APPENDIX G

Section 101

Outfall 018 – BMP Effectiveness, January 23-24, 2008 Test America Analytical Laboratory Report

THE LEADER IN ENVIRONMENTAL TESTING

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project: BMP Effectiveness Monitoring Program

Sampled: 01/23/08-01/24/08 Received: 01/24/08 Issued: 02/04/08 16:56

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and

is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

LABORATORY ID	CLIENT ID	MATRIX
IRA2369-01	018 EFF-1	Water
IRA2369-02	018 EFF-2	Water
IRA2369-03	018 EFF-3	Water
IRA2369-04	018 EFF-4	Water
IRA2369-05	018 EFF-5	Water
IRA2369-06	018 EFF-6	Water
IRA2369-07	018 EFF-7	Water
IRA2369-08	018 EFF-8	Water
IRA2369-09	018 EFF-9	Water
IRA2369-10	018 EFF-10	Water
IRA2369-11	018 EFF-11	Water
IRA2369-12	018 EFF-12	Water
IRA2369-13	018 EFF-13	Water
IRA2369-14	018 EFF-14	Water
IRA2369-15	018 EFF-15	Water
IRA2369-16	018 EFF-16	Water
IRA2369-17	018 EFF-17	Water
IRA2369-18	018 EFF-18	Water
IRA2369-19	018 EFF-19	Water
IRA2369-20	018 EFF-20	Water
IRA2369-21	018 EFF-21	Water
IRA2369-22	018 EFF-22	Water
IRA2369-23	018 EFF-23	Water

Reviewed By:

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: IRA2369

Sampled: 01/23/08-01/24/08 Received: 01/24/08

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Joseph Dock

TestAmerica Irvine Joseph Doak Project Manager

IRA2369 <Page 2 of 12> NPDES - 3997

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: IRA2369

Sampled: 01/23/08-01/24/08 Received: 01/24/08

		INC	ORGA	NICS						
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IRA2369-01 (018 EFF-1 - Wa	ater)				Sample	ed: 01/23/0	08			
Reporting Units: g/cc Density	Displacement	8B01088	N/A	NA	0.99	1	02/01/08	02/01/08		
Sample ID: IRA2369-02 (018 EFF-2 - Wa	ater)				Sample	ed: 01/23/0	08			
Reporting Units: g/cc Density	Displacement	8B01088	N/A	NA	0.99	1	02/01/08	02/01/08		
Sample ID: IRA2369-03 (018 EFF-3 - Wa	ater)				Sample	ed: 01/23/0	08			
Reporting Units: g/cc Density	Displacement	8B01088	N/A	NA	0.99	1	02/01/08	02/01/08		
Sample ID: IRA2369-04 (018 EFF-4 - Wa	ater)				Sample	ed: 01/23/0	08			
Reporting Units: g/cc Density	Displacement	8B01088	N/A	NA	1.0	1	02/01/08	02/01/08		
Sample ID: IRA2369-05 (018 EFF-5 - Wa	ater)				Sample	ed: 01/23/0	08			
Reporting Units: g/cc Density	Displacement	8B01088	N/A	NA	0.99	1	02/01/08	02/01/08		
Sample ID: IRA2369-06 (018 EFF-6 - Wa		0001000	1 1/2 1	117				02/01/00		
Reporting Units: g/cc			/ .		Sampled: 01/23/08					
Density	Displacement	8B01088	N/A	NA	0.99	1	02/01/08	02/01/08		
Sample ID: IRA2369-07 (018 EFF-7 - Wa Reporting Units: g/cc	ater)				Sampled: 01/23/08					
Density	Displacement	8B01088	N/A	NA	1.0	1	02/01/08	02/01/08		
Sample ID: IRA2369-08 (018 EFF-8 - Wa	ater)				Sample	Sampled: 01/23/08				
Reporting Units: g/cc Density	Displacement	8B01088	N/A	NA	0.99	1	02/01/08	02/01/08		
Sample ID: IRA2369-09 (018 EFF-9 - Wa	ater)				Sample	Sampled: 01/23/08				
Reporting Units: g/cc Density	Displacement	8B01088	N/A	NA	0.99	1	02/01/08	02/01/08		
Sample ID: IRA2369-10 (018 EFF-10 - W		3501000	1 1/ 2 1	1 12 1		-		02/01/00		
Reporting Units: g/cc					Sample	ed: 01/23/0	00			
Density	Displacement	8B01093	N/A	NA	0.99	1	02/01/08	02/01/08		

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: IRA2369

Sampled: 01/23/08-01/24/08 Received: 01/24/08

		INC	ORGA	NICS						
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IRA2369-11 (018 EFF-11 - V	Water)				Sample	ed: 01/23/0	08			
Reporting Units: g/cc Density	Displacement	8B01093	N/A	NA	0.99	1	02/01/08	02/01/08		
Sample ID: IRA2369-12 (018 EFF-12 - V	Water)				Sample	ed: 01/24/0	08			
Reporting Units: g/cc Density	Displacement	8B01093	N/A	NA	1.0	1	02/01/08	02/01/08		
Sample ID: IRA2369-13 (018 EFF-13 - V	Water)				Sample	ed: 01/24/0	08			
Reporting Units: g/cc Density	Displacement	8B01093	N/A	NA	0.98	1	02/01/08	02/01/08		
Sample ID: IRA2369-14 (018 EFF-14 - V	Water)				Sample	ed: 01/24/0	08			
Reporting Units: g/cc Density	Displacement	8B01093	N/A	NA	1.0	1	02/01/08	02/01/08		
Sample ID: IRA2369-15 (018 EFF-15 - V	•				Sample	ed: 01/24/0	08			
Reporting Units: g/cc Density	Displacement	8B01093	N/A	NA	0.99	1	02/01/08	02/01/08		
·		0101095	10/21	142 1				02/01/00		
Reporting Units: g/cc		0001002	NT/A	NIA	-			02/01/00		
·		8B01093	N/A	NA				02/01/08		
Reporting Units: g/cc	water)				Sample	ed: 01/24/0	08			
Density	Displacement	8B01093	N/A	NA	0.99	1	02/01/08	02/01/08		
Sample ID: IRA2369-18 (018 EFF-18 - V	Water)				Sampled: 01/24/08					
Reporting Units: g/cc Density	Displacement	8B01093	N/A	NA	0.99	1	02/01/08	02/01/08		
Sample ID: IRA2369-19 (018 EFF-19 - V	Water)				Sample	Sampled: 01/24/08				
Reporting Units: g/cc Density	Displacement	8B01093	N/A	NA	0.99	1	02/01/08	02/01/08		
Sample ID: IRA2369-20 (018 EFF-20 - V	Water)				Sample	ed: 01/24/0	08			
Reporting Units: g/cc Density	Displacement	8B01093	N/A	NA	0.99	1	02/01/08	02/01/08		
Sample ID: IRA2369-15 (018 EFF-15 - Reporting Units: g/cc Density Sample ID: IRA2369-16 (018 EFF-16 - Reporting Units: g/cc Density Sample ID: IRA2369-17 (018 EFF-17 - Reporting Units: g/cc Density Sample ID: IRA2369-18 (018 EFF-18 - Reporting Units: g/cc Density Sample ID: IRA2369-19 (018 EFF-19 - Reporting Units: g/cc Density Sample ID: IRA2369-19 (018 EFF-19 - Reporting Units: g/cc Density Sample ID: IRA2369-20 (018 EFF-20 -	Water) Displacement Water) Displacement Water) Displacement Water) Displacement Water) Displacement	8B01093 8B01093 8B01093 8B01093	N/A N/A N/A	NA NA NA	Sample 0.99 Sample 1.0 Sample 0.99 Sample 0.99 Sample 0.99	ed: 01/24/(1 ed: 01/24/(1 ed: 01/24/(1 ed: 01/24/(1 ed: 01/24/(1	08 02/01/08 08 02/01/08 08 02/01/08 08 02/01/08	02/01/08 02/01/08 02/01/08 02/01/08		

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: IRA2369

Sampled: 01/23/08-01/24/08 Received: 01/24/08

		INC	ORGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2369-21 (018 EFF-21 -	Water)				Sample	ed: 01/24/0	08		
Reporting Units: g/cc Density	Displacement	8B01093	N/A	NA	1.0	1	02/01/08	02/01/08	
Sample ID: IRA2369-22 (018 EFF-22 -	Water)				Sample	ed: 01/24/0	08		
Reporting Units: g/cc Density	Displacement	8B01093	N/A	NA	1.0	1	02/01/08	02/01/08	
Sample ID: IRA2369-23 (018 EFF-23 -	Water)				Sampled: 01/24/08				
Reporting Units: g/cc Density	Displacement	8B01093	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2369-01 (018 EFF-1 - V	Vater)				Sample	ed: 01/23/0	08		
Reporting Units: mg/l Sediment	ASTM D3977	8B04081	10	10	42	1	02/04/08	02/04/08	
Total Suspended Solids	EPA 160.2	8A25132	10	10	42	1	01/25/08	01/25/08	
Sample ID: IRA2369-02 (018 EFF-2 - V Reporting Units: mg/l	Vater)				Sample	ed: 01/23/0	08		
Sediment	ASTM D3977	8B04081	10	10	10	1	02/04/08	02/04/08	
Total Suspended Solids	EPA 160.2	8A25136	10	10	10	1	01/25/08	01/25/08	
Sample ID: IRA2369-03 (018 EFF-3 - V Reporting Units: mg/l	Vater)				Sample	ed: 01/23/	08		
Sediment	ASTM D3977	8B04081	10	10	ND	1	02/04/08	02/04/08	
Total Suspended Solids	EPA 160.2	8A25136	10	10	ND	1	01/25/08	01/25/08	
Sample ID: IRA2369-04 (018 EFF-4 - V Reporting Units: mg/l	Vater)				Sample	ed: 01/23/0	08		
Sediment	ASTM D3977	8B04081	10	10	ND	1	02/04/08	02/04/08	
Total Suspended Solids	EPA 160.2	8A25136	10	10	ND	1	01/25/08	01/25/08	
Sample ID: IRA2369-05 (018 EFF-5 - V Reporting Units: mg/l	Vater)				Sample	ed: 01/23/0	08		
Sediment	ASTM D3977	8B04081	10	10	ND	1	02/04/08	02/04/08	
Total Suspended Solids	EPA 160.2	8A25136	10	10	ND	1	01/25/08	01/25/08	
Sample ID: IRA2369-06 (018 EFF-6 - V Reporting Units: mg/l		Sample	ed: 01/23/0	08					
Sediment	ASTM D3977	8B04081	10	10	ND	1	02/04/08	02/04/08	
Total Suspended Solids	EPA 160.2	8A25136	10	10	ND	1	01/25/08	01/25/08	

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: IRA2369

Sampled: 01/23/08-01/24/08 Received: 01/24/08

		INC	ORGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2369-07 (018 EFF-7 - Reporting Units: mg/l	Water)				Sample	ed: 01/23/0	08		
Sediment Total Suspended Solids	ASTM D3977 EPA 160.2	8B04081 8A25136	10 10	10 10	ND ND	1 1	02/04/08 01/25/08	02/04/08 01/25/08	
Sample ID: IRA2369-08 (018 EFF-8 -						ed: 01/23/0			
Reporting Units: mg/l Sediment Total Suspended Solids	ASTM D3977 EPA 160.2	8B04081 8A25136	10 10	10 10	ND ND	1 1	02/04/08 01/25/08	02/04/08 01/25/08	
Sample ID: IRA2369-09 (018 EFF-9 -		01120100	10	10		ed: 01/23/0		01/25/00	
Reporting Units: mg/l Sediment Total Suspended Solids	ASTM D3977 EPA 160.2	8B04081 8A25136	10 10	10 10	ND ND	1 1	02/04/08 01/25/08	02/04/08 01/25/08	
Sample ID: IRA2369-10 (018 EFF-10 Reporting Units: mg/l	- Water)				Sample	ed: 01/23/0			
Sediment Total Suspended Solids	ASTM D3977 EPA 160.2	8B04081 8A25136	10 10	10 10	ND ND	1 1	02/04/08 01/25/08	02/04/08 01/25/08	
Sample ID: IRA2369-11 (018 EFF-11 - Water) Sampled: 01/23/08 Reporting Units: mg/l									
Sediment Total Suspended Solids	ASTM D3977 EPA 160.2	8B04081 8A25136	10 10	10 10	ND ND	1 1	02/04/08 01/25/08	02/04/08 01/25/08	
Sample ID: IRA2369-12 (018 EFF-12					Sample	ed: 01/24/0			
Reporting Units: mg/l Sediment Total Suspended Solids	ASTM D3977 EPA 160.2	8B04081 8A25136	10 10	10 10	ND ND	1 1	02/04/08 01/25/08	02/04/08 01/25/08	
Sample ID: IRA2369-13 (018 EFF-13 Reporting Units: mg/l	- Water)				Sample	ed: 01/24/0	08		
Sediment Total Suspended Solids	ASTM D3977 EPA 160.2	8B04081 8A25136	10 10	10 10	ND ND	1 1	02/04/08 01/25/08	02/04/08 01/25/08	
Sample ID: IRA2369-14 (018 EFF-14 Reporting Units: mg/l	- Water)				Sample	ed: 01/24/0	08		
Sediment Total Suspended Solids	ASTM D3977 EPA 160.2	8B04081 8A25136	10 10	10 10	ND ND	1 1	02/04/08 01/25/08	02/04/08 01/25/08	

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: IRA2369

Sampled: 01/23/08-01/24/08 Received: 01/24/08

		INC	ORGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2369-15 (018 EFF-15	- Water)				Sample	ed: 01/24/	08		
Reporting Units: mg/l		0004004	10	10			0010100		
Sediment	ASTM D3977	8B04081	10	10	ND	1	02/04/08	02/04/08	
Total Suspended Solids	EPA 160.2	8A25136	10	10	ND	1	01/25/08	01/25/08	
Sample ID: IRA2369-16 (018 EFF-16 Reporting Units: mg/l	- Water)				Sample	ed: 01/24/	08		
Sediment	ASTM D3977	8B04081	10	10	ND	1	02/04/08	02/04/08	
Total Suspended Solids	EPA 160.2	8A25136	10	10	ND	1	01/25/08	01/25/08	
Sample ID: IRA2369-17 (018 EFF-17 Reporting Units: mg/l	- Water)				Sample	ed: 01/24/	08		
Sediment	ASTM D3977	8B04081	10	10	12	1	02/04/08	02/04/08	
Total Suspended Solids	EPA 160.2	8A25136	10	10	12	1	01/25/08	01/25/08	
Sample ID: IRA2369-18 (018 EFF-18 Reporting Units: mg/l	- Water)				Sample	ed: 01/24/	08		
Sediment	ASTM D3977	8B04081	10	10	11	1	02/04/08	02/04/08	
Total Suspended Solids	EPA 160.2	8A25136	10	10	11	1	01/25/08	01/25/08	
Sample ID: IRA2369-19 (018 EFF-19 - Water) Sampled: 01/24/08 Reporting Units: mg/l					08				
Sediment	ASTM D3977	8B04083	10	10	ND	1	02/04/08	02/04/08	
Total Suspended Solids	EPA 160.2	8A25136	10	10	ND	1	01/25/08	01/25/08	
Sample ID: IRA2369-20 (018 EFF-20 Reporting Units: mg/l	- Water)				Sample	ed: 01/24/	08		
Sediment	ASTM D3977	8B04083	10	10	13	1	02/04/08	02/04/08	
Total Suspended Solids	EPA 160.2	8A25136	10	10	13	1	01/25/08	01/25/08	
Sample ID: IRA2369-21 (018 EFF-21 Reporting Units: mg/l	- Water)				Sample	ed: 01/24/	08		
Sediment	ASTM D3977	8B04083	10	10	13	1	02/04/08	02/04/08	
Total Suspended Solids	EPA 160.2	8A28114	10	10	13	1	01/28/08	01/28/08	
Sample ID: IRA2369-22 (018 EFF-22	- Water)				Sample	ed: 01/24/	08		
Reporting Units: mg/l		0004000	10	10			00104100	00/01/00	
Sediment	ASTM D3977	8B04083	10	10	17	1	02/04/08	02/04/08	
Total Suspended Solids	EPA 160.2	8A28114	10	10	17	1	01/28/08	01/28/08	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: IRA2369

Sampled: 01/23/08-01/24/08 Received: 01/24/08

		INC	ORGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2369-23 (018 EFF-23 - Water) Sampled: 01/24/08									
Reporting Units: mg/l									
Sediment	ASTM D3977	8B04083	10	10	16	1	02/04/08	02/04/08	
Total Suspended Solids	EPA 160.2	8A28114	10	10	16	1	01/28/08	01/28/08	

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: IRA2369

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 01/23/08-01/24/08 Received: 01/24/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A25132 Extracted: 01/25/08	<u>}</u>										
Blank Analyzed: 01/25/2008 (8A25132-B	LK1)										
Total Suspended Solids	ND	10	10	mg/l							
LCS Analyzed: 01/25/2008 (8A25132-BS	1)										
Total Suspended Solids	967	10	10	mg/l	1000		97	85-115			
Duplicate Analyzed: 01/25/2008 (8A2513	2-DUP1)				Sou	rce: IRA	2326-01				
Total Suspended Solids	12.0	10	10	mg/l		11.0			9	10	
Batch: 8A25136 Extracted: 01/25/08	<u>.</u>										
Blank Analyzed: 01/25/2008 (8A25136-B	LK1)										
Total Suspended Solids	ND	10	10	mg/l							
LCS Analyzed: 01/25/2008 (8A25136-BS	1)										
Total Suspended Solids	971	10	10	mg/l	1000		97	85-115			
Duplicate Analyzed: 01/25/2008 (8A2513	6-DUP1)				Sou	rce: IRA	2369-15				
Total Suspended Solids	ND	10	10	mg/l		ND				10	
Batch: 8A28114 Extracted: 01/28/08	<u>1</u>										
Blank Analyzed: 01/28/2008 (8A28114-B	LK1)										
Total Suspended Solids	ND	10	10	mg/l							
LCS Analyzed: 01/28/2008 (8A28114-BS	1)										
Total Suspended Solids	967	10	10	mg/l	1000		97	85-115			

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: IRA2369

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 01/23/08-01/24/08 Received: 01/24/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A28114 Extracted: 01/28/08	<u>}</u>										
Duplicate Analyzed: 01/28/2008 (8A2811	4-DUP1)				Sou	rce: IRA2	2336-01				
Total Suspended Solids	15.0	10	10	mg/l		15.0			0	10	
Batch: 8B01088 Extracted: 02/01/08	_										
Duplicate Analyzed: 02/01/2008 (8B0108	8-DUP1)				Sou	rce: IRA3	3070-03				
Density	0.822	NA	N/A	g/cc		0.805			2	20	
Batch: 8B01093 Extracted: 02/01/08											
Duplicate Analyzed: 02/01/2008 (8B0109	3-DUP1)				Sou	rce: IRA2	2369-10				
Density	0.996	NA	N/A	g/cc		0.995			0	20	

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: IRA2369

Sampled: 01/23/08-01/24/08 Received: 01/24/08

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

DATA QUALIFIERS AND DEFINITIONS

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: IRA2369

Sampled: 01/23/08-01/24/08 Received: 01/24/08

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
ASTM D3977	Water		
Displacement	Water		
EPA 160.2	Water	Х	Х

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

TestAmerica Irvine

Test America version 12/20/07	rica <	ersion 12/20/07		CHAIN	CHAIN OF CUS		TODY FORM		Page 1 of 1	
Client Name/Address	ddress:			Project: Boeing BMP	ng BMP			ANAL YSIS REQUIRED	KEU	
MWH-Arcadia	ia			Effectiveness Monitoring	s Monitorinç				Etald readings.	
618 Michillinda Avenue. Suite 200	Avenue.	Suite 200		Program			-W			
Arcadia, CA 91007	01						TSA		Temp = $\lambda' \dot{A}$	77
Test America Contact: Joseph Doak	ontact: J	oseph Doak	_				, Da		A = Hq	12
Project Manager: Bronwyn Kelly	er: Broi	nwyn Kelly		Phone Number:	ier: 0.1		nibə 22) r		e of	/ * , . X
Sampler.				Fax Number:	- 1	_	rotion			ŝ
				(626) 568-6515	15		1-770 bend		Comments	30 ×
Sample	Sample Matrix	Container Type	# of Cont.	Sampling Date/Time	Preservative	Bottle #	uoc		12A2360	 للاد
018 EFF-1	8	500 mL Poly	-	01/23/08 -1315	None	-	×		-	?•]
018 EFF-2	×	500 mL Poly		01/23/08-1415	None	~ ~	× >)
018 EFF-3	>	500 mL Poly		01/23/08-1515	None	04	××			T
018 EFF-4 018 EFF_5	~ ~	500 mL Polv	-	01/23/08-1715	None	2	×			
018 EFF-6	: >	500 mL Poly	-	01/23/08-1815	None	9	×			
018 EFF-7	×	500 mL Poly	-	01/23/08-1915	None	~	×			- T -
018 EFF-8	N	500 mL Poly	-	01/23/08-2015	None	∞ (×>			
018 EFF-9	Ň	500 mL Poly		01/23/08-2115	None	~ <				-
018 EFF-10	× -	500 mL Poly		01/23/08-2215	None	2 5	< ×			
018 EFF-11	A 3	500 mL Poly	- -	01/23/08-2313	None	12	: ×			
018 EFF-12 018 EFE 12	^ ^	500 mL Polv	- -	01/24/08-0115	None	13	×			
018 EFE-13	* *	500 mL Polv		01/24/08-0215	-	4	×			-1
018 FFF-15	: N	500 mL Poly	-	01/24/08-0315	1 -	15	×			
018 EFF-16	×	500 mL Poly	-	01/24/08-0415		16	×			
018 EFF-17	×	500 mL Poly	-	01/24/08-0515	-	17	×:			
018 EFF-18	3	500 mL Poly	- ,	01/24/08-0615	None	18	××			1
018 EFF-19	8	500 mL Poly	- -	01/24/00-01/13		2 00	× ×			
018 EFF-20	3	500 mL Poly	- -	01/24/08-0015		21	×			
018 EFF-21	33	500 mile Poly		01/24/08-1015	+	22	×			
018 666-23	\$ 3	500 mL Polv	-	01/24/08-1115	1	23	×			- 1
010 CFT - 23		500 mL Poly	#		+	\$				
Relinquished Bv			Date/Time:	ne:	Received By	$\left(\right)$	Date/Time	me:	Turn around Time: (check)	
Journa	· · ·	Fio 1	01/24/08	555/ 80	- Oral	/ 2	- THE 1/241	2 yor 1525		
Relinquished By			Date/Time:	me:	Becerved By		Date/Ti		48 Hours 10 Days	
and and		Jel	2	1/24/28,815		JN		1124108 1815	72 Hours Normal X Samble Integrity: (check)	
Refinquished By			Date/Time:	me:	Received By)	Date/Time		Intact \mathcal{A} On Ice: \mathcal{A}	لۇ—-
								Ł.	1	
								20		

APPENDIX G

Section 102

Outfall 018 – BMP Effectiveness, January 24-25, 2008 Test America Analytical Laboratory Report

THE LEADER IN ENVIRONMENTAL TESTING

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project: BMP Effectiveness Monitoring Program

Sampled: 01/24/08-01/25/08 Received: 01/26/08 Issued: 02/06/08 18:14

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and

is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

LABORATORY ID	CLIENT ID	MATRIX
IRA2571-01	018 EFF-1	Water
IRA2571-02	018 EFF-2	Water
IRA2571-03	018 EFF-3	Water
IRA2571-04	018 EFF-4	Water
IRA2571-05	018 EFF-5	Water
IRA2571-06	018 EFF-6	Water
IRA2571-07	018 EFF-7	Water
IRA2571-08	018 EFF-8	Water
IRA2571-09	018 EFF-9	Water
IRA2571-10	018 EFF-10	Water
IRA2571-11	018 EFF-11	Water
IRA2571-12	018 EFF-12	Water
IRA2571-13	018 EFF-13	Water
IRA2571-14	018 EFF-14	Water
IRA2571-15	018 EFF-15	Water
IRA2571-16	018 EFF-16	Water
IRA2571-17	018 EFF-17	Water
IRA2571-18	018 EFF-18	Water
IRA2571-19	018 EFF-19	Water
IRA2571-20	018 EFF-20	Water
IRA2571-21	018 EFF-21	Water
IRA2571-22	018 EFF-22	Water
IRA2571-23	018 EFF-23	Water

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: IRA2571

Sampled: 01/24/08-01/25/08 Received: 01/26/08

LABORATORY ID IRA2571-24 **CLIENT ID** 018 EFF-24 MATRIX Water

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Reviewed By:

Joseph Dock

TestAmerica Irvine Joseph Doak Project Manager

IRA2571 <*Page 2 of 10*> NPDES - 4011

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: IRA2571

Sampled: 01/24/08-01/25/08 Received: 01/26/08

		INC	ORGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2571-01 (018 EFF-1 - Wa	ater)				Sample	ed: 01/24/0	08		
Reporting Units: g/cc Density	Displacement	8B01116	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2571-02 (018 EFF-2 - Wa Reporting Units: g/cc	ater)				Sample	ed: 01/24/0	08		
Density	Displacement	8B01116	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2571-03 (018 EFF-3 - Wa	ater)				Sample	ed: 01/24/0	08		
Reporting Units: g/cc Density	Displacement	8B01116	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2571-04 (018 EFF-4 - Wa	ater)				Sample	ed: 01/24/0	08		
Reporting Units: g/cc Density	Displacement	8B01116	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2571-05 (018 EFF-5 - Wa	ater)				Sample	ed: 01/24/0	08		
Reporting Units: g/cc Density	Displacement	8B01117	N/A	NA	1.0	1	02/01/08	02/01/08	
Sample ID: IRA2571-06 (018 EFF-6 - Wa	nter)				Sample	ed: 01/24/0	08		
Reporting Units: g/cc Density	Displacement	8B01117	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2571-07 (018 EFF-7 - Wa	ater)				Sample	ed: 01/24/0	08		
Reporting Units: g/cc Density	Displacement	8B01117	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2571-08 (018 EFF-8 - Wa	ater)				Sample	ed: 01/24/0	08		
Reporting Units: g/cc Density	Displacement	8B01117	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2571-09 (018 EFF-9 - Wa	ater)				Sample	ed: 01/24/0	08		
Reporting Units: g/cc Density	Displacement	8B01117	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2571-10 (018 EFF-10 - W	/ater)				Sample	ed: 01/24/0	08		
Reporting Units: g/cc Density	Displacement	8B01117	N/A	NA	1.0	1	02/01/08	02/01/08	

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: IRA2571

Sampled: 01/24/08-01/25/08 Received: 01/26/08

		INC	ORGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2571-11 (018 EFF-11 - W	/ater)				Sample	ed: 01/24/0	08		
Reporting Units: g/cc Density	Displacement	8B01117	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2571-12 (018 EFF-12 - W Reporting Units: g/cc	vater)				Sample	ed: 01/25/0	08		
Density	Displacement	8B01117	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2571-13 (018 EFF-13 - W	ater)				Sample	ed: 01/25/0	08		
Reporting Units: g/cc Density	Displacement	8B01117	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2571-14 (018 EFF-14 - W	/ater)				Sample	ed: 01/25/0	08		
Reporting Units: g/cc Density	Displacement	8B01117	N/A	NA	1.0	1	02/01/08	02/01/08	
Sample ID: IRA2571-15 (018 EFF-15 - W	/ater)				Sample	ed: 01/25/0	08		
Reporting Units: g/cc Density	Displacement	8B01117	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2571-16 (018 EFF-16 - W	/ater)				Sample	ed: 01/25/0	08		
Reporting Units: g/cc Density	Displacement	8B01117	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2571-17 (018 EFF-17 - W	/ater)				Sample	ed: 01/25/0	08		
Reporting Units: g/cc Density	Displacement	8B01117	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2571-18 (018 EFF-18 - W	/ater)				Sample	ed: 01/25/0	08		
Reporting Units: g/cc Density	Displacement	8B01117	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2571-19 (018 EFF-19 - W	/ater)				Sample	ed: 01/25/0	08		
Reporting Units: g/cc Density	Displacement	8B01117	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2571-20 (018 EFF-20 - W	/ater)				Sample	ed: 01/25/0	08		
Reporting Units: g/cc Density	Displacement	8B01117	N/A	NA	0.99	1	02/01/08	02/01/08	

TestAmerica Irvine

Joseph Doak Project Manager

IRA2571 <*Page 4 of 10>* NPDES - 4013

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: IRA2571

Sampled: 01/24/08-01/25/08 Received: 01/26/08

		INC	ORGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2571-21 (018 EFF-21 - V	Vater)				Sample	ed: 01/25/0	08		
Reporting Units: g/cc Density	Displacement	8B01117	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2571-22 (018 EFF-22 - V	Vater)				Sample	ed: 01/25/0	08		
Reporting Units: g/cc Density	Displacement	8B01117	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2571-23 (018 EFF-23 - V	Vater)				Sample	ed: 01/25/0	08		
Reporting Units: g/cc Density	Displacement	8B01117	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2571-24 (018 EFF-24 - V	Vater)				Sample	ed: 01/25/0	08		
Reporting Units: g/cc Density	Displacement	8B01117	N/A	NA	1.0	1	02/01/08	02/01/08	
Sample ID: IRA2571-01 (018 EFF-1 - W	ater)				Sample	ed: 01/24/0	08		
Reporting Units: mg/l Sediment	ASTM D3977	8B04106	10	10	23	1	02/04/08	02/05/08	
Sample ID: IRA2571-02 (018 EFF-2 - W						ed: 01/24/0			
Reporting Units: mg/l		9D04107	10	10	-			02/05/08	
Sediment Sample ID: IRA2571-03 (018 EFF-3 - W	ASTM D3977	8B04106	10	10	20	1	02/04/08	02/05/08	
Reporting Units: mg/l	aler)				Sample	ed: 01/24/0	08		
Sediment	ASTM D3977	8B04106	10	10	20	1	02/04/08	02/05/08	
Sample ID: IRA2571-04 (018 EFF-4 - W	ater)				Sample	ed: 01/24/0	08		
Reporting Units: mg/l Sediment	ASTM D3977	8B04106	10	10	18	1	02/04/08	02/05/08	
Sample ID: IRA2571-05 (018 EFF-5 - W	ater)				Sample	ed: 01/24/0	08		
Reporting Units: mg/l Sediment	ASTM D3977	8B04107	10	10	16	1	02/04/08	02/05/08	
Sample ID: IRA2571-06 (018 EFF-6 - W						ed: 01/24/0			
Reporting Units: mg/l	····,				Sampt	UI/2-1/			
Sediment	ASTM D3977	8B04107	10	10	19	1	02/04/08	02/05/08	

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: IRA2571

Sampled: 01/24/08-01/25/08 Received: 01/26/08

		INC	ORGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2571-07 (018 EFF-7 - Wa	ater)				Sample	ed: 01/24/0	08		
Reporting Units: mg/l Sediment	ASTM D3977	8B04107	10	10	17	1	02/04/08	02/05/08	
Sample ID: IRA2571-08 (018 EFF-8 - Wa Reporting Units: mg/l	ater)				Sample	ed: 01/24/0	08		
Sediment	ASTM D3977	8B04107	10	10	15	1	02/04/08	02/05/08	
Sample ID: IRA2571-09 (018 EFF-9 - Wa Reporting Units: mg/l	ater)				Sample	ed: 01/24/0	08		
Sediment	ASTM D3977	8B04107	10	10	180	1	02/04/08	02/05/08	
Sample ID: IRA2571-10 (018 EFF-10 - W Reporting Units: mg/l	ater)				Sample	ed: 01/24/0	08		
Sediment	ASTM D3977	8B04107	10	10	230	1	02/04/08	02/05/08	
Sample ID: IRA2571-11 (018 EFF-11 - W Reporting Units: mg/l	/ater)				Sample	ed: 01/24/0	08		
Sediment	ASTM D3977	8B04107	10	10	210	1	02/04/08	02/05/08	
Sample ID: IRA2571-12 (018 EFF-12 - W Reporting Units: mg/l	/ater)				Sample	ed: 01/25/0	08		
Sediment	ASTM D3977	8B04107	10	10	200	1	02/04/08	02/05/08	
Sample ID: IRA2571-13 (018 EFF-13 - W Reporting Units: mg/l	/ater)				Sample	ed: 01/25/0	08		
Sediment	ASTM D3977	8B04107	10	10	190	1	02/04/08	02/05/08	
Sample ID: IRA2571-14 (018 EFF-14 - W Reporting Units: mg/l	ater)				Sample	ed: 01/25/0	08		
Sediment	ASTM D3977	8B04107	10	10	170	1	02/04/08	02/05/08	
Sample ID: IRA2571-15 (018 EFF-15 - W Reporting Units: mg/l	ater)				Sample	ed: 01/25/0	08		
Sediment	ASTM D3977	8B04107	10	10	160	1	02/04/08	02/05/08	
Sample ID: IRA2571-16 (018 EFF-16 - W Reporting Units: mg/l	ater)				Sample	ed: 01/25/0	08		
Sediment	ASTM D3977	8B04107	10	10	160	1	02/04/08	02/05/08	

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: IRA2571

Sampled: 01/24/08-01/25/08 Received: 01/26/08

		INC	DRGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2571-17 (018 EFF-17 - W	vater)				Sample	ed: 01/25/0	08		
Reporting Units: mg/l Sediment	ASTM D3977	8B04107	10	10	150	1	02/04/08	02/05/08	
Sample ID: IRA2571-18 (018 EFF-18 - W Reporting Units: mg/l	vater)				Sample	ed: 01/25/0)8		
Sediment	ASTM D3977	8B04107	10	10	130	1	02/04/08	02/05/08	
Sample ID: IRA2571-19 (018 EFF-19 - W	/ater)				Sample	ed: 01/25/0	08		
Reporting Units: mg/l Sediment	ASTM D3977	8B04107	10	10	99	1	02/04/08	02/05/08	
Sample ID: IRA2571-20 (018 EFF-20 - W	vater)				Sample	ed: 01/25/0	08		
Reporting Units: mg/l Sediment	ASTM D3977	8B04107	10	10	85	1	02/04/08	02/05/08	
Sample ID: IRA2571-21 (018 EFF-21 - W	vater)				Sample	ed: 01/25/0)8		
Reporting Units: mg/l Sediment	ASTM D3977	8B04107	10	10	73	1	02/04/08	02/05/08	
Sample ID: IRA2571-22 (018 EFF-22 - W	vater)				Sample	ed: 01/25/0	08		
Reporting Units: mg/l Sediment	ASTM D3977	8B04107	10	10	66	1	02/04/08	02/05/08	
Sample ID: IRA2571-23 (018 EFF-23 - W	/ater)				Sample	ed: 01/25/0	08		
Reporting Units: mg/l Sediment	ASTM D3977	8B04107	10	10	66	1	02/04/08	02/05/08	
Sample ID: IRA2571-24 (018 EFF-24 - W	(ater)				Sample	ed: 01/25/0)8		
Reporting Units: mg/l Sediment	ASTM D3977	8B04107	10	10	50	1	02/04/08	02/05/08	

TestAmerica Irvine

Joseph Doak Project Manager

IRA2571 <*Page 7 of 10*> NPDES - 4016

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: IRA2571

Sampled: 01/24/08-01/25/08 Received: 01/26/08

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

INORGANICS

Analyte <u>Batch: 8B01116 Extracted: 02/01/08</u>	Result	Reporting Limit	MDL	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Duplicate Analyzed: 02/01/2008 (8B0111 Density <u>Batch: 8B01117 Extracted: 02/01/08</u>	0.999	NA	N/A	g/cc	Sou	rce: IRA2570-01 1.00		0	20	
Duplicate Analyzed: 02/01/2008 (8B0111 Density	7-DUP1) 0.996	NA	N/A	g/cc	Sou	rce: IRA2571-05 0.998		0	20	

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: IRA2571

Sampled: 01/24/08-01/25/08 Received: 01/26/08

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

DATA QUALIFIERS AND DEFINITIONS

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: IRA2571

Sampled: 01/24/08-01/25/08 Received: 01/26/08

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
ASTM D3977	Water		
Displacement	Water		

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

TestAmerica Irvine

Page 1 of 1		Field readings:	$p = \sqrt{4}$		$\langle \cdot \rangle$		Comments																(AL 12808	0	16342					Turm around Time: (check) 24 Hours 5 Days	48 Hours 10 Days	72 Hours Normal X	Sample Integrity: (check) Intact	7.6/5.6°C		
1KA2571		Field	Temp	= Ha	.	Ē																								1-26-08 1245		72		1/26/08 1530		
TODY FORM			MT2A	ient SC, /	mibe SS)	noiti	61-77 5-1neo 90neo	uoŋ	1 × 1		+	5 × ×			-	-	10 X	+	+	13 × 13	+		-	18 X 18		20 X	_	22 × ×	7	Date/Tinge:	Date/Time:		Date/Time:	at Of	×	
est America Version 12/2010 CHAIN OF CUSTODY FORM	Project: Boeing BMP	Effectiveness Monitoring Program			Phone Number:	(626) 508-6691 Fax Number:	(ଡି2ିଡି)	Sampling Preservative Date/Time	-		\neg	01/24/08-1521 None		1	01/24/08-1921 None	1			\neg		01/22/08-0121 NORE		1-		01/25/08-0621 None	-†		01/25/08-0921 None	25/08-1121			15 3U	ž	Close		
TRA25						ر م	<u>,</u>	Type Container # of Type	500 mL Poly 1	-		500 mL Poly 1 0	• -	-	500 mL Poly 1 0	-	500 mL Poly 1 0	-	-		- 1	500 mL Poly 1 U		· -	-	-			500 mL Poly 1	Date/Time	Date/Time:		Date/Time			
Test America	Client Name/Address:	MWH-Arcadia	Arcadia, CA 91007	Test America Contact: Joseph Doak	Project Manager: Bronwyn Kelly	Samilar D. MAA	M V V V V V V	Sample Sample Description Matrix	1			018 EFF-4 W			018 EFF-8 W	018 EFF-9 W	018 EFF-10 W					018 EFF-15 W	018 EFF-10 W						018 EFF-23 W		Relinquished By A		Relinquished By	-		

APPENDIX G

Section 103

Outfall 018, February 3, 2008 MEC^X Data Validation Reports

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IRB0156

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title:	Boeing SSFL NPDES
Contract Task Order:	1261.100D.00
Sample Delivery Group:	IRB0156
Project Manager:	B. Kelly
Matrix:	Water
QC Level:	IV
No. of Samples:	1
No. of Reanalyses/Dilutions:	0
Laboratory:	TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 018	IRB0156-01	30240-001, 973190, 8603-001, 8020450-01	Water	02/03/08 1445	120.1, 180.1, 330.5, 200.7, 200.8, 245.1, 415.1, 625, 900.0, 901.1, 903.0, 904.0, 905.0, 906.0, 1613, 8315M, ASTM D- 5174

II. Sample Management

No anomalies were observed regarding sample management. The sample in this SDG was received at TestAmerica-Irvine above the temperature limits; however, the sample has insufficient time to cool in transit. The sample was received below the temperature limits at Eberline, Vista, and Weck; however, the sample was not noted to have been frozen. The sample was received within the temperature limits of $4 \pm 2^{\circ}$ C at Truesdail. According to the case narrative for this SDG, the sample was received intact at all laboratories. The FedEx courier did not relinquish the sample to Eberline. The remaining COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine, Truesdail, and Weck, custody seals were not required. Container custody seals were intact upon arrival at Eberline and Vista. If necessary, the client ID was added to the sample result summary by the reviewer.

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
А	Not applicable.	ICP Serial Dilution %D were not within control limits.
М	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Ρ	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: March 24, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the *MEC[×] Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613,* and the *National Functional Guidelines Chlorinated Dioxin/Furan Data Review* (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: OCDD was reported in the method blank at 0.00000899μ/L; however, the concentration of OCDD in the sample exceeded five times the amount in the method blank

and required no qualifications. The method blank had no other target compound detects above the EDL.

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHODS 200.7, 200.8, 245.1—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: March 26, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.7, 200.8 and 245.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding times, 6 months for metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.

- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP-MS metals and 85-115% for mercury. All CRI/CRA and check standard recoveries were within the control limits of 70-130%
- Blanks: There were no applicable detects in the method blanks or CCBs.
- Interference Check Samples: ICSA/B analyses were performed in association with all analyses except total antimony. Recoveries were within the method-established control limits. Most analytes were reported in the ICSA solutions. No 6010 analytes required qualification as the concentrations of the interferents were not significant. For the 6020 analytes, the reviewer was not able to ascertain if the detections were indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Evaluation of method accuracy was based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. The bracketing CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

The reviewer noted that antimony was detected at a slightly higher concentration in the dissolved metals sample fraction and that cadmium was detected slightly above the MDL in the dissolved metals fraction but was not detected in the total metals fraction. In both cases, the difference between the total and dissolved results was within the sensitivity limits of the analytical instrument and, therefore, the reviewer considered the total and dissolved results to be equivalent.

• Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks Date Reviewed: March 28, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the *EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174,* and the *National Functional Guidelines for Inorganic Data Review* (2/94).

- Holding Times: The tritium sample was analyzed within 180 days of collection. Aliquots for gross alpha and gross beta, were prepared within the five-day analytical holding time for unpreserved samples. Aliquots for radium-226, radium-228, strontium-90, total uranium, and gamma spectroscopy were prepared beyond the five-day holding time for unpreserved samples; therefore, results for these analytes were qualified as estimated, "J," for detects and, "UJ," for nondetects.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability. The gross alpha detector efficiency was less than 20%; therefore, nondetected gross alpha in the sample was qualified as an estimated nondetect, "UJ." The gross beta detector efficiency was greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. The tritium detector efficiency for the sample was at least 20% and was considered acceptable. The strontium chemical yield was at least 70% and was considered acceptable. The strontium continuing calibration results were within the laboratory control limits. The radium-226 continuing calibration results were within the laboratory-established control limits. The radium-228 tracer, yttrium oxalate, yields were greater than 70%. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: There were no analytes detected in the method blanks.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.

- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. Reported nondetects are valid to the MDA.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

D. EPA METHOD 625—Semivolatile Organic Compounds (SVOCs)

Reviewed By: L. Calvin Date Reviewed: April 2, 2008

The sample listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Semivolatile Organics (DVP-3, Rev. 0), EPA Method 625 and the National Functional Guidelines for Organic Data Review (2/94).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted within seven days of collection and analyzed within 40 days of extraction.
- GC/MS Tuning: The DFTPP tunes met the method abundance criteria. Samples were analyzed within 12 hours of the DFTPP injection time.
- Calibration: Calibration criteria were met. Initial calibration average RRFs were ≥0.05 and %RSDs ≤35% or r² >0.995 for all target compounds. The sample was analyzed immediately following the initial calibration. The midpoint of the initial calibration, processed as a continuing calibration, had a %D >20% for hexachlorocyclopentadiene. The nondetect for hexachlorocyclopentadiene was qualified as estimated, "UJ," in the sample.
- Blanks: The method blank had detects between the MDL and the RL for bis(2ethylhexyl)phthalate at 2.82 µg/L, butyl benzyl phthalate at 2.46 µg/L, and diethyl phthalate at 0.160 µg/L. Sample detects between the MDL and the RL for bis(2-ethylhexyl)phthalate and butyl benzyl phthalate were qualified as nondetects, "U," at the reporting limit.

- Blank Spikes and Laboratory Control Samples: Benzidine was recovered below the QC limits but ≥10% in the LCS only, and the RPD for benzidine exceeded the QC limit. The nondetect for benzidine was qualified as estimated, "UJ," in the sample for the RPD outlier. Remaining recoveries and RPDs were within laboratory-established QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample of this SDG. Evaluation of method accuracy and precision was based on LSC/LSCD results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The internal standard area counts and retention times were within the control limits established by the continuing calibration standards: -50%/+100% for internal standard areas and ±30 seconds for retention times.
- Compound Identification: Compound identification was verified. The laboratory analyzed for semivolatile compounds by EPA Method 625. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any results reported between the MDL and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review of the raw data indicated no problems with system performance.

E. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks Date Reviewed: March 31, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Methods 120.1, 180.1, 330.5, 415.1, 8315M, Standard Method SM5540-C, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: Analytical holding times, 24 hours for conductivity, 48 hours for turbidity, and 28 days for TOC were met. The hydrazine aliquot was derivitized within three days of collection and analyzed within three days of derivitization. The holding time for residual chlorine is immediate; therefore, residual chlorine detected in the sample was qualified as an estimated detect, "J."
- Calibration: The hydrazines and TOC initial calibration r² were ≥0.995 and the ICV and CCV recoveries and the hydrazines QCS recoveries were within the laboratory-established control limits. Check standard recoveries for the remaining applicable methods were acceptable.
- Blanks: Turbidity was detected in the method blank but not at a concentration sufficient to qualify the site sample. A bracketing TOC CCB was reported as the TOC method blank; however, a single standard cannot be reported as both a method blank and a CCB. As the method blank and CCB would have been prepared from the same high-purity water, the reviewer chose to report the standard as the CCB. Method blanks and CCBs had no other detects.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits. The LCS is not applicable to conductivity or turbidity. An LCS was not reported for residual chlorine; however, as the check standards were acceptably recovered, no qualifications were required. A bracketing TOC CCV was reported as the TOC LCS; however, a single standard cannot be reported as both a CCV and a CCV. As the LCS and CCV would have been prepared from the same high-purity water and stock solutions, the reviewer chose to report the standard as the CCV.
- Laboratory Duplicates: No laboratory duplicate analyses were performed for the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the sample in this SDG for MBAS only. The recoveries and RPD were within the laboratory-established control limit. For the remaining applicable methods, method accuracy was evaluated based on the LCS results.

- Sample Result Verification: Review is not applicable at a Level V validation. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the reporting limit.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

3	5
9	-
1	7

1

Client Data		Sample Data	sti	Laboratory Data				
Name: T Project: Date Collected: 3 Time Collected: 1.	Test America-Irvine, CA IRB0156 3-Feb-08 1445	Matrix: Sample Size:	Aqueous 0.987 L	Ş.	30240-001 9953 19-Feb-08	Date Received: Date Extracted: Date Analyzcd I	Date Received: Date Extracted: Date Analyzed DB-225:	5-Feb-08 15-Feb-08 NA
Analyte	Conc. (ug/L)	DL ^a EMPC ^b	Qualifiers	Labeled Standard		%R	LCL-UCL ^d	Oualifiers
2,3,7,8-TCDD	Ð	0.000000631	11 11 11 11 11 11 11 11 11 11 11 11 11	IS 13C-2,3,7,8-TCDD	11 a 1	81.2	25 - 164	
1,2,3,7,8-PeCDD	DN	0.00000114		13C-1,2,3,7,8-PeCDD		70.3	25 - 181	
1,2,3,4,7,8-HxCDD	R I	0.00000157	State 1 and	13C-1,2,3,4,7,8-HxCDD	D	75.7	32 - 141	Street of
31040 1,2,3,6,7,8-HxCDD	0.00000177		ſ	13C-1,2,3,6,7,8-HxCDD	D	75.2	28 - 130	
1,2,3,7,8,9-HxCDD	Q A	0.00000192		13C-1,2,3,4,6,7,8-HpCDD	DD	75.7	23 - 140	
1,2,3,4,6,7,8-HpCDD	D 0.0000309			13C-OCDD		68.7	17 - 157	
ocdd	0.000323	1 A Maria & BA	B	13C-2,3,7,8-TCDF	Press Internation	85.2	24 - 169	Sta LAN
2,3,7,8-TCDF	ND	0.000000569		13C-1,2,3,7,8-PeCDF		67.9	24 - 185	
1,2,3,7,8-PeCDF	Ð	0.000000779	27 12 / Server	13C-2,3,4,7,8-PeCDF	10. 2 m	70.0	21 - 178	Contraction of the
2,3,4,7,8-PeCDF	QN	0.000000771		13C-1,2,3,4,7,8-HxCDF	1.	69.8	26 - 152	
1,2,3,4,7,8-HxCDF	Q	0.00000876	A TRACTOR	13C-1,2,3,6,7,8-HxCDF	L.	71.5	26 - 123	Same S
1,2,3,6,7,8-HxCDF	QN	0.000000910		13C-2,3,4,6,7,8-HxCDF	ĹT.	70.9	28 - 136	
2,3,4,6,7,8-HxCDF	Ð	0.000000954		13C-1,2,3,7,8,9-HxCDF		71.7	29 - 147	A PARTY
1,2,3,7,8,9-HxCDF	QN	0.00000133		13C-1,2,3,4,6,7,8-HpCDF	DF	68.6	28 - 143	
Thud 1,2,3,4,6,7,8-HpCDF	F 0.0000629		I 1. 1.	13C-1,2,3,4,7,8,9-HpCDF	DF	71.0	26 - 138	
1,2,3,4,7,8,9-HpCDF	F ND	0.00000112		13C-OCDF		69.0	17-157	
JONO OCDF	0.0000156	W. W. S. R. P. A. MA	1	CRS 37CI-2,3,7,8-TCDD		88.7	35-197	
Totals				Footnotes				
Total TCDD	QN	0.00000120		a. Sample specific estimated detection limit.	on limit.			
Total PeCDD	Ð	0.00000177		b. Estimated maximum possible concentration.	centration.			
Total HxCDD	0.00000881			c. Method detection limit.				
Total HpCDD	0.0000631	10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2	The Marchael	d. Lower control limit - upper control limit.	ol limit.			
Total TCDF	0.00000189							
Total PeCDF	0.00000643	STATISTICS STATISTICS			国家に行いた		- ALTAN TANK	
Total HxCDF	0.00000514							
Total HpCDF	0.0000148			「「「「「「「「」」」」」」		10.02	Service Service	

Page 6 of 1912

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0156

Project ID: Annual Outfall 018

Sampled: 02/03/08 Received: 02/03/08

METALS MDL Reporting Sample Dilution Date Date Data Method Qualifiers Analyte Batch Limit Limit Result Factor Extracted Analyzed Sample ID: IRB0156-01 (Outfall 018 - Water) - cont. Reporting Units: mg/l Hardness as CaCO3 SM2340B [CALC] N/A 0.33 130 1 02/04/08 02/04/08 Barium EPA 200.7 8B04079 0.0060 0.010 0.019 1 02/04/08 02/04/08 Boron EPA 200.7 8B04079 0.020 0.050 0.065 02/04/08 1 02/04/08 Calcium EPA 200.7 0.050 8B04079 0.10 37 02/04/08 02/04/08 1 EPA 200.7 8B04079 0.015 Iron 0.040 0.66 1 02/04/08 02/04/08 Magnesium EPA 200.7 8B04079 0.012 0.020 9.5 1 02/04/08 02/04/08

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

> The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRB0156 <Page 13 of 67>

LEVEL (V

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 018

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0156-01 (Outfall 018 - W	ater) - cont.								
Reporting Units: ug/l									
Antimony J/DNG	EPA 200.8	8B04080	0.20	2.0	0.45	1	02/04/08	02/05/08	J
Arsenic ()	EPA 200.7	8B04079	7.0	10	ND	1	02/04/08	02/04/08	
Beryllium	EPA 200.7	8B04079	0.90	2.0	ND	1	02/04/08	02/04/08	
Cadmium	EPA 200.8	8B04080	0.11	1.0	ND	1	02/04/08	02/04/08	
Chromium	EPA 200.7	8B04079	2.0	5.0	ND	1	02/04/08	02/04/08	
Cobalt	EPA 200.7	8B04079	2.0	10	ND	1	02/04/08	02/04/08	
Copper	EPA 200.8	8B04080	0.75	2.0	3.5	1	02/04/08	02/04/08	
Lead J/DNQ	EPA 200.8	8B04080	0.30	1.0	0.49	1	02/04/08	02/04/08	J
Manganese	EPA 200.7	8B04079	7.0	20	18	1	02/04/08	02/04/08	J
Nickel V	EPA 200.7	8B04079	2.0	10	2.6	1	02/04/08	02/04/08	J
Selenium ()	EPA 200.8	8B04080	0.30	2.0	ND	1	02/04/08	02/04/08	
Silver	EPA 200.8	8B04080	0.30	1.0	ND	1	02/04/08	02/04/08	
Thallium V	EPA 200.8	8B04080	0.20	1.0	ND	1	02/04/08	02/04/08	
Vanadium J/DNQ	EPA 200.7	8B04079	3.0	10	3.9	1	02/04/08	02/04/08	J
Zinc U	EPA 200.7	8B04079	6.0	20	14	1	02/04/08	02/04/08	J

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRB0156 <Page 14 of 67>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0156-01 (Outfall 018	Water) - cont.								
Reporting Units: mg/l									
Barium	EPA 200.7-Diss	8B04145	0.0060	0.010	0.015	1	02/04/08	02/05/08	
Boron	EPA 200.7-Diss	8B04145	0.020	0.050	0.057	1	02/04/08	02/05/08	
Calcium	EPA 200.7-Diss	8B04145	0.050	0.10	36	1	02/04/08	02/05/08	
Iron	EPA 200.7-Diss	8B04145	0.015	0.040	0.067	1	02/04/08	02/05/08	
Magnesium	EPA 200.7-Diss	8B04145	0.012	0.020	9.4	1	02/04/08	02/05/08	
Hardness (as CaCO3)	SM2340B	8B04145	1.0	1.0	130	1	02/04/08	02/05/08	

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

IRB0156 <Page 15 of 67>

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Project ID: Annual Outfall 018

DISSOLVED METALS

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

		D12201	LVED	METALS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0156-01 (Outfal	l 018 - Water) - cont.								
Reporting Units: ug/l									
Antimony J/DNQ	EPA 200.8-Diss	8B05112	0.20	2.0	0.46	1	02/05/08	02/05/08	J
Arsenic U	EPA 200.7-Diss	8B04145	7.0	10	ND	1	02/04/08	02/05/08	
Beryllium 🗸	EPA 200.7-Diss	8B04145	0.90	2.0	ND	1	02/04/08	02/05/08	
Cadmium J/DNQ	EPA 200.8-Diss	8B05112	0.11	1.0	0.17	1	02/05/08	02/05/08	J
Chromium	EPA 200.7-Diss	8B04145	2.0	5.0	ND	1	02/04/08	02/05/08	
Cobalt V	EPA 200.7-Diss	8B04145	2.0	10	ND	1	02/04/08	02/05/08	
Copper	EPA 200.8-Diss	8B05112	0.75	2.0	3.1	1	02/05/08	02/05/08	
Lead U	EPA 200.8-Diss	8B05112	0.30	1.0	ND	1	02/05/08	02/05/08	
Manganese	EPA 200.7-Diss	8B04145	7.0	20	ND	1	02/04/08	02/05/08	
Nickel	EPA 200.7-Diss	8B04145	2.0	10	ND	1	02/04/08	02/05/08	
Selenium	EPA 200.8-Diss	8B05112	0.30	2.0	ND	1	02/05/08	02/05/08	
Silver	EPA 200.8-Diss	8B05112	0.30	1.0	ND	1	02/05/08	02/05/08	
Thallium	EPA 200.8-Diss	8B05112	0.20	1.0	ND	1	02/05/08	02/05/08	
Vanadium 📈	EPA 200.7-Diss	8B04145	3.0	10	ND	1	02/04/08	02/05/08	
Zinc J/DNQ	EPA 200.7-Diss	8B04145	6.0	20	7.5	1	02/04/08	02/05/08	J
TX	LEVEL I	1			Pm 3/	26/08			

LEVEL IU

Pm 3/26/08

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRB0156 <Page 16 of 67>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 018

Sampled: 02/03/08

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0156

Received: 02/03/08

Metals by EPA 200 Series Methods

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0156-01 (Outfall 018 -	Water) - cont.								
Reporting Units: ug/l									
Mercury, Dissolved ()	EPA 245.1	W8B0147	0.050	0.20	ND	1	02/05/08	02/07/08	
Mercury, Total	EPA 245.1	W8B0147	0.050	0.20	ND	1	02/05/08	02/07/08	

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRB0156 <Page 22 of 67>

Eberline Services

SDG <u>8603</u> Work Order <u>R802049-01</u> Received Date <u>02/05/08</u>	x	Contract	TA IRVINE PROJECT# IRB0156 WATER	5	-
Client Lai		Nuclide	Results ± 20	Units	MDA
IRB0156-01 8603	-001 02/03/08 02/27/08 02/27/08	GrossAlpha Gross Beta	0.432 ± 0.65 2.98 ± 0.84	pCi/L pCi/L	1.0 UJ/R 1.3
	02/26/08 02/26/08 02/26/08	K-40 (G)	0.094 ± 0.20 U	pCi/L pCi/L pCi/L	0.37 UJ/H 19
	02/29/08	H-3	-31.3 ± 89 0.179 ± 0.41	pCi/L pCi/L	150 U 0.72 UJ/H
	02/18/0B 02/26/0B		0.235 ± 0.31 0.506 ± 0.056	pCi/L pCi/L	0.60 0.022 J/H

ANALYSIS RESULTS

RV 4/21/08 KKS

LEVEL IV

Certified by 201/ Report Date 03/11/08 Page 1

TestAmeric

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 018

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0156-01 (Outfall 01	8 - Wate	r)								
Reporting Units: ug/l		-1								
	u	EPA 625	8B03026	0.094	0.94	ND	0.943	02/03/08	02/07/08	
1,2-Dichlorobenzene	1	EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
1,2-Diphenylhydrazine/Azobenzene		EPA 625	8B03026	0.094	0.94	ND	0.943	02/03/08	02/07/08	
1,3-Dichlorobenzene		EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
1,4-Dichlorobenzene		EPA 625	8B03026	0.19	0.47	ND	0.943	02/03/08	02/07/08	
Acenaphthene		EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
Acenaphthylene		EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
Anthracene	V.	EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
Benzidine UJ	/*II	EPA 625	8B03026	0.94	4.7	ND	0.943	02/03/08	02/07/08	L6
	r	EPA 625	8B03026	0.094	4.7	ND	0.943	02/03/08	02/07/08	
Hexachlorobutadiene		EPA 625	8B03026	0.19	1.9	ND	0.943	02/03/08	02/07/08	
Benzo(a)pyrene		EPA 625	8B03026	0.094	1.9	ND	0.943	02/03/08	02/07/08	
Naphthalene		EPA 625	8B03026	0.094	0.94	ND	0.943	02/03/08	02/07/08	
Benzo(b)fluoranthene		EPA 625	8B03026	0.094	1.9	ND	0.943	02/03/08	02/07/08	
Benzo(g,h,i)perylene		EPA 625	8B03026	0.094	4.7	ND	0.943	02/03/08	02/07/08	
Benzo(k)fluoranthene		EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
Bis(2-chloroethoxy)methane		EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
Bis(2-chloroethyl)ether		EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
Bis(2-chloroisopropyl)ether		EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
Bis(2-ethylhexyl)phthalate	B	EPA 625	8B03026	1.6	4.7	1.7	0.943	02/03/08	02/07/08	J, B, L1
4-Bromophenyl phenyl ether		EPA 625	8B03026	0.094	0.94	ND	0.943	02/03/08	02/07/08	
Butyl benzyl phthalate	B	EPA 625	8B03026	0.66	4.7	1.8	0.943	02/03/08	02/07/08	J, B
2-Chloronaphthalene		EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
4-Chlorophenyl phenyl ether		EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
Chrysene		EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
Dibenz(a,h)anthracene		EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
Di-n-butyl phthalate		EPA 625	8B03026	0.19	1.9	ND	0.943	02/03/08	02/07/08	
3,3-Dichlorobenzidine		EPA 625	8B03026	0.38	4.7	ND	0.943	02/03/08	02/07/08	
Diethyl phthalate		EPA 625	8B03026	0.094	0.94	ND	0.943	02/03/08	02/07/08	
Dimethyl phthalate		EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
2,4-Dinitrophenol		EPA 625	8B03026	0.85	4.7	ND	0.943	02/03/08	02/07/08	
2,4-Dinitrotoluene		EPA 625	8B03026	0.19	4.7	ND	0.943	02/03/08	02/07/08	
2,6-Dinitrotoluene		EPA 625	8B03026	0.094	4.7	ND	0,943	02/03/08	02/07/08	
Di-n-octyl phthalate		EPA 625	8B03026	0.094	4.7	ND	0.943	02/03/08	02/07/08	
Fluoranthene		EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
Fluorene		EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
Hexachlorobenzene	1.10	EPA 625	8B03026	0.094	0.94	ND	0.943	02/03/08	02/07/08	
Hexachlorocyclopentadiene	J/C	EPA 625	8B03026	0.094	4.7	ND	0.943	02/03/08	02/07/08	
Hexachloroethane U	L'	EPA 625	8B03026	0.19	2.8	ND	0.943	02/03/08	02/07/08	
Indeno(1,2,3-cd)pyrene	1	EPA 625	8B03026	0.094	1.9	ND	0.943	02/03/08	02/07/08	
Isophorone	/	EPA 625	8B03026	0.094	0.94	ND	0.943	02/03/08	02/07/08	

TestAmerica Irvine

Joseph Doak

Dect Manage Project Manager Leve TV

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRB0156 <Page 9 of 67>

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 018

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0156-01 (Outfall 018 - Wa	ater) - cont.								
Reporting Units: ug/l Nitrobenzene U	EPA 625	8B03026	0.094	0.94	ND	0.943	02/03/08	02/07/08	
N-Nitrosodimethylamine	EPA 625	8B03026	0.094	1.9	ND	0.943	02/03/08	02/07/08	
N-Nitroso-di-n-propylamine	EPA 625	8B03026	0.094	1.9	ND	0.943	02/03/08	02/07/08	
N-Nitrosodiphenylamine	EPA 625	8B03026	0.094	0.94	ND	0.943	02/03/08	02/07/08	
Pentachlorophenol	EPA 625	8B03026	0.094	1.9	ND		02/03/08		
Phenanthrene	EPA 625	8B03026		0.47		0.943		02/07/08	
Pyrene	EPA 625	8B03026	0.094		ND	0.943	02/03/08	02/07/08	
2,4,6-Trichlorophenol	EPA 625 EPA 625	8B03026 8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
-	EFA 025	8B03020	0.094	0.94	ND	0.943	02/03/08	02/07/08	
Surrogate: 2-Fluorophenol (30-120%)					66 %				
Surrogate: Phenol-d6 (35-120%)	21				79 %				
Surrogate: 2,4,6-Tribromophenol (40-120%	0)				110%				
Surrogate: Nitrobenzene-d5 (45-120%)					88 %				
Surrogate: 2-Fluorobiphenyl (50-120%)					88 %				
Surrogate: Terphenyl-d14 (50-125%)					94 %				
1 11-11	+								
Level I	V								

TestAmerica Irvine

Joseph Doak Project Manager

> The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRB0156 <Page 10 of 67>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

		INC	ORGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0156-01 (Outfall 018 - V	Vater) - cont.								
Reporting Units: mg/l									
Hexane Extractable Material (Oil & 🔸	EPA 1664A	8B12074	1.3	4.8	ND	1	02/12/08	02/12/08	
Grease)									
Ammonia-N (Distilled)	EPA 350.2	8B07098	0.30	0.50	ND	1	02/07/08	02/08/08	
Biochemical Oxygen Demand	EPA 405.1	8B04070	0.59	2.0	1.1	1	02/04/08	02/09/08	J
Chloride	EPA 300.0	8B04043	0.25	0.50	23	1	02/04/08	02/04/08	
Fluoride	EPA 300.0	8B04043	0.15	0.50	0.31	1	02/04/08	02/04/08	J
Nitrate-N	EPA 300.0	8B04043	0.060	0.11	1.7	1	02/04/08	02/04/08	
Nitrite-N	EPA 300.0	8B04043	0.090	0.15	ND	1	02/04/08	02/04/08	
Nitrate/Nitrite-N	EPA 300.0	8B04043	0.15	0.26	1.7	1	02/04/08	02/04/08	
Residual Chlorine J/H	EPA 330.5	8B04074	0.10	0.10	0.14	1	02/04/08	02/04/08	HFT
Sulfate —	EPA 300.0	8B04043	1.0	2.5	67	5	02/04/08	02/04/08	M-3
Surfactants (MBAS)	SM5540-C	8B04097	0.044	0.10	ND	1	02/04/08	02/04/08	
Total Dissolved Solids	SM2540C	8B07123	10	10	260	1	02/07/08	02/07/08	
Total Organic Carbon	EPA 415.1	8B13116	0.50	1.0	9.8	1	02/13/08	02/13/08	
Total Suspended Solids	EPA 160.2	8B05134	10	10	ND	1	02/05/08	02/05/08	

* Analysis not Validated LEVEL (V

TestAmerica Irvine

Joseph Doak Project Manager

> The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRB0156 <Page 17 of 67>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

LEVEL IV

Sampled: 02/03/08 Received: 02/03/08

		INC	ORGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0156-01 (Outfall 018 - Reporting Units: NTU	Water) - cont.								
Turbidity	EPA 180.1	8B04067	0.040	1.0	15	1	02/04/08	02/04/08	

TestAmerica Irvine

Joseph Doak Project Manager

IRB0156 <Page 19 of 67>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

		INC	ORGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0156-01 (Outfall 018	Water) - cont.								
Reporting Units: umhos/cm Specific Conductance	EPA 120.1	8B08056	1.0	1.0	380	1	02/07/08	02/07/08	

TestAmerica Irvine

Joseph Doak Project Manager

IRB0156 <Page 21 of 67>

EXCELLENCE IN INDEPENDENT TESTING	DENT TESTING					Established 1931 14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 171.41 730.4030 - EAX 171.41 730.64400 - universital com	Established 1931 JUE - TUSTIN, CALIFORNIA, 92780-700 V. (TJ AJ, 730-6462), unwernescheil con
				>			
Client:	TestAmerica Analytical-Irvine 17461 Devīan Avenue, Suite 100 Irvine, CA 92614-5817	alytical-Irvine enue, Suite 100 -5817		REPORT		Laboratory No: Report Date:	973190 February 19, 2008
Attention: Sample: Project Name: P.O. Number: Method Number: Investigation:	Joseph Doak Water / 1 Sample IRB0156 IRB0156 8315 (Modified) Hydrazines					samplung uate: Receiving Date: Extraction Date: Analysis Date: Units: Reported By:	February s, 2008 February 4, 2008 February 6, 2008 µug/L JS
			Anal	Analytical Results			
Sample ID Sample	Sample Descript	Sample Amount {mL}	Dilution Factor	Monomethyl Hvdrazine	u-Dimethyl Hvďrazine	Hydrazine	Qualifier Codes
	Method Blank	100		QN	QN	ND	None
973190 Out Full al	% IRB0156-01	100	+		ON ()		None
MDL				0.56	0.32	0.15	
Par				5.0	5.0	1.00	
Sample Reporting Limits	IS			0.0	0.c	1.00	
	* And	yous not ve	validated		~		
			sver 10		7	L	7
Note: Results based on detector #1 (UV=365nm) data.	l detector #1 (UV=36	5nm) data.			Xuan I Analyfical Servic	Analyfical Services, Truesdail Laboratory	

APPENDIX G

Section 104

Outfall 018, February 3, 2008 Test America Analytical Laboratory Report

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project: Annual Outfall 018

Sampled: 02/03/08 Received: 02/03/08 Issued: 03/07/08 12:10

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: This is a revised report to include hardness data.

LABORATORY ID	CLIENT ID	MATRIX
IRB0156-01	Outfall 018	Water
IRB0156-02	Trip Blank	Water

Reviewed By:

Joseph Dock

TestAmerica Irvine Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0156-01 (Outfall 018 - Wa Reporting Units: mg/l	nter)								
EFH (C13 - C22) Surrogate: n-Octacosane (40-125%)	EPA 8015B	8B04063	0.094	0.47	ND 62 %	0.943	02/04/08	02/05/08	

TestAmerica Irvine

Attention: Bronwyn Kelly

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Re Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0156-01 (Outfall 018 - V	Water) - cont.								
Reporting Units: ug/l									
GRO (C4 - C12)	EPA 8015 Mod.	8B07041	25	100	ND	1	02/07/08	02/07/08	
Surrogate: 4-BFB (FID) (65-140%)					98 %				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

VOLATILE ORGANICS by GCMS SIM										
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IRB0156-01 (Outfall 018 -	Water) - cont.									
Reporting Units: ug/l										
1,4-Dioxane	EPA 8260B-SIM	8B04013	1.0	2.0	ND	1	02/04/08	02/04/08		
Surrogate: Dibromofluoromethane (80-	120%)				100 %					

TestAmerica Irvine

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 018

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

	PUR	GEABLES	S BY G	C/MS (EF	PA 624)				
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Oualifiers
·		Dutth	Linit		ittsuit	I uctor	Latiuttu	i inui y 20u	C
Sample ID: IRB0156-01 (Outfall 018 - Wate	er) - cont.								
Reporting Units: ug/l 1,1,1-Trichloroethane	EPA 624	8B07016	0.30	0.50	ND	1	02/07/08	02/08/08	
1,1,2,2-Tetrachloroethane	EPA 624 EPA 624	8B07016 8B07016	0.30	0.50	ND	1	02/07/08	02/08/08	
1,1,2-Trichloroethane	EPA 624 EPA 624	8B07016 8B07016	0.24	0.50	ND		02/07/08	02/08/08	
1,1-Dichloroethane	EPA 624 EPA 624	8B07016 8B07016	0.30	0.30	ND	1 1	02/07/08	02/08/08	
1,1-Dichloroethene	EPA 624 EPA 624	8B07016 8B07016	0.27	0.50	ND	1	02/07/08	02/08/08	
1.2-Dichloroethane	EPA 624 EPA 624	8B07016 8B07016	0.42	0.50	ND	1	02/07/08	02/08/08	
,	EPA 624 EPA 624	8B07016 8B07016	0.28	0.50	ND		02/07/08	02/08/08	
Benzene 1,2-Dichlorobenzene			0.28	0.50	ND	1	02/07/08	02/08/08	
-	EPA 624	8B07016		0.50	ND ND	1	02/07/08	02/08/08	
Carbon tetrachloride	EPA 624	8B07016	0.28			1			
1,2-Dichloropropane	EPA 624	8B07016	0.35	0.50	ND	1	02/07/08	02/08/08	
Chloroform	EPA 624	8B07016	0.33	0.50	ND	1	02/07/08	02/08/08	
1,3-Dichlorobenzene	EPA 624	8B07016	0.35	0.50	ND	1	02/07/08	02/08/08	
Ethylbenzene	EPA 624	8B07016	0.25	0.50	ND	1	02/07/08	02/08/08	
1,4-Dichlorobenzene	EPA 624	8B07016	0.37	0.50	ND	1	02/07/08	02/08/08	
Tetrachloroethene	EPA 624	8B07016	0.32	0.50	ND	1	02/07/08	02/08/08	
Toluene	EPA 624	8B07016	0.36	0.50	ND	1	02/07/08	02/08/08	
Bromodichloromethane	EPA 624	8B07016	0.30	0.50	ND	1	02/07/08	02/08/08	
Trichloroethene	EPA 624	8B07016	0.26	0.50	ND	1	02/07/08	02/08/08	
Bromoform	EPA 624	8B07016	0.40	0.50	ND	1	02/07/08	02/08/08	
Trichlorofluoromethane	EPA 624	8B07016	0.34	0.50	ND	1	02/07/08	02/08/08	
Bromomethane	EPA 624	8B07016	0.42	1.0	ND	1	02/07/08	02/08/08	
Trichlorotrifluoroethane (Freon 113)	EPA 624	8B07016	0.50	5.0	ND	1	02/07/08	02/08/08	
Vinyl chloride	EPA 624	8B07016	0.30	0.50	ND	1	02/07/08	02/08/08	
Chlorobenzene	EPA 624	8B07016	0.36	0.50	ND	1	02/07/08	02/08/08	
Xylenes, Total	EPA 624	8B07016	0.90	1.5	ND	1	02/07/08	02/08/08	
Chloroethane	EPA 624	8B07016	0.40	1.0	ND	1	02/07/08	02/08/08	
Chloromethane	EPA 624	8B07016	0.40	0.50	ND	1	02/07/08	02/08/08	
cis-1,3-Dichloropropene	EPA 624	8B07016	0.22	0.50	ND	1	02/07/08	02/08/08	
Dibromochloromethane	EPA 624	8B07016	0.28	0.50	ND	1	02/07/08	02/08/08	
Methylene chloride	EPA 624	8B07016	0.95	1.0	ND	1	02/07/08	02/08/08	
trans-1,2-Dichloroethene	EPA 624	8B07016	0.27	0.50	ND	1	02/07/08	02/08/08	
trans-1,3-Dichloropropene	EPA 624	8B07016	0.32	0.50	ND	1	02/07/08	02/08/08	
Surrogate: Dibromofluoromethane (80-120%)				114 %				
Surrogate: Toluene-d8 (80-120%)					103 %				
Surrogate: 4-Bromofluorobenzene (80-120%)					95 %				

TestAmerica Irvine

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 018

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

	PUR	GEABLES	S BY G	C/MS (EF	PA 624)				
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0156-02 (Trip Blank - Wat	er)								
Reporting Units: ug/l									
1,1,1-Trichloroethane	EPA 624	8B04024	0.30	0.50	ND	1	02/04/08	02/05/08	
1,1,2,2-Tetrachloroethane	EPA 624	8B04024	0.24	0.50	ND	1	02/04/08	02/05/08	
1,1,2-Trichloroethane	EPA 624	8B04024	0.30	0.50	ND	1	02/04/08	02/05/08	
1,1-Dichloroethane	EPA 624	8B04024	0.27	0.50	ND	1	02/04/08	02/05/08	
1,1-Dichloroethene	EPA 624	8B04024	0.42	0.50	0.43	1	02/04/08	02/05/08	J
1,2-Dichloroethane	EPA 624	8B04024	0.28	0.50	ND	1	02/04/08	02/05/08	
Benzene	EPA 624	8B04024	0.28	0.50	ND	1	02/04/08	02/05/08	
1,2-Dichlorobenzene	EPA 624	8B04024	0.32	0.50	ND	1	02/04/08	02/05/08	
Carbon tetrachloride	EPA 624	8B04024	0.28	0.50	ND	1	02/04/08	02/05/08	
1,2-Dichloropropane	EPA 624	8B04024	0.35	0.50	ND	1	02/04/08	02/05/08	
Chloroform	EPA 624	8B04024	0.33	0.50	ND	1	02/04/08	02/05/08	
1,3-Dichlorobenzene	EPA 624	8B04024	0.35	0.50	ND	1	02/04/08	02/05/08	
Ethylbenzene	EPA 624	8B04024	0.25	0.50	ND	1	02/04/08	02/05/08	
1,4-Dichlorobenzene	EPA 624	8B04024	0.37	0.50	ND	1	02/04/08	02/05/08	
Tetrachloroethene	EPA 624	8B04024	0.32	0.50	ND	1	02/04/08	02/05/08	
Toluene	EPA 624	8B04024	0.36	0.50	ND	1	02/04/08	02/05/08	
Bromodichloromethane	EPA 624	8B04024	0.30	0.50	ND	1	02/04/08	02/05/08	
Trichloroethene	EPA 624	8B04024	0.26	0.50	ND	1	02/04/08	02/05/08	
Bromoform	EPA 624	8B04024	0.40	0.50	ND	1	02/04/08	02/05/08	
Trichlorofluoromethane	EPA 624	8B04024	0.34	0.50	ND	1	02/04/08	02/05/08	
Bromomethane	EPA 624	8B04024	0.42	1.0	ND	1	02/04/08	02/05/08	
Trichlorotrifluoroethane (Freon 113)	EPA 624	8B04024	0.50	5.0	ND	1	02/04/08	02/05/08	
Vinyl chloride	EPA 624	8B04024	0.30	0.50	ND	1	02/04/08	02/05/08	
Chlorobenzene	EPA 624	8B04024	0.36	0.50	ND	1	02/04/08	02/05/08	
Xylenes, Total	EPA 624	8B04024	0.90	1.5	ND	1	02/04/08	02/05/08	
Chloroethane	EPA 624	8B04024	0.40	1.0	ND	1	02/04/08	02/05/08	
Chloromethane	EPA 624	8B04024	0.40	0.50	ND	1	02/04/08	02/05/08	
cis-1,3-Dichloropropene	EPA 624	8B04024	0.22	0.50	ND	1	02/04/08	02/05/08	
Dibromochloromethane	EPA 624	8B04024	0.28	0.50	ND	1	02/04/08	02/05/08	
Methylene chloride	EPA 624	8B04024	0.95	1.0	ND	1	02/04/08	02/05/08	
trans-1,2-Dichloroethene	EPA 624	8B04024	0.27	0.50	ND	1	02/04/08	02/05/08	
trans-1,3-Dichloropropene	EPA 624	8B04024	0.32	0.50	ND	1	02/04/08	02/05/08	
Surrogate: Dibromofluoromethane (80-120%	6)				115 %				
Surrogate: Toluene-d8 (80-120%)					103 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				90 %				

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

PURGEABLES-- GC/MS (EPA 624) MDL Reporting Sample Dilution Date Date Data Qualifiers Method Batch Limit Limit Result Factor Extracted Analyte Analyzed Sample ID: IRB0156-01 (Outfall 018 - Water) Reporting Units: ug/l EPA 624 8B04024 4.0 5.0 ND 02/04/08 02/05/08 Acrolein 1 Acrylonitrile EPA 624 8B04024 0.70 2.0 ND 02/04/08 02/05/08 1 8B04024 5.0 ND 02/04/08 02/05/08 2-Chloroethyl vinyl ether EPA 624 1.8 1 Surrogate: Dibromofluoromethane (80-120%) 115 % Surrogate: Toluene-d8 (80-120%) 102 % 91% Surrogate: 4-Bromofluorobenzene (80-120%) Sample ID: IRB0156-02 (Trip Blank - Water) Reporting Units: ug/l 8B04024 Acrolein EPA 624 4.0 5.0 ND 1 02/04/08 02/05/08 Acrylonitrile EPA 624 8B04024 0.70 2.0 ND 02/04/08 02/05/08 1 2-Chloroethyl vinyl ether EPA 624 8B04024 1.8 5.0 ND 1 02/04/08 02/05/08 Surrogate: Dibromofluoromethane (80-120%) 115 % Surrogate: Toluene-d8 (80-120%) 103 % Surrogate: 4-Bromofluorobenzene (80-120%) 90 %

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0156-01 (Outfall 018 -	Water)								
Reporting Units: ug/l									
1,2-Dichloro-1,1,2-trifluoroethane	EPA 624 (MOD.)	8B04024	N/A	2.5	ND	1	02/04/08	02/05/08	
Cyclohexane	EPA 624 (MOD.)	8B04024	N/A	2.5	ND	1	02/04/08	02/05/08	
Sample ID: IRB0156-02 (Trip Blank -	Water)								
Reporting Units: ug/l									
1,2-Dichloro-1,1,2-trifluoroethane	EPA 624 (MOD.)	8B04024	N/A	2.5	ND	1	02/04/08	02/05/08	
Cyclohexane	EPA 624 (MOD.)	8B04024	N/A	2.5	ND	1	02/04/08	02/05/08	

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 018

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

					15 (E1 7	1023)			
			MDL	Reporting	-	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IRB0156-01 (Outfall 018 - W	ater)								
Reporting Units: ug/l	,								
1,2,4-Trichlorobenzene	EPA 625	8B03026	0.094	0.94	ND	0.943	02/03/08	02/07/08	
1,2-Dichlorobenzene	EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
1,2-Diphenylhydrazine/Azobenzene	EPA 625	8B03026	0.094	0.94	ND	0.943	02/03/08	02/07/08	
1,3-Dichlorobenzene	EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
1,4-Dichlorobenzene	EPA 625	8B03026	0.19	0.47	ND	0.943	02/03/08	02/07/08	
Acenaphthene	EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
Acenaphthylene	EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
Anthracene	EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
Benzidine	EPA 625	8B03026	0.94	4.7	ND	0.943	02/03/08	02/07/08	L6
Benzo(a)anthracene	EPA 625	8B03026	0.094	4.7	ND	0.943	02/03/08	02/07/08	
Hexachlorobutadiene	EPA 625	8B03026	0.19	1.9	ND	0.943	02/03/08	02/07/08	
Benzo(a)pyrene	EPA 625	8B03026	0.094	1.9	ND	0.943	02/03/08	02/07/08	
Naphthalene	EPA 625	8B03026	0.094	0.94	ND	0.943	02/03/08	02/07/08	
Benzo(b)fluoranthene	EPA 625	8B03026	0.094	1.9	ND	0.943	02/03/08	02/07/08	
Benzo(g,h,i)perylene	EPA 625	8B03026	0.094	4.7	ND	0.943	02/03/08	02/07/08	
Benzo(k)fluoranthene	EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
Bis(2-chloroethoxy)methane	EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
Bis(2-chloroethyl)ether	EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
Bis(2-chloroisopropyl)ether	EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
Bis(2-ethylhexyl)phthalate	EPA 625	8B03026	1.6	4.7	1.7	0.943	02/03/08	02/07/08	J, B, L1
4-Bromophenyl phenyl ether	EPA 625	8B03026	0.094	0.94	ND	0.943	02/03/08	02/07/08	- , ,
Butyl benzyl phthalate	EPA 625	8B03026	0.66	4.7	1.8	0.943	02/03/08	02/07/08	J, B
2-Chloronaphthalene	EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	-)
4-Chlorophenyl phenyl ether	EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
Chrysene	EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
Dibenz(a,h)anthracene	EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
Di-n-butyl phthalate	EPA 625	8B03026	0.19	1.9	ND	0.943	02/03/08	02/07/08	
3,3-Dichlorobenzidine	EPA 625	8B03026	0.38	4.7	ND	0.943	02/03/08	02/07/08	
Diethyl phthalate	EPA 625	8B03026	0.094	0.94	ND	0.943	02/03/08	02/07/08	
Dimethyl phthalate	EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
2,4-Dinitrophenol	EPA 625	8B03026	0.85	4.7	ND	0.943	02/03/08	02/07/08	
2,4-Dinitrotoluene	EPA 625	8B03026	0.19	4.7	ND	0.943	02/03/08	02/07/08	
2,6-Dinitrotoluene	EPA 625	8B03026	0.094	4.7	ND	0.943	02/03/08	02/07/08	
Di-n-octyl phthalate	EPA 625	8B03026	0.094	4.7	ND	0.943	02/03/08	02/07/08	
Fluoranthene	EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
Fluorene	EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
Hexachlorobenzene	EPA 625	8B03026	0.094	0.94	ND	0.943	02/03/08	02/07/08	
Hexachlorocyclopentadiene	EPA 625	8B03026	0.094	4.7	ND	0.943	02/03/08	02/07/08	
Hexachloroethane	EPA 625	8B03026	0.19	2.8	ND	0.943	02/03/08	02/07/08	
Indeno(1,2,3-cd)pyrene	EPA 625	8B03026	0.094	1.9	ND	0.943	02/03/08	02/07/08	
Isophorone	EPA 625	8B03026	0.094	0.94	ND	0.943	02/03/08	02/07/08	
*									

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0156-01 (Outfall 018 - Wat	er) - cont.								
Reporting Units: ug/l									
Nitrobenzene	EPA 625	8B03026	0.094	0.94	ND	0.943	02/03/08	02/07/08	
N-Nitrosodimethylamine	EPA 625	8B03026	0.094	1.9	ND	0.943	02/03/08	02/07/08	
N-Nitroso-di-n-propylamine	EPA 625	8B03026	0.094	1.9	ND	0.943	02/03/08	02/07/08	
N-Nitrosodiphenylamine	EPA 625	8B03026	0.094	0.94	ND	0.943	02/03/08	02/07/08	
Pentachlorophenol	EPA 625	8B03026	0.094	1.9	ND	0.943	02/03/08	02/07/08	
Phenanthrene	EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
Pyrene	EPA 625	8B03026	0.094	0.47	ND	0.943	02/03/08	02/07/08	
2,4,6-Trichlorophenol	EPA 625	8B03026	0.094	0.94	ND	0.943	02/03/08	02/07/08	
Surrogate: 2-Fluorophenol (30-120%)					66 %				
Surrogate: Phenol-d6 (35-120%)					79 %				
Surrogate: 2,4,6-Tribromophenol (40-120%)					110 %				
Surrogate: Nitrobenzene-d5 (45-120%)					88 %				
Surrogate: 2-Fluorobiphenyl (50-120%)					88 %				
Surrogate: Terphenyl-d14 (50-125%)					94 %				

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 018

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0156-01 (Outfall 018 - Wate	er) - cont.								
Reporting Units: ug/l		0005000	0.0014	0.0047		0.042	00 10 5 100	00106100	
Aldrin	EPA 608	8B05099	0.0014	0.0047	ND	0.943	02/05/08	02/06/08	
alpha-BHC	EPA 608	8B05099	0.0024	0.0047	ND	0.943	02/05/08	02/06/08	
beta-BHC	EPA 608	8B05099	0.0038	0.0094	ND	0.943	02/05/08	02/06/08	
delta-BHC	EPA 608	8B05099	0.0033	0.0047	ND	0.943	02/05/08	02/06/08	
gamma-BHC (Lindane)	EPA 608	8B05099	0.0028	0.0094	ND	0.943	02/05/08	02/06/08	
Chlordane	EPA 608	8B05099	0.028	0.094	ND	0.943	02/05/08	02/06/08	
4,4'-DDD	EPA 608	8B05099	0.0019	0.0047	ND	0.943	02/05/08	02/06/08	
4,4'-DDE	EPA 608	8B05099	0.0028	0.0047	ND	0.943	02/05/08	02/06/08	
4,4'-DDT	EPA 608	8B05099	0.0038	0.0094	ND	0.943	02/05/08	02/06/08	
Dieldrin	EPA 608	8B05099	0.0019	0.0047	ND	0.943	02/05/08	02/06/08	
Endosulfan I	EPA 608	8B05099	0.0019	0.0047	ND	0.943	02/05/08	02/06/08	
Endosulfan II	EPA 608	8B05099	0.0028	0.0047	ND	0.943	02/05/08	02/06/08	
Endosulfan sulfate	EPA 608	8B05099	0.0028	0.0094	ND	0.943	02/05/08	02/06/08	
Endrin	EPA 608	8B05099	0.0019	0.0047	ND	0.943	02/05/08	02/06/08	
Endrin aldehyde	EPA 608	8B05099	0.0019	0.0094	ND	0.943	02/05/08	02/06/08	
Endrin ketone	EPA 608	8B05099	0.0028	0.0094	ND	0.943	02/05/08	02/06/08	
Heptachlor	EPA 608	8B05099	0.0028	0.0094	ND	0.943	02/05/08	02/06/08	
Heptachlor epoxide	EPA 608	8B05099	0.0024	0.0047	ND	0.943	02/05/08	02/06/08	
Methoxychlor	EPA 608	8B05099	0.0033	0.0047	ND	0.943	02/05/08	02/06/08	
Toxaphene	EPA 608	8B05099	0.066	0.094	ND	0.943	02/05/08	02/06/08	
Surrogate: Decachlorobiphenyl (45-120%)					76 %				
Surrogate: Tetrachloro-m-xylene (35-115%)					65 %				

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 018

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

TOTAL PCBS (EPA 608)											
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: IRB0156-01 (Outfall 018 - Wat	er) - cont.										
Reporting Units: ug/l											
Aroclor 1016	EPA 608	8B05099	0.42	0.47	ND	0.943	02/05/08	02/07/08			
Aroclor 1221	EPA 608	8B05099	0.24	0.47	ND	0.943	02/05/08	02/07/08			
Aroclor 1232	EPA 608	8B05099	0.24	0.47	ND	0.943	02/05/08	02/07/08			
Aroclor 1242	EPA 608	8B05099	0.24	0.47	ND	0.943	02/05/08	02/07/08			
Aroclor 1248	EPA 608	8B05099	0.24	0.47	ND	0.943	02/05/08	02/07/08			
Aroclor 1254	EPA 608	8B05099	0.24	0.47	ND	0.943	02/05/08	02/07/08			
Aroclor 1260	EPA 608	8B05099	0.28	0.47	ND	0.943	02/05/08	02/07/08			
Surrogate: Decachlorobiphenyl (45-120%)					83 %						

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METALS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0156-01 (Outfall 018 - Water) - cont.									
Reporting Units: mg/l									
Hardness as CaCO3	SM2340B	[CALC]	N/A	0.33	130	1	02/04/08	02/04/08	
Barium	EPA 200.7	8B04079	0.0060	0.010	0.019	1	02/04/08	02/04/08	
Boron	EPA 200.7	8B04079	0.020	0.050	0.065	1	02/04/08	02/04/08	
Calcium	EPA 200.7	8B04079	0.050	0.10	37	1	02/04/08	02/04/08	
Iron	EPA 200.7	8B04079	0.015	0.040	0.66	1	02/04/08	02/04/08	
Magnesium	EPA 200.7	8B04079	0.012	0.020	9.5	1	02/04/08	02/04/08	

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 018

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METALS									
Analyta	Method	Datah	MDL Limit	Reporting Limit	Sample		Date Extracted	Date	Data Qualifiers
Analyte	Wiethou	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Quaimers
Sample ID: IRB0156-01 (Outfall 018 - W	ater) - cont.								
Reporting Units: ug/l									
Antimony	EPA 200.8	8B04080	0.20	2.0	0.45	1	02/04/08	02/05/08	J
Arsenic	EPA 200.7	8B04079	7.0	10	ND	1	02/04/08	02/04/08	
Beryllium	EPA 200.7	8B04079	0.90	2.0	ND	1	02/04/08	02/04/08	
Cadmium	EPA 200.8	8B04080	0.11	1.0	ND	1	02/04/08	02/04/08	
Chromium	EPA 200.7	8B04079	2.0	5.0	ND	1	02/04/08	02/04/08	
Cobalt	EPA 200.7	8B04079	2.0	10	ND	1	02/04/08	02/04/08	
Copper	EPA 200.8	8B04080	0.75	2.0	3.5	1	02/04/08	02/04/08	
Lead	EPA 200.8	8B04080	0.30	1.0	0.49	1	02/04/08	02/04/08	J
Manganese	EPA 200.7	8B04079	7.0	20	18	1	02/04/08	02/04/08	J
Nickel	EPA 200.7	8B04079	2.0	10	2.6	1	02/04/08	02/04/08	J
Selenium	EPA 200.8	8B04080	0.30	2.0	ND	1	02/04/08	02/04/08	
Silver	EPA 200.8	8B04080	0.30	1.0	ND	1	02/04/08	02/04/08	
Thallium	EPA 200.8	8B04080	0.20	1.0	ND	1	02/04/08	02/04/08	
Vanadium	EPA 200.7	8B04079	3.0	10	3.9	1	02/04/08	02/04/08	J
Zinc	EPA 200.7	8B04079	6.0	20	14	1	02/04/08	02/04/08	J

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 018

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

DISSOLVED METALS MDL Reporting Sample Dilution Date Date Data Analyte Method Batch Limit Result Factor Extracted Qualifiers Limit Analyzed Sample ID: IRB0156-01 (Outfall 018 - Water) - cont. Reporting Units: mg/l 0.010 02/04/08 EPA 200.7-Diss 8B04145 0.0060 0.015 02/05/08 Barium 1 Boron EPA 200.7-Diss 8B04145 0.020 0.050 0.057 02/04/08 02/05/08 1 8B04145 02/05/08 Calcium EPA 200.7-Diss 0.050 0.10 36 1 02/04/08 EPA 200.7-Diss 8B04145 0.015 0.040 0.067 02/04/08 02/05/08 Iron 1 EPA 200.7-Diss 8B04145 0.012 0.020 9.4 02/04/08 02/05/08 Magnesium 1 8B04145 02/04/08 02/05/08 Hardness (as CaCO3) SM2340B 1.0 1.0 130 1

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 018

DISSOLVED METALS

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

MDL Reporting Sample Dilution Date Date Data Qualifiers Method Limit Result Factor Extracted Analyte Batch Limit Analyzed Sample ID: IRB0156-01 (Outfall 018 - Water) - cont. Reporting Units: ug/l EPA 200.8-Diss 8B05112 0.20 2.0 0.46 02/05/08 02/05/08 J Antimony 1 EPA 200.7-Diss 8B04145 7.0 10 ND 02/04/08 02/05/08 Arsenic 1 2.0 ND Beryllium EPA 200.7-Diss 8B04145 0.90 02/04/08 02/05/08 1 Cadmium 0.17 EPA 200.8-Diss 8B05112 0.11 1.0 1 02/05/08 02/05/08 J 8B04145 5.0 ND 02/04/08 02/05/08 Chromium EPA 200.7-Diss 2.0 1 Cobalt EPA 200.7-Diss 8B04145 2.0 10 ND 1 02/04/08 02/05/08 Copper EPA 200.8-Diss 8B05112 0.75 2.0 3.1 1 02/05/08 02/05/08 EPA 200.8-Diss 8B05112 0.30 ND 02/05/08 02/05/08 Lead 1.0 1 Manganese EPA 200.7-Diss 8B04145 7.0 20 ND 1 02/04/08 02/05/08 Nickel EPA 200.7-Diss 8B04145 2.0 10 ND 1 02/04/08 02/05/08 Selenium EPA 200.8-Diss 8B05112 0.30 2.0 ND 1 02/05/08 02/05/08 Silver EPA 200.8-Diss 8B05112 0.30 ND 02/05/08 02/05/08 1.0 1 Thallium EPA 200.8-Diss 8B05112 0.20 ND 02/05/08 02/05/08 1.0 1 ND Vanadium EPA 200.7-Diss 8B04145 3.0 10 1 02/04/08 02/05/08 Zinc EPA 200.7-Diss 8B04145 6.0 20 7.5 1 02/04/08 02/05/08 J

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 018

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

INORGANICS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0156-01 (Outfall 018 -	Water) - cont.								
Reporting Units: mg/l									
Hexane Extractable Material (Oil &	EPA 1664A	8B12074	1.3	4.8	ND	1	02/12/08	02/12/08	
Grease)		000000	0.00	0.50	ND		00105100	00 100 100	
Ammonia-N (Distilled)	EPA 350.2	8B07098	0.30	0.50	ND	1	02/07/08	02/08/08	
Biochemical Oxygen Demand	EPA 405.1	8B04070	0.59	2.0	1.1	1	02/04/08	02/09/08	J
Chloride	EPA 300.0	8B04043	0.25	0.50	23	1	02/04/08	02/04/08	
Fluoride	EPA 300.0	8B04043	0.15	0.50	0.31	1	02/04/08	02/04/08	J
Nitrate-N	EPA 300.0	8B04043	0.060	0.11	1.7	1	02/04/08	02/04/08	
Nitrite-N	EPA 300.0	8B04043	0.090	0.15	ND	1	02/04/08	02/04/08	
Nitrate/Nitrite-N	EPA 300.0	8B04043	0.15	0.26	1.7	1	02/04/08	02/04/08	
Residual Chlorine	EPA 330.5	8B04074	0.10	0.10	0.14	1	02/04/08	02/04/08	HFT
Sulfate	EPA 300.0	8B04043	1.0	2.5	67	5	02/04/08	02/04/08	M-3
Surfactants (MBAS)	SM5540-C	8B04097	0.044	0.10	ND	1	02/04/08	02/04/08	
Total Dissolved Solids	SM2540C	8B07123	10	10	260	1	02/07/08	02/07/08	
Total Organic Carbon	EPA 415.1	8B13116	0.50	1.0	9.8	1	02/13/08	02/13/08	
Total Suspended Solids	EPA 160.2	8B05134	10	10	ND	1	02/05/08	02/05/08	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

INORGANICS										
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IRB0156-01 (Outfall 018 - Water) - cont.										
Reporting Units: ml/l/hr										
Total Settleable Solids	EPA 160.5	8B04066	0.10	0.10	ND	1	02/04/08	02/04/08		

Project ID: Annual Outfall 018

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/BoeingProject ID:Annual Outfall 018618 Michillinda Avenue, Suite 200Sampled:02/03/08Arcadia, CA 91007Report Number:IRB0156Received:02/03/08Attention:Bronwyn KellyCaraciaCaraciaCaraciaCaracia

INORGANICS												
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers			
Sample ID: IRB0156-01 (Outfall 018	- Water) - cont.											
Reporting Units: NTU												
Turbidity	EPA 180.1	8B04067	0.040	1.0	15	1	02/04/08	02/04/08				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

INORGANICS												
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers			
Sample ID: IRB0156-01 (Outfall 018 - Water) - cont.												
Reporting Units: ug/l												
Chromium VI	EPA 218.6	8B04054	0.20	1.0	ND	1	02/04/08	02/04/08				
Total Cyanide	EPA 335.2	8B04112	2.2	5.0	ND	1	02/04/08	02/04/08				
Perchlorate	EPA 314.0	8B12073	1.5	4.0	ND	1	02/12/08	02/12/08				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/BoeingProject ID:Annual Outfall 018618 Michillinda Avenue, Suite 200Sampled:02/03/08Arcadia, CA 91007Report Number:IRB0156Received:02/03/08Attention:Bronwyn KellyControl of the second se

INORGANICS												
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers			
Sample ID: IRB0156-01 (Outfall 018 -	Water) - cont.											
Reporting Units: umhos/cm												
Specific Conductance	EPA 120.1	8B08056	1.0	1.0	380	1	02/07/08	02/07/08				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

Metals by EPA 200 Series Methods													
MDL Reporting Sample Dilution Date Date Analyte Method Batch Limit Limit Result Factor Extracted Analyzed Q													
Sample ID: IRB0156-01 (Outfall 018 - Wa	ater) - cont.												
Reporting Units: ug/l													
Mercury, Dissolved	EPA 245.1	W8B0147	0.050	0.20	ND	1	02/05/08	02/07/08					
Mercury, Total	EPA 245.1	W8B0147	0.050	0.20	ND	1	02/05/08	02/07/08					

TestAmerica Irvine

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 018 (IRB0156-01) - Water	r				
EPA 160.5	2	02/03/2008 14:45	02/03/2008 18:25	02/04/2008 09:00	02/04/2008 09:00
EPA 180.1	2	02/03/2008 14:45	02/03/2008 18:25	02/04/2008 09:00	02/04/2008 09:00
EPA 218.6	1	02/03/2008 14:45	02/03/2008 18:25	02/04/2008 07:00	02/04/2008 08:03
EPA 300.0	2	02/03/2008 14:45	02/03/2008 18:25	02/04/2008 05:00	02/04/2008 10:31
EPA 330.5	1	02/03/2008 14:45	02/03/2008 18:25	02/04/2008 10:00	02/04/2008 10:00
EPA 405.1	2	02/03/2008 14:45	02/03/2008 18:25	02/04/2008 16:00	02/09/2008 13:30
EPA 624	3	02/03/2008 14:45	02/03/2008 18:25	02/04/2008 00:00	02/05/2008 04:37
Filtration	1	02/03/2008 14:45	02/03/2008 18:25	02/04/2008 07:00	02/04/2008 07:00
SM5540-C	2	02/03/2008 14:45	02/03/2008 18:25	02/04/2008 13:33	02/04/2008 20:15
Sample ID: Trip Blank (IRB0156-02) - Water	•				
EPA 624	3	02/03/2008 14:45	02/03/2008 18:25	02/04/2008 00:00	02/05/2008 04:08

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04063 Extracted: 02/04/08	_										
Blank Analyzed: 02/05/2008 (8B04063-B	LK1)										
EFH (C13 - C22)	ND	0.50	0.10	mg/l							
Surrogate: n-Octacosane	0.138			mg/l	0.200		69	40-125			
LCS Analyzed: 02/05/2008 (8B04063-BS	l)										MNR1
EFH (C13 - C40)	0.573	0.50	0.10	mg/l	0.750		76	40-115			
Surrogate: n-Octacosane	0.141			mg/l	0.200		70	40-125			
LCS Dup Analyzed: 02/05/2008 (8B0406	3-BSD1)										
EFH (C13 - C40)	0.660	0.50	0.10	mg/l	0.750		88	40-115	14	25	
Surrogate: n-Octacosane	0.152			mg/l	0.200		76	40-125			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B07041 Extracted: 02/07/08	-										
Blank Analyzed: 02/07/2008 (8B07041-B	LK1)										
GRO (C4 - C12)	ND	100	25	ug/l							
Surrogate: 4-BFB (FID)	11.5			ug/l	10.0		115	65-140			
LCS Analyzed: 02/07/2008 (8B07041-BS)	1)										
GRO (C4 - C12)	801	100	25	ug/l	800		100	80-120			
Surrogate: 4-BFB (FID)	19.0			ug/l	10.0		190	65-140			ZX
Matrix Spike Analyzed: 02/07/2008 (8B0	7041-MS1)				Sou	rce: IRB	0223-05				
GRO (C4 - C12)	237	100	25	ug/l	220	ND	108	65-140			
Surrogate: 4-BFB (FID)	14.0			ug/l	10.0		140	65-140			
Matrix Spike Dup Analyzed: 02/07/2008	(8B07041-M	SD1)			Sou	rce: IRB	0223-05				
GRO (C4 - C12)	242	100	25	ug/l	220	ND	110	65-140	2	20	
Surrogate: 4-BFB (FID)	13.8			ug/l	10.0		138	65-140			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GCMS SIM

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04013 Extracted: 02/04/08	-										
Blank Analyzed: 02/04/2008 (8B04013-B	LK1)										
1,4-Dioxane	ND	2.0	1.0	ug/l							
Surrogate: Dibromofluoromethane	0.980			ug/l	1.00		98	80-120			
LCS Analyzed: 02/04/2008 (8B04013-BS)	1)										
1,4-Dioxane	8.78	2.0	1.0	ug/l	10.0		88	70-125			
Surrogate: Dibromofluoromethane	0.970			ug/l	1.00		97	80-120			
Matrix Spike Analyzed: 02/04/2008 (8B0	4013-MS1)				Sou	rce: IRA2	2967-02				
1,4-Dioxane	9.74	2.0	1.0	ug/l	10.0	1.95	78	70-130			
Surrogate: Dibromofluoromethane	1.02			ug/l	1.00		102	80-120			
Matrix Spike Dup Analyzed: 02/04/2008	(8B04013-M	SD1)			Sou	rce: IRA2	2967-02				
1,4-Dioxane	10.7	2.0	1.0	ug/l	10.0	1.95	88	70-130	9	30	
Surrogate: Dibromofluoromethane	1.01			ug/l	1.00		101	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04024 Extracted: 02/04/08											
Datch: 8004024 Extracted: 02/04/06	<u> </u>										
Blank Analyzed: 02/04/2008 (8B04024-B	SLK1)										
1,1,1-Trichloroethane	ND	0.50	0.30	ug/l							
1,1,2,2-Tetrachloroethane	ND	0.50	0.24	ug/l							
1,1,2-Trichloroethane	ND	0.50	0.30	ug/l							
1,1-Dichloroethane	ND	0.50	0.27	ug/l							
1,1-Dichloroethene	ND	0.50	0.42	ug/l							
1,2-Dichloroethane	ND	0.50	0.28	ug/l							
Benzene	ND	0.50	0.28	ug/l							
1,2-Dichlorobenzene	ND	0.50	0.32	ug/l							
Carbon tetrachloride	ND	0.50	0.28	ug/l							
1,2-Dichloropropane	ND	0.50	0.35	ug/l							
Chloroform	ND	0.50	0.33	ug/l							
1,3-Dichlorobenzene	ND	0.50	0.35	ug/l							
Ethylbenzene	ND	0.50	0.25	ug/l							
1,4-Dichlorobenzene	ND	0.50	0.37	ug/l							
Tetrachloroethene	ND	0.50	0.32	ug/l							
Toluene	ND	0.50	0.36	ug/l							
Bromodichloromethane	ND	0.50	0.30	ug/l							
Trichloroethene	ND	0.50	0.26	ug/l							
Bromoform	ND	0.50	0.40	ug/l							
Trichlorofluoromethane	ND	0.50	0.34	ug/l							
Bromomethane	ND	1.0	0.42	ug/l							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	0.50	ug/l							
Vinyl chloride	ND	0.50	0.30	ug/l							
Chlorobenzene	ND	0.50	0.36	ug/l							
Xylenes, Total	ND	1.5	0.90	ug/l							
Chloroethane	ND	1.0	0.40	ug/l							
Chloromethane	ND	0.50	0.40	ug/l							
cis-1,3-Dichloropropene	ND	0.50	0.22	ug/l							
Dibromochloromethane	ND	0.50	0.28	ug/l							
Methylene chloride	ND	1.0	0.95	ug/l							
trans-1,2-Dichloroethene	ND	0.50	0.27	ug/l							
trans-1,3-Dichloropropene	ND	0.50	0.32	ug/l							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	0.50	ug/l							
Surrogate: Dibromofluoromethane	27.5			ug/l	25.0		110	80-120			
Surrogate: Toluene-d8	25.7			ug/l	25.0		103	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04024 Extracted: 02/04/08	3										
Blank Analyzed: 02/04/2008 (8B04024-B	BLK1)										
Surrogate: 4-Bromofluorobenzene	23.1			ug/l	25.0		92	80-120			
LCS Analyzed: 02/04/2008 (8B04024-BS	51)										
1,1,1-Trichloroethane	29.2	0.50	0.30	ug/l	25.0		117	65-135			
1,1,2,2-Tetrachloroethane	26.4	0.50	0.24	ug/l	25.0		106	55-130			
1,1,2-Trichloroethane	25.0	0.50	0.30	ug/l	25.0		100	70-125			
1,1-Dichloroethane	28.6	0.50	0.27	ug/l	25.0		114	70-125			
1,1-Dichloroethene	24.7	0.50	0.42	ug/l	25.0		99	70-125			
1,2-Dichloroethane	25.7	0.50	0.28	ug/l	25.0		103	60-140			
Benzene	24.7	0.50	0.28	ug/l	25.0		99	70-120			
1,2-Dichlorobenzene	25.3	0.50	0.32	ug/l	25.0		101	75-120			
Carbon tetrachloride	27.1	0.50	0.28	ug/l	25.0		109	65-140			
1,2-Dichloropropane	25.1	0.50	0.35	ug/l	25.0		100	70-125			
Chloroform	29.1	0.50	0.33	ug/l	25.0		116	70-130			
1,3-Dichlorobenzene	25.0	0.50	0.35	ug/l	25.0		100	75-120			
Ethylbenzene	25.8	0.50	0.25	ug/l	25.0		103	75-125			
1,4-Dichlorobenzene	23.2	0.50	0.37	ug/l	25.0		93	75-120			
Tetrachloroethene	21.4	0.50	0.32	ug/l	25.0		86	70-125			
Toluene	24.6	0.50	0.36	ug/l	25.0		99	70-120			
Bromodichloromethane	28.2	0.50	0.30	ug/l	25.0		113	70-135			
Trichloroethene	22.9	0.50	0.26	ug/l	25.0		92	70-125			
Bromoform	21.2	0.50	0.40	ug/l	25.0		85	55-130			
Trichlorofluoromethane	33.5	0.50	0.34	ug/l	25.0		134	65-145			
Bromomethane	29.0	1.0	0.42	ug/l	25.0		116	65-140			
Vinyl chloride	29.4	0.50	0.30	ug/l	25.0		118	55-135			
Chlorobenzene	23.6	0.50	0.36	ug/l	25.0		94	75-120			
Xylenes, Total	73.8	1.5	0.90	ug/l	75.0		98	70-125			
Chloroethane	29.2	1.0	0.40	ug/l	25.0		117	60-140			
Chloromethane	29.7	0.50	0.40	ug/l	25.0		119	50-140			
cis-1,3-Dichloropropene	22.6	0.50	0.22	ug/l	25.0		90	75-125			
Dibromochloromethane	23.8	0.50	0.28	ug/l	25.0		95	70-140			
Methylene chloride	27.1	1.0	0.95	ug/l	25.0		108	55-130			
trans-1,2-Dichloroethene	28.2	0.50	0.27	ug/l	25.0		113	70-125			
trans-1,3-Dichloropropene	22.6	0.50	0.32	ug/l	25.0		91	70-125			
Surrogate: Dibromofluoromethane	28.5			ug/l	25.0		114	80-120			
Surrogate: Toluene-d8	25.3			ug/l	25.0		101	80-120			

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04024 Extracted: 02/04/08	1										
	_										
LCS Analyzed: 02/04/2008 (8B04024-BS	1)										
Surrogate: 4-Bromofluorobenzene	25.8			ug/l	25.0		103	80-120			
Matrix Spike Analyzed: 02/04/2008 (8B0	4024-MS1)				Sou	irce: IRA	3076-01				
1,1,1-Trichloroethane	28.3	0.50	0.30	ug/l	25.0	ND	113	65-140			
1,1,2,2-Tetrachloroethane	27.7	0.50	0.24	ug/l	25.0	ND	111	55-135			
1,1,2-Trichloroethane	25.0	0.50	0.30	ug/l	25.0	ND	100	65-130			
1,1-Dichloroethane	27.4	0.50	0.27	ug/l	25.0	ND	109	65-130			
1,1-Dichloroethene	23.1	0.50	0.42	ug/l	25.0	ND	92	60-130			
1,2-Dichloroethane	25.4	0.50	0.28	ug/l	25.0	ND	101	60-140			
Benzene	24.2	0.50	0.28	ug/l	25.0	ND	97	65-125			
1,2-Dichlorobenzene	25.0	0.50	0.32	ug/l	25.0	ND	100	75-125			
Carbon tetrachloride	27.2	0.50	0.28	ug/l	25.0	ND	109	65-140			
1,2-Dichloropropane	24.4	0.50	0.35	ug/l	25.0	ND	98	65-130			
Chloroform	28.4	0.50	0.33	ug/l	25.0	ND	114	65-135			
1,3-Dichlorobenzene	24.4	0.50	0.35	ug/l	25.0	ND	98	75-125			
Ethylbenzene	25.2	0.50	0.25	ug/l	25.0	ND	101	65-130			
1,4-Dichlorobenzene	22.4	0.50	0.37	ug/l	25.0	ND	90	75-125			
Tetrachloroethene	20.5	0.50	0.32	ug/l	25.0	ND	82	65-130			
Toluene	24.1	0.50	0.36	ug/l	25.0	ND	96	70-125			
Bromodichloromethane	27.7	0.50	0.30	ug/l	25.0	ND	111	70-135			
Trichloroethene	22.5	0.50	0.26	ug/l	25.0	ND	90	65-125			
Bromoform	21.5	0.50	0.40	ug/l	25.0	ND	86	55-135			
Trichlorofluoromethane	33.0	0.50	0.34	ug/l	25.0	ND	132	60-145			
Bromomethane	26.2	1.0	0.42	ug/l	25.0	ND	105	55-145			
Vinyl chloride	26.4	0.50	0.30	ug/l	25.0	ND	106	45-140			
Chlorobenzene	22.8	0.50	0.36	ug/l	25.0	ND	91	75-125			
Xylenes, Total	72.5	1.5	0.90	ug/l	75.0	ND	97	60-130			
Chloroethane	27.2	1.0	0.40	ug/l	25.0	ND	109	55-140			
Chloromethane	24.5	0.50	0.40	ug/l	25.0	ND	98	45-145			
cis-1,3-Dichloropropene	22.2	0.50	0.22	ug/l	25.0	ND	89	70-130			
Dibromochloromethane	24.2	0.50	0.28	ug/l	25.0	ND	97	65-140			
Methylene chloride	25.8	1.0	0.95	ug/l	25.0	ND	103	50-135			
trans-1,2-Dichloroethene	26.9	0.50	0.27	ug/l	25.0	ND	107	65-130			
trans-1,3-Dichloropropene	21.9	0.50	0.32	ug/l	25.0	ND	88	65-135			
Surrogate: Dibromofluoromethane	28.7			ug/l	25.0		115	80-120			
Surrogate: Toluene-d8	25.3			ug/l	25.0		101	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04024 Extracted: 02/04/08	-										
Matrix Spike Analyzed: 02/04/2008 (8B0	4024-MS1)				Sou	rce: IRA	3076-01				
Surrogate: 4-Bromofluorobenzene	25.6			ug/l	25.0		102	80-120			
Matrix Spike Dup Analyzed: 02/04/2008	(8B04024-N	ISD1)			Sou	rce: IRA	3076-01				
1,1,1-Trichloroethane	28.2	0.50	0.30	ug/l	25.0	ND	113	65-140	0	20	
1,1,2,2-Tetrachloroethane	25.6	0.50	0.24	ug/l	25.0	ND	103	55-135	8	30	
1,1,2-Trichloroethane	23.7	0.50	0.30	ug/l	25.0	ND	95	65-130	5	25	
1,1-Dichloroethane	27.2	0.50	0.27	ug/l	25.0	ND	109	65-130	1	20	
1,1-Dichloroethene	23.7	0.50	0.42	ug/l	25.0	ND	95	60-130	3	20	
1,2-Dichloroethane	23.9	0.50	0.28	ug/l	25.0	ND	96	60-140	6	20	
Benzene	23.7	0.50	0.28	ug/l	25.0	ND	95	65-125	2	20	
1,2-Dichlorobenzene	23.8	0.50	0.32	ug/l	25.0	ND	95	75-125	5	20	
Carbon tetrachloride	26.2	0.50	0.28	ug/l	25.0	ND	105	65-140	4	25	
1,2-Dichloropropane	24.1	0.50	0.35	ug/l	25.0	ND	97	65-130	1	20	
Chloroform	28.1	0.50	0.33	ug/l	25.0	ND	112	65-135	1	20	
1,3-Dichlorobenzene	23.9	0.50	0.35	ug/l	25.0	ND	95	75-125	2	20	
Ethylbenzene	24.7	0.50	0.25	ug/l	25.0	ND	99	65-130	2	20	
1,4-Dichlorobenzene	22.2	0.50	0.37	ug/l	25.0	ND	89	75-125	1	20	
Tetrachloroethene	20.6	0.50	0.32	ug/l	25.0	ND	82	65-130	0	20	
Toluene	23.6	0.50	0.36	ug/l	25.0	ND	94	70-125	2	20	
Bromodichloromethane	27.1	0.50	0.30	ug/l	25.0	ND	108	70-135	2	20	
Trichloroethene	22.0	0.50	0.26	ug/l	25.0	ND	88	65-125	2	20	
Bromoform	19.8	0.50	0.40	ug/l	25.0	ND	79	55-135	8	25	
Trichlorofluoromethane	31.5	0.50	0.34	ug/l	25.0	ND	126	60-145	5	25	
Bromomethane	26.7	1.0	0.42	ug/l	25.0	ND	107	55-145	2	25	
Vinyl chloride	26.5	0.50	0.30	ug/l	25.0	ND	106	45-140	0	30	
Chlorobenzene	22.4	0.50	0.36	ug/l	25.0	ND	89	75-125	2	20	
Xylenes, Total	71.3	1.5	0.90	ug/l	75.0	ND	95	60-130	2	20	
Chloroethane	27.8	1.0	0.40	ug/l	25.0	ND	111	55-140	2	25	
Chloromethane	26.4	0.50	0.40	ug/l	25.0	ND	105	45-145	7	25	
cis-1,3-Dichloropropene	21.1	0.50	0.22	ug/l	25.0	ND	84	70-130	5	20	
Dibromochloromethane	22.6	0.50	0.28	ug/l	25.0	ND	91	65-140	7	25	
Methylene chloride	24.8	1.0	0.95	ug/l	25.0	ND	99	50-135	4	20	
trans-1,2-Dichloroethene	27.1	0.50	0.27	ug/l	25.0	ND	108	65-130	1	20	
trans-1,3-Dichloropropene	20.8	0.50	0.32	ug/l	25.0	ND	83	65-135	5	25	
Surrogate: Dibromofluoromethane	28.6			ug/l	25.0		115	80-120			
Surrogate: Toluene-d8	25.1			ug/l	25.0		100	80-120			

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyta	Decult	Reporting Limit	MDI	Unita	Spike	Source	9/ DEC	%REC	DDD	RPD Limit	Data Qualifiers
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Quaimers
Batch: 8B04024 Extracted: 02/04/08	8										
Matrix Spiles Dup Apolyzod, 02/04/2005) (QD04074 N	ICD1)			Sou	MAGE ID A	2076 01				
Matrix Spike Dup Analyzed: 02/04/2008 Surrogate: 4-Bromofluorobenzene	25.2	1501)			25.0	rce: IRA	101	80-120			
Surroguie. 4-Bromofiuorobenzene	23.2			ug/l	25.0		101	80-120			
Batch: 8B07016 Extracted: 02/07/08	<u>8</u>										
Blank Analyzed: 02/07/2008 (8B07016-E	BLK1)										
1,1,1-Trichloroethane	ND	0.50	0.30	ug/l							
1,1,2,2-Tetrachloroethane	ND	0.50	0.24	ug/l							
1,1,2-Trichloroethane	ND	0.50	0.30	ug/l							
1,1-Dichloroethane	ND	0.50	0.27	ug/l							
1,1-Dichloroethene	ND	0.50	0.42	ug/l							
1,2-Dichloroethane	ND	0.50	0.28	ug/l							
Benzene	ND	0.50	0.28	ug/l							
1,2-Dichlorobenzene	ND	0.50	0.32	ug/l							
Carbon tetrachloride	ND	0.50	0.28	ug/l							
1,2-Dichloropropane	ND	0.50	0.35	ug/l							
Chloroform	ND	0.50	0.33	ug/l							
1,3-Dichlorobenzene	ND	0.50	0.35	ug/l							
Ethylbenzene	ND	0.50	0.25	ug/l							
1,4-Dichlorobenzene	ND	0.50	0.37	ug/l							
Tetrachloroethene	ND	0.50	0.32	ug/l							
Toluene	ND	0.50	0.36	ug/l							
Bromodichloromethane	ND	0.50	0.30	ug/l							
Trichloroethene	ND	0.50	0.26	ug/l							
Bromoform	ND	0.50	0.40	ug/l							
Trichlorofluoromethane	ND	0.50	0.34	ug/l							
Bromomethane	ND	1.0	0.42	ug/l							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	0.50	ug/l							
Vinyl chloride	ND	0.50	0.30	ug/l							
Chlorobenzene	ND	0.50	0.36	ug/l							
Xylenes, Total	ND	1.5	0.90	ug/l							
Chloroethane	ND	1.0	0.40	ug/l							
Chloromethane	ND	0.50	0.40	ug/l							
cis-1,3-Dichloropropene	ND	0.50	0.22	ug/l							
Dibromochloromethane	ND	0.50	0.28	ug/l							
Methylene chloride	ND	1.0	0.95	ug/l							
trans-1,2-Dichloroethene	ND	0.50	0.27	ug/l							

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source	%REC	%REC	RPD	RPD Limit	Data Qualifiers
·		Linnt	MDL	Units	Level	Result	70NEC	Linnts	KF D	Linnt	Quanners
Batch: 8B07016 Extracted: 02/07/08	<u>}</u>										
Blank Analyzed: 02/07/2008 (8B07016-B	LK1)										
trans-1,3-Dichloropropene	ND	0.50	0.32	ug/l							
Surrogate: Dibromofluoromethane	26.6	0.50	0.52	ug/l	25.0		106	80-120			
Surrogate: Toluene-d8	25.6			ug/l	25.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	23.0			ug/l	25.0		92	80-120			
LCS Analyzed: 02/07/2008 (8B07016-BS											
1,1,1-Trichloroethane	28.7	0.50	0.30	ug/l	25.0		115	65-135			
1,1,2,2-Tetrachloroethane	25.8	0.50	0.24	ug/l	25.0		103	55-130			
1,1,2-Trichloroethane	24.7	0.50	0.30	ug/l	25.0		99	70-125			
1,1-Dichloroethane	27.9	0.50	0.27	ug/l	25.0		112	70-125			
1,1-Dichloroethene	24.4	0.50	0.42	ug/l	25.0		98	70-125			
1,2-Dichloroethane	25.2	0.50	0.28	ug/l	25.0		101	60-140			
Benzene	25.4	0.50	0.28	ug/l	25.0		102	70-120			
1,2-Dichlorobenzene	25.6	0.50	0.32	ug/l	25.0		103	75-120			
Carbon tetrachloride	27.8	0.50	0.28	ug/l	25.0		111	65-140			
1,2-Dichloropropane	25.8	0.50	0.35	ug/l	25.0		103	70-125			
Chloroform	28.5	0.50	0.33	ug/l	25.0		114	70-130			
1,3-Dichlorobenzene	25.7	0.50	0.35	ug/l	25.0		103	75-120			
Ethylbenzene	26.4	0.50	0.25	ug/l	25.0		105	75-125			
1,4-Dichlorobenzene	23.6	0.50	0.37	ug/l	25.0		94	75-120			
Tetrachloroethene	21.9	0.50	0.32	ug/l	25.0		88	70-125			
Toluene	25.3	0.50	0.36	ug/l	25.0		101	70-120			
Bromodichloromethane	28.5	0.50	0.30	ug/l	25.0		114	70-135			
Trichloroethene	24.2	0.50	0.26	ug/l	25.0		97	70-125			
Bromoform	20.8	0.50	0.40	ug/l	25.0		83	55-130			
Trichlorofluoromethane	32.1	0.50	0.34	ug/l	25.0		128	65-145			
Bromomethane	27.7	1.0	0.42	ug/l	25.0		111	65-140			
Vinyl chloride	27.9	0.50	0.30	ug/l	25.0		112	55-135			
Chlorobenzene	24.0	0.50	0.36	ug/l	25.0		96	75-120			
Xylenes, Total	75.7	1.5	0.90	ug/l	75.0		101	70-125			
Chloroethane	28.5	1.0	0.40	ug/l	25.0		114	60-140			
Chloromethane	27.4	0.50	0.40	ug/l	25.0		110	50-140			
cis-1,3-Dichloropropene	23.1	0.50	0.22	ug/l	25.0		93	75-125			
Dibromochloromethane	23.5	0.50	0.28	ug/l	25.0		94	70-140			
Methylene chloride	26.5	1.0	0.95	ug/l	25.0		106	55-130			
trans-1,2-Dichloroethene	28.3	0.50	0.27	ug/l	25.0		113	70-125			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
·		Limit	MDL	Units	Level	Kesuit	/0REC	Linnts	ΚΙD	Linnt	Quaimers
Batch: 8B07016 Extracted: 02/07/08	-										
LCS Analyzed: 02/07/2008 (8B07016-BS	1)										
trans-1,3-Dichloropropene	22.7	0.50	0.32	ug/l	25.0		91	70-125			
Surrogate: Dibromofluoromethane	27.2	0.50	0.52	ug/l	25.0		109	80-120			
Surrogate: Toluene-d8	25.8			ug/l	25.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	25.4			ug/l	25.0 25.0		105	80-120			
						mage IDD					
Matrix Spike Analyzed: 02/07/2008 (8B0	29.3	0.50	0.30			rce: IRB		65-140			
1,1,1-Trichloroethane	29.3 29.8		0.30	ug/l	25.0	ND	117	55-140 55-135			
1,1,2,2-Tetrachloroethane	29.8 27.3	0.50 0.50	0.24	ug/l	25.0	ND	119	65-135 65-130			
1,1,2-Trichloroethane				ug/l	25.0	ND	109				
1,1-Dichloroethane	28.2	0.50	0.27	ug/l	25.0	ND	113 97	65-130			
1,1-Dichloroethene	24.3 27.2	0.50	0.42	ug/l	25.0	ND		60-130 60-140			
1,2-Dichloroethane	27.2	0.50	0.28 0.28	ug/l	25.0	ND	109				
Benzene		0.50		ug/l	25.0	ND	103	65-125			
1,2-Dichlorobenzene	26.6	0.50	0.32	ug/l	25.0	ND	106	75-125			
Carbon tetrachloride	28.2	0.50	0.28	ug/l	25.0	ND	113	65-140			
1,2-Dichloropropane	26.4	0.50	0.35	ug/l	25.0	ND	106	65-130			
Chloroform	29.6	0.50	0.33	ug/l	25.0	ND	118	65-135			
1,3-Dichlorobenzene	26.2	0.50	0.35	ug/l	25.0	ND	105	75-125			
Ethylbenzene	26.8	0.50	0.25	ug/l	25.0	ND	107	65-130			
1,4-Dichlorobenzene	24.2	0.50	0.37	ug/l	25.0	ND	97 97	75-125			
Tetrachloroethene	21.8	0.50	0.32	ug/l	25.0	ND	87	65-130			
Toluene	26.0	0.50	0.36	ug/l	25.0	ND	104	70-125			
Bromodichloromethane	29.8	0.50	0.30	ug/l	25.0	ND	119	70-135			
Trichloroethene	35.3	0.50	0.26	ug/l	25.0	11.7	94	65-125			
Bromoform	22.9	0.50	0.40	ug/l	25.0	ND	92	55-135			
Trichlorofluoromethane	33.7	0.50	0.34	ug/l	25.0	ND	135	60-145			
Bromomethane	28.2	1.0	0.42	ug/l	25.0	ND	113	55-145			
Vinyl chloride	28.5	0.50	0.30	ug/l	25.0	ND	114	45-140			
Chlorobenzene	24.0	0.50	0.36	ug/l	25.0	ND	96	75-125			
Xylenes, Total	77.2	1.5	0.90	ug/l	75.0	ND	103	60-130			
Chloroethane	29.2	1.0	0.40	ug/l	25.0	ND	117	55-140			
Chloromethane	28.3	0.50	0.40	ug/l	25.0	ND	113	45-145			
cis-1,3-Dichloropropene	23.6	0.50	0.22	ug/l	25.0	ND	94	70-130			
Dibromochloromethane	25.0	0.50	0.28	ug/l	25.0	ND	100	65-140			
Methylene chloride	37.4	1.0	0.95	ug/l	25.0	11.2	105	50-135			
trans-1,2-Dichloroethene	28.7	0.50	0.27	ug/l	25.0	ND	115	65-130			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

A I d	Dl4	Reporting	MDI	U	Spike	Source	0/ DEC	%REC	DDD	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B07016 Extracted: 02/07/08	3										
					C	IDD	0.40.01				
Matrix Spike Analyzed: 02/07/2008 (8B0	,					rce: IRB					
trans-1,3-Dichloropropene	24.1	0.50	0.32	ug/l	25.0	ND	96	65-135			
Surrogate: Dibromofluoromethane	27.3			ug/l	25.0		109	80-120			
Surrogate: Toluene-d8	25.7			ug/l	25.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	25.9			ug/l	25.0		104	80-120			
Matrix Spike Dup Analyzed: 02/07/2008	(8B07016-M	SD1)			Sou	rce: IRB	0248-01				
1,1,1-Trichloroethane	29.2	0.50	0.30	ug/l	25.0	ND	117	65-140	1	20	
1,1,2,2-Tetrachloroethane	29.2	0.50	0.24	ug/l	25.0	ND	117	55-135	2	30	
1,1,2-Trichloroethane	26.6	0.50	0.30	ug/l	25.0	ND	106	65-130	3	25	
1,1-Dichloroethane	28.7	0.50	0.27	ug/l	25.0	ND	115	65-130	2	20	
1,1-Dichloroethene	24.6	0.50	0.42	ug/l	25.0	ND	98	60-130	1	20	
1,2-Dichloroethane	26.1	0.50	0.28	ug/l	25.0	ND	104	60-140	4	20	
Benzene	26.0	0.50	0.28	ug/l	25.0	ND	104	65-125	1	20	
1,2-Dichlorobenzene	27.1	0.50	0.32	ug/l	25.0	ND	108	75-125	2	20	
Carbon tetrachloride	27.9	0.50	0.28	ug/l	25.0	ND	112	65-140	1	25	
1,2-Dichloropropane	26.5	0.50	0.35	ug/l	25.0	ND	106	65-130	0	20	
Chloroform	29.2	0.50	0.33	ug/l	25.0	ND	117	65-135	1	20	
1,3-Dichlorobenzene	26.5	0.50	0.35	ug/l	25.0	ND	106	75-125	1	20	
Ethylbenzene	26.9	0.50	0.25	ug/l	25.0	ND	108	65-130	1	20	
1,4-Dichlorobenzene	24.4	0.50	0.37	ug/l	25.0	ND	98	75-125	1	20	
Tetrachloroethene	22.5	0.50	0.32	ug/l	25.0	ND	90	65-130	3	20	
Toluene	25.9	0.50	0.36	ug/l	25.0	ND	104	70-125	0	20	
Bromodichloromethane	29.0	0.50	0.30	ug/l	25.0	ND	116	70-135	3	20	
Trichloroethene	35.7	0.50	0.26	ug/l	25.0	11.7	96	65-125	1	20	
Bromoform	22.4	0.50	0.40	ug/l	25.0	ND	89	55-135	2	25	
Trichlorofluoromethane	32.2	0.50	0.34	ug/l	25.0	ND	129	60-145	5	25	
Bromomethane	28.9	1.0	0.42	ug/l	25.0	ND	116	55-145	3	25	
Vinyl chloride	29.2	0.50	0.30	ug/l	25.0	ND	117	45-140	2	30	
Chlorobenzene	24.4	0.50	0.36	ug/l	25.0	ND	98	75-125	1	20	
Xylenes, Total	77.5	1.5	0.90	ug/l	75.0	ND	103	60-130	0	20	
Chloroethane	29.4	1.0	0.40	ug/l	25.0	ND	117	55-140	1	25	
Chloromethane	29.8	0.50	0.40	ug/l	25.0	ND	119	45-145	5	25	
cis-1,3-Dichloropropene	23.2	0.50	0.22	ug/l	25.0	ND	93	70-130	2	20	
Dibromochloromethane	24.8	0.50	0.28	ug/l	25.0	ND	99	65-140	1	25	
Methylene chloride	37.2	1.0	0.95	ug/l	25.0	11.2	104	50-135	1	20	
trans-1,2-Dichloroethene	29.3	0.50	0.27	ug/l	25.0	ND	117	65-130	2	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B07016 Extracted: 02/07/08	<u> 8</u>										
Matrix Spike Dup Analyzed: 02/07/2008	(8B07016-M	SD1)			Sou	rce: IRB	0248-01				
trans-1,3-Dichloropropene	24.0	0.50	0.32	ug/l	25.0	ND	96	65-135	1	25	
Surrogate: Dibromofluoromethane	27.2			ug/l	25.0		109	80-120			
Surrogate: Toluene-d8	25.6			ug/l	25.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	25.1			ug/l	25.0		100	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

PURGEABLES-- GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04024 Extracted: 02/04/08	_										
Blank Analyzed: 02/04/2008 (8B04024-Bl	LK1)										
Acrolein	ND	5.0	4.0	ug/l							
Acrylonitrile	ND	2.0	0.70	ug/l							
2-Chloroethyl vinyl ether	ND	5.0	1.8	ug/l							
Surrogate: Dibromofluoromethane	27.5			ug/l	25.0		110	80-120			
Surrogate: Toluene-d8	25.7			ug/l	25.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	23.1			ug/l	25.0		92	80-120			
LCS Analyzed: 02/04/2008 (8B04024-BS)	l)										
2-Chloroethyl vinyl ether	28.5	5.0	1.8	ug/l	25.0		114	25-170			
Surrogate: Dibromofluoromethane	28.5			ug/l	25.0		114	80-120			
Surrogate: Toluene-d8	25.3			ug/l	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	25.8			ug/l	25.0		103	80-120			
Matrix Spike Analyzed: 02/04/2008 (8B0	4024-MS1)				Sou	rce: IRA	3076-01				
2-Chloroethyl vinyl ether	28.5	5.0	1.8	ug/l	25.0	ND	114	25-170			
Surrogate: Dibromofluoromethane	28.7			ug/l	25.0		115	80-120			
Surrogate: Toluene-d8	25.3			ug/l	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	25.6			ug/l	25.0		102	80-120			
Matrix Spike Dup Analyzed: 02/04/2008	(8B04024-MS	SD1)			Sou	rce: IRA	3076-01				
2-Chloroethyl vinyl ether	26.6	5.0	1.8	ug/l	25.0	ND	107	25-170	7	25	
Surrogate: Dibromofluoromethane	28.6			ug/l	25.0		115	80-120			
Surrogate: Toluene-d8	25.1			ug/l	25.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	25.2			ug/l	25.0		101	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result %RE(%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04024 Extracted: 02/04/08	<u>}</u>									
Blank Analyzed: 02/04/2008 (8B04024-B	SLK1)									
1,2-Dichloro-1,1,2-trifluoroethane	ND	2.5	N/A	ug/l						
Cyclohexane	ND	2.5	N/A	ug/l						

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
-		Linnt	MDL	Units	Level	Result	70REC	Linnts	KF D	Linnt	Quanners
Batch: 8B03026 Extracted: 02/03/08	<u>}</u>										
	1 121)										
Blank Analyzed: 02/07/2008 (8B03026-B		1.0	0.10	(1							
1,2,4-Trichlorobenzene	ND	1.0	0.10	ug/l							
1,2-Dichlorobenzene	ND	0.50	0.10	ug/l							
1,2-Diphenylhydrazine/Azobenzene	ND	1.0	0.10	ug/l							
1,3-Dichlorobenzene	ND	0.50	0.10	ug/l							
1,4-Dichlorobenzene	ND	0.50	0.20	ug/l							
Acenaphthene	ND	0.50	0.10	ug/l							
2-Methylnaphthalene	ND	1.0	0.10	ug/l							
2-Methylphenol	ND	2.0	0.10	ug/l							
2-Nitroaniline	ND	5.0	0.10	ug/l							
3-Nitroaniline	ND	5.0	0.20	ug/l							
Acenaphthylene	ND	0.50	0.10	ug/l							
4-Nitroaniline	ND	5.0	0.50	ug/l							
Anthracene	ND	0.50	0.10	ug/l							
Aniline	ND	10	0.30	ug/l							
Benzidine	ND	5.0	1.0	ug/l							
Benzoic acid	ND	20	3.0	ug/l							
Benzyl alcohol	ND	5.0	0.10	ug/l							
Benzo(a)anthracene	ND	5.0	0.10	ug/l							
Hexachlorobutadiene	ND	2.0	0.20	ug/l							
Benzo(a)pyrene	ND	2.0	0.10	ug/l							
Naphthalene	ND	1.0	0.10	ug/l							
Benzo(b)fluoranthene	ND	2.0	0.10	ug/l							
Benzo(g,h,i)perylene	ND	5.0	0.10	ug/l							
Benzo(k)fluoranthene	ND	0.50	0.10	ug/l							
Bis(2-chloroethoxy)methane	ND	0.50	0.10	ug/l							
Bis(2-chloroethyl)ether	ND	0.50	0.10	ug/l							
Bis(2-chloroisopropyl)ether	ND	0.50	0.10	ug/l							
Bis(2-ethylhexyl)phthalate	2.82	5.0	1.7	ug/l							J
4-Bromophenyl phenyl ether	ND	1.0	0.10	ug/l							
Butyl benzyl phthalate	2.46	5.0	0.70	ug/l							J
4-Chloroaniline	ND	2.0	0.10	ug/l							
2-Chloronaphthalene	ND	0.50	0.10	ug/l							
4-Chloro-3-methylphenol	ND	2.0	0.20	ug/l							
4-Chlorophenyl phenyl ether	ND	0.50	0.10	ug/l							
2-Chlorophenol	ND	1.0	0.20	ug/l							
· · F · · ·		••									

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Batch: 8B03026 Extracted: 02/03/08 Blank Analyzed: 02/07/2008 (8B03026-BLK1) Chrysene ND 0.50 0.10 ug/l Dibenz(a,h)anthracene ND 0.50 0.10 ug/l Dibenzofuran ND 0.50 0.10 ug/l Di-n-butyl phthalate ND 2.0 0.20 ug/l
Blank Analyzed: 02/07/2008 (8B03026-BLK1) Chrysene ND 0.50 0.10 ug/l Dibenz(a,h)anthracene ND 0.50 0.10 ug/l Dibenzofuran ND 0.50 0.10 ug/l
Chrysene ND 0.50 0.10 ug/l Dibenz(a,h)anthracene ND 0.50 0.10 ug/l Dibenzofuran ND 0.50 0.10 ug/l
Dibenz(a,h)anthraceneND0.500.10ug/lDibenzofuranND0.500.10ug/l
Dibenzofuran ND 0.50 0.10 ug/l
-
Di-n-butyl phthalate ND 2.0 0.20 ug/l
3,3-Dichlorobenzidine ND 5.0 0.40 ug/l
2,4-Dichlorophenol ND 2.0 0.20 ug/l
Diethyl phthalate 0.160 1.0 0.10 ug/l J
2,4-Dimethylphenol ND 2.0 0.30 ug/l
Dimethyl phthalate ND 0.50 0.10 ug/l
4,6-Dinitro-2-methylphenol ND 5.0 0.20 ug/l
2,4-Dinitrophenol ND 5.0 0.90 ug/l
2,4-Dinitrotoluene ND 5.0 0.20 ug/l
2,6-Dinitrotoluene ND 5.0 0.10 ug/l
Di-n-octyl phthalate ND 5.0 0.10 ug/l
Fluoranthene ND 0.50 0.10 ug/l
Fluorene ND 0.50 0.10 ug/l
Hexachlorobenzene ND 1.0 0.10 ug/l
Hexachlorocyclopentadiene ND 5.0 0.10 ug/l
Hexachloroethane ND 3.0 0.20 ug/l
Indeno(1,2,3-cd)pyrene ND 2.0 0.10 ug/l
Isophorone ND 1.0 0.10 ug/l
4-Methylphenol ND 5.0 0.20 ug/l
Nitrobenzene ND 1.0 0.10 ug/l
2-Nitrophenol ND 2.0 0.10 ug/l
4-Nitrophenol ND 5.0 2.5 ug/l
N-Nitrosodimethylamine ND 2.0 0.10 ug/l
N-Nitroso-di-n-propylamine ND 2.0 0.10 ug/l
N-Nitrosodiphenylamine ND 1.0 0.10 ug/l
Pentachlorophenol ND 2.0 0.10 ug/l
Phenanthrene ND 0.50 0.10 ug/l
Phenol ND 1.0 0.30 ug/l
Pyrene ND 0.50 0.10 ug/l
2,4,5-Trichlorophenol ND 2.0 0.20 ug/l
2,4,6-Trichlorophenol ND 1.0 0.10 ug/l
Surrogate: 2-Fluorophenol 13.5 ug/l 20.0 68 30-120

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B03026 Extracted: 02/03/08	<u>}</u>										
Blank Analyzed: 02/07/2008 (8B03026-B	LK1)										
Surrogate: Phenol-d6	16.1			ug/l	20.0		81	35-120			
Surrogate: 2,4,6-Tribromophenol	19.0			ug/l	20.0		95	40-120			
Surrogate: Nitrobenzene-d5	8.34			ug/l	10.0		83	45-120			
Surrogate: 2-Fluorobiphenyl	8.58			ug/l	10.0		86	50-120			
Surrogate: Terphenyl-d14	9.30			ug/l	10.0		93	50-125			
LCS Analyzed: 02/07/2008 (8B03026-BS	1)										MNR1
1,2,4-Trichlorobenzene	6.60	1.0	0.10	ug/l	10.0		66	45-120			
1,2-Dichlorobenzene	6.52	0.50	0.10	ug/l	10.0		65	40-120			
1,2-Diphenylhydrazine/Azobenzene	9.26	1.0	0.10	ug/l	10.0		93	60-120			
1,3-Dichlorobenzene	6.12	0.50	0.10	ug/l	10.0		61	35-120			
1,4-Dichlorobenzene	6.12	0.50	0.20	ug/l	10.0		61	35-120			
Acenaphthene	8.10	0.50	0.10	ug/l	10.0		81	60-120			
2-Methylnaphthalene	8.14	1.0	0.10	ug/l	10.0		81	55-120			
2-Methylphenol	7.32	2.0	0.10	ug/l	10.0		73	50-120			
2-Nitroaniline	9.76	5.0	0.10	ug/l	10.0		98	65-120			
3-Nitroaniline	9.06	5.0	0.20	ug/l	10.0		91	60-120			
Acenaphthylene	8.94	0.50	0.10	ug/l	10.0		89	60-120			
4-Nitroaniline	8.48	5.0	0.50	ug/l	10.0		85	55-125			
Anthracene	8.80	0.50	0.10	ug/l	10.0		88	65-120			
Aniline	7.70	10	0.30	ug/l	10.0		77	35-120			J
Benzidine	1.24	5.0	1.0	ug/l	10.0		12	30-160			L6, J
Benzoic acid	5.78	20	3.0	ug/l	10.0		58	25-120			J
Benzyl alcohol	7.04	5.0	0.10	ug/l	10.0		70	50-120			
Benzo(a)anthracene	9.50	5.0	0.10	ug/l	10.0		95	65-120			
Hexachlorobutadiene	5.90	2.0	0.20	ug/l	10.0		59	40-120			
Benzo(a)pyrene	10.2	2.0	0.10	ug/l	10.0		102	55-130			
Naphthalene	7.60	1.0	0.10	ug/l	10.0		76	55-120			
Benzo(b)fluoranthene	8.46	2.0	0.10	ug/l	10.0		85	55-125			
Benzo(g,h,i)perylene	9.22	5.0	0.10	ug/l	10.0		92	45-135			
Benzo(k)fluoranthene	9.28	0.50	0.10	ug/l	10.0		93	50-125			
Bis(2-chloroethoxy)methane	8.96	0.50	0.10	ug/l	10.0		90	55-120			
Bis(2-chloroethyl)ether	7.68	0.50	0.10	ug/l	10.0		77	50-120			
Bis(2-chloroisopropyl)ether	7.68	0.50	0.10	ug/l	10.0		77	45-120			
Bis(2-ethylhexyl)phthalate	13.1	5.0	1.7	ug/l	10.0		131	65-130			L, L1
4-Bromophenyl phenyl ether	8.16	1.0	0.10	ug/l	10.0		82	60-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B03026 Extracted: 02/03/08	2										-
Datch: 0D05020 Extracted: 02/05/00	<u>,</u>										
LCS Analyzed: 02/07/2008 (8B03026-BS	51)										MNR1
Butyl benzyl phthalate	11.3	5.0	0.70	ug/l	10.0		113	55-130			
4-Chloroaniline	7.86	2.0	0.10	ug/l	10.0		79	55-120			
2-Chloronaphthalene	7.56	0.50	0.10	ug/l	10.0		76	60-120			
4-Chloro-3-methylphenol	8.74	2.0	0.20	ug/l	10.0		87	60-120			
4-Chlorophenyl phenyl ether	9.08	0.50	0.10	ug/l	10.0		91	65-120			
2-Chlorophenol	7.38	1.0	0.20	ug/l	10.0		74	45-120			
Chrysene	9.16	0.50	0.10	ug/l	10.0		92	65-120			
Dibenz(a,h)anthracene	9.80	0.50	0.10	ug/l	10.0		98	50-135			
Dibenzofuran	8.94	0.50	0.10	ug/l	10.0		89	65-120			
Di-n-butyl phthalate	10.1	2.0	0.20	ug/l	10.0		101	60-125			
3,3-Dichlorobenzidine	6.80	5.0	0.40	ug/l	10.0		68	45-135			
2,4-Dichlorophenol	8.20	2.0	0.20	ug/l	10.0		82	55-120			
Diethyl phthalate	10.3	1.0	0.10	ug/l	10.0		103	55-120			
2,4-Dimethylphenol	8.70	2.0	0.30	ug/l	10.0		87	40-120			
Dimethyl phthalate	9.40	0.50	0.10	ug/l	10.0		94	30-120			
4,6-Dinitro-2-methylphenol	8.86	5.0	0.20	ug/l	10.0		89	45-120			
2,4-Dinitrophenol	8.84	5.0	0.90	ug/l	10.0		88	40-120			
2,4-Dinitrotoluene	9.46	5.0	0.20	ug/l	10.0		95	65-120			
2,6-Dinitrotoluene	9.30	5.0	0.10	ug/l	10.0		93	65-120			
Di-n-octyl phthalate	11.5	5.0	0.10	ug/l	10.0		115	65-135			
Fluoranthene	9.74	0.50	0.10	ug/l	10.0		97	60-120			
Fluorene	9.30	0.50	0.10	ug/l	10.0		93	65-120			
Hexachlorobenzene	8.18	1.0	0.10	ug/l	10.0		82	60-120			
Hexachlorocyclopentadiene	7.94	5.0	0.10	ug/l	10.0		79	25-120			
Hexachloroethane	5.94	3.0	0.20	ug/l	10.0		59	35-120			
Indeno(1,2,3-cd)pyrene	9.44	2.0	0.10	ug/l	10.0		94	45-135			
Isophorone	8.12	1.0	0.10	ug/l	10.0		81	50-120			
4-Methylphenol	7.70	5.0	0.20	ug/l	10.0		77	50-120			
Nitrobenzene	8.02	1.0	0.10	ug/l	10.0		80	55-120			
2-Nitrophenol	8.18	2.0	0.10	ug/l	10.0		82	50-120			
4-Nitrophenol	10.4	5.0	2.5	ug/l	10.0		104	45-120			
N-Nitrosodimethylamine	7.88	2.0	0.10	ug/l	10.0		79	45-120			
N-Nitroso-di-n-propylamine	8.88	2.0	0.10	ug/l	10.0		89	45-120			
N-Nitrosodiphenylamine	9.54	1.0	0.10	ug/l	10.0		95	60-120			
Pentachlorophenol	7.84	2.0	0.10	ug/l	10.0		78	50-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
·		Linin	MDL	Units	Level	Kesuit	/0KEC	Linnts	KI D	Linnt	Quanners
Batch: 8B03026 Extracted: 02/03/0	8										
LCS Analyzed: 02/07/2008 (8B03026-BS	S1)										MNR1
Phenanthrene	8.30	0.50	0.10	ug/l	10.0		83	65-120			WINKI
Phenol	8.50 7.66	1.0	0.10	ug/l	10.0		77	40-120			
Pyrene	9.14	0.50	0.10	ug/l	10.0		91	55-125			
2,4,5-Trichlorophenol	8.94	2.0	0.20	ug/l	10.0		89	55-120			
2,4,6-Trichlorophenol	7.78	1.0	0.20	ug/l	10.0		78	55-120			
Surrogate: 2-Fluorophenol	13.7	1.0	0.10	ug/l	20.0		68	30-120			
Surrogate: Phenol-d6	16.1			ug/l	20.0		80	35-120			
Surrogate: 2,4,6-Tribromophenol	19.7			ug/l	20.0		98	40-120			
Surrogate: Nitrobenzene-d5	8.40			ug/l	20.0 10.0		90 84	45-120			
Surrogate: 2-Fluorobiphenyl	7.54			ug/l	10.0		75	43-120 50-120			
Surrogate: Terphenyl-d14	9.00			ug/l	10.0		90	50-125			
Surrogute. Terphenyi-u14	2.00			ug/i	10.0		70	50-125			
LCS Dup Analyzed: 02/07/2008 (8B0302	26-BSD1)										
1,2,4-Trichlorobenzene	5.76	1.0	0.10	ug/l	10.0		58	45-120	14	20	
1,2-Dichlorobenzene	5.88	0.50	0.10	ug/l	10.0		59	40-120	10	25	
1,2-Diphenylhydrazine/Azobenzene	9.04	1.0	0.10	ug/l	10.0		90	60-120	2	25	
1,3-Dichlorobenzene	5.62	0.50	0.10	ug/l	10.0		56	35-120	9	25	
1,4-Dichlorobenzene	5.88	0.50	0.20	ug/l	10.0		59	35-120	4	25	
Acenaphthene	7.80	0.50	0.10	ug/l	10.0		78	60-120	4	20	
2-Methylnaphthalene	7.62	1.0	0.10	ug/l	10.0		76	55-120	7	20	
2-Methylphenol	6.82	2.0	0.10	ug/l	10.0		68	50-120	7	20	
2-Nitroaniline	8.52	5.0	0.10	ug/l	10.0		85	65-120	14	20	
3-Nitroaniline	8.18	5.0	0.20	ug/l	10.0		82	60-120	10	25	
Acenaphthylene	8.54	0.50	0.10	ug/l	10.0		85	60-120	5	20	
4-Nitroaniline	7.62	5.0	0.50	ug/l	10.0		76	55-125	11	20	
Anthracene	8.14	0.50	0.10	ug/l	10.0		81	65-120	8	20	
Aniline	8.70	10	0.30	ug/l	10.0		87	35-120	12	30	J
Benzidine	5.62	5.0	1.0	ug/l	10.0		56	30-160	128	35	R-2
Benzoic acid	6.46	20	3.0	ug/l	10.0		65	25-120	11	30	J
Benzyl alcohol	6.80	5.0	0.10	ug/l	10.0		68	50-120	3	20	
Benzo(a)anthracene	9.12	5.0	0.10	ug/l	10.0		91	65-120	4	20	
Hexachlorobutadiene	5.26	2.0	0.20	ug/l	10.0		53	40-120	11	25	
Benzo(a)pyrene	9.76	2.0	0.10	ug/l	10.0		98	55-130	5	25	
Naphthalene	6.50	1.0	0.10	ug/l	10.0		65	55-120	16	20	
Benzo(b)fluoranthene	8.28	2.0	0.10	ug/l	10.0		83	55-125	2	25	
Benzo(g,h,i)perylene	9.22	5.0	0.10	ug/l	10.0		92	45-135	0	25	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
5		Linit	MDL	emis	Level	ittsuit	JUREC	Linnts	ΜD	Linnt	Quanners
Batch: 8B03026 Extracted: 02/03/08	<u>8</u>										
LCS Dup Analyzed: 02/07/2008 (8B0302	26_R\$D1)										
Benzo(k)fluoranthene	9.02	0.50	0.10	ug/l	10.0		90	50-125	3	20	
Bis(2-chloroethoxy)methane	9.02 8.06	0.50	0.10	ug/l	10.0		90 81	55-125 55-120	11	20 20	
Bis(2-chloroethyl)ether	7.24	0.50	0.10	ug/l	10.0		72	50-120	6	20 20	
Bis(2-chloroisopropyl)ether	6.94	0.50	0.10	ug/l	10.0		69	45-120	10	20 20	
Bis(2-ethylhexyl)phthalate	11.8	5.0	1.7	ug/l	10.0		118	43-120 65-130	10	20 20	
4-Bromophenyl phenyl ether	7.84	5.0 1.0	0.10	ug/l	10.0		78	60-120	4	20 25	
Butyl benzyl phthalate	10.8	5.0	0.10	-	10.0		108	55-130	4	23 20	
4-Chloroaniline	8.14	2.0	0.10	ug/l	10.0		81	55-130 55-120	4	20 25	
	8.14 7.48	0.50	0.10	ug/l	10.0		75	60-120		23 20	
2-Chloronaphthalene				ug/l					1		
4-Chloro-3-methylphenol	7.72 8.74	2.0	0.20	ug/l	10.0		77	60-120	12 4	25 20	
4-Chlorophenyl phenyl ether		0.50	0.10	ug/l	10.0		87	65-120		20	
2-Chlorophenol	6.78	1.0	0.20	ug/l	10.0		68	45-120	8	25	
Chrysene	9.00	0.50	0.10	ug/l	10.0		90	65-120	2	20	
Dibenz(a,h)anthracene	8.86	0.50	0.10	ug/l	10.0		89	50-135	10	25	
Dibenzofuran	8.36	0.50	0.10	ug/l	10.0		84	65-120	7	20	
Di-n-butyl phthalate	9.60	2.0	0.20	ug/l	10.0		96	60-125	5	20	
3,3-Dichlorobenzidine	6.76	5.0	0.40	ug/l	10.0		68	45-135	1	25	
2,4-Dichlorophenol	7.60	2.0	0.20	ug/l	10.0		76	55-120	8	20	
Diethyl phthalate	9.86	1.0	0.10	ug/l	10.0		99	55-120	4	30	
2,4-Dimethylphenol	7.96	2.0	0.30	ug/l	10.0		80	40-120	9	25	
Dimethyl phthalate	9.12	0.50	0.10	ug/l	10.0		91	30-120	3	30	
4,6-Dinitro-2-methylphenol	8.38	5.0	0.20	ug/l	10.0		84	45-120	6	25	
2,4-Dinitrophenol	8.46	5.0	0.90	ug/l	10.0		85	40-120	4	25	
2,4-Dinitrotoluene	9.38	5.0	0.20	ug/l	10.0		94	65-120	1	20	
2,6-Dinitrotoluene	8.52	5.0	0.10	ug/l	10.0		85	65-120	9	20	
Di-n-octyl phthalate	11.1	5.0	0.10	ug/l	10.0		111	65-135	4	20	
Fluoranthene	9.06	0.50	0.10	ug/l	10.0		91	60-120	7	20	
Fluorene	8.82	0.50	0.10	ug/l	10.0		88	65-120	5	20	
Hexachlorobenzene	8.02	1.0	0.10	ug/l	10.0		80	60-120	2	20	
Hexachlorocyclopentadiene	7.62	5.0	0.10	ug/l	10.0		76	25-120	4	30	
Hexachloroethane	5.68	3.0	0.20	ug/l	10.0		57	35-120	4	25	
Indeno(1,2,3-cd)pyrene	8.92	2.0	0.10	ug/l	10.0		89	45-135	6	25	
Isophorone	7.86	1.0	0.10	ug/l	10.0		79	50-120	3	20	
4-Methylphenol	6.60	5.0	0.20	ug/l	10.0		66	50-120	15	20	
Nitrobenzene	7.46	1.0	0.10	ug/l	10.0		75	55-120	7	25	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B03026 Extracted: 02/03/08	_										
LCS Dup Analyzed: 02/07/2008 (8B0302	6-BSD1)										
2-Nitrophenol	7.92	2.0	0.10	ug/l	10.0		79	50-120	3	25	
4-Nitrophenol	9.52	5.0	2.5	ug/l	10.0		95	45-120	9	30	
N-Nitrosodimethylamine	6.94	2.0	0.10	ug/l	10.0		69	45-120	13	20	
N-Nitroso-di-n-propylamine	7.98	2.0	0.10	ug/l	10.0		80	45-120	11	20	
N-Nitrosodiphenylamine	8.86	1.0	0.10	ug/l	10.0		89	60-120	7	20	
Pentachlorophenol	7.60	2.0	0.10	ug/l	10.0		76	50-120	3	25	
Phenanthrene	8.12	0.50	0.10	ug/l	10.0		81	65-120	2	20	
Phenol	7.50	1.0	0.30	ug/l	10.0		75	40-120	2	25	
Pyrene	8.84	0.50	0.10	ug/l	10.0		88	55-125	3	25	
2,4,5-Trichlorophenol	8.16	2.0	0.20	ug/l	10.0		82	55-120	9	30	
2,4,6-Trichlorophenol	7.36	1.0	0.10	ug/l	10.0		74	55-120	6	30	
Surrogate: 2-Fluorophenol	12.1			ug/l	20.0		61	30-120			
Surrogate: Phenol-d6	14.8			ug/l	20.0		74	35-120			
Surrogate: 2,4,6-Tribromophenol	19.0			ug/l	20.0		95	40-120			
Surrogate: Nitrobenzene-d5	7.62			ug/l	10.0		76	45-120			
Surrogate: 2-Fluorobiphenyl	7.12			ug/l	10.0		71	50-120			
Surrogate: Terphenyl-d14	8.94			ug/l	10.0		89	50-125			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDI	Units	Spike Level	Source Bosult	%REC	%REC	RPD	RPD Limit	Data Qualifiers
e e		Linnt	WIDL	Units	Level	Kesuit	/0KEC	Linnts	KI D	Linnt	Quaimers
Batch: 8B05099 Extracted: 02/05/08	<u>}_</u>										
Blank Analyzad, 02/06/2008 (8005000 B	T IZ 1)										
Blank Analyzed: 02/06/2008 (8B05099-B	,	0.0050	0.0015	л							
Aldrin	ND	0.0050	0.0015	ug/l							
alpha-BHC	ND	0.0050	0.0025	ug/l							
beta-BHC	ND	0.010	0.0040	ug/l							
delta-BHC	ND	0.0050	0.0035	ug/l							
gamma-BHC (Lindane)	ND	0.010	0.0030	ug/l							
Chlordane	ND	0.10	0.030	ug/l							
4,4'-DDD	ND	0.0050	0.0020	ug/l							
4,4'-DDE	ND	0.0050	0.0030	ug/l							
4,4'-DDT	ND	0.010	0.0040	ug/l							
Dieldrin	ND	0.0050	0.0020	ug/l							
Endosulfan I	ND	0.0050	0.0020	ug/l							
Endosulfan II	ND	0.0050	0.0030	ug/l							
Endosulfan sulfate	ND	0.010	0.0030	ug/l							
Endrin	ND	0.0050	0.0020	ug/l							
Endrin aldehyde	ND	0.010	0.0020	ug/l							
Endrin ketone	ND	0.010	0.0030	ug/l							
Heptachlor	ND	0.010	0.0030	ug/l							
Heptachlor epoxide	ND	0.0050	0.0025	ug/l							
Methoxychlor	ND	0.0050	0.0035	ug/l							
Toxaphene	ND	0.10	0.070	ug/l							
Surrogate: Decachlorobiphenyl	0.419			ug/l	0.500		84	45-120			
Surrogate: Tetrachloro-m-xylene	0.419			ug/l	0.500		84	35-115			
LCS Analyzed: 02/07/2008 (8B05099-BS	1)										MNR1
Aldrin	0.417	0.0050	0.0015	ug/l	0.500		83	40-115			
alpha-BHC	0.404	0.0050	0.0015	ug/l	0.500		81	45-115			
beta-BHC	0.419	0.010	0.0040	ug/l	0.500		84	55-115			
delta-BHC	0.419	0.0050	0.0040	ug/l	0.500		91	55-115			
gamma-BHC (Lindane)	0.433	0.010	0.0030	ug/l	0.500		87	45-115			
4,4'-DDD	0.495	0.0050	0.0020	ug/l	0.500		87 99	55-120			
	0.490	0.0050	0.0020	-	0.500		99 98	50-120			
4,4'-DDE				ug/l							
4,4'-DDT	0.491	0.010	0.0040	ug/l	0.500		98 01	55-120			
Dieldrin	0.455	0.0050	0.0020	ug/l	0.500		91 02	55-115			
Endosulfan I	0.464	0.0050	0.0020	ug/l	0.500		93	55-115			
Endosulfan II	0.439	0.0050	0.0030	ug/l	0.500		88	55-120			
Endosulfan sulfate	0.506	0.010	0.0030	ug/l	0.500		101	60-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B05099 Extracted: 02/05/08	_										
LCS Analyzed: 02/07/2008 (8B05099-BS	1)										MNR1
Endrin	0.511	0.0050	0.0020	ug/l	0.500		102	55-115			
Endrin aldehyde	0.483	0.010	0.0020	ug/l	0.500		97	50-120			
Endrin ketone	0.520	0.010	0.0030	ug/l	0.500		104	55-120			
Heptachlor	0.406	0.010	0.0030	ug/l	0.500		81	45-115			
Heptachlor epoxide	0.442	0.0050	0.0025	ug/l	0.500		88	55-115			
Methoxychlor	0.508	0.0050	0.0035	ug/l	0.500		102	60-120			
Surrogate: Decachlorobiphenyl	0.436			ug/l	0.500		87	45-120			
Surrogate: Tetrachloro-m-xylene	0.414			ug/l	0.500		83	35-115			
LCS Dup Analyzed: 02/07/2008 (8B0509)	9-BSD1)										
Aldrin	0.381	0.0050	0.0015	ug/l	0.500		76	40-115	9	30	
alpha-BHC	0.386	0.0050	0.0025	ug/l	0.500		77	45-115	5	30	
beta-BHC	0.398	0.010	0.0040	ug/l	0.500		80	55-115	5	30	
delta-BHC	0.409	0.0050	0.0035	ug/l	0.500		82	55-115	10	30	
gamma-BHC (Lindane)	0.408	0.010	0.0030	ug/l	0.500		82	45-115	6	30	
4,4'-DDD	0.455	0.0050	0.0020	ug/l	0.500		91	55-120	9	30	
4,4'-DDE	0.444	0.0050	0.0030	ug/l	0.500		89	50-120	9	30	
4,4'-DDT	0.451	0.010	0.0040	ug/l	0.500		90	55-120	9	30	
Dieldrin	0.421	0.0050	0.0020	ug/l	0.500		84	55-115	8	30	
Endosulfan I	0.430	0.0050	0.0020	ug/l	0.500		86	55-115	8	30	
Endosulfan II	0.406	0.0050	0.0030	ug/l	0.500		81	55-120	8	30	
Endosulfan sulfate	0.463	0.010	0.0030	ug/l	0.500		93	60-120	9	30	
Endrin	0.471	0.0050	0.0020	ug/l	0.500		94	55-115	8	30	
Endrin aldehyde	0.442	0.010	0.0020	ug/l	0.500		88	50-120	9	30	
Endrin ketone	0.477	0.010	0.0030	ug/l	0.500		95	55-120	8	30	
Heptachlor	0.373	0.010	0.0030	ug/l	0.500		75	45-115	8	30	
Heptachlor epoxide	0.410	0.0050	0.0025	ug/l	0.500		82	55-115	8	30	
Methoxychlor	0.458	0.0050	0.0035	ug/l	0.500		92	60-120	11	30	
Surrogate: Decachlorobiphenyl	0.403			ug/l	0.500		81	45-120			
Surrogate: Tetrachloro-m-xylene	0.382			ug/l	0.500		76	35-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

TOTAL PCBS (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B05099 Extracted: 02/05/08	<u>.</u>										
Blank Analyzed: 02/06/2008 (8B05099-B	LK1)										
Aroclor 1016	ND	0.50	0.45	ug/l							
Aroclor 1221	ND	0.50	0.25	ug/l							
Aroclor 1232	ND	0.50	0.25	ug/l							
Aroclor 1242	ND	0.50	0.25	ug/l							
Aroclor 1248	ND	0.50	0.25	ug/l							
Aroclor 1254	ND	0.50	0.25	ug/l							
Aroclor 1260	ND	0.50	0.30	ug/l							
Surrogate: Decachlorobiphenyl	0.420			ug/l	0.500		84	45-120			
LCS Analyzed: 02/06/2008 (8B05099-BS	2)										MNR1
Aroclor 1016	3.28	0.50	0.45	ug/l	4.00		82	50-115			
Aroclor 1260	3.60	0.50	0.30	ug/l	4.00		90	60-120			
Surrogate: Decachlorobiphenyl	0.440			ug/l	0.500		88	45-120			
LCS Dup Analyzed: 02/06/2008 (8B0509	9-BSD2)										
Aroclor 1016	3.13	0.50	0.45	ug/l	4.00		78	50-115	5	30	
Aroclor 1260	3.56	0.50	0.30	ug/l	4.00		89	60-120	1	25	
Surrogate: Decachlorobiphenyl	0.435			ug/l	0.500		87	45-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04079 Extracted: 02/04/08				emis	Lever	Result	, under	Linits	ni b	Linit	Quanters
Blank Analyzed: 02/04/2008 (8B04079-B	LK1)										
Arsenic	ND	10	7.0	ug/l							
Barium	ND	0.010	0.0060	mg/l							
Beryllium	ND	2.0	0.90	ug/l							
Boron	ND	0.050	0.020	mg/l							
Calcium	ND	0.10	0.050	mg/l							
Chromium	ND	5.0	2.0	ug/l							
Cobalt	ND	10	2.0	ug/l							
Iron	ND	0.040	0.015	mg/l							
Magnesium	ND	0.020	0.012	mg/l							
Manganese	ND	20	7.0	ug/l							
Nickel	ND	10	2.0	ug/l							
Vanadium	ND	10	3.0	ug/l							
Zinc	ND	20	6.0	ug/l							
LCS Analyzed: 02/04/2008 (8B04079-BS)	1)										
Arsenic	504	10	7.0	ug/l	500		101	85-115			
Barium	0.526	0.010	0.0060	mg/l	0.500		105	85-115			
Beryllium	510	2.0	0.90	ug/l	500		102	85-115			
Boron	0.514	0.050	0.020	mg/l	0.500		103	85-115			
Calcium	2.65	0.10	0.050	mg/l	2.50		106	85-115			
Chromium	517	5.0	2.0	ug/l	500		103	85-115			
Cobalt	502	10	2.0	ug/l	500		100	85-115			
Iron	0.529	0.040	0.015	mg/l	0.500		106	85-115			
Magnesium	2.63	0.020	0.012	mg/l	2.50		105	85-115			
Manganese	514	20	7.0	ug/l	500		103	85-115			
Nickel	513	10	2.0	ug/l	500		103	85-115			
Vanadium	503	10	3.0	ug/l	500		101	85-115			
Zinc	507	20	6.0	ug/l	500		101	85-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04079 Extracted: 02/04/08	_										
Matrix Spike Analyzed: 02/04/2008 (8B0	4079-MS1)				Sou	irce: IRB	0153-01				
Arsenic	496	10	7.0	ug/l	500	ND	99	70-130			
Barium	0.534	0.010	0.0060	mg/l	0.500	0.0216	103	70-130			
Beryllium	503	2.0	0.90	ug/l	500	ND	101	70-130			
Boron	0.503	0.050	0.020	mg/l	0.500	ND	101	70-130			
Calcium	53.7	0.10	0.050	mg/l	2.50	52.8	38	70-130			MHA
Chromium	502	5.0	2.0	ug/l	500	2.15	100	70-130			
Cobalt	482	10	2.0	ug/l	500	ND	96	70-130			
Iron	0.590	0.040	0.015	mg/l	0.500	0.0952	99	70-130			
Magnesium	9.71	0.020	0.012	mg/l	2.50	7.62	84	70-130			
Manganese	490	20	7.0	ug/l	500	ND	98	70-130			
Nickel	495	10	2.0	ug/l	500	ND	99	70-130			
Vanadium	487	10	3.0	ug/l	500	ND	97	70-130			
Zinc	496	20	6.0	ug/l	500	9.15	97	70-130			
Matrix Spike Analyzed: 02/04/2008 (8B0	4079-MS2)				Sou	irce: IRB)155-01				
Arsenic	509	10	7.0	ug/l	500	ND	102	70-130			
Barium	0.528	0.010	0.0060	mg/l	0.500	0.00624	104	70-130			
Beryllium	515	2.0	0.90	ug/l	500	ND	103	70-130			
Boron	0.503	0.050	0.020	mg/l	0.500	ND	101	70-130			
Calcium	8.02	0.10	0.050	mg/l	2.50	5.65	95	70-130			
Chromium	522	5.0	2.0	ug/l	500	ND	104	70-130			
Cobalt	501	10	2.0	ug/l	500	ND	100	70-130			
Iron	0.872	0.040	0.015	mg/l	0.500	0.382	98	70-130			
Magnesium	3.33	0.020	0.012	mg/l	2.50	0.768	102	70-130			
Manganese	515	20	7.0	ug/l	500	ND	103	70-130			
Nickel	515	10	2.0	ug/l	500	ND	103	70-130			
Vanadium	501	10	3.0	ug/l	500	ND	100	70-130			
Zinc	538	20	6.0	ug/l	500	32.2	101	70-130			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04079 Extracted: 02/04/08	<u>}_</u>										
Matrix Spike Dup Analyzed: 02/04/2008	(8B04070 N	ISD1)			Sou	rce: IRB	153 01				
Arsenic	506	10	7.0	ug/l	500	ND	101	70-130	2	20	
Barium	0.530	0.010	0.0060	mg/l	0.500	0.0216	101	70-130	1	20	
Beryllium	516	2.0	0.90	ug/l	500	0.0210 ND	102	70-130	3	20	
Boron	0.499	0.050	0.020	mg/l	0.500	ND	100	70-130	1	20	
Calcium	53.2	0.10	0.050	mg/l	2.50	52.8	19	70-130	1	20	MHA
Chromium	512	5.0	2.0	ug/l	500	2.15	102	70-130	2	20	
Cobalt	492	10	2.0	ug/l	500	ND	98	70-130	2	20	
Iron	0.596	0.040	0.015	mg/l	0.500	0.0952	100	70-130	1	20	
Magnesium	9.64	0.020	0.012	mg/l	2.50	7.62	81	70-130	1	20	
Manganese	501	20	7.0	ug/l	500	ND	100	70-130	2	20	
Nickel	507	10	2.0	ug/l	500	ND	101	70-130	2	20	
Vanadium	497	10	3.0	ug/l	500	ND	99	70-130	2	20	
Zinc	513	20	6.0	ug/l	500	9.15	101	70-130	3	20	
Batch: 8B04080 Extracted: 02/04/08	<u>}</u>										
Blank Analyzed: 02/04/2008-02/05/2008	(8B04080-BI	L K1)									
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Selenium	ND	2.0	0.30	ug/l							
Silver	ND	1.0	0.30	ug/l							
Thallium	ND	1.0	0.20	ug/l							
LCS Analyzed: 02/04/2008-02/05/2008 (8	3B04080-BS1)									
Antimony	84.2	2.0	0.20	ug/l	80.0		105	85-115			
Cadmium	83.7	1.0	0.11	ug/l	80.0		105	85-115			
Copper	83.0	2.0	0.75	ug/l	80.0		104	85-115			
Lead	83.3	1.0	0.30	ug/l	80.0		104	85-115			
Selenium	82.5	2.0	0.30	ug/l	80.0		103	85-115			
Silver	83.1	1.0	0.30	ug/l	80.0		104	85-115			
Thallium	83.4	1.0	0.20	ug/l	80.0		104	85-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Oualifiers
•		Linnt	MDL	Units	Level	Result	JUREC	Linits	KI D	Linnt	Quanners
Batch: 8B04080 Extracted: 02/04/08	-										
Matrix Spike Analyzed: 02/04/2008-02/0	5/2008 (8B04	4080-MS1)			Sou	rce: IRB	0150-01				
Antimony	82.0	2.0	0.20	ug/l	80.0	0.423	102	70-130			
Cadmium	80.7	1.0	0.11	ug/l	80.0	0.208	101	70-130			
Copper	78.5	2.0	0.75	ug/l	80.0	1.69	96	70-130			
Lead	76.9	1.0	0.30	ug/l	80.0	0.512	96	70-130			
Selenium	75.1	2.0	0.30	ug/l	80.0	ND	94	70-130			
Silver	78.5	1.0	0.30	ug/l	80.0	ND	98	70-130			
Thallium	79.0	1.0	0.20	ug/l	80.0	ND	99	70-130			
Matrix Spike Analyzed: 02/04/2008-02/0	5/2008 (8B04	1080-MS2)			Sou	rce: IRB	0152-01				
Antimony	80.5	2.0	0.20	ug/l	80.0	1.58	99	70-130			
Cadmium	79.1	1.0	0.11	ug/l	80.0	0.164	99	70-130			
Copper	82.5	2.0	0.75	ug/l	80.0	4.75	97	70-130			
Lead	84.1	1.0	0.30	ug/l	80.0	6.01	98	70-130			
Selenium	75.5	2.0	0.30	ug/l	80.0	ND	94	70-130			
Silver	78.1	1.0	0.30	ug/l	80.0	ND	98	70-130			
Thallium	80.7	1.0	0.20	ug/l	80.0	ND	101	70-130			
Matrix Spike Dup Analyzed: 02/04/2008-	02/05/2008 (8B04080-MS	D1)		Sou	rce: IRB)150-01				
Antimony	83.6	2.0	0.20	ug/l	80.0	0.423	104	70-130	2	20	
Cadmium	81.2	1.0	0.11	ug/l	80.0	0.208	101	70-130	1	20	
Copper	79.1	2.0	0.75	ug/l	80.0	1.69	97	70-130	1	20	
Lead	78.6	1.0	0.30	ug/l	80.0	0.512	98	70-130	2	20	
Selenium	76.6	2.0	0.30	ug/l	80.0	ND	96	70-130	2	20	
Silver	79.3	1.0	0.30	ug/l	80.0	ND	99	70-130	1	20	
Thallium	80.1	1.0	0.20	ug/l	80.0	ND	100	70-130	1	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04145 Extracted: 02/04/08											
Blank Analyzed: 02/05/2008 (8B04145-BL	K1)										
Arsenic	ND	10	7.0	ug/l							
Barium	ND	0.010	0.0060	mg/l							
Beryllium	ND	2.0	0.90	ug/l							
Boron	ND	0.050	0.020	mg/l							
Calcium	ND	0.10	0.050	mg/l							
Chromium	ND	5.0	2.0	ug/l							
Cobalt	ND	10	2.0	ug/l							
Iron	ND	0.040	0.015	mg/l							
Magnesium	ND	0.020	0.012	mg/l							
Manganese	ND	20	7.0	ug/l							
Nickel	ND	10	2.0	ug/l							
Hardness (as CaCO3)	ND	1.0	1.0	mg/l							
Vanadium	ND	10	3.0	ug/l							
Zinc	ND	20	6.0	ug/l							
LCS Analyzed: 02/05/2008 (8B04145-BS1))										
Arsenic	1000	10	7.0	ug/l	1000		100	85-115			
Barium	0.971	0.010	0.0060	mg/l	1.00		97	85-115			
Beryllium	981	2.0	0.90	ug/l	1000		98	85-115			
Boron	0.966	0.050	0.020	mg/l	1.00		97	85-115			
Calcium	1.09	0.10	0.050	mg/l	1.00		109	85-115			
Chromium	995	5.0	2.0	ug/l	1000		100	85-115			
Cobalt	997	10	2.0	ug/l	1000		100	85-115			
Iron	0.995	0.040	0.015	mg/l	1.00		99	85-115			
Magnesium	1.04	0.020	0.012	mg/l	1.00		104	85-115			
Manganese	1020	20	7.0	ug/l	1000		102	85-115			
Nickel	1020	10	2.0	ug/l	1000		102	85-115			
Vanadium	960	10	3.0	ug/l	1000		96	85-115			
Zinc	1040	20	6.0	ug/l	1000		104	85-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04145 Extracted: 02/04/08											
	-										
Matrix Spike Analyzed: 02/05/2008 (8B0	4145-MS1)				Sou	rce: IRB	0146-01				
Arsenic	1020	10	7.0	ug/l	1000	ND	102	70-130			
Barium	0.999	0.010	0.0060	mg/l	1.00	0.0294	97	70-130			
Beryllium	997	2.0	0.90	ug/l	1000	ND	100	70-130			
Boron	1.02	0.050	0.020	mg/l	1.00	0.0451	97	70-130			
Calcium	28.3	0.10	0.050	mg/l	1.00	28.0	23	70-130			MHA
Chromium	1010	5.0	2.0	ug/l	1000	ND	101	70-130			
Cobalt	1000	10	2.0	ug/l	1000	ND	100	70-130			
Iron	1.62	0.040	0.015	mg/l	1.00	0.635	99	70-130			
Magnesium	9.21	0.020	0.012	mg/l	1.00	8.60	61	70-130			MHA
Manganese	1030	20	7.0	ug/l	1000	15.7	102	70-130			
Nickel	1020	10	2.0	ug/l	1000	ND	102	70-130			
Vanadium	982	10	3.0	ug/l	1000	ND	98	70-130			
Zinc	1040	20	6.0	ug/l	1000	ND	104	70-130			
Matrix Spike Dup Analyzed: 02/05/2008	(8B04145-M	SD1)			Sou	rce: IRB	0146-01				
Arsenic	1020	10	7.0	ug/l	1000	ND	102	70-130	0	20	
Barium	1.02	0.010	0.0060	mg/l	1.00	0.0294	99	70-130	2	20	
Beryllium	996	2.0	0.90	ug/l	1000	ND	100	70-130	0	20	
Boron	1.05	0.050	0.020	mg/l	1.00	0.0451	100	70-130	3	20	
Calcium	28.1	0.10	0.050	mg/l	1.00	28.0	6	70-130	1	20	MHA
Chromium	1010	5.0	2.0	ug/l	1000	ND	101	70-130	1	20	
Cobalt	1010	10	2.0	ug/l	1000	ND	101	70-130	1	20	
Iron	1.64	0.040	0.015	mg/l	1.00	0.635	101	70-130	1	20	
Magnesium	9.33	0.020	0.012	mg/l	1.00	8.60	72	70-130	1	20	MHA
Manganese	1050	20	7.0	ug/l	1000	15.7	104	70-130	2	20	
Nickel	1030	10	2.0	ug/l	1000	ND	103	70-130	1	20	
Vanadium	1010	10	3.0	ug/l	1000	ND	101	70-130	3	20	
Zinc	1100	20	6.0	ug/l	1000	ND	110	70-130	5	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
U C		Linnt	MDL	emis	Lever	itesuit	/undee	Linits	IG D	Linnt	Quanners
Batch: 8B05112 Extracted: 02/05/08	-										
Blank Analyzed: 02/05/2008 (8B05112-B	LK1)										
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Selenium	ND	2.0	0.30	ug/l							
Silver	ND	1.0	0.30	ug/l							
Thallium	ND	1.0	0.20	ug/l							
LCS Analyzed: 02/05/2008 (8B05112-BS	1)										
Antimony	80.4	2.0	0.20	ug/l	80.0		100	85-115			
Cadmium	80.6	1.0	0.11	ug/l	80.0		101	85-115			
Copper	83.3	2.0	0.75	ug/l	80.0		104	85-115			
Lead	83.7	1.0	0.30	ug/l	80.0		105	85-115			
Selenium	82.1	2.0	0.30	ug/l	80.0		103	85-115			
Silver	82.0	1.0	0.30	ug/l	80.0		102	85-115			
Thallium	82.4	1.0	0.20	ug/l	80.0		103	85-115			
Matrix Spike Analyzed: 02/05/2008 (8B0	5112-MS1)				Sou	rce: IRB	0146-01				
Antimony	79.9	2.0	0.20	ug/l	80.0	0.473	99	70-130			
Cadmium	78.6	1.0	0.11	ug/l	80.0	0.130	98	70-130			
Copper	80.8	2.0	0.75	ug/l	80.0	2.50	98	70-130			
Lead	77.8	1.0	0.30	ug/l	80.0	0.385	97	70-130			
Selenium	78.1	2.0	0.30	ug/l	80.0	ND	98	70-130			
Silver	79.1	1.0	0.30	ug/l	80.0	ND	99	70-130			
Thallium	80.0	1.0	0.20	ug/l	80.0	ND	100	70-130			
Matrix Spike Dup Analyzed: 02/05/2008		ISD1)			Sou	rce: IRB	0146-01				
Antimony	81.9	2.0	0.20	ug/l	80.0	0.473	102	70-130	3	20	
Cadmium	80.3	1.0	0.11	ug/l	80.0	0.130	100	70-130	2	20	
Copper	82.1	2.0	0.75	ug/l	80.0	2.50	100	70-130	2	20	
Lead	78.4	1.0	0.30	ug/l	80.0	0.385	98	70-130	1	20	
Selenium	79.0	2.0	0.30	ug/l	80.0	ND	99	70-130	1	20	
Silver	80.7	1.0	0.30	ug/l	80.0	ND	101	70-130	2	20	
Thallium	80.9	1.0	0.20	ug/l	80.0	ND	101	70-130	1	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•		Linnt	MDL	Units	Level	Kesuit	/orec	Linnts	KI D	Linnt	Quanners
Batch: 8B04043 Extracted: 02/04/08	-										
Blank Analyzed: 02/04/2008 (8B04043-B	LK1)										
Chloride	ND	0.50	0.25	mg/l							
Fluoride	ND	0.50	0.15	mg/l							
Nitrate-N	ND	0.11	0.060	mg/l							
Nitrite-N	ND	0.15	0.090	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Sulfate	ND	0.50	0.20	mg/l							
LCS Analyzed: 02/04/2008 (8B04043-BS)	l)										
Chloride	5.33	0.50	0.25	mg/l	5.00		107	90-110			
Fluoride	5.14	0.50	0.15	mg/l	5.00		103	90-110			
Nitrate-N	1.19	0.11	0.060	mg/l	1.13		106	90-110			
Nitrite-N	1.65	0.15	0.090	mg/l	1.52		109	90-110			
Sulfate	10.6	0.50	0.20	mg/l	10.0		106	90-110			M-3
Matrix Spike Analyzed: 02/04/2008 (8B0	4043-MS1)				Sou	rce: IRB	0146-01				
Chloride	27.0	0.50	0.25	mg/l	5.00	21.6	109	80-120			
Fluoride	5.30	0.50	0.15	mg/l	5.00	0.288	100	80-120			
Nitrate-N	3.59	0.11	0.060	mg/l	1.13	2.36	109	80-120			
Nitrite-N	1.77	0.15	0.090	mg/l	1.52	ND	116	80-120			
Matrix Spike Analyzed: 02/04/2008 (8B0	4043-MS2)				Sou	rce: IRB	0156-01				
Chloride	27.7	0.50	0.25	mg/l	5.00	22.9	96	80-120			
Fluoride	5.01	0.50	0.15	mg/l	5.00	0.306	94	80-120			
Nitrate-N	2.90	0.11	0.060	mg/l	1.13	1.73	103	80-120			
Nitrite-N	1.59	0.15	0.090	mg/l	1.52	ND	105	80-120			
Matrix Spike Dup Analyzed: 02/04/2008	(8B04043-M	(SD1)			Sou	rce: IRB	0146-01				
Chloride	27.2	0.50	0.25	mg/l	5.00	21.6	112	80-120	1	20	
Fluoride	5.46	0.50	0.15	mg/l	5.00	0.288	103	80-120	3	20	
Nitrate-N	3.64	0.11	0.060	mg/l	1.13	2.36	113	80-120	1	20	
Nitrite-N	1.81	0.15	0.090	mg/l	1.52	ND	119	80-120	2	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04054 Extracted: 02/04/08	-										
Blank Analyzed: 02/04/2008 (8B04054-Bl	LK1)										
Chromium VI	ND	1.0	0.20	ug/l							
LCS Analyzed: 02/04/2008 (8B04054-BS)	l)										
Chromium VI	50.1	1.0	0.20	ug/l	50.0		100	90-110			
Matrix Spike Analyzed: 02/04/2008 (8B0	4054-MS1)				Sou	rce: IRB)156-01				
Chromium VI	46.5	1.0	0.20	ug/l	50.0	ND	93	90-110			
Matrix Spike Analyzed: 02/04/2008 (8B0	4054-MS2)				Sou	rce: IRB	0201-01				
Chromium VI	41.8	1.0	0.20	ug/l	50.0	ND	84	90-110			M2
Matrix Spike Dup Analyzed: 02/04/2008	(8B04054-M	SD1)			Sou	rce: IRB)156-01				
Chromium VI	48.5	1.0	0.20	ug/l	50.0	ND	97	90-110	4	10	
Batch: 8B04067 Extracted: 02/04/08	-										
Blank Analyzed: 02/04/2008 (8B04067-B	LK1)										
Turbidity	0.120	1.0	0.040	NTU							J
Duplicate Analyzed: 02/04/2008 (8B0406	7-DUP1)				Sou	rce: IRB)158-01				
Turbidity	3.31	1.0	0.040	NTU		3.24			2	20	
Batch: 8B04070 Extracted: 02/04/08	-										
Blank Analyzed: 02/09/2008 (8B04070-B	LK1)										
Biochemical Oxygen Demand	ND	2.0	0.59	mg/l							

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04070 Extracted: 02/04/08	-										
LCS Analyzed: 02/09/2008 (8B04070-BS	·										
Biochemical Oxygen Demand	218	100	30	mg/l	198		110	85-115			
LCS Dup Analyzed: 02/09/2008 (8B0407	0-BSD1)										
Biochemical Oxygen Demand	218	100	30	mg/l	198		110	85-115	0	20	
Batch: 8B04074 Extracted: 02/04/08	-										
Duplicate Analyzed: 02/04/2008 (8B0407	4-DUP1)				Sou	rce: IRB	0146-01				
Residual Chlorine	0.170	0.10	0.10	mg/l		0.170			0	20	
Batch: 8B04097 Extracted: 02/04/08	-										
Blank Analyzed: 02/04/2008 (8B04097-B	LK1)										
Surfactants (MBAS)	ND	0.10	0.044	mg/l							
LCS Analyzed: 02/04/2008 (8B04097-BS	1)										
Surfactants (MBAS)	0.252	0.10	0.044	mg/l	0.250		101	90-110			
Matrix Spike Analyzed: 02/04/2008 (8B0	4097-MS1)				Sou	rce: IRB	0156-01				
Surfactants (MBAS)	0.268	0.10	0.044	mg/l	0.250	ND	107	50-125			
Matrix Spike Dup Analyzed: 02/04/2008	(8B04097-M	SD1)			Sou	rce: IRB	0156-01				
Surfactants (MBAS)	0.265	0.10	0.044	mg/l	0.250	ND	106	50-125	1	20	
Batch: 8B04112 Extracted: 02/04/08	-										
Blank Analyzed: 02/04/2008 (8B04112-B	LK1)										
Total Cyanide	ND	5.0	2.2	ug/l							

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04112 Extracted: 02/04/08	-										
LCS Analyzed: 02/04/2008 (8B04112-BS)	l)										
Total Cyanide	184	5.0	2.2	ug/l	200		92	90-110			
Matrix Spike Analyzed: 02/04/2008 (8B0-	4112-MS1)				Sou	rce: IRA	3072-06				
Total Cyanide	189	5.0	2.2	ug/l	200	ND	94	70-115			
Matrix Spike Dup Analyzed: 02/04/2008	(8B04112-M	SD1)			Sou	rce: IRA	3072-06				
Total Cyanide	189	5.0	2.2	ug/l	200	ND	95	70-115	0	15	
Batch: 8B05134 Extracted: 02/05/08	-										
Blank Analyzed: 02/05/2008 (8B05134-Bl	L K1)										
Total Suspended Solids	ND	10	10	mg/l							
LCS Analyzed: 02/05/2008 (8B05134-BS1	l)										
Total Suspended Solids	967	10	10	mg/l	1000		97	85-115			
Duplicate Analyzed: 02/05/2008 (8B05134	4-DUP1)				Sou	rce: IRB	0193-02				
Total Suspended Solids	ND	10	10	mg/l		ND				10	
Batch: 8B07098 Extracted: 02/07/08	-										
Blank Analyzed: 02/08/2008 (8B07098-Bl	L K1)										
Ammonia-N (Distilled)	ND	0.50	0.30	mg/l							
LCS Analyzed: 02/08/2008 (8B07098-BS1	l)										
Ammonia-N (Distilled)	10.4	0.50	0.30	mg/l	10.0		104	80-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B07098 Extracted: 02/07/08	_										
Matrix Spike Analyzed: 02/08/2008 (8B0	7098-MS1)				Sou	rce: IRB	0146-01				
Ammonia-N (Distilled)	10.1	0.50	0.30	mg/l	10.0	ND	101	70-120			
Matrix Spike Dup Analyzed: 02/08/2008	(8B07098-MS	D1)			Sou	rce: IRB	0146-01				
Ammonia-N (Distilled)	9.80	0.50	0.30	mg/l	10.0	ND	98	70-120	3	15	
Batch: 8B07123 Extracted: 02/07/08	_										
Blank Analyzed: 02/07/2008 (8B07123-B	,										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 02/07/2008 (8B07123-BS											
Total Dissolved Solids	988	10	10	mg/l	1000		99	90-110			
Duplicate Analyzed: 02/07/2008 (8B0712	3-DUP1)				Sou	rce: IRB	0153-01				
Total Dissolved Solids	266	10	10	mg/l		258			3	10	
Batch: 8B08056 Extracted: 02/07/08	-										
LCS Analyzed: 02/07/2008 (8B08056-BS	l)										
Specific Conductance	550	1.0	1.0	umhos/cm	530		104	90-110			
Duplicate Analyzed: 02/07/2008 (8B0805	6-DUP1)				Sou	rce: IRB	0076-01				
Specific Conductance	1140	1.0	1.0	umhos/cm		1140			0	5	
Batch: 8B12073 Extracted: 02/12/08	_										
Blank Analyzed: 02/12/2008 (8B12073-B	LK1)										
Perchlorate	ND	4.0	1.5	ug/l							

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

INORGANICS

Analyte Batch: 8B12073 Extracted: 02/12/08	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
LCS Analyzed: 02/12/2008 (8B12073-BS) Perchlorate	1) 55.4	4.0	1.5	ug/l	50.0		111	85-115			
		1.0	1.5	ugr		rce: IRB(05 115			
Matrix Spike Analyzed: 02/12/2008 (8B1) Perchlorate	50.5	4.0	1.5	ug/l	50.0	ND	101	80-120			
Matrix Spike Dup Analyzed: 02/12/2008	(8R12073_MS	D1)		8	Sou	rce: IRB()150_01				
Perchlorate	50.8	4.0	1.5	ug/l	50.0	ND	102	80-120	1	20	
Batch: 8B12074 Extracted: 02/12/08	_										
Blank Analyzed: 02/12/2008 (8B12074-B	LK1)										
Hexane Extractable Material (Oil & Grease)	ND	5.0	1.4	mg/l							
LCS Analyzed: 02/12/2008 (8B12074-BS)	1)										MNR1
Hexane Extractable Material (Oil & Grease)	20.0	5.0	1.4	mg/l	20.2		99	78-114			
LCS Dup Analyzed: 02/12/2008 (8B12074	4-BSD1)										
Hexane Extractable Material (Oil & Grease)	18.5	5.0	1.4	mg/l	20.2		92	78-114	8	11	
Batch: 8B13116 Extracted: 02/13/08	_										
Blank Analyzed: 02/13/2008 (8B13116-B	LK1)										
Total Organic Carbon	ND	1.0	0.50	mg/l							
LCS Analyzed: 02/13/2008 (8B13116-BS)	1)										
Total Organic Carbon	10.2	1.0	0.50	mg/l	10.0		102	90-110			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B13116 Extracted: 02/13/08	-										
Matrix Spike Analyzed: 02/13/2008 (8B1	3116-MS1)				Sou	rce: IRB0	0174-02				
Total Organic Carbon	11.4	1.0	0.50	mg/l	5.00	6.26	103	80-120			
Matrix Spike Dup Analyzed: 02/13/2008	(8B13116-MS	5D1)			Sou	rce: IRB0	174-02				
Total Organic Carbon	11.2	1.0	0.50	mg/l	5.00	6.26	98	80-120	2	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

Metals by EPA 200 Series Methods

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: W8B0147 Extracted: 02/05/0	8										
Blank Analyzed: 02/07/2008 (W8B0147-	,										
Mercury, Dissolved	ND	0.20	0.050	ug/l							
Mercury, Total	ND	0.20	0.050	ug/l							
LCS Analyzed: 02/07/2008 (W8B0147-B	S1)										
Mercury, Dissolved	1.04	0.20	0.050	ug/l	1.00		104	85-115			
Mercury, Total	1.04	0.20	0.050	ug/l	1.00		104	85-115			
Matrix Spike Analyzed: 02/07/2008 (W8	B0147-MS1)				Sou	rce: 8020	444-01				
Mercury, Dissolved	1.04	0.20	0.050	ug/l	1.00	ND	104	70-130			
Mercury, Total	1.04	0.20	0.050	ug/l	1.00	ND	104	70-130			
Matrix Spike Analyzed: 02/07/2008 (W8	B0147-MS2)				Sou	rce: 8020	445-01				
Mercury, Dissolved	1.04	0.20	0.050	ug/l	1.00	ND	104	70-130			
Mercury, Total	1.04	0.20	0.050	ug/l	1.00	ND	104	70-130			
Matrix Spike Dup Analyzed: 02/07/2008	(W8B0147-M	SD1)			Sou	rce: 8020	444-01				
Mercury, Dissolved	1.05	0.20	0.050	ug/l	1.00	ND	105	70-130	1	20	
Mercury, Total	1.05	0.20	0.050	ug/l	1.00	ND	105	70-130	1	20	
Matrix Spike Dup Analyzed: 02/07/2008	(W8B0147-M	SD2)			Sou	rce: 8020	445-01				
Mercury, Dissolved	1.06	0.20	0.050	ug/l	1.00	ND	106	70-130	2	20	
Mercury, Total	1.06	0.20	0.050	ug/l	1.00	ND	106	70-130	2	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
IRB0156-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	1.24	4.8	45
IRB0156-01	608-Pesticides (LowRL)	alpha-BHC	ug/l	0.00030	0.0047	0.03
IRB0156-01	624-Boeing 001/002 Q (Fr113+X).	, L1,1-Dichloroethene	ug/l	0	0.50	6
IRB0156-01	624-Boeing 001/002 Q (Fr113+X)	, LTrichloroethene	ug/l	0	0.50	5
IRB0156-01	625+NDMA, LL	2,4,6-Trichlorophenol	ug/l	0	0.94	13
IRB0156-01	625+NDMA, LL	2,4-Dinitrotoluene	ug/l	0	4.7	18
IRB0156-01	625+NDMA, LL	Bis(2-ethylhexyl)phthalate	ug/l	1.72	4.7	4
IRB0156-01	625+NDMA, LL	N-Nitrosodimethylamine	ug/l	0	1.9	16
IRB0156-01	625+NDMA, LL	Pentachlorophenol	ug/l	0	1.9	16
IRB0156-01	Ammonia-N, Titr (350.2) w/dist	Ammonia-N (Distilled)	mg/l	0.28	0.50	10
IRB0156-01	Antimony-200.8	Antimony	ug/l	0.45	2.0	6
IRB0156-01	Arsenic-200.7	Arsenic	ug/l	0.14	10	10
IRB0156-01	Barium-200.7	Barium	mg/l	0.019	0.010	1
IRB0156-01	Beryllium-200.7	Beryllium	ug/l	0	2.0	4
IRB0156-01	BOD	Biochemical Oxygen Demand	mg/l	1.12	2.0	30
IRB0156-01	Cadmium-200.8	Cadmium	ug/l	0.100	1.0	3.1
IRB0156-01	Chloride - 300.0	Chloride	mg/l	23	0.50	150
IRB0156-01	Chlorine, Residual	Residual Chlorine	mg/l	0.14	0.10	0.1
IRB0156-01	Chromium VI-218.6	Chromium VI	ug/l	0	1.0	16
IRB0156-01	Chromium-200.7	Chromium	ug/l	1.67	5.0	16
IRB0156-01	Copper-200.8	Copper	ug/l	3.49	2.0	14
IRB0156-01	Cyanide-335.2 5ppb	Total Cyanide	ug/l	-1	5.0	8.5
IRB0156-01	Fluoride-300.0	Fluoride	mg/l	0.31	0.50	1.6
IRB0156-01	Hg_w 245.1	Mercury, Total	ug/l	0.019	0.20	0.2
IRB0156-01	Iron-200.7	Iron	mg/l	0.66	0.040	0.3
IRB0156-01	Lead-200.8	Lead	ug/l	0.49	1.0	5.2
IRB0156-01	Manganese-200.7	Manganese	ug/l	18	20	50
IRB0156-01	MBAS - SM5540-C	Surfactants (MBAS)	mg/l	0.043	0.10	0.5
IRB0156-01	Nickel-200.7	Nickel	ug/l	2.61	10	96
IRB0156-01	Nitrate-N, 300.0	Nitrate-N	mg/l	1.73	0.11	8
IRB0156-01	Nitrite-N, 300.0	Nitrite-N	mg/l	0	0.15	1
IRB0156-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	1.73	0.26	8
IRB0156-01	Perchlorate 314.0-DEFAULT	Perchlorate	ug/l	0	4.0	6
IRB0156-01	Selenium-200.8	Selenium	ug/l	0.26	2.0	5
IRB0156-01	Settleable Solids	Total Settleable Solids	ml/l/hr	0	0.10	0.3
IRB0156-01	Silver-200.8	Silver	ug/l	0.097	1.0	4.1
IRB0156-01	Sulfate-300.0	Sulfate	mg/l	67	2.5	300

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasade 618 Michilling Arcadia, CA 9 Attention: Br	da Avenue, Suite 200 91007	Project ID: Annual Outfall 018 Report Number: IRB0156			led: 02/03/08 red: 02/03/08	
IRB0156-01	TDS - SM 2540C	Total Dissolved Solids	mg/l	261	10	950
IRB0156-01	Thallium-200.8	Thallium	ug/l	0.052	1.0	2
IRB0156-01	TSS - EPA 160.2	Total Suspended Solids	mg/l	9.00	10	45
IRB0156-01	Zinc-200.7	Zinc	ug/l	14	20	120

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
IRB0156-02	624-Boeing 001/002	Q (Fr113+X), L1,1-Dichloroethene	ug/l	0.43	0.50	6
IRB0156-02	624-Boeing 001/002	Q (Fr113+X), LTrichloroethene	ug/l	0	0.50	5

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detec	cted in the associated Method Blank.
---------------------	--------------------------------------

- **HFT** The holding time for this test is immediate. It was analyzed in the laboratory as soon as possible after receipt.
- J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
- L Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits. Analyte not detected, data not impacted.
- L1 Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above acceptance limits.
- L6 Per the EPA methods, benzidine is known to be subject to oxidative losses during solvent concentration.
- M2 The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
- **M-3** Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).
- **MHA** Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information. See Blank Spike (LCS).
- MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
- **R-2** The RPD exceeded the acceptance limit.
- **ZX** Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.
- ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
- **RPD** Relative Percent Difference

ADDITIONAL COMMENTS

For TICs:

All identifications are tentative and concentrations are estimates based upon spectral comparison to the EPA/NIH library.

For 1,2-Diphenylhydrazine:

The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.

For GRO (C4-C12):

GRO (C4-C12) is quantitated against a gasoline standard. Quantitation begins immediately following the methanol peak.

For Extractable Fuel Hydrocarbons (EFH, DRO, ORO) :

Unless otherwise noted, Extractable Fuel Hydrocarbons (EFH, DRO, ORO) are quantitated against a Diesel Fuel Standard.

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EPA 120.1	Water	Х	Х
EPA 160.2	Water	Х	Х
EPA 160.5	Water	Х	Х
EPA 1664A	Water		
EPA 180.1	Water	Х	Х
EPA 200.7-Diss	Water	Х	Х
EPA 200.7	Water	Х	Х
EPA 200.8-Diss	Water	Х	Х
EPA 200.8	Water	Х	Х
EPA 218.6	Water	Х	Х
EPA 300.0	Water	Х	Х
EPA 314.0	Water	Х	Х
EPA 330.5	Water	Х	Х
EPA 335.2	Water	Х	Х
EPA 350.2	Water		Х
EPA 405.1	Water	Х	Х
EPA 415.1	Water	Х	Х
EPA 608	Water	Х	Х
EPA 624 (MOD.)	Water		Х
EPA 624	Water	Х	Х
EPA 625	Water	Х	Х
EPA 8015 Mod.	Water	Х	Х
EPA 8015B	Water	Х	Х
EPA 8260B-SIM	Water		
Filtration	Water	N/A	N/A
SM2340B	Water	Х	Х
SM2540C	Water	Х	
SM5540-C	Water	Х	Х

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chrnic Samples: IRB0156-01

Analysis Performed: Bioassay-Acute 96hr Samples: IRB0156-01

TestAmerica Irvine

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 018

Report Number: IRB0156

Sampled: 02/03/08 Received: 02/03/08

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Eberline Services

2030 Wright Avenue - Richmond, CA 94804

Analysis Performed: Gamma Spec Samples: IRB0156-01

- Analysis Performed: Gross Alpha Samples: IRB0156-01
- Analysis Performed: Gross Beta Samples: IRB0156-01
- Analysis Performed: Radium, Combined Samples: IRB0156-01
- Analysis Performed: Strontium 90 Samples: IRB0156-01
- Analysis Performed: Tritium Samples: IRB0156-01
- Analysis Performed: Uranium, Combined Samples: IRB0156-01

Truesdail Laboratories-SUB California Cert #1237

14201 Franklin Avenue - Tustin, CA 92680

Analysis Performed: Hydrazine Samples: IRB0156-01

Vista Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762

Analysis Performed: 1613-Dioxin-HR-Alta Samples: IRB0156-01

Weck Laboratories, Inc

14859 E. Clark Avenue - City of Industry, CA 91745 Method Performed: EPA 245.1 Samples: IRB0156-01

TestAmerica Irvine

l of 2) 35 7																				0
Page 1 of	Field rea Temp =	pH = / . Ć Time of readings =		- <u>24 TAT</u> -	24 TAT	24 TAT.							-147-14						sh	ays	Normal A On Ice: 7.0/5.0
Server and S	nitrotoluene, Ithalate,	t,6 T(:)P, 2,4 Dii 5(2- etry hexyl)ph МА, РСР (SVOC	sia															×	Turn around Time: (check) 24 Hours 5 Days	10 Days	/2 Hours Normal Sample Integrity. (check) Intact On Ice:
2		op Dha EHC (608)	γIA														×		und Time		Integrity:
É,	2) REQ	rbidity, TDS, T2 nductivity 1000 and (350.	oo				+								×	×			Turn aroi 24 Hours	48 Hours	/2 Hours Sample Ir Intact
La marte a	SIS N	trate-⊠, Nitrite-I	ŧ!Ν											×					S		
	J ⁵⁻ N ² E	tcplorate ¹ SO ⁴ NO ³ +NC	CL									~	×								5
	- (3	D ₅ (20 degrees) D5 (20 degrees) ABM) stristoshi									×	×								نة	
		anide (total rec							×	×									nev nur ABC	Date/Tim	Date/Time:
Σ		DD (and all coi א Grease (166						×	$\hat{}$											Da	^{Da}
R		sbilo2 eldsett			-		×												}		0
E E		CaCO3 (VI) (218.6)				×	_				_							_	J		
CUSTODY FORM	, Fe, Mn, r. Ni, Se	tal Recoverable , Pb, Hg, B, Ba , Tl, Zn, Co, V, , Tl, Zn, Co, V,	bA dS u⊃	×	×												/		L DD	,	(n)
F CUS			Bottle #	1A	1B	10	2	3A, 3B	4A, 4B	5	9	7A, 7B	8A, 8B	ი	10A, 10B	11	12A, 12B	13A, 13B	Kecelved By	Received By	Received By
l AIN O	Project: Boeing-SSFL NPDES Annual Outfall 018	er: 91	Preservative	HNO ₃	HNO ₃	ć	None	None	HCI	NaOH	None	None	None	None	None	H ₂ SO4	None	ry: Srd None	605		JE30
D D D D	SSFL	Vumb 38-66 78-65 38-65	ing ime	0) 0)				_										6.2			
1971	Project: Boeing-SSFL NPDE Annual Outfall 018	Phone Number: (626) 568-6691 Fax Number: (626) 568-6515	Sam Date/	141									/ 8M		-	;	\$	39.64	Date/Time:	Date/Time:	Date/Time:
12/20/0	oak Dak	(elly	# of Cont.	1	1	-	-	5	2	~	-	2	11	-	2	-	2	~			
a Version 1	ue, Suite 2	Bronwyn I y <i>C I</i> I	Container Type	1L Poly	1L Poly	1L Poly	1L Poly	1L Amber	1L Amber	500 ml Poly	1L Poly	500 ml Poly	500 ml Poly 1 L	500 ml Poly	500 ml Poly	500 ml Poly	1L Amber	1L Amber	00-1-7		المعمر
neric	ne/Addre Cadia nda Aven \ 91007 a Contact	anager:	Sample Matrix	N	M	W	N	N	×	N	3	M	3	M	N	8	>			By	ByCo
Test America Version 12/20/07 CHAIN OF	Client Name/Address: MWH-Arcadia 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Test America Contact, Joseph Doak	Project Manager: Bronwyn Kelly Sampler: † ୧୯୬୬୦୬ ^୯ ଜ	Sample Description	Outfall 018	Outfall 018 Dup	Outfall 018	Outfall 018	Outfall 018	Outfall 018	Outfall 018	Outfall 018	Outfall 018	Outfall 018	Outfall 018	Relinquished By	Relinquished By	Relinquished By				

NPDES - 4116

sion 12/20/07	
Ca Ver	
Americ	
est A	
F	

CHAIN OF CUSTODY FORM

Client interAddress Proposition Client interAddress Proposition Final Advances Expanded Advances Sumpler: Annual Outriations Sumpler: Annual Outriations Sumpler: Advances Sumpler: Advances<	est America Version 12/20/07	Jeric	a Version	12/20,	/02	CHA	CHAIN OF CL	USIODY	ž		FORM						1_	Page 2 of 2
Boleng-SSF1 NPDES Annual Outfall 013 Annual Outfall 013 X Annual Ou	Client Nam€	e/Addr€	SSS:		Project:			-	•			ANAL		REQ	UIRE	۵		
Antural Outland Antural Outland Antural Outland Construction	MWH-Arc	adia			Boeing-	SSFL NP	DES					le			مر. 	ţ}	6' ינ הי	
Phone Number: A Phone Number: Phone Numoe Phone Numoe Phone<	618 Michillinc Arcadia, CA (da Aven 91007 Contoct	ue, Suite 2 Iosanh Di	00 7 7 00	Annual	Outfall 0	80	,AESI n	+5CAE	arbon		un (H-3) 5.0), Tota 1 226 1 Radium 1 muin					C :slst∋M etals : ∩N bA :92 ,iN	
eet Marandger: Browyn Keily (22:058-06:1) manual family (22:058-06:1) ma	lest America	COILIACI			+	-		106	Α+	;) 		itic 100 100 100 100 100 100 100 100 100 10					i P	
Oper Chi - 4 C A Fax Number Control Conto Control Control	Project Man	nager:	Bronwyn	Kelly		Number:		Fre				1, T, (90 (156 1.50 1.50					blvei Ba, Cr	
The intervention Test of the intervention Constrained int	Complex: M	6				00-009 mhar:		'£1				K-4 4'0 50 1 0(20) 0'0)					Cq B' sss	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		· N N ·	4 e /t		(626) 5t	лысы. 38-6515		↓ uo				(0.6) (0.6) (0.6) (00) (00) (00) (00)					al Di ,eH ,€B,	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Sample Matrix	Container Type	# of Cont.				Fre				(306) 558 (300 (300) (30					tot ,dq ,sA ,IT	Comments
If 018 W VOAs 3 None $16A, 16B, \\ 16A, 16B, \\ 17A, \\ 17A, 16B, \\ 17A, \\ 17A, 17B, \\ 17B, 17B, 17B, 17B, 17B, 17B, 17B, 17B,$		3	VOAs	2	Bo- 6- 7	1	14A, 14B, 14C, 14D, 14E	×										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3	VOAs	e		None	15A, 15B, 15C		×									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3	VOAs	e		단	16A, 16B, 16C			×								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3	250 ml Glass	-		P	17			×								
II (18) W $\frac{2.560, 0.066}{10000000000000000000000000000000000$		3	150 ml Poly	-		None	18				×							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1		2.5 Gal Cube 500 ml Amber	ļ		None None	19A 19B					×						Unfiltered and unpreserved analysis
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1		1L Amber		<u>\</u>	None	20A, 20B						×					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		N	VOAs	-		НĊ	21A							×				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	all 018	3	VOAs	N ,		HCI	21B, 21C							×				
III 018 W 1L Amber 1 None 22B I I X		3	1L Amber	-		None	22A								×			
III 018W1L Amber2None $23A, 23B$ None $x3A, 23B$ None $x4, x2B$	all 018	N	1L Amber	-		None	22B								×			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	all 018	3	1L Amber	2		None	23A, 23B											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3	1 Gal Cube	2	A	None	24A, 24B									×		
WVOAs3HCl $26A, 26B, X$ XHWVOAs3None $27A, 27B, X$ XHBY $2 - 3 - 6 B$ Date/Time:Received BYDate/Time:d BY $2 - 3 - 6 B$ Date/Time:Received BYDate/Time:d BY $2 - 3 - 6 B$ Date/Time:Received BYDate/Time:d BY $2 - 3 - 6 B$ Date/Time:Received BYDate/Time:d BY $2 - 3 - 6 B$ Date/Time:Received BYDate/Time:d BY $2 - 3 - 6 B$ Date/Time:Received BYDate/Time:d BYDate/Time:Received BYDate/Time:ISTOd BYDate/Time:Received BYDate/Time:ISTO		3	1L Poly	-	1.7		25										×	Filter w/in 24hrs of receipt at lab.
w volas 3 None $27A$, $27B$, X X I d By $2 \cdot 3 \cdot 6 \cdot 8$ Date/Time: Received By Date/Time: NS d By $2 \cdot 3 \cdot 6 \cdot 8$ Date/Time: Received By Date/Time: NS d By $2 \cdot 3 \cdot 6 \cdot 8$ Date/Time: Received By Date/Time: NS d By $2 \cdot 3 \cdot 6 \cdot 8$ NS NS NS d By Date/Time: Received By Date/Time: d By Date/Time: Received By Date/Time:		3	VOAs	m	•	ЧĊ	26A, 26B, 26C											
A Date/Time: Received By Date/Time: A Date/Time: ////////////////////////////////////		3	VOAs	ę		None	27A, 27B, 27C		×									
Date/Time: Received By Date/Time: Date/Time: Date/Time: Received By	Relinquished E	N.	51	D	Date/Time	2001/	A Received B	X	20	J	Dat	e/Time: J/3/CK		Ĺ	S		Turn around Time 24 Hours	: (check) 5 Days
Date/Time: Received By Date/Time:	Relinquished E		•		Date/Time		Received B	~			Date	e/Timé:					48 Hours	10 Days
bate/Time: Received By Date/Time:	R	8	ļ	C	4368	83											72 Hours	Normal
	Relinquished E	By			Ďate/Time	8	Received B		Λ	1	∩ [™]	e/Time: -/3/~~	V V		Ľ		Sample Integrity: Intact	(check) On Ice: 7.

LABORATORY REPORT

Date: February 12, 2008

Client: TestAmerica – Irvine 17461 Derian Ave., Suite 100 Irvine, CA 92614 Attn: Joseph Doak "dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003
(805) 650-0546 FAX (805) 650-0756 *CA DOHS ELAP Cert. No.: 1775*

- Laboratory No.:
 A-08020412-001

 Sample ID.:
 IRB0156-01 (Outfall 018)
- **Sample Control:** The sample was received by ATL within the recommended hold time, in a chilled state, and with the chain of custody record attached. Testing was conducted on only one sample per client instruction.

Date Sampled:	02/03/08
Date Received:	02/04/08
Temp. Received:	4°C
Chlorine (TRC):	0.0 mg/l
Date Tested:	02/04/08 to 02/11/08

Sample Analysis:The following analyses were performed on your sample:Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0),

Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002). Attached are the test data generated from the analysis of your sample.

Result Summary:

Acute:	Survival	TUa
Fathead Minnow:	100%	0.0
Chronic:	NOEC	TUc
Ceriodaphnia Survival:	100%	1.0
Ceriodaphnia Reproduction:	100%	1.0

Quality Control:

Reviewed and approved by:

Joseph A. LeMa Laboratory Directo

FATHEAD MINNOW PERCENT SURVIVAL TEST EPA Method 2000.0

Start Date: 02/04/2008

TEST SUMMARY

TEST DATA

Species: *Pimephales promelas*. Age: <u>14</u> (1-14) days. Regulations: NPDES. Test solution volume: 250 ml. Feeding: prior to renewal at 48 hrs. Number of replicates: 2. Dilution water: Moderately hard reconstituted water. Photoperiod: 16/8 hrs light/dark.

Source: In-laboratory Culture. Test type: Static-Renewal. Test Protocol: EPA-821-R-02-012. Endpoints: Percent Survival at 96 hrs. Test chamber: 600 ml beakers. Temperature: 20 +/- 1°C. Number of fish per chamber: 10. QA/QC Batch No.: RT-080204.

Aquatic

Testing

Laboratories

		1	ESI DATA				
		°C	DO	pН	# I	Dead	Analyst & Time
	I		50	pn	A	В	of Readings
INITIAL	Control	20.1	8.6	7.8	\mathcal{O}	0	2
	100%	19.8	10-5	6.9	Ø	0	14a
24 Hr	Control	19.3	2.8	7.5	0	ρ	2-
24 111	100%	19.3	7.9	7.2	0	0	1330
48 Hr	Control	19.5	7.6	7.7	\sim	\sim	ja-
40 111	100%	19.7	-2.3	7.6	0	$\overline{\mathcal{O}}$	1400
Renewal	Control	20.5	8.8	2.8	O	0	fr-
Kenewai	100%	19.5	11.4	7.0	\mathcal{O}	\mathcal{O}	1400
72 Hr	Control	19.3	8.0	2.4	0	O	Rr 1200
/2 111	100%	19.7	8.2	7.3	0	0	1200
96 Hr	Control	19.5	8.2	2.3	\sim	0	R- 1300
90 Hr	100%	19.8	8.0	7.4	0	0	1300
Sample ae Control: Alkal Test solution a Sample used fo	gived: Chlorine: 0.0 mg/l; Alkalinity: <u>(e</u> rated moderately (ap inity: <u>(e 4</u> mg/l; Ha erated (not to excee or renewal is the orig gen (DO) readings i	<u></u> mg/l; Ha oprox. 500 n rdness: <u>96</u> d 100 bubble ginal sample	rdness: <u>///</u> nl/min) to ra es/mg/l; Con es/min) to r	mg/l; NH aise or lowe ductivity: <u>-</u> naintain DC	₃ -N: <u>0</u> -* er DO? Y <u>90</u> ur 0>4.0 mg	2 mg/l. $\frac{1}{2} \text{ mg/l.}$ $\frac{1}{2} \text{ mg/l.}$)

RESULTS

Percent Survival In:

Control: ____%

100% Sample: _____%

CERIODAPHNIA SURVIVAL AND REPRODUCTION TEST

- Test and Results Summary
- Data Summary and Statistical Analyses
- Raw Test Data: Water Quality & Test Organism Measurements

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

Lab No.: A-08020412-001 Client/ID: Test America – IRB0156-01 (Outfall 018) Date Tested: 02/04/08 to 02/11/08

TEST SUMMARY

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*. Age: < 24 hrs; all released within 8 hrs. Test vessel size: 30 ml. Number of test organisms per vessel: 1. Temperature: 25 +/- 1°C. Dilution water: Mod. hard reconstituted (MHRW). QA/QC Batch No.: RT-080204. Endpoints: Survival and Reproduction. Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 15 ml. Number of replicates: 10. Photoperiod: 16/8 hrs. light/dark cycle. Test duration: 7 days. Statistics: ToxCalc computer program.

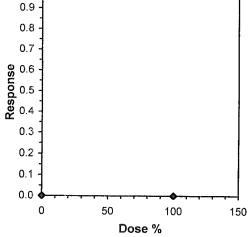
RESULTS SUMMARY

Sample Concentration	Percent Survival	Mean Number of Young Per Female
Control	100%	25.1
100% Sample	100%	26.5
Sample not statistically	significantly less than Co	ontrol for either endpoint.

CHRONIC TOXICITY

Survival NOEC	100%
Survival TUc	1.0
Reproduction NOEC	100%
Reproduction TUc	1.0

QA/QC TEST ACCEPTABILITY

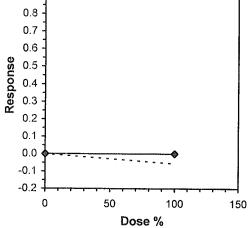

Parameter	Result
Control survival ≥80%	Pass (100% survival)
≥15 young per surviving control female	Pass (25.1 young)
≥60% surviving controls had 3 broods	Pass (100% with 3 broods)
PMSD $<47\%$ for reproduction; if $>47\%$ and no toxicity at IWC, the test must be repeated	Pass (PMSD = 5.7%)
Statistically significantly different concentrations relative difference > 13%	Pass (no concentration significantly different)
Concentration response relationship acceptable	Pass (no significant response at concentration tested)

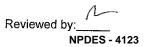
			Ceriod	aphnia Su	rvival and	Reprod	uction Tes	st-7 Day	Survival			
Start Date:	2/4/2008 1	15:00	Test ID:	8020412c			Sample I):	Outfall 01	8		
End Date:	2/11/2008	14:00	Lab ID:	CAATL-Ac	uatic Tes	ting Labs	Sample T	vpe:	EFF2-Ind	ustrial		
Sample Date:	2/3/2008 1			FWCH-EF						daphnia di	ubia	
Comments:									05 00110	aapiina a	abia	
Conc-%	1	2	3	4	5	6	7	8	9	10		
D. Control	1 0000	4 0000	4 0000	1 0000	4 0 0 0 0	(····		

		A.,			J		1	0	Э	10	
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
100	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	

				Not				Fisher's 1-Tailed			
Conc-%	Mean	N-Mean	Resp	Resp	Total	Ν	Exact P	Critical	Mean	N-Mean	
D-Control	1.0000	1.0000	0	10	10	10		*****	1.0000	1.0000	
100	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000	

Hypothesis	Test (1-tail,	0.05)	NOEC	LOEC	ChV	TU	ан таринан тараа тара	
Fisher's Exa	's Exact Test		100	>100		1		
Treatments	vs D-Control							
				Line	ar Interpo	lation (200 Resa	amples)	
Point	%	SD	95%	CL	Skew	·	. ,	
IC05	>100							
IC10	>100							
IC15	>100					1.0	0	
IC20	>100						⁻ 4	
IC25	>100					0.9	9 -	
IC40	>100					0.8	8 -	
IC50	>100					0 -	_, -	
		a ayyış terkini hatatalı dağı dağı dağı dağı dağı dağı dağı dağ	an a			0.7	']	




C10-0015-00-00-00-00-00-00-00-00-00-00-00-00-00			Cerioda	phnia Su	rvival and	l Reprodu	uction Tes	st-Reproc	luction		
	2/4/2008 1 2/11/2008		Test ID: 8	3020412c			Sample ID):	Outfall 018		
Sample Date:			Lab ID: (Protocol: I				Sample Ty Test Spec	•	EFF2-Indu CD-Cerioc	istrial Iaphnia dubia	
Commente									00 00000	aprina aabia	
Comments: Conc-%	1	2	3	4	5	6	7	8	9	10	

		_		Transform	n: Untran	sformed		1-Tailed			Isotonic		
 Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	- t-Stat	Critical	MSD	Mean	N-Mean	
D-Control	25.100	1.0000	25.100	24.000	27.000	4.770	10	******			25.800	1.0000	
100	26.500	1.0558	26.500	24.000	30.000	8.760	10	-1.695	1.734	1.432	25.800	1.0000	

Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.05)	0.93672		0.905		0.24281	-1.0199
F-Test indicates equal variances (p = 0.06)	3.75969		6.54109			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates no significant differences	1.43228	0.05706	9.8	3.41111	0.10731	1.18
Treatments vs D-Control					0.10101	1, 10

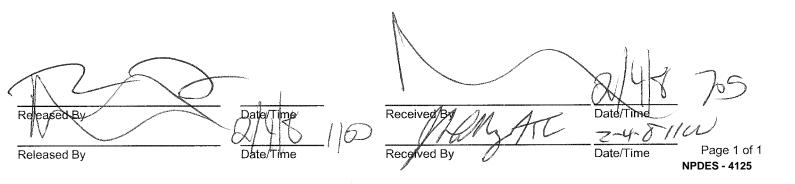
Point % SD 95% CL Skew IC05 >100	Linear Interpolation (200 Resamples)												
IC10 >100 IC15 >100 1.0													
IC15 >100 1.0													
1020 >100													
IC25 >100													
IC40 >100 0.8													
<u>IC50</u> >100 0.7 -													

CERIODAPHNIA DUBIA CHRONIC BIOASSAY EPA METHOD 1002.0 Raw Data Sheet

Lab No.: A-08020412-001

Client ID: T			ca - IRB0156-01 (Outfall 018)										Start Date: 02/04/2008			
		DAY	71	DA	XY 2	D	AY 3	DA	XY 4	D.	4Y 5	DA	4Y 6	DA	AY 7	
p ^{inner} states and st		0 hr	24hr	0 hr	24hr	0 hr	24hr	0 hr	24hr	0 hr	24hr	0 hr	24hr	0 hr	24hr	
Analyst II	nitials:	h	h	h	Los	R	han	ß~	An	Rm	2~	2	h	M	h	
Time of Re	adings:	1500	1600	1600	1600	llea	1600	1600	1500	1520	1400	1400	1330	1330	1400	
	DO	2.8	8.4	7.8	8.6	2.3	8.3	83	8.6	8.1	8.3	2.9	8-(7Z	8.1	
Control	рН	7-4	2.8	7.5	2.8	2.7	7.8	7.6	2.7	2.5	7.3	7.5	7.3	25	24	
	Temp	24.9	24.3	24.9	24.6	25.2	24.8	25.6	24.7	25.2	24.6	25.3	213	243	242	
	DO	8-4	8.3	10,5	9.2	10.2	9.0	10.6	8.8	11.3	8.5	10.9	7:5	10.9	78	
100%	рН	4.7	7.6	6.8	7.8	7.0	7.7	6.9	7.6	6.9	7.3	6.6	2.2	6.8	26	
	Temp	24.5	24.2	24.5	24.8	24.3	24.8	24.4	24.8	24.2	24.7	24.7	24.6	245	24.1	
	Ac	lditional Pa	arameter	rs				Сог	itrol	-			100% Sam	ple		
	Со	nductivity (umohms)			····	30	<u>> 1</u>	a			230			
	All	kalinity (mg	g/l CaCO	3)					8				62			
	Ha	ardness (mg	/I CaCO	,)					8				106			
	Ar	nmonia (mg	g∕l NH₃-N	1)				20	×_ (0.2				
			·····			So	urce of Ne	onates								
Rep	licate:		A	B	C		D	E	F		G	Н	I		J	
Broo	od ID:		A	5B	50	$\frac{2}{3}$	5H	5 I	50	56	<u>C </u>	<u>GE</u>	6F	6	Ţ,	
Sample		Day		В	с		of Young	<u> </u>		<u> </u>		tal Live (oung	No. Live Adults		nalyst nitials	
		l	A		<u> </u>		E F 20	G	H C		J			/	7	
		2			+		$\frac{1}{2}$		0				_{0 [0	-	2	
		3			3		44	3	3	2		29	10		2	
		4	6	6	\overline{c}	00	5 7	0	2	0		5	10	_	N	
Control		5		00	6	76	» ()	Ь	0	80	2 3	, 3	10		2	
		6	_ ((0	0	0 16	0	0	00	2 3	; Z	10		2	
		7	0	18	17	151	4 0	16	14	15 1	63	12-51	10		2	
		Total	2		26	25 Z	4 27	25	24	25 2	:4 2	51	10	6	2_	
		1		0	$ \mathcal{O} $	O	$\frac{2}{C}$		C	0		C	10		2	
		2					$\frac{2}{2}$	$ \mathcal{O} $	0				10		2	
		3	5	2		and the second se	z 3	2	3	3	3	27	r U		2	
100%		4		22		6	8	16	2	2	$\leq \mid -($	- <u>-</u>	10	_	<u>5</u>	
		5	-9		16	\mathcal{D}	10	0	0	$\frac{O}{2}$	2 2	4	$\frac{10}{10}$		\sim	
		6	12	5 19	69	0	$\frac{0}{0}$	$\frac{0}{1}$	18	·	2,	55	<u>I</u> O		$\frac{1}{2}$	
		7		$\frac{10}{10}$			917	16		14/1		98	10		<u> </u>	
I		Total		<u>127</u>	241	252	.8 28	24	20	2117	12	265	$_{IV}$		\sim	

Circled fourth brood not used in statistical analysis. 7^{th} day only used if <60% of the surviving control females have produced their third brood.


SUBCONTRACT ORDER

TestAmerica Irvine

IRB0156

RECEIVING LABORATORY: SENDING LABORATORY: Aquatic Testing Laboratories-SUB **TestAmerica** Irvine 4350 Transport Street, Unit 107 17461 Derian Avenue. Suite 100 Ventura, CA 93003 Irvine, CA 92614 Phone :(805) 650-0546 Phone: (949) 261-1022 Fax: (805) 650-0756 Fax: (949) 260-3297 Project Location: California Project Manager: Joseph Doak °C / N Receipt Temperature: Ice: Y

Analysis	Units	Due	Expires	Comments
Sample ID: IRB0156-01	Water		Sampled: 02/03/08 14:45	
Bioassay-7 dy Chrnic	N/A	02/13/08	02/05/08 02:45	Cerio, EPA/821-R02-013, Sub to AqTox Labs
Bioassay-Acute 96hr	% Survival	02/13/08	02/05/08 02:45	FH minnow, EPA/821-R02-012, Sub to AqTox Labs
Level 4 Data Package - Ou	t N/A	02/13/08	03/02/08 14:45	
Containers Supplied:				
1 gal Poly (AT)	1 gal Poly (AU))		

REFERENCE TOXICANT DATA

FATHEAD MINNOW ACUTE Method 2000.0 Reference Toxicant - SDS

QA/QC Batch No.: RT-080204

Species: *Pimephales promel*as. Age: <u>4</u> days old. Regulations: NPDES. Test chamber volume: 250 ml. Feeding: Prior to renewal at 48 hrs. Temperature: 20 +/- 1°C. Number of replicates: 2. Dilution water: MHSF.

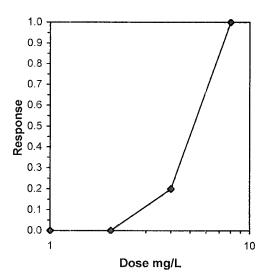
\TEST SUMMARY

Source: In-lab culture. Test type: Static-Renewal. Test Protocol: EPA-821-R-02-012. Endpoints: LC50 at 96 hrs. Test chamber: 600 ml glass beakers. Aeration: None. Number of organisms per chamber: 10. Photoperiod: 16/8 hrs light/dark.

TEST DATA

		INITIAI				24 Hr			48 Hr				
Date/Time:	2-4	-8	1430	2-5	-08		133	O	2-6-0	28		143	<>
Analyst:		h				h				R			
	°C	DO	pН	°C DO pH # Dea			Dead	°C	DO	pН	# E	Dead	
							A	В				A	В
Control	19.8	8.4	7-4	19.1	7.9	7.5	\cup	0	19,4	7.2	7.6	0	0
1.0 mg/l	14.9	8.4	7.5	19.1	7.8	7.4		0	19,4	69	7.6	0	0
2.0 mg/l	19.5	8.5	7.5	19.0	7.6	7.4	Ō	0	19.4	6.6	7.5	D	0
4.0 mg/l	200	8.5	7-5	19.0		7.4	0	1	19.4	6.7	7.5	2	\mathcal{O}
8.0 mg/l	20.0	8.6	7-5	19.1 8.0 7.4 10 10					1 vighenigsten h v v	2000-00-00-00-00-00-00-00-00-00-00-00-00	Խվ ցերթեւթ	Notes and the second seco	Standing Strengt Strengt
	R	RENEWA	L			72 Hr			96 Hr				
Date/Time:	2-6.	03	1430	2-7-08 1200					2-8	-08		/	1300
Analyst:		X-		la-					- An				
	°C	DO	pН	°C DO pH # Dead			°C	DO	pН	# D	ead		
							А	В		20	pri	A	В
Control	20.3	8.9	7.8	19.4	7.5	7.7	\cup	_0_	19.2	8.0	7.5	0	
1.0 mg/l	20:3	8.9	7.8	19.3	7.5	7.6	0	Ũ	19.2	8.0	7.5	0	Ũ
2.0 mg/l	20.3	8.8	7.8	19.3	7.7	7.5	\mathcal{O}	0	19.3	8.1	7.4	0	O
4.0 mg/l	20.3	8.8	7.8	19.3	7.6	7.5	0	O	19.3	8.2	7.4	0	1
8.0 mg/l	Berthandstore .	man and man have a man											
Comments: Control: Alkalinity: 10 mg/l; Hardness: 96 mg/l; Conductivity: 289 umho. SDS: Alkalinity: 10 mg/l; Hardness: 10 mg/l; Conductivity: 290 umho.													
Concentr	oncentration-response relationship acceptable? (see attached computer analysis): Yes (response curve normal) No (dose interrupted indicated or non-normal)												

Acute Fish Test-96 Hr Survival										
Start Date:	2/4/2008 14:30	Test ID:	RT-080204	Sample ID:	REF-Ref Toxicant					
End Date:	2/8/2008 13:00	Lab ID:	CAATL-Aquatic Test	ing Labs Sample Type:	SDS-Sodium dodecyl sulfate					
Sample Date:	2/4/2008	Protocol:	ACUTE-EPA-821-R-	02-012 Test Species:	PP-Pimephales promelas					
Comments:										
Conc-mg/L	1 2			1						

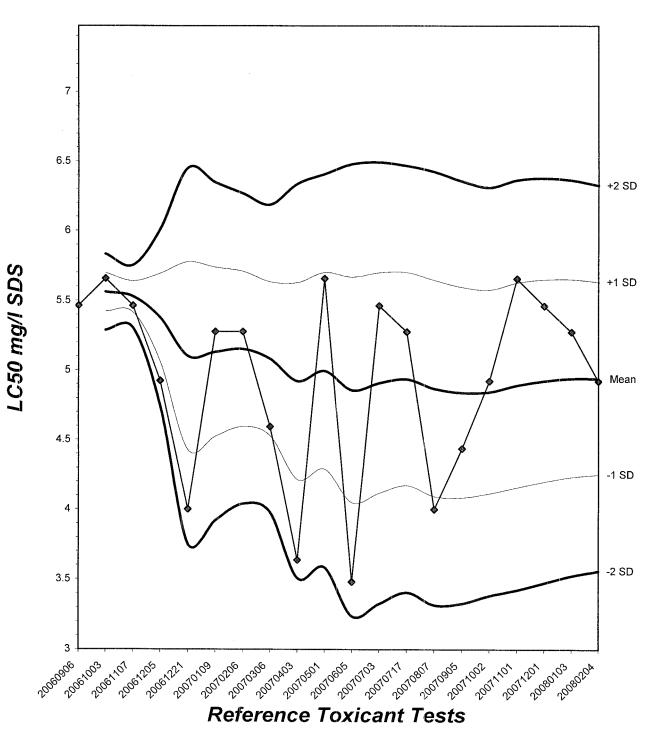

Conc-mg/L	1	<u> </u>	
D-Control	1.0000	1.0000	
1	1.0000	1.0000	
2	1.0000	1.0000	
4	0.8000	0.8000	
8	0.0000	0.0000	

			Tra	ansform:	Arcsin Sc	uare Root	Number	Total	
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Resp	Number
D-Control	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
1	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
2	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
4	0.8000	0.8000	1.1071	1.1071	1.1071	0.000	2	4	20
8	0.0000	0.0000	0.1588	0.1588	0.1588	0.000	2	20	20

Statistic

Auxiliary Tests Normality of the data set cannot be confirmed Equality of variance cannot be confirmed

				Trimmed Spearman-Karber
Trim Level	EC50	95%	CL	·
0.0%	4.9246	4.3503	5.5747	
5.0%	5.0215	4.3576	5.7866	
10.0%	5.1038	4.2923	6.0686	1.0
20.0%	5.1874	4.7084	5.7150	
Auto-0.0%	4.9246	4.3503	5.5747	0.9 -


Critical

Skew

Kurt

Fathead Minnow Acute Laboratory Control Chart

CV% = 14

TEST ORGANISM LOG

FATHEAD MINNOW - LARVAL (Pimephales promelas)

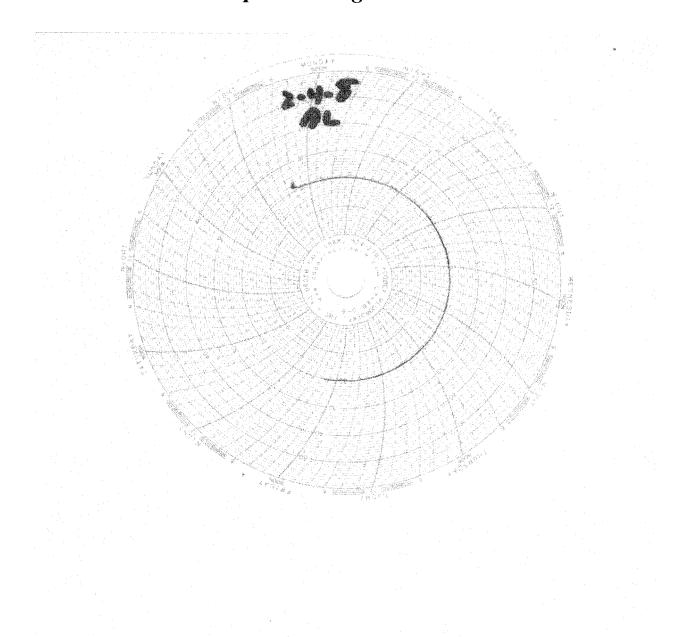
QA/QC BATCH NO.: RT-080204
SOURCE: In-Lab Culture
DATE HATCHED: 01-21-08
APPROXIMATE QUANTITY: 400
GENERAL APPEARANCE:
MORTALITIES 48 HOURS PRIOR TO TO USE IN TESTING: \bigcirc
DATE USED IN LAB: $2/4/08$
AVERAGE FISH WEIGHT: 0.006 gm

TEST LOADING LIMITS: 0.65 gm/liter

200 ml test solution volume = 0.013 gm mean fish weight limit 250 ml test solution volume = 0.016 gm mean fish weight limit

ACCLIMATION WATER QUALITY:

Temp.: <u>19.8</u> ℃	рН: <u>7-9</u>	Ammonia: <u>/O_l</u> mg/l NH ₃ -N
DO: $\underline{\mathcal{T}}, \underline{\mathcal{L}}$ mg/l	Alkalinity: <u>6 </u>	Hardness: <u>96</u> mg/l


READINGS RECORDED BY: ____

MMm DATE: 2-4-8

Laboratory Temperature Chart

QA/QC Batch No: RT-080202 Date Tested: 02/02/08 to 02/06/08 Acceptable Range: 20+/- 1°C

CERIODAPHNIA SURVIVAL AND REPRODUCTION TEST

- Test and Results Summary
- Data Summary and Statistical Analyses
- Raw Test Data: Water Quality & Test Organism Measurements

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0 REFERENCE TOXICANT - NaCl

QA/QC Batch No.: RT-080204

Date Tested: 02/04/08 to 02/11/08

TEST SUMMARY

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*. Age: <24 hrs; all released within 8 hrs. Test vessel size: 30 ml. Number of test organisms per vessel: 1. Temperature: 25 +/- 1°C. Dilution water: Mod. hard reconstituted (MHRW). Reference Toxicant: Sodium chloride (NaCl). Endpoints: Survival and Reproduction. Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 20 ml. Number of replicates: 10. Photoperiod: 16/8 hrs. light/dark cycle. Test duration: 7 days. Statistics: ToxCalc computer program.

Sample Concentration	Percent Surv	vival	Mean Num Young Per	
Control	100%		25.3	
0.25 g/l	100%		26.4	
0.5 g/l	100%		26.5	
1.0 g/l	100%		18.5	*
2.0 g/l	90%		7.2	*
4.0 g/l	0%	*	0	**
* Statistically signif ** Reproduction data from exclud		reater th	an survival NC	

RESULTS SUMMARY

CHRONIC TOXICITY

Survival LC50	2.6 g/l
Reproduction IC25	0.93 g/l

QA/QC TEST ACCEPTABILITY

Parameter	Result
Control survival ≥80%	Pass (100% Survival)
≥15 young per surviving control female	Pass (25.3 young)
≥60% surviving controls had 3 broods	Pass (100% with 3 broods)
PMSD <47% for reproduction	Pass (PMSD = 9.9%)
Stat. sig. diff. conc. relative difference >13%	Pass (Stat. sig. diff. conc. $= 26.9\%$)
Concentration response relationship acceptable	Pass (Response curve normal)

			Ceriod	aphnia Su	vival and	Reprod	uction Tes	t-7 Day S	Survival	
Start Date:	2/4/2008 1	5:00	Test ID:	RT-080204	4c		Sample ID);	REF-Ref Toxicant	
End Date:	2/11/2008	14:00	Lab ID:	CAATL-Ac	uatic Test	ting Labs	Sample Ty	/pe:	NACL-Sodium chloride	
Sample Date:	2/4/2008		Protocol:	FWCH-EP	A-821-R-0	02-013	Test Spec	ies:	CD-Cerioo	laphnia dubia
Comments:										
Conc-gm/L	1	2	3	4	5	6	7	8	9	10
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0.25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0.5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000

0.0000

0.0000

0.0000

0.0000

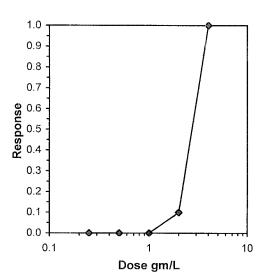
0.0000

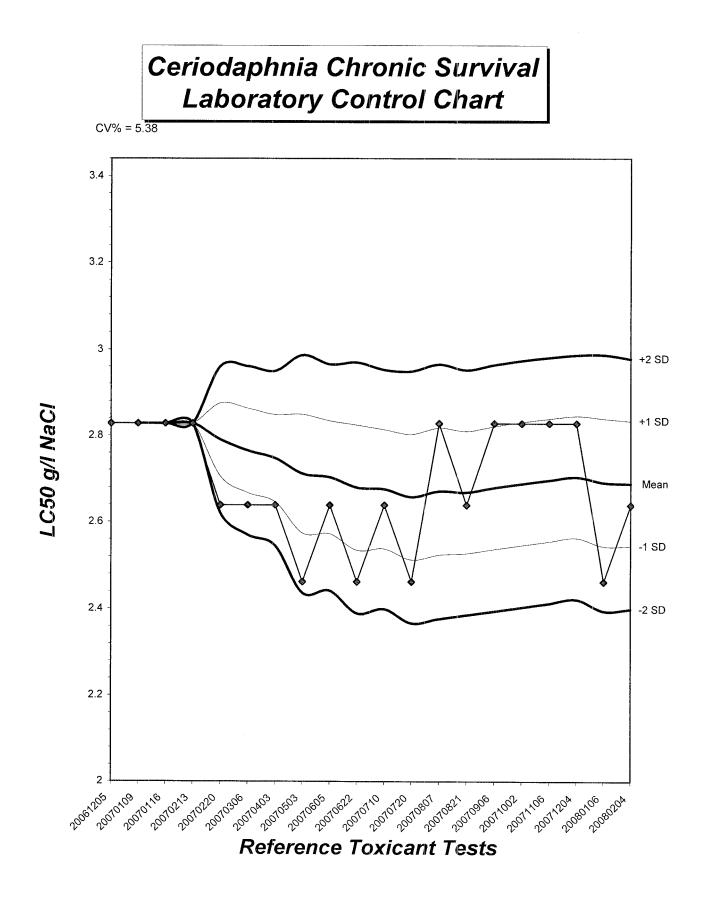
0.0000

				Not			Fisher's	1-Tailed	Number	Total
Conc-gm/L	Mean	N-Mean	Resp	Resp	Total	Ν	Exact P	Critical	Resp	Number
D-Control	1.0000	1.0000	0	10	10	10	· · · · · · · · · · · · · · · · · · ·		0	10
0.25	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
0.5	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
1	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
2	0.9000	0.9000	1	9	10	10	0.5000	0.0500	1	10
4	0.0000	0.0000	10	0	10	10			10	10

Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU
Fisher's Exact Test	2	4	2.82843	
Treatments vs D-Control				
			Trimmed	Spearman-Karber

Trim Level	EC50	95%	CL
0.0%	2.6390	2.3138	3.0099
5.0%	2.6984	2.2899	3.1798
10.0%	2.7216	2.5094	2.9517
20.0%	2.7216	2.5094	2.9517
Auto-0.0%	2.6390	2.3138	3.0099

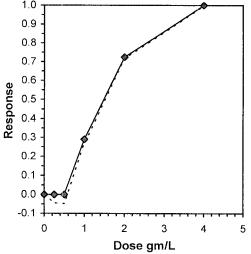

0.0000


0.0000

0.0000

0.0000

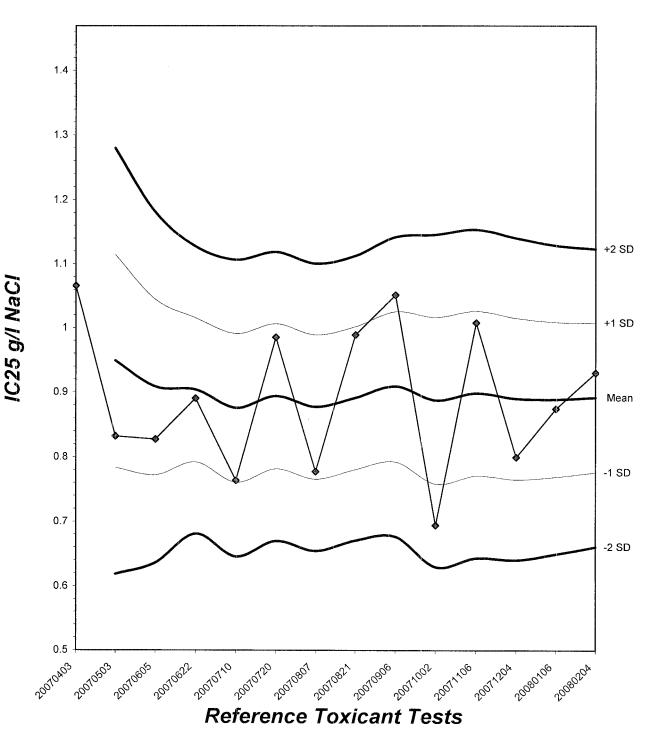
4

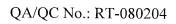

			Cerioda	aphnia Su	rvival and	Reprod	uction Tes	st-Reproc	luction	2/2/0000/P/2/0000/P/2/000/P	
Start Date:	2/4/2008 1	5:00	Test ID:	RT-080204	4c		Sample ID):	REF-Ref 1	loxicant	
End Date:	2/11/2008	14:00	Lab ID:	CAATL-Ad	juatic Tes	ting Labs	Sample Ty	/pe:	NACL-Soc	dium chloride	
Sample Date:	2/4/2008		Protocol:	FWCH-EF	A-821-R-	02-013	Test Spec	ies:	CD-Cerioc	laphnia dubia	
Comments:										-	
Conc-gm/L	1	2	3	4	5	6	7	8	9	10	
D-Control	24.000	22.000	25.000	29.000	25.000	25.000	24.000	26.000	27.000	26.000	
0.25	25.000	26.000	29.000	27.000	26,000	25.000	27.000	27.000	25.000	27.000	

0.20	20.000	20.000	29.000	27.000	20.000	20.000	27.000	27.000	25.000	27.000
0.5	25.000	27.000	26.000	30.000	25.000	27.000	27.000	28.000	26.000	24.000
1	19.000	22.000	24.000	17.000	14.000	18.000	20.000	18.000	16.000	17.000
2	12.000	8.000	4.000	4.000	3.000	2.000	6.000	12.000	11.000	10.000
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

				Transform	n: Untran	sformed	Rank	1-Tailed	Isotonic		
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Mean	N-Mean
D-Control	25.300	1.0000	25.300	22.000	29.000	7.465	10			26.067	1.0000
0.25	26.400	1.0435	26.400	25.000	29.000	4.791	10	126.00	76.00	26.067	1.0000
0.5	26.500	1.0474	26.500	24.000	30.000	6.475	10	124.50	76.00	26.067	1.0000
*1	18.500	0.7312	18.500	14.000	24.000	15.759	10	57.50	76.00	18.500	0.7097
*2	7.200	0.2846	7.200	2.000	12.000	53.911	10	55.00	76.00	7.200	0.2762
4	0.000	0.0000	0.000	0.000	0.000	0.000	10			0.000	0.0000

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribu	ution (p >	0.05)		0.96604	0.947	0.25066	0.00896
Bartlett's Test indicates unequal	variances (p = 9.42E	-03)		13.4148	13.2767		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	0.5	1	0.70711					
Treatments vs D-Control								


				Linea	ar Interpolati		
Point IC05	gm/L	SD	95% CL		Skew		
	0.5861	0.0133	0.5527	0.6099	-0.7096		
IC10	0.6722	0.0221	0.6345	0.7198	0.3536		
IC15	0.7584	0.0319	0.7090	0.8296	0.5420	1.0	
IC20	0.8445	0.0421	0.7795	0.9395	0.5923	0.9 -	
IC25	0.9306	0.0516	0.8512	1.0476	0.5147		
IC40	1.2531	0.0676	1.1276	1.3772	-0.0019	0.8 -	
IC50	1.4838	0.0691	1.3665	1.6234	0.2328	0.7	per l
						u 0.6 -	


Reviewed by:

Ceriodaphnia Chronic Reproduction Laboratory Control Chart

CV% = 13

CERIODAPHNIA DUBIA CHRONIC BIOASSAY Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

Start Date: 02/04/2008

Sample	Der		Number of Young Produced										No.	Analyst
Sample	Day	A	В	C	D	Е	F	G	н	I	J	Live Young	Live Adults	Initials
	1	0	C	0	0	0	C	Ø	or	\mathcal{O}	\mathcal{O}	C	10	2
	2	C	0	C	C	c	C	\mathcal{O}	c	C	\mathcal{O}	\sim	10	2
	3	4	3	3	ej	4	3	3	LJ	3	3	34	10	2
Control	4	0	7	6	0	\mathcal{O}	\mathcal{O}	Õ	\mathcal{O}	\mathcal{O}	0	13	10	A
Control	5	6	12	O	10	6	5	\geq	6	9	2	48	10	k
	6	14	0	\mathcal{O}	15	0	0	0	16	\mathcal{O}	0	45	10	h
	7	(16)	(15)	16	\mathcal{O}	15	17	14	0	15	16	93	112	T
	Total	24	22	25	29	25	25	24	26	27	26	253	1.0	2
	1	0	C	\mathcal{O}	o	\mathcal{O}	0	\mathcal{O}	C	Ο	\mathcal{O}	\mathcal{O}	ic	2
	2	0	\mathcal{O}	C	0	C	\mathcal{C}	∂	C	0	\mathcal{C}	C	10	h
	3	Z	3	Ч	5	N	Z	3	5	3	3	35	10	K
0.25 g/l	4	0	2	8	\mathcal{O}	\mathcal{O}	\bigcirc	0	0	\mathcal{O}	0	15	10	~
0.25 g/l	5	6	Ò	17	ſD	8	6	\geq	\geq	8	>	76	10	K
	6	\mathcal{O}	16	O	12	15	16	17	0	Ô	0	76	10	h
	7	16	Ð	16	T)	10	\mathcal{O}	0	IS	14	17	62	10	h
	Total	25	26	29	27	26	25	27	27	25	27	264	10	1
	1	0	υ	\mathcal{O}	\mathcal{O}	\mathcal{C}	C	\mathcal{O}	\mathcal{O}	\mathcal{O}	\mathcal{O}	0	10	h
	2	0	0	\mathcal{O}	\mathcal{C}	\mathcal{O}	Ò	\mathcal{O}	\mathcal{O}	\mathcal{O}	\mathcal{C}	\mathcal{O}	10	h
	3	3	Ц	3	5	3	Ч	4	۶	3	3	37	10	n
0.5 g/l	4	0	8	\mathcal{O}	0	\mathcal{O}	0	0	\mathcal{O}	\mathcal{O}^{*}	\mathcal{O}	8	10	2
0.5 g/l	5	6	15	2	8	\sum	6	2	8	8	>	79	10	h
	6	16	0	0	17	0	Õ	0	15	0	0	12748	IV	T
	7	(3)	\widehat{D}	16	(12)	15	17	16	(19)	15	14	93	10	h
	Total	25	27	26	30	25	27	27	28	26	24	265	10	

CERIODAPHNIA DUBIA CHRONIC BIOASSAY Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-080204

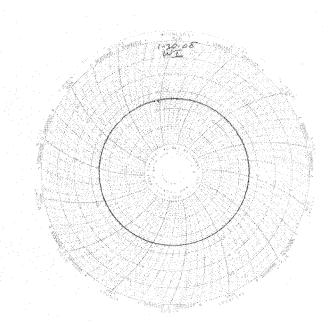
Start Date: 02/04/2008

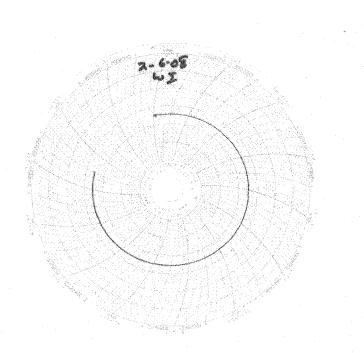
				Nu	ımbe	r of Y	oung l	Produ	ced			Total	No.	Analyst
Sample	Day	Α	В	С	D	E	F	G	н	Ι	J	Live Young	Live Adults	Initials
	1	0	\mathcal{O}	\mathcal{O}	0	Ó	0	C⁄	\sim	\mathcal{O}	\mathcal{O}	0	10	M
	2	0	0	\mathcal{O}	0	0	C	Ò	C	0	\mathcal{O}	C	10	R
	3	2	M	2	2	2	Z	З	M	3	3	ZS	10	2
1.0 ~/1	4	\mathcal{O}	\mathcal{O}	6	\circ	4	5	0	\mathcal{C}	\mathcal{O}	0	15	10	2
1.0 g/l	5	Ś	6	16	5	0	0	4	5	Ц	5	50	10	In
	6	12	13	\mathcal{O}	10	0	Λ	13	10	0	\mathcal{O}	69	10	1
	7	B	B	(10)	G	3	0	0	0	9	9	26	10	
	Total	19	22	24	17	14	18	20	18	16	17	185	10	2
	1	0	0	0	C	\mathcal{O}	\mathcal{O}	\mathcal{O}	c	C	C	C	10	2
	2	0	0	0	0	0	\mathcal{O}	\dot{C}	\mathcal{C}	c	C	\mathcal{C}	10	2
	3	0	2	2	\mathcal{O}	0	0	2	3	3	Ζ	14	10	h
2.0 ~/1	4	3	0	0	2	3	2	0	Ċ.	C	${}^{\circ}$	10	10	2
2.0 g/l	5	0	3	2	C	C	0	2	Ц	3	Ч	18	10	I
	6	5	3	\mathcal{O}	0	X	\mathcal{O}	\mathcal{O}	5	\mathcal{O}	0	13	9	V
	7	Ц	Ð	\mathcal{O}	2	مسسسم	0	2	\bigcirc	5	Ч	17	9	N
	Total	12	8	4	4	3	2	6	IZ	1 }	10	72	9	
	1	\times	X	X	$\left \right>$	\times	$\left \times \right $	\times	\times	\times	\times	0	$\dot{\mathcal{O}}$	A
	2	-	CONTRACTOR OF			ganistion	annana.		gastrain.	gowne.	gamme.cop	CARBONNA.	-	
	3	مريونيون	معيين	C.C.C.L.C.C.		\$10mmun	денистин	~	Guinter-	ggibbautipage	een aangeg	~	(PCCD-Shingloog)	
4.0 ~/1	4		Markey	Toritoinen,	- ₁₉₉₇ , 1997		owner		01121.com	aumung	48111635)	(forthermosen-
4.0 g/l	5	-	Stavgener,	-automore.	-		datalanan.	ومعووري	at become,	ALLEANNING	ŝ	8 ~~	grani-ingrani-in	girthdology
	6	September 1999	tomtoon	e ware	`	Ø Synamore	rinilliprose,	gaareen.	ante communes	2000)agon,	,	and the second second	provide landsome	
	7		(Guildingerum				6-13-100 v.		1			Say geldwithing.	Martine Agentation and	Gardinastation.
	Total		0	\bigcirc	\bigcirc	0	0	0	Ø	\circ	0	\bigcirc	\bigcirc	$\left \right\rangle$
	n brood not us sed if <60% c						les hav	e proc	luced t	heir tl	nird bi	rood.		

CERIODAPHNIA DUBIA CHRONIC BIOASSAY Reference Toxicant - NaCl Water Chemistries Raw Data Sheet

QA/QC No.: RT-080204

Start Date: 02/04/2008


		DA	AY 1	DA	AY 2	DA	AY 3	DA	AY 4	D	4Y 5	DA	4Y 6	D	AY 7
		Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
Analyst I	nitials:	K	Br	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Rom	R	h	h	hm	An	h	Rm	2	n	In
Time of R	eadings:	1400	1600	1600	1600	1600	1600	1600	1520	1500	1400	1900	13È	137C	1400
	DO	27	8.3	7.8	8.4	7.3	8.2	8.3	8.0	8.1	8.0	7.8	80	27	8-1
Control	pH	24	8.0	7.5	7.8	7.7	2.7	2.6	7.7	2.5	7.9	7.5	7.8	7.5	7.9
	Temp	244	24.5	24.9	24.4	25,2	24.7	25.6	24.4	25.2	25.0	25.3	24.6	250	243
	DO	7.7	8.3	7.9	8.4	7.3	8.3	8.3	8.0	8.1	8.0	2.8	80	7.8	8.3
0.25 g/l	pН	7.5	8.0	7.6	2.8	7.7	2.8	7.10	2.7	2.5	7.9	7.5	2.4	7.5	76
	Temp	245	24.5	24.9	24.3	25.3	24.7	25.6	24.4	25.2		25.4	24.7	20	242
	DO	72	8.4	7.9	8.3	1.3	8.3	8.3	8.1	8.1	8.0	7.8	74	2.8	8.4
0.5 g/l	pН	7-6	8.0	2.1	2.9	7.7	2.8	2.7	2.7	2.5	8.0	7.5	7.4	2.6	2.9
	Temp	246	24.5	24.8	24.3	25.3	24.7	25.7	24.5	25.3	25.0	25.4	246	250	24.5
	DO	7-8	8.4	29	8.5	2.3	8.2	8.3	8.1	8.1	8.1	7.8	80	29	8.4
1.0 g/l	pH	70	8.1	27	7.9	7.7	2.8	2.7	7.7	2.5	8.0	7.5	74	7-6	80
	Temp	24.6	24.5	24.7	24.3	25.4	24.8	25.7	245	25.3	25.1	25.5	24,8	251	24)
	DO	7-8	8.4	7.9	8.2	2.3	8.2	8.3	8.2	8.0	8.1	7.8	80	28	8.4
2.0 g/l	pН	7.7	8.1	2.7	7.9	7.7	2.8	7.7	2.7	7.5	8.0	7.5	80	7.5	7.5
	Temp	24.5	24.5	24.6	24.4	<u>25.6</u>	24.8	<u>25.5</u>	24.5	25.4	<u>25-1</u>	25.6	24.7	25.1	24)
-	DO	79	8.3	4.0000000		Чанфр _{ин} ,	agggyran a dwr e o	200000000	Lange operators			ն կա րդինի է։ ՝		(#80man	~
4.0 g/l	pН	7.7	8.1	1400 mar.	angerøsterte i	chosesur-	nggoigeathinin n _{a -}				interference.	Middenaa .	<u> </u>	Sangainaga	
		250		kan ^{ar.}	Sageory		3 COMPANY SHOW	Marajara .	and the second second	propagation.	Paratra and	RAUTUCE	Volge-	-anatogenation	
	Dis	solved	Oxygei	1 (DO) :	reading	s are in		D ₂ ; Temp	erature	(Temp)	reading	gs are in	°C.		
A	dditional F	Paramete	ers				Contr	The second se				High Co	ncentrati	on T	
	Conductiv	vity (uS)			Day 1		Day 3		Day 5		Day 1		Day 3	D	ay 5
	Alkalinity (n				30		29	1	285		120	erate.	370	3210	
	Hardness (m				98		<u>64</u> 91		<u>104</u> 95		<u> </u>		<u>~5</u> 78		5
						Sour	ce of N					7	0	9	
Repli	cate:		A	В	С	T	D	E	F		, T	Н	I	<u> </u>	J
Brood	d ID:	1	A	ID	IC	- 1	E	1 F	IH			LE	26	2	57



Laboratory Temperature Chart

QA/QC Batch No: RT-080204 Date Tested: 02/04/08 to 02/11/08 Acceptable Range: 25+/- 1°C

TRUESDAIL LABORATORIES, INC.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

February 19, 2008

Client:	TestAmerica - Irvine
	17461 Derian Avenue, Suite 100
	Irvine, CA 92614
Attention:	Joseph Doak
Project Name:	IRB0156
Project Number:	IRB0156

Established 1931

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Date Received:	2/4/08
Truesdail Project:	973190

Samples Cross-reference

<u>Truesdail ID</u>	<u>Client ID</u>	<u>Matrix</u>	Date Sampled	Time Sampled	Analysis Requested
973190-1	IRB0156-01	Water	02/03/08	1445	Hydrazines by EPA 8315M

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

<u>K.R.P. Iyer</u>

Quality Control/Quality Assurance Officer

Xuan Huong Dang Project Manager

TRUESDAIL LABORATORIES, INC.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

www.truesdail.com

February 19, 2008

Client:	TestAmerica - Irvine
	17461 Derian Avenue, Suite 100
	Irvine, CA 92614
Attention:	Joseph Doak
Project Name:	IRB0156
Project Number:	IRB0156

Date Received: 02/04/08 Truesdail Project: 973190

Case Narrative

Sample Receipt The sample was received at 4 °C and in good condition. It was kept in a refrigerator until analysis. Thereafter, it is being kept in ambient storage for an additional 2 months before disposal. Any anomalies would be noted in the "Comments" section. Analysis The analysis was performed as requested on the chain-of-custody. Quality Control The analytical results for each batch of samples performed include a minimum of one set of laboratory control sample/laboratory control sample duplicate (LCS/LCSD), one matrix spike (MS) and a reagent blank (Method blank). Any exceptions or problems would be noted in the "Comments" section. Matrix spike and matrix spike duplicate were done on a sample from a different Comments TestAmerica Project, 973194-1 (IRB0147-01), as the method requirement per batch of 20 samples. All quality assurance requirements set forth by the method specification and all quality control recoveries were within the laboratory acceptance limits. No anomalies or nonconformance events occurred during the course of analysis. The results are quantitated down to the MDL level.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

<u>K. R. P. 9-46</u> K.R.P. Iyer

Quality Control/Quality Assurance Officer

Xuan Huong Dang Project Manager 003

NPDES - 4143

Note: Results based on detector #1 (UV=365ʌm) data.	POL Sample Reporting Limits	MDL	973190	707223-MB		Cilent: Attention: Project Name: P.O. Number: Method Number: Investigation:	TRUESDAIL LABOR Excellence in Independent Testing
defector #1 (UV=36	fs		IRB0156-01	Method Blank	Descrint	TestAmerica Analytical-Irvine 17461 Dearian Avenue, Suite 100 Irvine, CA 92614-5817 Joseph Doak Water / 1 Sample IRB0156 IRB0156 8315 (Modified) Hydrazines	TRUESDAIL LABORATORIES, INC. EXCELLENCE IN INDEPENDENT TESTING
ົກ m) data.			100		Sample Amount (mL)	alytical-Irvine anue, Suite 100 5817	RIES, ÎNC.
		-		- 4		Analy	
	5.0 5.0	0.56	S		Monomethyl	REPORT	
Analy/Ical Service	5.0	0.32	5	Hydrazine	u-Dimethyl	· .	
Analytical Services, Truesdail Laboratorias, In	1.00	0.15	5		Hydrazine	Laboratory No: Report Date: Sampling Date: Receiving Date: Analysis Date: Units: Reported By:	Estabilis 14201 FRANKLIN AVENUE - TU [714] 730-6239 · FAX (714)
5		Note	None	Codes	Qualifier	973190 February 19, 2008 February 3, 2008 February 4, 2008 February 5, 2008 February 6, 2008 Jug/L JS	Established 1931 14201 FRANKLIN AVENUE - TUSTIN, CALIFORNUA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdeil.com
				-	-		004 NPDES - 4144

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Note. Results based on delector #1 (UV=385am) data.	u-Dirnethyl Hydrazine Hydrazine	Parameter Monomethyl Hydrazine		Hydrazine	u-Dimethyl Hydrazine	Monomethy! Hydrazine	r el alticlej		Run Batch No.:	inv es tigation:	Nethod Number:	Sample ID: P.O. Number:	Sample:	Cilent Contact:		Client:	TRUESDAIL LABORATORIES, INC. Excellence in Independent Testing
(UV=S854m) dati		S0.0 47.7		5.0	25,0	25.0	Value (ug/L)	ICV	Extraction:	Hydrazines	8315 (Nodified)	IRB0156	Water / 1 Sample	Joseph Doak	ivine, CA		IL LAB
, and a second s		Kecovered Concentration S LCSD 7 44.5	LCS/LCSD	5.21	28.5	28.6	Value (ug/L)		Extraction: 4269; Analysis: 597	6	lified)		Sample	oak	lvvine, CA 92814-5817	TestAmerica Analytical-Irvine 1746: Darian Avenue. Sulla 100	
			a a	104	114		Percent Recovery	Qua	: 597							irvine Invine	ties, Ind
	87.2 80,4	Prem LCSD	uality Con	85-115	85-115		r Limits	lity Contro								:	D D
		LUS/ LCSD Flag RPD 6 00% PASS	trol/Qualit			PASS	Flag	ol/Quality									
		Control Limits %D %-Rec.	Quality Control/Quality Assurance Spikes Report	Hydrazine	u-Dimethyl Hydrazine	Monomethyl Hydrazine	Parameter	Quality Control/Quality Assurance Calibration Report								·	
	38.7 40.2 7.61 7.87	Recovered Concentration NS MSD Sa NS 7 76.8 (nikes Repor MS/MSD		drazine		_	Ibration Rep									
Analytic	0.00	ation Sample		10.0	50.0	50.0	Value (ug/L)	Pr Pr								1421 (71)	
Xuan Dang, F Xuan Dang, F		Percent Recovery (%) MS MSD		9.25	49.0	4 8.8	Measured Value (up/L)		Rap	Алађ	Evimati	Sampl	Rep	Project Lab. No.: Spiked Sample ID:	ę	01 FRANKLIN AVI 4) 730-6239 - F	
Xuan Dang, Project Manager Analytical Services, Truesdail Laboratories, Inc.	3.38%	RPD MS/		92.5	88	97.6	Percent Recovery			Analysis Date:						14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 - FAX (714) 730-6462 - www.trussdail.com	Established 1931
er er stories, Inc.	PASS 20 PASS 20	Flag Cont		85-115	A5-115	85-115	Control Limits		เ	February 6, 2008	February 4, 2008	February 3, 2008	February 19, 2008	973194	707223	CALIFORNIA 9; 6462 www.true	31
11		Accuracy Control Limits %D % Rec.		PASS	PASS	PASS	Flag			8) NB	8008			1780-7008 Indiai/.com	5

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

NPDES - 4145

Climit Treading to the Analytical Analytical Analytical Analytical Treading to the Addition Product Market in CA 48814-4817 Laboratory Nat. 57309 Report Data: 5700 Sampling Data: 57000 Sampling Data: 570000 Sampling Data: 570000 Sampling Data: 570000 Sampling Data: 570000 Sampling Data: 570000 Sampling Data: 570000 Sampling Data: 5700000 Sampling Data: 57000000000 Sampling Data: 57000000000000000000000000000000000000
nalyles a ach bat
Laboratory No: 973190 Report Date: February 19, 2008 Receiving Date: February 3, 2008 Analysis Date: February 4, 2008 Analysis Date: February 6, 2008 Reported By: JS JS analyles are not detected from the extraction process. reach batch of 20 samples (run in duplicate). h of 20 samples (run in duplicate). s to measure precision.

17 Per

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdall Laboratories.

•

Section 2.0

SAMPLE CHECK-IN RECORDS

Chain of Custody

Sample Integrity and Analysis Discrepancy Form

Internal Chain of Custody

		S	UBCONTRACT ORD	ER
			TestAmerica Irvine IRB0156	973190
SENDING LABORATOR	<u>Y:</u>		RECEIVING	LABORATORY:
TestAmerica Irvine 17461 Derian Avenue. Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297 Project Manager: Josep			14201 Fran Tustin, CA Phone :(71 Fax: (714)	4) 730-6239 730-6462 ation: California
Analysis	Units	Due	Expires	Comments
Sample ID: IRB0156-01	Water		Sampled: 02/03	708 14:45
Hydrazine-OUT	%	02/13/08	02/06/08 14:45	Sub Truesdail for
Level 4 Data Package	N/A	02/13/08	03/02/08 14:45	Monomethylhydrazine, J flags
Containers Supplied: 1 L Amber (AR)	1 L Amber (AS)		

Dele/Time 03/04/05/0724 07/0://15 0700 Date/Time 2/4/08 7:30 and Date/Time Page 1 of 1 TH 2 U Released By (07 Released By Date/Time Received By

.

February 25, 2008

Vista Project I.D.: 30240

Mr. Joseph Doak Test America-Irvine, CA 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Mr. Doak,

Enclosed are the results for the one aqueous sample received at Vista Analytical Laboratory on February 05, 2008 under your Project Name "IRB0156". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Vista's current certifications, and copies of the raw data (if requested).

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Marine More_

Martha M. Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.

Project 30240

Section I: Sample Inventory Report Date Received: 2/5/2008

<u>Vista Lab. ID</u>

Client Sample ID

30240-001

IRB0156-01

SECTION II

Method Blan	ık									EPA Method 1613
Matrix:	Aqueous		QC Batch No.:	99	953	Lab	Sample:	0-MB001		
Sample Size:	1.00 L		Date Extracted	: 15	5-Feb-08	Date	Analyzed DB-5:	19-Feb-08	Date An	alyzed DB-225: NA
Analyte	Conc. (ug/L)	DL ^a	EMPC ^b	Qualifiers		Labeled Standa	rd	%R	LCL-UCL ^d Qualifiers
2,3,7,8-TCDD		ND	0.000000705			IS	13C-2,3,7,8-TCI	DD	82.9	25 - 164
1,2,3,7,8-PeCE	DD	ND	0.000000681				13C-1,2,3,7,8-Pe	eCDD	75.4	25 - 181
1,2,3,4,7,8-Hx	CDD	ND	0.00000165				13C-1,2,3,4,7,8-	HxCDD	81.7	32 - 141
1,2,3,6,7,8-Hx		ND	0.00000174				13C-1,2,3,6,7,8-	HxCDD	83.0	28 - 130
1,2,3,7,8,9-Hx		ND	0.00000162				13C-1,2,3,4,6,7,5	8-HpCDD	85.6	23 - 140
1,2,3,4,6,7,8-H		ND	0.00000511				13C-OCDD	-	73.4	17 - 157
OCDD	-	0.00000899			J		13C-2,3,7,8-TCI	DF	88.8	24 - 169
2,3,7,8-TCDF		ND	0.000000647				13C-1,2,3,7,8-Pe	eCDF	74.4	24 - 185
1,2,3,7,8-PeCE	OF	ND	0.000000731				13C-2,3,4,7,8-Pe	eCDF	77.1	21 - 178
2,3,4,7,8-PeCE		ND	0.000000752				13C-1,2,3,4,7,8-	HxCDF	75.8	26 - 152
1,2,3,4,7,8-Hx		ND	0.000000943				13C-1,2,3,6,7,8-	HxCDF	77.6	26 - 123
1,2,3,6,7,8-Hx	CDF	ND	0.000000974				13C-2,3,4,6,7,8-	HxCDF	78.0	28 - 136
2,3,4,6,7,8-Hx		ND	0.00000105				13C-1,2,3,7,8,9-	HxCDF	81.9	29 - 147
1,2,3,7,8,9-Hx	CDF	ND	0.00000136				13C-1,2,3,4,6,7,	8-HpCDF	75.7	28 - 143
1,2,3,4,6,7,8-H		ND	0.00000333				13C-1,2,3,4,7,8,9	9-HpCDF	82.1	26 - 138
1,2,3,4,7,8,9-H	-	ND	0.00000202				13C-OCDF		76.2	17 - 157
OCDF	-	ND	0.00000591			CRS	37Cl-2,3,7,8-TC	DD	85.1	35 - 197
Totals						Foot	notes			
Total TCDD		ND	0.000000705			a. San	ple specific estimated	detection limit.		
Total PeCDD		ND	0.00000122			b. Est	mated maximum possi	ble concentration.		
Total HxCDD		ND	0.00000167			c. Me	hod detection limit.			
Total HpCDD		ND	0.00000511			d. Lov	ver control limit - upper	r control limit.		
Total TCDF		ND	0.000000647							
Total PeCDF		ND	0.000000742							
Total HxCDF		ND	0.00000107							
Total HpCDF		ND	0.00000335							

Analyst: MAS

OPR Results					EP	A Method 1	.613
Matrix: Aqueous Sample Size: 1.00 L		QC Batch No.: Date Extracted:	9953 15-Feb-08	Lab Sample:0-OPR001Date Analyzed DB-5:18-Feb-08	Date Analy	zed DB-225:	NA
Analyte	Spike Conc.	Conc. (ng/mL)	OPR Limits	Labeled Standard	%R	LCL-UCL	Qualifier
2,3,7,8-TCDD	10.0	9.20	6.7 - 15.8	<u>IS</u> 13C-2,3,7,8-TCDD	85.8	25 - 164	
1,2,3,7,8-PeCDD	50.0	46.7	35 - 71	13C-1,2,3,7,8-PeCDD	77.1	25 - 181	
1,2,3,4,7,8-HxCDD	50.0	47.0	35 - 82	13C-1,2,3,4,7,8-HxCDD	82.8	32 - 141	
1,2,3,6,7,8-HxCDD	50.0	47.2	38 - 67	13C-1,2,3,6,7,8-HxCDD	84.0	28 - 130	
1,2,3,7,8,9-HxCDD	50.0	47.7	32 - 81	13C-1,2,3,4,6,7,8-HpCDD	88.0	23 - 140	
1,2,3,4,6,7,8-HpCDD	50.0	46.1	35 - 70	13C-OCDD	78.1	17 - 157	
OCDD	100	94.4	78 - 144	13C-2,3,7,8-TCDF	90.2	24 - 169	
2,3,7,8-TCDF	10.0	8.71	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	76.3	24 - 185	
1,2,3,7,8-PeCDF	50.0	45.3	40 - 67	13C-2,3,4,7,8-PeCDF	79.4	21 - 178	
2,3,4,7,8-PeCDF	50.0	45.1	34 - 80	13C-1,2,3,4,7,8-HxCDF	78.9	26 - 152	
1,2,3,4,7,8-HxCDF	50.0	46.8	36 - 67	13C-1,2,3,6,7,8-HxCDF	80.4	26 - 123	
1,2,3,6,7,8-HxCDF	50.0	46.8	42 - 65	13C-2,3,4,6,7,8-HxCDF	79.1	28 - 136	
2,3,4,6,7,8-HxCDF	50.0	47.3	35 - 78	13C-1,2,3,7,8,9-HxCDF	84.1	29 - 147	
1,2,3,7,8,9-HxCDF	50.0	46.1	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	78.2	28 - 143	
1,2,3,4,6,7,8-HpCDF	50.0	46.8	41 - 61	13C-1,2,3,4,7,8,9-HpCDF	85.9	26 - 138	
1,2,3,4,7,8,9-HpCDF	50.0	46.7	39 - 69	13C-OCDF	82.2	17 - 157	
OCDF	100	93.5	63 - 170	<u>CRS</u> 37Cl-2,3,7,8-TCDD	88.4	35 - 197	

Analyst: MAS

Approved By: William J. Luksemburg 22-Feb-2008 15:52

Sample ID: IRB0	156-01								EPA N	Aethod 1613
Client Data Name: Test A Project: IRB0 Date Collected: 3-Fet Time Collected: 1445			Sample Data Matrix: Sample Size:	Aqueous 0.987 L	Lab QC	oratory Data Sample: Batch No.: Analyzed DB-5:	30240-001 9953 19-Feb-08	Date Re Date Ex Date An		5-Feb-08 15-Feb-08 NA
Analyte (Conc. (ug/L)	DL ^a	EMPC ^b	Qualifiers		Labeled Standa	rd	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ND	0.000000	631		<u>IS</u>	13C-2,3,7,8-TCD	D	81.2	25 - 164	
1,2,3,7,8-PeCDD	ND	0.000001	14			13C-1,2,3,7,8-Pe	CDD	70.3	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.000001	57			13C-1,2,3,4,7,8-H	IxCDD	75.7	32 - 141	
1,2,3,6,7,8-HxCDD	0.00000177			J		13C-1,2,3,6,7,8-H	IxCDD	75.2	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.000001	92			13C-1,2,3,4,6,7,8	-HpCDD	75.7	23 - 140	
1,2,3,4,6,7,8-HpCDD	0.0000309					13C-OCDD		68.7	17 - 157	
OCDD	0.000323			В		13C-2,3,7,8-TCD	F	85.2	24 - 169	
2,3,7,8-TCDF	ND	0.000000	569			13C-1,2,3,7,8-Pe	CDF	67.9	24 - 185	
1,2,3,7,8-PeCDF	ND	0.000000	779			13C-2,3,4,7,8-Pe	CDF	70.0	21 - 178	
2,3,4,7,8-PeCDF	ND	0.000000	771			13C-1,2,3,4,7,8-H	IxCDF	69.8	26 - 152	
1,2,3,4,7,8-HxCDF	ND	0.000000	876			13C-1,2,3,6,7,8-H	IxCDF	71.5	26 - 123	
1,2,3,6,7,8-HxCDF	ND	0.000000	910			13C-2,3,4,6,7,8-H	IxCDF	70.9	28 - 136	
2,3,4,6,7,8-HxCDF	ND	0.000000	954			13C-1,2,3,7,8,9-H	IxCDF	71.7	29 - 147	
1,2,3,7,8,9-HxCDF	ND	0.000001	33			13C-1,2,3,4,6,7,8	-HpCDF	68.6	28 - 143	
1,2,3,4,6,7,8-HpCDF	0.00000629			J		13C-1,2,3,4,7,8,9	-HpCDF	71.0	26 - 138	
1,2,3,4,7,8,9-HpCDF	ND	0.000001	12			13C-OCDF		69.0	17 - 157	
OCDF	0.0000156			J	CRS	37Cl-2,3,7,8-TCL	DD	88.7	35 - 197	
Totals					Foo	otnotes				
Total TCDD	ND	0.000001	20		a. Sa	mple specific estimated	detection limit.			
Total PeCDD	ND	0.000001	77		b. Es	stimated maximum possi	ble concentration.			
Total HxCDD	0.00000881				c. M	ethod detection limit.				
Total HpCDD	0.0000631				d. L	ower control limit - uppe	er control limit.			
Total TCDF	0.00000189									
Total PeCDF	0.00000643									
Total HxCDF	0.00000514									
Total HpCDF	0.0000148									

Analyst: MAS

APPENDIX

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank.
D	Dilution
Ε	The amount detected is above the High Calibration Limit.
Р	The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.
Н	The signal-to-noise ratio is greater than 10:1.
Ι	Chemical Interference
J	The amount detected is below the Low Calibration Limit.
*	See Cover Letter
Conc.	Concentration
DL	Sample-specific estimated detection limit
MDL	The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.
EMPC	Estimated Maximum Possible Concentration
NA	Not applicable
RL	Reporting Limit – concentrations that correspond to low calibration point
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

SUBCONTRACT ORDER

TestAmerica Irvine

IRB0156 30	240
RECEIVING LABORATORY:	1,197
Vista Analytical Laboratory- SUB	1.4°
1104 Windfield Way	
El Dorado Hills, CA 95762	
Phone :(916) 673-1520	
Fax: (916) 673-0106	۰. ۲
Project Location: California	
Receipt Temperature:°C	Ice: Y / N
	RECEIVING LABORATORY: Vista Analytical Laboratory- SUB 1104 Windfield Way El Dorado Hills, CA 95762 Phone :(916) 673-1520 Fax: (916) 673-0106 Project Location: California

Analysis	Units	Due	Expires	Comments
Sample ID: IRB0156-01	Water		Sampled: 02/03/08 14:45	
1613-Dioxin-HR-Alta	ug/l	02/13/08	02/10/08 14:45	J flags,17 congeners,no TEQ,ug/L,sub=Vista
Level 4 + EDD-OUT	N/A	02/13/08	03/02/08 14:45	**LEVEL IV QC, ACCESS 7 EDD**
Containers Supplied: 1 L Amber (F)	1 L Amber (G)			

and Released By

2/4/98 17:00 Date/Time

Date/Time

88 17:00 Date/Time Receive 0929 ŵ Date/Time Received

Page 1 of 1 NPDES - 4158 Page 10 of 317

Project 30240

Released By

SAMPLE LOG-IN CHECKLIST

	Y.	Vista Analytical Laboratory
T_	Stan	dard

Vista Project #:	3024	0		<u> </u>	T) ~TA	Stan	dard
Samples Arrival:	Date/Time $2/5/08$	0929	Initials:	1B			: WA ::_\	,
Logged in:	Date/Time 2/6/08	1227	- Initials:	B	Loc		WR	~
Delivered By:	FedEx	UPS	Cal	DHL	-	Ha Deliv		Other
Preservation:	Ice		Blue Ice	Dr	y Ice			None
Temp°C /.4'	<u> </u>	Time:	0953		The	rmor	neter II	D: IR-1

.

				Y	ΈŞ	NO	NA
Adequate Sample Volume Recei		V					
Holding Time Acceptable?					V		
Shipping Container(s) Intact?			· ·			1	
Shipping Custody Seals Intact?			/		V		
Shipping Documentation Presen	t?		· · · · ·		La contraction of the second s		
Airbill Trk #	1926 4	2578	964	V			
Sample Container Intact?							
Sample Custody Seals Intact?							V
Chain of Custody / Sample Documentation Present?							• • • •
COC Anomaly/Sample Acceptance Form completed?						V	
If Chlorinated or Drinking Water	Samples, Ac	ceptable Pres	ervation?				V
Na ₂ S ₂ O ₃ Preservation Document	ole iner		None	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$			
Shipping Container	Vista	Client	Retain	Retu	rn)	Disp	ose
Comments:			<u> </u>	Contraction of the second seco			

.

Sample Login 3/2007 rmp PDES - 4159 Page 11 of 317

SUBCONTRACT ORDER

TestAmerica Irvine IRB0156 8020450

SENDING LABORATORY:

TestAmerica Irvine 17461 Derian Avenue. Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297 Project Manager: Joseph Doak

RECEIVING LABORATORY:

Weck Laboratories, Inc 14859 E. Clark Avenue City of Industry, CA 91745 Phone :(626) 336-2139 Fax: (626) 336-2634 Project Location: California Receipt Temperature: _____⁰C Ice: Y / N

Analysis	Units	Due	Expires	Comments
Sample ID: IRB0156-01	Water		Sampled: 02/03/08	14:45
Level 4 Data Package - We	c N/A	02/13/08	03/02/08 14:45	Include Element transfer EDD
Mercury - 245.1, Diss -OUT	mg/l	02/13/08	03/02/08 14:45	Sub to Weck, Boeing, J flags, rpt in ug/L
Mercury - 245.1-OUT	mg/l	02/13/08	03/02/08 14:45	Sub to Weck, Boeing, J flags, rpt in ug/L
Containers Supplied:				
	125 mL Po (AX)	ly w/HNO3		
Diss- Mercury		ady Fit	erved and pres	

11	\square		7
Hun Ann	Autos 1000	BAleer	~ 2/4/08/000
Released By	Date/Time	Received By	Date/Time,
Bleech	2/4/08 1345	An.	02/04/08/3:45
Released By ^V	Date/Time	Received By	Date/Time NPDES P160 1 of 1

Weck Laboratories, Inc.

Analytical Laboratory Services - Since 1964

14859 E. Clark Ave., Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634 info@weeklabs.com www.weeklabs.com

CERTIFICATE OF ANALYSIS

02/11/08 16:20 TestAmerica, Inc. - Irvine **Client: Report Date:** 02/04/08 13:45 17461 Derian Ave, Suite 100 **Received Date:** Irvine, CA 92614 **Turn Around:** Normal Attention: Joseph Doak 8020450 Work Order #: Phone: (949) 261-1022 Fax: (949) 260-3297 **Client Project:** IRB0156

NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

Dear Joseph Doak :

Enclosed are the results of analyses for samples received 02/04/08 13:45 with the Chain of Custody document. The samples were received in good condition. The samples were received at 1.9 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Reviewed by: in

Kim G Tu

Project Manager

Week Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Date Received: 02/04/08 13:45 Date Reported: 02/11/08 16:20

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Sampled by:	Sample Comments	Laboratory	Matrix	Date Sampled
IRB0156-01	Client		8020450-01	Water	02/03/08 14:45

Report ID: 8020450

Project ID: IRB0156

Date Received: 02/04/08 13:45 Date Reported: 02/11/08 16:20

Report ID: 8020450

Project ID: IRB0156

Date Sampled: 02/03/08 14:45

Metals by EPA 200 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Dissolved Mercury, Total	ND ND	0.050 0.050	ug/l ug/l	0.20 0.20	1	EPA 245.1 EPA 245.1	W8B0147 W8B0147	02/05/08 02/05/08	02/07/08 jlp 02/07/08 jlp	

Report ID: 8020450 Project ID: IRB0156 Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

 Date Received:
 02/04/08 13:45

 Date Reported:
 02/11/08 16:20

QUALITY CONTROL SECTION

Date Received: 02/04/08 13:45 Date Reported: 02/11/08 16:20

Metals by EPA 200 Series Methods - Quality Control

Report ID: 8020450

Project ID: IRB0156

							%REC			
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch W8B0147 - EPA 245.1										
Blank (W8B0147-BLK1)				Analyzed:	02/07/08					
Mercury, Dissolved	ND	0.20	ug/l							
Mercury, Total	ND	0.20	ug/l							
LCS (W8B0147-BS1)				Analyzed:	02/07/08					
Mercury, Dissolved	1.04	0.20	ug/l	1.00		104	85-115			
Mercury, Total	1.04	0.20	ug/l	1.00		104	85-115			
Matrix Spike (W8B0147-MS1)	So	urce: 8020444	-01	Analyzed:	02/07/08					
Mercury, Dissolved	1.04	0.20	ug/l	1.00	ND	104	70-130			
Mercury, Total	1.04	0.20	ug/l	1.00	ND	104	70-130			
Matrix Spike (W8B0147-MS2)	So	urce: 8020445	-01	Analyzed:	02/07/08					
Mercury, Dissolved	1.04	0.20	ug/l	1.00	ND	104	70-130			
Mercury, Total	1.04	0.20	ug/l	1.00	ND	104	70-130			
Matrix Spike Dup (W8B0147-MSD1)	So	urce: 8020444	-01	Analyzed:	02/07/08					
Mercury, Dissolved	1.05	0.20	ug/l	1.00	ND	105	70-130	1	20	
Mercury, Total	1.05	0.20	ug/l	1.00	ND	105	70-130	1	20	
Matrix Spike Dup (W8B0147-MSD2)	So	urce: 8020445	-01	Analyzed:	02/07/08					
Mercury, Dissolved	1.06	0.20	ug/l	1.00	ND	106	70-130	2	20	
Mercury, Total	1.06	0.20	ug/l	1.00	ND	106	70-130	2	20	

Report ID: 8020450 Project ID: IRB0156 Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Date Received: 02/04/08 13:45 Date Reported: 02/11/08 16:20

Notes and Definitions

- ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- % Rec Percent Recovery
- Sub Subcontracted analysis, original report available upon request
- MDL Method Detection Limit
- MDA Minimum Detectable Activity

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

March 10, 2008

Mr. Joseph Doak Test America, Inc. 17461 Derian Avenue, Suite 100 Irvine, CA 92614

Reference:	Test America Project Nos.	IRB0073, IRB0146, IRB0147, IRB0148, IRB0149, IRB0150, IRB0151, IRB0152, IRB0153, IRB0154 IRB0156, IRB0480, IRB0751
	Eberline Services NELAP Ce	ert #01120CA
	Eberline Services Reports	R802024-8693, R802040-8694, R802041-8695,
	_	R802042-8696, R802043-8697, R802044-8698
		R802045-8699, R802046-8600, R802047-8601
		R802048-8602, R802049-8603, R802054-8604
		R802084-8608

Dear Mr. Doak:

Attached are data reports for thirteen water samples. Eleven of the samples were received at Eberline Services on February 5, one on February 7, and one on February 9, 2008. The samples were analyzed according to the accompanying Test America Subcontract Order Forms, the requested analyses were: gross alpha/gross beta (EPA 900.0), tritium (H-3, EPA906.0), Sr-90 (EPA905.0), Ra-226 (EPA903.1), Ra-228 (EPA 904.0), total uranium (ASTM D-5174), and gamma spectroscopy (EPA901.1, K-40 and Cs-137 only). The parenthetical G after a nuclide indicates that the result was obtained by gamma spectroscopy; a "U" in the results column indicates that the nuclide was not detected greater than the indicated minimum detectable activity (MDA). The samples were not filtered prior to analysis. The samples were analyzed in batches with common QC samples. Batch quality control samples consisted of LCS's, blank analyses, duplicate analyses, and matrix spike analyses (gross alpha/gross beta, H-3, Ra-226, Total-U only). All samples were within the limits defined in Eberline Services Quality Control Procedures Manual.

Please call me if you have any questions concerning this report.

Regards,

Melissa Mamon

Melissa Mannion Senior Program Manager

MCM/njv

Enclosure: Report on CD

Analytical Services 2030 Wright Avenue P.O. Box 4040 Richmond, California 94804-0040 (510) 235-2633 Fax (510) 235-0438 Toll Free (800) 841-5487 www.ehrling-eyjers.com

Eberline Services

ANALYSIS RESULTS

SDG	8603	Client	TA IRVINE
Work Order	<u>R802049-01</u>	Contract	PROJECT# IRB0156
Received Date	02/05/08	Matrix	WATER

Client	Lab					
Sample ID	Sample ID	Collected Analyzed	Nuclide	<u>Results ± 2σ</u>	Units	MDA
IRB0156-01	8603-001	02/03/08 02/27/08	GrossAlpha	0.432 ± 0.65	pCi/L	1.0
		02/27/08	Gross Beta	2.98 ± 0.84	pCi/L	1.3
		02/26/08	Ra-228	0.094 ± 0.20	pCi/L	0.37
		02/26/08	K-40 (G)	U	pCi/L	19
		02/26/08	Cs-137 (G)	U	pCi/L	0.89
		02/29/08	H-3	-31.3 ± 89	pCi/L	150
		03/04/08	Ra-226	0.179 ± 0.41	pCi/L	0.72
		02/18/08	Sr-90	0.235 ± 0.31	pCi/L	0.60
		02/26/08	Total U	0.506 ± 0.056	pCi/L	0.022

Certified by <u>h</u> h
Report Date 03/11/08
Page 1

Eberline Services

QC RESULTS

	SDG <u>8603</u> Order <u>R8020</u> d Date <u>02/05</u>				TA IRVINE PROJECT# IR WATER	2B0156
Lab mple ID	Nuclide	<u>Results</u>	<u>Units</u>	Amount Added	MDA	Evaluation
CS						
693-002	GrossAlpha	10.6 ± 0.82	pCi/Smpl	10.2	0.31	104% recovery
	Gross Beta	9.07 ± 0.36	pCi/Smpl	9.38	0.28	97% recovery
	Ra-228	8.40 ± 0.59	pCi/Smpl	8.66	0.88	97% recovery
	Co-60 (G)	214 ± 14	pCi/Smpl	224	9.1	96% recovery
	Cs-137 (G)	240 ± 12	pCi/Smpl	236	9.2	102% recovery
	Am-241 (G)	255 ± 26	pCi/Smpl	254	31	100% recovery
	H-3	222 ± 12	pCi/Smpl	239	13	93% recovery
	Ra-226	5.35 ± 0.24	pCi/Smpl	5.02	0.076	107% recovery
	Sr-90	10.7 ± 0.80	pCi/Smpl	9.39	0.37	114% recovery
	Total U	1.12 ± 0.13	pCi/Smpl	1.13	0.004	99% recovery
LANK						
693-003	GrossAlpha	-0.103 ± 0.17	pCi/Smpl	NA	0.34	<mda< td=""></mda<>
	Gross Beta	-0.111 ± 0.15	pCi/Smpl	NA	0.27	<mda< td=""></mda<>
	Ra-228	0.239 ± 0.48	pCi/Smpl	NA	0.68	<mda< td=""></mda<>
	K-40 (G)	U	pCi/Smpl	NA	110	<mda< td=""></mda<>
	Cs-137 (G)	U	pCi/Smpl	NA	5.4	<mda< td=""></mda<>
	H - 3	-1.64 ± 8.3	pCi/Smpl	NA	15	<mda< td=""></mda<>
	Ra-226	0.016 ± 0.034	pCi/Smpl	NA	0.062	<mda< td=""></mda<>
	Sr-90	0.099 ± 0.15	pCi/Smpl	NA	0.27	<mda< td=""></mda<>
	Total U	0.00E 00 ± 1.9E-04	pCi/Smpl	NA	4.5E-04	<mda< td=""></mda<>
	DUPLICATES			ORIGINAL	S	

DUPLI	CATES				ORIGINALS				
								Зσ	
Sample ID Nuclide	Resul	ts <u>+</u> 2σ	MDA	Sample ID	<u>Results ± 2σ</u>	MDA	RPD	(Tot)	Eval
8693-004 GrossAl	pha 1.03.	± 1.0	1.5	8693-001	0.763 ± 0.99	1.3	-	0	satis.
Gross B	eta 15.0	± 1.2	1.6		14.2 ± 0.93	0.97	5	46	satis.
Ra-228	0.099	± 0.18	0.48		0.295 ± 0.19	0.49	-	0	satis.
K - 4 0	(G) 24.8	± 7.8	4.9		24.0 ± 11	8.2	3	86	satis.
Cs-137	(G) U		0.53		U	0.86	-	Ō	satis.
H - 3	-6.31	± 84	150		7.12 ± 78	130	-	0	satis.
Ra-226	0.583	± 0.52	0.81		0.426 ± 0.44	0.70	-	0	satis.
Sr-90	-0.021	± 0.29	0.71		0.026 ± 0.31	0.72	-	0	satis.
Total U	0.611	± 0.067	0.022		0.578 ± 0.064	0.022	6	30	satis.

			-				
ified by	/	n	(h/				
rt Date	03/11	L/08	0				
2							
	ort Date		ort Date 03/11/08				

Eberline Services

	SDG 8603Client TA IRVINEWork Order R802049-01Contract PR0JECT# IRB0156Received Date 02/05/08Matrix WATER							
S	PIKED SAMPLE			OR1	IGINAL SAMPLE			
Sample ID N	luclide	<u>Results ± 20</u>	MDA	Sample ID	<u>Results ± 20</u>	MDA	Added	%Recv
8693-005 G	rossAlpha	95.8 ± 5.5	1.4	8693-001	0.763 ± 0.99	1.3	71.2	133
G	ross Beta	77.9 ± 2.0	1.5		14.2 ± 0.93	0.97	62.5	102
Н	I-3	15500 ± 300	150		7.12 ± 78	130	16000	97
R	2a - 226	120 ± 4.8	0.69		0.426 ± 0.44	0.70	112	107
Т	'otal U	109 ± 13	2.2		0.578 ± 0.064	0.022	113	96

QC RESULTS

Certified by
Report Date 03/11/08
Page 3

SUBCONTRACT ORDER

TestAmerica Irvine **IRB0156**

SENDING LABORATORY:

TestAmerica Irvine 17461 Derian Avenue. Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297 Project Manager: Joseph Doak

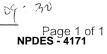
RECEIVING LABORATORY:

Eberline Services 2030 Wright Avenue Richmond, CA 94804 Phone :(510) 235-2633 Fax: (510) 235-0438 Project Location: California Receipt Temperature: 4.0 °C

Ice: Ν

Analysis	Units	Due	Expires	Comments
Sample ID: IRB0156-01	Water		Sampled: 02/03/08 14:45	
EDD + Level 4	N/A	02/13/08	03/02/08 14:45	Excel EDD email to pm,Include Std logs for LvI IV
Gamma Spec-O	mg/kg	02/13/08	02/02/09 14:45	Out to Eberline, k-40 and cs-137 only
Gross Alpha-O	pCi/L	02/13/08	08/01/08 14:45	Out to Eberline, Boeing
Gross Beta-O	pCi/L	02/13/08	08/01/08 14:45	Out to Eberline, Boeing
Radium, Combined-O	pCi/L	02/13/08	02/02/09 14:45	Out to Eberline, Boeing
Strontium 90-O	pCi/L	02/13/08	02/02/09 14:45	Out to Eberline, Boeing
Tritium-O	pCi/L	02/13/08	02/02/09 14:45	Out to Eberline, Boeing
Uranium, Combined-O	pCi/L	02/13/08	02/02/09 14:45	Out to Eberline, Boeing
Containers Supplied:				
2.5 gal Poly (AI)	500 mL Aml	per (AJ)		

8 17.00 Fea Received By Ì


徽

Released By

Date/Time

Received By

2/4/08 1700 Date/Time Date/Time

Released By

Date/Time

(<u>5</u> 2.	LINE		DND, CA		ORY		Jk 2/5/09
Client: Date/Time rece	ST Aut	7-1CA 8 09:360CN	City	IRVINE 156	Stat.	eCA	
	ve 145 ate	CT_ Requested					
Custoa Custoa Custoa Custoa Custoa Custoa Custoa Sacking Number Sample Casaperwi Custoa Sample	y seals on shirt y seals on shirt y seals on san y seals on san y seals on san o material is no' samples in no' samples in no containers s are in correct ork agrees wit s have trap s are in g	DDING CONTAINER IN DDING CONTAINER IN NDIE CONTAINERS IN NDIE CONTAINERS IN SNIDDING CONTAIN DER SAMDIE CONTAINER IN SAMDIES HAZARO IN 000 CONDITION	INSPECT Intacl [®] ateo & signed [®] tacl [®] ateo & signed [®] ier P abels Frac	ION Sample Matri: (Or see CoC) (Or see χ_{2} (Yes χ_{2} (Habels χ_{2}) Broken (res res Wes Mo No Dorobriate sam		N/4 N/- N/- Y N/- Y
	s are Preser e any anomaii	vec : : Noi Dri	eservec ¥jp		Servativé		
E Inspecte	Vi notified of	Fun		0 5/08 TIME	10:45		
E INSDECTE Customer Sample No.	ed ov Beta/Samma com	T		80170	10,000		
E Inspecte	ed ov Beta/Gamma	Tur Jnamuer			0:45 Beta/Gamma	ion Cha m	

Form SCP-02 07-30-07

'over 55 vears of quality nuclear services'