallium	ug/l	0.15	1.0	2
ITJ0820-01	TSS - SM2540D	Total Suspended Solids	mg/l	56	10	45

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
ITJ0820-02	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	0	4.8	15

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Semi-Annual Outfall 009 2010 Semi-Annual Outfall 009 Report Number: ITJ0820

Sampled: 10/06/10 Received: 10/07/10

DATA QUALIFIERS AND DEFINITIONS

- **B** Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- C Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.
- J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
- Jb The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.
- **M-3** Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).
- MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
- **Q** Estimated maximum possible concentration (EMPC).
- U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the limit.
- ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
- **RPD** Relative Percent Difference

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Semi-Annual Outfall 009 2010 Semi-Annual Outfall 009 Report Number: ITJ0820

Sampled: 10/06/10 Received: 10/07/10

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EDD + Level 4	Water	N/A	N/A
EPA 1664A	Water	Х	Х
EPA 200.8-Diss	Water	Х	Х
EPA 200.8	Water	Х	Х
EPA 245.1-Diss	Water	Х	Х
EPA 245.1	Water	Х	Х
EPA 300.0	Water	Х	Х
EPA 314.0	Water	Х	Х
Filtration	Water	N/A	N/A
SM 2540D	Water	Х	Х
SM2540C	Water	Х	
SM4500CN-E	Water	Х	Х

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chrnic Samples: ITJ0820-01

TestAmerica Irvine

Debby Wilson Project Manager

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Semi-Annual Outfall 009 2010 Semi-Annual Outfall 009 Report Number: ITJ0820

Sampled: 10/06/10 Received: 10/07/10

Eberline Services - SUB

2030 Wright Avenue - Richmond, CA 94804

Analysis Performed: Gamma Spec Samples: ITJ0820-01

- Analysis Performed: Gross Alpha Samples: ITJ0820-01
- Analysis Performed: Gross Beta Samples: ITJ0820-01
- Analysis Performed: Level 4 Data Package Samples: ITJ0820-01
- Analysis Performed: Radium 226 Samples: ITJ0820-01
- Analysis Performed: Radium 228 Samples: ITJ0820-01
- Analysis Performed: Strontium 90 Samples: ITJ0820-01
- Analysis Performed: Tritium Samples: ITJ0820-01
- Analysis Performed: Uranium, Combined Samples: ITJ0820-01

TestAmerica Irvine

Debby Wilson Project Manager

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Semi-Annual Outfall 009 2010 Semi-Annual Outfall 009 Report Number: ITJ0820

Sampled: 10/06/10 Received: 10/07/10

TestAmerica Buffalo

10 Hazelwood Drive, Suite 106 - Amherst, NY 14228

Method Performed: 8639 Samples: ITJ0820-01

Method Performed: 900 Samples: ITJ0820-01

Method Performed: 901.1 Samples: ITJ0820-01

Method Performed: 903.1 Samples: ITJ0820-01

Method Performed: 904 Samples: ITJ0820-01

Method Performed: 905 Samples: ITJ0820-01

Method Performed: 906 Samples: ITJ0820-01

TestAmerica West Sacramento NELAC Cert #1119CA, Nevada Cert #CA44

880 Riverside Parkway - West Sacramento, CA 95605

Method Performed: EPA-5 1613B Samples: ITJ0820-01

TestAmerica Irvine

Debby Wilson Project Manager

CHAIN OF CUSTODY FORM

Page 2 of 2

ITJ0820

With-Arcadia Boeing-SFL NPDES Comments Biolinicada va 10007 Semi-Annual Outfail 009 ComPOSITE Image: Biolinicada va 1000 Image: Biolinicada va 10000 Image: Biolinicada va 100000 Image: Biolinicada va 100000 Image: Biolinicada va 100000 Image: Biolinicada va 1000000 Image: Biolinicada va 1000000000 Image: Biolinicada va 100000																							
is Michailing Ave, Sold: 200 cardia, CA 9107 est Anerica Contact: Debby Wilson Set Anerica Contact: Debby Wilson Set Anerica Contact: Debby Wilson Set Anerica Contact: Debby Wilson Fig. 90 Set Anerica Contact: Debby Wilson Fig. 90 Set Anerica Contact: Debby Wilson Set Anerica Contact: D					Project:					<u> </u>					A	NALYS	SIS REC	JUIREL	r	1	T		
Outlail 006 W 11, Poly 1 1 1 2.3 A							000	م				Ъ.	<u> </u>]				1
Outlail 006 W 11, Poly 1 1 1 2.3 A			uite 200		[103					â	, ²) da										
Outlail 006 W 11, Poly 1 1 1 2.3 A	Arcadia, CA 🤮	91007			COMPOS							ц ц), T 903 903						1				
Outlail 006 W 11, Poly 1 1 1 2.3 A								8		rate	1	0	(90 (90 (90 (90 (90 (90 (90 (90 (90 (90			i l			1				
Outlail 006 W 11, Poly 1 1 1 2.3 A	Test America	Contact:	Debby Wils	son						Pr		3											
Outlail 006 W 11, Poly 1 1 1 2.3 A								isi i	(s	erc		Sp.	35S 90 11					1	1				
Outlail 006 W 11, Poly 1 1 1 2.3 A								etal	Le L			<u></u>	5 5 9 7 8						1				Comments
Outlail 006 W 11, Poly 1 1 1 2.3 A	Project Mono	aor: Bro	www.Kelly		Dhone Ni	mher		-1 Š	lge	2-2		eta	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										10WFIOW
Outlail 006 W 11, Poly 1 1 1 2.3 A	Froject Mana	yer. Bro	Iwyii Keliy					able	8	Ž		≥ P	00. 906 904 01.(₹				1		1		
Outlail 006 W 11, Poly 1 1 1 2.3 A		. 1. 5	a line	n	` '			ven	a l	l õ		lve	(9 (3) (9 (3) (3)	1	xi								
Outlail 006 W 11, Poly 1 1 1 2.3 A	Sampler: IC,	CEN	514 21146	15				8	ano	Z	S	ssc	137 28 (Hph		Ĥ								
Outlail 006 W 11, Poly 1 1 1 2.3 A					1			-l # =		0°	μĔ	ā	idin midi	<u>I</u>	Dic								
Outlail 006 W 11, Poly 1 1 1 2.3 A							tive Bottle #	d of a	8		۲ ۵	ta		, a	Ĕ				1				
Outlail 006 W 11, Poly 1 1 1 2.3 A									+	10	<u>↓ ⊢</u>	+	OFOR4	+	ا ا				+	+			
Curdial Cool W 11. Andre 2 None 3A, 3B X	Outfall 009				193		· · · · · · · · · · · · · · · · · · ·				 		l	 									
Outsil 000 W 500 mL Poly 2 None 44, 48 X Image: Construction of the state of the sta	Outfall 009 Dup	W	1L Poly	1		HNC	3 2B	×	<u> </u>			ļ								_			
Cutal 000 W Storm Poly 1 None 5 X Image: Control of the storm Poly Filter win 24hrs of receipt at lab. Cutal 000 W Storm Poly 1 None 6 X Image: Control of the storm Poly Filter win 24hrs of receipt at lab. Cutal 000 W 25 Gat Cube 1 None 7A Image: Control of the storm Poly Filter win 24hrs of receipt at lab. Outfail 000 W 25 Gat Cube 1 None 7A Image: Control of the storm Poly Image: Control of the storm	Outfall 009	w	1L Amber	2		Nor	3A, 3B		X						L								
Contrait 000 M Dotter 001 Intervention None 6. X Intervention Filter win 24ths of receipt at lab. Outfail 009 W 25.6 al cuba 1 None 7.8 Intervention X Intervention Unfiltered and unpreserved analysis Outfail 009 W 25.6 al cuba 1 None 7.8 Intervention X Intervention Unfiltered and unpreserved analysis Outfail 009 W 500 mL Anthor 1 None 7.8 Intervention X Intervention Unfiltered and unpreserved analysis Outfail 009 W 1600 mL Poly 1 None 9 Intervention X Intervention Only test if first or second rair events of the year Outfail 009 W 16al Poly 1 16.9 Intervention X Intervention Only test if first or second rair events of the year Outfail 009 W 16al Poly 1 16.9 Intervention X Intervention Intervention Outfail 009 W 16al Poly 1 Intervention Interventin Interventin Int	Outfall 009	w	500 mL Poly	2		Nor	4A, 4B			X				L						<u>X</u>		\sum	
Collar 003 W 12 Fory 1 Role 0 Releved by <	Outfall 009	w	500 mL Poly	1		Nor	5		1		X								\Box				
Outfail 009 W Soo mL Amber 1 None 78 X X Analysis Outfail 009 W 500 mL Poly 1 NaCH 8 X </td <td>Outfall 009</td> <td>w</td> <td>1L Poly</td> <td>1</td> <td></td> <td>Nor</td> <td>. 6.</td> <td></td> <td></td> <td>_</td> <td></td> <td>X</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-h A</td> <td></td> <td></td> <td>Filter w/in 24hrs of receipt at lab</td>	Outfall 009	w	1L Poly	1		Nor	. 6.			_		X								-h A			Filter w/in 24hrs of receipt at lab
Column Good A sole mixed in an intervent in a sole mixed by intervent			2.5 Gal Cube	1		Nor	9 7A	-	-	1									111	\mathcal{W}			Unfiltered and unpreserved
Outfail 009 W 500 mL Poly 1 NaOH 8 X X Image: Constraint of the second rain events of the year Outfail 009 W 1 Gal Poly 1 0 6 0 X Image: Constraint of the year Outfail 009 W 1 Gal Poly 1 0 6 0 X Image: Constraint of the year Image: Constraint of the year Image: Constraint of the year X Image: Constraint of the year Image: Constraint of the year Image: Constraint of the year Image: Constraint of the year Image: Constraint of the year Image: Constraint of the year Image: Constraint of the year Image: Constraint of the year Image: Constraint of the year Image: Constraint of the year Image: Constraint of the year Image: Constraint of the year Image: Constraint of the year Image: Constraint of the year Image: Constraint of the year Image: Constraint of the year Image: Constraint of the year Image: Constraint of the year Image: Constraint of the year Image: Constraint of the year Image: Constraint of the year Image: Constraint of the year Image: Constraint of the year Image: Constraint of the year Image: Constraint of the ye	Outfall 009	w	500 ml Amber	1	1 J	Nor				1			- ×						1.0	ЖŤ	Ю		analysis
Outrail 009 W 1 Get Net of				<u> </u>							 	-						-/	$+ \mathbf{U}$	t	Ň.	\square	/
COC Page 2 of 2 list the Composite Samples for Outfall 009 for this storm event. COC Page 2 of 2 list the Composite Samples for Outfall 009 for this storm event. These must be added to the same work order of COC Page 1 of 2 for Outfall 009 for the same event. These must be added to the same work order of COC Page 1 of 2 for Outfall 009 for the same event. These must be added to the same work order of COC Page 1 of 2 for Outfall 009 for the same event. These must be added to the same work order of COC Page 1 of 2 for Outfall 009 for the same event. These must be added to the same work order of COC Page 1 of 2 for Outfall 009 for the same event. These must be added to the same work order of COC Page 1 of 2 for Outfall 009 for the same event. These must be added to the same work order of COC Page 1 of 2 for Outfall 009 for the same event. Turn-around line: 10 Day: Iso of the same event. 10 Day: Sample Integrity (Check) Normal: Word Mark Normal: Mark DeterTime: DeterTime: DeterTime: DeterTime: DeterTime: DeterTime: DeterTime: DeterTime: DeterTime:	Outfall 009			1										Ļ				$\left \right $			₩-		Only test if first or second rain
These must be added to the same work order of COC Page 1 of 2 for Outfall 009 for the same event. Retinquished By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: Sample Integrity: (Check) Intact: On Ice: Intact: On Ice: Intact: On Ice: Intact: On Ice: Intact: IO - 7 - 0 o/O Received By Date/Time: Intact: On Ice: Intact: IO - 7 - 0 o/O Received By Date/Time: Intact: IO - 7 - 0 o/O ICe: ICe: ICe: ICe: ICe: ICe: ICe: ICe: ICe: <thice:< th=""> <thi< td=""><td>Outfall 009</td><td>W</td><td>1 Gal Poly</td><td>1</td><td>19:3</td><td>O Nor</td><td>9</td><td></td><td></td><td></td><td></td><td></td><td>ļ</td><td></td><td>×</td><td>ļ</td><td></td><td>$\downarrow \downarrow$</td><td></td><td></td><td><u> </u></td><td><u> </u></td><td>events of the year</td></thi<></thice:<>	Outfall 009	W	1 Gal Poly	1	19:3	O Nor	9						ļ		×	ļ		$ \downarrow \downarrow$			<u> </u>	<u> </u>	events of the year
These must be added to the same work order of COC Page 1 of 2 for Outfall 009 for the same event. Retinquished By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: Sample Integrity: (Check) Intact: On Ice: Intact: On Ice: Intact: On Ice: Intact: On Ice: Intact: IO - 7 - 0 o/O Received By Date/Time: Intact: On Ice: Intact: IO - 7 - 0 o/O Received By Date/Time: Intact: IO - 7 - 0 o/O ICe: ICe: ICe: ICe: ICe: ICe: ICe: ICe: ICe: <thice:< th=""> <thi< td=""><td></td><td></td><td></td><td>L</td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td><u> </u></td><td>\leftarrow</td><td>\prec</td><td></td><td></td><td></td></thi<></thice:<>				L					<u> </u>					+				<u> </u>	\leftarrow	\prec			
These must be added to the same work order of COC Page 1 of 2 for Outfall 009 for the same event. Retinquished By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: Sample Integrity: (Check) Intact: On Ice: Intact: On Ice: Intact: On Ice: Intact: On Ice: Intact: IO - 7 - 0 o/O Received By Date/Time: Intact: On Ice: Intact: IO - 7 - 0 o/O Received By Date/Time: Intact: IO - 7 - 0 o/O ICe: ICe: ICe: ICe: ICe: ICe: ICe: ICe: ICe: <thice:< th=""> <thi< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thi<></thice:<>														1									
These must be added to the same work order of COC Page 1 of 2 for Outfall 009 for the same event. Retinquished By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: Sample Integrity: (Check) Intact: On Ice: Intact: On Ice: Intact: On Ice: Intact: On Ice: Intact: IO - 7 - 0 o/O Received By Date/Time: Intact: On Ice: Intact: IO - 7 - 0 o/O Received By Date/Time: Intact: IO - 7 - 0 o/O ICe: ICe: ICe: ICe: ICe: ICe: ICe: ICe: ICe: <thice:< th=""> <thi< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thi<></thice:<>																							
These must be added to the same work order of COC Page 1 of 2 for Outfall 009 for the same event. Retinquished By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: Sample Integrity: (Check) Intact: On Ice: Intact: On Ice: Intact: On Ice: Intact: On Ice: Intact: IO - 7 - 0 o/O Received By Date/Time: Intact: On Ice: Intact: IO - 7 - 0 o/O Received By Date/Time: Intact: IO - 7 - 0 o/O ICe: ICe: ICe: ICe: ICe: ICe: ICe: ICe: ICe: <thice:< th=""> <thi< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thi<></thice:<>																<u> </u>							
These must be added to the same work order of COC Page 1 of 2 for Outfall 009 for the same event. Retinquished By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: Sample Integrity: (Check) Intact: On Ice: Intact: On Ice: Intact: On Ice: Intact: On Ice: Intact: IO - 7 - 0 o/O Received By Date/Time: Intact: On Ice: Intact: IO - 7 - 0 o/O Received By Date/Time: Intact: IO - 7 - 0 o/O ICe: ICe: ICe: ICe: ICe: ICe: ICe: ICe: ICe: <thice:< th=""> <thi< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ļ</td><td></td></thi<></thice:<>																						ļ	
These must be added to the same work order of COC Page 1 of 2 for Outfall 009 for the same event. Retinquished By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: Sample Integrity: (Check) Intact: On Ice: Intact: On Ice: Intact: On Ice: Intact: On Ice: Intact: IO - 7 - 0 o/O Received By Date/Time: Intact: On Ice: Intact: IO - 7 - 0 o/O Received By Date/Time: Intact: IO - 7 - 0 o/O ICe: ICe: ICe: ICe: ICe: ICe: ICe: ICe: ICe: <thice:< th=""> <thi< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thi<></thice:<>																							
These must be added to the same work order of COC Page 1 of 2 for Outfall 009 for the same event. Retinquished By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: IO - 7 - 2 o/O Received By Date/Time: Sample Integrity: (Check) Intact: On Ice: Intact: On Ice: Intact: On Ice: Intact: On Ice: Intact: IO - 7 - 0 o/O Received By Date/Time: Intact: On Ice: Intact: IO - 7 - 0 o/O Received By Date/Time: Intact: IO - 7 - 0 o/O ICe: ICe: ICe: ICe: ICe: ICe: ICe: ICe: ICe: <thice:< th=""> <thi< td=""><td></td><td></td><td><u></u></td><td>.</td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td>COC Page 2</td><td>of 2 lis</td><td>t the</td><td>Com</td><td>posite</td><td>e Sami</td><td>oles for Outfal</td><td>009</td><td>for th</td><td>is stor</td><td>m ever</td><td>nt.</td><td></td><td></td><td></td><td></td><td></td></thi<></thice:<>			<u></u>	.	· · · · · · · · · · · · · · · · · · ·		COC Page 2	of 2 lis	t the	Com	posite	e Sami	oles for Outfal	009	for th	is stor	m ever	nt.					
Retinquished By Date/Time: 10 - 7 - 2 o/O Received By Dife/Time: If - 7 - 10 If - 7 - 10 Additional and the second By Image: Second By <t< td=""><td></td><td></td><td></td><td></td><td></td><td>These mu</td><td>t be added</td><td>to the s</td><td>same</td><td>work</td><td>orde</td><td>r ffr C</td><td>OC Page 1 of 2</td><td>2 for (</td><td>Outfa</td><td>II 009 f</td><td>or the</td><td>same e</td><td>vent.</td><td></td><td></td><td></td><td></td></t<>						These mu	t be added	to the s	same	work	orde	r ffr C	OC Page 1 of 2	2 for (Outfa	II 009 f	or the	same e	vent.				
Image: Signed By Image: Signed By <td>Relinquished By</td> <td></td> <td></td> <td>Date/T</td> <td>ime: 10</td> <td>-7-201</td> <td>Received</td> <td></td> <td>1</td> <td>^</td> <td>9</td> <td></td> <td></td> <td></td> <td></td> <td>Turn-arc</td> <td>ound time:</td> <td>(Check)</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Relinquished By			Date/T	ime: 10	-7-201	Received		1	^	9					Turn-arc	ound time:	(Check)					
Relinquigher By Date/Time: Received By Date/Time: Sample Integrity: (Check) Kellinguished By Date/Time: Date/Time: On Ice:		1							1	11]/		10-7-2	0									10 Day:
Relinquigher By Date/Time: Received By Date/Time: Sample Integrity: (Check) Kellinguished By Date/Time: Date/Time: On Ice:	Vill	15.m			- 75)D	- /\ <i>\</i>	M	,	/ / W	W /	'/	1Cm)		48 Hour	·		5 Day:		-		Normal: _X
Aelinguished By Date/Time: Received By Date/Time: Date/Time:	Relinguighed By		A I	Dafe/T	ime:		Received	By	t#	10.	110					1							
Aelinguished By Date/Time: Received By Date/Time: Date/Time:		11	-0 . 1	ĺΛ			l		-L	1	'//					Sample	Integrity: (Check)					
Aelinguished By Date/Time: Received By Date/Time: Date/Time:	Alth	HT.	[] [] [] [] [] [] [] [] [] [] [] [] [] [//	10-7-1	10 18:	10			l	¥					Intact:		On Ice:					
() (07) 1810 Data Requirements: (Check) No Level IV: All Level IV: NPDES Level IV: X	Relinguished By	÷Ų		, Date/T	ime:		Received	Br-			D	ate/Time):):			1							
	(•	Ţ					$\left(\right)$	\sim				10/07/10	15	N o	Data Re	quirement	s: (Check)					×
									-				, - (<i>-</i> 11 -	(No Leve	I IV:		All Level	IV:			NPDES Level IV:

Test America Version 7/19/2010

CHAIN OF CUSTODY FORM

ITJ0820

 $- \nabla \pi I$

ŦŦ

Page 1 of 2

				D													, 	<u> </u>			
Client Name/A MWH-Arcad 618 Michillind	dia a Ave, S	uite 200		Project: Boeing-SSFL I Semi-Annual GRAB											AN	IALYSIS RI	EQUIR	ED		Field readings:	
Arcadia, CA				GRAD																(Log in and include in report Temp and pH)	
Test America	Contact:	Debby Wi	son				Ŵ													Temp °F = 58 °	
Project Manag	aor: Pro	nuun Kelly		Phone Numbe	r.		34-HE													рн = 7.8	
	-		· .	(626) 568-669		• .	e (166													Time of readings =	
Sampler: R	cr14	0AN 190	H	Fax Number: (626) 568-651	5		Grease (1664-HEM)													08:01	
Sample Description	Sample Matrix	Container Type	# of Cant.	Sampling Date/Time	Preservative	Bottle #	Oil &													Comments	
Outfall 009	w	1L Amber	2	10-6-2010	нсі	1A, 1B	x														
									<u> </u>												
						· · · ·															
							<u> </u>														
						······						-									
						· · · · ·															
				_			-						<u> </u>								6
								<u> </u>													lit.
																					11-7-10 9:50
Relinguished By	Tł	nese Samp	es a	re the Grab Po	2 - 1 - 2	Decoil of Bu	~			7 00	to Tim	<u>.</u>			Turn-2	ound time: (Che	eck)				9:50
Kenny Berley	-		Uale/		30/0			_) [\int_{1}^{1}	U U	0/10	IYU	14	24 Hou 48 Hou	r:		72 Hour: 5 Day:		10 Day: Normal:	
Relinguished By	V		Date/	Time: 10/6/10 Time:	1720	Received By	ŕ	za	ul	Da Da	ite/Time	e! 6/1.	17 0	2c	Sample Intact:	Integrity: (Cher	ck)	On Ice:	<u>2.9</u> (10 Day: Normal:	
	r															equirements: (C el IV:		All Level IV	:		

H

#116

LABORATORY REPORT

Date: October 15, 2010

Client: TestAmerica, Irvine 17461 Derian Ave., Suite 100 Irvine, CA 92614 Attn: Debby Wilson

"dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003 (805) 650-0546 FAX (805) 650-0756 CA DOHS ELAP Cert. No.: 1775

Laboratory No.:	A-10100804-001
Sample I.D.:	ITJ0820-01 (Outfall 009)

Sample Control: The sample was received by ATL within the recommended hold time, chilled and with the chain of custody record attached. Testing conducted on only one sample per client instruction (rain runoff sample). Chronic testing initiated outside the recommended hold time of 36 hr per additional client instruction.

Date Sampled:	10/06/10 - composite
Date Received:	10/08/10
Temp. Received:	5.0°C
Chlorine (TRC):	0.0 mg/l
Date Tested:	10/08/10 to 10/15/10

Sample Analysis: The following analyses were performed on your sample: Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002). Attached are the test data generated from the analysis of your sample.

Result Summary:

	<u>NOEC</u>	<u>TUc</u>
Ceriodaphnia Survival:	100%	1.0
Ceriodaphnia Reproduction:	100%	1.0

Quality Control:

Reviewed and approved by:

Laboratory Director

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

Lab No.: A-10100804-001 Client/ID: Test America – ITJ0820-01 (Outfall 009) Date Tested: 10/08/10 to 10/15/10

TEST SUMMARY

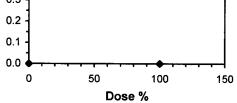
Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*. Age: < 24 hrs; all released within 8 hrs. Test vessel size: 30 ml. Number of test organisms per vessel: 1. Temperature: 25 +/- 1°C. Dilution water: Mod. hard reconstituted (MHRW). QA/QC Batch No.: RT-101007. Endpoints: Survival and Reproduction. Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 15 ml. Number of replicates: 10. Photoperiod: 16/8 hrs. light/dark cycle. Test duration: 7 days. Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Survival	Mean Number of Young Per Female
Control	100%	20.3
100% Sample	100%	25.0
* Sample not s	tatistically significantly le	ess than Control.

CHRONIC TOXICITY

Survival NOEC	100%
Survival TUc	1.0
Reproduction NOEC	100%
Reproduction TUc	1.0


QA/QC TEST ACCEPTABILITY

Parameter	Result
Control survival ≥80%	Pass (100% survival)
≥15 young per surviving control female	Pass (20.3 young)
≥60% surviving controls had 3 broods	Pass (90% with 3 broods)
PMSD <47% for reproduction; if >47% and no toxicity at IWC, the test must be repeated	Pass (PMSD = 21.7%)
Statistically significantly different concentrations relative difference > 13%	Pass (no concentration significantly different)
Concentration response relationship acceptable	Pass (no significant response at concentration tested)

			Cerioda	phnia Sur	vival and	Reprodu	ction Tes	t-7 Day S	Survival	
Start Date: End Date: Sample Date: Comments:	10/8/2010 10/15/201 10/6/2010	0 13:00		10100804 CAATL-Aq FWCH EP	uatic Test	ting Labs	Sample ID Sample Ty Test Spec	/pe:	REF-Ref 1 EFF2-Indu CD-Cerioo	
Conc-%	1	2	3	4	5	6	7	8	9	10
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
100	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

				Not			Fisher's	1-Tailed	lsot	onic
Conc-%	Mean	N-Mean	Resp	Resp	Total	Ν	Exact P	Critical	Mean	N-Mean
D-Control	1.0000	1.0000	0	10	10	10			1.0000	1.0000
100	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000

	Test (1-tail, (0.05)	NOEC	LOEC	ChV	TU			
Fisher's Exa	act Test		100	>100		1			
Treatments	vs D-Control								
				Line	ar Interpo	lation (20	0 Resamples)	· · · · · · · · · · · · · · · · · · ·	
Point	%	SD	95%	CL	Skew				
IC05	>100				·····	••••			***
IC10	>100								
IC15	>100						1.0		
IC20	>100						4		
IC25	>100						0.9 -		
IC40	>100						0.8 -		
IC50	>100								
							0.7		
							છ 0.6 -		
							Ë o f		
							å ^{0.5}		
							9.0.6 0.5 9 0.4		
							0.3		
							4		
							0.2		l l

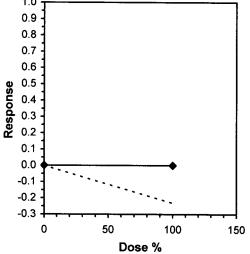
Reviewed by:

			Cerioda	aphnia Su	rvival and	Reprodu	uction Tes	st-Repro	duction	······································
Start Date: End Date: Sample Date: Comments:	10/8/2010 10/15/201 10/6/2010	0 13:00		10100804 CAATL-Ac	c quatic Tes	ting Labs	Sample ID); ype:	REF-Ref EFF2-Indu	
Conc-%	1	2	3	4	5	6	7	8	9	10
D-Control	19.000	21.000	18.000	20.000	20.000	24.000	27.000	20.000	24.000	10.000

30.000 30.000 25.000 25.000

9.000

		_		Transform	n: Untran	sformed		Rank	1-Tailed	Isot	onic
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Mean	N-Mean
D-Control	20.300	1.0000	20.300	10.000	27.000	22.400	10			22.650	1.0000
100	25.000	1.2315	25.000	9.000	34.000	26.600	10	136.00	82.00	22.650	1.0000


Auxiliary Tests	Statistic	Critical	Skew Kurt
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.05)	0.87082	0.905	-1.3205 3.11897
F-Test indicates equal variances (p = 0.27)	2.13864	6.54109	
Hypothesis Test (1-tail 0.05)			

Hypothesis Test (1-tail, 0.05) Wilcoxon Two-Sample Test indicates no significant differences

100 22.000 24.000 34.000

Treatments vs D-Control

			Li	near Interpolation	(200 Resamples)	
Point	%	SD	95% CL	Skew	,	
IC05	>100					
IC10	>100					
IC15	>100				1.0	
IC20	>100				0.9	
IC25	>100				4	[
IC40	>100				0.8 -	
IC50	>100				0.7	
			********	·····	0.6 -	
					1	

25.000 26.000

CERIODAPHNIA DUBIA CHRONIC BIOASSAY EPA METHOD 1002.0 Raw Data Sheet

	Lab No.: A	-1010080	4-001												
$ \begin{array}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				820-01	Outfa	11 009							Start	Date: 10	/08/2010
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			DAY	1	DA	Y 2		DAY 3	DA	XY 4	DAY	5	D	AY 6	DAY 7
$ \begin{array}{ $			0 hr	24hr	0 hr	24hr	0 hr	24hr	0 hr	24hr	0 hr		0 hr	24hr	0 hr 24hr
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Analyst I	nitials:	Bron .	Kn-	R-	J_	ľ	Th		in	2	Sec-	br	han	h-V
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Time of R	eadings:	1462	1300	BW	Yun	<u>)4h</u>	1431	1430	14p	Ma	1520	1500	120	1300 130
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		DO	8.58	<u></u> <u></u>	8.1	7.9	8.	7.7	79	7.8	8.0	8.2	8.1	2.9	8.2 26
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Control	pН	8.0	2.0	8.1	74	8.	17.9	7-9	7.8	8.0	8.1	8.0	8.0	8.12.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Temp	52	24.1	25.4	24.7	25.0	124.3	252	24.6	25-3	25.0	25.3	24.4	24.5 24.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		DO				7. 1	8.4	172	29				91	21.	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	100%	<u> </u>		<u>75</u>	7.1	7.1	1.9	5 - 4	1.5	7.3	1 1		1.5	21	71 74
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			╢╨╌┦┼	24.1	24.5	246	25.5	5 - 5.3	24.2	25.1		<u>7.0</u> 25.1	25.2	nus	24.8 24.1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		A	ditional Pa						Cor						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				•			j				2	1			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-			-									<u> </u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														17	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		A	mmonia (mg	/I NH ₃ -N)	,				<u>f</u>	<u> </u>				0.6	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							s	ource of Ne							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Rep	olicate:			В	С				F	G		Н	I	J
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Bro	od ID:	2,	4	18	3	C	10	2Ē	IF	30	-	2H	37	: 15
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							Numbe	r of Young	Produced						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sample	e	Day	A	В	С	D	E F	G	н	1 J				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	0	0	$ \mathcal{O} $	0	00	D	0	00	7	\mathcal{O}	10	- Rom
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2	0	0	\mathcal{O}	0	00	0	U	00		0	10	h
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			3	0	\cup	C	3	ЦC	$^{\prime}C$	4	00				N
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Control		4	3	3	V	\mathcal{O}	<u>5</u>	4	Ò			26	IU	1h
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			5		1	5		07	13	7			51	10	h-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				-		0		90	$\frac{1}{2}$	0					
$10\% \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$100\% \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$				19	Î				1	1			20'5		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				$- \varphi $	$ \mathcal{O} $	0	-×,	$\frac{0}{0}$	10		00	기	8		- Fres
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							<u> </u>			$+ \times +$	00	5	5		1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					2	10			47			╣—	4		1h
6 0 15 0 6 0 0 14 15 14 0 64 10 Th 7 14 0 14 0 16 10 16 0 0 17 78 10 Th	100%			$-\overline{u}$		$\frac{2}{\sqrt{2}}$. 0	15	<u> ≻</u>	71	┶┨╾╼┙		·· · · · ·	10
7 1-101-10161716001778 10 h					110	$\left \begin{array}{c} \\ \end{array} \right $		01		12	141) 4			The
					10	14	0		11+	6	$\partial \Gamma$	ź -	8		th
			Total	122	24	34	4	30 30		25	25 2		5	10	1/1/

Circled fourth brood not used in statistical analysis.

 7^{th} day only used if <60% of the surviving control females have produced their third brood.

CHAIN OF CUSTODY

SUBCONTRACT ORDER TestAmerica Irvine

ITJ0820

SENDING LABORATORY	<u>/:</u>	RECEIVING LABO	ORATORY:
TestAmerica Irvine		Aquatic Testing	Laboratories-SUB
17461 Derian Avenue.	Suite 100	4350 Transport	Street, Unit 107
Irvine, CA 92614		Ventura, CA 930	003
Phone: (949) 261-1022		Phone :(805) 65	50-0546
Fax: (949) 260-3297		Fax: (805) 650-	-0756
Project Manager: Debby	Wilson	Project Locatior Receipt Tempera	h: CA - CALIFORNIA ture: \checkmark \checkmark C Ice Y N
Standard TAT is reques Analysis	-	date is requested. => Due Date:	Initials: Comments
	Units	Expires	Comments
Sample ID: ITJ0820-01 (C	Outfall 009 - Water)	Sampled: 10/06/10 19	9:30
Bioassay-7 dy Chrnic	N/A	10/08/10 07:30	Cerio, EPA/821-R02-013, Sub to Aquatic testing
Containers Supplied:			
1 gal Poly (M)			

10-8-10 # 7:30 Date/Time 16-8-10 11:45 Date/Time py 7:30 / AUNH <u>|0</u> Date Recei Relea 11:45 N Page 1 of 1 Date/Time ived By Released B Re

REFERENCE TOXICANT DATA

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0 REFERENCE TOXICANT - NaCl

QA/QC Batch No.: RT-101007

Date Tested: 10/07/10 to 10/13/10

TEST SUMMARY

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*. Age: <24 hrs; all released within 8 hrs. Test vessel size: 30 ml. Number of test organisms per vessel: 1. Temperature: 25 +/- 1°C. Dilution water: Mod. hard reconstituted (MHRW). Reference Toxicant: Sodium chloride (NaCl). Endpoints: Survival and Reproduction. Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 20 ml. Number of replicates: 10. Photoperiod: 16/8 hrs. light/dark cycle. Test duration: 6 days. Statistics: ToxCalc computer program.

Sample Concentration	Percent Surv	vival	Mean Num Young Per	
Control	100%		21.4	
0.25 g/l	100%		22.3	
0.5 g/l	100%		22.1	
1.0 g/l	100%		13.1	*
2.0 g/l	90%		3.1	*
4.0 g/l	0%	*	0	**
* Statistically signif ** Reproduction data from exclude	•	greater th	han survival NC	

RESULTS SUMMARY

CHRONIC TOXICITY

Survival LC50	2.6 g/l
Reproduction IC25	0.81 mg/l

QA/QC TEST ACCEPTABILITY

Parameter	Result
Control survival ≥80%	Pass (100% Survival)
≥15 young per surviving control female	Pass (21.4 young)
≥60% surviving controls had 3 broods	Pass (100% with 3 broods)
PMSD <47% for reproduction	Pass (PMSD = 10.6%)
Stat. sig. diff. conc. relative difference > 13%	Pass (Stat. sig. diff. conc. Relative difference = 38.8%)
Concentration response relationship acceptable	Pass (Response curve normal)

			Ceriod	aphnia Su	rvival and	Reprod	uction Tes	st-Surviv	al Day 6	
Start Date:	10/7/2010	14:00	Test ID:	RT101007	′c		Sample ID):	REF-Ref 1	Toxicant
End Date:	10/13/201	0 13:00	Lab ID:	CAATL-Ac	uatic Tes	ting Labs	Sample Ty	/pe:	NACL-Soc	dium chloride
Sample Date: Comments:	10/7/2010			FWCH EP		-	Test Spec		CD-Cerioo	laphnia dubia
Conc-gm/L	1	2	3	4	5	6	7	8	9	10
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0.25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0.5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000

0.0000

0.0000

0.3 0.2 0.1 0.0 0.1

0.0000

0.0000

1

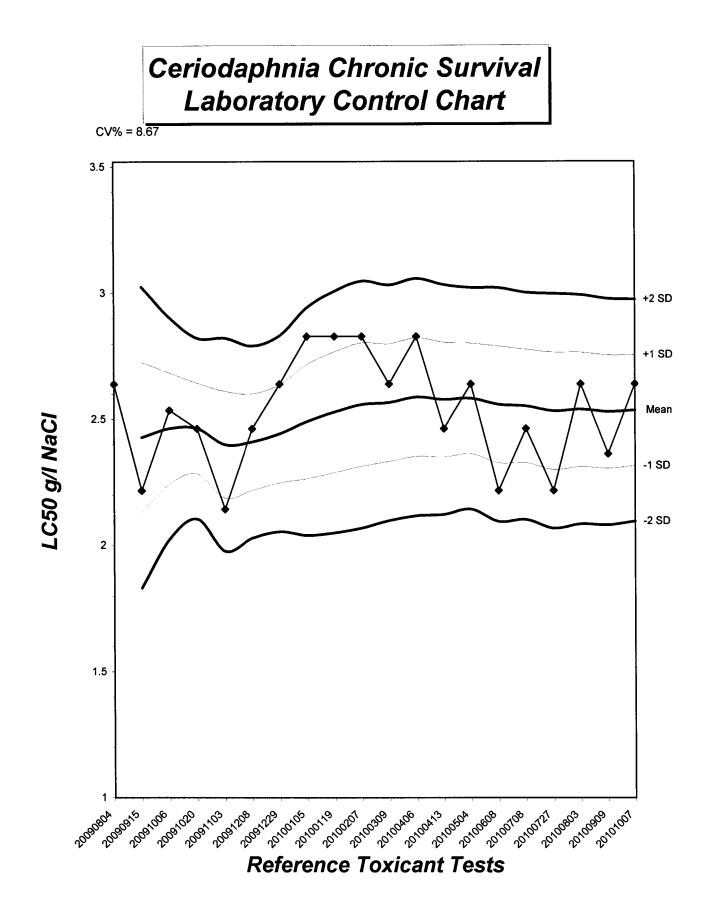
Dose gm/L

0.0000

0.0000

				Not			Fisher's	1-Tailed	Number	Total
Conc-gm/L	Mean	N-Mean	Resp	Resp	Total	Ν	Exact P	Critical	Resp	Number
D-Control	1.0000	1.0000	0	10	10	10			0	10
0.25	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
0.5	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
1	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
2	0.9000	0.9000	1	9	10	10	0.5000	0.0500	1	10
4	0.0000	0.0000	10	0	10	10			10	10

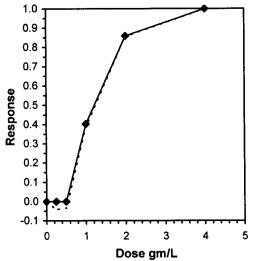
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU		
Fisher's Exact Test	2	4	2.82843			,
Treatments vs D-Control						


				Trimmed Spearman-Karber	
Trim Level	EC50	95%	CL	-	
0.0%	2.6390	2.3138	3.0099		
5.0%	2.6984	2.2899	3.1798		
10.0%	2.7216	2.5094	2.9517	1.0	
20.0%	2.7216	2.5094	2.9517	•	I I
Auto-0.0%	2.6390	2.3138	3.0099	0.9	/ /
				0.8 -	
				0.7 -	
				% 0.6	
				ğ 0.5 -	
				ອະບຸດ.6 0.5 ອີນ 0.4	

10

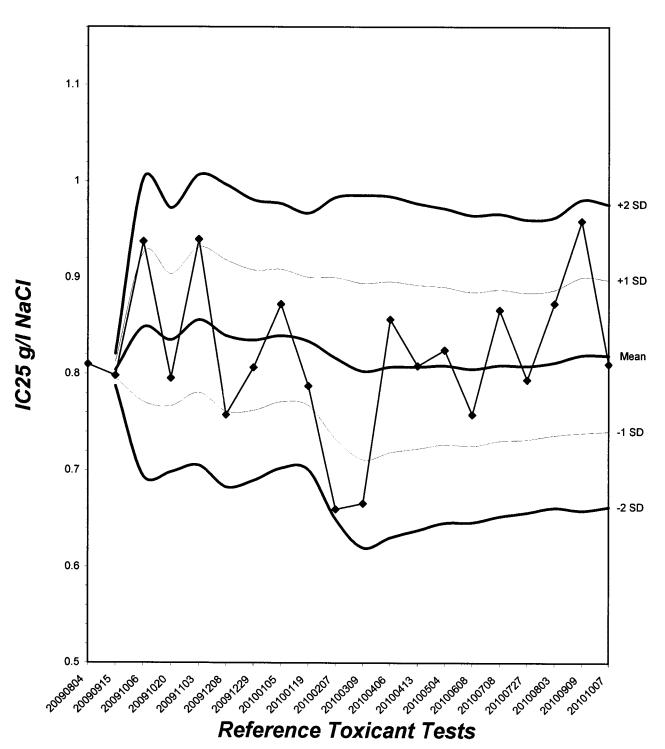
4

0.0000 0.0000 0.0000 0.0000



			Ceriod	aphnia Su	rvival and	I Reprod	uction Tes	st-Repro	duction	
Start Date:	10/7/2010	14:00	Test ID:	RT101007	c		Sample ID):	REF-Ref 1	
End Date:	10/13/2010	0 13:00	Lab ID:	CAATL-Ac	uatic Test	sting Labs Sample Type:				lium chloride
Sample Date:	10/7/2010		Protocol:	FWCH EP	A		Test Spec	ies:	CD-Cerioo	laphnia dubia
Comments:										
Conc-gm/L	1	2	3	4	5	6	7	8	9	10
D-Control	18.000	24.000	20.000	22.000	22.000	19.000	21.000	22.000	23.000	23.000
0.25	19.000	21.000	20.000	25.000	24.000	20.000	27.000	22.000	20.000	25.000
0.5	22.000	21.000	24.000	25.000	21.000	20.000	19.000	24.000	24.000	21.000
1	13.000	12.000	12.000	10.000	15.000	9.000	17.000	15.000	14.000	14.000
2	3.000	2.000	3.000	4.000	0.000	3.000	7.000	0.000	3.000	6.000
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

			•	Transform	n: Untran	sformed		1-Tailed			Isotonic	
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
D-Control	21.400	1.0000	21.400	18.000	24.000	8.866	10				21.933	1.0000
0.25	22.300	1.0421	22.300	19.000	27.000	12.335	10	-0.880	2.223	2.273	21.933	1.0000
0.5	22,100	1.0327	22.100	19.000	25.000	9.162	10	-0.685	2.223	2.273	21.933	1.0000
*1	13,100	0.6121	13.100	9.000	17.000	18.507	10	8.118	2.223	2.273	13.100	0.5973
*2	3.100	0.1449	3.100	0.000	7.000	72.051	10	17.899	2.223	2.273	3.100	0.1413
4	0.000	0.0000	0.000	0.000	0.000	0.000	10				0.000	0.0000


Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribu	ition (p >	0.05)		0.96438		0.947		0.08587	-0.8006
	Bartlett's Test indicates equal variances (p = 0.83)									
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	0.70711		2.27317	0.10622	700.2	5.22667	2.2E-24	4, 45		
Treatments vs D-Control										

				Linea	ar Interpolation	n (200 Resamples)	
Point	gm/L	SD	95%	CL	Skew		
IC05	0.5621	0.0442	0.4151	0.5733	-4.2243		
IC10	0.6242	0.0252	0.5373	0.6466	-1.7522		
IC15	0.6862	0.0254	0.6039	0.7200	-1.2089	1.0	
IC20	0.7483	0.0270	0.6723	0.7933	-0.6359	0.9	
IC25	0.8104	0.0296	0.7434	0.8683	-0.1929	4	*
IC40	0.9966	0.0501	0.9298	1.1143	0.4891	0.8	
IC50	1.2133	0.0576	1.1011	1.3148	-0.3182	0.7 -	
						0.6	
						S I	/
						Ë 0.5 -	/

Ceriodaphnia Chronic Reproduction Laboratory Control Chart

CV% = 9.58

CERIODAPHNIA DUBIA CHRONIC BIOASSAY Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-101007

Start Date: 10/07/2010

Samula	D			Nu	ımbeı	r of Y	oung	Prod	uced			Total	No.	Analyst
Sample	Day	Α	В	С	D	E	F	G	Н	I	J	Live Young	Live Adults	Initials
	1	\mathcal{O}	\mathcal{O}	0	\sub	0	0	\cup	$\begin{array}{c} \end{array} \end{array}$	\mathcal{O}	0	0	10	k
	2	\mathcal{O}	0	$\overline{\mathcal{O}}$	$\overline{\mathcal{O}}$	0	0	0	\mathcal{O}	0	0	0	10	h
	3	0	Ũ	0	0	4	U	\mathcal{O}	3	3	0	10	10	M
Control	4	3	4	3	3	Z	님	4	24	0	5	26	10	In
Control	5	6	8	6	7	T	7	8	6	6	б	70	IU	n
	6	9	12	11	12	(0	8	9	13	14	10	108	10	m
	7	<u> </u>	-	~	~	•		-	(((<u> </u>
	Total	18	24	zΟ	22	22	19	21	22	23	23	214	10	M
	1	0	0	\cup	0	0	0	\mathcal{O}	0	0	0	0	0	R
	2	0	D	D	0	0	0	0	0	0	0	\mathcal{O}	10	h
	3	\mathcal{U}	0	C	C	3	C	0	Ц	V	0		10	n
0.25 g/l	4	4	4	3	ک	U	Ч	Ų	0	3	5	33	10	n
0.25 g/1	5	6	7	8	8	7	6	8	6	5	7	68	10	m
	6	8	10	9	12	14	\mathcal{O}	15	12	12	13	115	U	p
	7		(-	-	<u> </u>	-	_		1	1		,	
	Total	19	21	20	25	24	20	27	22	70	25	223	IJ	p
	1	0	0	0	\mathcal{O}	0	0	0	0	\mathcal{O}	0	\bigcirc	0	R
	2	0	0	0	0	D	0	0	0	0	0	Ō	JU	han
	3	\mathcal{U}	0	0	0	4	0	0	0	0	3	7	10	A
0.5 g/l	4	3	3	4	5	0	5	3	4	4	0	31	10	1h
0.5 g/1	5	7	8	2	6	7	7	B	6	7	7	70	10	h
	6	12	U	13	14	10	\mathcal{S}	8	14	B	11	1(3	10	h
	7	-	•	1	-	1	~	ł	-	-	-	_	(
Total 22 21 24 25 21 20 19 24 24 21 221 11														
Circled fourth brood not used in statistical analysis. 7 th day only used if <60% of the surviving control females have produced their third brood.														

CERIODAPHNIA DUBIA CHRONIC BIOASSAY Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-101007

Start Date:10/07/2010

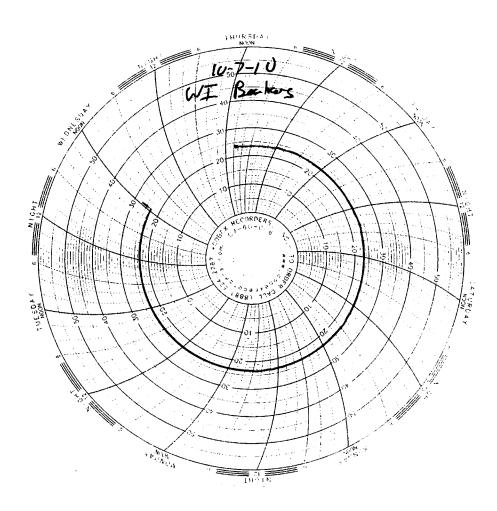
C				Nı	ımbe	r of Y	oung	Produ	iced			Total	No.	Analyst
Sample	Day	Α	В	С	D	E	F	G	Н	Ι	J	Live Young	Live Adults	Initials
	1	0	\mathcal{O}	0	0	0	\cup	0	0	0	0	\mathcal{O}	10	h
	2	0	0	0	0	0	0	0	0	0	0	\mathcal{O}	10	R
	3	\mathcal{D}	\mathcal{O}	0	0	0	\mathcal{O}	0	3	2	Ũ	5	10	n
1.0 g/l	4	3	2	3	0	3	0	3	6	0	3	21	10	m
1.0 g/1	5	6	4	U	5	4	5	5	6	7	4	50	10	pl
	6	Ц	6	5	5	8	0	9	6	5	2	55	10	1ph
	7	-	-		-		-		-	-	-		-	1-
	Total	13	12	12	10	15	9	17	15	14	14	13(10	M
	1	0	ω	0	\mathcal{O}	0	0	0	\mathcal{O}	0	0	ρ	10	h
	2	0	0	0	0	D	0	0	0	0	0	\mathcal{O}	10	L
	3	0	V	0	V	X	0	0	0	U	\mathcal{O}	0	9	m
2.0 g/l	4	0	0	0	\mathcal{C}	-	U	0	C	O	\mathcal{O}	\mathcal{O}	9	THE
2.0 g/1	5	3	U	3	Ц	-	0	3	\mathcal{C}	0	3	16	9	ML
	6	\mathcal{U}	2	0	0	1	3	4	0	3	3	15	4	m
	7	1	-	-	-	-	-	_		-	-	-	1-1	
	Total	3	2	3	4	0	3	2	0	3	6	31	9	T
	1	\times	X	\checkmark	_X		-×	×	\times	\times	\times	U	0	hu
	2	((-	-	((((_	(<u> </u>	\frown
	3	((•	(-	(-	ſ	-	/	1	/
4.0 g/l	4		((((1	((-	(1	_
4.0 g/1	5	-	1	^		1	(۱	1	()		-	
	6	~	<u> </u>	(((١	1	(1	1	-	
7)	1	
	Total O O O O O O O O O O O O O													
Circled fourth brood not used in statistical analysis. 7 th day only used if <60% of the surviving control females have produced their third brood.														

CERIODAPHNIA DUBIA CHRONIC BIOASSAY Reference Toxicant - NaCl Water Chemistries Raw Data Sheet

QA/QC No.: RT-101007

Start Date:10/07/2010

	DAY 1											· · · · ·		DAY 7	
			Y 1		Y 2	DA	Y 3	DA	\Y 4	DA	Y 5	DA	Y 6	DA	Y 7
		Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
Analyst I	nitials:	Rom	hr	hin	h	Rn	h	1-	12	N	m		m		(
Time of R	eadings:	1400	1300	1300	1300	1300	14N	JYW	MIC	1930	330	BY	1300	-	_
	DO	8.3	8.6	9.0	8.5	8.1	7.8	8.0	27	8.0	7.7	24	2-9	1	(
Control	рН	8.1	8.2	8.0	8.1	8.1	7.9	8,1	8.0	7.9	7.7	80	7-8	(۱
	Temp	25.3	24.3	25.0	24.5	25.4	250	25.6	25.2	24-5	247	254	24.2	(1
	DO	8.3	8.6	9.0	8.4	8.1	78	7.9	7.7	7.9	7.9	7.4	D- 7	1	-
0.25 g/l	pН	8.1	8.2	8.0	8.1	8.1	7.9	8-1	8.0	80	7.8	30	5.6	1	-
	Temp	25.3	24.4	25.0	24.6	25-4	250	25.4	25.3	24.7	25-1	Xy	24.2	1	ĺ
	DO	8.3	8.7	9.0	8.5	8.1	80	7.9	7.8	8.1	27	81	80	((
0.5 g/l	pН	8.1	8.2	8.0	8.1	8.1	81	8.1	7.4	8.1	7.6	74	8.0	-	Ì
	Temp	2ŝ.3	24.4	25.1	24.7	25.4	25.3	254	25-4	25.6	25.4	255	24.4	*	(
	DO	8.3	8.6	9.1	8.4	8.1	7-4	8.0	7.8	8.1	7-7	8.0	8.0	-]
1.0 g/l	pН	8.1	8.2	8.0	8.1	8.1	81	8.2	81	8.1	7-6	5.9	7-8	l	(
	Temp	25.2	24.4	25.1	24.6	25.4	254	25-4	25.5	25-3	254	25.5	245	(1
	DO	8.4	8.5	9.1	8.6	8.2	81	81	7.6	8.0	8.0	29	8.0	-	-
2.0 g/l	pН	8.2	8.2	8.0	8.1	8.1	7-9	8.2	8.	8.1	7.7	29	29	1)
	Temp	25.2	24.3	25.2	24.6	25.5	24.5	25.4	25.5	25.5	253	ZSY	246	1	-
	DO	8.4	8.7		~	_	1	-)			(1	_
4.0 g/l	рН	8.2	8.2	-	-	-	-	5	~	1	-	(1	-	(
	Temp	25.0	24.3		~		-		\square			<u> </u>	(1	
	Di	ssolved	Oxyge	n (DO)	reading	gs are in	mg/1 (D ₂ ; Tem	perature	(Temp)	readin	gs are in	<u>1 ℃.</u>		
	Additional	Paramet	ers				Contr	ol				High Co	ncentrat	ion	
			Day	1	Day 3	3	Day 5		Day 1		Day 3	D	ay 5		
	Conductivity (µS) Alkalinity (mg/l CaCO ₃)						33	2 7	302		0440	1	310	3	302
			-		72		23		64		24		23		2
<u> </u>	Hardness (mg/l CaC	D ₃)		94		94	1	90		<u>77</u>		<u>95</u>	9	/
		<u> </u>	F		Source of Ne		Neonates								
	Replicate: A B						E F		G		H			J	
Broo	Brood ID: 3A		2 <u>B</u>	B IC 3D 2			2E 2F IG			<u>2 H</u>	<u> 17</u>	تـ	15		



Test Temperature Chart

Test No: RT-101007

Date Tested: 10/07/10 to 10/13/10

Acceptable Range: 25+/- 1°C

SDG	863	39	
Contact	<u>N.</u>	Joseph	Verville

Client <u>Test America, Inc.</u> Contract <u>ITJ0820</u>

SUMMARY DATA SECTION

TABLE OF	со	N T	EN	ΤS	
Sample Summaries	•	•	•	•	1
Prep Batch Summary	•			•	3
Work Summary	•	•	•	•	4
Method Blanks	•	•	•	•	6
Lab Control Samples	•	•	•	•	7
Duplicates	•	•	•	•	8
Data Sheets	•	•	•	•	9
Method Summaries	•	•	•	•	10
End of Section	•	•	•	•	17

Prepared by Mark

Lab id <u>EAS</u> Protocol <u>TA</u> Version <u>Ver 1.0</u> Form <u>DVD-TOC</u> Version <u>3.06</u> Report date <u>11/16/10</u>

Reviewed by

SDG 8639

SDG <u>8639</u>

Contact N. Joseph Verville

LAB SAMPLE SUMMARY

Client <u>Test America, Inc.</u> Contract <u>ITJ0820</u>

LAB SAMPLE ID	CLIENT SAMPLE ID	LOCATION	MATRIX	LEVEL	SAS NO	CHAIN OF CUSTODY	COLLECTED
S010089-01	ITJ0820-01	Boeing-SSFL	WATER			ITJ0820	10/06/10 19:30
S010089-02	Lab Control Sample		WATER				
S010089-03	Method Blank		WATER				
S010089-04	Duplicate (S010089-01)	Boeing-SSFL	WATER				10/06/10 19:30

LAB SUMMARY Page 1 SUMMARY DATA SECTION Page 1 Lab id <u>EAS</u> Protocol <u>TA</u> Version <u>Ver 1.0</u> Form <u>DVD-LS</u> Version <u>3.06</u> Report date <u>11/16/10</u>

SDG <u>8639</u> Contact <u>N. Joseph Verville</u>

SDG 8639

QC SUMMARY

Client <u>Test America, Inc.</u> Contract <u>ITJ0820</u>

QC BATCH	CHAIN OF CUSTODY	CLIENT SAMPLE ID	MATRIX	% MOIST	SAMPLE	BASIS AMOUNT	DAYS S		E LAB L SAMPLE ID	DEPARTMENT SAMPLE ID
8639	ITJ0820	ITJ0820-01	WATER		9.8 L	-	10/09/10	3	S010089-01	8639-001
		Method Blank Lab Control Sample Duplicate (S010089-01)	WATER WATER WATER		9.8 L		10/09/10	3	S010089-03 S010089-02 S010089-04	8639-003 8639-002 8639-004

Lab id	EAS
Protocol	TA
Version	<u>Ver 1.0</u>
Form	DVD-QS
Version	3.06
Report date	<u>11/16/10</u>

QC SUMMARY Page 1 SUMMARY DATA SECTION Page 2

SDG 8639

SDG <u>8639</u>

Contact N. Joseph Verville

PREP BATCH SUMMARY

Client <u>Test America, Inc.</u> Contract <u>ITJ0820</u>

			PREPARATION	ERROR			- PLA	PLANCHETS ANALYZED					
TEST	MATRIX	METHOD	BATCH	20 %	CLIENT	MORE	RE	BLANK	LCS	DUP/ORIG MS/ORIG	FIERS		
Beta	Counting												
AC	WATER	Radium-228 in Water	7258-125	10.4	1			1	1	1/1			
SR	WATER	Strontium-90 in Water	7258-125	10.4	_ 1			1	1	1/1			
Gas I	Proportiona	al Counting											
80A	WATER	Gross Alpha in Water	7258-125	20.6	1			1	1	1/1			
80B	WATER	Gross Beta in Water	7258-125	11.0	1			1	1	1/1			
Gamma	Spectros	сору											
GAM	WATER	Gamma Emitters in Water	7258-125	7.0	1			1	1	1/1			
Kinet	ic Phospho	orimetry, ug								1826 - 1926 - 1926 - 1926 - 1926 - 1936 - 1936 - 1936 - 1936 - 1936 - 1936 - 1936 - 1936 - 1936 - 1936 - 1936 -			
U_T	WATER	Uranium, Total	7258-125		l			1	1	1/1			
Liqui	d Scintil	lation Counting											
Н	WATER	Tritium in Water	7258-125	10.0	l			l	1	1/1			
Rador	Counting										-101 ₁₁₁		
RA	WATER	Radium-226 in Water	7258-125	16.4	l			1	1	1/1			

Duplicates and Matrix Spikes are those with original (Client) sample in this Sample Delivery Group.

Blank and LCS planchets are those in the same preparation batch as some Client, Duplicate or Spike sample.

Lab id	EAS
Protocol	<u>TA</u>
Version	<u>Ver 1.0</u>
Form	DVD-PBS
Version	3.06
Report date	11/16/10

PREP BATCH SUMMARY Page 1 SUMMARY DATA SECTION Page 3

SDG 8639

SDG <u>8639</u> Contact <u>N. Joseph Verville</u>

CLIENT SAMPLE ID

LAB SAMPLE

LAB WORK SUMMARY

Client <u>Test America, Inc.</u> Contract <u>ITJ0820</u>

COLLECTED	LOCATION		MATRIX			SUF-				
RECEIVED		AS no	MAINIX	PLANCHET	TEST			REVIEWED	BY	METHOD
S010089-01	ITJ0820-01			8639-001	80 A /80		10/26/10	10/28/10	BW	Gross Alpha in Water
10/06/10	Boeing-SSFL		WATER	8639-001	80B/80		10/26/10	10/28/10	BW	Gross Beta in Water
10/09/10	ITJ0820			8639-001	AC		11/04/10	11/05/10	BW	Radium-228 in Water
				8639-001	GAM		11/04/10	11/08/10	CSS	Gamma Emitters in Water
				8639-001	н		11/05/10	11/09/10	BW	Tritium in Water
				8639-001	RA		10/30/10	11/01/10	BW	Radium-226 in Water
				8639-001	SR		10/26/10	11/04/10	BW	Strontium-90 in Water
				8639-001	U_T		10/26/10	10/26/10	CSS	Uranium, Total
S010089-02	Lab Control Sampl	e		8639-002	80A/80		10/26/10	10/28/10	BW	Gross Alpha in Water
			WATER	8639-002	80B/80		10/26/10	10/28/10	BW	Gross Beta in Water
				8639-002	AC		11/04/10	11/05/10	BW	Radium-228 in Water
				8639-002	GAM		11/05/10	11/08/10	CSS	Gamma Emitters in Water
				8639-002	Н		11/05/10	11/09/10	BW	Tritium in Water
				8639-002	RA		10/30/10	11/01/10	BW	Radium-226 in Water
				8639-002	SR		10/26/10	11/04/10	BW	Strontium-90 in Water
				8639-002	U_T		10/26/10	10/26/10	CSS	Uranium, Total
S010089-03	Method Blank			8639-003	80A/80		10/26/10	10/28/10	BW	Gross Alpha in Water
			WATER	8639-003	80B/80		10/26/10	10/28/10	BW	Gross Beta in Water
				8639-003	AC		11/04/10	11/05/10	BW	Radium-228 in Water
				8639-003	GAM		11/05/10	11/08/10	CSS	Gamma Emitters in Water
				8639-003	Н		11/05/10	11/09/10	BW	Tritium in Water
				8639-003	RA		10/30/10	11/01/10	BW	Radium-226 in Water
				8639-003	SR		10/26/10	11/04/10	BW	Strontium-90 in Water
				8639-003	U_T		10/26/10	10/26/10	CSS	Uranium, Total
S010089-04	Duplicate (S01008	9-01)		8639-004	80A/80		10/26/10	10/28/10	BW	Gross Alpha in Water
10/06/10	Boeing-SSFL		WATER	8639-004	80B/80		10/26/10	10/28/10	BW	Gross Beta in Water
10/09/10				8639-004	AC		11/04/10	11/05/10	BW	Radium-228 in Water
				8639-004	GAM		11/05/10	11/08/10	CSS	Gamma Emitters in Water
				8639-004	Н		11/05/10	11/09/10	BW	Tritium in Water
				8639-004	RA		10/30/10	11/01/10	BW	Radium-226 in Water
				8639-004	SR		10/26/10	11/04/10	BW	Strontium-90 in Water
				8639-004	U_T		10/26/10	10/26/10 [.]	CSS	Uranium, Total

Lab id <u>EAS</u> Protocol <u>TA</u> Version <u>Ver 1.0</u> Form <u>DVD-LWS</u> Version <u>3.06</u> Report date <u>11/16/10</u>

.

WORK SUMMARY Page 1 SUMMARY DATA SECTION Page 4

SDG 8639

SDG <u>8639</u> Contact <u>N. Joseph Verville</u>

..

WORK SUMMARY, cont.

Client <u>Test America, Inc.</u> Contract <u>ITJ0820</u>

TEST SAS no	COUNTS METHOD	OF TESTS BY REFERENCE		RE BLANK	LCS	DUP SPIKE	TOTAL
80A/80	Gross Alpha in Water	900.0	1	1	1	1	4
80B/80	Gross Beta in Water	900.0	. 1	1	1	1	4
AC	Radium-228 in Water	904.0	l	1	1	1	4
GAM	Gamma Emitters in Water	901.1	l	1	1	l	4
н	Tritium in Water	906.0	l	1	1	1	4
RA	Radium-226 in Water	903.1	l	1	1	1	4
SR	Strontium-90 in Water	905.0	1	1	1	l	4
U_T	Uranium, Total	D5174	1	1	1	1	4
TOTALS			8	8	8	8	32

Lab id <u>EAS</u> Protocol <u>TA</u> Version <u>Ver 1.0</u> Form <u>DVD-LWS</u> Version <u>3.06</u> Report date <u>11/16/10</u>

WORK SUMMARY Page 2 SUMMARY DATA SECTION Page 5

8639-003

Method Blank

METHOD BLANK

SDG <u>8639</u> Contact <u>N. Jo</u>	seph Verville C	Client <u>Test America,</u> ontract <u>ITJ0820</u>	Inc.
Lab sample id <u>S0100</u> Dept sample id <u>8639-</u>		mple id <u>Method Blank</u> /Matrix	WATER

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	-0.012	0.34	0.824	3.00	U	80A
Gross Beta	12587472	-0.296	0.82	1.48	4.00	U	80B
Tritium	10028178	-27.5	96	164	200	U	н
Radium-226	13982633	0.090	0.34	0.619	1.00	U	RA
Radium-228	15262201	-0.175	0.22	0.720	1.00	U	AC
Strontium-90	10098972	0.102	0.42	0.920	2.00	U	SR
Uranium, Total		0	0.010	0.023	1.00	U	υт
Potassium-40	13966002	U		22.8	25.0	U	GAM
Cesium-137	10045973	U		1.78	20.0	U	GAM

QC-BLANK #75645

METHOD BLANKS Page 1 SUMMARY DATA SECTION Page 6 Lab id <u>EAS</u> Protocol <u>TA</u> Version <u>Ver 1.0</u> Form <u>DVD-DS</u> Version <u>3.06</u> Report date <u>11/16/10</u>

SDG 8639

LAB CONTROL SAMPLE

8639-002

Lab Control Sample

SDG <u>8639</u> Contact <u>N. Joseph Verville</u> Client <u>Test America, Inc.</u> Contract <u>ITJ0820</u>

Client sample id Lab Control Sample

Material/Matrix _____

WATER

Lab sample id <u>S010089-02</u> Dept sample id <u>8639-002</u>

ANALYTE	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ADDED pCi/L	2σ ERR pCi/L	REC %	2σ LMTS (TOTAL)	PROTOCOL LIMITS
Gross Alpha	51.8	3.7	0.992	3.00		80A	40.4	1.6	128	72-128	70-130
Gross Beta	35.0	2.2	2.23	4.00		80B	35.2	1.4	99	87-113	70-130
Tritium	2490	160	162	200		Н	2570	100	97	88-112	80-120
Radium-226	60.0	2.7	0.630	1.00		RA	55.7	2.2	108	81-119	80-120
Radium-228	5.68	0.50	0.694	1.00		AC	4.75	0.19	120	83-117	60-140
Strontium-90	17.9	1.1	0.577	2.00		SR	17.6	0.70	102	87-113	80-120
Uranium, Total	62.5	7.3	0.225	1.00		U_T	56.5	2.3	111	86-114	80-120
Cesium-137	115	4.1	2.70	20.0		GAM	111	4.4	104	91-109	80-120

QC-LCS #75644

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LCS

 Version
 3.06

 Report date
 11/16/10

 LAB
 CONTROL
 SAMPLES

 Page
 1

 SUMMARY
 DATA
 SECTION

 Page
 7

SDG 8639

8639-004

ITJ0820-01

DUPLICATE

SDG Contact	8639 N. Joseph Verville		Client Contract	<u>Test America, Inc.</u> ITJ0820	
	DUPLICATE	ORIGINAL			
Lab sample id	<u>S010089-04</u>	Lab sample id <u>S010089-01</u>	Client sample id	ITJ0820-01	
Dept sample id	8639-004	Dept sample id <u>8639-001</u>	Location/Matrix	Boeing-SSFL	WATER
		Received <u>10/09/10</u>	Collected/Volume	<u>10/06/10 19:30 9.8 L</u>	-
			Chain of custody id	ITJ0820	

ANALYTE	DUPLICATE pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ORIGI NA L pCi/L	2σ ERR (COUNT)	MDA pCi/L	QUALI- FIERS	RPD %	3σ TOT	DER σ
Gross Alpha	1.22	0.53	0.524	3.00	J	80A	0.865	0.44	0.481	J	34	109	0.9
Gross Beta	2.16	0.94	1.40	4.00	J	80B	3.81	1.3	1.93	J	55	84	2.0
Tritium	27.6	98	164	200	U	н	-13.6	95	162	U	-		0.6
Radium-226	0.287	0.37	0.621	1.00	U	RA	0.181	0.36	0.619	U	-		0.4
Radium-228	0.132	0.35	1.08	1.00	υ	AC	0.071	0.26	0.753	U	-		0.3
Strontium-90	0.090	0.45	1.02	2.00	U	SR	-0.130	0.36	0.879	U	-		0.8
Uranium, Total	0.222	0.027	0.023	1.00	J	U_T	0.208	0.025	0.023	J	7	26	0.8
Potassium-40	U		73.5	25.0	U	GAM	U		20.3	υ	-		1.4
Cesium-137	υ		2.68	20.0	U	GAM	U		1.62	υ	-		0.7

QC-DUP#1 75646

DUPLICATES Page 1 SUMMARY DATA SECTION Page 8 Lab id <u>EAS</u> Protocol <u>TA</u> Version <u>Ver 1.0</u> Form <u>DVD-DUP</u> Version <u>3.06</u> Report date <u>11/16/10</u>

SDG 8639

8639-001

ITJ0820-01

DATA SHEET

	8639	Client	<u>Test America, Inc.</u>
	N. Joseph Verville	Contract	ITJ0820
Lab sample id Dept sample id Received	<u>8639-001</u> 10/09/10	Client sample id Location/Matrix Collected/Volume ain of custody id	Boeing-SSFL WATER 10/06/10 19:30 9.8 L

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	0.865	0.44	0.481	3.00	J	80A
Gross Beta	12587472	3.81	1.3	1.93	4.00	J	80B
Tritium	10028178	-13.6	95	162	200	U	н
Radium-226	13982633	0.181	0.36	0.619	1.00	U	RA
Radium-228	15262201	0.071	0.26	0.753	1.00	U	AC
Strontium-90	10098972	-0.130	0.36	0.879	2.00	U	SR
Uranium, Total		0.208	0.025	0.023	1.00	J	υт
Potassium-40	13966002	U		20.3	25.0	U	GAM
Cesium-137	10045973	U		1.62	20.0	U	GAM

Lab id	EAS
Protocol	TA
Version	<u>Ver 1.0</u>
Form	DVD-DS
Version	3.06
Report date	11/16/10

DATA SHEETS Page 1 SUMMARY DATA SECTION Page 9

SDG 8639

Test	AC Matrix WATER
SDG	8639
Contact	N. Joseph Verville

LAB METHOD SUMMARY RADIUM-228 IN WATER

BETA COUNTING

Client <u>Test America, Inc.</u> Contract <u>ITJ0820</u>

RESULTS

LAB	RAW SUF-						
SAMPLE ID	TEST FIX	PLANCHET	CLIENT SAMPLE ID	Radium-228			
Preparation	Preparation batch 7258-125						
S010089-01		8639-001	ITJ0820-01	U			
S010089-02		8639-002	Lab Control Sample	ok			
S010089-03		8639-003	Method Blank	υ			
S010089-04		8639-004	Duplicate (S010089-01)	- U			

METHOD PERFORMANCE

LAB	RAW SUF-	MDA	~	PREP	DILU-								ANAL-	
SAMPLE ID	TEST FIX CLIENT SAMPLE ID	pCi/L	L	FAC	TION	070 10	90	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation	batch 7258-125 20 prep error 1	0.4 % Ref	Eerence	Lab N	lotebool	c No. 7	7258	pg. 12	:5					
S010089-01	ITJ0820-01	0.753	1.80			81		60			29	11/04/10	11/04	GRB-221
S010089-02	Lab Control Sample	0.694	1.80			82		60				11/04/10	11/04	GRB-222
S010089-03	Method Blank	0.720	1.80			80		60				11/04/10	11/04	GRB-223
S010089-04	Duplicate (S010089-01)	1.08	1.80			60		60			29	11/04/10	11/04	GRB-224
Nominal val	ues and limits from method	1.00	1.80			30-105	5	50			180			

PROCEDURES	REFERENCE DWP-894	904.0 Sequential Separation of Actinium-228 and		AVERAGES ± 2 SD FOR 4 SAMPLES	MDA <u>0.812</u> ± <u>0.361</u> YIELD <u>76</u> ± <u>21</u>
		Radium-226 in Drinking Water (>1 Liter Aliquot), rev 5			

Lab id	EAS
Protocol	<u>TA</u>
Version	<u>Ver 1.0</u>
Form	DVD-LMS
Version	3.06
Report date	11/16/10

METHOD SUMMARIES Page 1 SUMMARY DATA SECTION Page 10

SDG 8639

Test	<u>SR</u> Matrix <u>WATER</u>
SDG	8639
Contact	N. Joseph Verville

LAB METHOD SUMMARY

STRONTIUM-90 IN WATER BETA COUNTING Client <u>Test America, Inc.</u> Contract <u>ITJ0820</u>

RESULTS

LAB SAMPLE ID	RAW SUF- TEST FIX	PLANCHET	CLIENT SAMPLE ID	Strontium-90
Preparation	batch 725	8-125		
S010089-01		8639-001	ITJ0820-01	U
S010089-02		8639-002	Lab Control Sample	ok
S010089-03		8639-003	Method Blank	U
S010089-04		8639-004	Duplicate (S010089-01)	- U

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC	DILU- TION	YIELD %	EFF %	COUNT min	FWHM keV	DRIFT KeV		PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 7258-125 2σ prep error 1	.0.4 % Rei	ference	Lab N	lotebool	cNo.	7258	pg. 12	5					
S010089-01	ITJ0820-01	0.879	0.500			79		50			20	10/26/10	10/26	GRB-221
S010089-02	Lab Control Sample	0.577	0.500			80		81				10/26/10	10/26	GRB-206
S010089-03	Method Blank	0.920	0.500			72		50				10/26/10	10/26	GRB-223
S010089-04	Duplicate (S010089-01)	1.02	0.500			81		50			20	10/26/10	10/26	GRB-204
Nominal val	ues and limits from method	2.00	0.500			30-10	5	50			180			

PROCEDURES	REFERENCE	905.0	AVERAGES ± 2 SD	MDA <u>0.849</u> ± <u>0.382</u>
	DWP-380	Strontium in Drinking Water, rev 8	FOR 4 SAMPLES	YIELD <u>78</u> ± <u>8</u>

Lab id	EAS
Protocol	TA
Version	Ver 1.0
Form	DVD-LMS
Version	3.06
Report date	11/16/10

METHOD SUMMARIES Page 2 SUMMARY DATA SECTION Page 11

SDG 8639

Test	80A Matrix WATER
SDG	8639
Contact	N. Joseph Verville

LAB METHOD SUMMARY

GROSS ALPHA IN WATER GAS PROPORTIONAL COUNTING Client <u>Test America, Inc.</u> Contract <u>ITJ0820</u>

RESULTS

LAB	RAW SUF-			
SAMPLE ID	TEST FIX	PLANCHET	CLIENT SAMPLE ID	Gross Alpha
Preparation	batch 725	8-125		
-				
S010089-01	80	8639-001	ITJ0820-01	0.865 J
S010089-02	80	8639-002	Lab Control Sample	ok
S010089-03	80	8639-003	Method Blank	υ
S010089-04	80	8639-004	Duplicate (S010089-01)	ok J
<u></u>				
Nominal val	ues and li	mits from me	ethod RDLs (pCi/L)	3.00

METHOD PERFORMANCE

LAB	RAW SUF-		MDA	~	PREP	DILU-	•							ANAL-	
SAMPLE ID	TEST FIX	CLIENT SAMPLE ID	pCi/L	L	FAC	TION	mg	oło	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation	batch 725	8-125 2σ prep error 2	0.6 % Ref	ference	Lab N	lotebool	c No. '	7258	pg. 12	25					
S010089-01	80	ITJ0820-01	0.481	0.250			10		251			20	10/25/10	10/26	GRB-107
S010089-02	80	Lab Control Sample	0.992	0.250			64		200				10/25/10	10/26	GRB-213
S010089-03	80	Method Blank	0.824	0.250			65		200				10/25/10	10/26	GRB-216
S010089-04	80	Duplicate (S010089-01)	0.524	0.250			10		200			20	10/25/10	10/26	GRB-101
															, , , , , , , , , , , , , , , , , , ,
Nominal val	ues and li	mits from method	3.00	0.250			0-20	D	100			180			

	PROCEDURES	REFERENCE	900.0	AVERAGES ± 2 SD	MDA <u>0.705</u> ± <u>0.489</u>
		DWP-121	Gross Alpha and Gross Beta in Drinking Water,	FOR 4 SAMPLES	RESIDUE <u>37</u> ± <u>63</u>
			rev 10	[
1					

Lab id	EAS
Protocol	TA
Version	<u>Ver 1.0</u>
Form	DVD-LMS
Version	3.06
Report date	11/16/10

METHOD SUMMARIES Page 3 SUMMARY DATA SECTION Page 12

SDG 8639

Test	80B Matrix WATER
SDG	8639
Contact	N. Joseph Verville

LAB METHOD SUMMARY

GROSS BETA IN WATER GAS PROPORTIONAL COUNTING Client <u>Test America, Inc.</u> Contract <u>ITJ0820</u>

RESULTS

LAB	RAW SUF-			
SAMPLE ID	TEST FIX	PLANCHET	CLIENT SAMPLE ID	Gross Beta
	batab 205	0 105		
Preparation	Datch 725	8-125		
S010089-01	80	8639-001	ITJ0820-01	3.81 J
S010089-02	80	8639-002	Lab Control Sample	ok
S010089-03	80	8639-003	Method Blank	υ
S010089-04	80	8639-004	Duplicate (S010089-01)	ok J
S010089-04	80	8639-004	Duplicate (S010089-01)	ok J
Nominal val	ues and li	mits from m	ethod RDLs (pCi/L)	4.00

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX	CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC	DILU- TION	RESID mg	EFF %	COUNT min			PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 725	8-125 2σ prep error 1	1.0 % Re	ference	Lab N	lotebool	c No. 7	7258	pg. 12	5				
S010089-01	80	ITJ0820-01	1.93	0.250			10		251		20	10/25/10	10/26	GRB-107
S010089-02	80	Lab Control Sample	2.23	0.250			64		200			10/25/10	10/26	GRB-213
S010089-03	80	Method Blank	1.48	0.250			65		200			10/25/10	10/26	GRB-216
S010089-04	80	Duplicate (S010089-01)	1.40	0.250			10		200		20	10/25/10	10/26	GRB-101
Nominal val	ues and li	mits from method	4.00	0.250			0-200)	100		 180			

PROCEDURES	REFERENCE	900.0	AVERAGES ± 2 SD	MDA <u>1.76</u> ± 0	.781
	DWP-121	Gross Alpha and Gross Beta in Drinking Water,	FOR 4 SAMPLES	RESIDUE <u>37</u> ± <u>6</u>	3
		rev 10			

EAS
TA
<u>Ver 1.0</u>
DVD-LMS
3.06
11/16/10

.

METHOD SUMMARIES Page 4 SUMMARY DATA SECTION Page 13

SDG 8639

Test	GAM_ Matrix WATER
SDG	8639
Contact	N. Joseph Verville

LAB METHOD SUMMARY

Client Test America, Inc. Contract <u>ITJ0820</u>

GAMMA EMITTERS IN WATER

GAMMA SPECTROSCOPY

RESULTS

LAB SAMPLE ID	RAW SUF- TEST FIX	PLANCHET	CLIENT SAMPLE ID	Cobalt-60	Cesium-	137
Preparation	h batch 725	8-125				
S010089-01		8639-001	ITJ0820-01		U	
S010089-02		8639-002	Lab Control Sample		ok	
S010089-03		8639-003	Method Blank		U,	
S010089-04		8639-004	Duplicate (S010089-01)		-	U

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC		YIELD %	EFF %	COUNT min	FWHM keV		PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 7258-125 2σ prep error	7.0 % Re:	ference	Lab N	lotebool	k No. '	7258	pg. 12	25				
S010089-01	ITJ0820-01		2.00					605		29	10/25/10	11/04	01,01,00
S010089-02	Lab Control Sample		2.00					636			10/25/10	11/05	01,04,00
S010089-03	Method Blank		2.00					636			10/25/10	11/05	01,01,00
S010089-04	Duplicate (S010089-01)		2.00					636		30	10/25/10	11/05	MB,05,00
Nominal val	ues and limits from method	6.00	2.00					400		180			

PROCEDURES	REFERENCE	901.1
	DWP-100	Preparation of Drinking Water Samples for Gamma
		Spectroscopy, rev 5

Lab id	EAS
Protocol	<u>TA</u>
Version	<u>Ver 1.0</u>
Form	DVD-LMS
Version	3.06
Report date	11/16/10

METHOD SUMMARIES Page 5 SUMMARY DATA SECTION Page 14

SDG 8639

Test	<u>U T</u> Matrix <u>WATER</u>
SDG	8639
Contact	N. Joseph Verville

LAB METHOD SUMMARY

URANIUM, TOTAL KINETIC PHOSPHORIMETRY, UG Client <u>Test America, Inc.</u> Contract <u>ITJ0820</u>

RESULTS

LAB	RAW SUF-			Uranium,
SAMPLE ID	TEST FIX	PLANCHET	CLIENT SAMPLE ID	Total
Preparation	hatch 725	8-125		
-	i baccii 725			
S010089-01		8639-001	ITJ0820-01	0.208 J
S010089-02		8639-002	Lab Control Sample	ok
S010089-03		8639-003	Method Blank	υ
S010089-04		8639-004	Duplicate (S010089-01)	ok J
•				
Nominal val	lues and li	mits from m	ethod RDLs (pCi/L)	1.00

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX CLIENT SAMPLE ID	MDA ALI pCi/L L	-	DILU- TION	YIELD %	EFF %	COUNT min	FWHM keV	 	PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 7258-125 2σ prep error	Referer	ce Lab M	Noteboo	k No.	7258	pg. 12	25	 			
S010089-01	ITJ0820-01	0.023 0.020	0						20	10/26/10	10/26	KPA-001
S010089-02	Lab Control Sample	0.225 0.020	0							10/26/10	10/26	KPA-001
S010089-03	Method Blank	0.023 0.020	0							10/26/10	10/26	KPA-001
S010089-04	Duplicate (S010089-01)	0.023 0.020	0						20	10/26/10	10/26	KPA-001
Nominal val	ues and limits from method	1.00 0.020	0						 180			

PROCEDURES REFERENCE D5174

AVERAGES ± 2 SD	MDA <u>0.074</u> ± <u>0.202</u>	
FOR 4 SAMPLES	YIELD ±	

EAS
TA
Ver 1.0
DVD-LMS
3.06
11/16/10

METHOD SUMMARIES Page 6 SUMMARY DATA SECTION Page 15

SDG 8639

Test	H Matrix WATER
SDG	8639
Contact	N. Joseph Verville

LAB METHOD SUMMARY

TRITIUM IN WATER

Client <u>Test America, Inc.</u> Contract <u>ITJ0820</u>

RESULTS

LAB	RAW SUF-			
SAMPLE ID	TEST FIX PLANCHET	CLIENT SAMPLE ID	Tritium	
Preparation	n batch 7258-125			·
S010089-01	8639-001	ITJ0820-01	U	
S010089-02	8639-002	Lab Control Sample	ok	
5010089-03	8639-003	Method Blank	υ	
S010089-04	8639-004	Duplicate (S010089-01)	- U	

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX	CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC		YIELD %	EFF %	COUNT min		DRIFT KeV		PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 725	8-125 2σ prep error	10.0 %]	Reference	Lab 1	Notebool	c No.	7258	pg. 12	25					
S010089-01		ITJ0820-01	162	0.0100			100		150			30	11/04/10	11/05	LSC-004
S010089-02		Lab Control Sample	162	0.100			10		150				11/04/10	11/05	LSC-004
S010089-03		Method Blank	164	0.100			10		150				11/04/10	11/05	LSC-004
S010089-04		Duplicate (S010089-01)	164	0.0100			100		150			30	11/04/10	11/05	LSC-004
Nominal val	ues and li	mits from method	200	0.0100					100			180			

PROCEDURES	REFERENCE DWP-212	906.0 Tritium in Drinking Water by Distillation, rev 8	AVERAGES <u>+</u> 2 SD FOR 4 SAMPLES	MDA <u>163</u> ± <u>2.31</u> YIELD <u>55</u> ± <u>104</u>

Lab id	EAS
Protocol	<u>TA</u>
Version	<u>Ver 1.0</u>
Form	DVD-LMS
Version	3.06
Report date	11/16/10

METHOD SUMMARIES Page 7 SUMMARY DATA SECTION Page 16

SDG 8639

Test	<u>RA</u> Matrix <u>WATER</u>
SDG	8639
Contact	N. Joseph Verville

LAB METHOD SUMMARY

RADIUM-226 IN WATER RADON COUNTING

Client Test America, Inc. Contract ITJ0820

RESULTS

LAB SAMPLE ID	RAW SUF- TEST FIX	PLANCHET	CLIENT SAMPLE ID	Radium-226
Preparation	batch 725	8-125		
S010089-01		8639-001	ITJ0820-01	U
S010089-02		8639-002	Lab Control Sample	ok
S010089-03		8639-003	Method Blank	U
S010089-04		8639-004	Duplicate (S010089-01)	- U
Nominal val	ues and li	mits from m	ethod RDLs (pCi/L)	1.00

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC	DILU- TION	YIELD %	EFF %	COUNT min	FWHM keV	 	PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 7258-125 2σ prep error 16	5.4 % Rei	ference	Lab N	lotebool	cNo.'	7258	pg. 12	:5				
S010089-01	ITJ0820-01	0.619	0.100			100		100		24	10/30/10	10/30	RN-010
S010089-02	Lab Control Sample	0.630	0.100			100		100			10/30/10	10/30	RN-011
S010089-03	Method Blank	0.619	0.100			100		100			10/30/10	10/30	RN-015
S010089-04	Duplicate (S010089-01)	0.621	0.100			100		100		24	10/30/10	10/30	RN-014
Nominal val	ues and limits from method	1.00	0.100					100		180			

PROCEDURES	REFERENCE	903.1	AVERAGES ± 2 SD	MDA <u>0.622</u> ± <u>0.011</u>
	DWP-881A	Ra-226 Screening in Drinking Water, rev 6	FOR 4 SAMPLES	YIELD <u>100</u> ± <u>0</u>

EAS
TA
<u>Ver 1.0</u>
DVD-LMS
3.06
11/16/10

METHOD SUMMARIES Page 8 SUMMARY DATA SECTION Page 17

THIS PAGE LEFT INTENTIONALLY BLANK

APPENDIX G

Section 23

Outfall 009 – October 20, 2010 MEC^X Data Validation Report THIS PAGE LEFT INTENTIONALLY BLANK

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: ITJ2060

Prepared by

MEC^x, LP 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Contract Task Order:	Boeing SSFL NPDES 1261.100D.00
Sample Delivery Group:	ITJ2060
Project Manager:	B. Kelly
Matrix:	Water
QC Level:	IV
No. of Samples:	1
No. of Reanalyses/Dilutions:	0
Laboratory:	TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 009 (COMPOSITE)	ITJ2060	S010169-01	WATER	10/20/2010 15:15	245.1, 245.1 (Diss), ASTM 5174- 91, 900.0 MOD, 901.1 MOD, 903.1 MOD, 904 MOD, 905 MOD, 906.0 MOD, 1613, SM2540D

II. Sample Management

No anomalies were observed regarding sample management. Eberline did not note the temperature upon receipt; however, due to the nonvolatile nature of the analytes, no qualifications were required. The samples in this SDG were received at the remaining laboratories within the temperature limits of $4^{\circ}C \pm 2^{\circ}C$. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. Custody seals were intact upon receipt at TestAmerica-Sacramento and Eberline. As the samples were couriered to TestAmerica-Irvine, custody seals were not required.

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
Ι	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
А	Not applicable.	ICP Serial Dilution %D were not within control limits.
Μ	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

- D The analysis with this flag should not be used because another more technically sound analysis is available.
- P Instrument performance for pesticides was poor.
- DNQ The reported result is above the method detection limit but is less than the reporting limit.
- *II, *III Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

The analysis with this flag should not be used because another more technically sound analysis is available.

Post Digestion Spike recovery was not within control limits.

The reported result is above the method detection limit but is less than the reporting limit.

Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin Date Reviewed: December 15, 2010

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (9/05).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed with the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had detects between the EDL and the RL for most target compounds. Several target compounds were reported as EMPCs in the method blank; however, due to the extent of the method blank contamination, the reviewer considered it appropriate to use the EMPCs to qualify sample results. The method blank result for OCDD was insufficient to qualify the sample result. All other target compounds detected

in the method blank were qualified as nondetected, "U," at the EDL or at the level of contamination. All sample totals containing one or more peaks detected in the method blank were qualified as estimated, "J."

- Blank Spikes and Laboratory Control Samples: OPR recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating a representative number of reportable sample results. Any individual isomers reported as EMPCs were qualified as estimated and nondetected "UJ," and the EDL raised to the level of the EMPC. Any totals including EMPC peaks were qualified as estimated, "J." Any detects reported between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

B. EPA METHOD 245.1—Mercury

Reviewed By: P. Meeks Date Reviewed: December 14, 2010

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Method 245.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: The analytical holding time, 28 days for mercury, was met.
- Tuning: Not applicable to this method.

- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all mercury initial and continuing calibration recoveries were within 85-115%. The mercury CRI recoveries were within the control limits of 70-130%.
- Blanks: Method blanks and CCBs had no applicable detects.
- Interference Check Samples: Not applicable to this analysis.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the sample in this SDG for dissolved mercury. Recoveries and the RPD were within the laboratoryestablished control limit.
- Serial Dilution: No serial dilution analyses were performed on the sample in this SDG.
- Internal Standards Performance: Not applicable to this method.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks Date Reviewed: December 15, 2010

The sample listed in Table 1 for these analyses were validated based on the guidelines outlined in the *EPA Methods* 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (10/04).

- Holding Times: The tritium sample was analyzed within 180 days of collection. All remaining aliquots were prepared within the five-day analytical holding time for unpreserved samples.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability. The gross alpha detector efficiency was below 20%; therefore, gross alpha detected in the sample was qualified as estimated, "J." The remaining detector efficiencies were greater than 20%. The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. All chemical yields were at least 40% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. All KPA recoveries were within 90-110% and were deemed acceptable.
- Blanks: There were no analytes detected in the method blanks.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.
- Laboratory Duplicates: Laboratory duplicate analyses were performed on the sample in this SDG. The RPDs were within the laboratory-established control limits or within ± the 2-sigma error if the result or duplicate were less than the reporting limit.
- Matrix Spike/Matrix Spike Duplicate: No matrix spike or MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. Any detects between the MDA and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDA. Total uranium, normally reported in aqueous units, was converted to pCi/L using the conversion factor of 0.67 for naturally occurring uranium
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC

data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- Field Duplicates: There were no field duplicate samples identified for this SDG.

D. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks Date Reviewed: December 14, 2010

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the *MEC^x* Data Validation Procedure for General Minerals (DVP-6, Rev. 0), Standard Method 2540D, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: The analytical holding time, seven days from collection, was met.
- Calibration: Balance calibration logs were provided and found to be acceptable.
- Blanks: TSS was not detected in the method blank.
- Blank Spikes and Laboratory Control Samples: The recovery was within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analysis was performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: Not applicable to this analysis.
- Sample Result Verification: Calculations were verified and the sample result reported on the sample result summary was verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- Field Duplicates: There were no field duplicate samples identified for this SDG.

Validated Sample Result Forms ITJ2060

Sample Name	Outfall 009 (c	composite)	Matri	ix Type:	WATER	I.	Validation Le	vel: IV
Lab Sample Name:	ITJ2060-02	Sam	ple Date:	10/20/201	10 3:15:00 A	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Uranium, Total	NA	0.076	1	0.02	pCi/L	Jb	J	DNQ
Analysis Method	d 900							
Sample Name	Outfall 009 (c	omposite)	Matri	ix Type:	WATER	V	Validation Le	vel: IV
Lab Sample Name:	ITJ2060-02	Sam	ple Date:	10/20/201	10 3:15:00 A	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Gross Alpha	12587461	0.142	3	0.061	pCi/L	Jb	J	C, DNQ
Gross Beta	12587472	2.31	4	0.829	pCi/L	Jb	1	DNQ
Analysis Method	d 901.1							
Sample Name	Outfall 009 (c	composite)	Matri	WATER	۲	Validation Le	vel: IV	
Lab Sample Name:	ITJ2060-02	Sam	ple Date:	10/20/201	10 3:15:00 A	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Cesium-137	10045973	ND	20	0.863	pCi/L	U	U	
Potassium-40	13966002	ND	25	12	pCi/L	U	U	
Analysis Method	d 903.1							
Sample Name	Outfall 009 (c	omposite)	Matri	ix Type:	WATER	V	Validation Le	vel: IV
Lab Sample Name:	ITJ2060-02	Sam	ple Date:	10/20/201	10 3:15:00 A	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Radium-226	13982633	0.026	1	0.671	pCi/L	U	U	
Analysis Method	d 904							
Sample Name	Outfall 009 (c	composite)	Matr	ix Type:	WATER	V	Validation Le	vel: IV
Lab Sample Name:	ITJ2060-02	Sam	ple Date:	10/20/201	10 3:15:00 A	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes

Thursday, December 16, 2010

Sample Name	Outfall 009 (c	composite)	Matri	x Type:	WATER	V	alidation Le	vel: IV
Lab Sample Name:	ITJ2060-02	Sam	ple Date:	10/20/20	10 3:15:00 A	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Strontium-90	10098972	0.102	2	1.28	pCi/L	U	U	
Analysis Metho	od 906							
Sample Name	Outfall 009 (c	composite)	Matri	x Type:	WATER	V	alidation Le	vel: IV
Lab Sample Name:	ITJ2060-02	Sam	ple Date:	10/20/20	10 3:15:00 Al	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Tritium	10028178	-17.9	200	267	pCi/L	U	U	
Analysis Metho	od EPA 2	245.1						
Sample Name	Outfall 009 (c	composite)	Matri	x Type:	Water	V	alidation Le	vel: IV
Lab Sample Name:	ITJ2060-02	Sam	ple Date:	10/20/20	10 3:15:00 A	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury	7439-97-6	ND	0.20	0.10	ug/l		U	
Analysis Metho	od EPA 2	245.1-L	Diss					
Sample Name	Outfall 009 (c	composite)	Matri	x Type:	Water	V	alidation Le	vel: IV
Lab Sample Name:	ITJ2060-02	Sam	ple Date:	10/20/20	10 3:15:00 A	М		
Analyte	CAS No	Result	RL	MDL	Result	Lab	Validation	Validation
		Value			Units	Qualifier	Qualifier	Notes

Analysis Method 905

Sample Name	Outfall 009 (c	Validation Le	ation Level: IV					
Lab Sample Name:	ITJ2060-02	Sam	ple Date:	10/20/2010	3:15:00 A	М		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
,2,3,4,6,7,8-HpCDD	35822-46-9	ND	0.00005	0.0000005	ug/L	J, B	U	В
,2,3,4,6,7,8-HpCDF	67562-39-4	ND	0.00005	0.0000004	ug/L	J, Q, B	U	В
,2,3,4,7,8,9-HpCDF	55673-89-7	0.000000	0.00005	0.0000006	ug/L	J, Q	UJ	*Ш
,2,3,4,7,8-HxCDD	39227-28-6	ND	0.00005	0.0000005	ug/L	J, Q, B	U	В
,2,3,4,7,8-HxCDF	70648-26-9	ND	0.00005	0.0000002	ug/L	J, Q, B	U	В
1,2,3,6,7,8-HxCDD	57653-85-7	ND	0.00005	0.0000004	ug/L	J, Q, B	U	В
1,2,3,6,7,8-HxCDF	57117-44-9	ND	0.00005	0.0000002	ug/L	J, Q, B	U	В
1,2,3,7,8,9-HxCDD	19408-74-3	ND	0.00005	0.0000004	ug/L	J, Q, B	U	В
,2,3,7,8,9-HxCDF	72918-21-9	ND	0.00005	0.0000003	ug/L		U	
1,2,3,7,8-PeCDD	40321-76-4	ND	0.00005	0.0000005	ug/L		U	
,2,3,7,8-PeCDF	57117-41-6	ND	0.00005	0.0000004	ug/L		U	
2,3,4,6,7,8-HxCDF	60851-34-5	ND	0.00005	0.0000002	ug/L	J, Q, B	U	В
2,3,4,7,8-PeCDF	57117-31-4	ND	0.00005	0.0000005	ug/L		U	
2,3,7,8-TCDD	1746-01-6	ND	0.00001	0.0000004	ug/L		U	
2,3,7,8-TCDF	51207-31-9	ND	0.00001	0.0000002	ug/L		U	
CDD	3268-87-9	0.0002	0.0001	0.0000015	ug/L			
OCDF	39001-02-0	ND	0.0001	0.0000004	ug/L	J, B	U	В
Fotal HpCDD	37871-00-4	0.000034	0.00005	0.0000005	ug/L	J, B	J	B, DNQ
Fotal HpCDF	38998-75-3	0.000007	0.00005	0.0000004	ug/L	J, Q, B	J	B, DNQ, *II
Fotal HxCDD	34465-46-8	0.000003	0.00005	0.0000004	ug/L	J, Q, B	J	B, DNQ, *II
Fotal HxCDF	55684-94-1	0.000002	0.00005	0.0000002	ug/L	J, Q, B	J	B, DNQ, *II
Fotal PeCDD	36088-22-9	ND	0.00005	0.0000005	ug/L		U	
Fotal PeCDF	30402-15-4	ND	0.00005	0.0000004	ug/L		U	
Fotal TCDD	41903-57-5	ND	0.00001	0.0000004	ug/L		U	
Total TCDF	55722-27-5	ND	0.00001	0.0000002	ug/L		U	
Analysis Method	d SM 25	540D						
Sample Name	Outfall 009 (c	omposite)	Matri	x Type: V	Water	V	Validation Le	vel: IV
Lab Sample Name:	ITJ2060-02	Sam	nle Date:	10/20/2010) 3:15:00 A	М		

Analysis Method EPA-5 1613B

Thursday, December 16, 2010

CAS No

TSS

Result

Value

22

RL

10

MDL

1.0

Result Lab

Qualifier

Units

mg/l

Analyte

Total Suspended Solids

Validation Validation

Notes

Qualifier

APPENDIX G

Section 24

Outfall 009 – October 20, 2010 Test America Analytical Laboratory Report THIS PAGE LEFT INTENTIONALLY BLANK

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project: Routine Outfall 009 2010 Routine Outfall 009

Sampled: 10/20/10 Received: 10/20/10 Issued: 12/14/10 16:23

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 2 pages, are

included and are an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID

ITJ2060-01 ITJ2060-02 CLIENT ID Outfall 009 (grab) Outfall 009 (composite) MATRIX Water Water

I certify under penalty of perjury that the information contained in this report and all attachments was produced in accordance with the indicated methods and laboratory standard operating procedures, except as noted, and are complete and accurate to the best of my knowledge and belief. Subcontract laboratory reports that are attached have been evaluated for completeness and quality control acceptability.

Reviewed By:

Debby Wilson

TestAmerica Irvine Debby Wilson Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009 2010 Routine Outfall 009 Report Number: ITJ2060

Sampled: 10/20/10 Received: 10/20/10

HEXANE EXTRACTABLE MATERIAL MDL Reporting Sample Dilution Date Data Qualifiers Method Analyte Batch Limit Limit Result Factor Analyzed Analyst Sample ID: ITJ2060-01 (Outfall 009 (grab) - Water) Reporting Units: mg/l Hexane Extractable Material (Oil & EPA 1664A 10K0305 1.4 4.8 ND 1 BLP 11/03/10 Grease)

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/BoeingProject ID:Routine Outfall 009 2010618 Michillinda Avenue, Suite 200Routine Outfall 009Sampled:10/20/10Arcadia, CA 91007Report Number:ITJ2060Received:10/20/10Attention: Bronwyn KellyKellyKellyKellyKelly

METALS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ITJ2060-02 (Outfall 009 (c	composite) - Water)								
Reporting Units: ug/l									
Mercury	EPA 245.1	10J2549	0.10	0.20	ND	1	DB	10/22/10	
Antimony	EPA 200.8	10K0103	0.30	2.0	0.50	1	RDC	11/02/10	Ja
Cadmium	EPA 200.8	10K0103	0.10	1.0	ND	1	RDC	11/02/10	
Copper	EPA 200.8	10K0103	0.50	2.0	3.9	1	RDC	11/02/10	
Lead	EPA 200.8	10K0103	0.20	1.0	0.95	1	RDC	11/02/10	Ja
Thallium	EPA 200.8	10K0103	0.20	1.0	ND	1	RDC	11/02/10	

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009 2010 Routine Outfall 009 Report Number: ITJ2060

Sampled: 10/20/10 Received: 10/20/10

DISSOLVED METALS										
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers	
Sample ID: ITJ2060-02 (Outfall 009 (c	Sample ID: ITJ2060-02 (Outfall 009 (composite) - Water) - cont.									
Reporting Units: ug/l										
Mercury	EPA 245.1-Diss	10J2952	0.10	0.20	ND	1	DB	10/25/10		
Antimony	EPA 200.8-Diss	10K0214	0.30	2.0	0.50	1	NH	11/03/10	Ja	
Cadmium	EPA 200.8-Diss	10K0214	0.10	1.0	ND	1	NH	11/02/10		
Copper	EPA 200.8-Diss	10K0214	0.50	2.0	2.6	1	NH	11/02/10		
Lead	EPA 200.8-Diss	10K0214	0.20	1.0	0.28	1	RDC	11/03/10	Ja	
Thallium	EPA 200.8-Diss	10K0214	0.20	1.0	ND	1	NH	11/02/10	С	

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009 2010 Routine Outfall 009 Report Number: ITJ2060

Sampled: 10/20/10 Received: 10/20/10

INORGANICS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ITJ2060-02 (Outfall 009 (composite) - Water) - cont.									
Reporting Units: mg/l									
Chloride	EPA 300.0	10J2282	0.25	0.50	2.9	1	NN	10/21/10	
Total Cyanide	SM4500CN-E	10J2526	0.0022	0.0050	ND	1	HH	10/21/10	
Nitrate/Nitrite-N	EPA 300.0	10J2282	0.15	0.26	1.1	1	NN	10/21/10	
Sulfate	EPA 300.0	10J2282	0.20	0.50	7.3	1	NN	10/21/10	
Total Dissolved Solids	SM2540C	10J2573	1.0	10	120	1	MC	10/22/10	
Total Suspended Solids	SM 2540D	10J3002	1.0	10	22	1	DC	10/25/10	

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly		5	Routine Ou	utfall 009 201 utfall 009	0	1	10/20/10 10/20/10		
8640									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ITJ2060-02 (Outfall 009 (composite) - Water) - cont.									
Reporting Units: pCi/L									
Uranium, Total	8640	8640	0.02	1	0.076	1	CSS	11/10/10	Jb

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly		5	roject ID: Routine Outfall 009 2010 Routine Outfall 009 Number: ITJ2060				Sampled: 10/20/10 Received: 10/20/10		
			900						
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ITJ2060-02 (Outfall 009 (composite) - Water)	- cont.							
Reporting Units: pCi/L									
Gross Alpha	900	8640	0.061	3	0.142	1	DVP	11/02/10	Jb
Gross Beta	900	8640	0.829	4	2.31	1	DVP	11/02/10	Jb

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly		Project ID: rt Number:	Routine Outfall 009 2010 Routine Outfall 009 ITJ2060				1	: 10/20/10 : 10/20/10			
901.1											
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers		
Sample ID: ITJ2060-02 (Outfall 009 (co	nposite) - Water)	- cont.									
Reporting Units: pCi/L											
Cesium-137	901.1	8640	0.863	20	ND	1	RFM	11/20/10	U		
Potassium-40	901.1	8640	12	25	ND	1	RFM	11/20/10	U		

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly		Project ID: rt Number:	Routine Outfall 009 2010 Routine Outfall 009 ITJ2060				Sampled: 10/20/10 Received: 10/20/10			
Analyte	Method	Batch	903.1 MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Oualifiers	
Sample ID: ITJ2060-02 (Outfall 009 (co Reporting Units: pCi/L Radium-226			0.671	1	0.026	1	TM	11/10/10	U	

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly		Project ID: t Number:	Routine Outfall 009 2010 Routine Outfall 009 ITJ2060				Sampled: 10/20/10 Received: 10/20/10			
Analyte	Method	Batch	904 MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Oualifiers	
Sample ID: ITJ2060-02 (Outfall 009 (con Reporting Units: pCi/L Radium-228			0.835	1	-0.077	1	Asm	11/04/10	U	

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly		Project ID: t Number:	Routine O	utfall 009 201 utfall 009	0			10/20/10 10/20/10	
Analyte	Method	Batch	905 MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Analyst	Date Analyzed	Data Qualifiers
Sample ID: ITJ2060-02 (Outfall 009 (con Reporting Units: pCi/L Strontium-90	nposite) - Water) 905	- cont. 8640	1.28	2	0.102	1	AI	11/01/10	U

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly		Project ID: rt Number:	Routine Outfall 009 2010 Routine Outfall 009 ITJ2060				Sampled: 10/20/10 Received: 10/20/10				
			906 MDL	Reporting	Sample	Dilution		Date	Data		
Analyte	Method	Batch	Limit	Limit	Result	Factor	Analyst	Analyzed	Qualifiers		
Sample ID: ITJ2060-02 (Outfall 009 (composite) - Water) - cont.											
Reporting Units: pCi/L											
Tritium	906	8640	267	200	-17.9	1	JO	11/11/10	U		

TestAmerica Irvine

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009 2010 Routine Outfall 009 Report Number: ITJ2060

Sampled: 10/20/10 Received: 10/20/10

EPA-5 1613Bx									
				Reporting	Sample			Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Analyst	Analyzed	Qualifiers
Sample ID: ITJ2060-02 (Outfall 009 (Reporting Units: ug/L	composite) - Water) -	cont.							
1,2,3,4,6,7,8-HpCDD	EPA-5 1613B	301452	0.00000056	5 0.00005	0.000014	1.01	MO	11/02/10	J, B
1,2,3,4,6,7,8-HpCDF	EPA-5 1613B	301452	0.00000049	0.00005	0.000003	1.01	MO	11/02/10	J, Q, B
1,2,3,4,7,8,9-HpCDF	EPA-5 1613B		0.00000067		0.00000071	1.01	MO	11/02/10	J, Q
1,2,3,4,7,8-HxCDD	EPA-5 1613B		0.0000054		0.00000062		MO	11/02/10	J, Q, B
1,2,3,4,7,8-HxCDF	EPA-5 1613B		0.0000029		0.0000033		MO	11/02/10	J, Q, B
1,2,3,6,7,8-HxCDD	EPA-5 1613B		0.00000046		0.00000055		MO	11/02/10	J, Q, B
1,2,3,6,7,8-HxCDF	EPA-5 1613B		0.00000020		0.00000055		MO	11/02/10	J, Q, B
1,2,3,7,8,9-HxCDD	EPA-5 1613B		0.00000048		0.00000065		MO	11/02/10	J, Q, B
1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD	EPA-5 1613B EPA-5 1613B		0.0000005		ND ND	1.01 1.01	MO MO	11/02/10 11/02/10	
1,2,3,7,8-PeCDF	EPA-5 1613B		0.00000044		ND	1.01	MO	11/02/10	
2,3,4,6,7,8-HxCDF	EPA-5 1613B		0.0000000		0.00000037		MO	11/02/10	J, Q, B
2,3,4,7,8-PeCDF	EPA-5 1613B		0.00000052		ND	1.01	MO	11/02/10	v, <u>v</u> , <u>b</u>
2,3,7,8-TCDD	EPA-5 1613B		0.00000042		ND	1.01	MO	11/02/10	
2,3,7,8-TCDF	EPA-5 1613B		0.00000026		ND	1.01	MO	11/02/10	
OCDD	EPA-5 1613B	301452	0.0000015	0.0001	0.0002	1.01	MO	11/02/10	В
OCDF	EPA-5 1613B	301452	0.0000004	0.0001	0.00001	1.01	MO	11/02/10	J, B
Total HpCDD	EPA-5 1613B	301452	0.0000056	5 0.00005	0.000034	1.01	MO	11/02/10	J, B
Total HpCDF	EPA-5 1613B		0.00000049		0.0000078	1.01	MO	11/02/10	J, Q, B
Total HxCDD	EPA-5 1613B		0.0000046		0.0000037	1.01	MO	11/02/10	J, Q, B
Total HxCDF	EPA-5 1613B		0.0000020		0.0000028	1.01	MO	11/02/10	J, Q, B
Total PeCDD	EPA-5 1613B		0.0000005		ND	1.01	MO	11/02/10	
Total PeCDF	EPA-5 1613B		0.0000044		ND	1.01	MO	11/02/10	
Total TCDD	EPA-5 1613B		0.00000042		ND	1.01	MO	11/02/10	
Total TCDF	EPA-5 1613B	301452	0.0000020	0.00001	ND	1.01	MO	11/02/10	
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD (Surrogate: 13C-1,2,3,4,6,7,8-HpCDF (99 % 91 %				
Surrogate: 13C-1,2,3,4,0,7,8-11pCDF (2)	,				91 % 91 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDD (32					92 %				
Surrogate: 13C-1,2,3,4,7,8-HxCDF (26	· · · · · · · · · · · · · · · · · · ·				89 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDD (28	· · · · · · · · · · · · · · · · · · ·				87 %				
Surrogate: 13C-1,2,3,6,7,8-HxCDF (26					85 %				
Surrogate: 13C-1,2,3,7,8,9-HxCDF (29	-147%)				90 %				
Surrogate: 13C-1,2,3,7,8-PeCDD (25-1	81%)				94 %				
Surrogate: 13C-1,2,3,7,8-PeCDF (24-1	85%)				90 %				
Surrogate: 13C-2,3,4,6,7,8-HxCDF (28	-136%)				88 %				
Surrogate: 13C-2,3,4,7,8-PeCDF (21-1					87 %				
Surrogate: 13C-2,3,7,8-TCDD (25-164)					92 %				
Surrogate: 13C-2,3,7,8-TCDF (24-1699	%)				85 %				
Surrogate: 13C-OCDD (17-157%)					96 %				
Surrogate: 37Cl4-2,3,7,8-TCDD (35-19	/%)				94 %				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009 2010 Routine Outfall 009 Report Number: ITJ2060

Sampled: 10/20/10 Received: 10/20/10

SHORT HOLD TIME DETAIL REPORT

Sample ID: Outfall 009 (composite) (ITJ206	Hold Time (in days) 0-02) - Water	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
EPA 300.0	2	10/20/2010 03:15	10/20/2010 19:45	10/20/2010 22:00	10/21/2010 03:50
Filtration	1	10/20/2010 03:15	10/20/2010 19:45	10/21/2010 20:06	10/21/2010 20:08

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009 2010 Routine Outfall 009 Report Number: ITJ2060

Sampled: 10/20/10 Received: 10/20/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

HEXANE EXTRACTABLE MATERIAL

Analyte Batch: 10K0305 Extracted: 11/03/10	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Blank Analyzed: 11/03/2010 (10K0305-J Hexane Extractable Material (Oil & Grease)	BLK1) ND	5.0	mg/l							
LCS Analyzed: 11/03/2010 (10K0305-BS Hexane Extractable Material (Oil & Grease)	51) 18.3	5.0	mg/l	20.0		92	78-114			MNR1
LCS Dup Analyzed: 11/03/2010 (10K03) Hexane Extractable Material (Oil & Grease)	0 5-BSD1) 18.3	5.0	mg/l	20.0		92	78-114	0	11	

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009 2010 Routine Outfall 009 Report Number: ITJ2060

Sampled: 10/20/10 Received: 10/20/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10J2549 Extracted: 10/21/10										
Blank Analyzed: 10/22/2010 (10J2549-B	LK1)									
Mercury	ND	0.20	ug/l							
LCS Analyzed: 10/22/2010 (10J2549-BS	1)									
Mercury	8.51	0.20	ug/l	8.00		106	85-115			
Matrix Spike Analyzed: 10/22/2010 (10J	2549-MS1)				Source: I	TJ1953-01	1			
Mercury	8.38	0.20	ug/l	8.00	ND	105	70-130			
Matrix Spike Dup Analyzed: 10/22/2010	(10J2549-MS	5D1)			Source: I	TJ1953-01	1			
Mercury	8.58	0.20	ug/l	8.00	ND	107	70-130	2	20	
Batch: 10K0103 Extracted: 11/01/10										
Blank Analyzed: 11/02/2010 (10K0103-E	BLK1)									
Antimony	ND	2.0	ug/l							
Cadmium	ND	1.0	ug/l							
Copper	ND	2.0	ug/l							
Lead	ND	1.0	ug/l							
Thallium	ND	1.0	ug/l							
LCS Analyzed: 11/02/2010 (10K0103-BS	51)									
Antimony	79.0	2.0	ug/l	80.0		99	85-115			
Cadmium	79.8	1.0	ug/l	80.0		100	85-115			
Copper	75.6	2.0	ug/l	80.0		94	85-115			
Lead	73.3	1.0	ug/l	80.0		92	85-115			
Thallium	71.7	1.0	ug/l	80.0		90	85-115			

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009 2010 Routine Outfall 009 Report Number: ITJ2060

Sampled: 10/20/10 Received: 10/20/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10K0103 Extracted: 11/01/10										
Matrix Spike Analyzed: 11/02/2010 (10K	(0103-MS1)				Source: I	TJ2326-01	l			
Antimony	81.7	2.0	ug/l	80.0	ND	102	70-130			
Cadmium	79.4	1.0	ug/l	80.0	ND	99	70-130			
Copper	77.0	2.0	ug/l	80.0	6.61	88	70-130			
Lead	65.9	1.0	ug/l	80.0	1.45	81	70-130			
Thallium	64.9	1.0	ug/l	80.0	ND	81	70-130			
Matrix Spike Dup Analyzed: 11/02/2010	(10K0103-M	ISD1)			Source: I	TJ2326-01	l			
Antimony	82.5	2.0	ug/l	80.0	ND	103	70-130	1	20	
Cadmium	79.6	1.0	ug/l	80.0	ND	99	70-130	0.2	20	
Copper	78.5	2.0	ug/l	80.0	6.61	90	70-130	2	20	
Lead	67.3	1.0	ug/l	80.0	1.45	82	70-130	2	20	
Thallium	66.6	1.0	ug/l	80.0	ND	83	70-130	3	20	

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009 2010 Routine Outfall 009 Report Number: ITJ2060

Sampled: 10/20/10 Received: 10/20/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10J2952 Extracted: 10/25/10										
Blank Analyzed: 10/25/2010 (10J2952-Bl	LK1)									
Mercury	ND	0.20	ug/l							
LCS Analyzed: 10/25/2010 (10J2952-BS)	1)									
Mercury	7.83	0.20	ug/l	8.00		98	85-115			
Matrix Spike Analyzed: 10/25/2010 (10J	2952-MS1)				Source: I	TJ2060-02	2			
Mercury	7.87	0.20	ug/l	8.00	ND	98	70-130			
Matrix Spike Dup Analyzed: 10/25/2010	(10J2952-M	SD1)			Source: I	TJ2060-02	2			
Mercury	7.77	0.20	ug/l	8.00	ND	97	70-130	1	20	
Batch: 10K0214 Extracted: 11/02/10										
Blank Analyzed: 11/02/2010-11/03/2010	(10K0214-BI	.K1)								
Antimony	ND	2.0	ug/l							
Cadmium	ND	1.0	ug/l							
Copper	ND	2.0	ug/l							
Lead	ND	1.0	ug/l							
Thallium	ND	1.0	ug/l							
LCS Analyzed: 11/02/2010-11/03/2010 (1	0K0214-BS1)								
Antimony	81.6	2.0	ug/l	80.0		102	85-115			
Cadmium	81.6	1.0	ug/l	80.0		102	85-115			
Copper	79.3	2.0	ug/l	80.0		99	85-115			
Lead	87.9	1.0	ug/l	80.0		110	85-115			
Thallium	84.1	1.0	ug/l	80.0		105	85-115			

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009 2010 Routine Outfall 009 Report Number: ITJ2060

Sampled: 10/20/10 Received: 10/20/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10K0214 Extracted: 11/02/10										
Matrix Spike Analyzed: 11/02/2010-11/0	3/2010 (10K	0214-MS1)			Source: I	TJ2060-02	2			
Antimony	81.6	2.0	ug/l	80.0	0.500	101	70-130			
Cadmium	81.2	1.0	ug/l	80.0	ND	101	70-130			
Copper	83.2	2.0	ug/l	80.0	2.58	101	70-130			
Lead	86.5	1.0	ug/l	80.0	0.285	108	70-130			
Thallium	84.2	1.0	ug/l	80.0	ND	105	70-130			
Matrix Spike Dup Analyzed: 11/02/2010	-11/03/2010	(10K0214-MSD	1)		Source: I	TJ2060-02	2			
Antimony	81.6	2.0	ug/l	80.0	0.500	101	70-130	0.1	20	
Cadmium	81.0	1.0	ug/l	80.0	ND	101	70-130	0.2	20	
Copper	81.1	2.0	ug/l	80.0	2.58	98	70-130	2	20	
Lead	85.2	1.0	ug/l	80.0	0.285	106	70-130	2	20	
Thallium	84.3	1.0	ug/l	80.0	ND	105	70-130	0.09	20	

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009 2010 Routine Outfall 009 Report Number: ITJ2060

Sampled: 10/20/10 Received: 10/20/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10J2282 Extracted: 10/20/10										
Blank Analyzed: 10/20/2010 (10J2282-B	LK1)									
Chloride	ND	0.50	mg/l							
Nitrate/Nitrite-N	ND	0.26	mg/l							
Sulfate	ND	0.50	mg/l							
LCS Analyzed: 10/20/2010 (10J2282-BS	1)									
Chloride	4.80	0.50	mg/l	5.00		96	90-110			<i>M-3</i>
Sulfate	9.84	0.50	mg/l	10.0		98	90-110			M-3
Matrix Spike Analyzed: 10/21/2010 (10J	2282-MS2)				Source: I	TJ2044-01	L			
Chloride	4.99	0.50	mg/l	5.00	0.435	91	80-120			
Sulfate	9.58	0.50	mg/l	10.0	0.472	91	80-120			
Batch: 10J2526 Extracted: 10/21/10										
Blank Analyzed: 10/21/2010 (10J2526-B	LK1)									
Total Cyanide	ND	0.0050	mg/l							
LCS Analyzed: 10/21/2010 (10J2526-BS	1)									
Total Cyanide	0.182	0.0050	mg/l	0.200		91	90-110			
Matrix Spike Analyzed: 10/21/2010 (10J	2526-MS1)				Source: I	TJ2060-02	2			
Total Cyanide	0.175	0.0050	mg/l	0.200	ND	88	70-115			
Matrix Spike Dup Analyzed: 10/21/2010	(10J2526-M	SD1)			Source: I	TJ2060-02	2			
Total Cyanide	0.177	0.0050	mg/l	0.200	ND	89	70-115	1	15	

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009 2010 Routine Outfall 009 Report Number: ITJ2060

Sampled: 10/20/10 Received: 10/20/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10J2573 Extracted: 10/22/10										
Blank Analyzed: 10/22/2010 (10J2573-B	LK1)									
Total Dissolved Solids	ND	10	mg/l							
LCS Analyzed: 10/22/2010 (10J2573-BS	1)									
Total Dissolved Solids	996	10	mg/l	1000		100	90-110			
Duplicate Analyzed: 10/22/2010 (10J257	3-DUP1)				Source: I	TJ2008-01	L			
Total Dissolved Solids	383	10	mg/l		389			2	10	
Batch: 10J3002 Extracted: 10/25/10										
Blank Analyzed: 10/25/2010 (10J3002-B	LK1)									
Total Suspended Solids	ND	10	mg/l							
LCS Analyzed: 10/25/2010 (10J3002-BS	1)									
Total Suspended Solids	1000	10	mg/l	1000		100	85-115			
Duplicate Analyzed: 10/25/2010 (10J300	2-DUP1)				Source: I	TJ1990-03	3			
Total Suspended Solids	17.0	10	mg/l		17.0			0	10	

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009 2010 Routine Outfall 009 Report Number: ITJ2060

Sampled: 10/20/10 Received: 10/20/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

8640

Analyte Batch: 8640 Extracted: 11/10/10	Result	Reporting Limit	Units	Spike Level	Source Result %R	%REC EC Limits	RPD	RPD Limit	Data Qualifiers
LCS Analyzed: 11/10/2010 (S010169-02) Uranium, Total	60.5	1	pCi/L	56.5	Source:	07 80-120			
Blank Analyzed: 11/10/2010 (S010169-03 Uranium, Total	3) 0	1	pCi/L		Source:	-			U
Duplicate Analyzed: 11/10/2010 (S01016 Uranium, Total	9-04) 0.07	1	pCi/L		Source: ITJ206 0.076	0-02	8		Jb

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009 2010 Routine Outfall 009 Report Number: ITJ2060

Sampled: 10/20/10 Received: 10/20/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

			900							
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8640 Extracted: 10/29/10										
LCS Analyzed: 11/03/2010 (S010169-02)					Source:					
Gross Alpha	47.2	3	pCi/L	40.4		117	70-130			
Gross Beta	35.2	4	pCi/L	35.2		100	70-130			
Blank Analyzed: 11/03/2010 (S010169-03)				Source:					
Gross Alpha	-0.16	3	pCi/L				-			U
Gross Beta	-0.287	4	pCi/L				-			U
Duplicate Analyzed: 11/03/2010 (S010169	9-04)				Source: I	TJ2060-02	2			
Gross Alpha	0.358	3	pCi/L		0.142		-	86		Jb
Gross Beta	2.23	4	pCi/L		2.31		-	4		Jb

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009 2010 Routine Outfall 009 Report Number: ITJ2060

Sampled: 10/20/10 Received: 10/20/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

901.1

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8640 Extracted: 10/28/10										
LCS Analyzed: 11/22/2010 (S010169-02)					Source:					
Cobalt-60	105	10	pCi/L	104		101	80-120			
Cesium-137	117	20	pCi/L	110		106	80-120			
Blank Analyzed: 11/22/2010 (S010169-03	3)				Source:					
Cesium-137	ND	20	pCi/L				-			U
Potassium-40	ND	25	pCi/L				-			U
Duplicate Analyzed: 11/22/2010 (S01016	9-04)				Source: I	TJ2060-02	2			
Cesium-137	ND	20	pCi/L		0		-	0		U
Potassium-40	ND	25	pCi/L		0		-	0		U

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009 2010 Routine Outfall 009 Report Number: ITJ2060

Sampled: 10/20/10 Received: 10/20/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

903.1

Analyte Batch: 8640 Extracted: 11/10/10	Result	Reporting Limit	Units	Spike Level	Source Result %	6REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
LCS Analyzed: 11/10/2010 (S010169-02) Radium-226	55	1	pCi/L	55.7	Source:	99	80-120			
Blank Analyzed: 11/10/2010 (S010169-03 Radium-226	3) -0.02	1	pCi/L		Source:		-			U
Duplicate Analyzed: 11/10/2010 (S01016 Radium-226	9-04) 0.046	1	pCi/L		Source: ITJ2 0.026	2060-02	-	0		U

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009 2010 Routine Outfall 009 Report Number: ITJ2060

Sampled: 10/20/10 Received: 10/20/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

904 Reporting Spike %REC RPD Data Source Analyte Result Limit Units Level Result %REC Limits RPD Limit Qualifiers Batch: 8640 Extracted: 11/04/10 LCS Analyzed: 11/04/2010 (S010169-02) Source: Radium-228 4.97 1 pCi/L 4.75 105 60-140 Blank Analyzed: 11/04/2010 (S010169-03) Source: Radium-228 U-0.108 1 pCi/L Duplicate Analyzed: 11/04/2010 (S010169-04) Source: ITJ2060-02 Radium-228 0.188 1 pCi/L -0.077 0 U

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009 2010 Routine Outfall 009 Report Number: ITJ2060

Sampled: 10/20/10 Received: 10/20/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

905 Reporting Spike %REC RPD Data Source Analyte Result Limit Units Level Result %REC Limits RPD Limit Qualifiers Batch: 8640 Extracted: 11/01/10 LCS Analyzed: 11/03/2010 (S010169-02) Source: Strontium-90 14.6 2 pCi/L 17.6 83 80-120 Blank Analyzed: 11/01/2010 (S010169-03) Source: 2 UStrontium-90 0.12 pCi/L Duplicate Analyzed: 11/01/2010 (S010169-04) Source: ITJ2060-02 Strontium-90 0.026 2 pCi/L 0.102 0 U

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009 2010 Routine Outfall 009 Report Number: ITJ2060

Sampled: 10/20/10 Received: 10/20/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

			906							
Analyte <u>Batch: 8640 Extracted: 11/11/10</u>	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
LCS Analyzed: 11/11/2010 (S010169-02) Tritium	2580	200	pCi/L	2570	Source:	100	80-120			
Blank Analyzed: 11/11/2010 (S010169-0. Tritium	3) -68.5	200	pCi/L		Source:		-			U
Duplicate Analyzed: 11/11/2010 (S01016 Tritium	9-04) -26.7	200	pCi/L		Source: I -17.9	TJ2060-02	-	0		U

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009 2010 Routine Outfall 009 Report Number: ITJ2060

Sampled: 10/20/10 Received: 10/20/10

METHOD BLANK/QC DATA

EPA-5 1613Bx

Reporting					%REC		RPD	Data
Analyte Result Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 301452 Extracted: 10/28/10								
Blank Analyzed: 11/02/2010 (G0J280000452B)			Source:					
1,2,3,4,6,7,8-HpCDD 1.1e-006 0.00005	ug/L				J, Q			
1,2,3,4,6,7,8-HpCDF 8.8e-007 0.00005	ug/L				-			J, Q
1,2,3,4,7,8,9-HpCDF ND 0.00005	ug/L				-			
1,2,3,4,7,8-HxCDD 5.1e-007 0.00005	ug/L				-			J
1,2,3,4,7,8-HxCDF 2.5e-007 0.00005	ug/L				-			J, Q
1,2,3,6,7,8-HxCDD 5.2e-007 0.00005	ug/L				-			J, Q
1,2,3,6,7,8-HxCDF 2.2e-007 0.00005	ug/L				-			J, Q
1,2,3,7,8,9-HxCDD 4.3e-007 0.00005	ug/L				-			J, Q
1,2,3,7,8,9-HxCDF 4e-007 0.00005	ug/L				-			J, Q
1,2,3,7,8-PeCDD ND 0.00005	ug/L				-			
1,2,3,7,8-PeCDF ND 0.00005	ug/L				-			
2,3,4,6,7,8-HxCDF 2e-007 0.00005	ug/L				-			J, Q
2,3,4,7,8-PeCDF ND 0.00005	ug/L				-			
2,3,7,8-TCDD ND 0.00001	ug/L				-			
2,3,7,8-TCDF ND 0.00001	ug/L				-			
OCDD 5.9e-006 0.0001	ug/L				-			J
OCDF 1.3e-006 0.0001	ug/L				-			J
Total HpCDD 1.9e-006 0.00005	ug/L				-			
Total HpCDF 8.8e-007 0.00005	ug/L				-			
Total HxCDD 1.5e-006 0.00005	ug/L				-			
Total HxCDF 1.1e-006 0.00005	ug/L				-			
Total PeCDD ND 0.00005	ug/L				-			
Total PeCDF ND 0.00005	ug/L				-			
Total TCDD ND 0.00001	ug/L				-			
Total TCDF ND 0.00001	ug/L				-			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD 0.002	ug/L	0.002		101	23-140			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF 0.0018	ug/L	0.002		89	28-143			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF 0.0019	ug/L	0.002		93	26-138			
Surrogate: 13C-1,2,3,4,7,8-HxCDD 0.0018	ug/L	0.002		90	32-141			
Surrogate: 13C-1,2,3,4,7,8-HxCDF 0.0017	ug/L	0.002		87	26-152			
Surrogate: 13C-1,2,3,6,7,8-HxCDD 0.0016	ug/L	0.002		82	28-130			
Surrogate: 13C-1,2,3,6,7,8-HxCDF 0.0017	ug/L	0.002		84	26-123			
Surrogate: 13C-1,2,3,7,8,9-HxCDF 0.0018	ug/L	0.002		91	29-147			
Surrogate: 13C-1,2,3,7,8-PeCDD 0.0017	ug/L	0.002		86	25-181			
Surrogate: 13C-1,2,3,7,8-PeCDF 0.0016	ug/L	0.002		81	24-185			
Surrogate: 13C-2,3,4,6,7,8-HxCDF 0.0017	ug/L	0.002		86	28-136			

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009 2010 Routine Outfall 009 Report Number: ITJ2060

Sampled: 10/20/10 Received: 10/20/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

EPA-5 1613Bx

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RDU	RPD Limit	Data Qualifiers
-	Kesutt	Linnt	Omts	Levei	Kesuit	/0KEC	Linits	ΠD	Linnt	Quanners
Batch: 301452 Extracted: 10/28/10										
Blank Analyzed: 11/02/2010 (G0J2800)00452B)				Source:					
Surrogate: 13C-2,3,4,7,8-PeCDF	0.0016		ug/L	0.002		80	21-178			
Surrogate: 13C-2,3,7,8-TCDD	0.0016		ug/L	0.002		78	25-164			
Surrogate: 13C-2,3,7,8-TCDF	0.0015		ug/L	0.002		75	24-169			
Surrogate: 13C-OCDD	0.004		ug/L	0.004		100	17-157			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.00073		ug/L	0.0008		92	35-197			
LCS Analyzed: 11/02/2010 (G0J28000	0452C)				Source:					
1,2,3,4,6,7,8-HpCDD	0.00103	0.00005	ug/L	0.001	Sourcer	103	70-140			В
1,2,3,4,6,7,8-HpCDF	0.000977	0.00005	ug/L	0.001		98	82-122			В
1,2,3,4,7,8,9-HpCDF	0.00099	0.00005	ug/L	0.001		99	78-138			
1,2,3,4,7,8-HxCDD	0.00111	0.00005	ug/L	0.001		111	70-164			В
1,2,3,4,7,8-HxCDF	0.00101	0.00005	ug/L	0.001		101	72-134			В
1,2,3,6,7,8-HxCDD	0.00105	0.00005	ug/L	0.001		105	76-134			В
1,2,3,6,7,8-HxCDF	0.00104	0.00005	ug/L	0.001		104	84-130			В
1,2,3,7,8,9-HxCDD	0.00109	0.00005	ug/L	0.001		109	64-162			В
1,2,3,7,8,9-HxCDF	0.00103	0.00005	ug/L	0.001		103	78-130			В
1,2,3,7,8-PeCDD	0.00102	0.00005	ug/L	0.001		102	70-142			
1,2,3,7,8-PeCDF	0.001	0.00005	ug/L	0.001		100	80-134			
2,3,4,6,7,8-HxCDF	0.000991	0.00005	ug/L	0.001		99	70-156			В
2,3,4,7,8-PeCDF	0.00103	0.00005	ug/L	0.001		103	68-160			
2,3,7,8-TCDD	0.000201	0.00001	ug/L	0.0002		101	67-158			
2,3,7,8-TCDF	0.000189	0.00001	ug/L	0.0002		95	75-158			
OCDD	0.00202	0.0001	ug/L	0.002		101	78-144			В
OCDF	0.00195	0.0001	ug/L	0.002		98	63-170			В
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.00155		ug/L	0.002		77	26-166			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.0015		ug/L	0.002		75	21-158			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.00142		ug/L	0.002		71	20-186			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.00161		ug/L	0.002		80	21-193			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.00158		ug/L	0.002		79	19-202			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.00154		ug/L	0.002		77	25-163			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.00151		ug/L	0.002		75	21-159			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.00156		ug/L	0.002		78	17-205			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.00152		ug/L	0.002		76	21-227			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.00145		ug/L	0.002		73	21-192			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.00157		ug/L	0.002		78	22-176			
Surrogate: 13C-2,3,4,7,8-PeCDF	0.00142		ug/L	0.002		71	13-328			

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009 2010 Routine Outfall 009 Report Number: ITJ2060

Sampled: 10/20/10 Received: 10/20/10

METHOD BLANK/QC DATA

EPA-5 1613Bx

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 301452 Extracted: 10/28/10										
LCS Analyzed: 11/02/2010 (G0J28000	0452C)				Source:					
Surrogate: 13C-2,3,7,8-TCDD	0.00143		ug/L	0.002		72	20-175			
Surrogate: 13C-2,3,7,8-TCDF	0.00139		ug/L	0.002		69	22-152			
Surrogate: 13C-OCDD	0.00268		ug/L	0.004		67	13-199			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.000696		ug/L	0.0008		87	31-191			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009 2010 Routine Outfall 009 Report Number: ITJ2060

Sampled: 10/20/10 Received: 10/20/10

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
ITJ2060-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	0	4.8	15

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
ITJ2060-02	Cadmium-200.8	Cadmium	ug/l	0.058	1.0	3.1
ITJ2060-02	Chloride - 300.0	Chloride	mg/l	2.88	0.50	150
ITJ2060-02	Copper-200.8	Copper	ug/l	3.88	2.0	14
ITJ2060-02	Lead-200.8	Lead	ug/l	0.95	1.0	5.2
ITJ2060-02	Nitrogen, NO3+NO2 -N EP.	A 300.0 Nitrate/Nitrite-N	mg/l	1.08	0.26	8
ITJ2060-02	Sulfate-300.0	Sulfate	mg/l	7.34	0.50	300
ITJ2060-02	TDS - SM2540C	Total Dissolved Solids	mg/l	115	10	950

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009 2010 Routine Outfall 009 Report Number: ITJ2060

Sampled: 10/20/10 Received: 10/20/10

DATA QUALIFIERS AND DEFINITIONS

- **B** Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- C Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.
- J Estimated result. Result is less than the reporting limit.
- Ja Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
- Jb The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.
- **M-3** Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).
- MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
- **Q** Estimated maximum possible concentration (EMPC).
- U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the limit.
- ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
- **RPD** Relative Percent Difference

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009 2010 Routine Outfall 009 Report Number: ITJ2060

Sampled: 10/20/10 Received: 10/20/10

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EDD + Level 4	Water	N/A	N/A
EPA 1664A	Water	Х	Х
EPA 200.8-Diss	Water	Х	Х
EPA 200.8	Water	Х	Х
EPA 245.1-Diss	Water	Х	Х
EPA 245.1	Water	Х	Х
EPA 300.0	Water	Х	Х
Filtration	Water	N/A	N/A
SM 2540D	Water	Х	Х
SM2540C	Water	Х	
SM4500CN-E	Water	Х	Х

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chrnic Samples: ITJ2060-02

TestAmerica Irvine

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009 2010 Routine Outfall 009 Report Number: ITJ2060

Sampled: 10/20/10 Received: 10/20/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Eberline Services - SUB

2030 Wright Avenue - Richmond, CA 94804

Analysis Performed: Gamma Spec Samples: ITJ2060-02

- Analysis Performed: Gross Alpha Samples: ITJ2060-02
- Analysis Performed: Gross Beta Samples: ITJ2060-02
- Analysis Performed: Level 4 Data Package Samples: ITJ2060-02
- Analysis Performed: Radium, Combined Samples: ITJ2060-02
- Analysis Performed: Strontium 90 Samples: ITJ2060-02
- Analysis Performed: Tritium Samples: ITJ2060-02
- Analysis Performed: Uranium, Combined Samples: ITJ2060-02

TestAmerica Irvine

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009 2010 Routine Outfall 009 Report Number: ITJ2060

Sampled: 10/20/10 Received: 10/20/10

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TestAmerica Buffalo

10 Hazelwood Drive, Suite 106 - Amherst, NY 14228

Method Performed: 8640 Samples: ITJ2060-02

Method Performed: 900 Samples: ITJ2060-02

Method Performed: 901.1 Samples: ITJ2060-02

Method Performed: 903.1 Samples: ITJ2060-02

Method Performed: 904 Samples: ITJ2060-02

Method Performed: 905 Samples: ITJ2060-02

Method Performed: 906 Samples: ITJ2060-02

TestAmerica West Sacramento NELAC Cert #1119CA, Nevada Cert #CA44

880 Riverside Parkway - West Sacramento, CA 95605

Method Performed: EPA-5 1613B Samples: ITJ2060-02

TestAmerica Irvine

CHAIN OF CUSTODY FORM

Page 1 of 2

Olivert				Destant													+ + 2(
Client Name//				Project:			. 	,, ,			· · · · · · · · · · · · · · · · · · ·			AN	ALYSIS	REQU	RED			
MWH-Arca				Boeing-SSFL																
618 Michillind		uite 200		Routine Outf	all 009															Field readings:
Arcadia, CA	91007			GRAB										1						(Log in and include
				Stormwater at	: SW-13															report Temp and pl
Test America	Contact:	Debby Wil	son															1		
																				Temp °F = 58.1
							Ι ŝ													Jone . 30.
							<u><u><u></u></u></u>											1		pH = 7.0
Project Mana	ger: Broi	nwyn Kelly		Phone Numbe	er:		364													
				(626) 568-669	91		Ē													Time of readings =
Sampler: E.	LAVAL	KER		Fax Number:			ase									.		1		0800
				(626) 568-651	5		je je					1								0800
Sample Description	Sample Matrix	Container Type	# of Cont.	Sampling Date/Time	Preservative	Bottle #	Oil & Grease (1664-HEM)	÷								÷.	••••	-	-	Comments
Outfall 009	w	1L Amber	2		НСІ	1A, 1B	x												<u> </u>	
						······································														
																	1		+7	1
																			$\uparrow /$	
																			17	12:05,
																			Π	6120/10
					-	-														
		·····																	11	M
			ļ .															ļ		
							_				_									
						<u>.</u>					_									
							<u> </u>		_		_	<u> </u>						_		
	т	hese Samr		are the Grab P	ortion of Q	utfall 009 fc	r this	storm	even		nosit						be adde	d to this	s work o	rder.
Relinguished By	· · · ·	[Date/Ti	ime:		Received By				Date/Ti	ne'.				und time: (o work of	
	~/ ,					,		<pre>/) ```</pre>	٦,		17	all	<i>-</i>)				72 Hour			10 Dav:
	[]]		inla:			1/000												10 Day: Normal:X		
-W		(720	110		- vm	_ 1	COX	$\underline{\mathcal{N}}$	\sim	_' \ '	$\geq \sqrt{2}$	5	48 Hour:			5 Day:			Normai:
Relinquished By	~		Date/Ti	$\frac{10}{10} = \frac{10}{10}$		Received By				Date/Ti	ne:									
1 -	(10/20/10)									Sample I	Integrity: (C	heck)				
()M	~ 1-	-hll	•	11										Intact:			On Ice:	<u>×</u>		
Relinguished By	- 1 0		Date/Ti	ime:		Received By				Date/Ti	ne			{]				<u> </u>		
		•										1 61	د .	Data P-	auiromont-	(Check)				
						$\langle \psi$	_		~_	1012	0100	Iqu	1		quirements:	(спеск)				
						\sim			-	· -	۰.			No Level	I IV [.]		All Level N	J.		NPDES Level IV:

3.40

.....

CHAIN OF CUSTODY FORM

Page 2 of 2

ITJ2060

MWH-Arcadia Boeing-SSEL NPOES Comments Bioling Sinchilling Ave, Suite 200 Routine Outfall 000 cOMPOSITE G <t< th=""><th>Client Name/A</th><th>ddress:</th><th></th><th></th><th>Projec</th><th></th><th></th><th></th><th colspan="13">ANALYSIS REQUIRED</th></t<>	Client Name/A	ddress:			Projec				ANALYSIS REQUIRED																
Outsill 003 W 11 Poly 1 Philos 2 A <td>MWH-Arcad</td> <td>lia</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ő</td> <td></td> <td></td> <td></td> <td></td> <td>_ o× i</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	MWH-Arcad	lia							ő					_ o× i											
Outsill 003 W 11 Poly 1 Philos 2 A <td></td> <td></td> <td>uite 200</td> <td></td> <td>Routi</td> <td>ne Outfal</td> <td>009</td> <td></td> <td>Ъ,</td> <td>1</td> <td></td> <td></td> <td>o.</td> <td>, , , , , , , , , , , , , , , , , , ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			uite 200		Routi	ne Outfal	009		Ъ,	1			o.	, , , , , , , , , , , , , , , , , , ,											
Outsill 003 W 11 Poly 1 Philos 2 A <td>ł</td> <td></td> <td></td> <td></td> <td>СОМІ</td> <td>POSITE</td> <td></td> <td></td> <td>Ö</td> <td></td> <td></td> <td></td> <td>ā.</td> <td>00.0 7 03. 3.0)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	ł				СОМІ	POSITE			Ö				ā.	00.0 7 03. 3.0)											
Outsid 000 W 11. Pay 1 Price A					Storm	water at \$	SW-13		Ŕ				ວິ	90(90(90) (90(90)											
Outsill 003 W 11 Poly 1 Philos 2 A <td>Test America</td> <td>Contact:</td> <td>Debby Wils</td> <td>son</td> <td></td> <td></td> <td></td> <td></td> <td>ē.</td> <td></td> <td></td> <td></td> <td>ğ</td> <td>3eta (90(</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Test America	Contact:	Debby Wils	son					ē.				ğ	3eta (90(
Outsill 003 W 11 Poly 1 Philos 2 A <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(*</td> <td></td> <td></td> <td>á</td> <td>ss E 90 (903 (1.1)</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										(*			á	ss E 90 (903 (1.1)			1								
Outsid 000 W 11. Poly 1 HNOS 2.4 X 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>etals</td> <td>ners</td> <td>_</td> <td></td> <td><u>isi</u></td> <td>9 L 3 3 3 3 3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Comments</td>									etals	ners	_		<u>isi</u>	9 L 3 3 3 3 3									Comments		
Outsill 003 W 11 Poly 1 Philos 2 A <td>Project Manag</td> <td>er: Bro</td> <td>nwyn Kelly</td> <td></td> <td>Phone</td> <td>e Number</td> <td></td> <td></td> <td>ě Ň</td> <td>aguc</td> <td>0²-N</td> <td></td> <td>Vleta</td> <td>6.0), 4.0), 0.0,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td>	Project Manag	er: Bro	nwyn Kelly		Phone	e Number			ě Ň	aguc	0 ² -N		Vleta	6.0), 4.0), 0.0,							1				
Outsill 003 W 11 Poly 1 Philos 2 A <td>D.</td> <td>160</td> <td>ANALA</td> <td></td> <td>(626)</td> <td>568-6691</td> <td></td> <td></td> <td>rab </td> <td>8</td> <td>Ž</td> <td></td> <td>- Be</td> <td>906 adin 906 adin 907 adin</td> <td>i≩</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	D.	160	ANALA		(626)	568-6691			rab	8	Ž		- Be	906 adin 906 adin 907 adin	i≩										
Outsid 000 W 11. Poly 1 HNOS 2.4 X 1 <td>Sampler</td> <td></td> <td></td> <td></td> <td>1° 1</td> <td></td> <td></td> <td></td> <td>See.</td> <td>g</td> <td>Ş</td> <td></td> <td></td> <td>7 (j) 28 H2(</td> <td>ŎXĬ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Sampler				1° 1				See.	g	Ş			7 (j) 28 H2(ŎXĬ										
Outsid 000 W 11. Poly 1 HNOS 2.4 X 1 <td>JEN</td> <td>YNY.</td> <td>HUANC</td> <td></td> <td></td> <td></td> <td>5</td> <td></td> <td>Rec</td> <td>an (an</td> <td></td> <td>TSS-</td> <td>Diss</td> <td></td> <td>ic T</td> <td>e de</td> <td></td> <td>·</td> <td></td> <td></td> <td></td> <td></td> <td></td>	JEN	YNY.	HUANC				5		Rec	an (an		TSS-	Diss		ic T	e de		·							
Outsid 000 W 11. Poly 1 HNOS 2.4 X 1 <td>Sample</td> <td>Sample</td> <td>Container</td> <td># of</td> <td></td> <td></td> <td>Preservative</td> <td>Bottle #</td> <td>otal g, Tl</td> <td>CDC</td> <td>, S</td> <td>DS,</td> <td>otal Ig, T</td> <td>iross ritiur comb tadiu 0, C</td> <td>hror</td> <td>yani</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Sample	Sample	Container	# of			Preservative	Bottle #	otal g, Tl	CDC	, S	DS,	otal Ig, T	iross ritiur comb tadiu 0, C	hror	yani									
Churdial 009 Dup W 1L Ander 1 HNO, 28/2 X 1 Image: Churdial 009 W 1L Ander 2 None 3A, 3BV X 1 Image: Churdial 009 W 1L Ander 2 None 3A, 3BV X 1 Image: Churdial 009 W 1L Ander 2 None 3A, 3BV X 1 Image: Churdial 009 W 1L Ander 2 None 3A, 3BV X 1 Image: Churdial 009 W 1L Ander 1 None 5 V X 1 Image: Churdial 009 W 1L Poly 1 None 5 V X 1 Image: Churdial 009 W 1L Columbra 100 Filter w/m 24hrs of receipt at atb Ourfail 009 W 12 G G Cole 1 None 3 V 1 X 1 1 Image: Churdial 009 1////////////////////////////////////							HNO	24		<u> </u>	0	 -		0-024	0	0						+			
Outsil 009 W 11. Anter 2 None 3X 5BV X Image: Control of Contr			· · · · · · · · · · · · · · · · · · ·		03	15													-			<u> </u>			
Outfail 003 W 500 mL Poly 2 None 44,48* X X Image: Constraint of the second rate o			-		<u> </u>	}			<u>^</u>	x					<u> </u>										
Outlail 009 W 500 mL Poly 1 None 5 X X Image: Construction of the state of											x										<u>+</u>	1			
Outfall 009 W 1L Poly 1 None 6 X Image: Constraint of the same of th												x					_				<u> </u>	1			
Outfail 009 W Sou mutanter 1 None 78 X X Image: Construction of the second rain over the				1			None	6 1	ŀ				x										Filter w/in 24hrs of receipt at lab		
Outfail 009 W Sou mL Ameer 1 None 78 x x analysis Outfail 009 W 1 Gal Poly 1 Arrow Second rain events of the year Only test if first or second rain events of the year Outfail 009 W 500 mL Poly 1 Arrow Second rain events of the year Arrow Second rain events of the year Outfail 009 W 500 mL Poly 1 Arrow Second rain events Arrow Second rain events Outfail 009 W 500 mL Poly 1 Arrow Second rain events Arrow Second rain events Outfail 009 W 500 mL Poly 1 Arrow Second rain events Arrow Second rain events Outfail 009 W 500 mL Poly 1 Arrow Second rain events Arrow Second rain events Outfail 009 W 500 mL Poly 1 Arrow Second rain events Arrow Second rain events COC Page 2 of 2 list the Composite Samples for Outfail 009 for this storm event. These must be added to the same work order for COC Page 1 of 2 for Outfail 009 for the same event. Image: Second Bit Poly I			2.5 Gal Cube	1			None	7A 🗸	1														Unfiltered and unpreserved		
Outfail 009 W 1 Gal Poly 1 None 8 X X Image: Contract of the year of th	Outfall 009	w	500 mL Amber	1	1 /		None	7B 🗸						×											
Outfail 009 W 500 mL Peiy 1 6-3 er der 0 NaCH 9 X X Image: State of the s	Outfall 009	w	1 Gal Poly	1	1	•	None	8 🗸	 						x								Only test if first or second rain events of the year		
COC Page 2 of 2 list the Composite Samples for Outfall 009 for this storm event. Image: Coc Page 2 of 2 list the Composite Samples for Outfall 009 for this storm event. Image: Coc Page 2 of 2 list the Composite Samples for Outfall 009 for the same event. Image: Coc Page 2 of 2 list the Composite Samples for Outfall 009 for the same event. Image: Coc Page 2 of 2 list the Composite Samples for Outfall 009 for the same event. Image: Coc Page 2 of 2 list the Composite Samples for Outfall 009 for the same event. Image: Check list the Composite Samples for Outfall 009 for the same event. Image: Check list the Composite Samples for Outfall 009 for the same event. Image: Check list the Composite Samples for Outfall 009 for the same event. Image: Check list the Composite Samples for Outfall 009 for the same event. Image: Check list the Composite Samples for Outfall 009 for the same event. Image: Check list the Composite Samples for Outfall 009 for the same event. Image: Check list the Composite Samples for Outfall 009 for the same event. Image: Check list the Composite Samples for Outfall 009 for the same event. Image: Check list the Composite Samples for Outfall 009 for the same event. Image: Check list the Composite Samples for Outfall 009 for the same event. Image: Check list the Check list	Outfall 009	w	500 mL Poly	1	10-2	0. 2010	NaOH	9 🖌				1	<u> </u>			x					F				
These must be added to the same work order for COC Page 1 of 2 for Outfall 009 for the same event. Relinquished By Date/Time: Date/Time: Turn-around time: (Check) Image: Check Image: Check Image: Check Image: Check Image: Check				<u>-</u>	03	. ()				<u> </u>		1													
These must be added to the same work order for COC Page 1 of 2 for Outfall 009 for the same event. Relinquished By Date/Time: Date/Time: Turn-around time: (Check) Image: Check Image: Check Image: Check Image: Check Image: Check					1				r																
These must be added to the same work order for COC Page 1 of 2 for Outfall 009 for the same event. Relinquished By Date/Time: Date/Time: Turn-around time: (Check) Image: Check Image: Check Image: Check Image: Check Image: Check					<u> </u>								<u> </u>												
These must be added to the same work order for COC Page 1 of 2 for Outfall 009 for the same event. Relinquished By Date/Time: Date/Time: Turn-around time: (Check) Image: Check Image: Check Image: Check Image: Check Image: Check					<u> </u>																				
These must be added to the same work order for COC Page 1 of 2 for Outfall 009 for the same event. Relinquished By Date/Time: Date/Time: Turn-around time: (Check) Image: Check Image: Check Image: Check Image: Check Image: Check				-	1							1													
These must be added to the same work order for COC Page 1 of 2 for Outfall 009 for the same event. Relinquished By Date/Time: Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check Image: Check			· · · ·		<u> </u>																				
Relinquished By Date/Time: //// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// // <th <="" th=""> // <th <="" th=""> //</th></th>	// // <th <="" th=""> //</th>	//					·																		
Relinquished By Date/Time: Image: Control of the cont						The	se must be			ame	work				for C	Dutfal	1 009 fe	or the s	ame ev	ent.					
Relinquished By Date/Time: Sample Integrity: (Check) Upper Date/Time: Intact: On Ice: Relinquished By Date/Time: Date/Time:	Relinquished By		[Date/Ti	ime: 🖊	0-20-	2010	Received B	У	\sim		Da A	ate/Time	5 1											
Relinquished By Date/Time: Sample Integrity: (Check) Upper Date/Time: Intact: On Ice: Relinquished By Date/Time: Date/Time:	\mathcal{D}	1				5:30	.30 1- ()1 10/20/10								24 Hour:			72 Hour:			10 Day:				
Relinquished By Date/Time: Sample Integrity: (Check) Upper Date/Time: Intact: On Ice: Relinquished By Date/Time: Date/Time:	Vin B	m						UM	he j	I.e.	sh	U	- (<u> 5</u>	\leq	48 Hour:			5 Day:			Normal:		
	Relinquished By	t	-^	Date/Ti	ime:			Received B	y.																
	. / -	\int			ml	alia														\sim					
	10pm	- 40	course 10/20/10					Intact: On Ice:																	
	Relinquished By)ate/Ti	ime:		-	Received	*																
No Level IV: All Level IV: NPDES Level IV:		1	$-\frac{2}{2}$						レ	\sim			- (حارداه	(0	ue,	Data Rec	quirements	: (Check)						
	Unun I				-								No Level	IV:		All Level IV									

20-VP-02

2/200 lers

LABORATORY REPORT

Date: October 27, 2010

Client: TestAmerica, Irvine 17461 Derian Ave., Suite 100 Irvine, CA 92614 Attn: Debby Wilson "dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003
(805) 650-0546 FAX (805) 650-0756 CA DOHS ELAP Cert. No.: 1775

Laboratory No.:	A-10102104-001
Sample I.D.:	ITJ2060-02 (Outfall 009)

Sample Control: The sample was received by ATL within the recommended hold time, chilled and with the chain of custody record attached. Testing conducted on only one sample per client instruction (rain runoff sample).

Date Sampled:	10/20/10 - composite
Date Received:	10/21/10
Temp. Received:	2.2°C
Chlorine (TRC):	0.0 mg/l
Date Tested:	10/21/10 to 10/27/10

Sample Analysis:The following analyses were performed on your sample:Ceriodaphnia dubiaSurvival and Reproduction Test (EPA Method 1002).Attached are the test data generated from the analysis of your sample.

Result Summary:

	NOEC	<u>TUc</u>
Ceriodaphnia Survival:	100%	1.0
Ceriodaphnia Reproduction:	100%	1.0

Quality Control:

Reviewed and approved by:

Laboratory Dire

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

Lab No.: A-10102104-001 Client/ID: Test America – ITJ2060-02 (Outfall 009) Date Tested: 10/21/10 to 10/27/10

TEST SUMMARY

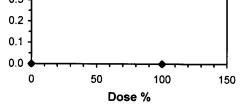
Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*. Age: < 24 hrs; all released within 8 hrs. Test vessel size: 30 ml. Number of test organisms per vessel: 1. Temperature: 25 +/- 1°C. Dilution water: Mod. hard reconstituted (MHRW). OA/OC Batch No.: RT-101007. Endpoints: Survival and Reproduction. Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 15 ml. Number of replicates: 10. Photoperiod: 16/8 hrs. light/dark cycle. Test duration: 6 days. Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Survival	Mean Number of Young Per Female					
Control	100%	21.9					
100% Sample	100% Sample 100% 23.9						
* Sample not statistically significantly less than Control.							

CHRONIC TOXICITY

Survival NOEC	100%
Survival TUc	1.0
Reproduction NOEC	100%
Reproduction TUc	1.0


QA/QC TEST ACCEPTABILITY

Parameter	Result			
Control survival ≥80%	Pass (100% survival)			
≥15 young per surviving control female	Pass (21.9 young)			
≥60% surviving controls had 3 broods	Pass (80% with 3 broods)			
PMSD <47% for reproduction; if >47% and no toxicity at IWC, the test must be repeated	Pass (PMSD = 24.8%)			
Statistically significantly different concentrations relative difference > 13%	Pass (no concentration significantly different)			
Concentration response relationship acceptable	Pass (no significant response at concentration tested)			

			Cerioda	iphnia Sui	vival and	Reprodu	uction Tes	t-Surviva	al Day 6	
Start Date: End Date: Sample Date: Comments:	10/21/201 10/27/201 10/20/201	0 14:00	Lab ID:		uatic Tes	ting Labs	Sample ID Sample Ty Test Spec	/pe:	ITJ2060 EFF2-Indu CD-Cerioo	istrial Iaphnia dubia
Conc-%	1	2	3	4	5	6	7	8	9	10
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
100	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

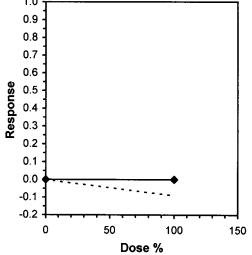
				Not			Fisher's	1-Tailed	lsot	onic
Conc-%	Mean	N-Mean	Resp	Resp	Total	Ν	Exact P	Critical	Mean	N-Mean
D-Control	1.0000	1.0000	0	10	10	10			1.0000	1.0000
100	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000

	Test (1-tail, (0.05)	NOEC	LOEC	ChV	TU		
Fisher's Exact Test Treatments vs D-Control		100	>100		1			
				Line	ar Interpo	lation (20	0 Resamples)	
Point	%	SD	95%	6 CL	Skew	•	• •	
IC05	>100							
IC10	>100							
IC15	>100						1.0	
IC20	>100						4	
1C25	>100						0.9 -	
IC40	>100						0.8 -	
IC50	>100						-	
							0.7	
							9 0.6 -	
							Ë o s	r
							ö , 0.5	
							9.6 0.5 9 0.4	
							 0.3	
							4	
							0.2]	

Reviewed by:

Ceriodaphnia Survival and Reproduction Test-Reproduction										
Start Date: End Date:										
	Date: 10/20/2010 03:15 Protocol: FWCH EPA Test Species: CD-Ceriodaphnia dubia									
Conc-%	1	2	3	4	5	6	7	8	9	10
D-Control	11.000	24.000	12.000	26.000	21.000	30.000	27.000	23.000	20.000	25.000

100 10.000 31.000 11.000 27.000 25.000 21.000 29.000 31.000 30.000 24.000


		_	•	Transform: Untransformed			Rank	1-Tailed	Isot	onic	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Mean	N-Mean
D-Control	21.900	1.0000	21.900	11.000	30.000	28.267	10			22.900	1.0000
100	23.900	1.0913	23.900	10.000	31.000	32.497	10	118.00	82.00	22.900	1.0000

Auxiliary Tests	Statistic	Critical	Skew Kurt
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.05)	0.87619	0.905	-0.9611 -0.1828
F-Test indicates equal variances (p = 0.51)	1.57408	6.54109	
Hypothesis Test (1 tail 0.05)			

Hypothesis Test (1-tail, 0.05) Wilcoxon Two-Sample Test indicates no significant differences

Treatments vs D-Control

Linear Interpolation (200 Resamples)						
Point	%	SD	95% CL	Skew		
IC05	>100					
IC10	>100					
IC15	>100				1.0 	
IC20	>100				0.9	
IC25	>100					
IC40	>100				0.8	
IC50	>100				0.7	
			· · · · · · · · · · · · · · · · · · ·		0.6	
					o ant	

CERIODAPHNIA DUBIA CHRONIC BIOASSAY EPA METHOD 1002.0 Raw Data Sheet

Client ID: TestAmerica - ITJ2060-02 Outfall 009 Start Date: 10/21/2010 DAY 2 DAY 3 DAY 4 DAY 5 DAY 6 DAY 7 DAY 1 0 hr 0 hr 0 hr 24hr 24hr $\boldsymbol{\Sigma}$ 71 π 0 Analyst Initials: 14 LL W ISIN 14a lsw S_{λ} Time of Readings: ISac Г. DO 9 R Я 4 X pH 2 Control 25 24 24 Temp 8.5 8.4 Ď 9 7 9 DO 10.0 ID. 7.9 2 pН 2 7. 100% 24.9 25-1 24.4 24 ЖX 25 C \sim Temp 100% Sample **Additional Parameters** Control 310 Conductivity (umohms) ' 4D 72 Alkalinity (mg/l CaCO₃) 51 93 Hardness (mg/l CaCO₃) 0 Ammonia (mg/l NH₃-N) Source of Neonates Replicate: В С E н Α D F G I J ЧG 43 SA S Ē U Ĩ, 6I 6B 40 SΗ 57 Brood ID: **Number of Young Produced Total Live** No. Live Analyst Sample Dav Young Adults Initials С G Н I J B D E F A 0 1 \mathcal{O} \mathcal{O} 0 \mathcal{O} つ υ \cap \cap \cap 2 \mathcal{O} í 0 \mathcal{O} 3 7 3 /) 4 L 0 0 \mathcal{O} U \mathcal{O} 3 ζ えい Û 4 W Ч U ノ Control 5 G ι Ø \mathcal{O} 6 l va 6 1 Δ 4 7 -26 21 25 0 30 27 23 20 12 Total 11 24 7 1 \mathcal{O} 19 () 1 2 Ò \mathcal{O} OΟ 0 へ () 3 3 0 4 3 3 Ć ζ C0 L 3 Ч 2 Ď \mathcal{O} 4 ζ Д, Ľ 100% Ŷ 9 9 0 Г 5 Ŋ Ć 1 З 2 6] \mathcal{O} $\left(1\right)$ 4 7 29 25 20 \mathcal{F} ζ 3 Total 2 1

Circled fourth brood not used in statistical analysis.

Lab No.: A-10102104-001

7th day only used if <60% of the surviving control females have produced their third brood.

SUBCONTRACT ORDER TestAmerica Irvine

ITJ2060

SENDING LABORATORY:	RECEIVING LABORATORY:
TestAmerica Irvine	Aquatic Testing Laboratories-SUB
17461 Derian Avenue. Suite 100	4350 Transport Street, Unit 107
Irvine, CA 92614	Ventura, CA 93003
Phone: (949) 261-1022	Phone :(805) 650-0546
Fax: (949) 260-3297	Fax: (805) 650-0756
Project Manager: Debby Wilson	Project Location: CA - CALIFORNIA
	Receipt Temperature: 2.2 °C Ice y/N
Standard TAT is requested unless specific due date is re	quested. => Due Date: Initials:
Analysis Units	Expires Comments
	4 3

Sample ID: ITJ2060-02 (O	utfail 009 (compos	ن م 15:55 Sampled: 10/20/10	
Bioassay-7 dy Chrnic	N/A	1 0/22/10 03:1 5	Cerio, EPA/821-R02-013, Sub to Aquatic testing
Containers Supplied:		10/21/10 15:15	, Additio resting
1 gal Poly (L)			

10 0700 Date/Time 10 ı istor 10 0700 Date/Time Release Received By <u>///-2/-//////</u> Date/Time Pa 10 n Date/Time Received By Released By

Page 1 of 1

REFERENCE TOXICANT DATA

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0 REFERENCE TOXICANT - NaCl

QA/QC Batch No.: RT-101007

Date Tested: 10/07/10 to 10/13/10

TEST SUMMARY

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*. Age: <24 hrs; all released within 8 hrs. Test vessel size: 30 ml. Number of test organisms per vessel: 1. Temperature: 25 +/- 1°C. Dilution water: Mod. hard reconstituted (MHRW). Reference Toxicant: Sodium chloride (NaCl). Endpoints: Survival and Reproduction. Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 20 ml. Number of replicates: 10. Photoperiod: 16/8 hrs. light/dark cycle. Test duration: 6 days. Statistics: ToxCalc computer program.

Sample Concentration	Percent Sur	vival	Mean Number of Young Per Female					
Control	100%		21.4					
0.25 g/l	100%		22.3					
0.5 g/l	100%		22.1					
1.0 g/l	100%		13.1	*				
2.0 g/l	90%		3.1	*				
4.0 g/l	0%	*	0	**				
* Statistically significantly less than control at P = 0.05 level ** Reproduction data from concentrations greater than survival NOEC are excluded from statistical analysis.								

RESULTS SUMMARY

CHRONIC TOXICITY

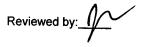
Survival LC50	2.6 g/l
Reproduction IC25	0.81 mg/l

QA/QC TEST ACCEPTABILITY

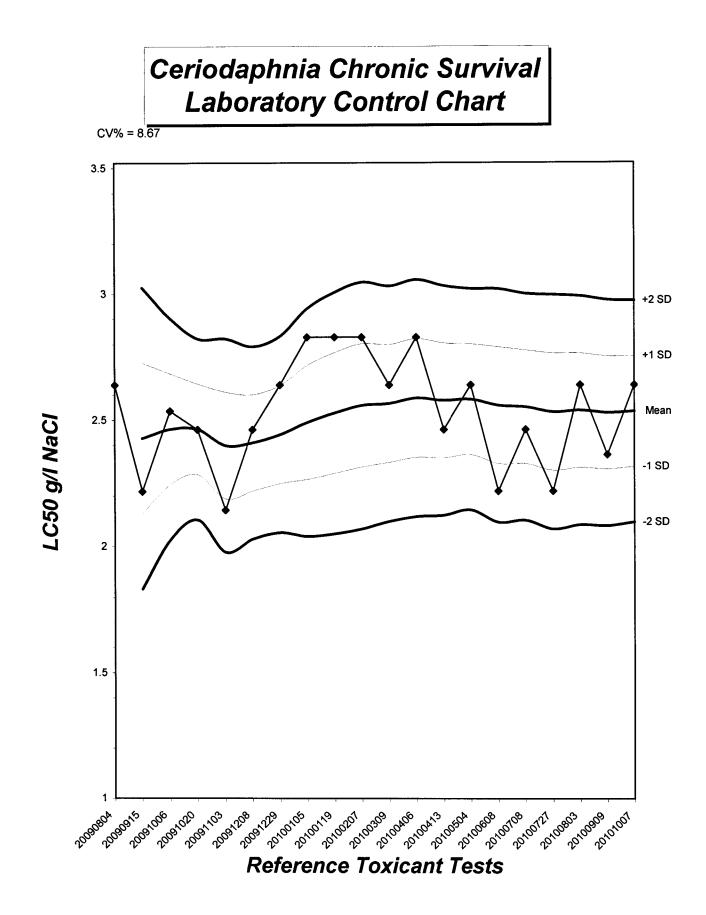
Parameter	Result
Control survival ≥80%	Pass (100% Survival)
≥15 young per surviving control female	Pass (21.4 young)
≥60% surviving controls had 3 broods	Pass (100% with 3 broods)
PMSD <47% for reproduction	Pass (PMSD = 10.6%)
Stat. sig. diff. conc. relative difference > 13%	Pass (Stat. sig. diff. conc. Relative difference = 38.8%)
Concentration response relationship acceptable	Pass (Response curve normal)

			Ceriod	aphnia Su	rvival and	Reprodu	uction Tes	t-Surviv	al Day 6		
Start Date:	10/7/2010 14:00 Test ID:			RT101007						REF-Ref Toxicant	
End Date:	10/13/2010 13:00 L		Lab ID: CAATL-Aquatic Tes			ting Labs Sample Type:		/pe:	NACL-Sodium chloride		
Sample Date: Comments:	10/7/2010		Protocol:	FWCH EF	À	-	Test Spec	ies:	CD-Cerioo	laphnia dubia	
Conc-gm/L	1	2	3	4	5	6	7	8	9	10	
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
0.25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
0.5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
2	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

				Not			Fisher's	1-Tailed	Number	Total
Conc-gm/L	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Resp	Number
D-Control	1.0000	1.0000	0	10	10	10			0	10
0.25	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
0.5	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
1	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
2	0.9000	0.9000	1	9	10	10	0.5000	0.0500	1	10
4	0.0000	0.0000	10	0	10	10			10	10


Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	
Fisher's Exact Test	2	4	2.82843		
Treatments vs D-Control					

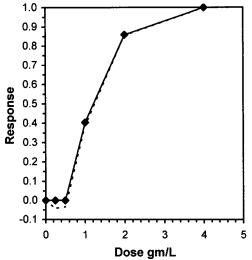
				Trimmed Spearman-Karber	
Trim Level	EC50	95%	CL		
0.0%	2.6390	2.3138	3.0099		
5.0%	2.6984	2.2899	3.1798		
10.0%	2.7216	2.5094	2.9517	1.0	
20.0%	2.7216	2.5094	2.9517	4	I I
Auto-0.0%	2.6390	2.3138	3.0099	0.9	
				0.8 -	
				0.7 -	/ /
					1 1
				₩ 0.6 -	1 1
				5 0.5	/ /
				80.6 0.5 82 0.4	/ /
				e ^{0.4}]	1


0.3 -0.2 -0.1 -0.0 -0.1

1

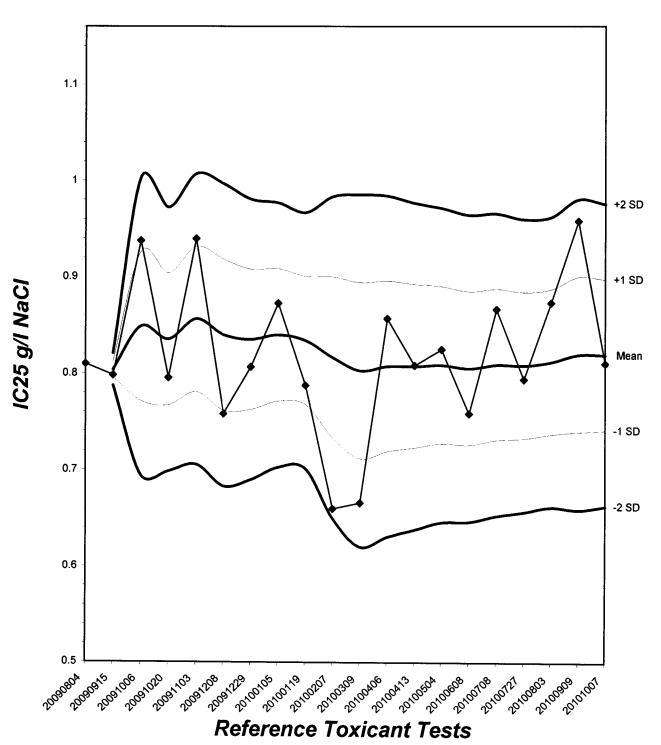
Dose gm/L

10



			Ceriod	aphnia Su	rvival and	Reprod	uction Tes	st-Repro	duction		
Start Date:	10/7/2010	14:00	Test ID:	RT101007	c		Sample ID):	REF-Ref Toxicant		
End Date:	10/13/201	0 13:00	Lab ID:	CAATL-Ac	uatic Tes	ting Labs				lium chloride	
Sample Date:	10/7/2010		Protocol:	FWCH EP	A		Test Spec	ies:	CD-Cerioo	laphnia dubia	
Comments:											
Conc-gm/L	1	2	3	4	5	6	7	8	9	10	
D-Control	18.000	24.000	20.000	22.000	22.000	19.000	21.000	22.000	23.000	23.000	
0.25	19.000	21.000	20.000	25.000	24.000	20.000	27.000	22.000	20.000	25.000	
0.5	22.000	21.000	24.000	25.000	21.000	20.000	19.000	24.000	24.000	21.000	
1	13.000	12.000	12.000	10.000	15.000	9.000	17.000	15.000	14.000	14.000	
2	3.000	2.000	3.000	4.000	0.000	3.000	7.000	0.000	3.000	6.000	
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

			•	Transform	n: Untran	sformed			1-Tailed	Isotonic		
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
D-Control	21.400	1.0000	21.400	18.000	24.000	8.866	10				21.933	1.0000
0.25	22.300	1.0421	22.300	19.000	27.000	12.335	10	-0.880	2.223	2.273	21.933	1.0000
0.5	22,100	1.0327	22.100	19.000	25.000	9.162	10	-0.685	2.223	2.273	21.933	1.0000
*1	13.100	0.6121	13.100	9.000	17.000	18.507	10	8.118	2.223	2.273	13.100	0.5973
*2	3.100	0.1449	3.100	0.000	7.000	72.051	10	17.899	2.223	2.273	3.100	0.1413
4	0.000	0.0000	0.000	0.000	0.000	0.000	10				0.000	0.0000


Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribu	ition (p >	0.05)		0.96438		0.947		0.08587	-0.8006
Bartlett's Test indicates equal var			,		1.50628		13.2767			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	0.5	1	0.70711		2.27317	0.10622	700.2	5.22667	2.2E-24	4, 45
Treatments vs D-Control										

			Linea	ar Interpolation	n (200 Resamples)	1
gm/L	SD	95%	CL	Skew		
0.5621	0.0442	0.4151	0.5733	-4.2243		
0.6242	0.0252	0.5373	0.6466	-1.7522		
0.6862	0.0254	0.6039	0.7200	-1.2089	1.0	
0.7483	0.0270	0.6723	0.7933	-0.6359		
0.8104	0.0296	0.7434	0.8683	-0.1929	-	•
0.9966	0.0501	0.9298	1.1143	0.4891	0.8	
1.2133	0.0576	1.1011	1.3148	-0.3182	0.7 -	
					9 0.6	
	0.5621 0.6242 0.6862 0.7483 0.8104 0.9966	0.5621 0.0442 0.6242 0.0252 0.6862 0.0254 0.7483 0.0270 0.8104 0.0296 0.9966 0.0501	0.5621 0.0442 0.4151 0.6242 0.0252 0.5373 0.6862 0.0254 0.6039 0.7483 0.0270 0.6723 0.8104 0.0296 0.7434 0.9966 0.0501 0.9298	gm/L SD 95% CL 0.5621 0.0442 0.4151 0.5733 0.6242 0.0252 0.5373 0.6466 0.6862 0.0254 0.6039 0.7200 0.7483 0.0270 0.6723 0.7933 0.8104 0.0296 0.7434 0.8683 0.9966 0.0501 0.9298 1.1143	gm/LSD95% CLSkew0.56210.04420.41510.5733-4.22430.62420.02520.53730.6466-1.75220.68620.02540.60390.7200-1.20890.74830.02700.67230.7933-0.63590.81040.02960.74340.8683-0.19290.99660.05010.92981.11430.4891	0.5621 0.0442 0.4151 0.5733 -4.2243 0.6242 0.0252 0.5373 0.6466 -1.7522 0.6862 0.0254 0.6039 0.7200 -1.2089 1.0 0.7483 0.0270 0.6723 0.7933 -0.6359 0.9 0.8104 0.0296 0.7434 0.8683 -0.1929 0.8 1.2133 0.0576 1.1011 1.3148 -0.3182 0.7

Ceriodaphnia Chronic Reproduction Laboratory Control Chart

CV% = 9.58

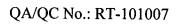
CERIODAPHNIA DUBIA CHRONIC BIOASSAY Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-101007

Start Date:10/07/2010

				Nu	ımbe	r of Y	oung	Prod	uced	·		Total	No.	Analyst
Sample	Day	Α	B	С	D	E	F	G	н	Ι	J	Live Young	Live Adults	Initials
	1	\mathcal{O}	\cup	O		∂	0	0	0	0	0	0	10	R
	2	Ū	0	$\overline{\mathcal{O}}$	$\overline{\mathcal{O}}$	Ο	0	0	\mathcal{O}	0	0	O	10	hu
	3	0	0	0	0	ч	\mathcal{O}	\mathcal{O}	3	3	0	10	10	M
Control	4	3	4	3	3	0'X	4	4	3%	0	5	26	10	Th
Control	5	6	8	6		F	7	8	6	6	8	70	10	M
	6	9	12	11	12	(0	8	9	13	14	10	108	10	m
	7	<u> </u>	_	-	-	-		-	-	1			(<u> </u>
	Total	18	24	zO	22	22	19	2	22	23	23	214	10	M/
	1	0	0	\cup	\mathcal{O}	0	0	\mathcal{O}	0	0	0	0	0	R
	2	\mathcal{O}	0	0	0	0	0	0	0	0	0	\mathcal{O}	10	h
	3	\mathcal{O}	C	C	C	3	C	0	4	U	0	7	10	n
0.25 - /1	4	4	4	3	کر	U	Ч	Ų	0	γ	5	33	10	n
0.25 g/l	5	6	7	8	8	7	6	8	6	5	7	68	10	m
	6	8	10	q	12	14	10	15	12	.12	13	115	10	h
	7	_	-	-	1	(~	()	(-	(-	2
	Total	19	21	20	25	24	20	27	22	70	25	223	JU	h
	1	0	0	0	\mathcal{O}	0	0	0	0	0	0	\mathcal{O}	U	2
	2	\mathcal{O}	0	0	0	D	O	0	0	0	0	0	1U	Rm
	3	\mathcal{O}	0	0	0	4	0	0	0	0	3	7	10	A
0.5 g/l	4	3	3	4	5	Ù	5	ζ	4	4	0	31	10	Mh
0.5 g/1	5	7	8	7	6	7	7	24	6	7	7	70	()	h
	6	12	10	13	14	10	Е	8	14	13	11	1(3	10	h
	7	-	-	-	-	1	~	-	-	~	~	-	~	
	Total	22	21	24	25	21	20	19	24	24	21	221	()	-12
Circled fourth brood not used in statistical analysis. 7 th day only used if <60% of the surviving control females have produced their third brood.														

CERIODAPHNIA DUBIA CHRONIC BIOASSAY Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet



QA/QC No.: RT-101007

Start Date:10/07/2010

01				N	umbe	r of Y	oung	Produ	iced			Total	No.	Analyst
Sample	Day	A	В	C	D	E	F	G	н	Ι	J	Live Young	Live Adults	Initials
	1	0	\mathcal{O}	0	0	0	\cup	0	0	0	0	\bigcirc	10	han
	2	0	0	0	0	0	0	0	0	0	0	\mathcal{O}	10	R
	3	\mathcal{D}	0	\mathcal{O}	0	0	Ò	0	3	2	D	5	10	m
1.0 g/l	4	3	2	3	0	3	5	3	0	0	Σ	21	10	m
1.0 g/1	5	6	4	U	5	4	5	ک	6	7	4	50	U,U	M
	6	Ц	6	5	5	8	0	9	6	5	2	55	10	1ph
	7	<u>_</u>	-	-			-		-				-	7-
	Total	13	R	12	10	15	9	17	15	14	14	13(10	M
	1	0	\mathcal{O}	0	0	0	0	O	\mathcal{O}	0	0	ρ	10	R
	2	0	0	0	0	0	0	0	0	0	0	Ũ	10	L
2.0 ~/1	3	0	V	0	0	X	0	0	Ù	U	Ο	0	9	m
	4	0	0	0	\mathcal{C}	(U	0	\mathcal{O}	C	\mathcal{O}	\mathcal{O}	9	THE
2.0 g/l	5	3	Ú	3	4	1	0	3	\mathcal{C}	0	3	16	9	ML
	6	$\overline{\mathcal{U}}$	2	\mathcal{O}	0	١	3	4	0	S	3	15	9	m
	7	_	•	-	-	1	1	1		1	-	-	-	
	Total	3	Z	3	4	0	3	7	0	3	6	31	9	T
	1	\times	\succ	\checkmark		$\langle \times \rangle$		X	X	\checkmark	X	U	\mathcal{O}	hu
	2	`		^	Ì).	()))	_	(~	
	3	,		^	ŗ	(ł	1)	1	-	~	~	/
4.0 g/l	4		_	-	(-))	•	-	-	(•	
4.0 g/1	5		-		(-)	~	-	-	-	_	-	
	6	~	-			-	-	-	-	~	-	(-	(
	7		-	-		-	~	-	-	-	~	(1	
	Total	0	\mathcal{O}	Ø	C	0	0	C	C	0	6	C	C	Me
Circled fourth brood not used in statistical analysis. 7 th day only used if <60% of the surviving control females have produced their third brood.														

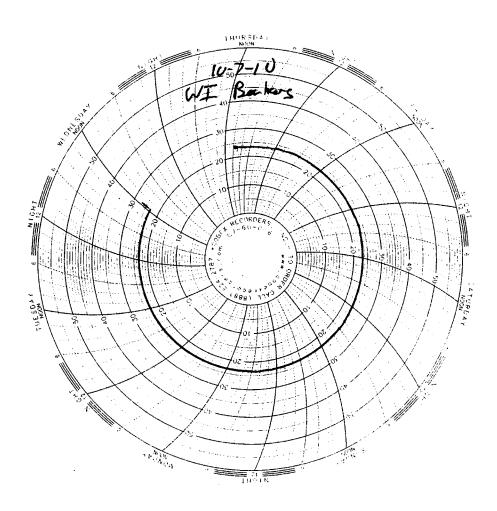
CERIODAPHNIA DUBIA CHRONIC BIOASSAY Reference Toxicant - NaCl Water Chemistries Raw Data Sheet

Start Date:10/07/2010

60

Aquatic Testing

Laboratories


		DAY 1			N O										
				╢─────	Y 2		AY 3		AY 4	····-	Y 5	DA	4Y 6	DA	Y 7
		Initial	Final	Initial	Final 2	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
Analyst		Rom	m	<u>An</u>	h	Rn	<u>p</u>		1p		m	K	the		<u> </u>
Time of R	1	1400	1300	<u> 13w</u>	1300	1300		IYW	MIC	1930	1330	<u>BY</u>	1300		-
	DO	8.3	8.6	9.0	8.5	8.1	7.8		2.7	8.0	7.7	24	2-9	1	(
Control	pН	8.1	8.2	8.0	8.1	8.1	7.9	8,1	8.0	7.9	7-7	80	7-8		
	Temp	25.3	<u>24.</u> 3	25.0	21.5	25.4	250	25.6	25.2	<u>24-5</u>	24.7	254	24.2		
	DO	8.3	8.6	9.0	8.4	8.1	78	7.9	7.7	7.9	7.9	7.4	D-7	-	١
0.25 g/l	pН	8.1	8.2	8.0	8.1	8.1	7.9	8-1	8.0	8.0	7.8	80	5.6	-	_
	Temp	25.3	<u>24.4</u>	25.0	24.6	25.4	250	25.4	25.3	24.7	25-1	Жy	24.2		1
	DO	8.3	8.7	9.0	8.5	8.1	80	7.9	7.8	8.1	ふつ	81	80	-)
0.5 g/l	pН	8.1	8.2	8.0	8.1	8.1	81	8.1	7.4	8.1	7.6	74	8.0)
	Temp	25.3	<u>24.4</u>	25.1	24.7	25.4	25.3	254	254	25.6	25.4	255	24.4	-	
	DO	8.3	8.6	9.1	8.4	8.1	7-4	8.0	7.8	8.1	7.7	8.0	5.0	-	-
1.0 g/l	pН	8.1	8.2	8.0	8.1	8.1	81	8~2	81	8.1	7-6	7.9	7-8	-	~
	Temp	25.2	24.4	25.1	21.6	25.4	254	25-4	25.5	24.3	254	25.5	245	(-
	DO	8.4	8.5	9.1	8.6	8.2	81	81	7.6	8.0	80	79	8.0	_	-
2.0 g/l	pН	8.2	8.2	8.0	8.1	8.1	7-9	8.~	8.1	8.1	7.7	7.5	29	_	-
	Temp	25.2	24.3	25.2	24.6	25.5	24.5	25.4	25.5	25.5	253	259	246	-	
	DO	8.4	8.7	-	~	-	-	~	-	-)	_	-	
4.0 g/l	pН		8.2	-	~	-	-	-	-	-	-	(-	-	
	Temp	25.0	24.3		~	_		_		/		-		~	_
	Dis	solved	Oxyger	n (DO) 1	readings	s are in	mg/l C	₂ ; Temp	erature	(Temp)	reading	<u>gs are</u> in	n℃.		
	dditional F	Paramete	ere				Contro]	High Co	ncentrati	on	
					Day 1		Day 3		Day 5		Day 1	r	Day 3	Da	y 5
	Conductivity (µS)				333		337	3	in	6	5440	3	310	33	202
	Alkalinity (mg/l CaCO ₃)				72 73		64		24		23		70		
	Hardness (mg/I CaCO ₃)						94		10		27	6	<u> 25</u>	9	
	<u> </u>		<u> </u>	in in			ce of Ne	_							
	Replicate: A B					E	F	G		Н	1		1		
Broo	Brood ID: 3A 2B			LIS	10	<u> </u>	<u> </u>	2E	2F	16		2 H	1 <u>7</u>	3	5

Test Temperature Chart

Test No: **RT-101007** Date Tested: 10/07/10 to 10/13/10

Acceptable Range: 25+/- 1°C

EBERLINE ANALYTICAL CORPORATION 2030 Wright Avenue Richmond, California 94804-3849 Phone (510) 235-2633 Fax (510) 235-0438 Toll Free (800) 841-5487 www.eberlineservices.com

December 14, 2010

Ms. Debby Wilson Test America Irvine 17461 Derian Ave., Ste. 100 Irvine, CA 92614

Reference: Test America-Irvine ITJ2060 Eberline Analytical Report S010169-8640 Sample Delivery Group 8640

Dear Ms. Wilson:

Enclosed is a Level IV CLP-like data package (on CD) for one water sample received under Test America Job No. ITJ2060. The sample was received on October 22, 2010.

Please call me, if you have any questions concerning the enclosed report.

,

Sincerely,

N. Joseph Verville Client Services Manager

NJV/ljb

Enclosure: Level IV CLP-like Data Package CD

Case Narrative, page 1

1.0 General Comments

Sample delivery group 8640 consists of the analytical results and supporting documentation for one water sample. Sample ID's and reference dates/times are given in the Sample Summary section of the Summary Data report. The sample was received as stated on the chain-of-custody document. Any discrepancies are noted on the Eberline Analytical Sample Receipt Checklist. No holding times were exceeded.

Tritium and gamma analyses were performed on the sample as received i.e. the sample was not filtered. The analytical volumes for all other analyses were subjected to a full nitric acid/hydrofluoric acid dissolution, and analyses were performed on the dissolution volume.

2.0 Quality Control

Quality Control Samples consisted of laboratory control samples (LCS), method blanks, duplicate analyses and matrix spike analyses. Included in the data package are copies of the Eberline Analytical radiometrics data sheets. The radiometrics data sheets for the QC LCS and QC blank samples indicate Eberline Analytical's standard QC aliquot of 1.0 sample; results for those QC types are calculated as pCi/sample. The QC LCS and QC blank sample results reported in the Summary Data Section have been divided by the appropriate method specific aliquot (see the Lab Method Summaries for specific aliquots) in order to make the results comparable to the field sample results. All QC sample results were within required control limits.

3.0 Method Errors

The error for each result is an estimate of the significant random uncertainties incurred in the measurement process. These are propagated to each final result. They include the counting (Poisson) uncertainty, as well as those intrinsic errors due to carrier or tracer standardization, aliquoting, counter efficiencies, weights, or volumes. The following method errors were propagated to the count error to calculate the 2^o error (Total):

Analysis	Method Error
Gross alpha	20.6%
Gross beta	11.0%
Tritium	10.0%
Sr-90	10.4%
Ra-226	16.4%
Ra-228	10.4%
Uranium,Total	
Gamma Spec.	7.0%

Case Narrative, page 2

December 14, 2010

4.0 **Analysis Notes**

- Gross Alpha/Gross Beta Analysis No problems were encountered during 4.1 the processing of the samples. All quality control sample results were within required control limits.
- 4.2 **Tritium Analysis** – Due to a scheduling error, the samples were not counted for a sufficient time to meet the required detection limit of 200 pCi/L; the MDA's were 267 pCi/L and 266 pCi/L for the sample and duplicate, respectively. No other problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- Strontium-90 Analysis No problems were encountered during the processing 4.3 of the samples. All quality control sample results were within required control limits.
- Radium-226 Analysis No problems were encountered during the processing of 4.4 the samples. All quality control sample results were within required control limits
- Radium-228 Analysis No problems were encountered during the processing of 4.5 the samples. All quality control sample results were within required control limits
- Total Uranium Analysis No problems were encountered during the processing 4.6 of the samples. All quality control sample results were within required control limits.
- 4.7 Gamma Spectroscopy - No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.

Case Narrative Certification Statement 5.0

"I certify that this data package is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. Release of the data obtained in this hard copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature."

12/14/10 Date

nJuich N. Joseph Verville **Client Services Manager**

SDG	864	10	
Contact	Ν.	Joseph	Verville

Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

SUMMARY DATA SECTION

TABLE OF	со	N T	EN	T S	
About this section	•	•	•	•	l
Sample Summaries	•	•	•	•	3
Prep Batch Summary	•		•	•	5
Work Summary	•	•	•	•	6
Method Blanks		•	•	•	8
Lab Control Samples	•	•	•	•	9
Duplicates	•	•	•	•	10
Data Sheets	•	•	•	•	11
Method Summaries	•	•	•	•	12
Report Guides	•	•	•	•	20
End of Section	•	•	•	•	34

UB

Prepared by

Reviewed by

Lab id	EAS
Protocol	
Version	<u>Ver 1.0</u>
Form	DVD-TOC
Version	
Report date	12/14/10

SDG 8640

SDG	864	40	
Contact	<u>N.</u>	Joseph	Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

ABOUT THE DATA SUMMARY SECTION

The Data Summary Section of a Data Package has all data, in several useful orders, necessary for first level, routine review of the data package for a Sample Delivery Group (SDG). This section follows the Data Package Narrative, which has an overview of the data package and a discussion of special problems. It is followed by the Raw Data Section, which has full details.

The Data Summary Section has several groups of reports:

SAMPLE SUMMARIES

The Sample and QC Summary Reports show all samples, including QC samples, reported in one SDG. These reports cross-reference client and lab sample identifiers.

PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches (lab groupings reflecting how work was organized) relevant to the reported SDG with information necessary to check the completeness and consistency of the SDG.

WORK SUMMARY

The Work Summary Report shows all samples and work done on them relevant to the reported SDG.

METHOD BLANKS

The Method Blank Reports, one for each Method Blank relevant to the SDG, show all results and primary supporting information for the blanks.

LAB CONTROL SAMPLES

The Lab Control Sample Reports, one for each Lab Control Sample relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

DUPLICATES

REPORT GUIDES Page 1 SUMMARY DATA SECTION Page 1

Lab id	EAS
Protocol	<u>TA</u>
Version	<u>Ver 1.0</u>
Form	DVD-RG
Version	3.06
Report date	12/14/10
-	

SDG 8640

SDG	8640
Contact	<u>N. Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

ABOUT THE DATA SUMMARY SECTION

The Duplicate Reports, one for each Duplicate and Original sample pair relevant to the SDG, show all results, differences and primary supporting information for these QC samples.

MATRIX SPIKES

The Matrix Spike Reports, one for each Spiked and Original sample pair relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

DATA SHEETS

The Data Sheet Reports, one for each client sample in the SDG, show all results and primary supporting information for these samples.

METHOD SUMMARIES

The Method Summary Reports, one for each test used in the SDG, show all results, QC and method performance data for one analyte on one or two pages. (A test is a short code for the method used to do certain work to the client's specification.)

REPORT GUIDES

The Report Guides, one for each of the above groups of reports, have documentation on how to read the associated reports.

Lab id	EAS
Protocol	TA
Version	<u>Ver 1.0</u>
Form	DVD-RG
Version	3.06
Report date	12/14/10

REPORT GUIDES Page 2 SUMMARY DATA SECTION Page 2

SDG 8640

SDG <u>8640</u> Contact <u>N. Joseph Vérville</u>

LAB SAMPLE SUMMARY

Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

LAB SAMPLE ID	CLIENT SAMPLE ID	LOCATION	MATRIX	LEVEL	SAS NO	CHAIN OF CUSTODY	COLLECTED
S010169-01	ITJ2060-02	Boeing-SSFL	WATER			ITJ2060	10/20/10 15:15
S010169-02	Lab Control Sample		WATER				
S010169-03	Method Blank		WATER				
S010169-04	Duplicate (S010169-01)	Boeing-SSFL	WATER				10/20/10 15:15

LAB SUMMARY Page 1 SUMMARY DATA SECTION Page 3

Lab id <u>EAS</u> Protocol <u>TA</u> Version <u>Ver 1.0</u> Form <u>DVD-LS</u> Version <u>3.06</u> Report date <u>12/14/10</u>

SDG 8640

SDG <u>8640</u> Contact <u>N. Joseph Verville</u>

QC SUMMARY

Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

QC BATCH	CHAIN OF CUSTODY	CLIENT SAMPLE ID	MATRIX	% MOIST	SAMPLE AMOUNT	BASIS AMOUNT	DAYS S		LAB SAMPLE ID	DEPARTMENT SAMPLE ID
8640	ITJ2060	ITJ2060-02	WATER		9.7 L		10/22/10	2	S010169-01	8640-001
		Method Blank	WATER						S010169-03	8640-003
		Lab Control Sample	WATER						S010169-02	8640-002
		Duplicate (S010169-01)	WATER		9.7 L		10/22/10	2	S010169-04	8640-004

Lab id <u>EAS</u> Protocol <u>TA</u> Version <u>Ver 1.0</u> Form <u>DVD-QS</u> Version <u>3.06</u> Report date <u>12/14/10</u>

QC SUMMARY Page 1 SUMMARY DATA SECTION Page 4

SDG 8640

SDG <u>8640</u>

Contact N. Joseph Verville

PREP BATCH SUMMARY

Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

			PREPARATION	PREPARATION ERROR			- PLANCHETS ANALYZED				QUALI-
TEST	MATRIX	METHOD	BATCH	20 %	CLIENT	MORE	RE	BLANK	LCS	DUP/ORIG MS/ORIG	FIERS
Beta	Counting	• •									
AC	WATER	Radium-228 in Water	7258-129	10.4	1			1	1	1/1	
SR	WATER	Strontium-90 in Water	7258-129	10.4	1			1	1	1/1	
Gas I	Proportiona	1 Counting									
80A	WATER	Gross Alpha in Water	7258-129	20.6	1			1	1	1/1	
80B	WATER	Gross Beta in Water	7258-129	11.0	1			1	1	1/1	
Gamma	a Spectroso	сору									
GAM	WATER	Gamma Emitters in Water	7258-129	7.0	1			1	1	1/1	
Kinet	ic Phospho	primetry, ug									
U_T	WATER	Uranium, Total	7258-129		1			1	1	1/1	
Liqui	id Scintil	lation Counting									
н	WATER	Tritium in Water	7258-129	10.0	1			1	1	1/1	
Rador	n Counting										
RA	WATER	Radium-226 in Water	7258-129	16.4	1			1	1	1/1	

Duplicates and Matrix Spikes are those with original (Client) sample in this Sample Delivery Group.

Blank and LCS planchets are those in the same preparation batch as some Client, Duplicate or Spike sample.

Lab id <u>EAS</u> Protocol <u>TA</u> Version <u>Ver 1.0</u> Form <u>DVD-PBS</u> Version <u>3.06</u> Report date <u>12/14/10</u>

PREP BATCH SUMMARY Page 1 SUMMARY DATA SECTION Page 5

SDG 8640

SDG <u>8640</u> Contact <u>N. Joseph Verville</u>

LAB WORK SUMMARY

Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

LAB SAMPLE	CLIENT SAMPLE ID									
COLLECTED	LOCATION		MATRIX			SUF-				
RECEIVED	CUSTODY S	AS no		PLANCHET	TEST	FIX	ANALYZED	REVIEWED	BY	METHOD
S010169-01	ITJ2060-02			8640-001	80A/80		11/02/10	11/04/10	BW	Gross Alpha in Water
10/20/10	Boeing-SSFL		WATER	8640-001	80B/80		11/02/10	11/04/10	BW	Gross Beta in Water
10/22/10	ITJ2060			8640-001	AC		11/04/10	11/05/10	BW	Radium-228 in Water
- , ,				8640-001	GAM		11/20/10	11/30/10	MWT	Gamma Emitters in Water
				8640-001	н		11/11/10	11/15/10	BW	Tritium in Water
				8640-001	RA		11/10/10	11/10/10	BW	Radium-226 in Water
				8640-001	SR		11/01/10	11/08/10	BW	Strontium-90 in Water
				8640-001	U_T		11/10/10	11/30/10	BW	Uranium, Total
	Lab Control Sampl	.e		8640-002	80A/80		11/03/10	11/04/10	BW	Gross Alpha in Water
			WATER	8640-002	80B/80		11/03/10	11/04/10	BW	Gross Beta in Water
				8640-002	AC		11/04/10	11/05/10	BW	Radium-228 in Water
				8640-002	GAM		11/22/10	11/30/10	MWT	Gamma Emitters in Water
				8640-002	н		11/11/10	11/15/10	BW	Tritium in Water
				8640-002	RA		11/10/10	11/10/10	BW	Radium-226 in Water
				8640-002	SR		11/03/10	11/08/10	BW	Strontium-90 in Water
				8640-002	U_T		11/10/10	11/30/10	BW	Uranium, Total
	Method Blank			8640-003	80A/80		11/03/10	11/04/10	BW	Gross Alpha in Water
			WATER	8640-003	80B/80		11/03/10	11/04/10	BW	Gross Beta in Water
				8640-003	AC		11/04/10	11/05/10	BW	Radium-228 in Water
				8640-003	GAM		11/22/10	11/30/10	MWT	Gamma Emitters in Water
				8640-003	н		11/11/10	11/15/10	BW	Tritium in Water
				8640-003	RA		11/10/10	11/10/10	BW	Radium-226 in Water
				8640-003	SR		11/01/10	11/08/10	BW	Strontium-90 in Water
				8640-003	U_T		11/10/10	11/30/10	BW	Uranium, Total
	Duplicate (S0101)	69-01)		8640-004	80A/80		11/03/10	11/04/10	BW	Gross Alpha in Water
10/20/10	Boeing-SSFL		WATER	8640-004	80B/80		11/03/10	11/04/10	BW	Gross Beta in Water
10/22/10	-			8640-004	AC		11/04/10	11/05/10	BW	Radium-228 in Water
				8640-004	GAM		11/22/10	11/30/10	MWT	Gamma Emitters in Water
				8640-004	н		11/11/10	11/15/10	BW	Tritium in Water
				8640-004	RA		11/10/10	11/10/10	BW	Radium-226 in Water
				8640-004	SR		11/01/10	11/08/10	BW	Strontium-90 in Water
				8640-004	U_T		11/10/10	11/30/10	BW	Uranium, Total

Lab id <u>EAS</u> Protocol <u>TA</u> Version <u>Ver 1.0</u> Form <u>DVD-LWS</u> Version <u>3.06</u> Report date <u>12/14/10</u>

WORK SUMMARY Page 1 SUMMARY DATA SECTION Page 6

SDG 8640

SDG <u>8640</u>

Contact N. Joseph Verville

WORK SUMMARY, cont.

Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

TEST	SAS no	COUNTS METHOD	OF	TESTS REFERENCE	BY	SAMPLE TYPE CLIENT MORE RE	BLANK	LCS	DUP SPIKE	TOTAL
		1								
80A/80		Gross Alpha in Water		900.0		1	1	l	1	4
80B/80		Gross Beta in Water		900.0		1	1	l	1	4
AC		Radium-228 in Water		904.0		1	l	1	1	4
GAM		Gamma Emitters in Water		901.1		1	1	1	1	4
н		Tritium in Water		906.0		1	1	1	1	4
RA		Radium-226 in Water		903.1		1	1	1	1	4
SR		Strontium-90 in Water		905.0		1	1	1	1	4
U_T		Uranium, Total		D5174		1	1	1	1	4
TOTALS						8	8	8	8	32

Lab id <u>EAS</u> Protocol <u>TA</u> Version <u>Ver 1.0</u> Form <u>DVD-LWS</u> Version <u>3.06</u> Report date <u>12/14/10</u>

WORK SUMMARY Page 2 SUMMARY DATA SECTION Page 7

SDG 8640

8640-003

Method Blank

METHOD BLANK

	8640 N. Joseph Verville	Client Contract	Test America, Inc. ITJ2060	
Lab sample id Dept sample id		Client sample id Material/Matrix	-	WATER

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	-0.160	0.34	0.686	3.00	U	80A
Gross Beta	12587472	-0.287	0.59	1.01	4.00	U	80B
Tritium	10028178	-68.5	150	273	200	U	H
Radium-226	13982633	-0.020	0.23	0.415	1.00	U	RA
Radium-228	15262201	-0.108	0.25	0.779	1.00	U	AC
Strontium-90	10098972	0.120	0.62	1.39	2.00	U	SR
Uranium, Total		0	0.008	0.020	1.00	U	U_T
Potassium-40	13966002	υ		24.5	25.0	U	GAM
Cesium-137	10045973	U		1.16	20.0	U	GAM

QC-BLANK #75739

Lab id <u>EAS</u> Protocol <u>TA</u> Version <u>Ver 1.0</u> Form <u>DVD-DS</u> Version <u>3.06</u> Report date <u>12/14/10</u>

METHOD BLANKS Page 1 SUMMARY DATA SECTION Page 8

SDG 8640

8640-002

Lab Control Sample

WATER

LAB CONTROL SAMPLE

SDG <u>8640</u> Contact <u>N. Joseph Verville</u> Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

Lab sample id <u>S010169-02</u> Dept sample id <u>8640-002</u> Client sample id Lab Control Sample Material/Matrix

ANALYTE	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ADDED pCi/L	2σ ERR pCi/L	REC %	2σ LMTS (TOTAL)	PROTOCOL LIMITS
Gross Alpha	47.2	2.6	0.613	3.00		80A	40.4	1.6	117	75-125	70-130
Gross Beta	35.2	1.4	0.988	4.00		80B	35.2	1.4	100	88-112	70-130
Tritium	2580	270	276	200		н	2570	100	100	85-115	80-120
Radium-226	55.0	1.6	0.374	1.00		RA	55.7	2.2	99	83-117	80-120
Radium-228	4.97	0.44	1.02	1.00		AC	4.75	0.19	105	85-115	60-140
Strontium-90	14.6	0.96	0.462	2.00		SR	17.6	0.70	83	89-111	80-120
Uranium, Total	60.5	7.3	0.196	1.00		U_T	56.5	2.3	107	86-114	80-120
Cobalt-60	105	3.3	1.53	10.0		GAM	104	4.2	101	91-109	80-120
Cesium-137	117	3.0	1.92	20.0		GAM	110	4.4	106	91-109	80-120

QC-LCS #75738

Lab id <u>EAS</u> Protocol <u>TA</u> Version <u>Ver 1.0</u> Form <u>DVD-LCS</u> Version <u>3.06</u> Report date <u>12/14/10</u>

LAB CONTROL SAMPLES Page 1 SUMMARY DATA SECTION Page 9

SDG 8640

8640-004

ITJ2060-02

DUPLICATE

	8640 N. Joseph Verville			Client Contract	<u>Test America, Inc.</u> ITJ2060
	DUPLICATE		ORIGINAL		
Lab sample id	S010169-04	Lab sample i	d <u>s010169-01</u>	Client sample id	<u>ITJ2060-02</u>
Dept sample id		Dept sample i	d <u>8640-001</u>	Location/Matrix	Boeing-SSFL WATER
		Receive	d <u>10/22/10</u>	Collected/Volume	<u>10/20/10 15:15 9.7 L</u>
				Chain of custody id	ITJ2060

ANALYTE	DUPLICATE pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ORIGINAL pCi/L	2σ ERR (COUNT)	MDA pCi/L	QUALI- FIERS	RPD %	3σ τοτ	DER σ
Gross Alpha	0.358	0.24	0.304	3.00	J	80A	0.142	0.11	0.061	J	86	165	1.6
Gross Beta	2.23	0.57	0.825	4.00	J	80B	2.31	0.55	0.829	J	4	57	0.2
Tritium	-26.7	150	266	200	υ	н	-17.9	150	267	υ	-		0.1
Radium-226	0.046	0.23	0.424	1.00	U	RA	0.026	0.36	0.671	υ	-		0.1
Radium-228	0.188	0.23	0.716	1.00	U	AC	-0.077	0.28	0.835	υ	-		1.5
Strontium-90	0.026	0.62	1.15	2.00	υ	SR	0.102	0.57	1.28	υ	-		0.2
Uranium, Total	0.070	0.012	0.020	1.00	J	U_T	0.076	0.013	0.020	J	8	36	0.7
Potassium-40	υ		14.7	25.0	U	GAM	υ		12.0	U	-		0.3
Cesium-137	υ		1.33	20.0	U	GAM	υ		0.863	U	-		0.6

QC-DUP#1 75740

DUPLICATES Page 1 SUMMARY DATA SECTION Page 10 Lab id <u>EAS</u> Protocol <u>TA</u> Version <u>Ver 1.0</u> Form <u>DVD-DUP</u> Version <u>3.06</u> Report date <u>12/14/10</u>

8640-001

ITJ2060-02

DATA SHEET

	8640 N. Joseph Verville	Client Contract	<u>Test America, Inc.</u> ITJ2060	
Lab sample id Dept sample id Received	8640-001 10/22/10	Client sample id Location/Matrix Collected/Volume ain of custody id	Boeing-SSFL 10/20/10 15:15 9.7 L	WATER

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	0.142	0.11	0.061	3.00	J	80A
Gross Beta	12587472	2.31	0.55	0.829	4.00	J	80B
Tritium	10028178	-17.9	150	267	200	υ	н
Radium-226	13982633	0.026	0.36	0.671	1.00	υ	RA
Radium-228	15262201	-0.077	0.28	0.835	1.00	U	AC
Strontium-90	10098972	0.102	0.57	1.28	2.00	U	SR
Uranium, Total		0.076	0.013	0.020	1.00	J	U_T
Potassium-40	13966002	υ		12.0	25.0	U .	GAM
Cesium-137	10045973	υ		0.863	20.0	U	GAM

Lab id <u>EAS</u> Protocol <u>TA</u> Version <u>Ver 1.0</u> Form <u>DVD-DS</u> Version <u>3.06</u> Report date <u>12/14/10</u>

DATA SHEETS Page 1 SUMMARY DATA SECTION Page 11

SDG 8640

Test	AC Matrix WATER
SDG	8640
Contact	N. Joseph Verville

LAB METHOD SUMMARY

RADIUM-228 IN WATER BETA COUNTING Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

RESULTS

LAB SAMPLE ID	RAW SUF- TEST FIX PLANCHET	CLIENT SAMPLE ID	Radium-228
Preparation	batch 7258-129		
S010169-01	8640-001	ITJ2060-02	ΰ
S010169-02	8640-002	Lab Control Sample	ok
S010169-03	8640-003	Method Blank	ΰ
S010169-04	8640-004	Duplicate (S010169-01)	- U
Nominal val	ues and limits from r	nethod RDLs (pCi/L)	1.00

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX	CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC	DILU- TION	YIELD %	EFF %	COUNT min			PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 7258	-129 2ø prep error	10.4 % Ref	erence	Lab 1	Noteboo	k No. '	7258	pg. 12	29				
S010169-01		ITJ2060-02	0.835	1.80			77		60		15	11/04/10	11/04	GRB-225
S010169-01		Lab Control Sample	1.02	1.80			77		60			11/04/10	11/04	GRB-226
S010169-02		Method Blank	0.779	1.80			82		60			11/04/10	11/04	GRB-227
S010169-03 S010169-04		Duplicate (S010169-01)	0.716	1.80			80		60		 15	11/04/10	11/04	GRB-228
Nominal val	ues and lim	nits from method	1.00	1.80			30-10	5	50		 180			

PROCEDURES	REFERENCE DWP-894	904.0 Sequential Separation of Actinium-228 and		AVER FOR
		Radium-226 in Drinking Water (>1 Liter Aliquot),		L
		rev 5	J	

AVERAGES ± 2 SD	MDA	0.838	±	0.262	
FOR 4 SAMPLES	YIELD	79	±	5	

Lab id	EAS
Protocol	<u>TA</u>
Version	<u>Ver 1.0</u>
Form	DVD-LMS
Version	3.06
Report date	12/14/10

METHOD SUMMARIES Page 1 SUMMARY DATA SECTION Page 12

SDG 8640

Test	SR Matrix WATER
SDG	8640
Contact	N. Joseph Verville

LAB METHOD SUMMARY STRONTIUM-90 IN WATER BETA COUNTING

Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

RESULTS

	RAW SUF-	NCHET	CLIENT SAMPLE ID	Strontium-90
SAMPLE ID	TEST FIX PLA	NCHET	CLIENT SAMPLE ID	Stront1um-90
Preparation	batch 7258-129	9		
S010169-01	8640	0-001	ITJ2060-02	U
S010169-02	8640	0-002	Lab Control Sample	ok
S010169-03	8640	0-003	Method Blank	υ
S010169-04	8640	0-004	Duplicate (S010169-01)	- U

METHOD PERFORMANCE

LAB	RAW SUF-			MDA	ALIQ	PREP	DILU-	AIEPD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT S	SAMPLE ID	pCi/L	L	FAC	TION	*	왛	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
		. 100	0	10 4 8 5	6	Tab									-	
Preparation	Datch /25	8-129	2σ prep error	10.4 % Re	erence	Lab	NOTEDOO	K NO.	7258	pg. 12	29					
S010169-01		ITJ2060-	-02	1.28	0.500			55		50			12	11/01/10	11/01	GRB-229
S010169-02		Lab Cont	trol Sample	0.462	0.500			93		100				11/01/10	11/03	GRB-202
S010169-03		Method H	Blank	1.39	0.500			50		50				11/01/10	11/01	GRB-231
S010169-04		Duplicat	te (S010169-01)	1.15	0.500			56		74			12	11/01/10	11/01	GRB-226
au		ve														·
Nominal val	ues and li	mits from	m method	2.00	0.500			30-10	5	50			180			

Р	ROCEDURES	REFERENCE	905.0	AVERAGES ± 2 SD	MDA	1.07	± _
		DWP-380	Strontium in Drinking Water, rev 8	FOR 4 SAMPLES	YIELD	64	± _

Lab id	EAS
Protocol	TA
Version	<u>Ver 1.0</u>
Form	DVD-LMS
Version	3.06
Report date	12/14/10

0.835

METHOD SUMMARIES Page 2 SUMMARY DATA SECTION Page 13

SDG 8640

Test <u>80A</u> Matrix <u>WATER</u> SDG <u>8640</u> Contact <u>N. Joseph Verville</u>

LAB METHOD SUMMARY GROSS ALPHA IN WATER GAS PROPORTIONAL COUNTING

Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

RESULTS

LAB SAMPLE ID	RAW SUF TEST FIX		CLIENT SAMPLE ID	Gross Alpha	
Preparation	batch 72	58-129			
-					
S010169-01	80	8640-001	ITJ2060-02	0.142 J	
S010169-02	80	8640-002	Lab Control Sample	ok	
S010169-03	80	8640-003	Method Blank	U	
S010169-04	80	8640-004	Duplicate (S010169-01)	ok J	

METHOD PERFORMANCE

LAB	RAW SU	F-	MDA	ALIQ	PREP	DILU-	RESID	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FI	X CLIENT SAMPLE ID	pCi/L	L	FAC	TION	mg	ક	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation	batch 7	250 120 26 2700 07707 20	0 C % Dec	famanaa	Tab 1	Totobool	No	7050	ng 11						
Preparacion	Daten 7.	258-129 2σ prep error 20	0.0 5 Re	rerence	nan r	Nocebool	C NO.	1256	pg. 14	19					
S010169-01	80	ITJ2060-02	0.061	0.300			24		400			13	10/29/10	11/02	GRB-216
S010169-02	80	Lab Control Sample	0.613	0.250			57		400				10/29/10	11/03	GRB-109
S010169-03	80	Method Blank	0.686	0.250			58		400				10/29/10	11/03	GRB-111
S010169-04	80	Duplicate (S010169-01)	0.304	0.300			23		400			14	10/29/10	11/03	GRB-112
														<u></u>	
Nominal val	ues and i	limits from method	3.00	0.250			0-20	0	100			180			

PROCEDURES	REFERENCE	900.0	AVERAGES ± 2 SI
	DWP-121	Gross Alpha and Gross Beta in Drinking Water,	FOR 4 SAMPLES
		rev 10	

Lab id	EAS					
Protocol	TA					
Version	<u>Ver 1.0</u>					
Form	DVD-LMS					
Version	3.06					
Report date	12/14/10					

METHOD SUMMARIES Page 3 SUMMARY DATA SECTION Page 14

SDG 8640

Test <u>80B</u> Matrix <u>WATER</u> SDG <u>8640</u> Contact <u>N. Joseph Verville</u>

LAB METHOD SUMMARY GROSS BETA IN WATER GAS PROPORTIONAL COUNTING

Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

RESULTS

LAB RAW SUF-SAMPLE ID TEST FIX PLANCHET Gross Beta CLIENT SAMPLE ID Preparation batch 7258-129 S010169-01 80 8640-001 ITJ2060-02 2.31 J S010169-02 80 8640-002 Lab Control Sample ok S010169-03 80 8640-003 Method Blank U S010169-04 80 8640-004 Duplicate (S010169-01) ok J Nominal values and limits from method RDLs (pCi/L) 4.00

METHOD PERFORMANCE

LAB	RAW SUF-		MDA	ALIQ	PREP		RESID							ANAL-	
SAMPLE ID	TEST FIX	CLIENT SAMPLE ID	pCi/L	L	FAC	TION	mg	8	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation	batch 725	8-129 2σ prep error 1	1.0 % Re	ference	Lab 1	Noteboo	k No. '	7258	pg. 12	29					
S010169-01	80	ITJ2060-02	0.829	0.300			24		400			13	10/29/10	11/02	GRB-216
S010169-02	80	Lab Control Sample	0.988	0.250			57		400				10/29/10	11/03	GRB-109
S010169-03	80	Method Blank	1.01	0.250			58		400				10/29/10	11/03	GRB-111
S010169-04	80	Duplicate (S010169-01)	0.825	0.300			23		400			14	10/29/10	11/03	GRB-112
- Marine															
Nominal val	ues and li	mits from method	4.00	0.250			0-20	0	100			180			

PROCEDURES	REFERENCE	900.0	AVERAGES ± 2 SD	MDA <u>0.913</u> ± <u>0.199</u>
	DWP-121	Gross Alpha and Gross Beta in Drinking Water,	FOR 4 SAMPLES	RESIDUE <u>40</u> ± <u>39</u>
		rev 10	<u> </u>	••••••••••••••••••••••••••••••••••••••

Lab id	EAS
Protocol	<u>TA</u>
Version	<u>Ver 1.0</u>
Form	DVD-LMS
Version	3.06
Report date	12/14/10

METHOD SUMMARIES Page 4 SUMMARY DATA SECTION Page 15

SDG 8640

Test	GAM_ Matrix WATER
SDG	8640
Contact	N. Joseph Verville

LAB METHOD SUMMARY GAMMA EMITTERS IN WATER

GAMMA SPECTROSCOPY

Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

RESULTS

LAB SAMPLE ID	RAW SUF- TEST FIX PLANCHET	CLIENT SAMPLE ID	Cobalt-60	Cesium-137	
Preparation	1 batch 7258-129				
S010169-01	8640-001	ITJ2060-02		U	
S010169-02	8640-002	Lab Control Sample	ok	ok	
S010169-03	8640-003	Method Blank		U	
S010169-04	8640-004	Duplicate (S010169-01)		- U	
Nominal val	ues and limits from	method RDLs (pCi/L)	10.0	20.0	

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC		YIELD %	EFF %	COUNT			PREPARED	ANAL- YZED	DETECTOR
SAMPLE ID	IESI FIA CLIENI SAMPLE ID	pc1/L	ц	FAC	110M	°	•		NC V	 пыш	FREFACED	12150	DETECTOR
Preparation	batch 7258-129 2σ prep error 7	.0 % Re:	ference	Lab 1	Notebool	c No.	7258	pg. 12	29				
S010169-01	ITJ2060-02		2.00					1040		31	10/28/10	11/20	MB,08,00
S010169-02	Lab Control Sample		2.00					885			10/28/10	11/22	MB,08,00
S010169-03	Method Blank		2.00					884			10/28/10	11/22	01,02,00
S010169-04	Duplicate (S010169-01)		2.00					884		33	10/28/10	11/22	01,01,00
Nominal val	ues and limits from method	6.00	2.00					400		180			

PROCEDURES	REFERENCE	901.1
	DWP-100	Preparation of Drinking Water Samples for Gamma
		Spectroscopy, rev 5

Lab id	EAS
Protocol	<u>TA</u>
Version	<u>Ver 1.0</u>
Form	DVD-LMS
Version	3.06
Report date	12/14/10

METHOD SUMMARIES Page 5 SUMMARY DATA SECTION Page 16

SDG 8640

Test <u>U T</u> Matrix <u>WATER</u> SDG <u>8640</u> Contact <u>N. Joseph Verville</u>

LAB METHOD SUMMARY URANIUM, TOTAL

Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

KINETIC PHOSPHORIMETRY, UG

RESULTS

LAB	RAW SUF-			Uranium,
SAMPLE ID	TEST FIX	PLANCHET	CLIENT SAMPLE ID	Total
Preparation	h batch 725	8-129		
S010169-01		8640-001	ITJ2060-02	0.076 J
S010169-02		8640-002	Lab Control Sample	ok
S010169-03		8640-003	Method Blank	υ
S010169-04		8640-004	Duplicate (S010169-01)	ok J
				· · · · · · · · · · · · · · · · · · ·
Nominal val	ues and li	mits from m	ethod RDLs (pCi/L)	1.00

METHOD PERFORMANCE

LAB	RAW SUF-	MDA	ALIQ	PREP	DILU-	YIELD	EFF						ANAL-	
SAMPLE ID	TEST FIX CLIENT SAMPLE ID	pCi/L	L	FAC	TION	*	8	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation	batch 7258-129 2σ prep error	Ref	erence	Lab N	otebool	k No. '	7258	pg. 12	29					
S010169-01	ITJ2060-02	0.020 0	.0200								21	11/10/10	11/10	KPA-001
S010169-02	Lab Control Sample	0.196 0	.0200									11/10/10	11/10	KPA-001
S010169-03	Method Blank	0.020 0	.0200									11/10/10	11/10	KPA-001
S010169-04	Duplicate (S010169-01)	0.020 0	.0200								21	11/10/10	11/10	KPA-001
						1 1 1						***********************		
Nominal val	ues and limits from method	1.00 0	.0200								180			

PROCEDURES REFERENCE D5174

AVERAGES ± 2 SD	MDA <u>0.064</u> ± <u>0.176</u>
FOR 4 SAMPLES	YIELD ±

Lab id	FAS					
Protocol						
Version	Ver 1.0					
Form	DVD-LMS					
Version	3.06					
Report date	12/14/10					

METHOD SUMMARIES Page 6 SUMMARY DATA SECTION Page 17

SDG 8640

Test <u>H</u> Matrix <u>WATER</u> SDG <u>8640</u> Contact <u>N. Joseph Verville</u>

LAB METHOD SUMMARY TRITIUM IN WATER LIQUID SCINTILLATION COUNTING

Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

RESULTS

LAB SAMPLE ID	RAW SUF- TEST FIX		CLIENT SAMPLE ID	Trit	ium
Preparation	batch 725	58-129			
S010169-01		8640-001	ITJ2060-02	υ	
S010169-02		8640-002	Lab Control Sample	ok	
S010169-03		8640-003	Method Blank	υ	
S010169-04		8640-004	Duplicate (S010169-01)	-	U

METHOD PERFORMANCE

LAB	RAW SUF-		MDA	ALIQ	PREP	DILU-	YIELD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT SAMPLE ID	pCi/L	L	FAC	TION	aja	olo	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation	batch 725	8-129 2σ prep error	10.0 % Re	ference	Lab N	loteboo	cNo.	7258	pg. 12	29					
S010169-01		ITJ2060-02	267	0.0100			100		50			22	11/11/10	11/11	LSC-007
S010169-02		Lab Control Sample	276	0.100			10		50				11/11/10	11/11	LSC-007
S010169-03		Method Blank	273	0.100			10		50				11/11/10	11/11	LSC-007
S010169-04		Duplicate (S010169-01)	266	0.0100			100		50			22	11/11/10	11/11	LSC-007
		• • • • • • • • • • • • • • • • • • •													
Nominal val	ues and li	mits from method	200	0.0100					100			180			

PROCEDURES	REFERENCE	906.0	AVERAGES ± 2 SD	MDA <u>270</u> ± <u>9.59</u>
	DWP-212	Tritium in Drinking Water by Distillation, rev 8	FOR 4 SAMPLES	YIELD <u>55</u> ± <u>104</u>

METHOD SUMMARIES Page 7 SUMMARY DATA SECTION Page 18

SDG 8640

Test <u>RA</u> Matrix <u>WATER</u> SDG <u>8640</u> Contact <u>N. Joseph Verville</u>

LAB METHOD SUMMARY RADIUM-226 IN WATER

RADON COUNTING

Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

х .

RESULTS

LAB	RAW SUF-			
SAMPLE ID	TEST FIX	PLANCHET	CLIENT SAMPLE ID	Radium-226
Preparation	batch 725	8-129		
S010169-01		8640-001	ITJ2060-02	U
S010169-02		8640-002	Lab Control Sample	ok
S010169-03		8640-003	Method Blank	ΰ
S010169-04		8640-004	Duplicate (S010169-01)	- U
		·····		
Nominal val	ues and li	mits from m	ethod RDLs (pCi/L)	1.00
			_	

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC		YIELD %		COUNT		 	PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 7258-129 2σ prep erro	r 16.4 % Rei	ference	Lab N	loteboo	k No.	7258	pg. 12	29				
S010169-01	ITJ2060-02	0.671	0.100			100		80		21	11/10/10	11/10	RN-015
S010169-02	Lab Control Sample	0.374	0.100			100		214			11/10/10	11/10	RN-011
S010169-03	Method Blank	0.415	0.100			100		214			11/10/10	11/10	RN-016
S010169-04	Duplicate (S010169-01) 0.424	0.100			100		124		21	11/10/10	11/10	RN-015
Nominal val	ues and limits from method	1.00	0.100					100		 180			

PROCEDURES	REFERENCE	903.1	AVERAGES ± 2 SD	MDA <u>0.471</u> ± <u>0.270</u>	
	DWP-881A	Ra-226 Screening in Drinking Water, rev 6	FOR 4 SAMPLES	YIELD 100 ± 0	

Lab id	EAS
Protocol	TA
Version	<u>Ver 1.0</u>
Form	DVD-LMS
Version	3.06
Report date	12/14/10

METHOD SUMMARIES Page 8 SUMMARY DATA SECTION Page 19

SDG 8640

SDG <u>8640</u> Contact <u>N. Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

SAMPLE SUMMARY

The Sample and QC Summary Reports show all samples, including QC samples, reported in one Sample Delivery Group (SDG).

The Sample Summary Report fully identifies client samples and gives the corresponding lab sample identification. The QC Summary Report shows at the sample level how the lab organized the samples into batches and generated QC samples. The Preparation Batch and Method Summary Reports show this at the analysis level.

The following notes apply to these reports:

- * LAB SAMPLE ID is the lab's primary identification for a sample.
- * DEPARTMENT SAMPLE ID is an alternate lab id, for example one assigned by a radiochemistry department in a lab.
- * CLIENT SAMPLE ID is the client's primary identification for a sample. It includes any sample preparation done by the client that is necessary to identify the sample.
- * QC BATCH is a lab assigned code that groups samples to be processed and QCed together. These samples should have similar matrices.

QC BATCH is not necessarily the same as SDG, which reflects samples received and reported together.

* All Lab Control Samples, Method Blanks, Duplicates and Matrix Spikes are shown that QC any of the samples. Due to possible reanalyses, not all results for all these QC samples may be relevant to the SDG. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.

Lab id	EAS
Protocol	<u>TA</u>
Version	<u>Ver 1.0</u>
Form	DVD-RG
Version	3.06
Report date	12/14/10

REPORT GUIDES Page 1 SUMMARY DATA SECTION Page 20 SDG 8640

SDG <u>8640</u> Contact <u>N. Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches in one Sample Delivery Group (SDG) with information necessary to check the completeness and consistency of the SDG.

The following notes apply to this report:

- * The preparation batches are shown in the same order as the Method Summary Reports are printed.
- * Only analyses of planchets relevant to the SDG are included.
- * Each preparation batch should have at least one Method Blank and LCS in it to validate client sample results.
- * The QUALIFIERS shown are all qualifiers other than U, J, B, L and H that occur on any analysis in the preparation batch. The Method Summary Report has these qualifiers on a per sample basis.

These qualifiers should be reviewed as follows:

- X Some data has been manually entered or modified. Transcription errors are possible.
- P One or more results are 'preliminary'. The data is not ready for final reporting.
- 2 There were two or more results for one analyte on one planchet imported at one time. The results in DVD may not be the same as on the raw data sheets.

Other lab defined qualifiers may occur. In general, these should be addressed in the SDG narrative.

EAS
<u>TA</u>
<u>Ver 1.0</u>
DVD-RG
3.06
12/14/10

REPORT GUIDES Page 2 SUMMARY DATA SECTION Page 21

SDG 8640

SDG <u>8640</u> Contact <u>N. Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

WORK SUMMARY

The Work Summary Report shows all samples, including QC samples, and all relevant analyses in one Sample Delivery Group (SDG). This report is often useful as supporting documentation for an invoice.

The following notes apply to this report:

- * TEST is a code for the method used to measure associated analytes. Results and related information for each analyte are on the Data Sheet Report. In special cases, a test code used in the summary data section is not the same as in associated raw data. In this case, both codes are shown on the Work Summary.
- * SUFFIX is the lab's code to distinguish multiple analyses (recounts, reworks, reanalyses) of a fraction of the sample. The suffix indicates which result is being reported. An empty suffix normally identifies the first attempt to analyze the sample.
- * The LAB SAMPLE ID, TEST and SUFFIX uniquely identify all supporting data for a result. The Method Summary Report for each TEST has method performance data, such as yield, for each lab sample id and suffix and procedures used in the method.
- * PLANCHET is an alternate lab identifier for work done for one test. It, combined with the TEST and SUFFIX, may be the best link to raw data.
- * For QC samples, only analyses that directly QC some regular sample are shown. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.
- * The SAS (Special Analytical Services) Number is a client or lab assigned code that reflects special processing for samples, such as rapid turn around. Counts of tests done are lists by SAS number since it is likely to affect prices.

REPORT GUIDES Page 3 SUMMARY DATA SECTION Page 22

Lab id	EAS
Protocol	TA
Version	<u>Ver 1.0</u>
Form	DVD-RG
Version	3.06
Report date	12/14/10

SDG 8640

SDG <u>8640</u> Contact <u>N. Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

DATA SHEET

The Data Sheet Report shows all results and primary supporting information for one client sample or Method Blank. This report corresponds to both the CLP Inorganics and Organics Data Sheet.

The following notes apply to this report:

- * TEST is a code for the method used to measure an analyte. If the TEST is empty, no data is available; the analyte was not analyzed for.
- * The LAB SAMPLE ID and TEST uniquely identify work within the Summary Data Section of a Data Package. The Work Summary and Method Summary Reports further identify raw data that underlies this work.

The Method Summary Report for each TEST has method performance data, such as yield, for each Lab Sample ID and a list of procedures used in the method.

- * ERRORs can be labeled TOTAL or COUNT. TOTAL implies a preparation (non-counting method) error has been added, as square root of sum of squares, to the counting error denoted by COUNT. The preparation errors, which may vary by preparation batch, are shown on the Method Summary Report.
- * A RESULT can be 'N.R.' (Not Reported). This means the lab did this work but chooses not to report it now, possibly because it was reported at another time.
- * When reporting a Method Blank, a RESULT can be 'N.A.' (Not Applicable). This means there is no reported client sample work in the same preparation batch as the Blank's result. This is likely to occur when the Method Blank is associated with reanalyses of selected work for a few samples in the SDG.

The following qualifiers are defined by the DVD system:

U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the limit.

REPORT GUIDES Page 4 SUMMARY DATA SECTION Page 23

Tab id	173 C
Lab id	<u>EAS</u>
Protocol	TA
Version	<u>Ver 1.0</u>
Form	DVD-RG
Version	3.06
Report date	12/14/10

SDG 8640

SDG	864	10	
Contact	N.	Joseph	Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

DATA SHEET

- J The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.
- B A Method Blank associated with this sample had a result without a U flag and, after correcting for possibly different aliquots, that result is greater than or equal to the MDA for this sample.

Normally, B is not assigned if U is. When method blank subtraction is shown on this report, B flags are assigned based on the unsubtracted values while U's are assigned based on the subtracted ones. Both flags can be assigned in this case.

For each sample result, all Method Blank results in the same preparation batch are compared. The Method Summary Report documents this and other QC relationships.

- L Some Lab Control Sample that QC's this sample had a low recovery. The lab can disable assignment of this qualifier.
- H Similar to 'L' except the recovery was high.
- P The RESULT is 'preliminary'.
- X Some data necessary to compute the RESULT, ERROR or MDA was manually entered or modified.
- 2 There were two or more results available for this analyte. The reported result may not be the same as in the raw data.

Other qualifiers are lab defined. Definitions should be in the SDG narrative.

The following values are underlined to indicate possible problems:

- * An MDA is underlined if it is bigger than its RDL.
- * An ERROR is underlined if the 1.645 sigma counting error is bigger than both the MDA and the RESULT, implying that the MDA

REPORT GUIDES Page 5 SUMMARY DATA SECTION Page 24

Lab id EAS Protocol TA Version Ver 1.0 Form DVD-RG Version 3.06 Report date <u>12/14/10</u>

SDG 8640

SDG <u>8640</u> Contact <u>N. Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

DATA SHEET

may not be a good estimate of the 'real' minimum detectable activity.

- * A negative RESULT is underlined if it is less than the negative of its 2 sigma counting ERROR.
- * When reporting a Method Blank, a RESULT is underlined if greater than its MDA. If the MDA is blank, the 2 sigma counting error is used in the comparison.

Lab id <u>EAS</u> Protocol <u>TA</u> Version <u>Ver 1.0</u> Form <u>DVD-RG</u> Version <u>3.06</u> Report date <u>12/14/10</u>

REPORT GUIDES Page 6 SUMMARY DATA SECTION Page 25

SDG 8640

SDG <u>8640</u> Contact <u>N. Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

LAB CONTROL SAMPLE

	e Lab Control Sample Report shows all results, recoveries and primary pporting information for one Lab Control Sample.
Th	e following notes apply to this report:
*	All fields in common with the Data Sheet Report have similar usage. Refer to its Report Guide for details.
*	An amount ADDED is the lab's value for the actual amount spiked into this sample with its ERROR an estimate of the error of this amount.
	An amount added is underlined if its ratio to the corresponding RDL is outside protocol specified limits.
*	REC (Recovery) is RESULT divided by ADDED expressed as a percent.
*	The first, computed limits for the recovery reflect:
	 The error of RESULT, including that introduced by rounding the result prior to printing.
	If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.
	2. The error of ADDED.
	3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
*	The second limits are protocol defined upper and lower QC limits for the recovery.
*	The recovery is underlined if it is outside either of these ranges.

Lab id <u>EAS</u> Protocol <u>TA</u> Version <u>Ver 1.0</u> Form <u>DVD-RG</u> Version <u>3.06</u> Report date <u>12/14/10</u>

REPORT GUIDES Page 7 SUMMARY DATA SECTION Page 26

E	в	Е	R	L	Ι	Ν	E	Α	N	Α	L	Y	т	Ι	C	Α	L	
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--

SDG 8640

SDG <u>8640</u> Contact <u>N. Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

DUPLICATE

The Duplicate Report shows all results, differences and primary supporting information for one Duplicate and associated Original sample.

The following notes apply to this report:

* All fields in common with the Data Sheet Report have similar usage. This applies both to the Duplicate and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Duplicate has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

* The RPD (Relative Percent Difference) is the absolute value of the difference of the RESULTs divided by their average expressed as a percent.

If both RESULTs are less than their MDAs, no RPD is computed and a '-' is printed.

For an analyte, if the lab did work for both samples but has data for only one, the MDA from the sample with data is used as the other's result in the RPD.

* The first, computed limit is the sum, as square root of sum of squares, of the errors of the results divided by the average result as a percent, hence the relative error of the difference rather than the error of the relative difference. The errors include those introduced by rounding the RESULTs prior to printing.

If this limit is labeled TOT, it includes the preparation error in the RESULTS. If labeled CNT, it does not.

This value reported for this limit is at most 999.

* The second limit for the RPD is the larger of:

1. A fixed percentage specified in the protocol.

REPORT GUIDES Page 8 SUMMARY DATA SECTION Page 27 Lab id <u>EAS</u> Protocol <u>TA</u> Version <u>Ver 1.0</u> Form <u>DVD-RG</u> Version <u>3.06</u> Report date <u>12/14/10</u>

SDG 8640

SDG <u>8640</u> Contact <u>N. Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

DUPLICATE

- 2. A protocol factor (typically 2) times the average MDA as a percent of the average result. This limit applies when the results are close to the MDAs.
- * The RPD is underlined if it is greater than either limit.
- * If specified by the lab, the second limit column is replaced by the Difference Error Ratio (DER), which is the absolute value of the difference of the results divided by the quadratic sum of their one sigma errors, the same errors as used in the first limit.

Except for differences due to rounding, the DER is the same as the RPD divided by the first RPD limit with the limit scaled to 1 sigma.

* The DER is underlined if it is greater than the sigma factor, typically 2 or 3, shown in the header for the first RPD limit.

Lab id	EAS
Protocol	TA
Version	<u>Ver 1.0</u>
Form	DVD-RG
Version	3.06
Report date	12/14/10

REPORT GUIDES Page 9 SUMMARY DATA SECTION Page 28

SDG 8640

SDG <u>8640</u> Contact <u>N. Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

MATRIX SPIKE

The Matrix Spike Report shows all results, recoveries and primary supporting information for one Matrix Spike and associated Original sample.

The following notes apply to this report:

* All fields in common with the Data Sheet Report have similar usage. This applies both to the Spiked and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Spike has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

* An amount ADDED is the lab's value for the actual amount spiked into the Spike sample with its ERROR an estimate of the error of this amount.

An amount is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- * REC (Recovery) is the Spike RESULT minus the Original RESULT divided by ADDED expressed as a percent.
- * The first, computed limits for the recovery reflect:
 - 1. The errors of the two RESULTs, including those introduced by rounding them prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- * The second limits are protocol defined upper and lower QC limits for the recovery.

REPORT GUIDES Page 10 SUMMARY DATA SECTION Page 29

Lab id	EAS
Protocol	TA
Version	<u>Ver 1.0</u>
Form	DVD-RG
Version	3.06
Report date	12/14/10

SDG 8640

SDG <u>8640</u> Contact <u>N. Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

MATRIX SPIKE

These limits are left blank if the Original RESULT is more than a protocol defined factor (typically 4) times ADDED. This is a way of accounting for that when the spike is small compared to the amount in the original sample, the recovery is unreliable.

* The recovery is underlined (out of spec) if it is outside either of these ranges.

Lab id <u>EAS</u> Protocol <u>TA</u> Version <u>Ver 1.0</u> Form <u>DVD-RG</u> Version <u>3.06</u> Report date <u>12/14/10</u>

REPORT GUIDES Page 11 SUMMARY DATA SECTION Page 30

SDG 8640

SDG <u>8640</u> Contact <u>N. Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

METHOD SUMMARY

The Method Summary Report has two tables. One shows up to five results measured using one method. The other has performance data for the method. There is one report for each TEST, as used on the Data Sheet Report.

The following notes apply to this report:

* Each table is subdivided into sections, one for each preparation batch. A preparation batch is a group of aliquots prepared at roughly the same time in one work area of the lab using the same method.

There should be Lab Control Sample and Method Blank results in each preparation batch since this close correspondence makes the QC meaningful. Depending on lab policy, Duplicates need not occur in each batch since they QC sample dependencies such as matrix effects.

* The RAW TEST column shows the test code used in the raw data to identify a particular analysis if it is different than the test code in the header of the report. This occurs in special cases due to method specific details about how the lab labels work.

The Lab Sample or Planchet ID combined with the (Raw) Test Code and Suffix uniquely identify the raw data for each analysis.

* If a result is less than both its MDA and RDL, it is replaced by just 'U' on this report. If it is greater than or equal to the RDL but less than the MDA, the result is shown with a 'U' flag.

The J and X flags are as on the data sheet.

- * Non-U results for Method Blanks are underlined to indicate possible contamination of other samples in the preparation batch. The Method Blank Report has supporting data.
- * Lab Control Sample and Matrix Spike results are shown as: ok, No data, LOW or HIGH, with the last two underlined. 'No data' means no amount ADDED was specified. 'LOW' and 'HIGH'

Lab id <u>EAS</u> Protocol <u>TA</u> Version <u>Ver 1.0</u> Form <u>DVD-RG</u> Version <u>3.06</u> Report date <u>12/14/10</u>

REPORT GUIDES Page 12 SUMMARY DATA SECTION Page 31

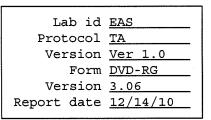
SDG 8640

SDG <u>8640</u> Contact <u>N. Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

METHOD SUMMARY


correspond to when the recovery is underlined on the Lab Control Sample or Matrix Spike Report. See these reports for supporting data.

- * Duplicate sample results are shown as: ok, No data, or OUT, with the last two underlined. 'No data' means there was no original sample data found for this duplicate. 'OUT' corresponds to when the RPD is underlined on the Duplicate Report. See this report for supporting data.
- * If the MDA column is labeled 'MAX MDA', there was more than one result measured by the reported method and the MDA shown is the largest MDA. If not all these results have the same RDL, the MAX MDA reflects only those results with RDL equal to the smallest one.

MDAs are underlined if greater than the printed RDL.

- * Aliquots are underlined if less than the nominal value specified for the method.
- * Prepareation factors are underlined if greater than the nominal value specified for the method.
- * Dilution factors are underlined if greater than the nominal value specified for the method.
- * Residues are underlined if outside the range specified for the method. Residues are not printed if yields are.
- * Yields, which may be gravimetric, radiometric or some type of recovery depending on the method, are underlined if outside the range specified for the method.
- * Efficiencies are underlined if outside the range specified for the method. Efficiencies are detector and geometry dependent so this test is only approximate.
- * Count times are underlined if less than the nominal value

REPORT GUIDES Page 13 SUMMARY DATA SECTION Page 32

SDG 8640

SDG	8640
Contact	N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

METHOD SUMMARY

specified for the method.

- * Resolutions (as FWHM; Full Width at Half Max) are underlined if greater than the method specified limit.
- * Tracer drifts are underlined if their absolute values are greater than the method specified limit. Tracer drifts are not printed if percent moistures are.
- * Days Held are underlined if greater than the holding time specified in the protocol.
- * Analysis dates are underlined if before their planchet's preparation date or, if a limit is specified, too far after it.

For some methods, ratios as percentages and error estimates for them are computed for pairs of results. A ratio column header like '1+3' means the ratio of the first result column and the third result column.

Ratios are not computed for Lab Control Sample, Method Blank or Matrix Spike results since their matrices are not necessarily similar to client samples'.

The error estimate for a ratio of results from one planchet reflects only counting errors since other errors should be correlated. For a ratio involving different planchets, if QC limits are computed based on total errors, the error for the ratio allows for the preparation errors for the planchets.

The ratio is underlined (out of spec) if the absolute value of its difference from the nominal value is greater than its error estimate. If no nominal value is specified, this test is not done.

For Gross Alpha or Gross Beta results, there may be a column showing the sum of other Alpha or Beta emitters. This sum includes all relevant results in the DVD database, whether reported or not. Results in the sum are weighted by a particles/decay value specified by the lab for each relevant analyte. Results less than their MDA are not included.

> Lab id <u>EAS</u> Protocol <u>TA</u> Version <u>Ver 1.0</u> Form <u>DVD-RG</u> Version <u>3.06</u> Report date <u>12/14/10</u>

REPORT GUIDES Page 14 SUMMARY DATA SECTION Page 33

SDG 8640

SDG <u>8640</u> Contact <u>N. Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>ITJ2060</u>

METHOD SUMMARY

No sums are computed for Lab Control, Method Blank or Matrix Spike samples since their various planchets may not be physically related.

If a ratio of total isotopic to Gross Alpha or Beta is shown, the error for the ratio reflects both the error in the Gross result and the sum, as square root of sum of squares, of the errors in the isotopic results.

For total elemental uranium or thorium results, there may be a column showing the total weight computed from associated isotopic results. Ignoring results less than their MDAs, this is a weighted sum of the isotopic results. The weights depend on the molecular weight and half-life of each isotope so as to convert activities (decays) to weight (atoms).

If a ratio of total computed to measured elemental uranium or thorium is shown, the error for the ratio reflects the errors in all the measurements.

REPORT GUIDES Page 15 SUMMARY DATA SECTION Page 34 Lab id <u>EAS</u> Protocol <u>TA</u> Version <u>Ver 1.0</u> Form <u>DVD-RG</u> Version <u>3.06</u> Report date <u>12/14/10</u>

SUBCONTRACT ORDER **TestAmerica** Irvine

ITJ2060

SENDING LABORATOR	<u>Y:</u>	RECEIVING LAB	BORATORY:			
TestAmerica Irvine		Eberline Services				
17461 Derian Avenue.	Suite 100	2030 Wright A				
Irvine, CA 92614		Richmond, CA	94804 8640			
Phone: (949) 261-1022		Phone :(510) 2				
Fax: (949) 260-3297		Fax: (510) 235				
Project Manager: Debb	v Wilson		-0438 on: CA - CALIFORNIA			
Project Manager. Debb	y wilson	Receipt Temper				
Standard TAT is reques	sted unless specific due date	is requested. => Due Date:	Initials:			
Analysis	Units	Expires	Comments			
Gamma Spec-O	- ma/kg p(i/L pCi/L & 10/26	Sampled: 10/20/10 1 10/20/11 15:15	Out Eberline, k-40 and cs-137 only, DO NOT FILTER!			
Gross Alpha-O	pCi/L 2.0/26	04/18/11 15:15	Out Eberline, Boeing permit, DO NOT FILTER!			
Gross Beta-O	→ pCi/L	04/18/11 15:15	Out Eberline Boeing permit, DO NOT			
	P		FILTER!			
Level 4 Data Package -		11/17/10 15:15				
Level 4 Data Package - Radium, Combined-O						
-	Out N/A	11/17/10 15:15	FILTER! Out Eberline Boeing permit, DO NOT			
Radium, Combined-O	Out N/A " pCi/L	11/17/10 15:15 10/20/11 15:15	FILTER! Out Eberline Boeing permit, DO NOT FILTER! Out Eberline, Boeing permit, DO NOT			
Radium, Combined-O Strontium 90-O	Out N/A	11/17/10 15:15 10/20/11 15:15 10/20/11 15:15	FILTER! Out Eberline Boeing permit, DO NOT FILTER! Out Eberline, Boeing permit, DO NOT FILTER! Out Eberline, Boeing permit, DO NOT			
Radium, Combined-O Strontium 90-O Tritium-O	Out N/A pCi/L pCi/L pCi/L	11/17/10 15:15 10/20/11 15:15 10/20/11 15:15 10/20/11 15:15	FILTER! Out Eberline Boeing permit, DO NOT FILTER! Out Eberline, Boeing permit, DO NOT FILTER! Out Eberline, Boeing permit, DO NOT FILTER! Out Eberline, Boeing permit, DO NOT			

Released By ED E

Released By

10 7.00 Date/Time

Date/Time

Received By

Redei

17:00 10 Date/Time 6930 10 Date/Time

ed By

Page 1 of 1

EBERL		RICHMO	ND, CA	LABORATO	DRY		
Z) 5		SAMP	LE RECEIP				
Lient: TEST	ANERICA	Ą	City	IRVINE 2060	State	cA	
Date/Time recei	ved 0/22/10	09 70 COC N	. ITJ	2060			
	105 cotes 7		TAT (Dave)	<u>STP</u> P.O. Re	ceived Yes [1 No []	
Container I.D. N	10. [01.2.1					1	
	t i shini	-i	INSPE(LIION	Yes [V]	No[] N/A [1
		ping container ir		42	Yes [X]	No[] N/A	
		ping container d			Yes []	No[] N/A	
	-	ple containers ir ple containers d		42	Yes[]	No[] N/A	1
	y seals on sam g material is:	ple containers d	ateu a signo		Wet []	Dry [水]	·/·
5. Packing	r of camples in	shipping contai	ner:	Sample Matr		,,,,,	
				(Or see CoC _			
	es are in correct			Yes [v]			
-	vork agrees with			Yes [7-]			
			labels []	Rad labels []		nple labels [x]	
				ng[] Broken			
12. Sample	es are: Preser	ved [] Notp	· reserved [x]pHPr	eservative		
	be any anomali		9				
10. Desen							
······································							
14 Was P	M notified of	any anomalies?	Ye	s[/]; No[] Date		
		any anomalies?	1	Martin	1110		
	ted by Mu	ur	Ye Date	022/10 Tim	e: <u>115</u>		
15. Inspec			1	Martin	1110	lon Chamber mR/hr	wipe
15. Inspec Customer Sample No.	Beta/Gamma	lon Chamber	Date	Customer	e:l[Beta/Gamma	lon Chamber	wipe
15. Inspec Customer Sample No.	Beta/Gamma	lon Chamber	Date	Customer	e:l[Beta/Gamma	lon Chamber	wipe
15. Inspec Customer Sample No.	Beta/Gamma	lon Chamber	Date	Customer	e:l[Beta/Gamma	lon Chamber	wipe
15. Inspec Customer Sample No.	Beta/Gamma	lon Chamber	Date	Customer	e:l[Beta/Gamma	lon Chamber	wipe
15. Inspec Customer Sample No.	Beta/Gamma	lon Chamber	Date	Customer	e:l[Beta/Gamma	lon Chamber	wipe
15. Inspec Customer Sample No.	Beta/Gamma	lon Chamber	Date	Customer	e:l[Beta/Gamma	lon Chamber	wipe
15. Inspec Customer Sample No.	Beta/Gamma	lon Chamber	Date	Customer	e:l[Beta/Gamma	lon Chamber	wipe
15. Inspec Customer Sample No.	Beta/Gamma	lon Chamber	Date	Customer	e:l[Beta/Gamma	lon Chamber	wipe
15. Inspec Customer Sample No.	Beta/Gamma	lon Chamber	Date	Customer	e:l[Beta/Gamma	lon Chamber	wipe
15. Inspec Customer Sample No.	Beta/Gamma	lon Chamber	Date	Customer	e:l[Beta/Gamma	lon Chamber	wipe
15. Inspec	Beta/Gamma	lon Chamber	Date	Customer	e:l[Beta/Gamma	lon Chamber	wipe
15. Inspec Customer Sample No.	Beta/Gamma	lon Chamber	Date	Customer	e:l[Beta/Gamma	lon Chamber	wipe
15. Inspec Customer Sample No.	Beta/Gamma	lon Chamber	Date	Customer Sample No.	e: <u>l[15</u> Beta/Gamma cpm	lon Chamber mR/hr	
15. Inspec Customer Sample No. (TJ 2060-02	ted by	lon Chamber	Wipe	Customer Sample No.	e: <u>l[15</u> Beta/Gamma cpm	lon Chamber	
15. Inspec Customer Sample No. (TJ2060-02	r. No	ion Chamber mR/hr	Wipe	Customer Sample No.	e:	lon Chamber mR/hr	

Form SCP-02, 07-30-07

"over 55 years of quality nuclear services"

APPENDIX G

Section 25

Outfall 009 – November 20, 2010 MEC^X Data Validation Report THIS PAGE LEFT INTENTIONALLY BLANK

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: ITK2126

Prepared by

MEC[×], LP 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Contract Task Order:	Boeing SSFL NPDES 1261.100D.00
Sample Delivery Group:	ITK2126
Project Manager:	B. Kelly
Matrix:	Water
QC Level:	IV
No. of Samples:	1
No. of Reanalyses/Dilutions:	0
Laboratory:	TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 009	ITK2126-01	G0K230533-001, S011232-01	WATER	11/20/2010 12:45	245.1, 245.1 (Diss), ASTM 5174- 91, 900.0 MOD, 901.1 MOD, 903.1 MOD, 904 MOD, 905 MOD, 906.0 MOD, 1613, SM2540D

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at TestAmerica-Sacramento marginally below the temperature limit, at 1°C; however, as the samples were not noted to be frozen or damaged, no qualifications were required. The samples in this SDG were received at the remaining laboratories within the temperature limits of $4^{\circ}C \pm 2^{\circ}C$. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. Custody seals were intact upon receipt at TestAmerica-Sacramento and Eberline. As the samples were couriered to TestAmerica-Irvine, custody seals were not required.

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
А	Not applicable.	ICP Serial Dilution %D were not within control limits.
Μ	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not	The
	be used because another more	be ι
	technically sound analysis is	tech
	available.	ava
Ρ	Instrument performance for	Pos
	pesticides was poor.	not
ONC	The reported result is above the	The

- DNQ The reported result is above the method detection limit but is less than the reporting limit.
- *II, *III Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

The analysis with this flag should not be used because another more technically sound analysis is available.

Post Digestion Spike recovery was not within control limits.

The reported result is above the method detection limit but is less than the reporting limit.

Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin Date Reviewed: January 3, 2011

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (9/05).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed with the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had detects between the EDL and the RL for most target compounds. Several target compounds were reported as EMPCs in the method blank; however, due to the extent of the method blank contamination, the reviewer considered it appropriate to use the EMPCs to qualify sample results. The method blank result for OCDD was insufficient to qualify the sample result. All other individual isomers detected in

the site sample were qualified as nondetected, "U" at the EDL, or at the level of contamination in the sample. Total TCDD and total HpCDD in the sample were comprised of the same peaks as the method blank totals, and were therefore qualified as nondetected, "U," at the level of contamination. All remaining sample totals containing one or more peaks detected in the method blank were qualified as estimated, "J."

- Blank Spikes and Laboratory Control Samples: OPR recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: Two internal standards were recovered marginally above the control limits in two standards associated with the sample; however, sample data quality was not affected. The labeled standard recoveries in the sample were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating a representative number of reportable sample results. Any individual isomers reported as EMPCs previously qualified as nondetected for method blank contamination were not further qualified as EMPCs. Any totals including EMPC peaks were qualified as estimated, "J." Any detects reported between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

B. EPA METHOD 245.1—Mercury

Reviewed By: P. Meeks Date Reviewed: January 3, 2011

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Method 245.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: The analytical holding time, 28 days for mercury, was met.
- Tuning: Not applicable to this method.
- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all mercury initial and continuing calibration recoveries were within 85-115%. The mercury CRI recoveries were within the control limits of 70-130%.
- Blanks: Method blanks and CCBs had no applicable detects.
- Interference Check Samples: Not applicable to this analysis.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Serial Dilution: No serial dilution analyses were performed on the sample in this SDG.
- Internal Standards Performance: Not applicable to this method.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks Date Reviewed: January 3, 2010

The sample listed in Table 1 for these analyses were validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (10/04).

- Holding Times: The tritium sample was analyzed within 180 days of collection. All remaining aliquots were prepared beyond the five-day analytical holding time for unpreserved samples; therefore, all results, except for tritium, were qualified as estimated, "J," for detects and, "UJ," for nondetects.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability. Detector efficiencies were greater than 20%. The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. All chemical yields were at least 40% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. All KPA recoveries were within 90-110% and were deemed acceptable.
- Blanks: There were no analytes detected in the method blanks.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.
- Laboratory Duplicates: Laboratory duplicate analyses were performed on the sample in this SDG. The RPDs were within the laboratory-established control limits or less than 2x the average MDA for results near the MDA.
- Matrix Spike/Matrix Spike Duplicate: No matrix spike or MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. Any detects between the MDA and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDA. Total uranium, normally reported in aqueous units, was converted to pCi/L using the conversion factor of 0.67 for naturally occurring uranium
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC

data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- Field Duplicates: There were no field duplicate samples identified for this SDG.

D. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks Date Reviewed: January 3, 2011

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), Standard Method 2540D, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: The analytical holding time, seven days from collection, was met.
- Calibration: Balance calibration logs were provided and found to be acceptable.
- Blanks: TSS was not detected in the method blank.
- Blank Spikes and Laboratory Control Samples: The recovery was within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analysis was performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: Not applicable to this analysis.
- Sample Result Verification: Calculations were verified and the sample result reported on the sample result summary was verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- Field Duplicates: There were no field duplicate samples identified for this SDG.

Validated Sample Result Forms ITK2126

Analysis Method 900 Matrix Type: WATER Sample Name Outfall 009 Validation Level: IV Sample Date: 11/20/2010 12:45:00 PM Lab Sample Name: ITK2126-01 Analyte CAS No Result RL MDL Result Lab Validation Validation Value Units Qualifier **Oualifier** Notes Gross Alpha 0.709 0.365 12587461 3 pCi/L Jb DNQ, H J Gross Beta 12587472 1.48 4 0.873 J DNQ, H pCi/L Jb Analysis Method 901.1 Matrix Type: WATER Sample Name Outfall 009 Validation Level: IV Sample Date: 11/20/2010 12:45:00 PM ITK2126-01 Lab Sample Name: CAS No Result RL MDL Result Lab Analyte Validation Validation Value Units Qualifier Qualifier Notes Cesium-137 10045973 ND 20 1.25 pCi/L U UJ н Potassium-40 ND 25 U UJ Н 13966002 16.5 pCi/L 903.1 Analysis Method Matrix Type: WATER Validation Level: IV Sample Name Outfall 009 Sample Date: 11/20/2010 12:45:00 PM ITK2126-01 Lab Sample Name: Analyte CAS No Result RL MDL Result Lab Validation Validation Value Units Qualifier Qualifier Notes Radium-226 13982633 0.047 1 0.732 pCi/L U UJ Η Analysis Method 904 Matrix Type: WATER Validation Level: IV Sample Name Outfall 009 Sample Date: 11/20/2010 12:45:00 PM ITK2126-01 Lab Sample Name: Analyte CAS No Result RL MDL Result Lab Validation Validation Qualifier Value Units Qualifier Notes Radium-228 15262201 -0.066 1 0.471 pCi/L U UJ H Analysis Method 905 Matrix Type: WATER Validation Level: IV Sample Name Outfall 009 Sample Date: 11/20/2010 12:45:00 PM Lab Sample Name: ITK2126-01 Analyte CAS No Result RL MDL Result Lab Validation Validation Value Units Qualifier Qualifier Notes н Strontium-90 10098972 0.089 2 1.39 pCi/L U UJ

Monday, January 03, 2011

Sample Name	Outfall 009		Matri	x Type:	WATER	V	Validation Le	vel: IV	
-	ITK2126-01	G		11/20/2010 12:45:00 PM					
Lab Sample Name:	11K2120-01	Sam	iple Date:	11/20/20	10 12:45:00 1				
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Tritium	10028178	46.8	200	148	pCi/L	U	U		
Analysis Metho	od ASTN	1 5174-	91						
Sample Name	Outfall 009		Matri	x Type:	WATER	I.	alidation Le	vel: IV	
Lab Sample Name:	ITK2126-01	Sam	ple Date:	11/20/20	10 12:45:00 H	PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Uranium, Total	NA	0.046	1	0.019	pCi/L	Jb	J	DNQ,H	
Analysis Metho	od EPA	245.1							
Sample Name	Outfall 009		Matri	x Type:	Water	I.	alidation Le	vel: IV	
Lab Sample Name:	ITK2126-01	Sam	ple Date:	11/20/20	10 12:45:00 H	PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Mercury	7439-97-6	ND	0.20	0.10	ug/l		U		
Analysis Metho	od EPA	245.1-L	Diss						
Sample Name	Outfall 009		Matri	x Type:	Water	V	Validation Le	vel: IV	
Lab Sample Name:	ITK2126-01	Sam	ple Date:	11/20/20	10 12:45:00 H	PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
						-	•		

Analysis Method 906

Sample Name	Outfall 009		Matri	x Type: V	Validation Level: IV			
Lab Sample Name: Analyte	ITK2126-01	Sample Date:		11/20/2010 12:45:00 H		PM		
	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1,2,3,4,6,7,8-HpCDD	35822-46-9	ND	0.00005	0.0000002	ug/L	J, B	U	В
1,2,3,4,6,7,8-HpCDF	67562-39-4	ND	0.00005	0.0000001	ug/L	J, Q, B	U	В
1,2,3,4,7,8,9-HpCDF	55673-89-7	ND	0.00005	0.0000002	ug/L	J, B	U	В
1,2,3,4,7,8-HxCDD	39227-28-6	ND	0.00005	0.0000002	ug/L	J, Q, B	U	В
1,2,3,4,7,8-HxCDF	70648-26-9	ND	0.00005	0.0000002	ug/L		U	
1,2,3,6,7,8-HxCDD	57653-85-7	ND	0.00005	0.0000001	ug/L	J, B	U	В
1,2,3,6,7,8-HxCDF	57117-44-9	ND	0.00005	0.0000001	ug/L		U	
1,2,3,7,8,9-HxCDD	19408-74-3	ND	0.00005	0.0000001	ug/L	J, B	U	В
1,2,3,7,8,9-HxCDF	72918-21-9	ND	0.00005	0.0000001	ug/L		U	
1,2,3,7,8-PeCDD	40321-76-4	ND	0.00005	0.0000004	ug/L		U	
1,2,3,7,8-PeCDF	57117-41-6	ND	0.00005	0.0000002	ug/L		U	
2,3,4,6,7,8-HxCDF	60851-34-5	ND	0.00005	0.0000002	ug/L		U	
2,3,4,7,8-PeCDF	57117-31-4	ND	0.00005	0.0000003	ug/L		U	
2,3,7,8-TCDD	1746-01-6	ND	0.00001	0.0000002	ug/L		U	
2,3,7,8-TCDF	51207-31-9	ND	0.00001	0.0000003	ug/L		U	
OCDD	3268-87-9	0.00016	0.0001	0.0000004	ug/L	В		
OCDF	39001-02-0	ND	0.0001	0.0000002	ug/L	J, B	U	В
Total HpCDD	37871-00-4	ND	0.00005	0.0000002	ug/L	J, B	U	В
Total HpCDF	38998-75-3	8e-006	0.00005	0.0000002	ug/L	J, Q, B	J	B, DNQ, *II
Total HxCDD	34465-46-8	4.8e-006	0.00005	0.0000001	ug/L	J, Q, B	J	B, DNQ, *II
Total HxCDF	55684-94-1	2e-006	0.00005	0.0000001	ug/L	J, Q, B	J	B, DNQ, *I
Total PeCDD	36088-22-9	ND	0.00005	0.0000004	ug/L		U	
Total PeCDF	30402-15-4	ND	0.00005	0.0000002	ug/L		U	
Total TCDD	41903-57-5	ND	0.00001	0.0000002	ug/L	J, Q, B	U	В
Total TCDF	55722-27-5	ND	0.00001	0.0000002	ug/L		U	

Analysis Method EPA-5 1613B

Analysis Method SM 2540D

Sample Name	Outfall 009	Matrix Type: Water Validation Level: IV							
Lab Sample Name:	ITK2126-01	Sam	Sample Date: 11/20/2010 12:45:00 PM						
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Total Suspended Solids	TSS	6.0	10	1.0	mg/l	Ja	J	DNQ	