APPENDIX G

Section 97

Outfall 014, February 20, 2008 MEC^X Data Validation Reports

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IRB1997

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title:	Boeing SSFL NPDES
Contract Task Order:	1261.100D.00
Sample Delivery Group:	IRB1997
Project Manager:	B. Kelly
Matrix:	Water
QC Level:	IV
No. of Samples:	1
No. of Reanalyses/Dilutions:	0
Laboratory:	TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 014	IRB1997-01	30290-001, 8022139-01, 973679-1	Water	02/20/08 0830	180.1, 200.8, 245.1, 405.1, 1613, 8315M

II. Sample Management

No anomalies were observed regarding sample management. Eberline did not provide temperature information; however, radiological samples are not required to be chilled. The samples were received at the remaining laboratories within the temperature limits of $4^{\circ}C \pm 2^{\circ}C$. According to the case narrative for this SDG, the samples were received intact at all laboratories. The FedEx courier did not release the samples to Vista. The remaining COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine, Eberline, and Weck, custody seals were not required. Custody seals were intact upon arrival at Vista. If necessary, the client ID was added to the sample result summary by the reviewer.

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
Ι	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
А	Not applicable.	ICP Serial Dilution %D were not within control limits.
Μ	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Ρ	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found

NPDES - 3835

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: April 9, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had no target compound detects above the EDL.

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHODS 200.8, 245.1—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: April 1, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.8 and 245.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding times, 6 months for metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤0.1 amu and ≤0.9 amu at 10% peak height
- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP-MS

metals and 85-115% for mercury. All CRI/CRA and check standard recoveries were within the control limits of 70-130%.

- Blanks: There were no applicable detects in the method blanks or CCBs.
- Interference Check Samples: ICSA/B analyses were performed in association with the dissolved metals analysis. Recoveries were within the method-established control limits. Most analytes were reported in the ICSA solutions. The reviewer was not able to ascertain if the detections were indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the sample in this SDG for the dissolved fraction. All recoveries and RPDs were within the laboratoryestablished control limits. Mercury method accuracy was evaluated based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. The bracketing CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks Date Reviewed: April 3, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Methods 180.1, 405.1, and 8315M, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: Analytical holding times, 24 hours for conductivity, 48 hours for BOD and turbidity, and seven days for TSS, were met. The hydrazine aliquot was derivitized within three days of collection and the sample was analyzed within three days of derivitization.
- Calibration: The hydrazines r² were ≥0.995 and the ICV and QCS recoveries were within the laboratory-established control limits of 85-115%. The conductivity and turbidity check standard recoveries were acceptable. The balance calibration logs were acceptable. Calibration is not applicable to BOD.
- Blanks: Turbidity was detected in the method blank but not at a concentration sufficient to qualify the site samples. Method blanks and CCBs had no other detects.
- Blank Spikes and Laboratory Control Samples: Recoveries and RPDs were within laboratory-established QC limits. The LCS is not applicable to turbidity.
- Laboratory Duplicates: No laboratory duplicate analyses were performed for the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the sample in this SDG for the hydrazines. The recoveries and RPDs were within the laboratory-established control limits.
- Sample Result Verification: Review is not applicable at a Level V validation. Nondetects are valid to the reporting limit. The reviewer noted that the hydrazine retention times for the MS/MSD were marginally outside of the retention time window. A notation in the raw data indicated this shift was due to temperature fluctuations.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

	のないで、「なくないない」で、		「日本の語言の意思」は		100	0,00000100	ND	F all a second	Total HpCDF	4
			and a set of the set o	and the second sec)479	0.000000479	ND	Ϋ́,	Total HxCDF	
)398	0:000000398	ND		Total PeCDF	-
)488	0.000000488	ND		Total TCDF	6
	limit	- upper control	d. Lower control limit - upper control limit.				0.0000528	Ð	Total HpCDD	
		nit.	c. Method detection limit.		102	0.00000102	ND	D	Total HxCDD	6
	ntration.	possible conce	b. Estimated maximum possible concentration.		9696	0.000000696	ND		Total PeCDD	-
au facto de la capación de la capaci	limit.	pecific estimated detection limit	a. Sample specific estir	1942 Manuar (1981) - 25 mar 200 Manuar - 1977 Manuar)471	0.000000471			Total TCDD	۶
			Footnotes			-			Totals	
.8 35 - 197	95.8	TCDD	CRS 37Cl-2,3,7,8-TCDD		の「語言なに要求		0.00000794	· 法部门 · · · · · · · · · · · · · · · · · · ·	OCDF	E.
.4 17-157	73.4		13C-OCDF	and a final strategy and and store and the strategy of the str	101	0.00000101	ND	-HpCDF	1,2,3,4,7,8,9-HpCDF	F
.5 26 - 138	F 79.5	-1,2,3,4,7,8,9-HpCDF	13C-1,2,3,4,7		1991	0.000000991	UN	-HpCDF	1,2,3,4,6,7,8-HpCDF	_
.9 28 - 143	F 72.9	-1,2,3,4,6,7,8-HpCDF	13C-1,2,3,4,6)650	0.000000650	ND	IxCDF	1,2,3,7,8,9-HxCDF	-
.9 29-147	6.18	1,2,3,7,8,9-HxCDF	13C-1,2,3,7,8	「おおお」と言語である。)478	0.000000478	J	IxCDF	2,3,4,6,7,8-HxCDF	
.6 28 - 136	79.6	2,3,4,6,7,8-HxCDF	13C-2,3,4,6,7)413	0.000000413	A	IxCDF	1,2,3,6,7,8-HxCDF	-
8 26 - 123	86.8	1,2,3,6,7,8-HxCDF)374	0.000000374	Ą	IxCDF	1,2,3,4,7,8-HxCDF	
2	86.9	1,2,3,4,7,8-HxCDF	13C-1,2,3,4,7)384	0.000000384	ND	CDF	2,3,4,7,8-PeCDF	-
and a	92.3	2,3,4,7,8-PeCDF	13C-2,3,4,7,8		0412	0.000000412	AD.	CDF	1,2,3,7,8-PeCDF	-
5 24 - 185	93.5	-PeCDF	13C-1,2,3,7,8-PeCDF)488	0.000000488	ND	Ϋ́́	2,3,7,8-TCDF	3
感动	5.88	2,3,7,8-TCDF	13C-2,3,7,8-1				0.000229		OCDD	
	58.7		13C-OCDD	J			0.0000184	-HpCDD	1,2,3,4,6,7,8-HpCDD	BMa
	の一般ない	1,2,3,4,6,7,8-HpCDD			00	0.00000100	ND	IxCDD	1,2,3,7,8,9-HxCDD	4
	77.1	1,2,3,6,7,8-HxCDD			.06	0.00000106	ND	IxCDD	1,2,3,6,7,8-HxCDD	
	70.3	1,2,3,4,7,8-HxCDD	13C-1,2,3,4,7		01	0.00000101	Ð	IxCDD	1,2,3,4,7,8-HxCDD	
	82.6	1,2,3,7,8-PeCDD	13C-	and the second second second second)696	0.000000696	ND	ĕ	1,2,3,7,8-PeCDD	-
3 25 - 164	82.3	2,3,7,8-TCDD	IS 13C-2,3,7,8-1		471	0.000000471	UD		2,3,7,8-TCDD	2
LCL-UCL ^d Oualifiers	%R	ndard	Labeled Standard	Qualifiers	EMPC ^b	DL a	Conc. (ug/L)	C	Analyte	
Date Analyzed DB-225: NA		7-Mar-08	Date Analyzed DB-5:	1.02 L			6-08	20-Feb-08 0940	Date Collected: Time Collected:	
Date Received: 22-Feb-08		30290-001	Lab Sample:	Aqueous	Matrix:	·	rest America-Irvine, CA IRB 1997	I est Am	Project:	
			Lavul atul y Data		Dampic Pate		· ·]		

Project 30290

n---- - - 102

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

		I	META	LS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifier
Sample ID: IRB1997-01 (OUTFAL	L 014 - Water) - cont.								
Reporting Units: mg/l									
Boron X	EPA 200.7	8B21050	0.020	0.050	ND	1	02/21/08	02/22/08	
Sample ID: IRB1997-01 (OUTFAL	L 014 - Water)								
Reporting Units: ug/l									
Cadmium	EPA 200.8	8B25070	0.11	1.0	1.6	1	02/25/08	02/25/08	
Copper J/ONQ	EPA 200.8	8B25070	0.75	2.0	1.4	1	02/25/08	02/25/08	J
Lead	EPA 200.8	8B25070	0.30	1.0	1.2	1	02/25/08	02/25/08	
Selenium J/DNQ	EPA 200.8	8B25070	0.30	2.0	0.32	1	02/25/08	02/25/08	J
Zinc	EPA 200.8	8B25100	2.5	20	46	1	02/25/08	02/26/08	

* Analysis not validated LEVEL (V

TestAmerica Irvine

Joseph Doak Project Manager

IRB1997 <Page 7 of 31>

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB1997-01 (OUTFALI	. 014 - Water) - cont.								
Reporting Units: mg/l									
Boron 🔆	EPA 200.7-Diss	8B22085	0.020	0.050	ND	1	02/22/08	02/22/08	
Sample ID: IRB1997-01 (OUTFALI	. 014 - Water)								
Reporting Units: ug/l									
Cadmium	EPA 200.8-Diss	8B22086	0.11	1.0	1.1	1	02/22/08	02/22/08	
Copper ()	EPA 200.8-Diss	8B22086	0.75	2.0	ND	1	02/22/08	02/22/08	
Lead	EPA 200.8-Diss	8B22086	0.30	1.0	ND	1	02/22/08	02/22/08	
Selenium 🗸	EPA 200.8-Diss	8B22086	0.30	2.0	ND	1	02/22/08	02/22/08	
Zinc	EPA 200.8-Diss	8B22086	2.5	20	24	1	02/22/08	02/22/08	

* Analysis not validated LEVEL (V

TestAmerica Irvine

Joseph Doak Project Manager

IRB1997 <Page 8 of 31>

THE LEADER IN ENVIRONMENTAL TESTING

LEVEL IU

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

Metals by EPA 200 Series Methods

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB1997-01 (OUTF	ALL 014 - Water) - cont.								
Reporting Units: ug/I									
Mercury, Dissolved ()	EPA 245.1	W8B0837	0.050	0.20	ND	1	02/25/08	02/26/08	
Mercury, Total	EPA 245.1	W8B0837	0.050	0.20	ND	1	02/25/08	02/26/08	

TestAmerica Irvine

Joseph Doak Project Manager

> The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRB1997 <Page 10 of 31>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

		INC	ORGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB1997-01 (OUTFALL 014 Reporting Units: mg/l	4 - Water) - cont.								
Hexane Extractable Material (Oil &	EPA 1664A	8B25068	1.3	4.7	2.7	1	02/25/08	02/26/08	J
Grease)									
Ammonia-N (Distilled)	EPA 350.2	8B22080	0.30	0.50	ND	1	02/22/08	02/22/08	
Biochemical Oxygen Demand	EPA 405.1	8B20120	0.59	2.0	4.2	1	02/20/08	02/25/08	
Chloride 🔆	EPA 300.0	8B20029	0.25	0.50	7.5	1	02/20/08	02/20/08	
Fluoride	EPA 340.2	8B22054	0.014	0.10	0.69	1	02/22/08	02/22/08	
Nitrate-N	EPA 300.0	8B20029	0.060	0.10	0.99	1	02/20/08	02/20/08	
Nitrite-N	EPA 300.0	8B20029	0.090	0.15	ND	1	02/20/08	02/20/08	
Nitrate/Nitrite-N	EPA 300.0	8B20029	0.15	0.26	0.99	1	02/20/08	02/20/08	
Sulfate	EPA 300.0	8B20029	0.20	0.50	7.5	1	02/20/08	02/20/08	
Total Dissolved Solids	SM2540C	8B26077	10	10	180	1	02/26/08	02/26/08	
Total Suspended Solids	EPA 160.2	8B22122	10	10	ND	1	02/22/08	02/22/08	
Sample ID: IRB1997-01 (OUTFALL 014 Reporting Units: ml//hr	4 - Water)								
Total Settleable Solids	EPA 160.5	8B21127	0.10	0.10	ND	1	02/21/08	02/21/08	
Sample ID: IRB1997-01 (OUTFALL 014 Reporting Units: NTU	4 - Water)								
Turbidity	EPA 180.1	8B21126	0.040	1.0	12	1	02/21/08	02/21/08	
Sample ID: IRB1997-01 (OUTFALL 014 Reporting Units: ug/l	4 - Water)								
Perchlorate ————————————————————————————————————	EPA 314.0	8B27075	1.5	4.0	ND	1	02/27/08	02/27/08	
		111							

* Analysis not validated LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

IRB1997 <Page 9 of 31>

MDL This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used. In whole or in part, in any advertising or publicity matter without prior written authorization from Truesdall Laboratories. Note: Results based on detector #1 (UV=365nm) data Sample Reporting Limits p Sample ID 973679 () 707258-MB **TRUESDAIL LABORATORIES, INC** EXCELLENCE IN INDEPENDENT TESTING Method Number: * Analysis Project Name Investigation P.O. Number Attention: Sample Client: Sample Descript Method Blank Hydrazines 8315 (Modified) **IRB1997 IRB1997** Water / 1 Sample **Joseph Doak** Irvine, CA 92614-5817 **TestAmerica Analytical-irvine** IRB1997-01 17461 Derlan Avenue, Suite 100 not EVEC IV validated Amount (mL Sample 100 8 Dllution Factor Analytical Results REPORT Monomethyl Hydrazine 0.56 5.0 R 5.0 2 Analytical Services, Truesdail Laboratories Hydrazine u-Dimethy 0.32 R 5.0 5.0 8 Xtran-Darrg, Project Manager 14201 FRANKLIN AVENUE · TUSTIN, CALIFORNIA 82780-7008 (714) 730-6239 · FAX (714) 730-6462 · www.truesdail.com Extraction Date: Receiving Date: Sampling Date: Analysis Date: Laboratory No: Reported By: Report Date: Hydrazine 1.00 0.15 N 8 .0 Units: Established 1931 Jan P February 22, 2008 February 21, 2008 February 21, 2008 February 20, 2008 973679 March 4, 2008 Qualifier Codes None None 004 1328 **NPDES - 3845**

APPENDIX G

Section 98

Outfall 014, February 20, 2008 Test America Analytical Laboratory Report

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project: Routine Outfall 014

Sampled: 02/20/08 Received: 02/20/08 Issued: 03/18/08 12:22

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 2 pages, are

included and are an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID	CLIENT ID	MATRIX
IRB1997-01	OUTFALL 014	Water
IRB1997-02	TRIP BLANK	Water

Reviewed By:

Joseph Dock

TestAmerica Irvine Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

EXTRACTABLE FUEL HYDROCARBONS (C	CADHS/8015 Modified)
---	----------------------

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB1997-01 (OUTFALL 014 - Reporting Units: mg/l	Water)								
DRO (C13-C22) Surrogate: n-Octacosane (40-125%)	EPA 8015B	8B23009	0.094	0.094	ND 66 %	0.943	02/23/08	02/26/08	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

VOLATILE FUEL HYDROCARBONS (EPA 5030/8015M)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB1997-01 (OUTFALL 014 - Reporting Units: mg/l	Water) - cont.								
GRO (C4 - C12) Surrogate: 4-BFB (FID) (65-140%)	EPA 8015B	8B26030	0.030	0.050	ND 96 %	1	02/26/08	02/26/08	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

VOLATILE ORGANICS by GCMS SIM											
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: IRB1997-01 (OUTFALL 0	14 - Water) - cont.										
Reporting Units: ug/l											
1,4-Dioxane	EPA 8260B-SIM	8B27016	1.0	2.0	ND	1	02/27/08	02/27/08			
Surrogate: Dibromofluoromethane (80-	120%)				86 %						

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB1997-01 (OUTFALL 014 -	Water) - cont.								
Reporting Units: ug/l									
1,2,3-Trichloropropane	EPA 624	8B25001	0.40	1.0	ND	1	02/25/08	02/25/08	
1,2-Dibromoethane (EDB)	EPA 624	8B25001	0.40	0.50	ND	1	02/25/08	02/25/08	
Di-isopropyl Ether (DIPE)	EPA 624	8B25001	0.25	0.50	ND	1	02/25/08	02/25/08	
Methyl-tert-butyl Ether (MTBE)	EPA 624	8B25001	0.32	0.50	ND	1	02/25/08	02/25/08	
tert-Butanol (TBA)	EPA 624	8B25001	4.9	10	ND	1	02/25/08	02/25/08	
Surrogate: Dibromofluoromethane (80-120%	<i>b</i>)				97 %				
Surrogate: Toluene-d8 (80-120%)					101 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				91 %				
Sample ID: IRB1997-02 (TRIP BLANK - V	Vater)								
Reporting Units: ug/l									
1,2,3-Trichloropropane	EPA 624	8B25001	0.40	1.0	ND	1	02/25/08	02/25/08	
1,2-Dibromoethane (EDB)	EPA 624	8B25001	0.40	0.50	ND	1	02/25/08	02/25/08	
Di-isopropyl Ether (DIPE)	EPA 624	8B25001	0.25	0.50	ND	1	02/25/08	02/25/08	
Methyl-tert-butyl Ether (MTBE)	EPA 624	8B25001	0.32	0.50	ND	1	02/25/08	02/25/08	
tert-Butanol (TBA)	EPA 624	8B25001	4.9	10	ND	1	02/25/08	02/25/08	
Surrogate: Dibromofluoromethane (80-120%	<i>b)</i>				98 %				
Surrogate: Toluene-d8 (80-120%)					101 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				91 %				

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB1997-01 (OUTFALL 014 -	Water)								
Reporting Units: ug/l									
Naphthalene	EPA 625	8B21067	2.8	9.4	ND	0.943	02/21/08	02/24/08	
N-Nitrosodimethylamine	EPA 625	8B21067	2.4	19	ND	0.943	02/21/08	02/24/08	
Surrogate: 2-Fluorophenol (30-120%)					68 %				
Surrogate: Phenol-d6 (35-120%)					83 %				
Surrogate: 2,4,6-Tribromophenol (40-120%)					78 %				
Surrogate: Nitrobenzene-d5 (45-120%)					79 %				
Surrogate: 2-Fluorobiphenyl (50-120%)					84 %				
Surrogate: Terphenyl-d14 (50-125%)					86 %				

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

METALS											
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: IRB1997-01 (OUTFALL 014	- Water) - cont.										
Reporting Units: mg/l											
Boron	EPA 200.7	8B21050	0.020	0.050	ND	1	02/21/08	02/22/08			
Sample ID: IRB1997-01 (OUTFALL 014	- Water)										
Reporting Units: ug/l											
Cadmium	EPA 200.8	8B25070	0.11	1.0	1.6	1	02/25/08	02/25/08			
Copper	EPA 200.8	8B25070	0.75	2.0	1.4	1	02/25/08	02/25/08	J		
Lead	EPA 200.8	8B25070	0.30	1.0	1.2	1	02/25/08	02/25/08			
Selenium	EPA 200.8	8B25070	0.30	2.0	0.32	1	02/25/08	02/25/08	J		
Zinc	EPA 200.8	8B25100	2.5	20	46	1	02/25/08	02/26/08			

Project ID: Routine Outfall 014

TestAmerica Irvine

Joseph Doak Project Manager

IRB1997 <Page 7 of 31> NPDES - 3853

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Arcadia, CA 91007

618 Michillinda Avenue, Suite 200

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

DISSOLVED METALS MDL Reporting Sample Dilution Date Date Data Analyte Method Batch Limit Result Factor Extracted Qualifiers Limit Analyzed Sample ID: IRB1997-01 (OUTFALL 014 - Water) - cont. Reporting Units: mg/l 0.050 ND EPA 200.7-Diss 8B22085 0.020 1 02/22/08 02/22/08 Boron Sample ID: IRB1997-01 (OUTFALL 014 - Water) Reporting Units: ug/l EPA 200.8-Diss 8B22086 0.11 1.0 02/22/08 02/22/08 Cadmium 1.1 1 ND Copper EPA 200.8-Diss 8B22086 0.75 2.0 1 02/22/08 02/22/08 EPA 200.8-Diss 0.30 ND Lead 8B22086 1.0 1 02/22/08 02/22/08 Selenium EPA 200.8-Diss 8B22086 0.30 2.0 ND 1 02/22/08 02/22/08 Zinc EPA 200.8-Diss 8B22086 2.5 20 24 1 02/22/08 02/22/08

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 014

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

INORGANICS											
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: IRB1997-01 (OUTFALL 014	- Water) - cont.										
Reporting Units: mg/l											
Hexane Extractable Material (Oil &	EPA 1664A	8B25068	1.3	4.7	2.7	1	02/25/08	02/26/08	J		
Grease) Ammonia-N (Distilled)	EPA 350.2	8B22080	0.30	0.50	ND	1	02/22/08	02/22/08			
	EPA 330.2 EPA 405.1	8B22080 8B20120	0.50	2.0	ND 4.2	1 1	02/22/08	02/22/08			
Biochemical Oxygen Demand Chloride	EPA 403.1 EPA 300.0	8B20120 8B20029	0.39	0.50	4.2 7.5	1	02/20/08	02/23/08			
Fluoride	EPA 300.0 EPA 340.2	8B20029 8B22054	0.23	0.30	7.5 0.69	1	02/20/08	02/20/08			
Nitrate-N	EPA 340.2 EPA 300.0	8B22034 8B20029	0.014	0.10	0.89	1	02/22/08	02/22/08			
Nitrite-N	EPA 300.0	8B20029 8B20029	0.000	0.10	0.99 ND	1	02/20/08	02/20/08			
Nitrate/Nitrite-N	EPA 300.0	8B20029 8B20029	0.090	0.13	0.99	1	02/20/08	02/20/08			
Sulfate	EPA 300.0	8B20029 8B20029	0.13	0.20	0.99 7.5	1	02/20/08	02/20/08			
Total Dissolved Solids	SM2540C	8B20029 8B26077	10	10	180	1	02/20/08	02/26/08			
Total Suspended Solids	EPA 160.2	8B20077 8B22122	10	10	ND	1	02/20/08	02/20/08			
Total Suspended Solids	LIA 100.2	6D22122	10	10	ND	1	02/22/08	02/22/08			
Sample ID: IRB1997-01 (OUTFALL 014	- Water)										
Reporting Units: ml/l/hr											
Total Settleable Solids	EPA 160.5	8B21127	0.10	0.10	ND	1	02/21/08	02/21/08			
Sample ID: IRB1997-01 (OUTFALL 014	- Water)										
Reporting Units: NTU											
Turbidity	EPA 180.1	8B21126	0.040	1.0	12	1	02/21/08	02/21/08			
Sample ID: IRB1997-01 (OUTFALL 014 Reporting Units: ug/l	- Water)										
Perchlorate	EPA 314.0	8B27075	1.5	4.0	ND	1	02/27/08	02/27/08			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

Metals by EPA 200 Series Methods												
MDL Reporting Sample Dilution Date Date Da Analyte Method Batch Limit Limit Result Factor Extracted Analyzed Quali												
Sample ID: IRB1997-01 (OUTFALL 014	- Water) - cont.											
Reporting Units: ug/l												
Mercury, Dissolved	EPA 245.1	W8B0837	0.050	0.20	ND	1	02/25/08	02/26/08				
Mercury, Total	EPA 245.1	W8B0837	0.050	0.20	ND	1	02/25/08	02/26/08				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

SHORT HOLD TIME DETAIL REPORT

Sample ID: OUTFALL 014 (IRB1997-01) -	Hold Time (in days) Water	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
EPA 160.5	2	02/20/2008 09:40	02/20/2008 19:05	02/21/2008 13:30	02/21/2008 15:30
EPA 180.1	2	02/20/2008 09:40	02/20/2008 19:05	02/21/2008 13:00	02/21/2008 13:00
EPA 300.0	2	02/20/2008 09:40	02/20/2008 19:05	02/20/2008 20:00	02/20/2008 21:06
EPA 405.1	2	02/20/2008 09:40	02/20/2008 19:05	02/20/2008 22:11	02/25/2008 22:14

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

METHOD BLANK/QC DATA

EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B23009 Extracted: 02/23/08	-										
Blank Analyzed: 02/26/2008 (8B23009-B	LK1)										
DRO (C13-C22)	ND	0.10	0.10	mg/l							
Surrogate: n-Octacosane	0.154			mg/l	0.200		77	40-125			
LCS Analyzed: 02/26/2008 (8B23009-BS)	1)										
EFH (C13 - C40)	0.578	0.10	0.10	mg/l	0.750		77	40-115			
Surrogate: n-Octacosane	0.155			mg/l	0.200		77	40-125			
Matrix Spike Analyzed: 02/26/2008 (8B2	3009-MS1)				Sou	rce: IRB	1963-01				
EFH (C13 - C40)	0.565	0.095	0.095	mg/l	0.714	ND	79	40-120			
Surrogate: n-Octacosane	0.161			mg/l	0.190		85	40-125			
Matrix Spike Dup Analyzed: 02/26/2008	(8B23009-MS	SD1)			Sou	rce: IRB	1963-01				
EFH (C13 - C40)	0.532	0.095	0.095	mg/l	0.714	ND	74	40-120	6	30	
Surrogate: n-Octacosane	0.145			mg/l	0.190		76	40-125			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

METHOD BLANK/QC DATA

VOLATILE FUEL HYDROCARBONS (EPA 5030/8015M)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result		%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B26030 Extracted: 02/26/08	<u>.</u>										
Blank Analyzed: 02/26/2008 (8B26030-B	LK1)										
GRO (C4 - C12)	ND	0.050	0.030	mg/l							
Surrogate: 4-BFB (FID)	0.0108			mg/l	0.0100		108	65-140			
LCS Analyzed: 02/26/2008 (8B26030-BS	1)										
GRO (C4 - C12)	0.774	0.050	0.030	mg/l	0.800		97	80-120			
Surrogate: 4-BFB (FID)	0.0191			mg/l	0.0100		191	65-140			ZX
Matrix Spike Analyzed: 02/26/2008 (8B2	6030-MS1)				Sou	rce: IRB	2154-01				
GRO (C4 - C12)	0.236	0.050	0.030	mg/l	0.220	ND	107	65-140			
Surrogate: 4-BFB (FID)	0.0108			mg/l	0.0100		108	65-140			
Matrix Spike Dup Analyzed: 02/26/2008	(8B26030-M	SD1)			Sou	rce: IRB	2154-01				
GRO (C4 - C12)	0.231	0.050	0.030	mg/l	0.220	ND	105	65-140	2	20	
Surrogate: 4-BFB (FID)	0.0114			mg/l	0.0100		114	65-140			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GCMS SIM

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B27016 Extracted: 02/27/08	-										
Blank Analyzed: 02/27/2008 (8B27016-B	LK1)										
1,4-Dioxane	ND	2.0	1.0	ug/l							
Surrogate: Dibromofluoromethane	1.04			ug/l	1.00		104	80-120			
LCS Analyzed: 02/27/2008 (8B27016-BS)	l)										
1,4-Dioxane	8.15	2.0	1.0	ug/l	10.0		82	70-125			
Surrogate: Dibromofluoromethane	1.06			ug/l	1.00		106	80-120			
Matrix Spike Analyzed: 02/27/2008 (8B2	7016-MS1)				Sou	rce: IRB1	997-01				
1,4-Dioxane	8.11	2.0	1.0	ug/l	10.0	ND	81	70-130			
Surrogate: Dibromofluoromethane	1.01			ug/l	1.00		101	80-120			
Matrix Spike Dup Analyzed: 02/27/2008	(8B27016-M	SD1)			Sou	rce: IRB1	997-01				
1,4-Dioxane	8.43	2.0	1.0	ug/l	10.0	ND	84	70-130	4	30	
Surrogate: Dibromofluoromethane	0.910			ug/l	1.00		91	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

	D L	Reporting	MDI	T T •/	Spike	Source	A/ DEC	%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B25001 Extracted: 02/25/08											
	T T74)										
Blank Analyzed: 02/25/2008 (8B25001-B	,										
1,2,3-Trichloropropane	ND	1.0	0.40	ug/l							
1,2-Dibromoethane (EDB)	ND	0.50	0.40	ug/l							
Di-isopropyl Ether (DIPE)	ND	0.50	0.25	ug/l							
Methyl-tert-butyl Ether (MTBE)	ND	0.50	0.32	ug/l							
tert-Butanol (TBA)	ND	10	4.9	ug/l							
Surrogate: Dibromofluoromethane	24.2			ug/l	25.0		97	80-120			
Surrogate: Toluene-d8	24.9			ug/l	25.0		99	80-120			
Surrogate: 4-Bromofluorobenzene	22.7			ug/l	25.0		91	80-120			
LCS Analyzed: 02/25/2008 (8B25001-BS	1)										
1,2,3-Trichloropropane	22.1	1.0	0.40	ug/l	25.0		88	60-130			
1,2-Dibromoethane (EDB)	26.0	0.50	0.40	ug/l	25.0		104	75-125			
Di-isopropyl Ether (DIPE)	26.0	0.50	0.25	ug/l	25.0		104	60-135			
Methyl-tert-butyl Ether (MTBE)	22.9	0.50	0.32	ug/l	25.0		92	60-135			
tert-Butanol (TBA)	143	10	4.9	ug/l	125		114	70-135			
Surrogate: Dibromofluoromethane	24.6			ug/l	25.0		98	80-120			
Surrogate: Toluene-d8	25.2			ug/l	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	23.9			ug/l	25.0		95	80-120			
Matrix Spike Analyzed: 02/25/2008 (8B2	5001-MS1)				Sou	rce: IRB	1997-01				
1,2,3-Trichloropropane	21.7	1.0	0.40	ug/l	25.0	ND	87	55-135			
1,2-Dibromoethane (EDB)	24.8	0.50	0.40	ug/l	25.0	ND	99	70-130			
Di-isopropyl Ether (DIPE)	24.6	0.50	0.25	ug/l	25.0	ND	98	60-140			
Methyl-tert-butyl Ether (MTBE)	21.6	0.50	0.32	ug/l	25.0	ND	86	55-145			
tert-Butanol (TBA)	131	10	4.9	ug/l	125	ND	105	65-140			
Surrogate: Dibromofluoromethane	25.0			ug/l	25.0		100	80-120			
Surrogate: Toluene-d8	25.2			ug/l	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	23.7			ug/l	25.0		95	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B25001 Extracted: 02/25/08	_										
Matrix Spike Dup Analyzed: 02/25/2008 (8B25001-MSD1)					Sou	rce: IRB	1997-01				
1,2,3-Trichloropropane	21.6	1.0	0.40	ug/l	25.0	ND	87	55-135	0	30	
1,2-Dibromoethane (EDB)	25.1	0.50	0.40	ug/l	25.0	ND	100	70-130	1	25	
Di-isopropyl Ether (DIPE)	25.4	0.50	0.25	ug/l	25.0	ND	101	60-140	3	25	
Methyl-tert-butyl Ether (MTBE)	21.9	0.50	0.32	ug/l	25.0	ND	87	55-145	1	25	
tert-Butanol (TBA)	137	10	4.9	ug/l	125	ND	110	65-140	4	25	
Surrogate: Dibromofluoromethane	24.4			ug/l	25.0		98	80-120			
Surrogate: Toluene-d8	25.2			ug/l	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	23.6			ug/l	25.0		95	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B21067 Extracted: 02/21/08	<u>.</u>										
Blank Analyzed: 02/23/2008 (8B21067-B	LK1)										
Naphthalene	ND	10	3.0	ug/l							
N-Nitrosodimethylamine	ND	20	2.5	ug/l							
Surrogate: 2-Fluorophenol	150			ug/l	200		75	30-120			
Surrogate: Phenol-d6	180			ug/l	200		90	35-120			
Surrogate: 2,4,6-Tribromophenol	170			ug/l	200		85	40-120			
Surrogate: Nitrobenzene-d5	84.7			ug/l	100		85	45-120			
Surrogate: 2-Fluorobiphenyl	89.0			ug/l	100		89	50-120			
Surrogate: Terphenyl-d14	90.1			ug/l	100		90	50-125			
LCS Analyzed: 02/23/2008 (8B21067-BS	1)										MNR1
Naphthalene	79.0	10	3.0	ug/l	100		79	55-120			
N-Nitrosodimethylamine	76.3	20	2.5	ug/l	100		76	45-120			
Surrogate: 2-Fluorophenol	103			ug/l	200		52	30-120			
Surrogate: Phenol-d6	119			ug/l	200		59	35-120			
Surrogate: 2,4,6-Tribromophenol	146			ug/l	200		73	40-120			
Surrogate: Nitrobenzene-d5	80.6			ug/l	100		81	45-120			
Surrogate: 2-Fluorobiphenyl	82.1			ug/l	100		82	50-120			
Surrogate: Terphenyl-d14	81.2			ug/l	100		81	50-125			
LCS Dup Analyzed: 02/23/2008 (8B2106	7-BSD1)										
Naphthalene	84.0	10	3.0	ug/l	100		84	55-120	6	20	
N-Nitrosodimethylamine	80.2	20	2.5	ug/l	100		80	45-120	5	20	
Surrogate: 2-Fluorophenol	142			ug/l	200		71	30-120			
Surrogate: Phenol-d6	166			ug/l	200		83	35-120			
Surrogate: 2,4,6-Tribromophenol	165			ug/l	200		82	40-120			
Surrogate: Nitrobenzene-d5	83.2			ug/l	100		83	45-120			
Surrogate: 2-Fluorobiphenyl	88.6			ug/l	100		89	50-120			
Surrogate: Terphenyl-d14	86.4			ug/l	100		86	50-125			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B21050 Extracted: 02/21/08	<u>}_</u>										
Blank Analyzed: 02/27/2008 (8B21050-B	LK1)										
Boron	ND	0.050	0.020	mg/l							
LCS Analyzed: 02/22/2008 (8B21050-BS	1)										
Boron	0.478	0.050	0.020	mg/l	0.500		96	85-115			
Matrix Spike Analyzed: 02/22/2008 (8B2	21050-MS1)				Sou	rce: IRB	1854-24				
Boron	0.943	0.050	0.020	mg/l	0.500	0.493	90	70-130			
Matrix Spike Analyzed: 02/22/2008 (8B2	21050-MS2)				Sou	rce: IRB	1997-01				
Boron	0.479	0.050	0.020	mg/l	0.500	ND	96	70-130			
Matrix Spike Dup Analyzed: 02/22/2008	(8B21050-M	(SD1)			Sou	rce: IRB	1854-24				
Boron	0.982	0.050	0.020	mg/l	0.500	0.493	98	70-130	4	20	
Batch: 8B25070 Extracted: 02/25/08	<u>}</u>										
	_										
Blank Analyzed: 02/25/2008 (8B25070-B	,										
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Selenium	ND	2.0	0.30	ug/l							
LCS Analyzed: 02/25/2008 (8B25070-BS	1)										
Cadmium	84.8	1.0	0.11	ug/l	80.0		106	85-115			
Copper	82.8	2.0	0.75	ug/l	80.0		104	85-115			
Lead	88.4	1.0	0.30	ug/l	80.0		111	85-115			
Selenium	84.0	2.0	0.30	ug/l	80.0		105	85-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B25070 Extracted: 02/25/08	<u>}</u>										
					C	IDD/	200 01				
Matrix Spike Analyzed: 02/25/2008 (8B2	,					rce: IRB2					
Cadmium	77.2	1.0	0.11	ug/l	80.0	ND	97	70-130			
Copper	77.8	2.0	0.75	ug/l	80.0	3.87	92	70-130			
Lead	83.3	1.0	0.30	ug/l	80.0	1.63	102	70-130			
Selenium	80.3	2.0	0.30	ug/l	80.0	0.601	100	70-130			
Matrix Spike Dup Analyzed: 02/25/2008	(8B25070-M	SD1)			Sou	rce: IRB2	2399-01				
Cadmium	76.9	1.0	0.11	ug/l	80.0	ND	96	70-130	1	20	
Copper	77.2	2.0	0.75	ug/l	80.0	3.87	92	70-130	1	20	
Lead	82.4	1.0	0.30	ug/l	80.0	1.63	101	70-130	1	20	
Selenium	79.4	2.0	0.30	ug/l	80.0	0.601	98	70-130	1	20	
Batch: 8B25100 Extracted: 02/25/08	}										
	-										
Blank Analyzed: 02/26/2008 (8B25100-B	LK1)										
Zinc	ND	20	2.5	ug/l							
LCS Analyzed: 02/26/2008 (8B25100-BS	1)										
Zinc	78.0	20	2.5	ug/l	80.0		97	85-115			
Matrix Spike Analyzed: 02/26/2008 (8B25100-MS1) Source: IRB2407-02											
Zinc	81.5	20	2.5	ug/l	80.0	5.05	96	70-130			
Matrix Spike Dup Analyzed: 02/26/2008	(8B25100-M	SD1)			Sou	rce: IRB2	2407-02				
Zinc	79.8	20	2.5	ug/l	80.0	5.05	93	70-130	2	20	

TestAmerica Irvine

Joseph Doak Project Manager

IRB1997 <*Page 19 of 31*> NPDES - 3865

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B22085 Extracted: 02/22/08	-										
Blank Analyzed: 02/22/2008 (8B22085-B	LK1)										
Boron	ND	0.050	0.020	mg/l							
LCS Analyzed: 02/22/2008 (8B22085-BS	1)										
Boron	0.992	0.050	0.020	mg/l	1.00		99	85-115			
Matrix Spike Analyzed: 02/22/2008 (8B2	2085-MS1)				Sou	rce: IRB	1995-01				
Boron	1.06	0.050	0.020	mg/l	1.00	0.0585	100	70-130			
Matrix Spike Dup Analyzed: 02/22/2008	(8B22085-M	SD1)			Sou	rce: IRB	1995-01				
Boron	1.01	0.050	0.020	mg/l	1.00	0.0585	95	70-130	5	20	
Batch: 8B22086 Extracted: 02/22/08	_										
Blank Analyzed: 02/22/2008 (8B22086-B	LK1)										
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Selenium	ND	2.0	0.30	ug/l							
Zinc	ND	20	2.5	ug/l							
LCS Analyzed: 02/22/2008-02/29/2008 (8	B22086-BS1))									
Cadmium	89.2	1.0	0.11	ug/l	80.0		112	85-115			
Copper	83.1	2.0	0.75	ug/l	80.0		104	85-115			
Lead	86.0	1.0	0.30	ug/l	80.0		107	85-115			
Selenium	91.4	2.0	0.30	ug/l	80.0		114	85-115			
Zinc	89.5	20	2.5	ug/l	80.0		112	85-115			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B22086 Extracted: 02/22/08	<u>}</u>										
Matrix Spike Analyzed: 02/22/2008 (8B2	2086-MS1)				Sou	rce: IRB	1997-01				
Cadmium	85.1	1.0	0.11	ug/l	80.0	1.12	105	70-130			
Copper	80.7	2.0	0.75	ug/l	80.0	ND	101	70-130			
Lead	83.3	1.0	0.30	ug/l	80.0	ND	104	70-130			
Selenium	98.1	2.0	0.30	ug/l	80.0	ND	123	70-130			
Zinc	110	20	2.5	ug/l	80.0	23.8	108	70-130			
Matrix Spike Dup Analyzed: 02/22/2008	(8B22086-N	ISD1)			Sou	rce: IRB	1997-01				
Cadmium	86.2	1.0	0.11	ug/l	80.0	1.12	106	70-130	1	20	
Copper	80.5	2.0	0.75	ug/l	80.0	ND	101	70-130	0	20	
Lead	83.5	1.0	0.30	ug/l	80.0	ND	104	70-130	0	20	
Selenium	99.2	2.0	0.30	ug/l	80.0	ND	124	70-130	1	20	
Zinc	109	20	2.5	ug/l	80.0	23.8	107	70-130	1	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B20029 Extracted: 02/20/08											
	-										
Blank Analyzed: 02/20/2008 (8B20029-Bl	LK1)										
Chloride	ND	0.50	0.25	mg/l							
Nitrate-N	ND	0.10	0.060	mg/l							
Nitrite-N	ND	0.15	0.090	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Sulfate	ND	0.50	0.20	mg/l							
LCS Analyzed: 02/20/2008 (8B20029-BS1	.)										
Chloride	5.14	0.50	0.25	mg/l	5.00		103	90-110			
Nitrate-N	1.17	0.10	0.060	mg/l	1.13		104	90-110			
Nitrite-N	1.58	0.15	0.090	mg/l	1.52		104	90-110			
Sulfate	9.57	0.50	0.20	mg/l	10.0		96	90-110			
Matrix Spike Analyzed: 02/20/2008 (8B20	0029-MS1)				Sou	rce: IRB	1951-01				
Chloride	8.67	0.50	0.25	mg/l	5.00	3.28	108	80-120			
Nitrate-N	3.22	0.10	0.060	mg/l	1.13	2.31	81	80-120			
Nitrite-N	1.71	0.15	0.090	mg/l	1.52	0.120	105	80-120			
Sulfate	14.7	0.50	0.20	mg/l	10.0	7.69	71	80-120			M2
Matrix Spike Analyzed: 02/21/2008 (8B2)029-MS2)				Sou	rce: IRB	1997-01				
Chloride	12.0	0.50	0.25	mg/l	5.00	7.49	89	80-120			
Nitrate-N	2.02	0.10	0.060	mg/l	1.13	0.989	91	80-120			
Nitrite-N	1.71	0.15	0.090	mg/l	1.52	ND	113	80-120			
Sulfate	17.1	0.50	0.20	mg/l	10.0	7.45	96	80-120			
Matrix Spike Dup Analyzed: 02/20/2008	(8B20029-MS	SD1)			Sou	rce: IRB	1951-01				
Chloride	8.60	0.50	0.25	mg/l	5.00	3.28	106	80-120	1	20	
Nitrate-N	3.28	0.10	0.060	mg/l	1.13	2.31	86	80-120	2	20	
Nitrite-N	1.76	0.15	0.090	mg/l	1.52	0.120	108	80-120	3	20	
Sulfate	15.5	0.50	0.20	mg/l	10.0	7.69	78	80-120	5	20	M2

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B20120 Extracted: 02/20/08	_										
Blank Analyzed: 02/25/2008 (8B20120-B Biochemical Oxygen Demand	LK1) ND	2.0	0.59	mg/l							
LCS Analyzed: 02/25/2008 (8B20120-BS Biochemical Oxygen Demand	1) 185	100	30	mg/l	198		93	85-115			
LCS Dup Analyzed: 02/25/2008 (8B2012) Biochemical Oxygen Demand	0-BSD1) 177	100	30	mg/l	198		89	85-115	4	20	
Batch: 8B21126 Extracted: 02/21/08	-										
Blank Analyzed: 02/21/2008 (8B21126-B Turbidity	LK1) 0.100	1.0	0.040	NTU							J
Duplicate Analyzed: 02/21/2008 (8B2112	,		0.040	N 1757 X	Sou	rce: IRB	1995-01		0	•	
Turbidity Batch: 8B22054 Extracted: 02/22/08	1.10	1.0	0.040	NTU		1.02			8	20	
Blank Analyzed: 02/22/2008 (8B22054-B											
Fluoride	0.0289	0.10	0.014	mg/l							J
LCS Analyzed: 02/22/2008 (8B22054-BS) Fluoride	1) 1.03	0.10	0.014	mg/l	1.00		103	90-110			
Matrix Spike Analyzed: 02/22/2008 (8B2 Fluoride	2054-MS1) 1.42	0.10	0.014	mg/l	Sou 1.00	rce: IRB2 0.390	2189-04 103	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B22054 Extracted: 02/22/08	-										
Matrix Spike Dup Analyzed: 02/22/2008	(8B22054-MS	D1)			Sou	rce: IRB2	2189-04				
Fluoride	1.40	0.10	0.014	mg/l	1.00	0.390	101	80-120	2	20	
Batch: 8B22080 Extracted: 02/22/08	-										
Blank Analyzed: 02/22/2008 (8B22080-B	LK1)										
Ammonia-N (Distilled)	ND	0.50	0.30	mg/l							
LCS Analyzed: 02/22/2008 (8B22080-BS)	1)										
Ammonia-N (Distilled)	10.1	0.50	0.30	mg/l	10.0		101	80-115			
Matrix Spike Analyzed: 02/22/2008 (8B2	,				Sou	rce: IRB	1995-01				
Ammonia-N (Distilled)	10.4	0.50	0.30	mg/l	10.0	ND	104	70-120			
Matrix Spike Dup Analyzed: 02/22/2008	(8B22080-MS	,			Sou	rce: IRB	1995-01				
Ammonia-N (Distilled)	10.1	0.50	0.30	mg/l	10.0	ND	101	70-120	3	15	
Batch: 8B22122 Extracted: 02/22/08	-										
Blank Analyzed: 02/22/2008 (8B22122-B	LK1)										
Total Suspended Solids	ND	10	10	mg/l							
LCS Analyzed: 02/22/2008 (8B22122-BS)	1)										
Total Suspended Solids	989	10	10	mg/l	1000		99	85-115			
Duplicate Analyzed: 02/22/2008 (8B2212)	,				Sou	rce: IRB	1959-01				
Total Suspended Solids	ND	10	10	mg/l		ND				10	

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B25068 Extracted: 02/25/08	<u>}</u>										
Blank Analyzed: 02/26/2008 (8B25068-B	LK1)										
Hexane Extractable Material (Oil & Grease)	ND	5.0	1.4	mg/l							
LCS Analyzed: 02/26/2008 (8B25068-BS	1)										MNR1
Hexane Extractable Material (Oil & Grease)	19.5	5.0	1.4	mg/l	20.2		97	78-114			
LCS Dup Analyzed: 02/26/2008 (8B2506	8-BSD1)										
Hexane Extractable Material (Oil & Grease)	18.5	5.0	1.4	mg/l	20.2		92	78-114	5	11	
Batch: 8B26077 Extracted: 02/26/08	<u>}</u>										
Blank Analyzed: 02/26/2008 (8B26077-B	LK1)										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 02/26/2008 (8B26077-BS	1)										
Total Dissolved Solids	1010	10	10	mg/l	1000		101	90-110			
Duplicate Analyzed: 02/26/2008 (8B2607	7-DUP1)				Sou	rce: IRB	2199-01				
Total Dissolved Solids	2380	10	10	mg/l		2380			0	10	
Batch: 8B27075 Extracted: 02/27/08	<u>}</u>										
Blank Analyzed: 02/27/2008 (8B27075-B	LK1)										
Perchlorate	ND	4.0	1.5	ug/l							
LCS Analyzed: 02/27/2008 (8B27075-BS	1)										
Perchlorate	53.4	4.0	1.5	ug/l	50.0		107	85-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B27075 Extracted: 02/27/08	<u>}</u>										
Matrix Spike Analyzed: 02/27/2008 (8B2	7075-MS1)				Sou	rce: IRB2	2601-01				
Perchlorate	53.6	4.0	1.5	ug/l	50.0	4.36	98	80-120			
Matrix Spike Dup Analyzed: 02/27/2008	(8B27075-MS	SD1)			Sou	rce: IRB2	2601-01				
Perchlorate	54.5	4.0	1.5	ug/l	50.0	4.36	100	80-120	2	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

METHOD BLANK/QC DATA

Metals by EPA 200 Series Methods

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: W8B0837 Extracted: 02/25/0	8										
Blank Analyzed: 02/26/2008 (W8B0837-	BLK1)										
Mercury, Dissolved	ND	0.20	0.050	ug/l							
Mercury, Total	ND	0.20	0.050	ug/l							
LCS Analyzed: 02/26/2008 (W8B0837-B	S1)										
Mercury, Dissolved	0.993	0.20	0.050	ug/l	1.00		99	85-115			
Mercury, Total	0.993	0.20	0.050	ug/l	1.00		99	85-115			
Matrix Spike Analyzed: 02/26/2008 (W8	B0837-MS1)				Sou	rce: 8022	205-01				
Mercury, Dissolved	0.984	0.20	0.050	ug/l	1.00	ND	98	70-130			
Mercury, Total	0.984	0.20	0.050	ug/l	1.00	ND	98	70-130			
Matrix Spike Analyzed: 02/26/2008 (W8	B0837-MS2)				Sou	rce: 8022	237-02				
Mercury, Dissolved	20.8	4.0	1.0	ug/l	1.00	19.6	118	70-130			
Mercury, Total	20.8	4.0	1.0	ug/l	1.00	19.6	118	70-130			
Matrix Spike Dup Analyzed: 02/26/2008	(W8B0837-M	SD1)			Sou	rce: 8022	205-01				
Mercury, Dissolved	1.01	0.20	0.050	ug/l	1.00	ND	101	70-130	3	20	
Mercury, Total	1.01	0.20	0.050	ug/l	1.00	ND	101	70-130	3	20	
Matrix Spike Dup Analyzed: 02/26/2008	(W8B0837-M	SD2)			Sou	rce: 8022	237-02				
Mercury, Dissolved	20.8	4.0	1.0	ug/l	1.00	19.6	118	70-130	0	20	
Mercury, Total	20.8	4.0	1.0	ug/l	1.00	19.6	118	70-130	0	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

Complement

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
IRB1997-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	2.75	4.7	15
IRB1997-01	624-Boeing 012/013/014 DT, LOW		ug/l	0	0.50	50
IRB1997-01	624-Boeing 012/013/014 DT, LOW	tert-Butanol (TBA)	ug/l	0	10	12
IRB1997-01	8015B-DRO(C13-C22)LL	DRO (C13-C22)	mg/l	0.023	0.094	0.1
IRB1997-01	8015B-GRO(C4-C12)	GRO (C4 - C12)	mg/l	0.0067	0.050	0.1
IRB1997-01	8260B-SIM 1,4-Dioxane	1,4-Dioxane	ug/l	0.22	2.0	3
IRB1997-01	Ammonia-N, Titr (350.2) w/dist	Ammonia-N (Distilled)	mg/l	0.28	0.50	10
IRB1997-01	Boron-200.7	Boron	mg/l	0.0051	0.050	1
IRB1997-01	Cadmium-200.8	Cadmium	ug/l	1.58	1.0	3.1
IRB1997-01	Chloride - 300.0	Chloride	mg/l	7.49	0.50	150
IRB1997-01	Copper-200.8	Copper	ug/l	1.37	2.0	14
IRB1997-01	Fluoride - 340.2	Fluoride	mg/l	0.69	0.10	1.6
IRB1997-01	Hg_w 245.1	Mercury, Total	ug/l	0.023	0.20	0.2
IRB1997-01	Lead-200.8	Lead	ug/l	1.20	1.0	5.2
IRB1997-01	Nitrate-N, 300.0	Nitrate-N	mg/l	0.99	0.10	8
IRB1997-01	Nitrite-N, 300.0	Nitrite-N	mg/l	0	0.15	1
IRB1997-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	0.99	0.26	8
IRB1997-01	Perchlorate 314.0-DEFAULT	Perchlorate	ug/l	0	4.0	6
IRB1997-01	Selenium-200.8	Selenium	ug/l	0.32	2.0	5
IRB1997-01	Settleable Solids	Total Settleable Solids	ml/l/hr	0	0.10	0.3
IRB1997-01	Sulfate-300.0	Sulfate	mg/l	7.45	0.50	300
IRB1997-01	TDS - SM 2540C	Total Dissolved Solids	mg/l	181	10	950
IRB1997-01	TSS - EPA 160.2	Total Suspended Solids	mg/l	3.00	10	45
IRB1997-01	Zinc-200.8	Zinc	ug/l	46	20	160

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis Analyte	Units	Result	MRL	Compliance Limit
IRB1997-02	624-Boeing 012/013/014 DT, LOW 1,2-Dibromoethane (EDB)	ug/l	0	0.50	50
IRB1997-02	624-Boeing 012/013/014 DT, LOW tert-Butanol (TBA)	ug/l	0	10	12

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

DATA QUALIFIERS AND DEFINITIONS

- J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
- M2 The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
- MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
- **ZX** Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.
- ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
- **RPD** Relative Percent Difference

ADDITIONAL COMMENTS

For GRO (C4-C12):

GRO (C4-C12) is quantitated against a gasoline standard. Quantitation begins immediately following the methanol peak.

For Extractable Fuel Hydrocarbons (EFH, DRO, ORO) :

Unless otherwise noted, Extractable Fuel Hydrocarbons (EFH, DRO, ORO) are quantitated against a Diesel Fuel Standard.

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EPA 160.2	Water	Х	Х
EPA 160.5	Water	Х	Х
EPA 1664A	Water		
EPA 180.1	Water	Х	Х
EPA 200.7-Diss	Water	Х	Х
EPA 200.7	Water	Х	Х
EPA 200.8-Diss	Water	Х	Х
EPA 200.8	Water	Х	Х
EPA 300.0	Water	Х	Х
EPA 314.0	Water	Х	Х
EPA 340.2	Water	Х	Х
EPA 350.2	Water		Х
EPA 405.1	Water	Х	Х
EPA 624	Water	Х	Х
EPA 625	Water	Х	Х
EPA 8015B	Water	Х	Х
EPA 8260B-SIM	Water		
SM2540C	Water	Х	

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Truesdail Laboratories-SUB California Cert #1237

14201 Franklin Avenue - Tustin, CA 92680 Analysis Performed: Hydrazine Samples: IRB1997-01

Vista Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762

Analysis Performed: 1613-Dioxin-HR-Alta Samples: IRB1997-01

Weck Laboratories, Inc

14859 E. Clark Avenue - City of Industry, CA 91745 Method Performed: EPA 245.1 Samples: IRB1997-01

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 014

Report Number: IRB1997

Sampled: 02/20/08 Received: 02/20/08

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

ort Number IRB1007

TestAmerica Irvine

Joseph Doak Project Manager

IRB1997 <Page 31 of 31> NPDES - 3877

MWH-Arcadia 618 Michillinda Avenue. Suite 200	Clinet Name/Address		Project.		_		-			AN	ALYSI	S REO	ANALYSIS REQUIRED	þ
Arcadia, CA 91007	Suite 200		Boeing-SSFL NPDE: Routine Outfall 014 APTF Test Stand	Boeing-SSFL NPDES Routine Outfall 014 APTF Test Stand		HEW)		suoq	(·		N- ² C		Field readings Temp = // 5 = 75
Test America Contact: Joseph Doak	oseph Dc	bak				-799	ləu†		809				N-e	
Project Manager: Bronwyn Kelly えみごう い Sampler:	nwyn K	elly	Phone Number: (626) 568-6691 Fax Number: (626) 568-6515	nber: 3691 er: 6515		Grease (1	- gas - gasel/jet	H =Total Rd אפּעש Hydr 5)	28) ənsxoi(s (20 degre 	(sis/	304, F, NO	hlorate te-N, Nitrite	
Sample Sample Col Description Matrix ¹	Container Type	# of Cont.	Sampling Date/Time	Preservative	Bottle #]-\$'l		lene	CL' 8		Comments
3	1L Amber	-	20-05-00	HCI	1A	×								
Outfall 014 W 1L /	1L Amber	-		HCI	1B	×						_		
Outfall 014 W VOAs	As	-		HCI	2A	Â	×							
3	VOAs	7		HCI	2B, 2C		×							
all 014 W	1L Amber	-		None	3A		×							
3	1L Amber	-		None	3B		×							
ali 014 W	1L Amber	-		HCI	4A			×						
Outfall 014 W 1L	1L Amber	-		HCI	4B		-	×						
all 014 W	VOAs	-		HCI	5A				×		- +			
Outfall 014 W VO Dup	VOAs	2		HCI	5B, 5C				×					
all 014 W	1L Poly	-		None	9					×				
N	1L Amber	1		None	7A						×	-+	-	
Outfall 014 W 1L Dup	1L Amber	٢		None	7B						×			
ali 014 W	500 ml Poly	٢		H₂S0₄	80							×		00
Outfall 014 W 500	500 ml Polv	7	Ð	None	9A, 9B									
Outfall 014 W 500 r	500 ml Polv	-	2-20-08	None	10/			_					×	
Relinquished By	2-30.08	י ם	Date/Time:	Received By	1001	}	Date/Tin 2/20	Date/Time:			Ń	5	Tu 24	Turn around Time: (check) 24 Hours5 Days
Kelinquished By			Date/Time:	Received By	H.		Date	Date/Time:					48	48 Hours 10 Days
	Ľ	alle	68/ 1905	Hand	F ll		3	2-20-02-2		[9	6061		72	72 Hours Normal X
Relinquished By	>	↓∟ ¥	15	Received B			Date	Date/Time:					s, E	Sample Integrity: (check)

031

2 of 2	[]	[
Page 2 of				Comments								Filter w/in 24hrs of receipt at lab							Turn around Time: (check) 24 Hours 5 Dave	10 000		Normal	Sample Integrity: (check) Intact 7 On Ice:
	REQUIRED															 	 		Turn arot				Sample I Intact
	ANALYSIS F			δuoc) (snd all o	тсрс							×	×					₹ 700	120		COM	
5		S ,bD ,٤		ЭM	Dissolved	Total						×				 					2		
CUSTODY FORM				l əld	TBA) Recoveral A, B, Cu, F	DIPE,			×	×	×				×			-	 Date/Time:	Date/Time:		7 - 70 - 0 1	
ΓODΥ		MTRE		S	,2DT ,γ j ik able Solid 5,2,1 ,8DΞ	Settle	×	×									 				J 1		1
LL.						Bottle #	11A, 11B	12	13A	13B, 13C	14A, 14B	15	16A, 16B	17A, 17B	18A, 18B, 18C				X	rad	2	706	
CHAIN O		Boeing-SSFL NPDES Routine Outfall 014 APTF Test Stand		mber:	6515 6515	Preservative	None	None	HCI	HCI	HNO ₃	None	None	None	Ę				Received By	Received Bv		HAWK BU	
ວັ	Project:	Boeing-SSFL NPI Routine Outfall C APTF Test Stand		Phone Number	(626) 568-6691 Fax Number: (626) 568-6515	Sampling Date/Time	0.2 : X0						, Þ	2 2 0.0 V					Date/Time:			<u>108 1905</u> Date/Time:	j A
20/07			ak	illy		# of Cont.	2	~	1	2	2	+-	2	2	е					Date .	/ /	12408	
Fest America Version 12/20/07	SSS.	MWH-Arcadia 618 Michillinda Avenue. Suite 200 Arcadia, CA 91007	Test America Contact: Joseph Doak	Project Manager: Bronwyn Kelly	r,Acn	Container Type	500 mi Poly	1L Poly	VOAs	VOAs	1L Poly	1L Poly	1L Amber	1L Amber	VOAs				80.00.5			a la la	
neric	Je/Addr€	cadia nda Aven v 91007	sa Contac	nager:	P 130.	Sample Matrix	3	3	N	M	N	N	3	3	3				BV	I BV Ø	0	The second	ŝ
Test Ar	Client Name/Address:	MWH-Arcadia 618 Michillinda Ave Arcadia, CA 91007	Test Americ	Project Ma	Sampler: \mathcal{E} $\mathscr{Roch}co$	Sample Description	Outfall 014	Outfall 014	Outfall 014	Outfall 014 Dup	Outfall 014	Outfall 014	Outfall 014	Outfall 014	Trip Blanks				Relinquished By	Relinquished Bv		Belinginghad By	

4.2/2.2/2.4

TRUESDAIL LABORATORIES, INC.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

2/21/08

973679

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

March 4, 2008

Client: Attention:	TestAmerica - Irvine 17461 Derian Avenue, Suite 100 Irvine, CA 92614 Joseph Doak	
Project Name:	IRB1997	Date Received:
Project Number:	IRB1997	Truesdail Project:

Samples Cross-reference

<u>Truesdail ID</u>	<u>Client ID</u>	<u>Matrix</u>	Date Sampled	Time Sampled	Analysis Requested
973679-1	IRB1997-01	Water	02/20/08	0940	Hydrazines by EPA 8315M

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

K. R-P.

K.R.P. Iyer Quality Control/Quality Assurance Officer

Xuan Huong Dang Project Manager NFOED 3880

TRUESDAIL LABORATORIES, INC.

INDEPENDENT TESTING, FORENSIC SCIENCE, AND ENVIRONMENTAL ANALYSES

Established 1931

March 4, 2008

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 · FAX (714) 730-6462 www.truesdail.com

Client:	TestAmerica - Irvine
	17461 Derian Avenue, Suite 100
	Irvine, CA 92614
Attention:	Joseph Doak
Project Name:	IRB1997
Project Number:	IRB1997

Date Received: 02/21/08 Truesdail Project: 973679

Case Narrative

Sample Receipt	The sample was received at 4 °C and in good condition. It was kept in a refrigerator until analysis. Thereafter, it is being kept in ambient storage for an additional 2 months before disposal. Any anomalies would be noted in the "Comments" section.
Analysis	The analysis was performed as requested on the chain-of-custody.
Quality Control	The analytical results for each batch of samples performed include a minimum of one set of laboratory control sample/laboratory control sample duplicate (LCS/LCSD), one matrix spike (MS) and a reagent blank (Method blank). Any exceptions or problems would be noted in the "Comments" section.
Comments	Matrix spike and matrix spike duplicate were done on a sample from a different client project, 973688-3, as the method requirement per batch of 20 samples.
	All quality assurance requirements set forth by the method specification and all quality control recoveries were within the laboratory acceptance limits. No anomalies or nonconformance events occurred during the course of analysis.
	The results are quantitated down to the MDL level.

Respectfully Submitted, TRUESDAIL LABORATORIES, INC.

 $\frac{K - R}{K.R.P. Iyer}$

Quality Control/Quality Assurance Officer

Xuan Huong Dang Project Manager

NOO3 3881

Note: Results based	Sample Reporting Limits	POL	MOL	973679	707258-MB	Sample ID Samp		Client: Attention: Project Nampie: P.O. Number: Method Number: Investigation:	TRUESDAIL LABOF Excellence in Independent Testing
Note: Results based on detector #1 (UV=365nm) data.	mits			IRB1997-01	Method Blank	Sample Descript		t TestAmerica Analytical-Irvine 17461 Derian Avenus, Suite 100 Irvine, CA 92614-5817 Joseph Doak Water / 1 Sample IRB1997 IRB1997 IRB1997 IRB1997 Hydrazines	TRUESDAIL LABORATORIES, INC. Excellence in Independent Testing
Snm) data.				100	100	Amount (mL)	Sample	alytical-Irvine enue, Sulte 100 -5817	ries, Inc.
				4		Factor	Dilution		
	5.0	5.0	0.56	ND	N	Hydrazine	Monomethyl	REPORT	
Analytical Service	5.0	5.0	0.32	ND	ND	Hydrazine	u-Dimethyf		
Analytical Services, Truesdall Laboratories, Inc.	1.00	1.00	0.15	ND	ND		Hydrazine	14201 FRANKLIN AVENUE - TU (714) 730-6239 - FAX (714) Laboratory No: Report Date: Sampling Date: Receiving Date: Analysis Date: Units: Reported By:	Establis
				None	None	Codes	Qualifier	14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA \$2780-7008 [714] 730-6239 · FAX (714) 730-6462 · wmw.truesdail.com Report Date: 973679 Report Date: March 4, 2008 Sampling Date: February 20, 2008 Receiving Date: February 21, 2008 Extraction Date: February 21, 2008 Units: µg/L Reported By: JS	Established 1931
	I	I	1	H		11	I	≝ " 2009″	4 ³⁸⁸²

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Fruesdail Laboratories.

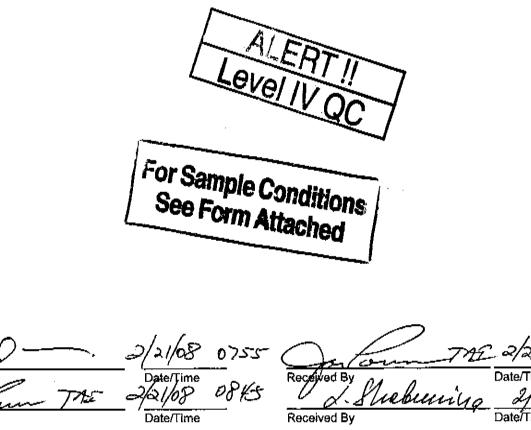
Note: Results based on detector #1 (UV=385nm) data	Hydrazine	u-Dimethyl Hydrazine	Monomethyl Hydrazine	Parameter					Hydrazine	u-Dimethyl Hydrazine	Monomethyl Hydrazine		Parameter			Run Batch No.:	Investigation:	Method Number	P.O. Number:	Sample 10:	Sample:	Client Contact:			Client:	TRUESDAIL LABORATORIES, INC. Excellence in Independent Testing
#1 (UV≍385∩m) di		50.0 A	50.0 43	սց/Լ Լ	Conc.	Spiked	<u>L</u> C		5.0	25.0	25.0	Value (ug/L)	Theoretical					r. 8315 (Modified)	r: IRB1997): IRB1997	Water / 1 Sample			Irvine, C.		IL LAB
ឆ្	9.59 9.74	45.4 46.1	42.5 43.0	LCS LCSD	ğ	Recovered	LCS/LCSD		4.92	23.5) Value (ug/L)	l Measured			Extraction: 4289; Analysis: 599	8 5	dlfied)			Sample	Doak		Irvine, CA 92614-5917	TestAmerica Analytical-Irvine 17461 Derian Avanue. Sulte 100	
	0.0	0.0	0.0	NB	lion	ă										sis: 599									ul-Irvine Suite 10	RIES,
	95.9	90.9	84.9	LCS	Record	Pe		ę	98.4	94.2	94.2	Recovery	Percent		Quali									"	0	NC
	97.4	92.3	86.1	LCSD	Recovery (%)	Percent		ality C	85-115	85-115	85-115	Limits	Control		Quality Control/Quality Assurance											·
	1.52%	1,48%	1.36%	RPD	LCSD	LCS		ontrol	115	115	115				tro//Q											
	PASS	PASS	PASS		Flag			Quality	PASS	PASS	PASS		Flag		Jality /											
	20	28	20	٨D	Ē	ĉ		Assu	' II	ļe	izi	•	P	ה	Assura										_	
	70-130	70-130	70-130	% Rec.	Limits	Control		Quality Control/Quality Assurance S	Hydrazine	u-Dimethyl Hydrazine	Monomethyl Hydrazine		Parameter	QCS	ance Cali											
	9.32	46.8	47.2	NS		-	MS/MSD	pikes Report		ydrazine	Hydrazine				libration Report								,			
I	9.75	47.7	46.9	NSD	Concentration	Recovered	Ö	eport				Valu	Theor		ı Repoi											
7	0.00	0.00	0.00	Sample	3	a			10.0	50.0	50.0	Value (ug/L)	Theoretical		7										17 142	
	93.2	93.6	94.3	SN	Recovery (%)	Percent			9.92	46.7	42.6	Value (ug/L)	Measured				_	σ	R	Ś		Spik	Pr		901 FRANKI 4] 730-62	
ang, Proj	97.5	95.5	93.7	MSD	97 (%)	ent										керолеа Бу:	Analysis Date:	Extraction Date:	Receiving Date:	Sampling Date:	Report Date:	Spiked Sample ID:	Project Lab. No.:	QC Lab. No.:	LIN AVENU 239 - FAX	Ω.
Xuan Deng, Project Manager	4.54%	1.96%	0.59%	RPD	MSD	NS			99.2	93,4	85.2	Recovery	Percent			ia sy:	Date:	Date:	Date:	Date:	Date:	ie ID:	. No.:	. No.:	E - TUSTIN (714) 730	Established 1931
	PASS	PASS	PASS		Flag				85-115	85-115	85-115	Limits	Control			J	February 22, 2008	February 21, 2008	February 21, 2008	February 20, 2008	March 4, 2008	973688-3	973679	707258	14201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 92780-7008 (714) 730-6239 - FAX (714) 730-6462 - www.trussdaii.com	j E6
<u></u>	8	8	8	[<u>ड</u>	Accuracy							<u>o</u>				22, 2008	21, 2008	21, 2008	20, 2008	2008				VIA 92780-; w.truesdail.	
1	30-130	30-130	30-130	% Rec.	Limits	racy			PASS	PASS	PASS		Flag												§ ≗ N R N	3883

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from Truesdail Laboratories.

Analytical Services, Truesdail Laboratories, Inc. 1

NOO5 3883

TRUESDAIL LABOR EXCELLENCE IN INDEPENDENT TESTING	TRUESDAIL LABORATORIES, INC.	Established 1931	3884
		34201 FRANKLIN AVENUE - TUSTIN, CALIFORNIA 82780-7008 (714) 730-6239 - FAX (714) 730-6462 - www.truesdail.com	™066
Client	nt: TestAmerica Analytical-Irvine 17461 Derian Avenue, Sulta 100 Jrvine, CA 92614-5817	Laboratory No: 973679 Report Date: March 4, 2008	
Attention: Project Name: Nethod Number: Investigation:	nr: Joseph Doak 1e: IRB1997 er: 8315 (Modified) nr: Hydrazines		
	Qualifier Codes and Definitions		
Code	Definition		
Sb EbE	Force Peak Start: Peak start needs to be adjusted to the baseline Force Peak End: Peak end needs to be adjusted to the baseline Split Peak: Background or co-eluting peaks need to be split.		
	Method Detection Limit		


Method Detection Limit

Relative Percent Difference: A calculated value of the deviation between the sp	RPD
Matrix Spike: Second source standard spiked into sample matrix and extracted	MS (D)
Laboratory Control Spike: Second source standard spiked into blank matrix an	LCS (D)
Method Blank: Reagent water extracted and run with each batch of 20 samples	MB
Quality Control Standard: Second source calibration standard run at a mid-fevel	QCS
Initial Calibration Verification: First source calibration standard run at a mid-leve	ίς γ
Not Applicable	N/A
Not Detected: Analyte is not detected at or above the method detection limit.	ND ND
Practical Quantitation Limit	PQL
Method Detection Limit	MDL

- Initial Calibration Verification: First source calibration standard run at a mid-level spike prior to samples. NOT WORKING IN
- Quality Control Standard: Second source calibration standard run at a mid-level spike after all samples.
- Method Blank: Reagent water extracted and run with each batch of 20 samples to demonstrate that all analytes are not detected from the extraction process.
- Laboratory Control Spike: Second source standard spiked into blank matrix and extracted and run with each batch of 20 samples (run in duplicate)
- Matrix Spike: Second source standard spiked into sample matrix and extracted and run with each batch of 20 samples (run in duplicate).
- Relative Percent Difference: A calculated value of the deviation between the spikes and spike duplicates to measure precision. J-flags: Any result found between the MDL and the PQL will be reported with a "J" attached.
- Flag Pass if within Control Limits; otherwise "Fail"

· •	`	su	BCONTRACT ORDER		
			TestAmerica Irvine IRB1997	<i>9</i> 7.	3 679
SENDING LABORA	TORY:		RECEIVING LABO	DRATORY:	
TestAmerica Irvine 17461 Derian Aver Irvine, CA 92614 Phone: (949) 261- Fax: (949) 260-329 Project Manager: J	nue. Suite 100 1022 97		Truesdail Labor 14201 Franklin Tustin, CA 9268 Phone :(714) 73 Fax: (714) 730-0 Project Location	Avenue 30 30-6239 6462	Rec'd 02/21/08 ^{s1d} 973679
			Receipt Tempera	ture:°C	Ice: Y / N
Analysis	Units	Due	Expires	Commer	its

Sample ID: IRB1997-01	Water		Sampled: 02/20/08 09:40	ph=7.7, temp=50.0
Hydrazine-OUT	%	02/29/08	02/23/08 09:40	Truesdail-Monomethylhydrazine, J flags, 72hr HT!!!
Level 4 Data Package - Out	N/A	02/29/08	03/19/08 09:40	Boeing
Containers Supplied: 1 L Amber (AE) 1	L Amber (AF)			

08K5

Released By

Released By

75

Received By

Date/Time Date/Time Puebuuily 2/21/08 8:4 Date/Time Date/Time NIPER 3885 ge 1 of 1 NIDE8 3885

Received By

March 11, 2008

Vista Project I.D.: 30290

Mr. Joseph Doak Test America-Irvine, CA 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Mr. Doak,

Enclosed are the results for the one aqueous sample received at Vista Analytical Laboratory on February 22, 2008 under your Project Name "IRB1997". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Vista's current certifications, and copies of the raw data (if requested).

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Marine More-

Martha M. Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.

Project 30290

Section I: Sample Inventory Report Date Received: 2/22/2008

<u>Vista Lab. ID</u>

Client Sample ID

30290-001

IRB1997-01

SECTION II

Method Blank				I				EPA Method 1613
Matrix: Aq	lueous	QC Batch No.: 99	88	Lab S	Sample:	0-MB001		
Sample Size: 1	1.00 L	Date Extracted: 4-2	Mar-08	Date	Analyzed DB-5:	6-Mar-08	Date An	alyzed DB-225: NA
Analyte	Conc. (ug/L)	DL ^a EMPC ^b	Qualifiers		Labeled Standa	rd	%R	LCL-UCL ^d Qualifiers
2,3,7,8-TCDD	ND	0.00000174		<u>IS</u>	13C-2,3,7,8-TCI	DD	83.3	25 - 164
1,2,3,7,8-PeCDD	ND	0.00000230			13C-1,2,3,7,8-Pe	CDD	88.0	25 - 181
1,2,3,4,7,8-HxCDD) ND	0.00000250			13C-1,2,3,4,7,8-1	HxCDD	73.2	32 - 141
1,2,3,6,7,8-HxCDD) ND	0.00000241			13C-1,2,3,6,7,8-1	HxCDD	91.5	28 - 130
1,2,3,7,8,9-HxCDD) ND	0.00000236			13C-1,2,3,4,6,7,8	8-HpCDD	86.2	23 - 140
1,2,3,4,6,7,8-HpCD	DD ND	0.00000542			13C-OCDD		61.8	17 - 157
OCDD	ND	0.0000101			13C-2,3,7,8-TCI	OF	87.3	24 - 169
2,3,7,8-TCDF	ND	0.00000199			13C-1,2,3,7,8-Pe	CDF	89.9	24 - 185
1,2,3,7,8-PeCDF	ND	0.00000163			13C-2,3,4,7,8-Pe	CDF	92.7	21 - 178
2,3,4,7,8-PeCDF	ND	0.00000146			13C-1,2,3,4,7,8-	HxCDF	85.5	26 - 152
1,2,3,4,7,8-HxCDF	ND	0.00000184			13C-1,2,3,6,7,8-	HxCDF	105	26 - 123
1,2,3,6,7,8-HxCDF	ND	0.00000163			13C-2,3,4,6,7,8-	HxCDF	95.0	28 - 136
2,3,4,6,7,8-HxCDF	ND	0.00000186			13C-1,2,3,7,8,9-1	HxCDF	91.5	29 - 147
1,2,3,7,8,9-HxCDF	ND	0.00000281			13C-1,2,3,4,6,7,8	8-HpCDF	86.0	28 - 143
1,2,3,4,6,7,8-HpCD	DF ND	0.00000530			13C-1,2,3,4,7,8,9	9-HpCDF	90.6	26 - 138
1,2,3,4,7,8,9-HpCD		0.00000617			13C-OCDF		88.2	17 - 157
OCDF	ND	0.00000633		CRS	37Cl-2,3,7,8-TC	DD	92.0	35 - 197
Totals				Foot	notes			
Total TCDD	ND	0.00000174		a. San	ple specific estimated	detection limit.		
Total PeCDD	ND	0.00000230		b. Esti	mated maximum possil	ole concentration.		
Total HxCDD	ND	0.00000242		c. Met	hod detection limit.			
Total HpCDD	ND	0.00000542		d. Lov	ver control limit - upper	control limit.		
Total TCDF	ND	0.00000199						
Total PeCDF	ND	0.00000154						
Total HxCDF	ND	0.00000204						
Total HpCDF	ND	0.00000574						

Analyst: JMH

OPR Results					EP	A Method 1	1613
Matrix: Aqueous Sample Size: 1.00 L		QC Batch No.: Date Extracted:	9988 4-Mar-08	Lab Sample:0-OPR001Date Analyzed DB-5:5-Mar-08	Date Analy	zed DB-225:	NA
Analyte	Spike Conc.	Conc. (ng/mL)	OPR Limits	Labeled Standard	%R	LCL-UCL	Qualifier
2,3,7,8-TCDD	10.0	8.84	6.7 - 15.8	<u>IS</u> 13C-2,3,7,8-TCDD	83.5	25 - 164	
1,2,3,7,8-PeCDD	50.0	50.7	35 - 71	13C-1,2,3,7,8-PeCDD	90.5	25 - 181	
1,2,3,4,7,8-HxCDD	50.0	52.5	35 - 82	13C-1,2,3,4,7,8-HxCDD	65.6	32 - 141	
1,2,3,6,7,8-HxCDD	50.0	50.0	38 - 67	13C-1,2,3,6,7,8-HxCDD	87.3	28 - 130	
1,2,3,7,8,9-HxCDD	50.0	50.6	32 - 81	13C-1,2,3,4,6,7,8-HpCDD	83.7	23 - 140	
1,2,3,4,6,7,8-HpCDD	50.0	50.8	35 - 70	13C-OCDD	66.2	17 - 157	
OCDD	100	104	78 - 144	13C-2,3,7,8-TCDF	89.2	24 - 169	
2,3,7,8-TCDF	10.0	9.08	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	96.4	24 - 185	
1,2,3,7,8-PeCDF	50.0	49.1	40 - 67	13C-2,3,4,7,8-PeCDF	97.1	21 - 178	
2,3,4,7,8-PeCDF	50.0	49.2	34 - 80	13C-1,2,3,4,7,8-HxCDF	83.4	26 - 152	
1,2,3,4,7,8-HxCDF	50.0	46.3	36 - 67	13C-1,2,3,6,7,8-HxCDF	96.8	26 - 123	
1,2,3,6,7,8-HxCDF	50.0	47.4	42 - 65	13C-2,3,4,6,7,8-HxCDF	89.9	28 - 136	
2,3,4,6,7,8-HxCDF	50.0	45.4	35 - 78	13C-1,2,3,7,8,9-HxCDF	85.4	29 - 147	
1,2,3,7,8,9-HxCDF	50.0	47.1	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	78.2	28 - 143	
1,2,3,4,6,7,8-HpCDF	50.0	47.4	41 - 61	13C-1,2,3,4,7,8,9-HpCDF	84.9	26 - 138	
1,2,3,4,7,8,9-HpCDF	50.0	44.6	39 - 69	13C-OCDF	85.1	17 - 157	
OCDF	100	98.3	63 - 170	<u>CRS</u> 37Cl-2,3,7,8-TCDD	98.0	35 - 197	

Analyst: JMH

Approved By: Martha M. M.

Martha M. Maier 11-Mar-2008 08:30

Sample ID: IRB1	997-01								EPA N	Aethod 1613
Client Data			<u>Sample Data</u>		Lab	oratory Data				
	America-Irvine, CA		Matrix:	Aqueous	Lab	Sample:	30290-001	Date Re	ceived:	22-Feb-08
Project: IRB1 Date Collected: 20-Fe			Sample Size:	1.02 L	QC	Batch No.:	9988	Date Ex	tracted:	4-Mar-08
Time Collected: 0940	-00				Date	Analyzed DB-5:	7-Mar-08	Date An	alyzed DB-225:	NA
Analyte (Conc. (ug/L)	DL ^a	EMPC ^b	Qualifiers		Labeled Standa	rd	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ND	0.0000004	471		<u>IS</u>	13C-2,3,7,8-TCD	D	82.3	25 - 164	
1,2,3,7,8-PeCDD	ND	0.000000	696			13C-1,2,3,7,8-PeC	CDD	82.6	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.000001	01			13С-1,2,3,4,7,8-Н	IxCDD	70.3	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.000001	06			13С-1,2,3,6,7,8-Н	IxCDD	77.1	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.000001	00			13C-1,2,3,4,6,7,8-	-HpCDD	80.5	23 - 140	
1,2,3,4,6,7,8-HpCDD	0.0000184			J		13C-OCDD		58.7	17 - 157	
OCDD	0.000229					13C-2,3,7,8-TCD	F	88.5	24 - 169	
2,3,7,8-TCDF	ND	0.0000004	488			13C-1,2,3,7,8-PeC	CDF	93.5	24 - 185	
1,2,3,7,8-PeCDF	ND	0.0000004	412			13C-2,3,4,7,8-PeC	CDF	92.3	21 - 178	
2,3,4,7,8-PeCDF	ND	0.000000	384			13С-1,2,3,4,7,8-Н	IxCDF	86.9	26 - 152	
1,2,3,4,7,8-HxCDF	ND	0.000000	374			13С-1,2,3,6,7,8-Н	IxCDF	86.8	26 - 123	
1,2,3,6,7,8-HxCDF	ND	0.0000004	413			13С-2,3,4,6,7,8-Н	IxCDF	79.6	28 - 136	
2,3,4,6,7,8-HxCDF	ND	0.0000004	478			13С-1,2,3,7,8,9-Н	IxCDF	81.9	29 - 147	
1,2,3,7,8,9-HxCDF	ND	0.000000	650			13C-1,2,3,4,6,7,8-	-HpCDF	72.9	28 - 143	
1,2,3,4,6,7,8-HpCDF	ND	0.000000	991			13C-1,2,3,4,7,8,9-	-HpCDF	79.5	26 - 138	
1,2,3,4,7,8,9-HpCDF	ND	0.000001	01			13C-OCDF		73.4	17 - 157	
OCDF	0.00000794			J	CRS	37Cl-2,3,7,8-TCD	D	95.8	35 - 197	
Totals					Foo	tnotes				
Total TCDD	ND	0.0000004	471		a. Sa	mple specific estimated	detection limit.			
Total PeCDD	ND	0.000000	696		b. Es	timated maximum possi	ble concentration.			
Total HxCDD	ND	0.000001	02		c. M	ethod detection limit.				
Total HpCDD	0.0000528				d. Lo	ower control limit - uppe	r control limit.			
Total TCDF	ND	0.0000004	488							
Total PeCDF	ND	0.000000	398							
Total HxCDF	ND	0.0000004	479							
Total HpCDF	ND	0.000001	00							

Analyst: JMH

APPENDIX

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank.
D	Dilution
Ε	The amount detected is above the High Calibration Limit.
Р	The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.
Н	The signal-to-noise ratio is greater than 10:1.
Ι	Chemical Interference
J	The amount detected is below the Low Calibration Limit.
*	See Cover Letter
Conc.	Concentration
DL	Sample-specific estimated detection limit
MDL	The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.
EMPC	Estimated Maximum Possible Concentration
NA	Not applicable
RL	Reporting Limit – concentrations that correspond to low calibration point
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

SUBCONTRACT ORDER

TestAmerica Irvine

IRB1997

	IRB1997	30290	3.8°C
SENDING LABORATORY:	RECEIVING LABORATORY:		
TestAmerica Irvine	Vista Analytical Laboratory- SUB		
17461 Derian Avenue. Suite 100	1104 Windfield Way		
Irvine, CA 92614	El Dorado Hills, CA 95762		
Phone: (949) 261-1022	Phone :(916) 673-1520		
Fax: (949) 260-3297	Fax: (916) 673-0106		
Project Manager: Joseph Doak	Project Location: California		
	Receipt Temperature:°C	Ice: Y /	N

Analysis	Units	Due	Expires	Comments
Sample ID: IRB1997-01	Water		Sampled: 02/20/08 09:40	ph=7.7, temp=50.0
1613-Dioxin-HR-Alta	ug/l	02/29/08	02/27/08 09:40	J flags,17 congeners,no
Level 4 + EDD-OUT	N/A	02/29/08	03/19/08 09:40	TEQ,ug/L,sub=Vista Excel EDD email to pm,Include Std logs for LvI IV
Containers Supplied:				
1 L Amber (Y)	1 L Amber (Z)			

Released By

I, Date/Time

17:00

Received By unn (

<u>17.00</u> Date/Time 2/22/08 0947

Released By Project 30290 Date/Time

Received By

Page 1 of 1 NPDES - 3895 Page 10 of 269 Date/Time

SAMPLE LOG-IN CHECKLIST

Vista Project #:	3029	0					TAT_	N/F	1			
	Date/Time			Initials:	Initials:			Location: wR-Z				
Samples Arrival:	rival: 2/22/08 C		27	9B	1B		Shelf/Rack: <u>N/A</u>					
	Date/Time			Initials:		Lo	Location: wR-2					
Logged In:	2/22/08	\$ 1237		DB.	03.		Shelf/Rack:					
Delivered By:	FedEx	UF	PS	Cal	DHL	Hand Delivered			Otł	ner		
Preservation:	Íce		Blu	le lce	Dr	y ice)		None			
Temp °C 5, 8		Time	: 094	2		The	ermon	neter II): IR-	1		
	- Marine Marine M											
and a start of the second start of the	an a							YEŞ	NO	NA		
Adequate Sample	Volume Rece	ved?										

Adequate Sample Volume Rece	ived?				$\overline{\checkmark}$				
Holding Time Acceptable?									
Shipping Container(s) Intact?					\checkmark				
Shipping Custody Seals Intact?									
Shipping Documentation Presen	t?		· .		\checkmark				
Airbill Trk # 7904 5318 8621									
Sample Container Intact?									
Sample Custody Seals Intact?							\checkmark		
Chain of Custody / Sample Docu	imentation P	resent?	· ·		V				
COC Anomaly/Sample Acceptar	ice Form con	npleted?	· · · · · · · · · · · ·	;		\checkmark			
If Chlorinated or Drinking Water	Samples, Ac	ceptable Pre	servation?				\checkmark		
Na ₂ S ₂ O ₃ Preservation Documented? COC Sample Contained						None			
Shipping Container	Vista	Client	Retain	Retu	im)	Disp	ose		
Comments:									

SUBCONTRACT ORDER

TestAmerica Irvine

IRB1997

SENDING LABORATORY:

TestAmerica Irvine 17461 Derian Avenue. Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297 Project Manager: Joseph Doak

RECEIVING LABORATORY:

Weck Laboratories, Inc 14859 E. Clark Avenue City of Industry, CA 91745 Phone :(626) 336-2139 Fax: (626) 336-2634 Project Location: California Receipt Temperature: **2**, **o**C

8022139

Ice: (Y)/N

Analysis	Units	Due	Expires	Comments
Sample ID: IRB1997-01	Water		Sampled: 02/20/08 09	9:40 ph=7.7, temp=50.0
Level 4 Data Package - Wec	N/A	02/29/08	03/19/08 09:40	
Mercury - 245.1, Diss -OUT	ug/l	02/29/08	03/19/08 09:40	Out to Weck Level 4 Boeing, permit, J flags
Mercury - 245.1-OUT	ug/l	02/29/08	03/19/08 09:40	Out to Weck Level 4 Boeing, permit, J flags
Containers Supplied:				
125 mL Poly w/HNO3 12 (AC)	25 mL Poly	/ (AD)		

2/21/08/045 Date/Time 2/21/08 /420 10K5 2/21/08 Received By Date/Time Releas manno 1400 NPDES P3897 1 of 1 Released By Date/Time Received By Date/Time

Weck Laboratories, Inc.

Analytical Laboratory Services - Since 1964

14859 E. Clark Ave., Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634 info@wecklabs.com www.wecklabs.com

CERTIFICATE OF ANALYSIS

Client:	TestAmerica, Inc Irvine	Report Date:	03/05/08 16:38
	17461 Derian Ave, Suite 100	Received Date:	02/21/08 14:20
	Irvine, CA 92614	Turn Around:	6 days
	Attention: Joseph Doak	Work Order #: 8022139	
	Phone: (949) 261-1022 Fax: (949) 260-3297	Client Project: IRB1997	

NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

Dear Joseph Doak :

Enclosed are the results of analyses for samples received 02/21/08 14:20 with the Chain of Custody document. The samples were received in good condition. The samples were received at 2.1 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Reviewed by: in

Kim G Tu

Project Manager

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8022139 Project ID: IRB1997 Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Date Received: 02/21/08 14:20 Date Reported: 03/05/08 16:38

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Sampled by:	Sample Comments	Laboratory	Matrix	Date Sampled
IRB1997-01	Client		8022139-01	Water	02/20/08 09:40

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Date Received: 02/21/08 14:20 Date Reported: 03/05/08 16:38

IRB1997-01 8022139-01 (Water)

Report ID: 8022139

Project ID: IRB1997

Date Sampled: 02/20/08 09:40

Metals by EPA 200 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Analyst	Data Qualifiers
Mercury, Dissolved	ND	0.050	ug/l	0.20	1	EPA 245.1	W8B0837	02/25/08	02/26/08	jlp	
Mercury, Total	ND	0.050	ug/l	0.20	1	EPA 245.1	W8B0837	02/25/08	02/26/08	jlp	

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8022139 Project ID: IRB1997 Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

 Date Received:
 02/21/08 14:20

 Date Reported:
 03/05/08 16:38

QUALITY CONTROL SECTION

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Date Received: 02/21/08 14:20 Date Reported: 03/05/08 16:38

Metals by EPA 200 Series Methods - Quality Control

Report ID: 8022139

Project ID: IRB1997

							%REC			
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch W8B0837 - EPA 245.1										
Blank (W8B0837-BLK1)				Analyzed:	02/26/08					
Mercury, Dissolved	ND	0.20	ug/l							
Mercury, Total	ND	0.20	ug/l							
LCS (W8B0837-BS1)				Analyzed:	02/26/08					
Mercury, Dissolved	0.993	0.20	ug/l	1.00		99	85-115			
Mercury, Total	0.993	0.20	ug/l	1.00		99	85-115			
Matrix Spike (W8B0837-MS1)	So	urce: 8022205	-01	Analyzed:	02/26/08					
Mercury, Dissolved	0.984	0.20	ug/l	1.00	ND	98	70-130			
Mercury, Total	0.984	0.20	ug/l	1.00	ND	98	70-130			
Matrix Spike (W8B0837-MS2)	So	urce: 8022237	-02	Analyzed: 02/26/08						
Mercury, Dissolved	20.8	4.0	ug/l	1.00	19.6	118	70-130			
Mercury, Total	20.8	4.0	ug/l	1.00	19.6	118	70-130			
Matrix Spike Dup (W8B0837-MSD1)	So	urce: 8022205	-01	Analyzed:	02/26/08					
Mercury, Dissolved	1.01	0.20	ug/l	1.00	ND	101	70-130	3	20	
Mercury, Total	1.01	0.20	ug/l	1.00	ND	101	70-130	3	20	
Matrix Spike Dup (W8B0837-MSD2)	So	urce: 8022237	-02	Analyzed:	02/26/08					
Mercury, Dissolved	20.8	4.0	ug/l	1.00	19.6	118	70-130	0	20	
Mercury, Total	20.8	4.0	ug/l	1.00	19.6	118	70-130	0	20	

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8022139 Project ID: IRB1997 Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Date Received: 02/21/08 14:20 Date Reported: 03/05/08 16:38

Notes and Definitions

- ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- % Rec Percent Recovery
- Sub Subcontracted analysis, original report available upon request
- MDL Method Detection Limit
- MDA Minimum Detectable Activity

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

APPENDIX G

Section 99

Outfall 018, January 23, 2008 MEC^X Data Validation Reports

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IRA2156

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title:	Boeing SSFL NPDES
Contract Task Order:	1261.100D.00
Sample Delivery Group:	IRA2156
Project Manager:	B. Kelly
Matrix:	Soil
QC Level:	IV
No. of Samples:	1
No. of Reanalyses/Dilutions:	0
Laboratory:	TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 018	IRA2156-01	30198-001	Water	01/23/08 1345	120.1, 160.2, 160.5, 180.1, 200.8, 245.1, 624, 900.0, 901.1, 903.0, 904.0, 905.0, 906.0, 1613, ASTM D-5174
Trip Blank	IRA2156-02	N/A	Water	01/23/08	624

II. Sample Management

No anomalies were observed regarding sample management. The sample in this SDG was received at TestAmerica-Irvine and Weck within the temperature limits of 4°C ±2°C. The sample was received below the temperature limit at Vista; however, the sample was not noted to have been frozen. The sample was received above the temperature limit at Eberline; however, radiological samples are not required to be chilled. According to the case narrative for this SDG, the sample was received intact at all laboratories. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine, custody seals were not required. Custody seals were intact upon arrival at Eberline and Vista. Custody seals were not present on the cooler received at Weck. If necessary, the client ID was added to the sample result summary by the reviewer.

1

Qualifie	Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
Ι	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
А	Not applicable.	ICP Serial Dilution %D were not within control limits.
Μ	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Ρ	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: February 29, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had no target compound detects above the EDL.

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Any EMPC value was qualified as an estimated nondetect, "UJ." Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHODS 200.8, 245.1—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: March 4, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.8 and 245.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding times, 6 months for metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.

- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP-MS metals and 85-115% for mercury.
- Blanks: Zinc was reported in a bracketing CCB at -3.8 μg/L; therefore, dissolved lead detected in the sample was qualified as an estimated detect, "J." There were no other applicable detects in the method blanks or CCBs.
- Interference Check Samples: ICSA/B analyses were performed in association with the dissolved metals analyses only. Recoveries were within the method-established control limits. All analytes were reported in the 6020 ICSA solution; however, the reviewer was not able to ascertain if the detection was indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the sample in this SDG for the total and dissolved 6020 analytes. All recoveries and RPDs were within the laboratory-established control limits. Evaluation of the mercury method accuracy was based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. The bracketing CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks Date Reviewed: March 3, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the *EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174,* and the *National Functional Guidelines for Inorganic Data Review* (2/94).

- Holding Times: The tritium sample was analyzed within 180 days of collection. The aliquots for strontium-90, radium-226 and total uranium were prepared one day beyond the five day holding time for unpreserved samples; therefore, these results were qualified as estimated, "J," for detects and, "UJ," for nondetect. Aliquots for gross alpha, gross beta, radium-228, strontium-90, and gamma spectroscopy were prepared within the five-day analytical holding time for unpreserved samples.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, nondetected gross alpha in the sample was qualified as an estimated nondetect, "UJ." The gross beta detector efficiency was greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. The tritium detector efficiency for the sample was at least 20% and was considered acceptable. The internal spike efficiency to default efficiency ratios was near 1, indicating that quenching did not occur.

The strontium chemical yield was at least 70% and was considered acceptable. The strontium continuing calibration results were within the laboratory control limits.

The radium-226 cell efficiencies were determined in September 2006. The radium-226 continuing calibration results were within the laboratory-established control limits. The radium-228 calibration utilized actinium-228 and was verified in February 2001. The radium-228 tracer, yttrium oxalate yields were greater than 70%.

The gamma spectroscopy geometry-specific, detector efficiencies were determined in September 1999 and February 2007. All analytes were determined at the maximum photopeak energy.

The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All calibration check standard recoveries were within 90-110% and were deemed acceptable.

• Blanks: There were no analytes detected in the method blank.

- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG for radium-228.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. Reported nondetects are valid to the MDA.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

D. EPA METHOD 624—Volatile Organic Compounds (VOCs)

Reviewed By: L. Calvin Date Reviewed: March 1, 2008

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC^X* Data Validation Procedure for Volatile Organics (DVP-2, Rev. 0), EPA Method 8260B, and the National Functional Guidelines for Organic Data Review (2/94).

- Holding Times: Analytical holding times were met. The preserved water samples were analyzed within 14 days of collection.
- GC/MS Tuning: The BFB tunes met the method abundance criteria. Samples were analyzed within 12 hours of the BFB injection time.
- Calibration: Calibration criteria were met. For applicable target compounds, initial calibration average RRFs were ≥0.05 and %RSDs ≤35%. Continuing calibration RRFs were ≥0.05 and %Ds ≤20%.
- Blanks: The method blank had no target compound detects above the MDL.

- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample of this SDG. Evaluation of method accuracy was based on LSC results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Trip Blanks: Sample Trip Blank was the trip blank associated with site sample Outfall 018. The trip blank had no target compound detects above the MDL.
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The internal standard area counts and retention times were within the control limits established by the continuing calibration standards: -50%/+100% for internal standard areas and ±30 seconds for retention times.
- Compound Identification: Compound identification was verified. The laboratory analyzed for 15 volatile target compounds by EPA Method 624. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review of the raw data indicated no problems with system performance.

E. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks Date Reviewed: March 4, 2008

The sample listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC^X* Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Methods 120.1, 160.2, 160.5, 180.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: Analytical holding times, 24 hours for conductivity, 48 hours for settleable solids and turbidity, and seven days for TSS, were met.
- Calibratione: The conductivity and turbidity check standard recoveries were acceptable. The balance calibration logs were acceptable. Calibration is not applicable to settleable solids.
- Blanks: Turbidity was detected in the method blank but not at a concentration sufficient to qualify the site samples. Method blanks and CCBs had no other detects.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits. The LCS is not applicable to settleable solids or turbidity.
- Laboratory Duplicates: Laboratory duplicate analyses were performed for turbidity and TSS. Both RPDs were within the laboratory-established control limits.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. For the applicable methods, method accuracy was evaluated based on the LCS results.
- Sample Result Verification: Review is not applicable at a Level V validation. Nondetects are valid to the reporting limit.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

VIICILI DALA		Sample Data		Laboratory Data		
Name: Project: Date Collected: Time Collected:	Test America-Irvine, CA IRA2156 23-Jan-08 1345	Matrix: Sample Size:	Aqueous 1.00 L	Lab Sample: 30198-001 QC Batch No.: 9906 Date Analyzed DB-5: 29-Jan-08	Date Received: Date Extracted: Date Analyzed DB-225:	25-Jan-08 27-Jan-08 NA
Analyte	Conc. (ug/L)	DL ^a EMPC ^b	Qualifiers	Labeled Standard	%R LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	R	0.00000693		<u>IS</u> 13C-2,3,7,8-TCDD	79.3 25 - 164	のないない
1,2,3,7,8-PeCDD	Ð	0.00000173		13C-1,2,3,7,8-PeCDD	69.1 25 - 181	
1,2,3,4,7,8-HxCDD	E B	0.00000291		13C-1,2,3,4,7,8-HxCDD	74.1 32 - 141	
1,2,3,6,7,8-HxCDD	QN Q	0.00000269		13C-1,2,3,6,7,8-HxCDD	73.3 28-130	
JINQ 1,2,3,7,8,9-HxCDD	D 0.00000186		J.	13C-1,2,3,4,6,7,8-HpCDD	74.7 23 - 140.	
1,2,3,4,6,7,8-HpCDD	DID 0.0000462	the second se		13C-OCDD	61.7 17-157	A COLUMN AND A COLUMN A
OCDD	0.000533			13C-2,3,7,8-TCDF	78.9 24-169	
2,3,7,8-TCDF	Ð	0.00000883	0883	13C-1,2,3,7,8-PeCDF	65.3 24-185	101000000000000000000000000000000000000
1,2,3,7,8-PeCDF	£	0.00000177	「「「「「「「「「」」」	13C-2,3,4,7,8-PeCDF	65.8 21 - 178	
2,3,4,7,8-PeCDF	£	0.0000100	and the second	13C-1,2,3,4,7,8-HxCDF	68.0 26-152	
1,2,3,4,7,8-HxCDF	E B	0.00000059		13C-1,2,3,6,7,8-HxCDF	68.8 26-123	
1,2,3,6,7,8-HxCDF	Ð.	0.00000103		13C-2,3,4,6,7,8-HxCDF	68.1 28-136	and the second se
2,3,4,6,7,8-HxCDF	£.	0.00000109		13C-1,2,3,7,8,9-HxCDF	71.5 29-147	
1,2,3,7,8,9-HxCDF	Q H	0.00000891	and the second	13C-1,2,3,4,6,7,8-HpCDF	64.9 28 - 143	and the second se
J/MVQ 1,2,3,4,6,7,8-HpCDF	DF 0.00000676		J.	13C-1,2,3,4,7,8,9-HpCDF	69.6 26 - 138	
	DF ND	0.00000144		13C-OCDF	64.2 17-157	and the second
3/bylo OCDF	0.0000144	うち に、「「「「「「」」」」」		CRS 37Cl-2,3,7,8-TCDD	89.6 35 - 197	
Totals				Footnotes		
Total TCDD	Ð	0.00000162		a. Sample specific estimated detection limit.	and the second se	A STATE OF A DESCRIPTION OF A DESCRIPTIO
Total PeCDD	Ð	0.00000318		b. Estimated maximum possible concentration.	P	
Total HxCDD	0.0000681	0.0000112	112	c. Method detection limit.	and the second se	The state of the second
Total HpCDD	0.0000954			d. Lower control limit - upper control limit.		
Total TCDF	0.00000143	0.0000023)231	a service of the state of the service of the servic	Second	and of the second
Total PeCDF	Ð	0.00000181				
Total HxCDF	0.00000475	the state of the s			and the second	AND A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PRO
Total HpCDF	0.0000153	的,你们 在这些问题。"			「「「「「「」」」」	

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

METALS										
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IRA2156-01 (OUTFALL 018	- Water) - cont.									
Reporting Units: ug/l										
Cadmium ()	EPA 200.8	8A23139	0.11	1.0	ND	1	01/23/08	01/24/08		
Copper J/DNQ	EPA 200.8	8A23139	0.75	2.0	1.6	1	01/23/08	01/24/08	J	
Lead	EPA 200.8	8A23139	0.30	1.0	1.0	1	01/23/08	01/24/08		
Selenium J/DNQ	EPA 200.8	8A23139	0.30	2.0	0.30	1	01/23/08	01/24/08	J	
Zinc J/B, DNQ	EPA 200.8	8A23139	2.5	20	15	1	01/23/08	01/24/08	J	

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA2156 <Page 5 of 28>

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2156-01 (OUTFALL 0	18 - Water) - cont.								
Reporting Units: ug/l									
Cadmium U	EPA 200.8-Diss	8A23140	0.11	1.0	ND	1	01/23/08	01/24/08	
Copper J/DNQ	EPA 200.8-Diss	8A23140	0.75	2.0	0.84	1	01/23/08	01/24/08	J
Lead U	EPA 200.8-Diss	8A23140	0.30	1.0	ND	1	01/23/08	01/25/08	
Selenium U	EPA 200.8-Diss	8A23140	0.30	2.0	ND	1	01/23/08	01/24/08	
Zinc J/B, DNQ	EPA 200.8-Diss	8A23140	2.5	20	7.0	1	01/23/08	01/24/08	J

PM 2/4/08

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA2156 <Page 6 of 28>

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

LEVEL (V

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Report Number: IRA2156

ojeet iib. Teetaline e allan e re

Sampled: 01/23/08 Received: 01/23/08

Metals by EPA 200 Series Methods

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2156-01 (OUTFALL 018	- Water) - cont.								
Reporting Units: ug/l									
Mercury, Dissolved \cup	EPA 245.1	W8A0913	0.050	0.20	ND	1	01/25/08	01/28/08	
Mercury, Total	EPA 245.1	W8A0913	0.050	0.20	ND	1	01/25/08	01/28/08	

TestAmerica Irvine

Joseph Doak Project Manager

> The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA2156 <Page 9 of 28>

Eberline Services

SDG <u>8686</u> Work Order <u>R8011</u> Received Date <u>01/28</u>		Client <u>TA IRVINE</u> Contract <u>PR0JECT# IRA2156</u> Matrix <u>WATER</u>								
Client	Lab									
Outfall 018	Sample ID	Collected	Analyzed	Nuclide	Results ± 20	Units	MDA			
IRA2156-01	8686-001	01/23/08	02/06/08	GrossAlpha	-1.16 ± 1.3	pCi/L	2.5 UJ/F			
			02/06/08	Gross Beta	4.16 ± 1.0	pCi/L	1.4			
			02/04/08	Ra-228	-0.058 ± 0.16	pCi/L	0.45 ()			
			01/31/08	K-40 (G)	υ	pCi/L	8.7			
			01/31/08	Cs-137 (G)	υ	pCi/L	0.66			
			02/15/08	H-3	-28.6 ± 94	pCi/L	160 V			
			02/11/08	Ra-226	0.623 ± 0.36	pCi/L	0.16 J/H			
			02/07/08	Sr-90	-0.093 ± 0.24	pCi/L	0.53 UJ/.			
			02/19/08	Total U	0.409 ± 0.046	pCi/L	0.022 J/			
	/	EVE								

ANALYSIS RESULTS

Certified by____ N Report Date 02/22/08 Page 1

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2156-01 (OUTFALL 0	18 - Water)								
Reporting Units: ug/I									
Benzene U	EPA 624	8A27002	0.28	2.0	ND	1	01/27/08	01/27/08	
Carbon tetrachloride	EPA 624	8A27002	0.28	5.0	ND	1	01/27/08	01/27/08	
Chloroform	EPA 624	8A27002	0.33	2.0	ND	1	01/27/08	01/27/08	
1,1-Dichloroethane	EPA 624	8A27002	0.27	2.0	ND	1	01/27/08		
1,2-Dichloroethane	EPA 624	8A27002	0.28	2.0	ND	1	01/27/08	01/27/08	
1,1-Dichloroethene	EPA 624	8A27002	0.42	3.0	ND	1	01/27/08	01/27/08	
Ethylbenzene	EPA 624	8A27002	0.25	2.0	ND	1	01/27/08	01/27/08	
Tetrachloroethene	EPA 624	8A27002	0.32	2.0	ND	1		01/27/08	
Toluene	EPA 624	8A27002	0.36	2.0	ND	1	01/27/08 01/27/08	01/27/08	
1,1,1-Trichloroethane	EPA 624	8A27002	0.30	2.0	ND	1	01/27/08	01/27/08	
1,1,2-Trichloroethane	EPA 624	8A27002	0.30	2.0	ND	1	01/27/08	01/27/08	
Trichloroethene	EPA 624	8A27002	0.26	5.0	ND	1		01/27/08	
Trichlorofluoromethane	EPA 624	8A27002	0.34	5.0	ND	1	01/27/08	01/27/08	
Vinyl chloride	EPA 624	8A27002	0.30	5.0	ND	1	01/27/08	01/27/08	
Xylenes, Total	EPA 624	8A27002	0.90	4.0	ND	1	01/27/08 01/27/08	01/27/08	
Surrogate: Dibromofluoromethane (80-1		01227002	0.50	4.0	86 %	1	01/2//08	01/27/08	
Surrogate: Toluene-d8 (80-120%)					94 %				
Surrogate: 4-Bromofluorobenzene (80-12	20%)				84 %				
Sample ID: IRA2156-02 (TRIP BLANK	(- Water)								
Reporting Units: ug/l	- mater)								
Benzene U	EPA 624	8A27002	0.28	2.0	ND	1	01/27/08	01/27/00	
Carbon tetrachloride	EPA 624	8A27002	0.28	5.0	ND	1	01/27/08	01/27/08	
Chloroform	EPA 624	8A27002	0.33	2.0	ND	1	01/27/08	01/27/08	
1,1-Dichloroethane	EPA 624	8A27002	0.27	2.0	ND	1	01/27/08	01/27/08	
1,2-Dichloroethane	EPA 624	8A27002	0.28	2.0	ND	1	01/27/08	01/27/08	
1,1-Dichloroethene	EPA 624	8A27002	0.42	3.0	ND	1	01/27/08	01/27/08	
Ethylbenzene	EPA 624	8A27002	0.25	2.0	ND	1		01/27/08	
Tetrachloroethene	EPA 624	8A27002	0.32	2.0	ND	1	01/27/08 01/27/08	01/27/08	
Toluene	EPA 624	8A27002	0.36	2.0	ND	1		01/27/08	
1,1,1-Trichloroethane	EPA 624	8A27002	0.30	2.0	ND	1	01/27/08	01/27/08	
1,1,2-Trichloroethane	EPA 624	8A27002	0.30	2.0	ND	1	01/27/08	01/27/08	
Trichloroethene	EPA 624	8A27002	0.26	5.0	ND	1	01/27/08	01/27/08	
Trichlorofluoromethane	EPA 624	8A27002	0.34	5.0	ND	1	01/27/08	01/27/08	
Vinyl chloride	EPA 624	8A27002	0.30	5.0			01/27/08	01/27/08	
Xylenes, Total	EPA 624	8A27002	0.90	4.0	ND ND	1	01/27/08	01/27/08	
Surrogate: Dibromofluoromethane (80-12		02 LA 1 002	0.90	4.0	88 %	1	01/27/08	01/27/08	
Surrogate: Toluene-d8 (80-120%)									
Surrogate: 4-Bromofluorohensone (90.1)	00/1				95 %				

Surrogate: 4-Bromofluorobenzene (80-120%)

LevelIV

TestAmerica Irvine

Joseph Doak Project Manager

> The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

84 %

IRA2156 <Page 2 of 28>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

INORGANICS										
			MDL	Reporting	Sample	Dilution	Date	Date	Data Qualifiers	
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Quanners	
Sample ID: IRA2156-01 (OUTFALL 018	8 - Water) - cont.									
Reporting Units: mg/l										
Hexane Extractable Material (Oil & 🔆 Grease)	EPA 1664A	8A28083	1.3	4.8	ND	1	01/28/08	01/28/08		
Ammonia-N (Distilled)	EPA 350.2	8A24139	0.30	0.50	ND	1	01/24/08	01/24/08		
Biochemical Oxygen Demand	EPA 405.1	8A23145	0.59	2.0	1.9	1	01/23/08	01/28/08	J	
Chloride	EPA 300.0	8A23041	5.0	10	84	20	01/23/08	01/23/08		
Nitrate-N	EPA 300.0	8A23041	0.060	0.11	0.20	1	01/23/08	01/23/08		
Nitrite-N	EPA 300.0	8A23041	0.090	0.15	ND	1	01/23/08	01/23/08		
Nitrate/Nitrite-N	EPA 300.0	8A23041	0.15	0.26	0.20	1	01/23/08	01/23/08	J	
Sulfate	EPA 300.0	8A23041	4.0	10	84	20	01/23/08	01/23/08		
Surfactants (MBAS)	EPA 425.1	8A24147	0.044	0.10	0.050	1	01/24/08	01/24/08	J	
Total Dissolved Solids	EPA 160.1	8A24152	10	10	360	1	01/24/08	01/24/08		
Total Suspended Solids	EPA 160.2	8A24163	10	10	ND	1	01/24/08	01/24/08		
Sample ID: IRA2156-01 (OUTFALL 018 Reporting Units: ml/l/hr	3 - Water)									
Total Settleable Solids	EPA 160.5	8A24103	0.10	0.10	ND	1	01/24/08	01/24/08		
Sample ID: IRA2156-01 (OUTFALL 018 Reporting Units: NTU	8 - Water)									
Turbidity	EPA 180.1	8A24108	0.040	1.0	18	1	01/24/08	01/24/08		
Sample ID: IRA2156-01 (OUTFALL 018 Reporting Units: ug/l	8 - Water)									
Total Cyanide	EPA 335.2	8A28126	2.2	5.0	ND	1	01/28/08	01/28/08		
Perchlorate	EPA 314.0	8A24068	1.5	4.0	ND	1	01/24/08	01/24/08		

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA2156 <Page 7 of 28>

LEVEL IV

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

INORGANICS											
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: IRA2156-01 (OUTFALL 01	8 - Water) - cont.										
Reporting Units: umhos/cm											
Specific Conductance	EPA 120.1	8A24150	1.0	1.0	560	1	01/24/08	01/24/08			

TestAmerica Irvine

Joseph Doak Project Manager

> The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA2156 <Page 8 of 28>

APPENDIX G

Section 100

Outfall 018, January 23, 2008 Test America Analytical Laboratory Report

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project: Routine Outfall 018

Sampled: 01/23/08 Received: 01/23/08 Issued: 02/25/08 10:57

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

Samples were received intact, at 0°C, on ice and with chain of custody documentation. SAMPLE RECEIPT: HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica Sample Acceptance Policy unless otherwise noted in the report. Samples requiring preservation were verified prior to sample analysis. PRESERVATION: All analyses met method criteria, except as noted in the report with data qualifiers. QA/QC CRITERIA: Results that fall between the MDL and RL are 'J' flagged. COMMENTS: SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report. ADDITIONAL This is a final report to include all subcontract data. INFORMATION: 1

LABORATORY ID	CLIENT ID	MATRIX
IRA2156-01	OUTFALL 018	Water
IRA2156-02	TRIP BLANK	Water

Reviewed By:

Joseph Dock

TestAmerica Irvine Joseph Doak Project Manager

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 018

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

PURGEABLES BY GC/MS (EPA 624)										
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IRA2156-01 (OUTFALL 018 - V									-	
Reporting Units: ug/l	,									
Benzene	EPA 624	8A27002	0.28	2.0	ND	1	01/27/08	01/27/08		
Carbon tetrachloride	EPA 624	8A27002	0.28	5.0	ND	1	01/27/08	01/27/08		
Chloroform	EPA 624	8A27002	0.33	2.0	ND	1	01/27/08	01/27/08		
1,1-Dichloroethane	EPA 624	8A27002	0.27	2.0	ND	1	01/27/08	01/27/08		
1,2-Dichloroethane	EPA 624	8A27002	0.28	2.0	ND	1	01/27/08	01/27/08		
1,1-Dichloroethene	EPA 624	8A27002	0.42	3.0	ND	1	01/27/08	01/27/08		
Ethylbenzene	EPA 624	8A27002	0.25	2.0	ND	1	01/27/08	01/27/08		
Tetrachloroethene	EPA 624	8A27002	0.32	2.0	ND	1	01/27/08	01/27/08		
Toluene	EPA 624	8A27002	0.36	2.0	ND	1	01/27/08	01/27/08		
1,1,1-Trichloroethane	EPA 624	8A27002	0.30	2.0	ND	1	01/27/08	01/27/08		
1,1,2-Trichloroethane	EPA 624	8A27002	0.30	2.0	ND	1	01/27/08	01/27/08		
Trichloroethene	EPA 624	8A27002	0.26	5.0	ND	1	01/27/08	01/27/08		
Trichlorofluoromethane	EPA 624	8A27002	0.34	5.0	ND	1	01/27/08	01/27/08		
Vinyl chloride	EPA 624	8A27002	0.30	5.0	ND	1	01/27/08	01/27/08		
Xylenes, Total	EPA 624	8A27002	0.90	4.0	ND	1	01/27/08	01/27/08		
Surrogate: Dibromofluoromethane (80-120%))				86 %					
Surrogate: Toluene-d8 (80-120%)					94 %					
Surrogate: 4-Bromofluorobenzene (80-120%)					84 %					
Sample ID: IRA2156-02 (TRIP BLANK - W	ater)									
Reporting Units: ug/l										
Benzene	EPA 624	8A27002	0.28	2.0	ND	1	01/27/08	01/27/08		
Carbon tetrachloride	EPA 624	8A27002	0.28	5.0	ND	1	01/27/08	01/27/08		
Chloroform	EPA 624	8A27002	0.33	2.0	ND	1	01/27/08	01/27/08		
1,1-Dichloroethane	EPA 624	8A27002	0.27	2.0	ND	1	01/27/08	01/27/08		
1,2-Dichloroethane	EPA 624	8A27002	0.28	2.0	ND	1	01/27/08	01/27/08		
1,1-Dichloroethene	EPA 624	8A27002	0.42	3.0	ND	1	01/27/08	01/27/08		
Ethylbenzene	EPA 624	8A27002	0.25	2.0	ND	1	01/27/08	01/27/08		
Tetrachloroethene	EPA 624	8A27002	0.32	2.0	ND	1	01/27/08	01/27/08		
Toluene	EPA 624	8A27002	0.36	2.0	ND	1	01/27/08	01/27/08		
1,1,1-Trichloroethane	EPA 624	8A27002	0.30	2.0	ND	1	01/27/08	01/27/08		
1,1,2-Trichloroethane	EPA 624	8A27002	0.30	2.0	ND	1	01/27/08	01/27/08		
Trichloroethene	EPA 624	8A27002	0.26	5.0	ND	1	01/27/08	01/27/08		
Trichlorofluoromethane	EPA 624	8A27002	0.34	5.0	ND	1	01/27/08	01/27/08		
Vinyl chloride	EPA 624	8A27002	0.30	5.0	ND	1	01/27/08	01/27/08		
Xylenes, Total	EPA 624	8A27002	0.90	4.0	ND	1	01/27/08	01/27/08		
Surrogate: Dibromofluoromethane (80-120%))				88 %					
Surrogate: Toluene-d8 (80-120%)					95 %					
Surrogate: 4-Bromofluorobenzene (80-120%)					84 %					

TestAmerica Irvine

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2156-01 (OUTFALL 018 -									
Reporting Units: ug/l									
Bis(2-ethylhexyl)phthalate	EPA 625	8A29057	1.6	4.8	1.7	0.962	01/29/08	01/31/08	J
2,4-Dinitrotoluene	EPA 625	8A29057	0.19	8.7	ND	0.962	01/29/08	01/31/08	
N-Nitrosodimethylamine	EPA 625	8A29057	0.096	7.7	ND	0.962	01/29/08	01/31/08	
Pentachlorophenol	EPA 625	8A29057	0.096	7.7	ND	0.962	01/29/08	01/31/08	
2,4,6-Trichlorophenol	EPA 625	8A29057	0.096	5.8	ND	0.962	01/29/08	01/31/08	
Surrogate: 2-Fluorophenol (30-120%)					79 %				
Surrogate: Phenol-d6 (35-120%)					78 %				
Surrogate: 2,4,6-Tribromophenol (40-120%))				108 %				
Surrogate: Nitrobenzene-d5 (45-120%)					85 %				
Surrogate: 2-Fluorobiphenyl (50-120%)					92 %				
Surrogate: Terphenyl-d14 (50-125%)					105 %				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

ORGANOCHLORINE PESTICIDES (EPA 608)											
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: IRA2156-01 (OUTFALL 018 -	Water) - cont.										
Reporting Units: ug/l											
alpha-BHC	EPA 608	8A24100	0.0024	0.0095	ND	0.952	01/24/08	01/29/08			
Surrogate: Decachlorobiphenyl (45-120%)					88 %						
Surrogate: Tetrachloro-m-xylene (35-115%)					73 %						

TestAmerica Irvine

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

METALS MDL Reporting Sample Dilution Date Date Data Analyte Method Batch Limit Limit Result Factor Extracted Analyzed Qualifiers Sample ID: IRA2156-01 (OUTFALL 018 - Water) - cont. Reporting Units: ug/l ND EPA 200.8 8A23139 0.11 1.0 01/23/08 01/24/08 Cadmium 1 Copper EPA 200.8 8A23139 0.75 2.0 1.6 1 01/23/08 01/24/08 J EPA 200.8 8A23139 0.30 1.0 01/23/08 01/24/08 Lead 1.0 1 Selenium EPA 200.8 8A23139 0.30 2.0 0.30 01/23/08 01/24/08 J 1 Zinc EPA 200.8 8A23139 2.5 20 15 1 01/23/08 01/24/08 J

TestAmerica Irvine

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Arcadia, CA 91007

618 Michillinda Avenue, Suite 200

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 018

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

DISSOLVED METALS MDL Reporting Sample Dilution Date Date Data Analyte Method Batch Limit Limit Result Factor Extracted Analyzed Qualifiers Sample ID: IRA2156-01 (OUTFALL 018 - Water) - cont. Reporting Units: ug/l ND Cadmium EPA 200.8-Diss 8A23140 0.11 1.0 01/23/08 01/24/08 1 Copper EPA 200.8-Diss 8A23140 0.75 2.0 0.84 1 01/23/08 01/24/08 J ND Lead EPA 200.8-Diss 8A23140 0.30 01/23/08 01/25/08 1.01 Selenium EPA 200.8-Diss 8A23140 0.30 2.0 ND 01/23/08 01/24/08 1 Zinc EPA 200.8-Diss 8A23140 2.5 20 7.0 1 01/23/08 01/24/08 J

TestAmerica Irvine

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 018

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

INORGANICS										
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IRA2156-01 (OUTFALL 018	- Water) - cont.									
Reporting Units: mg/l										
Hexane Extractable Material (Oil & Grease)	EPA 1664A	8A28083	1.3	4.8	ND	1	01/28/08	01/28/08		
Ammonia-N (Distilled)	EPA 350.2	8A24139	0.30	0.50	ND	1	01/24/08	01/24/08		
Biochemical Oxygen Demand	EPA 405.1	8A23145	0.59	2.0	1.9	1	01/23/08	01/28/08	J	
Chloride	EPA 300.0	8A23041	5.0	10	84	20	01/23/08	01/23/08		
Nitrate-N	EPA 300.0	8A23041	0.060	0.11	0.20	1	01/23/08	01/23/08		
Nitrite-N	EPA 300.0	8A23041	0.090	0.15	ND	1	01/23/08	01/23/08		
Nitrate/Nitrite-N	EPA 300.0	8A23041	0.15	0.26	0.20	1	01/23/08	01/23/08	J	
Sulfate	EPA 300.0	8A23041	4.0	10	84	20	01/23/08	01/23/08		
Surfactants (MBAS)	EPA 425.1	8A24147	0.044	0.10	0.050	1	01/24/08	01/24/08	J	
Total Dissolved Solids	EPA 160.1	8A24152	10	10	360	1	01/24/08	01/24/08		
Total Suspended Solids	EPA 160.2	8A24163	10	10	ND	1	01/24/08	01/24/08		
Sample ID: IRA2156-01 (OUTFALL 018 Reporting Units: ml/l/hr	- Water)									
Total Settleable Solids	EPA 160.5	8A24103	0.10	0.10	ND	1	01/24/08	01/24/08		
Sample ID: IRA2156-01 (OUTFALL 018 Reporting Units: NTU	- Water)									
Turbidity	EPA 180.1	8A24108	0.040	1.0	18	1	01/24/08	01/24/08		
Sample ID: IRA2156-01 (OUTFALL 018 Reporting Units: ug/l	- Water)									
Total Cyanide	EPA 335.2	8A28126	2.2	5.0	ND	1	01/28/08	01/28/08		
Perchlorate	EPA 314.0	8A24068	1.5	4.0	ND	1	01/24/08	01/24/08		

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

INORGANICS										
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IRA2156-01 (OUTFALL 01	8 - Water) - cont.									
Reporting Units: umhos/cm										
Specific Conductance	EPA 120.1	8A24150	1.0	1.0	560	1	01/24/08	01/24/08		

Project ID: Routine Outfall 018

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

Metals by EPA 200 Series Methods										
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IRA2156-01 (OUTFALL 018	- Water) - cont.									
Reporting Units: ug/l										
Mercury, Dissolved	EPA 245.1	W8A0913	0.050	0.20	ND	1	01/25/08	01/28/08		
Mercury, Total	EPA 245.1	W8A0913	0.050	0.20	ND	1	01/25/08	01/28/08		

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

SHORT HOLD TIME DETAIL REPORT

Sample ID: OUTFALL 018 (IRA2156-01) -	Hold Time (in days) Water	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
EPA 160.5	2	01/23/2008 13:45	01/23/2008 17:55	01/24/2008 20:00	01/24/2008 20:00
EPA 180.1	2	01/23/2008 13:45	01/23/2008 17:55	01/24/2008 17:45	01/24/2008 17:45
EPA 300.0	2	01/23/2008 13:45	01/23/2008 17:55	01/23/2008 18:10	01/23/2008 20:19
EPA 405.1	2	01/23/2008 13:45	01/23/2008 17:55	01/23/2008 22:23	01/28/2008 14:00
EPA 425.1	2	01/23/2008 13:45	01/23/2008 17:55	01/24/2008 16:43	01/24/2008 17:29

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

eport Number. Hanzie

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

	D L	Reporting	MDI	TT •4	Spike	Source	A/ DEC	%REC	DDD	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8A27002 Extracted: 01/27/08	<u>8</u>										
Blank Analyzed: 01/27/2008 (8A27002-E	,										
Benzene	ND	2.0	0.28	ug/l							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	0.50	ug/l							
Carbon tetrachloride	ND	5.0	0.28	ug/l							
Chloroform	ND	2.0	0.33	ug/l							
1,1-Dichloroethane	ND	2.0	0.27	ug/l							
1,2-Dichloroethane	ND	2.0	0.28	ug/l							
1,1-Dichloroethene	ND	3.0	0.42	ug/l							
Ethylbenzene	ND	2.0	0.25	ug/l							
Tetrachloroethene	ND	2.0	0.32	ug/l							
Toluene	ND	2.0	0.36	ug/l							
1,1,1-Trichloroethane	ND	2.0	0.30	ug/l							
1,1,2-Trichloroethane	ND	2.0	0.30	ug/l							
Trichloroethene	ND	5.0	0.26	ug/l							
Trichlorofluoromethane	ND	5.0	0.34	ug/l							
Vinyl chloride	ND	5.0	0.30	ug/l							
Xylenes, Total	ND	4.0	0.90	ug/l							
Surrogate: Dibromofluoromethane	21.2			ug/l	25.0		85	80-120			
Surrogate: Toluene-d8	23.4			ug/l	25.0		94	80-120			
Surrogate: 4-Bromofluorobenzene	21.0			ug/l	25.0		84	80-120			
LCS Analyzed: 01/27/2008 (8A27002-BS	(1)										
Benzene	25.9	2.0	0.28	ug/l	25.0		104	70-120			
Carbon tetrachloride	29.2	5.0	0.28	ug/l	25.0		117	65-140			
Chloroform	25.9	2.0	0.28	ug/l	25.0		104	70-130			
1.1-Dichloroethane	23.9	2.0	0.33	ug/l	25.0		97	70-130			
1,2-Dichloroethane	24.5	2.0	0.27	ug/l	25.0		107	60-140			
1,1-Dichloroethene	20.9	3.0	0.28	-	25.0 25.0		93	70-125			
	23.2 27.5	2.0	0.42	ug/l	25.0 25.0		95 110	75-125			
Ethylbenzene Tetrachloroethene	27.3			ug/l							
		2.0	0.32	ug/l	25.0		111	70-125			
Toluene	25.0	2.0	0.36	ug/l	25.0		100	70-120			
1,1,1-Trichloroethane	27.8	2.0	0.30	ug/l	25.0		111	65-135			
1,1,2-Trichloroethane	25.9	2.0	0.30	ug/l	25.0		104	70-125			
Trichloroethene	26.7	5.0	0.26	ug/l	25.0		107	70-125			
Trichlorofluoromethane	26.2	5.0	0.34	ug/l	25.0		105	65-145			
Vinyl chloride	23.5	5.0	0.30	ug/l	25.0		94	55-135			
Xylenes, Total	78.3	4.0	0.90	ug/l	75.0		104	70-125			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
·				emis	Lever	itesuit	/unee	Linits	IN D	Linnt	Quanners
Batch: 8A27002 Extracted: 01/27/08	<u>.</u>										
LCS Analyzed: 01/27/2008 (8A27002-BS	1)										
Surrogate: Dibromofluoromethane	21.4			ug/l	25.0		86	80-120			
Surrogate: Toluene-d8	23.8			ug/l	25.0		95	80-120			
Surrogate: 4-Bromofluorobenzene	21.8			ug/l	25.0		87	80-120			
Matrix Spike Analyzed: 01/27/2008 (8A2	7002-MS1)				Sou	rce: IRA	2191-01				
Benzene	24.4	2.0	0.28	ug/l	25.0	1.43	92	65-125			
Carbon tetrachloride	26.3	5.0	0.28	ug/l	25.0	ND	105	65-140			
Chloroform	22.9	2.0	0.33	ug/l	25.0	ND	92	65-135			
1,1-Dichloroethane	21.3	2.0	0.27	ug/l	25.0	ND	85	65-130			
1,2-Dichloroethane	24.3	2.0	0.28	ug/l	25.0	ND	97	60-140			
1,1-Dichloroethene	19.4	3.0	0.42	ug/l	25.0	ND	78	60-130			
Ethylbenzene	35.5	2.0	0.25	ug/l	25.0	10.8	99	65-130			
Tetrachloroethene	24.1	2.0	0.32	ug/l	25.0	ND	96	65-130			
Toluene	38.8	2.0	0.36	ug/l	25.0	18.7	81	70-125			
1,1,1-Trichloroethane	25.0	2.0	0.30	ug/l	25.0	ND	100	65-140			
1,1,2-Trichloroethane	22.9	2.0	0.30	ug/l	25.0	ND	92	65-130			
Trichloroethene	24.0	5.0	0.26	ug/l	25.0	0.360	94	65-125			
Trichlorofluoromethane	22.2	5.0	0.34	ug/l	25.0	ND	89	60-145			
Vinyl chloride	19.6	5.0	0.30	ug/l	25.0	ND	78	45-140			
Xylenes, Total	142	4.0	0.90	ug/l	75.0	79.0	84	60-130			
Surrogate: Dibromofluoromethane	21.5			ug/l	25.0		86	80-120			
Surrogate: Toluene-d8	23.4			ug/l	25.0		94	80-120			
Surrogate: 4-Bromofluorobenzene	21.7			ug/l	25.0		87	80-120			
Matrix Spike Dup Analyzed: 01/27/2008	(8A27002-M	SD1)			Sou	rce: IRA	2191-01				
Benzene	22.8	2.0	0.28	ug/l	25.0	1.43	86	65-125	7	20	
Carbon tetrachloride	24.2	5.0	0.28	ug/l	25.0	ND	97	65-140	8	25	
Chloroform	21.2	2.0	0.33	ug/l	25.0	ND	85	65-135	8	20	
1,1-Dichloroethane	19.9	2.0	0.27	ug/l	25.0	ND	80	65-130	7	20	
1,2-Dichloroethane	22.0	2.0	0.28	ug/l	25.0	ND	88	60-140	10	20	
1,1-Dichloroethene	18.6	3.0	0.42	ug/l	25.0	ND	74	60-130	4	20	
Ethylbenzene	32.8	2.0	0.25	ug/l	25.0	10.8	88	65-130	8	20	
Tetrachloroethene	22.4	2.0	0.32	ug/l	25.0	ND	90	65-130	7	20	
Toluene	36.4	2.0	0.36	ug/l	25.0	18.7	71	70-125	7	20	
1,1,1-Trichloroethane	22.8	2.0	0.30	ug/l	25.0	ND	91	65-140	9	20	
1,1,2-Trichloroethane	21.5	2.0	0.30	ug/l	25.0	ND	86	65-130	6	25	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8A27002 Extracted: 01/27/08	_										
Matuin Sailta Dun Angluradi 01/27/2009	(9 A 27002 M/SI	D1)			Sou	rce: IRA	5101 01				
Matrix Spike Dup Analyzed: 01/27/2008	(8A2/002-1015)	D1)			Sou	rce: IKA.	2191-01				
Trichloroethene	22.2	5.0	0.26	ug/l	25.0	0.360	88	65-125	7	20	
Trichlorofluoromethane	23.6	5.0	0.34	ug/l	25.0	ND	94	60-145	6	25	
Vinyl chloride	17.8	5.0	0.30	ug/l	25.0	ND	71	45-140	9	30	
Xylenes, Total	135	4.0	0.90	ug/l	75.0	79.0	75	60-130	5	20	
Surrogate: Dibromofluoromethane	21.5			ug/l	25.0		86	80-120			
Surrogate: Toluene-d8	23.8			ug/l	25.0		95	80-120			
Surrogate: 4-Bromofluorobenzene	21.9			ug/l	25.0		87	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
·				0 1110	20,01	1105411	, und e	2	111 2		Zummers
Batch: 8A29057 Extracted: 01/29/08	8										
Blank Analyzed: 01/31/2008 (8A29057-F	BLK1)										
Bis(2-ethylhexyl)phthalate	ND	5.0	1.7	ug/l							
2,4-Dinitrotoluene	ND	9.0	0.20	ug/l							
N-Nitrosodimethylamine	ND	8.0	0.10	ug/l							
Pentachlorophenol	ND	8.0	0.10	ug/l							
2,4,6-Trichlorophenol	ND	6.0	0.10	ug/l							
Surrogate: 2-Fluorophenol	14.9			ug/l	20.0		75	30-120			
Surrogate: Phenol-d6	16.3			ug/l	20.0		81	35-120			
Surrogate: 2,4,6-Tribromophenol	18.4			ug/l	20.0		92	40-120			
Surrogate: Nitrobenzene-d5	8.42			ug/l	10.0		84	45-120			
Surrogate: 2-Fluorobiphenyl	8.88			ug/l	10.0		89	50-120			
Surrogate: Terphenyl-d14	10.6			ug/l	10.0		106	50-125			
LCS Analyzed: 01/31/2008 (8A29057-BS	51)										MNR1
Bis(2-ethylhexyl)phthalate	11.3	5.0	1.7	ug/l	10.0		113	65-130			
2,4-Dinitrotoluene	11.2	9.0	0.20	ug/l	10.0		112	65-120			
N-Nitrosodimethylamine	8.42	8.0	0.10	ug/l	10.0		84	45-120			
Pentachlorophenol	8.90	8.0	0.10	ug/l	10.0		89	50-120			
2,4,6-Trichlorophenol	8.46	6.0	0.10	ug/l	10.0		85	55-120			
Surrogate: 2-Fluorophenol	15.6			ug/l	20.0		78	30-120			
Surrogate: Phenol-d6	17.1			ug/l	20.0		86	35-120			
Surrogate: 2,4,6-Tribromophenol	21.2			ug/l	20.0		106	40-120			
Surrogate: Nitrobenzene-d5	8.44			ug/l	10.0		84	45-120			
Surrogate: 2-Fluorobiphenyl	8.82			ug/l	10.0		88	50-120			
Surrogate: Terphenyl-d14	9.24			ug/l	10.0		92	50-125			
LCS Dup Analyzed: 01/31/2008 (8A2905	57-BSD1)										
Bis(2-ethylhexyl)phthalate	11.3	5.0	1.7	ug/l	10.0		113	65-130	1	20	
2,4-Dinitrotoluene	10.2	9.0	0.20	ug/l	10.0		102	65-120	9	20	
N-Nitrosodimethylamine	7.74	8.0	0.10	ug/l	10.0		77	45-120	8	20	J
Pentachlorophenol	8.24	8.0	0.10	ug/l	10.0		82	50-120	8	25	
2,4,6-Trichlorophenol	8.06	6.0	0.10	ug/l	10.0		81	55-120	5	30	
Surrogate: 2-Fluorophenol	14.4			ug/l	20.0		72	30-120			
Surrogate: Phenol-d6	16.3			ug/l	20.0		82	35-120			
Surrogate: 2,4,6-Tribromophenol	19.6			ug/l	20.0		98	40-120			
Surrogate: Nitrobenzene-d5	7.74			ug/l	10.0		77	45-120			
Surrogate: 2-Fluorobiphenyl	7.68			ug/l	10.0		77	50-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A29057 Extracted: 01/29/08 LCS Dup Analyzed: 01/31/2008 (8A2905	_										
Surrogate: Terphenyl-d14	8.94			ug/l	10.0		89	50-125			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A24100 Extracted: 01/24/08	<u>}_</u>										
Blank Analyzed: 01/29/2008 (8A24100-B	LK1)										
alpha-BHC	ND	0.010	0.0025	ug/l							
Surrogate: Decachlorobiphenyl	0.447			ug/l	0.500		89	45-120			
Surrogate: Tetrachloro-m-xylene	0.454			ug/l	0.500		91	35-115			
LCS Analyzed: 01/30/2008 (8A24100-BS	1)										MNR1
alpha-BHC	0.435	0.010	0.0025	ug/l	0.500		87	45-115			
Surrogate: Decachlorobiphenyl	0.440			ug/l	0.500		88	45-120			
Surrogate: Tetrachloro-m-xylene	0.416			ug/l	0.500		83	35-115			
LCS Dup Analyzed: 01/30/2008 (8A2410	0-BSD1)										
alpha-BHC	0.426	0.010	0.0025	ug/l	0.500		85	45-115	2	30	
Surrogate: Decachlorobiphenyl	0.426			ug/l	0.500		85	45-120			
Surrogate: Tetrachloro-m-xylene	0.409			ug/l	0.500		82	35-115			

TestAmerica Irvine

Arcadia, CA 91007

Attention: Bronwyn Kelly

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing F 618 Michillinda Avenue, Suite 200

Project ID: Routine Outfall 018

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A23139 Extracted: 01/23/08	_										
	T TZ4\										
Blank Analyzed: 01/24/2008 (8A23139-B	-										
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Selenium	ND	2.0	0.30	ug/l							
Zinc	ND	20	2.5	ug/l							
LCS Analyzed: 01/24/2008 (8A23139-BS	1)										
Cadmium	81.6	1.0	0.11	ug/l	80.0		102	85-115			
Copper	83.0	2.0	0.75	ug/l	80.0		104	85-115			
Lead	83.1	1.0	0.30	ug/l	80.0		104	85-115			
Selenium	81.2	2.0	0.30	ug/l	80.0		101	85-115			
Zinc	81.7	20	2.5	ug/l	80.0		102	85-115			
Matrix Spike Analyzed: 01/24/2008 (8A2	3139-MS1)				Sou	rce: IRA	2156-01				
Cadmium	80.8	1.0	0.11	ug/l	80.0	ND	101	70-130			
Copper	78.4	2.0	0.75	ug/l	80.0	1.59	96	70-130			
Lead	77.6	1.0	0.30	ug/l	80.0	1.01	96	70-130			
Selenium	76.9	2.0	0.30	ug/l	80.0	0.302	96	70-130			
Zinc	88.9	20	2.5	ug/l	80.0	14.8	93	70-130			
				U							
Matrix Spike Dup Analyzed: 01/24/2008		,				rce: IRA					
Cadmium	81.8	1.0	0.11	ug/l	80.0	ND	102	70-130	1	20	
Copper	78.5	2.0	0.75	ug/l	80.0	1.59	96	70-130	0	20	
Lead	77.7	1.0	0.30	ug/l	80.0	1.01	96	70-130	0	20	
Selenium	77.7	2.0	0.30	ug/l	80.0	0.302	97	70-130	1	20	
Zinc	89.0	20	2.5	ug/l	80.0	14.8	93	70-130	0	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A23140 Extracted: 01/23/08											
	_										
Blank Analyzed: 01/24/2008-01/25/2008 (8A23140-BLH	K1)									
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Selenium	ND	2.0	0.30	ug/l							
Zinc	ND	20	2.5	ug/l							
LCS Analyzed: 01/24/2008-01/25/2008 (8	A23140-BS1)										
Cadmium	87.6	1.0	0.11	ug/l	80.0		110	85-115			
Copper	82.8	2.0	0.75	ug/l	80.0		103	85-115			
Lead	81.8	1.0	0.30	ug/l	80.0		102	85-115			
Selenium	91.1	2.0	0.30	ug/l	80.0		114	85-115			
Zinc	91.1	20	2.5	ug/l	80.0		114	85-115			
Matrix Spike Analyzed: 01/24/2008-01/2	5/2008 (8A231	40-MS1)			Sou	rce: IRA	2156-01				
Cadmium	83.6	1.0	0.11	ug/l	80.0	ND	104	70-130			
Copper	78.0	2.0	0.75	ug/l	80.0	0.844	96	70-130			
Lead	78.8	1.0	0.30	ug/l	80.0	ND	98	70-130			
Selenium	84.7	2.0	0.30	ug/l	80.0	ND	106	70-130			
Zinc	87.8	20	2.5	ug/l	80.0	6.99	101	70-130			
Matrix Spike Dup Analyzed: 01/24/2008-	01/25/2008 (8	A23140-MS	D1)		Sou	rce: IRA	2156-01				
Cadmium	84.9	1.0	0.11	ug/l	80.0	ND	106	70-130	2	20	
Copper	78.6	2.0	0.75	ug/l	80.0	0.844	97	70-130	1	20	
Lead	78.4	1.0	0.30	ug/l	80.0	ND	98	70-130	0	20	
Selenium	85.8	2.0	0.30	ug/l	80.0	ND	107	70-130	1	20	
Zinc	88.6	20	2.5	ug/l	80.0	6.99	102	70-130	1	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A23041 Extracted: 01/23/08	_										
	-										
Blank Analyzed: 01/23/2008 (8A23041-B)	LK1)										
Chloride	ND	0.50	0.25	mg/l							
Nitrate-N	ND	0.11	0.060	mg/l							
Nitrite-N	ND	0.15	0.090	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Sulfate	ND	0.50	0.20	mg/l							
LCS Analyzed: 01/23/2008 (8A23041-BS)	l)										
Chloride	5.19	0.50	0.25	mg/l	5.00		104	90-110			
Nitrate-N	1.21	0.11	0.060	mg/l	1.13		107	90-110			
Nitrite-N	1.60	0.15	0.090	mg/l	1.52		105	90-110			
Sulfate	10.7	0.50	0.20	mg/l	10.0		107	90-110			
Matrix Spike Analyzed: 01/23/2008 (8A2	3041-MS1)				Sou	rce: IRA	2039-01				
Chloride	419	25	12	mg/l	50.0	389	59	80-120			MHA
Nitrate-N	25.4	5.5	3.0	mg/l	11.3	8.72	147	80-120			<i>M1</i>
Nitrite-N	9.92	7.5	4.5	mg/l	15.2	ND	65	80-120			M2
Sulfate	402	25	10	mg/l	100	319	83	80-120			
Matrix Spike Analyzed: 01/23/2008 (8A2	3041-MS2)				Sou	rce: IRA	2039-17				
Chloride	258	25	12	mg/l	50.0	214	89	80-120			
Nitrate-N	12.4	5.5	3.0	mg/l	11.3	ND	110	80-120			
Nitrite-N	15.4	7.5	4.5	mg/l	15.2	ND	101	80-120			
Sulfate	370	25	10	mg/l	100	267	103	80-120			
Matrix Spike Dup Analyzed: 01/23/2008	(8A23041-M	(SD1)			Sou	rce: IRA	2039-01				
Chloride	421	25	12	mg/l	50.0	389	64	80-120	1	20	MHA
Nitrate-N	25.5	5.5	3.0	mg/l	11.3	8.72	149	80-120	1	20	<i>M1</i>
Nitrite-N	9.75	7.5	4.5	mg/l	15.2	ND	64	80-120	2	20	M2
Sulfate	407	25	10	mg/l	100	319	88	80-120	1	20	

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 018

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result		%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A23145 Extracted: 01/23/08	<u> </u>										
Blank Analyzed: 01/28/2008 (8A23145-B Biochemical Oxygen Demand	LK1) ND	2.0	0.59	mg/l							
LCS Analyzed: 01/28/2008 (8A23145-BS Biochemical Oxygen Demand	1) 190	100	30	mg/l	198		96	85-115			
LCS Dup Analyzed: 01/28/2008 (8A2314 Biochemical Oxygen Demand	5-BSD1) 186	100	30	mg/l	198		94	85-115	2	20	
Batch: 8A24068 Extracted: 01/24/08	_										
Blank Analyzed: 01/24/2008 (8A24068-B Perchlorate	LK1) ND	4.0	1.5	ug/l							
LCS Analyzed: 01/24/2008 (8A24068-BS Perchlorate	1) 53.8	4.0	1.5	ug/l	50.0		108	85-115			
Matrix Spike Analyzed: 01/24/2008 (8A2	4068-MS1)				Sou	rce: IRA	2213-01				
Perchlorate	55.7	4.0	1.5	ug/l	50.0	3.88	104	80-120			
Matrix Spike Dup Analyzed: 01/24/2008 Perchlorate	(8A24068-M 56.0	SD1) 4.0	1.5	ug/l	Sou 50.0	3.88	2213-01 104	80-120	1	20	
Batch: 8A24108 Extracted: 01/24/08	_										
Blank Analyzed: 01/24/2008 (8A24108-B Turbidity	LK1) 0.100	1.0	0.040	NTU							J

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 018

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A24108 Extracted: 01/24/08	<u> </u>										
Duplicate Analyzed: 01/24/2008 (8A2410 Turbidity	8-DUP1) 17.0	1.0	0.040	NTU	Sou	rce: IRA2 17.5	2156-01		3	20	
Batch: 8A24139 Extracted: 01/24/08						17.0					
Blank Analyzed: 01/24/2008 (8A24139-B	LK1)										
Ammonia-N (Distilled)	ND	0.50	0.30	mg/l							
LCS Analyzed: 01/24/2008 (8A24139-BS	1)										
Ammonia-N (Distilled)	10.1	0.50	0.30	mg/l	10.0		101	80-115			
Matrix Spike Analyzed: 01/24/2008 (8A2	4139-MS1)				Sou	rce: IRA	2156-01				
Ammonia-N (Distilled)	9.80	0.50	0.30	mg/l	10.0	ND	98	70-120			
Matrix Spike Dup Analyzed: 01/24/2008	(8A24139-MS	D1)			Sou	rce: IRA	2156-01				
Ammonia-N (Distilled)	9.80	0.50	0.30	mg/l	10.0	ND	98	70-120	0	15	
Batch: 8A24147 Extracted: 01/24/08	<u>.</u>										
Blank Analyzed: 01/24/2008 (8A24147-B	LK1)										
Surfactants (MBAS)	ND	0.10	0.044	mg/l							
LCS Analyzed: 01/24/2008 (8A24147-BS Surfactants (MBAS)	1) 0.259	0.10	0.044	mg/l	0.250		104	90-110			
		0.10	0.011					<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>			
Matrix Spike Analyzed: 01/24/2008 (8A2 Surfactants (MBAS)	0.266	0.10	0.044	mg/l	Sou 0.250	0.0495	87	50-125			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A24147 Extracted: 01/24/08	_										
Matrix Spike Dup Analyzed: 01/24/2008 Surfactants (MBAS)	(8A24147-MS) 0.260	D1) 0.10	0.044	mg/l	Sou 0.250	rce: IRA2 0.0495	2156-01 84	50-125	2	20	
Batch: 8A24150 Extracted: 01/24/08	-										
LCS Analyzed: 01/24/2008 (8A24150-BS	1)										
Specific Conductance	543	1.0	1.0	umhos/cm	530		102	90-110			
Duplicate Analyzed: 01/24/2008 (8A2415	0-DUP1)				Sou	rce: IRA2	2156-01				
Specific Conductance	560	1.0	1.0	umhos/cm		558			0	5	
Batch: 8A24152 Extracted: 01/24/08	-										
Blank Analyzed: 01/24/2008 (8A24152-B	LK1)										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 01/24/2008 (8A24152-BS	1)										
Total Dissolved Solids	1010	10	10	mg/l	1000		101	90-110			
Duplicate Analyzed: 01/24/2008 (8A2415	2-DUP1)				Sou	rce: IRA	1927-01				
Total Dissolved Solids	1260	10	10	mg/l		1260			0	10	
Batch: 8A24163 Extracted: 01/24/08	_										
Blank Analyzed: 01/24/2008 (8A24163-B	LK1)										
Total Suspended Solids	ND	10	10	mg/l							

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A24163 Extracted: 01/24/08	<u>.</u>										
LCS Analyzed: 01/24/2008 (8A24163-BS Total Suspended Solids	1) 1040	10	10	mg/l	1000		104	85-115			
Duplicate Analyzed: 01/24/2008 (8A2416				8		rce: IRA					
Total Suspended Solids	ND	10	10	mg/l	500	ND	2130-01			10	
Batch: 8A28083 Extracted: 01/28/08	<u> </u>										
Blank Analyzed: 01/28/2008 (8A28083-B	LK1)										
Hexane Extractable Material (Oil & Grease)	ND	5.0	1.4	mg/l							
LCS Analyzed: 01/28/2008 (8A28083-BS	1)										MNR1
Hexane Extractable Material (Oil & Grease)	20.2	5.0	1.4	mg/l	20.2		100	78-114			
LCS Dup Analyzed: 01/28/2008 (8A2808	3-BSD1)										
Hexane Extractable Material (Oil & Grease)	21.2	5.0	1.4	mg/l	20.2		105	78-114	5	11	
Batch: 8A28126 Extracted: 01/28/08	<u>.</u>										
Blank Analyzed: 01/28/2008 (8A28126-B	LK1)										
Total Cyanide	ND	5.0	2.2	ug/l							
LCS Analyzed: 01/28/2008 (8A28126-BS Total Cyanide	1) 197	5.0	2.2	ug/l	200		99	90-110			
Matrix Spike Analyzed: 01/28/2008 (8A2	8126-MS1)				Sou	rce: IRA	2156-01				
Total Cyanide	203	5.0	2.2	ug/l	200	ND	101	70-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Project ID: Routine Outfall 018

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

METHOD BLANK/QC DATA

INORGANICS

A I 4 -	D14	Reporting	MDI	T	Spike	Source	0/ DEC	%REC	DDD	RPD Limit	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8A28126 Extracted: 01/28/08	8										
Matrix Spike Dup Analyzed: 01/28/2008	28/2008 (8A28126-MSD1) Source:						156-01				
Total Cyanide	199	5.0	2.2	ug/l	200	ND	99	70-115	2	15	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

METHOD BLANK/QC DATA

Metals by EPA 200 Series Methods

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: W8A0913 Extracted: 01/25/)8										
Blank Analyzed: 01/28/2008 (W8A0913-	,										
Mercury, Dissolved	ND	0.20	0.050	ug/l							
Mercury, Total	ND	0.050	0.025	ug/l							
LCS Analyzed: 01/28/2008 (W8A0913-B	S1)										
Mercury, Dissolved	0.967	0.20	0.050	ug/l	1.00		97	85-115			
Mercury, Total	0.967	0.050	0.025	ug/l	1.00		97	85-115			
Matrix Spike Analyzed: 01/28/2008 (W8	A0913-MS1)				Sou	rce: 8012	328-01				
Mercury, Dissolved	1.01	0.20	0.050	ug/l	1.00	ND	101	70-130			
Mercury, Total	1.01	0.050	0.025	ug/l	1.00	ND	101	70-130			
Matrix Spike Analyzed: 01/28/2008 (W8	A0913-MS2)				Sou	rce: 8012	328-02				
Mercury, Dissolved	0.978	0.20	0.050	ug/l	1.00	ND	98	70-130			
Mercury, Total	0.978	0.050	0.025	ug/l	1.00	ND	98	70-130			
Matrix Spike Dup Analyzed: 01/28/2008	(W8A0913-M	SD1)			Sou	rce: 8012	328-01				
Mercury, Dissolved	0.992	0.20	0.050	ug/l	1.00	ND	99	70-130	2	20	
Mercury, Total	0.992	0.050	0.025	ug/l	1.00	ND	99	70-130	2	20	
Matrix Spike Dup Analyzed: 01/28/2008			Sou	rce: 8012	328-02						
Mercury, Dissolved	1.01	0.20	0.050	ug/l	1.00	ND	101	70-130	3	20	
Mercury, Total	1.01	0.050	0.025	ug/l	1.00	ND	101	70-130	3	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

DATA QUALIFIERS AND DEFINITIONS

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability. **M1** The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS). The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS). M2 MHA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information. See Blank Spike (LCS). MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate. ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified. RPD Relative Percent Difference

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

epoit Number. IKA2150

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EDD + Level 4	Water		
EPA 120.1	Water	Х	Х
EPA 160.1	Water	Х	Х
EPA 160.2	Water	Х	Х
EPA 160.5	Water	Х	Х
EPA 1664A	Water		
EPA 180.1	Water	Х	Х
EPA 200.8-Diss	Water	Х	Х
EPA 200.8	Water	Х	Х
EPA 300.0	Water	Х	Х
EPA 314.0	Water	Х	Х
EPA 335.2	Water	Х	Х
EPA 350.2	Water		Х
EPA 405.1	Water	Х	Х
EPA 425.1	Water	Х	Х
EPA 608	Water	Х	Х
EPA 624	Water	Х	Х
EPA 625	Water	Х	Х

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003 Analysis Performed: Bioassay-7 dy Chrnic Samples: IRA2156-01

TestAmerica Irvine

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 018

Report Number: IRA2156

Sampled: 01/23/08 Received: 01/23/08

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Eberline Services - SUB

2030 Wright Avenue - Richmond, CA 94804

Analysis Performed: Gamma Spec Samples: IRA2156-01

- Analysis Performed: Gross Alpha Samples: IRA2156-01
- Analysis Performed: Gross Beta Samples: IRA2156-01
- Analysis Performed: Radium, Combined Samples: IRA2156-01
- Analysis Performed: Strontium 90 Samples: IRA2156-01
- Analysis Performed: Tritium Samples: IRA2156-01
- Analysis Performed: Uranium, Combined Samples: IRA2156-01

Vista Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413 1104 Windfield Way - El Dorado Hills, CA 95762

Analysis Performed: 1613-Dioxin-HR-Alta Samples: IRA2156-01

Weck Laboratories, Inc

14859 E. Clark Avenue - City of Industry, CA 91745 Method Performed: EPA 245.1 Samples: IRA2156-01

TestAmerica Irvine

Page 1 of 2		Field readings	p= 48.2	7.5	of roadinge –		Comments		24 TAT	24 TAT							24 TAT	24 TAT					(check) (check) (check)		Normal S		On Ice: Zt / Uil
			ate	eyjy	O∕VC) d(lvys)	oCb uAlpe	ltə -S) AM, F	si8 UN					-									×	Turn around Time: (ch 24 Hours	i.		latocritur (cho	
20	RED	'əuəi	nioto																		_ ×	-	urn arc 4 Hour				ntact
KAVISE	ANALYSIS REQUIRED				(350) (1 (350)						-				-+					×		-					<u> </u>
2	с Ш Ш С				. 1 6	ίλι Α	onpu	00											×				וחתב	2			
	- ΥSI	, r	ا فر		L'SO	L.'/	tibid.	ıпТ	_												-		~		/	\sim	
-	ANAI			N			oldo 											×					2	3		12	
		, . .	. 'N		N+ [©] C) N (<u>zos</u>	CI.'									×				_	;	12 N	$\mathbf{\tilde{\mathbf{A}}}$	ne:	105	me
	BOD ₆ (20 degrees C)													×	×									Date/Time	-102	Date/Time:	
Σ			stable											×						-+	_		י ^ב	4			
0 R													×										J			A	
Ľ		Settleable Solids									×	×									_	_	Ν	<pre>}</pre>		A	
STODY FORM			uz		Cq ²																		$\left(\right)$	3		KII.	
1 U		· · · · · · · · · · · · · · · · · · ·	etals	M ə	erabl	vo:)	al Re	toT	×	×													≈ /`	9	2	/	ž
								Bottle #	1A	1B	7	3A, 3B	4A, 4B	5	9	7A, 7B	8A, 8B	6	10A, 10B	11	12A, 12B	13A, 13B	Received by	19	Received By		Received By
CHAIN OF CU		NPDES all 018			<u>ت</u> –		5	Preservative	HNO ₃	HNO ₃	None	None	ΗĊ	NaOH	None	None	None	None	None	H ₂ SO4	None	None	1	7 7 7		RN	
	Project:	Boeing-SSFL NPDES Routine Outfall 018			Phone Number: (626) 568-6691	Fax Number:	(626) 568-6515	Sampling Date/Time	1-23-05												\rightarrow	5421 20-22-1	e/Time:	`	Date/Time:	1/23/03	Date/Time:
20/07								# of Cont.	-	-	-	2	2	-	1	7	2	-	2	٢	2	2	_ [50-17-1	_	IPL IPL	
Version 12/20/07	S	e Suite 200		Joseph Doa	tronwyn Ke	21.11.	Ś	Container Tvpe	1L Poly	1L Poly	1L Poly	1L Amber	1L Amber	500 ml Poly	1L Poly	500 ml Poly	1L Amber	1L Amber				R }					
nerica	Addres	cadia da Avenu	91007	a Contact:	anager. E	MARIS	2/108	Sample Matrix	1	3	3	3	3	3	3	3	3	3	ž	Ņ	×	N	d By		^d B√	Pro 1	d By
Test America Version 12/20/07	Client Name/Address	MWH-Arcadia	Arcadia, CA 91007	Test America Contact: Joseph Doak	Project Manager: Bronwyn Kelly	Sampler MARISCAL	Barness	Sample	Outfall 018	Outfall 018	Outfall 018	Outfall 018	Outfall 018	Outfall 018	Outfall 018	Outfall 018	Outfall 018	Outfall 018	Outfall 018	Outfall 018	Outfall 018	Outfall 018	Relinquished By	Kun O	Relinquished B	ſ	definquished By

2				r 1	3	at							
Page 2 of	- -	Comments		Unfiltered and unpreserved analysis	Only test if second rain event of the year	Filter w/in 24hrs of receipt lab				Turn around Time: (check) 24 Hours 5 Days	normal	Che	
	REQUIRED									Turn around Ti 24 Hours	48 Hours	Sample Integrity: Intact	
												1755	
	ju⊃ :sletaN t	hroric Toxic otal Dissolved b, Hg, Cd, Se	>		×	×				Date/Time:	Date/Time:	1/23/08 1752	Date/Time:
CUSTODY FORM	anium anium anium anium	eta(9:00.0), Trit 906.0', Sr-90 (9 903.0 or 903.1) 28 (504.0), Uri 29 (504.0), Uri 20 (504.0), Uri 20 (504.0), Uri 20 (20 1), Sri 20 (20 1),) Z))))	×						n YA	Da		Ď
JSTC		VX + 4 28 sOO 1005 624 + xyl					×						λ.
OF CI	Si 🛥		Bottle # 14A, 14B, 14C, 14D, 47E	15A 15B	16	17	18A, 18B, 18C		_	Received By	Received Bv		Received By
CHAIN OF	Project: Boeing-SSFL NPDES Routine Outfall 018	$1 \equiv 1 \otimes 1$	HCI	None	None	None	Ę				St.	1/22/08/22J	
07	Project: Boeing-S Routine		Date/Time			1-23-08				Date/Time:	Date/Time	1/25/1	Date/Time
12/20/	200 Doak	Kelly	5 Cont			-	3		 	_ `	•]	H	
a Version	ess: nue. Suite : Joseph E	Bronwyn scel, J- Container	Type VOAs	2.5 Gal Cube 500 ml Amber	1 Gal Cube	1L Poly	VOAs				1	nt-	
neric	e/Addr cadia nda Aver 91007	Manager Marager	Matrix V	3	3	3	8			d By	red a	Jo Jo	d By
Test America Version 12/20/07	Client Name/Address: MVVH-Arcadia 618 Michillinda Avenue. Suite 200 Arcadia, CA 91007 Test America Contact. Joseph Doak	Project Manager Bronwyn Kelly Sampler: Maescer, J. Barros e, R.	Description Outfall 018	Outfall 018	Outfall 018	Outfall 018	Trip Blanks			Relinquished By	Red Burger		Relinquished By

#

.

LABORATORY REPORT

Date: January 31, 2008

Client: TestAmerica – Irvine 17461 Derian Ave., Suite 100 Irvine, CA 92614 Attn: Joseph Doak "dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003
(805) 650-0546 FAX (805) 650-0756 CA DOHS ELAP Cert. No.: 1775

- Laboratory No.:
 A-08012401-001

 Sample ID.:
 IRA2156-01 (Outfall 018)
- **Sample Control:** The sample was received by ATL within the recommended hold time, in a chilled state, and with the chain of custody record attached. Testing was conducted on only one sample per client instruction.

/23/08
/24/08
С
0 mg/l
/24/08 to 01/30/08

Sample Analysis: The following analyses were performed on your sample:

Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

Result Summary:

Chronic:	NOEC	TUc
Ceriodaphnia Survival:	100%	1.0
Ceriodaphnia Reproduction:	100%	1.0

Quality Control:

Reviewed and approved by:

Joseph A. LeMay Laboratory Director

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

Lab No.: A-08012401-001 Client/ID: Test America – Outfall 018 Date Tested: 01/24/08 to 01/30/08

TEST SUMMARY

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*. Age: < 24 hrs; all released within 8 hrs. Test vessel size: 30 ml. Number of test organisms per vessel: 1. Temperature: 25 +/- 1°C. Dilution water: Mod. hard reconstituted (MHRW). QA/QC Batch No.: RT-080106. Endpoints: Survival and Reproduction. Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 15 ml. Number of replicates: 10. Photoperiod: 16/8 hrs. light/dark cycle. Test duration: 6 days. Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Survival	Mean Number of Young Per Female							
Control	100%	23.9							
100% Sample	100%	25.2							
Sample not statistically significantly less than Control for either endpoint.									

CHRONIC TOXICITY

Survival NOEC	100%
Survival TUc	1.0
Reproduction NOEC	100%
Reproduction TUc	1.0

QA/QC TEST ACCEPTABILITY

Parameter	Result
Control survival ≥80%	Pass (100% survival)
≥15 young per surviving control female	Pass (23.9 young)
≥60% surviving controls had 3 broods	Pass (90% with 3 broods)
PMSD $<47\%$ for reproduction; if $>47\%$ and no toxicity at IWC, the test must be repeated	Pass (PMSD = 14.1%)
Statistically significantly different concentrations relative difference > 13%	Pass (no concentration significantly different)
Concentration response relationship acceptable	Pass (no significant response at concentration tested)

			Ceriod	aphnia Sui	vival and	l Reprodu	ction Tes	st-Survi	val Day 6		
Start Date:	1/24/2008	14:00		8012401			Sample II	A CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWNE	Outfall 01	8	
End Date:	1/30/2008	15:00	Lab ID:	CAATL-Ac	uatic Tes	ting Labs :	Sample T	vpe:	EFF2-Ind	lustrial	
Sample Date:	1/23/2008			FWCH 4T						daphnia dub	ia
Comments:							. oot opot		00 0010	duprina dub	
Conc-%	1	2	3	4	5	6	7	8	9	10	·····
Douted	4 0000	4 0000	1 0 0 0 0	1							

Conc-%	1	2	3	4	5	6	7	8	9	10	
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
100	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	

									Isot	onic
<u> </u>	Mean	N-Mean	Resp	Resp	Total	Ν	Exact P	Critical	Mean	N-Mean
D-Control	1.0000	1.0000	0	10	10	10			1.0000	1.0000
100	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000

Hypothesis	Test (1-tail,	0.05)	NOEC	LOEC	ChV	TU			······································	
Fisher's Exa	ct Test		100	>100		1				
Treatments	vs D-Control									
				Line	ar Interpo	lation (20	0 Resam	oles)		
Point	%	SD	95%		Skew	•	•			
IC05	>100							174	*****	
IC10	>100									
IC15	>100						1.0 			
IC20	>100						4			
IC25	>100						0.9 -			
IC40	>100						0.8			
IC50	>100									
							0.7 -			
							9 0.6 -			
							Ë 🕞			
							9.0.6 0.5 0.4			
							₽ ^{0.4}			

0.3 0.2 0.1 0.0

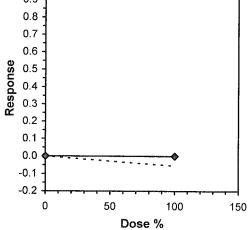
50

Dose %

100

Reviewed by:

150


			Cerioda	iphnia Su	rvival and	l Reprodu	iction Tes	st-Reproc	luction			
Start Date:	1/24/2008	14:00	Test ID:	8012401			Sample ID):	Outfall 018	3		
End Date:	1/30/2008	15:00	Lab ID: CAATL-Aquatic Testing Labs Sample Type:						EFF2-Indu	ustrial		
Sample Data:	1/22/2000							•		متعاديات متصعا مرما		
Sample Date:	1/23/2000	13:40			п-сга-од	1-R-02-0	rest spec	ies.	CD-Cenoc	aphnia dubia	3	
Comments:	1/23/2006	13:40	Protocol: I		п-сгя-о <u>г</u>	1-R-02-0	rest spec	ies.	CD-Cenoc	laphnia dubia	3	
•	1/23/2008	2	3	4	<u></u>	6	7	<u> </u>	9	10	a 	
Comments:	1	2 24.000	<u>3</u> 25.000	4 28.000	5 24.000		7 24.000	8 28.000	9 22.000	•	3 	

		_	•	Transform: Untransformed			Rank	1-Tailed	Isot	onic	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Mean	N-Mean
D-Control	23.900	1.0000	23.900	13.000	28.000	18.018	10			24.550	1.0000
100	25.200	1.0544	25.200	15.000	31.000	17.528	10	114.50	82.00	24.550	1.0000

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.05)	0.84615	0.905	-1.4811	2.47963
F-Test indicates equal variances (p = 0.94)	1.05213	6.54109		
Hypothesis Test (1-tail, 0.05)				

Wilcoxon Two-Sample Test indicates no significant differences Treatments vs D-Control

Linear Interpolation (200 Resamples)							
Point	%	SD	95% CL	Skew			
IC05	>100				######################################		
IC10	>100						
IC15	>100				1.0		
IC20	>100				· ·		
IC25	>100				0.9		
IC40	>100				0.8 -		
IC50	>100				0.7 -		

CERIODAPHNIA DUBIA CHRONIC BIOASSAY EPA METHOD 1002.0 Raw Data Sheet

Lab No.: A-08012401-001

Client ID: TestAmerica - IRA2156-01 (Outfall 018)

Start Date: 01/24/2008

									Start Date: 01/24/2008										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			D	AY I		D.	AY 2		DAY	Y 3	D	AY 4		DAY	5	D,	4Y 6	D	AY 7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			IL	2	4hr	0 hr	24hr	0	hr	24hr	0 hr	24hr	0 h	ur 🛛	24hr	0 hr	24hr	0 hr	24hr
	Analyst I	nitials:	<i>~~</i>	\mathcal{L}	<u>~</u>	Ru	R		2	h	K	en	R	- /	h	R	Lo	R	- And the star of the star
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Time of Re	eadings:	1400	14	w	1400	1500) 15	W	130	Bau	Bas	15	α_{i}	ISOU	1500		1500	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		DO	8.0	8.	5	8.0	8.5	- 2.	9-	7.5	2.7	2.6	>	4	82	8.9	81	81	Shadd Heller,
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Control	рН	7.6	2	8	7.8	2.8	2.	2	76			- <u>)</u>				7.8		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Temp	24.7	24	1.3	25.3	24.8	2	5.4 :	25-1		24.7					24.9		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		DO	11.3	8	.7	11.0	1			8.2		8.4	╎╴╴					1, 1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	100%	pН	7.4	7.	7	7.3	7.7	2.	4		7.3	7-5	7.	29 12		7.3			Gild & State
		Temp	• …	24	1.5	24.6	24.5	124	87		24.8	24.)	24:			25.0	· · · · · · · · · · · · · · · · · · ·		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Ad	ditional	Para	meters						Со	ıtrol							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Cor	nductivit	y (um	ohms)						29	0				<u></u>	475		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Alk	calinity (1	mg/I C	CaCO ₃)						61	3					63		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Ha	rdness (r	ng/l C	CaCO ₃)								2				153		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Am	imonia (i	mg/l N	√H₃-N)						<0,	2				0.4			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									Sour	ce of Nec	onates								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Repl	icate:				В		С	D)	Ē	F		G		Н	I		J
Sample Day A B C D E F G H I J Young Adults Initials 1 \mathcal{O}	Broc	od ID:		<u>B2</u>		<u>c1</u>		>3	<u> </u>	13	<u>51</u>	CS	5	04	7	E4	GY	1 -	F6
Image: Control A B C D E F G H I J Young Adults Initials 1 0 <t< td=""><td>Sample</td><td></td><td>Dav</td><td></td><td></td><td></td><td></td><td>Num</td><td>ber of</td><td>Young P</td><td>roduced</td><td></td><td></td><td></td><td>Tot</td><td>alLive</td><td>No. Live</td><td></td><td>nolvet</td></t<>	Sample		Dav					Num	ber of	Young P	roduced				Tot	alLive	No. Live		nolvet
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Day		A	В	С	D	E	F	G	Н	I	J				11	
$\begin{array}{c} 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$			1		0	0	\cup	$\Box o$	\overline{O}	\square	0	0	\mathcal{O}	\mathcal{O}		2	, 0		2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2		0	0		0		$ _{\mathcal{O}}$		0	0	0		2	10		0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			3						4	0		0	\mathcal{O}	4			10		h
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Control				$\left \frac{\mathcal{S}}{\mathcal{S}} \right $				\mathcal{O}			5		Ò	-				la
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-				<u> </u>							9		9			110 .
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					12	10	12	15	12	- 10	14	13	4	\mathcal{O}	110	25	10	-	
$10\% \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$					27	124	 (ns	٦IJ	101	201	28		17		26	11		A
$100\% \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$						1.000	T	FU /				r0		-12		$\frac{2}{n}$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					$\frac{\partial}{\partial}$		~	$\overline{\mathcal{D}}$		+2		\mathcal{O}		$\frac{\mathcal{O}}{\mathcal{O}}$		\sim	/	\parallel	>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3		0	\overline{D}	4	5		$\frac{1}{0}$	0			$\frac{\mathcal{O}}{\mathcal{O}}$		y X		-	\overline{h}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4		5	4	8/8	0	- Gunt	4	<u> </u>	5	-	$\frac{2}{0}$	<u></u> 2	5		1-7	
6 12 0 11 15 13 12 12 14 11 12 112 10 11 7	100%		5		9	11	\bigcirc	i 1	~	8	10	9		12	1		10		h
7			6		12	0	il	15	13	12		14	11	12			10		
			7		~	-	6		Sector Sector	- · · · · · · · · · · · · · · · · · · ·		**********	Qual Langer	**************************************		-	<u> </u>		2
			Manager and Party of Street, or other	Contraction of the local division of the loc															

Circled fourth brood not used in statistical analysis.

 7^{th} day only used if <60% of the surviving control females have produced their third brood.

Ŷ

SUBCONTRACT ORDER

TestAmerica Irvine

IRA2156

SENDING LABORATORY:	RECEIVING LABORATORY:
TestAmerica Irvine	Aquatic Testing Laboratories-SUB
17461 Derian Avenue. Suite 100	4350 Transport Street, Unit 107
Irvine, CA 92614	Ventura, CA 93003
Phone: (949) 261-1022	Phone :(805) 650-0546
Fax: (949) 260-3297	Fax: (805) 650-0756
Project Manager: Joseph Doak	Project Location: California
	Receipt Temperature: <u>°</u> °C Ice: (Y)/ N

Analysis	Units	Due	Expires	Comments
Sample ID: IRA2156-01	Water		Sampled: 01/23/08 13:45	
Bioassay-7 dy Chrnic	N/A	02/01/08	01/25/08 01:45	Cerio, EPA/821-R02-013, Sub to Aquatic testing
Containers Supplied:				
1 gal Poly (AC)				

Orden.	1/24/08 0710	Cantor TAI	- 1/24/08 07	10
Released By	Date/Time	Received By	Date/Time	
Jaston The	1/24/08 1000	- Ulah / b	1-24-08	1000
Released By	Date/Time	Received By	Date/Time	Page 1 of 1
\mathcal{U}				NPDES - 3961

REFERENCE TOXICANT DATA

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0 REFERENCE TOXICANT - NaCl

QA/QC Batch No.: RT-080106

Date Tested: 01/06/08 to 01/12/08

TEST SUMMARY

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*. Age: <24 hrs; all released within 8 hrs. Test vessel size: 30 ml. Number of test organisms per vessel: 1. Temperature: 25 +/- 1°C. Dilution water: Mod. hard reconstituted (MHRW). Reference Toxicant: Sodium chloride (NaCl).

Endpoints: Survival and Reproduction. Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 20 ml. Number of replicates: 10. Photoperiod: 16/8 hrs. light/dark cycle. Test duration: 6 days. Statistics: ToxCalc computer program.

Sample Concentration	Percent Sur	vival	Mean Number of Young Per Female			
Control	100%		20.5			
0.25 g/l	100%		19.5			
0.5 g/l	100%		19.5			
1.0 g/l	100%		14.0	*		
2.0 g/l	80%		3.2	*		
4.0 g/l 0% * 0						
* Statistically signifi ** Reproduction data from exclud	cantly less than concentrations ed from statistic	greater th	an survival NO	EC are		

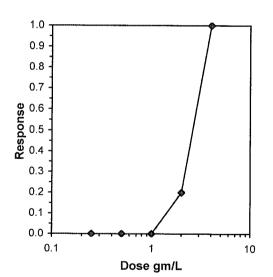
RESULTS SUMMARY

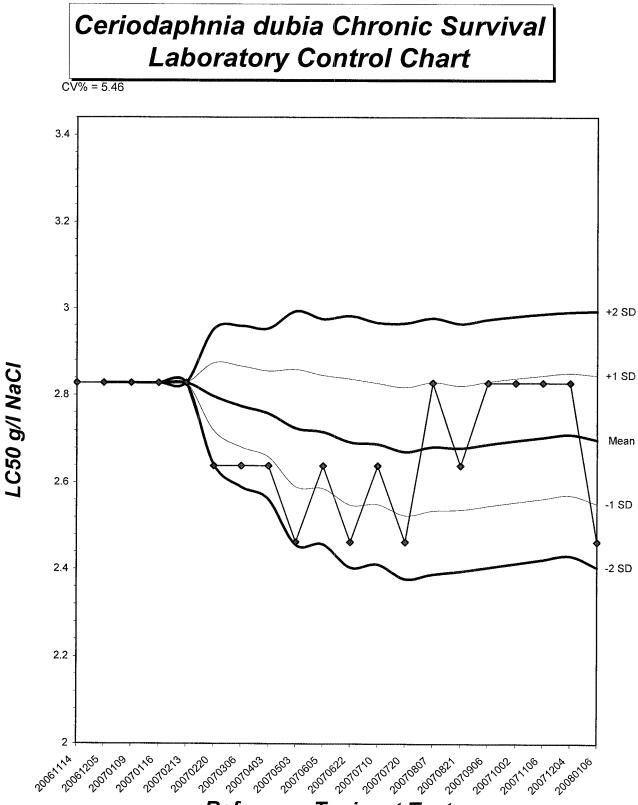
CHRONIC TOXICITY

Survival LC50	2.5 g/l
Reproduction IC25	0.88 g/l

QA/QC TEST ACCEPTABILITY

Parameter	Result			
Control survival ≥80%	Pass (100% Survival)			
≥15 young per surviving control female	Pass (20.5 young)			
≥60% surviving controls had 3 broods	Pass (90% with 3 broods)			
PMSD <47% for reproduction	Pass (PMSD = 19.1%)			
Stat. sig. diff. conc. relative difference $> 13\%$	Pass (Stat. sig. diff. conc. $= 31.7\%$)			
Concentration response relationship acceptable	Pass (Response curve normal)			

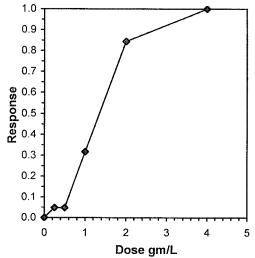

			Ceriod	aphnia Su	rvival and	Reprod	uction Tes	t-Surviv	al Day 6		
Start Date:	1/6/2008 1	3:00	Test ID:	RT-08010	6c		Sample ID):	REF-Ref 7	oxicant	
End Date:	1/12/2008	13:00	Lab ID:	CAATL-Ac	quatic Tes	ting Labs	Sample Ty	/pe:	NACL-Soc	lium chloride	
Sample Date: Comments:	1/6/2008		Protocol:	Lab ID: CAATL-Aquatic Testing Labs Sample Type: NACL-Sodium chloride Protocol: FWCH-EPA-821-R-02-013 Test Species: CD-Ceriodaphnia dubia							
Conc-gm/L	1	2	3	4	5	6	7	8	9	10	
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
0.25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
0.5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
2	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	
4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	


				Not			Fisher's	1-Tailed	Number	Total
Conc-gm/L	Mean	N-Mean	Resp	Resp	Total	Ν	Exact P	Critical	Resp	Number
D-Control	1.0000	1.0000	0	10	10	10			0	10
0.25	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
0.5	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
1	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
2	0.8000	0.8000	2	8	10	10	0.2368	0.0500	2	10
4	0.0000	0.0000	10	0	10	10	0.2000	0.0000	10	10

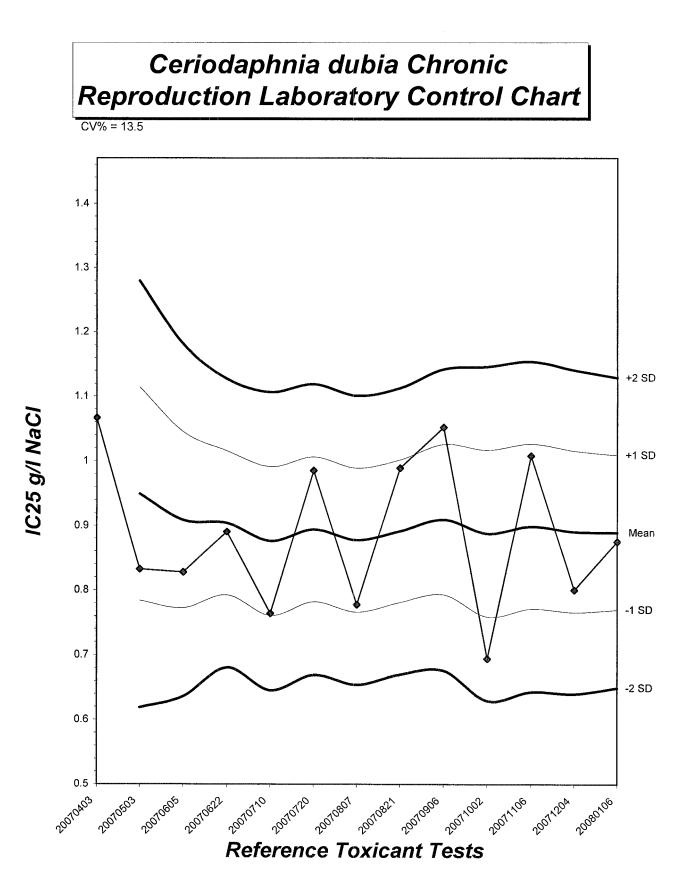
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -
Fisher's Exact Test	2	4	2.82843		
Treatments vs D-Control					

Trimmed Spearman-Karber

Trim Level	EC50	95%	CL
0.0%	2.4623	2.0663	2.9342
5.0%	2.5108	2.0545	3.0683
10.0%	2.5519	1.9976	3.2599
20.0%	2.5937	2.2616	2.9745
Auto-0.0%	2.4623	2.0663	2.9342


Reference Toxicant Tests

			Ceriod	aphnia Su	rvival and	l Reprodu	uction Tes	st-Repro	duction		
Start Date:	1/6/2008 1	3:00	Test ID:	RT-08010	6c		Sample ID: REF-Ref Tox				
End Date:	1/12/2008	13:00	Lab ID:	CAATL-Ac	juatic Tes	ting Labs	Sample Ty	/pe:	NACL-Soc	dium chloride	
Sample Date:	1/6/2008		Protocol:	FWCH-EF	A-821-R-	02-013	Test Spec	ies:	CD-Cerioo	laphnia dubia	
Comments:					A.v.						
Conc-gm/L	1	2	3	4	5	6	7	8	9	10	
D-Control	23.000	11.000	21.000	21.000	23.000	20.000	19.000	22.000	20.000	25.000	
0.25	12.000	24.000	19.000	22.000	9.000	20.000	21.000	21.000	22.000	25.000	
0.5	21.000	19.000	21.000	22.000	16.000	12.000	22.000	21.000	22.000	19.000	
1	19.000	9.000	9.000	19.000	14.000	10.000	16.000	17.000	19.000	8.000	
2	8.000	2.000	2.000	5.000	4.000	3.000	3.000	5.000	0.000	0.000	
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	


				Transform	n: Untran	sformed		Rank	1-Tailed	Isot	onic
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical	Mean	N-Mean
D-Control	20.500	1.0000	20.500	11.000	25.000	18.432	10			20.500	1.0000
0.25	19.500	0.9512	19.500	9.000	25.000	26.177	10	102.00	76.00	19.500	0.9512
0.5	19.500	0.9512	19.500	12.000	22.000	16.617	10	94.50	76.00	19.500	0.9512
*1	14.000	0.6829	14.000	8.000	19.000	32.819	10	62.50	76.00	14.000	0.6829
*2	3.200	0.1561	3.200	0.000	8.000	76.263	10	55.00	76.00	3.200	0.1561
4	0.000	0.0000	0.000	0.000	0.000	0.000	10			0.000	0.0000

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	n-normal dis	stribution	(p <= 0.05)		0.91281	0.947	-0.9793	0.67912
Bartlett's Test indicates equal var	riances (p =	• 0.25)	. ,		5.39	13.2767		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	0.5	1	0.70711			and a second		
Treatments vs D-Control								

				Linea	ar Interpolatio	n (200 Resamples)	
Point	gm/L	SD	95%	CL	Skew		
IC05	0.5023	0.1876	0.0809	0.6178	-0.0659		
IC10	0.5955	0.1768	0.1617	0.7497	-0.5184		
IC15	0.6886	0.1424	0.2426	0.9253	-0.5389	1.0	
IC20	0.7818	0.1259	0.4995	1.0352	0.2728		
IC25	0.8750	0.1224	0.6413	1.1094	0.3153	0.9 -	
IC40	1.1574	0.1139	0.9216	1.3331	-0.0890	0.8 -	۴
IC50	1.3472	0.0972	1.1197	1.4847	-0.4227	0.7	
						0.7	
						0.06	/

Reviewed by NPDES - 3966

CERIODAPHNIA DUBIA CHRONIC BIOASSAY Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-080106

Start Date: 01/06/2008

				Nu	mbei	r of Y	oung	Produ	uced			Total	No.	Analyst
Sample	Day	Α	В	C	D	E	F	G	н	I	J	Live Young	Live Adults	Initials
	1	\mathcal{O}	\mathcal{O}	\mathcal{O}	\bigcirc	\mathcal{O}	\mathcal{O}	\mathcal{O}	\mathcal{O}	\mathcal{O}	\circ	Ø	10	A
	2	0	\mathcal{O}	0	\mathcal{O}	\mathcal{O}	C	\mathcal{O}	\sim	0	C	C	10	4
	3	0	\mathcal{O}	2	\mathcal{O}	0	C	3	\mathcal{C}	3	\mathcal{O}	8	10	2
0.11	4	4	3	∂	4	3	2	Ø	2	\mathcal{O}	3	21	10	h
Control	5	9	8	7	7	6	7	6	2	6	7	70	10	N
	6	10	Ø	12	10	14	1	10	13	11	15	106	10	
	7	(~	-		-		(allinear	-	······		and a second sec
	Total	23)/	21	ઝ	23	20	19	22	20	25	205	10	h
	1	\mathcal{O}	0	0	\bigcirc	0	0	0	\mathcal{O}	\sim	C	\mathcal{O}	10	
	2	0	0	0	0	0	\mathcal{O}	\mathcal{O}	\mathcal{O}	0	\mathcal{O}	Ø	10	
	3	$\square a$	3	0	3	\mathcal{O}	2	C	\sim	3	\mathcal{O}	((IV	h
0.25 g/l	4	Ц	\mathcal{O}	2	\mathcal{O}	3	6	4	2	\mathcal{O}	3	24	10	h
0.25 g/1	5	8	Б	7	5	6	\mathcal{O}	7	6	7	8	62	10	h
	6	0	B	(D	14	0	12	10	13	12	14	98	10	6
	7	-					(مىرى						
	Total	12	24	19	22	9	20	21	21	:22	25	195	10	\square
	1	0	\mathcal{O}	0	O	\mathcal{O}	\mathcal{O}	0	\mathcal{O}	\circ	\mathcal{O}	\mathcal{O}	10	h
	2	Ó	\mathcal{O}	\mathcal{O}	\mathcal{O}	O	\mathcal{O}	0	\mathcal{O}	\mathcal{C}	\mathcal{O}	\mathcal{C}	10	h
	3	2	\mathcal{O}	2	O	0	\bigcirc	3	2	-0	\mathcal{O}	9	10	ĥ
0.5 g/l	4	0	3	0	3	4	3	\sim	0	3	3	19	10	-In
0.5 g/1	5	9	6	7	7	\mathcal{O}	9	б	7	2	6	66	10	h
	6	10	10	12	12	12	0	١I	12	12	10	01	10	h
	7		1		-	·			- (Section 1	1 s.	***		*
	Total	21	19	21	22	16	12	22	21	22	19	195	10	Ph
Circled fourth brood not used in statistical analysis. 7^{th} day only used if <60% of the surviving control females have produced their third brood.														

CERIODAPHNIA DUBIA CHRONIC BIOASSAY Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

Aquatic Testing

QA/QC No.: RT-080106

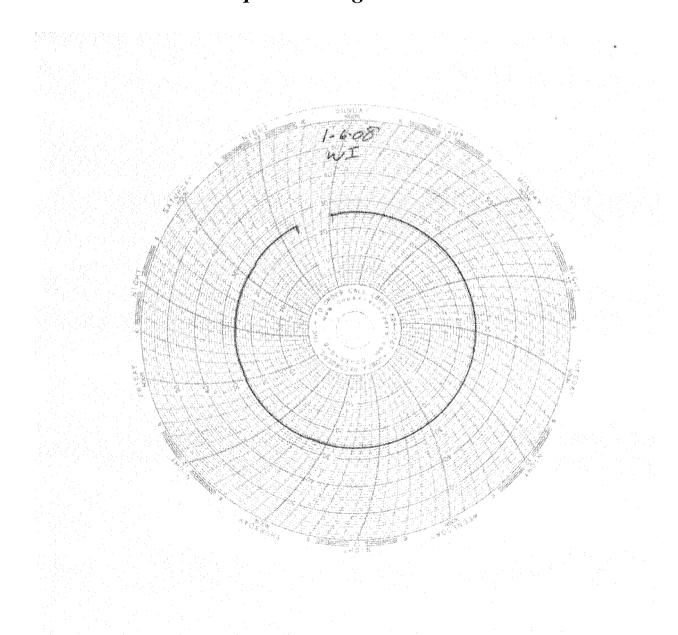
Start Date: 01/06/2008

C 1	- D			Nı	ımbe	r of Y	oung	Produ	iced			Total	No.	Analyst
Sample	Day	A	В	С	D	E	F	G	н	Ι	J	Live Young	Live Adults	Initials
	1	Ø	0	0	\mathcal{O}	0	0	C	0	\mathcal{O}	0	\bigcirc	10	h
	2	0	0	0	0	d	0	\mathcal{O}	C	\mathcal{O}	c	0	10	6
	3	Ø	O	\mathcal{O}	0	Ĩ	3	0	O	Z	\mathcal{O}	5	10	\square
1.0 /1	4	3	°Z	Z	.2	0	0	3	2	0	2	17	10	h
1.0 g/l	5	5	Ś	>	4	5	7	5	4	7	6	57	10	K
	6	1(\mathcal{O}	0	12	9	0	8	11	10	0	61	10	
	7	(,		_	÷ 🔶	_		(-			
	Total	19	9	9	19	14	10	16	17	19	E	140	10	\square
	1	0	Ò	∂	0	\mathcal{O}	\circ	0	$^{\circ}$	\times	0	0	9	h
	2	0	\mathcal{O}	0	\mathcal{O}	\mathcal{O}	0	0	0	-20082-94	0	0	9	6
	3	Ø	\mathcal{O}	C/	\mathcal{O}	0	0	\mathcal{O}	C	1	\mathcal{O}	0	9	6
2.0. /1	4	2	0	Z	3	\mathcal{O}	\mathcal{O}	\mathcal{O}	2	, contraction of the second se	0	9	9	- M
2.0 g/l	5	3	0	\mathcal{O}	2	2	3	3	\mathcal{O}	ļ	\mathcal{O}	13	9.	1
	6	3	N	· Ø	O	2	C	Ò	3	~	\times	10	8	P
	7	, particular	ļ	-	-	¢.magar.	-1007		~	مەربىيىي.	Quantuma.			and the second
	Total	B	2	2	5	4	3	3	5	\mathcal{O}	0	32	8	\sim
	1	X	X	Х	X	X	Х	X	\times	\mathbf{i}	×	∂	O	A
	2	_		-		- Caracteria				ş	-			~
	3	_	efeneration.	يوند الذي يوند الذي	. (_							formanen.	
4.0 //	4)	-) (Spectrum					
4.0 g/l	5	_			*90.009***			(4 maga,					
	6	((<u> </u>	~	~			
	7				-		_	,	40440.000.c.	e		-	Qelatore.	<u> </u>
	Total		C	\mathcal{C}	\bigcirc	0	C	\circ	0	0	0	\mathcal{O}	0	h
Circled fourth brood not used in statistical analysis. 7 th day only used if <60% of the surviving control females have produced their third brood.														

CERIODAPHNIA DUBLA CHRONIC BIOASSAY Reference Toxicant - NaCl Water Chemistries Raw Data Sheet

QA/QC No.: RT-080106

Start Date: 01/06/2008


		DA	Y 1	DA	Y 2	DA	Y 3	DA	Y 4	DA	Y 5	DA	Y 6	DA	Y 7
		Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
Analyst I	nitials:	n	h	A	1	M	P	$\overline{\mathcal{A}}$	j~	C	h	1	- A	and and the state of the state	
Time of R	eadings:	130	1330	1330	130	Ba	1230	1270	1300	RW	1300	Ba	pa) <u></u>	
	DO	7.6	7.2	2.4	7.7	7.4	7.6	7.4	25	8,2	7.8	7.9	7.7		
Control	pН	7.6	7.4	7.4	7.3	2.3	7.2	7.2	7.7	7.5	2-6	7-9	7.6		
	Temp	24.3	25.1	25.4	24.8	24.1	24.9	244	25.1	244	24.V	24:6	25-1		
	DO	7.5	7-3	7.5	7.5	7-5	7.7	7-3	24	8.2	2.8	29	7.7	-ar-definition and a second	-and and a
0.25 g/l	pН	75	7.3	7.4	7.4	7.0	7.2	7.3	7.4	26	5-5	7.6	77		(
	Temp	244	252	253	249	242	24.5	24.7	250	24.4	25.1	24,6	25-1	<u> </u>	
	DO	24	72	7.4	7-6	7.11	7.5	7.4	2.6	8.5	7-6	8.0	78	~~~~~	<u> </u>
0.5 g/l	pН	7.5	7.3	74	7.4	7-4	7.2	7.3	75	7.0	2-5	2.2	7-7		_
	Temp	243	251	25.3	24.9	24.1	252	246	24.9	24.4	24.9	24.4	-249		/
	DO	7.5	2.2	26).)	7.3	7.8	7.4	7.4	D,d	75	7.7	7-7		(
1.0 g/l	pН	7.5	7.3	7-6	7.5	7-4	7.2	7-3	7-5	7.0	7-6	7.4	7-6	1	(
	Temp	244	25.2	25-1	247	24.2	25.2	24.6	25.V	24.4	249	24.6	250		
	DO	7.4	7.4	2.6	7.5	7.4	28	22	7.6	8.2	2.6	26	7.7		
2.0 g/l	рН	7.5	7.4	7-6	7.6	2.4	23	22	7.6	25	2-6	2.7	7-6		-
	Temp	245	25.1	24.0	246	24:0	253	24.8	25.2	24-4	24.8	24.6	25.1		
	DO	7-5	7-8					6, 200, 200, 200, 200, 200, 200, 200, 20	Linear and a second		Caspatoin,				
4.0 g/l	pН	2.4	7-8			and the second second		guerenn.		Satisfantes,)	
			24,6					Jacobie Contraction							
	Di	ssolved	Oxyge	n (DO)	reading	s are in		D ₂ ; Temp	berature	(Temp)					
	Additional	Paramet	ers	╞		.	Contr	T					oncentrat		
	Conducti	vity (uS	······		 3 <i>50</i>	/	Day 3		Day 5		Day 1		Day 3		ay 5
	Alkalinity (<u> </u>		65		<u>305</u> 63		400		1 <u>00</u> 06	6	210
	Hardness (91		97		9B	6	<u> </u>)	9	-
						Source of Neonates			i i i i i i i i i i i i i i i i i i i				<u> </u>		
Replicate: A B					С		D	E	F		G	Н	1		J
Broo	Brood ID: 2B B				30	2	-C	2A	30) 36	5	rk	36		<i>}-G</i>

Laboratory Temperature Chart

QA/QC Batch No: RT-080106 Date Tested: 01/06/08 to 01/12/08 Acceptable Range: 25+/- 1°C

February 22, 2008

Mr. Joseph Doak Test America, Inc. 17461 Derian Avenue, Suite 100 Irvine, CA 92614

 Reference:
 Eberline Services NELAP Cert #01120CA

 Test America Project Nos.
 IRA1233, IRA2025, IRA2352, IRA2350,

 IRA2349, IRA2156
 Eberline Services Reports

 R801067-8681, R801142-8682, R801161-8683

 R801162-8684, R801163-8685, R801164-8686

Dear Mr. Doak:

Enclosed are results from the analyses of six water samples. One sample was received on January 16, one on January 24, three on January 26, and one on January 28, 2008. The samples were analyzed according to the accompanying Test America Subcontract Order Forms, the requested analyses were: gross alpha/gross beta (EPA 900.0), tritium (H-3, EPA906.0), Sr-90 (EPA905.0), Ra-226 (EPA903.1), Ra-228 (EPA 904.0), total uranium (ASTM D-5174), and gamma spectroscopy (EPA901.1, K-40 and Cs-137 only). Batch quality control samples consisted of LCS's, blank analyses, duplicate analyses, and matrix spike analyses (gross alpha/gross beta, H-3, Ra-226, Total-U only). All QC sample results were within the limits defined in Eberline Services Quality Control Procedures Manual.

Please call me if you have any questions concerning this report.

Regards,

Melen Mamm

Melissa Mannion Senior Program Manager

MCM/njv

Enclosure: Reports/CoC's Invoices

> Analytical Services 2030 Wright Avenue P.O. Box 4040 Richmond, California 94804-0040 (510) 235-2633 Fax (510) 235-0438 Toll Free (800) 841-5487 www.eberlieservices.com

Eberline Services

SDG 8686 Client TA IRVINE Work Order R801164-01 Contract PR0JECT# IRA2156 Received Date 01/28/08 Matrix WATER

ANALYSIS RESULTS

Client	Lab					
Sample ID	Sample ID	Collected Analyzed	Nuclide	<u>Results ± 20</u>	Units	MDA
IRA2156-01	8686-001	01/23/08 02/06/08	GrossAlpha	-1.16 ± 1.3	pCi/L	2.5
		02/06/08	Gross Beta	4.16 ± 1.0	pCi/L	1.4
		02/04/08	Ra-228	-0.058 ± 0.16	pCi/L	0.45
		01/31/08	K-40 (G)	U	pCi/L	8.7
		01/31/08	Cs-137 (G)	Ŭ	pCi/L	0.66
		02/15/08	H-3	-28.6 ± 94	pCi/L	160
		02/11/08	Ra-226	0.623 ± 0.36	pCi/L	0.16
		02/07/08	Sr-90	-0.093 ± 0.24	pCi/L	0.53
		02/19/08	Total U	0.409 ± 0.046	pCi/L	0.022

Certified by 2
Report Date <u>02/22/08</u> (/
Page 1

QC RESULTS

	SDG <u>8686</u> Order <u>R80116</u> d Date <u>01/28</u> /			Contract	TA IRVINE PROJECT# IR WATER	 A2156
Lab						
ample ID	<u>Nuclide</u>	Results	Units	Amount Added	MDA	Evaluation
CS						
3682-002	GrossAlpha	10.6 ± 0.84	pCi/Smpl	10.1	0.29	105% recovery
	Gross Beta	9.49 ± 0.38	pCi/Smpl	9.39	0.29	101% recovery
	Ra-228	8.69 ± 0.54	pCi/Smpl	8.73	0.75	100% recovery
	Co-60 (G)	223 ± 11	pCi/Smpl	226	7.0	99% recovery
	Cs-137 (G)	253 <u>+</u> 11	pCi/Smpl	236	8.1	107% recovery
	Am-241 (G)	215 ± 37	pCi/Smpl	252	47	85% recovery
	H-3	228 ± 14	pCi/Smpl	240	16	95% recovery
	Ra-226	5.92 ± 0.27	pCi/Smpl	5.58	0.085	106% recovery
	Sr-90	9.45 ± 0.73	pCi/Smpl	9.40	0.32	101% recovery
	Total U	1.06 ± 0.12	pCi/Smpl	1.13	0.004	94% recovery
BLANK						
3682-003	GrossAlpha	0.006 ± 0.13	pCi/Smpl	NA	0.25	<mda< td=""></mda<>
	Gross Beta	-0.090 ± 0.27	pCi/Smpl	NA	0.44	<mda< td=""></mda<>
	Ra-228	-0.089 ± 0.33	pCi/Smpl	NA	0.78	<mda< td=""></mda<>
	K-40 (G)	U	pCi/Smpl	NA	190	<mda< td=""></mda<>
	Cs-137 (G)	U	pCi/Smpl	NA	7.4	<mda< td=""></mda<>
	H-3	-4.88 ± 9.0	pCi/Smpl	NA	15	<mda< td=""></mda<>
	Ra-226	-0.014 ± 0.026	pCi/Smpl	NA	0.071	<mda< td=""></mda<>
	Sr-90	0.078 ± 0.24	pCi/Smpl	NA	0.54	<mda< td=""></mda<>
	Total U	0.00E 00 ± 1.9E-04	pCi/Smpl	NA	4.4E-04	<mda< td=""></mda<>

	DUPLICATES				ORIGINALS				
								3σ	
Sample ID	Nuclide	<u>Results ± 20</u>	MDA.	Sample ID	<u>Results ± 20</u>	MDA	RPD	(Tot)	Eval
8682-004	GrossAlpha	3.13 ± 2.1	2.2	8682-001	2.52 ± 2.0	2.4	22	160	satis.
	Gross Beta	42.1 ± 2.3	2.1		42.3 ± 2.4	2.4	0	44	satis.
	Ra-228	0.070 ± 0.15	0.42		0.145 ± 0.17	0.44	-	0	satis.

Certified by no	
Report Date 02/22/08	
Page 2	

Eberline Services

	8686			Client					
Work Order				Contract		T# IRA219	56		
leceived Date	01/28	/08		Matrix	WATER				
K - 40	(G)	42.6 ± 18	9.6	36.0 ±	19	13	17	102	satis.
Cs-137	(G)	U	0.92	U		1.1		0	satis.
T1-208	(G)	U	1.2	U			200	302	satis.
Pb-210	(G)	U	230	U			200	302	satis.
Bi-212	(G)	U	7.7	U			200	302	satis.
Pb-212	(G)	U	1.6	U			200	302	satis.
Bi-214	(G)	U	2.1	U			200	301	satis.
Pb-214	(G)	U	2.2	U			200	302	satis.
Ra-226	(G)	U	18	U			200	302	satis.
Ac-228	(G)	U	5.0	U			200	302	satis.
Th-234	(G)	U	31	U			200	302	satis.
U-235	(G)	U	6.5	U			200	302	satis.
U-238	(G)	U	130	U			200	302	satis.
Am-241	(G)	U	6.7	U			200	302	satis.
H-3		-73.7 <u>+</u> 92	160	-62.4 ±	94	160	-	0	satis.
Ra-226		0.111 ± 0.44	0.80	-0.149 ±	0.46	0.96	-	0	satis.
Sr-90		-0.108 ± 0.44	1.1	0.032 ±	0.30	0.58	-	0	satis.
Total (J	2.88 ± 0.32	0.022	2.75 ±	0.30	0.022	5	30	satis.

SPIKE	D SAMPLE		OR:	IGINAL SAMPLE			
Sample ID Nuclie	de <u>Results ± 20</u>	MDA	Sample ID	<u>Results ± 20</u>	MDA	Added	*Recv
8682-005 Gross	Alpha 225 <u>+</u> 12	2.5	8682-001	2.52 ± 2.0	2.4	163	136
Gross	Beta 192 ± 4.5	2.4		42.3 ± 2.4	2.4	145	103
H-3	15800 ± 310	160		-62.4 ± 94	160	16000	99
Ra-22	6 124 ± 4.7	0.94		-0.149 ± 0.46	0.96	112	111
Total	U 120 ± 15	2.2		2.75 ± 0.30	0.022	113	104

Certified by n/V	_
Report Date 02/22/08	
Page 3	

SUBCONTRACT ORDER

TestAmerica Irvine

IRA2156

SENDING LABORATORY:

TestAmerica Irvine 17461 Derian Avenue. Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297 Project Manager: Joseph Doak

RECEIVING LABORATORY:

Eberline Services - SUB 2030 Wright Avenue Richmond, CA 94804 Phone :(510) 235-2633 Fax: (510) 235-0438 Project Location: California 0 °C Receipt Temperature:

MELTED Ν Ice: Y /

3686

Analysis	Units	Due	Expires	Comments
Sample ID: IRA2156-01	Water		Sampled: 01/23/08 13:45	
Gamma Spec-O	mg/kg	02/01/08	01/22/09 13:45	Boeing, J flags, K-40 and CS-137 only
Gross Alpha-O	pCi/L	02/01/08	07/21/08 13:45	Boeing, J flags
Gross Beta-O	pCi/L	02/01/08	07/21/08 13:45	Boeing, J flags
Level 4 Data Package - Out	N/A	02/01/08	02/20/08 13:45	
Radium, Combined-O	pCi/L	02/01/08	01/22/09 13:45	Boeing, J flags
Strontium 90-0	pCi/L	02/01/08	01/22/09 13:45	Boeing, J flags
Tritium-O	pCi/L	02/01/08	01/22/09 13:45	Boeing, J flags
Uranium, Combined-O	pCi/L	02/01/08	01/22/09 13:45	Boeing, J flags
Containers Supplied:				
2.5 gal Poly (AA)	500 mL Amb	er (AB)		

Released By

17:00 IN 08 (I

Date/Time

1/21 Date/Time Received By

28 08 DI Date/Time

00

ÛÚ Page 1 of 1 NPDES - 3976

: 70

Released By

Date/Time

Received By

January 29, 2008

Vista Project I.D.: 30198

Mr. Joseph Doak Test America-Irvine, CA 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Mr. Doak,

Enclosed are the results for the one aqueous sample received at Vista Analytical Laboratory on January 25, 2008 under your Project Name "IRA2156". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Vista's current certifications, and copies of the raw data (if requested).

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Callo Mare

Martha M. Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.

Section I: Sample Inventory Report Date Received: 1/25/2008

<u>Vista Lab. ID</u>

Client Sample ID

30198-001

IRA2156-01

SECTION II

Method Blank				I				EPA Method 1613
Matrix: Aqu	eous	QC Batch No.:	9906	Lab S	Sample: 0	-MB001		
Sample Size: 1.	00 L	Date Extracted:	27-Jan-08	Date	Analyzed DB-5: 2	9-Jan-08	Date An	alyzed DB-225: NA
Analyte	Conc. (ug/L)	DL ^a EMPC ^b	Qualifiers		Labeled Standard		%R	LCL-UCL ^d Qualifiers
2,3,7,8-TCDD	ND	0.000000647		<u>IS</u>	13C-2,3,7,8-TCDD		86.5	25 - 164
1,2,3,7,8-PeCDD	ND	0.00000122			13C-1,2,3,7,8-PeCI	DD	79.3	25 - 181
1,2,3,4,7,8-HxCDD	ND	0.00000111			13C-1,2,3,4,7,8-Hx	CDD	88.1	32 - 141
1,2,3,6,7,8-HxCDD	ND	0.00000109			13C-1,2,3,6,7,8-Hx	CDD	86.9	28 - 130
1,2,3,7,8,9-HxCDD	ND	0.00000105			13С-1,2,3,4,6,7,8-Н	pCDD	91.4	23 - 140
1,2,3,4,6,7,8-HpCDI) ND	0.00000123			13C-OCDD		73.6	17 - 157
OCDD	ND	0.00000681			13C-2,3,7,8-TCDF		90.4	24 - 169
2,3,7,8-TCDF	ND	0.000000578			13C-1,2,3,7,8-PeCI	DF	76.2	24 - 185
1,2,3,7,8-PeCDF	ND	0.000000800			13C-2,3,4,7,8-PeCI	DF	77.2	21 - 178
2,3,4,7,8-PeCDF	ND	0.000000796			13C-1,2,3,4,7,8-Hx	CDF	80.4	26 - 152
1,2,3,4,7,8-HxCDF	ND	0.000000512			13C-1,2,3,6,7,8-Hx	CDF	82.8	26 - 123
1,2,3,6,7,8-HxCDF	ND	0.000000533			13C-2,3,4,6,7,8-Hx	CDF	82.6	28 - 136
2,3,4,6,7,8-HxCDF	ND	0.000000583			13C-1,2,3,7,8,9-Hx	CDF	91.5	29 - 147
1,2,3,7,8,9-HxCDF	ND	0.000000671			13С-1,2,3,4,6,7,8-Н	pCDF	81.2	28 - 143
1,2,3,4,6,7,8-HpCDF	F ND	0.000000428			13С-1,2,3,4,7,8,9-Н	pCDF	85.2	26 - 138
1,2,3,4,7,8,9-HpCDF		0.000000460			13C-OCDF	-	78.4	17 - 157
OCDF	ND	0.00000140		CRS	37Cl-2,3,7,8-TCDD		84.0	35 - 197
Totals				Foot	notes			
Total TCDD	ND	0.00000122		a. San	ple specific estimated dete	ction limit.		
Total PeCDD	ND	0.00000195		b. Esti	mated maximum possible c	concentration.		
Total HxCDD	ND	0.00000207		c. Met	hod detection limit.			
Total HpCDD	ND	0.00000302		d. Lov	ver control limit - upper cor	ntrol limit.		
Total TCDF	ND	0.000000578						
Total PeCDF	ND	0.00000209						
Total HxCDF	ND	0.000000573						
Total HpCDF	ND	0.000000443						

Analyst: MAS

OPR Results					EP	A Method 1	1613
Matrix: Aqueous Sample Size: 1.00 L		QC Batch No.: Date Extracted:	9906 27-Jan-08	Lab Sample:0-OPR001Date Analyzed DB-5:29-Jan-08	Date Analy	zed DB-225:	NA
Analyte	Spike Conc.	Conc. (ng/mL)	OPR Limits	Labeled Standard	%R	LCL-UCL	Qualifier
2,3,7,8-TCDD	10.0	9.57	6.7 - 15.8	<u>IS</u> 13C-2,3,7,8-TCDD	89.2	25 - 164	
1,2,3,7,8-PeCDD	50.0	48.6	35 - 71	13C-1,2,3,7,8-PeCDD	80.6	25 - 181	
1,2,3,4,7,8-HxCDD	50.0	45.8	35 - 82	13C-1,2,3,4,7,8-HxCDD	89.6	32 - 141	
1,2,3,6,7,8-HxCDD	50.0	46.7	38 - 67	13C-1,2,3,6,7,8-HxCDD	87.3	28 - 130	
1,2,3,7,8,9-HxCDD	50.0	47.0	32 - 81	13C-1,2,3,4,6,7,8-HpCDD	91.5	23 - 140	
1,2,3,4,6,7,8-HpCDD	50.0	45.3	35 - 70	13C-OCDD	73.9	17 - 157	
OCDD	100	95.0	78 - 144	13C-2,3,7,8-TCDF	93.6	24 - 169	
2,3,7,8-TCDF	10.0	8.78	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	79.3	24 - 185	
1,2,3,7,8-PeCDF	50.0	45.0	40 - 67	13C-2,3,4,7,8-PeCDF	78.5	21 - 178	
2,3,4,7,8-PeCDF	50.0	45.9	34 - 80	13C-1,2,3,4,7,8-HxCDF	79.6	26 - 152	
1,2,3,4,7,8-HxCDF	50.0	46.7	36 - 67	13C-1,2,3,6,7,8-HxCDF	82.1	26 - 123	
1,2,3,6,7,8-HxCDF	50.0	46.4	42 - 65	13C-2,3,4,6,7,8-HxCDF	81.7	28 - 136	
2,3,4,6,7,8-HxCDF	50.0	46.5	35 - 78	13C-1,2,3,7,8,9-HxCDF	88.5	29 - 147	
1,2,3,7,8,9-HxCDF	50.0	45.4	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	80.1	28 - 143	
1,2,3,4,6,7,8-HpCDF	50.0	45.1	41 - 61	13C-1,2,3,4,7,8,9-HpCDF	86.5	26 - 138	
1,2,3,4,7,8,9-HpCDF	50.0	44.9	39 - 69	13C-OCDF	79.2	17 - 157	
OCDF	100	91.4	63 - 170	<u>CRS</u> 37Cl-2,3,7,8-TCDD	82.9	35 - 197	

Analyst: MAS

Approved By: William J. Luksemburg 29-Jan-2008 14:45

Sample ID: IRA2	2156-01								EPA N	Iethod 1613
Project: IRA2 Date Collected: 23-Ja	America-Irvine, CA 2156 an-08		Sample Data Matrix: Sample Size:	Aqueous 1.00 L	Lab QC	oratory Data Sample: Batch No.: Analyzed DB-5:	30198-001 9906	Date Re Date Ex		25-Jan-08 27-Jan-08
Time Collected: 1345 Analyte	Conc. (ug/L)	DL ^a	EMPC ^b	Qualifiers	Date	Labeled Standa	29-Jan-08 rd		LCL-UCL ^d	NA Qualifiers
2,3,7,8-TCDD	ND	0.000000	693		IS	13C-2,3,7,8-TCD	D	79.3	25 - 164	
1,2,3,7,8-PeCDD	ND	0.000001	73			13C-1,2,3,7,8-Pe	CDD	69.1	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.000002	91			13C-1,2,3,4,7,8-H	IxCDD	74.1	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.000002	69			13C-1,2,3,6,7,8-H	IxCDD	73.3	28 - 130	
1,2,3,7,8,9-HxCDD	0.00000186			J		13C-1,2,3,4,6,7,8	-HpCDD	74.7	23 - 140	
1,2,3,4,6,7,8-HpCDD	0.0000462					13C-OCDD		61.7	17 - 157	
OCDD	0.000533					13C-2,3,7,8-TCD	F	78.9	24 - 169	
2,3,7,8-TCDF	ND		0.00000	0883		13C-1,2,3,7,8-Pe	CDF	65.3	24 - 185	
1,2,3,7,8-PeCDF	ND	0.000001	77			13C-2,3,4,7,8-Pe	CDF	65.8	21 - 178	
2,3,4,7,8-PeCDF	ND	0.000001	00			13C-1,2,3,4,7,8-H	IxCDF	68.0	26 - 152	
1,2,3,4,7,8-HxCDF	ND	0.000000	959			13C-1,2,3,6,7,8-H	IxCDF	68.8	26 - 123	
1,2,3,6,7,8-HxCDF	ND	0.000001	03			13C-2,3,4,6,7,8-H	IxCDF	68.1	28 - 136	
2,3,4,6,7,8-HxCDF	ND	0.000001	09			13C-1,2,3,7,8,9-H	IxCDF	71.5	29 - 147	
1,2,3,7,8,9-HxCDF	ND	0.000000	891			13C-1,2,3,4,6,7,8	-HpCDF	64.9	28 - 143	
1,2,3,4,6,7,8-HpCDF	0.00000676			J		13C-1,2,3,4,7,8,9	-HpCDF	69.6	26 - 138	
1,2,3,4,7,8,9-HpCDF	ND	0.000001	44			13C-OCDF		64.2	17 - 157	
OCDF	0.0000144			J	CRS	37Cl-2,3,7,8-TCL	DD	89.6	35 - 197	
Totals					Foo	otnotes				
Total TCDD	ND	0.000001	62		a. Sa	mple specific estimated	detection limit.			
Total PeCDD	ND	0.000003	18		b. E	stimated maximum possi	ble concentration.			
Total HxCDD	0.00000681		0.00001	12	c. M	ethod detection limit.				
Total HpCDD	0.0000954				d. L	ower control limit - uppe	er control limit.			
Total TCDF	0.00000143		0.000002	231						
Total PeCDF	ND	0.000001	81							
Total HxCDF	0.00000475									
Total HpCDF	0.0000153									

Analyst: MAS

APPENDIX

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank.
D	Dilution
Р	The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.
Н	The signal-to-noise ratio is greater than 10:1.
Ι	Chemical Interference
J	The amount detected is below the Lower Calibration Limit of the instrument.
*	See Cover Letter
Conc.	Concentration
DL	Sample-specific estimated detection limit
MDL	The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.
EMPC	Estimated Maximum Possible Concentration
NA	Not applicable
RL	Reporting Limit – concentrations that correspond to low calibration point
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

SUBCONTRACT ORDER

TestAmerica Irvine

IRA21	56
-------	----

30198

SENDING LABORATORY:

TestAmerica Irvine 17461 Derian Avenue, Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297 Project Manager: Joseph Doak

RECEIVING LABORATORY:

Vista Analytical Laboratory- SUB 1104 Windfield Way El Dorado Hills, CA 95762 Phone :(916) 673-1520 Fax: (916) 673-0106 Project Location: California Receipt Temperature: °C

Ice: Y / N

1.40

Analysis	Units	Due	Expires	Comments
Sample ID: IRA2156-01	Water		Sampled: 01/23/08 13:45	
1613-Dioxin-HR-Alta	ug/l	02/01/08	01/30/08 13:45	J flags,17 congeners,no TEQ,ug/L,sub=Vista
Level 4 Data Package	N/A	02/01/08	02/20/08 13:45	
<i>Containers Supplied:</i> 1 L Amber (D)	1 L Amber (E)			

Released By

08 17:00

Date/Time

7:00 Received By Date/Time mediet 1038 125/07

Released By Project 30198

Date/Time

Received By

Page 1 of 1 Date/Time NPDES - 3986 Page 10 of 256

SAMPLE LOG-IN CHECKLIST

V	Vista Analytical Laboratory
7	

Vista Project #:	3019-	8			TAT	7		
	Date/Time		Initials:		Location	^{1:} (1)	R-2	
Samples Arrival:	1/25/08	0915	BI	BIB		Shelf/Rack: N/A		
Logged In:	Date/Time $1/25/07$	103	F Initials:	AB.	Location Shelf/Ra	1	K-2 3-4	
Delivered By:	FedEx	UPS	Cal	DHL		and vered	Other	
Preservation:	(lce	E	Blue Ice	e Ice Dr			None	
Тетр °С 1.4	С Ті	ime: 🔿	928		Thermo	meter l	D: IR-1	

			A.		YES	NO	NA		
Adequate Sample Volume Recei	ved?				V				
Holding Time Acceptable?									
Shipping Container(s) Intact?									
Shipping Custody Seals Intact?									
Shipping Documentation Presen	t?	·			V				
Airbill Trk # 7	99261	064790		·. ·	V				
Sample Container Intact?		· · · · · · · · · · · · · · · · · · ·	•						
Sample Custody Seals Intact?	-			· · · · ·			V		
Chain of Custody / Sample Docu	mentation P	resent?			V				
COC Anomaly/Sample Acceptar	ice Form cor	npleted?				\checkmark			
If Chlorinated or Drinking Water	Samples, Ac	ceptable Pre	servation	?			V		
Na ₂ S ₂ O ₃ Preservation Document	ted?	coc		Sample ontainer		None	\mathbf{i}		
Shipping Container	Vista	Client	Retair	Re	eturn	Disp	ose		
Comments:				~					

SUBCONTRACT ORDER

TestAmerica Irvine

IRA21	56
--------------	----

8012420

SENDING LABORATORY:

TestAmerica Irvine 17461 Derian Avenue. Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297 Project Manager: Joseph Doak

RECEIVING LABORATORY:

Weck Laboratories, Inc-SUB 14859 E. Clark Avenue City of Industry, CA 91745 Phone :(626) 336-2139 Fax: (626) 336-2634 Project Location: California Receipt Temperature: 2.3 °C Ice:

(Y) N

Analysis	Units	Due	Expires	Comments
Sample ID: IRA2156-01	Water		Sampled: 01/23/08	3 13:45
Level 4 Data Package - W	ec N/A	02/01/08	02/20/08 13:45	
Mercury - 245.1, Diss -OU	T mg/l	02/01/08	02/20/08 13:45	Boeing, J flags
Mercury - 245.1-OUT	mg/l	01/24/08	02/20/08 13:45	Boeing, permit, J flags
Containers Supplied:				
125 mL Poly (AE)	125 mL Pol (AF)	ly w/HNO3		

Received By Date/Tim Released By 1020 ゆわ 103 mon Imal Date/Time NPDES P3966 1 of 1 Released By Received By Date/Time

Weck Laboratories, Inc.

Analytical Laboratory Services - Since 1964

14859 E. Clark Ave., Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634 info@weeklabs.com www.weeklabs.com

CERTIFICATE OF ANALYSIS

Client:	TestAmerica, Inc Irvine	Report Date:	01/29/08 15:45
	17461 Derian Ave, Suite 100	Received Date:	01/24/08 10:20
	Irvine, CA 92614	Turn Around:	6 days
	Attention: Joseph Doak	Work Order #: 8012420	
	Phone: (949) 261-1022 Fax: (949) 260-3297	Client Project: IRA2156	

NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

Dear Joseph Doak :

Enclosed are the results of analyses for samples received 01/24/08 10:20 with the Chain of Custody document. The samples were received in good condition. The samples were received at 2.3 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Reviewed by: in

Kim G Tu

Project Manager

14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Weck Laboratories, Inc.

Date Received: 01/24/08 10:20 Date Reported: 01/29/08 15:45

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Sampled by:	Sample Comments	Laboratory	Matrix	Date Sampled
IRA2156-01	Client		8012420-01	Water	01/23/08 13:45

Report ID: 8012420

Project ID: IRA2156

Date Received: 01/24/08 10:20 Date Reported: 01/29/08 15:45

IRA2156-01 8012420-01 (Water)

Report ID: 8012420

Project ID: IRA2156

Date Sampled:

01/23/08 13:45

Metals by EPA 200 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Dissolved Mercury, Total	ND ND	0.050 0.050	ug/l ug/l	0.20 0.20	1	EPA 245.1 EPA 245.1	W8A0913 W8A0913	01/25/08 01/25/08	01/28/08 jlp 01/28/08 jlp	

Report ID: 8012420 Project ID: IRA2156 Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

 Date Received:
 01/24/08 10:20

 Date Reported:
 01/29/08 15:45

QUALITY CONTROL SECTION

Date Received: 01/24/08 10:20 Date Reported: 01/29/08 15:45

Metals by EPA 200 Series Methods - Quality Control

Report ID: 8012420

Project ID: IRA2156

							%REC			
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch W8A0913 - EPA 245.1										
Blank (W8A0913-BLK1)				Analyzed:	01/28/08					
Mercury, Dissolved	ND	0.20	ug/l							
Mercury, Total	ND	0.050	ug/l							
LCS (W8A0913-BS1)				Analyzed:	01/28/08					
Mercury, Dissolved	0.967	0.20	ug/l	1.00		97	85-115			
Mercury, Total	0.967	0.050	ug/l	1.00		97	85-115			
Matrix Spike (W8A0913-MS1)	So	urce: 8012328	-01	Analyzed: 01/28/08						
Mercury, Dissolved	1.01	0.20	ug/l	1.00	ND	101	70-130			
Mercury, Total	1.01	0.050	ug/l	1.00	ND	101	70-130			
Matrix Spike (W8A0913-MS2)	So	urce: 8012328	-02	Analyzed: 01/28/08						
Mercury, Dissolved	0.978	0.20	ug/l	1.00	ND	98	70-130			
Mercury, Total	0.978	0.050	ug/l	1.00	ND	98	70-130			
Matrix Spike Dup (W8A0913-MSD1)	So	urce: 8012328	-01	Analyzed:	01/28/08					
Mercury, Dissolved	0.992	0.20	ug/l	1.00	ND	99	70-130	2	20	
Mercury, Total	0.992	0.050	ug/l	1.00	ND	99	70-130	2	20	
Matrix Spike Dup (W8A0913-MSD2)	So	urce: 8012328	-02	Analyzed:	01/28/08					
Mercury, Dissolved	1.01	0.20	ug/l	1.00	ND	101	70-130	3	20	
Mercury, Total	1.01	0.050	ug/l	1.00	ND	101	70-130	3	20	

Report ID: 8012420 Project ID: IRA2156 Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Date Received: 01/24/08 10:20 Date Reported: 01/29/08 15:45

Notes and Definitions

- ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- % Rec Percent Recovery
- Sub Subcontracted analysis, original report available upon request
- MDL Method Detection Limit
- MDA Minimum Detectable Activity

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.