APPENDIX G

Section 85

Outfall 013, January 5, 2008 MECX Data Validation Reports

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IRA0403

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title:	Boeing SSFL NPDES
Contract Task Order:	1261.100D.00
Sample Delivery Group:	IRA0403
Project Manager:	B. Kelly
Matrix:	Soil
QC Level:	IV
No. of Samples:	1
No. of Reanalyses/Dilutions:	0
Laboratory:	TestAmerica-Irvine, Weck, Vista

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 013	IRA0403-01	30123-001, 8010771-01	Water	01/05/08 1200	180.1, 200.8, 245.1, 405.1, 624, 625, 1613
Trip Blank	IRA0403-02	N/A	Water	01/05/08	624

II. Sample Management

No anomalies were observed regarding sample management. The sample in this SDG was received at TestAmerica-Irvine and Weck within the temperature limits of $4^{\circ}C \pm 2^{\circ}C$. The sample was received below the temperature limits at Vista; however, the sample was not noted to have been frozen. According to the case narrative for this SDG, the sample was received intact at all laboratories. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine, custody seals were not required. Custody seals were intact upon arrival at Vista and Weck. If necessary, the client ID was added to the sample result summary by the reviewer.

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
A	Not applicable.	ICP Serial Dilution %D were not within control limits.
Μ	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Ρ	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

4

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: February 27, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had no target compound detects above the EDL.

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Any EMPC value was qualified as an estimated nondetect, "UJ." Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHODS 200.8, 245.1—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: February 29, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.8 and 245.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding times, 6 months for metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.

- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP-MS metals and 85-115% for mercury.
- Blanks: There were no applicable detects in the method blanks or CCBs.
- Interference Check Samples: ICSA/B analyses were performed in association with the dissolved metals analyses only. Recoveries were within the method-established control limits. Most analytes were reported in the 6020 ICSA solution; however, the reviewer was not able to ascertain if the detection was indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample in this SDG. Evaluation of method accuracy was based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. The bracketing CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

C. EPA METHOD 625—Semivolatile Organic Compounds (SVOCs)

Reviewed By: L. Calvin Date Reviewed: March 1, 2008

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC^X* Data Validation Procedure for Semivolatile Organics (DVP-3, Rev. 0), EPA Method 8270C, and the National Functional Guidelines for Organic Data Review (2/94).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted within seven days of collection and analyzed within 40 days of extraction.
- GC/MS Tuning: The DFTPP tunes met the method abundance criteria. Samples were analyzed within 12 hours of the DFTPP injection time.
- Calibration: For applicable target compounds, initial calibration average RRFs were ≥0.05 and %RSDs ≤35%, and continuing calibration RRFs were ≥0.05 and %Ds ≤20%.
- Blanks: The method blank had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries and RPDs were within laboratory-established QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample of this SDG. Evaluation of method accuracy and precision was based on LSC/LSCD results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The internal standard area counts and retention times were within the control limits established by the continuing calibration standards: -50%/+100% for internal standard areas and ±30 seconds for retention times.
- Compound Identification: Compound identification was verified. The laboratory analyzed for semivolatile target compounds naphthalene and n-nidrosodimethylamine by EPA

Method 625. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.

- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any results reported between the MDL and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review of the raw data indicated no problems with system performance.

D. EPA METHOD 624—Volatile Organic Compounds (VOCs)

Reviewed By: L. Calvin Date Reviewed: March 1, 2008

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC^X* Data Validation Procedure for Volatile Organics (DVP-2, Rev. 0), EPA Method 8260B, and the National Functional Guidelines for Organic Data Review (2/94).

- Holding Times: Analytical holding times were met. The preserved water samples were analyzed within 14 days of collection.
- GC/MS Tuning: The BFB tunes met the method abundance criteria. Samples were analyzed within 12 hours of the BFB injection time.
- Calibration: Calibration criteria were met. For applicable target compounds, initial calibration average RRFs were ≥0.05 and %RSDs ≤35%. Continuing calibration RRFs were ≥0.05 and %Ds ≤20%.
- Blanks: The method blank had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample of this SDG. Evaluation of method accuracy was based on LSC results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC

9

data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Trip Blanks: Sample Trip Blank was the trip blank associated with site sample Outfall 013. The trip blank had no target compound detects above the MDL.
- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The internal standard area counts and retention times were within the control limits established by the continuing calibration standards: -50%/+100% for internal standard areas and ±30 seconds for retention times.
- Compound Identification: Compound identification was verified. The laboratory analyzed for five volatile target compounds by EPA Method 624. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any results reported between the MDL and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review of the raw data indicated no problems with system performance.

E. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks Date Reviewed: March 3, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Methods 180.1, 405.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The holding times, 48 hours for BOD and turbidity, were met.
- Calibration: Calibration criteria are not applicable to BOD.. The turbidity check standard recoveries were acceptable.

- Blanks: There were no applicable detects in the method blanks.
- Blank Spikes and Laboratory Control Samples: The BOD recoveries and RPD were within the laboratory-established control limits. The LCS is not applicable to turbidity.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: BOD MS/MSD analyses were not performed. Method accuracy and precision were evaluated based on the LCS/LCSD results. MS/MSD analyses are not applicable to turbidity.
- Sample Result Verification: The sample results were verified against the raw data. No transcription or calculation errors were noted.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- Field Duplicates: There were no field duplicate samples identified for this SDG.

Client Data				Sample Data		Laboratory Data				
Name: Project: Date Collected: Time Collected:		Test America-Irvine, CA IRA0403 5-Jan-08 1200		Matrix: Sample Size:	Aqueous 1.01 L	Lab Sample: QC Batch No.: Date Analyzed DB-5:	30123-001 9886 19-Jan-08	Date Received: Date Extracted: Date Analyzed I	Date Received: Date Extracted: Date Analyzed DB-225:	8-Jan-08 17-Jan-08 NA
Analyte		Conc. (ug/L)	DL ^a	EMPC ^b	Qualifiers	Labeled Standard	idard	%R L	rcr-ucr ^d	Oualifiers
2,3,7,8-TCDD	CDD	Ð	0.00000112	2	「「「「「「」」	IS 13C-2,3,7,8-TCDD	cop)	76.8	25-164	
1,2,3,7,8-PeCDD	-PeCDD	QN	0.00000212	2		13C-1,2,3,7,8-PeCDD	PeCDD	68.7	25 - 181	
1,2,3,4,7	,2,3,4,7,8-HxCDD	Ð	0.00000234	4	State of the state	13C-1,2,3,4,7,8-HxCDD	8-HxCDD	64.5	32 - 141	
1,2,3,6,7	1,2,3,6,7,8-HxCDD	Ð	0,00000251	51		13C-1,2,3,6,7,8-HxCDD	8-HxCDD	65.0	28 - 130	
1,2,3,7,8	1,2,3,7,8,9-HxCDD	Ð	0.00000233	33		13C-1,2,3,4,6,7,8-HpCDD	7,8-HpCDD	68.9	23 - 140	
DNQ 1,2,3,4,6	1,2,3,4,6,7,8-HpCDD	0.00000623	:		ŗ	13C-OCDD		57.0	17-157	
N OCDD		0.0000473			T	13C-2,3,7,8-TCDF	OF	73.6	24 - 169	
12,3,7,8-TCDF	CDF	Ð		0.00000164	164	13C-1,2,3,7,8-PeCDF	PeCDF	63.4	24 - 185	
1,2,3,7,8-PeCDF	-PeCDF	CN.	0.00000281	31		13C-2,3,4,7,8-PeCDF	PeCDF	66.3	21 - 178	
2,3,4,7,8-PeCDF	-PeCDF	Ø	0.00000275	75		13C-1,2,3,4,7,8-HxCDF	8-HxCDF	63.1	26-152	
1,2,3,4,7	1,2,3,4,7,8-HxCDF	Ð	0.00000109			13C-1,2,3,6,7,8-HxCDF	8-HxCDF	63.0	26-123	第二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十
1,2,3,6,7	1,2,3,6,7,8-HxCDF	Ð	0.00000117	1	A second s	13C-2,3,4,6,7,8-HxCDF	8-HxCDF	64.0	28 - 136	and an other states
2,3,4,6,7	2,3,4,6,7,8-HxCDF	£	0.00000120	50		13C-1,2,3,7,8,9-HxCDF	9-HXCDF	66.7	29 - 147	
1,2,3,7,8	1,2,3,7,8,9-HxCDF	Ð	0.00000160	20		13C-1,2,3,4,6,7,8-HpCDF	7,8-HpCDF	73.1	28 - 143	
亚 1,2,3,4,6	1,2,3,4,6,7,8-HpCDF	£		0.00000311	11	13C-1,2,3,4,7,8,9-HpCDF	8,9-HpCDF	64.7	26-138	
1,2,3,4,7	1,2,3,4,7,8,9-HpCDF	Ð	0.00000167	21		13C-0CDF	and the second	55.5	17-157	Concernant of the second
DUE OCDF	「「「ない」」	0.00000457	的。 第二章 第二章	言語である	1	CRS 37CI-2,3,7,8-TCDD	CDD	95.2	35 - 197	
Totals		•••				Footnotes				
Total TCDD	DD	Ð	0.00000112	12		a. Sample specific estimated detection limit.	ated detection limit.	A CONTRACT OF	a contract of the second	Contraction of
Total PeCDD	COD	ę	0.00000415	5	の御言い	b. Estimated maximum possible concentration	possible concentration.			
Total HxCDD	CDD	Ð	0.00000240	40	- 10	c. Method detection limit	1		1. 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -	The other statements of the
Total HpCDD	8	0.00000623		0.0000120	20	d. Lower control limit - upper control limit	upper control limit.			
Total TCDF	DF	0.00000300	A NUMBER OF TAXABLE AND A DESCRIPTION OF TAXABLE AND A DESCRIPTION OF TAXABLE AND A DESCRIPTION OF TAXABLE AND A	0.00000973	973			Toracelle viron - au	2) (and a contract of the second	and the second second
三 Total PeCDF	COF	£		0.00000241	241 -			108 NJ 1	「日本語」	
Total HxCDF	CDF	Q	0.00000184			and the first of the second	a state of the second sec	IV no	and the second second	
Total HpCDF	CDF	Ø		0.00000449	149		ないたいで、「「「「」」では、「」」		「国際になって	時に、日本の

Drainet 20173

Page 6 01263

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

Attention: Bronwyn Kelly

METALS

Project ID: Routine Outfall 013

Analyte	Method	Batch	MDL Limit	Reporting Limit		Dilution Factor		Date Analyzed	Data Qualifiers
Sample ID: IRA0403-01 (OU Reporting Units: ug/l	TFALL 013 - Water) -	cont.			Sampl	ed: 01/0	5/08		
Cadmium	EPA 200.8	8A07086	0.11	1.0	5.2	1	01/07/08	01/08/08	
Copper	EPA 200.8	8A07086	0.75	2.0	5.2	1	01/07/08	01/08/08	
Lead	EPA 200.8	8A07086	0.30	1.0	2.9	1	01/07/08	01/08/08	
Selenium ()	EPA 200.8	8A07086	0.30	2.0	ND	1	01/07/08	01/08/08	
Zinc	EPA 200.8	8A07086	2.5	. 20	160	1	01/07/08	01/08/08	

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica. IRA0403 <Page 9 of 41>

19

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

DISSOLVED METALS

Project ID: Routine Outfall 013

Analyte	Method	Batch	MDL Limit	Reporting Limit				Date Analyzed	Data Qualifiers
Sample ID: IRA0403-01 (OUTF Reporting Units: ug/l	ALL 013 - Water) -	cont.			Sampl	ed: 01/0	5/08		
Cadmium	EPA 200.8-Diss	8A08129	0.11	1.0	4.3	1	01/08/08	01/08/08	
Copper	EPA 200.8-Diss	8A08129	0.75	2.0	4.0	1	01/08/08	01/08/08	
Lead	EPA 200.8-Diss	8A08129	0.30	1.0	1.1	1	01/08/08	01/08/08	
Selenium 🔾	EPA 200.8-Diss	8A08129	0.30	2.0	ND	1	01/08/08	01/08/08	
Zinc	EPA 200.8-Diss	8A08129	2.5	-20	140	1	01/08/08	01/08/08	

EVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica. IRA0403 <Page 11 of 41> 21

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013 Routine Outfall 013 Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

Metals by EPA 200 Series Methods

Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA0403-01	(OUTFAL	L 013 - Water) - cont.				Sample	ed: 01/05/0	8		
Reporting Units: ug/	1									
Mercury, Dissolved	U	EPA 245.1	W8A0148	0.050	0.20	ND	1	01/08/08	01/09/08	
Mercury, Total	U	EPA 245.1	W8A0148	0.050	0.20	ND	1	01/08/08	01/09/08	

LEVEL IV

TestAmerica Irvine

Sushmitha Reddy For Joseph Doak Project Manager

> The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA0403 <Page 16 of 41>

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Project ID: Routine Outfall 013

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Oualifiers
Sample ID: IRA0403-01 (OUTFALL 013 - Reporting Units: ug/l Naphthalene U N-Nitrosodimethylamine V Surrogate: 2-Fluorophenol (30-120%) Surrogate: Phenol-d6 (35-120%) Surrogate: 2,4,6-Tribromophenol (40-120%) Surrogate: Nitrobenzene-d5 (45-120%) Surrogate: 2-Fluorobiphenyl (50-120%) Surrogate: Terphenyl-d14 (50-125%)	Water) EPA 625 EPA 625	8A06033 8A06033	2.8 2.4	9,4 19		Factor ed: 01/05/0 0.943 0.943		Analyzed 01/09/08 01/09/08	Qualifiers
Level IV					02 70				

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA0403 <Page 6 of 29>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Project ID: Routine Outfall 013

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

		PURG	EABLES	BYC	C/MS (E	CPA 624	4)			
Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor		Date Analyzed	Data Qualifiers
Sample ID: IRA0403-01 (OUTF) Reporting Units: ug/l	ALL	013 - Water) -	cont.			Sampl	ed: 01/0:	5/08		
1,2-Dibromoethane (EDB)	U	EPA 624	8A09005	0.40	2.0	ND	1	01/09/08	01/09/08	
Methyl-tert-butyl Ether (MTBE)	1	EPA 624	8A09005	0.32	5.0	ND	î	01/09/08	01/09/08	
1,2,3-Trichloropropane		EPA 624	8A09005	0.40	10	ND	1	01/09/08	01/09/08	
Di-isopropyl Ether (DIPE)		EPA 624	8A09005	0.25	5.0	ND	1	01/09/08	01/09/08	
tert-Butanol (TBA)	V	EPA 624	8A09005	4.9	.25	ND	1	01/09/08	01/09/08	
Surrogate: Dibromofluoromethane	(80-	120%)				105 %				
Surrogate: Toluene-d8 (80-120%)						101 %				
Surrogate: 4-Bromofluorobenzene	(80-1	120%)				92 %				
Sample ID: IRA0403-02 (TRIP E Reporting Units: ug/l	LAN	K - Water)				Sample	ed: 01/04	1/08		
1,2-Dibromoethane (EDB)	U	EPA 624	8A09005	0.40	2.0	ND	1	01/09/08	01/09/08	
Methyl-tert-butyl Ether (MTBE)	1	EPA 624	8A09005	0.32	5.0	ND	1	01/09/08	01/09/08	
1,2,3-Trichloropropane		EPA 624	8A09005	0.40	10	ND	1	01/09/08	01/09/08	
Di-isopropyl Ether (DIPE)		EPA 624	8A09005	0.25	5.0	ND	1	01/09/08	01/09/08	
tert-Butanol (TBA)	V	EPA 624	8A09005	4.9	25	ND	1	01/09/08	01/09/08	
Surrogate: Dibromofluoromethane	(80	120%)				101 %			01100100	
Surrogate: Toluene-d8 (80-120%)						101 %				
Surrogate: 4-Bromofluorobenzene	(80-1	20%)				91%				
d	Le	velI								

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica. IRA0403 <Page 5 of 41>

15

LEVEL IV

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

INORGANICS

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

			MUA	iiico					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA0403-01 (OUTFALL 013	- Water) - cont.				Sample	ed: 01/05/0	08		
Reporting Units: mg/l Hexane Extractable Material (Oil & 🗡	EPA 1664A	8A07065	1.3	4.7	ND	1	01/07/08	01/07/08	
Grease) Ammonia-N (Distilled)	EPA 350.2	8A07093	0.30	0.50	0.56	1	01/07/08	01/07/08	
Biochemical Oxygen Demand	EPA 405.1	8A07076	0.59	2.0	ND	1	01/07/08	01/12/08	
Chloride 🔆	EPA 300.0	8A06026	0.25	0.50	21	1	01/06/08	01/06/08	
Fluoride	EPA 340.2	8A09065	0.014	0.10	0.39	1	01/09/08	01/09/08	
Nitrate-N	EPA 300.0	8A06026	0.060	0.11	1.6	1	01/06/08	01/06/08	
Nitrite-N	EPA 300.0	8A06026	0.090	0.15	ND	1	01/06/08	01/06/08	
Nitrate/Nitrite-N	EPA 300.0	8A06026	0.15	0.26	1.6	1	01/06/08	01/06/08	
Sulfate	EPA 300.0	8A06026	0.20	0.50	8.6	1	01/06/08	01/06/08	
Total Dissolved Solids	SM2540C	8A08084	10	10	110	1	01/08/08	01/08/08	
Total Suspended Solids	EPA 160.2	8A07105	10	10	ND	1	01/07/08	01/07/08	
Sample ID: IRA0403-01 (OUTFALL 013 Reporting Units: ml/l/hr	- Water)				Sample	ed: 01/05/0	08		
Total Settleable Solids	EPA 160.5	8A06031	0.10	0.10	ND	1	01/06/08	01/06/08	
Sample ID: IRA0403-01 (OUTFALL 013 Reporting Units: NTU	- Water)				Sample	ed: 01/05/0	08		
Turbidity	EPA 180.1	8A06032	0.040	1.0	4.8	1	01/06/08	01/06/08	
Sample ID: IRA0403-01 (OUTFALL 013 Reporting Units: ug/l	- Water)				Sample	ed: 01/05/0	08		
Perchlorate	EPA 314.0	8A07062	1.5	4.0	ND	1	01/07/08	01/07/08	

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA0403 <Page 9 of 29>

APPENDIX G

Section 86

Outfall 013, January 5, 2008 Test America Analytical Laboratory Report

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project: Routine Outfall 013

Sampled: 01/04/08-01/05/08 Received: 01/05/08 Revised: 02/27/08 15:42

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION:

This report was revised to correct reported carbon range for EFH.

LABORATORY ID	CLIENT ID	MATRIX
IRA0403-01	OUTFALL 013	Water
IRA0403-02	TRIP BLANK	Water

Reviewed By:

Joseph Dock

TestAmerica Irvine Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA0403-01 (OUTFALL 013 - Water)					Sample	d: 01/05/0)8		С
Reporting Units: mg/l									
EFH (C13 - C22)	EPA 8015B	8A07066	0.094	0.47	ND	0.943	01/07/08	01/08/08	
Surrogate: n-Octacosane (40-125%)					84 %				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA0403-01 (OUTFALL 0	13 - Water) - cont.				Sample	ed: 01/05/0)8		
Reporting Units: ug/l									
GRO (C4 - C12)	EPA 8015 Mod.	8A09029	25	100	ND	1	01/09/08	01/09/08	
Surrogate: 4-BFB (FID) (65-140%)					98 %				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

VOLATILE ORGANICS by GCMS SIM											
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: IRA0403-01 (OUTFALL	013 - Water) - cont.				Sample	d: 01/05/0)8				
Reporting Units: ug/l											
1,4-Dioxane	EPA 8260B-SIM	8A06013	1.0	2.0	ND	1	01/06/08	01/06/08			
Surrogate: Dibromofluoromethane (80	0-120%)				100~%						

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

PURGEABLES BY GC/MS (EPA 624)									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA0403-01 (OUTFALL 013 - V	Vater) - cont.				Sample	d: 01/05/0)8		
Reporting Units: ug/l									
1,2-Dibromoethane (EDB)	EPA 624	8A09005	0.40	2.0	ND	1	01/09/08	01/09/08	
Methyl-tert-butyl Ether (MTBE)	EPA 624	8A09005	0.32	5.0	ND	1	01/09/08	01/09/08	
1,2,3-Trichloropropane	EPA 624	8A09005	0.40	10	ND	1	01/09/08	01/09/08	
Di-isopropyl Ether (DIPE)	EPA 624	8A09005	0.25	5.0	ND	1	01/09/08	01/09/08	
tert-Butanol (TBA)	EPA 624	8A09005	4.9	25	ND	1	01/09/08	01/09/08	
Surrogate: Dibromofluoromethane (80-120%))				105 %				
Surrogate: Toluene-d8 (80-120%)					101 %				
Surrogate: 4-Bromofluorobenzene (80-120%)					92 %				
Sample ID: IRA0403-02 (TRIP BLANK - W	'ater)				Sample	d: 01/04/0	08		
Reporting Units: ug/l									
1,2-Dibromoethane (EDB)	EPA 624	8A09005	0.40	2.0	ND	1	01/09/08	01/09/08	
Methyl-tert-butyl Ether (MTBE)	EPA 624	8A09005	0.32	5.0	ND	1	01/09/08	01/09/08	
1,2,3-Trichloropropane	EPA 624	8A09005	0.40	10	ND	1	01/09/08	01/09/08	
Di-isopropyl Ether (DIPE)	EPA 624	8A09005	0.25	5.0	ND	1	01/09/08	01/09/08	
tert-Butanol (TBA)	EPA 624	8A09005	4.9	25	ND	1	01/09/08	01/09/08	
Surrogate: Dibromofluoromethane (80-120%))				101 %				
Surrogate: Toluene-d8 (80-120%)					101 %				
Surrogate: 4-Bromofluorobenzene (80-120%)					91 %				

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IRA0403-01 (OUTFALL 013 - Water)				Sampled: 01/05/08						
Reporting Units: ug/l										
Naphthalene	EPA 625	8A06033	2.8	9.4	ND	0.943	01/06/08	01/09/08		
N-Nitrosodimethylamine	EPA 625	8A06033	2.4	19	ND	0.943	01/06/08	01/09/08		
Surrogate: 2-Fluorophenol (30-120%)					58 %					
Surrogate: Phenol-d6 (35-120%)					69 %					
Surrogate: 2,4,6-Tribromophenol (40-120%)					65 %					
Surrogate: Nitrobenzene-d5 (45-120%)					68 %					
Surrogate: 2-Fluorobiphenyl (50-120%)					78 %					
Surrogate: Terphenyl-d14 (50-125%)					82 %					

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

METALS										
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IRA0403-01 (OUTFALL 0 Reporting Units: mg/l	13 - Water) - cont.				Sample	ed: 01/05/0	08			
Boron	EPA 200.7	8A07084	0.020	0.050	ND	1	01/07/08	01/08/08		
Sample ID: IRA0403-01 (OUTFALL 013 - Water) Reporting Units: ug/l					Sample	ed: 01/05/0	08			
Cadmium	EPA 200.8	8A07086	0.11	1.0	5.2	1	01/07/08	01/08/08		
Copper	EPA 200.8	8A07086	0.75	2.0	5.2	1	01/07/08	01/08/08		
Lead	EPA 200.8	8A07086	0.30	1.0	2.9	1	01/07/08	01/08/08		
Selenium	EPA 200.8	8A07086	0.30	2.0	ND	1	01/07/08	01/08/08		
Zinc	EPA 200.8	8A07086	2.5	20	160	1	01/07/08	01/08/08		

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 013

DISSOLVED METALS

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA0403-01 (OUTFALL	013 - Water) - cont.				Sample	d: 01/05/()8		
Reporting Units: mg/l									
Boron	EPA 200.7-Diss	8A08130	0.020	0.050	ND	1	01/08/08	01/08/08	
Sample ID: IRA0403-01 (OUTFALL	013 - Water)				Sample	d: 01/05/0)8		
Reporting Units: ug/l									
Cadmium	EPA 200.8-Diss	8A08129	0.11	1.0	4.3	1	01/08/08	01/08/08	
Copper	EPA 200.8-Diss	8A08129	0.75	2.0	4.0	1	01/08/08	01/08/08	
Lead	EPA 200.8-Diss	8A08129	0.30	1.0	1.1	1	01/08/08	01/08/08	
Selenium	EPA 200.8-Diss	8A08129	0.30	2.0	ND	1	01/08/08	01/08/08	
Zinc	EPA 200.8-Diss	8A08129	2.5	20	140	1	01/08/08	01/08/08	

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 013

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

INORGANICS											
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: IRA0403-01 (OUTFALL 013 -	Water) - cont.				Sample	d: 01/05/0)8				
Reporting Units: mg/l					-						
Hexane Extractable Material (Oil & Grease)	EPA 1664A	8A07065	1.3	4.7	ND	1	01/07/08	01/07/08			
Ammonia-N (Distilled)	EPA 350.2	8A07093	0.30	0.50	0.56	1	01/07/08	01/07/08			
Biochemical Oxygen Demand	EPA 405.1	8A07076	0.59	2.0	ND	1	01/07/08	01/12/08			
Chloride	EPA 300.0	8A06026	0.25	0.50	21	1	01/06/08	01/06/08			
Fluoride	EPA 340.2	8A09065	0.014	0.10	0.39	1	01/09/08	01/09/08			
Nitrate-N	EPA 300.0	8A06026	0.060	0.11	1.6	1	01/06/08	01/06/08			
Nitrite-N	EPA 300.0	8A06026	0.090	0.15	ND	1	01/06/08	01/06/08			
Nitrate/Nitrite-N	EPA 300.0	8A06026	0.15	0.26	1.6	1	01/06/08	01/06/08			
Sulfate	EPA 300.0	8A06026	0.20	0.50	8.6	1	01/06/08	01/06/08			
Total Dissolved Solids	SM2540C	8A08084	10	10	110	1	01/08/08	01/08/08			
Total Suspended Solids	EPA 160.2	8A07105	10	10	ND	1	01/07/08	01/07/08			
Sample ID: IRA0403-01 (OUTFALL 013 - Reporting Units: ml/l/hr	Water)				Sample	d: 01/05/()8				
Total Settleable Solids	EPA 160.5	8A06031	0.10	0.10	ND	1	01/06/08	01/06/08			
Sample ID: IRA0403-01 (OUTFALL 013 -	Water)				Sample	d: 01/05/()8				
Reporting Units: NTU Turbidity	EPA 180.1	8A06032	0.040	1.0	4.8	1	01/06/08	01/06/08			
Sample ID: IRA0403-01 (OUTFALL 013 - Reporting Units: ug/l	Water)				Sample	d: 01/05/()8				
Perchlorate	EPA 314.0	8A07062	1.5	4.0	ND	1	01/07/08	01/07/08			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

Metals by EPA 200 Series Methods											
MDL Reporting Sample Dilution Date Date Data Analyte Method Batch Limit Limit Result Factor Extracted Analyzed Qualifi											
Sample ID: IRA0403-01 (OUTFALL 013 - Water) - cont. Sampled: 01/05/08											
	,,				Sampic	u u u	50				
Reporting Units: ug/l	,,				запрк						
Reporting Units: ug/l Mercury, Dissolved	EPA 245.1	W8A0148	0.050	0.20	ND	1	01/08/08	01/09/08			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

SHORT HOLD TIME DETAIL REPORT

Sample ID: OUTFALL 013 (IRA0403-01) -	Hold Time (in days) Water	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
EPA 160.5	2	01/05/2008 12:00	01/05/2008 19:00	01/06/2008 10:50	01/06/2008 10:50
EPA 180.1	2	01/05/2008 12:00	01/05/2008 19:00	01/06/2008 12:10	01/06/2008 12:10
EPA 300.0	2	01/05/2008 12:00	01/05/2008 19:00	01/06/2008 07:00	01/06/2008 08:58
EPA 405.1	2	01/05/2008 12:00	01/05/2008 19:00	01/07/2008 10:00	01/12/2008 10:00

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

METHOD BLANK/QC DATA

EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A07066 Extracted: 01/07/08	<u>.</u>										
Blank Analyzed: 01/07/2008 (8A07066-B	LK1)										
EFH (C13 - C22)	ND	0.50	0.10	mg/l							
Surrogate: n-Octacosane	0.198			mg/l	0.200		99	40-125			
LCS Analyzed: 01/07/2008 (8A07066-BS	1)										MNR1
EFH (C13 - C40)	0.721	0.50	0.10	mg/l	0.750		96	40-115			
Surrogate: n-Octacosane	0.200			mg/l	0.200		100	40-125			
LCS Dup Analyzed: 01/07/2008 (8A0706	6-BSD1)										
EFH (C13 - C40)	0.728	0.50	0.10	mg/l	0.750		97	40-115	1	25	
Surrogate: n-Octacosane	0.185			mg/l	0.200		92	40-125			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

METHOD BLANK/QC DATA

VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A09029 Extracted: 01/09/08	_										
Blank Analyzed: 01/09/2008 (8A09029-B	LK1)										
GRO (C4 - C12)	ND	100	25	ug/l							
Surrogate: 4-BFB (FID)	9.07			ug/l	10.0		91	65-140			
LCS Analyzed: 01/09/2008 (8A09029-BS	1)										
GRO (C4 - C12)	781	100	25	ug/l	800		98	80-120			
Surrogate: 4-BFB (FID)	12.8			ug/l	10.0		128	65-140			
Matrix Spike Analyzed: 01/09/2008 (8A09029-MS1)					Source: IRA0484-01						
GRO (C4 - C12)	228	100	25	ug/l	220	ND	103	65-140			
Surrogate: 4-BFB (FID)	10.1			ug/l	10.0		101	65-140			
Matrix Spike Dup Analyzed: 01/09/2008 (8A09029-MSD1)			Source: IRA0484-01								
GRO (C4 - C12)	227	100	25	ug/l	220	ND	103	65-140	0	20	
Surrogate: 4-BFB (FID)	10.4			ug/l	10.0		104	65-140			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GCMS SIM

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A06013 Extracted: 01/06/08											
Blank Analyzed: 01/06/2008 (8A06013-B	LK1)										
1,4-Dioxane	ND	2.0	1.0	ug/l							
Surrogate: Dibromofluoromethane	0.980			ug/l	1.00		98	80-120			
LCS Analyzed: 01/06/2008 (8A06013-BS	1)										
1,4-Dioxane	9.04	2.0	1.0	ug/l	10.0		90	70-125			
Surrogate: Dibromofluoromethane	0.970			ug/l	1.00		97	80-120			
Matrix Spike Analyzed: 01/06/2008 (8A06013-MS1)					Source: IRA0014-01						
1,4-Dioxane	9.01	2.0	1.0	ug/l	10.0	ND	90	70-130			
Surrogate: Dibromofluoromethane	0.990			ug/l	1.00		99	80-120			
Matrix Spike Dup Analyzed: 01/06/2008 (8A06013-MSD1)				Sou	rce: IRA	014-01					
1,4-Dioxane	8.95	2.0	1.0	ug/l	10.0	ND	90	70-130	1	30	
Surrogate: Dibromofluoromethane	0.990			ug/l	1.00		99	80-120			

TestAmerica Irvine

Joseph Doak Project Manager

IRA0403 <*Page 14 of 29*> NPDES - 3276

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 013

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8A09005 Extracted: 01/09/08	<u>}</u>										
Blank Analyzed: 01/09/2008 (8A09005-B	I IZ1)										
t (,	2.0	0.40								
1,2-Dibromoethane (EDB)	ND	2.0	0.40	ug/l							
Methyl-tert-butyl Ether (MTBE)	ND	5.0	0.32	ug/l							
1,2,3-Trichloropropane	ND	10	0.40	ug/l							
Di-isopropyl Ether (DIPE)	ND	5.0	0.25	ug/l							
tert-Butanol (TBA)	ND	25	4.9	ug/l	25.0		0.0	00 120			
Surrogate: Dibromofluoromethane	24.4			ug/l	25.0		98 101	80-120			
Surrogate: Toluene-d8	25.3			ug/l	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	22.6			ug/l	25.0		90	80-120			
LCS Analyzed: 01/09/2008 (8A09005-BS	1)										
1,2-Dibromoethane (EDB)	23.7	2.0	0.40	ug/l	25.0		95	75-125			
Methyl-tert-butyl Ether (MTBE)	25.0	5.0	0.32	ug/l	25.0		100	60-135			
1,2,3-Trichloropropane	24.8	10	0.40	ug/l	25.0		99	60-130			
Di-isopropyl Ether (DIPE)	29.5	5.0	0.25	ug/l	25.0		118	60-135			
tert-Butanol (TBA)	149	25	4.9	ug/l	125		119	70-135			
Surrogate: Dibromofluoromethane	26.3			ug/l	25.0		105	80-120			
Surrogate: Toluene-d8	25.5			ug/l	25.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	23.7			ug/l	25.0		95	80-120			
Matrix Spike Analyzed: 01/09/2008 (8A09005-MS1)					Sou	rce: IRA	0464-01				
1,2-Dibromoethane (EDB)	22.1	2.0	0.40	ug/l	25.0	ND	88	70-130			
Methyl-tert-butyl Ether (MTBE)	23.6	5.0	0.32	ug/l	25.0	ND	95	55-145			
1,2,3-Trichloropropane	23.6	10	0.40	ug/l	25.0	ND	94	55-135			
Di-isopropyl Ether (DIPE)	28.1	5.0	0.25	ug/l	25.0	ND	112	60-140			
tert-Butanol (TBA)	146	25	4.9	ug/l	125	ND	116	65-140			
Surrogate: Dibromofluoromethane	26.8			ug/l	25.0		107	80-120			
Surrogate: Toluene-d8	25.1			ug/l	25.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	23.7			ug/l	25.0		95	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

epoir i tuilloon.

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8A09005 Extracted: 01/09/08											
Matrix Spike Dup Analyzed: 01/09/2008	(8A09005-MS	SD1)			Sou	rce: IRA	0464-01				
1,2-Dibromoethane (EDB)	23.0	2.0	0.40	ug/l	25.0	ND	92	70-130	4	25	
Methyl-tert-butyl Ether (MTBE)	24.4	5.0	0.32	ug/l	25.0	ND	98	55-145	3	25	
1,2,3-Trichloropropane	24.1	10	0.40	ug/l	25.0	ND	96	55-135	2	30	
Di-isopropyl Ether (DIPE)	28.6	5.0	0.25	ug/l	25.0	ND	114	60-140	2	25	
tert-Butanol (TBA)	151	25	4.9	ug/l	125	ND	121	65-140	4	25	
Surrogate: Dibromofluoromethane	26.5			ug/l	25.0		106	80-120			
Surrogate: Toluene-d8	25.5			ug/l	25.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	23.9			ug/l	25.0		96	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

.

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A06033 Extracted: 01/06/08	<u>}_</u>										
Blank Analyzed: 01/08/2008 (8A06033-B	LK1)										
Naphthalene	ND	10	3.0	ug/l							
N-Nitrosodimethylamine	ND	20	2.5	ug/l							
Surrogate: 2-Fluorophenol	123			ug/l	200		61	30-120			
Surrogate: Phenol-d6	143			ug/l	200		72	35-120			
Surrogate: 2,4,6-Tribromophenol	139			ug/l	200		69	40-120			
Surrogate: Nitrobenzene-d5	68.3			ug/l	100		68	45-120			
Surrogate: 2-Fluorobiphenyl	82.7			ug/l	100		83	50-120			
Surrogate: Terphenyl-d14	80.1			ug/l	100		80	50-125			
LCS Analyzed: 01/08/2008 (8A06033-BS	1)										MNR1
Naphthalene	73.2	10	3.0	ug/l	100		73	55-120			
N-Nitrosodimethylamine	60.1	20	2.5	ug/l	100		60	45-120			
Surrogate: 2-Fluorophenol	110			ug/l	200		55	30-120			
Surrogate: Phenol-d6	128			ug/l	200		64	35-120			
Surrogate: 2,4,6-Tribromophenol	136			ug/l	200		68	40-120			
Surrogate: Nitrobenzene-d5	64.7			ug/l	100		65	45-120			
Surrogate: 2-Fluorobiphenyl	73.9			ug/l	100		74	50-120			
Surrogate: Terphenyl-d14	71.5			ug/l	100		72	50-125			
LCS Dup Analyzed: 01/08/2008 (8A0603	3-BSD1)										
Naphthalene	76.2	10	3.0	ug/l	100		76	55-120	4	20	
N-Nitrosodimethylamine	59.6	20	2.5	ug/l	100		60	45-120	1	20	
Surrogate: 2-Fluorophenol	116			ug/l	200		58	30-120			
Surrogate: Phenol-d6	136			ug/l	200		68	35-120			
Surrogate: 2,4,6-Tribromophenol	145			ug/l	200		72	40-120			
Surrogate: Nitrobenzene-d5	67.3			ug/l	100		67	45-120			
Surrogate: 2-Fluorobiphenyl	76.2			ug/l	100		76	50-120			
Surrogate: Terphenyl-d14	75.8			ug/l	100		76	50-125			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

METHOD BLANK/QC DATA

METALS

Analyte Batch: 8A07084 Extracted: 01/07/08	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Daten: 0A07004 Extracted: 01/07/00	<u>_</u>										
Blank Analyzed: 01/08/2008 (8A07084-B	LK1)										
Boron	ND	0.050	0.020	mg/l							
LCS Analyzed: 01/08/2008 (8A07084-BS	1)										
Boron	0.476	0.050	0.020	mg/l	0.500		95	85-115			
Boron	0.470	0.050	0.020	mg/1	0.500		95	05-115			
Matrix Spike Analyzed: 01/08/2008 (8A0	7084-MS1)				Sou	rce: IRA	0397-01				
Boron	0.521	0.050	0.020	mg/l	0.500	0.0534	94	70-130			
Matrix Spike Analyzed: 01/08/2008 (8A0	7084-MS2)				Sou	rce: IRA	0317-02				
Boron	0.762	0.050	0.020	mg/l	0.500	0.296	93	70-130			
Matrix Spike Dup Analyzed: 01/08/2008			Sou	rce: IRA	0397-01						
Boron	0.523	0.050	0.020	mg/l	0.500	0.0534	94	70-130	0	20	
Batch: 8A07086 Extracted: 01/07/08	1										
	<u> </u>										
Blank Analyzed: 01/08/2008 (8A07086-B	LK1)										
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Selenium	ND	2.0	0.30	ug/l							
Zinc	ND	20	2.5	ug/l							
LCS Analyzed: 01/08/2008 (8A07086-BS	1)										
Cadmium	86.8	1.0	0.11	ug/l	80.0		109	85-115			
Copper	84.2	2.0	0.75	ug/l	80.0		105	85-115			
Lead	85.6	1.0	0.30	ug/l	80.0		107	85-115			
Selenium	80.9	2.0	0.30	ug/l	80.0		101	85-115			
Zinc	83.2	20	2.5	ug/l	80.0		104	85-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A07086 Extracted: 01/07/08	<u>}_</u>										
Matrix Spike Analyzed: 01/08/2008 (8A))7086-MS1)				Sou	rce: IRA	0400-01				
Cadmium	86.4	1.0	0.11	ug/l	80.0	ND	108	70-130			
Copper	81.9	2.0	0.75	ug/l	80.0	ND	102	70-130			
Lead	86.5	1.0	0.30	ug/l	80.0	ND	108	70-130			
Selenium	78.4	2.0	0.30	ug/l	80.0	ND	98	70-130			
Zinc	79.6	20	2.5	ug/l	80.0	2.81	96	70-130			
Matrix Spike Dup Analyzed: 01/08/2008	(8A07086-M	(SD1)			Sou	rce: IRA	0400-01				
Cadmium	86.4	1.0	0.11	ug/l	80.0	ND	108	70-130	0	20	
Copper	82.1	2.0	0.75	ug/l	80.0	ND	103	70-130	0	20	
Lead	86.0	1.0	0.30	ug/l	80.0	ND	108	70-130	1	20	
Selenium	78.4	2.0	0.30	ug/l	80.0	ND	98	70-130	0	20	
Zinc	80.3	20	2.5	ug/l	80.0	2.81	97	70-130	1	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

METHOD BLANK/QC DATA

DISSOLVED METALS

Substrated: 01/08/2008 (8A08129-BL-T) Cadmium ND 10 ND 10 Copper ND 10 0.0 0.0 0.0 Cadmium ND 10 0.0 <th< th=""><th></th><th>D L</th><th>Reporting</th><th>MDI</th><th>TT •/</th><th>Spike</th><th>Source</th><th>A/ DEC</th><th>%REC</th><th>DDD</th><th>RPD</th><th>Data</th></th<>		D L	Reporting	MDI	T T •/	Spike	Source	A/ DEC	%REC	DDD	RPD	Data	
Blank Analyzed: 01/08/2008 (8A08129-BLK) Cadmium ND 1.0 0.11 ug/l Copper ND 2.0 0.75 ug/l Lead ND 1.0 0.30 ug/l Selenium ND 2.0 0.30 ug/l Zinc ND 2.0 0.30 ug/l CAdmium ND 2.0 0.30 ug/l Comport ND 2.0 0.30 ug/l Cadmium ND 2.0 0.30 ug/l Cadmium ND 2.0 0.30 ug/l 80.0 100 85-115 Cadmium 79.9 1.0 0.11 ug/l 80.0 100 85-115 Cadmium 79.9 1.0 0.11 ug/l 80.0 100 85-115 Cadmium 79.9 1.0 0.31 ug/l 80.0 100 85-115 Cadmium 61.0 0.11 ug/l 80.0 110 85-115 15	Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers	
Cadmium ND 1.0 0.11 ug/l Copper ND 2.0 0.75 ug/l Lead ND 1.0 0.30 ug/l Selenium ND 2.0 0.30 ug/l Zinc ND 2.0 0.30 ug/l Comper MD 2.0 0.30 ug/l Comper MD 2.0 0.30 ug/l Comper MD 2.0 0.30 ug/l 8.0 10 85-115 Comper MD 9.0 0.75 ug/l 8.0 96 85-115 Copper A68 2.0 0.75 ug/l 8.0 107 85-115 Comper MD 9.1 0.30 ug/l 8.0 107 85-115 Copper A68 2.0 0.30 ug/l 8.0 100 85-115 Copper A68 2.0 0.30 ug/l 8.0 ND 9.6 70-130 Copper A162/O08 (8A08129-EVTS Sottretteleeeeeeeeeeeeeeeeeeeeeeeeeeeeeee	Batch: 8A08129 Extracted: 01/08/08	_											
Cadmium ND 1.0 0.11 ug/l Copper ND 2.0 0.75 ug/l Lead ND 1.0 0.30 ug/l Selenium ND 2.0 0.30 ug/l Zinc ND 2.0 0.30 ug/l Comper MD 2.0 0.30 ug/l Comper MD 2.0 0.30 ug/l Comper MD 2.0 0.30 ug/l 8.0 10 85-115 Comper MD 9.0 0.75 ug/l 8.0 96 85-115 Copper A68 2.0 0.75 ug/l 8.0 107 85-115 Comper MD 9.1 0.30 ug/l 8.0 107 85-115 Copper A68 2.0 0.30 ug/l 8.0 100 85-115 Copper A68 2.0 0.30 ug/l 8.0 ND 9.6 70-130 Copper A162/O08 (8A08129-EVTS Sottretteleeeeeeeeeeeeeeeeeeeeeeeeeeeeeee													
Copper ND 2.0 0.75 ug/l Lead ND 1.0 0.30 ug/l Selenium ND 2.0 0.30 ug/l Zine ND 2.0 0.30 ug/l Lead ND 2.0 2.5 ug/l Lect Analyzed: 01/08/2008 (8A08129-BSJ) LCS Analyzed: 01/08/2008 (8A08129-BSJ) Load 0.11 ug/l 80.0 100 85-115 Copper 76.8 2.0 0.75 ug/l 80.0 100 85-115 Lead 85.3 1.0 0.30 ug/l 80.0 100 85-115 Lead 85.3 1.0 0.30 ug/l 80.0 101 85-115 Zine 88.0 20 2.5 ug/l 80.0 100 85-115 Lead 85.3 1.0 0.30 ug/l 80.0 ND 96 70-130 Copper 76.2 <	•	LK1)											
ArtND1.00.30ug/lSeleniumND2.00.30ug/lZineND2.02.5ug/lCCS Analyzed: 01/08/2008 (8A08129-BS):Cadmium79.91.00.11ug/l80.010085-115Copper76.82.00.75ug/l80.010785-115Lead85.31.00.30ug/l80.010785-115Selenium91.12.00.30ug/l80.011485-115Zine88.0202.5ug/l80.011085-115Strike Analyzed: 01/08/2008 (8A08129-WS1):Cadmium76.61.00.11ug/l80.0ND9670-130Copper76.22.00.75ug/l80.0ND9670-130Cadmium96.72.00.30ug/l80.0ND9670-130Selenium96.72.00.30ug/l80.0ND10070-130Cadmium76.61.00.11ug/l80.0ND10070-130Selenium96.72.00.30ug/l80.0ND10070-130Selenium96.72.00.30ug/l80.0ND10070-130Selenium96.72.00.30ug/l80.0ND10070-130Selenium96.72.00.30ug/l80.0ND <td>Cadmium</td> <td></td> <td></td> <td></td> <td>ug/l</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Cadmium				ug/l								
SeleniumND2.00.30ug/lZincND202.5ug/lLCS Analyzed: 01/08/2008 (8A08129-BS):Cadmium79.91.00.11ug/l80.010085-115Copper76.82.00.75ug/l80.09685-115Lead85.31.00.30ug/l80.011485-115Selenium91.12.00.30ug/l80.011485-115Zinc88.0202.5ug/l80.011085-115Copper6.61.00.30ug/l80.011485-115Zinc88.0202.5ug/l80.011085-115Copper76.22.00.31ug/l80.011085-115Copper76.22.00.35ug/l80.02.239270-130Copper76.22.00.30ug/l80.0ND9670-130Cadmium76.61.00.30ug/l80.0ND10470-130Cadenium96.72.00.30ug/l80.0ND10470-130Cadmium79.62.00.30ug/l80.0ND10470-130Cadmium76.62.00.30ug/l80.0ND10070-130Cadmium79.62.00.30ug/l80.0ND10070-130 <th colspan<="" td=""><td>Copper</td><td>ND</td><td>2.0</td><td>0.75</td><td>ug/l</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td>Copper</td> <td>ND</td> <td>2.0</td> <td>0.75</td> <td>ug/l</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Copper	ND	2.0	0.75	ug/l							
Zinc ND 20 2.5 u,d LCS Analyzed: 01/08/2008 (8A08129-BS)- U U U U ND Solution Solution </td <td>Lead</td> <td>ND</td> <td>1.0</td> <td>0.30</td> <td>ug/l</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Lead	ND	1.0	0.30	ug/l								
Arrow of the second se	Selenium	ND	2.0	0.30	ug/l								
Cadmium79.91.00.11ug/l80.010085-115Copper76.82.00.75ug/l80.09685-115Lead85.31.00.30ug/l80.010785-115Selenium91.12.00.30ug/l80.011485-115Zinc88.0202.5ug/l80.011085-115Source: IRA032008 (8A08129-MS1)Source: IRA03200Cadmium76.61.00.11ug/l80.0ND9670-130Copper76.22.00.75ug/l80.0ND9670-130Lead83.21.00.30ug/l80.0ND10470-130Selenium96.72.00.30ug/l80.0ND10070-130Lead83.21.00.30ug/l80.0ND10070-130Selenium96.72.00.30ug/l80.0ND10070-130Linc79.6202.5ug/l80.0ND10070-130Source: IRA032008 (8A08129-MSU:Source: IRA032008 (8A08129-MSU:Source: IRA03200Matrix Spike Dup Analyzed: 01/08/2008 (8A08129-MSU:Source: IRA03200Matrix Spike Dup Analyzed: 01/08/2008 (8A08129-MSU:Source: IRA03200Source: IRA03200Source: IRA03200 <td>Zinc</td> <td>ND</td> <td>20</td> <td>2.5</td> <td>ug/l</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Zinc	ND	20	2.5	ug/l								
Copper76.82.00.75ug/l80.09685-115Lead85.31.00.30ug/l80.010785-115Selenium91.12.00.30ug/l80.011485-115Zinc88.0202.5ug/l80.010085-115Source: IRA039-01Cadmium76.61.00.11ug/l80.0ND9670-130Copper76.22.00.75ug/l80.0ND10470-130Lead83.21.00.30ug/l80.0ND10470-130Copper76.22.00.30ug/l80.0ND10470-130Copper76.22.00.30ug/l80.0ND10470-130Copper76.22.00.30ug/l80.0ND10470-130Copper76.61.00.30ug/l80.0ND10470-130Comment96.72.00.30ug/l80.0ND10070-130Codenium96.72.00.30ug/l80.0ND10070-130Codenium96.72.00.30ug/l80.0ND9670-13020Cadmium76.41.00.11ug/l80.0ND9670-1300	LCS Analyzed: 01/08/2008 (8A08129-BS)	1)											
La85.31.00.30ug/l80.010785-115Selenium91.12.00.30ug/l80.011485-115Zinc88.0202.5ug/l80.011085-115Matrix Spike Analyzed: 01/08/2008 (8A08129-MS1)Source: IRA039-ottCadmium76.61.00.11ug/l80.0ND9670-130Copper76.22.00.75ug/l80.0ND10470-130Lead83.21.00.30ug/l80.0ND10470-130Selenium96.72.00.30ug/l80.0ND10070-130Zinc79.6202.5ug/l80.0ND10070-130Ketting Spike Dup Analyzed: 01/08/2008 (8A08129-MSU)Selenium70.41.00.11ug/l80.0ND9670-130Cadmium76.41.00.11ug/l80.0ND9670-13020Copper76.02.00.75ug/l80.0ND9670-13020Copper76.02.00.75ug/l80.0ND9670-130020Copper76.02.00.75ug/l80.0ND9670-130020	Cadmium	79.9	1.0	0.11	ug/l	80.0		100	85-115				
Selenium91.12.00.30ug/l80.011485-115Zinc88.0202.5ug/l80.011085-115Matrix Spike Analyzed: 01/08/2008 (8A08129-MS1)Source: IRA039-01Cadmium76.61.00.11ug/l80.0ND9670-130Copper76.22.00.75ug/l80.0ND10470-130Lead83.21.00.30ug/l80.0ND10470-130Selenium96.72.00.30ug/l80.0ND10070-130Zinc79.6202.5ug/l80.0ND10070-130Matrix Spike Dup Analyzed: 01/08/2008 (8A08129-MSU)ESource: IRA039-012020Cadmium76.41.00.11ug/l80.0ND9670-130Copper76.02.00.51ug/l80.0ND10070-130Common79.62.00.51ug/l80.0ND9670-130Common76.41.00.11ug/l80.0ND9670-130020Copper76.02.00.51ug/l80.0ND9670-130020Matrix Spike Dup Analyzed: 01/08/2008 (8A08129-MSU)1.01ug/l80.0ND9670-130020Codemium70.62.00.01ug/l80.0ND9670-130 </td <td>Copper</td> <td>76.8</td> <td>2.0</td> <td>0.75</td> <td>ug/l</td> <td>80.0</td> <td></td> <td>96</td> <td>85-115</td> <td></td> <td></td> <td></td>	Copper	76.8	2.0	0.75	ug/l	80.0		96	85-115				
Zinc88.0202.5ug/l80.011085-115Matrix Spike Analyzed: 01/08/2008 (8A08129-MS1)Source: IRA0393-01Cadmium76.61.00.11ug/l80.0ND9670-130Copper76.22.00.75ug/l80.02.239270-130Lead83.21.00.30ug/l80.0ND10470-130Selenium96.72.00.30ug/l80.01.1611970-130Zinc79.6202.5ug/l80.0ND10070-130Source: IRA039208 (box 129-MSU)Cadmium76.41.00.11ug/l80.0ND9670-130020Cadmium76.41.00.11ug/l80.0ND9670-130020Copper76.02.00.75ug/l80.0ND9670-130020	Lead	85.3	1.0	0.30	ug/l	80.0		107	85-115				
Matrix Spike Analyzed: 01/08/2008 (8A08129-MSI) Source: IRA0393-01 Cadmium 76.6 1.0 0.11 ug/l 80.0 ND 96 70-130 Copper 76.2 2.0 0.75 ug/l 80.0 ND 104 70-130 Lead 83.2 1.0 0.30 ug/l 80.0 ND 104 70-130 Selenium 96.7 2.0 0.30 ug/l 80.0 ND 104 70-130 Zinc 79.6 20 2.5 ug/l 80.0 ND 100 70-130 Matrix Spike Dup Analyzed: 01/08/2008 (8-08129-MSU Source: IRA039-01 Cadmium 76.4 1.0 0.11 ug/l 80.0 ND 96 70-130 20 Cource: IRA039-01 Quadity 96.7 2.0 0.31 ug/l 80.0 ND 96 70-130 20 Matrix Spike Dup Analyzed: 01/08/2008 (8-08129-MSU 96 70-130 0 20 20 Copper 76.0 2.0 <t< td=""><td>Selenium</td><td>91.1</td><td>2.0</td><td>0.30</td><td>ug/l</td><td>80.0</td><td></td><td>114</td><td>85-115</td><td></td><td></td><td></td></t<>	Selenium	91.1	2.0	0.30	ug/l	80.0		114	85-115				
Cadmium76.61.00.11ug/l80.0ND9670-130Copper76.22.00.75ug/l80.02.239270-130Lead83.21.00.30ug/l80.0ND10470-130Selenium96.72.00.30ug/l80.01.1611970-130Zinc79.6202.5ug/l80.0ND10070-130Source: IRA0393-01Cadmium76.41.00.11ug/l80.0ND9670-130020Copper76.41.00.11ug/l80.0ND9670-130020Copper76.02.00.75ug/l80.02.239270-130020Copper76.41.00.11ug/l80.0ND9670-130020Copper76.02.00.75ug/l80.02.239270-130020	Zinc	88.0	20	2.5	ug/l	80.0		110	85-115				
Copper 76.2 2.0 0.75 ug/l 80.0 2.23 92 70-130 Lead 83.2 1.0 0.30 ug/l 80.0 ND 104 70-130 Selenium 96.7 2.0 0.30 ug/l 80.0 1.16 119 70-130 Zinc 79.6 20 2.5 ug/l 80.0 ND 100 70-130 Matrix Spike Dup Analyzed: 01/08/2008 (8A08129-MSD1) Source: IRA0393-01 Cadmium 76.4 1.0 0.11 ug/l 80.0 ND 96 70-130 0 20 Copper 76.0 2.0 0.75 ug/l 80.0 ND 96 70-130 0 20	Matrix Spike Analyzed: 01/08/2008 (8A0	8129-MS1)				Sou	rce: IRA	0393-01					
Indication 83.2 1.0 0.30 ug/l 80.0 ND 104 70-130 Selenium 96.7 2.0 0.30 ug/l 80.0 1.16 119 70-130 Zinc 79.6 20 2.5 ug/l 80.0 ND 100 70-130 Matrix Spike Dup Analyzed: 01/08/2008 (8A08129-MSD1) Source: IRA0393-01 Cadmium 76.4 1.0 0.11 ug/l 80.0 ND 96 70-130 0 20 Copper 76.0 2.0 0.75 ug/l 80.0 ND 96 70-130 0 20	Cadmium	76.6	1.0	0.11	ug/l	80.0	ND	96	70-130				
Lead83.21.00.30ug/l80.0ND10470-130Selenium96.72.00.30ug/l80.01.1611970-130Zinc79.6202.5ug/l80.0ND10070-130Matrix Spike Dup Analyzed: 01/08/2008 (8-08129-MSD:Source: IRA039-01Cadmium76.41.00.11ug/l80.0ND9670-130020Copper76.02.00.75ug/l80.02.239270-130020	Copper	76.2	2.0	0.75	ug/l	80.0	2.23	92	70-130				
Zinc79.6202.5ug/l80.0ND10070-130Matrix Spike Dup Analyzed: 01/08/2008 (8A08129-MSD1)Source: IRA0393-01Cadmium76.41.00.11ug/l80.0ND9670-130020Copper76.02.00.75ug/l80.02.239270-130020	Lead	83.2	1.0	0.30	ug/l	80.0		104	70-130				
Matrix Spike Dup Analyzed: 01/08/2008 (8A08129-MSD1) Source: IRA0393-01 Cadmium 76.4 1.0 0.11 ug/l 80.0 ND 96 70-130 0 20 Copper 76.0 2.0 0.75 ug/l 80.0 2.23 92 70-130 0 20	Selenium	96.7	2.0	0.30	ug/l	80.0	1.16	119	70-130				
Cadmium76.41.00.11ug/l80.0ND9670-130020Copper76.02.00.75ug/l80.02.239270-130020	Zinc	79.6	20	2.5	ug/l	80.0	ND	100	70-130				
Copper 76.0 2.0 0.75 ug/l 80.0 2.23 92 70-130 0 20	Matrix Spike Dup Analyzed: 01/08/2008	(8A08129-M	ISD1)			Sou	rce: IRA	0393-01					
	Cadmium	76.4	1.0	0.11	ug/l	80.0	ND	96	70-130	0	20		
•	Copper	76.0	2.0	0.75	ug/l	80.0	2.23	92	70-130	0	20		
Lead 82.9 1.0 0.30 ug/1 80.0 ND 104 /0-130 0 20	Lead	82.9	1.0	0.30	ug/l	80.0	ND	104	70-130	0	20		
Selenium 96.3 2.0 0.30 ug/l 80.0 1.16 119 70-130 0 20	Selenium	96.3	2.0	0.30	-	80.0		119	70-130	0	20		
Zinc 79.7 20 2.5 ug/l 80.0 ND 100 70-130 0 20	Zinc	79.7	20	2.5	•	80.0		100	70-130	0	20		

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A08130 Extracted: 01/08/08	_										
Blank Analyzed: 01/08/2008 (8A08130-B	LK1)										
Boron	ND	0.050	0.020	mg/l							
LCS Analyzed: 01/08/2008 (8A08130-BS	1)										
Boron	0.974	0.050	0.020	mg/l	1.00		97	85-115			
Matrix Spike Analyzed: 01/08/2008 (8A0	8130-MS1)				Sou	rce: IRA	0401-01				
Boron	1.05	0.050	0.020	mg/l	1.00	0.0649	98	70-130			
latrix Spike Dup Analyzed: 01/08/2008 (8A08130-MSD1)					Sou	rce: IRA	0401-01				
Boron	1.06	0.050	0.020	mg/l	1.00	0.0649	100	70-130	1	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A06026 Extracted: 01/06/08											-
Butch: 01100020 Extracted: 01/00/00	_										
Blank Analyzed: 01/06/2008 (8A06026-B	LK1)										
Chloride	ND	0.50	0.25	mg/l							
Nitrate-N	ND	0.11	0.060	mg/l							
Nitrite-N	ND	0.15	0.090	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Sulfate	0.320	0.50	0.20	mg/l							J
LCS Analyzed: 01/06/2008 (8A06026-BS	1)										
Chloride	4.53	0.50	0.25	mg/l	5.00		91	90-110			
Nitrate-N	1.05	0.11	0.060	mg/l	1.13		93	90-110			
Nitrite-N	1.53	0.15	0.090	mg/l	1.52		101	90-110			
Sulfate	9.97	0.50	0.20	mg/l	10.0		100	90-110			
Matrix Spike Analyzed: 01/06/2008 (8A0	6026-MS1)				Sou	rce: IRA	0399-01				
Chloride	12.9	0.50	0.25	mg/l	5.00	7.84	101	80-120			
Nitrate-N	3.84	0.11	0.060	mg/l	1.13	2.51	118	80-120			
Nitrite-N	1.87	0.15	0.090	mg/l	1.52	ND	123	80-120			<i>M1</i>
Sulfate	22.3	0.50	0.20	mg/l	10.0	12.0	103	80-120			
Matrix Spike Dup Analyzed: 01/06/2008	(8A06026-M	SD1)			Sou	rce: IRA	0399-01				
Chloride	12.6	0.50	0.25	mg/l	5.00	7.84	94	80-120	3	20	
Nitrate-N	3.62	0.11	0.060	mg/l	1.13	2.51	99	80-120	6	20	
Nitrite-N	1.68	0.15	0.090	mg/l	1.52	ND	111	80-120	10	20	
Sulfate	21.6	0.50	0.20	mg/l	10.0	12.0	96	80-120	3	20	
Batch: 8A06032 Extracted: 01/06/08	_										
Blank Analyzed: 01/06/2008 (8A06032-B	LK1)										
Turbidity	ND	1.0	0.040	NTU							

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 013

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A06032 Extracted: 01/06/08	_										
Duplicate Analyzed: 01/06/2008 (8A0603	2-DUP1)				Sou	rce: IRA	0401-01				
Turbidity	5.44	1.0	0.040	NTU		5.39			1	20	
Batch: 8A07062 Extracted: 01/07/08	_										
Blank Analyzed: 01/07/2008 (8A07062-B	LK1)										
Perchlorate	ND	4.0	1.5	ug/l							
LCS Analyzed: 01/07/2008 (8A07062-BS	1)										
Perchlorate	50.8	4.0	1.5	ug/l	50.0		102	85-115			
Matrix Spike Analyzed: 01/07/2008 (8A0	7062-MS1)				Sou	rce: IRA	0314-03				
Perchlorate	55.2	4.0	1.5	ug/l	50.0	ND	110	80-120			
Matrix Spike Dup Analyzed: 01/07/2008						rce: IRA					
Perchlorate	56.4	4.0	1.5	ug/l	50.0	ND	113	80-120	2	20	
Batch: 8A07065 Extracted: 01/07/08	_										
Blank Analyzed: 01/07/2008 (8A07065-B	LK1)										
Hexane Extractable Material (Oil & Grease)	ND	5.0	1.4	mg/l							
LCS Analyzed: 01/07/2008 (8A07065-BS	1)										MNR1
Hexane Extractable Material (Oil & Grease)	17.9	5.0	1.4	mg/l	20.2		89	78-114			
LCS Dup Analyzed: 01/07/2008 (8A0706)	5-BSD1)										
Hexane Extractable Material (Oil & Grease)	18.6	5.0	1.4	mg/l	20.2		92	78-114	4	11	

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 013

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result		%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A07076 Extracted: 01/07/08	-										
Blank Analyzed: 01/12/2008 (8A07076-B	LK1)										
Biochemical Oxygen Demand	ND	2.0	0.59	mg/l							
LCS Analyzed: 01/12/2008 (8A07076-BS)	l)										
Biochemical Oxygen Demand	182	100	30	mg/l	198		92	85-115			
LCS Dup Analyzed: 01/12/2008 (8A0707	6-BSD1)										
Biochemical Oxygen Demand	178	100	30	mg/l	198		90	85-115	2	20	
Batch: 8A07093 Extracted: 01/07/08	-										
Blank Analyzed: 01/07/2008 (8A07093-B	LK1)										
Ammonia-N (Distilled)	ND	0.50	0.30	mg/l							
LCS Analyzed: 01/07/2008 (8A07093-BS)	1)										
Ammonia-N (Distilled)	10.6	0.50	0.30	mg/l	10.0		106	80-115			
Matrix Spike Analyzed: 01/07/2008 (8A0	7093-MS1)				Sou	rce: IRA	0401-01				
Ammonia-N (Distilled)	11.2	0.50	0.30	mg/l	10.0	ND	112	70-120			
Matrix Spike Dup Analyzed: 01/07/2008	(8A07093-M	SD1)	Source: IRA0401-01								
Ammonia-N (Distilled)	11.2	0.50	0.30	mg/l	10.0	ND	112	70-120	0	15	
Batch: 8A07105 Extracted: 01/07/08	-										
Blank Analyzed: 01/07/2008 (8A07105-B	LK1)										
Total Suspended Solids	ND	10	10	mg/l							

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 013

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result		%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A07105 Extracted: 01/07/08	<u>.</u>										
LCS Analyzed: 01/07/2008 (8A07105-BS Total Suspended Solids	1) 965	10	10	mg/l	1000		96	85-115			
Duplicate Analyzed: 01/07/2008 (8A0710 Total Suspended Solids	5-DUP1) ND	10	10	mg/l	Sou	rce: IRA ND	0401-01			10	
Batch: 8A08084 Extracted: 01/08/08	<u>.</u>										
Blank Analyzed: 01/08/2008 (8A08084-B Total Dissolved Solids	LK1) ND	10	10	mg/l							
LCS Analyzed: 01/08/2008 (8A08084-BS Total Dissolved Solids	1) 996	10	10	mg/l	1000		100	90-110			
Duplicate Analyzed: 01/08/2008 (8A0808 Total Dissolved Solids	4-DUP1) 238	10	10	mg/l	Sou	rce: IRA 240	0400-01		1	10	
Batch: 8A09065 Extracted: 01/09/08	<u>.</u>										
Blank Analyzed: 01/09/2008 (8A09065-B Fluoride	LK1) 0.0303	0.10	0.014	mg/l							J
LCS Analyzed: 01/09/2008 (8A09065-BS)		0.10	5.011								v
Fluoride	1.07	0.10	0.014	mg/l	1.00		107	90-110			
Matrix Spike Analyzed: 01/09/2008 (8A0 Fluoride	9065-MS1) 2.29	0.10	0.014	mg/l	Sou 2.00	rce: IRA 0.340	0648-01 97	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A09065 Extracted: 01/09/0	8										
Matrix Spike Dup Analyzed: 01/09/2008 (8A09065-MSD1)						rce: IRA	0648-01				
Fluoride	2.27	0.10	0.014	mg/l	2.00	0.340	97	80-120	1	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

METHOD BLANK/QC DATA

Metals by EPA 200 Series Methods

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: W8A0148 Extracted: 01/08/0	8										
	DI 171)										
Blank Analyzed: 01/09/2008 (W8A0148-	,										
Mercury, Dissolved	ND	0.20	0.050	ug/l							
Mercury, Total	ND	0.20	0.050	ug/l							
LCS Analyzed: 01/09/2008 (W8A0148-B	S1)										
Mercury, Dissolved	0.965	0.20	0.050	ug/l	1.00		96	85-115			
Mercury, Total	0.965	0.20	0.050	ug/l	1.00		96	85-115			
Matrix Spike Analyzed: 01/09/2008 (W8	A0148-MS1)				Sou	rce: 7120	722-01				
Mercury, Dissolved	1.97	0.40	0.10	ug/l	2.00	ND	98	70-130			
Mercury, Total	1.97	0.40	0.10	ug/l	2.00	ND	98	70-130			
Matrix Spike Analyzed: 01/09/2008 (W8	A0148-MS2)				Sou	rce: 7120	722-03				
Mercury, Dissolved	1.88	0.40	0.10	ug/l	2.00	ND	94	70-130			
Mercury, Total	1.88	0.40	0.10	ug/l	2.00	ND	94	70-130			
Matrix Spike Dup Analyzed: 01/09/2008	(W8A0148-M	SD1)			Sou	rce: 7120	722-01				
Mercury, Dissolved	1.92	0.40	0.10	ug/l	2.00	ND	96	70-130	2	20	
Mercury, Total	1.92	0.40	0.10	ug/l	2.00	ND	96	70-130	2	20	
Matrix Spike Dup Analyzed: 01/09/2008	(W8A0148-M	SD2)			Sou	rce: 7120	722-03				
Mercury, Dissolved	1.96	0.40	0.10	ug/l	2.00	ND	98	70-130	4	20	
Mercury, Total	1.96	0.40	0.10	ug/l	2.00	ND	98	70-130	4	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

DATA QUALIFIERS AND DEFINITIONS

- C Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.
- J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
- M1 The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
- MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
- ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
- **RPD** Relative Percent Difference

ADDITIONAL COMMENTS

For GRO (C4-C12):

GRO (C4-C12) is quantitated against a gasoline standard. Quantitation begins immediately following the methanol peak.

For Extractable Fuel Hydrocarbons (EFH, DRO, ORO) :

Unless otherwise noted, Extractable Fuel Hydrocarbons (EFH, DRO, ORO) are quantitated against a Diesel Fuel Standard.

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA0403

Sampled: 01/04/08-01/05/08 Received: 01/05/08

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EDD + Level 4	Water		
EPA 160.2	Water	Х	Х
EPA 160.5	Water	Х	Х
EPA 1664A	Water		
EPA 180.1	Water	Х	Х
EPA 200.7-Diss	Water	Х	Х
EPA 200.7	Water	Х	Х
EPA 200.8-Diss	Water	Х	Х
EPA 200.8	Water	Х	Х
EPA 300.0	Water	Х	Х
EPA 314.0	Water	Х	Х
EPA 340.2	Water	Х	Х
EPA 350.2	Water		Х
EPA 405.1	Water	Х	Х
EPA 624	Water	Х	Х
EPA 625	Water	Х	Х
EPA 8015 Mod.	Water	Х	Х
EPA 8015B	Water	Х	Х
EPA 8260B-SIM	Water		
SM2540C	Water	Х	

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Vista Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762

Analysis Performed: 1613-Dioxin-HR-Alta Samples: IRA0403-01

Weck Laboratories, Inc

14859 E. Clark Avenue - City of Industry, CA 91745 Method Performed: EPA 245.1 Samples: IRA0403-01

TestAmerica Irvine

Joseph Doak Project Manager

IRA0403 <Page 29 of 29> NPDES - 3291

Test America version 12/2007		Vareion 12	201001	-	CHAIN	OF CU	IST(CUSTODY	FOF	JPRO403	19 19 1	1 1 1	1 KACH	2		Page 1	of 2
				100100		5	2							10	C	-	1
Client Name/Address	Addres Aia	S		Project. Boeina-SS	Project: Boeina-SSFL NPDES						₹	AINAL 7010					
Arcadia, CA 91007	Avenu 1007	e, Suite 2(00	Routine (Bravo Tes	Routine Outfall 013 Bravo Test Stand		(MƏI		SUO				`N-²		<u>і</u> ц. н		040
Test America Contact: Joseph Doak	Contact:	Joseph D)oak				4-498	ləuì	`De	·				t			 -
Project Manager: Bronwyn Kelly	lger: B	ronwyn k	(elly	Phone Number (626) 568-6691	mber: -6691)) əs		∋A leto					ə		$pH = \mathcal{O}$, / Time of readings =	
Sampler: \$ 10,000	v-ÛC	સ્		Fax Number: (626) 568-6515	əer: -6515		eəıD X	seti - g	nu∋lo DT≕ Ho	nexoiO	02) ₈ 0 	(sisų	-sinon 	chlorat	,N-916		
Sample Sa Description M	Sample Matrix	Container Type	# of Cont.	Sampling Date/Time	Preservative	Bottle #	9 I!O		ЧЯТ	-4, r		eue		Pero		Comments	
Outfall 013 W		1L Amber	-	Post 1	HCI	1A	×										
Outfall 013 W Dup		1L Amber	4	-	НСІ	1B	×										
Outfall 013 W		VOAs	-		HCI	2A		×									
Outfall 013 W Dup		VOAs	2		Ю	2B, 2C		×									
Outfall 013 W		1L Amber	-		None	3A		×									
Outfall 013 W Dup		1L Amber	-		None	38		×									
Outfall 013 W		1L Amber	1		HCI	4A			×								
Outfall 013 W Dup		1L Amber	-		HCI	4B			×								
Outfall 013 W		VOAs	-		HCI	5A				×							
Outfall 013 W Dup		VOAs	2		НСІ	5B, 5C				×							
Outfall 013 W		1L Poly	1		None	9					×						
Outfall 013 W		1L Amber	-		None	7A						×					
Outfall 013 W Dup		1L Amber	-		None	7B						×					
Outfall 013 W		500 ml Poly	-	/	H₂S0₄	8							×			I S MI S MI	3
Outfall 013 W		500 ml Poly	2	A	None	9A, 9B								×		(°)10, /	
Outfall 013 W		500 ml Poly	-	12:00	None	10									×		
Relinquished By	<u>`</u> ,	1-5-08		Date/Time:	Received By) end	TAT Cert	((Date/Time	20	5	J.		ю́Ч	urn aro 4 Hours	Turn around Time: (check) 24 Hours 5 Days	
Relinguished By	2	lue TA		Kol, G & O	Received By	teler (\square	Date	Date/Time: رب	103		19.00	Q	4 1	48 Hours 72 Hours	s 10 Dayss	
Relinquished By				Dáte/Time:	Received B		3	Da	Date/Time:					0 F	ample Itact	Sample Integrity: (check) Intact On Ice:	
														-			

t Ameri	Cest America Version 12/20/07	20/02	บ	CHAIN O		10	ΥF	CUSTODY FORM			RAC40	$(0, \epsilon_2^{>})$	Page 2 o	of 2
Client Name/Address	ress		Project ⁻		4				-	ANALYSIS REQUIREC	S REQUI	REÓ		
MWH-Arcadia 618 Michillinda Ave Arcadia, CA 91007	MWH-Arcadia 618 Michillinda Avenue. Suite 200 Arcadia, CA 91007	ž	Boeing-SSFL NPI Routine Outfall 0 Bravo Test Stand	Boeing-SSFL NPDES Routine Outfall 013 Bravo Test Stand			P, MTBE.		.9∂.bD, ,≳le	eners)				
Project Manager: Bronwy Sampler: <i>(C. D. & K. b. b</i>	Project Manager: Bronwyn Kelly Sampler: (C A & ~ & * &		Phone Number (626) 568-6691 Fax Number (626) 568-6515	mber: -6691 /er: -6515		able Solids	, TBA) EDB, 1,2,3-TC	Recoverable N	, Cu, Pb, Hg	gnoo lle bne) (Comments	
Sample Sample Description Matrix	e Container Type	# of Cont.	Sampling Date/Time	Preservative	Bottle #		924 (Total		тсрг				
Outfall 013 W	500 ml Poly	2	00:5:	None	11A, 11B	×								,
Outfall 013 W	1L Poly	-		None	12	×								
Outfall 013 W	VOAs	-		HCI	13A		×							
Outfall 013 W Dup	VOAs	7		нсі	13B, 13C		×							
Outfall 013 W	1L Poly	2		HNO ₃	14A, 14B			×						
Outfall 013 W	1L Poly	Ţ	\$	None	15				×				Filter w/in 24hrs of receipt at lab	
Outfall 013 W	1L Amber	2	60.2.1	None	16A, 16B					×				
Trip Blanks W	VOAs	3		HCI	17A, 17B, 17C		×							
-							-							
													44 mar - 100 mar	
Relinquished By	1. 5-08	Z Dat	Date/Time:	Received By	, ,	(e (e	A Date	Date/Time:	28	×3)	Turn aro	Turn around Time: (check) 24 Hours5 Days	(check) 5 Days	[
Relinquished By		Dat	Date/Time:	Received By	Jarr	¥,	Date	Date/Time:	g		48 Hours		10 Davs	
				Aneyd	la Ca	ea)	2	K-10×		19:00	72 Hours		Normal	
Relinquished By		Dat	Date/Time:	Received b y)		Date	Date/Time:			Sample Intact	nteority: (c	Sample Inteority: (check)	

January 23, 2008

Vista Project I.D.: 30123

Mr. Joseph Doak Test America-Irvine, CA 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Mr. Doak,

Enclosed are the results for the one aqueous samples received at Vista Analytical Laboratory on January 08, 2008 under your Project Name "IRA0403". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Vista's current certifications, and copies of the raw data (if requested).

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Manue Mare

Martha M. Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.

Section I: Sample Inventory Report Date Received: 1/8/2008

<u>Vista Lab. ID</u>

Client Sample ID

30123-001

IRA0403-01

SECTION II

Method Blank				1			EPA Method 1613
Matrix: Ac	queous	QC Batch No.:	9886	Lab Sample:	0-MB001		
Sample Size:	1.00 L	Date Extracted:	17-Jan-08	Date Analyzed	DB-5: 19-Jan-08	Date Ar	nalyzed DB-225: NA
Analyte	Conc. (ug/L)	DL ^a EMP	C ^b Qualifiers	Labeled	Standard	%R	LCL-UCL ^d Qualifiers
2,3,7,8-TCDD	ND	0.00000111		<u>IS</u> 13C-2,3,7	7,8-TCDD	85.7	25 - 164
1,2,3,7,8-PeCDD	ND	0.00000171		13C-1,2,3	3,7,8-PeCDD	76.8	25 - 181
1,2,3,4,7,8-HxCDE) ND	0.00000174		13C-1,2,3	3,4,7,8-HxCDD	75.3	32 - 141
1,2,3,6,7,8-HxCDE) ND	0.00000184		13C-1,2,3	3,6,7,8-HxCDD	75.1	28 - 130
1,2,3,7,8,9-HxCDE) ND	0.00000172		13C-1,2,3	3,4,6,7,8-HpCDD	87.8	23 - 140
1,2,3,4,6,7,8-HpCI	DD ND	0.00000243		13C-OCI	DD	70.8	17 - 157
OCDD	ND	0.00000780		13C-2,3,7	7,8-TCDF	83.6	24 - 169
2,3,7,8-TCDF	ND	0.00000116		13C-1,2,3	3,7,8-PeCDF	72.8	24 - 185
1,2,3,7,8-PeCDF	ND	0.00000159		13C-2,3,4	4,7,8-PeCDF	75.3	21 - 178
2,3,4,7,8-PeCDF	ND	0.00000156		13C-1,2,3	3,4,7,8-HxCDF	72.9	26 - 152
1,2,3,4,7,8-HxCDF	ND	0.000000815		13C-1,2,3	3,6,7,8-HxCDF	73.2	26 - 123
1,2,3,6,7,8-HxCDF		0.00000832		13C-2,3,4	4,6,7,8-HxCDF	76.3	28 - 136
2,3,4,6,7,8-HxCDF		0.00000894		13C-1,2,3	3,7,8,9-HxCDF	79.4	29 - 147
1,2,3,7,8,9-HxCDF		0.00000120		13C-1,2,3	3,4,6,7,8-HpCDF	88.5	28 - 143
1,2,3,4,6,7,8-HpCI	DF ND	0.000000977		13C-1,2,3	3,4,7,8,9-HpCDF	86.1	26 - 138
1,2,3,4,7,8,9-HpCI	DF ND	0.00000133		13C-OCI)F	72.3	17 - 157
OCDF	ND	0.00000313		<u>CRS</u> 37Cl-2,3,	7,8-TCDD	105	35 - 197
Totals				Footnotes			
Total TCDD	ND	0.00000111		a. Sample specific es	stimated detection limit.		
Total PeCDD	ND	0.00000373		b. Estimated maxim	um possible concentration.		
Total HxCDD	ND	0.00000177		c. Method detection	limit.		
Total HpCDD	ND	0.00000314		d. Lower control lim	nit - upper control limit.		
Total TCDF	ND	0.00000116					
Total PeCDF	ND	0.00000157					
Total HxCDF	ND	0.000000928					
Total HpCDF	ND	0.00000114					

Analyst: MAS

OPR Results					EP	A Method 1	1613
Matrix: Aqueous Sample Size: 1.00 L		QC Batch No.: Date Extracted:	9886 17-Jan-08	Lab Sample:0-OPR001Date Analyzed DB-5:19-Jan-08	Date Analy	zed DB-225:	NA
Analyte	Spike Conc.	Conc. (ng/mL)	OPR Limits	Labeled Standard	%R	LCL-UCL	Qualifier
2,3,7,8-TCDD	10.0	10.4	6.7 - 15.8	<u>IS</u> 13C-2,3,7,8-TCDD	76.2	25 - 164	
1,2,3,7,8-PeCDD	50.0	52.4	35 - 71	13C-1,2,3,7,8-PeCDD	68.3	25 - 181	
1,2,3,4,7,8-HxCDD	50.0	52.8	35 - 82	13C-1,2,3,4,7,8-HxCDD	66.2	32 - 141	
1,2,3,6,7,8-HxCDD	50.0	51.4	38 - 67	13C-1,2,3,6,7,8-HxCDD	66.8	28 - 130	
1,2,3,7,8,9-HxCDD	50.0	52.3	32 - 81	13C-1,2,3,4,6,7,8-HpCDD	87.2	23 - 140	
1,2,3,4,6,7,8-HpCDD	50.0	51.7	35 - 70	13C-OCDD	70.1	17 - 157	
OCDD	100	103	78 - 144	13C-2,3,7,8-TCDF	74.1	24 - 169	
2,3,7,8-TCDF	10.0	9.71	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	64.3	24 - 185	
1,2,3,7,8-PeCDF	50.0	50.9	40 - 67	13C-2,3,4,7,8-PeCDF	67.4	21 - 178	
2,3,4,7,8-PeCDF	50.0	51.2	34 - 80	13C-1,2,3,4,7,8-HxCDF	62.5	26 - 152	
1,2,3,4,7,8-HxCDF	50.0	51.5	36 - 67	13C-1,2,3,6,7,8-HxCDF	63.5	26 - 123	
1,2,3,6,7,8-HxCDF	50.0	52.2	42 - 65	13C-2,3,4,6,7,8-HxCDF	66.6	28 - 136	
2,3,4,6,7,8-HxCDF	50.0	52.3	35 - 78	13C-1,2,3,7,8,9-HxCDF	69.3	29 - 147	
1,2,3,7,8,9-HxCDF	50.0	51.7	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	76.7	28 - 143	
1,2,3,4,6,7,8-HpCDF	50.0	50.6	41 - 61	13C-1,2,3,4,7,8,9-HpCDF	85.4	26 - 138	
1,2,3,4,7,8,9-HpCDF	50.0	51.2	39 - 69	13C-OCDF	71.9	17 - 157	
OCDF	100	104	63 - 170	<u>CRS</u> 37Cl-2,3,7,8-TCDD	84.4	35 - 197	

Analyst: MAS

Approved By: Martha M. Ma

Martha M. Maier 23-Jan-2008 08:53

Sample ID: IRA()403-01								EPA N	Aethod 1613
Client Data Name: Test Project: IRAC Date Collected: 5-Jan Time Collected: 1200			Sample Data Matrix: Sample Size:	Aqueous 1.01 L	Lab QC	oratory Data Sample: Batch No.: Analyzed DB-5:	30123-001 9886 19-Jan-08	Date Re Date Ex Date An		8-Jan-08 17-Jan-08 NA
Analyte	Conc. (ug/L)	DL ^a	EMPC ^b	Qualifiers		Labeled Standa	ırd	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND ND 0.00000623 0.0000473 ND ND	0.000001 0.000002 0.000002 0.000002 0.000002 0.000002 0.000002 0.000001 0.000001	12 34 51 33 0.000001 81 75 09 17 20		IS	13C-2,3,7,8-TCD 13C-1,2,3,7,8-Pet 13C-1,2,3,4,7,8-F 13C-1,2,3,4,7,8-F 13C-1,2,3,4,6,7,8 13C-0CDD 13C-2,3,7,8-TCD 13C-2,3,7,8-Pet 13C-1,2,3,4,7,8-Pet 13C-1,2,3,4,7,8-F 13C-1,2,3,4,6,7,8-F 13C-1,2,3,4,6,7,8-F 13C-1,2,3,4,6,7,8-F 13C-1,2,3,4,6,7,8-F	CDD IxCDD IxCDD -HpCDD F CDF CDF IxCDF IxCDF IxCDF IxCDF IxCDF IxCDF IxCDF IxCDF IxCDF IxCDF IxCDF	76.8 68.7 64.5 65.0 68.9 57.0 73.6 63.4 66.3 63.1 63.0 64.0 66.7 73.1 64.7	25 - 164 $25 - 181$ $32 - 141$ $28 - 130$ $23 - 140$ $17 - 157$ $24 - 169$ $24 - 185$ $21 - 178$ $26 - 152$ $26 - 123$ $28 - 136$ $29 - 147$ $28 - 143$ $26 - 138$	
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	ND ND 0.00000457	0.000001		J	CRS	13C-1,2,3,4,7,8,9 13C-OCDF 37Cl-2,3,7,8-TCI	-	64.7 55.5 95.2	26 - 138 17 - 157 35 - 197	
Totals					Fo	otnotes				
Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND ND 0.00000623	0.000001 0.000004 0.0000024	15	20	b. E c. M	umple specific estimated stimated maximum possi ethod detection limit. ower control limit - uppe	ible concentration.			
Total TCDF Total PeCDF Total HxCDF Total HpCDF	0.00000300 ND ND ND	0.000001	0.000009 0.000002 84 0.000004	241						

Analyst: MAS

APPENDIX

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank.
D	Dilution
Р	The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.
Н	The signal-to-noise ratio is greater than 10:1.
Ι	Chemical Interference
J	The amount detected is below the Lower Calibration Limit of the instrument.
*	See Cover Letter
Conc.	Concentration
DL	Sample-specific estimated detection limit
MDL	The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.
EMPC	Estimated Maximum Possible Concentration
NA	Not applicable
RL	Reporting Limit – concentrations that correspond to low calibration point
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

SUBCONTRACT ORDER

TestAmerica Irvine

	IRA0403 30123
SENDING LABORATORY:	RECEIVING LABORATORY: 1.6°C
TestAmerica Irvine	Vista Analytical Laboratory- SUB
17461 Derian Avenue. Suite 100	1104 Windfield Way
Irvine, CA 92614	El Dorado Hills, CA 95762
Phone: (949) 261-1022	Phone :(916) 673-1520
Fax: (949) 260-3297	Fax: (916) 673-0106
Project Manager: Joseph Doak	Project Location: California
	Receipt Temperature: <u>°C</u> Ice: Y / N

Analysis	Units	Due	Expires	Comments
Sample ID: IRA0403-01	Water		Sampled: 01/05/08 12:00	ph=8.7, temp=53.60
1613-Dioxin-HR-Alta	ug/l	01/16/08	01/12/08 12:00	J flags,17 congeners,no TEQ,ug/L,sub=Vista
Level 4 Data Package - Out	N/A	01/16/08	02/02/08 12:00	Boeing
Containers Supplied:				
1 L Amber (Y) 1	L Amber (Z)			

Released By

68<u>1700</u>

Date/Time

Date/Time

1/7 CHER na Sender Date/Time 1/8/08 1018 Received By

Received By

Page 1 of 1 NPDES - 3303 Page 10 of 263 Date/Time

700

Released By Project 30123

SAMPLE LOG-IN CHECKLIST

tical Laboratory Standard 30122 TAT Vista Project #: Location: WR-2 Date/Time Initials: Samples Arrival: 1/8/02 6909 Shelf/Rack: Initials: Location: Date/Time 1200 108 Logged In: Shelf/Rack: Hand FedEx UPS DHL **Delivered By:** Cal Other Delivered Preservation: íce Blue Ice Drv Ice None 929 Temp °C Time: Thermometer ID: IR-1 1.60 YES NO NA V Adequate Sample Volume Received? 1 Holding Time Acceptable? V Shipping Container(s) Intact? V Shipping Custody Seals Intact? **Shipping Documentation Present?** 2674 3476 V 1926 Trk # Airbill Sample Container Intact? L Sample Custody Seals Intact? Chain of Custody / Sample Documentation Present? COC Anomaly/Sample Acceptance Form completed? If Chlorinated or Drinking Water Samples, Acceptable Preservation? Sample Na₂S₂O₃ Preservation Documented? COC None Container **Shipping Container** Vista Client Retain Return Dispose

Comments:

Project 30123

SUBCONTRACT ORDER

TestAmerica Irvine

IRA0403

	IRA0403	2016	772	
SENDING LABORATORY: TestAmerica Irvine 17461 Derian Avenue. Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297 Project Manager: Joseph Doak	RECEIVING LABO Weck Laborator 14859 E. Clark / City of Industry, Phone :(626) 33 Fax: (626) 336- Project Location Receipt Temperat	ORATORY: ries, Inc-SUB Avenue CA 91745 66-2139 2634 : California	Ice: (\mathbf{Y}) /	N
			<u> </u>	

Analysis	Units	Due	Expires	Comments
Sample ID: IRA0403-01	Water			
Ammonia-N, Titr (350.2) w/c	li mg/l	01/16/08	Sampled: 01/05/08 12:00 02/02/08 12:00	ph=8.7, temp=53.60
Level 4 + EDD-OUT	N/A	01/16/08	02/02/08 12:00	Boeing, permit, J flags
Level 4 Data Package - Weo Mercury - 245.1, Diss -OUT		01/16/08	02/02/08 12:00	Excel EDD email to pm,Include Std logs for LvI IV
	mg/l	01/16/08	02/02/08 12:00	Out to Weck Level 4 Boeing, permit, J
Mercury - 245.1-OUT	mg/I	01/16/08	02/02/08 12:00	flags Out to Weck Level 4 Boeing, permit, J
Containers Supplied:				flags
105 1 5 1	25 mL Poly (A	AF)		

	, 1		
Released By	1/7/08 0900 Date/Time	Autom	TAT 1/7/08 0900
Rejegsed By	1/7/08 1420 Date/Time	Received By Jame Gmb	Date/Time 1708 1920
U		Received By	Date/Time NPDES 3305 of 1

Weck Laboratories, Inc.

Analytical Laboratory Services - Since 1964

14859 E. Clark Ave., Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634 info@wecklabs.com www.wecklabs.com

CERTIFICATE OF ANALYSIS

Client:	TestAmerica, Inc Irvine	Report Date:	01/10/08 08:43
	17461 Derian Ave, Suite 100	Received Date:	01/07/08 14:20
	Irvine, CA 92614	Turn Around:	7 days
	Attention: Joseph Doak	Work Order #: 8010772	
	Phone: (949) 261-1022 Fax: (949) 260-3297	Client Project: IRA0403	

NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

Dear Joseph Doak :

Enclosed are the results of analyses for samples received 01/07/08 14:20 with the Chain of Custody document. The samples were received in good condition. The samples were received at 3.1 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Reviewed by: in

Kim G Tu

Project Manager

14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

> Date Received: 01/07/08 14:20 Date Reported: 01/10/08 08:43

Weck Laboratories, Inc.

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Sampled by:	Sample Comments	Laboratory	Matrix	Date Sampled
IRA0403-01	Client		8010772-01	Water	01/05/08 12:00

Report ID: 8010772

Project ID: IRA0403

Date Sampled:

01/05/08 12:00

Date Received: 01/07/08 14:20 Date Reported: 01/10/08 08:43

IRA0403-01	8010772-01 (Water)
------------	--------------------

Report ID: 8010772

Project ID: IRA0403

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Dissolved	ND	0.050	ug/l	0.20	1	EPA 245.1	W8A0148	01/08/08	01/09/08 jlp	
Mercury, Total	ND	0.050	ug/l	0.20	1	EPA 245.1	W8A0148	01/08/08	01/09/08 jlp	

Metals by EPA 200 Series Methods

Report ID: 8010772 Project ID: IRA0403 Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Date Received: 01/07/08 14:20 Date Reported: 01/10/08 08:43

QUALITY CONTROL SECTION

Date Received: 01/07/08 14:20 Date Reported: 01/10/08 08:43

Metals by EPA 200 Series Methods - Quality Control

Report ID: 8010772

Project ID: IRA0403

	%REC										
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers	
Batch W8A0148 - EPA 245.1											
Blank (W8A0148-BLK1)				Analyzed:	01/09/08						
Mercury, Dissolved	ND	0.20	ug/l								
Mercury, Total	ND	0.20	ug/l								
LCS (W8A0148-BS1)				Analyzed:	01/09/08						
Mercury, Dissolved	0.965	0.20	ug/l	1.00		96	85-115				
Mercury, Total	0.965	0.20	ug/l	1.00		96	85-115				
Matrix Spike (W8A0148-MS1)	Source: 7120722-01		Analyzed:	Analyzed: 01/09/08							
Mercury, Dissolved	1.97	0.40	ug/l	2.00	ND	98	70-130				
Mercury, Total	1.97	0.40	ug/l	2.00	ND	98	70-130				
Matrix Spike (W8A0148-MS2)	Source: 7120722-03		Analyzed: 01/09/08								
Mercury, Dissolved	1.88	0.40	ug/l	2.00	ND	94	70-130				
Mercury, Total	1.88	0.40	ug/l	2.00	ND	94	70-130				
Matrix Spike Dup (W8A0148-MSD1)	So	ource: 7120722	-01	Analyzed: 01/09/08							
Mercury, Dissolved	1.92	0.40	ug/l	2.00	ND	96	70-130	2	20		
Mercury, Total	1.92	0.40	ug/l	2.00	ND	96	70-130	2	20		
Matrix Spike Dup (W8A0148-MSD2)	So	Source: 7120722-03		Analyzed: 01/09/08							
Mercury, Dissolved	1.96	0.40	ug/l	2.00	ND	98	70-130	4	20		
Mercury, Total	1.96	0.40	ug/l	2.00	ND	98	70-130	4	20		

Report ID: 8010772 Project ID: IRA0403 Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Date Received: 01/07/08 14:20 Date Reported: 01/10/08 08:43

Notes and Definitions

- ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- % Rec Percent Recovery
- Sub Subcontracted analysis, original report available upon request
- MDL Method Detection Limit
- MDA Minimum Detectable Activity

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

APPENDIX G

Section 87

Outfall 013, January 24, 2008 MEC^X Data Validation Reports

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IRA2355

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title:	Boeing SSFL NPDES
Contract Task Order:	1261.100D.00
Sample Delivery Group:	IRA2355
Project Manager:	B. Kelly
Matrix:	Soil
QC Level:	IV
No. of Samples:	2
No. of Reanalyses/Dilutions:	0
Laboratory:	TestAmerica-Irvine, Weck, Vista

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 013	IRA2355-01	30204-001 8012537-01	Water	01/24/08 1100	180.1, 200.8, 245.1, 405.1, 1613, 625, 624
Trip Blank	IRA2355-02	N/A	Water	N/A	624

II. Sample Management

No anomalies were observed regarding sample management. The sample in this SDG was received at TestAmerica-Irvine and Vista within the temperature limits of $4^{\circ}C \pm 2^{\circ}C$. the sample was received above the temperature limit at Weck; however, mercury is not considered volatile. According to the case narrative for this SDG, the sample was received intact at all laboratories. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine, custody seals were not required. Custody seals were intact upon arrival at Vista. No custody seals were present upon receipt at Weck. If necessary, the client ID was added to the sample result summary by the reviewer.

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
A	Not applicable.	ICP Serial Dilution %D were not within control limits.
Μ	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Ρ	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: March 8, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had no target compound detects above the EDL.

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHODS 200.8, 245.1—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: March 10, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.8 and 245.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding times, 6 months for metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.
- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP-MS metals and 85-115% for mercury. The cadmium 0.2 ppb check standard was recovered

above the control limit at 139%; therefore, total cadmium detected in the sample was qualified as an estimated detect, "J." All remaining check standard recoveries were within the control limits of 70-130%

- Blanks: There were no applicable detects in the method blanks or CCBs.
- Interference Check Samples: ICSA/B analyses were performed in association with the total metals analyses only. Recoveries were within the method-established control limits. Most analytes were reported in the 6020 ICSA solution; however, the reviewer was not able to ascertain if the detection was indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the dissolved aliquot and a matrix spike analysis was performed on the total metals aliquot. All recoveries and RPDs were within the laboratory-established control limits. Evaluation of the mercury method accuracy was based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. The bracketing CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

C. EPA METHOD 625—Semivolatile Organic Compounds (SVOCs)

Reviewed By: L. Calvin Date Reviewed: March 9, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Semivolatile Organics (DVP-3, Rev. 0), EPA Method 8270C, and the National Functional Guidelines for Organic Data Review (2/94).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted within seven days of collection and analyzed within 40 days of extraction.
- GC/MS Tuning: The DFTPP tunes met the method abundance criteria. Samples were analyzed within 12 hours of the DFTPP injection time.
- Calibration: Calibration criteria were met. For applicable target compounds, initial calibration average RRFs were ≥0.05 and %RSDs ≤35%. Continuing calibration RRFs were ≥0.05 and %Ds ≤20%.
- Blanks: Method blanks had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries and RPDs were within laboratory-established QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample of this SDG. Evaluation of method accuracy and precision was based on the LSC/LSCD results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The internal standard area counts and retention times were within the control limits established by the continuing calibration standards: -50%/+100% for internal standard areas and ±30 seconds for retention times.
- Compound Identification: Compound identification was verified. The laboratory analyzed for semivolatile target compounds naphthalene and n-nitrosodimethylamine by EPA

Method 625. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.

- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any results reported between the MDL and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review of the raw data indicated no problems with system performance.

D. EPA METHOD 624—Volatile Organic Compounds (VOCs)

Reviewed By: L. Calvin Date Reviewed: March 9, 2008

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC^X* Data Validation Procedure for Volatile Organics (DVP-2, Rev. 0), EPA Method 8260B, and the National Functional Guidelines for Organic Data Review (2/94).

- Holding Times: Analytical holding times were met. The preserved water samples were analyzed within 14 days of collection.
- GC/MS Tuning: The BFB tunes met the method abundance criteria. Samples were analyzed within 12 hours of the BFB injection time.
- Calibration: Calibration criteria were met. For applicable target compounds, initial calibration average RRFs were ≥0.05 and %RSDs ≤35%. Continuing calibration RRFs were ≥0.05 and %Ds ≤20%.
- Blanks: The method blank had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on site sample Outfall 013. Recoveries and RPDs were within laboratory-established QC limits.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.

Following are findings associated with field QC samples:

- Trip Blanks: Sample Trip Blank was the trip blank associated with site sample Outfall 013. The trip blank had no target compound detects above the MDL.
- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The internal standard area counts and retention times were within the control limits established by the continuing calibration standards: -50%/+100% for internal standard areas and ±30 seconds for retention times.
- Compound Identification: Compound identification was verified. The laboratory analyzed for five volatile target compounds by EPA Method 624. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any results reported between the MDL and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review of the raw data indicated no problems with system performance.

E. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks Date Reviewed: March 3, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Methods 180.1 and 405.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The holding times, 48 hours for BOD and turbidity, were met.
- Calibration: Calibration criteria are not applicable to BOD.. The turbidity check standard recoveries were acceptable.
- Blanks: There were no applicable detects in the method blanks.

- Blank Spikes and Laboratory Control Samples: The BOD recoveries and RPD were within the laboratory-established control limits. The LCS is not applicable to turbidity.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: BOD MS/MSD analyses were not performed. Method accuracy and precision were evaluated based on the LCS/LCSD results. MS/MSD analyses are not applicable to turbidity.
- Sample Result Verification: The sample results were verified against the raw data. No transcription or calculation errors were noted.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- Field Duplicates: There were no field duplicate samples identified for this SDG.

Client Data			Sample Data		Laboratory Data				
	Test America-Irvine, CA IRA2355 24-Jan-08		Matrix: Sample Size:	Aqueous 1.00 L	Lab Sample: QC Batch No.:	30204-001 9917	Date Received: Date Extracted:	ived: toted:	26-Jan-08 31-Jan-08
Time Collected: 1100		- 10 10	EMPCP	Out Strong	Uate Analyzed DB-5: Tobolog Stond	6-Feb-08		Date Analyzed DB-225:	NA Static
Analyte	CORC. (ug/L)		FINC	Quanners	Labeleu Stanuaru	laru	70K 1		Oualitiers
2,3,7,8-TCDD	QN	0.000000932	32		<u>IS</u> 13C-2,3,7,8-TCDD	DD	88.4	25 - 164	51 F 1 - 1
1,2,3,7,8-PeCDD	QN	0.00000119	6		13C-1,2,3,7,8-PeCDD	eCDD	78.2	25 - 181	
1,2,3,4,7,8-HxCDD	Ð	0.00000255	5		13C-1,2,3,4,7,8-HxCDD	HxCDD	80.7	32 - 141	
1,2,3,6,7,8-HxCDD	QN	0.00000260	0		13C-1,2,3,6,7,8-HxCDD	-HxCDD	79.6	28 - 130	
1,2,3,7,8,9-HxCDD	Ð	0.00000247	· 1/1		13C-1,2,3,4,6,7,8-HpCDD	8-HpCDD	81.3	23 - 140	
1,2,3,4,6,7,8-HpCDD	QN	0.00000314	4		13C-OCDD		71.7	17 - 157	
DUR OCDD	0.0000140			1	13C-2,3,7,8-TCDF	DF	88.3	24 - 169	
2,3,7,8-TCDF	QN	0.00000132	2		13C-1,2,3,7,8-PcCDF	cCDF	76.1	24 - 185	
1,2,3,7,8-PeCDF	QN	0.00000144	1		13C-2,3,4,7,8-PeCDF	eCDF.	74.6	21 - 178	
2,3,4,7,8-PeCDF	QN	0.00000149	6		13C-1,2,3,4,7,8-HxCDF	-HxCDF	78.4	26 - 152	
1,2,3,4,7,8-HxCDF	ND	0.00000156	9		13C-1,2,3,6,7,8-HxCDF	-HxCDF	76.3	26-123	
1,2,3,6,7,8-HxCDF	DN	0.00000106	90		13C-2,3,4,6,7,8-HxCDF	-HxCDF	75.7	28 - 136	
2,3,4,6,7,8-HxCDF	Q	0.00000123	3		13C-1,2,3,7,8,9-HxCDF	HxCDF	76.4	29 - 147	
1,2,3,7,8,9-HxCDF	Q	0.000000796	.96		13C-1,2,3,4,6,7,8-HpCDF	8-HpCDF	75.5	28 - 143	
1,2,3,4,6,7,8-HpCDF	QN.	0.00000287	1	•	13C-1,2,3,4,7,8,9-HpCDF	9-HpCDF	75.5	26 - 138	
1,2,3,4,7,8,9-HpCDF	QN		72		13C-OCDF		74.5	17 - 157	
OCDF	Ŋ	0.00000618	8		CRS 37CI-2,3,7,8-TCDD	DD	93.5	35 - 197	
Totals					Footnotes				
Total TCDD	DN	0.00000178	8		a. Sample specific estimated detection limit	od detection limit.	Contraction of the local distribution of the		
Total PeCDD	QN	0.00000119	6		b. Estimated maximum possible concentration.	ssible concentration.		1 - F	
Total HxCDD	DN	0.00000254	54		c. Method detection limit.				
Total HpCDD	0.00000312			E Level Credit	d. Lower control limit - upper control limit	per control limit.		Sala Sala Sala	
- Total TCDF	ND	0.00000169	69				4		
Total PeCDF	Q	0.00000147	1			THE PART OF	***		
Total HxCDF	QN	0.00000180	00		and the second se		and the second	a warn new my	Contraction of Contraction
Total ULCOF	VIN .	0.0000306		A STATES			A CONTRACTOR OF		

Page 6 of 12092

William J. Luksemburg 08-Feb-2008 13:08

Approved By:

Analyst: MAS

Level IV

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRA2355

Project ID: Routine Outfall 013

Sampled: 01/24/08 Received: 01/24/08

METALS MDL Reporting Sample Dilution Date Data Date Qualifiers Analyte Method Batch Limit Limit Result Factor Extracted Analyzed Sample ID: IRA2355-01 (OUTFALL 013 - Water) - cont. Reporting Units: ug/l Cadmium JATT EPA 200.8 8A25068 0.11 1.0 2.1 1 01/25/08 01/25/08 Copper EPA 200.8 8A25068 0.75 2.0 3.0 1 01/25/08 01/25/08 Lead EPA 200.8 0.30 1.0 1.6 01/25/08 01/25/08 8A25068 1 Selenium U ND EPA 200.8 8A25068 0.30 2.0 1 01/25/08 01/25/08 Zinc EPA 200.8 8A25068 2.5 20 55 1 01/25/08 01/25/08

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA2355 <Page 9 of 41>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

DISSOLVED METALS

Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: I	IRA2355-01 (OUTFALL 013	8 - Water) - cont.								
	ing Units: ug/l									
Cadmium 🖏	THAT	EPA 200.8-Diss	8A24169	0.11	1.0	1.7	1	01/24/08	01/24/08	
Copper		EPA 200.8-Diss	8A24169	0.75	2.0	2.0	1	01/24/08	01/24/08	
Lead	U	EPA 200.8-Diss	8A24169	0.30	1.0	ND	1	01/24/08	01/24/08	
Selenium	Ŭ	EPA 200.8-Diss	8A24169	0.30	2.0	ND	1	01/24/08	01/24/08	
Zinc		EPA 200.8-Diss	8A24169	2.5	20	44	1	01/24/08	01/25/08	

LEVEL IV

pm 3/10/08

TestAmerica Irvine

Joseph Doak Project Manager

> The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA2355 <Page 11 of 41>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

Metals by EPA 200 Series Methods

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: IRA2355-01 (OUTFALL 013 - Water) - cont.											
Reporting Units: ug/l											
Mercury, Dissolved	EPA 245.1	W8A1076	0.050	0.20	ND	1	01/30/08	01/31/08			
Mercury, Total	EPA 245.1	W8A1076	0.050	0.20	ND	1	01/30/08	01/31/08			

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA2355 <Page 16 of 41>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Project ID: Routine Outfall 013

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2355-01 (OUTI Reporting Units: ug/l Naphthalene N-Nitrosodimethylamine Surrogate: 2-Fluorophenol (30-1 Surrogate: Phenol-d6 (35-120%) Surrogate: 2,4,6-Tribromopheno Surrogate: Nitrobenzene-d5 (45- Surrogate: 2-Fluorobiphenyl (50) Surrogate: Terphenyl-d14 (50-12)	U 20%) 1 (40-120%) 1 20%) -120%)	Water) EPA 625 EPA 625	8A25091 8A25091	2.9 2.4	9.6 19	ND ND 59 % 79 % 68 % 72 % 78 % 94 %	0.957 0.957	01/25/08 01/25/08	Analyzed 01/29/08 01/29/08	Qualifiers
	15%) Leve	IV								

TestAmerica Irvine

Joseph Doak Project Manager

> The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA2355 <Page 6 of 29>

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Project ID: Routine Outfall 013

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

		PUR	GEABLES	S BY G	C/MS (EI	PA 624)				
Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2355-01 (OUTH Reporting Units: ug/l 1,2-Dibromoethane (EDB) Methyl-tert-butyl Ether (MTBE) 1,2,3-Trichloropropane Di-isopropyl Ether (DIPE) tert-Butanol (TBA) Surrogate: Dibromofluoromethan Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzen	UL 120 120 120 120 120 120 120 120	EPA 624 EPA 624 EPA 624 EPA 624 EPA 624 EPA 624	8A29020 8A29020 8A29020 8A29020 8A29020 8A29020	0.40 0.32 0.40 0.25 4.9	2.0 5.0 10 5.0 25	ND ND ND ND 102 % 105 % 96 %	1 1 1 1	01/29/08 01/29/08 01/29/08 01/29/08 01/29/08	01/29/08 01/29/08 01/29/08 01/29/08 01/29/08	Quantiers
Sample ID: IRA2355-02 (TRIP) Reporting Units: ug/l 1,2-Dibromoethane (EDB) Methyl-tert-butyl Ether (MTBE) 1,2,3-Trichloropropane Di-isopropyl Ether (DIPE) tert-Butanol (TBA) Surrogate: Dibromofluoromethan Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene	U (80-1209	EPA 624 EPA 624 EPA 624 EPA 624 EPA 624 EPA 624	8A29020 8A29020 8A29020 8A29020 8A29020	0.40 0.32 0.40 0.25 4.9	2.0 5.0 10 5.0 25	ND ND ND ND 102 % 105 % 97 %	1 1 1 1	01/29/08 01/29/08 01/29/08 01/29/08 01/29/08	01/29/08 01/29/08 01/29/08 01/29/08 01/29/08	

TestAmerica Irvine

Joseph Doak Project Manager

> The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA2355 <Page 5 of 41>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 013

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

INORGANICS Data MDL Reporting Sample Dilution Date Date Qualifiers Analyte Method Batch Limit Limit Result Factor Extracted Analyzed Sample ID: IRA2355-01 (OUTFALL 013 - Water) - cont. Reporting Units: mg/l EPA 1664A 8A31085 1.3 4.8 ND 1 01/31/08 01/31/08 Grease) 0.30 0.50 ND 01/29/08 01/29/08 Ammonia-N (Distilled) EPA 350.2 8A29110 1 2.0 01/24/08 01/29/08 **Biochemical Oxygen Demand** EPA 405.1 8A24141 0.59 2.0 1 Chloride EPA 300.0 8A24034 5.0 10 62 20 01/24/08 01/24/08 0.30 Fluoride EPA 340.2 8A28117 0.014 0.10 1 01/28/08 01/28/08 0.74 Nitrate-N 8A24034 0.060 0.11 01/24/08 01/24/08 EPA 300.0 1 ND Nitrite-N EPA 300.0 8A24034 0.090 0.15 1 01/24/08 01/24/08 Nitrate/Nitrite-N EPA 300.0 8A24034 0.15 0.26 0.74 1 01/24/08 01/24/08 Sulfate EPA 300.0 8A24034 0.20 0.50 13 1 01/24/08 01/24/08 10 200 01/25/08 01/25/08 **Total Dissolved Solids** SM2540C 8A25141 10 1 10 ND 1 01/25/08 01/25/08 Total Suspended Solids EPA 160.2 8A25132 10

* Analysis not validated LEVEL [V

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA2355 <Page 12 of 41>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA2355

EVEL IV

Sampled: 01/24/08 Received: 01/24/08

		INC	DRGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2355-01 (OUTFALL 0 Reporting Units: NTU	,								
Turbidity	EPA 180.1	8A25085	0.040	1.0	5.5	1	01/25/08	01/25/08	

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA2355 <Page 14 of 41>

APPENDIX G

Section 88

Outfall 013, January 24, 2008 Test America Analytical Laboratory Report

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project: Routine Outfall 013

Sampled: 01/24/08 Received: 01/24/08 Revised: 02/27/08 15:57

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION:

This report was revised to correct reported carbon range for EFH.

LABORATORY ID	CLIENT ID	MATRIX
IRA2355-01	OUTFALL 013	Water
IRA2355-02	TRIP BLANK	Water

Reviewed By:

Joseph Dock

TestAmerica Irvine Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2355-01 (OUTFALL 013	- Water)								
Reporting Units: mg/l									
EFH (C13 - C22)	EPA 8015B	8A27019	0.095	0.48	ND	0.952	01/27/08	01/29/08	
Surrogate: n-Octacosane (40-125%)					103 %				

TestAmerica Irvine

Attention: Bronwyn Kelly

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Project ID: Routine Outfall 013

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2355-01 (OUTFALL 01	3 - Water) - cont.								
Reporting Units: ug/l									
GRO (C4 - C12)	EPA 8015 Mod.	8A30041	25	100	ND	1	01/30/08	01/30/08	
Surrogate: 4-BFB (FID) (65-140%)					104 %				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

VOLATILE ORGANICS by GCMS SIM												
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers			
Sample ID: IRA2355-01 (OUTFALL 0	13 - Water) - cont.											
Reporting Units: ug/l												
1,4-Dioxane	EPA 8260B-SIM	8A25014	1.0	2.0	ND	1	01/25/08	01/25/08				
Surrogate: Dibromofluoromethane (80-	20%)				100 %							

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

PURGEABLES BY GC/MS (EPA 624) Data MDL Reporting Sample Dilution Date Date Method Batch Limit Limit Result Factor Extracted **Oualifiers** Analyte Analyzed Sample ID: IRA2355-01 (OUTFALL 013 - Water) - cont. **Reporting Units: ug/l** EPA 624 8A29020 0.40 2.0 ND 01/29/08 01/29/08 1,2-Dibromoethane (EDB) 1 Methyl-tert-butyl Ether (MTBE) EPA 624 8A29020 0.32 5.0 ND 01/29/08 01/29/08 1 0.40 ND 01/29/08 01/29/08 1,2,3-Trichloropropane EPA 624 8A29020 10 1 8A29020 ND Di-isopropyl Ether (DIPE) EPA 624 0.25 5.0 1 01/29/08 01/29/08 tert-Butanol (TBA) 8A29020 4.9 25 ND 1 01/29/08 01/29/08 EPA 624 Surrogate: Dibromofluoromethane (80-120%) 102 % Surrogate: Toluene-d8 (80-120%) 105 % Surrogate: 4-Bromofluorobenzene (80-120%) 96 % Sample ID: IRA2355-02 (TRIP BLANK - Water) **Reporting Units: ug/l** 1,2-Dibromoethane (EDB) EPA 624 8A29020 0.40 2.0 ND 01/29/08 01/29/08 1 Methyl-tert-butyl Ether (MTBE) EPA 624 8A29020 0.32 5.0 ND 1 01/29/08 01/29/08 1,2,3-Trichloropropane EPA 624 8A29020 0.40 10 ND 1 01/29/08 01/29/08 8A29020 5.0 ND 01/29/08 01/29/08 Di-isopropyl Ether (DIPE) EPA 624 0.25 1 8A29020 ND 01/29/08 tert-Butanol (TBA) EPA 624 4.9 25 1 01/29/08 Surrogate: Dibromofluoromethane (80-120%) 102 % 105 % Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120%) 97%

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2355-01 (OUTFALL 013 -	Water)								
Reporting Units: ug/l									
Naphthalene	EPA 625	8A25091	2.9	9.6	ND	0.957	01/25/08	01/29/08	
N-Nitrosodimethylamine	EPA 625	8A25091	2.4	19	ND	0.957	01/25/08	01/29/08	
Surrogate: 2-Fluorophenol (30-120%)					69 %				
Surrogate: Phenol-d6 (35-120%)					79 %				
Surrogate: 2,4,6-Tribromophenol (40-120%)					68 %				
Surrogate: Nitrobenzene-d5 (45-120%)					72 %				
Surrogate: 2-Fluorobiphenyl (50-120%)					78 %				
Surrogate: Terphenyl-d14 (50-125%)					94 %				

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

METALS											
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: IRA2355-01 (OUTFALL 013	3 - Water) - cont.										
Reporting Units: mg/l Boron	EPA 200.7	8A29093	0.020	0.050	0.038	1	01/29/08	01/29/08	J		
Sample ID: IRA2355-01 (OUTFALL 013	3 - Water)										
Reporting Units: ug/l	,										
Cadmium	EPA 200.8	8A25068	0.11	1.0	2.1	1	01/25/08	01/25/08			
Copper	EPA 200.8	8A25068	0.75	2.0	3.0	1	01/25/08	01/25/08			
Lead	EPA 200.8	8A25068	0.30	1.0	1.6	1	01/25/08	01/25/08			
Selenium	EPA 200.8	8A25068	0.30	2.0	ND	1	01/25/08	01/25/08			
Zinc	EPA 200.8	8A25068	2.5	20	55	1	01/25/08	01/25/08			

Project ID: Routine Outfall 013

TestAmerica Irvine

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Arcadia, CA 91007

618 Michillinda Avenue, Suite 200

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 013

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

DISSOLVED METALS MDL Reporting Sample Dilution Date Date Data Analyte Method Batch Limit Result Factor Extracted Analyzed Qualifiers Limit Sample ID: IRA2355-01 (OUTFALL 013 - Water) - cont. Reporting Units: mg/l 0.050 ND EPA 200.7-Diss 8A24168 0.020 1 01/24/08 01/25/08 Boron Sample ID: IRA2355-01 (OUTFALL 013 - Water) Reporting Units: ug/l EPA 200.8-Diss 8A24169 0.11 1.0 1.7 01/24/08 01/24/08 Cadmium 1 Copper EPA 200.8-Diss 8A24169 0.75 2.0 2.0 1 01/24/08 01/24/08 0.30 ND 01/24/08 Lead EPA 200.8-Diss 8A24169 1.0 1 01/24/08 Selenium EPA 200.8-Diss 8A24169 0.30 2.0 ND 1 01/24/08 01/24/08 Zinc EPA 200.8-Diss 8A24169 2.5 20 44 1 01/24/08 01/25/08

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 013

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

INORGANICS											
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: IRA2355-01 (OUTFALL 013 -	Water) - cont.										
Reporting Units: mg/l											
Hexane Extractable Material (Oil &	EPA 1664A	8A31085	1.3	4.8	ND	1	01/31/08	01/31/08			
Grease)		0 + 0 0 4 4 0					o. 1 / o o / o o	01 100 100			
Ammonia-N (Distilled)	EPA 350.2	8A29110	0.30	0.50	ND	1	01/29/08	01/29/08			
Biochemical Oxygen Demand	EPA 405.1	8A24141	0.59	2.0	2.0	1	01/24/08	01/29/08			
Chloride	EPA 300.0	8A24034	5.0	10	62	20	01/24/08	01/24/08			
Fluoride	EPA 340.2	8A28117	0.014	0.10	0.30	1	01/28/08	01/28/08			
Nitrate-N	EPA 300.0	8A24034	0.060	0.11	0.74	1	01/24/08	01/24/08			
Nitrite-N	EPA 300.0	8A24034	0.090	0.15	ND	1	01/24/08	01/24/08			
Nitrate/Nitrite-N	EPA 300.0	8A24034	0.15	0.26	0.74	1	01/24/08	01/24/08			
Sulfate	EPA 300.0	8A24034	0.20	0.50	13	1	01/24/08	01/24/08			
Total Dissolved Solids	SM2540C	8A25141	10	10	200	1	01/25/08	01/25/08			
Total Suspended Solids	EPA 160.2	8A25132	10	10	ND	1	01/25/08	01/25/08			
Sample ID: IRA2355-01 (OUTFALL 013 - Reporting Units: ml/l/hr	Water)										
Total Settleable Solids	EPA 160.5	8A25084	0.10	0.10	ND	1	01/25/08	01/25/08			
Sample ID: IRA2355-01 (OUTFALL 013 - Reporting Units: NTU	·Water)										
Turbidity	EPA 180.1	8A25085	0.040	1.0	5.5	1	01/25/08	01/25/08			
Sample ID: IRA2355-01 (OUTFALL 013 - Reporting Units: ug/l	Water)										
Perchlorate	EPA 314.0	8A28071	1.5	4.0	ND	1	01/28/08	01/28/08			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

Metals by EPA 200 Series Methods												
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers			
Sample ID: IRA2355-01 (OUTFALL 013 -	- Water) - cont.											
Reporting Units: ug/l												
Mercury, Dissolved	EPA 245.1	W8A1076	0.050	0.20	ND	1	01/30/08	01/31/08				
Mercury, Total	EPA 245.1	W8A1076	0.050	0.20	ND	1	01/30/08	01/31/08				

TestAmerica Irvine

Joseph Doak Project Manager

IRA2355 <Page 10 of 29> NPDES - 3343

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

SHORT HOLD TIME DETAIL REPORT

Sample ID: OUTFALL 013 (IRA2355-01) -	Hold Time (in days) Water	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
EPA 160.5	2	01/24/2008 11:00	01/24/2008 18:15	01/25/2008 12:45	01/25/2008 12:45
EPA 180.1	2	01/24/2008 11:00	01/24/2008 18:15	01/25/2008 17:15	01/25/2008 17:15
EPA 300.0	2	01/24/2008 11:00	01/24/2008 18:15	01/24/2008 19:00	01/24/2008 20:40
EPA 405.1	2	01/24/2008 11:00	01/24/2008 18:15	01/24/2008 20:35	01/29/2008 08:30

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

METHOD BLANK/QC DATA

EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A27019 Extracted: 01/27/08	-										
Blank Analyzed: 01/28/2008-01/29/2008 (8A27019-BLK	(1)									
EFH (C13 - C22)	ND	0.50	0.10	mg/l							
Surrogate: n-Octacosane	0.251			mg/l	0.400		63	40-125			A-01
LCS Analyzed: 01/28/2008 (8A27019-BS	1)										MNR1
EFH (C13 - C40)	0.647	0.50	0.10	mg/l	0.750		86	40-115			
Surrogate: n-Octacosane	0.182			mg/l	0.200		91	40-125			
LCS Dup Analyzed: 01/28/2008 (8A2701	9-BSD1)										
EFH (C13 - C40)	0.602	0.50	0.10	mg/l	0.750		80	40-115	7	25	
Surrogate: n-Octacosane	0.179			mg/l	0.200		89	40-125			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

METHOD BLANK/QC DATA

VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result		%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A30041 Extracted: 01/30/08	<u>.</u>										
Blank Analyzed: 01/30/2008 (8A30041-B	LK1)										
GRO (C4 - C12)	ND	100	25	ug/l							
Surrogate: 4-BFB (FID)	9.78			ug/l	10.0		98	65-140			
LCS Analyzed: 01/30/2008 (8A30041-BS	1)										
GRO (C4 - C12)	823	100	25	ug/l	800		103	80-120			
Surrogate: 4-BFB (FID)	16.2			ug/l	10.0		162	65-140			ZX
Matrix Spike Analyzed: 01/30/2008 (8A3	0041-MS1)				Sou	rce: IRA2	2348-31				
GRO (C4 - C12)	228	100	25	ug/l	220	ND	104	65-140			
Surrogate: 4-BFB (FID)	12.8			ug/l	10.0		128	65-140			
Matrix Spike Dup Analyzed: 01/30/2008	(8A30041-M	ISD1)			Sou	rce: IRA2	2348-31				
GRO (C4 - C12)	232	100	25	ug/l	220	ND	105	65-140	2	20	
Surrogate: 4-BFB (FID)	12.5			ug/l	10.0		125	65-140			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GCMS SIM

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A25014 Extracted: 01/25/08	_										
Blank Analyzed: 01/25/2008 (8A25014-B	LK1)										
1,4-Dioxane	ND	2.0	1.0	ug/l							
Surrogate: Dibromofluoromethane	0.990			ug/l	1.00		99	80-120			
LCS Analyzed: 01/25/2008 (8A25014-BS	1)										
1,4-Dioxane	8.94	2.0	1.0	ug/l	10.0		89	70-125			
Surrogate: Dibromofluoromethane	1.00			ug/l	1.00		100	80-120			
Matrix Spike Analyzed: 01/25/2008 (8A2	5014-MS1)				Sou	rce: IRA2	2088-01				
1,4-Dioxane	10.9	2.0	1.0	ug/l	10.0	2.03	89	70-130			
Surrogate: Dibromofluoromethane	1.02			ug/l	1.00		102	80-120			
Matrix Spike Dup Analyzed: 01/25/2008	(8A25014-M	SD1)			Sou	rce: IRA2	2088-01				
1,4-Dioxane	10.8	2.0	1.0	ug/l	10.0	2.03	88	70-130	1	30	
Surrogate: Dibromofluoromethane	1.00			ug/l	1.00		100	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8A29020 Extracted: 01/29/08	}										
	<u> </u>										
Blank Analyzed: 01/29/2008 (8A29020-B	LK1)										
1,2-Dibromoethane (EDB)	ND	2.0	0.40	ug/l							
Methyl-tert-butyl Ether (MTBE)	ND	5.0	0.32	ug/l							
1,2,3-Trichloropropane	ND	10	0.40	ug/l							
Di-isopropyl Ether (DIPE)	ND	5.0	0.25	ug/l							
tert-Butanol (TBA)	ND	25	4.9	ug/l							
Surrogate: Dibromofluoromethane	25.7			ug/l	25.0		103	80-120			
Surrogate: Toluene-d8	26.6			ug/l	25.0		106	80-120			
Surrogate: 4-Bromofluorobenzene	23.9			ug/l	25.0		95	80-120			
LCS Analyzed: 01/29/2008 (8A29020-BS	1)										
1,2-Dibromoethane (EDB)	25.9	2.0	0.40	ug/l	25.0		104	75-125			
Methyl-tert-butyl Ether (MTBE)	25.2	5.0	0.32	ug/l	25.0		101	60-135			
1,2,3-Trichloropropane	30.8	10	0.40	ug/l	25.0		123	60-130			
Di-isopropyl Ether (DIPE)	26.6	5.0	0.25	ug/l	25.0		107	60-135			
tert-Butanol (TBA)	158	25	4.9	ug/l	125		126	70-135			
Surrogate: Dibromofluoromethane	26.1			ug/l	25.0		104	80-120			
Surrogate: Toluene-d8	26.8			ug/l	25.0		107	80-120			
Surrogate: 4-Bromofluorobenzene	25.6			ug/l	25.0		103	80-120			
Matrix Spike Analyzed: 01/29/2008 (8A2	9020-MS1)				Sou	rce: IRA	2355-01				
1,2-Dibromoethane (EDB)	26.6	2.0	0.40	ug/l	25.0	ND	107	70-130			
Methyl-tert-butyl Ether (MTBE)	25.8	5.0	0.32	ug/l	25.0	ND	103	55-145			
1,2,3-Trichloropropane	33.0	10	0.40	ug/l	25.0	ND	132	55-135			
Di-isopropyl Ether (DIPE)	27.3	5.0	0.25	ug/l	25.0	ND	109	60-140			
tert-Butanol (TBA)	161	25	4.9	ug/l	125	ND	129	65-140			
Surrogate: Dibromofluoromethane	26.3			ug/l	25.0		105	80-120			
Surrogate: Toluene-d8	26.6			ug/l	25.0		107	80-120			
Surrogate: 4-Bromofluorobenzene	25.5			ug/l	25.0		102	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8A29020 Extracted: 01/29/08	_										
Matrix Spike Dup Analyzed: 01/29/2008	(8 A 20020 M	SD1)			Sou	rce: IRA	0355 01				
Wattix Spike Dup Analyzeu. 01/29/2008	(0A29020-IVI)	501)			50u	ILC. IKA	2333-01				
1,2-Dibromoethane (EDB)	26.3	2.0	0.40	ug/l	25.0	ND	105	70-130	1	25	
Methyl-tert-butyl Ether (MTBE)	25.8	5.0	0.32	ug/l	25.0	ND	103	55-145	0	25	
1,2,3-Trichloropropane	32.0	10	0.40	ug/l	25.0	ND	128	55-135	3	30	
Di-isopropyl Ether (DIPE)	26.9	5.0	0.25	ug/l	25.0	ND	108	60-140	2	25	
tert-Butanol (TBA)	161	25	4.9	ug/l	125	ND	129	65-140	1	25	
Surrogate: Dibromofluoromethane	26.1			ug/l	25.0		104	80-120			
Surrogate: Toluene-d8	26.9			ug/l	25.0		107	80-120			
Surrogate: 4-Bromofluorobenzene	25.4			ug/l	25.0		102	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result		%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A25091 Extracted: 01/25/08	<u>}_</u>										
Blank Analyzed: 01/28/2008 (8A25091-B	LK1)										
Naphthalene	ND	10	3.0	ug/l							
N-Nitrosodimethylamine	ND	20	2.5	ug/l							
Surrogate: 2-Fluorophenol	133			ug/l	200		66	30-120			
Surrogate: Phenol-d6	149			ug/l	200		74	35-120			
Surrogate: 2,4,6-Tribromophenol	128			ug/l	200		64	40-120			
Surrogate: Nitrobenzene-d5	72.2			ug/l	100		72	45-120			
Surrogate: 2-Fluorobiphenyl	71.2			ug/l	100		71	50-120			
Surrogate: Terphenyl-d14	84.3			ug/l	100		84	50-125			
LCS Analyzed: 01/28/2008 (8A25091-BS	1)										MNR1
Naphthalene	73.5	10	3.0	ug/l	100		74	55-120			
N-Nitrosodimethylamine	72.7	20	2.5	ug/l	100		73	45-120			
Surrogate: 2-Fluorophenol	124			ug/l	200		62	30-120			
Surrogate: Phenol-d6	134			ug/l	200		67	35-120			
Surrogate: 2,4,6-Tribromophenol	153			ug/l	200		76	40-120			
Surrogate: Nitrobenzene-d5	72.3			ug/l	100		72	45-120			
Surrogate: 2-Fluorobiphenyl	76.5			ug/l	100		76	50-120			
Surrogate: Terphenyl-d14	94.5			ug/l	100		95	50-125			
LCS Dup Analyzed: 01/28/2008 (8A2509	1-BSD1)										
Naphthalene	73.1	10	3.0	ug/l	100		73	55-120	1	20	
N-Nitrosodimethylamine	72.0	20	2.5	ug/l	100		72	45-120	1	20	
Surrogate: 2-Fluorophenol	117			ug/l	200		58	30-120			
Surrogate: Phenol-d6	125			ug/l	200		62	35-120			
Surrogate: 2,4,6-Tribromophenol	145			ug/l	200		72	40-120			
Surrogate: Nitrobenzene-d5	72.7			ug/l	100		73	45-120			
Surrogate: 2-Fluorobiphenyl	73.9			ug/l	100		74	50-120			
Surrogate: Terphenyl-d14	93.7			ug/l	100		94	50-125			

TestAmerica Irvine

Joseph Doak Project Manager

IRA2355 <Page 17 of 29> NPDES - 3350

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Arcadia, CA 91007

618 Michillinda Avenue, Suite 200

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 013

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A25068 Extracted: 01/25/08											-
Datent of 120000 Distructed of 120.00											
Blank Analyzed: 01/25/2008 (8A25068-E	BLK1)										
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Selenium	ND	2.0	0.30	ug/l							
Zinc	ND	20	2.5	ug/l							
LCS Analyzed: 01/25/2008 (8A25068-BS	51)										
Cadmium	84.8	1.0	0.11	ug/l	80.0		106	85-115			
Copper	86.4	2.0	0.75	ug/l	80.0		108	85-115			
Lead	85.0	1.0	0.30	ug/l	80.0		106	85-115			
Selenium	84.3	2.0	0.30	ug/l	80.0		105	85-115			
Zinc	87.3	20	2.5	ug/l	80.0		109	85-115			
Matrix Spike Analyzed: 01/25/2008 (8A)	25068-MS1)				Sou	rce: IRA	2276-02				
Cadmium	82.0	1.0	0.11	ug/l	80.0	ND	102	70-130			
Copper	83.4	2.0	0.75	ug/l	80.0	ND	104	70-130			
Lead	81.0	1.0	0.30	ug/l	80.0	ND	101	70-130			
Selenium	79.8	2.0	0.30	ug/l	80.0	0.966	99	70-130			
Zinc	83.2	20	2.5	ug/l	80.0	ND	104	70-130			
Matrix Spike Analyzed: 01/25/2008 (8A	25068-MS2)				Sou	rce: IRA	2349-01				
Cadmium	82.9	1.0	0.11	ug/l	80.0	0.119	104	70-130			
Copper	86.6	2.0	0.75	ug/l	80.0	1.92	106	70-130			
Lead	77.5	1.0	0.30	ug/l	80.0	1.14	95	70-130			
Selenium	77.9	2.0	0.30	ug/l	80.0	ND	97	70-130			
Zinc	84.9	20	2.5	ug/l	80.0	5.99	99	70-130			
Matrix Spike Dup Analyzed: 01/25/2008	8 (8A25068-N	(ISD1)			Sou	rce: IRA	2276-02				
Cadmium	82.6	1.0	0.11	ug/l	80.0	ND	103	70-130	1	20	
Copper	83.7	2.0	0.75	ug/l	80.0	ND	105	70-130	0	20	
Lead	81.7	1.0	0.30	ug/l	80.0	ND	102	70-130	1	20	
Selenium	81.9	2.0	0.30	ug/l	80.0	0.966	101	70-130	3	20	
Zinc	83.6	20	2.5	ug/l	80.0	ND	105	70-130	0	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result		%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A29093 Extracted: 01/29/08	<u>.</u>										
Blank Analyzed: 01/29/2008 (8A29093-B	LK1)										
Boron	ND	0.050	0.020	mg/l							
LCS Analyzed: 01/29/2008 (8A29093-BS	1)										
Boron	0.505	0.050	0.020	mg/l	0.500		101	85-115			
Matrix Spike Analyzed: 01/29/2008 (8A2	9093-MS1)				Sou	rce: IRA	2687-01				
Boron	0.513	0.050	0.020	mg/l	0.500	0.0431	94	70-130			
Matrix Spike Dup Analyzed: 01/29/2008	(8A29093-MS	D1)			Sou	rce: IRA	2687-01				
Boron	0.539	0.050	0.020	mg/l	0.500	0.0431	99	70-130	5	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A24168 Extracted: 01/24/08	<u>.</u>										
Blank Analyzed: 01/25/2008 (8A24168-B	LK1)										
Boron	ND	0.050	0.020	mg/l							
LCS Analyzed: 01/25/2008 (8A24168-BS	1)										
Boron	0.950	0.050	0.020	mg/l	1.00		95	85-115			
Matrix Spike Analyzed: 01/25/2008 (8A2	4168-MS1)				Sou	rce: IRA	2355-01				
Boron	0.965	0.050	0.020	mg/l	1.00	ND	96	70-130			
Matrix Spike Dup Analyzed: 01/25/2008	(8A24168-MS	SD1)			Sou	rce: IRA	2355-01				
Boron	0.984	0.050	0.020	mg/l	1.00	ND	98	70-130	2	20	
Batch: 8A24169 Extracted: 01/24/08	<u>.</u>										
Blank Analyzed: 01/24/2008 (8A24169-B	LK1)										
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Selenium	ND	2.0	0.30	ug/l							
Zinc	ND	20	2.5	ug/l							
LCS Analyzed: 01/24/2008-01/25/2008 (8	A24169-BS1)										
Cadmium	80.4	1.0	0.11	ug/l	80.0		100	85-115			
Copper	84.6	2.0	0.75	ug/l	80.0		106	85-115			
Lead	78.0	1.0	0.30	ug/l	80.0		97	85-115			
Selenium	83.0	2.0	0.30	ug/l	80.0		104	85-115			
Zinc	79.0	20	2.5	ug/l	80.0		99	85-115			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8A24169 Extracted: 01/24/08	3										
Matrix Spike Analyzed: 01/24/2008 (8A2	24169-MS1)				Sou	rce: IRA	2349-01				
Cadmium	77.3	1.0	0.11	ug/l	80.0	ND	97	70-130			
Copper	78.7	2.0	0.75	ug/l	80.0	ND	98	70-130			
Lead	75.7	1.0	0.30	ug/l	80.0	ND	95	70-130			
Selenium	99.7	2.0	0.30	ug/l	80.0	0.328	124	70-130			
Zinc	89.1	20	2.5	ug/l	80.0	ND	111	70-130			
Matrix Spike Dup Analyzed: 01/24/2008	(8A24169-M	ISD1)			Sou	rce: IRA	2349-01				
Cadmium	78.7	1.0	0.11	ug/l	80.0	ND	98	70-130	2	20	
Copper	79.3	2.0	0.75	ug/l	80.0	ND	99	70-130	1	20	
Lead	73.7	1.0	0.30	ug/l	80.0	ND	92	70-130	3	20	
Selenium	101	2.0	0.30	ug/l	80.0	0.328	125	70-130	1	20	
Zinc	89.4	20	2.5	ug/l	80.0	ND	112	70-130	0	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A24034 Extracted: 01/24/08	_										
Blank Analyzed: 01/24/2008 (8A24034-B	· ·										
Chloride	ND	0.50	0.25	mg/l							
Nitrate-N	ND	0.11	0.060	mg/l							
Nitrite-N	ND	0.15	0.090	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Sulfate	ND	0.50	0.20	mg/l							
LCS Analyzed: 01/24/2008 (8A24034-BS	1)										
Chloride	4.86	0.50	0.25	mg/l	5.00		97	90-110			<i>M-3</i>
Nitrate-N	1.04	0.11	0.060	mg/l	1.13		92	90-110			
Nitrite-N	1.41	0.15	0.090	mg/l	1.52		93	90-110			
Sulfate	9.69	0.50	0.20	mg/l	10.0		97	90-110			
Matrix Spike Analyzed: 01/24/2008 (8A2	4034-MS1)				Sou	rce: IRA	2329-01				
Nitrate-N	6.56	0.22	0.12	mg/l	1.13	5.27	115	80-120			
Nitrite-N	3.64	0.30	0.18	mg/l	1.52	ND	239	80-120			<i>M1</i>
Sulfate	107	1.0	0.40	mg/l	10.0	97.2	98	80-120			
Matrix Spike Analyzed: 01/25/2008 (8A2	4034-MS2)				Sou	rce: IRA	2354-09				
Nitrate-N	1.06	0.11	0.060	mg/l	1.13	ND	94	80-120			
Nitrite-N	2.36	0.15	0.090	mg/l	1.52	ND	155	80-120			M1
Sulfate	16.9	0.50	0.20	mg/l	10.0	6.59	103	80-120			1011
Matrix Spiles Dup Analyzade 01/24/2009	(0 A 7 403 A M	(CD1)			Sau	waat ID A	2220 01				
Matrix Spike Dup Analyzed: 01/24/2008			0.12	7		rce: IRA		00.100	11	20	
Nitrate-N	5.89	0.22	0.12	mg/l	1.13	5.27	56	80-120	11	20	MHA
Nitrite-N	3.06	0.30	0.18	mg/l	1.52	ND	201	80-120	17	20	M1
Sulfate	106	1.0	0.40	mg/l	10.0	97.2	84	80-120	1	20	

TestAmerica Irvine

Joseph Doak Project Manager

IRA2355 <Page 22 of 29> NPDES - 3355

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 013

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A24141 Extracted: 01/24/08	<u>}</u>										
Blank Analyzed: 01/29/2008 (8A24141-B Biochemical Oxygen Demand	LK1) ND	2.0	0.59	mg/l							
LCS Analyzed: 01/29/2008 (8A24141-BS Biochemical Oxygen Demand	1) 193	100	30	mg/l	198		97	85-115			
LCS Dup Analyzed: 01/29/2008 (8A2414 Biochemical Oxygen Demand	1-BSD1) 198	100	30	mg/l	198		100	85-115	2	20	
Batch: 8A25085 Extracted: 01/25/08	<u>-</u>										
Blank Analyzed: 01/25/2008 (8A25085-B Turbidity	LK1) 0.0900	1.0	0.040	NTU							J
Duplicate Analyzed: 01/25/2008 (8A2508 Turbidity	5-DUP1) 3.00	1.0	0.040	NTU	Sou	arce: IRA 3.28	2353-01		9	20	
Batch: 8A25132 Extracted: 01/25/08			0.010			5.20			,	20	
Blank Analyzed: 01/25/2008 (8A25132-B	LK1)										
Total Suspended Solids	ND	10	10	mg/l							
LCS Analyzed: 01/25/2008 (8A25132-BS Total Suspended Solids	1) 967	10	10	mg/l	1000		97	85-115			
Duplicate Analyzed: 01/25/2008 (8A2513 Total Suspended Solids	2-DUP1) 12.0	10	10	mg/l	Sou	11.0	2326-01		9	10	

TestAmerica Irvine

Arcadia, CA 91007

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 013

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A25141 Extracted: 01/25/08	_										
Blank Analyzed: 01/25/2008 (8A25141-B	LK1)										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 01/25/2008 (8A25141-BS	1)										
Total Dissolved Solids	1000	10	10	mg/l	1000		100	90-110			
Duplicate Analyzed: 01/25/2008 (8A2514	1-DUP1)				Sou	rce: IRA	2124-05				
Total Dissolved Solids	1920	10	10	mg/l		1920			0	10	
Batch: 8A28071 Extracted: 01/28/08	_										
Blank Analyzed: 01/28/2008 (8A28071-B	LK1)										
Perchlorate	ND	4.0	1.5	ug/l							
LCS Analyzed: 01/28/2008 (8A28071-BS	1)										
Perchlorate	54.0	4.0	1.5	ug/l	50.0		108	85-115			
Matrix Spike Analyzed: 01/28/2008 (8A2	8071-MS1)				Sou	rce: IRA	2506-01				
Perchlorate	55.4	4.0	1.5	ug/l	50.0	ND	111	80-120			
Matrix Spike Dup Analyzed: 01/28/2008	(8A28071-M	(SD1)			Sou	rce: IRA	2506-01				
Perchlorate	55.2	4.0	1.5	ug/l	50.0	ND	110	80-120	0	20	
Batch: 8A28117 Extracted: 01/28/08	_										
Blank Analyzed: 01/28/2008 (8A28117-B	LK1)										
Fluoride	0.0329	0.10	0.014	mg/l							J

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A28117 Extracted: 01/28/08	_										
LCS Analyzed: 01/28/2008 (8A28117-BS)	D										
Fluoride	1.07	0.10	0.014	mg/l	1.00		107	90-110			
Matrix Spike Analyzed: 01/28/2008 (8A2	8117-MS1)				Sou	rce: IRA	2355-01				
Fluoride	2.31	0.10	0.014	mg/l	2.00	0.299	100	80-120			
Matrix Spike Dup Analyzed: 01/28/2008	(8A28117-MS	SD1)			Sou	rce: IRA	2355-01				
Fluoride	2.41	0.10	0.014	mg/l	2.00	0.299	106	80-120	5	20	
Batch: 8A29110 Extracted: 01/29/08	-										
Blank Analyzed: 01/29/2008 (8A29110-B	LK1)										
Ammonia-N (Distilled)	ND	0.50	0.30	mg/l							
LCS Analyzed: 01/29/2008 (8A29110-BS)	1)										
Ammonia-N (Distilled)	10.1	0.50	0.30	mg/l	10.0		101	80-115			
Matrix Spike Analyzed: 01/29/2008 (8A2	9110-MS1)				Sou	rce: IRA	2355-01				
Ammonia-N (Distilled)	10.4	0.50	0.30	mg/l	10.0	ND	104	70-120			
Matrix Spike Dup Analyzed: 01/29/2008	(8A29110-MS	SD1)			Sou	rce: IRA	2355-01				
Ammonia-N (Distilled)	10.6	0.50	0.30	mg/l	10.0	ND	106	70-120	3	15	
Batch: 8A31085 Extracted: 01/31/08	-										
Blank Analyzed: 01/31/2008 (8A31085-B	LK1)										
Hexane Extractable Material (Oil & Grease)	ND	5.0	1.4	mg/l							

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

METHOD BLANK/QC DATA

INORGANICS

Analyte <u>Batch: 8A31085 Extracted: 01/31/0</u>	Result <u>8</u>	Reporting Limit	MDL	Units	Spike Level	Source Result		%REC Limits	RPD	RPD Limit	Data Qualifiers
LCS Analyzed: 01/31/2008 (8A31085-B Hexane Extractable Material (Oil & Grease)	51) 19.8	5.0	1.4	mg/l	20.2		98	78-114			MNR1
LCS Dup Analyzed: 01/31/2008 (8A310 Hexane Extractable Material (Oil & Grease)	85-BSD1) 19.4	5.0	1.4	mg/l	20.2		96	78-114	2	11	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

METHOD BLANK/QC DATA

Metals by EPA 200 Series Methods

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: W8A1076 Extracted: 01/30/0)8										
Blank Analyzed: 01/31/2008 (W8A1076-	BLK1)										
Mercury, Dissolved	ND	0.20	0.050	ug/l							
Mercury, Total	ND	0.20	0.050	ug/l							
LCS Analyzed: 01/31/2008 (W8A1076-B	S1)										
Mercury, Dissolved	0.913	0.20	0.050	ug/l	1.00		91	85-115			
Mercury, Total	0.913	0.20	0.050	ug/l	1.00		91	85-115			
Matrix Spike Analyzed: 01/31/2008 (W8	A1076-MS1)				Sou	rce: 8012	935-01				
Mercury, Dissolved	0.971	0.20	0.050	ug/l	1.00	0.0450	93	70-130			
Mercury, Total	0.971	0.20	0.050	ug/l	1.00	0.0450	93	70-130			
Matrix Spike Analyzed: 01/31/2008 (W8	A1076-MS2)				Sou	rce: 8012	939-01				
Mercury, Dissolved	2.01	0.20	0.050	ug/l	1.00	1.18	83	70-130			
Mercury, Total	2.01	0.20	0.050	ug/l	1.00	1.18	83	70-130			
Matrix Spike Dup Analyzed: 01/31/2008	(W8A1076-M	SD1)			Sou	rce: 8012	935-01				
Mercury, Dissolved	0.957	0.20	0.050	ug/l	1.00	0.0450	91	70-130	1	20	
Mercury, Total	0.957	0.20	0.050	ug/l	1.00	0.0450	91	70-130	1	20	
Matrix Spike Dup Analyzed: 01/31/2008	(W8A1076-M	SD2)			Sou	rce: 8012	939-01				
Mercury, Dissolved	1.99	0.20	0.050	ug/l	1.00	1.18	81	70-130	1	20	
Mercury, Total	1.99	0.20	0.050	ug/l	1.00	1.18	81	70-130	1	20	

TestAmerica Irvine

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

DATA QUALIFIERS AND DEFINITIONS

A-01	Surrogate was double-spiked. Analyte reported from a second run at a 2x dilution.
J	Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
M1	The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
M-3	Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).
MHA	Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information. See Blank Spike (LCS).
MNR1	There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
ZX	Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.
ND	Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD	Relative Percent Difference

ADDITIONAL COMMENTS

For GRO (C4-C12):

GRO (C4-C12) is quantitated against a gasoline standard. Quantitation begins immediately following the methanol peak.

For Extractable Fuel Hydrocarbons (EFH, DRO, ORO) :

Unless otherwise noted, Extractable Fuel Hydrocarbons (EFH, DRO, ORO) are quantitated against a Diesel Fuel Standard.

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 013

Report Number: IRA2355

Sampled: 01/24/08 Received: 01/24/08

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EPA 160.2	Water	Х	Х
EPA 160.5	Water	Х	Х
EPA 1664A	Water		
EPA 180.1	Water	Х	Х
EPA 200.7-Diss	Water	Х	Х
EPA 200.7	Water	Х	Х
EPA 200.8-Diss	Water	Х	Х
EPA 200.8	Water	Х	Х
EPA 300.0	Water	Х	Х
EPA 314.0	Water	Х	Х
EPA 340.2	Water	Х	Х
EPA 350.2	Water		Х
EPA 405.1	Water	Х	Х
EPA 624	Water	Х	Х
EPA 625	Water	Х	Х
EPA 8015 Mod.	Water	Х	Х
EPA 8015B	Water	Х	Х
EPA 8260B-SIM	Water		
SM2540C	Water	Х	

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Vista Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413 1104 Windfield Way - El Dorado Hills, CA 95762 Analysis Performed: 1613-Dioxin-HR-Alta Samples: IRA2355-01

Weck Laboratories, Inc

14859 E. Clark Avenue - City of Industry, CA 91745 Method Performed: EPA 245.1 Samples: IRA2355-01

TestAmerica Irvine

Client Name/Address:	Iress:			Project:							ANALY	ALYSIS	Щ.	IRED	QUIRED
MVH-Arcadia 618 Michillinda Avenue. Suite 200 Arcadia. CA 91007	a enue. Suite 7	200	m n m e n m	eing-SSI utine OI No Test	Boeing-SSFL NPDES Routine Outfall 013 Bravo Test Stand	L		+ 				e 	-'N- ² (•	Field readings
Test America Contact: Joseph Doak	tact: Joseph	i Doak					-799	ləuì				(S.C		- N-	
Project Marrager: Bronwyn Kelly	Bronwyn	ı Kelly		Phone Number (626) 568-6691	nber: 3691		9t) əsi	sel/jet	Ptal Re Hydro	928) er	nthalen degre	956) N	^e ON (- Oitrite	pH = X.I Time of readinos = //'20
Sampler: MAL, BALTOSO,	MARISCAL, J.		Fa)	Fax Number: (626) 568-6515	er: 3515			seg - č	unəjo ∑= H		1q6 /)	ysis) (sisy (you			
	le Container x Type	er # of Cont.		Sampling Date/Time	Preservative	Bottle #			ЧЯТ		929		CI,		Comments
1	7	1		+	HCI	1A	×								
Outfall 013 W	1L Amber	r 1			HCI	18	×								
Outfail 013 W	VOAs	-			HCI	2A		×							
Outfall 013 W	VOAs	~			HCI	2B, 2C		×							
Outfall 013 W	1L Amber	-			None	3A		×							
Outfall 013 W	1L Amber	- -			None	3B		×							
Outfall 013 W	1L Amber	-			HCI	4A			×						
Outfall 013 W	1L Amber	۲ ۱			НСІ	4B			×						
Outfall 013 W	VOAs				HCI	5A				×					
Outfall 013 W Dup	VOAs	2			HCI	5B, 5C				×					
Outfall 013 W	1L Poly	-			None	9					×				
Outfall 013 W	1L Amber	sr 1			None	٦A					×				
Outfall 013 W Dup	1L Amber	er 1			None	7B					×				
Outfall 013 W	500 ml Poly				H₂S0₄	ω						×			
Outfall 013 W	500 ml Poly	5			None	9A, 9B							×		t t
Outfall 013 W	500 ml Polv	-		1-24-08 11:48	None	10								×	1/2nd
Relinquished By		-	Date/Time:	Time:	Received By	0		Dat	Date/Time:					Turn	around/Time: (check)
1 Com	1	Ľ	30-12-1	222	J.	Jo .	N N	1 2 2	~	Ce/h C	^	ふく	11	24 H	24 Hours 5 Days
Relinquished By			Date/Time:		Received By	$\left \right $		Dat	Date/Time:			(48 H	48 Hours 10 Days
filou	NEL-	Ľ,	Poland,	N. N.	X			11	1124103	5	1 & 1	Si		72 H	72 Hours Normal X
Kennquished By			Date/Time:	Time:	Received By			Dat	Date/Time:					Sam	Sample Integrity: (check)

1. 415 . O

7.015.0

February 08, 2008

Vista Project I.D.: 30204

Mr. Joseph Doak Test America-Irvine, CA 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Mr. Doak,

Enclosed are the results for the one aqueous sample received at Vista Analytical Laboratory on January 26, 2008 under your Project Name "IRA2355". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Vista's current certifications, and copies of the raw data (if requested).

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Marile Mare

Martha M. Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.

Section I: Sample Inventory Report Date Received: 1/26/2008

<u>Vista Lab. ID</u>

Client Sample ID

30204-001

IRA2355-01

SECTION II

Method Blanl	k							EPA Method 1613
Matrix:	Aqueous	QC Batch No.:	9917	Lab S	ample:	0-MB001		
Sample Size:	1.00 L	Date Extracted:	31-Jan-08	Date A	Analyzed DB-5:	6-Feb-08	Date An	alyzed DB-225: NA
Analyte	Conc. (ug/L)	DL ^a EMP	C ^b Qualifiers		Labeled Standa	rd	%R	LCL-UCL ^d Qualifiers
2,3,7,8-TCDD	ND	0.000000997		IS	13C-2,3,7,8-TCI	DD	93.4	25 - 164
1,2,3,7,8-PeCD	DD ND	0.000000625			13C-1,2,3,7,8-Pe	eCDD	84.1	25 - 181
1,2,3,4,7,8-HxC	CDD ND	0.00000147			13C-1,2,3,4,7,8-	HxCDD	92.1	32 - 141
1,2,3,6,7,8-HxC	CDD ND	0.00000149			13C-1,2,3,6,7,8-	HxCDD	91.6	28 - 130
1,2,3,7,8,9-HxC	CDD ND	0.00000142			13C-1,2,3,4,6,7,8	8-HpCDD	94.6	23 - 140
1,2,3,4,6,7,8-H	pCDD ND	0.00000144			13C-OCDD		78.5	17 - 157
OCDD	ND	0.00000845			13C-2,3,7,8-TCI	OF	92.5	24 - 169
2,3,7,8-TCDF	ND	0.00000679			13C-1,2,3,7,8-Pe	CDF	79.3	24 - 185
1,2,3,7,8-PeCD	OF ND	0.00000815			13C-2,3,4,7,8-Pe	CDF	77.4	21 - 178
2,3,4,7,8-PeCD	OF ND	0.00000838			13C-1,2,3,4,7,8-	HxCDF	93.1	26 - 152
1,2,3,4,7,8-HxC	CDF ND	0.00000635			13C-1,2,3,6,7,8-	HxCDF	88.7	26 - 123
1,2,3,6,7,8-HxC	CDF ND	0.00000689			13C-2,3,4,6,7,8-	HxCDF	87.8	28 - 136
2,3,4,6,7,8-HxC	CDF ND	0.000000752			13C-1,2,3,7,8,9-	HxCDF	97.5	29 - 147
1,2,3,7,8,9-HxC	CDF ND	0.000000910			13C-1,2,3,4,6,7,8	8-HpCDF	85.2	28 - 143
1,2,3,4,6,7,8-H	pCDF ND	0.00000116			13C-1,2,3,4,7,8,9	9-HpCDF	90.7	26 - 138
1,2,3,4,7,8,9-H	-	0.00000122			13C-OCDF		87.0	17 - 157
OCDF	ND	0.00000291		CRS	37Cl-2,3,7,8-TC	DD	94.5	35 - 197
Totals				Footn	notes			
Total TCDD	ND	0.000000997		a. Samp	ble specific estimated	detection limit.		
Total PeCDD	ND	0.00000191		_	nated maximum possil			
Total HxCDD	ND	0.00000146		c. Meth	od detection limit.			
Total HpCDD	ND	0.00000353		d. Lowe	er control limit - upper	r control limit.		
Total TCDF	ND	0.00000679						
Total PeCDF	ND	0.00000826						
Total HxCDF	ND	0.000000742						
Total HpCDF	ND	0.00000118						

Analyst: MAS

OPR Results					EP	A Method 1	1613
Matrix: Aqueous Sample Size: 1.00 L		QC Batch No.: Date Extracted:	9917 31-Jan-08	Lab Sample:0-OPR001Date Analyzed DB-5:6-Feb-08	Date Analy	zed DB-225:	NA
Analyte	Spike Conc. (Conc. (ng/mL)	OPR Limits	Labeled Standard	%R	LCL-UCL	Qualifier
2,3,7,8-TCDD	10.0	10.4	6.7 - 15.8	<u>IS</u> 13C-2,3,7,8-TCDD	91.2	25 - 164	
1,2,3,7,8-PeCDD	50.0	48.9	35 - 71	13C-1,2,3,7,8-PeCDD	83.6	25 - 181	
1,2,3,4,7,8-HxCDD	50.0	49.4	35 - 82	13C-1,2,3,4,7,8-HxCDD	89.8	32 - 141	
1,2,3,6,7,8-HxCDD	50.0	50.2	38 - 67	13C-1,2,3,6,7,8-HxCDD	86.1	28 - 130	
1,2,3,7,8,9-HxCDD	50.0	49.0	32 - 81	13C-1,2,3,4,6,7,8-HpCDD	88.4	23 - 140	
1,2,3,4,6,7,8-HpCDD	50.0	49.9	35 - 70	13C-OCDD	75.3	17 - 157	
OCDD	100	102	78 - 144	13C-2,3,7,8-TCDF	88.0	24 - 169	
2,3,7,8-TCDF	10.0	9.69	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	76.4	24 - 185	
1,2,3,7,8-PeCDF	50.0	50.2	40 - 67	13C-2,3,4,7,8-PeCDF	74.3	21 - 178	
2,3,4,7,8-PeCDF	50.0	52.2	34 - 80	13C-1,2,3,4,7,8-HxCDF	87.1	26 - 152	
1,2,3,4,7,8-HxCDF	50.0	49.9	36 - 67	13C-1,2,3,6,7,8-HxCDF	83.7	26 - 123	
1,2,3,6,7,8-HxCDF	50.0	50.4	42 - 65	13C-2,3,4,6,7,8-HxCDF	84.8	28 - 136	
2,3,4,6,7,8-HxCDF	50.0	50.8	35 - 78	13C-1,2,3,7,8,9-HxCDF	87.0	29 - 147	
1,2,3,7,8,9-HxCDF	50.0	50.0	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	80.8	28 - 143	
1,2,3,4,6,7,8-HpCDF	50.0	51.1	41 - 61	13C-1,2,3,4,7,8,9-HpCDF	87.0	26 - 138	
1,2,3,4,7,8,9-HpCDF	50.0	50.1	39 - 69	13C-OCDF	80.9	17 - 157	
OCDF	100	100	63 - 170	<u>CRS</u> 37Cl-2,3,7,8-TCDD	92.1	35 - 197	

Analyst: MAS

Approved By: Willia

William J. Luksemburg 08-Feb-2008 13:08

Sample ID: IRA2	355-01								EPA N	Aethod 1613
Client Data			Sample Data		Lab	oratory Data				
	America-Irvine, CA		Matrix:	Aqueous	Lab	Sample:	30204-001	Date Re	ceived:	26-Jan-08
Project: IRA2 Date Collected: 24-Ja			Sample Size:	1.00 L	QC	Batch No.:	9917	Date Ex	tracted:	31-Jan-08
Time Collected: 24-Ja	11-08				Date	Analyzed DB-5:	6-Feb-08	Date An	alyzed DB-225:	NA
Analyte (Conc. (ug/L)	DL ^a	EMPC ^b	Qualifiers		Labeled Standa	rd	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ND	0.000000	932		<u>IS</u>	13C-2,3,7,8-TCD	D	88.4	25 - 164	
1,2,3,7,8-PeCDD	ND	0.000001	19			13C-1,2,3,7,8-Pe	CDD	78.2	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.000002	55			13C-1,2,3,4,7,8-H	IxCDD	80.7	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.000002	60			13C-1,2,3,6,7,8-H	IxCDD	79.6	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.000002	47			13C-1,2,3,4,6,7,8	-HpCDD	81.3	23 - 140	
1,2,3,4,6,7,8-HpCDD	ND	0.000003	14			13C-OCDD		71.7	17 - 157	
OCDD	0.0000140			J		13C-2,3,7,8-TCD	F	88.3	24 - 169	
2,3,7,8-TCDF	ND	0.000001	32			13C-1,2,3,7,8-Pe	CDF	76.1	24 - 185	
1,2,3,7,8-PeCDF	ND	0.000001	44			13C-2,3,4,7,8-Pe	CDF	74.6	21 - 178	
2,3,4,7,8-PeCDF	ND	0.000001	49			13C-1,2,3,4,7,8-H	IxCDF	78.4	26 - 152	
1,2,3,4,7,8-HxCDF	ND	0.000001	56			13C-1,2,3,6,7,8-H	IxCDF	76.3	26 - 123	
1,2,3,6,7,8-HxCDF	ND	0.000001	06			13C-2,3,4,6,7,8-H	IxCDF	75.7	28 - 136	
2,3,4,6,7,8-HxCDF	ND	0.000001	23			13C-1,2,3,7,8,9-H	IxCDF	76.4	29 - 147	
1,2,3,7,8,9-HxCDF	ND	0.000000	796			13C-1,2,3,4,6,7,8	-HpCDF	75.5	28 - 143	
1,2,3,4,6,7,8-HpCDF	ND	0.000002	87			13C-1,2,3,4,7,8,9	-HpCDF	75.5	26 - 138	
1,2,3,4,7,8,9-HpCDF	ND	0.000000	972			13C-OCDF		74.5	17 - 157	
OCDF	ND	0.000006	18		CRS	37Cl-2,3,7,8-TCI	DD	93.5	35 - 197	
Totals					Foo	otnotes				
Total TCDD	ND	0.000001	78		a. Sa	mple specific estimated	detection limit.			
Total PeCDD	ND	0.000001	19		b. E	stimated maximum poss	ible concentration.			
Total HxCDD	ND	0.000002	54		c. M	ethod detection limit.				
Total HpCDD	0.00000312				d. L	ower control limit - uppe	er control limit.			
Total TCDF	ND	0.000001	69							
Total PeCDF	ND	0.000001	47							
Total HxCDF	ND	0.000001	80							
Total HpCDF	ND	0.000003								

Analyst: MAS

APPENDIX

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank.
D	Dilution
Ε	The amount detected is above the High Calibration Limit.
Р	The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.
н	The signal-to-noise ratio is greater than 10:1.
I	Chemical Interference
J	The amount detected is below the Low Calibration Limit.
*	See Cover Letter
Conc.	Concentration
DL	Sample-specific estimated detection limit
MDL	The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.
EMPC	Estimated Maximum Possible Concentration
NA	Not applicable
RL	Reporting Limit – concentrations that correspond to low calibration point
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

SUBCONTRACT ORDER

TestAmerica Irvine

IRA2355

	IRA2355 30204
SENDING LABORATORY:	RECEIVING LABORATORY:
TestAmerica Irvine	Vista Analytical Laboratory- SUB 4.1
17461 Derian Avenue. Suite 100	1104 Windfield Way
Irvine, CA 92614	El Dorado Hills, CA 95762
Phone: (949) 261-1022	Phone :(916) 673-1520
Fax: (949) 260-3297	Fax: (916) 673-0106
Project Manager: Joseph Doak	Project Location: California
	Receipt Temperature:°C Ice: Y / N

Analysis	Units	Due	Expires	Comments
Sample ID: IRA2355-01	Water		Sampled: 01/24/08 11:00	ph=8.1, temp=48
1613-Dioxin-HR-Alta	ug/l	02/04/08	01/31/08 11:00	J flags,17 congeners,no TEQ,ug/L,sub=Vista
Level 4 Data Package - Out	N/A	02/04/08	02/21/08 11:00	Boeing
Containers Supplied:				
1 L Amber (Y) 1	L Amber (Z)			

Released By

d By

25/08 17:00 Date/Time

Date/Time

08 17:00 Date/Time (Q5 Received By <u>16]</u> Page 1 of 1 Received By Date/Time

تغليه

NPDES - 3374 Page 10 of 274

Project 30204

SAMPLE LOG-IN CHECKLIST

		SAM	PLE LOO	G-IN CHE	CKLIST	Γ		Vista Analytical Laborator
Vista Project #:	3020)4				TA	T <u>UN</u> 5	pecifical
	Date/Time			Initials:		Loca	tion: (NRZ
Samples Arrival:	1/26/08	\bigcirc	944	FER	3		/Rack:	
	Date/Time			Initials:		Loca	tion:	WR-2
Logged In:	1/28/08	10	74	BI	3		/Rack:	2-7
Delivered By:	FedEx	U	PS	Cal	DHL	- [Hand Deliver	()thor I
Preservation:	lce	\geq	Blue	e Ice	Dr	y Ice		None
Тетр°С Ц.		Time	: 09	47		Therr	nomet	ter ID: IR-1
	anarishanish kushanishti shekandariyo yarishi dakara						Woman 20112271	······································
				9952849 (A.S.) • • • • • • • • • • • • • • • • • • •			<u>Y</u>	ES NO NA

				ILS,	INU	INA
Adequate Sample Volume Recei	ved?					
Holding Time Acceptable?						
Shipping Container(s) Intact?				V		
Shipping Custody Seals Intact?		an a	÷	~		
Shipping Documentation Presen	t?	•		V		
Airbill Trk #	1909 2	519 073	9	2		
Sample Container Intact?				V		
Sample Custody Seals Intact?						·
Chain of Custody / Sample Docu	V					
COC Anomaly/Sample Acceptar	ice Form con	npleted?				
If Chlorinated or Drinking Water	Samples, Ac	ceptable Preserv	vation?			V
Na ₂ S ₂ O ₃ Preservation Document		coc	Sample Container	••••	Moné)
Shipping Container	Vista	Client F	Retain Re	eturn	Disp	ose
Comments:						

vid 29. -

SUBCONTRACT ORDER

TestAmerica Irvine

IRA2355

SENDING LABORATORY:

TestAmerica Irvine 17461 Derian Avenue. Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297 Project Manager: Joseph Doak

RECEIVING LABORATORY:

Weck Laboratories, Inc-SUB 14859 E. Clark Avenue City of Industry, CA 91745 Phone :(626) 336-2139 Fax: (626) 336-2634 Project Location: California Receipt Temperature: _____°C Ice: Y / N

2012537

Analysis	Units	Inits Due Expires		Comments
Sample ID: IRA2355-01	Water		Sampled: 01/24/08 11:00	ph=8.1, temp=48
Level 4 + EDD-OUT	N/A	02/04/08	02/21/08 11:00	Excel EDD email to pm,Include Std logs for LvI IV
Level 4 Data Package - Wed	N/A	02/04/08	02/21/08 11:00	Boeing, permit, J flags
Mercury - 245.1, Diss -OUT	mg/l	02/04/08	02/21/08 11:00	Out to Weck Level 4 Boeing, permit, J flags
Mercury - 245.1-OUT	mg/l	02/04/08	02/21/08 11:00	Out to Weck Level 4 Boeing, permit, J flags
Containers Supplied:				
125 mL Poly w/HNO3 1 (AE)	25 mL Po	ly (AF)		

Por	1/25/08	Nin Del	e 1/25/08 0820
Released By Reléased By	Date/Time // <i>25/08/007</i> Date/Time	Received By Received By	Date/Time Date/Time Date/Time NPDES p3376 1 of 1

Weck Laboratories, Inc.

Analytical Laboratory Services - Since 1964

14859 E. Clark Ave., Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634 info@wecklabs.com www.wecklabs.com

CERTIFICATE OF ANALYSIS

Client:	TestAmerica, Inc Irvine	Report Date	e: 02/04/	08 10:42
	17461 Derian Ave, Suite 100	Received Da	ate: 01/25/	/08 08:20
	Irvine, CA 92614	Turn Aroun	nd: Norma	al
	Attention: Joseph Doak	Work Order #: 80125	537	
	Phone: (949) 261-1022 Fax: (949) 260-3297	Client Project: IRA2	355	

NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

Dear Joseph Doak :

Enclosed are the results of analyses for samples received 01/25/08 08:20 with the Chain of Custody document. The samples were received in good condition. The samples were received at 7.3 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Reviewed by: in

Kim G Tu

Project Manager

Report ID: 8012537

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Date Received: 01/25/08 08:20 Date Reported: 02/04/08 10:42

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Sampled by:	Sample Comments	Laboratory	Matrix	Date Sampled
IRA2355-01	Client		8012537-01	Water	01/24/08 11:00

Project ID: IRA2355

01/24/08 11:00

Date Received: 01/25/08 08:20 Date Reported: 02/04/08 10:42

Date Sampled:

IRA2355-01 8012537-01 (Water)

Report ID: 8012537

Project ID: IRA2355

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed		Data Qualifiers
Mercury, Dissolved	ND	0.050	ug/l	0.20	1	EPA 245.1	W8A1076	01/30/08	01/31/08	jlp	
Mercury, Total	ND	0.050	ug/l	0.20	1	EPA 245.1	W8A1076	01/30/08	01/31/08	jlp	

Metals by EPA 200 Series Methods

Report ID: 8012537 Project ID: IRA2355 Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

 Date Received:
 01/25/08 08:20

 Date Reported:
 02/04/08 10:42

QUALITY CONTROL SECTION

Date Received: 01/25/08 08:20 Date Reported: 02/04/08 10:42

Metals by EPA 200 Series Methods - Quality Control

Report ID: 8012537

Project ID: IRA2355

							%REC			
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch W8A1076 - EPA 245.1										
Blank (W8A1076-BLK1)				Analyzed:	01/31/08					
Mercury, Dissolved	ND	0.20	ug/l							
Mercury, Total	ND	0.20	ug/l							
LCS (W8A1076-BS1)				Analyzed:	01/31/08					
Mercury, Dissolved	0.913	0.20	ug/l	1.00		91	85-115			
Mercury, Total	0.913	0.20	ug/l	1.00		91	85-115			
Matrix Spike (W8A1076-MS1)	So	urce: 8012935	-01	Analyzed: 01/31/08						
Mercury, Dissolved	0.971	0.20	ug/l	1.00	0.0450	93	70-130			
Mercury, Total	0.971	0.20	ug/l	1.00	0.0450	93	70-130			
Matrix Spike (W8A1076-MS2)	So	urce: 8012939	-01	Analyzed:	01/31/08					
Mercury, Dissolved	2.01	0.20	ug/l	1.00	1.18	83	70-130			
Mercury, Total	2.01	0.20	ug/l	1.00	1.18	83	70-130			
Matrix Spike Dup (W8A1076-MSD1)	So	urce: 8012935	-01	Analyzed:	01/31/08					
Mercury, Dissolved	0.957	0.20	ug/l	1.00	0.0450	91	70-130	1	20	
Mercury, Total	0.957	0.20	ug/l	1.00	0.0450	91	70-130	1	20	
Matrix Spike Dup (W8A1076-MSD2)	So	urce: 8012939	-01	Analyzed:	01/31/08					
Mercury, Dissolved	1.99	0.20	ug/l	1.00	1.18	81	70-130	1	20	
Mercury, Total	1.99	0.20	ug/l	1.00	1.18	81	70-130	1	20	

Report ID: 8012537 Project ID: IRA2355 Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Date Received: 01/25/08 08:20 Date Reported: 02/04/08 10:42

Notes and Definitions

- ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- % Rec Percent Recovery
- Sub Subcontracted analysis, original report available upon request
- MDL Method Detection Limit
- MDA Minimum Detectable Activity

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

APPENDIX G

Section 89

Outfall 013, February 24, 2008 MEC^X Data Validation Reports

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IRB2402

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Contract Task Order:	Boeing SSFL NPDES 1261.100D.00
Sample Delivery Group:	IRB2402
Project Manager:	B. Kelly
Matrix:	Water
QC Level:	IV
No. of Samples:	1
No. of Reanalyses/Dilutions:	0
Laboratory:	TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 013	IRB2402-01	30304-001, 8022633-01	Water	02/24/08 1000	180.1, 200.7, 200.8, 245.1, 405.1, 624, 1613, SM2340-B
Trip Blank	IRB2402-02	N/A	Water	02/24/08	624

II. Sample Management

No anomalies were observed regarding sample management. The samples were received at Weck and Vista within the temperature limits of $4^{\circ}C \pm 2^{\circ}C$. The samples were received at TestAmerica-Irvine below the temperature limit; however, the samples were not noted to be damaged or frozen. According to the case narrative for this SDG, the samples were received intact at all laboratories. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine and Weck, custody seals were not required. Custody seals were intact upon arrival at Vista. If necessary, the client ID was added to the sample result summary by the reviewer.

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
Ι	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
A	Not applicable.	ICP Serial Dilution %D were not within control limits.
Μ	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Ρ	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: April 8, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had no target compound detects above the EDL.

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHODS 200.7, 200.8, 245.1—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: April 1, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.7, 200.8, and 245.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding times, 6 months for metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤0.1 amu and ≤0.9 amu at 10% peak height.
- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP-MS

metals and 85-115% for mercury. All CRI/CRA and check standard recoveries were within the control limits of 70-130%.

- Blanks: There were no applicable detects in the method blanks or CCBs.
- Interference Check Samples: ICSA/B analyses were performed in association with all analyses except the dissolved ICP-MS analyses. Recoveries were within the methodestablished control limits. Most analytes were reported in the ICSA solutions. No 6010 analytes required qualification as the concentrations of the interferents were not significant. For the 6020 analytes, the reviewer was not able to ascertain if the detections were indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the sample in this SDG for mercury and a matrix spike analysis was performed for the total 6020 analytes. All recoveries and the mercury RPD were within the laboratory-established control limits.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. The bracketing CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Due to matrix interference, the total metals fraction was reported from a 2x dilution. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

C. EPA METHOD 624—Volatile Organic Compounds (VOCs)

Reviewed By: L. Calvin Date Reviewed: April 3, 2008

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC^X* Data Validation Procedure for Volatile Organics (DVP-2, Rev. 0), EPA Method 8260B, and the National Functional Guidelines for Organic Data Review (2/94).

- Holding Times: Analytical holding times were met. The preserved water samples were analyzed within 14 days of collection, and the unpreserved aliquots were analyzed within seven days of collection.
- GC/MS Tuning: The BFB tunes met the method abundance criteria. Samples were analyzed within 12 hours of the BFB injection time.
- Calibration: For applicable target compounds, initial calibration average RRFs were ≥0.05, with the exception of the average RRF for acrolein. Nondetect results for acrolein were rejected, "R," in both samples. Initial calibration %RSDs were ≤35%. Continuing calibration RRFs were ≥0.05 and %Ds ≤20%, with the exception of the RRF for acrolein and the %D for 2-chloroethyl vinyl ether. Nondetect results for acrolein were rejected, "R," in both samples. The nondetect result for 2- chloroethyl vinyl ether was qualified as estimated, "UJ," in site sample Outfall 013. Sample Trip Blanks was identified as field QC and required no qualification for the %D outlier.
- Blanks: The method blanks had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits. The reviewer noted that acrolein and acrylonitrile were not included in the LCSs.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the site sample in this SDG. Evaluation of method accuracy was based on the LCS results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - \circ Trip Blanks: Sample Trip Blanks was the trip blank associated with site sample Outfall 012. Methylene chloride was detected in the trip blank above the reporting limit at 2.5 µg/L. The sample detect was qualified as an estimated nondetect, "UJ," at the level of contamination in sample Outfall 013. The trip blank had no target other compound detects above the MDL.

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The internal standard area counts and retention times were within the control limits established by the continuing calibration standards: -50%/+100% for internal standard areas and ±30 seconds for retention times.
- Compound Identification: Compound identification was verified. The laboratory analyzed for volatile target compounds by EPA Method 624. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any results reported between the MDL and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.

System Performance: Review of the raw data indicated no problems with system performance.

D. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks Date Reviewed: April 3, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Methods 180.1 and 405.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: Analytical holding times, 24 hours for conductivity and 48 hours for BOD, were met.
- Calibration: Check standard recoveries for turbidity were acceptable. Calibration is not applicable to BOD.
- Blanks: Turbidity was detected in the method blank but not at a concentration sufficient to qualify the site sample. Method blanks and CCBs had no other detects.
- Blank Spikes and Laboratory Control Samples: BOD recoveries and RPDs were within laboratory-established QC limits. The LCS is not applicable to turbidity.

- Laboratory Duplicates: Laboratory duplicate analyses were performed for the sample in • this SDG for turbidity. The RPD was within the laboratory-established control limit.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample • in this SDG.
- Sample Result Verification: Review is not applicable at a Level V validation. Detects • reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the reporting limit.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or 0 equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG. 0

	Client Data			Sample Data		Laboratory Data				
	Name: Test Am Project: IRB2402 Date Collected: 24-Feb-0 Time Collected: 1000	Test America-Irvine, CA IRB2402 24-Feb-08	<u> </u>	Matrix: Sample Size:	Aqueous 1.01 L	Lab Sample: QC Batch No.: Date Analyzed DB-5:	30304-001 9997 10-Mar-08	Date Received: Date Extracted: Date Analvzed DB-225	: : DB-225:	26-Feb-08 9-Маг-08 МА
1		Conc. (ug/L)	DL ^a	EMPC ^b	Qualifiers	Labeled Standard	ıdard	%R LCL	-0	Oualifiers
Press.	2.3.7.8-TCDD	R	0.000000774	774		ISC-2,3,7,8-TCDD	CDD	73.7 25	25 - 164	
-	1,2,3,7,8-PeCDD	Q	0.00000121	21		13C-1,2,3,7,8-PeCDD	PecDD	6.4	25 - 181	
10.8	1,2,3,4,7,8-HxCDD	8	0.00000217	17		13C-1,2,3,4,7,8-HxCDD	8-HxCDD	530	32 - 141	
	1,2,3,6,7,8-HxCDD	Q	0.00000209	60		13C-1,2,3,6,7,8-HxCDD	8-HxCDD		28 - 130	
	1,2,3,7,8,9-HxCDD	包	0.00000204	24.		13C-1,2,3,4,6,7,8-HpCDD	7,8-HpCDD		23 - 140	
5 martin	1,2,3,4,6,7,8-HpCDD	0.00000206	and the state of the	a strange and strange and strange	J	13C-0CDD		56.1 17	17 - 157	
3	ocod	0.0000101		北京には記書に	T. A. A.	13C-23,7,8-TCDF	CDF	76.9 24	24 - 169	
	2,3,7,8-TCDF	2	0.000000944	944	The state of the first state of	13C-1,2,3,7,8-PeCDF	PecDF	62.0 24	24 - 185	
	1,2,3,7,8-PeCDF	2	0,000000894	894		13C-2,3,4,7,8-PeCDF	PeCDF	64.9 21	21 - 178	
	2,3,4,7,8-PeCDF	Ŕ	0.000000843	843	and the second se	13C-1,2,3,4,7,8-HxCDF	8-HxCDF	65.0 26	26 - 152	
	1,2,3,4,7,8-HxCDF	£	0.000000854	854		13C-1,2,3,6,7,8-HxCDF	8-HxCDF	73.8 26	26 - 123	
	1,2,3,6,7,8-HxCDF	Ę	0.000000859	859	and the second	13C-2,3,4,6,7,8-HxCDF	8-HxCDF	69.3 28	28 - 136	
_	2,3,4,6,7,8-HxCDF	2	0.000000019	919		13C-1,2,3,7,8,9-HxCDF	9-HxCDF	69.2 29	29-147	
	1,2,3,7,8,9-HxCDF	Q	0.00000118	18	The second se	13C-1,2,3,4,6,7,8-HpCDF	7,8-HpCDF	62.5 28	28 - 143	
	1,2,3,4,6,7,8-HpCDF	Q	0.00000114	14	市道に見ていた	13C-1,2,3,4,7,8,9-HpCDF	8,9-HpCDF	67.9 26	26 - 138	市政がある
	1,2,3,4,7,8,9-HpCDF	Ð	0.00000117	17	A CONTRACTOR OF	13C-OCDF	and the second se	59.6 17	17 - 157	
-	OCDF	Q	0.00000326	26		CRS 37CI-2,3,7,8-TCDD	CDD	105 35	35 - 197	a second second
	Totals					Footnotes				
240	Total TCDD	Ð	0.000000774	774	And a state of the second s	a. Sample specific estimated detection limit	ated detection limit.			A DESCRIPTION OF A
	Total PeCDD	R	0.00000224	24		b. Estimated maximum possible concentration.	possible concentration.	Current Rowers		
2	Total HxCDD	Q	0.00000205	60	and a second second second second	c. Method detection limit	to the second se	Construction of the second second second second		
	Total HpCDD	0.00000432				d. Lower control limit - upper control limit	apper control limit.			語的語言
<	Total TCDF	£ 2	0.00000219	19 36						
	Total HxCDF	Q	0.000000943	943	Deve and the second second second	and an an Alassan in the second s			And Market and Andrews	
-	Tanal BachE	Ŕ	0.00000115	Contraction of the second	「「「「「「「「「」」」」		「「「「「「」」」」」」	SUPPORT SUPPORT	のないないで、た	のないなどのである

Martha M. Maier 14-Mar-2008 11:28

Level I

Analyst: MAS

Project 30304

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 013

Sampled: 02/24/08 Received: 02/25/08

Report Number: IRB2402

			I	ИЕТА	LS					
Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IR	B2402-01 (Outfall 013	3 - Water) - cont.								
Reporting	g Units: mg/l									
Hardness as C	aCO3	SM2340B	[CALC]	N/A	0.33	23	1	02/27/08	02/29/08	
Boron	()	EPA 200.7	8B27069	0.020	0.050	ND	1	02/27/08	02/29/08	
Calcium		EPA 200.7	8B27069	0.050	0.10	7.7	1	02/27/08	02/29/08	
Magnesium		EPA 200.7	8B27069	0.012	0.020	0.85	1	02/27/08	02/29/08	
	LEVEL	$l \vee$								

TestAmerica Irvine

Joseph Doak Project Manager

> The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRB2402 <Page 12 of 56>

THE LEADER IN ENVIRONMENTAL TESTING

LEVEL IV

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 013

Report Number: IRB2402

Sampled: 02/24/08 Received: 02/25/08

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2402-01 (Outfall	013 - Water) - cont.								
Reporting Units: ug/l									
Antimony	EPA 200.8	8B28067	0.20	2.0	2.5	1	02/28/08	02/28/08	
Arsenic U	EPA 200.7	8B27069	7.0	10	ND	1	02/27/08	02/29/08	
Beryllium \downarrow	EPA 200.7	8B27069	0.90	2.0	ND	1	02/27/08	02/29/08	
Cadmium	EPA 200.8	8B28067	0.11	1.0	1.9	1	02/28/08	02/28/08	
Chromium U	EPA 200.7	8B27069	2.0	5.0	ND	1	02/27/08	02/29/08	
Copper	EPA 200.8	8B28067	0.75	2.0	2.8	1	02/28/08	02/28/08	
Lead	EPA 200.8	8B28067	0.30	1.0	1.7	1	02/28/08	02/28/08	
Nickel U	EPA 200.7	8B27069	2.0	10	ND	1	02/27/08	02/29/08	
Selenium	EPA 200.8	8B28067	0.30	2.0	ND	1	02/28/08	02/28/08	
Silver	EPA 200.8	8B28067	0.30	1.0	ND	1	02/28/08	02/28/08	
Thallium 🗸	EPA 200.8	8B28067	0.20	1.0	ND	1	02/28/08	02/28/08	
Zinc	EPA 200.8	8B28067	2.5	20	66	1	02/28/08	02/28/08	

TestAmerica Irvine

Joseph Doak Project Manager

The results periain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRB2402 <Page 13 of 56>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 013

Report Number: IRB2402

Sampled: 02/24/08 Received: 02/25/08

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2402-01 (Outfall 013 -	Water) - cont.								
Reporting Units: mg/l									
Boron U	EPA 200.7-Diss	8B25122	0.020	0.050	ND	1	02/25/08	02/26/08	
Calcium	EPA 200.7-Diss	8B25122	0.050	0.10	7.7	1	02/25/08	02/26/08	
Magnesium	EPA 200.7-Diss	8B25122	0.012	0.020	0.88	1	02/25/08	02/26/08	
Hardness (as CaCO3)	SM2340B	8B25122	1.0	1.0	23	1	02/25/08	02/26/08	

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRB2402 <Page 14 of 56>

LEVEL IV

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 013

Report Number: IRB2402

Sampled: 02/24/08 Received: 02/25/08

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2402-01 (Outfall	013 - Water) - cont.								
Reporting Units: ug/l									
Antimony	EPA 200.8-Diss	8B25123	0.20	2.0	2.4	1	02/25/08	02/26/08	
Arsenic U	EPA 200.7-Diss	8B25122	7.0	10	ND	1	02/25/08	02/26/08	
Beryllium 🗸	EPA 200.7-Diss	8B25122	0.90	2.0	ND	1	02/25/08	02/26/08	
Cadmium	EPA 200.8-Diss	8B25123	0.11	1.0	1.6	1	02/25/08	02/26/08	
Chromium U	EPA 200.7-Diss	8B25122	2.0	5.0	ND	1	02/25/08	02/26/08	
Copper J/DNQ	EPA 200.8-Diss	8B25123	0.75	2.0	1.6	1	02/25/08	02/26/08	J
Lead V	EPA 200.8-Diss	8B25123	0.30	1.0	0.50	1	02/25/08	02/26/08	J
Nickel U	EPA 200.7-Diss	8B25122	2.0	10	ND	1	02/25/08	02/26/08	
Selenium	EPA 200.8-Diss	8B25123	0.30	2.0	ND	1	02/25/08	02/26/08	
Silver	EPA 200.8-Diss	8C04081	0.30	1.0	ND	1	03/04/08	03/04/08	
Thallium 🗸	EPA 200.8-Diss	8B25123	0.20	1.0	ND	1	02/25/08	02/26/08	
Zinc	EPA 200.8-Diss	8B25123	2.5	20	64	1	02/25/08	02/26/08	

TestAmerica Irvine

Joseph Doak Project Manager

IRB2402 <Page 15 of 56>

THE LEADER IN ENVIRONMENTAL TESTING

LEVEL IV

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 013

Report Number: IRB2402

Sampled: 02/24/08 Received: 02/25/08

Metals by EPA 200 Series Methods

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2402-01 (Outfall 013 -	Water) - cont.								
Reporting Units: ug/l									
Mercury, Dissolved \cup	EPA 245.1	W8B0982	0.050	0.20	ND	1	02/26/08	02/27/08	
Mercury, Total	EPA 245.1	W8B0982	0.050	0.20	ND	1	02/26/08	02/27/08	

TestAmerica Irvine

Joseph Doak Project Manager

> The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRB2402 <Page 20 of 56>

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 013

PURGEABLES BY GC/MS (EPA 624)

Report Number: IRB2402

Sampled: 02/24/08 Received: 02/25/08

	PUR	GEABLES	BIG	CIND (EI	A 024)				
Analysis			MDL	Reporting	Sample		Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IRB2402-01 (Outfall 013 - Wa	ater) - cont.								
Reporting Units: ug/l									
1,1,1-Trichloroethane U	EPA 624	8B28024	0.30	0.50	ND	1	02/28/08	02/29/08	
1,2,3-Trichloropropane	EPA 624	8B28024	0.40	1.0	ND	1	02/28/08	02/29/08	
1,1,2,2-Tetrachloroethane	EPA 624	8B28024	0.24	0.50	ND	1	02/28/08	02/29/08	
1,2-Dibromoethane (EDB)	EPA 624	8B28024	0.40	0.50	ND	1	02/28/08	02/29/08	
1,1,2-Trichloroethane	EPA 624	8B28024	0.30	0.50	ND	1	02/28/08	02/29/08	
Di-isopropyl Ether (DIPE)	EPA 624	8B28024	0.25	0.50	ND	1	02/28/08	02/29/08	
1,1-Dichloroethane	EPA 624	8B28024	0.27	0.50	ND	1	02/28/08	02/29/08	
Methyl-tert-butyl Ether (MTBE)	EPA 624	8B28024	0.32	0.50	ND	1	02/28/08	02/29/08	
1,1-Dichloroethene	EPA 624	8B28024	0.42	0.50	ND	1	02/28/08	02/29/08	
tert-Butanol (TBA)	EPA 624	8B28024	4.9	10	ND	1	02/28/08	02/29/08	
1,2-Dichloroethane	EPA 624	8B28024	0.28	0.50	ND	1	02/28/08	02/29/08	
1,2-Dichlorobenzene	EPA 624	8B28024	0.32	0.50	ND	1	02/28/08	02/29/08	
1,2-Dichloropropane	EPA 624	8B28024	0.35	0.50	ND	1	02/28/08	02/29/08	
1,3-Dichlorobenzene	EPA 624	8B28024	0.35	0.50	ND	1	02/28/08	02/29/08	
1,4-Dichlorobenzene	EPA 624	8B28024	0.37	0.50	ND	1	02/28/08	02/29/08	
Benzene	EPA 624	8B28024	0.28	0.50	ND	1	02/28/08	02/29/08	
Bromodichloromethane	EPA 624	8B28024	0.30	0.50	ND	1	02/28/08	02/29/08	
Bromoform	EPA 624	8B28024	0.40	0.50	ND	1	02/28/08	02/29/08	
Bromomethane	EPA 624	8B28024	0.42	1.0	ND	1	02/28/08	02/29/08	
Carbon tetrachloride	EPA 624	8B28024	0.28	0.50	ND	1	02/28/08	02/29/08	
Chlorobenzene	EPA 624	8B28024	0.36	0.50	ND	1	02/28/08	02/29/08	
Chloroethane	EPA 624	8B28024	0.40	1.0	ND	1	02/28/08	02/29/08	
Chloroform	EPA 624	8B28024	0.33	0.50	ND	1	02/28/08	02/29/08	
Chloromethane	EPA 624	8B28024	0.40	0.50	ND	1	02/28/08	02/29/08	
cis-1,3-Dichloropropene	EPA 624	8B28024	0.22	0.50	ND	1	02/28/08	02/29/08	
Dibromochloromethane	EPA 624	8B28024	0.28	0.50	ND	1	02/28/08	02/29/08	
Ethylbenzene	EPA 624	8B28024	0.25	0.50	ND	1	02/28/08	02/29/08	
Methylene chloride UT/T	EPA 624	8B28024	0.95	1.0	3.3	1	02/28/08	02/29/08	
Tetrachloroethene	EPA 624	8B28024	0.32	0.50	ND	1	02/28/08	02/29/08	
Toluene	EPA 624	8B28024	0.36	0.50	ND	1	02/28/08	02/29/08	
trans-1,2-Dichloroethene	EPA 624	8B28024	0.27	0.50	ND	1	02/28/08	02/29/08	
trans-1,3-Dichloropropene	EPA 624	8B28024	0.32	0.50	ND	1	02/28/08	02/29/08	
Trichloroethene	EPA 624	8B28024	0.26	0.50	ND	1	02/28/08	02/29/08	
Trichlorofluoromethane	EPA 624	8B28024	0.34	0.50	ND	1	02/28/08	02/29/08	
Trichlorotrifluoroethane (Freon 113)	EPA 624	8B28024	0.50	5.0	ND	1	02/28/08	02/29/08	
Vinyl chloride	EPA 624	8B28024	0.30	0.50	ND	1	02/28/08	02/29/08	
Xylenes, Total	EPA 624	8B28024	0.90	1.5	ND	1	02/28/08	02/29/08	
Surrogate: Dibromofluoromethane (80-120					99 %				
Surrogate: Toluene-d8 (80-120%)					101 %				
					101 10				

Surrogate: 4-Bromofluorobenzene (80-120%)

Leve IV

TestAmerica Irvine

Joseph Doak Project Manager

> The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

88 %

IRB2402 <Page 5 of 56>

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 013

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB2402

Sampled: 02/24/08 Received: 02/25/08

Data

PURGEABLES BY GC/MS (EPA 624) Date Date Sample Dilution MDL Reporting **Oualifiers** Factor Extracted Analyzed Limit Limit Result Method Batch Analyte Sample ID: IRB2402-02 (Trip Blanks - Water) Reporting Units: ug/l 0.50 ND 1 02/28/08 02/29/08 0.30 **EPA 624** 8B28024 1.1.1-Trichloroethane 11 02/28/08 02/29/08 8B28024 0.40 1.0 ND 1 EPA 624 1,2,3-Trichloropropane 02/29/08 ND 02/28/08 8B28024 0.24 0.50 1 1,1,2,2-Tetrachloroethane **FPA 624** 0.50 ND 1 02/28/08 02/29/08 8B28024 0.40 1,2-Dibromoethane (EDB) EPA 624 02/28/08 02/29/08 0.50 ND 1 8B28024 0.30 1.1.2-Trichloroethane EPA 624 02/29/08 0.25 0.50 ND 1 02/28/08 **EPA 624** 8B28024 Di-isopropyl Ether (DIPE) 02/28/08 02/29/08 0.27 0.50 ND 1 EPA 624 8B28024 1,1-Dichloroethane ND 02/28/08 02/29/08 0.32 0.50 1 Methyl-tert-butyl Ether (MTBE) EPA 624 8B28024 02/28/08 02/29/08 1.1-Dichloroethene EPA 624 8B28024 0.42 0.50 ND 1 02/29/08 EPA 624 8B28024 4.9 10 ND 1 02/28/08 tert-Butanol (TBA) 0.28 0.50 ND 1 02/28/08 02/29/08 8B28024 EPA 624 1.2-Dichloroethane 02/28/08 02/29/08 ND 0.32 0.50 1 EPA 624 8B28024 1.2-Dichlorobenzene 02/29/08 02/28/08 8B28024 0.35 0.50 ND 1 1.2-Dichloropropane **EPA 624** 1 02/28/08 02/29/08 EPA 624 8B28024 0.35 0.50 ND 1,3-Dichlorobenzene 02/29/08 8B28024 0.37 0.50 ND 1 02/28/08 EPA 624 1.4-Dichlorobenzene 1 02/28/08 02/29/08 0.50 ND EPA 624 8B28024 0.28 Benzene 02/29/08 0.30 0.50 ND 1 02/28/08 EPA 624 8B28024 Bromodichloromethane 02/28/08 02/29/08 0.40 0.50 ND 1 EPA 624 8B28024 Bromoform ND 02/28/08 02/29/08 0.42 1.0 1 Bromomethane EPA 624 8B28024 02/28/08 02/29/08 8B28024 0.28 0.50 ND 1 Carbon tetrachloride EPA 624 0.50 ND 02/28/08 02/29/08 EPA 624 8B28024 0.36 1 Chlorobenzene 02/29/08 8B28024 0.40 1.0 ND 1 02/28/08 EPA 624 Chloroethane 02/28/08 02/29/08 0.50 ND 0.33 1 Chloroform EPA 624 8B28024 02/29/08 02/28/08 EPA 624 8B28024 0.40 0.50 ND 1 Chloromethane 8B28024 0.22 0.50 ND 1 02/28/08 02/29/08 **EPA 624** cis-1,3-Dichloropropene ND 1 02/28/08 02/29/08 0.28 0.50 EPA 624 8B28024 Dibromochloromethane

8B28024

0.25

0.95

0.32

0.36

0.27

0.32

0.26

0.34

0.50

0.30

0.90

0.50

1.0

0.50

0.50

0.50

0.50

0.50

0.50

5.0

0.50

1.5

EPA 624

EPA 624

EPA 624

EPA 624

EPA 624

Surrogate: Dibromofluoromethane (80-120%) Surrogate: Toluene-d8 (80-120%)

11

Level IV

Surrogate: 4-Bromofluorobenzene (80-120%)

TestAmerica Irvine

Joseph Doak Project Manager

Ethylbenzene

Toluene

Methylene chloride

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

Trichlorotrifluoroethane (Freon 113)

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRB2402 <Page 6 of 56>

02/28/08

02/28/08

02/28/08

02/28/08

02/28/08

02/28/08

02/28/08

02/28/08

02/28/08

02/28/08

02/28/08

ND

2.5

ND

ND

ND

ND

ND

ND

ND

ND

ND

97%

89 %

88 %

1

1

1

1

1

1

1

1

1

1

I

02/29/08

02/29/08

02/29/08

02/29/08

02/29/08

02/29/08

02/29/08

02/29/08

02/29/08

02/29/08

02/29/08

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Project ID: Annual Outfall 013

Report Number: IRB2402

Sampled: 02/24/08 Received: 02/25/08

Arcadia, CA 91007 Attention: Bronwyn Kelly

PURGEABLES-- GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2402-01 (Outfall 013 - 1	Water)								
Reporting Units: ug/l									
Acrolein R/R	EPA 624	8B26001	4.0	5.0	ND	1	02/26/08	02/26/08	
Acrylonitrile U	EPA 624	8B26001	0.70	2.0	ND	1	02/26/08	02/26/08	
2-Chloroethyl vinyl ether WJ/C	EPA 624	8B26001	1.8	5.0	ND	1	02/26/08	02/26/08	
Surrogate: Dibromofluoromethane (80-1	20%)				97 %				
Surrogate: Toluene-d8 (80-120%)					101 %				
Surrogate: 4-Bromofluorobenzene (80-12	20%)				88 %				
Sample ID: IRB2402-02 (Trip Blanks -	Water)								
Reporting Units: ug/l									
Acrolein R/R	EPA 624	8B26001	4.0	5.0	ND	1	02/26/08	02/26/08	
Acrylonitrile U	EPA 624	8B26001	0.70	2.0	ND	1	02/26/08	02/26/08	
2-Chloroethyl vinyl ether	EPA 624	8B26001	1.8	5.0	ND	1	02/26/08	02/26/08	
Surrogate: Dibromofluoromethane (80-1	20%)				94 %				
Surrogate: Toluene-d8 (80-120%)					101 %				
Surrogate: 4-Bromofluorobenzene (80-12	20%)				89 %				
1	1 al TIT	-							
1	wein	-							

TestAmerica Irvine

Joseph Doak Project Manager

> The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRB2402 <Page 7 of 56>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 013

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB2402

Sampled: 02/24/08 Received: 02/25/08

		INC	ORGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2402-01 (Outfall 013 - Wa	ter) - cont.								
Reporting Units: mg/l									
Hexane Extractable Material (Oil & 🔆	EPA 1664A	8C04046	1.3	4.7	1.6	1	03/04/08	03/04/08	J
Grease)									
Ammonia-N (Distilled)	EPA 350.2	8B26101	0.30	0.50	ND	1	02/26/08	02/26/08	
Biochemical Oxygen Demand JDNQ	EPA 405.1	8B25101	0.59	2.0	1.5	1	02/25/08	03/01/08	J
Chloride *	EPA 300.0	8B25042	0.25	0.50	11	1	02/25/08	02/25/08	
Total Cyanide	EPA 335.2	8B26098	0.0022	0.0050	ND	1	02/26/08	02/26/08	
Fluoride	EPA 340.2	8B25072	0.014	0.10	0.12	1	02/25/08	02/25/08	в
Nitrate-N	EPA 300.0	8B25042	0.060	0.11	0.72	1	02/25/08	02/25/08	
Nitrite-N	EPA 300.0	8B25042	0.090	0.15	ND	1	02/25/08	02/25/08	
Nitrate/Nitrite-N	EPA 300.0	8B25042	0.15	0.26	0.72	1	02/25/08	02/25/08	
Sulfate	EPA 300.0	8B25042	0.20	0.50	4.2	1	02/25/08	02/25/08	
Total Dissolved Solids	SM2540C	8B27119	10	10	96	1	02/27/08	02/27/08	
Total Suspended Solids	EPA 160.2	8B28123	10	10	ND	1	02/28/08	02/28/08	

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

IRB2402 <Page 16 of 56>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 013

Report Number: IRB2402

Sampled: 02/24/08 Received: 02/25/08

INORGANICS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2402-01 (Outfall 013 - Water) - cont.									
Reporting Units: NTU Turbidity	EPA 180.1	8B26063	0.040	1.0	3.0	1	02/26/08	02/26/08	

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

> The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRB2402 <Page 18 of 56>