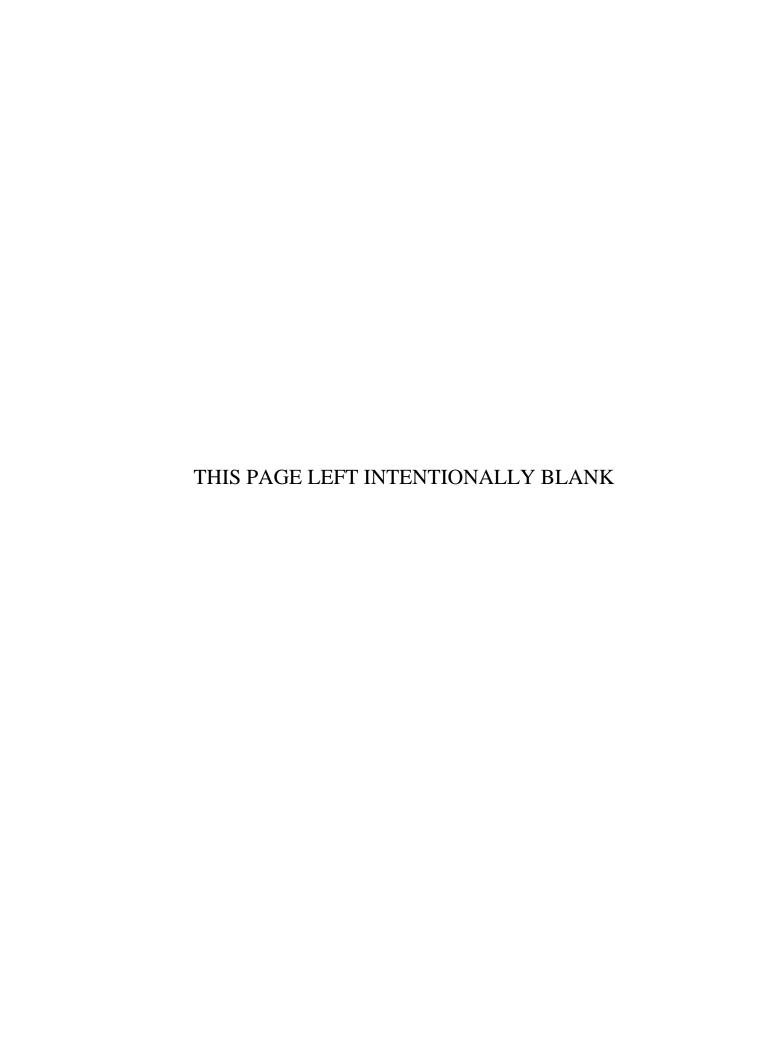

FOURTH QUARTER 2010 ANALYTICAL LABORATORY REPORTS, CHAIN-OF-CUSTODY, AND VALIDATION REPORTS

TABLE OF CONTENTS

Section No.

1	Outfall 001 – December 19 & 20, 2010 - MEC ^X Data Validation Report
2	Outfall 001 – December 19 & 20, 2010 - Test America Analytical Laboratory
	Report
3	Outfall 001 – December 26, 2010 - MEC ^X Data Validation Reports
4	Outfall 001 – December 26, 2010 - Test America Analytical Laboratory Report
5	Outfall 002 – December 19 & 20, 2010 - MEC ^X Data Validation Report
6	Outfall 002 – December 19 & 20, 2010 - Test America Analytical Laboratory
	Report
7	Outfall 002 – December 26, 2010 - MEC ^X Data Validation Report
8	Outfall 002 – December 26, 2010 - Test America Analytical Laboratory Report
9	Outfall 002 – December 29 & 30, 2010 - MEC ^X Data Validation Report
10	Outfall 002 – December 29 & 30, 2010 - Test America Analytical Laboratory
	Report
11	Outfall 006 – December 20, 2010 - MEC ^X Data Validation Report
12	Outfall 006 – December 20, 2010 - Test America Analytical Laboratory Report
13	Outfall 006 – December 26, 2010 - MEC ^X Data Validation Report
14	Outfall 006 – December 26, 2010 - Test America Analytical Laboratory Report
15	Outfall 008 – December 19, 2010 - MEC ^X Data Validation Report
16	Outfall 008 – December 19, 2010 - Test America Analytical Laboratory Report
17	Outfall 008 – December 26, 2010 - MEC ^X Data Validation Report
18	Outfall 008 – December 26, 2010 - Test America Analytical Laboratory Report
19	Outfall 008 – December 29 & 30, 2010 - MEC ^X Data Validation Report
20	Outfall 008 – December 29 & 30, 2010 - Test America Analytical Laboratory
	Report
21	Outfall 009 – October 6, 2010 - MEC ^X Data Validation Report
22	Outfall 009 – October 6, 2010 - Test America Analytical Laboratory Report
23	Outfall 009 – October 20, 2010 - MEC ^X Data Validation Report
24	Outfall 009 – October 20, 2010 - Test America Analytical Laboratory Report
25	Outfall 009 – November 20, 2010 - MEC ^X Data Validation Report
26	Outfall 009 – November 20, 2010 - Test America Analytical Laboratory Report


TABLE OF CONTENTS

Section No.

27	Outfall 009 – December 6, 2010 - MEC ^X Data Validation Report
28	Outfall 009 – December 6, 2010 - Test America Analytical Laboratory Report
29	Outfall 009 – December 18, 2010 - MEC ^X Data Validation Report
30	Outfall 009 – December 18, 2010 - Test America Analytical Laboratory Report
31	Outfall 009 – December 26, 2010 - MEC ^X Data Validation Report
32	Outfall 009 – December 26, 2010 - Test America Analytical Laboratory Report
33	Outfall 009 – December 29 & 30, 2010 - MEC ^X Data Validation Report
34	Outfall 009 – December 29 & 30, 2010 - Test America Analytical Laboratory
	Report
35	Outfall 011 – December 22 & 23, 2010 - MEC^X Data Validation Report
36	Outfall 011 – December 22 & 23, 2010 - Test America Analytical Laboratory
	Report
37	Outfall 018 – December 20 & 21, 2010 - MEC^X Data Validation Report
38	Outfall 018 – December 20 & 21, 2010 - Test America Analytical Laboratory
	Report
39	Arroyo Simi Receiving Water – November 10, 2010 - MEC^X Data Validation
	Report
40	Arroyo Simi Receiving Water – November 10, 2010 - Test America Analytical
	Laboratory Report

Section 1

Outfall 001 – December 19 & 20, 2010 MEC^X Data Validation Report

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: ITL1891

Prepared by

MEC^X, LP 12269 East Vassar Drive Aurora, CO 80014 DATA VALIDATION REPORT Project: SSFL NPDES
SDG: ITL1891

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: ITL1891

Project Manager: B. Kelly Matrix: Water

QC Level: IV No. of Samples: 2

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 001 (Grab)	ITL1891-01	N/A	Water	12/19/2010 2:10:00 PM	SM2510B
Outfall 001 (Composite)	ITL1891-03	G0l230561-001, S012308-01	Water		1613B, 900, 901.1, 903.1, 904, 905, 906, 245.1, 245.1-Diss, 200.7, 200.7-Diss, SM 2540D, SM2130B, D5174

II. Sample Management

A portion of the samples in this SDG were received at TestAmerica-Irvine and TestAmerica-West Sacramento marginally below the control limit; however, as the samples were not noted to be frozen or damaged, no qualifications were required. The samples were received marginally above the temperature limit at Eberline; however, due to the nonvolatile nature of the analytes, no qualifications were required. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the samples were couriered to TestAmerica-Irvine, custody seals were not required. Custody seals were intact upon receipt at Eberline and TestAmerica West Sacramento. If necessary, the client ID was added to the sample result summary by the reviewer.

1

DATA VALIDATION REPORT

Project: SSFL NPDES
SDG: ITL1891

Data Qualifier Reference Table

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

DATA VALIDATION REPORT

Project: SSFL NPDES
SDG: ITL1891

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
E	Not applicable.	Duplicates showed poor agreement.
1	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

DATA VALIDATION REPORT Project: SSFL NPDES SDG: ITL1891

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

DATA VALIDATION REPORT Project: SSFL NPDES SDG: ITL1891

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin

Date Reviewed: January 18, 2011

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - O GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed prior to the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 15 native compounds (calibration by isotope dilution) and ≤35% for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - o Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had detects between the EDL and the RL for 1,2,3,4,6,7,8-HpCDD, 1,2,3,4,6,7,8-HpCDF, 1,2,3,4,7,8,9-HpCDF, OCDD, OCDF, total HpCDD, and total HpCDF. The HpCDF isomers and total were reported as EMPCs in the method blank; however, due to the extent of the method blank contamination, the reviewer considered it appropriate to use the EMPCs to qualify sample results. The concentration

DATA VALIDATION REPORT Project: SSFL NPDES
SDG: ITL1891

of OCDD in the method blank was insufficient to qualify the sample result. All other individual isomers detected in both the method blank and site sample were qualified as nondetected, "U" at the EDL, or at the level of contamination in the sample. The sample totals containing one or more peaks detected in the method blank were qualified as estimated, "J."

- Blank Spikes and Laboratory Control Samples: The LCS recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries in the sample were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating a representative number of reportable sample results. Any individual isomers reported as EMPCs previously qualified as nondetected for method blank contamination were not further qualified as EMPCs. Any totals including EMPC peaks were qualified as estimated, "J." Any detects reported between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

B. EPA METHODS 200.7 and 245.1—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: January 14, 2011

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods200.7 and 245.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

DATA VALIDATION REPORT Project: SSFL NPDES SDG: ITL1891

 Holding Times: Analytical holding times, six months for ICP metals and 28 days for mercury, were met.

- Tuning: Not applicable to these analyses.
- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP-MS metals and 85-115% for mercury. CRDL/CRA recoveries were within the control limits of 70-130%.
- Blanks: Method blanks and CCBs had no detects.
- Interference Check Samples: Recoveries were within the method-established control limits.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed for dissolved 200.7 analytes. Recoveries and RPDs were within laboratory-established QC limits.
- Serial Dilution: No serial dilution analyses were performed on the sample in this SDG.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. All CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

DATA VALIDATION REPORT Project: SSFL NPDES SDG: ITL1891

 Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.

Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: February 2011

The samples listed in Table 1 for these analyses were validated based on the guidelines outlined in the *EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174,* and the *National Functional Guidelines for Inorganic Data Review* (10/04).

- Holding Times: The tritium sample was analyzed within 180 days of collection. The remaining aliquots were prepared within the five-day analytical holding time for unpreserved samples.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, gross alpha detected in the sample was qualified as an estimated detect, "J." The remaining detector efficiencies were greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. All chemical yields were at least 40% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis.

- Blanks: There were no analytes detected in the method blanks or the KPA CCBs.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this
 data package. The sample results and MDAs reported on the sample result form were
 verified against the raw data and no calculation or transcription errors were noted. Any

DATA VALIDATION REPORT SDG: ITL1891

detects between the MDA and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDA.

A notation in the sample preparation logbook indicated that the aliquot for Radium-228 was filtered and that the filter was digested and added to the aliquot.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - o Field Duplicates: There were no field duplicate samples identified for this SDG.

D. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks

Date Reviewed: January 14, 2011

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Standard Methods SM2130B, SM2510B, and SM2540D, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: The analytical holding times, 48 hours from collection for turbidity and conductivity and seven days for TSS, were met.
- Calibration: The turbidity initial calibration r2 value 2090 and the initial and continuing calibration recoveries were within 90-100%. The balance logs were acceptable.
- Blanks: There were no detects in the method blanks or CCBs.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.

DATA VALIDATION REPORT SDG: ITL1891

• Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

Validated Sample Result Forms ITL1891

	od 8646							
Sample Name	Outfall 001 (C	Composite) Matri	x Type:	WATER		Validation Le	vel: IV
Lab Sample Name:	ITL1891-03	Sam	ple Date:	12/20/20	10 4:38:00 A	M		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Uranium, Total		0.433	1	0.019	pCi/L	J	J	DNQ
Analysis Metho	od 900							
Sample Name	Outfall 001 (C	Composite) Matri	x Type:	WATER	7	Validation Le	vel: IV
Lab Sample Name:	ITL1891-03	Sam	ple Date:	12/20/20	10 4:38:00 A	M		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Gross Alpha	12587461	4.4	3	0.499	pCi/L		J	С
Gross Beta	12587472	7.29	4	0.895	pCi/L			
Analysis Metho	od 901.1							
Sample Name	Outfall 001 (C	Composite) Matri	х Туре:	WATER	7	Validation Le	vel: IV
Lab Sample Name:	ITL1891-03	Sam	ple Date:	12/20/20	10 4:38:00 A	M		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Cesium-137	10045973	ND	20	1.68	pCi/L	U	U	
Potassium-40	13966002	ND	25	18.1	pCi/L	U	U	
Analysis Metho	od 903.1							
Sample Name	Outfall 001 (C	Composite) Matri	x Type:	WATER	7	Validation Le	vel: IV
Lab Sample Name:	ITL1891-03	Sam	ple Date:	12/20/20	10 4:38:00 A	M		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Radium-226	13982633	0.388	1	0.711	pCi/L	U	U	
Analysis Metho	od 904							
Sample Name	Outfall 001 (C	Composite) Matri	x Type:	WATER	7	Validation Le	vel: IV
Lab Sample Name:	ITL1891-03	Sam	ple Date:	12/20/20	10 4:38:00 A	M		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Radium-228	15262201	0.393	1	0.484	pCi/L	U	U	

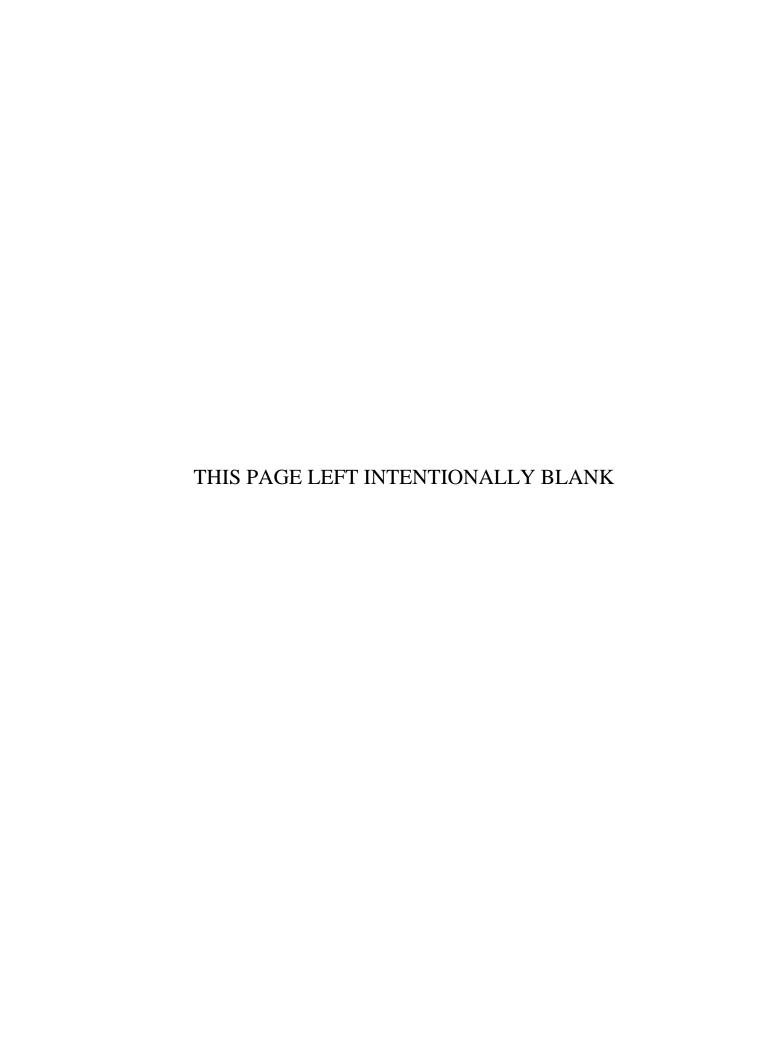
Friday, February 04, 2011 Page 1 of 4

Analysis Method 905

Sample Name	Outfall 001 (0	Composite) Matr	ix Type:	WATER		alidation Le	vel: IV
Lab Sample Name:	ITL1891-03	Sam	ple Date:	12/20/20	10 4:38:00 A	M		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Strontium-90	10098972	-0.198	2	0.809	pCi/L	U	U	
Analysis Metho	od 906							
Sample Name	Outfall 001 (0	Composite) Matr	ix Type:	WATER	V	alidation Le	vel: IV
Lab Sample Name:	ITL1891-03	Sam	ple Date:	12/20/20	10 4:38:00 A	M		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Fritium	10028178	-114	500	297	pCi/L	U	U	
Analysis Metho	od EPA 2	200.7						
Sample Name	Outfall 001 (0	Composite) Matr	ix Type:	Water	7	alidation Le	vel: IV
Lab Sample Name:	ITL1891-03	Sam	ple Date:	12/20/20	10 4:38:00 A	M		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Iron	7439-89-6	6.4	0.040	0.015	/1			
	7437-07-0	0.4	0.040	0.015	mg/l			
Manganese	7439-96-5	96	20	7.0	ug/l			
Zinc	7439-96-5 7440-66-6	96	20.0	7.0	ug/l			
Zinc Analysis Metho	7439-96-5 7440-66-6	96 26.6 200.7- <i>I</i>	20 20.0 Diss	7.0	ug/l	7	$^{\prime}$ alidation Le	vel: IV
Analysis Metho Sample Name	7439-96-5 7440-66-6 od EPA 2	96 26.6 200.7-L Composite	20 20.0 Diss	7.0 6.00	ug/l ug/l		⁷ alidation Le	vel: IV
Analysis Metho Sample Name Lab Sample Name:	7439-96-5 7440-66-6 od EPA 2 Outfall 001 (C	96 26.6 200.7-L Composite	20 20.0 Diss	7.0 6.00	ug/l ug/l Water		Validation Le Validation Qualifier	
Analysis Metho Sample Name Lab Sample Name:	7439-96-5 7440-66-6 od EPA 2 Outfall 001 (C	96 26.6 200.7-L Composite Sam Result	20 20.0 Diss Matr	7.0 6.00 Fix Type: 12/20/20	ug/l ug/l Water 10 4:38:00 A	M Lab	Validation	Validation
Analysis Metho Sample Name Lab Sample Name: Analyte	7439-96-5 7440-66-6 od EPA 2 Outfall 001 (C ITL1891-03 CAS No	96 26.6 200.7-L Composite Sam Result Value	20 20.0 Diss Matr aple Date:	7.0 6.00 ix Type: 12/20/20 MDL	ug/l ug/l Water 10 4:38:00 A Result Units	M Lab	Validation	Validation
Analysis Methor Sample Name Lab Sample Name: Analyte Iron Manganese	7439-96-5 7440-66-6 0d EPA 2 Outfall 001 (C ITL1891-03 CAS No 7439-89-6	96 26.6 200.7-L Composite Sam Result Value 0.095	20 20.0 Diss 2) Matr aple Date: RL	7.0 6.00 Fix Type: 12/20/20 MDL 0.015	ug/l ug/l Water 10 4:38:00 A Result Units mg/l	M Lab	Validation Qualifier	Validation
Analysis Methor Sample Name Lab Sample Name: Analyte fron Manganese Zinc	7439-96-5 7440-66-6 Outfall 001 (CITL1891-03 CAS No 7439-89-6 7439-96-5 7440-66-6	96 26.6 200.7-L Composite Sam Result Value 0.095 ND 18.1	20 20.0 Diss e) Matr aple Date: RL 0.040 20	7.0 6.00 ix Type: 12/20/20 MDL 0.015 7.0	water 10 4:38:00 A Result Units mg/l ug/l	M Lab Qualifier	Validation Qualifier U	Validation Notes
Analysis Methor Sample Name Lab Sample Name: Analyte fron Manganese Zinc Analysis Methor	7439-96-5 7440-66-6 Outfall 001 (CITL1891-03 CAS No 7439-89-6 7439-96-5 7440-66-6	96 26.6 200.7-L Composite Sam Result Value 0.095 ND 18.1	20 20.0 Diss e) Matr aple Date: RL 0.040 20 20.0	7.0 6.00 ix Type: 12/20/20 MDL 0.015 7.0	water 10 4:38:00 A Result Units mg/l ug/l	Lab Qualifier	Validation Qualifier U	Validation Notes DNQ
Analysis Methor Sample Name Lab Sample Name: Analyte Iron Manganese Zinc	7439-96-5 7440-66-6 Outfall 001 (Countries of the countries of the countr	96 26.6 200.7-L Composite Sam Result Value 0.095 ND 18.1 245.1 Composite	20 20.0 Diss e) Matr aple Date: RL 0.040 20 20.0	7.0 6.00 ix Type: 12/20/20 MDL 0.015 7.0 6.00	ug/l ug/l Water 10 4:38:00 A Result Units mg/l ug/l ug/l	Lab Qualifier Ja	Validation Qualifier U J	Validation Notes DNQ
Lab Sample Name: Analyte Iron Manganese Zinc Analysis Metho Sample Name	7439-96-5 7440-66-6 Od EPA 2 Outfall 001 (C ITL1891-03 CAS No 7439-89-6 7439-96-5 7440-66-6 Od EPA 2 Outfall 001 (C	96 26.6 200.7-L Composite Sam Result Value 0.095 ND 18.1 245.1 Composite	20 20.0 Diss 2) Matr aple Date: RL 0.040 20 20.0	7.0 6.00 ix Type: 12/20/20 MDL 0.015 7.0 6.00	ug/l ug/l Water 10 4:38:00 A Result Units mg/l ug/l ug/l	Lab Qualifier Ja	Validation Qualifier U J	Validation Notes DNQ vel: IV

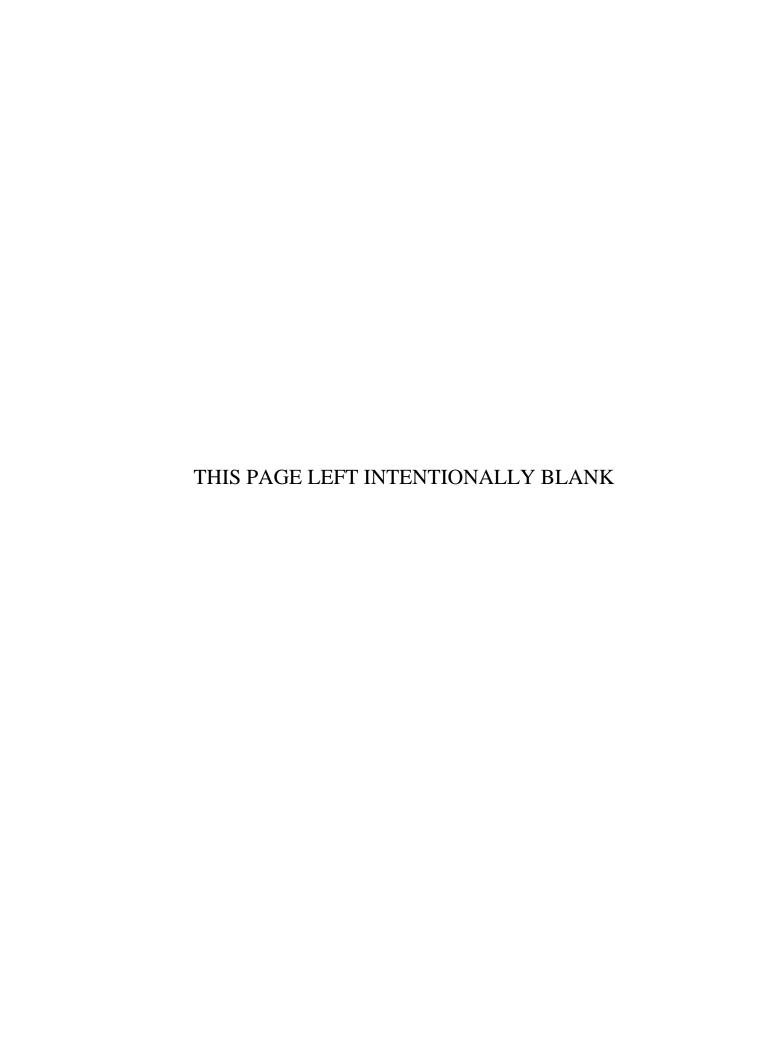
Friday, February 04, 2011 Page 2 of 4

Analysis Method EPA 245.1-Diss


Sample Name	Outfall 001 (C	omposite) Matri	x Type:	Water	V	alidation Le	vel: IV
Lab Sample Name:	ITL1891-03	Sam	ple Date:	12/20/2010	4:38:00 A	M		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury	7439-97-6	ND	0.20	0.10	ug/l		U	
Analysis Metho	od EPA-5	5 16131	3					
Sample Name	Outfall 001 (C	omposite) Matri	x Type:	WATER	V	alidation Le	vel: IV
Lab Sample Name:	ITL1891-03	Sam	ple Date:	12/20/2010	4:38:00 A	M		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1,2,3,4,6,7,8-HpCDD	35822-46-9	ND	0.00005	0.0000004	ug/L	J, B	U	В
1,2,3,4,6,7,8-HpCDF	67562-39-4	ND	0.00005	0.0000002	ug/L	J, Q, B	U	В
1,2,3,4,7,8,9-HpCDF	55673-89-7	ND	0.00005	0.0000003	ug/L	J, B	U	В
1,2,3,4,7,8-HxCDD	39227-28-6	ND	0.00005	0.0000002	ug/L		U	
1,2,3,4,7,8-HxCDF	70648-26-9	ND	0.00005	0.0000002	ug/L		U	
1,2,3,6,7,8-HxCDD	57653-85-7	ND	0.00005	0.0000006	ug/L		U	
1,2,3,6,7,8-HxCDF	57117-44-9	ND	0.00005	0.0000001	ug/L		U	
1,2,3,7,8,9-HxCDD	19408-74-3	1.3e-006	0.00005	0.0000001	ug/L	J	J	DNQ
1,2,3,7,8,9-HxCDF	72918-21-9	ND	0.00005	0.0000001	ug/L		U	
1,2,3,7,8-PeCDD	40321-76-4	ND	0.00005	0.0000006	ug/L		U	
1,2,3,7,8-PeCDF	57117-41-6	ND	0.00005	0.0000003	ug/L		U	
2,3,4,6,7,8-HxCDF	60851-34-5	ND	0.00005	0.0000001	ug/L		U	
2,3,4,7,8-PeCDF	57117-31-4	ND	0.00005	0.0000003	ug/L		U	
2,3,7,8-TCDD	1746-01-6	ND	0.00001	0.0000003	ug/L		U	
2,3,7,8-TCDF	51207-31-9	ND	0.00001	0.0000000	ug/L		U	
OCDD	3268-87-9	0.00019	0.0001	0.0000011	ug/L	В		
OCDF	39001-02-0	ND	0.0001	0.0000005	ug/L	J, B	U	В
Гotal HpCDD	37871-00-4	4.2e-005	0.00005	0.0000004	ug/L	J, B	J	B, DNQ
Гotal HpCDF	38998-75-3	1.3e-005	0.00005	0.0000003	ug/L	J, Q, B	J	B, DNQ, *II
Гotal HxCDD	34465-46-8	4.4e-006	0.00005	0.0000001	ug/L	J, Q	J	DNQ, *III
Гotal HxCDF	55684-94-1	2.6e-006	0.00005	0.0000001	ug/L	J, Q	J	DNQ, *III
Гotal PeCDD	36088-22-9	ND	0.00005	0.0000006	ug/L		U	
Гotal PeCDF	30402-15-4	ND	0.00005	0.0000003	ug/L		U	
Гotal TCDD	41903-57-5	ND	0.00001	0.0000003	ug/L		U	
Total TCDF	55722-27-5	ND	0.00001	0.0000000	ug/L		U	

Friday, February 04, 2011 Page 3 of 4

Analysis Method SM 2540D


Sample Name	Outfall 001 (0	Composite) Matri	x Type:	Water	Validation Level: IV				
Lab Sample Name:	ITL1891-03	Sam	ple Date:	12/20/20	10 4:38:00 Al	AM				
Analyte	CAS No	Result Value	RL	MDL	Result Units			Validation Notes		
Total Suspended Solids	TSS	52	10	1.0	mg/l					
Analysis Method SM2130B										
Sample Name	Outfall 001 (0	Composite) Matri	x Type:	Water	V	alidation Le	evel: IV		
Lab Sample Name:	ITL1891-03	Sam	ple Date:	12/20/20	10 4:38:00 Al	M				
Analyte	CAS No Resul Valu		RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes		
Turbidity	Turb	160	10	0.40	NTU					
Analysis Metho	od SM25	510B								
Sample Name	Outfall 001 (0	Grab)	Matri	x Type:	Water	V	alidation Le	evel: IV		
Lab Sample Name:	ITL1891-01	Sam	ple Date:	12/19/20	10 3:30:00 PM	А				
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes		
Specific Conductance	NA	65	1.0	1.0	umhos/c					

Friday, February 04, 2011 Page 4 of 4

Section 2

Outfall 001 - December 19 & 20, 2010
Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Quarterly Outfall 001 2010

618 Michillinda Avenue, Suite 200 Quarterly Outfall 001

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 12/19/10-12/20/10

Received: 12/20/10 Issued: 02/01/11 16:59

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 3 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: WATER, 1613B, Dioxins/Furans with Totals

Some analytes in these samples and the associated method blank have an ion abundance ratio that is outside of criteria. The analytes are considered as an "estimated maximum possible concentration" (EMPC) because the quantitation is based on the theoretical ion abundance ratio. Analytical results are reported with a "Q"

flag.

Clark

LABODATODVID

Water
Water
Water

OI IENT ID

Reviewed By:

TestAmerica Irvine

Heather Clark For Debby Wilson Project Manager MATDIN

MWH-Pasadena/Boeing Project ID: Quarterly Outfall 001 2010

618 Michillinda Avenue, Suite 200 Quarterly Outfall 001 Sampled: 12/19/10-12/20/10

Arcadia, CA 91007 Report Number: ITL1891 Received: 12/20/10

Attention: Bronwyn Kelly

PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	Reporting Limit	_	_	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITL1891-01 (Outfall 001 (Grab)						Sampled:			
Reporting Units: ug/l	water)				'	Sampieu:	12/19/10		
Benzene	EPA 624	10L2794	0.50	0.28	ND	1	12/23/2010	12/23/2010	
Carbon tetrachloride	EPA 624	10L2794	0.50	0.28	ND	1		12/23/2010	
Chloroform	EPA 624	10L2794	0.50	0.33	ND	1		12/23/2010	
1,1-Dichloroethane	EPA 624	10L2794	0.50	0.40	ND	1		12/23/2010	
1,2-Dichloroethane	EPA 624	10L2794	0.50	0.28	ND	1		12/23/2010	
1,1-Dichloroethene	EPA 624	10L2794	0.50	0.42	ND	1		12/23/2010	
Ethylbenzene	EPA 624	10L2794	0.50	0.25	ND	1		12/23/2010	
Tetrachloroethene	EPA 624	10L2794	0.50	0.32	ND	1		12/23/2010	
Toluene	EPA 624	10L2794	0.50	0.36	ND	1		12/23/2010	
1,1,1-Trichloroethane	EPA 624	10L2794	0.50	0.30	ND	1		12/23/2010	
1,1,2-Trichloroethane	EPA 624	10L2794	0.50	0.30	ND	1		12/23/2010	
Trichloroethene	EPA 624	10L2794	0.50	0.26	ND	1		12/23/2010	
Trichlorofluoromethane	EPA 624	10L2794	0.50	0.34	ND	1	12/23/2010	12/23/2010	
Trichlorotrifluoroethane (Freon 113)	EPA 624	10L2794	5.0	0.50	ND	1	12/23/2010	12/23/2010	
Vinyl chloride	EPA 624	10L2794	0.50	0.40	ND	1	12/23/2010	12/23/2010	
Xylenes, Total	EPA 624	10L2794	1.5	0.90	ND	1	12/23/2010	12/23/2010	
Surrogate: 4-Bromofluorobenzene (80-120%)					86 %				
Surrogate: Dibromofluoromethane (80-120%)					98 %				
Surrogate: Toluene-d8 (80-120%)					104 %				
Sample ID: ITL1891-02 (Trip Blanks - Water	r)				;	Sampled:	12/19/10		
Reporting Units: ug/l									
Benzene	EPA 624	10L2418	0.50	0.28	ND	1	12/21/2010	12/21/2010	
Carbon tetrachloride	EPA 624	10L2418	0.50	0.28	ND	1	12/21/2010	12/21/2010	
Chloroform	EPA 624	10L2418	0.50	0.33	ND	1	12/21/2010	12/21/2010	
1,1-Dichloroethane	EPA 624	10L2418	0.50	0.40	ND	1	12/21/2010	12/21/2010	
1,2-Dichloroethane	EPA 624	10L2418	0.50	0.28	ND	1	12/21/2010	12/21/2010	
1,1-Dichloroethene	EPA 624	10L2418	0.50	0.42	ND	1	12/21/2010	12/21/2010	
Ethylbenzene	EPA 624	10L2418	0.50	0.25	ND	1	12/21/2010	12/21/2010	
Tetrachloroethene	EPA 624	10L2418	0.50	0.32	ND	1	12/21/2010	12/21/2010	
Toluene	EPA 624	10L2418	0.50	0.36	ND	1	12/21/2010	12/21/2010	
1,1,1-Trichloroethane	EPA 624	10L2418	0.50	0.30	ND	1	12/21/2010	12/21/2010	
1,1,2-Trichloroethane	EPA 624	10L2418	0.50	0.30	ND	1	12/21/2010	12/21/2010	
Trichloroethene	EPA 624	10L2418	0.50	0.26	ND	1	12/21/2010	12/21/2010	
Trichlorofluoromethane	EPA 624	10L2418	0.50	0.34	ND	1	12/21/2010	12/21/2010	
Trichlorotrifluoroethane (Freon 113)	EPA 624	10L2418	5.0	0.50	ND	1	12/21/2010	12/21/2010	
Vinyl chloride	EPA 624	10L2418	0.50	0.40	ND	1	12/21/2010	12/21/2010	
Xylenes, Total	EPA 624	10L2418	1.5	0.90	ND	1	12/21/2010	12/21/2010	
Surrogate: 4-Bromofluorobenzene (80-120%)					90 %				
Surrogate: Dibromofluoromethane (80-120%)					100 %				
Surrogate: Toluene-d8 (80-120%)					107 %				

TestAmerica Irvine

Heather Clark For Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001 Sampled: 12/19/10-12/20/10

Report Number: ITL1891 Received: 12/20/10

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

			Reportin	g	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	MDL	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ITL1891-03 (Outfall 001 (Compos	site) - Water)				\$	Sampled:	12/20/10		
Reporting Units: ug/l									
Bis(2-ethylhexyl)phthalate	EPA 625	10L2492	4.72	1.60	ND	0.943	12/21/2010	12/23/2010	
2,4-Dinitrotoluene	EPA 625	10L2492	4.72	0.189	ND	0.943	12/21/2010	12/23/2010	
N-Nitrosodimethylamine	EPA 625	10L2492	4.72	0.0943	ND	0.943	12/21/2010	12/23/2010	
Pentachlorophenol	EPA 625	10L2492	4.72	0.0943	ND	0.943	12/21/2010	12/23/2010	
2,4,6-Trichlorophenol	EPA 625	10L2492	5.66	0.0943	ND	0.943	12/21/2010	12/23/2010	
Surrogate: 2,4,6-Tribromophenol (40-120%)					87 %				
Surrogate: 2-Fluorobiphenyl (50-120%)					81 %				
Surrogate: 2-Fluorophenol (30-120%)					59 %				
Surrogate: Nitrobenzene-d5 (45-120%)					65 %				
Surrogate: Phenol-d6 (35-120%)					63 %				
Surrogate: Terphenyl-d14 (50-125%)					78 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quarterly Outfall 001 2010

618 Michillinda Avenue, Suite 200 Quarterly Outfall 001 Sampled: 12/19/10-12/20/10

Arcadia, CA 91007 Report Number: ITL1891 Received: 12/20/10

Attention: Bronwyn Kelly

ORGANOCHLORINE PESTICIDES (EPA 608)

		Reporting	g	Sample	Dilution	Date	Date	Data
Method	Batch	Limit	MDL	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ITL1891-03 (Outfall 001 (Composite) - Water)				;	Sampled:	12/20/10		
EPA 608	10L2628	0.0094	0.0024	ND	0.943	12/22/2010	12/22/2010	
				89 %				
				67 %				
	ite) - Water)	ite) - Water)	Method Batch Limit ite) - Water)	ite) - Water)	Method Batch Limit MDL Result ite) - Water) 5 EPA 608 10L2628 0.0094 0.0024 ND 89 %	Method Batch Limit MDL Result Factor sampled: Sampled: Sampled: 0.0094 0.0024 ND 0.943 0.943 89 % 0.0094	Method Batch Limit MDL Result Factor Extracted ite) - Water) Sampled: 12/20/10 EPA 608 10L2628 0.0094 0.0024 ND 89 % 0.943 12/22/2010	Method Batch Limit MDL Result Factor Extracted Analyzed ite) - Water) Sampled: 12/20/10 EPA 608 10L2628 0.0094 0.0024 ND 89 % 0.943 12/22/2010 12/22/2010

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001

Report Number: ITL1891

Sampled: 12/19/10-12/20/10

Received: 12/20/10

HEXANE EXTRACTABLE MATERIAL

			Reporting	3	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	MDL	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ITL1891-01 (Outfall 001 (Grab)	- Water)				5	Sampled:	12/19/10		
Reporting Units: mg/l									
Hexane Extractable Material (Oil & Grease)	EPA 1664A	10L2313	4.7	1.3	ND	1	12/20/2010	12/20/2010	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quarterly Outfall 001 2010

618 Michillinda Avenue, Suite 200 Quarterly Outfall 001 Sampled: 12/19/10-12/20/10

Arcadia, CA 91007 Report Number: ITL1891 Received: 12/20/10

Attention: Bronwyn Kelly

METALS

			Reporting	,		Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	MDL	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ITL1891-03 (Outfall 001 (Composite) - Water)						Sampled:	12/20/10		
Reporting Units: mg/l									
Iron	EPA 200.7	10L2484	0.040	0.015	6.4	1	12/21/2010	12/23/2010	
Sample ID: ITL1891-03 (Outfall 001 (Composite) - Water)						Sampled:	12/20/10		
Reporting Units: ug/l									
Mercury	EPA 245.1	10L2694	0.20	0.10	ND	1	12/22/2010	12/22/2010	
Manganese	EPA 200.7	10L2484	20	7.0	96	1	12/21/2010	12/23/2010	
Cadmium	EPA 200.8	10L2490	1.0	0.10	0.25	1	12/21/2010	12/21/2010	
Zinc	EPA 200.7	10L2484	20.0		26.6	1	12/21/2010	12/23/2010	
Copper	EPA 200.8	10L2490	2.0	0.50	7.2	1	12/21/2010	12/21/2010	
Lead	EPA 200.8	10L2490	1.0	0.20	3.5	1	12/21/2010	12/21/2010	
Selenium	EPA 200.8	10L2490	2.0	0.50	ND	1	12/21/2010	12/21/2010	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001 Sampled: 12/19/10-12/20/10

Report Number: ITL1891 Received: 12/20/10

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

DISSOLVED METALS

Analyte	Method	Batch	Reporting Limit	g MDL	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: ITL1891-03 (Outfall 001 (Cor	nposite) - Water)				;	Sampled:	12/20/10			
Reporting Units: mg/l										
Iron	EPA 200.7-Diss	10L2487	0.040	0.015	0.095	1	12/21/2010	12/23/2010		
Sample ID: ITL1891-03 (Outfall 001 (Composite) - Water)			Sampled: 12/20/10							
Reporting Units: ug/l										
Mercury	EPA 245.1-Diss	10L2695	0.20	0.10	ND	1	12/22/2010	12/22/2010		
Manganese	EPA 200.7-Diss	10L2487	20	7.0	ND	1	12/21/2010	12/23/2010		
Cadmium	EPA 200.8-Diss	10L2494	1.0	0.10	ND	1	12/21/2010	12/21/2010		
Zinc	EPA 200.7-Diss	10L2487	20	6.0	18	1	12/21/2010	12/23/2010		
Copper	EPA 200.8-Diss	10L2494	2.0	0.50	3.4	1	12/21/2010	12/21/2010		
Lead	EPA 200.8-Diss	10L2494	1.0	0.20	0.39	1	12/21/2010	12/21/2010		
Selenium	EPA 200.8-Diss	10L2494	2.0	0.50	ND	1	12/21/2010	12/21/2010		

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quarterly Outfall 001 2010

618 Michillinda Avenue, Suite 200 Quarterly Outfall 001 Sampled: 12/19/10-12/20/10

Arcadia, CA 91007 Report Number: ITL1891 Received: 12/20/10

Attention: Bronwyn Kelly

INORGANICS

		11,01		~~					
			Reportin	g	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	MDL	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ITL1891-01 (Outfall 001 (Gr	ab) - Water)				:	Sampled:	12/19/10		
Reporting Units: ml/l									
Total Settleable Solids	SM2540F	10L2308	0.10	0.10	0.20	1	12/20/2010	12/20/2010	
Sample ID: ITL1891-01 (Outfall 001 (Gr	ab) - Water)				:	Sampled:	12/19/10		
Reporting Units: umhos/cm @ 25C									
Specific Conductance	SM2510B	10L2408	1.0	1.0	65	1	12/21/2010	12/21/2010	
Sample ID: ITL1891-03 (Outfall 001 (Co	mposite) - Water)				:	Sampled:	12/20/10		
Reporting Units: mg/l									
Ammonia-N (Distilled)	SM4500NH3-C	10L2540	0.500	0.500	ND	1	12/21/2010	12/21/2010	
Biochemical Oxygen Demand	SM5210B	10L2463	2.0	0.50	3.2	1	12/21/2010	12/26/2010	
Chloride	EPA 300.0	10L2304	0.50	0.25	3.8	1	12/20/2010	12/21/2010	
Nitrate-N	EPA 300.0	10L2304	0.11	0.060	0.93	1	12/20/2010	12/21/2010	
Nitrite-N	EPA 300.0	10L2304	0.15	0.090	ND	1	12/20/2010	12/21/2010	
Nitrate/Nitrite-N	EPA 300.0	10L2304	0.26	0.15	0.93	1	12/20/2010	12/21/2010	
Sulfate	EPA 300.0	10L2304	0.50	0.20	5.7	1	12/20/2010	12/21/2010	
Surfactants (MBAS)	SM5540-C	10L2543	0.10	0.050	ND	1	12/21/2010	12/21/2010	
Total Dissolved Solids	SM2540C	10L2410	10	1.0	150	1	12/21/2010	12/21/2010	
Total Suspended Solids	SM 2540D	10L2850	10	1.0	52	1	12/23/2010	12/23/2010	
Sample ID: ITL1891-03 (Outfall 001 (Co	omposite) - Water)				:	Sampled:	12/20/10		
Reporting Units: NTU									
Turbidity	SM2130B	10L2479	10	0.40	160	10	12/21/2010	12/21/2010	
Sample ID: ITL1891-03 (Outfall 001 (Composite) - Water)					;	Sampled:	12/20/10		
Reporting Units: ug/l									
Perchlorate	EPA 314.0	10L2485	4.0	0.90	ND	1	12/21/2010	12/21/2010	
Total Cyanide	SM4500CN-E	10L2544	5.0		ND	1	12/21/2010	12/21/2010	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001 Sampled: 12/19/10-12/20/10

Report Number: ITL1891 Received: 12/20/10

Attention: Bronwyn Kelly

Arcadia, CA 91007

618 Michillinda Avenue, Suite 200

_	
8	646

Analyte	Method	Batch	Reporting Limit	Sample D Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITL1891-03 (Outfall 001 (Composite) - Water)				Sa	mpled:	12/20/10		
Reporting Units: pCi/L								
Uranium, Total	8646	8646	1	0.433	1	1/18/2011	1/18/2011	J

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quarterly Outfall 001 2010

618 Michillinda Avenue, Suite 200 Quarterly Outfall 001 Sampled: 12/19/10-12/20/10

Arcadia, CA 91007 Report Number: ITL1891 Received: 12/20/10

Attention: Bronwyn Kelly

			900					
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITL1891-03 (Outfall 001 (Compo		;	Sampled:	12/20/10				
Reporting Units: pCi/L								
Gross Alpha	900	8646	3	4.4	1	12/31/2010	1/4/2011	
Gross Beta	900	8646				12/31/2010	1/4/2011	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quarterly Outfall 001 2010

618 Michillinda Avenue, Suite 200 Quarterly Outfall 001 Sampled: 12/19/10-12/20/10

Arcadia, CA 91007 Report Number: ITL1891 Received: 12/20/10

Attention: Bronwyn Kelly

901.1

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITL1891-03 (Outfall 001 (Composite) - Water)				5	Sampled:	12/20/10		
Reporting Units: pCi/L								
Cesium-137	901.1	8646	20	ND	1	12/22/2010	12/31/2010	U
Potassium-40	901.1	8646	25	ND	1	12/22/2010	12/31/2010	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001

Report Number: ITL1891

Sampled: 12/19/10-12/20/10 Received: 12/20/10

903.1

Analyte	Method	Batch	Reporting Limit	Sample Di Result I	ilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITL1891-03 (Outfall 001 (Composite) - Water)				Sar	mpled:	12/20/10		
Reporting Units: pCi/L Radium-226	903.1	8646	1	0.388	1	1/22/2011	1/22/2011	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001 Sampled: 12/19/10-12/20/10

Report Number: ITL1891 Received: 12/20/10

Analyte	Method	Batch	Reporting Limit	Sample D Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITL1891-03 (Outfall 001 (Compos		Sa	mpled:	12/20/10				
Reporting Units: pCi/L								

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Quarterly Outfall 001 2010

618 Michillinda Avenue, Suite 200

Quarterly Outfall 001

Arcadia, CA 91007

Sampled: 12/19/10-12/20/10 Report Number: ITL1891

Attention: Bronwyn Kelly

Received: 12/20/10

			905					
Analyte	Method	Batch	Reporting Limit	Sample I Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITL1891-03 (Outfall 001 (Co		Sa	ampled:	12/20/10				
Reporting Units: pCi/L								
Strontium-90	905	8646	2	-0.198	1	1/6/2011	1/6/2011	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001

Report Number: ITL1891

Received: 12/20/10

Sampled: 12/19/10-12/20/10

906

Analyte	Method	Batch	Reporting Limit	Sample I Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITL1891-03 (Outfall 001 (Composi			Sa	ampled:	12/20/10			
Reporting Units: pCi/L								
Tritium	906	8646	500	-114	1	1/10/2011	1/13/2011	U

MWH-Pasadena/Boeing Project

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001 Sampled: 12/19/10-12/20/10

Report Number: ITL1891 Received: 12/20/10

EPA-5 1613Bx

Analyte	Method	Batch	1 0		Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITL1891-03 (Outfall 001 (Co	omposite) - Water)			S	ampled:	12/20/10		
Reporting Units: ug/L								
1,2,3,4,6,7,8-HpCDD	EPA-5 1613B	357431	0.0000 5 .00000042 2.2	e-005	0.98	12/23/2010	12/28/2010	J, B
1,2,3,4,6,7,8-HpCDF	EPA-5 1613B	357431	0.000050.000000284.6	e-006	0.98	12/23/2010	12/28/2010	J, Q, B
1,2,3,4,7,8,9-HpCDF	EPA-5 1613B	357431	0.0000\$0.000000324.9	e-007	0.98	12/23/2010	12/28/2010	J, B
1,2,3,4,7,8-HxCDD	EPA-5 1613B	357431	0.0000\$0.00000025 N	ND	0.98	12/23/2010	12/28/2010	
1,2,3,4,7,8-HxCDF	EPA-5 1613B	357431	0.000050.00000026	ND	0.98	12/23/2010	12/28/2010	
1,2,3,6,7,8-HxCDD	EPA-5 1613B	357431	0.0000 5 0.00000064 1	ND	0.98	12/23/2010	12/28/2010	
1,2,3,6,7,8-HxCDF	EPA-5 1613B	357431	0.000050.0000001 N	ND	0.98	12/23/2010	12/28/2010	
1,2,3,7,8,9-HxCDD	EPA-5 1613B	357431	0.0000 5 0.00000013 1.3	e-006	0.98	12/23/2010	12/28/2010	J
1,2,3,7,8,9-HxCDF	EPA-5 1613B	357431	0.000050.00000012	ND	0.98	12/23/2010	12/28/2010	
1,2,3,7,8-PeCDD	EPA-5 1613B	357431	0.0000 5 0.00000061 1	ND	0.98	12/23/2010	12/28/2010	
1,2,3,7,8-PeCDF	EPA-5 1613B	357431	0.000050.0000003 N	ND	0.98	12/23/2010	12/28/2010	
2,3,4,6,7,8-HxCDF	EPA-5 1613B	357431	0.0000 5 0.00000013	ND	0.98	12/23/2010	12/28/2010	
2,3,4,7,8-PeCDF	EPA-5 1613B	357431	0.0000 5 0.00000035	ND	0.98	12/23/2010	12/28/2010	
2,3,7,8-TCDD	EPA-5 1613B	357431	0.0000 D.00000035 N	ND	0.98	12/23/2010	12/28/2010	
2,3,7,8-TCDF	EPA-5 1613B	357431	0.0000 D.000000009 1	ND	0.98	12/23/2010	12/28/2010	
OCDD	EPA-5 1613B	357431	0.0001 0.0000011 0.0	00019	0.98	12/23/2010	12/28/2010	В
OCDF	EPA-5 1613B	357431	0.00010.00000052 1.3	e-005	0.98	12/23/2010	12/28/2010	J, B
Total HpCDD	EPA-5 1613B	357431	0.0000 5 .00000042 4.2	e-005	0.98	12/23/2010	12/28/2010	J, B
Total HpCDF	EPA-5 1613B	357431	0.000050.00000003 1.3	e-005	0.98	12/23/2010	12/28/2010	J, Q, B
Total HxCDD	EPA-5 1613B	357431	0.0000\$0.000000144.4	e-006	0.98	12/23/2010	12/28/2010	J, Q
Total HxCDF	EPA-5 1613B	357431	0.000050.0000001 2.6	e-006	0.98	12/23/2010	12/28/2010	J, Q
Total PeCDD	EPA-5 1613B	357431	0.0000 5 0.00000061 1	ND	0.98	12/23/2010	12/28/2010	
Total PeCDF	EPA-5 1613B	357431	0.000050.0000003 N	ND	0.98	12/23/2010	12/28/2010	
Total TCDD	EPA-5 1613B	357431	0.0000 D.00000035 N	ND	0.98	12/23/2010	12/28/2010	
Total TCDF	EPA-5 1613B	357431	0.0000 D.000000009 N	ND	0.98	12/23/2010	12/28/2010	
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD (23	-140%)		106 9	%				
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF (28-	.143%)		87 %	%				
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF (26-	138%)		102 9	%				
Surrogate: 13C-1,2,3,4,7,8-HxCDD (32-1	41%)		75 %	%				
Surrogate: 13C-1,2,3,4,7,8-HxCDF (26-1.	52%)		74 %	%				
Surrogate: 13C-1,2,3,6,7,8-HxCDD (28-1	30%)		93 %	%				
Surrogate: 13C-1,2,3,6,7,8-HxCDF (26-1)	23%)		77 %	%				
Surrogate: 13C-1,2,3,7,8,9-HxCDF (29-1	47%)		74 %	%				
Surrogate: 13C-1,2,3,7,8-PeCDD (25-181	%)		82 %	%				
Surrogate: 13C-1,2,3,7,8-PeCDF (24-185	%)		87 %	%				
Surrogate: 13C-2,3,4,6,7,8-HxCDF (28-1.	36%)		79 %	%				
Surrogate: 13C-2,3,4,7,8-PeCDF (21-178	%)		79 %	%				
Surrogate: 13C-2,3,7,8-TCDD (25-164%)			75 %	%				
Surrogate: 13C-2,3,7,8-TCDF (24-169%)			70 %	%				
Surrogate: 13C-OCDD (17-157%)			91 %	%				
Surrogate: 37Cl4-2,3,7,8-TCDD (35-1979	6)		96 %	%				
Transfer of the Transfer								

TestAmerica Irvine

Heather Clark For Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001 Sampled: 12/19/10-12/20/10

Report Number: ITL1891 Received: 12/20/10

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

SHORT HOLD TIME DETAIL REPORT

Sample ID: Outfall 001 (Grab) (ITL1891-01)	Hold Time (in days) - Water	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
SM2540F	2	12/19/2010 15:30	12/20/2010 05:00	12/20/2010 09:25	12/20/2010 09:25
Sample ID: Outfall 001 (Composite) (ITL189	1-03) - Water				
EPA 300.0	2	12/20/2010 04:38	12/20/2010 05:00	12/20/2010 19:00	12/21/2010 00:33
Filtration	1	12/20/2010 04:38	12/20/2010 05:00	12/21/2010 00:30	12/21/2010 00:30
SM2130B	2	12/20/2010 04:38	12/20/2010 05:00	12/21/2010 08:35	12/21/2010 08:35
SM5210B	2	12/20/2010 04:38	12/20/2010 05:00	12/21/2010 07:15	12/26/2010 10:30
SM5540-C	2	12/20/2010 04:38	12/20/2010 05:00	12/21/2010 15:30	12/21/2010 21:37

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001

Report Number: ITL1891

Sampled: 12/19/10-12/20/10 Received: 12/20/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L2418 Extracted: 12/21/10										
Blank Analyzed: 12/21/2010 (10L2418-	,									
Benzene	ND	0.50	ug/l							
Carbon tetrachloride	ND	0.50	ug/l							
Chloroform	ND	0.50	ug/l							
1,1-Dichloroethane	ND	0.50	ug/l							
1,2-Dichloroethane	ND	0.50	ug/l							
1,1-Dichloroethene	ND	0.50	ug/l							
Ethylbenzene	ND	0.50	ug/l							
Tetrachloroethene	ND	0.50	ug/l							
Toluene	ND	0.50	ug/l							
1,1,1-Trichloroethane	ND	0.50	ug/l							
1,1,2-Trichloroethane	ND	0.50	ug/l							
Trichloroethene	ND	0.50	ug/l							
Trichlorofluoromethane	ND	0.50	ug/l							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	ug/l							
Vinyl chloride	ND	0.50	ug/l							
Xylenes, Total	ND	1.5	ug/l							
Surrogate: 4-Bromofluorobenzene	23.0		ug/l	25.0		92	80-120			
Surrogate: Dibromofluoromethane	25.4		ug/l	25.0		101	80-120			
Surrogate: Toluene-d8	26.9		ug/l	25.0		108	80-120			
LCS Analyzed: 12/21/2010 (10L2418-B	S1)									
Benzene	26.6	0.50	ug/l	25.0		106	70-120			
Carbon tetrachloride	30.4	0.50	ug/l	25.0		122	65-140			
Chloroform	27.4	0.50	ug/l	25.0		109	70-130			
1,1-Dichloroethane	28.1	0.50	ug/l	25.0		112	70-125			
1,2-Dichloroethane	28.1	0.50	ug/l	25.0		112	60-140			
1,1-Dichloroethene	27.7	0.50	ug/l	25.0		111	70-125			
Ethylbenzene	28.5	0.50	ug/l	25.0		114	75-125			
Tetrachloroethene	28.1	0.50	ug/l	25.0		113	70-125			
Toluene	27.8	0.50	ug/l	25.0		111	70-120			
1,1,1-Trichloroethane	29.6	0.50	ug/l	25.0		118	65-135			
1,1,2-Trichloroethane	28.5	0.50	ug/l	25.0		114	70-125			
Trichloroethene	27.2	0.50	ug/l	25.0		109	70-125			
Trichlorofluoromethane	28.7	0.50	ug/l	25.0		115	65-145			
Vinyl chloride	25.8	0.50	ug/l	25.0		103	55-135			
Xylenes, Total	89.8	1.5	ug/l	75.0		120	70-125			
* *			J							

TestAmerica Irvine

Heather Clark For Debby Wilson Project Manager

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001

Report Number: ITL1891 Re

Received: 12/20/10

Sampled: 12/19/10-12/20/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Oualifiers
·	Result	Limit	Circs	Level	resuit	70KLC	Limits	MI D	Limit	Quantiers
Batch: 10L2418 Extracted: 12/21/10										
LCS Analyzed: 12/21/2010 (10L2418-BS	61)									
Surrogate: 4-Bromofluorobenzene	25.1		ug/l	25.0		101	80-120			
Surrogate: Dibromofluoromethane	25.9		ug/l	25.0		104	80-120			
Surrogate: Toluene-d8	26.6		ug/l	25.0		106	80-120			
Matrix Spike Analyzed: 12/21/2010 (10I	L2418-MS1)				Source: I'	TL1890-0	1			
Benzene	24.6	0.50	ug/l	25.0	ND	98	65-125			
Carbon tetrachloride	27.9	0.50	ug/l	25.0	ND	112	65-140			
Chloroform	23.6	0.50	ug/l	25.0	ND	94	65-135			
1,1-Dichloroethane	24.3	0.50	ug/l	25.0	ND	97	65-130			
1,2-Dichloroethane	25.6	0.50	ug/l	25.0	ND	102	60-140			
1,1-Dichloroethene	25.4	0.50	ug/l	25.0	ND	102	60-130			
Ethylbenzene	27.0	0.50	ug/l	25.0	ND	108	65-130			
Tetrachloroethene	26.0	0.50	ug/l	25.0	ND	104	65-130			
Toluene	25.6	0.50	ug/l	25.0	ND	102	70-125			
1,1,1-Trichloroethane	26.3	0.50	ug/l	25.0	ND	105	65-140			
1,1,2-Trichloroethane	26.3	0.50	ug/l	25.0	ND	105	65-130			
Trichloroethene	24.0	0.50	ug/l	25.0	ND	96	65-125			
Trichlorofluoromethane	26.2	0.50	ug/l	25.0	ND	105	60-145			
Vinyl chloride	23.4	0.50	ug/l	25.0	ND	94	45-140			
Xylenes, Total	83.6	1.5	ug/l	75.0	ND	111	60-130			
Surrogate: 4-Bromofluorobenzene	25.2		ug/l	25.0		101	80-120			
Surrogate: Dibromofluoromethane	24.8		ug/l	25.0		99	80-120			
Surrogate: Toluene-d8	27.1		ug/l	25.0		108	80-120			
Matrix Spike Dup Analyzed: 12/21/2010	(101.2418-M	SD1)			Source: I'	TL1890-0	1			
Benzene	24.3	0.50	ug/l	25.0	ND	97	65-125	1	20	
Carbon tetrachloride	27.6	0.50	ug/l	25.0	ND	110	65-140	1	25	
Chloroform	23.9	0.50	ug/l	25.0	ND	95	65-135	1	20	
1,1-Dichloroethane	24.6	0.50	ug/l	25.0	ND	98	65-130	1	20	
1,2-Dichloroethane	26.0	0.50	ug/l	25.0	ND	104	60-140	2	20	
1,1-Dichloroethene	24.8	0.50	ug/l	25.0	ND	99	60-130	2	20	
Ethylbenzene	27.0	0.50	ug/l	25.0	ND	108	65-130	0.1	20	
Tetrachloroethene	26.8	0.50	ug/l	25.0	ND	107	65-130	3	20	
Toluene	25.0	0.50	ug/l	25.0	ND	100	70-125	2	20	
1,1,1-Trichloroethane	26.1	0.50	ug/l	25.0	ND	104	65-140	0.7	20	
1,1,2-Trichloroethane	26.4	0.50	ug/l	25.0	ND	106	65-130	0.6	25	
Trichloroethene	24.5	0.50	ug/l	25.0	ND	98	65-125	2	20	
Themoroculene	24.5	0.50	ug/1	23.0	ND	76	03-123	2	20	

TestAmerica Irvine

Heather Clark For Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001

Report Number: ITL1891

Sampled: 12/19/10-12/20/10

Received: 12/20/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
-	Result	Limit	Cints	Level	Result	/okec	Limits	KI D	Limit	Quanners
Batch: 10L2418 Extracted: 12/21/10										
Matrix Spike Dup Analyzed: 12/21/2010	0 (10L2418-M	ISD1)			Source: I	TL1890-0	1			
Trichlorofluoromethane	26.0	0.50	ug/l	25.0	ND	104	60-145	0.7	25	
Vinyl chloride	23.3	0.50	ug/l	25.0	ND	93	45-140	0.4	30	
Xylenes, Total	83.5	1.5	ug/l	75.0	ND	111	60-130	0.2	20	
Surrogate: 4-Bromofluorobenzene	25.1		ug/l	25.0		100	80-120			
Surrogate: Dibromofluoromethane	24.5		ug/l	25.0		98	80-120			
Surrogate: Toluene-d8	26.6		ug/l	25.0		107	80-120			
Batch: 10L2794 Extracted: 12/23/10										
Blank Analyzed: 12/23/2010 (10L2794-I	BLK1)									
Benzene	ND	0.50	ug/l							
Carbon tetrachloride	ND	0.50	ug/l							
Chloroform	ND	0.50	ug/l							
1,1-Dichloroethane	ND	0.50	ug/l							
1,2-Dichloroethane	ND	0.50	ug/l							
1,1-Dichloroethene	ND	0.50	ug/l							
Ethylbenzene	ND	0.50	ug/l							
Tetrachloroethene	ND	0.50	ug/l							
Toluene	ND	0.50	ug/l							
1,1,1-Trichloroethane	ND	0.50	ug/l							
1,1,2-Trichloroethane	ND	0.50	ug/l							
Trichloroethene	ND	0.50	ug/l							
Trichlorofluoromethane	ND	0.50	ug/l							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	ug/l							
Vinyl chloride	ND	0.50	ug/l							
Xylenes, Total	ND	1.5	ug/l							
Surrogate: 4-Bromofluorobenzene	21.9		ug/l	25.0		88	80-120			
Surrogate: Dibromofluoromethane	22.9		ug/l	25.0		92	80-120			
Surrogate: Toluene-d8	26.0		ug/l	25.0		104	80-120			

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001

Report Number: ITL1891

Sampled: 12/19/10-12/20/10

Received: 12/20/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L2794 Extracted: 12/23/10										
·										
LCS Analyzed: 12/23/2010 (10L2794-BS	,		_							
Benzene	25.2	0.50	ug/l	25.0		101	70-120			
Carbon tetrachloride	25.6	0.50	ug/l	25.0		102	65-140			
Chloroform	23.0	0.50	ug/l	25.0		92	70-130			
1,1-Dichloroethane	24.8	0.50	ug/l	25.0		99	70-125			
1,2-Dichloroethane	24.8	0.50	ug/l	25.0		99	60-140			
1,1-Dichloroethene	24.8	0.50	ug/l	25.0		99	70-125			
Ethylbenzene	26.2	0.50	ug/l	25.0		105	75-125			
Tetrachloroethene	25.6	0.50	ug/l	25.0		102	70-125			
Toluene	26.5	0.50	ug/l	25.0		106	70-120			
1,1,1-Trichloroethane	26.0	0.50	ug/l	25.0		104	65-135			
1,1,2-Trichloroethane	25.7	0.50	ug/l	25.0		103	70-125			
Trichloroethene	24.3	0.50	ug/l	25.0		97	70-125			
Trichlorofluoromethane	25.6	0.50	ug/l	25.0		102	65-145			
Vinyl chloride	20.5	0.50	ug/l	25.0		82	55-135			
Xylenes, Total	84.9	1.5	ug/l	75.0		113	70-125			
Surrogate: 4-Bromofluorobenzene	24.4		ug/l	25.0		98	80-120			
Surrogate: Dibromofluoromethane	23.6		ug/l	25.0		95	80-120			
Surrogate: Toluene-d8	26.3		ug/l	25.0		105	80-120			
Matrix Spike Analyzed: 12/23/2010 (10I	.2794-MS1)				Source: I	TL1714-0	1			
Benzene	23.3	0.50	ug/l	25.0	ND	93	65-125			
Carbon tetrachloride	23.9	0.50	ug/l	25.0	ND	96	65-140			
Chloroform	22.4	0.50	ug/l	25.0	ND	90	65-135			
1,1-Dichloroethane	24.0	0.50	ug/l	25.0	ND	96	65-130			
1,2-Dichloroethane	23.3	0.50	ug/l	25.0	ND	93	60-140			
1,1-Dichloroethene	25.4	0.50	ug/l	25.0	ND	102	60-130			
Ethylbenzene	25.4	0.50	ug/l	25.0	ND	102	65-130			
Tetrachloroethene	23.6	0.50	ug/l	25.0	ND	95	65-130			
Toluene	25.1	0.50	ug/l	25.0	ND	100	70-125			
1,1,1-Trichloroethane	25.0	0.50	ug/l	25.0	ND	100	65-140			
1,1,2-Trichloroethane	23.5	0.50	ug/l	25.0	ND	94	65-130			
Trichloroethene	41.3	0.50	ug/l	25.0	ND	165	65-125			<i>M1</i>
Trichlorofluoromethane	25.9	0.50	ug/l	25.0	ND ND	103	60-145			IVI I
Vinyl chloride	23.9	0.50		25.0	ND ND	84	45-140			
-			ug/l		ND ND					
Xylenes, Total	81.4	1.5	ug/l	75.0	ND	109	60-130			
Surrogate: 4-Bromofluorobenzene	25.1		ug/l	25.0		100	80-120			

TestAmerica Irvine

Heather Clark For Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001

Report Number: ITL1891

Sampled: 12/19/10-12/20/10

Received: 12/20/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L2794 Extracted: 12/23/10	<u>)</u>									
Matrix Spike Analyzed: 12/23/2010 ((10L2794-MS1)				Source: I'	TL1714-0	1			
Surrogate: Dibromofluoromethane	9.88		ug/l	25.0		40	80-120			Z
Surrogate: Toluene-d8	26.3		ug/l	25.0		105	80-120			
Matrix Spike Dup Analyzed: 12/23/2	2010 (10L2794-M	ISD1)			Source: I'	TL1714-0	1			
Benzene	22.7	0.50	ug/l	25.0	ND	91	65-125	3	20	
Carbon tetrachloride	23.0	0.50	ug/l	25.0	ND	92	65-140	4	25	
Chloroform	21.4	0.50	ug/l	25.0	ND	86	65-135	5	20	
1,1-Dichloroethane	23.1	0.50	ug/l	25.0	ND	92	65-130	4	20	
1,2-Dichloroethane	23.0	0.50	ug/l	25.0	ND	92	60-140	0.9	20	
1,1-Dichloroethene	25.1	0.50	ug/l	25.0	ND	101	60-130	1	20	
Ethylbenzene	24.1	0.50	ug/l	25.0	ND	96	65-130	5	20	
Tetrachloroethene	23.1	0.50	ug/l	25.0	ND	92	65-130	2	20	
Toluene	24.4	0.50	ug/l	25.0	ND	98	70-125	3	20	
1,1,1-Trichloroethane	23.4	0.50	ug/l	25.0	ND	94	65-140	7	20	
1,1,2-Trichloroethane	22.5	0.50	ug/l	25.0	ND	90	65-130	4	25	
Trichloroethene	40.4	0.50	ug/l	25.0	ND	162	65-125	2	20	MI
Trichlorofluoromethane	24.9	0.50	ug/l	25.0	ND	100	60-145	4	25	
Vinyl chloride	19.9	0.50	ug/l	25.0	ND	80	45-140	5	30	
Xylenes, Total	77.5	1.5	ug/l	75.0	ND	103	60-130	5	20	
Surrogate: 4-Bromofluorobenzene	24.7		ug/l	25.0		99	80-120			
Surrogate: Dibromofluoromethane	6.98		ug/l	25.0		28	80-120			Z
Surrogate: Toluene-d8	26.2		ug/l	25.0		105	80-120			

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001

Report Number: ITL1891

Sampled: 12/19/10-12/20/10

Received: 12/20/10

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 10L2492 Extracted: 12/21/10										
Blank Analyzed: 12/23/2010 (10L2492-	-BLK1)									
Bis(2-ethylhexyl)phthalate	ND	5.00	ug/l							
2,4-Dinitrotoluene	ND	5.00	ug/l							
N-Nitrosodimethylamine	ND	5.00	ug/l							
Pentachlorophenol	ND	5.00	ug/l							
2,4,6-Trichlorophenol	ND	6.00	ug/l							
Surrogate: 2,4,6-Tribromophenol	17.8		ug/l	20.0		89	40-120			
Surrogate: 2-Fluorobiphenyl	9.22		ug/l	10.0		92	50-120			
Surrogate: 2-Fluorophenol	13.4		ug/l	20.0		67	30-120			
Surrogate: Nitrobenzene-d5	7.36		ug/l	10.0		74	45-120			
Surrogate: Phenol-d6	14.7		ug/l	20.0		74	35-120			
Surrogate: Terphenyl-d14	8.88		ug/l	10.0		89	50-125			
LCS Analyzed: 12/23/2010 (10L2492-B	BS1)									MNR1
Bis(2-ethylhexyl)phthalate	8.72	5.00	ug/l	10.0		87	65-130			
2,4-Dinitrotoluene	8.20	5.00	ug/l	10.0		82	65-120			
N-Nitrosodimethylamine	6.74	5.00	ug/l	10.0		67	45-120			
Pentachlorophenol	5.34	5.00	ug/l	10.0		53	24-121			
2,4,6-Trichlorophenol	8.30	6.00	ug/l	10.0		83	55-120			
Surrogate: 2,4,6-Tribromophenol	17.5		ug/l	20.0		87	40-120			
Surrogate: 2-Fluorobiphenyl	7.76		ug/l	10.0		78	50-120			
Surrogate: 2-Fluorophenol	12.6		ug/l	20.0		63	30-120			
Surrogate: Nitrobenzene-d5	7.04		ug/l	10.0		70	45-120			
Surrogate: Phenol-d6	14.2		ug/l	20.0		71	35-120			
Surrogate: Terphenyl-d14	8.36		ug/l	10.0		84	50-125			
LCS Dup Analyzed: 12/23/2010 (10L24	492-BSD1)									
Bis(2-ethylhexyl)phthalate	8.88	5.00	ug/l	10.0		89	65-130	2	20	
2,4-Dinitrotoluene	7.82	5.00	ug/l	10.0		78	65-120	5	20	
N-Nitrosodimethylamine	6.80	5.00	ug/l	10.0		68	45-120	0.9	20	
Pentachlorophenol	5.10	5.00	ug/l	10.0		51	24-121	5	25	
2,4,6-Trichlorophenol	8.46	6.00	ug/l	10.0		85	55-120	2	30	
Surrogate: 2,4,6-Tribromophenol	17.6		ug/l	20.0		88	40-120			
Surrogate: 2-Fluorobiphenyl	8.06		ug/l	10.0		81	50-120			
Surrogate: 2-Fluorophenol	12.6		ug/l	20.0		63	30-120			
Surrogate: Nitrobenzene-d5	7.24		ug/l	10.0		72	45-120			
Surrogate: Phenol-d6	14.5		ug/l	20.0		72	35-120			
Surrogate: Terphenyl-d14	8.46		ug/l	10.0		85	50-125			
TD 14										

TestAmerica Irvine

Heather Clark For Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001

Report Number: ITL1891

Sampled: 12/19/10-12/20/10

Received: 12/20/10

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10L2628 Extracted: 12/22/10										
Blank Analyzed: 12/22/2010 (10L2628-B	LK1)									
alpha-BHC	ND	0.010	ug/l							
Surrogate: Decachlorobiphenyl	0.440		ug/l	0.500		88	45-120			
Surrogate: Tetrachloro-m-xylene	0.401		ug/l	0.500		80	35-115			
LCS Analyzed: 12/22/2010 (10L2628-BS	1)									
alpha-BHC	0.460	0.010	ug/l	0.500		92	45-115			
Surrogate: Decachlorobiphenyl	0.448		ug/l	0.500		90	45-120			
Surrogate: Tetrachloro-m-xylene	0.416		ug/l	0.500		83	35-115			
Matrix Spike Analyzed: 12/22/2010 (10L	.2628-MS1)				Source: I'	ΓL1847-0	1			
alpha-BHC	0.310	0.0094	ug/l	0.472	ND	66	40-120			
Surrogate: Decachlorobiphenyl	0.387		ug/l	0.472		82	45-120			
Surrogate: Tetrachloro-m-xylene	0.212		ug/l	0.472		45	35-115			
Matrix Spike Dup Analyzed: 12/22/2010	(10L2628-MS	SD1)			Source: I'	ΓL1847-0	1			
alpha-BHC	0.342	0.0094	ug/l	0.472	ND	73	40-120	10	30	
Surrogate: Decachlorobiphenyl	0.436		ug/l	0.472		92	45-120			
Surrogate: Tetrachloro-m-xylene	0.233		ug/l	0.472		49	35-115			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001 Sampled: 12/19/10-12/20/10

Report Number: ITL1891 Received: 12/20/10

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

METHOD BLANK/QC DATA

HEXANE EXTRACTABLE MATERIAL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10L2313 Extracted: 12/20/10										
Blank Analyzed: 12/20/2010 (10L2313- Hexane Extractable Material (Oil & Grease)	BLK1) ND	5.0	mg/l							
LCS Analyzed: 12/20/2010 (10L2313-B Hexane Extractable Material (Oil & Grease)	19.5	5.0	mg/l	20.0		98	78-114			MNR1
LCS Dup Analyzed: 12/20/2010 (10L23 Hexane Extractable Material (Oil & Grease)	19.1	5.0	mg/l	20.0		96	78-114	2	11	

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001

Report Number: ITL1891

Sampled: 12/19/10-12/20/10

Received: 12/20/10

METHOD BLANK/QC DATA

METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L2484 Extracted: 12/21/10										
Blank Analyzed: 12/21/2010 (10L2484-B	LK1)									
Iron	ND	0.040	mg/l							
Manganese	ND	20	ug/l							
Zinc	ND	20.0	ug/l							
LCS Analyzed: 12/21/2010 (10L2484-BS	1)									
Iron	0.536	0.040	mg/l	0.500		107	85-115			
Manganese	527	20	ug/l	500		105	85-115			
Zine	509	20.0	ug/l	500		102	85-115			
Matrix Spike Analyzed: 12/21/2010 (10L	2484-MS1)				Source: I'	ΓL1829-0	1			
Iron	1.04	0.040	mg/l	0.500	0.468	114	70-130			
Manganese	3180	20	ug/l	500	2430	151	70-130			MHA
Zinc	527	20.0	ug/l	500	21.9	101	70-130			
Matrix Spike Analyzed: 12/21/2010 (10L	2484-MS2)				Source: I'	ΓL1829-0	2			
Iron	1.42	0.040	mg/l	0.500	0.874	108	70-130			
Manganese	539	20	ug/l	500	32.5	101	70-130			
Zinc	545	20.0	ug/l	500	62.3	96	70-130			
Matrix Spike Dup Analyzed: 12/21/2010	(10L2484-MS	SD1)			Source: I'	ΓL1829-0	1			
Iron	1.00	0.040	mg/l	0.500	0.468	107	70-130	4	20	
Manganese	3050	20	ug/l	500	2430	124	70-130	4	20	MHA
Zinc	499	20.0	ug/l	500	21.9	95	70-130	6	20	
Batch: 10L2490 Extracted: 12/21/10										
Blank Analyzed: 12/21/2010 (10L2490-B	LK1)									
Cadmium	ND	1.0	ug/l							
Copper	ND	2.0	ug/l							
Lead	ND	1.0	ug/l							
Selenium	ND	2.0	ug/l							

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001

Report Number: ITL1891

Sampled: 12/19/10-12/20/10

Received: 12/20/10

METHOD BLANK/QC DATA

METALS

	D 1/	Reporting	T I •/	Spike	Source	A/ DEG	%REC	DDD	RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L2490 Extracted: 12/21/10										
LCS Analyzed: 12/21/2010 (10L2490-BS	1)									
Cadmium	81.5	1.0	ug/l	80.0		102	85-115			
Copper	82.8	2.0	ug/l	80.0		103	85-115			
Lead	83.1	1.0	ug/l	80.0		104	85-115			
Selenium	82.9	2.0	ug/l	80.0		104	85-115			
Matrix Spike Analyzed: 12/21/2010 (10L	.2490-MS1)				Source: I'	ΓL1829-0	3			
Cadmium	77.1	1.0	ug/l	80.0	0.125	96	70-130			
Copper	78.7	2.0	ug/l	80.0	5.15	92	70-130			
Lead	80.1	1.0	ug/l	80.0	4.26	95	70-130			
Selenium	82.5	2.0	ug/l	80.0	4.20	98	70-130			
Matrix Spike Analyzed: 12/21/2010 (10L	.2490-MS2)				Source: I'	ΓL1829-0	4			
Cadmium	78.3	1.0	ug/l	80.0	ND	98	70-130			
Copper	76.3	2.0	ug/l	80.0	ND	95	70-130			
Lead	77.4	1.0	ug/l	80.0	0.729	96	70-130			
Selenium	84.1	2.0	ug/l	80.0	3.40	101	70-130			
Matrix Spike Dup Analyzed: 12/21/2010	(10L2490-M	SD1)			Source: I'	ΓL1829-0	3			
Cadmium	77.6	1.0	ug/l	80.0	0.125	97	70-130	0.7	20	
Copper	79.4	2.0	ug/l	80.0	5.15	93	70-130	0.8	20	
Lead	81.4	1.0	ug/l	80.0	4.26	96	70-130	2	20	
Selenium	81.6	2.0	ug/l	80.0	4.20	97	70-130	1	20	
Batch: 10L2694 Extracted: 12/22/10										

Blank Analyzed: 12/22/2010 (10L2694-BLK1)

Mercury ND 0.20 ug/l

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001

Report Number: ITL1891

Sampled: 12/19/10-12/20/10

Received: 12/20/10

METHOD BLANK/QC DATA

METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L2694 Extracted: 12/22/10										
LCS Analyzed: 12/22/2010 (10L2694-BS	S1)									
Mercury	7.73	0.20	ug/l	8.00		97	85-115			
Matrix Spike Analyzed: 12/22/2010 (101	L2694-MS1)				Source: I'	TL1894-0	1			
Mercury	7.48	0.20	ug/l	8.00	ND	93	70-130			
Matrix Spike Dup Analyzed: 12/22/2010) (10L2694-M	SD1)			Source: I'	TL1894-0	1			
Mercury	7.47	0.20	ug/l	8.00	ND	93	70-130	0.04	20	

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001

Report Number: ITL1891

Sampled: 12/19/10-12/20/10

Received: 12/20/10

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L2487 Extracted: 12/21/10										
Blank Analyzed: 12/23/2010 (10L2487-B	LK1)									
Iron	ND	0.040	mg/l							
Manganese	ND	20	ug/l							
Zinc	ND	20	ug/l							
LCS Analyzed: 12/23/2010 (10L2487-BS	1)									
Iron	0.473	0.040	mg/l	0.500		95	85-115			
Manganese	512	20	ug/l	500		102	85-115			
Zinc	510	20	ug/l	500		102	85-115			
Matrix Spike Analyzed: 12/23/2010 (10L	2487-MS1)				Source: I'	ΓL1891-0	3			
Iron	0.594	0.040	mg/l	0.500	0.0946	100	70-130			
Manganese	509	20	ug/l	500	ND	102	70-130			
Zinc	521	20	ug/l	500	18.1	101	70-130			
Matrix Spike Analyzed: 12/23/2010 (10L	2487-MS2)				Source: I'	ΓL1877-0	1			
Iron	0.642	0.040	mg/l	0.500	0.0954	109	70-130			
Manganese	514	20	ug/l	500	13.7	100	70-130			
Zinc	502	20	ug/l	500	ND	100	70-130			
Matrix Spike Dup Analyzed: 12/23/2010	(10L2487-MS	SD1)			Source: I'	ΓL1891-0	3			
Iron	0.556	0.040	mg/l	0.500	0.0946	92	70-130	7	20	
Manganese	496	20	ug/l	500	ND	99	70-130	3	20	
Zinc	505	20	ug/l	500	18.1	97	70-130	3	20	
Batch: 10L2494 Extracted: 12/21/10										
Blank Analyzed: 12/21/2010 (10L2494-B	LK1)									
Cadmium	ND	1.0	ug/l							
Copper	ND	2.0	ug/l							
Lead	ND	1.0	ug/l							
Selenium	ND	2.0	ug/l							

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001

Report Number: ITL1891

Sampled: 12/19/10-12/20/10

Received: 12/20/10

METHOD BLANK/QC DATA

DISSOLVED METALS

A 14	D 14	Reporting	TT *4	Spike	Source	0/ DEC	%REC	DDD	RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L2494 Extracted: 12/21/10										
LCS Analyzada 12/21/2010 (101 2404 DS	1)									
LCS Analyzed: 12/21/2010 (10L2494-BS) Cadmium	81.6	1.0	/I	80.0		102	85-115			
	85.6	2.0	ug/l	80.0		102	85-115			
Copper			ug/l							
Lead	79.1	1.0	ug/l	80.0		99	85-115			
Selenium	80.4	2.0	ug/l	80.0		101	85-115			
Matrix Spike Analyzed: 12/21/2010 (10L	2494-MS1)				Source: I'	TL1890-0	3			
Cadmium	76.0	1.0	ug/l	80.0	ND	95	70-130			
Copper	79.5	2.0	ug/l	80.0	2.91	96	70-130			
Lead	80.8	1.0	ug/l	80.0	0.391	100	70-130			
Selenium	72.5	2.0	ug/l	80.0	ND	91	70-130			
Matrix Spike Dup Analyzed: 12/21/2010	(10L2494-MS	5D1)			Source: I'	TL1890-0	3			
Cadmium	77.5	1.0	ug/l	80.0	ND	97	70-130	2	20	
Copper	80.8	2.0	ug/l	80.0	2.91	97	70-130	2	20	
Lead	74.6	1.0	ug/l	80.0	0.391	93	70-130	8	20	
Selenium	71.9	2.0	ug/l	80.0	ND	90	70-130	0.9	20	
Batch: 10L2695 Extracted: 12/22/10										
Blank Analyzed: 12/22/2010 (10L2695-B	LK1)									
Mercury	ND	0.20	ug/l							
LCS Analyzed: 12/22/2010 (10L2695-BS	1)									
Mercury	8.15	0.20	ug/l	8.00		102	85-115			
Matrix Spike Analyzed: 12/22/2010 (10L	2695-MS1)				Source: I'	TL1889-0	2			
Mercury	7.89	0.20	ug/l	8.00	ND	99	70-130			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001

Report Number: ITL1891

Sampled: 12/19/10-12/20/10

Received: 12/20/10

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L2695 Extracted: 12/22	/10									
Matrix Spike Dup Analyzed: 12/2	2/2010 (10L2695-M	SD1)			Source: I	TL1889-0	2			
Mercury	7.80	0.20	ug/l	8.00	ND	97	70-130	1	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001

Report Number: ITL1891

Sampled: 12/19/10-12/20/10

Received: 12/20/10

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10L2304 Extracted: 12/20/10										
Blank Analyzed: 12/20/2010 (10L2304-E	BLK1)									
Chloride	ND	0.50	mg/l							
Nitrate-N	ND	0.11	mg/l							
Nitrite-N	ND	0.15	mg/l							
Nitrate/Nitrite-N	ND	0.26	mg/l							
Sulfate	ND	0.50	mg/l							
LCS Analyzed: 12/20/2010 (10L2304-BS	51)									
Chloride	4.74	0.50	mg/l	5.00		95	90-110			M-3
Nitrate-N	1.04	0.11	mg/l	1.13		92	90-110			
Nitrite-N	1.46	0.15	mg/l	1.52		96	90-110			
Sulfate	9.52	0.50	mg/l	10.0		95	90-110			
Matrix Spike Analyzed: 12/20/2010 (10I	L2304-MS1)				Source: I	TL1981-0	5			
Nitrate-N	3.31	0.11	mg/l	1.13	2.12	105	80-120			
Nitrite-N	1.87	0.15	mg/l	1.52	ND	123	80-120			M1
Sulfate	37.9	0.50	mg/l	10.0	26.4	114	80-120			
Matrix Spike Analyzed: 12/20/2010 (10I	L2304-MS2)				Source: I	TL2011-0	4			
Nitrate-N	13.4	0.55	mg/l	11.3	2.66	95	80-120			
Nitrite-N	16.7	0.75	mg/l	15.2	ND	110	80-120			
Sulfate	96.9	2.5	mg/l	100	ND	97	80-120			
Matrix Spike Dup Analyzed: 12/20/2010	(10L2304-M	SD1)			Source: I	TL1981-0	5			
Nitrate-N	3.29	0.11	mg/l	1.13	2.12	103	80-120	0.6	20	
Nitrite-N	1.83	0.15	mg/l	1.52	ND	120	80-120	2	20	
Sulfate	37.8	0.50	mg/l	10.0	26.4	114	80-120	0.09	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001

Report Number: ITL1891

Sampled: 12/19/10-12/20/10

Received: 12/20/10

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reportir Limit	ng Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10L2408 Extracted: 12/21/10										
Blank Analyzed: 12/21/2010 (10L2408-B Specific Conductance	BLK1) ND	1.0	umhos/cm @ 25C							
LCS Analyzed: 12/21/2010 (10L2408-BS Specific Conductance	5 1) 1430	1.0	umhos/cm @ 25C	1410		101	90-110			
Duplicate Analyzed: 12/21/2010 (10L240	08-DUP1)				Source: I'	ΓL1890-0	1			
Specific Conductance	116	1.0	umhos/cm @ 25C		115			0.8	5	
Batch: 10L2410 Extracted: 12/21/10										
Blank Analyzed: 12/21/2010 (10L2410-E Total Dissolved Solids	BLK1) ND	10	mg/l							
LCS Analyzed: 12/21/2010 (10L2410-BS Total Dissolved Solids	5 1) 1010	10	mg/l	1000		101	90-110			
Duplicate Analyzed: 12/21/2010 (10L24)	10-DUP1)				Source: I	ΓL1889-0	2			
Total Dissolved Solids	226	10	mg/l		224			0.9	10	
Batch: 10L2463 Extracted: 12/21/10										
Blank Analyzed: 12/26/2010 (10L2463-Biochemical Oxygen Demand	BLK1) ND	2.0	mg/l							
LCS Analyzed: 12/26/2010 (10L2463-BS	51)									
Biochemical Oxygen Demand	208	100	mg/l	198		105	85-115			

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001

Report Number: ITL1891

Sampled: 12/19/10-12/20/10

Received: 12/20/10

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•	Result	Limit	Omes	Level	Result	70REC	Limits	KI D	Limit	Qualifiers
Batch: 10L2463 Extracted: 12/21/10										
LCS Dup Analyzed: 12/26/2010 (10L240	63-BSD1)									
Biochemical Oxygen Demand	216	100	mg/l	198		109	85-115	4	20	
Batch: 10L2479 Extracted: 12/21/10										
Blank Analyzed: 12/21/2010 (10L2479-F	BLK1)									
Turbidity	ND	1.0	NTU							
Duplicate Analyzed: 12/21/2010 (10L24'	79-DUP1)				Source: I'	TL1877-0	1			
Turbidity	183	10	NTU		181			0.9	20	
Duplicate Analyzed: 12/21/2010 (10L24'	79-DUP2)				Source: I'	TL1970-0	8			
Turbidity	0.0400	1.0	NTU		ND				20	
Batch: 10L2485 Extracted: 12/21/10										
Blank Analyzed: 12/21/2010 (10L2485-F	BLK1)									
Perchlorate	ND	4.0	ug/l							
LCS Analyzed: 12/21/2010 (10L2485-BS	S1)									
Perchlorate	23.3	4.0	ug/l	25.0		93	85-115			
Matrix Spike Analyzed: 12/21/2010 (101	(.2485-MS1)				Source: I'	TL1889-0	2			
Perchlorate	24.4	4.0	ug/l	25.0	1.92	90	80-120			
Matrix Spike Dup Analyzed: 12/21/2010) (10L2485-N	ASD1)			Source: I'	TL1889-0	2			
Perchlorate	23.9	4.0	ug/l	25.0	1.92	88	80-120	2	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001

Report Number: ITL1891

Sampled: 12/19/10-12/20/10

Received: 12/20/10

METHOD BLANK/QC DATA

INORGANICS

	D 1	Reporting	T I •	Spike	Source	A/DEG	%REC	DDD	RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L2540 Extracted: 12/21/10										
Blank Analyzed: 12/21/2010 (10L2540-B	LK1)									
Ammonia-N (Distilled)	ND	0.500	mg/l							
LCS Analyzed: 12/21/2010 (10L2540-BS	1)									
Ammonia-N (Distilled)	10.1	0.500	mg/l	10.0		101	80-115			
Matrix Spike Analyzed: 12/21/2010 (10L	.2540-MS1)				Source: I	TL1699-0	1			
Ammonia-N (Distilled)	9.80	0.500	mg/l	10.0	ND	98	70-120			
Matrix Spike Dup Analyzed: 12/21/2010	(10L2540-M	ISD1)			Source: I	TL1699-0	1			
Ammonia-N (Distilled)	9.80	0.500	mg/l	10.0	ND	98	70-120	0	15	
Batch: 10L2543 Extracted: 12/21/10										
Blank Analyzed: 12/21/2010 (10L2543-B	LK1)									
Surfactants (MBAS)	ND	0.10	mg/l							
LCS Analyzed: 12/21/2010 (10L2543-BS	1)									
Surfactants (MBAS)	0.245	0.10	mg/l	0.250		98	90-110			
Matrix Spike Analyzed: 12/21/2010 (10L	.2543-MS1)				Source: I	TL2028-0	1			
Surfactants (MBAS)	0.266	0.10	mg/l	0.250	ND	106	50-125			
Matrix Spike Dup Analyzed: 12/21/2010	(10L2543-M	ISD1)			Source: I	TL2028-0	1			
Surfactants (MBAS)	0.249	0.10	mg/l	0.250	ND	99	50-125	7	20	
Batch: 10L2544 Extracted: 12/21/10										
Blank Analyzed: 12/21/2010 (10L2544-B	LK1)									
Total Cyanide	ND	5.0	ug/l							

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001

Report Number: ITL1891

Sampled: 12/19/10-12/20/10

Received: 12/20/10

METHOD BLANK/QC DATA

INORGANICS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L2544 Extracted: 12/21/10										
LCS Analyzed: 12/21/2010 (10L2544-BS)	1)									
Total Cyanide	192	5.0	ug/l	200		96	90-110			
Matrix Spike Analyzed: 12/21/2010 (10L	2544-MS1)				Source: I'	TL1802-02	2			
Total Cyanide	192	5.0	ug/l	200	ND	96	70-115			
Matrix Spike Dup Analyzed: 12/21/2010	(10L2544-MS	SD1)			Source: I'	TL1802-02	2			
Total Cyanide	187	5.0	ug/l	200	ND	94	70-115	2	15	
Batch: 10L2850 Extracted: 12/23/10										
Blank Analyzed: 12/23/2010 (10L2850-B	LK1)									
Total Suspended Solids	ND	10	mg/l							
LCS Analyzed: 12/23/2010 (10L2850-BS)	1)									
Total Suspended Solids	1000	10	mg/l	1000		100	85-115			
Duplicate Analyzed: 12/23/2010 (10L285)	0-DUP1)				Source: I'	TL2347-0	1			
Total Suspended Solids	161	10	mg/l		160			0.6	10	

%REC

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001

Report Number: ITL1891

Reporting

Sampled: 12/19/10-12/20/10

RPD

Data

Received: 12/20/10

METHOD BLANK/QC DATA

EPA-5 1613Bx

Spike

Source

		Reporting		Spike	Source		%REC		KPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 357431 Extracted: 12/23/10										
Blank Analyzed: 12/28/2010 (G0L23)	0000431B)				Source:					
1,2,3,4,6,7,8-HpCDD	1.5e-006	0.00005	ug/L				-			J
1,2,3,4,6,7,8-HpCDF	9.5e-007	0.00005	ug/L				-			J, Q
1,2,3,4,7,8,9-HpCDF	9.6e-007	0.00005	ug/L				-			J, Q
1,2,3,4,7,8-HxCDD	ND	0.00005	ug/L				-			
1,2,3,4,7,8-HxCDF	ND	0.00005	ug/L				-			
1,2,3,6,7,8-HxCDD	ND	0.00005	ug/L				-			
1,2,3,6,7,8-HxCDF	ND	0.00005	ug/L				-			
1,2,3,7,8,9-HxCDD	ND	0.00005	ug/L				-			
1,2,3,7,8,9-HxCDF	ND	0.00005	ug/L				-			
1,2,3,7,8-PeCDD	ND	0.00005	ug/L				-			
1,2,3,7,8-PeCDF	ND	0.00005	ug/L				-			
2,3,4,6,7,8-HxCDF	ND	0.00005	ug/L				-			
2,3,4,7,8-PeCDF	ND	0.00005	ug/L				-			
2,3,7,8-TCDD	ND	0.00001	ug/L				-			
2,3,7,8-TCDF	ND	0.00001	ug/L				-			
OCDD	5.9e-006	0.0001	ug/L				-			J
OCDF	2e-006	0.0001	ug/L				-			J
Total HpCDD	2.5e-006	0.00005	ug/L				-			J
Total HpCDF	1.9e-006	0.00005	ug/L				-			J, Q
Total HxCDD	ND	0.00005	ug/L				-			
Total HxCDF	ND	0.00005	ug/L				-			
Total PeCDD	ND	0.00005	ug/L				-			
Total PeCDF	ND	0.00005	ug/L				-			
Total TCDD	ND	0.00001	ug/L				-			
Total TCDF	ND	0.00001	ug/L				-			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.0021		ug/L	0.002		107	23-140			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.0018		ug/L	0.002		92	28-143			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.002		ug/L	0.002		100	26-138			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.0017		ug/L	0.002		86	32-141			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.0016		ug/L	0.002		81	26-152			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.002		ug/L	0.002		98	28-130			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.0016		ug/L	0.002		83	26-123			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.0016		ug/L	0.002		81	29-147			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.0018		ug/L	0.002		91	25-181			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.0018		ug/L	0.002		92	24-185			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.0017		ug/L	0.002		85	28-136			

TestAmerica Irvine

Heather Clark For Debby Wilson Project Manager

%REC

Sampled: 12/19/10-12/20/10

RPD

Data

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001

Report Number: ITL1891 Received: 12/20/10

METHOD BLANK/QC DATA

EPA-5 1613Bx

Spike

Source

Reporting

		Reporting		Spike	Source		%KEC		KPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 357431 Extracted: 12/23/10										
Blank Analyzed: 12/28/2010 (G0L23	0000431B)				Source:					
Surrogate: 13C-2,3,4,7,8-PeCDF	0.0018		ug/L	0.002		89	21-178			
Surrogate: 13C-2,3,7,8-TCDD	0.0017		ug/L	0.002		83	25-164			
Surrogate: 13C-2,3,7,8-TCDF	0.0015		ug/L	0.002		77	24-169			
Surrogate: 13C-OCDD	0.0036		ug/L	0.004		90	17-157			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.0008		ug/L	0.0008		99	35-197			
LCS Analyzed: 12/28/2010 (G0L2300	000431C)				Source:					
1,2,3,4,6,7,8-HpCDD	0.00102	0.00005	ug/L	0.001		102	70-140			B
1,2,3,4,6,7,8-HpCDF	0.00109	0.00005	ug/L	0.001		109	82-122			B
1,2,3,4,7,8,9-HpCDF	0.00108	0.00005	ug/L	0.001		108	78-138			B
1,2,3,4,7,8-HxCDD	0.00118	0.00005	ug/L	0.001		118	70-164			
1,2,3,4,7,8-HxCDF	0.00102	0.00005	ug/L	0.001		102	72-134			
1,2,3,6,7,8-HxCDD	0.000981	0.00005	ug/L	0.001		98	76-134			
1,2,3,6,7,8-HxCDF	0.00105	0.00005	ug/L	0.001		105	84-130			
1,2,3,7,8,9-HxCDD	0.00108	0.00005	ug/L	0.001		108	64-162			
1,2,3,7,8,9-HxCDF	0.00108	0.00005	ug/L	0.001		108	78-130			
1,2,3,7,8-PeCDD	0.00109	0.00005	ug/L	0.001		109	70-142			
1,2,3,7,8-PeCDF	0.000975	0.00005	ug/L	0.001		98	80-134			
2,3,4,6,7,8-HxCDF	0.00103	0.00005	ug/L	0.001		103	70-156			
2,3,4,7,8-PeCDF	0.000976	0.00005	ug/L	0.001		98	68-160			
2,3,7,8-TCDD	0.000214	0.00001	ug/L	0.0002		107	67-158			
2,3,7,8-TCDF	0.000186	0.00001	ug/L	0.0002		93	75-158			
OCDD	0.00191	0.0001	ug/L	0.002		96	78-144			B
OCDF	0.00182	0.0001	ug/L	0.002		91	63-170			B
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.00221		ug/L	0.002		111	26-166			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.00194		ug/L	0.002		97	21-158			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.00207		ug/L	0.002		104	20-186			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.00166		ug/L	0.002		83	21-193			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.00162		ug/L	0.002		81	19-202			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.00201		ug/L	0.002		100	25-163			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.00168		ug/L	0.002		84	21-159			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.0016		ug/L	0.002		80	17-205			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.00181		ug/L	0.002		91	21-227			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.00187		ug/L	0.002		93	21-192			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.00169		ug/L	0.002		85	22-176			
Surrogate: 13C-2,3,4,7,8-PeCDF	0.00177		ug/L	0.002		89	13-328			

TestAmerica Irvine

Heather Clark For Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001

Report Number: ITL1891

Sampled: 12/19/10-12/20/10

Received: 12/20/10

METHOD BLANK/QC DATA

EPA-5 1613Bx

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 357431 Extracted: 12/23/10										
LCS Analyzed: 12/28/2010 (G0L23000	0431C)				Source:					
Surrogate: 13C-2,3,7,8-TCDD	0.00171		ug/L	0.002		85	20-175			
Surrogate: 13C-2,3,7,8-TCDF	0.00157		ug/L	0.002		79	22-152			
Surrogate: 13C-OCDD	0.00374		ug/L	0.004		94	13-199			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.000784		ug/L	0.0008		98	31-191			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quarterly Outfall 001 2010

618 Michillinda Avenue, Suite 200 Quarterly Outfall 001 Sampled: 12/19/10-12/20/10

Arcadia, CA 91007 Report Number: ITL1891 Received: 12/20/10

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
ITL1891-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	0.38	4.7	15
ITL1891-01	624-Boeing 001/002Q (Fr113+X-	+Fr1,1-Dichloroethene	ug/l	0	0.50	6
ITL1891-01	624-Boeing 001/002Q (Fr113+X-	+Fr1,2-Dichloroethane	ug/l	0	0.50	0.5
ITL1891-01	624-Boeing 001/002Q (Fr113+X-	+FrTrichloroethene	ug/l	0	0.50	5
ITL1891-01	Settleable Solids - SM2540F	Total Settleable Solids	ml/l	0.20	0.10	0.3

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
ITL1891-02	624-Boeing 001/0	02Q (Fr113+X+Fr1,1-Dichloroethene	ug/l	0	0.50	6
ITL1891-02	624-Boeing 001/0	02Q (Fr113+X+Fr1,2-Dichloroethane	ug/l	0	0.50	0.5
ITL1891-02	624-Boeing 001/0	02Q (Fr113+X+FrTrichloroethene	ug/l	0	0.50	5

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
ITL1891-03	608-Pest Boeing 001/002 Q (LL)	alpha-BHC	ug/l	0	0.0094	0.03
ITL1891-03	625-Boeing 001/002 Q-LL	2,4,6-Trichlorophenol	ug/l	0	5.66	13
ITL1891-03	625-Boeing 001/002 Q-LL	2,4-Dinitrotoluene	ug/l	0	4.72	18
ITL1891-03	625-Boeing 001/002 Q-LL	Bis(2-ethylhexyl)phthalate	ug/l	0.30	4.72	4
ITL1891-03	625-Boeing 001/002 Q-LL	N-Nitrosodimethylamine	ug/l	0	4.72	16
ITL1891-03	625-Boeing 001/002 Q-LL	Pentachlorophenol	ug/l	0	4.72	16.5
ITL1891-03	Ammonia-N, Titr 4500NH3-C (w/c	di:Ammonia-N (Distilled)	mg/l	0	0.500	10.1
ITL1891-03	BOD - SM5210B	Biochemical Oxygen Demand	mg/l	3.21	2.0	30
ITL1891-03	Cadmium-200.8	Cadmium	ug/l	0.25	1.0	3.1
ITL1891-03	Chloride - 300.0	Chloride	mg/l	3.75	0.50	150
ITL1891-03	Copper-200.8	Copper	ug/l	7.21	2.0	14
ITL1891-03	Cyanide, Total-4500CN-E (5ppb)	Total Cyanide	ug/l	-2	5.0	8.5
ITL1891-03	Iron-200.7	Iron	mg/l	6.37	0.040	0.3
ITL1891-03	Lead-200.8	Lead	ug/l	3.54	1.0	5.2
ITL1891-03	Manganese-200.7	Manganese	ug/l	96	20	50
ITL1891-03	MBAS - SM5540C	Surfactants (MBAS)	mg/l	0.0031	0.10	0.5
ITL1891-03	Mercury - 245.1	Mercury	ug/l	0	0.20	0.1

TestAmerica Irvine

Heather Clark For Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasaden 618 Michillind Arcadia, CA 91 Attention: Bro	a Avenue, Suite 200 1007	Project ID: Report Number:	Quarterly Outfall 001 2010 Quarterly Outfall 001 ITL1891			led: 12/19/10 ved: 12/20/10	
ITL1891-03	Nitrate-N, 300.0	Nitrate-N		mg/l	0.93	0.11	8
ITL1891-03	Nitrite-N, 300.0	Nitrite-N		mg/l	0	0.15	1
ITL1891-03	Nitrogen, NO3+NO2 -N EPA 300.	0 Nitrate/Nitrite-N		mg/l	0.93	0.26	8
ITL1891-03	Perchlorate 314.0 - Default	Perchlorate		ug/l	0	4.0	6
ITL1891-03	Selenium-200.8	Selenium		ug/l	0.37	2.0	5
ITL1891-03	Sulfate-300.0	Sulfate		mg/l	5.74	0.50	300
ITL1891-03	TDS - SM2540C	Total Dissolved S	Solids	mg/l	151	10	950
ITL1891-03	TSS - SM2540D	Total Suspended	l Solids	mg/l	52	10	45

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001 Sampled: 12/19/10-12/20/10

Report Number: ITL1891 Received: 12/20/10

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

DATA QUALIFIERS AND DEFINITIONS

В	Method blank contamination.	The associated method blank contains the target analyte at a reportable level.
---	-----------------------------	--

J The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.

M1 The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).

M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was

accepted based on acceptable recovery in the Blank Spike (LCS).

MHA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery

information. See Blank Spike (LCS).

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

Q Estimated maximum possible concentration (EMPC).

U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the

limit.

Z Due to sample matrix effects, the surrogate recovery was below the acceptance limits.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001

Report Number: ITL1891

Sampled: 12/19/10-12/20/10

Received: 12/20/10

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EPA 1664A	Water	X	X
EPA 200.7-Diss	Water	X	X
EPA 200.7	Water	X	X
EPA 200.8-Diss	Water	X	X
EPA 200.8	Water	X	X
EPA 245.1-Diss	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 314.0	Water	X	X
EPA 608	Water	X	X
EPA 624	Water	X	X
EPA 625	Water	X	X
Filtration	Water	N/A	N/A
SM 2540D	Water	X	X
SM2130B	Water	X	X
SM2510B	Water	X	X
SM2540C	Water	X	
SM2540F	Water	X	X
SM4500CN-E	Water	X	X
SM4500NH3-C	Water	X	X
SM5210B	Water	X	X
SM5540-C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chrnic

Samples: ITL1891-03

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Quarterly Outfall 001 2010

618 Michillinda Avenue, Suite 200 Quarterly Outfall 001 Sampled: 12/19/10-12/20/10

Arcadia, CA 91007 Report Number: ITL1891 Received: 12/20/10

Attention: Bronwyn Kelly

Eberline Services - SUB

2030 Wright Avenue - Richmond, CA 94804

Analysis Performed: Gamma Spec

Samples: ITL1891-03

Analysis Performed: Gross Alpha

Samples: ITL1891-03

Analysis Performed: Gross Beta

Samples: ITL1891-03

Analysis Performed: Radium, Combined

Samples: ITL1891-03

Analysis Performed: Strontium 90

Samples: ITL1891-03

Analysis Performed: Tritium

Samples: ITL1891-03

Analysis Performed: Uranium, Combined

Samples: ITL1891-03

TestAmerica Buffalo

10 Hazelwood Drive, Suite 106 - Amherst, NY 14228

Method Performed: 8646

Samples: ITL1891-03

Method Performed: 900

Samples: ITL1891-03

Method Performed: 901.1

Samples: ITL1891-03

Method Performed: 903.1

Samples: ITL1891-03

Method Performed: 904

Samples: ITL1891-03

Method Performed: 905

Samples: ITL1891-03

Method Performed: 906

Samples: ITL1891-03

TestAmerica Irvine

Heather Clark For Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Quarterly Outfall 001 2010

Quarterly Outfall 001 Sampled: 12/19/10-12/20/10

Report Number: ITL1891 Received: 12/20/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

TestAmerica West Sacramento NELAC Cert #1119CA, Nevada Cert #CA44

880 Riverside Parkway - West Sacramento, CA 95605

Method Performed: EPA-5 1613B

Samples: ITL1891-03

rest Ame	iioa v	ersion //19/201	U				СП	41114	OF	CU	101	וטטו	FU	KIVI		و	\mathbb{Z}	76	4	891
Client Name/A	ddress:			Project:										ANALY:	SIS RE					7
MWH-Arcad 618 Michillinda Arcadia, CA	a Ave, Su	uite 200		Boeing-SSFL Quarterly Ou GRAB																Field readings: (Log in and include in
Test America	Contact:	Debby Wils	son				113	HEM)												report Temp and pH) Temp °F = 5 7 6 pH = 7 6 DO = 0.35 MG
Project Manag	ch B	BARAC	A	Phone Number (626) 568-669 Fax Number: (626) 568-651	1		VOCs (624) + Freon 113	Oil & Grease (1664-HEM)	Settleable Solids	Conductivity										Time of readings
Sample Description	Sample Matrix	Container Type	# of Cont.	Sampling Date/Time	Preservative	Bottle #	000	oi s	Settle	Cond										Comments
Outfall 001	w	VOAs	5	15.30	HCI	1A, 1B, 1C, A 1D, 1E	х													
Outfall 001	w	1L Amber	2		HCI	2A, 2B		×									2	M		
Outfall 001	w	1L Poly	1		None	3 🎤			Х										Y	
Outfall 001	w	500 mL Poly	2	*	None	4A, 4B		<u> </u>		х								-		
Trip Blanks	w	VOAs	3	15 30	HCI	5A, 5B, 5C	Х	ļ								<u>A</u>	0	<u> </u>	\leq	
			1					<u> </u>							1	1			Q	
			ļ					-	ļ								0	2_		
						· · · · · ·		<u> </u>						\perp	ļ					
								_	ļ							ļ <u>.</u>				
								_							ļ	_				
-					-			<u> </u>	<u> </u>				_	\perp	<u> </u>	ļ				
					ļ			ļ											_	
	ļ							ļ					-							
<u> </u>	These	Samples a	re th	ne Grab Portic	n of Outfall	001 for the	storn	n ever	et. Co	ompo	site s	ample	s will	follow a	and are	to be	adde	d to th	is wo	k order.
Relinquished By	Sm	<u>,</u>	ate/Tir	12-19-2 Uil	010 V	Receive	47		huj	Date	^{fme:} [1		-10 :W		around tin	ne: (Checl _ 72 Hour: _ 5 Day:	()			
Relinquished By	Qu.	7//		12-19- 17:	43	Received By		` _/,		pate/T	1			Samp Intact:		y: (Check) On Ice:				
Relinquished By		Ψ °	ate/Tir	ne: 		Received By From SC MIDGLE				Date/T	me: 12/2	0/10	9	- 1	•	ents: (Che		NPDES I	Level IV:	x

Client Name/A	ddress			Proiec	<u> </u>	·				_		·				ΔΝ	ΔΙ Υςίς	REQUI	RED		<u>.</u>	
MWH-Arcac					 g-SSFL f	NPDES				Τ	l					, 7,1 1/		, LGO	<u> </u>	Т		
618 Michillinda		uite 200			erly Out			g	ļ								325)					
Arcadia, CA 9		une 200			OSITE			<u>Ď</u>		1	Ì						SS				1	
rabadia, or c	,100,							Recoverable Metals: Cu, Pb, Hg, Cd, n, Fe, Mn				ge l					ene, Bis(2- PCP (SVOCs 625)					
Test America	Contact	Debby Wil	son					₫_				rat					Bis(2-					1
		,						$\overline{\mathbf{c}}$			l	흥					_ දී <u>.</u> ම	i			ì	1.
								als:	ers)			Per					olue I^,					
								/let	ene	િ		ź					월					Comments
Project Manag	ger: Bro	nwyn Kelly		Phone	Numbe	r:		e e	all congeners)	SS (AS)	SO₄, NO₃+NO₂-N, Perchlorate	z	35	(2.		Dinitrotoluene, I					
_		_		(626)	568-669	1		erab Mn	Ö) je	l ĝ	Z + Z	l i≜	S, I	32(8	4 D]
Sampler: %	ck B	ANAGB		Fax N	umber:			ove	g a	ge	ts (ઙ૿	Ξ	12	Ž	Ü	P 2, 1		Ì			
, -				(626)	568-651	5		Recov , Fe,	(ar	[20]	ţa	4	Ž	Ę,	nia Bi	ΙÄ	TCP, 2,4 [nexyl)phthala					ļ
Sample Description	Sample Matrix	Container Type	# of Cont.	Sar	mpling e/Time	Preservative	Bottle #	Total Re Se, Zn,	TCDD (and	BOD ₅ (20 degrees	Surfactants (MBAS)	CI, SC	Nitrate-N, Nitrite-N	Turbidity, TDS, TSS	Ammonia-N (350.2)	Alpha BHC (608)	2,4,6 T ethylhe					
Outfall 001	w	1L Poly	1	12.2	0-2010	HNO₃	6A /	X				J										<u> </u>
Outfall 001 Dup	w	1L Poly	1	04	:38	HNO ₃	6B /	Х							. <u></u>				 	1		
Outfall 001	w	1L Amber	2	 	<u> </u>	None	7A, 7B		X		 			<u> </u>				·			1	
Outfall 001	w	1L Poly	1			None	8 /			х					-							
Outfall 001	w	500 mL Poly	2			None	9A, 9B				Х											
Outfall 001	w	500 mL Poly	2			None	10A, 10B					Х										12:45.
Outfall 001	w	500 mL Poly	1			None	11			<u> </u>			х									12/20/10/
Outfall 001	w	500 mL Poly	2			None	12A, 12B						ļ	X								\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Outfall 001	w	500 mL Poly	1	1	0.3010	H₂SO₄	13								Х							
Outfall 001	w	1L Amber	2	•		None	14A, 14B								ļ	X					1	
Outfall 001	W	1L Amber	2	04	<u>:38 </u>	None	15A, 15B										Х					
									<u> </u>												<u> </u>	
				<u> </u>					<u> </u>	<u> </u>												
				C	OC Pag	e 2 of 3 an	d Page 3	of 3 aı	e the	com	posit	e san	nples	for O	utfall	001	for this	storm e	event.			
						t be added																
Relinquished By	•	_[Date/Ti	me:	2010		Received B	y	,	٠٦	D	ate/Tim	ie:	1.	. "	Turn-a	ound time	(Check)		10 Day: _ Normal: _		
Die B	my	• '	σ.	4 0-			. /	. .		11.	1	17 /	/z c	۲ / د	U	24 Hou	ır:	72 Hour: _		10 Day: _		
•							1/4	لسست	1-	لاكار.	/ - L	1-1		11/2	13	48 Hou	ır:	5 Day:	Σ_	Normal: _		
Relinquished By			ate/Ti	me:	,	7.	Received B	/	<u> </u>	*	Da	ate/Tim	ie:	· 444,		1						
. / -) ñ/	,	12	./24	3/10 ·										Sample	Integrity:	(Check)				
1/ en	~ K	Calile	<u>,</u>	V =-	70	74					**					Intact:	\times	(Check) On Ice:	X			
Relinguished By			ate/Ti		20	- (Received B	$\overline{}$		10	D:	ate/Tim	e.						•			
, tomiquionou by			-a.o/ 11				(')							~~	poto 2	o mulicom o o	to: (Chock)				
								\mathcal{L}		***************************************	•	1. (,	-11	- 1		Yala K	edmieniel	ts: (Check)	,	_ NPDES Le		
]									INO FEA	ei IV:	All Level IV	·	_ NADE2 FE	ever IV:	

Client Name/Address:				Project:			ANALYSIS REQUIRED																	
MWH-Arcadia				Boeing-SSFL I			Se,										T							
618 Michillinda Ave, Suite 200 Arcadia, CA 91007				Quarterly Outfall 001 COMPOSITE 40			Cq,	900.0), 0), Total 903.1) & 38.0), K-																
Test America	Contact:	Debby Wils	son			Total Dissolved Metals: Cu, Pb, Hg, Zn, Fe, Mn), Gross Beta(900.0), 0), Sr-90 (905.0), Total 126 (903.0 or 903.1) & 0), Uranium (908.0), K- or 901.1)				:													
		****																		Comments				
Project Manager: Bronwyn Kelly Sampler: Pic K Brande				Phone Numbe (626) 568-669		ved Me	Alpha(900.0), (n (H-3) (906.0), ined Radium 22 im 228 (904.0), S-137 (901.0 or		icity															
				Fax Number: (626) 568-6515			Dissolv e, Mn	Gross Alpha(900.0), Tritium (H-3) (906.0) Combined Radium 2 Radium 228 (904.0) 40, CS-137 (901.0 o	ide	Chronic Toxicity														
Sample Description	Sample Matrix	Container Type	# of Cont.	Sampling Date/Time	Preservative	Bottle #	Total Di Zn, Fe,	Gros Tritiu Com Radii 40, C	Cyanide	Chro														
Outfall 001	w	1L Poly	1 /	13-20-2010	None	16	х														Filter w/in 24hrs of receipt at lab			
Outfall 001	w	2.5 Gal Cube	1 1	None	None	17A		x													Unfiltered and unpreserved			
		500 mL Amber	1		17B															analysis				
Outfall 001	w	500 mL Poly	1	12-30-2016	NaOH	18			х															
Outfall 001	w	1 Gal Poly	1	07:38	None	19				х											Only test if first or second rain events of the year			
														L										
				•																				
							ļ	ļ.	<u> </u>															
			<u> </u>	COC Pac	10 2 of 3 an	d Page 3	of 3 are	the composite	0 621	nloo	for O	efall	004 6	or th	ic cto	m ov	ont	<u> </u>	<u> </u>	<u> </u>				
								-	_									t.						
								the same work order for COC Page 1 of 3 for Outfall 001 feceived By									T- (0) 10							
Pin By							Usin falle 12/20/10 16:13									24 Hour: 72 Hour: 10 Day: 48 Hour: 5 Day: Normal:								
Relinquished By	-	D	Received E	Received By Date/Time:																				
Relinquished By Date/Time: 12/20/12 Relinquished By Date/Time: 12/																	Sample Integrity: (Check) Intact: On Ice:							
Relinquished By Date/Time:						Received E	eceived By Date/Time:												_					
							12/20/10 2024								Data Requirements: (Check)									
															No Level IV: All Level IV: NPDES Level-IV:X									

LABORATORY REPORT

Aquatic
Testing
Laboratories

Date: December 28, 2010

Client: TestAmerica, Irvine

17461 Derian Ave., Suite 100

Irvine, CA 92614 Attn: Debby Wilson "dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003

(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.: A-10122004-001

Sample I.D.: ITL1891-03 (Outfall 001)

Sample Control: The sample was received by ATL within the recommended hold time, chilled and

with the chain of custody record attached. Testing conducted on only one sample per

client instruction (rain runoff sample).

Date Sampled: 12/20/10 - composite

Date Received: 12/20/10 Temp. Received: 5.6°C Chlorine (TRC): 0.0 mg/l

Date Tested: 12/20/10 to 12/27/10

Sample Analysis: The following analyses were performed on your sample:

Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

Result Summary:

Ceriodaphnia Survival: 100% 1.0 Ceriodaphnia Reproduction: 100% 1.0

Quality Control: Reviewed and approved by:

Joseph A. LeMay

Laboratory Director

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

Lab No.: A-10122004-001 Date Tested: 12/20/10 to 12/27/10

Client/ID: Test America - ITL1891-03 (Outfall 001)

TEST SUMMARY

Test type: Daily static-renewal. Endpoints: Survival and Reproduction.

Species: Ceriodaphnia dubia.

Age: < 24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Source: In-laboratory culture.
Food: .1 ml YTC, algae per day.
Test solution volume: 15 ml.

Number of test organisms per vessel: 1. Number of replicates: 10.

Temperature: 25 +/- 1°C.

Thumber of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Dilution water: Mod. hard reconstituted (MHRW). Test duration: 7 days.

QA/QC Batch No.: RT-101207. Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Survival	Mean Number of Young Per Female
Control	100%	24.0
100% Sample	100%	26.1
* Sample not s	tatistically significantly le	ess than Control.

CHRONIC TOXICITY

Survival NOEC	100%			
Survival TUc	1.0			
Reproduction NOEC	100%			
Reproduction TUc	1.0			

QA/QC TEST ACCEPTABILITY

Parameter	Result			
Control survival ≥80%	Pass (100% survival)			
≥15 young per surviving control female	Pass (24.0 young)			
≥60% surviving controls had 3 broods	Pass (100% with 3 broods)			
PMSD < 47% for reproduction; if > 47% and no toxicity at IWC, the test must be repeated	Pass (PMSD = 6.6%)			
Statistically significantly different concentrations relative difference > 13%	Pass (no concentration significantly different)			
Concentration response relationship acceptable	Pass (no significant response at concentration tested)			

Ceriodaphnia Survival and Reproduction Test-7 Day Survival											
Start Date:	e: 12/20/2010 18:30 Test ID:			10122004	С		Sample ID):	Outfall 001		
End Date:	12/27/201	0 17:30	Lab ID:	CAATL-Ad	quatic Tes	ting Labs	Sample Ty	ype:	EFF2-Indu	ıstrial	
Sample Date:	12/20/201	0 04:38	Protocol:	FWCH EP	Ά		Test Spec	ies:	CD-Cerioo	daphnia dubia	
Comments:											
Conc-%	1	2	3	4	5	6	7	8	9	10	
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
100	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	

				Not			Fisher's	1-Tailed	Isotonic	
Conc-%	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Mean	N-Mean
D-Control	1.0000	1.0000	0	10	10	10			1.0000	1.0000
100	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000

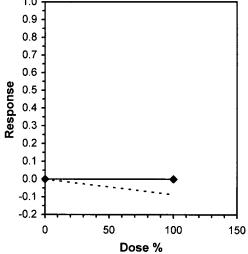
Hypothesis	Test (1-tail, 0	0.05)	NOEC	LOEC	ChV	TU			
Fisher's Exa	act Test		100	>100		1		•	
Treatments	vs D-Control								
						lation (20	0 Resamples)		
Point	%	SD	95%	CL	Skew				
IC05	>100								
IC10	>100								
IC15	>100						1.0		
IC20	>100						0.9 1		
IC25	>100						0.9]		
IC40	>100						0.8 -		
IC50	>100						0.7		
							8 0.6 -		
							9.0 Gesponse		
							<u>8</u>		
							2 0.4 1		
							0.3 -		
							0.2	,	
							4		
							0.1		
							0.1		

50

100

Dose %

150


			Cerioda	aphnia Su	rvival and	Reprod	uction Tes	st-Repro	duction		
Start Date:	12/20/201	0 18:30	Test ID:	10122004	С		Sample ID):	Outfall 001		
End Date:	12/27/201	0 17:30	Lab ID:	CAATL-Ac	quatic Tes	ting Labs	Sample Ty	ype:	EFF2-Indu	ustrial	
Sample Date:	12/20/201	0 04:38	Protocol:	FWCH EP	'A		Test Spec	ies:	CD-Cerio	daphnia dubia	
Comments:											
Conc-%	1	2	3	4	5	6	7	8	9	10	
D-Control	23.000	25.000	24.000	25.000	25.000	21.000	23.000	22.000	26.000	26.000	
100	23.000	23.000	30.000	24.000	26.000	27.000	28.000	27.000	25.000	28.000	

				Transforn	n: Untrans	sformed			1-Tailed		Isot	onic
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
D-Control	24.000	1.0000	24.000	21.000	26.000	7.082	10				25.050	1.0000
100	26.100	1.0875	26.100	23.000	30.000	8.931	10	-2.302	1.734	1.582	25.050	1.0000

Auxiliary Tests	Statistic	-	Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.05)	0.94322		0.905		-0.1022	-0.7578
F-Test indicates equal variances (p = 0.36)	1.88077		6.54109			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates no significant differences	1.58192	0.06591	22.05	4.16111	0.03349	1, 18
Treatments vs D Control						

			_	_	
ı	reatm	ents	VS D	-Con	trol

	Linear Interpolation (200 Resamples)										
Point	%	SD	95% CL	Skew							
IC05	>100										
IC10	>100										
IC15	>100			1.0							
IC20	>100			0.9 -							
IC25	>100			· •							
IC40	>100			0.8 🖠							
IC50	>100			0.7 -							
				0.6 -							

CERIODAPHNIA DUBIA CHRONIC BIOASSAY EPA METHOD 1002.0 Raw Data Sheet

Lab No.: A-10122004-001 Client ID: TestAmerica - Outfall 001 Start Date: 12/20/2010 DAY 1 DAY 2 DAY 3 DAY 4 DAY 5 DAY 6 DAY 7 0 hr 24hr 0 hr 24hr 0 hr 0 hr 24hr 0 hr 24hr Analyst Initials: Time of Readings: DO pН Control Temp DO 8.2 100% pН Temp **Additional Parameters** Control 100% Sample 287 Conductivity (umohms) 91 ファ Alkalinity (mg/l CaCO₃) 35 92 Hardness (mg/l CaCO₃) 40-1 Ammonia (mg/l NH3-N) **のィ**ス Source of Neonates Replicate: C 4B 5 D SE Brood ID: **Number of Young Produced Total Live** No. Live Analyst Sample Day Young Adults Initials В \mathbf{C} D E F \mathbf{G} H I J 1 () 0 2 3 4 L Control 5 6 0 7 25 ንኝ 21 23 22 Total 2 0 3 5 4 100% 5 6 7

Circled fourth brood not used in statistical analysis.

Total

⁷th day only used if <60% of the surviving control females have produced their third brood.

CHAIN OF CUSTODY

SUBCONTRACT ORDER TestAmerica Irvine

ITL1891

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Debby Wilson

RECEIVING LABORATORY:

Aquatic Testing Laboratories-SUB 4350 Transport Street, Unit 107

Ventura, CA 93003

Phone: (805) 650-0546

Fax: (805) 650-0756

Project Location: California

Receipt Temperature:_

Ice: (Y

nalysis	Units	Due	Expires	Comments
ample ID: 1TL1891-03 (0	Outfall 001 (Co	omposite) - Wate	r) Sampled: 12/20/10	04:38
Bioassay-7 dy Chmic	N/A	12/23/10	12/21/10 16:38	Cerio, EPA/821-R02-013, Sub to Aquatic testing
Containers Supplied:				

Released By Date/Time

Released By

Date/Time

Received By

Received By

Date/Time

Page 1 of 1

CHAIN OF CUSTODY FORM

Client Name/Address: Project:							ANALYSIS REQUIRED														
MWH-Arca				Boeing-SSFL N			Se,										1				
618 Michillind		uite 200		Quarterly Out	fall 001		\ S.	ें <u>छ</u> ॐ ⊀									İ				
Arcadia, CA				COMPOSITE	1000		G	0.0 To 3.1 0),													
	- , ,		ł				φ	, (o 8)													
Test America	Contact:	Debby Wils	son				b, t	sta() 05.) or) (9								ļ					
. 5507 11107104	J J, 1, GJC.						٦	s Be 0 (9 03.0 33.0 1)													
							ರ	00% (90) (90)													0
							als:	9, S (5)								İ					Comments
Project Mana	ger: Bror	nwyn Kelly		Phone Number	 r:		Zet [Gross Alpha(900.0), Gross Beta(900.0), Tritium (H-3) (906.0), Sr-90 (905.0), Total Combined Radium 226 (903.0 or 903.1) & Radium 228 (904.0), Uranium (908.0), K- 40, CS-137 (901.0 or 901.1)													
_	-	•		(626) 568-669°	1		g	900 900 1000 1000	1	ξ	[
Test America Contact: Debby Wilson Project Manager: Bronwyn Kelly Phone Number: (626) 568-6691 Fax Number: (626) 568-6515 Sample Sample Container # of Sampling Date/Time Preservative Bottle # Description Matrix Type Cont. Date/Time Preservative Bottle # Description Date/Time Preser						7 (S		χ̈́ς								[
Campler. F.	(626) 568-6515						iss.	를 표 pe 2 CE	l o	Chronic Toxicity				'							
							<u>a</u> a <u>r</u>	SS / mm ridr ium	ğ	š								1			
Sample Description	Sample Matrix	Container Type	# of Cont.	Sampling Date/Time	Preservative	Bottle #	1 0 c	Sad Sad	Cyanide	ج									1		
Description	IVIGILIX	Type		12-20-2010	 		1	0-0-4	 	├─		 		 			<u>'</u>	 	 	1	ETH. C. O.M. of control of the
Outfall 001	w	1L Poly	1/	, 5 - 40-30/6	None	16	X	[Filter w/in 24hrs of receipt at lab
	 		1	04:38	None	174	1														41.60
Outfall 001	l w	2.5 Gal Cube	1]]	None	17A	1	×													Unfiltered and unpreserved analysis
J Gallan Go 1	"	500 mL Amber	1	1 1	None	17B		1	1			1						1			analysis
	-		+-	12-30-2016	11-011	18	 		T _x	 		1			<u> </u>				†		
Outfall 001	W	500 mL Poly	1	04:38	NaOH	18	1		<u> ^</u>	<u> </u>	<u> </u>	1		<u> </u>	ļ	ļ	ļ		-	_	Only to at if Frot as assert of rain
Outfall 001	W	1 Gal Poly	1	12-20-2016	None	19			1	×											Only test if first or second rain events of the year
0411411 001	<u> </u>	, , , , , ,	<u> </u>	04:38	ļ	<u> </u>	 	 	┼	 	}	+	 	├			-	┼	 	+	events of the year
																	1				
	 	 	+	 	 	 	+	 	 	 	1	1	 	1	†				\vdash	1	
							1														
	<u> </u>	ļ	 	 	-	 	+	 	+-	 	 	 	t	 	 		 	t	t	 	
	1		<u> </u>				<u> </u>			<u> </u>	<u> </u>		<u> </u>	<u> </u>	ļ		ļ	ļ	<u> </u>	 	
	1			,													1		1		
	 	 	 -	 	ļ	 	╅		+	+	+	+	+	 	 		 	t	T	 	
				<u> </u>	<u> </u>	<u> </u>								<u> </u>	<u> </u>	L	↓	<u> </u>	↓	ـــــ	
			T									1			L	<u></u>	<u></u>	<u>L</u>			
	 	 	\top	 																	
			1	COC Par	ne 2 of 3 an	d Page 3	of 3 ar	e the composit	e san	noles	for C	Outfall	001	for th	is sto	rm e	vent.				
								rk order for CO										nt.			
Delian Joha J.D.			Date/Ti	ma:												round ti	me: (Ch	eck)			
Relinquished By			ا المعادل	me: -20-20/	Ø	, eceived	. ,	4.1	ااا ان انتخاب	~ [20/	10			24 110				10 De	ıy:	
19/20	Pris Bus 12-10-2010					1 11	٠.	I + II I	12	-/2	-01	1		~	24 MOI	л	_ / 2 170	ســــ الله مو	_ 10 Da	al:	
1 /-					1.1.		EENLL		•		l	s il	5	48 Ho	nt:	_ 5 Day:		_ Norm	al:		
Relinquished By			Date/Ti	me: /		Received	Ву	Esti.	ate/Tin	ne:]						
1 . /	/	7 /1	/	12/20/1	U		///	1//4					_	_	Sampl	e integr	ity: (Che	eck)			
1///	·	///	_	1451	1246		114		173	101-	+/)	- /2	810		intact		_ On Ice	. 1			
UM					(011)		100	- Y !		, 0		10			4				•		
Relinquished By	4		Date/Ti	me:		Received	77		ate/Tin	ie.					_			05-11			
						/											nents: (~
											No Le	vel IV:	_ All Le	vel IV:	_ NPD	ES Leve	HV: _X				

REFERENCE TOXICANT DATA

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

REFERENCE TOXICANT - NaCl

QA/QC Batch No.: RT-101207

Date Tested: 12/07/10 to 12/13/10

TEST SUMMARY

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*.

Age: <24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 + /- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

Reference Toxicant: Sodium chloride (NaCl).

Endpoints: Survival and Reproduction.

Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 20 ml. Number of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 6 days.

Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Survi	val	Mean Number of Young Per Female			
Control	100%		23.3			
0.25 g/l	100%		25.2			
0.5 g/l	100%		23.7			
1.0 g/l	100%		16.0	*		
2.0 g/l	100%		2.9	*		
4.0 g/l	0%	*	0	**		

^{*} Statistically significantly less than control at P = 0.05 level

** Reproduction data from concentrations greater than survival NOEC are

excluded from statistical analysis.

CHRONIC TOXICITY

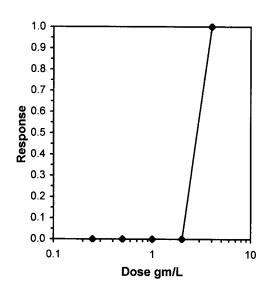
Survival LC50	2.8 g/l
Reproduction IC25	0.86 mg/l

QA/QC TEST ACCEPTABILITY

Parameter	Result
Control survival ≥80%	Pass (100% Survival)
≥15 young per surviving control female	Pass (23.3 young)
≥60% surviving controls had 3 broods	Pass (80% with 3 broods)
PMSD < 47% for reproduction	Pass (PMSD = 18.9%)
Stat. sig. diff. conc. relative difference > 13%	Pass (Stat. sig. diff. conc. Relative difference = 31.3%)
Concentration response relationship acceptable	Pass (Response curve normal)

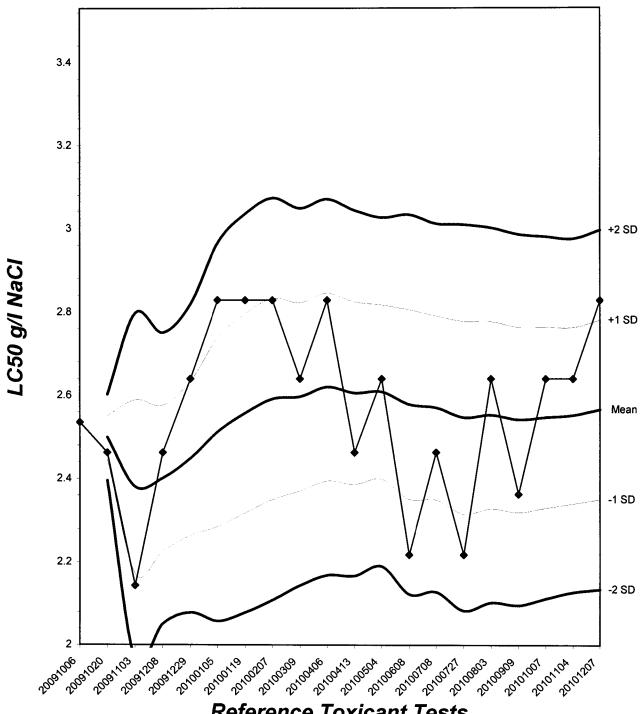
			Cerioda	aphnia Su	rvival and	Reprodu	uction Tes	t-Surviv	al Day 6		
Start Date:	12/7/2010	14:00	Test ID:	RT101207	c c		Sample ID):	REF-Ref Toxicant		
End Date:	12/13/2010 14:00 Lab ID:			CAATL-Ad	CAATL-Aquatic Testing Labs Sample Type: NACL-Sodium chlorid						
Sample Date:	12/6/2010			: FWCH EPA Test Species:					CD-Cerioo	laphnia dubia	
Comments:			· · · · · · · · · · · · · · · · · · ·			·	· v				
Conc-gm/L	1	2	3	4	5	6	7	8	9	10	
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
0.25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
0.5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
2	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

				Not			Fisher's	1-Tailed	Number	Total
Conc-gm/L	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Resp	Number
D-Control	1.0000	1.0000	0	10	10	10			0	10
0.25	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
0.5	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
1	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
2	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
4	0.0000	0.0000	10	0	10	10			10	10


Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	
Fisher's Exact Test	2	4	2.82843		
Treatments vs D-Control					

 Trim Level
 EC50

 0.0%
 2.8284

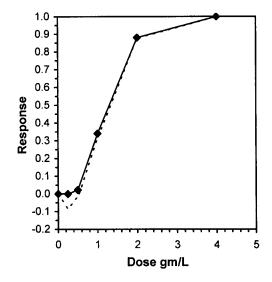

Graphical Method

2.8284

Ceriodaphnia Chronic Survival **Laboratory Control Chart**

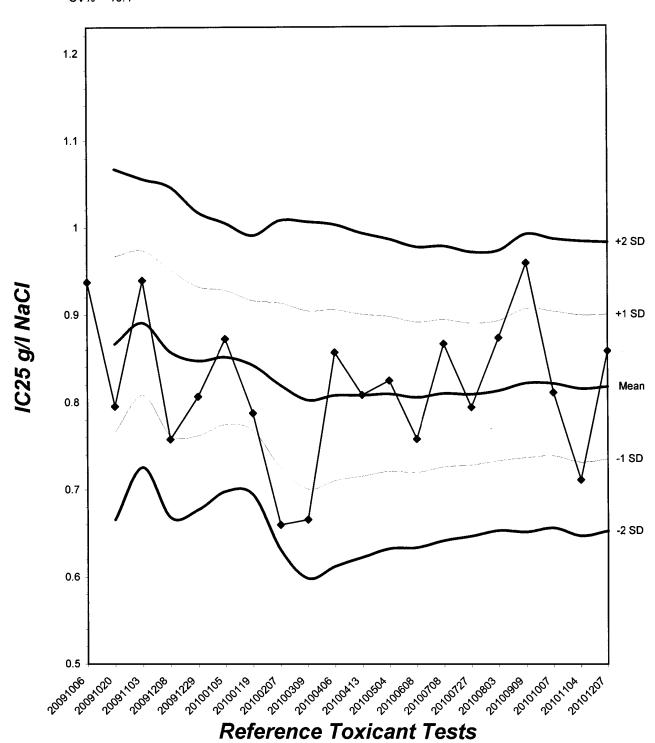
CV% = 8.41

Reference Toxicant Tests


			Ceriod	aphnia Su	rvival and	Reprodu	uction Tes	t-Repro				
Start Date:	12/7/2010	14:00	Test ID:	RT101207c Sample ID: R						REF-Ref Toxicant		
End Date:	12/13/201	0 14:00	Lab ID:	CAATL-Ad	quatic Tes	ting Labs	Sample Ty	/pe:		lium chloride		
Sample Date:	12/6/2010		Protocol:	FWCH EP	PΑ	•	Test Spec	ies:	CD-Cerioo	laphnia dubia		
Comments:												
Conc-gm/L	1	2	3	4	5	6	7	8	9	10		
D-Control	22.000	11.000	28.000	27.000	26.000	28.000	21.000	28.000	27.000	15.000		
0.25	28.000	29.000	21.000	21.000	28.000	28.000	28.000	25.000	25.000	19.000		
0.5	25.000	17.000	20.000	26.000	24.000	29.000	29.000	23.000	25.000	19.000		
1	10.000	10.000	20.000	22.000	20.000	11.000	15.000	12.000	24.000	16.000		
2	0.000	2.000	7.000	4.000	2.000	4.000	0.000	5.000	2.000	3.000		
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		

				Transforn	n: Untran	sformed		1-Tailed	Isotonic			
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
D-Control	23.300	1.0000	23.300	11.000	28.000	25.913	10				24.250	1.0000
0.25	25.200	1.0815	25.200	19.000	29.000	14.466	10	-0.959	2.223	4.404	24.250	1.0000
0.5	23.700	1.0172	23.700	17.000	29.000	17.000	10	-0.202	2.223	4.404	23.700	0.9773
*1	16.000	0.6867	16.000	10.000	24.000	32.676	10	3.686	2.223	4.404	16.000	0.6598
*2	2.900	0.1245	2.900	0.000	7.000	75.285	10	10.299	2.223	4.404	2.900	0.1196
4	0.000	0.0000	0.000	0.000	0.000	0.000	10				0.000	0.0000

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribu	ition (p >	0.05)		0.96459		0.947		-0.5938	0.09413
Bartlett's Test indicates equal var			•		8.97697		13.2767			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	ΤU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	0.5	1	0.70711		4.40372	0.189	860.47	19.6156	5.6E-15	4, 45
Treatments vs D-Control										


Linear Interpolation (200 Resamples)

Point	gm/L	SD	95%	CL	Skew
IC05	0.5430	0.1060	0.2194	0.6041	-1.2164
IC10	0.6218	0.0833	0.4101	0.7081	-1.1699
IC15	0.7005	0.0819	0.5141	0.8292	-0.4850
IC20	0.7792	0.0859	0.5998	0.9452	0.1951
IC25	0.8580	0.0903	0.6963	1.0439	0.3636
IC40	1.1107	0.1011	0.9055	1.2772	-0.0498
IC50	1.2958	0.0936	1.0659	1.4429	-0.4534

Ceriodaphnia Chronic Reproduction Laboratory Control Chart

CV% = 10.1

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-101207

Start Date: 12/07/2010

				Nu	mbei	of Y	oung	Produ	ıced			Total	No.	Analyst
Sample	Day	A	В	C	D	E	F	G	н	I	J	Live Young	Live Adults	Initials
	1	0	0	0	0	0	Ò	0	0	0	0	Q	10	h
	2	U	0	0	0	0	0	0	0	0	0	0	10	Ru
	3	0	0	4	0	0	6	0	0	0	0	4	10	ha
Control	4	3	3	0	ک	U	Z	3	٩	4	3	31	10	n
Control	5	9	8	6	フ	8	9	6	9	\cap	0	69	10	
	6	10	0	18	15	14	J	2	١٧	16	12	129	iU	
	7	-		1		((((((
	Total	22	11	28	27	26	28	21	28	27	کا	233	10	V
	1	0	0	0	0	0	0	0	0	0	0	0	10	L
	2	0	0	0	0	0	0	0	0	0	0	\mathcal{O}	10	a
	3	0	0	4	0	0	0	0	0	0	0	4	IV	La
0.05 #	4	Ц	3	U	4	5	4	4	ろ	4	4	35	iv	m
0.25 g/l	5	6	9	フ	0	8	10	9	7	フ	0	63	10	m
	6	18	17	10	17	15	14	15	15	14	15		IU	5
	7		((_	(1	_	((1		(
	Total	28	24	21	21	28	28	28	25	25	19	252	10	<i>y</i> ~
	1	ω	0	0	0	0	0	0	0	0	0	Q	10	Ru
	2	0	0	0	0	0	0	0	0	0	0	\mathcal{O}	IV	R
	3	0	0	0	4	0	0	0	0	0	0	4	10	2
0.5 /1	4	4	3	4	0	5	4	4	3	3	4	34	70	92
0.5 g/l	5	6	0	6	8	7	9	7	6	フ	0	5/2	10	
	6	15	14	10	14	12	16	18	14	15	15	143	10	
	7		_	_		_		_		_				
	Total	25	17	20	26	24	29	29	ጋζ	25	19	237	10	

Circled fourth brood not used in statistical analysis.

^{7&}lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-101207

Start Date: 12/07/2010

	_		···	Nu	ımbe	r of Y	oung l	Produ	ced			Total	No.	Analyst
Sample	Day	A	В	C	D	E	F	G	Н	I	J	Live Young	Live Adults	Initials
	1	0	0	0	0	0	0	0	0	0	0	0	10	Em
	2	0	0	0	0	0	0	0	0	0	0	0	10	Ru
	3	0	0	0	0	0	0	Ò	0	0	0	0	1U	Ru
1.0 ~/1	4	ч	3	<i>c</i> /	4	5	U\	3	Ц	4	3	30	10	a
1.0 g/l	5	0	7	6	6	フ	0	0	0	6	6	38	IV	10
	6	6	0	10	12	8	7	12	8	14	7	84	U	1
	7		_	_	_	_			_	1	_			
	Total	10	10	20	22	20	11	15	12	24	طا	160	ΙV	
	1	0	0	0	0	0	0	0	0	0	0	0	10	R
	2	0	0	0	0	0	0	0	0	0	0	0	10	R
2.0 g/l	3	0	0	0	0	0	0	0	0	0	0	0	iU	Br
2.0 . /1	4	O	0	0	C	2	C	\mathcal{C}	2	C	0	U	10	n
2.0 g/1	5	0	2	3	0	0	4	U	0	2	0	. []	10	
	6	0	0	4	4	0	0	0	3	0	3	14	10	
	7		1	_	_		_		_	(1	(
	Total	U	2	7	4	2	4	U	Ş	2	3	29	IU	2
	1	X	X	×	X	X	X	×	X	X	X	0	0	R
	2		1	-	_			(1	_		(_	
	3	_	-		_		(1	_	_	_	_		_
4.0 //	4	_	_	_	_	-	-	_					_	
4.0 g/l	5	_		_		-	-	_	_	_		_	_	
	6				_		_	_	_	_	_		~	
	7		_	_	_	_	_		_	_	-		_	
	Total	0	0		C	C	C	C	0	0	C	\mathcal{C}	0	

Circled fourth brood not used in statistical analysis.

^{7&}lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Water Chemistries Raw Data Sheet

QA/QC No.: RT-101207

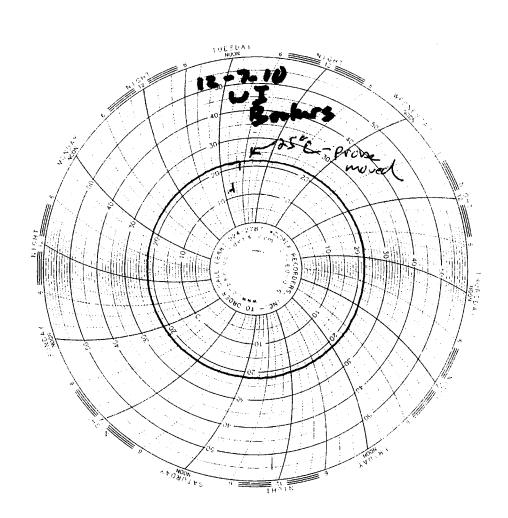
Start Date: 12/07/2010

QA/QC III	3QC No.: R1-101201														
		DA	.Y 1	DA	Y 2	DA	Y 3	DA	Y 4	DA	Y 5	DA	Υ 6	DA	Y 7
		Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
Analyst I	nitials:	£~	Ro	Row	£~	R	£~	m	2	£	m	4	2	R	1
Time of R	eadings:	14w	/sw	Isov	140	1400	1400	1400	1300	1300	1330	1330	144	_	
	DO	8.4	8.7	8.4	8.6	8.7	8.3	8.2	8.4	8.1	7-9	8,2	26	_	
Control	pН	8.2	8.3	8.4	79	8.2	8.0	8.2	8.0	8.1	7.5	8.2	8.2		_
	Temp	25.0	24.3	25.0	24.5	25.0	246	24.8	24.7	25.1	750	25.3	25-2		
	DO	8.4	88	8.4	8.6	8.6	8.3	8.2	8.4	8.2	74	87	27	-	_
0.25 g/l	pН	8.2	8.3	8.3	7.9	8.2	8.0	8.2	8.0	8.1	8.1	8-2	8-2		_
	Temp	25.0	24.6	25.0	24.8	25.0		24.8	248	25.1	40	252	2\$2	_	
	DO	8.5	8.8	8.4	8.7	8.6	8.4	8.2	8.3	8,2	7.4	8.3	76	1	_
0.5 g/l	pН	8.2	8.2	8.3	7.9	8.2	8.0	8.2	8.0	8.1	74	8.2	8-1	_	
	Temp	25.0	24.7	25.1	24.8	25.0	25.1	24.9	24.9	25.0	741	24-6	Z51		
	DO	8.5	8.7	8.4	8.7	8.5	8.4	8.2	8.3	8,2	83	83	22	_	_
1.0 g/l	pН	8.2	8.2	8.3	7.9	8.2	8.0	8.2	8.0	8.2	74	8.2	8.1	_	
	Temp	24.9	24.6	25-1	24.9	25.1	25. <i>0</i>	24.9	24.9	25.0	240	245	24.9		
	DO	8.6	8.6	8.5	8.8	8.3	8.4	8.2	8.5	8.2	82	8.2	74		_
2.0 g/l	pН	8.2	8.2	8.3	7.9	8.1	8.0	8.2	8.0	8.2	74	82	8-1	_	_
	Temp	24-8	24.8	25.2	24.8	25.2	24.9	25.0	24-8	24.9	244	245	25.2		_
	DO	8.7	8.8		_				_	_			_		-
4.0 g/l	pН	8.1	8.2		_				-	_	(-	_		_
	Temp	24.6	24.8						_						
	Di	ssolved	Oxyge	n (DO)	reading	gs are in	mg/l (O ₂ ; Temp	perature	(Temp)	readin	gs are ir	ı°C.		
	Control High Concentration														
	Additional	raramet	ers	- (11					

	Control High Concentration						
Additional Parameters	Day 1	Day 3	Day 5	Day 1	Day 3	Day 5	
Conductivity (μS)	325	329	322	6470	3690	3430	
Alkalinity (mg/l CaCO ₃)	24	73	73	73	74	74	
Hardness (mg/l CaCO ₃)	87	88	89	90	89	89	

	Source of Ne	onates

Replicate:	Α	В	С	D	Е	F	G	Н	I	J
Brood ID:	IA	2A	3A	38	1G	1H	2.I	15	スケ	35



Test Temperature Chart

Test No: RT-101207

Date Tested: 12/07/10 to 12/13/10

Acceptable Range: 25+/- 1°C

EBERLINE ANALYTICAL CORPORATION
2030 Wright Avenue
Richmond, California 94804-3849
Phone (510) 235-2633 Fax (510) 235-0438
Toll Free (800) 841-5487
www.eberlineservices.com

January 28, 2011

Ms. Debby Wilson Test America Irvine 17461 Derian Ave., Ste. 100 Irvine, CA 92614

Reference:

Test America-Irvine ITL1891

Eberline Analytical Report S012308-8646

Sample Delivery Group 8646

Dear Ms. Wilson:

Enclosed is a Level IV CLP-like data package (on CD) for one water sample received under Test America Job No. ITL1891. The sample was received on December 22, 2010.

Please call me, if you have any questions concerning the enclosed report.

Sincerely,

N. Joseph Verville

Client Services Manager

NJV/ljb

Enclosure: Level IV CLP-like Data Package CD

Case Narrative, page 1

January 28, 2011

1.0 General Comments

Sample delivery group 8646 consists of the analytical results and supporting documentation for one water sample. Sample ID's and reference dates/times are given in the Sample Summary section of the Summary Data report. The sample was received as stated on the chain-of-custody document. Any discrepancies are noted on the Eberline Analytical Sample Receipt Checklist. No holding times were exceeded.

Tritium and gamma analyses were performed on the sample as received i.e. the sample was not filtered. The analytical volumes for all other analyses were subjected to a full nitric acid/hydrofluoric acid dissolution, and analyses were performed on the dissolution volume.

2.0 Quality Control

For efficiency of analysis, sample ITL1891-03 was analyzed in a common prep batch with other TA samples. The QC samples from that common prep batch were assigned to SDG 8643 and are reported herein. Quality Control Samples consisted of laboratory control samples (LCS), method blanks, duplicate analyses and matrix spike analyses. Included in the data package are copies of the Eberline Analytical radiometrics data sheets. The radiometrics data sheets for the QC LCS and QC blank samples indicate Eberline Analytical's standard QC aliquot of 1.0 sample; results for those QC types are calculated as pCi/sample. The QC LCS and QC blank sample results reported in the Summary Data Section have been divided by the appropriate method specific aliquot (see the Lab Method Summaries for specific aliquots) in order to make the results comparable to the field sample results. All QC sample results were within required control limits.

3.0 Method Errors

The error for each result is an estimate of the significant random uncertainties incurred in the measurement process. These are propagated to each final result. They include the counting (Poisson) uncertainty, as well as those intrinsic errors due to carrier or tracer standardization, aliquoting, counter efficiencies, weights, or volumes. The following method errors were propagated to the count error to calculate the 2^oerror (Total):

Analysis	Method Error
Gross alpha	20.6%
Gross beta	11.0%
Tritium	10.0%
Sr-90	10.4%
Ra-226	16.4%
Ra-228	10.4%
Uranium,Total	
Gamma Spec.	7.0%

Case Narrative, page 2

<u>January 28, 2011</u>

4.0 **Analysis Notes**

- Gross Alpha/Gross Beta Analysis No problems were encountered during 4.1 the processing of the samples. All quality control sample results were within required control limits.
- 4.2 Tritium Analysis - No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- 4.3 Strontium-90 Analysis - No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- Radium-226 Analysis No problems were encountered during the processing of 4.4 the samples. All quality control sample results were within required control limits
- Radium-228 Analysis No problems were encountered during the processing of 4.5 the samples. All quality control sample results were within required control limits
- Total Uranium Analysis No problems were encountered during the processing 4.6 of the samples. All quality control sample results were within required control limits.
- Gamma Spectroscopy No problems were encountered during the processing 4.7 of the samples. All other quality control sample results were within required control limits.

5.0 **Case Narrative Certification Statement**

"I certify that this data package is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. Release of the data obtained in this hard copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature."

1/28/11 N. Joseph Verville

Client Services Manager

SDG <u>8646</u>
Contact <u>N. Joseph Verville</u>

Client <u>Test America, Inc.</u> Contract <u>ITL1891</u>

SUMMARY DATA SECTION

TABLE OF	CO	N T	E N	T S	
About this section	•	• .	•	•	1
Sample Summaries	•	•	•.	•	3
Prep Batch Summary	• .	•	•	•	5
Work Summary	•	•	•	•	6
Method Blanks	•		•	•	8
Lab Control Samples	•		•	•	9
Duplicates	•	•	•	•	10
Data Sheets	•			•	11
Method Summaries	•	•	•	•	12
Report Guides		•	•	•	20
End of Section			•	•	34
-					

Prepared by

Reviewed by

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-TOC
Version 3.06
Report date 01/28/11

SDG 8646

SDG 8646

Contact N. Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>ITL1891</u>

ABOUT THE DATA SUMMARY SECTION

The Data Summary Section of a Data Package has all data, in several useful orders, necessary for first level, routine review of the data package for a Sample Delivery Group (SDG). This section follows the Data Package Narrative, which has an overview of the data package and a discussion of special problems. It is followed by the Raw Data Section, which has full details.

The Data Summary Section has several groups of reports:

SAMPLE SUMMARIES

The Sample and QC Summary Reports show all samples, including QC samples, reported in one SDG. These reports cross-reference client and lab sample identifiers.

PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches (lab groupings reflecting how work was organized) relevant to the reported SDG with information necessary to check the completeness and consistency of the SDG.

WORK SUMMARY

The Work Summary Report shows all samples and work done on them relevant to the reported SDG.

METHOD BLANKS

The Method Blank Reports, one for each Method Blank relevant to the SDG, show all results and primary supporting information for the blanks.

LAB CONTROL SAMPLES

The Lab Control Sample Reports, one for each Lab Control Sample relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

DUPLICATES

REPORT GUIDES

Page 1
SUMMARY DATA SECTION

Page 1

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 01/28/11

SDG 8646

SDG 8646

Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>ITL1891</u>

ABOUT THE DATA SUMMARY SECTION

The Duplicate Reports, one for each Duplicate and Original sample pair relevant to the SDG, show all results, differences and primary supporting information for these QC samples.

MATRIX SPIKES

The Matrix Spike Reports, one for each Spiked and Original sample pair relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

DATA SHEETS

The Data Sheet Reports, one for each client sample in the SDG, show all results and primary supporting information for these samples.

METHOD SUMMARIES

The Method Summary Reports, one for each test used in the SDG, show all results, QC and method performance data for one analyte on one or two pages. (A test is a short code for the method used to do certain work to the client's specification.)

REPORT GUIDES

The Report Guides, one for each of the above groups of reports, have documentation on how to read the associated reports.

REPORT GUIDES
Page 2
SUMMARY DATA SECTION

Page 2

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>01/28/11</u>

SDG 8646

SDG <u>8646</u>

Contact N. Joseph Verville

LAB SAMPLE SUMMARY

Client Test America, Inc.

Contract ITL1891

LAB SAMPLE ID	CLIENT SAMPLE ID	LOCATION	MATRIX	LEVEL	SAS NO	CHAIN OF	COLLECTED
S012300-03	Lab Control Sample		WATER				
S012300-04	Method Blank		WATER				
S012300-05	Duplicate (S012300-01)		WATER				12/18/10 17:10
S012308-01	ITL1891-03	Boeing-SSFL	WATER			ITL1891	12/20/10 04:38

LAB SUMMARY

Page 1

SUMMARY DATA SECTION

Page 3

Lab id EAS

Protocol TA

Version Ver 1.0

Form DVD-LS

Version 3.06

Report date 01/28/11

SDG 8646
Contact N. Joseph Verville

SDG 8646

QC SUMMARY

Client Test America, Inc.
Contract ITL1891

QC BATCH	CHAIN OF	CLIENT SAMPLE ID	MATRIX	% MOIST	SAMPLE AMOUNT	BASIS AMOUNT	DAYS SI		LAB SAMPLE ID	DEPARTMENT SAMPLE ID
8643		Method Blank. Lab Control Sample	WATER WATER						S012300-04 S012300-03	8643-004 8643-003
		Duplicate (S012300-01)	WATER	•					S012300-05	8643-005
8646	ITL1891	ITL1891-03	WATER		9.5 L		12/22/10	2	S012308-01	8646-001

QC SUMMARY

Page 1

SUMMARY DATA SECTION

Page 4

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-QS</u>

Version <u>3.06</u>

Report date <u>01/28/11</u>

SDG 8646

SDG 8646
Contact N. Joseph Verville

PREP BATCH SUMMARY

Client Test America, Inc.
Contract ITL1891

	•		PREPARATION	ERROR			- PLAI	PLANCHETS ANALYZED				
TEST	MATRIX	METHOD	BATCH	2σ %	CLIENT	MORE	RE	BLANK	LCS	DUP/ORIG MS/ORIG	FIERS	
Beta	Counting											
AC	WATER	Radium-228 in Water	7258-155	10.4	1			1	1	1/0/1		
SR.	WATER	Strontium-90 in Water	7258-155	10.4	1			1	1.	1/0/1		
Gas I	roportion	al Counting										
A08	WATER	Gross Alpha in Water	7258-155	20.6	1			1	1	1/0/1		
80B	WATER	Gross Beta in Water	7258-155	11.0	. 1			1	1	1/0/1		
Gamma	Spectros	сору										
GAM	WATER	Gamma Emitters in Water	7258-155	7.0	1			1	1	1/0/1		
Kinet	ic Phosph	orimetry, ug										
U_T	WATER	Uranium, Total	7258-155		1			1	. 1	1/0/1		
Liqui	d Scintil	lation Counting										
Н .	WATER	Tritium in Water	7258-155	10.0	1			1	1	1/0/1		
Rador	Counting											
RA	WATER	Radium-226 in Water	7258-155	16.4	1			1	1	1/0/1		

Blank, LCS, Duplicate and Spike planchets are those in the same preparation batch as some Client sample. In counts like 'a/b/c', 'a' = QC planchets, 'b' = Originals in this SDG, 'c' = Originals in other SDGs.

PREP BATCH SUMMARY
Page 1
SUMMARY DATA SECTION
Page 5

 Lab id EAS

 Protocol TA

 Version Ver 1.0

 Form DVD-PBS

 Version 3.06

 Report date 01/28/11

SDG 8646

SDG 8646

Contact N. Joseph Verville

LAB WORK SUMMARY

Client Test America, Inc.

Contract ITL1891

COLLECTED RECEIVED	LOCATION	MATRIX			SUF-				
	CUSTODY SAS no		PLANCHET	TEST		ANALYZED	REVIEWED	вч	METHOD
5012300-03	Lab Control Sample		8643-003	80A/80		01/04/11	01/17/11	DM	Gross Alpha in Water
3012300-03	hab control sample	WATER	8643-003	80B/80		01/04/11	01/17/11		Gross Beta in Water
		WAIEK	8643-003	AC		01/04/11	01/27/11		Radium-228 in Water
			8643-003	GAM		12/29/10	01/2//11		Gamma Emitters in Water
			8643-003	H		01/13/11	01/14/11		Tritium in Water
			8643-003	ra Ra			01/24/11		Radium-226 in Water
			8643-003	SR		01/06/11	01/26/11		Strontium-90 in Water
			8643-003	U_T 		01/18/11	01/21/11		Uranium, Total
8012300-04	Method Blank		8643-004	80A/80		01/04/11	01/17/11	BW	Gross Alpha in Water
		WATER	8643-004	80B/80		01/04/11	01/17/11	BW	Gross Beta in Water
			8643-004	AC		01/21/11	01/27/11	BW	Radium-228 in Water
			8643-004	GAM		12/30/10	01/14/11	MWT	Gamma Emitters in Water
			8643-004	Н		01/13/11	01/18/11	BW	Tritium in Water
	•		8643-004	RA		01/06/11	01/24/11	BW	Radium-226 in Water
-			8643-004	SR		01/06/11	01/26/11	BW	Strontium-90 in Water
			8643-004	U_T		01/18/11	01/21/11	BW	Uranium, Total
3012300-05	Duplicate (S012300-01)		8643-005	80A/80		01/04/11	01/17/11	BW	Gross Alpha in Water
12/18/10		WATER	8643-005	80B/80		01/04/11	01/17/11	BW	Gross Beta in Water
			8643-005	AC		01/21/11	01/27/11	BW	Radium-228 in Water
•			8643-005	GAM		12/30/10	01/14/11	MWT	Gamma Emitters in Water
			8643-005	H .		01/13/11	01/18/11	BW	Tritium in Water
			8643-005	. RA		01/06/11	01/24/11	BW	Radium-226 in Water
			8643-005	SR		01/06/11	01/26/11	BW	Strontium-90 in Water
			8643-005	U_T		01/18/11	01/21/11	BW	Uranium, Total
3012308-01	ITL1891-03		8646-001	80A/80		01/04/11	01/17/11	BW	Gross Alpha in Water
	Boeing-SSFL	WATER	8646-001	80B/80		01/04/11	01/17/11		Gross Beta in Water
	ITL1891		8646-001	AC		01/21/11	01/27/11		Radium-228 in Water
			8646-001	GAM		12/31/10	01/14/11		Gamma Emitters in Water
			8646-001	Н		01/13/11	01/18/11		Tritium in Water
			8646-001	RA.		01/22/11	01/24/11		Radium-226 in Water
			8646-001	SR		01/06/11	01/26/11		Strontium-90 in Water

WORK SUMMARY

Page 1

SUMMARY DATA SECTION

Page 6

 Lab id EAS

 Protocol TA

 Version Ver 1.0

 Form DVD-LWS

 Version 3.06

Report date <u>01/28/11</u>

SDG 8646

SDG <u>8646</u>
Contact <u>N. Joseph Verville</u>

WORK SUMMARY, cont.

Client <u>Test America, Inc.</u>
Contract <u>ITL1891</u>

TEST	SAS no	COUNTS	OF TESTS REFERENCE	BY	SAMPLE TYPE CLIENT MORE	RE	BLANK	LCS	DUP SPIKE	TOTAL
80A/80		Gross Alpha in Water	900.0		.1		1	1	1	4
80B/80		Gross Beta in Water	900.0		1		1	1	1	4
AC		Radium-228 in Water	904.0		1		1	1	1	4
GAM		Gamma Emitters in Water	901.1		1		1	1	1	4
Н		Tritium in Water	906.0		1		1	1	1	4
RA		Radium-226 in Water	903.1		1		1	1	1	4
SR		Strontium-90 in Water	905.0		1		1	1	1	4
U_T		Uranium, Total	D5174		1		1	1	1	4
TOTALS	-				8		8	8	8	32

WORK SUMMARY

Page 2

SUMMARY DATA SECTION

Page 7

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LWS

 Version
 3.06

 Report date
 01/28/11

8643-004

METHOD BLANK

Method Blank

SDG <u>8646</u>	Client	Test America, Inc.
Contact N. Jose	<u>ph Verville</u> Contract	ITL1891
Lab sample id S012300	-04 Client sample id	Method Blank
Dept sample id 8643-00	4 Material/Matrix	WATER

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	-0.006	0.27	0.617	3.00	ט	80A
Gross Beta	12587472	0.047	0.56	0.950	4.00	U	80B
Tritium	10028178	-94.9	170	294	500	U	H
Radium-226	13982633	0.052	0.48	0.888	1.00	U	RA
Radium-228	15262201	0.032	0.17	0.396	1.00	U	AC
Strontium-90	10098972	-0.110	0.53	1.27	2.00	υ	SR
Uranium, Total		0	0.008	0.019	1.00	U	$\mathtt{U}_\mathtt{T}$
Potassium-40	13966002	U		24.4	25.0	Ū	GAM
Cesium-137	10045973	Ū		2.00	20.0	ט	GAM

QC-BLANK #76649

METHOD BLANKS
Page 1
SUMMARY DATA SECTION
Page 8

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-DS</u>

Version <u>3.06</u>

Report date <u>01/28/11</u>

SDG 8646

8643-003

LAB CONTROL SAMPLE

Lab Control Sample

SDG <u>8646</u>
Contact <u>N. Joseph Verville</u>

Client <u>Test America</u>, <u>Inc</u>.

Contract ITL1891

Lab sample id <u>S012300-03</u>

Dept sample id 8643-003

Client sample id Lab Control Sample

Material/Matrix _____ WATER

ANALYTE	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ADDED pCi/L	2σ ERR pCi/L	REC %	2σ LMTS (TOTAL)	PROTOCOL LIMITS
Gross Alpha	43.6	2.4	0.575	3.00		80A	40.4	1.6	108	77-123	70-130
Gross Beta	33.7	1.5	1.23	4.00		80B	35.0	1.4	96	88-112	70-130
Tritium	2330	270	297	500		н	2550	100	91	85-115	80-120
Radium-226	46.2	1.9	0.686	1.00		RA	55.7	2.2	83	85-115	80-120
Radium-228	3.81	0.83	0.391	1.00		AC	4.63	0.19	82	80-120	60-140
Strontium-90	17.1	1.5	0.850	2.00		SR	17.5	0.70	98	86-114	80-120
Uranium, Total	58.7	6.6	0.188	1.00		U_T	56.5	2.3	104	88-112	80-120
Cobalt-60	98.6	4.6	2.03	10.0		GAM	102	4.1	97	91-109	80-120
Cesium-137	113	4.3	2.86	20.0		GAM	110	4.4	103	91-109	80-120

QC-LCS #76648

LAB CONTROL SAMPLES

Page 1

SUMMARY DATA SECTION

Page 9

Lab id <u>EAS</u>
Protocol <u>TA</u>

Version Ver 1.0

Form DVD-LCS

Version 3.06

Report date 01/28/11

SDG 8646

8643-005

DUPLICATE

ITL1881-02

SDG <u>8646</u>	· ·			C	lient	Test America, Inc.	,
Contact N. Jo	oseph Verville			Con	tract	ITL1891	
DUPLI	ICATE		ORIGINAL				
Lab sample id <u>S0123</u>	300-05 Lab	sample id	S012300-01	Client samp	le id	ITL1881-02	
Dept sample id 8643-	-005 Dept	sample id	8643-001	Location/M	latrix	1999	WATER
		Received		Coll	ected	12/18/10 17:10	
				Chain of custo	dy id		

ANALYTE	DUPLICATE pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ORIGINAL pCi/L	2σ ERR (COUNT)	MDA pCi/L	QUALI- FIERS	RPD %	3σ TOT	DER σ
Gross Alpha	1.05	0.34	0.322	3.00	J	A08	1.22	0.35	0.326	J	15	78	0.6
Gross Beta	1.72	0.54	0.800	4.00	J	80B	1.61	0.57	0.853	J.	7	74	0.3
Tritium	-140	160	295	500	U	н	-81.5	170	294	U	-		0.5
Radium-226	0.840	0.40	0.558	1.00	J	RA	0.332	0.37	0.604	U	87	144	1.8
Radium-228	0.187	0.20	0.435	1.00	υ	AC	0.118	0.21	0.459	U	-		0.5
Strontium-90	-0.065	0.41	0.986	2.00	Ū	SR	0.012	0.48	1.12	U	-		0.2
Uranium, Total	0.102	0.014	0.019	1.00	J	U_T	0.103	0.014	0.019	J	1	29	0.1
Potassium-40	ŭ		20.3	25.0	υ	GAM	Ū		17.8	U	_		0.2
Cesium-137	U		1.86	20.0	υ	GAM	Ū	•	1.28	υ	-		0.5

QC-DUP#1 76650

DUPLICATES

Page 1

SUMMARY DATA SECTION

Page 10

Lab id <u>EAS</u>
Protocol <u>TA</u>

Version Ver 1.0

Form DVD-DUP
Version 3.06

Report date <u>01/28/11</u>

8646-001

DATA SHEET

ITL1891-03

	8646 N. Joseph Verville	Client Contract	Test America, Inc. ITL1891	
Lab sample id Dept sample id Received	8646-001 12/22/10	Client sample id Location/Matrix Collected/Volume ain of custody id	Boeing-SSFL 12/20/10 04:38 9.5 L	WATER

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	4.40	0.75	0.499	3.00		80A
Gross Beta	12587472	7.29	0.75	0.895	4.00		80B
Tritium	10028178	-114	170	297	500	Ū	H
Radium-226	13982633	0.388	0.43	0.711	1.00	U	RA
Radium-228	15262201	0.393	0.22	0.484	1.00	ט	AC
Strontium-90	10098972	-0.198	0.38	0.809	2.00	ט	SR
Uranium, Total		0.433	0.046	0.019	1.00	J	UT
Potassium-40	13966002	Ū		18.1	25.0	υ	GAM
Cesium-137	10045973	Ū		1.68	20.0	U	GAM

DATA SHEETS
Page 1
SUMMARY DATA SECTION
Page 11

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-DS
Version 3.06
Report date 01/28/11

SDG 8646

Test AC Matrix WATER

SDG 8646

Contact N. Joseph Verville

LAB METHOD SUMMARY

RADIUM-228 IN WATER BETA COUNTING

Client Test America, Inc.

Contract ITL1891

RESULTS

LAB

RAW SUF-

SAMPLE ID TEST FIX PLANCHET

CLIENT SAMPLE ID

Radium-228

Preparation batch 7258-155

S012300-03

8643-003

Lab Control Sample

ok

S012300-04 S012300-05 8643-004 8643-005 Method Blank Duplicate (S012300-01) U

U

S012308-01

8646-001

ITL1891-03

Nominal values and limits from method

RDLs (pCi/L)

1.00

METHOD PERFORMANCE

LAB	RAW SUF-			MDA	ALIQ	PREP	DILU-	YIELD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT SAI	MPLE ID	pCi/L	L	FAC	TION	*	8	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation	batch 7258	-155	2σ prep erro	r 10.4 % I	Reference	Lab 1	Noteboo	k No.	7258	pg. 1	55					
S012300-03		Lab Contro	ol Sample	0.39	1 1.80			88		150				01/21/11	01/21	GRB-202
S012300-04		Method Bla	ank	0.39	1.80			85		150				01/21/11	01/21	GRB-203
S012300-05		Duplicate	(S012300-01	0.435	5 1.80			78		150			34	01/21/11	01/21	GRB-204
S012308-01		ITL1891-0	3	0.484	1.80			77		150			32	01/21/11	01/21	GRB-231
																
Nominal val	ues and lim	nits from m	method	1.00	1.80			30-10	5	50			180			

PROCEDURES REFERENCE

904.0

Sequential Separation of Actinium-228 and

Radium-226 in Drinking Water (>1 Liter Aliquot),

rev 5

AVERAGES ± 2 SD

MDA 0.426 ± 0.086

FOR 4 SAMPLES

YIELD 82 ± 11

METHOD SUMMARIES

Page 1

SUMMARY DATA SECTION

Page 12

Lab id EAS Protocol TA

Version Ver 1.0

Form DVD-LMS

Version 3.06

Report date 01/28/11

SDG 8646

Test SR Matrix WATER SDG 8646

Contact N. Joseph Verville

LAB METHOD SUMMARY

STRONTIUM-90 IN WATER BETA COUNTING

Client Test America, Inc.

Contract ITL1891

RESULTS

LAB

RAW SUF-

SAMPLE ID TEST FIX PLANCHET

CLIENT SAMPLE ID

Strontium-90

Preparation batch 7258-155

S012300-03

8643-003

Lab Control Sample Method Blank

ok

S012300-04 8643-004 S012300-05

8643-005

Duplicate (S012300-01).

U

S012308-01

8646-001

ITL1891-03

Nominal values and limits from method

RDLs (pCi/L)

2.00

METHOD PERFORMANCE

LAB	RAW SUF-		MDA	ALIQ	PREP	DILU-	YIELD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT SAMPLE ID	pCi/L	L	FAC	TION	ક	ક	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation	batch 725	8-155 2σ prep error :	10.4 % Re	ference	Lab 1	Notebool	k No.	7258	pg. 1	55					
S012300-03		Lab Control Sample	0.850	0.500			86		50				01/06/11	01/06	GRB-206
S012300-04		Method Blank	1.27	0.500			69		50				01/06/11	01/06	GRB-221
S012300-05		Duplicate (S012300-01)	0.986	0.500			85		50			19	01/06/11	01/06	GRB-222
S012308-01		ITL1891-03	0.809	0.500			89		100			17	01/06/11	01/06	GRB-221
Nominal val	ues and li	mits from method	2.00	0.500	***************************************		30-10	5	50			180			

PROCEDURES REFERENCE 905.0

DWP-380

Strontium in Drinking Water, rev 8

AVERAGES ± 2 SD

FOR 4 SAMPLES

MDA 0.979 ± 0.417

YIELD 82 ± 18

METHOD SUMMARIES

Page 2

SUMMARY DATA SECTION

Page 13

Lab id EAS Protocol TA

Version Ver 1.0 Form DVD-LMS

Version 3.06

Report date 01/28/11

SDG 8646

Test 80A Matrix WATER

SDG <u>8646</u>

Contact N. Joseph Verville

LAB METHOD SUMMARY

GROSS ALPHA IN WATER
GAS PROPORTIONAL COUNTING

Client <u>Test America</u>, <u>Inc</u>.

Contract ITL1891

RESULTS

LAB	RA	W SUF-

Preparation	batch 725	8-155			
S012300-03	80	8643-003	Lab Control Sample	ok	
S012300-04	80	8643-004	Method Blank	ט	
S012300-05	80	8643-005	Duplicate (S012300-01)	ok J	
S012308-01	80	8646-001	ITL1891-03	4.40	

METHOD PERFORMANCE

LAB	RAW SUF-		MDA	ALIQ	PREP	DILU-	RESID	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL~	
SAMPLE ID	TEST FIX	CLIENT SAMPLE ID	pCi/L	L	FAC	TION	mg	ક	min	keV	KeV	HELLD	PREPARED	YZED	DETECTOR
Preparation	batch 725	8-155 2σ prep error 2	20.6 % Re	ference	Lab N	oteboo	k No.	7258	pg. 15	55					
S012300-03	80	Lab Control Sample	0.575	0.250			54		400				12/31/10	01/04	GRB-103
S012300-04	80	Method Blank	0.617	0.250			56		400				12/31/10	01/04	GRB-104
S012300-05	80	Duplicate (S012300-01)	0.322	0.300			14		400			17	12/31/10	01/04	GRB-109
S012308-01	80	ITL1891-03	0.499	0.300			48		400			15	12/31/10	01/04	GRB-105
Nominal val	ues and li	mits from method	3.00	0.250			0-20	0	100			180			

PROCEDURES	REFERENCE	900.0
	DWP-121	Gross Alpha and Gross Beta in Drinking Water,
		rev 10

AVERAGES ± 2 SD	MDA	0.503	±	0.261
FOR 4 SAMPLES	RESIDUE	43	±	39

METHOD SUMMARIES

Page 3

SUMMARY DATA SECTION

Page 14

Lab id EAS

Protocol TA

Version Ver 1.0

Form DVD-LMS

Version 3.06

Report date 01/28/11

SDG 8646

Test 80B Matrix WATER

SDG 8646

Contact N. Joseph Verville

LAB METHOD SUMMARY

GROSS BETA IN WATER

GAS PROPORTIONAL COUNTING

Client <u>Test America</u>, <u>Inc</u>.

Contract ITL1891

RESULTS

SAMPLE ID	TEST FIX		CLIENT SAMPLE ID	Gross Beta	
Preparation	n batch 72	58-155			
S012300-03	80	8643-003	Lab Control Sample	ok	
S012300-04	80	8643-004	Method Blank	U	
S012300-05	80	8643-005	Duplicate (S012300-01)	ok J	
S012308-01	80,	8646-001	ITL1891-03	7.29	

Nominal values and limits from method

RDLs (pCi/L)

4.00

METHOD PERFORMANCE

LAB	RAW SUF-		MDA	ALIQ	PREP	DILU-	RESID	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT SAMPLE ID	pCi/L	L	FAC	TION	mg	용	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation	batch 725	8-155 2σ prep error 1	1.0 % Re	ference	Lab N	otebool	c No.	7258	pg. 15	55					
S012300-03	80	Lab Control Sample	1.23	0.250			54		400				12/31/10	01/04	GRB-103
S012300-04	80	Method Blank	0.950	0.250			56		400				12/31/10	01/04	GRB-104
S012300-05	80	Duplicate (S012300-01)	0.800	0.300			14		400			17	12/31/10	01/04	GRB-109
S012308-01	80	ITL1891-03	0.895	0.300			48		400			15	12/31/10	01/04	GRB-105
Nominal val	ues and li	mits from method	4.00	0.250			0-20	0	100			180			

PROCEDURES REFERENCE 900.0

DWP-121 Gross Alpha and Gross Beta in Drinking Water,

rev 10

METHOD SUMMARIES

Page 4

SUMMARY DATA SECTION

Page 15

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LMS</u>

Version <u>3.06</u>

Report date <u>01/28/11</u>

SDG 8646

Test GAM Matrix WATER

SDG <u>8646</u>

Contact N. Joseph Verville

LAB METHOD SUMMARY

GAMMA EMITTERS IN WATER

GAMMA SPECTROSCOPY

Client <u>Test America, Inc.</u>

Contract ITL1891

RESULTS

LAB SAMPLE ID	RAW SUF- TEST FIX	PLANCHET	CLIENT SAMPLE ID	Cobalt-60	Cesium-13	
Preparation	batch 725	8-155				
S012300-03		8643-003	Lab Control Sample	ok	ok	
S012300-04		8643-004	Method Blank		υ	
S012300-05		8643-005	Duplicate (S012300-01)		- U	
S012308-01		8646-001	ITL1891-03		U	

METHOD PERFORMANCE

LAB	RAW SUF-			MDA	ALIQ	PREP				COUNT				DD 77D 3 D 77D	ANAL-	DEFENSION D
SAMPLE ID	TEST FIX	CLIENT	SAMPLE ID	pCi/L	L	FAC	TION	용	*	min	keV	KeV	HELL	PREPARED	YZED	DETECTOR
Preparation	batch 725	8-155	2σ prep error 7	.0 % Re	eference	Lab N	loteboo!	k No.	7258	pg. 15	55					
S012300-03		Lab Cor	ntrol Sample		2.00					630				12/22/10	12/29	01,04,00
S012300-04		Method	Blank		2.00					406				12/22/10	12/30	01,01,00
S012300-05		Duplica	ate (S012300-01)		2.00					406			12	12/22/10	12/30	01,02,00
S012308-01		ITL189	1-03		2.00					661			11	12/22/10	12/31	01,01,00
Nominal val	ues and li	mits fro	om method	6.00	2.00					400			180			

PROCEDURES	REFERENCE	901.1
	DWP-100	Preparation of Drinking Water Samples for Gamma
		Spectroscopy, rev 5

METHOD SUMMARIES

Page 5

SUMMARY DATA SECTION

Page 16

SDG 8646

Test	<u>UT</u>	Matrix	WATER
SDG	8646		
Contact	N. Jo	seph Ve	erville

LAB METHOD SUMMARY

URANIUM, TOTAL

KINETIC PHOSPHORIMETRY, UG

Client Test America, Inc.
Contract ITL1891

RESULTS

LAB SAMPLE ID	RAW SUF- TEST FIX PLANCHET	CLIENT SAMPLE ID	Uranium, Total	
Propagation	n batch 7258-155			
S012300-03	8643-003	B Lab Control Sample	ok	
S012300-04	8643-004	Method Blank	U	
S012300-05	8643-005	Duplicate (S012300-01)	ok J	
S012308-01	8646-001	ITL1891-03	0.433 J	
Nominal val	lues and limits from	m method RDLs (pCi/L)	1.00	

METHOD PERFORMANCE

LAB	RAW SUF-	MDA	ALIQ	PREP	DILU-	YIELD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX CLIENT SAMPLE ID	pCi/L	L	FAC	TION	8	8	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation	a batch 7258-155 2σ prep error	Rei	ference	Lab N	oteboo	k No.	7258	pg. 1	55					
S012300-03	Lab Control Sample	0.188 (F3				01/18/11	01/18	KPA-001
S012300-04	Method Blank	0.019 (0.0200									01/18/11		
S012300-05	Duplicate (S012300-01)	0.019	0.0200								31	01/18/11	01/18	KPA-001
S012308-01	ITL1891-03	0.019	0.0200								29	01/18/11	01/18	KPA-001
-														
Nominal val	ues and limits from method	1.00	0.0200								180			

PROCEDURES	REFERENCE	D5174	

AVERAGES ± 2 SD MDA __0.061 ± __0.169
FOR 4 SAMPLES YIELD ____ ± ____

METHOD SUMMARIES
Page 6

SUMMARY DATA SECTION

Page 17

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LMS

 Version
 3.06

 Report date
 01/28/11

SDG 8646

Test H Matrix WATER

SDG 8646

Contact N. Joseph Verville

LAB METHOD SUMMARY

TRITIUM IN WATER

LIQUID SCINTILLATION COUNTING

Client <u>Test America</u>, <u>Inc</u>.

Contract ITL1891

RESULTS

LAB RAW SUF-

SAMPLE ID TEST FIX PLANCHET CLIENT SAMPLE ID Tritium Preparation batch 7258-155 S012300-03 8643-003 Lab Control Sample ok S012300-04 8643-004 Method Blank S012300-05 8643-005 Duplicate (S012300-01) U S012308-01 8646-001 ITL1891-03 Nominal values and limits from method RDLs (pCi/L) 500

METHOD PERFORMANCE

LAB	RAW SUF-		MDA	ALIQ	PREP	DILU-	AIETD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT SAMPLE ID	pCi/L	L	FAC	TION	ક	8	min	keV	KeV	HELLD	PREPARED	YZED	DETECTOR
Preparation	batch 725	8-155 2σ prep error	10.0 %	Reference	Lab N	loteboo	k No.	7258	pg. 1	55					
S012300-03		Lab Control Sample	297	0.100			10		50				01/10/11	01/13	LSC-004
S012300-04		Method Blank	294	0.100			10		50				01/10/11	01/13	LSC-004
S012300-05		Duplicate (S012300-01)	295	0.0100			100		50			26	01/10/11	01/13	LSC-004
S012308-01		ITL1891-03	297	0.0100			100		50			24	01/10/11	01/13	LSC-004
Nominal val	ues and li	mits from method	500	0.0100					100			180			

PROCEDURES REFERENCE 906.0

DWP-212 Tritium in Drinking Water by Distillation, rev 8

 AVERAGES ± 2 SD
 MDA 296
 ± 3.00

 FOR 4 SAMPLES
 YIELD 55
 ± 104

METHOD SUMMARIES

Page 7

SUMMARY DATA SECTION

Page 18

Report date 01/28/11

SDG 8646

Test RA Matrix WATER

Contact N. Joseph Verville

LAB METHOD SUMMARY

Client <u>Test America</u>, <u>Inc</u>.

Contract ITL1891

RADIUM-226 IN WATER
RADON COUNTING

RESULTS

LAB RAW SUF-

SDG 8646

CLIENT SAMPLE ID SAMPLE ID TEST FIX PLANCHET Radium-226 Preparation batch 7258-155 Lab Control Sample ok S012300-03 8643-003 S012300-04 8643-004 Method Blank U S012300-05 8643-005 Duplicate (S012300-01) ok J S012308-01 8646-001 ITL1891-03 U

Nominal values and limits from method

RDLs (pCi/L)

1.00

METHOD PERFORMANCE

ANAL-MDA ALIO PREP DILU- YIELD EFF COUNT FWHM DRIFT DAYS RAW SUFpCi/L min keV KeV HELD PREPARED YZED DETECTOR TEST FIX CLIENT SAMPLE ID FAC TION SAMPLE ID 2σ prep error 16.4 % Reference Lab Notebook No. 7258 pg. 155 Preparation batch 7258-155 01/06/11 01/06 RN-009 S012300-03 Lab Control Sample 0.686 0.100 100 132 01/06/11 01/06 RN-011 0.888 0.100 100 70 Method Blank S012300-04 19 01/06/11 01/06 RN-013 S012300-05 Duplicate (S012300-01) 0.558 0.100 100 132 33 01/22/11 01/22 RN-016 ITL1891-03 0.711 0.100 100 104 S012308-01 Nominal values and limits from method 1.00 0.100 100 180

PROCEDURES REFERENCE 903.1

DWP-881A Ra-226 Screening in Drinking Water, rev 6

AVERAGES ± 2 SD

MDA 0.711 ± 0.272

FOR 4 SAMPLES

YIELD 100 ± 0

METHOD SUMMARIES

Page 8

SUMMARY DATA SECTION

Page 19

Lab id <u>EAS</u>

Protocol TA

Version <u>Ver 1.0</u>

Form <u>DVD-LMS</u>

Version 3.06Report date 01/28/11

SDG 8646

SDG <u>8646</u> Contact <u>N. Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>ITL1891</u>

SAMPLE SUMMARY

The Sample and QC Summary Reports show all samples, including QC samples, reported in one Sample Delivery Group (SDG).

The Sample Summary Report fully identifies client samples and gives the corresponding lab sample identification. The QC Summary Report shows at the sample level how the lab organized the samples into batches and generated QC samples. The Preparation Batch and Method Summary Reports show this at the analysis level.

The following notes apply to these reports:

- * LAB SAMPLE ID is the lab's primary identification for a sample.
- * DEPARTMENT SAMPLE ID is an alternate lab id, for example one assigned by a radiochemistry department in a lab.
- * CLIENT SAMPLE ID is the client's primary identification for a sample. It includes any sample preparation done by the client that is necessary to identify the sample.
- * QC BATCH is a lab assigned code that groups samples to be processed and QCed together. These samples should have similar matrices.
 - QC BATCH is not necessarily the same as SDG, which reflects samples received and reported together.
- * All Lab Control Samples, Method Blanks, Duplicates and Matrix Spikes are shown that QC any of the samples. Due to possible reanalyses, not all results for all these QC samples may be relevant to the SDG. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.

REPORT GUIDES
Page 1
SUMMARY DATA SECTION
Page 20

SDG 8646

SDG <u>8646</u>

Contact N. Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>ITL1891</u>

PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches in one Sample Delivery Group (SDG) with information necessary to check the completeness and consistency of the SDG.

The following notes apply to this report:

- * The preparation batches are shown in the same order as the Method Summary Reports are printed.
- * Only analyses of planchets relevant to the SDG are included.
- * Each preparation batch should have at least one Method Blank and LCS in it to validate client sample results.
- * The QUALIFIERS shown are all qualifiers other than U, J, B, L and H that occur on any analysis in the preparation batch. The Method Summary Report has these qualifiers on a per sample basis.

These qualifiers should be reviewed as follows:

- X Some data has been manually entered or modified. Transcription errors are possible.
- P One or more results are 'preliminary'. The data is not ready for final reporting.
- 2 There were two or more results for one analyte on one planchet imported at one time. The results in DVD may not be the same as on the raw data sheets.

Other lab defined qualifiers may occur. In general, these should be addressed in the SDG narrative.

REPORT GUIDES
Page 2
SUMMARY DATA SECTION
Page 21

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>01/28/11</u>

SDG 8646

SDG <u>8646</u>

Contact N. Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>ITL1891</u>

WORK SUMMARY

The Work Summary Report shows all samples, including QC samples, and all relevant analyses in one Sample Delivery Group (SDG). This report is often useful as supporting documentation for an invoice.

The following notes apply to this report:

- * TEST is a code for the method used to measure associated analytes. Results and related information for each analyte are on the Data Sheet Report. In special cases, a test code used in the summary data section is not the same as in associated raw data. In this case, both codes are shown on the Work Summary.
- * SUFFIX is the lab's code to distinguish multiple analyses (recounts, reworks, reanalyses) of a fraction of the sample. The suffix indicates which result is being reported. An empty suffix normally identifies the first attempt to analyze the sample.
- * The LAB SAMPLE ID, TEST and SUFFIX uniquely identify all supporting data for a result. The Method Summary Report for each TEST has method performance data, such as yield, for each lab sample id and suffix and procedures used in the method.
- * PLANCHET is an alternate lab identifier for work done for one test. It, combined with the TEST and SUFFIX, may be the best link to raw data.
- * For QC samples, only analyses that directly QC some regular sample are shown. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.
- * The SAS (Special Analytical Services) Number is a client or lab assigned code that reflects special processing for samples, such as rapid turn around. Counts of tests done are lists by SAS number since it is likely to affect prices.

REPORT GUIDES
Page 3
SUMMARY DATA SECTION

Page 22

SDG 8646

SDG 8646

Contact N. Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>ITL1891</u>

DATA SHEET

The Data Sheet Report shows all results and primary supporting information for one client sample or Method Blank. This report corresponds to both the CLP Inorganics and Organics Data Sheet.

The following notes apply to this report:

- * TEST is a code for the method used to measure an analyte. If the TEST is empty, no data is available; the analyte was not analyzed for.
- * The LAB SAMPLE ID and TEST uniquely identify work within the Summary Data Section of a Data Package. The Work Summary and Method Summary Reports further identify raw data that underlies this work.

The Method Summary Report for each TEST has method performance data, such as yield, for each Lab Sample ID and a list of procedures used in the method.

- * ERRORs can be labeled TOTAL or COUNT. TOTAL implies a preparation (non-counting method) error has been added, as square root of sum of squares, to the counting error denoted by COUNT. The preparation errors, which may vary by preparation batch, are shown on the Method Summary Report.
- * A RESULT can be 'N.R.' (Not Reported). This means the lab did this work but chooses not to report it now, possibly because it was reported at another time.
- * When reporting a Method Blank, a RESULT can be 'N.A.' (Not Applicable). This means there is no reported client sample work in the same preparation batch as the Blank's result. This is likely to occur when the Method Blank is associated with reanalyses of selected work for a few samples in the SDG.

The following qualifiers are defined by the DVD system:

U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the limit.

REPORT GUIDES
Page 4
SUMMARY DATA SECTION
Page 23

SDG 8646

SDG 8646

Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>ITL1891</u>

DATA SHEET

- J The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.
- B A Method Blank associated with this sample had a result without a U flag and, after correcting for possibly different aliquots, that result is greater than or equal to the MDA for this sample.

Normally, B is not assigned if U is. When method blank subtraction is shown on this report, B flags are assigned based on the unsubtracted values while U's are assigned based on the subtracted ones. Both flags can be assigned in this case.

For each sample result, all Method Blank results in the same preparation batch are compared. The Method Summary Report documents this and other QC relationships.

- L Some Lab Control Sample that QC's this sample had a low recovery. The lab can disable assignment of this qualifier.
- H Similar to 'L' except the recovery was high.
- P The RESULT is 'preliminary'.
- X Some data necessary to compute the RESULT, ERROR or MDA was manually entered or modified.
- 2 There were two or more results available for this analyte. The reported result may not be the same as in the raw data.

Other qualifiers are lab defined. Definitions should be in the SDG narrative.

The following values are underlined to indicate possible problems:

- * An MDA is underlined if it is bigger than its RDL.
- * An ERROR is underlined if the 1.645 sigma counting error is bigger than both the MDA and the RESULT, implying that the MDA

REPORT GUIDES
Page 5
SUMMARY DATA SECTION
Page 24

SDG 8646

SDG <u>8646</u>

Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>ITL1891</u>

DATA SHEET

may not be a good estimate of the 'real' minimum detectable activity.

- * A negative RESULT is underlined if it is less than the negative of its 2 sigma counting ERROR.
- * When reporting a Method Blank, a RESULT is underlined if greater than its MDA. If the MDA is blank, the 2 sigma counting error is used in the comparison.

REPORT GUIDES
Page 6
SUMMARY DATA SECTION
Page 25

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>01/28/11</u>

SDG 8646

SDG <u>8646</u>

Contact N. Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>ITL1891</u>

LAB CONTROL SAMPLE

The Lab Control Sample Report shows all results, recoveries and primary supporting information for one Lab Control Sample.

The following notes apply to this report:

- * All fields in common with the Data Sheet Report have similar usage. Refer to its Report Guide for details.
- * An amount ADDED is the lab's value for the actual amount spiked into this sample with its ERROR an estimate of the error of this amount.

An amount added is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- * REC (Recovery) is RESULT divided by ADDED expressed as a percent.
- * The first, computed limits for the recovery reflect:
 - 1. The error of RESULT, including that introduced by rounding the result prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- * The second limits are protocol defined upper and lower QC limits for the recovery.
- * The recovery is underlined if it is outside either of these ranges.

REPORT GUIDES
Page 7
SUMMARY DATA SECTION

Page 26

Lab id <u>EAS</u>
Protocol <u>TA</u>
Version <u>Ver 1.0</u>
Form <u>DVD-RG</u>
Version <u>3.06</u>
Report date <u>01/28/11</u>

SDG 8646

SDG <u>8646</u>

Contact N. Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>ITL1891</u>

DUPLICATE

The Duplicate Report shows all results, differences and primary supporting information for one Duplicate and associated Original sample.

The following notes apply to this report:

* All fields in common with the Data Sheet Report have similar usage. This applies both to the Duplicate and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Duplicate has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

* The RPD (Relative Percent Difference) is the absolute value of the difference of the RESULTs divided by their average expressed as a percent.

If both RESULTs are less than their MDAs, no RPD is computed and a '-' is printed.

For an analyte, if the lab did work for both samples but has data for only one, the MDA from the sample with data is used as the other's result in the RPD.

* The first, computed limit is the sum, as square root of sum of squares, of the errors of the results divided by the average result as a percent, hence the relative error of the difference rather than the error of the relative difference. The errors include those introduced by rounding the RESULTs prior to printing.

If this limit is labeled TOT, it includes the preparation error in the RESULTs. If labeled CNT, it does not.

This value reported for this limit is at most 999.

- * The second limit for the RPD is the larger of:
 - 1. A fixed percentage specified in the protocol.

REPORT GUIDES
Page 8
SUMMARY DATA SECTION

Page 27

Lab id <u>EAS</u>
Protocol <u>TA</u>
Version <u>Ver 1.0</u>
Form <u>DVD-RG</u>
Version 3.06

Report date <u>01/28/11</u>

SDG 8646

SDG <u>8646</u>

Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>ITL1891</u>

DUPLICATE

- 2. A protocol factor (typically 2) times the average MDA as a percent of the average result. This limit applies when the results are close to the MDAs.
- * The RPD is underlined if it is greater than either limit.
- * If specified by the lab, the second limit column is replaced by the Difference Error Ratio (DER), which is the absolute value of the difference of the results divided by the quadratic sum of their one sigma errors, the same errors as used in the first limit.

Except for differences due to rounding, the DER is the same as the RPD divided by the first RPD limit with the limit scaled to 1 sigma.

* The DER is underlined if it is greater than the sigma factor, typically 2 or 3, shown in the header for the first RPD limit.

REPORT GUIDES
Page 9
SUMMARY DATA SECTION
Page 28

SDG 8646

SDG 8646 Contact N. Joseph Verville

REPORT GUIDE

Client Test America, Inc. Contract ITL1891

MATRIX SPIKE

The Matrix Spike Report shows all results, recoveries and primary supporting information for one Matrix Spike and associated Original sample.

The following notes apply to this report:

* All fields in common with the Data Sheet Report have similar usage. This applies both to the Spiked and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Spike has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

An amount ADDED is the lab's value for the actual amount spiked into the Spike sample with its ERROR an estimate of the error of this amount.

An amount is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- * REC (Recovery) is the Spike RESULT minus the Original RESULT divided by ADDED expressed as a percent.
- The first, computed limits for the recovery reflect:
 - 1. The errors of the two RESULTs, including those introduced by rounding them prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- The second limits are protocol defined upper and lower QC limits for the recovery.

REPORT GUIDES Page 10 SUMMARY DATA SECTION

Page 29

SDG 8646

SDG <u>8646</u> Contact <u>N. Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>ITL1891</u>

MATRIX SPIKE

These limits are left blank if the Original RESULT is more than a protocol defined factor (typically 4) times ADDED. This is a way of accounting for that when the spike is small compared to the amount in the original sample, the recovery is unreliable.

* The recovery is underlined (out of spec) if it is outside either of these ranges.

REPORT GUIDES
Page 11
SUMMARY DATA SECTION

Page 30

Lab id <u>EAS</u>
Protocol <u>TA</u>
Version <u>Ver 1.0</u>
Form <u>DVD-RG</u>
Version <u>3.06</u>
Report date <u>01/28/11</u>

SDG 8646

SDG <u>8646</u> Contact <u>N. Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>ITL1891</u>

METHOD SUMMARY

The Method Summary Report has two tables. One shows up to five results measured using one method. The other has performance data for the method. There is one report for each TEST, as used on the Data Sheet Report.

The following notes apply to this report:

* Each table is subdivided into sections, one for each preparation batch. A preparation batch is a group of aliquots prepared at roughly the same time in one work area of the lab using the same method.

There should be Lab Control Sample and Method Blank results in each preparation batch since this close correspondence makes the QC meaningful. Depending on lab policy, Duplicates need not occur in each batch since they QC sample dependencies such as matrix effects.

* The RAW TEST column shows the test code used in the raw data to identify a particular analysis if it is different than the test code in the header of the report. This occurs in special cases due to method specific details about how the lab labels work.

The Lab Sample or Planchet ID combined with the (Raw) Test Code and Suffix uniquely identify the raw data for each analysis.

* If a result is less than both its MDA and RDL, it is replaced by just 'U' on this report. If it is greater than or equal to the RDL but less than the MDA, the result is shown with a 'U' flag.

The J and X flags are as on the data sheet.

- * Non-U results for Method Blanks are underlined to indicate possible contamination of other samples in the preparation batch. The Method Blank Report has supporting data.
- * Lab Control Sample and Matrix Spike results are shown as: ok, No data, LOW or HIGH, with the last two underlined. 'No data' means no amount ADDED was specified. 'LOW' and 'HIGH'

REPORT GUIDES
Page 12
SUMMARY DATA SECTION
Page 31

SDG 8646

SDG <u>8646</u>
Contact <u>N. Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract <u>ITL1891</u>

METHOD SUMMARY

correspond to when the recovery is underlined on the Lab Control Sample or Matrix Spike Report. See these reports for supporting data.

- * Duplicate sample results are shown as: ok, No data, or OUT, with the last two underlined. 'No data' means there was no original sample data found for this duplicate. 'OUT' corresponds to when the RPD is underlined on the Duplicate Report. See this report for supporting data.
- * If the MDA column is labeled 'MAX MDA', there was more than one result measured by the reported method and the MDA shown is the largest MDA. If not all these results have the same RDL, the MAX MDA reflects only those results with RDL equal to the smallest one.

MDAs are underlined if greater than the printed RDL.

- * Aliquots are underlined if less than the nominal value specified for the method.
- * Prepareation factors are underlined if greater than the nominal value specified for the method.
- * Dilution factors are underlined if greater than the nominal value specified for the method.
- * Residues are underlined if outside the range specified for the method. Residues are not printed if yields are.
- * Yields, which may be gravimetric, radiometric or some type of recovery depending on the method, are underlined if outside the range specified for the method.
- * Efficiencies are underlined if outside the range specified for the method. Efficiencies are detector and geometry dependent so this test is only approximate.
- * Count times are underlined if less than the nominal value

REPORT GUIDES
Page 13
SUMMARY DATA SECTION

Page 32

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date 01/28/11

SDG 8646

SDG 8646
Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>ITL1891</u>

METHOD SUMMARY

specified for the method.

- * Resolutions (as FWHM; Full Width at Half Max) are underlined if greater than the method specified limit.
- * Tracer drifts are underlined if their absolute values are greater than the method specified limit. Tracer drifts are not printed if percent moistures are.
- * Days Held are underlined if greater than the holding time specified in the protocol.
- * Analysis dates are underlined if before their planchet's preparation date or, if a limit is specified, too far after it.

For some methods, ratios as percentages and error estimates for them are computed for pairs of results. A ratio column header like '1÷3' means the ratio of the first result column and the third result column.

Ratios are not computed for Lab Control Sample, Method Blank or Matrix Spike results since their matrices are not necessarily similar to client samples'.

The error estimate for a ratio of results from one planchet reflects only counting errors since other errors should be correlated. For a ratio involving different planchets, if QC limits are computed based on total errors, the error for the ratio allows for the preparation errors for the planchets.

The ratio is underlined (out of spec) if the absolute value of its difference from the nominal value is greater than its error estimate. If no nominal value is specified, this test is not done.

For Gross Alpha or Gross Beta results, there may be a column showing the sum of other Alpha or Beta emitters. This sum includes all relevant results in the DVD database, whether reported or not. Results in the sum are weighted by a particles/decay value specified by the lab for each relevant analyte. Results less than their MDA are not included.

REPORT GUIDES
Page 14
SUMMARY DATA SECTION

Page 33

Lab id <u>EAS</u>
Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>01/28/11</u>

SDG 8646

SDG <u>8646</u>

Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract ITL1891

METHOD SUMMARY

No sums are computed for Lab Control, Method Blank or Matrix Spike samples since their various planchets may not be physically related.

If a ratio of total isotopic to Gross Alpha or Beta is shown, the error for the ratio reflects both the error in the Gross result and the sum, as square root of sum of squares, of the errors in the isotopic results.

For total elemental uranium or thorium results, there may be a column showing the total weight computed from associated isotopic results. Ignoring results less than their MDAs, this is a weighted sum of the isotopic results. The weights depend on the molecular weight and half-life of each isotope so as to convert activities (decays) to weight (atoms).

If a ratio of total computed to measured elemental uranium or thorium is shown, the error for the ratio reflects the errors in all the measurements.

REPORT GUIDES
Page 15
SUMMARY DATA SECTION
Page 34

SUBCONTRACT ORDER TestAmerica Irvine

ITL1891

8646

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Debby Wilson

RECEIVING LABORATORY:

Eberline Services 2030 Wright Avenue Richmond, CA 94804 Phone:(510) 235-2633

Fax: (510) 235-0438

Project Location: California

Receipt Temperature: 7

Analysis	Units	Due	Expires	Comments
Sample ID: ITL1891-03 (0	Outfall 001 (Cor	mposite) - Wat	er) Sampled: 12/20/10 0	4:38
Gamma Spec-O	mg/kg	12/23/10	12/20/11 04:38	jflags; Cs 137 + K 40; do not filter; Eberline
Gross Alpha-O	pCi/L	12/23/10	06/18/11 04:38	jflags; do not filter; Eberline
Gross Beta-O	pCi/L	12/23/10	06/18/11 04:38	jflags; do not filter; Eberline
Radium, Combined-O	pCi/L	12/23/10	12/20/11 04:38	jflags; do not filter; Eberline
Strontium 90-O	pCi/L	12/23/10	12/20/11 04:38	jflags; do not filter; Eberline
Tritium-O	pCi/L	12/23/10	12/20/11 04:38	jflags; do not filter; Eberline
Uranium, Combined-O	pCi/L	12/23/10	12/20/11 04:38	jflags; do not filter; Eberline
Containers Supplied:				
2.5 gal Poly (R)	500 mL Ami	per (S)		

Released By

Released By

200 D

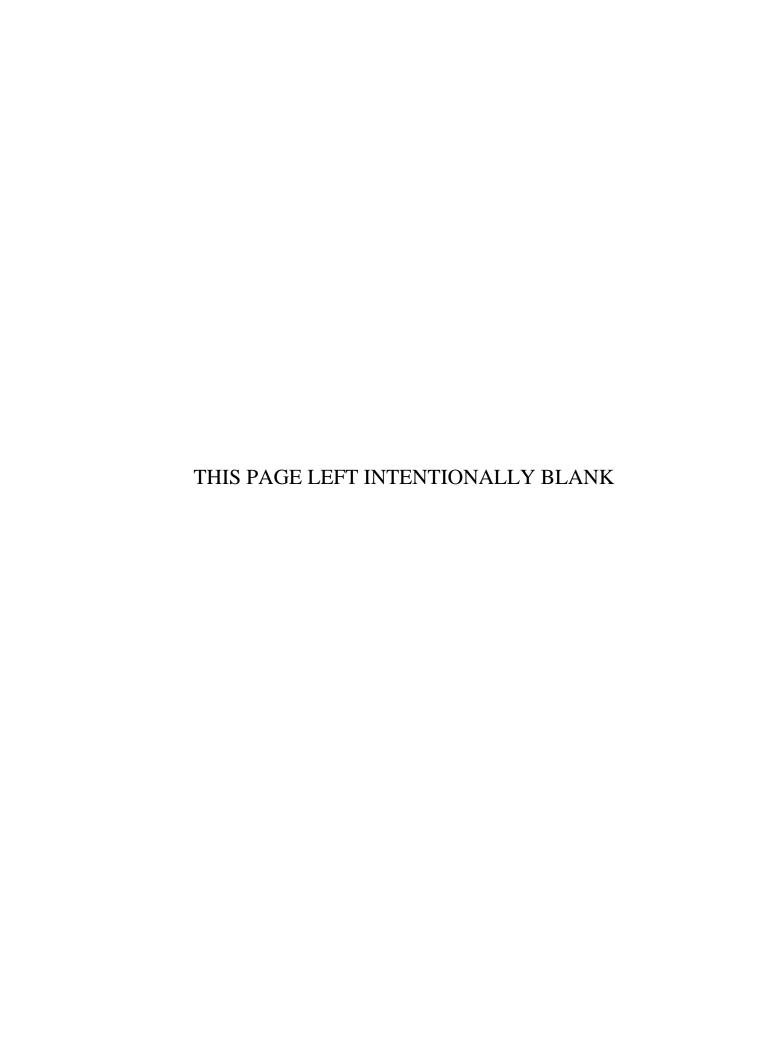
Date/Time

Date/Time

Page 1 of 1

EBERLINE

RICHMOND, CA LABORATORY


SAMPLE RECEIPT CHECKLIST

- 14.	TEST	Ant 121	CA c	ity	RVINE 1889, 1890,	State _	CAL				
Client: _		12/22/10	2 3 EoC No.	ITL	1889, 1890,	1891					
Date/Tii	ne receive	16 chests	Deguested T	AT (Days)	P.O. Rec	eived Yes[]	No[]				
Contair	er I.D. No.		_ Kednesten i	INSPEC							
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	Custody seals on shipping container dated & signed? Custody seals on sample containers intact? Custody seals on sample containers dated & signed? Custody seals on sample containers dated & signed? Packing material is: Number of samples in shipping container: Number of containers per sample: Sample Matrix Ves [] No [] N/A [x] Wet [] Dry [x] Sample Matrix No [] Samples are in correct container Yes [x] No [] Paperwork agrees with samples? Yes [x] No [] Samples have: Tape [] Hazard labels [] Rad labels [] Appropriate sample labels [x] Samples are: In good condition [x] Leaking [] Broken Container [] Missing [] Samples are: Preserved [] Not preserved [x] pH Was P.M. notified of any anomalies? Yes [] No [] Date Was P.M. notified of any anomalies?										
15.	inspect	YV.	leg	Date:	('		ton Chamber	ı			
1	stomer npie No.	Beta/Gamma cpm	ton Chamber mR/hr	Wipe	Customer Sample No.	Beta/Gamma cpm	mR/hr	wipe			
	Shepes	260									
Aipha	Meter Ser	r. No . No eter Ser. No			6. 88	te te					

APPENDIX G

Section 3

Outfall 001 – December 26, 2010 MEC^X Data Validation Report

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: ITL2489

Prepared by

MEC^X, LP 12269 East Vassar Drive Aurora, CO 80014 DATA VALIDATION REPORT SDG: ITL2489

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: ITL2489

Project Manager: B. Kelly Matrix: Water

QC Level: IV Samples: 2

No. of Samples: 2 No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 001 (Grab)	ITL2489-01	N/A	Water	12/26/2010 8:58:00 AM	SM2510B
Outfall 001 (Composite)	ITL2489-03	G0L290485-001, S012369-01	Water	12/26/2010 11:31:00 AM	1613B, 900, 901.1, 903.1, 904, 905, 906, 245.1, 245.1-diss, 200.7, 200.7-Diss, D5174

II. Sample Management

No anomalies were observed regarding sample management. The temperature upon receipt was not noted by Eberline; however, due to the nonvolatile nature of the analytes, no qualifications were required. The remaining samples in this SDG were received at the laboratories within the temperature limits of 4° C $\pm 2^{\circ}$ C. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the samples in this SDG were delivered by courier, custody seals were not required.

DATA VALIDATION REPORT Project: SSFL NPDES SDG: ITL2489

Data Qualifier Reference Table

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

DATA VALIDATION REPORT Project: SSFL NPDES SDG: ITL2489

Qualification Code Reference Table

Qualifier	Organics	Inorganics		
Н	Holding times were exceeded.	Holding times were exceeded.		
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect		
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.		
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.		
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.		
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.		
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.		
E	Not applicable.	Duplicates showed poor agreement.		
1	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.		
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.		
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.		
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.		
+	False positive – reported compound was not present.	Not applicable.		
-	False negative – compound was present but not reported.	Not applicable.		
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.		
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.		
?	TIC identity or reported retention time has been changed.	Not applicable.		

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
* , *	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

DATA VALIDATION REPORT SDG: ITL2489

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin

Date Reviewed: January 19, 2011

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - O GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed prior to the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 15 native compounds (calibration by isotope dilution) and ≤35% for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had detects between the EDL and the RL for several isomers and totals. Most method blank detects were reported as EMPCs; however, due to the extent of the method blank contamination, the reviewer considered it appropriate to use the EMPCs to qualify sample results. All individual isomers detected in both the method blank and site sample were qualified as nondetected, "U" at the EDL, or at the level of

contamination in the sample. The sample totals containing one or more peaks detected in the method blank were qualified as estimated, "J."

- Blank Spikes and Laboratory Control Samples: OCDD and 1,2,3,4,6,7,8-HpCDF were recovered above the control limits in the LCS; however, neither isomer was reportable in the associated sample. The remaining LCS recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - o Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries in the sample were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. A confirmation analysis was performed for 2,3,7,8-TCDF; however, the original result was not confirmed, and was therefore reported as nondetected, "U."
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating a representative number of reportable sample results. Any individual isomers reported as EMPCs previously qualified as nondetected for method blank contamination were not further qualified as EMPCs. Remaining isomers reported as EMPCs were qualified as estimated nondetects, "UJ," at the level of the EMPC. Any totals including EMPC peaks were qualified as estimated, "J." Any detects reported between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

B. EPA METHODS 200.7 and 245.1—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: January 17, 2011

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.7 and 245.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

 Holding Times: Analytical holding times, six months for ICP metals and 28 days for mercury, were met.

- Tuning: Not applicable to this analysis.
- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP metals and 85-115% for mercury. CRDL/CRA recoveries were within the control limits of 70-130%.
- Blanks: Method blanks and CCBs had no detects.
- Interference Check Samples: Recoveries were within the method-established control limits. There were no target compounds present in the ICSA solution at concentrations indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Serial Dilution: No serial dilution analyses were performed on the sample in this SDG.
- Internal Standards Performance: Not applicable to this analysis.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.

Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: February 8, 2011

The samples listed in Table 1 for these analyses were validated based on the guidelines outlined in the *EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174,* and the *National Functional Guidelines for Inorganic Data Review* (10/04).

- Holding Times: The tritium sample was analyzed within 180 days of collection. The remaining aliquots were prepared within the five-day analytical holding time for unpreserved samples.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, gross alpha detected in the sample was qualified as estimated, "J." The remaining detector efficiencies were greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. All chemical yields were at least 40% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis.

- Blanks: There were no analytes detected in the method blanks.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.
- Laboratory Duplicates: Laboratory duplicate analyses were performed on the sample in this SDG for all analytes. The RPDs were within the laboratory-established control limits.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this
 data package. The sample results and MDAs reported on the sample result form were
 verified against the raw data and no calculation or transcription errors were noted. Any
 detects between the MDA and the reporting limit were qualified as estimated, "J," and
 coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are

valid to the MDA. Total uranium, normally reported in aqueous units, was converted to pCi/L using the conversion factor of 0.67 for naturally occurring uranium.

A notation in the sample preparation logbook indicated that the aliquots for radium-226, radium-228, and strontium were filtered and that the filter was digested and added to the aliquot.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - o Field Duplicates: There were no field duplicate samples identified for this SDG.

D. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks

Date Reviewed: January 17, 2011

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Standard Methods 2130B and 2540D, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: Analytical holding times, 48 hours from collection for turbidity and 28 days for conductivity, were met.
- Calibration: Calibration criteria were met. The initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110%.
- Blanks: Method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.

DATA VALIDATION REPORT SDG: ITL2489

• Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

Turbidity was analyzed at a 2× dilution in order to report the analyte within the linear range of the calibration.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

Validated Sample Result Forms ITL2489

Analysis Metho	od 8654								
Sample Name	Outfall 001 (C	Composite) Matr	іх Туре:	WATER	7	Validation Le	vel: IV	
Lab Sample Name:	ITL2489-03	Sam	ple Date:	12/26/20	10 11:31:00	AM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Uranium, Total		0.177	1	0.017	pCi/L	Ja	J	DNQ	
Analysis Metho	od 900								
Sample Name	Outfall 001 (C	Composite) Matr	ix Type:	WATER	Validation Level: IV			
Lab Sample Name:	Lab Sample Name: ITL2489-03 Sample Date: 12/26/2010 11:31:00 AM								
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Gross Alpha	12587461	1.89	3	0.4	pCi/L	Ja	J	C, DNQ	
Gross Beta	12587472	3.06	4	0.885	pCi/L	Ja	J	DNQ	
Analysis Metho	od 901.1								
Sample Name	Outfall 001 (0	Composite) Matr	ix Type:	WATER	7	Validation Le	vel: IV	
Lab Sample Name:	ITL2489-03 Sample Date: 12/26/2010 11:31:00 AM								
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Cesium-137	10045973	ND	20	2.68	pCi/L	U	U		
Potassium-40	13966002	ND	25	53.7	pCi/L	U	U		
Analysis Metho	od 903.1								
Sample Name	Outfall 001 (C	Composite) Matr	ix Type:	WATER	7	Validation Le	vel: IV	
Lab Sample Name:									
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Radium-226	13982633	0.097	1	0.653	pCi/L	U	U		
Analysis Metho	od 904								
Sample Name	Outfall 001 (C	Composite) Matr	ix Type:	WATER	7	Validation Le	vel: IV	
Lab Sample Name:	ITL2489-03 Sample Date:		12/26/2010 11:31:00 AM						
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes	
Radium-228	15262201	0.109	1	0.456	pCi/L	U	U		

Analysis Method 905

Note	Anaiysis memo	u 905							
CAS No	Sample Name	Outfall 001 (C	Composite	e) Matr	ix Type:	WATER	7	Validation Le	evel: IV
Value	Lab Sample Name:	ITL2489-03	Sam	ple Date:	12/26/20	10 11:31:00	AM		
Analysis Method 906 Sample Name Outfall 001 (Composite) Matrix Type: WATER Validation Level: IV	Analyte	CAS No		RL	MDL				Validation Notes
Cas No	Strontium-90	10098972	0.222	2	0.684	pCi/L	U	U	
CAS No	Analysis Metho	d 906							
CAS No	Sample Name	Outfall 001 (C	Composite) Matr	ix Type:	WATER	7	Validation Le	evel: IV
Value	Lab Sample Name:	ITL2489-03	Sam	ple Date:	12/26/20	10 11:31:00	AM		
Sample Name Outfall 001 (Composite) Matrix Type: Water Validation Level: IV	Analyte	CAS No		RL	MDL				Validation Notes
Sample Name	Tritium	10028178	-40.3	500	270	pCi/L	U	U	
CAS No	Analysis Metho	d EPA	200.7						
CAS No	Sample Name	Outfall 001 (C	Composite) Matr	ix Type:	Water	7	Validation Le	evel: IV
Value Units Qualifier Qualifier Notes	Lab Sample Name:	ITL2489-03	Sam	ple Date:	12/26/20	10 11:31:00	AM		
Manganese 7439-96-5 28 20 7.0 ug/l Ja J DNQ	Analyte	CAS No		RL	MDL				Validation Notes
Analysis Method EPA 200.7-Diss Sample Name Outfall 001 (Composite) Matrix Type: Water Validation Level: IV	íron	7439-89-6	1.8	0.040	0.015	mg/l			
Analysis Method EPA 200.7-Diss Sample Name Outfall 001 (Composite) Matrix Type: Water Validation Level: IV	Manganese	7439-96-5	28	20	7.0	ug/l			
Sample Name Outfall 001 (Composite) Matrix Type: Water Validation Level: IV Lab Sample Name: ITL2489-03 Sample Date: 12/26/2010 11:31:00 AM Validation Level: IV Analyte CAS No Result Value RL WDL Result Units Qualifier Qualifier Qualifier Validation Validation Validation Notes Iron 7439-89-6 0.23 0.040 0.015 mg/l Value Value U U U Zinc 7440-66-6 ND 20.0 6.00 ug/l U Analysis Method EPA 245.1 EPA 245.1 Sample Name Validation Level: IV Lab Sample Name: ITL2489-03 Sample Date: 12/26/2010 11:31:00 AM Validation Validati	Zinc	7440-66-6	11.3	20.0	6.00	ug/l	Ja	J	DNQ
Lab Sample Name: ITL2489-03 Sample Date: 12/26/2010 11:31:00 AM Analyte CAS No Value Result Value MDL Units Result Units Lab Qualifier Validation Valid	Analysis Method	d EPA 2	200.7-I	<i>Diss</i>					
CAS No	Sample Name	Outfall 001 (C	Composite) Matr	ix Type:	Water	7	Validation Le	evel: IV
Value Units Qualifier Qualifier Notes	Lab Sample Name:	ITL2489-03	Sam	ple Date:	12/26/20	10 11:31:00	AM		
Manganese 7439-96-5 ND 20 7.0 ug/l U Zinc 7440-66-6 ND 20.0 6.00 ug/l U Analysis Method EPA 245.1 Sample Name Outfall 001 (Composite) Matrix Type: Water Validation Level: IV Lab Sample Name: ITL2489-03 Sample Date: 12/26/2010 11:31:00 AM Analyte CAS No Result RL MDL Result Lab Validation Val	Analyte	CAS No		RL	MDL				Validation Notes
Analyte CAS No Result RL MDL Result Lab Validation Validate Value Validation Validatio	ron	7439-89-6	0.23	0.040	0.015	mg/l			
Analysis Method EPA 245.1 Sample Name Outfall 001 (Composite) Matrix Type: Water Validation Level: IV Lab Sample Name: ITL2489-03 Sample Date: 12/26/2010 11:31:00 AM Analyte CAS No Result RL MDL Result Lab Validation Validation Value Units Qualifier Qualifier Notes	Manganese	7439-96-5	ND	20	7.0	ug/l		U	
Sample Name Outfall 001 (Composite) Matrix Type: Water Validation Level: IV Lab Sample Name: ITL2489-03 Sample Date: 12/26/2010 11:31:00 AM Analyte CAS No Result RL MDL Result Lab Validation Validation Value Units Qualifier Qualifier Notes	Zinc	7440-66-6	ND	20.0	6.00	ug/l		U	
Lab Sample Name: ITL2489-03 Sample Date: 12/26/2010 11:31:00 AM Analyte CAS No Result RL MDL Result Lab Validation Validation Value Units Qualifier Qualifier Notes	Analysis Method	d EPA	245.1						
Analyte CAS No Result RL MDL Result Lab Validation Validation Value Units Qualifier Qualifier Notes	Sample Name	Outfall 001 (C	Composite	e) Matr	rix Type:	Water	•	Validation Le	evel: IV
Value Units Qualifier Qualifier Notes	Lab Sample Name:	ITL2489-03	Sam	ple Date:	12/26/20	10 11:31:00	AM		
Maraury 7420 07.6 ND 0.20 0.10 well II	Analyte	CAS No		RL	MDL				Validation Notes
Wicicuity 1459-97-0 ND 0.20 0.10 ug/1	Mercury	7439-97-6	ND	0.20	0.10	ug/l		U	

Analysis Method EPA 245.1-Diss

Anaiysis Metho	oa EPA 2	(43.1-L	viss					
Sample Name	Outfall 001 (C	omposite) Matri	ix Type:	Water	7	alidation Le	vel: IV
Lab Sample Name:	ITL2489-03	Sam	ple Date:	12/26/2010	11:31:00	AM		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury	7439-97-6	ND	0.20	0.10	ug/l		U	
Analysis Metho	od EPA-S	5 16131	8					
Sample Name	Outfall 001 (C	omposite) Matri	ix Type:	WATER	V	alidation Le	vel: IV
Lab Sample Name:	ITL2489-03	Sam	ple Date:	12/26/2010	11:31:00	AM		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1,2,3,4,6,7,8-HpCDD	35822-46-9	ND	0.00005	0.0000008	ug/L	Q, J, B	U	В
1,2,3,4,6,7,8-HpCDF	67562-39-4	ND	0.00005	0.0000003	ug/L	J, B	U	В
1,2,3,4,7,8,9-HpCDF	55673-89-7	ND	0.00005	0.0000004	ug/L	J, Q	UJ	*III
1,2,3,4,7,8-HxCDD	39227-28-6	6.3e-007	0.00005	0.0000004	ug/L	J	J	DNQ
1,2,3,4,7,8-HxCDF	70648-26-9	ND	0.00005	0.0000000	ug/L	J, B	U	В
1,2,3,6,7,8-HxCDD	57653-85-7	ND	0.00005	0.0000003	ug/L	J, Q	UJ	*III
1,2,3,6,7,8-HxCDF	57117-44-9	ND	0.00005	0.0000000	ug/L	J, Q	UJ	*III
1,2,3,7,8,9-HxCDD	19408-74-3	ND	0.00005	0.0000004	ug/L		U	
1,2,3,7,8,9-HxCDF	72918-21-9	ND	0.00005	0.0000000	ug/L	J, Q	UJ	*III
1,2,3,7,8-PeCDD	40321-76-4	ND	0.00005	0.0000008	ug/L		U	
1,2,3,7,8-PeCDF	57117-41-6	ND	0.00005	0.0000005	ug/L		U	
2,3,4,6,7,8-HxCDF	60851-34-5	7.4e-007	0.00005	0.0000000	ug/L	J	J	DNQ
2,3,4,7,8-PeCDF	57117-31-4	1.8e-006	0.00005	0.0000005	ug/L	J	J	DNQ
2,3,7,8-TCDD	1746-01-6	ND	0.00001	0.0000005	ug/L		U	
2,3,7,8-TCDF	51207-31-9	ND	0.00001	0.0000001	ug/L		U	
OCDD	3268-87-9	ND	0.0001	0.0012	ug/L	В	U	В
OCDF	39001-02-0	ND	0.0001	0.0000008	ug/L	J, B	U	В
Total HpCDD	37871-00-4	7.4e-005	0.00005	0.0000008	ug/L	J, Q, B	J	B, DNQ, *III
Total HpCDF	38998-75-3	3.1e-005	0.00005	0.0000004	ug/L	J, Q, B	J	B, DNQ, *III
Total HxCDD	34465-46-8	3.7e-006	0.00005	0.0000003	ug/L	J, Q, B	J	B, DNQ, *III
Total HxCDF	55684-94-1	7.4e-006	0.00005	0.0000000	ug/L	J, Q, B	J	B, DNQ, *III
Total PeCDD	36088-22-9	ND	0.00005	0.0000008	ug/L		U	
Total PeCDF	30402-15-4	3.2e-006	0.00005	0.0000005	ug/L	J, Q	J	DNQ, *III

41903-57-5

55722-27-5

ND

0.00001

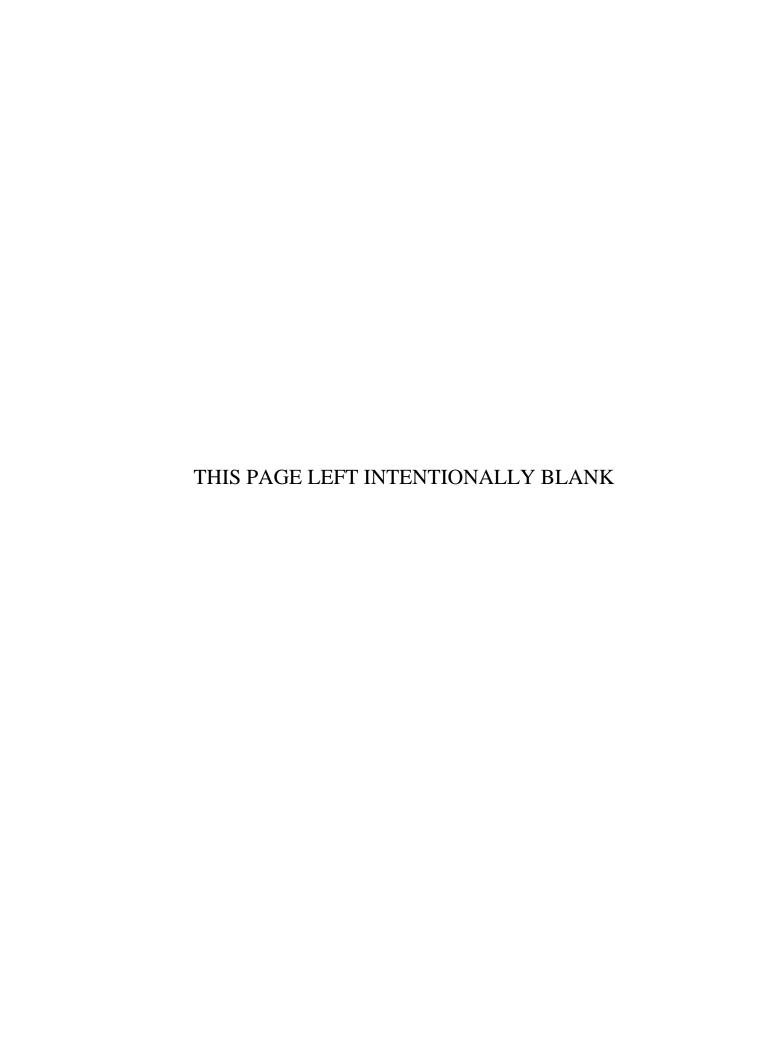
1.2e-006 0.00001

0.0000005 ug/L

0.0000004 ug/L

J

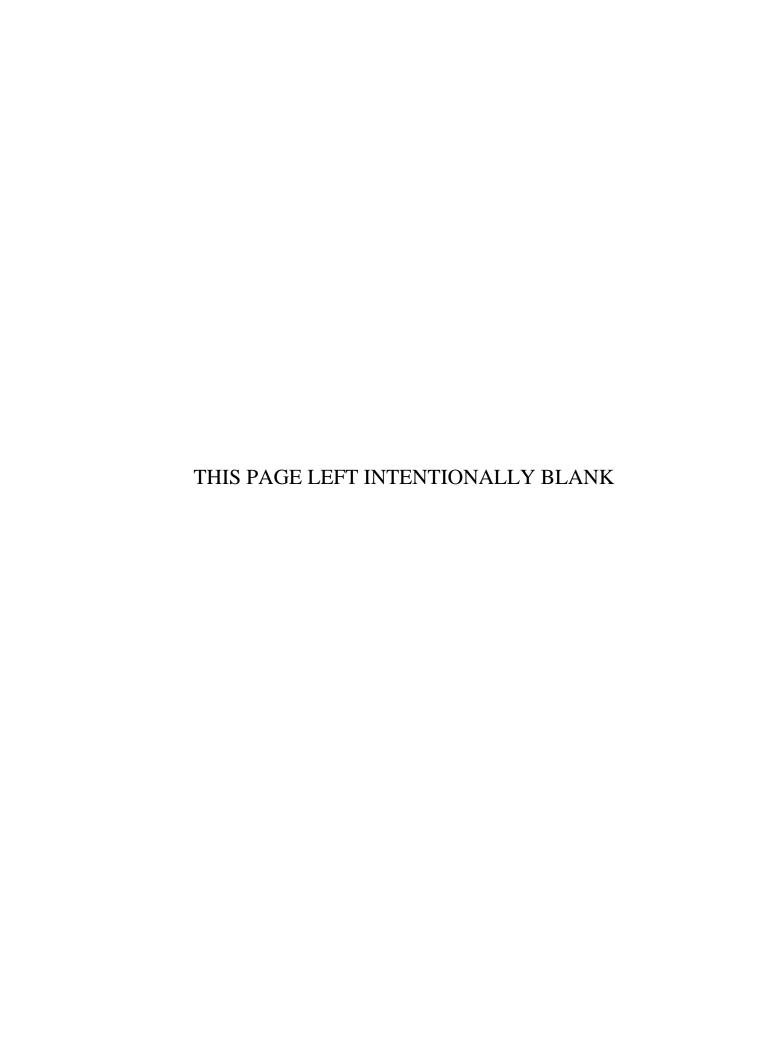
Total TCDD


Total TCDF

DNQ

U

Analysis Method SM2130B


Sample Name	Outfall 001 (0	Composite) Matri	х Туре:	Water	7	Validation Le	vel: IV
Lab Sample Name:	ITL2489-03	Sam	ple Date:	12/26/20	10 11:31:00 A	ΛM		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Turbidity	Turb	42	2.0	0.080	NTU			
Analysis Metho	od SM25	510B						
Sample Name	Outfall 001 (0	Grab)	Matri	x Type:	Water	7	Validation Le	vel: IV
Lab Sample Name:	ITL2489-01	Sam	ple Date:	12/26/20	10 8:58:00 AI	M		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Specific Conductance	NA	130	1.0	1.0	umhos/c			

APPENDIX G

Section 4

Outfall 001 - December 26, 2010 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Routine Outfall 001 2010

618 Michillinda Avenue, Suite 200 Routine Outfall 001

Arcadia, CA 91007

Attention: Bronwyn Kelly

Sampled: 12/26/10

Received: 12/27/10

Issued: 02/02/11 17:09

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 3 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at 2°C, on ice and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica

Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: Results that fall between the MDL and RL are 'J' flagged.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 001 2010

618 Michillinda Avenue, Suite 200 Routine Outfall 001 Sampled: 12/26/10 Arcadia, CA 91007 Report Number: ITL2489 Received: 12/27/10

Attention: Bronwyn Kelly

ADDITIONAL INFORMATION:

Some analytes in this sample and the associated method blank have an ion abundance ratio that is outside of criteria. The analytes are considered as an "estimated maximum possible concentration" (EMPC) because the quantitation is based on the theoretical ion abundance ratio. Analytical results are reported with a "Q" flag.

The method blank associated with this extraction batch has a detected concentration of OCDD above the reporting limit (RL) indicating a potential high bias in the data. After discussion with the client, the data is reported with a "B" flag and no further action is required for this sample.

The laboratory control sample (LCS) associated with this extraction batch has percent recoveries for 1,2,3,4,6,7,8-HpCDF and OCDD above the established control limits indicating a potential high bias in the data. It was determined that the cause of the elevated recoveries is due the spiking solution used for the LCS had concentrated. The QC Check data is included in the sample extraction section of the raw data. After discussion with the client, the data is reported and no further action is required for this sample.

LABORATORY ID	CLIENT ID	MATRIX
ITL2489-01	Outfall 001 (Grab)	Water
ITL2489-02	Trip Blank	Water
ITL2489-03	Outfall 001 (Composite)	Water

Reviewed By:

TestAmerica Irvine

Heather Clark For Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 001 2010

618 Michillinda Avenue, Suite 200 Routine Outfall 001 Sampled: 12/26/10

Arcadia, CA 91007 Report Number: ITL2489 Received: 12/27/10
Attention: Bronwyn Kelly

PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	Reporting Limit	g MDL	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITL2489-01 (Outfall 001 (Grab) -	Water)							v	
Reporting Units: ug/l	,								
1,2-Dichloroethane	EPA 624	10L3019	0.50	0.28	ND	1	12/28/2010	12/28/2010	
1,1-Dichloroethene	EPA 624	10L3019	2.0	0.42	ND	1	12/28/2010	12/28/2010	
Trichloroethene	EPA 624	10L3019	2.0	0.26	ND	1	12/28/2010	12/28/2010	
Surrogate: 4-Bromofluorobenzene (80-120%)					84 %				
Surrogate: Dibromofluoromethane (80-120%)					94 %				
Surrogate: Toluene-d8 (80-120%)					97 %				
Sample ID: ITL2489-02 (Trip Blank - Water)									
Reporting Units: ug/l									
1,2-Dichloroethane	EPA 624	10L3019	0.50	0.28	ND	1	12/28/2010	12/28/2010	
1,1-Dichloroethene	EPA 624	10L3019	2.0	0.42	ND	1	12/28/2010	12/28/2010	
Trichloroethene	EPA 624	10L3019	2.0	0.26	ND	1	12/28/2010	12/28/2010	
Surrogate: 4-Bromofluorobenzene (80-120%)					82 %				
Surrogate: Dibromofluoromethane (80-120%)					92 %				
Surrogate: Toluene-d8 (80-120%)					97 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 001 2010

Routine Outfall 001 Sampled: 12/26/10

Report Number: ITL2489 Received: 12/27/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

			Reportin	g	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	MDL	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ITL2489-03 (Outfall 001 (Compo	site) - Water)								
Reporting Units: ug/l									
Bis(2-ethylhexyl)phthalate	EPA 625	10L3149	4.72	1.60	ND	0.943	12/28/2010	12/31/2010	
2,4-Dinitrotoluene	EPA 625	10L3149	4.72	0.189	ND	0.943	12/28/2010	12/31/2010	
N-Nitrosodimethylamine	EPA 625	10L3149	4.72	0.0943	ND	0.943	12/28/2010	12/31/2010	
Pentachlorophenol	EPA 625	10L3149	4.72	0.0943	ND	0.943	12/28/2010	12/31/2010	
2,4,6-Trichlorophenol	EPA 625	10L3149	5.66	0.0943	ND	0.943	12/28/2010	12/31/2010	
Surrogate: 2,4,6-Tribromophenol (40-120%)					88 %				
Surrogate: 2-Fluorobiphenyl (50-120%)					72 %				
Surrogate: 2-Fluorophenol (30-120%)					64 %				
Surrogate: Nitrobenzene-d5 (45-120%)					75 %				
Surrogate: Phenol-d6 (35-120%)					68 %				
Surrogate: Terphenyl-d14 (50-125%)					85 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 001 2010

618 Michillinda Avenue, Suite 200 Routine Outfall 001 Sampled: 12/26/10

Arcadia, CA 91007 Report Number: ITL2489 Received: 12/27/10
Attention: Bronwyn Kelly

ORGANOCHLORINE PESTICIDES (EPA 608)

			Reportin	g	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	MDL	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ITL2489-03 (Outfall 001 (Compos	site) - Water)								
Reporting Units: ug/l									
alpha-BHC	EPA 608	10L3051	0.0094	0.0024	ND	0.943	12/28/2010	12/28/2010	
Surrogate: Decachlorobiphenyl (45-120%)					85 %				
Surrogate: Tetrachloro-m-xylene (35-115%)					60 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489

Sampled: 12/26/10

Received: 12/27/10

HEXANE EXTRACTABLE MATERIAL

			Reporting	g	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	MDL	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ITL2489-01 (Outfall 001 (Grab)	- Water)								
Reporting Units: mg/l									
Hexane Extractable Material (Oil & Grease)	EPA 1664A	11A0059	4.7	1.3	ND	1	1/3/2011	1/3/2011	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 001 2010

618 Michillinda Avenue, Suite 200 Routine Outfall 001 Sampled: 12/26/10

Arcadia, CA 91007 Report Number: ITL2489 Received: 12/27/10
Attention: Bronwyn Kelly

METALS

			Reporting	g	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	MDL	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ITL2489-03 (Outfall 001 (Comp	osite) - Water)								
Reporting Units: mg/l									
Iron	EPA 200.7	10L3271	0.040	0.015	1.8	1	12/29/2010	12/30/2010	
Sample ID: ITL2489-03 (Outfall 001 (Comp	osite) - Water)								
Reporting Units: ug/l									
Mercury	EPA 245.1	10L3468	0.20	0.10	ND	1	12/30/2010	12/30/2010	
Manganese	EPA 200.7	10L3271	20	7.0	28	1	12/29/2010	12/30/2010	
Cadmium	EPA 200.8	10L3064	1.0	0.10	ND	1	12/28/2010	12/29/2010	
Zinc	EPA 200.7	10L3271	20.0		ND	1	12/29/2010	12/30/2010	
Copper	EPA 200.8	10L3064	2.0	0.50	4.0	1	12/28/2010	12/29/2010	
Lead	EPA 200.8	10L3064	1.0	0.20	0.98	1	12/28/2010	12/29/2010	
Selenium	EPA 200.8	10L3064	2.0	0.50	ND	1	12/28/2010	12/29/2010	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 001 2010

Routine Outfall 001 Sampled: 12/26/10

Report Number: ITL2489 Received: 12/27/10

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

DISSOLVED METALS

			Reporting	g	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	MDL	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ITL2489-03 (Outfall 001 (Com Reporting Units: mg/l	posite) - Water)								
Iron	EPA 200.7-Diss	10L3118	0.040	0.015	0.23	1	12/28/2010	12/28/2010	
Sample ID: ITL2489-03 (Outfall 001 (Com	posite) - Water)								
Reporting Units: ug/l									
Mercury	EPA 245.1-Diss	10L3474	0.20	0.10	ND	1	12/30/2010	12/30/2010	
Manganese	EPA 200.7-Diss	10L3118	20	7.0	ND	1	12/28/2010	12/28/2010	
Cadmium	EPA 200.8-Diss	10L3120	1.0	0.10	ND	1	12/28/2010	12/29/2010	
Zinc	EPA 200.7-Diss	10L3118	20	6.0	ND	1	12/28/2010	12/28/2010	
Copper	EPA 200.8-Diss	10L3120	2.0	0.50	2.1	1	12/28/2010	12/28/2010	
Lead	EPA 200.8-Diss	10L3120	1.0	0.20	ND	1	12/28/2010	12/29/2010	
Selenium	EPA 200.8-Diss	10L3120	2.0	0.50	ND	1	12/28/2010	12/29/2010	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 001 2010

618 Michillinda Avenue, Suite 200 Routine Outfall 001 Sampled: 12/26/10

Arcadia, CA 91007 Report Number: ITL2489 Received: 12/27/10
Attention: Bronwyn Kelly

INORGANICS

INORGANICS									
Analyte	Method	Batch	Reportin Limit	g MDL	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITL2489-01 (Outfall 001 (Gra Reporting Units: ml/l	,								
Total Settleable Solids	SM2540F	10L3092	0.10	0.10	ND	1	12/28/2010	12/28/2010	
Sample ID: ITL2489-01 (Outfall 001 (Gra Reporting Units: umhos/cm @ 25C	ıb) - Water)								
Specific Conductance	SM2510B	11A0029	1.0	1.0	130	1	1/3/2011	1/3/2011	
Sample ID: ITL2489-03 (Outfall 001 (Con	nposite) - Water)								
Reporting Units: mg/l									
Ammonia-N (Distilled)	SM4500NH3-C	10L3337	0.500	0.500	ND	1	12/29/2010	12/29/2010	
Biochemical Oxygen Demand	SM5210B	10L3057	2.0	0.50	1.2	1	12/28/2010	1/2/2011	
Chloride	EPA 300.0	10L3000	0.50	0.25	5.9	1	12/27/2010	12/27/2010	
Nitrate-N	EPA 300.0	10L3000	0.11	0.060	0.41	1	12/27/2010	12/27/2010	
Nitrite-N	EPA 300.0	10L3000	0.15	0.090	ND	1	12/27/2010	12/27/2010	
Nitrate/Nitrite-N	EPA 300.0	10L3000	0.26	0.15	0.41	1	12/27/2010	12/27/2010	
Sulfate	EPA 300.0	10L3000	0.50	0.20	8.5	1	12/27/2010	12/27/2010	
Surfactants (MBAS)	SM5540-C	10L3003	0.10	0.050	0.070	1	12/27/2010	12/27/2010	
Total Dissolved Solids	SM2540C	10L3090	10	1.0	71	1	12/28/2010	12/28/2010	
Total Suspended Solids	SM 2540D	10L3361	10	1.0	16	1	12/29/2010	12/29/2010	
Sample ID: ITL2489-03 (Outfall 001 (Con	mposite) - Water)								
Reporting Units: NTU Turbidity	SM2130B	10L3072	2.0	0.080	42	2	12/28/2010	12/28/2010	
Sample ID: ITL2489-03 (Outfall 001 (Con	nposite) - Water)								
Reporting Units: ug/l Perchlorate	EPA 314.0	10L3015	4.0	0.90	ND	1	12/28/2010	12/28/2010	
Total Cyanide	SM4500CN-E	10L3114	5.0	0.70	ND	1		12/28/2010	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489

Sampled: 12/26/10

Received: 12/27/10

8654

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITL2489-03 (Outfall 001 (Composit	e) - Water)							
Reporting Units: pCi/L Uranium, Total	8654	8654	1	0.177	1	1/20/2011	1/20/2011	Ja

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 001 2010

618 Michillinda Avenue, Suite 200 Routine Outfall 001 Sampled: 12/26/10

Arcadia, CA 91007 Report Number: ITL2489 Received: 12/27/10

Attention: Bronwyn Kelly

			900					
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITL2489-03 (Outfall 001 (Composi	ite) - Water)							
Reporting Units: pCi/L								
Gross Alpha	900	8654	3	1.89	1	1/6/2011	1/6/2011	Ja
Gross Beta	900	8654	4	3.06	1	1/6/2011	1/6/2011	Ja

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489

Sampled: 12/26/10

Received: 12/27/10

901.1

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITL2489-03 (Outfall 001 (Compo	osite) - Water)							
Reporting Units: pCi/L								
Cesium-137	901.1	8654	20	ND	1	1/5/2011	1/5/2011	U
Potassium-40	901.1	8654	25	ND	1	1/5/2011	1/5/2011	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489

Sampled: 12/26/10

Received: 12/27/10

903	3.1
	• •

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITL2489-03 (Outfall 001 (Composi	te) - Water)							
Reporting Units: pCi/L Radium-226	903.1	8654	1	0.097	1	1/13/2011	1/22/2011	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001 2010

. . .

Routine Outfall 001

Report Number: ITL2489

Sampled: 12/26/10

Received: 12/27/10

			904					
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Oualifiers
Sample ID: ITL2489-03 (Outfall 001 (Dutti	Ziiiii	Result	1 40001	Latracted	riiury 200	Quanters
Reporting Units: pCi/L								
Radium-228	904	8654	1	0.109	1	1/24/2011	1/24/2011	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 001 2010

618 Michillinda Avenue, Suite 200 Routine Outfall 001 Sampled: 12/26/10

Arcadia, CA 91007 Report Number: ITL2489 Received: 12/27/10
Attention: Bronwyn Kelly

			905					
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITL2489-03 (Outfall 001	(Composite) - Water)							
Reporting Units: pCi/L								
Strontium-90	905	8654	2	0.222	1	1/8/2011	1/13/2011	U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489

Sampled: 12/26/10

Received: 12/27/10

			906					
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor		Date Analyzed	Data Qualifiers
Sample ID: ITL2489-03 (Outfall 001 (Co	omposite) - Water)							
Reporting Units: pCi/L								
Tritium	906	8654	500	-40.3	1	1/12/2011	1/12/2011	U

Sampled: 12/26/10

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489 Received: 12/27/10

EPA-5 1613Bx

Analyte	Method	Batch	1 0	imple esult	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITL2489-03 (Outfall 001 (Co	omposite) - Water)							
Reporting Units: ug/L								
1,2,3,4,6,7,8-HpCDD	EPA-5 1613B	363256	0.0000 ©.000000883.	7e-005	0.99	12/29/2010	12/30/2010	Q, J, B
1,2,3,4,6,7,8-HpCDF	EPA-5 1613B	363256	0.0000\$0.000000387.8	8e-006	0.99	12/29/2010	12/30/2010	J, B
1,2,3,4,7,8,9-HpCDF	EPA-5 1613B	363256	0.000050.000000481.3	3e-006	0.99	12/29/2010	12/30/2010	J, Q
1,2,3,4,7,8-HxCDD	EPA-5 1613B	363256	0.000050.0000004 6.3	3e-007	0.99	12/29/2010	12/30/2010	J
1,2,3,4,7,8-HxCDF	EPA-5 1613B	363256	0.000050.0000000071.9	9e-006	0.99	12/29/2010	12/30/2010	J, B
1,2,3,6,7,8-HxCDD	EPA-5 1613B	363256	0.0000\$0.000000346.1	1e-007	0.99	12/29/2010	12/30/2010	J, Q
1,2,3,6,7,8-HxCDF	EPA-5 1613B	363256	0.0000\$0.00000008 7	'e-007	0.99	12/29/2010	12/30/2010	J, Q
1,2,3,7,8,9-HxCDD	EPA-5 1613B	363256	$0.0000\mathfrak{H}.00000049$	ND	0.99	12/29/2010	12/30/2010	
1,2,3,7,8,9-HxCDF	EPA-5 1613B	363256	0.0000\$0.000000096.3	3e-007	0.99	12/29/2010	12/30/2010	J, Q
1,2,3,7,8-PeCDD	EPA-5 1613B	363256	$0.0000\mathfrak{H}.000000084$	ND	0.99	12/29/2010	12/30/2010	
1,2,3,7,8-PeCDF	EPA-5 1613B	363256	0.000050.0000005	ND	0.99	12/29/2010	12/30/2010	
2,3,4,6,7,8-HxCDF	EPA-5 1613B	363256	0.0000\$0.000000077.4	4e-007	0.99	12/29/2010	12/30/2010	J
2,3,4,7,8-PeCDF	EPA-5 1613B	363256	0.0000\$0.000000591.8	8e-006	0.99	12/29/2010	12/30/2010	J
2,3,7,8-TCDD	EPA-5 1613B	363256	$0.0000\mathrm{D}.00000051$	ND	0.99	12/29/2010	12/30/2010	
OCDD	EPA-5 1613B	363256	0.0001 0.0000012 0	.0012	0.99	12/29/2010	12/30/2010	В
OCDF	EPA-5 1613B	363256	0.00010.0000000825.3	7e-005	0.99	12/29/2010	12/30/2010	J, B
Total HpCDD	EPA-5 1613B	363256	0.0000\$0.000000887.4	4e-005	0.99	12/29/2010	12/30/2010	J, Q, B
Total HpCDF	EPA-5 1613B	363256	0.0000\$0.000000423.1	1e-005	0.99	12/29/2010	12/30/2010	J, Q, B
Total HxCDD	EPA-5 1613B	363256	0.0000\$0.000000363.	7e-006	0.99	12/29/2010	12/30/2010	J, Q, B
Total HxCDF	EPA-5 1613B	363256	0.0000\$0.000000087.4	4e-006	0.99	12/29/2010	12/30/2010	J, Q, B
Total PeCDD	EPA-5 1613B	363256	$0.0000 \mathfrak{D}.00000084$	ND	0.99	12/29/2010	12/30/2010	
Total PeCDF	EPA-5 1613B	363256	0.0000\$0.000000543.2	2e-006	0.99	12/29/2010	12/30/2010	J, Q
Total TCDD	EPA-5 1613B	363256	$0.0000\mathrm{D}.00000051$	ND	0.99	12/29/2010	12/30/2010	
Total TCDF	EPA-5 1613B	363256	0.00001.000000431.2	2e-006	0.99	12/29/2010	12/30/2010	J
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD (23	-140%)		95 9	%				
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF (28-	-143%)		80 9	%				
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF (26-	-138%)		83 9	%				
Surrogate: 13C-1,2,3,4,7,8-HxCDD (32-1	41%)		74 9	%				
Surrogate: 13C-1,2,3,4,7,8-HxCDF (26-1)	52%)		69 9	%				
Surrogate: 13C-1,2,3,6,7,8-HxCDD (28-1	30%)		83 9	%				
Surrogate: 13C-1,2,3,6,7,8-HxCDF (26-1)	23%)		68 5	%				
Surrogate: 13C-1,2,3,7,8,9-HxCDF (29-1	47%)		67 9	%				
Surrogate: 13C-1,2,3,7,8-PeCDD (25-18)	1%)		78 9	%				
Surrogate: 13C-1,2,3,7,8-PeCDF (24-185	·//)		78 9	%				
Surrogate: 13C-2,3,4,6,7,8-HxCDF (28-1)	36%)		71 9	%				
Surrogate: 13C-2,3,4,7,8-PeCDF (21-178	2%)		74 9	%				
Surrogate: 13C-2,3,7,8-TCDD (25-164%)	(74 9	%				
Surrogate: 13C-2,3,7,8-TCDF (24-169%)			67 5	%				
Surrogate: 13C-OCDD (17-157%)			82 9	%				
Surrogate: 37Cl4-2,3,7,8-TCDD (35-1979	%)		89 :	%				

TestAmerica Irvine

Heather Clark For Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489

Sampled: 12/26/10

Received: 12/27/10

EPA-5 1613Bx

			Reporting	3	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	MDL	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ITL2489-03RE (Outfall 001 (Co	mposite) - Water	r) - cont.							
Reporting Units: ug/L									
2,3,7,8-TCDF	EPA-5 1613B	363256	0.0000D	0000001	6 ND	1	12/29/2010	1/7/2011	
Surrogate: 13C-2,3,7,8-TCDF (24-169%)					84 %				
Surrogate: 37Cl4-2,3,7,8-TCDD (35-197%)					82 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 001 2010

Routine Outfall 001 Sampled: 12/26/10

Report Number: ITL2489 Received: 12/27/10

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

SHORT HOLD TIME DETAIL REPORT

Sample ID: Outfall 001 (Grab) (ITL2489-01)	Hold Time (in days) - Water	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
SM2540F	2	12/26/2010 08:58	12/27/2010 08:15	12/28/2010 08:15	12/28/2010 08:15
Sample ID: Outfall 001 (Composite) (ITL248	9-03) - Water				
EPA 300.0	2	12/26/2010 11:31	12/27/2010 08:15	12/27/2010 18:00	12/27/2010 21:51
Filtration	1	12/26/2010 11:31	12/27/2010 08:15	12/27/2010 20:50	12/27/2010 20:50
SM2130B	2	12/26/2010 11:31	12/27/2010 08:15	12/28/2010 08:25	12/28/2010 08:25
SM5210B	2	12/26/2010 11:31	12/27/2010 08:15	12/28/2010 08:30	01/02/2011 13:00
SM5540-C	2	12/26/2010 11:31	12/27/2010 08:15	12/27/2010 19:00	12/27/2010 19:51

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489

Sampled: 12/26/10 Received: 12/27/10

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
•	Result	Limit	Onits	Level	Kesuit	/OKEC	Limits	KI D	Limit	Quanners
Batch: 10L3019 Extracted: 12/28/10										
Blank Analyzed: 12/28/2010 (10L3019-I	BLK1)									
1,2-Dichloroethane	ND	0.50	ug/l							
1,1-Dichloroethene	ND	2.0	ug/l							
Trichloroethene	ND	2.0	ug/l							
Surrogate: 4-Bromofluorobenzene	20.9		ug/l	25.0		84	80-120			
Surrogate: Dibromofluoromethane	22.9		ug/l	25.0		92	80-120			
Surrogate: Toluene-d8	23.9		ug/l	25.0		96	80-120			
LCS Analyzed: 12/28/2010 (10L3019-BS	S1)									
1,2-Dichloroethane	21.6	0.50	ug/l	25.0		87	60-140			
1,1-Dichloroethene	22.6	2.0	ug/l	25.0		90	70-125			
Trichloroethene	22.9	2.0	ug/l	25.0		91	70-125			
Surrogate: 4-Bromofluorobenzene	22.6		ug/l	25.0		91	80-120			
Surrogate: Dibromofluoromethane	22.4		ug/l	25.0		90	80-120			
Surrogate: Toluene-d8	24.0		ug/l	25.0		96	80-120			
Matrix Spike Analyzed: 12/28/2010 (10)	L3019-MS1)				Source: I'	TL1707-0	1			
1,2-Dichloroethane	20.8	0.50	ug/l	25.0	0.380	82	60-140			
1,1-Dichloroethene	20.3	2.0	ug/l	25.0	ND	81	60-130			
Trichloroethene	20.9	2.0	ug/l	25.0	ND	84	65-125			
Surrogate: 4-Bromofluorobenzene	22.6		ug/l	25.0		90	80-120			
Surrogate: Dibromofluoromethane	24.2		ug/l	25.0		97	80-120			
Surrogate: Toluene-d8	24.0		ug/l	25.0		96	80-120			
Matrix Spike Dup Analyzed: 12/28/2010	0 (10L3019-M	(SD1)			Source: I'	TL1707-0	1			
1,2-Dichloroethane	20.8	0.50	ug/l	25.0	0.380	81	60-140	0.2	20	
1,1-Dichloroethene	19.9	2.0	ug/l	25.0	ND	80	60-130	2	20	
Trichloroethene	20.9	2.0	ug/l	25.0	ND	83	65-125	0.1	20	
Surrogate: 4-Bromofluorobenzene	22.9		ug/l	25.0		92	80-120			
Surrogate: Dibromofluoromethane	24.1		ug/l	25.0		97	80-120			
Surrogate: Toluene-d8	24.1		ug/l	25.0		96	80-120			

TestAmerica Irvine

Sampled: 12/26/10

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489 Received: 12/27/10

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10L3149 Extracted: 12/28/10										
Blank Analyzed: 12/31/2010 (10L314	9-BLK1)									
Bis(2-ethylhexyl)phthalate	ND	5.00	ug/l							
2,4-Dinitrotoluene	ND	5.00	ug/l							
N-Nitrosodimethylamine	ND	5.00	ug/l							
Pentachlorophenol	ND	5.00	ug/l							
2,4,6-Trichlorophenol	ND	6.00	ug/l							
Surrogate: 2,4,6-Tribromophenol	15.5		ug/l	20.0		78	40-120			
Surrogate: 2-Fluorobiphenyl	7.84		ug/l	10.0		78	50-120			
Surrogate: 2-Fluorophenol	12.4		ug/l	20.0		62	30-120			
Surrogate: Nitrobenzene-d5	7.26		ug/l	10.0		73	45-120			
Surrogate: Phenol-d6	13.6		ug/l	20.0		68	35-120			
Surrogate: Terphenyl-d14	8.88		ug/l	10.0		89	50-125			
LCS Analyzed: 12/31/2010 (10L3149-	-BS1)									MNR1
Bis(2-ethylhexyl)phthalate	7.88	5.00	ug/l	10.0		79	65-130			
2,4-Dinitrotoluene	7.54	5.00	ug/l	10.0		75	65-120			
N-Nitrosodimethylamine	6.48	5.00	ug/l	10.0		65	45-120			
Pentachlorophenol	4.28	5.00	ug/l	10.0		43	24-121			
2,4,6-Trichlorophenol	7.52	6.00	ug/l	10.0		75	55-120			
Surrogate: 2,4,6-Tribromophenol	17.5		ug/l	20.0		88	40-120			
Surrogate: 2-Fluorobiphenyl	7.32		ug/l	10.0		73	50-120			
Surrogate: 2-Fluorophenol	12.0		ug/l	20.0		60	30-120			
Surrogate: Nitrobenzene-d5	6.82		ug/l	10.0		68	45-120			
Surrogate: Phenol-d6	13.4		ug/l	20.0		67	35-120			
Surrogate: Terphenyl-d14	8.24		ug/l	10.0		82	50-125			
LCS Dup Analyzed: 12/31/2010 (10L	3149-BSD1)									
Bis(2-ethylhexyl)phthalate	8.28	5.00	ug/l	10.0		83	65-130	5	20	
2,4-Dinitrotoluene	8.00	5.00	ug/l	10.0		80	65-120	6	20	
N-Nitrosodimethylamine	6.82	5.00	ug/l	10.0		68	45-120	5	20	
Pentachlorophenol	4.26	5.00	ug/l	10.0		43	24-121	0.5	25	
2,4,6-Trichlorophenol	7.82	6.00	ug/l	10.0		78	55-120	4	30	
Surrogate: 2,4,6-Tribromophenol	17.8		ug/l	20.0		89	40-120			
Surrogate: 2-Fluorobiphenyl	7.80		ug/l	10.0		78	50-120			
Surrogate: 2-Fluorophenol	12.1		ug/l	20.0		60	30-120			
Surrogate: Nitrobenzene-d5	7.20		ug/l	10.0		72	45-120			
Surrogate: Phenol-d6	13.1		ug/l	20.0		65	35-120			
Surrogate: Terphenyl-d14	8.24		ug/l	10.0		82	50-125			
Took A moning Invine			-							

TestAmerica Irvine

Heather Clark For Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489

Sampled: 12/26/10

Received: 12/27/10

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10L3051 Extracted: 12/28/10										
Blank Analyzed: 12/28/2010 (10L3051-B	LK1)									
alpha-BHC	ND	0.010	ug/l							
Surrogate: Decachlorobiphenyl	0.430		ug/l	0.500		86	45-120			
Surrogate: Tetrachloro-m-xylene	0.379		ug/l	0.500		76	35-115			
LCS Analyzed: 12/28/2010 (10L3051-BS	1)									MNR1
alpha-BHC	0.385	0.010	ug/l	0.500		77	45-115			
Surrogate: Decachlorobiphenyl	0.419		ug/l	0.500		84	45-120			
Surrogate: Tetrachloro-m-xylene	0.360		ug/l	0.500		72	35-115			
LCS Dup Analyzed: 12/28/2010 (10L305	1-BSD1)									
alpha-BHC	0.395	0.010	ug/l	0.500		79	45-115	2	30	
Surrogate: Decachlorobiphenyl	0.425		ug/l	0.500		85	45-120			
Surrogate: Tetrachloro-m-xylene	0.363		ug/l	0.500		73	35-115			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489

Sampled: 12/26/10 Received: 12/27/10

METHOD BLANK/QC DATA

HEXANE EXTRACTABLE MATERIAL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 11A0059 Extracted: 01/03/11										
Blank Analyzed: 01/03/2011 (11A0059-B Hexane Extractable Material (Oil & Grease)	LK1) ND	5.0	mg/l							
LCS Analyzed: 01/03/2011 (11A0059-BS Hexane Extractable Material (Oil & Grease)	20.8	5.0	mg/l	20.0		104	78-114			MNR1
LCS Dup Analyzed: 01/03/2011 (11A005) Hexane Extractable Material (Oil & Grease)	9-BSD1) 21.2	5.0	mg/l	20.0		106	78-114	2	11	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489

Sampled: 12/26/10 Received: 12/27/10

110001700. 12/2//

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
·	Result	Limit	Omes	Level	Result	70KEC	Limits	KI D	Limit	Quanners
Batch: 10L3064 Extracted: 12/28/10										
Blank Analyzed: 12/29/2010 (10L3064-B	LK1)									
Cadmium	ND	1.0	ug/l							
Copper	ND	2.0	ug/l							
Lead	ND	1.0	ug/l							
Selenium	ND	2.0	ug/l							
LCS Analyzed: 12/29/2010 (10L3064-BS)	1)									
Cadmium	83.4	1.0	ug/l	80.0		104	85-115			
Copper	83.9	2.0	ug/l	80.0		105	85-115			
Lead	83.4	1.0	ug/l	80.0		104	85-115			
Selenium	80.1	2.0	ug/l	80.0		100	85-115			
Matrix Spike Analyzed: 12/29/2010 (10L	3064-MS1)				Source: I'	TL2444-0	1			
Cadmium	78.9	1.0	ug/l	80.0	ND	99	70-130			
Copper	69.9	2.0	ug/l	80.0	0.843	86	70-130			
Lead	73.2	1.0	ug/l	80.0	ND	91	70-130			
Selenium	79.1	2.0	ug/l	80.0	1.25	97	70-130			
Matrix Spike Analyzed: 12/29/2010 (10L)	3064-MS2)				Source: I'	TL2444-0	2			
Cadmium	81.7	1.0	ug/l	80.0	ND	102	70-130			
Copper	73.4	2.0	ug/l	80.0	0.584	91	70-130			
Lead	77.7	1.0	ug/l	80.0	ND	97	70-130			
Selenium	72.3	2.0	ug/l	80.0	ND	90	70-130			
Matrix Spike Dup Analyzed: 12/29/2010	(10L3064-M	SD1)			Source: I'	TL2444-0	1			
Cadmium	80.6	1.0	ug/l	80.0	ND	101	70-130	2	20	
Copper	69.9	2.0	ug/l	80.0	0.843	86	70-130	0.05	20	
Lead	75.3	1.0	ug/l	80.0	ND	94	70-130	3	20	
Selenium	80.8	2.0	ug/l	80.0	1.25	99	70-130	2	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489

Sampled: 12/26/10 Received: 12/27/10

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10L3271 Extracted: 12/29/10										
Blank Analyzed: 12/30/2010 (10L3271-B	LK1)									
Iron	ND	0.040	mg/l							
Manganese	ND	20	ug/l							
Zinc	ND	20.0	ug/l							
LCS Analyzed: 12/30/2010 (10L3271-BS	1)									
Iron	0.537	0.040	mg/l	0.500		107	85-115			
Manganese	518	20	ug/l	500		104	85-115			
Zinc	513	20.0	ug/l	500		103	85-115			
Matrix Spike Analyzed: 12/30/2010 (10L	3271-MS1)				Source: I'	TL2459-0	1			
Iron	1.38	0.040	mg/l	0.500	0.789	119	70-130			
Manganese	556	20	ug/l	500	16.0	108	70-130			
Zinc	1070	20.0	ug/l	500	516	111	70-130			
Matrix Spike Analyzed: 12/30/2010 (10L	3271-MS2)				Source: I'	TL2419-0	1			
Iron	0.931	0.040	mg/l	0.500	0.380	110	70-130			
Manganese	519	20	ug/l	500	9.05	102	70-130			
Zinc	594	20.0	ug/l	500	90.2	101	70-130			
Matrix Spike Dup Analyzed: 12/30/2010	(10L3271-M	SD1)			Source: I'	TL2459-0	1			
Iron	1.18	0.040	mg/l	0.500	0.789	79	70-130	16	20	
Manganese	522	20	ug/l	500	16.0	101	70-130	6	20	
Zinc	1030	20.0	ug/l	500	516	102	70-130	4	20	
Batch: 10L3468 Extracted: 12/30/10										
Blank Analyzed: 12/30/2010 (10L3468-B	LK1)									
Mercury	ND	0.20	ug/l							

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 12/26/10

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489 Received: 12/27/10

METHOD BLANK/QC DATA

METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L3468 Extracted: 12/30/10										
LCS Analyzed: 12/30/2010 (10L3468-BS	1)									
Mercury	8.62	0.20	ug/l	8.00		108	85-115			
Matrix Spike Analyzed: 12/30/2010 (10L	.3468-MS1)				Source: I'	TL2438-0	1			
Mercury	7.80	0.20	ug/l	8.00	ND	98	70-130			
Matrix Spike Dup Analyzed: 12/30/2010	(10L3468-MS	SD1)			Source: I'	TL2438-0	1			
Mercury	7.94	0.20	ug/l	8.00	ND	99	70-130	2	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489

Sampled: 12/26/10 Received: 12/27/10

METHOD BLANK/QC DATA

DISSOLVED METALS

Amaluta	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Analyte	Result	Limit	Units	Levei	Result	%REC	Limits	KPD	Limit	Quanners
Batch: 10L3118 Extracted: 12/28/10										
Blank Analyzed: 12/28/2010 (10L3118-B	LK1)									
Iron	ND	0.040	mg/l							
Manganese	ND	20	ug/l							
Zinc	ND	20	ug/l							
LCS Analyzed: 12/28/2010 (10L3118-BS	1)									
Iron	0.519	0.040	mg/l	0.500		104	85-115			
Manganese	497	20	ug/l	500		99	85-115			
Zinc	498	20	ug/l	500		100	85-115			
Matrix Spike Analyzed: 12/28/2010 (10L	3118-MS1)				Source: I	TL2272-0	3			
Iron	0.890	0.040	mg/l	0.500	0.375	103	70-130			
Manganese	509	20	ug/l	500	ND	102	70-130			
Zinc	510	20	ug/l	500	ND	102	70-130			
Matrix Spike Dup Analyzed: 12/28/2010	(10L3118-M	ISD1)			Source: I	TL2272-0	3			
Iron	0.887	0.040	mg/l	0.500	0.375	102	70-130	0.3	20	
Manganese	506	20	ug/l	500	ND	101	70-130	0.5	20	
Zinc	511	20	ug/l	500	ND	102	70-130	0.1	20	
Batch: 10L3120 Extracted: 12/28/10										
Blank Analyzed: 12/28/2010 (10L3120-B	LK1)									
Cadmium	ND	1.0	ug/l							
Copper	ND	2.0	ug/l							
Lead	ND	1.0	ug/l							
Selenium	ND	2.0	ug/l							

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 12/26/10

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489 Received: 12/27/10

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L3120 Extracted: 12/28/10										
T GG 1 1 1 10 10 10 10 10	45									
LCS Analyzed: 12/28/2010 (10L3120-BS	*			00.0		102	05.115			
Cadmium	82.5	1.0	ug/l	80.0		103	85-115			
Copper	81.0	2.0	ug/l	80.0		101	85-115			
Lead	84.2	1.0	ug/l	80.0		105	85-115			
Selenium	80.5	2.0	ug/l	80.0		101	85-115			
Matrix Spike Analyzed: 12/28/2010 (10L	3120-MS1)				Source: I	TL2486-0	2			
Cadmium	80.1	1.0	ug/l	80.0	ND	100	70-130			
Copper	79.5	2.0	ug/l	80.0	3.50	95	70-130			
Lead	81.7	1.0	ug/l	80.0	0.379	102	70-130			
Selenium	81.3	2.0	ug/l	80.0	ND	102	70-130			
Matrix Spike Dup Analyzed: 12/28/2010	(10L3120-M	SD1)			Source: I	TL2486-0	2			
Cadmium	81.2	1.0	ug/l	80.0	ND	102	70-130	1	20	
Copper	79.6	2.0	ug/l	80.0	3.50	95	70-130	0.2	20	
Lead	82.9	1.0	ug/l	80.0	0.379	103	70-130	1	20	
Selenium	81.0	2.0	ug/l	80.0	ND	101	70-130	0.4	20	
Batch: 10L3474 Extracted: 12/30/10										
Blank Analyzed: 12/30/2010 (10L3474-B	LK1)									
Mercury	ND	0.20	ug/l							
LCS Analyzed: 12/30/2010 (10L3474-BS	1)									
Mercury	8.08	0.20	ug/l	8.00		101	85-115			
Matrix Spike Analyzed: 12/30/2010 (10L	3474-MS1)				Source: I	TL2299-0	7			
Mercury	8.16	0.20	ug/l	8.00	ND	102	70-130			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489

Sampled: 12/26/10

Received: 12/27/10

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L3474 Extracted: 12/30/1	0									
Matrix Spike Dup Analyzed: 12/30	rix Spike Dup Analyzed: 12/30/2010 (10L3474-MSD1)					TL2299-0	7			
Mercury	8.23	0.20	ug/l	8.00	ND	103	70-130	0.9	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489

Sampled: 12/26/10

Received: 12/27/10

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 10L3000 Extracted: 12/27/10										
Blank Analyzed: 12/27/2010 (10L3000-B										
Chloride	ND	0.50	mg/l							
Nitrate-N	ND	0.11	mg/l							
Nitrite-N	ND	0.15	mg/l							
Nitrate/Nitrite-N	ND	0.26	mg/l							
Sulfate	ND	0.50	mg/l							
LCS Analyzed: 12/27/2010 (10L3000-BS	1)									
Chloride	4.51	0.50	mg/l	5.00		90	90-110			
Nitrate-N	1.04	0.11	mg/l	1.13		92	90-110			
Nitrite-N	1.41	0.15	mg/l	1.52		93	90-110			
Sulfate	9.05	0.50	mg/l	10.0		90	90-110			
Matrix Spike Analyzed: 12/27/2010 (10L	3000-MS1)				Source: I'	TL2459-0	1			
Chloride	6.01	0.50	mg/l	5.00	1.62	88	80-120			
Nitrate-N	1.31	0.11	mg/l	1.13	0.309	89	80-120			
Nitrite-N	1.45	0.15	mg/l	1.52	ND	96	80-120			
Sulfate	13.5	0.50	mg/l	10.0	4.49	90	80-120			
Matrix Spike Dup Analyzed: 12/27/2010	(10L3000-M	(SD1)			Source: I'	TL2459-0	1			
Chloride	6.15	0.50	mg/l	5.00	1.62	90	80-120	2	20	
Nitrate-N	1.40	0.11	mg/l	1.13	0.309	96	80-120	6	20	
Nitrite-N	1.51	0.15	mg/l	1.52	ND	99	80-120	4	20	
Sulfate	14.1	0.50	mg/l	10.0	4.49	97	80-120	5	20	
Batch: 10L3003 Extracted: 12/27/10										
Blank Analyzed: 12/27/2010 (10L3003-B	LK1)									
Surfactants (MBAS)	ND	0.10	mg/l							

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 12/26/10

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489 Received: 12/27/10

METHOD BLANK/QC DATA

INORGANICS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L3003 Extracted: 12/27/10										
LCS Analyzed: 12/27/2010 (10L3003-BS	1)									
Surfactants (MBAS)	0.263	0.10	mg/l	0.250		105	90-110			
	2002 MC(1)		Ü		C I	TI 2400 0	2			
Matrix Spike Analyzed: 12/27/2010 (10L	,		_		Source: I					
Surfactants (MBAS)	0.352	0.10	mg/l	0.250	0.0783	109	50-125			
Matrix Spike Dup Analyzed: 12/27/2010	(10L3003-M	ISD1)			Source: I	TL2488-0	3			
Surfactants (MBAS)	0.344	0.10	mg/l	0.250	0.0783	106	50-125	2	20	
Batch: 10L3015 Extracted: 12/28/10										
Blank Analyzed: 12/28/2010 (10L3015-B	LK1)									
Perchlorate	ND	4.0	ug/l							
LCS Analyzed: 12/28/2010 (10L3015-BS	1)									
Perchlorate	22.7	4.0	ug/l	25.0		91	85-115			
Matrix Spike Analyzed: 12/28/2010 (10L	3015-MS1)				Source: I	TL2014-0	3			
Perchlorate	23.1	4.0	ug/l	25.0	ND	92	80-120			
Matrix Spike Dup Analyzed: 12/28/2010	(10L3015-M	ISD1)			Source: I	TL2014-0	3			
Perchlorate	23.7	4.0	ug/l	25.0	ND	95	80-120	3	20	
Batch: 10L3057 Extracted: 12/28/10										
Blank Analyzed: 01/02/2011 (10L3057-B	LK1)									
Biochemical Oxygen Demand	ND	2.0	mg/l							

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489

Sampled: 12/26/10 Received: 12/27/10

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•	Result	Limit	Ullits	Level	Result	70KEC	Lillits	KFD	Lillit	Quanners
Batch: 10L3057 Extracted: 12/28/10										
LCS Analyzed: 01/02/2011 (10L3057-BS	31)									
Biochemical Oxygen Demand	194	100	mg/l	198		98	85-115			
LCS Dun Analyzada 01/02/2011 (101-205	7 DCD1)									
LCS Dup Analyzed: 01/02/2011 (10L305 Biochemical Oxygen Demand	202	100	mg/l	198		102	85-115	4	20	
, 0	202	100	1116/1	170		102	05 115	•	20	
Batch: 10L3072 Extracted: 12/28/10										
Blank Analyzed: 12/28/2010 (10L3072-B	RLK1)									
Turbidity (12/20/2010 (10/20/2)	ND	1.0	NTU							
Dunkasta Analyzada 12/29/2010 (101-205	72 DIID1)				Source: I'	TI 2402 A	1			
Duplicate Analyzed: 12/28/2010 (10L307 Turbidity	3.48	1.0	NTU		3.50	1 L2483-0	1	0.6	20	
•		1.0	1110					0.0	20	
Duplicate Analyzed: 12/28/2010 (10L307	,				Source: I'	TL2525-2	5			
Turbidity	ND	1.0	NTU		ND				20	
Batch: 10L3090 Extracted: 12/28/10										
Blank Analyzed: 12/28/2010 (10L3090-B	,	10								
Total Dissolved Solids	ND	10	mg/l							
LCS Analyzed: 12/28/2010 (10L3090-BS	51)									
Total Dissolved Solids	992	10	mg/l	1000		99	90-110			
Duplicate Analyzed: 12/28/2010 (10L309	00-DUP1)				Source: I'	TL2477-0	1			
Total Dissolved Solids	142	10	mg/l		136			4	10	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489

Sampled: 12/26/10 Received: 12/27/10

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Oualifiers
•	Result	Lillit	Units	Level	Result	70KEC	Lillits	KFD	Lillit	Quanners
Batch: 10L3090 Extracted: 12/28/10										
Duplicate Analyzed: 12/28/2010 (10L309	0-DUP2)				Source: I	TL2532-0	1			
Total Dissolved Solids	391	10	mg/l		372			5	10	
Batch: 10L3114 Extracted: 12/28/10										
Blank Analyzed: 12/28/2010 (10L3114-B	LK1)									
Total Cyanide	ND	5.0	ug/l							
LCS Analyzed: 12/28/2010 (10L3114-BS	1)									
Total Cyanide	190	5.0	ug/l	200		95	90-110			
Matrix Spike Analyzed: 12/28/2010 (10L	3114-MS1)				Source: I	TL2487-0	2			
Total Cyanide	188	5.0	ug/l	200	ND	94	70-115			
Matrix Spike Dup Analyzed: 12/28/2010	(10L3114-M	ISD1)			Source: I	TL2487-0				
Total Cyanide	188	5.0	ug/l	200	ND	94	70-115	0.3	15	
Batch: 10L3337 Extracted: 12/29/10										
Blank Analyzed: 12/29/2010 (10L3337-B	LK1)									
Ammonia-N (Distilled)	ND	0.500	mg/l							
LCS Analyzed: 12/29/2010 (10L3337-BS)	1)									
Ammonia-N (Distilled)	9.80	0.500	mg/l	10.0		98	80-115			
Matrix Spike Analyzed: 12/29/2010 (10L	3337-MS1)				Source: I	TL2485-0	2			
Ammonia-N (Distilled)	9.80	0.500	mg/l	10.0	ND	98	70-120			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489

Sampled: 12/26/10

Received: 12/27/10

METHOD BLANK/QC DATA

INORGANICS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10L3337 Extracted: 12/29/10										
Matrix Spike Dup Analyzed: 12/29/2010	`	,				TL2485-02				
Ammonia-N (Distilled)	9.80	0.500	mg/l	10.0	ND	98	70-120	0	15	
Batch: 10L3361 Extracted: 12/29/10										
Blank Analyzed: 12/29/2010 (10L3361-B	,									
Total Suspended Solids	ND	10	mg/l							
LCS Analyzed: 12/29/2010 (10L3361-BS	51)									
Total Suspended Solids	1000	10	mg/l	1000		100	85-115			
Duplicate Analyzed: 12/29/2010 (10L330	61-DUP1)				Source: I'	TL2502-0	1			
Total Suspended Solids	26.0	10	mg/l		27.0			4	10	
Batch: 11A0029 Extracted: 01/03/11										
Blank Analyzed: 01/03/2011 (11A0029-E	BLK1)									
Specific Conductance	ND	1.0 u	mhos/cm @ 25C							
LCS Analyzed: 01/03/2011 (11A0029-BS	51)									
Specific Conductance	1440	1.0 u	mhos/cm @ 25C	1410		102	90-110			
Duplicate Analyzed: 01/03/2011 (11A002	29-DUP1)				Source: I'	TL2530-0	1			
Specific Conductance	890	1.0 u	mhos/cm @ 25C		888			0.2	5	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489

Sampled: 12/26/10 Received: 12/27/10

METHOD BLANK/QC DATA

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8654 Extracted: 01/20/11										
LCS Analyzed: 01/20/2011 (S012369-03)				Source:					
Uranium, Total	59.8	1	pCi/L	62.5		96	80-120			
Blank Analyzed: 01/20/2011 (S012369-0	14)				Source:					
Uranium, Total	0	1	pCi/L				-			U
Duplicate Analyzed: 01/20/2011 (S0123)	69-05)				Source: I	TL2489-0	3			
Uranium, Total	0.164	1	pCi/L		0.177		-	8		Ja

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489

Sampled: 12/26/10 Received: 12/27/10

METHOD BLANK/QC DATA

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8654 Extracted: 01/06/11										
LCS Analyzed: 01/06/2011 (S012369-03)					Source:					
Gross Alpha	36.6	3	pCi/L	40.4		91	70-130			
Gross Beta	33.6	4	pCi/L	35		96	70-130			
Blank Analyzed: 01/06/2011 (S012369-04	1)				Source:					
Gross Alpha	0.205	3	pCi/L				-			U
Gross Beta	-0.321	4	pCi/L				-			U
Duplicate Analyzed: 01/06/2011 (S01236	9-05)				Source: I	TL2489-0	3			
Gross Alpha	1.65	3	pCi/L		1.89		-	14		Ja
Gross Beta	3.05	4	pCi/L		3.06		-	0		Ja

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489

Sampled: 12/26/10

Received: 12/27/10

METHOD BLANK/QC DATA

901.1

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8654 Extracted: 01/05/11										
LCS Analyzed: 01/05/2011 (S012369-03)					Source:					
Cobalt-60	94.8	10	pCi/L	102		93	80-120			
Cesium-137	114	20	pCi/L	110		104	80-120			
Blank Analyzed: 01/05/2011 (S012369-04)				Source:					
Cesium-137	ND	20	pCi/L				-			U
Potassium-40	ND	25	pCi/L				-			U
Duplicate Analyzed: 01/05/2011 (S012369	9-05)				Source: I'	TL2489-0	3			
Cesium-137	ND	20	pCi/L		0		-	0		U
Potassium-40	ND	25	pCi/L		0		-	0		U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489

Sampled: 12/26/10 Received: 12/27/10

METHOD BLANK/QC DATA

903.1

	l	Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8654 Extracted: 01/22/11										
LCS Analyzed: 01/22/2011 (S012369-03)					Source:					
Radium-226	58.4	1	pCi/L	55.7		105	80-120			
Blank Analyzed: 01/22/2011 (S012369-04)				Source:					
Radium-226	0.034	1	pCi/L				-			U
Duplicate Analyzed: 01/22/2011 (S012369	9-05)				Source: I	ΓL2489-03	3			
Radium-226	-0.022	1	pCi/L		0.097		-	0		U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489

Sampled: 12/26/10 Received: 12/27/10

METHOD BLANK/QC DATA

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8654 Extracted: 01/24/11										
LCS Analyzed: 01/24/2011 (S012369-03)			G: II	4.60	Source:	20	60.140			
Radium-228	4.53	1	pCi/L	4.62		98	60-140			
Blank Analyzed: 01/24/2011 (S012369-04	4)				Source:					
Radium-228	-0.118	1	pCi/L				-			U
Duplicate Analyzed: 01/24/2011 (S01236)	9-05)				Source: I'	TL2489-03	3			
Radium-228	0.035	1	pCi/L		0.109		-	0		U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489

Sampled: 12/26/10 Received: 12/27/10

METHOD BLANK/QC DATA

Analyte Batch: 8654 Extracted: 01/08/11	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
LCS Analyzed: 01/13/2011 (S012369-03) Strontium-90	17.9	2	pCi/L	17.5	Source:	102	80-120			
Blank Analyzed: 01/13/2011 (S012369-04 Strontium-90	0.064	2	pCi/L		Source:		-			U
Duplicate Analyzed: 01/13/2011 (S01236 Strontium-90	9-05) -0.005	2	pCi/L		Source: I 0.222	TL2489-03	-	0		U

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489

Sampled: 12/26/10 Received: 12/27/10

METHOD BLANK/QC DATA

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8654 Extracted: 01/12/11										
LCS Analyzed: 01/12/2011 (S012369-03) Tritium	2420	500	pCi/L	2550	Source:	95	80-120			
Blank Analyzed: 01/12/2011 (S012369-04	,	500	G: #		Source:					**
Tritium	22.6	500	pCi/L				-			U
Duplicate Analyzed: 01/12/2011 (S012369) Tritium	9-05) 44.4	500	pCi/L		Source: I ' -40.3	TL2489-03	-	0		U

Sampled: 12/26/10

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489 Received: 12/27/10

METHOD BLANK/QC DATA

EPA-5 1613Bx

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 363256 Extracted: 12/29/10										
Blank Analyzed: 12/30/2010 (G0L29)	0000256B)				Source:					
1,2,3,4,6,7,8-HpCDD	1.7e-005	0.00005	ug/L				_			J
1,2,3,4,6,7,8-HpCDF	4.2e-006	0.00005	ug/L				_			J, Q
1,2,3,4,7,8,9-HpCDF	ND	0.00005	ug/L				-			_
1,2,3,4,7,8-HxCDD	ND	0.00005	ug/L				-			
1,2,3,4,7,8-HxCDF	9.5e-007	0.00005	ug/L				-			J, Q
1,2,3,6,7,8-HxCDD	ND	0.00005	ug/L				-			
1,2,3,6,7,8-HxCDF	ND	0.00005	ug/L				-			
1,2,3,7,8,9-HxCDD	1.3e-006	0.00005	ug/L				-			J, Q
1,2,3,7,8,9-HxCDF	ND	0.00005	ug/L				-			
1,2,3,7,8-PeCDD	ND	0.00005	ug/L				-			
1,2,3,7,8-PeCDF	ND	0.00005	ug/L				-			
2,3,4,6,7,8-HxCDF	ND	0.00005	ug/L				-			
2,3,4,7,8-PeCDF	ND	0.00005	ug/L				-			
2,3,7,8-TCDD	ND	0.00001	ug/L				-			
2,3,7,8-TCDF	ND	0.00001	ug/L				-			
OCDD	0.00044	0.0001	ug/L				-			
OCDF	2.1e-005	0.0001	ug/L				-			J, Q
Total HpCDD	3.6e-005	0.00005	ug/L				-			J
Total HpCDF	1.4e-005	0.00005	ug/L				-			J, Q
Total HxCDD	1.3e-006	0.00005	ug/L				-			J, Q
Total HxCDF	2e-006	0.00005	ug/L				-			J, Q
Total PeCDD	ND	0.00005	ug/L				-			
Total PeCDF	ND	0.00005	ug/L				-			
Total TCDD	ND	0.00001	ug/L				-			
Total TCDF	ND	0.00001	ug/L				-			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.0019		ug/L	0.002		96	23-140			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.0016		ug/L	0.002		80	28-143			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.0017		ug/L	0.002		87	26-138			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.0015		ug/L	0.002		74	32-141			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.0014		ug/L	0.002		70	26-152			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.0018		ug/L	0.002		89	28-130			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.0014		ug/L	0.002		71	26-123			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.0014		ug/L	0.002		68	29-147			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.0016		ug/L	0.002		79	25-181			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.0016		ug/L	0.002		80	24-185			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.0015		ug/L	0.002		73	28-136			
TD 44 . T .										

TestAmerica Irvine

Heather Clark For Debby Wilson Project Manager

Sampled: 12/26/10

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489 Received: 12/27/10

METHOD BLANK/QC DATA

EPA-5 1613Bx

Amaluto	Dogule	Reporting Limit	II	Spike	Source	0/ DEC	%REC	DDD	RPD	Data Qualifiers
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Quanners
Batch: 363256 Extracted: 12/29/10										
Blank Analyzed: 12/30/2010 (G0L2900	000256B)				Source:					
Surrogate: 13C-2,3,4,7,8-PeCDF	0.0015		ug/L	0.002		75	21-178			
Surrogate: 13C-2,3,7,8-TCDD	0.0015		ug/L	0.002		73	25-164			
Surrogate: 13C-2,3,7,8-TCDF	0.0013		ug/L	0.002		64	24-169			
Surrogate: 13C-OCDD	0.0031		ug/L	0.004		78	17-157			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.00077		ug/L	0.0008		96	35-197			
LCS Analyzed: 12/30/2010 (G0L29000	0256C)				Source:					
1,2,3,4,6,7,8-HpCDD	0.00116	0.00005	ug/L	0.001		116	70-140			
1,2,3,4,6,7,8-HpCDF	0.00125	0.00005	ug/L	0.001		125	82-122			а
1,2,3,4,7,8,9-HpCDF	0.0012	0.00005	ug/L	0.001		120	78-138			
1,2,3,4,7,8-HxCDD	0.00126	0.00005	ug/L	0.001		126	70-164			
1,2,3,4,7,8-HxCDF	0.00113	0.00005	ug/L	0.001		113	72-134			
1,2,3,6,7,8-HxCDD	0.00108	0.00005	ug/L	0.001		108	76-134			
1,2,3,6,7,8-HxCDF	0.00118	0.00005	ug/L	0.001		118	84-130			
1,2,3,7,8,9-HxCDD	0.0012	0.00005	ug/L	0.001		120	64-162			
1,2,3,7,8,9-HxCDF	0.00121	0.00005	ug/L	0.001		121	78-130			
1,2,3,7,8-PeCDD	0.00118	0.00005	ug/L	0.001		118	70-142			
1,2,3,7,8-PeCDF	0.00113	0.00005	ug/L	0.001		113	80-134			
2,3,4,6,7,8-HxCDF	0.00117	0.00005	ug/L	0.001		117	70-156			
2,3,4,7,8-PeCDF	0.00112	0.00005	ug/L	0.001		112	68-160			
2,3,7,8-TCDD	0.000227	0.00001	ug/L	0.0002		114	67-158			
2,3,7,8-TCDF	0.000218	0.00001	ug/L	0.0002		109	75-158			
OCDD	0.00297	0.0001	ug/L	0.002		149	78-144			a
OCDF	0.00208	0.0001	ug/L	0.002		104	63-170			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDD	0.002		ug/L	0.002		100	26-166			
Surrogate: 13C-1,2,3,4,6,7,8-HpCDF	0.00166		ug/L	0.002		83	21-158			
Surrogate: 13C-1,2,3,4,7,8,9-HpCDF	0.00183		ug/L	0.002		92	20-186			
Surrogate: 13C-1,2,3,4,7,8-HxCDD	0.00144		ug/L	0.002		72	21-193			
Surrogate: 13C-1,2,3,4,7,8-HxCDF	0.00134		ug/L	0.002		67	19-202			
Surrogate: 13C-1,2,3,6,7,8-HxCDD	0.00168		ug/L	0.002		84	25-163			
Surrogate: 13C-1,2,3,6,7,8-HxCDF	0.00135		ug/L	0.002		67	21-159			
Surrogate: 13C-1,2,3,7,8,9-HxCDF	0.00139		ug/L	0.002		70	17-205			
Surrogate: 13C-1,2,3,7,8-PeCDD	0.00165		ug/L	0.002		82	21-227			
Surrogate: 13C-1,2,3,7,8-PeCDF	0.00162		ug/L	0.002		81	21-192			
Surrogate: 13C-2,3,4,6,7,8-HxCDF	0.00139		ug/L	0.002		70	22-176			
Surrogate: 13C-2,3,4,7,8-PeCDF	0.00154		ug/L	0.002		77	13-328			

TestAmerica Irvine

Heather Clark For Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489

Sampled: 12/26/10 Received: 12/27/10

METHOD BLANK/QC DATA

EPA-5 1613Bx

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 363256 Extracted: 12/29/10										
LCS Analyzed: 12/30/2010 (G0L29000	0256C)				Source:					
Surrogate: 13C-2,3,7,8-TCDD	0.00144		ug/L	0.002		72	20-175			
Surrogate: 13C-2,3,7,8-TCDF	0.00125		ug/L	0.002		63	22-152			
Surrogate: 13C-OCDD	0.00348		ug/L	0.004		87	13-199			
Surrogate: 37Cl4-2,3,7,8-TCDD	0.000761		ug/L	0.0008		95	31-191			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 001 2010

618 Michillinda Avenue, Suite 200 Routine Outfall 001 Sampled: 12/26/10

Arcadia, CA 91007 Report Number: ITL2489 Attention: Bronwyn Kelly Received: 12/27/10

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
ITL2489-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	0	4.7	15
ITL2489-01	624-(601list)	1,1-Dichloroethene	ug/l	0	2.0	6
ITL2489-01	624-(601list)	1,2-Dichloroethane	ug/l	0	0.50	0.5
ITL2489-01	624-(601list)	Trichloroethene	ug/l	0	2.0	5
ITL2489-01	Settleable Solids - SM2540F	Total Settleable Solids	ml/l	0	0.10	0.3

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compuance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
ITL2489-02	624-(601list)	1,1-Dichloroethene	ug/l	0	2.0	6
ITL2489-02	624-(601list)	1,2-Dichloroethane	ug/l	0	0.50	0.5
ITL2489-02	624-(601list)	Trichloroethene	ug/l	0	2.0	5

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
	•/	•/				
ITL2489-03	608-Pest Boeing 001/002 Q (LL)	alpha-BHC	ug/l	0	0.0094	0.03
ITL2489-03	625-Boeing 001/002 Q-LL	2,4,6-Trichlorophenol	ug/l	0	5.66	13
ITL2489-03	625-Boeing 001/002 Q-LL	2,4-Dinitrotoluene	ug/l	0	4.72	18
ITL2489-03	625-Boeing 001/002 Q-LL	Bis(2-ethylhexyl)phthalate	ug/l	0.19	4.72	4
ITL2489-03	625-Boeing 001/002 Q-LL	N-Nitrosodimethylamine	ug/l	0	4.72	16
ITL2489-03	625-Boeing 001/002 Q-LL	Pentachlorophenol	ug/l	0	4.72	16.5
ITL2489-03	Ammonia-N, Titr 4500NH3-C (w/c	di:Ammonia-N (Distilled)	mg/l	0	0.500	10.1
ITL2489-03	BOD - SM5210B	Biochemical Oxygen Demand	mg/l	1.15	2.0	30
ITL2489-03	Cadmium-200.8	Cadmium	ug/l	0.052	1.0	3.1
ITL2489-03	Chloride - 300.0	Chloride	mg/l	5.87	0.50	150
ITL2489-03	Copper-200.8	Copper	ug/l	4.01	2.0	14
ITL2489-03	Cyanide, Total-4500CN-E (5ppb)	Total Cyanide	ug/l	-2	5.0	8.5
ITL2489-03	Iron-200.7	Iron	mg/l	1.79	0.040	0.3
ITL2489-03	Lead-200.8	Lead	ug/l	0.98	1.0	5.2
ITL2489-03	Manganese-200.7	Manganese	ug/l	28	20	50
ITL2489-03	MBAS - SM5540C	Surfactants (MBAS)	mg/l	0.070	0.10	0.5
ITL2489-03	Mercury - 245.1	Mercury	ug/l	0.030	0.20	0.1

TestAmerica Irvine

Heather Clark For Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasader 618 Michillind Arcadia, CA 9	a Avenue, Suite 200	Project ID: Report Number:	Routine Outfall 001 2010 Routine Outfall 001 ITL2489			led: 12/26/10	
Attention: Bro		report rumoer.			11001	, cu . 12/2//10	
ITL2489-03	Nitrate-N, 300.0	Nitrate-N		mg/l	0.41	0.11	8
ITL2489-03	Nitrite-N, 300.0	Nitrite-N		mg/l	0	0.15	1
ITL2489-03	Nitrogen, NO3+NO2 -N EPA 30	0.0 Nitrate/Nitrite-N		mg/l	0.41	0.26	8
ITL2489-03	Perchlorate 314.0 - Default	Perchlorate		ug/l	0	4.0	6
ITL2489-03	Selenium-200.8	Selenium		ug/l	0.33	2.0	5
ITL2489-03	Sulfate-300.0	Sulfate		mg/l	8.51	0.50	300
ITL2489-03	TDS - SM2540C	Total Dissolved S	Solids	mg/l	71	10	950
ITL2489-03	TSS - SM2540D	Total Suspended	Solids	mg/l	16	10	45

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 001 2010

Routine Outfall 001 Sampled: 12/26/10

Report Number: ITL2489 Received: 12/27/10

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

DATA QUALIFIERS AND DEFINITIONS

	0 1 1 1 1		4 1 11 14
a	Spiked analyte recovery	is outside stated	control limits.

- **B** Method blank contamination. The associated method blank contains the target analyte at a reportable level.
- **J** Estimated result. Result is less than the reporting limit.
- Ja The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.
- MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

- **Q** Estimated maximum possible concentration (EMPC).
- U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the

limit.

- **ND** Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
- **RPD** Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001 2010

Routine Outfall 001

Report Number: ITL2489 Received: 12/27/10

Sampled: 12/26/10

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EDD + Level 4	Water	N/A	N/A
EPA 1664A	Water	X	X
EPA 200.7-Diss	Water	X	X
EPA 200.7	Water	X	X
EPA 200.8-Diss	Water	X	X
EPA 200.8	Water	X	X
EPA 245.1-Diss	Water	X	X
EPA 245.1	Water	X	X
EPA 300.0	Water	X	X
EPA 314.0	Water	X	X
EPA 608	Water	X	X
EPA 624	Water	X	X
EPA 625	Water	X	X
Filtration	Water	N/A	N/A
SM 2540D	Water	X	X
SM2130B	Water	X	X
SM2510B	Water	X	X
SM2540C	Water	X	
SM2540F	Water	X	X
SM4500CN-E	Water	X	X
SM4500NH3-C	Water	X	X
SM5210B	Water	X	X
SM5540-C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chrnic

Samples: ITL2489-03

TestAmerica Irvine

Heather Clark For Debby Wilson Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 001 2010

Routine Outfall 001 Sampled: 12/26/10

Report Number: ITL2489 Received: 12/27/10

Attention: Bronwyn Kelly Eberline Services - SUB

MWH-Pasadena/Boeing

Arcadia, CA 91007

618 Michillinda Avenue, Suite 200

2030 Wright Avenue - Richmond, CA 94804

Analysis Performed: Gamma Spec

Samples: ITL2489-03

Analysis Performed: Gross Alpha

Samples: ITL2489-03

Analysis Performed: Gross Beta

Samples: ITL2489-03

Analysis Performed: Level 4 Data Package

Samples: ITL2489-03

Analysis Performed: Radium, Combined

Samples: ITL2489-03

Analysis Performed: Strontium 90

Samples: ITL2489-03

Analysis Performed: Tritium

Samples: ITL2489-03

Analysis Performed: Uranium, Combined

Samples: ITL2489-03

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 001 2010

618 Michillinda Avenue, Suite 200 Routine Outfall 001 Sampled: 12/26/10 Arcadia, CA 91007 Report Number: ITL2489 Received: 12/27/10

Attention: Bronwyn Kelly

TestAmerica Buffalo

MWH-Pasadena/Boeing

10 Hazelwood Drive, Suite 106 - Amherst, NY 14228

Method Performed: 8654 Samples: ITL2489-03

Method Performed: 900 Samples: ITL2489-03

Method Performed: 901.1 Samples: ITL2489-03

Method Performed: 903.1 Samples: ITL2489-03

Method Performed: 904 Samples: ITL2489-03

Method Performed: 905 Samples: ITL2489-03

Method Performed: 906 Samples: ITL2489-03

TestAmerica West Sacramento NELAC Cert #1119CA, Nevada Cert #CA44

880 Riverside Parkway - West Sacramento, CA 95605

Method Performed: EPA-5 1613B Samples: ITL2489-03, ITL2489-03RE

TestAmerica Irvine

Page 1 of 3																									•
TLZ489 Pag		Field readings: (Log in and include in	Hd pug of	Temp *F = 7.5. T	796W 18.01=00	Time of readings	2 2 2	Comments						l	21	થ	\ \ \				ork order.		ن (u X	
77	-																				agge	5 Day: Normal:	Sample Integrity: (Check)	2	
ODY FORM	ANALYSIS REQUIRED															;-				11:00	Date/Time: / 2-26-20 / 6 Turn-ground time: (Check)	48 Hour:	1305	0 875	
CHAIN OF CUSTODY FORM				нем)		biloS	aple	Oil & Oil &		×	×	×								- 1		•	1) Date/Time:	Date/Time:	
S H			(1 2	:e) =31	C∀' 1	a-2,1	CE,	a-r,r	×				×										1/3	/ \	
								Bottle#	1A, 1B, 1C, 1D, 1E	2A, 2B	က	4A, 4B	5A, 5B, 5C							1001	Received By	7 7	Received By	Received By	١
	VPDES	11 001			i.		ις.	Preservative	E HC	<u>حر</u>	None	None	128 HCI			,	,	·		20,000	1554	26.VE 10	262010	160K	
	Project: Boeing-SSFL NPDES	Routine Outfall 001 GRAB			Phone Number:	(626) 568-6691 Fax Number:	(626) 568-6515	Sampling Date/Time	1226(13095)	1580000000	5589 mg 742)	124660 0858	sse onnu							Those Samples are the Grab Boation of Outfall 004 for this steam arent	ne:	261	1	Datestine: The Construct Received B.	
3/29/09			lson					# of Cont.	5	2	τ	2	3								Date/Time:		Date/Time:	Sate/Tir	
Test America version 6/29/09		Suite 200	Debby Wi		nwyn Kelly	,	^ 5	Container Type	VOAs	1t. Amber	1L Poly	500 mL Poly	VOAs			·				Solumos				The state of the s	
meri	ddress:	Ave, S 1007	ontact:		er: Bro		7	Sample Matrix	*	3	Μ	×	W								SHI	1	1	1	
Test A	Client Name/Address: MWH-Arcadia	618 Michillinda Ave, Arcadia, CA 91007	Test America Contact: Debby Wilson		Project Manager: Bronwyn Kelly	Sampler:	<u>'</u>	Sample Description	Outfall 001	Ontfall 001	Outfall 001	Outfall 001	Trip Blanks								Relinquished E	7	Relinquished By	Relinquished By	
⊘ ⊳									- 1	1	ſ		•												

		Comments										7 0 X			١						10 Day:	v (2-7
ANALYSIS REQUIRED																			COC Page 2 of 3 and Page 3 of 3 are the composite samples for Outfall 001 for this storm event.	for Outfall 001 for the same event.	72 Hour: 5 Day: 75	(Check)	S: (Check)
NALYSIS	(929 s	otoluene, Bis(2-	tini(3 7'¢ D	,чот	9'†'7											×		1 for this	fall 001 for the sa	24 Hour.	a Integrity:	Dete. Requirements: (Check)
۹				(36) N (36)			-	-							×	×		\dashv	fall 00	Outfal	3 V 48 48 ±	Sample	
				r ,801										×		·		-	or Out	3 for	1300		bate/Time:
			N-	-Ditrite	I ,N-9	Nitrat							×						ples f	COC Page Tof 3		;	
		V, Perchlorate	1-2O	N+ ^E OI	O [¢] ' N	CL. 2						×							e sam	OC Page			Date/Time:
			(SA	aM) s	ctant	Surfa					×								posit	3 3			
				degre			-			×								_	e com	order for			
		eners)	био			Se, Zi	 	-	×						v			+	are th		ACC)	
	lg, Cd,	fetals: Cu, Pb, H	VI ƏIG			LetoT		×	<u></u>		۹,	10B	1.	C _m		В	В	+	3 of 3	e same		î	Ja P
	7	· •				Bottle #	6A	89	7A, 7B	8	9A, 9B	10A, 10	11	12A, 12B	13	14A, 14B	15A, 15B		d Page	to the sar		,	Received By
	IPDES	19.14	ļ	^		Preservative	HNO3	HNO3	None	None	None	None	None	None	H ₂ SO ₄	None	None		e 2 of 3 an	be added		735	
Project:	Boeing-SSFL NPDES Routine Outfall 001		Phone Number	(626) 568-6691 Fax Number	(626) 568-6515	Sampling Date/Time	15:11									A	1:3110		COC Page	These must be added to th	00% -	<i>'</i> -	
F.	<u> </u>		돈	(62	(62	# of Cont.	3,		2	1	2	. 2	, t	2	-	2	2 /2	-	-	Date/Time;	Catherring	\mathcal{I}	Date/Time:
		Wilsor	≥	7														+	1	Date	Cate	7	Date
	uite 200	:: Debby 1	nwyn Kel	MAG	11.5	Container		1L Poly	1L Amber	1L Poly	500 mL Poly	500 mL Poly	500 mL Poly	500 mL Poly	500 mL Poly	1L Amber	1L Amber				3		
Address:	dia la Ave, S	Sontact	ger: Bro	ckas	DB E	Sample Matrix	>	≥	*	W	W	Μ	Μ	*	>	Α	*			1-1		d	
Client Name/Address:	MWH-Arcadia 618 Michillinda Ave, Suite 200	Arcadia, CA 91007 Test America Contact: Debby Wilson	Project Manager: Bronwyn Kelly	Sampler R.	ROBE 115	Sample Description	Outfall 001	Outfall 001 Dup	Outfall 001	Outfall 001	Outfall 001	Outfall 001	Outfall 001	Outfall 001	Outfall 001	Outfall 001	Outfall 001			Relinquished By	Relinguished By	71	Relinquished By

		 		g g		듩	Π	Π	 Τ		T	T	Τ	П			
	Commente			Filter w/in 24hrs of receipt at lab	Unfiltered and unpreserved analysis	Only test if first or second rain events of the year				,							250
		· ·=													is is		
							-		-			\perp	-		10 Day:	2	~
Ω			·			<u> </u>			 ļ			+	<u> </u> 	/ent.	> Yu		Unice:
ANALYSIS REQUIRED			-			-			<u> </u>				n eve	the same event.	72 51	Sample Integrity: (Check)	Intact: On Ice: Data Requirements: (Check)
SREC													s stori	the sa	24 Hour	Sample I	Intact: Data Require
ALYSI													for this	01 for			
Z											_	_	1 001	uffall 0	5 B		(UTTING:
					· · · · · · · · · · · · · · · · · · ·				 ļ 				Outfa	for Or	/2/ [3		-
		ılde	Cyan				×		 _		_	-	es for	1 of 3	/12		
		nic Toxicity				×					+		sampl	Prige		Date/Fime:	Date/Time:
	,(0.009)st9B szon5 lsto, (0.0509) 06-7S & (1.509, 00 to 0.009) 52 -N ,(0.809) muinstU (1.109	,(0.80e) (E-H) m S muibsЯ bənid	Tritiu Coml Radiu		×								COC Page 2 of 3 and Page 3 of 3 are the composite samples for Outfall 001 for this storm event.	These must be added to the same-work order for COC Page 1 of 3 for Outfall 001 for the same event.	Z Z	Dat	Dat
	ls: Cu, Pb, Hg, Cd, Se,	l Dissolved Meta e, Mn		×									f 3 are	iow-er			1 1
		·	Bottle #	او ر	17A 1	18	19 🖍						Page 3 o	to the san	4	Received By	Received By
	1001		Preservative	None	None	None	NaOH						2 of 3 and	be added) 00% I	07/10	70
	Boeing-SSFL NPDES Routine Outfall 001 COMPOSITE	Phone Number: (626) 568-6691 Fax Number: (626) 568-6515	ng me	9 de 3			0/0%	-					2 Page	must	187	lip	
Project:	Boeing-SSFL Routine Outfi COMPOSITE	Phone Number (626) 568-6691 Fax Number. (626) 568-6515	Sampling Date/Time	19.36.3P.		B	96						Š	These	3 (
<u> </u>		4 (6, Fa (9)	# of Cont.	1		-	-							Date/Time.		Time:	Date/Time:
	Wilson	<u>></u>					Poly					\parallel	$ \ $	Jac C		Date/T	Date
	ite 200 Debby	wyn Ke NØG	Container Type	1L Poly	2.5 Gal Cube 500 mL Amber	1 Gal Cube	500 mL Poly								Z		
Tess.	Ave, Sui	Manager: Bronwyn Kelly R.E.K OANBGM Rob Ellis	Sample Matrix	8	3	3	3							1.	3		
ne/Adc	rcadia llinda A 3A 910	Ric Pob		Н		=	<u> </u>			+	\dashv		$\left\{ \ \ \right $	PA.	I I		PA `
Client Name/Address:	MWH-Arcadia 618 Michillinda Ave, Suite 200 Arcadia, CA 91007 Test America Contact: Debby Wilson	Project Manager: Bronwyn Kelly R : E G θ M G θ Sampler: $G_{\theta}B$ E G	Sample Description	Outfall 001	Outfall 001	Outfall 001	Outfall 001							Relinguished By		Relinquished B	Relinquished By

LABORATORY REPORT

Date:

January 3, 2011

Client:

TestAmerica, Irvine

17461 Derian Ave., Suite 100

Irvine, CA 92614 Attn: Debby Wilson

"dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003

(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.:

A-10122701-001

Sample I.D.:

ITL2489-03 (Outfall 001)

Sample Control:

The sample was received by ATL within the recommended hold time, chilled and with the chain of custody record attached. Testing conducted on only one sample per

client instruction (rain runoff sample).

Date Sampled:

12/26/10 - composite

Date Received:

12/27/10

Temp. Received: Chlorine (TRC):

5.7°C 0.0 mg/l

Date Tested:

12/27/10 to 01/03/11

Sample Analysis:

The following analyses were performed on your sample:

Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

Result Summary:

Ceriodaphnia Survival:

NOEC 100%

TUc 1.0

Ceriodaphnia Reproduction:

100%

1.0

Quality Control:

Reviewed and approved by:

Joseph A LeMay Laboratory Director

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

Lab No.: A-10122701-001 Date Tested: 12/27/10 to 01/03/11

Client/ID: Test America – ITL2489-03 (Outfall 001)

TEST SUMMARY

Test type: Daily static-renewal. Endpoints: Survival and Reproduction.

Species: Ceriodaphnia dubia. Source: In-laboratory culture.

Age: < 24 hrs; all released within 8 hrs. Food: .1 ml YTC, algae per day. Test vessel size: 30 ml. Test solution volume: 15 ml.

Number of test organisms per vessel: 1. Number of replicates: 10.

Temperature: 25 +/- 1°C. Photoperiod: 16/8 hrs. light/dark cycle.

Dilution water: Mod. hard reconstituted (MHRW). Test duration: 7 days.

QA/QC Batch No.: RT-101207. Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Survival	Mean Number of Young Per Female
Control	100%	24.1
100% Sample	100%	27.4
* Sample not s	tatistically significantly le	ess than Control.

CHRONIC TOXICITY

Survival NOEC	100%
Survival TUc	1.0
Reproduction NOEC	100%
Reproduction TUc	1.0

QA/QC TEST ACCEPTABILITY

Parameter	Result
Control survival ≥80%	Pass (100% survival)
≥15 young per surviving control female	Pass (24.1 young)
≥60% surviving controls had 3 broods	Pass (100% with 3 broods)
PMSD < 47% for reproduction; if > 47% and no toxicity at IWC, the test must be repeated	Pass (PMSD = 9.0%)
Statistically significantly different concentrations relative difference > 13%	Pass (no concentration significantly different)
Concentration response relationship acceptable	Pass (no significant response at concentration tested)

	Ceriodaphnia Survival and Reproduction Test-7 Day Survival														
Start Date:	12/27/201	0 15:00	Test ID:	10122701	С		Sample ID):	Outfall 00	1					
End Date:	1/3/2011 1	4:00	Lab ID:	CAATL-Ac	uatic Test	ting Labs	Sample Ty	/pe:	SRW2-Ind	lustrial stormwater					
Sample Date:	12/26/2010 11:31 Protocol: FWCH EPA Test Species: CD-Ceriodaphnia dubia														
Comments:															
Conc-%	1	2	3	4	5	6	7	8	9	10					
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000					
100	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000					

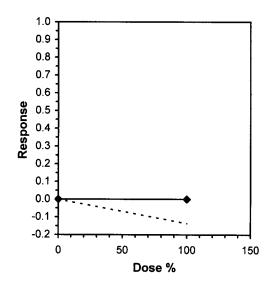
			•	Not			Fisher's	1-Tailed	Isot	onic
Conc-%	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Mean	N-Mean
D-Control	1.0000	1.0000	0	10	10	10			1.0000	1.0000
100	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000

	Test (1-tail, 0).05)	NOEC	LOEC	ChV	TU			
Fisher's Exa	act Test		100	>100		1			
Treatments	vs D-Control								
	,			Line	ar Interpo	lation (20	0 Resamples)	
Point	%	SD	95%	CL	Skew	•	•	•	
IC05	>100								
IC10	>100								
IC15	>100						1.0		
IC20	>100								
IC25	>100						0.9		ł
IC40	>100						0.8 -		
IC50	>100						0.7		
							J		
							9 0.6 1		
							Š 0.5		- 1
							Response 0.6 - 0.5 - 0.4 - 0.4		
							0.3		
							0.2		
							4		
							0.1 -		
							001		

0

50

Dose %


100

	Ceriodaphnia Survival and Reproduction Test-Reproduction														
Start Date:															
End Date:	1/3/2011 1	1/3/2011 14:00 Lab ID: CAATL-Aquatic Testing Labs Sample Type: SRW2-Industrial stormwater													
Sample Date:	12/26/2010 11:31 Protocol: FWCH EPA Test Species: CD-Ceriodaphnia dubia														
Comments:	· ·														
Conc-%	1	2	3	4	5	6	7	8	9	10					
D-Control	ntrol 25.000 20.000 26.000 21.000 23.000 25.000 23.000 30.000 25.000 23.000														
100	23.000	27.000	26.000	27.000	24.000	27.000	28.000	32.000	30.000	30.000					

			•	Transforn	n: Untran	sformed			1-Tailed		Isot	onic
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
D-Control	24.100	1.0000	24.100	20.000	30.000	11.646	10				25.750	1.0000
100	27.400	1.1369	27.400	23.000	32.000	10.061	10	-2.653	1.734	2.157	25.750	1.0000

Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.05)	0.96718		0.905		0.34466	0.03255
F-Test indicates equal variances (p = 0.96)	1.03655		6.54109			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates no significant differences	2.15734	0.08952	54.45	7.73889	0.0162	1, 18
Treatments vs D-Control						,

			Lit	near Interpolation ((200 Resamples)
Point	%	SD	95% CL	Skew	• •
IC05	>100		·		····
IC10	>100				
IC15	>100				1.0 —
IC20	>100				0.9
IC25	>100				4
IC40	>100				0.8
IC50	>100				0.7 -
					06]

Reviewed by:

CERIODAPHNIA DUBIA CHRONIC BIOASSAY **EPA METHOD 1002.0 Raw Data Sheet**

DAY 7

DAY 6

Lab No.: A-10122701-001

DAY I

DAY 2

Client ID: TestAmerica - Outfall 001 Start Date: 12/27/2010

DAY 4

DAY 5

DAY 3

		0 h	,]	24hr	▮	0 hr	24hr	0 hr		24hr	0 hr	24hr	0 hr	. 2	24hr	0 hr	24hr	0 hr	24hr		
Analyst I	nitials:		덕	Ž~		2	Rose	R	- 1	2~	R-	Rm	R		$\overline{\sim}$	1/-	1/2	7			
Time of Re	eadings:	150	0	/4W		lw	1400	1400) /4	w	140	15a	150	2/10	W	Mu	1/2	K9	HW		
	DO	8.	3	8.5	7	9.0	8.3	8.5	28	1	8.3	8.4	9.3	3 2	-/	8.4	8-0	8-1	8-2		
Control	рН	8	2	8.3	18	3.2	8.2	8.	2 8	3.2	8.3	8-0	8.7	18	2	8.2	8.2	9.2	8.2		
	Temp	24	.3	24.0	2	5.4	24.2	1		44	25.0	24./	245	5 21	12	24.2	247	24.4	24.2		
1	DO	9.	_ 1	8.8		0.4	8.9	10.	5/8	7	8.4	84	10.	2 8	, 2	9.6	5-1	10.2	83		
100%	рН	7-	8	8.1		7.5	8.0	2.4	1 8	/	8.0	80			.2	8.0	8.2	8.0	8-2		
	Temp	24	3	24.4	2	5.2	24.7	24.			24.3	24.2	24.	7 24	4.3 24.3 24.3 24.3						
	A	dditior	ıal Pa	arame	ters						Cor	itrol			100% Sample						
				310	ノ				l	27											
				77						44											
	Hardness (mg/l CaCO ₃)										88	3					65				
Ammonia (mg/l NH ₃ -N)										20.1 0.2											
			Source	of Neo	nates																
Replicate: A B C											Е	F		G		Н	I		J		
Bro	od ID:		1/	4	7	2 D	2	F	26		15	4/	7	<u>SB</u>		6E	57		65		
Sample		Da		Nu				er of Y	oung I	roduced	,				al Live	No. Liv		Analyst			
		Day			A B		С	Ð	E F		G	Н	ı	J	Y	oung	Adults		Initials		
	L	1		_	0	0	000		0	12	0	0	0	0	├ ──	2	10		2		
	 	2			<u>() </u>	0	0	0	0	0	10	0	00		_ (2	IV		3		
	-	3		_ -	4	0	4	2	<u>0</u>	0	3	0	0	0	<u> </u>	3	10	/ -	1		
Control	┢	4	1		$\frac{\mathcal{O}}{\mathcal{O}}$	3	0	5	3	4	12	5	3	3	2	1	10		m		
	-	6			4	0		13	8	$\frac{O}{2}$	13	 ; ; ;	0	8	14	E	$\frac{10}{11}$	+			
	-	7			2	10	13	()	12	14	15	0	16	12	1	39	10	1			
		Tot	al		25	20		21	ر کے ک	25	23	30	25	23	-	41	11/	7			
		1			/)	()	0	0	U	0	0	0	1)	0		0	10		2-		
		2)	Ö	0	0	0	0	0	0	0	0		シ	10		2		
		3			0	0	3	0	0	4	0	0	3	0	1	U	10		20		
100%		4		_	-1	7	0	5	3	0	ч	5	0	5		30	10				
100/0	<u> </u>	5		_ _	<u>()</u>	7	0	9	0	7	0	10		9	کے		JU		1		
		6		- -	5	16	1,7	0	7	16	9	117	18	0	0	15	10	_			
		7		1	4	0	16		14	0	15	0	0	16		8	10				
Circled for		Tot			23	27	26		24	27	128	32	30	30	2	24	iV				
Circlea I	ourun Dra	ou no	и ия	sea ir	า รтล	DISTICS	ar anal	V(C1C													

^{7&}lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

CHAIN OF CUSTODY

Client Name/	Address:			Project:									ΔΝ	ΔΙΥς	IS RE	OLUB	ED		***************************************		
MWH-Arca				Boeing-SSFL	NPDES		0.	1		T	Γ		AIN.	1	10 KE	QUIR	LEU			Γ	
618 Michillind Arcadia, CA	la Ave, S	uite 200		Routine Outl	all 001		lg, Cd, Se,	900.0), 0), Total 903.1) & 08.0), K-													
Test America	Contact	Debby Wils	son				als: Cu, Pb, Hg,	0), Gross Beta(900.0), 5.0), Sr-90 (905.0), Total m 226 (903.0 or 903.1) & 4.0), Uranium (908.0), K- 0 or 901.1)													Comments
Project Mana	ger: Bro	nwyn Kelly		Phone Numb	er;		Met	(900.0), (906.0), adjum 22 (904.0), (904.0), 901.0 or	1												
		ANAG A	·q	(626) 568-669 Fax Number: (626) 568-65		Ţ.	Total Dissolved Metals: Zn, Fe, Mn	Gross Alpha(900.0), C Tritium (H-3) (906.0), Combined Radium 22 Radium 228 (904.0), 40, CS-137 (901.0 or	Chronic Toxicity	nide	Cyanide										
Sample Description	Sample Matrix	Container Type	# of Cont.	Sampling Date/Time	Preservative	Bottie #	Tota Zn, F	Gros Tritit Com Radi 40, 0	Chrc	Cyar											
Outfall 001	w	1L Poly	1	12.26.39	None None	16	Х														Filter w/in 24hrs of receipt at lab
Outfall 001	w	2,5 Gal Cube	1		None	17A	-	×													Unfiltered and unpreserved analysis
		500 mL Amber	1	ļ <u>ļ</u>	None	17B	-		-	-								<u> </u>		-	Only test if first or second rain
Outfall 001	W	1 Gal Cube	1	7	None	18 &			×		ļ						ļ			<u> </u>	events of the year
Outfall 001	W	500 mL Poly	1	13-26-301	NaOH	19 6				X	ļ		ļ								
			<u> </u>																		
																	<u> </u>				
																	ļ				
			<u> </u>	<u> </u>		<u></u>	<u> </u>	<u></u>	<u> </u>	<u></u>	<u></u>	1	<u> </u>	<u> </u>	<u> </u>	L	<u> </u>	l	<u> </u>	<u>L</u>	
								e the composit													
Relinquished By	1.	, ,	Date/Ti		27-2010	Received 6	By/		ate fin								me: (Ch				
Relinquished By	pull	1500					1			1	14	27/ 130	iU		24 Hou						
				\bigcirc 1	340 (/		7-11	1			130	00		48 Hou	r	5 Day.	×	_ Norma	ni:	
Relimbuished By			Da ve /Ti	me:/ 12/2	7/10	Received	8] J.		ate/Tim	ne:	z ^2	277	10		Samo	intens	ity: (Che	מאיז			
		-/2		/ ' ,	7/10	1	IL.	117/1	1	,	/	77	5		Intact						
Relinquished By	7	1	Date/Ti			Received i	Зу	J V 5	ate/Tim	ne:											
						/		*							Data R	equiren el IV:	nents: (0 Ali Lev	Jneck)	NPDE	Steve	IVX
						1									10 180	ψι . <u>.</u>	_ ~!! " " " "	U- , V	- WEDE	O FAAR	· · · · · · · · · · · · · · · · · · ·

SUBCONTRACT ORDER

TestAmerica Irvine ITL2489

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614 Phone: (949) 261-1022

Fax: (949) 260-3297

Project Manager: Debby Wilson

RECEIVING LABORATORY:

Aquatic Testing Laboratories-SUB 4350 Transport Street, Unit 107

Ventura, CA 93003 Phone :(805) 650-0546

Fax: (805) 650-0756

Analysis	Due	Expires	Laboratory ID	Comments
Sample ID: ITL2489-03	Water	Sampled:12/26/10 11:31		outher ccl
Bioassay-7 dy Chrnic	01/03/11 1	5:00 12/27/10 23:31		Cerio, EPA/821-R02-013, Sub to Aquatic tes
Containers Supplied:				
1 gal Poly (U)				

Released By Date Received By Date

Released By Date Received By

Date

REFERENCE TOXICANT DATA

CERIODAPHNIA CHRONIC BIOASSAY

EPA METHOD 1002.0 REFERENCE TOXICANT - NaCl

QA/QC Batch No.: RT-101207

Date Tested: 12/07/10 to 12/13/10

TEST SUMMARY

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*.

Age: <24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 +/- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

Reference Toxicant: Sodium chloride (NaCl).

Endpoints: Survival and Reproduction.

Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 20 ml. Number of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 6 days.

Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Survi	ival	Mean Number of Young Per Female		
Control	100%		23.3		
0.25 g/l	100%		25.2		
0.5 g/l	100%		23.7		
1.0 g/l	100%		16.0	*	
2.0 g/l	100%		2.9	*	
4.0 g/l	0%	*	0	**	

^{*} Statistically significantly less than control at P = 0.05 level

** Reproduction data from concentrations greater than survival NOEC are

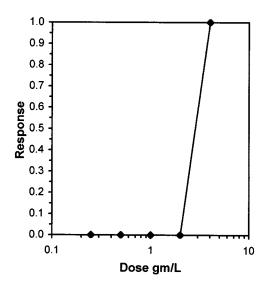
excluded from statistical analysis.

CHRONIC TOXICITY

Survival LC50	2.8 g/l
Reproduction IC25	0.86 mg/l

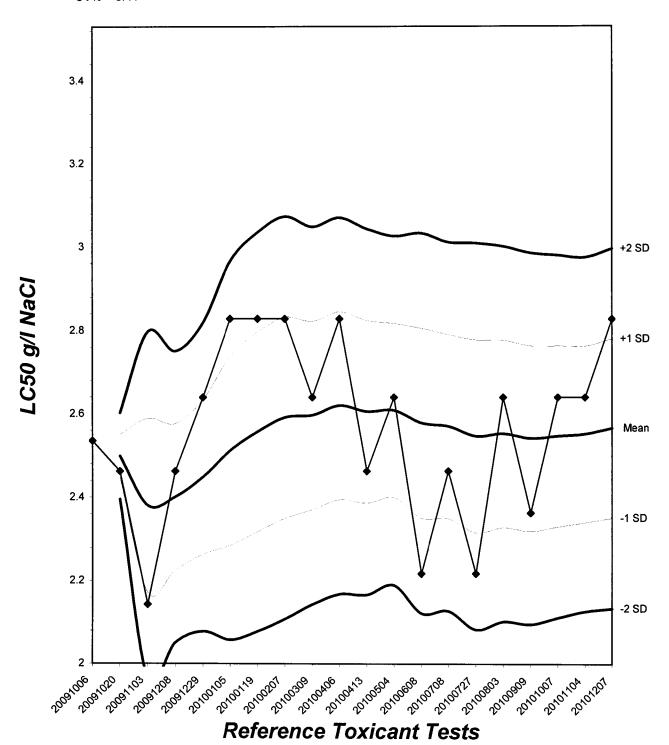
QA/QC TEST ACCEPTABILITY

Parameter	Result
Control survival ≥80%	Pass (100% Survival)
≥15 young per surviving control female	Pass (23.3 young)
≥60% surviving controls had 3 broods	Pass (80% with 3 broods)
PMSD <47% for reproduction	Pass (PMSD = 18.9%)
Stat. sig. diff. conc. relative difference >13%	Pass (Stat. sig. diff. conc. Relative difference = 31.3%)
Concentration response relationship acceptable	Pass (Response curve normal)


			Cerioda	aphnia Su	rvival and	Reprodu	uction Tes	t-Surviv	al Day 6	
Start Date:	12/7/2010	14:00	Test ID:	RT101207	c'c		Sample ID):	REF-Ref	Toxicant
End Date:	12/13/201	0 14:00	Lab ID:	CAATL-Ad	quatic Tes	ting Labs	Sample Ty	/pe:	NACL-Soc	dium chloride
Sample Date: Comments:	12/6/2010		Protocol:	FWCH EF	A	-	Test Spec	ies:	CD-Cerio	laphnia dubia
Conc-gm/L	1	2	3	4	5	6	7	8	9	10
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0.25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0.5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

				Not	· · · · · · · · · · · · · · · · · · ·		Fisher's	1-Tailed	Number	Total
Conc-gm/L	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Resp	Number
D-Control	1.0000	1.0000	0	10	10	10	-		0	10
0.25	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
0.5	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
1	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
2	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
4	0.0000	0.0000	10	0	10	10			10	10

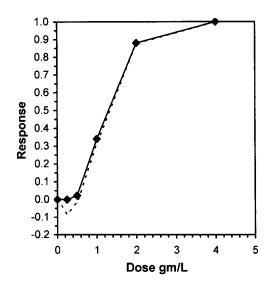
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	 	 	
Fisher's Exact Test	2	4	2.82843			 	 _
Treatments vs D-Control							


Trim Level 0.0% EC50 2.8284 **Graphical Method**

2.8284

Ceriodaphnia Chronic Survival Laboratory Control Chart

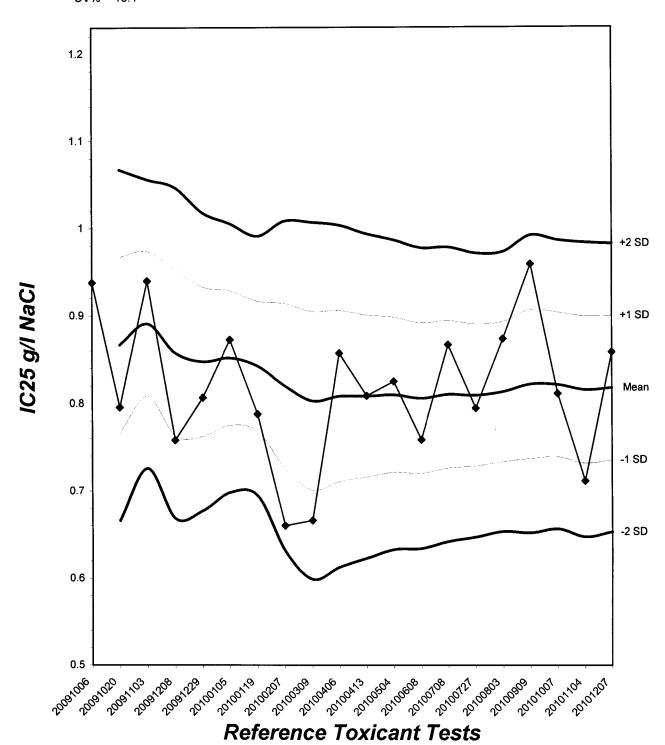
 $CV\% = 8.\overline{41}$


			Ceriod	aphnia Su	rvival and	Reprodu	uction Tes	st-Repro		
Start Date:	12/7/2010	14:00	Test ID:	RT101207	'C		Sample ID):	REF-Ref 1	
End Date:	12/13/2010	0 14:00	Lab ID:	CAATL-Ad	quatic Tes	ting Labs	Sample Ty	/pe:		lium chloride
Sample Date:	12/6/2010		Protocol:	FWCH EP	PΑ		Test Spec	ies:	CD-Cerioo	laphnia dubia
Comments:										
Conc-gm/L	1	2	3	4	5	6	7	8	99	10
D-Control	22.000	11.000	28.000	27.000	26.000	28.000	21.000	28.000	27.000	15.000
0.25	28.000	29.000	21.000	21.000	28.000	28.000	28.000	25.000	25.000	19.000
0.5	25.000	17.000	20.000	26.000	24.000	29.000	29.000	23.000	25.000	19.000
1	10.000	10.000	20.000	22.000	20.000	11.000	15.000	12.000	24.000	16.000
2	0.000	2.000	7.000	4.000	2.000	4.000	0.000	5.000	2.000	3.000
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

			Transform: Untransformed					1-Tailed			Isotonic		
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean	
D-Control	23.300	1.0000	23.300	11.000	28.000	25.913	10				24.250	1.0000	
0.25	25.200	1.0815	25.200	19.000	29.000	14.466	10	-0.959	2.223	4.404	24.250	1.0000	
0.5	23.700	1.0172	23.700	17.000	29.000	17.000	10	-0.202	2.223	4.404	23.700	0.9773	
*1	16.000	0.6867	16.000	10.000	24.000	32.676	10	3.686	2.223	4.404	16.000	0.6598	
*2	2.900	0.1245	2.900	0.000	7.000	75.285	10	10.299	2.223	4.404	2.900	0.1196	
4	0.000	0.0000	0.000	0.000	0.000	0.000	10				0.000	0.0000	

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor		0.96459		0.947		-0.5938	0.09413			
Bartlett's Test indicates equal var	riances (p =	0.06)			8.97697		13.2767			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	0.5	1	0.70711		4.40372	0.189	860.47	19.6156	5.6E-15	4, 45
Treatments vs D-Control										

1	[rea	tme	nte	VC	$D_{-}C$	ontro	ı.
ı	IICa	une	HILO	V٥	レー	UHUU	"


43 D-0011001									
		Linear Interpolation (200 Resamples							
gm/L	SD	95%	CL	Skew					
0.5430	0.1060	0.2194	0.6041	-1.2164					
0.6218	0.0833	0.4101	0.7081	-1.1699					
0.7005	0.0819	0.5141	0.8292	-0.4850	1.0 				
0.7792	0.0859	0.5998	0.9452	0.1951	0.9 1				
0.8580	0.0903	0.6963	1.0439	0.3636	0.8				
1.1107	0.1011	0.9055	1.2772	-0.0498	4				
1.2958	0.0936	1.0659	1.4429	-0.4534	0.7				
	gm/L 0.5430 0.6218 0.7005 0.7792 0.8580 1.1107	gm/L SD 0.5430 0.1060 0.6218 0.0833 0.7005 0.0819 0.7792 0.0859 0.8580 0.0903 1.1107 0.1011	gm/L SD 95% 0.5430 0.1060 0.2194 0.6218 0.0833 0.4101 0.7005 0.0819 0.5141 0.7792 0.0859 0.5998 0.8580 0.0903 0.6963 1.1107 0.1011 0.9055	gm/L SD 95% CL 0.5430 0.1060 0.2194 0.6041 0.6218 0.0833 0.4101 0.7081 0.7005 0.0819 0.5141 0.8292 0.7792 0.0859 0.5998 0.9452 0.8580 0.0903 0.6963 1.0439 1.1107 0.1011 0.9055 1.2772	gm/L SD 95% CL Skew 0.5430 0.1060 0.2194 0.6041 -1.2164 0.6218 0.0833 0.4101 0.7081 -1.1699 0.7005 0.0819 0.5141 0.8292 -0.4850 0.7792 0.0859 0.5998 0.9452 0.1951 0.8580 0.0903 0.6963 1.0439 0.3636 1.1107 0.1011 0.9055 1.2772 -0.0498				

Page 1

Ceriodaphnia Chronic Reproduction Laboratory Control Chart

CV% = 10.1

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-101207

Start Date: 12/07/2010

G. I	D			Nu	mber	of Y	oung	Produ	iced			Total Live	No. Live	Analyst
Sample	Day	A	В	C	D	E	F	G	Н	I	J	Young	Adults	Initials
	1	0	0	0	0	0	Ö	0	0	0	0	Q	10	h
:	2	0	0	0	0	0	0	0	0	0	0	0	10	Ru
	3	0	0	4	0	0	6	0	0	0	0	4	10	6
Control	4	3	3	0	ک	U	2	3	4	4	3	31	10	n
Control	5	9	8	6	7	8	9	6	9	う	0	69	10	
	6	10	0	18	15	14	7	12	۱ >	16	12	129	10	
	7	ĵ	-	•	-	((((_	_		(\
	Total	22	11	28	27	76	28	21	28	27	كرا	733	10	V
-	1	0	0	0	0	0	0	0	0	0	0	0	10	L
	2	0	0	0	0	0	0	0	0	0	0	0	10	h
	3	0	0	4	0	0	0	0	0	0	0	Ч	IV	En
0.25 - //	4	4	3	0	4	5	4	4	ゝ	4	4	35	iU	m
0.25 g/l	5	6	9	フ	0	8	10	9	7	フ	0	63	10	m
	6	18	17	10	17	ک ۱	14	15	13	14	15	150	JU	9
	7		^	_	_	_	ſ	-	((_	_		
	Total	28	29	21	21	28	28	28	25	25	19	252	10	<i>~</i>
	1	0	0	0	0	0	0	0	0	0	0	0	10	Ru
	2	0	0	0	0	0	0	0	0	0	0	0	IV	R
	3	0	0	0	4	0	0	0	0	0	0	Ч	10	R
0.5 g/l	4	4	3	4	0	5	4	4	3	3	4	34	70	12
	5	6	0	6	8	7	9	7	6	7	0	56	10	1
	6	15	14	10	14	12	16	18	14	15	15	143	10	
	7		_					_		_	_)	-	
	Total	25	17	20	26	24	29	29	23	25	19	237	10	

Circled fourth brood not used in statistical analysis.

^{7&}lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-101207

Start Date: 12/07/2010

				Nu	ımbe	r of Y	oung l	Produ	ced			Total Live	No. Live	Analyst
Sample	Day	A	В	C	D	E	F	G	Н	I	J	Young	Adults	Initials
	1	0	0	0	0	0	0	0	0	0	0	0	10	Km
	2	0	0	0	0	0	0	0	0	0	0	0	10	Ru
	3	0	0	0	0	0	0	Ô	0	0	0	0	10	Ru
1.0 g/l	4	4	3	4	4	5	U	3	Ц	4	3	30	10	n
1.0 g/1	5	0	7	6	6	フ	0	0	0	6	6	38	10	n
	6	6	0	10	12	8	7	12	8	14	Ž	84	U	1
	7		_	_	_	_	-	_	1	_	_			
	Total	10	10	20	22	20	11	15	12	24	16	160	IV	
	1	0	0	0	0	0	0	0	0	0	0	0	10	R
	2	0	0	0	0	0	0	0	0	0	0	0	10	R
	3	0	0	0	0	0	0	0	0	0	0	0	iu	Br
0.0 //	4	0	0	0	0	2	Û	\mathcal{C}	۸	C	0	U	10	n
2.0 g/l	5	0	2	3	0	0	4	0	0	2	0		10	
	6	0	0	4	4	0	0	0	3	0	3	14	10	1
	7	_		-		_	^	1		_	ſ	ſ		
	Total	U	2	7	4	2	4	U	5	2	3	29	IU	2
	1	X	X	×	×	X	X		X	X	×	0	0	a
	2		_	_	_	(_)	1			(_	
	3	_	_	_	_		(1	_	_	_		_	
4.0 "	4	_	_	_	_	_	-	_	_	_			_	
4.0 g/l	5		_			_	-	_		_	_			_
	6	_		-	_		_	_	_	_	-			
	7	_	_	_	_	_	~	_	_	_	-			
	Total	0	0	0	10	C	C	(C	0	0	C	0	0	n

Circled fourth brood not used in statistical analysis.

 $^{7^{\}text{th}}$ day only used if <60% of the surviving control females have produced their third brood.

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Water Chemistries Raw Data Sheet

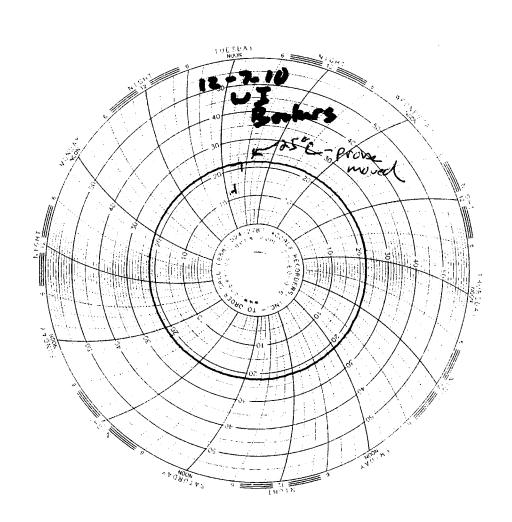
QA/QC No.: RT-101207

Start Date: 12/07/2010

		DA	Y 1	DA	Y 2	DA	Y 3	DA	Y 4	DA	Y 5	DA	Y 6	DA	Y 7
		Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
Analyst I	nitials:	L~	R	Row	En	R-	£~	m	ź.	f-	2	2	ん	~	A
Time of Re	eadings:	14W	/sw	Iŝw	140	1400	1400	1400	1300	1300	1330	1330	149		
	DO	8.4	8.7	8.4	8.6	8.7	8.3	8.2	8.4	8.1	7.9	8,2	26		1
Control	рН	8,2	8.3	8.4	79	8.2	8.0	8.2	8.0	8.1	ブケ	8.2	8.2	1	1
	Temp	25.0	24.3	25.0	24.5		246	24.8	24.7	25.1	750	25-3	25-2	(
	DO	8.4	85	8.4	8.6	8.6	8.3	8.2	8.4	8.2	74	22	27		_
0.25 g/l	рН	8.2	8.3	8.3	7.9	8.2	8.0	82	8.0	8.1	8.1	8.2	8-2		_
	Temp	25.0	24.6		24.8		2 <i>S.</i> U	24.8	24.8	25,1	40	252	2\$2	_	
	DO	8.5	8.8	8.4	8.7	8.6	8.4	8,2	8.3	8,2	7.4	8.3	76)	1
0.5 g/l	рН	8.2	8.2	8.3	7.9	8.2	8.0	8.2	8.0	8.1	74	8.2	8-	(1
	Temp	25.0	24.7	25.1	24.8	25.0	25.1	24.9	24.9	25.0	261	24-6	251		
	DO	8.5	8.7	8.4	8.7	8.5	8.4	8.2	8.3	8,2	83	83	22)	_
1.0 g/l	pН	8.2	8.2	8.3	7.9	8.2	8.0	8.2	8.0	8.2	74	8.2	8.1		
	Temp	24.9	24.6	25.1	24.9	<u> 25.1</u>	25.0	24.9	24.9	25.0	240	245	24.9		
	DO	8.6	8.6	8.5	8.8	8.3	8.4	8.2	8.5	8.2	82	8.2	24	1	_
2.0 g/l	рН	8.2	8.2	8.3	7.9	8.1	8.0	8.2	8.0	8.2	74	8.2	8-1	1	
	Temp	24-8	24.8	25.2	24.8	25.2	24.9	25.0	24-8	24.9	244	245	25,2	-	
	DO	8.7	8.8		-		_		_)	ĺ	-		1
4.0 g/l	pН	8.1	8.2		_		_			-	(_)		-
	Temp	24.6	24.8		_								_		
	Dis	ssolved	Oxyge	n (DO)	reading	s are in	mg/l (D ₂ ; Temp	erature	(Temp)	readin	gs are in	ı °C.		

Additional Decoration		Control		High Concentration					
Additional Parameters	Day 1	Day 3	Day 5	Day 1	Day 3	Day 5			
Conductivity (µS)	325	329	322	6470	3690	3430			
Alkalinity (mg/l CaCO ₃)	24	73	73	73	74	74			
Hardness (mg/l CaCO ₃)	87	88	89	90	89	89			

				Source of	Neonates					
Replicate:	A	В	С	D	Е	F	G	Н	I	J
Brood ID:	11	2 A	3 A	33	16	14	27	17	2.7	13.T



Test Temperature Chart

Test No: RT-101207

Date Tested: 12/07/10 to 12/13/10

Acceptable Range: 25+/- 1°C

EBERLINE ANALYTICAL CORPORATION
2030 Wright Avenue
Richmond, California 94804-3849
Phone (510) 235-2633 Fax (510) 235-0438
Toll Free (800) 841-5487
www.eberlineservices.com

February 1, 2011

Ms. Debby Wilson Test America Irvine 17461 Derian Ave., Ste. 100 Irvine, CA 92614

Reference:

Test America-Irvine ITL2489

Eberline Analytical Report S012369-8654

Sample Delivery Group 8654

Dear Ms. Wilson:

Enclosed is a Level IV CLP-like data package (on CD) for one water sample received under Test America Job No. ITL2489. The sample was received on December 29, 2010.

Please call me, if you have any questions concerning the enclosed report.

Sincerely,

N. Joseph Verville

Client Services Manager

NJV/ljb

Enclosure: Level IV CLP-like Data Package CD

Case Narrative, page 1

February 1, 2011

1.0 General Comments

Sample delivery group 8654 consists of the analytical results and supporting documentation for one water sample. Sample ID's and reference dates/times are given in the Sample Summary section of the Summary Data report. The sample was received as stated on the chain-of-custody document. Any discrepancies are noted on the Eberline Analytical Sample Receipt Checklist. No holding times were exceeded.

Tritium and gamma analyses were performed on the sample as received i.e. the sample was not filtered. The analytical volumes for all other analyses were subjected to a full nitric acid/hydrofluoric acid dissolution, and analyses were performed on the dissolution volume.

2.0 Quality Control

Quality Control Samples consisted of laboratory control samples (LCS), method blanks, duplicate analyses and matrix spike analyses. Included in the data package are copies of the Eberline Analytical radiometrics data sheets. The radiometrics data sheets for the QC LCS and QC blank samples indicate Eberline Analytical's standard QC aliquot of 1.0 sample; results for those QC types are calculated as pCi/sample. The QC LCS and QC blank sample results reported in the Summary Data Section have been divided by the appropriate method specific aliquot (see the Lab Method Summaries for specific aliquots) in order to make the results comparable to the field sample results. All QC sample results were within required control limits.

3.0 Method Errors

The error for each result is an estimate of the significant random uncertainties incurred in the measurement process. These are propagated to each final result. They include the counting (Poisson) uncertainty, as well as those intrinsic errors due to carrier or tracer standardization, aliquoting, counter efficiencies, weights, or volumes. The following method errors were propagated to the count error to calculate the 2^{σ} error (Total):

Analysis	Method Error
Gross alpha	20.6%
Gross beta	11.0%
Tritium	10.0%
Sr-90	10.4%
Ra-226	16.4%
Ra-228	10.4%
Uranium,Total	
Gamma Spec.	7.0%

Case Narrative, page 2

February 1, 2011

4.0 Analysis Notes

- **4.1 Gross Alpha/Gross Beta Analysis** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.2 Tritium Analysis** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.3 Strontium-90 Analysis -** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.4** Radium-226 Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits
- **4.5** Radium-228 Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits
- 4.6 Total Uranium Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- 4.7 Gamma Spectroscopy The K-40 MDA for sample ITL2489-03 (53.7 pCi/L) and the duplicate of sample ITL2489-03 (53.7 pCi/L) were greater than the required detection limit of 25 pCi/L, due to an elevated K40 background in the ROI for K40 on the detector used for analysis. No other problems were encountered during the processing of the samples. All other quality control sample results were within required control limits.

5.0 Case Narrative Certification Statement

"I certify that this data package is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. Release of the data obtained in this hard copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature."

maille	2/1/11
N. Joseph Verville	Date
Client Services Manager	

SDG <u>8654</u>
Contact <u>N. Joseph Verville</u>

Client <u>Test America, Inc.</u> Contract <u>ITL2489</u>

SUMMARY DATA SECTION

TABLE OF	C O	N T	E N	T S	·
About this section	•	•	•	•	1
Sample Summaries	•	•		•	3
Prep Batch Summary	•	•	•	. •	5
Work Summary	•	•	•	•	6
Method Blanks	•		٠	•	8
Lab Control Samples	•	•	•	•	9
Duplicates	•	•		•	10
Data Sheets	•	•	•	•	11
Method Summaries		•		•	12
Report Guides	•		•	•	20
End of Section	•		•		34

(B)

Prepared by

- marila

Reviewed by

SDG 8654

SDG 8654

Contact N. Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract <u>ITL2489</u>

ABOUT THE DATA SUMMARY SECTION

The Data Summary Section of a Data Package has all data, in several useful orders, necessary for first level, routine review of the data package for a Sample Delivery Group (SDG). This section follows the Data Package Narrative, which has an overview of the data package and a discussion of special problems. It is followed by the Raw Data Section, which has full details.

The Data Summary Section has several groups of reports:

SAMPLE SUMMARIES

The Sample and QC Summary Reports show all samples, including QC samples, reported in one SDG. These reports cross-reference client and lab sample identifiers.

PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches (lab groupings reflecting how work was organized) relevant to the reported SDG with information necessary to check the completeness and consistency of the SDG.

WORK SUMMARY

The Work Summary Report shows all samples and work done on them relevant to the reported SDG.

METHOD BLANKS

The Method Blank Reports, one for each Method Blank relevant to the SDG, show all results and primary supporting information for the blanks.

LAB CONTROL SAMPLES

The Lab Control Sample Reports, one for each Lab Control Sample relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

DUPLICATES

REPORT GUIDES

Page 1
SUMMARY DATA SECTION

Page 1

Lab id <u>EAS</u>
Protocol <u>TA</u>
Version <u>Ver 1.0</u>
Form <u>DVD-RG</u>
Version <u>3.06</u>
Report date <u>01/29/11</u>

SDG 8654

SDG <u>8654</u>
Contact <u>N. Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract ITL2489

ABOUT THE DATA SUMMARY SECTION

The Duplicate Reports, one for each Duplicate and Original sample pair relevant to the SDG, show all results, differences and primary supporting information for these QC samples.

MATRIX SPIKES

The Matrix Spike Reports, one for each Spiked and Original sample pair relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

DATA SHEETS

The Data Sheet Reports, one for each client sample in the SDG, show all results and primary supporting information for these samples.

METHOD SUMMARIES

The Method Summary Reports, one for each test used in the SDG, show all results, QC and method performance data for one analyte on one or two pages. (A test is a short code for the method used to do certain work to the client's specification.)

REPORT GUIDES

The Report Guides, one for each of the above groups of reports, have documentation on how to read the associated reports.

REPORT GUIDES

Page 2

SUMMARY DATA SECTION

Page 2

SDG 8654

SDG 8654
Contact N. Joseph Verville

LAB SAMPLE SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>ITL2489</u>

LAB SAMPLE ID	CLIENT SAMPLE ID	LOCATION	MATRIX	LEVEL	SAS NO	CHAIN OF	COLLECTED
S012369-01	ITL2489-03	Boeing - SSFL	WATER			ITL2489	12/26/10 08:58
S012369-03	Lab Control Sample		WATER				
S012369-04	Method Blank		WATER				
S012369-05	Duplicate (S012369-01)	Boeing - SSFL	WATER				12/26/10 08:58

LAB SUMMARY

Page 1

SUMMARY DATA SECTION

Page 3

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LS</u>

Version <u>3.06</u>

Report date <u>01/29/11</u>

SDG <u>8654</u>

Contact N. Joseph Verville

SDG 8654

QC SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>ITL2489</u>

QC BATCH	CHAIN OF CUSTODY	CLIENT SAMPLE ID	MATRIX	% MOIST	SAMPLE AMOUNT	BASIS	DAYS S		LAB SAMPLE ID	DEPARTMENT SAMPLE ID
8654	ITL2489	ITL2489-03	WATER		10.0 L		12/29/10	3	S012369-01	8654-001
		Method Blank Lab Control Sample Duplicate (S012369-01)	WATER WATER WATER		10.0 L		12/29/10	3	S012369-04 S012369-03 S012369-05	8654-004 8654-003 8654-005

QC SUMMARY

Page 1

SUMMARY DATA SECTION

Page 4

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-QS

 Version
 3.06

 Report date
 01/29/11

SDG 8654

SDG <u>8654</u>
Contact <u>N. Joseph Verville</u>

PREP BATCH SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>ITL2489</u>

			PREPARATION	PLANCHETS ANALYZED						QUALI-	
TEST	MATRIX	METHOD	BATCH	2σ %	CLIENT	MORE	RE	BLANK	LCS	DUP/ORIG MS/ORIG	FIERS
Beta	Counting										
AC	WATER	Radium-228 in Water	7271-037	10.4	1			1	1	1/1	
SR	WATER	Strontium-90 in Water	7271-037	10.4	1			1	1	1/1	
Gas P	roportiona	l Counting									
80A	WATER	Gross Alpha in Water	7271-037	20.6	1			1	1	1/1	
8 OB	WATER	Gross Beta in Water	7271-037	11.0	1			1	1	1/1	
Gamma	Spectroso	сору									
GAM	WATER	Gamma Emitters in Water	7271-037	7.0	1			1	1	1/1	
Kinet	ic Phospho	orimetry, ug									
U_T	WATER	Uranium, Total	7271-037		1			1	1	1/1	
Liqui	d Scintil	lation Counting									
Н	WATER	Tritium in Water	7271-037	10.0	1			1	1	1/1	
Radon	Counting										
RA	WATER	Radium-226 in Water	7271-037	16.4	1			1	1	1/1	

Blank, LCS, Duplicate and Spike planchets are those in the same preparation batch as some Client sample.

PREP BATCH SUMMARY
Page 1
SUMMARY DATA SECTION
Page 5

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-PBS

 Version
 3.06

 Report date
 01/29/11

SDG 8654

SDG <u>8654</u>

Contact N. Joseph Verville

LAB WORK SUMMARY

Client Test America, Inc.

Contract <u>ITL2489</u>

LAB SAMPLE COLLECTED RECEIVED	CLIENT SAMPLE ID LOCATION CUSTODY SAS no	MATRIX	PLANCHET	TEST	SUF-	ANALYZED	REVIEWED	вч	METHOD
S012369-01	ITL2489-03		8654-001	80A/80		01/06/11	01/07/11	вw	Gross Alpha in Water
12/26/10	Boeing - SSFL	WATER	8654-001	80B/80		01/06/11	01/07/11	BW	Gross Beta in Water
12/29/10	ITL2489		8654-001	AC		01/24/11	01/25/11	BW	Radium-228 in Water
			8654-001	GAM		01/05/11	01/11/11	MWT	Gamma Emitters in Water
			8654-001	Н		01/12/11	01/18/11	BW	Tritium in Water
			8654-001	RA		01/22/11	01/24/11	BW	Radium-226 in Water
			8654-001	SR		01/13/11	01/25/11	BW	Strontium-90 in Water
			8654-001	U_T	•	01/20/11	01/24/11	BW	Uranium, Total
S012369-03	Lab Control Sample		8654-003	80A/80		01/06/11	01/07/11	BW	Gross Alpha in Water
		WATER	8654-003	80B/80		01/06/11	01/07/11	BW	Gross Beta in Water
			8654-003	AC		01/24/11	01/25/11	BW	Radium-228 in Water
			8654-003	GAM		01/05/11	01/11/11	MWT	Gamma Emitters in Water
			8654-003	Н		01/12/11	01/18/11	BW	Tritium in Water
			8654-003	RA		01/22/11	01/24/11	BW	Radium-226 in Water
			8654-003	SR		01/13/11	01/25/11	BW	Strontium-90 in Water
			8654-003	U_T		01/20/11	01/24/11	BW	Uranium, Total
S012369-04	Method Blank		8654-004	80 A /80		01/06/11	01/07/11	BW	Gross Alpha in Water
		WATER	8654-004	80B/80		01/06/11	01/07/11	BW	Gross Beta in Water
			8654-004	AC		01/24/11	01/25/11	BW	Radium-228 in Water
			8654-004	GAM		01/05/11	01/11/11	MWT	Gamma Emitters in Water
	•		8654-004	Н		01/12/11	01/18/11	BW	Tritium in Water
			8654-004	RA		01/22/11	01/24/11	BW	Radium-226 in Water
			8654-004	SR		01/13/11	01/25/11	BW	Strontium-90 in Water
			8654-004	U_T		01/20/11	01/24/11	BW	Uranium, Total
S012369-05	Duplicate (S012369-01)		8654-005	80A/80		01/06/11	01/07/11	BW	Gross Alpha in Water
12/26/10	Boeing - SSFL	WATER	8654-005	80B/80		01/06/11	01/07/11	BW	Gross Beta in Water
12/29/10			8654-005	AC		01/24/11	01/25/11	BW	Radium-228 in Water
			8654-005	GAM		01/05/11	01/11/11	MWT	Gamma Emitters in Water
			8654-005	Н		01/12/11	01/18/11	BW	Tritium in Water
			8654-005	RA		01/22/11	01/24/11	BW	Radium-226 in Water
	**		8654-005	SR		01/13/11	01/25/11	BW	Strontium-90 in Water
			8654-005	U_T		01/20/11	01/24/11	BW	Uranium, Total

WORK SUMMARY

Page 1

SUMMARY DATA SECTION

Page 6

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LWS

 Version
 3.06

 Report date
 01/29/11

SDG 8654

SDG <u>8654</u>
Contact <u>N. Joseph Verville</u>

WORK SUMMARY, cont.

Client Test America, Inc.
Contract ITL2489

TEST	SAS no	COUNTS	OF TESTS REFERENCE	BY	SAMPLE TYPE CLIENT MORE	RE	BLANK	LCS	DUP SPIKE	TOTAL
80A/80		Gross Alpha in Water	900.0		1		1	1	1	4
80B/80		Gross Beta in Water	900.0		1		1	1	1	4
AC		Radium-228 in Water	904.0		1		1	1	1	4
GAM		Gamma Emitters in Water	901.1		1		1	1	1	4
Н		Tritium in Water	906.0		1		1	1	1	4
RA		Radium-226 in Water	903.1		1		1	1	1	4
SR		Strontium-90 in Water	905.0		1		1	1	1	4
U_T		Uranium, Total	D5174		1		1	1	1	4
TOTALS			A ARRAMAN AND PROPERTY.		8		8	8	8	32

WORK SUMMARY

Page 2

SUMMARY DATA SECTION

Page 7

8654-004

METHOD BLANK

Method Blank

SDG	8654	Client	Test America, Inc.	
Contact	N. Joseph Verville	Contract	ITL2489	
Lab sample id	0010369 04	Client sample id	Method Blank	
		•	1	
Dept sample id	8654-004	Material/Matrix		WATER

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	0.205	0.31	0.492	3.00	บ	A08
Gross Beta	12587472	-0.321	0.59	0.999	4.00	U .	80B
Tritium	10028178	22.6	160	272	500	U	H
Radium-226	13982633	0.034	0.34	0.640	1.00	U	RA
Radium-228	15262201	-0.118	0.17	0.473	1.00	U	AC
Strontium-90	10098972	0.064	0.30	0.666	2.00	U	SR
Uranium, Total		0	0.007	0.017	1.00	U	U_T
Potassium-40	13966002	U		20.1	25.0	U	GAM
Cesium-137	10045973	Ŭ		1.73	20.0	U	GAM

QC-BLANK #76729

METHOD BLANKS
Page 1
SUMMARY DATA SECTION
Page 8

SDG 8654

8654-003

LAB CONTROL SAMPLE

Lab Control Sample

SDG 8654
Contact N. Joseph Verville

Client <u>Test America, Inc.</u>

Contract ITL2489

Lab sample id <u>8012369-03</u>
Dept sample id <u>8654-003</u>

Client sample id Lab Control Sample

Material/Matrix _____

WATER

ANALYTE	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ADDED pCi/L	2σ ERR pCi/L	REC %	2σ LMTS (TOTAL)	PROTOCOL LIMITS
Gross Alpha	36.6	2.4	0.654	3.00		80A	40.4	1.6	91	80-120	70-130
Gross Beta	33.6	1.6	1.58	4.00		80B	35.0	1.4	96	88-112	70-130
Tritium	2420	260	271	500		н	2550	100	95	86-114	80-120
Radium-226	58.4	1.9	0.577	1.00		RA	55.7	2.2	105	82-118	80-120
Radium-228	4.53	0.30	0.432	1.00		AC	4.62	0.18	98	87-113	60-140
Strontium-90	17.9	1.4	0.597	2.00		SR	17.5	0.70	102	86-114	80-120
Uranium, Total	59.8	7.2	0.174	1.00		U_T	62.5	2.5	96	88-112	80-120
Cobalt-60	94.8	4.6	2.23	10.0		GAM	102	4.1	93	91-109	80-120
Cesium-137	114	4.2	2.92	20.0		GAM	110	4.4	104	91-109	80-120

QC-LCS #76728

LAB CONTROL SAMPLES
Page 1

SUMMARY DATA SECTION

Page 9

Lab id EAS

Protocol TA

Version Ver 1.0

Form DVD-LCS

Version 3.06

Report date 01/29/11

SDG 8654

8654-005

DUPLICATE

ITL2489-03

Client Test America, Inc.

Contract ITL2489

ORIGINAL DUPLICATE

Lab sample id <u>S012369-05</u> Dept sample id <u>8654-005</u>

SDG 8654

Contact N. Joseph Verville

Lab sample id <u>S012369-01</u>

Dept sample id <u>8654-001</u>

Received <u>12/29/10</u>

Client sample id ITL2489-03

Location/Matrix Boeing - SSFL

WATER

Collected/Volume 12/26/10 08:58 10.0 L

Chain of custody id ITL2489

ANALYTE	DUPLICATE pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ORIGINAL pCi/L	2σ ERR (COUNT)	MDA pCi/L	QUALI- FIERS	RPD %	3σ TOT	DER σ
Gross Alpha	1.65	0.42	0.342	3.00	J	A08	1.89	0.47	0.400	J	14	69	0.6
Gross Beta	3.05	0.59	0.819	4.00	J	80B	3.06	0.63	0.885	J	0	48	0
Tritium	44.4	160	267	500	U	н	-40.3	150	270	U	-		0.8
Radium-226	-0.022	0.31	0.592	1.00	υ	RA	0.097	0.36	0.653	U	-		0.5
Radium-228	0.035	0.16	0.446	1.00	υ	AC	0.109	0.17	0.456	ָ ע	-		0.6
Strontium-90	-0.005	0.29	0.693	2.00	U	SR	0.222	0.33	0.684	U	-		1.0
Uranium, Total	0.164	0.023	0.017	1.00	J	U_T	0.177	0.022	0.017	J	8	28	0.8
Potassium-40	υ		53.7	25.0	U	GAM	Ü		53.7	υ	-		0
Cesium-137	U		2.68	20.0	ט	GAM	ŭ		2.68	υ	· -		0

QC-DUP#1 76730

DUPLICATES

Page 1

SUMMARY DATA SECTION

Page 10

Lab id EAS Protocol TA

Version Ver 1.0

Form DVD-DUP

Version 3.06

Report date 01/29/11

8654-001

DATA SHEET

ITL2489-03

	8654 N. Joseph Verville	Client Contract	Test America, Inc. ITL2489	
Lab sample id Dept sample id Received	8654-001 12/29/10	Client sample id Location/Matrix Collected/Volume ain of custody id	Boeing - SSFL 12/26/10 08:58 10.0 L	WATER

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	1.89	0.47	0.400	3.00	J	80A
Gross Beta	12587472	3.06	0.63	0.885	4.00	J	80B
Tritium	10028178	-40.3	150	270	500	U	H
Radium-226	13982633	0.097	0.36	0.653	1.00	Ū	RA
Radium-228	15262201	0.109	0.17	0.456	1.00	U	AC
Strontium-90	10098972	0.222	0.33	0.684	2.00	υ	SR
Uranium, Total		0.177	0.022	0.017	1.00	J	U_T
Potassium-40	13966002	Ū		53.7	25.0	U	GAM
Cesium-137	10045973	u U		2.68	20.0	Ū	GAM

DATA SHEETS
Page 1
SUMMARY DATA SECTION
Page 11

SDG 8654

Test AC Matrix WATER

SDG 8654

Contact N. Joseph Verville

LAB METHOD SUMMARY

RADIUM-228 IN WATER BETA COUNTING Client Test America, Inc.
Contract ITL2489

RESULTS

. 1	A 70

RAW SUF-

SAMPLE ID TEST	FIX PLANCHET	CLIENT SAMPLE ID	Radium-228	
Preparation batch	7271-037			
S012369-01	8654-001	ITL2489-03	υ	
S012369-03	8654-003	Lab Control Sample	ok	
S012369-04	8654-004	Method Blank	U	
S012369-05	8654-005	Duplicate (S012369-01)	- U	

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC	DILU- TION	YIELD	EFF %	COUNT min	FWHM keV	DRIFT KeV		PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 7271-037 2ø prep error 1	0.4 % Ref	ference	Lab N	Noteboo	k No. 7	7271	pg.037	,					
S012369-01	ITL2489-03	0.456	1.80			76		150			29	01/24/11	01/24	GRB-229
S012369-03	Lab Control Sample	0.432	1.80			74		150				01/24/11	01/24	GRB-230
S012369-04	Method Blank	0.473	1.80			73		150				01/24/11	01/24	GRB-231
S012369-05	Duplicate (S012369-01)	0.446	1.80			73		150			29	01/24/11	01/24	GRB-232
Nominal val	ues and limits from method	1.00	1.80			30-10	5	50			180			

PROCEDURES	REFERENCE

NCE 904.0

DWP-894 Sequentia

Sequential Separation of Actinium-228 and

Radium-226 in Drinking Water (>1 Liter Aliquot),

rev 5

AVERAGES ± 2 SD MDA 0.452 ± 0.035 FOR 4 SAMPLES YIELD 74 ± 3

METHOD SUMMARIES

Page 1

SUMMARY DATA SECTION

Page 12

Lab id <u>EAS</u>
Protocol <u>TA</u>

Version Ver 1.0

Form <u>DVD-LMS</u>

Version 3.06

Report date <u>01/29/11</u>

SDG 8654

Test <u>SR</u> Matrix <u>WATER</u>

SDG 8654

Contact N. Joseph Verville

LAB METHOD SUMMARY

STRONTIUM-90 IN WATER
BETA COUNTING

Client Test America, Inc.
Contract ITL2489

RESULTS

* * *	

RAW SUF-

SAMPLE ID TEST	FIX PLANCHET	CLIENT SAMPLE ID	Strontium-90		
Preparation batch	7271-037				
S012369-01	8654-001	ITL2489-03	υ		
S012369-03	8654-003	Lab Control Sample	ok		
S012369-04	8654-004	Method Blank	ū		
S012369-05	8654-005	Duplicate (S012369-01)	- U		

METHOD PERFORMANCE

LAB	RAW SUF-		MDA	ALIQ	PREP	DILU-	YIELD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT SAMPLE ID	pCi/L	L	FAC	TION	ક	ક	min	keV	KeV	HELLD	PREPARED	YZED	DETECTOR
Preparation	ı batch 727	1-037 2σ prep error	10.4 % Re	ference	Lab N	ioteboo	k No.	7271	pg.037	7					
S012369-01		ITL2489-03	0.684	0.500			75		50			18	01/08/11	01/13	GRB-204
S012369-03		Lab Control Sample	0.597	0.500			83		50				01/08/11	01/13	GRB-222
S012369-04		Method Blank	0.666	0.500			82		50				01/08/11	01/13	GRB-201
S012369-05		Duplicate (S012369-01)	0.693	0.500			72		50			18	01/08/11	01/13	GRB-202
Nominal val	ues and li	mits from method	2.00	0.500			30-10	5	50			180			

PROCEDURES	REFERENCE	905.0
	DWP-380	Strontium in Drinking Water, rev 8

AVERAGES ± 2 SD	MDA	0.660	±	0.087
FOR 4 SAMPLES	YIELD	78	±	11

METHOD SUMMARIES

Page 2

SUMMARY DATA SECTION

Page 13

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LMS</u>

Version <u>3.06</u>

Report date <u>01/29/11</u>

SDG 8654

Test 80A Matrix WATER

SDG 8654

Contact N. Joseph Verville

LAB METHOD SUMMARY

GROSS ALPHA IN WATER

GAS PROPORTIONAL COUNTING

Client <u>Test America, Inc.</u>
Contract <u>ITL2489</u>

RESULTS

LAB SAMPLE ID	RAW SUF- TEST FIX	PLANCHET	CLIENT SAMPLE ID	Gross Alpha	
Preparation	hatch 727	71-037			
S012369-01		8654-001	ITL2489-03	1.89 J	
					
S012369-03	80	8654-003	Lab Control Sample	ok	
S012369-04	80	8654-004	Method Blank	Ū	
S012369-05	80	8654-005	Duplicate (S012369-01)	ok J	

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX	CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC	DILU- TION	RESID mg	EFF %			DRIFT KeV		PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 727	1-037 2σ prep error 2	0.6 % Res	ference	Lab N	ioteboo	k No. '	7271	pg.037	7					
S012369-01	80	ITL2489-03	0.400	0.300			29		400			11	01/06/11	01/06	GRB-105
5012369-03	80	Lab Control Sample	0.654	0.250			60		400				01/06/11	01/06	GRB-107
S012369-04	80	Method Blank	0.492	0.250			62		400				01/06/11	01/06	GRB-109
S012369-05		Duplicate (S012369-01)	0.342	0.300			31		400			11	01/06/11	01/06	GRB-111
Nominal val	ues and li	mits from method	3.00	0.250			0-20	0	100			180			

PRO	CEDURES	REFERENCE	900.0
		DWP-121	Gross Alpha and Gross Beta in Drinking Water,
			rev 10

AVERAGES ± 2 SD	MDA	0.472	±	0.272
FOR 4 SAMPLES	RESIDUE	46	±	36

METHOD SUMMARIES

Page 3

SUMMARY DATA SECTION

Page 14

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LMS</u>

Version <u>3.06</u>

Report date <u>01/29/11</u>

Lab id EAS

SDG 8654

Test 80B Matrix WATER

SDG 8654

Contact N. Joseph Verville

LAB METHOD SUMMARY

GROSS BETA IN WATER

GAS PROPORTIONAL COUNTING

Client Test America, Inc.
Contract ITL2489

RESULTS

LAB RAW SUF-

	T FIX PLANCHET	CLIENT SAMPLE ID	Gross Beta	
Preparation bat	ch 7271-037			
S012369-01 80	8654-001	ITL2489-03	3.06 J	
S012369-03 80	8654-003	Lab Control Sample	ok	
S012369-04 80	8654-004	Method Blank	υ	
S012369-05 80	8654-005	Duplicate (S012369-01)	ok J	

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF-	CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC	DILU- TION	RESID mg	EFF %		FWHM keV		PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 727	71-037 2σ prep error 1	1.0 % Rei	ference	Lab 1	Noteboo	k No.	7271	pg.03	7				
S012369-01		ITL2489-03	0.885				29		400		11	01/06/11	01/06	GRB-105
S012369-03	80	Lab Control Sample	1.58	0.250			60		400			01/06/11	01/06	GRB-107
S012369-04	80	Method Blank	0.999	0.250			62		400			01/06/11	01/06	GRB-109
S012369-05	80	Duplicate (S012369-01)	0.819	0.300			31		400		11	01/06/11	01/06	GRB-111
Nominal val	ues and li	imits from method	4.00	0.250			0-20	0	100		180			-

PROCEDURES	REFERENCE	900.0
	DWP-121	Gross Alpha and Gross Beta in Drinking Water,
		rev 10

AVERAGES ± 2 SD	MDA1.	.07 ± 0.695	
FOR 4 SAMPLES	RESIDUE 46	6 ± 36	

METHOD SUMMARIES

Page 4

SUMMARY DATA SECTION

Page 15

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LMS</u>

Version <u>3.06</u>

Report date <u>01/29/11</u>

SDG 8654

Test GAM Matrix WATER

SDG 8654

Contact N. Joseph Verville

LAB METHOD SUMMARY

GAMMA EMITTERS IN WATER
GAMMA SPECTROSCOPY

Client Test America, Inc.
Contract ITL2489

RESULTS

Preparation b	oatch 7271-037				
S012369-01	8654-001	ITL2489-03		σ	
S012369-03	8654-003	Lab Control Sample	ok	ok	
S012369-04	8654-004	Method Blank		ū	
S012369-05	8654-005	Duplicate (S012369-01)		- U	

METHOD PERFORMANCE

LAB	RAW SUF-			MDA	ALIQ	PREP	DILU-	YIELD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT	SAMPLE ID	pCi/L	L	FAC	TION	ક	ક	min	keV	KeV	HELLD	PREPARED	YZED	DETECTOR
Preparation	batch 727	1-037	2σ prep error 7	.0 % Re	ference	Lab N	oteboo)	k No.	7271	pg.03	7					
S012369-01		ITL248	9-03		2.00					540			10	01/05/11	01/05	MB,05,00
S012369-03		Lab Co	ntrol Sample		2.00					540				01/05/11	01/05	MB,02,00
S012369-04		Method	Blank		2.00					541				01/05/11	01/05	01,04,00
S012369-05		Duplic	ate (S012369-01)		2.00					540			10	01/05/11	01/05	MB,05,00
Nominal val	ues and li	mits fr	om method	6.00	2.00					400			180			

	PROCEDURES	REFERENCE	901.1
***************************************		DWP-100	Preparation of Drinking Water Samples for Gamma
			Spectroscopy, rev 5

METHOD SUMMARIES

Page 5

SUMMARY DATA SECTION

Page 16

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LMS</u>

Version <u>3.06</u>

Report date <u>01/29/11</u>

SDG 8654

Test <u>U T</u> Matrix <u>WATER</u>

SDG 8654

Contact N. Joseph Verville

LAB METHOD SUMMARY

URANIUM, TOTAL

KINETIC PHOSPHORIMETRY, UG

Client <u>Test America</u>, <u>Inc</u>. Contract <u>ITL2489</u>

RESULTS

LAB	RAW SUF-	-		Uranium,		
SAMPLE ID	TEST FIX	PLANCHET	CLIENT SAMPLE ID	Total		
Preparation	batch 727	71-037				· · · · · · · · · · · · · · · · · · ·
S012369-01		8654-001	ITL2489-03	0.177 J		
S012369-03		8654-003	Lab Control Sample	ok	,	
S012369-04		8654-004	Method Blank	ū		
S012369-05		8654-005	Duplicate (S012369-01)	ok J		
						•
Nominal val	lues and li	mits from m	ethod RDLs (pCi/L)	1.00		

METHOD PERFORMANCE

LAB	RAW SUF-		MDA	ALIQ	PREP	DILU-	YIELD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX CLIENT	SAMPLE ID	pCi/L	L	FAC	TION	8	8	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation	batch 7271-037	2σ prep error	Re	ference	Lab N	oteboo	k No.	7271	pg.03	7					
S012369-01	ITL248	39-03	0.017	0.0200								25	01/20/11	01/20	KPA-001
S012369-03	Lab Co	ontrol Sample	0.174	0.0200									01/20/11	01/20	KPA-001
S012369-04	Method	Blank	0.017	0.0200					•				01/20/11	01/20	KPA-001
S012369-05	Duplio	cate (S012369-01)	0.017	0.0200								25	01/20/11	01/20	KPA-001
Nominal val	ues and limits fr	com method	1.00	0.0200								180			

	PROCEDURES REFERENCE	E D5174		AVERAGES ± 2 SD	MDA	0.056	± _	0
Į				FOR 4 SAMPLES	YIELD	:	± _	

0.157

METHOD SUMMARIES

Page 6

SUMMARY DATA SECTION

Page 17

SDG 8654

Test <u>H</u> Matrix <u>WATER</u>
SDG <u>8654</u>

Contact N. Joseph Verville

LAB METHOD SUMMARY

TRITIUM IN WATER

LIQUID SCINTILLATION COUNTING

Client Test America, Inc.
Contract ITL2489

RESULTS

LAB

RAW SUF-

Preparation batch	7271-037		
S012369-01	8654-001	ITL2489-03	U
S012369-03	8654-003	Lab Control Sample	ok
S012369-04	8654-004	Method Blank	. U
S012369-05	8654-005	Duplicate (S012369-01)	· - ʊ

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC	DILU- TION	%	EFF %	COUNT min		DRIFT KeV		PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 7271-037 2σ prep error 1	0.0 %	Reference	Lab 1	Notebool	No.	7271	pg.037	7					
S012369-01	ITL2489-03	270	0.0100			100		50			17	01/12/11	01/12	LSC-004
S012369-03	Lab Control Sample	271	0.100			10		50				01/12/11	01/12	LSC-004
S012369-04	Method Blank	272	0.100			10		50				01/12/11	01/12	LSC-004
S012369-05	Duplicate (S012369-01)	267	0.0100			100		50			17	01/12/11	01/12	LSC-004
Nominal val	ues and limits from method	500	0.0100					100			180			

	PROCEDURES	REFERENCE	906.0
		DWP-212	Tritium in Drinking Water by Distillation, rev 8
- 1			

AVERAGES ± 2 SD MDA 270 ± 4.32

FOR 4 SAMPLES YIELD 55 ± 104

METHOD SUMMARIES

Page 7

SUMMARY DATA SECTION

Page 18

 Lab id EAS

 Protocol TA

 Version Ver 1.0

 Form DVD-LMS

 Version 3.06

Report date <u>01/29/11</u>

SDG 8654

Test <u>RA</u> Matrix <u>WATER</u> SDG <u>8654</u>

Contact N. Joseph Verville

LAB METHOD SUMMARY

RADIUM-226 IN WATER
RADON COUNTING

Client Test America, Inc.
Contract ITL2489

RESULTS

Preparation batch	7271-037		
S012369-01	8654-001	ITL2489-03	ΰ
S012369-03	8654-003	Lab Control Sample	ok
S012369-04	8654-004	Method Blank	U _.
S012369-05	8654-005	Duplicate (S012369-01)	- U

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC	DILU- TION	\$ AIETD	EFF %			DRIFT KeV		PREPARED	ANAL- YZED	DETECTOR
Preparation	batch 7271-037 2σ prep error 16	.4 % Re	ference	Lab N	oteboo	k No.	7271	pg.037	,					
S012369-01	ITL2489-03	0.653	0.100			100		87			27	01/13/11	01/22	RN-011
S012369-03	Lab Control Sample	0.577	0.100			100		178				01/22/11	01/22	RN-009
S012369-04	Method Blank	0.640	0.100			100		87				01/22/11	01/22	RN-010
S012369-05	Duplicate (S012369-01)	0.592	0.100			100		<u>87</u>			27	01/22/11	01/22	RN-012
Nominal val	ues and limits from method	1.00	0.100					100			180			

	PROCEDURES	REFERENCE	903.1	
		DWP-881A	Ra-226 Screening in Drinking Water, rev 6	-
- 1				J

AVERAGES ± 2 SD MDA 0.616 ± 0.073

FOR 4 SAMPLES YIELD 100 ± 0

METHOD SUMMARIES

Page 8

SUMMARY DATA SECTION

Page 19

Lab id <u>EAS</u>
Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LMS</u>
Version <u>3.06</u>

Report date <u>01/29/11</u>

SDG 8654

SDG <u>8654</u>
Contact <u>N. Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract <u>ITL2489</u>

SAMPLE SUMMARY

The Sample and QC Summary Reports show all samples, including QC samples, reported in one Sample Delivery Group (SDG).

The Sample Summary Report fully identifies client samples and gives the corresponding lab sample identification. The QC Summary Report shows at the sample level how the lab organized the samples into batches and generated QC samples. The Preparation Batch and Method Summary Reports show this at the analysis level.

The following notes apply to these reports:

- * LAB SAMPLE ID is the lab's primary identification for a sample.
- * DEPARTMENT SAMPLE ID is an alternate lab id, for example one assigned by a radiochemistry department in a lab.
- * CLIENT SAMPLE ID is the client's primary identification for a sample. It includes any sample preparation done by the client that is necessary to identify the sample.
- * QC BATCH is a lab assigned code that groups samples to be processed and QCed together. These samples should have similar matrices.

QC BATCH is not necessarily the same as SDG, which reflects samples received and reported together.

* All Lab Control Samples, Method Blanks, Duplicates and Matrix Spikes are shown that QC any of the samples. Due to possible reanalyses, not all results for all these QC samples may be relevant to the SDG. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.

REPORT GUIDES
Page 1
SUMMARY DATA SECTION
Page 20

SDG 8654

SDG <u>8654</u> Contact <u>N. Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract <u>ITL2489</u>

PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches in one Sample Delivery Group (SDG) with information necessary to check the completeness and consistency of the SDG.

The following notes apply to this report:

- * The preparation batches are shown in the same order as the Method Summary Reports are printed.
- * Only analyses of planchets relevant to the SDG are included.
- * Each preparation batch should have at least one Method Blank and LCS in it to validate client sample results.
- * The QUALIFIERS shown are all qualifiers other than U, J, B, L and H that occur on any analysis in the preparation batch. The Method Summary Report has these qualifiers on a per sample basis.

These qualifiers should be reviewed as follows:

- X Some data has been manually entered or modified. Transcription errors are possible.
- P One or more results are 'preliminary'. The data is not ready for final reporting.
- 2 There were two or more results for one analyte on one planchet imported at one time. The results in DVD may not be the same as on the raw data sheets.

Other lab defined qualifiers may occur. In general, these should be addressed in the SDG narrative.

REPORT GUIDES
Page 2
SUMMARY DATA SECTION
Page 21

SDG 8654

SDG <u>8654</u>
Contact <u>N. Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract <u>ITL2489</u>

WORK SUMMARY

The Work Summary Report shows all samples, including QC samples, and all relevant analyses in one Sample Delivery Group (SDG). This report is often useful as supporting documentation for an invoice.

The following notes apply to this report:

- * TEST is a code for the method used to measure associated analytes. Results and related information for each analyte are on the Data Sheet Report. In special cases, a test code used in the summary data section is not the same as in associated raw data. In this case, both codes are shown on the Work Summary.
- * SUFFIX is the lab's code to distinguish multiple analyses (recounts, reworks, reanalyses) of a fraction of the sample. The suffix indicates which result is being reported. An empty suffix normally identifies the first attempt to analyze the sample.
- * The LAB SAMPLE ID, TEST and SUFFIX uniquely identify all supporting data for a result. The Method Summary Report for each TEST has method performance data, such as yield, for each lab sample id and suffix and procedures used in the method.
- * PLANCHET is an alternate lab identifier for work done for one test. It, combined with the TEST and SUFFIX, may be the best link to raw data.
- * For QC samples, only analyses that directly QC some regular sample are shown. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.
- * The SAS (Special Analytical Services) Number is a client or lab assigned code that reflects special processing for samples, such as rapid turn around. Counts of tests done are lists by SAS number since it is likely to affect prices.

REPORT GUIDES
Page 3
SUMMARY DATA SECTION
Page 22

SDG 8654

SDG <u>8654</u>
Contact <u>N. Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract ITL2489

DATA SHEET

The Data Sheet Report shows all results and primary supporting information for one client sample or Method Blank. This report corresponds to both the CLP Inorganics and Organics Data Sheet.

The following notes apply to this report:

- * TEST is a code for the method used to measure an analyte. If the TEST is empty, no data is available; the analyte was not analyzed for.
- * The LAB SAMPLE ID and TEST uniquely identify work within the Summary Data Section of a Data Package. The Work Summary and Method Summary Reports further identify raw data that underlies this work.

The Method Summary Report for each TEST has method performance data, such as yield, for each Lab Sample ID and a list of procedures used in the method.

- * ERRORS can be labeled TOTAL or COUNT. TOTAL implies a preparation (non-counting method) error has been added, as square root of sum of squares, to the counting error denoted by COUNT. The preparation errors, which may vary by preparation batch, are shown on the Method Summary Report.
- * A RESULT can be 'N.R.' (Not Reported). This means the lab did this work but chooses not to report it now, possibly because it was reported at another time.
- * When reporting a Method Blank, a RESULT can be 'N.A.' (Not Applicable). This means there is no reported client sample work in the same preparation batch as the Blank's result. This is likely to occur when the Method Blank is associated with reanalyses of selected work for a few samples in the SDG.

The following qualifiers are defined by the DVD system:

U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the limit.

REPORT GUIDES

Page 4

SUMMARY DATA SECTION

Page 23

SDG 8654

SDG <u>8654</u>
Contact <u>N. Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract <u>ITL2489</u>

DATA SHEET

- J The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.
- B A Method Blank associated with this sample had a result without a U flag and, after correcting for possibly different aliquots, that result is greater than or equal to the MDA for this sample.

Normally, B is not assigned if U is. When method blank subtraction is shown on this report, B flags are assigned based on the unsubtracted values while U's are assigned based on the subtracted ones. Both flags can be assigned in this case.

For each sample result, all Method Blank results in the same preparation batch are compared. The Method Summary Report documents this and other QC relationships.

- L Some Lab Control Sample that QC's this sample had a low recovery. The lab can disable assignment of this qualifier.
- H Similar to 'L' except the recovery was high.
- P The RESULT is 'preliminary'.
- X Some data necessary to compute the RESULT, ERROR or MDA was manually entered or modified.
- 2 There were two or more results available for this analyte. The reported result may not be the same as in the raw data.

Other qualifiers are lab defined. Definitions should be in the SDG narrative.

The following values are underlined to indicate possible problems:

- * An MDA is underlined if it is bigger than its RDL.
- * An ERROR is underlined if the 1.645 sigma counting error is bigger than both the MDA and the RESULT, implying that the MDA

REPORT GUIDES
Page 5
SUMMARY DATA SECTION
Page 24

SDG 8654

SDG <u>8654</u>
Contact <u>N. Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract <u>ITL2489</u>

DATA SHEET

may not be a good estimate of the 'real' minimum detectable activity.

- * A negative RESULT is underlined if it is less than the negative of its 2 sigma counting ERROR.
- * When reporting a Method Blank, a RESULT is underlined if greater than its MDA. If the MDA is blank, the 2 sigma counting error is used in the comparison.

REPORT GUIDES

Page 6

SUMMARY DATA SECTION

Page 25

SDG 8654

SDG <u>8654</u> Contact <u>N. Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract <u>ITL2489</u>

LAB CONTROL SAMPLE

The Lab Control Sample Report shows all results, recoveries and primary supporting information for one Lab Control Sample.

The following notes apply to this report:

- * All fields in common with the Data Sheet Report have similar usage. Refer to its Report Guide for details.
- * An amount ADDED is the lab's value for the actual amount spiked into this sample with its ERROR an estimate of the error of this amount.

An amount added is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- * REC (Recovery) is RESULT divided by ADDED expressed as a percent.
- * The first, computed limits for the recovery reflect:
 - 1. The error of RESULT, including that introduced by rounding the result prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- * The second limits are protocol defined upper and lower QC limits for the recovery.
- * The recovery is underlined if it is outside either of these ranges.

REPORT GUIDES
Page 7
SUMMARY DATA SECTION

Page 26

Protocol TA

Version Ver 1.0

Form DVD-RG

Version 3.06

Report date 01/29/11

Lab id EAS

SDG 8654

SDG <u>8654</u>
Contact <u>N. Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>ITL2489</u>

DUPLICATE

The Duplicate Report shows all results, differences and primary supporting information for one Duplicate and associated Original sample.

The following notes apply to this report:

* All fields in common with the Data Sheet Report have similar usage. This applies both to the Duplicate and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Duplicate has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

* The RPD (Relative Percent Difference) is the absolute value of the difference of the RESULTs divided by their average expressed as a percent.

If both RESULTs are less than their MDAs, no RPD is computed and a '-' is printed.

For an analyte, if the lab did work for both samples but has data for only one, the MDA from the sample with data is used as the other's result in the RPD.

* The first, computed limit is the sum, as square root of sum of squares, of the errors of the results divided by the average result as a percent, hence the relative error of the difference rather than the error of the relative difference. The errors include those introduced by rounding the RESULTs prior to printing.

If this limit is labeled TOT, it includes the preparation error in the RESULTs. If labeled CNT, it does not.

This value reported for this limit is at most 999.

- * The second limit for the RPD is the larger of:
 - 1. A fixed percentage specified in the protocol.

REPORT GUIDES

Page 8

SUMMARY DATA SECTION

Page 27

SDG 8654

SDG <u>8654</u>
Contact <u>N. Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract <u>ITL2489</u>

DUPLICATE

- 2. A protocol factor (typically 2) times the average MDA as a percent of the average result. This limit applies when the results are close to the MDAs.
- * The RPD is underlined if it is greater than either limit.
- * If specified by the lab, the second limit column is replaced by the Difference Error Ratio (DER), which is the absolute value of the difference of the results divided by the quadratic sum of their one sigma errors, the same errors as used in the first limit.

Except for differences due to rounding, the DER is the same as the RPD divided by the first RPD limit with the limit scaled to 1 sigma.

* The DER is underlined if it is greater than the sigma factor, typically 2 or 3, shown in the header for the first RPD limit.

REPORT GUIDES
Page 9
SUMMARY DATA SECTION
Page 28

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06Report date 01/29/11

SDG 8654

SDG 8654

Contact N. Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>ITL2489</u>

MATRIX SPIKE

The Matrix Spike Report shows all results, recoveries and primary supporting information for one Matrix Spike and associated Original sample.

The following notes apply to this report:

* All fields in common with the Data Sheet Report have similar usage. This applies both to the Spiked and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Spike has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

* An amount ADDED is the lab's value for the actual amount spiked into the Spike sample with its ERROR an estimate of the error of this amount.

An amount is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- * REC (Recovery) is the Spike RESULT minus the Original RESULT divided by ADDED expressed as a percent.
- * The first, computed limits for the recovery reflect:
 - 1. The errors of the two RESULTs, including those introduced by rounding them prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- * The second limits are protocol defined upper and lower QC limits for the recovery.

REPORT GUIDES
Page 10
SUMMARY DATA SECTION
Page 29

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date 01/29/11

SDG 8654

SDG <u>8654</u>
Contact <u>N. Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract <u>ITL2489</u>

MATRIX SPIKE

These limits are left blank if the Original RESULT is more than a protocol defined factor (typically 4) times ADDED. This is a way of accounting for that when the spike is small compared to the amount in the original sample, the recovery is unreliable.

* The recovery is underlined (out of spec) if it is outside either of these ranges.

REPORT GUIDES
Page 11
SUMMARY DATA SECTION
Page 30

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06Report date 01/29/11

SDG 8654

SDG 8654
Contact N. Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u>
Contract ITL2489

METHOD SUMMARY

The Method Summary Report has two tables. One shows up to five results measured using one method. The other has performance data for the method. There is one report for each TEST, as used on the Data Sheet Report.

The following notes apply to this report:

* Each table is subdivided into sections, one for each preparation batch. A preparation batch is a group of aliquots prepared at roughly the same time in one work area of the lab using the same method.

There should be Lab Control Sample and Method Blank results in each preparation batch since this close correspondence makes the QC meaningful. Depending on lab policy, Duplicates need not occur in each batch since they QC sample dependencies such as matrix effects.

* The RAW TEST column shows the test code used in the raw data to identify a particular analysis if it is different than the test code in the header of the report. This occurs in special cases due to method specific details about how the lab labels work.

The Lab Sample or Planchet ID combined with the (Raw) Test Code and Suffix uniquely identify the raw data for each analysis.

* If a result is less than both its MDA and RDL, it is replaced by just 'U' on this report. If it is greater than or equal to the RDL but less than the MDA, the result is shown with a 'U' flag.

The J and X flags are as on the data sheet.

- * Non-U results for Method Blanks are underlined to indicate possible contamination of other samples in the preparation batch. The Method Blank Report has supporting data.
- * Lab Control Sample and Matrix Spike results are shown as: ok, No data, LOW or HIGH, with the last two underlined. 'No data' means no amount ADDED was specified. 'LOW' and 'HIGH'

REPORT GUIDES
Page 12
SUMMARY DATA SECTION
Page 31

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06Report date 01/29/11

SDG 8654

SDG <u>8654</u>
Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract <u>ITL2489</u>

METHOD SUMMARY

correspond to when the recovery is underlined on the Lab Control Sample or Matrix Spike Report. See these reports for supporting data.

- * Duplicate sample results are shown as: ok, No data, or OUT, with the last two underlined. 'No data' means there was no original sample data found for this duplicate. 'OUT' corresponds to when the RPD is underlined on the Duplicate Report. See this report for supporting data.
- * If the MDA column is labeled 'MAX MDA', there was more than one result measured by the reported method and the MDA shown is the largest MDA. If not all these results have the same RDL, the MAX MDA reflects only those results with RDL equal to the smallest one.

MDAs are underlined if greater than the printed RDL.

- * Aliquots are underlined if less than the nominal value specified for the method.
- * Prepareation factors are underlined if greater than the nominal value specified for the method.
- * Dilution factors are underlined if greater than the nominal value specified for the method.
- * Residues are underlined if outside the range specified for the method. Residues are not printed if yields are.
- * Yields, which may be gravimetric, radiometric or some type of recovery depending on the method, are underlined if outside the range specified for the method.
- * Efficiencies are underlined if outside the range specified for the method. Efficiencies are detector and geometry dependent so this test is only approximate.
- Count times are underlined if less than the nominal value

REPORT GUIDES
Page 13
SUMMARY DATA SECTION
Page 32

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>01/29/11</u>

SDG 8654

SDG <u>8654</u>
Contact N. Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract <u>ITL2489</u>

METHOD SUMMARY

specified for the method.

- * Resolutions (as FWHM; Full Width at Half Max) are underlined if greater than the method specified limit.
- * Tracer drifts are underlined if their absolute values are greater than the method specified limit. Tracer drifts are not printed if percent moistures are.
- * Days Held are underlined if greater than the holding time specified in the protocol.
- * Analysis dates are underlined if before their planchet's preparation date or, if a limit is specified, too far after it.

For some methods, ratios as percentages and error estimates for them are computed for pairs of results. A ratio column header like '1+3' means the ratio of the first result column and the third result column.

Ratios are not computed for Lab Control Sample, Method Blank or Matrix Spike results since their matrices are not necessarily similar to client samples'.

The error estimate for a ratio of results from one planchet reflects only counting errors since other errors should be correlated. For a ratio involving different planchets, if QC limits are computed based on total errors, the error for the ratio allows for the preparation errors for the planchets.

The ratio is underlined (out of spec) if the absolute value of its difference from the nominal value is greater than its error estimate. If no nominal value is specified, this test is not done.

For Gross Alpha or Gross Beta results, there may be a column showing the sum of other Alpha or Beta emitters. This sum includes all relevant results in the DVD database, whether reported or not. Results in the sum are weighted by a particles/decay value specified by the lab for each relevant analyte. Results less than their MDA are not included.

REPORT GUIDES
Page 14
SUMMARY DATA SECTION
Page 33

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 01/29/11

SDG 8654

SDG <u>8654</u> Contact <u>N. Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>ITL2489</u>

METHOD SUMMARY

No sums are computed for Lab Control, Method Blank or Matrix Spike samples since their various planchets may not be physically related.

If a ratio of total isotopic to Gross Alpha or Beta is shown, the error for the ratio reflects both the error in the Gross result and the sum, as square root of sum of squares, of the errors in the isotopic results.

For total elemental uranium or thorium results, there may be a column showing the total weight computed from associated isotopic results. Ignoring results less than their MDAs, this is a weighted sum of the isotopic results. The weights depend on the molecular weight and half-life of each isotope so as to convert activities (decays) to weight (atoms).

If a ratio of total computed to measured elemental uranium or thorium is shown, the error for the ratio reflects the errors in all the measurements.

REPORT GUIDES
Page 15
SUMMARY DATA SECTION
Page 34

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>01/29/11</u>

SUBCONTRACT ORDER TestAmerica Irvine

ITL2489

8654

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Debby Wilson

RECEIVING LABORATORY:

Eberline Services

2030 Wright Avenue

Richmond, CA 94804

Phone :(510) 235-2633

Fax: (510) 235-0438

Project Location: California

Receipt Temperature:__

 \mathbf{C}

Ice: Y / N

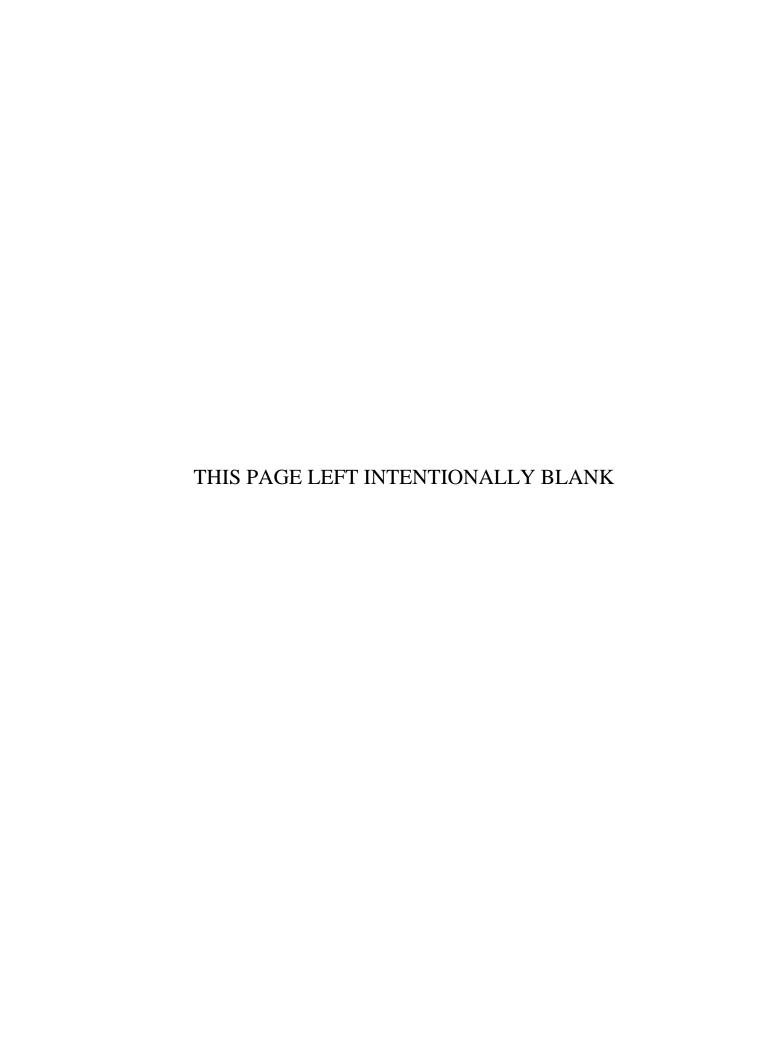
Analysis	Units	Due	Expires	Comments
Sample ID: ITL2489-03 (Ou	tfall 001 (Com	iposite) - Wat	er) Sampled: 12/26/10 (08:58
Gamma Spec-O	mg/kg .	01/03/11	12/26/11 08:58	jflags; Cs 137 + K 40; do not filter
Gross Alpha-O	pCi/L -	01/03/11	06/24/11 08:58	jflags; do not filter
Gross Beta-O	pCi/L -	01/03/11	06/24/11 08:58	jflags; do not filter
Level 4 Data Package - Ou	t N/A	01/03/11	01/23/11 08:58	
Radium, Combined-O	pCi/L	01/03/11	12/26/11 08:58	iflags; do not filter
Strontium 90-O	pCi/L ,	01/03/11	12/26/11 08:58	jflags; do not filter
Tritium-O	pCi/L -	01/03/11	12/26/11 08:58	jflags; do not filter
Uranium, Combined-O	pCi/L ·	01/03/11	12/26/11 08:58	jflags; do not filter
Containers Supplied:				•
2.5 gal Poly (S)	500 mL Amb	er (T)		

Released By

FED EX

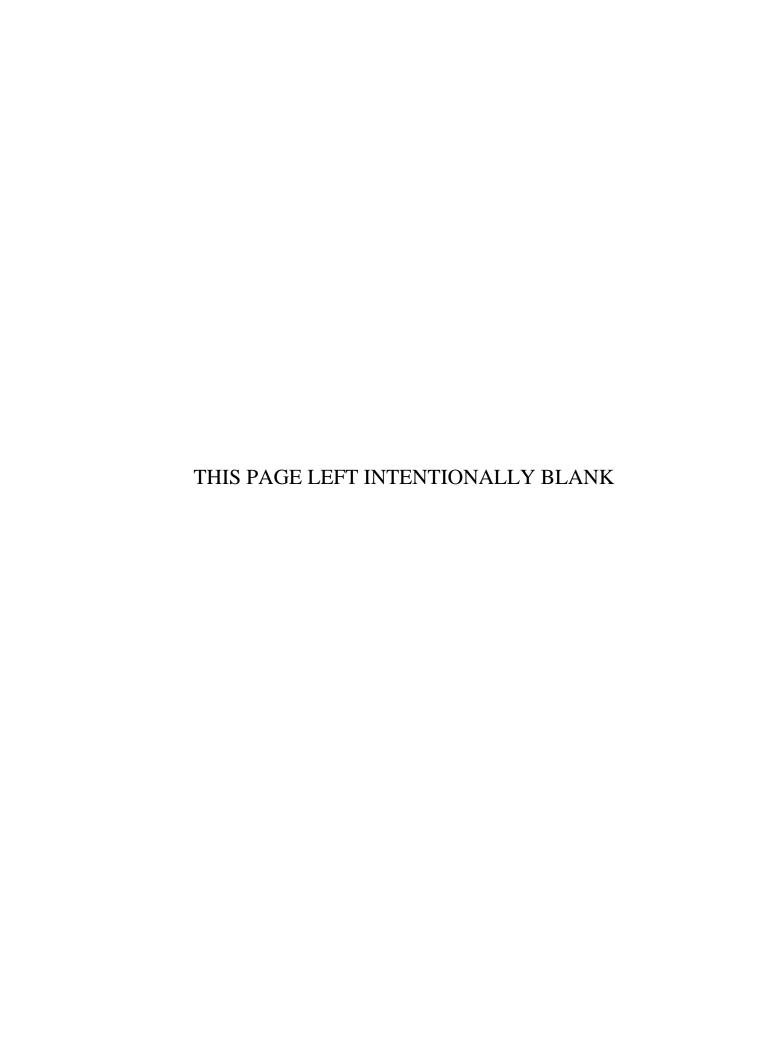
Date/Time

| 12/29/10


Received By/ Flex Kelleury 2/28/10 17:00 Date/Time

e Page 1 of 1

RICHMOND, CA LABORATORY SAMPLE RECEIPT CHECKLIST


2						CA		
lient: TEST AT	MERICA		ity <u>/P</u> VI	ve	State		2400	
mi managaran d	169/10 10	O OCOC No.	ITL 2270	2,248(-24	16,2487. d	488	arry	
ontainer I.D. No.	NA	Requested 1	TAT (Days)	YAND P.O. Rec	eived Yes [1 N	[] [
ontainer I.D. No			INSPECT	TION .		3		
		container int			Yes [/]) oN] N/A [[]
Custody seals Custody seals	on snipping	container da	ted & signed	? Count	Yes [/]	No [] N/A	[]
Custody seats Custody seats	on snipping	containers int	act?	(p)/0	Yes [/] Yes [/]	No [] N/A	[]
Custody seals Custody seals	on sample	containers da	ited & signed	? 7 94	Yes [NOI	ן איזאו נ	L" 1 /
		OCT CONTRACTOR OF THE PARTY OF		1 ,	Wet[]	Dry []- ^	MA V
Packing mate	males in shi	pping contain	er:	Sample Matrix	WA	TER		
	intainers per	sample:	#	(Or see CoC				
				Yes []	No []		representation and the second	
					No [V]		/	•
		1 Linnord is	abels [] R	ad labels [] A	ppropriate sar	nple la	bels [i/]	
		t condition [v	1 Leakino	i proken	"Chiremier []		- L]
11. Samples are	Preserved	Not pr	reserved [pH2 Pre	servative <u>⊬</u>	NU3		
12. Samples are	, anomalies:					14	o lado	of .
Desariba ani		lient	TRIP	BLANKS	NOT	170	CCCIC	(
13. Describe any	110 C							
13. Describe any	UD C	COL	<u> </u>				1	
13. Describe any	UD C	coc						
Man D M In	/ Né	v anomalies?	Yes	I I No f) Date			
Man D M In	/ Né	v anomalies?	Yes	I I No f) Date			
14. Was P.M. n 15. Inspected by	otified of an	y anomalies?	Yes	[] No [Date	20 lon	Chamber	
14. Was P.M. n 15. Inspected by Customer Bat	otified of an	v anomalies?	Yes	[] No[1429/10 Time] Date	20 lon		wipe
14. Was P.M. n 15. Inspected by Customer Bet Sample No.	otified of an	y anomalies? M Ion Chamber	Yes Date:	[] No [Date	20 lon	Chamber	
14. Was P.M. n 15. Inspected by Customer Bat	notified of any	y anomalies? M Ion Chamber	Yes Date:	[] No [Date	20 lon	Chamber	
14. Was P.M. n 15. Inspected by Customer Bet Sample No.	notified of any	y anomalies? M Ion Chamber	Yes Date:	[] No [Date	20 lon	Chamber	
14. Was P.M. n 15. Inspected by Customer Bet Sample No.	notified of any	y anomalies? M Ion Chamber	Yes Date:	[] No [Date	20 lon	Chamber	
14. Was P.M. n 15. Inspected by Customer Bet Sample No.	notified of any	y anomalies? M Ion Chamber	Yes Date:	[] No [Date	20 lon	Chamber	
14. Was P.M. n 15. Inspected by Customer Bet Sample No.	notified of any	y anomalies? M Ion Chamber	Yes Date:	[] No [Date	20 lon	Chamber	
14. Was P.M. n 15. Inspected by Customer Bet Sample No.	notified of any	y anomalies? M Ion Chamber	Yes Date:	[] No [Date	20 lon	Chamber	
14. Was P.M. n 15. Inspected by Customer Bet Sample No.	notified of any	y anomalies? M Ion Chamber	Yes Date:	[] No [Date	20 lon	Chamber	
14. Was P.M. n 15. Inspected by Customer Bet Sample No.	notified of any	y anomalies? M Ion Chamber	Yes Date:	[] No [Date	20 lon	Chamber	
14. Was P.M. n 15. Inspected by Customer Bet Sample No.	notified of any	y anomalies? M Ion Chamber	Yes Date:	[] No [Date	20 lon	Chamber	
14. Was P.M. n 15. Inspected by Customer Bet Sample No.	notified of any	y anomalies? M Ion Chamber	Yes Date:	[] No [Date	20 lon	Chamber	
14. Was P.M. n 15. Inspected by Customer Bet Sample No.	notified of any	y anomalies? M Ion Chamber	Yes Date:	[] No [Date	20 lon	Chamber	
14. Was P.M. n. 15. Inspected by Customer Sample No. All Saugh	a/Gamma cpm	y anomalies? M ion Chamber mR/hr	Yes Date:	[] No [Beta/Gamma cpm	20 lon	Chamber	
14. Was P.M. n. 15. Inspected by Customer Sample No. All Sauge ion Chamber Ser. No.	a/Gamma cpm A A C C	y anomalies? M ion Chamber mR/hr	Yes Date:	[] No [Beta/Gamma cpm	20 lon	Chamber inR/hr	wipe
14. Was P.M. n 15. Inspected by Customer Bet Sample No. All Caught Ion Chamber Ser. No.	a/Gamma cpm	y anomalies? M ion Chamber mR/hr	Yes Date:	Customer Sample No.	Beta/Gamma cpm	20 lon	Chamber	wipe
14. Was P.M. n. 15. Inspected by Customer Sample No. All Sauges Ion Chamber Ser. No.	a/Gamma cpm	y anomalies? M ion Chamber mR/hr	Yes Date:	Calibration da	Beta/Gamma cpm	20 lon	Chamber inR/hr	wipe

APPENDIX G

Section 5

Outfall 002 – December 19 & 20, 2010 MEC^X Data Validation Report

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: ITL1890

Prepared by

MEC^X, LP 12269 East Vassar Drive Aurora, CO 80014 DATA VALIDATION REPORT SDG: ITL1890

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: ITL1890

Project Manager: B. Kelly Matrix: Water

QC Level: IV No. of Samples: 2

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 002 (Grab)	ITL1890-01	N/A	Water	12/19/2010 2:10:00 PM	120.1
Outfall 002 (Composite)	ITL1890-03	G0L230564-001, S012307-001	Water	12:30:00	314.0, 1613B, 900, 901.1, 903.1, 904, 905, 906, 245.1, 245.1-Diss, 180.1, D5174

II. Sample Management

A portion of the samples in this SDG were received at TestAmerica-Irvine and TestAmerica-West Sacramento marginally below the control limit; however, as the samples were not noted to be frozen or damaged, no qualifications were required. The samples were received marginally above the temperature limit at Eberline; however, due to the nonvolatile nature of the analytes, no qualifications were required. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the samples were couriered to TestAmerica-Irvine, custody seals were not required. Custody seals were intact upon receipt at Eberline and TestAmerica West Sacramento. If necessary, the client ID was added to the sample result summary by the reviewer.

1

DATA VALIDATION REPORT SDG: SSFL NPDES SDG: ITL1890

Data Qualifier Reference Table

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

DATA VALIDATION REPORT SDG: SSFL NPDES SDG: ITL1890

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

DATA VALIDATION REPORT SDG: SSFL NPDES SDG: ITL1890

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
* , *	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

DATA VALIDATION REPORT SDG: ITL1890

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin

Date Reviewed: January 18, 2011

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed prior to the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 15 native compounds (calibration by isotope dilution) and ≤35% for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had detects between the EDL and the RL for 1,2,3,4,6,7,8-HpCDD, 1,2,3,4,6,7,8-HpCDF, 1,2,3,4,7,8,9-HpCDF, OCDD, OCDF, total HpCDD, and total HpCDF. The HpCDF isomers and total were reported as EMPCs in the method blank; however, due to the extent of the method blank contamination, the reviewer considered it appropriate to use the EMPCs to qualify sample results. Isomer

DATA VALIDATION REPORT SPICE SSFL NPDES
SDG: ITL1890

1,2,3,4,7,8,9-HpCDF was not detected in the sample. All other individual isomers detected in both the method blank and site sample were qualified as nondetected, "U" at the EDL, or at the level of contamination in the sample. The sample totals containing one or more peaks detected in the method blank were qualified as estimated, "J."

- Blank Spikes and Laboratory Control Samples: The LCS recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries in the sample were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating a representative number of reportable sample results. Any individual isomers reported as EMPCs previously qualified as nondetected for method blank contamination were not further qualified as EMPCs. Any totals including EMPC peaks were qualified as estimated, "J." Any detects reported between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

B. EPA METHOD 245.1—Mercury

Reviewed By: P. Meeks

Date Reviewed: January 14, 2011

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^x Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Method 245.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: The analytical holding time, 28 days for mercury, was met.
- Tuning: Not applicable to this analysis.

DATA VALIDATION REPORT SSFL NPDES
SDG: ITL1890

• Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 85-115%. CRA recoveries were within the control limits of 70-130%.

- Blanks: Method blanks and CCBs had no detects.
- Interference Check Samples: Not applicable to this analysis.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: Not applicable to this analysis.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

DATA VALIDATION REPORT SPICE SSFL NPDES
SDG: ITL1890

C. EPA METHOD 314.0—Perchlorate

Reviewed By: P. Meeks

Date Reviewed: January 21, 2011

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Metals (DVP-20, Rev. 0), EPA Method 314.0, and the National Functional Guidelines for Inorganic Data Review (10/04).

• Holding Times: The analytical holding time, 28 days, was met.

- Calibration: Calibration criteria were met. The initial calibration r² value was ≥0.995 and all initial and continuing calibration recoveries were within 90-110%. The IPC recovery was within the method-established control limit of 80-120%.
- Blanks: The method blank and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: The recovery was within the methodestablished QC limits of 85-115%.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Sample Result Verification: Calculations were verified and the sample result reported on
 the sample result summary was verified against the raw data. No transcription errors or
 calculation errors were noted. Reported nondetects are valid to the reporting limit.
 Perchlorate detected between the method detection limit and the reporting limit was
 qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES
 permit. Due to matrix interference, present as an additional peak eluting just prior to
 perchlorate, the reviewer further estimated the sample result, "J."
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

DATA VALIDATION REPORT SDG: ITL1890

D. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: February 7, 2011

The samples listed in Table 1 for these analyses were validated based on the guidelines outlined in the *EPA Methods* 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (10/04).

 Holding Times: The tritium sample was analyzed within 180 days of collection. The remaining aliquots were prepared within the five-day analytical holding time for unpreserved samples.

 Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, gross alpha detected in the sample was qualified as an estimated detect, "J." The remaining detector efficiencies were greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. All chemical yields were at least 40% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis.

- Blanks: There were no analytes detected in the method blanks or the KPA CCBs.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this
 data package. The sample results and MDAs reported on the sample result form were
 verified against the raw data and no calculation or transcription errors were noted. Any
 detects between the MDA and the reporting limit were qualified as estimated, "J," and
 coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are
 valid to the MDA.
- A notation in the sample preparation logbook indicated that the aliquot for Radium-228 was filtered and that the filter was digested and added to the aliquot.

DATA VALIDATION REPORT SPICE SSFL NPDES SDG: ITL1890

 Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- o Field Duplicates: There were no field duplicate samples identified for this SDG.

E. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks

Date Reviewed: January 14, 2011

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Standard Methods SM2130B and SM2510B, and the National Functional Guidelines for Inorganic Data Review (7/02).

- Holding Times: The analytical holding times, 48 hours from collection for turbidity and conductivity, were met.
- Calibration: The turbidity initial calibration r² value was≥0.990 and the initial and continuing calibration recoveries were within 90-100%.
- Blanks: There were no detects in the method blanks or CCBs.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. When the sample results were qualified and the reviewer was able to clearly determine bias, detected results were qualified as either "J+" or "J-"; otherwise, bias was not indicated in the qualification. Any detects between the method detection limit and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

DATA VALIDATION REPORT SDG: ITL1890

In order to report the analyte within the linear range of the calibration, turbidity was analyzed at a 10× dilution.

 Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- o Field Duplicates: There were no field duplicate samples identified for this SDG.

Validated Sample Result Forms ITL1890

Analysis Metho	od 8645							
Sample Name	Outfall 002 (C	Composite	e) Matr	ix Type:	WATER	7	Validation Le	vel: IV
Lab Sample Name:	ITL1890-03	Sam	ple Date:	12/20/20	10 12:30:00 I	PM		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Uranium, Total	NA	0.279	1	0.019	pCi/L	Jb	J	DNQ
Analysis Metho	od 900							
Sample Name	Outfall 002 (C	Composite	e) Matr	ix Type:	WATER	7	Validation Le	vel: IV
Lab Sample Name:	ITL1890-03	Sam	ple Date:	12/20/20	10 12:30:00 I	PM		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Gross Alpha	12587461	1.72	3	0.486	pCi/L	Jb	J	C,DNQ
Gross Beta	12587472	4.24	4	0.852	pCi/L			
Analysis Metho	od 901.1							
Sample Name	Outfall 002 (C	Composite	e) Matr	ix Type:	WATER	7	Validation Le	vel: IV
Lab Sample Name:	ITL1890-03	Sam	ple Date:	12/20/20	10 12:30:00 I	PM		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Cesium-137	10045973	ND	20	1.07	pCi/L	U	U	
Potassium-40	13966002	ND	25	13.8	pCi/L	U	U	
Analysis Metho	od 903.1							
Sample Name	Outfall 002 (C	Composite	e) Matr	ix Type:	WATER	7	Validation Le	vel: IV
Lab Sample Name:	ITL1890-03	Sam	ple Date:	12/20/20	10 12:30:00 I	PM		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Radium-226	13982633	0.307	1	0.518	pCi/L	U	U	
Analysis Metho	od 904							
Sample Name	Outfall 002 (C	Composite	e) Matr	ix Type:	WATER	7	Validation Le	vel: IV
Lab Sample Name:	ITL1890-03	Sam	ple Date:	12/20/20	10 12:30:00 I	PM		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Radium-228	15262201	0.298	1	0.439	pCi/L	U	U	

Analysis Method 905

Sample Name	Outfall 002 (0	Composite) Matri	х Туре:	WATER	7	alidation Le	vel: IV
Lab Sample Name:	ITL1890-03	Sam	ple Date:	12/20/20	10 12:30:00 I	PM		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Strontium-90	10098972	-0.202	2	1.05	pCi/L	U	U	
Analysis Metho	od 906							
Sample Name	Outfall 002 (0	Composite) Matri	x Type:	WATER	V	alidation Le	vel: IV
Lab Sample Name:	ITL1890-03	Sam	ple Date:	12/20/20	10 12:30:00 I	PM		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Tritium	10028178	-133	500	298	pCi/L	U	U	
Analysis Metho	od EPA	120.1						
Sample Name	Outfall 002 (0	Grab)	Matri	x Type:	Water	V	alidation Le	vel: IV
Lab Sample Name:	ITL1890-01	Sam	ple Date:	12/19/20	10 2:10:00 PI	M		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Specific Conductance	NA	110	1.0	1.0	umhos/c			
Analysis Metho	od EPA	180.1						
Sample Name	Outfall 002 (0	Composite) Matri	x Type:	Water	V	alidation Le	vel: IV
Lab Sample Name:	ITL1890-03	Sam	ple Date:	12/20/20	10 12:30:00 I	PM		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Γurbidity	Turb	75	10	0.40	NTU			
Analysis Metho	od EPA	200.7						
Sample Name	Outfall 002 (0	Composite) Matri	х Туре:	Water	7	alidation Le	vel: IV
Lab Sample Name:	ITL1890-03	Sam	ple Date:	12/20/20	10 12:30:00 I	PM		
<u>.</u>		D a a14	RL	MDL	Result	Lab	Validation	Validation
•	CAS No	Result Value	NL.		Units	Qualifier	Qualifier	Notes
Analyte	7439-89-6		0.040	0.015	Units mg/l	Qualifier	Qualifier	Notes
Analyte Iron Manganese Zinc		Value				Qualifier	Qualifier	Notes

Analysis Method EPA 200.7-Diss

Sample Name	Outfall 002 (C	Composite) Matri	x Type:	Water		alidation Le	vel: IV
Lab Sample Name:	ITL1890-03	Sam	ple Date:	12/20/20	10 12:30:00 F	PM		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Iron	7439-89-6	0.067	0.040	0.015	mg/l			
Manganese	7439-96-5	42	20	7.0	ug/l			
Zinc	7440-66-6	17.6	20.0	6.00	ug/l	J	J	DNQ
Analysis Metho	od EPA 2	245.1						
Sample Name	Outfall 002 (C	Composite) Matri	x Type:	Water	7	alidation Le	vel: IV
Lab Sample Name:	ITL1890-03	Sam	ple Date:	12/20/20	10 12:30:00 F	PM		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury	7439-97-6	ND	0.20	0.10	ug/l		U	
Analysis Metho	od EPA 2	245.1-L	<i>Diss</i>					
Sample Name	Outfall 002 (C	Composite) Matri	x Type:	Water	V	alidation Le	vel: IV
Lab Sample Name:	ITL1890-03	Sam	ple Date:	12/20/20	10 12:30:00 F	PM		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury	7439-97-6	ND	0.20	0.10	ug/l		U	
Analysis Metho	od EPA 3	314.0						
Sample Name	Outfall 002 (C	Composite) Matri	x Type:	Water	7	alidation Le	vel: IV
Lab Sample Name:	ITL1890-03	Sam	ple Date:	12/20/20	10 12:30:00 F	PM		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes

Analysis Method EPA-5 1613B

Sample Name	Outfall 002 (C	omposite) Matri	x Type:	WATER	V	alidation Le	vel: IV
Lab Sample Name:	ITL1890-03	Sam	ple Date:	12/20/2010	12:30:00 F	PM		
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
1,2,3,4,6,7,8-HpCDD	35822-46-9	ND	0.00005	0.0000001	ug/L	J, Q, B	U	В
1,2,3,4,6,7,8-HpCDF	67562-39-4	ND	0.00005	0.0000004	ug/L	J, B	U	В
1,2,3,4,7,8,9-HpCDF	55673-89-7	ND	0.00005	0.0000005	ug/L		U	
1,2,3,4,7,8-HxCDD	39227-28-6	ND	0.00005	0.0000003	ug/L		U	
1,2,3,4,7,8-HxCDF	70648-26-9	ND	0.00005	0.0000001	ug/L		U	
1,2,3,6,7,8-HxCDD	57653-85-7	ND	0.00005	0.0000003	ug/L		U	
1,2,3,6,7,8-HxCDF	57117-44-9	ND	0.00005	0.0000001	ug/L		U	
1,2,3,7,8,9-HxCDD	19408-74-3	ND	0.00005	0.0000003	ug/L		U	
1,2,3,7,8,9-HxCDF	72918-21-9	ND	0.00005	0.0000000	ug/L		U	
1,2,3,7,8-PeCDD	40321-76-4	ND	0.00005	0.0000006	ug/L		U	
1,2,3,7,8-PeCDF	57117-41-6	ND	0.00005	0.0000002	ug/L		U	
2,3,4,6,7,8-HxCDF	60851-34-5	ND	0.00005	0.0000001	ug/L		U	
2,3,4,7,8-PeCDF	57117-31-4	ND	0.00005	0.0000003	ug/L		U	
2,3,7,8-TCDD	1746-01-6	ND	0.00001	0.0000004	ug/L		U	
2,3,7,8-TCDF	51207-31-9	ND	0.00001	0.0000002	ug/L		U	
OCDD	3268-87-9	ND	0.0001	0.0000001	ug/L	J, B	U	В
OCDF	39001-02-0	ND	0.0001	0.0000006	ug/L	J, B	U	В
Total HpCDD	37871-00-4	1.1e-005	0.00005	0.0000001	ug/L	J, Q, B	J	B, DNQ, *III
Total HpCDF	38998-75-3	4.3e-006	0.00005	0.0000005	ug/L	J, Q, B	J	B, DNQ, *III
Total HxCDD	34465-46-8	ND	0.00005	0.0000003	ug/L		U	
Total HxCDF	55684-94-1	ND	0.00005	0.0000000	ug/L		U	
Total PeCDD	36088-22-9	ND	0.00005	0.0000006	ug/L		U	
Total PeCDF	30402-15-4	ND	0.00005	0.0000002	ug/L		U	
Total TCDD	41903-57-5	ND	0.00001	0.0000004	ug/L		U	
Total TCDF	55722-27-5	ND	0.00001	0.0000002	ug/L		U	