APPENDIX G

Section 73

Outfall 011, January 27, 2008

MECX Data Validation Reports

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IRA2565

Prepared by

MEC^x, LLC 12269 East Vassar Drive Aurora, CO 80014 DATA VALIDATION REPORT SSFL NPDES

SSFL NPDES
SDG: IRA2565

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: IRA2565 Project Manager: B. Kelly

Matrix: Soil QC Level: IV

No. of Samples: 2

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 011	IRA2565-01	30207-001, 8692- 001, 8012803-01	Water	01/27/08 0900	120.1, 160.2, 160.5, 180.1, 200.8, 245.1, 624, 625, 900.0, 901.1, 903.1, 904.0, 905.0, 906.0, 1613, ASTM D-5174
Trip Blank	IRA2565-02	N/A	Water	N/A	624

II. Sample Management

No anomalies were observed regarding sample management. The sample in this SDG was received at TestAmerica-Irvine within the temperature limits of 4°C ±2°C. The sample was received below the temperature limit at Vista; however, the sample was not noted to have been frozen. The sample was received above the temperature limit at Weck; however, mercury is not considered volatile. According to the case narrative for this SDG, the sample was received intact at all laboratories. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine, custody seals were not required. Custody seals were intact upon arrival at Vista. No custody seals were present upon arrival at Weck. If necessary, the client ID was added to the sample result summary by the reviewer.

1

Data Qualifier Reference Table

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
* , *	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

DATA VALIDATION REPORT SSFL NPDES
SSFL NPDES
SDG: IRA2565

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: March 2, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: Total HpCDD was detected in the method blank above the EDL. The result in the sample was qualified as estimated, "J," as a portion of the reported total HpCDD was

considered to be method blank contamination. The method blank had no other target compound detects above the EDL.

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Any EMPC value was qualified as an estimated nondetect, "UJ." Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHODS 200.8, 245.1—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: March 10, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.8 and 245.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding times, 6 months for metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.

• Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995. A bracketing lead CCV was recovered above the control limit at 115%; however, lead was not detected in the site sample. All remaining initial and continuing calibration recoveries were within 90-110% for the ICP-MS metals and 85-115% for mercury. The mercury MDL check standard was recovered at 66%; therefore, nondetected mercury in the sample was qualified as estimated, "UJ." The remaining CRI recoveries were within the control limits of 70-130%.

- Blanks: Zinc was detected in the method blank associated with the dissolved metals analyses at 2.87 µg/L; therefore zinc detected in the dissolved metal aliquot was qualified as an estimated nondetect, "UJ." There were no other applicable detects in the method blanks or CCBs.
- Interference Check Samples: ICSA/B analyses were performed in association with the
 metals analyses only. Recoveries were within the method-established control limits. All
 analytes were reported in the 6020 ICSA solution; however, the reviewer was not able to
 ascertain if the detection was indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the sample in this SDG for mercury only. The recoveries and RPDs were within the laboratoryestablished control limits. Evaluation of the ICP-MS method accuracy was based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. The bracketing CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:

 Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.

Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: March 5, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The tritium sample was analyzed within 180 days of collection. Aliquots
 for gross alpha and, gross beta were prepared within the five-day analytical holding time
 for unpreserved samples. The aliquots for radium-226, radium-228, strontium-90,
 gamma spectroscopy, and total uranium were prepared beyond the five-day holding time
 for unpreserved samples; therefore, these results were qualified as estimated, "J," for
 detects and, "UJ," for nondetects.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, gross alpha detected in the sample was qualified as an estimated detect, "J." The gross beta detector efficiency was greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. The tritium detector efficiency for the sample was at least 20% and was considered acceptable. The internal spike efficiency to default efficiency ratios was near 1, indicating that quenching did not occur.

The strontium chemical yield was at least 70% and was considered acceptable. The strontium continuing calibration results were within the laboratory control limits.

The radium-226 cell efficiencies were determined in September 2006. The radium-226 continuing calibration results were within the laboratory-established control limits. The radium-228 calibration utilized actinium-228 and was verified in February 2001. The radium-228 tracer, yttrium oxalate yields were greater than 70%.

The gamma spectroscopy geometry-specific, detector efficiencies were determined in September 1999 and February 2007. All analytes were determined at the maximum photopeak energy.

The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: There were no analytes detected in the method blank.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this
 data package. The sample results and MDAs reported on the sample result form were
 verified against the raw data and no calculation or transcription errors were noted.
 Reported nondetects are valid to the MDA.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

D. EPA METHOD 625—Semivolatile Organic Compounds (SVOCs)

Reviewed By: L. Calvin

Date Reviewed: March 9, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Semivolatile Organics (DVP-3, Rev. 0), EPA Method 8270C, and the National Functional Guidelines for Organic Data Review (2/94).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted within seven days of collection and analyzed within 40 days of extraction.
- GC/MS Tuning: The DFTPP tunes met the method abundance criteria. Samples were analyzed within 12 hours of the DFTPP injection time.

DATA VALIDATION REPORT SSFL NPDES
SSFL NPDES
SDG: IRA2565

• Calibration: Calibration criteria were met. Initial calibration average RRFs were ≥0.05 and %RSDs ≤35%. Continuing calibration RRFs were ≥0.05 and %Ds ≤20%.

- Blanks: The method blank had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries and RPDs were within laboratory-established QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample of this SDG. Evaluation of method accuracy and precision was based on LSC/LSCD results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - o Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The internal standard area counts and retention times were within the control limits established by the continuing calibration standards:
 -50%/+100% for internal standard areas and ±30 seconds for retention times.
- Compound Identification: Compound identification was verified. The laboratory analyzed for five semivolatile target compounds by EPA Method 625. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any results reported between the MDL and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review of the raw data indicated no problems with system performance.

E. EPA METHOD 624—Volatile Organic Compounds (VOCs)

Reviewed By: L. Calvin

Date Reviewed: March 9, 2008

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Volatile Organics (DVP-2, Rev. 0), EPA Method 8260B, and the National Functional Guidelines for Organic Data Review (2/94).

- Holding Times: Analytical holding times were met. The preserved water samples were analyzed within 14 days of collection.
- GC/MS Tuning: The BFB tunes met the method abundance criteria. Samples were analyzed within 12 hours of the BFB injection time.
- Calibration: Calibration criteria were met. For applicable target compounds, initial calibration average RRFs were ≥0.05 and %RSDs ≤35%. Continuing calibration RRFs were ≥0.05 and %Ds ≤20%.
- Blanks: The method blank had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on site sample Outfall 011. Recoveries and RPDs were within laboratory-established QC limits.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Trip Blanks: Sample Trip Blank was the trip blank associated with site sample
 Outfall 011. The trip blank had no target compound detects above the MDL.
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The internal standard area counts and retention times were within the control limits established by the continuing calibration standards:
 -50%/+100% for internal standard areas and ±30 seconds for retention times.

 Compound Identification: Compound identification was verified. The laboratory analyzed for 15 volatile target compounds by EPA Method 624. Review of the sample chromatograms, retention times, and spectra indicated no problems with target compound identification.

- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any results reported between the MDL and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review of the raw data indicated no problems with system performance.

F. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks

Date Reviewed: March 7, 2008

The sample listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Methods 120.1, 160.2, 160.5, 180.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: Analytical holding times, 24 hours for conductivity, 48 hours for settleable solids and turbidity, and seven days for TSS, were met.
- Calibration: The conductivity and turbidity check standard recoveries were acceptable.
 The balance calibration logs were acceptable. Calibration is not applicable to settleable solids.
- Blanks: Turbidity was detected in the method blank but not at a concentration sufficient to qualify the site samples. Method blanks and CCBs had no other detects.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits. The LCS is not applicable to settleable solids or turbidity.
- Laboratory Duplicates: A laboratory duplicate analysis was performed for turbidity. The RPD was within the laboratory-established control limit.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. For the applicable methods, method accuracy was evaluated based on the LCS results.

• Sample Result Verification: Review is not applicable at a Level V validation. Nondetects are valid to the reporting limit. Turbidity was reported from a 5× dilution.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - o Field Duplicates: There were no field duplicate samples identified for this SDG.

Analyst: MAS

Approved By:

William J. Luksemburg 08-Feb-2008 12:16

					107	0.0000107		0.00000502	Total HxCDF	Tota
医	ががない。				00946	0.000000946		ð	Total PeCDF	Tota
Contract of the contract of th	Today sales and some			de California de la companio de California d		17	0.00000117	A	Total TCDF	Tota
新新和和新新			upper control limit.	d. Lower control limit - upper control limit.	В			0.000169	Total HpCDD	Tota
	A CANAL TANK THE STATE OF	N. ACAM	it.	c. Method detection limit.	Charles of the Control of the Contro	A the couple water of opening		0.0000117	Total HxCDD	Tota
	· 图 · 图 · 图 · 图	A STATE OF THE PARTY OF THE PAR	possible concentration	b. Estimated maximum possible concentration.		62	0.00000162	B	Total PeCDD	Tota
		STORE PROPERTY.	nated detection limit.	a. Sample specific estimated detection limit	n page 11 section 12 s	921	0.000000092	ND	Total TCDD	Tota
				Footnotes					is .	Totals
	1 35 - 197	89.1	CCDD	CRS 37CI-2,3,7,8-TCDD	近年 1. 100mm		W. Tarrist State	0.0000456	P	OCDF
	17 -	75.4	Charles A. Barrella and	13C-OCDF		4	0.00000344	A	1,2,3,4,7,8,9-HpCDF	1,2,3
No. of Street, or other Persons and Street, o		77.2	8,9-HpCDF	13C-1,2,3,4,7,8,9-HpCDF	1			0.0000149	,2,3,4,6,7,8-HpCDF	1,2,3
		73.3	7,8-HpCDF	13C-1,2,3,4,6,7,8-HpCDF	and the state of t	99	0.00000109	¥	,2,3,7,8,9-HxCDF	1,2,3
	0.5	76.8	9-HxCDF	13C-1,2,3,7,8,9-HxCDF		76	0.00000176	3	2,3,4,6,7,8-HxCDF	2,3,4
		70.3	8-HxCDF	13C-2,3,4,6,7,8-HxCDF		95	0.00000205	A	,2,3,6,7,8-HxCDF	1,2,3
		75.6	2,3,6,7,8-HxCDF	13C-1,2,3,6,7		51	0.00000151	3	,2,3,4,7,8-HxCDF	1,2,3
	es.	93.8	,2,3,4,7,8-HxCDF	13C-1,2,3,4,7	25.00 C C C C C C C C C C C C C C C C C C	55	0.00000165	N	2,3,4,7,8-PeCDF	2,3,4
		73.2	,3,4,7,8-PeCDF	13C-2,3,4,7,8	The state of the s		0.00000101	Ą	,2,3,7,8-PeCDF	1,2,3
Washington Colonia		84.9	,2,3,7,8-PeCDF	13C-1,2,3,7,8		728	0.000000728	B	2,3,7,8-TCDF	2,3,7
		86.1	CDF	13C-2,3,7,8-TCDF				0.000718		OCDD
Carling March) 17 - 157	71.0		13C-OCDD				0.0000632	1,2,3,4,6,7,8-HpCDD	123
		82.6	13C-1,2,3,4,6,7,8-HpCDD	13C-1,2,3,4,6,		35	0.00000685	ð	1,2,3,7,8,9-HxCDD	1,2,3
and the property of the	400	76.5	8-HxCDD	13C-1,2,3,6,7,8-HxCDD		0	0.00000430	N	,2,3,6,7,8-HxCDD	1,2,3
	32 - 141	76.3	8-HxCDD	13C-1,2,3,4,7,8-HxCDD		78	0.00000178	¥	.2.3,4,7,8-HxCDD	123
The state of the s	3 25-181	80.3	PeCDD	13C-1,2,3,7,8-PeCDD		52	0.00000162	J	.2.3.7.8-PeCDD	1.2.3
		85.3	CDD	IS 13C-2,3,7,8-TCDD		120	0.000000921	A A	2,3,7,8-TCDD	2,3,7
Qualifiers	LCL-UCLa	%R	ldard	Labeled Standard	Qualifiers	EMPC ^b	DL a	Conc. (ug/L)		Analyte
NA	Date Extracted: Date Analyzed DB-225:	Date A	9921 6-Feb-08	QC Batch No.: Date Analyzed DB-5:	1.00 L	Sample Size:		n-08	llected: ollected:	Date Co Time Co
29-Jan-08	Date Received:	Date R	30207-001	Lab Sample:	Aqueous	Matrix:		Test America-Irvine, CA		Name:
				Laboratory Data		Sample Data			Data	Client Data

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 011

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Report Number: IRA2565

Sampled: 01/27/08

Received: 01/28/08

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2565-01 (Outfall 11 - V	Water) - cont.								
Reporting Units: ug/l									
Cadmium J/DNQ	EPA 200.8	8A28076	0.11	1.0	0.20	1	01/28/08	01/28/08	J
Copper	EPA 200.8	8A28076	0.75	2.0	5.3	1	01/28/08	01/28/08	
Lead	EPA 200.8	8A28076	0.30	1.0	3.9	1	01/28/08	01/28/08	
Selenium ()	EPA 200.8	8A28076	0.30	2.0	ND	1	01/28/08	01/28/08	
Zinc	EPA 200.8	8A28076	2.5	20	59	1	01/28/08	01/28/08	

LEVEL IV

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 011

Report Number: IRA2565

Sampled: 01/27/08

Received: 01/28/08

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2565-01 (Outfall 11 - V	vater) - cont.								
Reporting Units: ug/l									
Cadmium ()	EPA 200.8-Diss	8A28070	0.11	1.0	ND	1	01/28/08	01/28/08	
Copper	EPA 200.8-Diss	8A28070	0.75	2.0	4.8	1	01/28/08	01/28/08	
Lead U	EPA 200.8-Diss	8A28070	0.30	1.0	ND	1	01/28/08	01/28/08	
Selenium	EPA 200.8-Diss	8A28070	0.30	2.0	ND	1	01/28/08	01/28/08	
Zinc UT/B	EPA 200.8-Diss	8A28070	2.5	20	8.3	1	01/28/08	01/28/08	B, J

LEVEL IV

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 011

Report Number: IRA2565

Sampled: 01/27/08

Received: 01/28/08

Metals by EPA 200 Series Methods

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2565-01 (Outfall 11 - Wat	ter) - cont.								
Reporting Units: ug/l									
Mercury, Dissolved UJ/XIII	EPA 245.1	W8A1034	0.050	0.20	ND	1	01/29/08	01/30/08	
Mercury, Total UJ/* TTT	EPA 245.1	W8A1034	0.050	0.20	ND	1	01/29/08	01/30/08	

LEVEL IV

TestAmerica Irvine

Eberline Services

ANALYSIS RESULTS

SDG	8692	Client	TA IRVINE
Work Order	R801175-01	Contract	PROJECT# IRA2565
Received Date	01/29/08	Matrix	WATER

Client	Lab					
Sample ID	Sample ID	Collected Analyzed	Nuclide	Results ± 20	Units	MDA
Outfall Oll						1
IRA2565-01	8692-001	01/27/08 02/16/08	GrossAlpha	1.29 ± 0.48	pCi/L	0.57 J/R
		02/16/08	Gross Beta	3.03 ± 0.60	pCi/L	0.87
		02/20/08	Ra-228	-0.085 ± 0.18	pCi/L	0.51 UJ/H
		02/15/08	K-40 (G)	U	pCi/L	55
		02/15/08	Cs-137 (G)	σ	pCi/L	2.0
		02/21/08	H-3	-90.4 ± 92	pCi/L	160 U
		02/20/08	Ra-226	-0.114 ± 0.38	pCi/L	0.83 UJ/H
		02/14/08	Sr-90	-0.007 ± 0.26	pCi/L	0.54
		02/19/08	Total U	0.101 ± 0.015	pCi/L	0.022 J/H

LEVEL IV

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

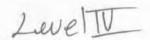
MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 011


Report Number: IRA2565

Sampled: 01/27/08

Received: 01/28/08

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2565-01 (Outfall 11 - Wat Reporting Units: ug/l	er)								
Bis(2-ethylhexyl)phthalate 2,4-Dinitrotoluene N-Nitrosodimethylamine Pentachlorophenol 2,4,6-Trichlorophenol Surrogate: 2-Fluorophenol (30-120%) Surrogate: Phenol-d6 (35-120%) Surrogate: Nitrobenzene-d5 (45-120%) Surrogate: 2-Fluorobiphenyl (50-120%) Surrogate: Terphenyl-d14 (50-125%)	EPA 625 EPA 625 EPA 625 EPA 625 EPA 625	8A29057 8A29057 8A29057 8A29057 8A29057	1.6 0.19 0.094 0.094 0.094	4.7 8.5 7.5 7.5 5.7	ND ND ND ND 72 % 78 % 120 % 78 % 85 % 108 %	0.943 0.943 0.943 0.943	01/29/08 01/29/08 01/29/08 01/29/08 01/29/08	01/31/08 01/31/08 01/31/08 01/31/08 01/31/08	

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA2565 <Page 3 of 28>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 011

Report Number: IRA2565

Sampled: 01/27/08 Received: 01/28/08

PURGEABLES BY GC/MS (EPA 624)

Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2565-01	(Outfall 11 -	Water)								
Reporting Units: ug										
Benzene	U	EPA 624	8A30009	0.28	2.0	ND	1	01/30/08	01/30/08	
Carbon tetrachloride	1	EPA 624	8A30009	0.28	5.0	ND	1	01/30/08	01/30/08	
Chloroform		EPA 624	8A30009	0.33	2.0	ND	1	01/30/08	01/30/08	
1,1-Dichloroethane		EPA 624	8A30009	0.27	2.0	ND	1	01/30/08	01/30/08	
1,2-Dichloroethane		EPA 624	8A30009	0.28	2.0	ND	1	01/30/08	01/30/08	
1,1-Dichloroethene		EPA 624	8A30009	0.42	3.0	ND	1	01/30/08	01/30/08	
Ethylbenzene		EPA 624	8A30009	0.25	2.0	ND	1	01/30/08	01/30/08	
Tetrachloroethene		EPA 624	8A30009	0.32	2.0	ND	1	01/30/08	01/30/08	
Toluene		EPA 624	8A30009	0.36	2.0	ND	1	01/30/08	01/30/08	
1,1,1-Trichloroethane		EPA 624	8A30009	0.30	2.0	ND	1	01/30/08	01/30/08	
1,1,2-Trichloroethane		EPA 624	8A30009	0.30	2.0	ND	1	01/30/08	01/30/08	
Trichloroethene		EPA 624	8A30009	0.26	5.0	ND	1	01/30/08	01/30/08	
Trichlorofluoromethane		EPA 624	8A30009	0.34	5.0	ND	1	01/30/08		
Vinyl chloride		EPA 624	8A30009	0.30	5.0	ND	1		01/30/08	
Xylenes, Total	4	EPA 624	8A30009	0.90	4.0	ND	1	01/30/08	01/30/08	
Surrogate: Dibromofluore	omethane (80)		0A30009	0.90	4.0	107%	1	01/30/08	01/30/08	
Surrogate: Toluene-d8 (8		12070)				101%				
Surrogate: 4-Bromofluoro		20%)				90%				
						30 70				
Sample ID: IRA2565-02 Reporting Units: ug/	A CONTRACTOR OF THE PARTY OF TH	- Water)								
Benzene	U	EPA 624	8A30009	0.28	2.0	ND	1	01/30/08	01/30/08	
Carbon tetrachloride	1	EPA 624	8A30009	0.28	5.0	ND	1	01/30/08	01/30/08	
Chloroform		EPA 624	8A30009	0.33	2.0	ND	1	01/30/08	01/30/08	
1,1-Dichloroethane	1	EPA 624	8A30009	0.27	2.0	ND	1	01/30/08	01/30/08	
1,2-Dichloroethane		EPA 624	8A30009	0.28	2.0	ND	1	01/30/08	01/30/08	
1,1-Dichloroethene		EPA 624	8A30009	0.42	3.0	ND	1	01/30/08	01/30/08	
Ethylbenzene		EPA 624	8A30009	0.25	2.0	ND	1	01/30/08	01/30/08	
Tetrachloroethene		EPA 624	8A30009	0.32	2.0	ND	1	01/30/08	01/30/08	
Toluene		EPA 624	8A30009	0.36	2.0	ND	1	01/30/08	01/30/08	
1,1,1-Trichloroethane		EPA 624	8A30009	0.30	2.0	ND	1	01/30/08	01/30/08	
1,1,2-Trichloroethane	1	EPA 624	8A30009	0.30	2.0	ND	1	01/30/08	01/30/08	
Trichloroethene		EPA 624	8A30009	0.26	5.0	ND	1	01/30/08	01/30/08	
Trichlorofluoromethane		EPA 624	8A30009	0.34	5.0	ND	1	01/30/08		
Vinyl chloride		EPA 624	8A30009	0.30	5.0	ND	1	01/30/08	01/30/08 01/30/08	
Xylenes, Total	V	EPA 624	8A30009	0.90	4.0	ND	1	01/30/08		
Surrogate: Dibromofluoro	methane (80-		02130003	0.50	4.0	104%	1	01/30/08	01/30/08	
Surrogate: Toluene-d8 (80						101 %				
Duri Ogule. I Didene-do foi										

Leve IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA2565 <Page 2 of 28>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 011

Report Number: IRA2565

Sampled: 01/27/08

Received: 01/28/08

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IRA2565-01 (Outfall 11 - W	ater) - cont.									
Reporting Units: mg/l										
Hexane Extractable Material (Oil & 💥	EPA 1664A	8B05016	1.3	4.8	1.6	1	02/05/08	02/05/08	J	
Grease)										
Ammonia-N (Distilled)	EPA 350.2	8A29110	0.30	0.50	ND	1	01/29/08	01/29/08		
Biochemical Oxygen Demand	EPA 405.1	8A28120	0.59	2.0	2.2	1	01/28/08	02/02/08		
Chloride	EPA 300.0	8A28061	0.25	0.50	4.8	1	01/28/08	01/28/08		
Nitrate-N	EPA 300.0	8A28061	0.060	0.11	3.5	1	01/28/08	01/28/08		
Nitrite-N	EPA 300.0	8A28061	0.090	0.15	ND	1	01/28/08	01/28/08		
Nitrate/Nitrite-N	EPA 300.0	8A28061	0.15	0.26	3.5	1	01/28/08	01/28/08		
Sulfate	EPA 300.0	8A28061	0.20	0.50	9.0	1	01/28/08	01/28/08		
Surfactants (MBAS)	SM5540-C	8A28127	0.044	0.10	0.058	1	01/28/08	01/28/08	J	
Total Dissolved Solids	SM2540C	8A31077	10	10	100	1	01/31/08	01/31/08		
Total Suspended Solids	EPA 160.2	8A28115	10	10	43	1	01/28/08	01/28/08		
Sample ID: IRA2565-01 (Outfall 11 - W Reporting Units: ml/l/hr	ater)									
Total Settleable Solids	EPA 160.5	8A28129	0.10	0.10	ND	1	01/28/08	01/28/08		
Sample ID: IRA2565-01 (Outfall 11 - W Reporting Units: NTU	ater)									
Turbidity	EPA 180.1	8A29082	0.20	5.0	60	5	01/29/08	01/29/08		
Sample ID: IRA2565-01 (Outfall 11 - W	ater)									
Reporting Units: ug/l										
Total Cyanide 💥	EPA 335.2	8A28126	2.2	5.0	ND	1	01/28/08	01/28/08		
Perchlorate $\sqrt{}$	EPA 314.0	8A28071	1.5	4.0	ND	1	01/28/08	01/28/08		
* Analysis no	ot validate	ed								

LEVEL IV

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 011

Report Number: IRA2565

Sampled: 01/27/08

Received: 01/28/08

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor		Date Analyzed	Data Qualifiers	
Sample ID: IRA2565-01 (Outfall 11 - Water) - cont.										
Reporting Units: umhos/cm										
Specific Conductance	EPA 120.1	8A31072	1.0	1.0	120	1	01/31/08	01/31/08		

LEVEL IV

TestAmerica Irvine

APPENDIX G

Section 74

Outfall 011, January 27, 2008 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Routine Outfall 011

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly
Sampled: 01/27/08
Received: 01/28/08

Issued: 02/28/08 12:13

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: This is a final report to include all subcontract data.

LABORATORY ID	CLIENT ID	MATRIX
IRA2565-01	Outfall 11	Water
IRA2565-02	Trip Blanks	Water

Reviewed By:

TestAmerica Irvine

Joseph Dock

MWH-Pasadena/Boeing

Project ID: Routine Outfall 011

618 Michillinda Avenue, Suite 200

Sampled: 01/27/08 Arcadia, CA 91007 Report Number: IRA2565 Received: 01/28/08

Attention: Bronwyn Kelly

PURGEABLES BY GC/MS (EPA 624)

	1011	GLIDEL		`	Í			.	D (
Amalada	Madha J	D-4-b	MDL	Reporting		Dilution	Date	Date	Data Qualifiers
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Quanners
Sample ID: IRA2565-01 (Outfall 11 - Wate	r)								
Reporting Units: ug/l									
Benzene	EPA 624	8A30009	0.28	2.0	ND	1	01/30/08	01/30/08	
Carbon tetrachloride	EPA 624	8A30009	0.28	5.0	ND	1	01/30/08	01/30/08	
Chloroform	EPA 624	8A30009	0.33	2.0	ND	1	01/30/08	01/30/08	
1,1-Dichloroethane	EPA 624	8A30009	0.27	2.0	ND	1	01/30/08	01/30/08	
1,2-Dichloroethane	EPA 624	8A30009	0.28	2.0	ND	1	01/30/08	01/30/08	
1,1-Dichloroethene	EPA 624	8A30009	0.42	3.0	ND	1	01/30/08	01/30/08	
Ethylbenzene	EPA 624	8A30009	0.25	2.0	ND	1	01/30/08	01/30/08	
Tetrachloroethene	EPA 624	8A30009	0.32	2.0	ND	1	01/30/08	01/30/08	
Toluene	EPA 624	8A30009	0.36	2.0	ND	1	01/30/08	01/30/08	
1,1,1-Trichloroethane	EPA 624	8A30009	0.30	2.0	ND	1	01/30/08	01/30/08	
1,1,2-Trichloroethane	EPA 624	8A30009	0.30	2.0	ND	1	01/30/08	01/30/08	
Trichloroethene	EPA 624	8A30009	0.26	5.0	ND	1	01/30/08	01/30/08	
Trichlorofluoromethane	EPA 624	8A30009	0.34	5.0	ND	1	01/30/08	01/30/08	
Vinyl chloride	EPA 624	8A30009	0.30	5.0	ND	1	01/30/08	01/30/08	
Xylenes, Total	EPA 624	8A30009	0.90	4.0	ND	1	01/30/08	01/30/08	
Surrogate: Dibromofluoromethane (80-120%)	6)				107 %				
Surrogate: Toluene-d8 (80-120%)					101 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				90 %				
Sample ID: IRA2565-02 (Trip Blanks - Wa	ter)								
Reporting Units: ug/l	,								
Benzene	EPA 624	8A30009	0.28	2.0	ND	1	01/30/08	01/30/08	
Carbon tetrachloride	EPA 624	8A30009	0.28	5.0	ND	1	01/30/08	01/30/08	
Chloroform	EPA 624	8A30009	0.33	2.0	ND	1	01/30/08	01/30/08	
1,1-Dichloroethane	EPA 624	8A30009	0.27	2.0	ND	1	01/30/08	01/30/08	
1,2-Dichloroethane	EPA 624	8A30009	0.28	2.0	ND	1	01/30/08	01/30/08	
1,1-Dichloroethene	EPA 624	8A30009	0.42	3.0	ND	1	01/30/08	01/30/08	
Ethylbenzene	EPA 624	8A30009	0.25	2.0	ND	1	01/30/08	01/30/08	
Tetrachloroethene	EPA 624	8A30009	0.32	2.0	ND	1	01/30/08	01/30/08	
Toluene	EPA 624	8A30009	0.36	2.0	ND	1	01/30/08	01/30/08	
1,1,1-Trichloroethane	EPA 624	8A30009	0.30	2.0	ND	1	01/30/08	01/30/08	
1,1,2-Trichloroethane	EPA 624	8A30009	0.30	2.0	ND	1	01/30/08	01/30/08	
Trichloroethene	EPA 624	8A30009	0.26	5.0	ND	1	01/30/08	01/30/08	
Trichlorofluoromethane	EPA 624	8A30009	0.34	5.0	ND	1	01/30/08	01/30/08	
Vinyl chloride	EPA 624	8A30009	0.30	5.0	ND	1	01/30/08	01/30/08	
Xylenes, Total	EPA 624	8A30009	0.90	4.0	ND	1	01/30/08	01/30/08	
Surrogate: Dibromofluoromethane (80-120%	6)				104 %				
Surrogate: Toluene-d8 (80-120%)					101 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				90 %				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 011

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200

Sampled: 01/27/08 Arcadia, CA 91007 Report Number: IRA2565 Received: 01/28/08

Attention: Bronwyn Kelly

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IRA2565-01 (Outfall 11 - Water)										
Reporting Units: ug/l										
Bis(2-ethylhexyl)phthalate	EPA 625	8A29057	1.6	4.7	ND	0.943	01/29/08	01/31/08		
2,4-Dinitrotoluene	EPA 625	8A29057	0.19	8.5	ND	0.943	01/29/08	01/31/08		
N-Nitrosodimethylamine	EPA 625	8A29057	0.094	7.5	ND	0.943	01/29/08	01/31/08		
Pentachlorophenol	EPA 625	8A29057	0.094	7.5	ND	0.943	01/29/08	01/31/08		
2,4,6-Trichlorophenol	EPA 625	8A29057	0.094	5.7	ND	0.943	01/29/08	01/31/08		
Surrogate: 2-Fluorophenol (30-120%)					72 %					
Surrogate: Phenol-d6 (35-120%)					78 %					
Surrogate: 2,4,6-Tribromophenol (40-120%)					120 %					
Surrogate: Nitrobenzene-d5 (45-120%)					78 %					
Surrogate: 2-Fluorobiphenyl (50-120%)					85 %					
Surrogate: Terphenyl-d14 (50-125%)					108 %					

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 011

Sampled: 01/27/08

Report Number: IRA2565

Received: 01/28/08

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2565-01 (Outfall 11 - Water Reporting Units: ug/l	r) - cont.								
alpha-BHC Surrogate: Decachlorobiphenyl (45-120%) Surrogate: Tetrachloro-m-xylene (35-115%)	EPA 608	8A29059	0.0024	0.0094	ND 83 % 72 %	0.943	01/29/08	01/29/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 011

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: IRA2565

Sampled: 01/27/08
Received: 01/28/08

Attention: Bronwyn Kelly

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2565-01 (Outfall 11 - '	Water) - cont.								
Reporting Units: ug/l									
Cadmium	EPA 200.8	8A28076	0.11	1.0	0.20	1	01/28/08	01/28/08	J
Copper	EPA 200.8	8A28076	0.75	2.0	5.3	1	01/28/08	01/28/08	
Lead	EPA 200.8	8A28076	0.30	1.0	3.9	1	01/28/08	01/28/08	
Selenium	EPA 200.8	8A28076	0.30	2.0	ND	1	01/28/08	01/28/08	
Zinc	EPA 200.8	8A28076	2.5	20	59	1	01/28/08	01/28/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 011

618 Michillinda Avenue, Suite 200 Sampled: 01/27/08

Arcadia, CA 91007 Report Number: IRA2565 Received: 01/28/08 Attention: Bronwyn Kelly

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2565-01 (Outfall 11 - W	/ater) - cont.								
Reporting Units: ug/l									
Cadmium	EPA 200.8-Diss	8A28070	0.11	1.0	ND	1	01/28/08	01/28/08	
Copper	EPA 200.8-Diss	8A28070	0.75	2.0	4.8	1	01/28/08	01/28/08	
Lead	EPA 200.8-Diss	8A28070	0.30	1.0	ND	1	01/28/08	01/28/08	
Selenium	EPA 200.8-Diss	8A28070	0.30	2.0	ND	1	01/28/08	01/28/08	
Zinc	EPA 200.8-Diss	8A28070	2.5	20	8.3	1	01/28/08	01/28/08	B, J

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IRA2565

Attention: Bronwyn Kelly

Project ID: Routine Outfall 011

Sampled: 01/27/08

Received: 01/28/08

INORGANICS

			, , , , , , ,	1200					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2565-01 (Outfall 11 - Wa	ter) - cont.								
Reporting Units: mg/l									
Hexane Extractable Material (Oil &	EPA 1664A	8B05016	1.3	4.8	1.6	1	02/05/08	02/05/08	J
Grease)	ED 4 050 0	0.4.004.4.0	0.20	0.50			04/00/00	04/20/00	
Ammonia-N (Distilled)	EPA 350.2	8A29110	0.30	0.50	ND	1	01/29/08	01/29/08	
Biochemical Oxygen Demand	EPA 405.1	8A28120	0.59	2.0	2.2	1	01/28/08	02/02/08	
Chloride	EPA 300.0	8A28061	0.25	0.50	4.8	1	01/28/08	01/28/08	
Nitrate-N	EPA 300.0	8A28061	0.060	0.11	3.5	1	01/28/08	01/28/08	
Nitrite-N	EPA 300.0	8A28061	0.090	0.15	ND	1	01/28/08	01/28/08	
Nitrate/Nitrite-N	EPA 300.0	8A28061	0.15	0.26	3.5	1	01/28/08	01/28/08	
Sulfate	EPA 300.0	8A28061	0.20	0.50	9.0	1	01/28/08	01/28/08	
Surfactants (MBAS)	SM5540-C	8A28127	0.044	0.10	0.058	1	01/28/08	01/28/08	J
Total Dissolved Solids	SM2540C	8A31077	10	10	100	1	01/31/08	01/31/08	
Total Suspended Solids	EPA 160.2	8A28115	10	10	43	1	01/28/08	01/28/08	
Sample ID: IRA2565-01 (Outfall 11 - Wa	ter)								
Reporting Units: ml/l/hr									
Total Settleable Solids	EPA 160.5	8A28129	0.10	0.10	ND	1	01/28/08	01/28/08	
Sample ID: IRA2565-01 (Outfall 11 - Wa Reporting Units: NTU	ter)								
Turbidity	EPA 180.1	8A29082	0.20	5.0	60	5	01/29/08	01/29/08	
Sample ID: IRA2565-01 (Outfall 11 - Wa	ter)								
Reporting Units: ug/l	ED 4 225 2	0.4.20127	2.2	5.0	NID	1	01/20/00	01/00/00	
Total Cyanide	EPA 335.2	8A28126	2.2	5.0	ND	1	01/28/08	01/28/08	
Perchlorate	EPA 314.0	8A28071	1.5	4.0	ND	1	01/28/08	01/28/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 011

Sampled: 01/27/08

Report Number: IRA2565

Received: 01/28/08

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IRA2565-01 (Outfall 11 - Water) - cont.										
Reporting Units: umhos/cm										
Specific Conductance	EPA 120.1	8A31072	1.0	1.0	120	1	01/31/08	01/31/08		

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 011

Sampled: 01/27/08

Report Number: IRA2565 Received: 01/28/08

Metals by EPA 200 Series Methods

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2565-01 (Outfall 11 - Water Reporting Units: ug/l	er) - cont.								
Mercury, Dissolved	EPA 245.1	W8A1034	0.050	0.20	ND	1	01/29/08	01/30/08	
Mercury, Total	EPA 245.1	W8A1034	0.050	0.20	ND	1	01/29/08	01/30/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 011

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007
Report Number: IRA2565
Sampled: 01/27/08
Received: 01/28/08

Arcadia, CA 91007 Report Number: IRA2565
Attention: Bronwyn Kelly

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 11 (IRA2565-01) - Water	er				
EPA 160.5	2	01/27/2008 09:00	01/28/2008 05:30	01/28/2008 18:30	01/28/2008 18:30
EPA 180.1	2	01/27/2008 09:00	01/28/2008 05:30	01/29/2008 09:00	01/29/2008 09:00
EPA 300.0	2	01/27/2008 09:00	01/28/2008 05:30	01/28/2008 09:00	01/28/2008 13:19
EPA 405.1	2	01/27/2008 09:00	01/28/2008 05:30	01/28/2008 16:43	02/02/2008 12:00
SM5540-C	2	01/27/2008 09:00	01/28/2008 05:30	01/28/2008 20:21	01/28/2008 21:22

Sampled: 01/27/08

Received: 01/28/08

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 011

Report Number: IRA2565

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•		Limit	IDL	Circs	Level	resure	, une	Limits	III D	Limit	Quantiers
Batch: 8A30009 Extracted: 01/30/08	<u>s</u>										
Blank Analyzed: 01/30/2008 (8A30009-B	BLK1)										
Benzene	ND	2.0	0.28	ug/l							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	0.50	ug/l							
Carbon tetrachloride	ND	5.0	0.28	ug/l							
Chloroform	ND	2.0	0.33	ug/l							
1,1-Dichloroethane	ND	2.0	0.27	ug/l							
1,2-Dichloroethane	ND	2.0	0.28	ug/l							
1,1-Dichloroethene	ND	3.0	0.42	ug/l							
Ethylbenzene	ND	2.0	0.25	ug/l							
Tetrachloroethene	ND	2.0	0.32	ug/l							
Toluene	ND	2.0	0.36	ug/l							
1,1,1-Trichloroethane	ND	2.0	0.30	ug/l							
1,1,2-Trichloroethane	ND	2.0	0.30	ug/l							
Trichloroethene	ND	5.0	0.26	ug/l							
Trichlorofluoromethane	ND	5.0	0.34	ug/l							
Vinyl chloride	ND	5.0	0.30	ug/l							
Xylenes, Total	ND	4.0	0.90	ug/l							
Surrogate: Dibromofluoromethane	26.8			ug/l	25.0		107	80-120			
Surrogate: Toluene-d8	25.3			ug/l	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	22.0			ug/l	25.0		88	80-120			
LCS Analyzed: 01/30/2008 (8A30009-BS	51)										
Benzene	25.2	2.0	0.28	ug/l	25.0		101	70-120			
Carbon tetrachloride	26.5	5.0	0.28	ug/l	25.0		106	65-140			
Chloroform	27.6	2.0	0.33	ug/l	25.0		110	70-130			
1,1-Dichloroethane	27.3	2.0	0.27	ug/l	25.0		109	70-125			
1,2-Dichloroethane	24.8	2.0	0.28	ug/l	25.0		99	60-140			
1,1-Dichloroethene	24.3	3.0	0.42	ug/l	25.0		97	70-125			
Ethylbenzene	25.7	2.0	0.25	ug/l	25.0		103	75-125			
Tetrachloroethene	21.8	2.0	0.32	ug/l	25.0		87	70-125			
Toluene	25.4	2.0	0.36	ug/l	25.0		101	70-120			
1,1,1-Trichloroethane	27.3	2.0	0.30	ug/l	25.0		109	65-135			
1,1,2-Trichloroethane	25.6	2.0	0.30	ug/l	25.0		102	70-125			
Trichloroethene	23.9	5.0	0.26	ug/l	25.0		96	70-125			
Trichlorofluoromethane	29.3	5.0	0.34	ug/l	25.0		117	65-145			
Vinyl chloride	25.3	5.0	0.30	ug/l	25.0		101	55-135			
Xylenes, Total	74.5	4.0	0.90	ug/l	75.0		99	70-125			
TD 44 . T .											

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 011

Sampled: 01/27/08 Received: 01/28/08

Report Number: IRA2565

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

A l 4-	D14	Reporting Limit	MDI	T	Spike	Source	0/ DEC	%REC	DDD	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8A30009 Extracted: 01/30/08	<u> </u>										
LCS Analyzed: 01/30/2008 (8A30009-BS	1)										
Surrogate: Dibromofluoromethane	27.0			//	25.0		108	80-120			
Surrogate: Dibromojtuorometnane Surrogate: Toluene-d8	27.0 25.7			ug/l	25.0		103	80-120 80-120			
Surrogate: 10tuene-us Surrogate: 4-Bromofluorobenzene	24.8			ug/l ug/l	25.0		103 99	80-120 80-120			
Surrogate: 4-Bromojtuorooenzene	24.0			ug/i	23.0		99	00-120			
Matrix Spike Analyzed: 01/30/2008 (8A3	80009-MS1)				Sou	rce: IRA	2565-01				
Benzene	24.1	2.0	0.28	ug/l	25.0	ND	96	65-125			
Carbon tetrachloride	25.1	5.0	0.28	ug/l	25.0	ND	100	65-140			
Chloroform	26.6	2.0	0.33	ug/l	25.0	ND	106	65-135			
1,1-Dichloroethane	25.8	2.0	0.27	ug/l	25.0	ND	103	65-130			
1,2-Dichloroethane	23.9	2.0	0.28	ug/l	25.0	ND	96	60-140			
1,1-Dichloroethene	22.0	3.0	0.42	ug/l	25.0	ND	88	60-130			
Ethylbenzene	25.1	2.0	0.25	ug/l	25.0	ND	100	65-130			
Tetrachloroethene	21.2	2.0	0.32	ug/l	25.0	ND	85	65-130			
Toluene	24.3	2.0	0.36	ug/l	25.0	ND	97	70-125			
1,1,1-Trichloroethane	26.0	2.0	0.30	ug/l	25.0	ND	104	65-140			
1,1,2-Trichloroethane	25.4	2.0	0.30	ug/l	25.0	ND	102	65-130			
Trichloroethene	23.3	5.0	0.26	ug/l	25.0	ND	93	65-125			
Trichlorofluoromethane	26.4	5.0	0.34	ug/l	25.0	ND	105	60-145			
Vinyl chloride	21.6	5.0	0.30	ug/l	25.0	ND	86	45-140			
Xylenes, Total	72.8	4.0	0.90	ug/l	75.0	ND	97	60-130			
Surrogate: Dibromofluoromethane	26.6			ug/l	25.0		106	80-120			
Surrogate: Toluene-d8	25.3			ug/l	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	24.9			ug/l	25.0		100	80-120			
Matrix Spike Dup Analyzed: 01/30/2008	(8A30009-M	SD1)			Sou	rce: IRA	2565-01				
Benzene	26.9	2.0	0.28	ug/l	25.0	ND	108	65-125	11	20	
Carbon tetrachloride	28.0	5.0	0.28	ug/l	25.0	ND	112	65-140	11	25	
Chloroform	29.2	2.0	0.33	ug/l	25.0	ND	117	65-135	9	20	
1,1-Dichloroethane	28.5	2.0	0.27	ug/l	25.0	ND	114	65-130	10	20	
1,2-Dichloroethane	26.4	2.0	0.28	ug/l	25.0	ND	106	60-140	10	20	
1,1-Dichloroethene	24.0	3.0	0.42	ug/l	25.0	ND	96	60-130	9	20	
Ethylbenzene	28.1	2.0	0.25	ug/l	25.0	ND	113	65-130	11	20	
Tetrachloroethene	23.8	2.0	0.32	ug/l	25.0	ND	95	65-130	12	20	
Toluene	27.1	2.0	0.36	ug/l	25.0	ND	109	70-125	11	20	
1,1,1-Trichloroethane	28.6	2.0	0.30	ug/l	25.0	ND	115	65-140	10	20	
1,1,2-Trichloroethane	28.0	2.0	0.30	ug/l	25.0	ND	112	65-130	10	25	
* *				3		. 12					

TestAmerica Irvine

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 011

Sampled: 01/27/08

Report Number: IRA2565

Received: 01/28/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8A30009 Extracted: 01/30/	08										
Matrix Spike Dup Analyzed: 01/30/20	08 (8A30009-M	ISD1)			Sou	rce: IRA2	2565-01				
Trichloroethene	25.8	5.0	0.26	ug/l	25.0	ND	103	65-125	10	20	
Trichlorofluoromethane	28.7	5.0	0.34	ug/l	25.0	ND	115	60-145	9	25	
Vinyl chloride	24.6	5.0	0.30	ug/l	25.0	ND	98	45-140	13	30	
Xylenes, Total	81.1	4.0	0.90	ug/l	75.0	ND	108	60-130	11	20	
Surrogate: Dibromofluoromethane	26.4			ug/l	25.0		106	80-120			
Surrogate: Toluene-d8	25.4			ug/l	25.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	24.2			ug/l	25.0		97	80-120			

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 011

Report Number: IRA2565

Sampled: 01/27/08 Received: 01/28/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 8A29057 Extracted: 01/29/0	R										
Butter 01125007 Extructed 01725700	<u> </u>										
Blank Analyzed: 01/31/2008 (8A29057-F	BLK1)										
Bis(2-ethylhexyl)phthalate	ND	5.0	1.7	ug/l							
2,4-Dinitrotoluene	ND	9.0	0.20	ug/l							
N-Nitrosodimethylamine	ND	8.0	0.10	ug/l							
Pentachlorophenol	ND	8.0	0.10	ug/l							
2,4,6-Trichlorophenol	ND	6.0	0.10	ug/l							
Surrogate: 2-Fluorophenol	14.9			ug/l	20.0		75	30-120			
Surrogate: Phenol-d6	16.3			ug/l	20.0		81	35-120			
Surrogate: 2,4,6-Tribromophenol	18.4			ug/l	20.0		92	40-120			
Surrogate: Nitrobenzene-d5	8.42			ug/l	10.0		84	45-120			
Surrogate: 2-Fluorobiphenyl	8.88			ug/l	10.0		89	50-120			
Surrogate: Terphenyl-d14	10.6			ug/l	10.0		106	50-125			
LCS Analyzed: 01/31/2008 (8A29057-BS	61)										MNR1
Bis(2-ethylhexyl)phthalate	11.3	5.0	1.7	ug/l	10.0		113	65-130			
2,4-Dinitrotoluene	11.2	9.0	0.20	ug/l	10.0		112	65-120			
N-Nitrosodimethylamine	8.42	8.0	0.10	ug/l	10.0		84	45-120			
Pentachlorophenol	8.90	8.0	0.10	ug/l	10.0		89	50-120			
2,4,6-Trichlorophenol	8.46	6.0	0.10	ug/l	10.0		85	55-120			
Surrogate: 2-Fluorophenol	15.6			ug/l	20.0		78	30-120			
Surrogate: Phenol-d6	17.1			ug/l	20.0		86	35-120			
Surrogate: 2,4,6-Tribromophenol	21.2			ug/l	20.0		106	40-120			
Surrogate: Nitrobenzene-d5	8.44			ug/l	10.0		84	45-120			
Surrogate: 2-Fluorobiphenyl	8.82			ug/l	10.0		88	50-120			
Surrogate: Terphenyl-d14	9.24			ug/l	10.0		92	50-125			
LCS Dup Analyzed: 01/31/2008 (8A2905	57-BSD1)										
Bis(2-ethylhexyl)phthalate	11.3	5.0	1.7	ug/l	10.0		113	65-130	1	20	
2,4-Dinitrotoluene	10.2	9.0	0.20	ug/l	10.0		102	65-120	9	20	
N-Nitrosodimethylamine	7.74	8.0	0.10	ug/l	10.0		77	45-120	8	20	J
Pentachlorophenol	8.24	8.0	0.10	ug/l	10.0		82	50-120	8	25	
2,4,6-Trichlorophenol	8.06	6.0	0.10	ug/l	10.0		81	55-120	5	30	
Surrogate: 2-Fluorophenol	14.4			ug/l	20.0		72	30-120			
Surrogate: Phenol-d6	16.3			ug/l	20.0		82	35-120			
Surrogate: 2,4,6-Tribromophenol	19.6			ug/l	20.0		98	40-120			
Surrogate: Nitrobenzene-d5	7.74			ug/l	10.0		77	45-120			
Surrogate: 2-Fluorobiphenyl	7.68			ug/l	10.0		77	50-120			

TestAmerica Irvine

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 011

Sampled: 01/27/08

Report Number: IRA2565

Received: 01/28/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8A29057 Extracted: 01/29/08	<u>!</u>										

LCS Dup Analyzed: 01/31/2008 (8A29057-BSD1)

Surrogate: Terphenyl-d14 8.94 ug/l 10.0 89 50-125

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 011

Sampled: 01/27/08

Report Number: IRA2565

Received: 01/28/08

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A29059 Extracted: 01/29/08	<u> </u>										
Blank Analyzed: 01/29/2008 (8A29059-B	LK1)										
alpha-BHC	ND	0.010	0.0025	ug/l							
Surrogate: Decachlorobiphenyl	0.417			ug/l	0.500		83	45-120			
Surrogate: Tetrachloro-m-xylene	0.376			ug/l	0.500		75	35-115			
LCS Analyzed: 01/29/2008 (8A29059-BS	1)										MNR1
alpha-BHC	0.450	0.010	0.0025	ug/l	0.500		90	45-115			
Surrogate: Decachlorobiphenyl	0.459			ug/l	0.500		92	45-120			
Surrogate: Tetrachloro-m-xylene	0.392			ug/l	0.500		78	35-115			
LCS Dup Analyzed: 01/29/2008 (8A2905	9-BSD1)										
alpha-BHC	0.341	0.010	0.0025	ug/l	0.500		68	45-115	28	30	
Surrogate: Decachlorobiphenyl	0.338			ug/l	0.500		68	45-120			
Surrogate: Tetrachloro-m-xylene	0.302			ug/l	0.500		60	35-115			

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 011

Report Number: IRA2565

Sampled: 01/27/08 Received: 01/28/08

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8A28076 Extracted: 01/28/08	}										
	_										
Blank Analyzed: 01/28/2008 (8A28076-B	SLK1)										
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Selenium	ND	2.0	0.30	ug/l							
Zinc	ND	20	2.5	ug/l							
LCS Analyzed: 01/28/2008 (8A28076-BS	1)										
Cadmium	82.2	1.0	0.11	ug/l	80.0		103	85-115			
Copper	83.7	2.0	0.75	ug/l	80.0		105	85-115			
Lead	82.0	1.0	0.30	ug/l	80.0		102	85-115			
Selenium	79.2	2.0	0.30	ug/l	80.0		99	85-115			
Zinc	82.3	20	2.5	ug/l	80.0		103	85-115			
Matrix Spike Analyzed: 01/28/2008 (8A2	28076-MS1)				Sou	ırce: IRA	2324-01				
Cadmium	81.0	1.0	0.11	ug/l	80.0	ND	101	70-130			
Copper	85.4	2.0	0.75	ug/l	80.0	2.97	103	70-130			
Lead	81.3	1.0	0.30	ug/l	80.0	0.484	101	70-130			
Selenium	76.6	2.0	0.30	ug/l	80.0	ND	96	70-130			
Zinc	82.0	20	2.5	ug/l	80.0	4.76	97	70-130			
Matrix Spike Analyzed: 01/28/2008 (8A2	28076-MS2)				Sou	rce: IRA	2432-04				
Cadmium	78.5	1.0	0.11	ug/l	80.0	ND	98	70-130			
Copper	80.3	2.0	0.75	ug/l	80.0	1.94	98	70-130			
Lead	80.4	1.0	0.30	ug/l	80.0	0.376	100	70-130			
Selenium	79.3	2.0	0.30	ug/l	80.0	3.49	95	70-130			
Zinc	74.2	20	2.5	ug/l	80.0	3.40	89	70-130			
Matrix Spike Dup Analyzed: 01/28/2008	(8A28076-M	SD1)			Sou	rce: IRA	2324-01				
Cadmium	80.8	1.0	0.11	ug/l	80.0	ND	101	70-130	0	20	
Copper	84.6	2.0	0.75	ug/l	80.0	2.97	102	70-130	1	20	
Lead	81.9	1.0	0.30	ug/l	80.0	0.484	102	70-130	1	20	
Selenium	75.7	2.0	0.30	ug/l	80.0	ND	95	70-130	1	20	
Zinc	81.1	20	2.5	ug/l	80.0	4.76	95	70-130	1	20	

TestAmerica Irvine

Joseph Doak Project Manager

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 011

oject ID. Routine Outlan 011

Report Number: IRA2565

Sampled: 01/27/08 Received: 01/28/08

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A28070 Extracted: 01/28/08	_										
Blank Analyzed: 01/28/2008 (8A28070-Bl	-										
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Selenium	ND	2.0	0.30	ug/l							
Zinc	2.87	20	2.5	ug/l							J
LCS Analyzed: 01/28/2008 (8A28070-BS1	l)										
Cadmium	89.6	1.0	0.11	ug/l	80.0		112	85-115			
Copper	82.3	2.0	0.75	ug/l	80.0		103	85-115			
Lead	89.0	1.0	0.30	ug/l	80.0		111	85-115			
Selenium	92.2	2.0	0.30	ug/l	80.0		115	85-115			
Zinc	83.7	20	2.5	ug/l	80.0		105	85-115			
Matrix Spike Analyzed: 01/28/2008 (8A2)	8070-MS1)				Sou	rce: IRA2	2565-01				
Cadmium	85.8	1.0	0.11	ug/l	80.0	ND	107	70-130			
Copper	86.7	2.0	0.75	ug/l	80.0	4.82	102	70-130			
Lead	88.0	1.0	0.30	ug/l	80.0	ND	110	70-130			
Selenium	82.5	2.0	0.30	ug/l	80.0	ND	103	70-130			
Zinc	92.4	20	2.5	ug/l	80.0	8.35	105	70-130			
Matrix Spike Dup Analyzed: 01/28/2008	(8A28070-M	SD1)			Sou	rce: IRA2	2565-01				
Cadmium	88.0	1.0	0.11	ug/l	80.0	ND	110	70-130	3	20	
Copper	88.0	2.0	0.75	ug/l	80.0	4.82	104	70-130	1	20	
Lead	90.0	1.0	0.30	ug/l	80.0	ND	113	70-130	2	20	
Selenium	84.6	2.0	0.30	ug/l	80.0	ND	106	70-130	2	20	
Zinc	93.3	20	2.5	ug/l	80.0	8.35	106	70-130	1	20	

TestAmerica Irvine

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 011

Sampled: 01/27/08

Report Number: IRA2565

Received: 01/28/08

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8A28061 Extracted: 01/28/08	_										
Blank Analyzed: 01/28/2008 (8A28061-B	LK1)										
Chloride	ND	0.50	0.25	mg/l							
Nitrate-N	ND	0.11	0.060	mg/l							
Nitrite-N	ND	0.15	0.090	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Sulfate	ND	0.50	0.20	mg/l							
LCS Analyzed: 01/28/2008 (8A28061-BS	1)										
Chloride	4.62	0.50	0.25	mg/l	5.00		92	90-110			M-3
Nitrate-N	1.14	0.11	0.060	mg/l	1.13		101	90-110			M-3
Nitrite-N	1.45	0.15	0.090	mg/l	1.52		95	90-110			
Sulfate	10.1	0.50	0.20	mg/l	10.0		101	90-110			M-3
Matrix Spike Analyzed: 01/28/2008 (8A2	8061-MS1)				Sou	rce: IRA	2565-01				
Chloride	9.49	0.50	0.25	mg/l	5.00	4.84	93	80-120			
Nitrate-N	4.60	0.11	0.060	mg/l	1.13	3.47	100	80-120			
Nitrite-N	1.58	0.15	0.090	mg/l	1.52	ND	104	80-120			
Sulfate	18.7	0.50	0.20	mg/l	10.0	8.97	97	80-120			
Matrix Spike Analyzed: 01/29/2008 (8A2	8061-MS2)				Sou	rce: IRA	2637-11				
Nitrite-N	3.37	0.15	0.090	mg/l	1.52	ND	222	80-120			M1
Matrix Spike Dup Analyzed: 01/28/2008	(8A28061-M	ISD1)			Sou	rce: IRA	2565-01				
Chloride	9.45	0.50	0.25	mg/l	5.00	4.84	92	80-120	1	20	
Nitrate-N	4.63	0.11	0.060	mg/l	1.13	3.47	103	80-120	1	20	
Nitrite-N	1.60	0.15	0.090	mg/l	1.52	ND	105	80-120	1	20	
Sulfate	18.7	0.50	0.20	mg/l	10.0	8.97	97	80-120	0	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 011

Sampled: 01/27/08

Report Number: IRA2565

Received: 01/28/08

METHOD BLANK/QC DATA

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A28071 Extracted: 01/28/08	_										
Blank Analyzed: 01/28/2008 (8A28071-Bl	LK1)										
Perchlorate	ND	4.0	1.5	ug/l							
LCS Analyzed: 01/28/2008 (8A28071-BS)	1)										
Perchlorate	54.0	4.0	1.5	ug/l	50.0		108	85-115			
Matrix Spike Analyzed: 01/28/2008 (8A2	8071-MS1)				Sou	rce: IRA2	2506-01				
Perchlorate	55.4	4.0	1.5	ug/l	50.0	ND	111	80-120			
Matrix Spike Dup Analyzed: 01/28/2008	(8A28071-M	(SD1)			Sou	rce: IRA2	2506-01				
Perchlorate	55.2	4.0	1.5	ug/l	50.0	ND	110	80-120	0	20	
Batch: 8A28115 Extracted: 01/28/08	-										
Blank Analyzed: 01/28/2008 (8A28115-Bl	LK1)										
Total Suspended Solids	ND	10	10	mg/l							
LCS Analyzed: 01/28/2008 (8A28115-BS)	1)										
Total Suspended Solids	970	10	10	mg/l	1000		97	85-115			
Duplicate Analyzed: 01/28/2008 (8A2811:	5-DUP1)				Sou	rce: IRA2	2560-07				
Total Suspended Solids	10.0	10	10	mg/l		11.0			10	10	
Batch: 8A28120 Extracted: 01/28/08	-										
Blank Analyzed: 02/02/2008 (8A28120-Bl	LK1)										
Biochemical Oxygen Demand	ND	2.0	0.59	mg/l							

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 011

Sampled: 01/27/08

Report Number: IRA2565 Received: 01/28/08

METHOD BLANK/QC DATA

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Oualifiers
Batch: 8A28120 Extracted: 01/28/08											
LCS Analyzed: 02/02/2008 (8A28120-BS) Biochemical Oxygen Demand	1) 183	100	30	mg/l	198		92	85-115			
, ,		100	30	IIIg/I	190		92	65-115			
LCS Dup Analyzed: 02/02/2008 (8A28120	,	100	20	Л	100		02	05 115	1	20	
Biochemical Oxygen Demand	184	100	30	mg/l	198		93	85-115	1	20	
Batch: 8A28126 Extracted: 01/28/08	_										
Blank Analyzed: 01/28/2008 (8A28126-B	LK1)										
Total Cyanide	ND	5.0	2.2	ug/l							
LCS Analyzed: 01/28/2008 (8A28126-BS)	n										
Total Cyanide	197	5.0	2.2	ug/l	200		99	90-110			
Matrix Spike Analyzed: 01/28/2008 (8A2	8126-MS1)				Som	rce: IRA	2156-01				
Total Cyanide	203	5.0	2.2	ug/l	200	ND	101	70-115			
Matrix Spike Dup Analyzed: 01/28/2008	(8A28126-MS	D1)			Sou	rce: IRA	2156-01				
Total Cyanide	199	5.0	2.2	ug/l	200	ND	99	70-115	2	15	
Batch: 8A28127 Extracted: 01/28/08											
Dattii. 0A2012/ Extracted. 01/20/00	_										
Blank Analyzed: 01/28/2008 (8A28127-B	LK1)										
Surfactants (MBAS)	ND	0.10	0.044	mg/l							
LCS Analyzed: 01/28/2008 (8A28127-BS	1)										
Surfactants (MBAS)	0.258	0.10	0.044	mg/l	0.250		103	90-110			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 011

Sampled: 01/27/08

Report Number: IRA2565

Received: 01/28/08

METHOD BLANK/QC DATA

	Reporting			Spike	Source		%REC		RPD	Data
Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
_										
8127-MS1)				Sou	rce: IRA	2565-01				
0.317	0.10	0.044	mg/l	0.250	0.0583	104	50-125			
(8A28127-MS	D1)			Sou	rce: IRA2	2565-01				
0.312	0.10	0.044	mg/l	0.250	0.0583	102	50-125	1	20	
= '										
LK1)										
0.110	1.0	0.040	NTU							J
2-DUP1)				Sou	rce: IRA	2565-01				
64.0	5.0	0.20	NTU		60.0			6	20	
_										
LK1)										
ND	0.50	0.30	mg/l							
1)										
10.1	0.50	0.30	mg/l	10.0		101	80-115			
9110-MS1)				Sou	rce: IRA2	2355-01				
10.4	0.50	0.30	mg/l	10.0	ND	104	70-120			
(8A29110_MS	(D1)			Sou	rce· IR A	2355_01				
10.6	,	0.30	ma/l				70-120	3	15	
	- 8127-MS1) 0.317 (8A28127-MS 0.312 - LK1) 0.110 2-DUP1) 64.0 - LK1) ND 1) 10.1 9110-MS1) 10.4 (8A29110-MS	Result Limit - 8127-MS1) 0.317 0.10 (8A28127-MSD1) 0.312 0.10 - LK1) 0.110 1.0 2-DUP1) 64.0 5.0 - LK1) ND 0.50 1) 10.1 0.50 9110-MS1) 10.4 0.50 (8A29110-MSD1)	Result Limit MDL 8127-MS1) 0.317 0.10 0.044 (8A28127-MSD1) 0.312 0.10 0.044	Result Limit MDL Units 8127-MS1) 0.317 0.10 0.044 mg/l (8A28127-MSD1) 0.312 0.10 0.044 mg/l LK1) 0.110 1.0 0.040 NTU 2-DUP1) 64.0 5.0 0.20 NTU LK1) ND 0.50 0.30 mg/l 1) 10.1 0.50 0.30 mg/l 9110-MS1) 10.4 0.50 0.30 mg/l (8A29110-MSD1) 0.50 0.30 mg/l	Result Limit MDL Units Level 8127-MS1) Sou 0.317 0.10 0.044 mg/l 0.250 (8A28127-MSD1) Sou 0.312 0.10 0.044 mg/l 0.250 LK1) 0.110 1.0 0.040 NTU 2-DUP1) Sou 64.0 5.0 0.20 NTU LK1) ND 0.50 0.30 mg/l 10.0 LK1) ND 0.50 0.30 mg/l 10.0 9110-MS1) Sou 0.30 mg/l 10.0 (8A29110-MSD1) Sou Sou Sou	Result Limit MDL Units Level Result 8127-MS1) Source: IRA2 0.317 0.10 0.044 mg/l 0.250 0.0583 (8A28127-MSD1) Source: IRA2 0.312 0.10 0.044 mg/l 0.250 0.0583 LK1) 0.110 1.0 0.040 NTU Source: IRA2 2-DUP1) Source: IRA2 64.0 5.0 0.20 NTU 60.0 LK1) ND 0.50 0.30 mg/l 10.0 Source: IRA2 1) 10.1 0.50 0.30 mg/l 10.0 ND 9110-MS1) Source: IRA2 0.50 0.30 mg/l 10.0 ND (8A29110-MSD1) Source: IRA2 0.50	Result Limit MDL Units Level Result %REC 8127-MS1) Source: IRA2565-01 0.317 0.10 0.044 mg/l 0.250 0.0583 104 (8A28127-MSD1) Source: IRA2565-01 0.312 0.10 0.044 mg/l 0.250 0.0583 102 LK1) 0.110 1.0 0.040 NTU Source: IRA2565-01 64.0 5.0 0.20 NTU 60.0 LK1) ND 0.50 0.30 mg/l 10 10.1 0.50 0.30 mg/l 10.4 0.50 0.30 mg/l 10.0 ND 104 (8A29110-MSD1) Source: IRA2355-01	Result Limit MDL Units Level Result %REC Limits	Result	Result Limit MDL Units Level Result %REC Limits RPD Limit 8127-MS1) Source: IRA2565-01 Source: IRA2565-01 Source: IRA2565-01 104 50-125 1 20 (8A28127-MSD1) Source: IRA2565-01 102 50-125 1 20 LK1) 0.110 1.0 0.040 NTU Source: IRA2565-01 6 20 LK1) ND 0.50 0.30 mg/l 10.0 101 80-115 10.1 0.50 0.30 mg/l 10.0 ND 104 70-120 10.4 0.50 0.30 mg/l 10.0 ND 104 70-120 (8A29110-MSD1) Source: IRA2355-01

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 011

Report Number: IRA2565

Sampled: 01/27/08 Received: 01/28/08

METHOD BLANK/QC DATA

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8A31072 Extracted: 01/31/08	_										
Duplicate Analyzed: 01/31/2008 (8A3107)	-				Sou	rce: IRA	2944-01				
Specific Conductance	128	1.0	1.0	umhos/cm		128			0	5	
Batch: 8A31077 Extracted: 01/31/08	_										
Blank Analyzed: 01/31/2008 (8A31077-B	LK1)										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 01/31/2008 (8A31077-BS	1)										
Total Dissolved Solids	1000	10	10	mg/l	1000		100	90-110			
Duplicate Analyzed: 01/31/2008 (8A3107	7-DUP1)				Sou	rce: IRA	2619-03				
Total Dissolved Solids	ND	10	10	mg/l		ND				10	
Batch: 8B05016 Extracted: 02/05/08	_										
Blank Analyzed: 02/05/2008 (8B05016-B	LK1)										
Hexane Extractable Material (Oil &	ND	5.0	1.4	mg/l							
Grease)											
LCS Analyzed: 02/05/2008 (8B05016-BS)	1)										MNR1
Hexane Extractable Material (Oil & Grease)	19.9	5.0	1.4	mg/l	20.2		99	78-114			
LCS Dup Analyzed: 02/05/2008 (8B05010	6-BSD1)										
Hexane Extractable Material (Oil & Grease)	20.3	5.0	1.4	mg/l	20.2		100	78-114	2	11	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 011

Sampled: 01/27/08

Report Number: IRA2565

Received: 01/28/08

METHOD BLANK/QC DATA

Metals by EPA 200 Series Methods

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Oualifiers
		Limit	MDL	Cints	Level	Result	70KEC	Limits	KI D	Limit	Quantiters
Batch: W8A1034 Extracted: 01/29/0	<u> </u>										
Blank Analyzed: 01/30/2008 (W8A1034-	BLK1)										
Mercury, Dissolved	ND	0.20	0.050	ug/l							
Mercury, Total	ND	0.20	0.050	ug/l							
LCS Analyzed: 01/30/2008 (W8A1034-B	S1)										
Mercury, Dissolved	0.986	0.20	0.050	ug/l	1.00		99	85-115			
Mercury, Total	0.986	0.20	0.050	ug/l	1.00		99	85-115			
Matrix Spike Analyzed: 01/30/2008 (W8	A1034-MS1)				Sou	rce: IRA	2565-01				
Mercury, Dissolved	2.06	0.40	0.10	ug/l	2.00	ND	103	70-130			
Mercury, Total	2.06	0.40	0.10	ug/l	2.00	ND	103	70-130			
Matrix Spike Dup Analyzed: 01/30/2008	(W8A1034-M	ISD1)			Sou	rce: IRA	2565-01				
Mercury, Dissolved	2.02	0.40	0.10	ug/l	2.00	ND	101	70-130	2	20	
Mercury, Total	2.02	0.40	0.10	ug/l	2.00	ND	101	70-130	2	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 011

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007
Report Number: IRA2565
Sampled: 01/27/08
Received: 01/28/08

Attention: Bronwyn Kelly

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNaabaa	A or a books	Ameliate	T124	D14	MDI	Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
IRA2565-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	1.63	4.8	10
IRA2565-01	608-Pest Boeing 001/002 Q (LL)	alpha-BHC	ug/l	0	0.0094	0.01
IRA2565-01	625-Boeing 001/002 Q-LL	2,4,6-Trichlorophenol	ug/l	0	5.7	6.5
IRA2565-01	625-Boeing 001/002 Q-LL	2,4-Dinitrotoluene	ug/l	0	8.5	9.1
IRA2565-01	625-Boeing 001/002 Q-LL	Bis(2-ethylhexyl)phthalate	ug/l	1.40	4.7	4
IRA2565-01	625-Boeing 001/002 Q-LL	N-Nitrosodimethylamine	ug/l	0	7.5	8.1
IRA2565-01	625-Boeing 001/002 Q-LL	Pentachlorophenol	ug/l	0	7.5	8.2
IRA2565-01	Ammonia-N, Titr (350.2) w/dist	Ammonia-N (Distilled)	mg/l	0.28	0.50	2
IRA2565-01	BOD	Biochemical Oxygen Demand	mg/l	2.15	2.0	20
IRA2565-01	Cadmium-200.8	Cadmium	ug/l	0.20	1.0	2
IRA2565-01	Chloride - 300.0	Chloride	mg/l	4.84	0.50	150
IRA2565-01	Copper-200.8	Copper	ug/l	5.34	2.0	7.1
IRA2565-01	Cyanide-335.2 5ppb	Total Cyanide	ug/l	-1	5.0	5
IRA2565-01	Hg_w 245.1	Mercury, Total	ug/l	0.029	0.20	0.2
IRA2565-01	Lead-200.8	Lead	ug/l	3.88	1.0	2.6
IRA2565-01	MBAS - SM5540-C	Surfactants (MBAS)	mg/l	0.058	0.10	0.5
IRA2565-01	Nitrate-N, 300.0	Nitrate-N	mg/l	3.47	0.11	8
IRA2565-01	Nitrite-N, 300.0	Nitrite-N	mg/l	0	0.15	1
IRA2565-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	3.47	0.26	8
IRA2565-01	Perchlorate 314.0-DEFAULT	Perchlorate	ug/l	0	4.0	6
IRA2565-01	Selenium-200.8	Selenium	ug/l	0.24	2.0	4.1
IRA2565-01	Settleable Solids	Total Settleable Solids	ml/l/hr	0	0.10	0.1
IRA2565-01	Sulfate-300.0	Sulfate	mg/l	8.97	0.50	300
IRA2565-01	TDS - SM 2540C	Total Dissolved Solids	mg/l	100	10	950
IRA2565-01	TSS - EPA 160.2	Total Suspended Solids	mg/l	43	10	15
IRA2565-01	Zinc-200.8	Zinc	ug/l	59	20	54

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit

TestAmerica Irvine

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 011

618 Michillinda Avenue, Suite 200 Sampled: 01/27/08

Arcadia, CA 91007 Report Number: IRA2565 Received: 01/28/08

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

M1 The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).

M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was

accepted based on acceptable recovery in the Blank Spike (LCS).

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Ouplicate.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 011

Sampled: 01/27/08

Report Number: IRA2565

Received: 01/28/08

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EPA 120.1	Water	X	X
EPA 160.2	Water	X	X
EPA 160.5	Water	X	X
EPA 1664A	Water		
EPA 180.1	Water	X	X
EPA 200.8-Diss	Water	X	X
EPA 200.8	Water	X	X
EPA 300.0	Water	X	X
EPA 314.0	Water	X	X
EPA 335.2	Water	X	X
EPA 350.2	Water		X
EPA 405.1	Water	X	X
EPA 608	Water	X	X
EPA 624	Water	X	X
EPA 625	Water	X	X
SM2540C	Water	X	
SM5540-C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chrnic

Samples: IRA2565-01

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 011

618 Michillinda Avenue, Suite 200 Sampled: 01/27/08

Arcadia, CA 91007 Report Number: IRA2565 Received: 01/28/08
Attention: Bronwyn Kelly

Eberline Services - SUB

2030 Wright Avenue - Richmond, CA 94804 Analysis Performed: Gamma Spec

Samples: IRA2565-01

Analysis Performed: Gross Alpha

Samples: IRA2565-01

Analysis Performed: Gross Beta

Samples: IRA2565-01

Analysis Performed: Radium, Combined

Samples: IRA2565-01

Analysis Performed: Strontium 90

Samples: IRA2565-01

Analysis Performed: Tritium Samples: IRA2565-01

Analysis Performed: Uranium, Combined

Samples: IRA2565-01

Vista Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762

Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IRA2565-01

Weck Laboratories, Inc

14859 E. Clark Avenue - City of Industry, CA 91745

Method Performed: EPA 245.1 Samples: IRA2565-01

TestAmerica Irvine

Test A	meric	est America version 12/20/07	12/20/		CHAIN OF		CUSTODY FORM	A Y \ Y F	-0R	Σ			П	X	X	JRA2565	5 Page 1 of
Client Name/Address	ne/Addr	ess.		Project:	מומות			-	1			AN	ALYS	ANALYSIS REOVIRED	OUIF	(ED)	
MIVVIT-AFCAUIA 618 Michillinda Ave Arcadia, CA 91007	rcadia inda Avel A 91007	IVIVVIT-AI Cadia 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007	003	Routine Outfall 011	fall 011		SJE	its)	(M				<u> </u>	- 			Field readings.
Test Americ	sa Contac	Test America Contact: Joseph Doak	oak				stęM : n∑`;e	əuəbi	∃H-⊅		(S	'N-2			(halate	Temp = /C 6 5 4
Project Ma	anager	Project Manager. Bronwyn Kelly	Kelly	Phone Number	er:	Management of the state of the	elder S',b;		991)		ABN					դyd(խ	9 L = Hd
Sampler:				(526) 568-6515 (626) 568-6515	ان ت		l R∉covei ob, Hg, C	o2 əldsə ls bns) 🛭	Grease	stot) əbir ———— gəb 0:3) _ə	octants (M	SO4, NO3 hlorate ✓	te-N, Nitr dity, TDS	luctivity .	Onia-N (3	TCP, 2,4 ethylhexy P:CP (S'	Time of readings =
Sample Description	Sample Matrix	Container	# of Cont.	Sampling Date/Time	Preservative	Bottle #	Fotal 1,'uO		& IiO		shus			Cono		-S)siB	Comments
Outfall 011	3	1L Poly	-	127/8 0900	HNO3	14	×						-	+			24 TAT
Outfall 011 Dup	Α	1L Poly	-	11/8 0900	HNO3	18	×						-				24 TAT
Outfall 011	Α	1L Poly	-	1/27/8 10500	None	2		×							-		
Outfall 011	≥	1L Amber	2	127/8 0900	None	3A, 3B		×									
Outfall 011	Ν	1L Amber	2	427/8 0900	호	4A, 4B			×			\mid					
Outfall 011	8	500 ml Poly	-	00 8/cz/	NaOH	5			×						<u> </u>		
Outfall 011	W	1L Poly	-	Y27/8 0900	None	9		<u> </u>		×					-		
Outfall 011	Μ	500 ml Poly	2	0060 8/12/	None	7A, 7B					×						
Outfall 011	Μ	500 ml Poly	2	Y27/8 0900	None	8A, 8B						×					24 TAT
Outfall 011	Μ	500 ml Poly	-	0060 8/cz/	None	თ							×				24 TAT
Outfall 011	Μ	500 ml Poly	2	9069 8/12/	None	10A, 10B				-				×			
Outfall 011	M	500 ml Poly	-	0060 8/12/	H ₂ SO ₄	-		ļ		-				×			
Outfall 011	×	1L Amber	2	3/2/	None	12A, 12B						-	-	-	×		
Outfall 011	3	1L Amber	2	127/8 0900 None	None	13A, 13B										×	
Relinquished By	1By premarkal	لمانجد	ठ		2002	Received By				Date	Date/Fime)	ŗ	_	32/	Tum 24 H	Turn around Time: 24 Hours	: (check) 5 Days
Relinquished By	J. B.			Date/Time:		Received By	gl.	3 /	1	X #	Date/Time:	Q0./	۵		48 H	48 Hours	10 Days
X		7	7	80-12-1	1535	Clerk	E C			~					72 H	72 Hours	Normal
Relinquished By	r By)	Date/Time:		Received By		$\backslash\!\!\!/$	\bowtie	Date.	Date/Time:				Sam	Sample Integrity: (check) Intact On Ice:	(check) On Ice:
				3											-		

	O	mujpey (901.0	ANALYSIS	ZHQUIZHU	
11 5 11 X	A	226 mu 137 (901.0			
9 Phone Nu (626) 568- Fax Numb (626) 568- (626) 568- (626) 568- (626) 568- (72) 8 9900	Cocs 624 + xylen Gross Alpha(900.0) Beta(900.0), Tritiun		etals: Cu		
(626) 568- Fax Numb (626) 568- (626) 568- Sampling 11 Date/Time (22) 0400	Cross 624 + xy Gross Alpha(90 Beta(900.0), Tri	mu aniins:			
Container # of Sampling Type Cont Date/Time VOAs 5 May 6400	× VOCs 624	Radii 903.1) U ,(0 -40, C			-
Container # of Sampling Type Cont. Date/Time VOAs 5 /27/8 0400 2.5 Gal Cube 1 /22/8 0400	OV × one	bəriidn 9 10 0.6 ∟ <u>4</u> 09)	al Diss Hg, C		
VOAs 5 1/2/8 0900		000) 822 800) 900)		<u></u>	Comments
8/c1/ 1					
45.57	15A 15B	×		Unfiltered	Unfiltered and unpreserved analysis
Cube 1 278 Mone	16	×		Only test event	Only test if second rain event of the year
1L Poly 1 1/2/8 Cyco None	17		×	Filter w/in 24hrs of lab	24hrs of receipt at lab
VOAs 3 1/2/180900 HCI	18A, 18B, X 18C				
-					
Date/Time: 04/27/168 1200	Received By	Date/Time:	0021	Turn around Time: (check) 24 Hours 5 Days	
•	To the second	for the	80-22-	48 Hours 10 Days	
Date/Time:	Received By	Date/Time:		72 Hours Normal Sample Integrity: (check) Intact On Ice:	
Date/Time:	Received By	Date/Time:			

LABORATORY REPORT

Date:

February 5, 2008

Client:

TestAmerica - Irvine

17461 Derian Ave., Suite 100

Irvine, CA 92614 Attn: Joseph Doak Aquatic Testing Laboratories

"dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003

(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.:

A-08012801-001

Sample ID.:

IRA2565-01 (Outfall 011)

Sample Control:

The sample was received by ATL within the recommended hold time, in a chilled state, and with the chain of custody record attached. Testing was conducted on only

one sample per client instruction.

Date Sampled:

01/27/08

Date Received:

01/28/08

Temp. Received:

 $2^{\circ}C$

Chlorine (TRC):

0.0 mg/l

Date Tested:

01/28/08 to 02/04/08

Sample Analysis:

The following analyses were performed on your sample:

Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

Result Summary:

Chronic:

NOEC

TUc

Ceriodaphnia Survival:

Ceriodaphnia Reproduction:

100 % 100 % 1.0

Quality Control:

Reviewed and approved by:

Joseph A. LeMay

Laboratory Director

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

Lab No.: A-08012801-001

Client/ID: Test America – IRA2565-01 (Outfall 011)

Date Tested: 01/28/08 to 02/04/08

TEST SUMMARY

Test type: Daily static-renewal.

Species: Ceriodaphnia dubia.

Age: < 24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 +/- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

OA/OC Batch No.: RT-080106.

Endpoints: Survival and Reproduction.

Source: In-laboratory culture.

Food: .1 ml YTC, algae per day.

Test solution volume: 15 ml. Number of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 7 days.

Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Survival	Mean Number of Young Per Female
Control	100%	27.9
100% Sample	100%	30.0
Sample not statistically	significantly less than Co	ontrol for either endpoint.

CHRONIC TOXICITY

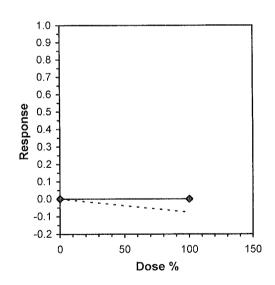
Survival NOEC	100%
Survival TUc	1.0
Reproduction NOEC	100%
Reproduction TUc	1.0

QA/QC TEST ACCEPTABILITY

Parameter	Result
Control survival ≥80%	Pass (100% survival)
≥15 young per surviving control female	Pass (27.9 young)
≥60% surviving controls had 3 broods	Pass (100% with 3 broods)
PMSD < 47% for reproduction; if > 47% and no toxicity at IWC, the test must be repeated	Pass (PMSD = 5.7%)
Statistically significantly different concentrations relative difference > 13%	Pass (no concentration significantly different)
Concentration response relationship acceptable	Pass (no significant response at concentration tested)

			Cerioda	phnia Sur	vival and	Reprodu	ction Tes	t-7 Day S	urvival		
Start Date:	1/28/2008	15:00	Test ID:	8012801	,,,	(Sample ID	•	Outfall 011		
End Date:	2/4/2008 1		Lab ID: (ρυ.	EFF2-Indu		
Sample Date:	1/27/2008	$0.00 \cdot 0.00$	Protocol: F	EWCH 4TI	H-FPA-82	1-R-02-0 T	Test Speci	ies:	CD-Ceriod	laphnia dubia	
Sample Date.	1/2/1/2000	09.00	1010001. 1	VV O11 711						•	
Comments:	1/2//2000	09.00	1 1010001. 1	VVOIT-11							
•	1/2//2000	2	3	4	5	6	7	8	9	10	
Comments:	1	2 1.0000	3 1.0000	4 1.0000	5		7	8	9 1.0000		

				Not			Fisher's	1-Tailed	Isot	onic
Conc-%	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Mean	N-Mean
D-Control	1.0000	1.0000	0	10	10	10			1.0000	1.0000
100	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000


Hypothesis	Test (1-tail, (0.05)	NOEC	LOEC	ChV	TU				
Fisher's Exa	ct Test	*	100	>100		1				
Treatments :	vs D-Control									
						lation (20	0 Resamples)			
Point	%	SD	95%	CL	Skew					
IC05	>100									
IC10	>100									
IC15	>100						1.0			
IC20	>100						0.9			
IC25	>100						4			
IC40	>100						0.8 -			
IC50	>100	,	· with the state of the state o				0.7			
							a 0 6 1			
							Σ ο.ο]			
							8 0.5 -			
							Response 0.6 0.5 0.4 0.4 0.4			
							0.3			
							0.2 -			
							0.1			
							4			
							0.0			
							0	50	100	150
								Dos	se %	

			Cerioda	phnia Su	rvival and	Reprodu	ction Tes	t-Reproc	luction	
Start Date:	1/28/2008	15:00		8012801			Sample ID	•	Outfall 011	
End Date:	2/4/2008 1		Lab ID:					p	EFF2-Indu	
Sample Date:	1/27/2008	09:00	Protocol:	FWCH 4T	H-EPA-82	1-R-02-0	Test Speci	ies:	CD-Ceriod	aphnia dubia
Comments:										
Conc-%	1	2	3	4	5	6	7	8	9	10
D-Control	28.000	26.000	29.000	27.000	28.000	27.000	28.000	30.000	30.000	26.000

				Transforn	n: Untrans	sformed			1-Tailed		Isote	onic
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
D-Control	27.900	1.0000	27.900	26.000	30.000	5.194	10				28.950	1.0000
100	30.000	1.0753	30.000	26.000	35.000	8.315	10	-2.302	1.734	1.582	28.950	1.0000

Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.05)	0.96092		0.905		0.43843	1.10812
F-Test indicates equal variances (p = 0.12)	2.96296		6.54109			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates no significant differences	1.58192	0.0567	22.05	4.16111	0.03349	1, 18
Treatments vs D-Control						
Linear Interpola	tion (200 Resam	ples)				

Skew SD 95% CL Point % IC05 >100 IC10 >100 IC15 >100 IC20 >100 IC25 >100 >100 IC40 IC50 >100

CERIODAPHNIA DUBIA CHRONIC BIOASSAY EPA METHOD 1002.0 Raw Data Sheet

Lab No.: A-08012801-001

Client ID: TestAmerica - IRA2565-01 (Outfall 011) Start Date: 01/28/2008 DAY 1 DAY 2 DAY 3 DAY 4 DAY 5 DAY 6 DAY 7 0 hr 24hr 0 hr 24hr 0 hr 24hr 0 hr 0 hr 24hr 24hr 0 hr 24hr 0 hr 24hr Analyst Initials: Time of Readings: SUU DO pН 8.0 フフ Control Temp DO 100% pΗ 24.5 Temp **Additional Parameters** Control 100% Sample Conductivity (umohms) 10 ĺ 7 Alkalinity (mg/l CaCO₃) 24 Hardness (mg/l CaCO₃) 48 40-Ammonia (mg/l NH3-N) Source of Neonates Replicate: В C D A Brood ID: GE Number of Young Produced Total Live No. Live Analyst Sample Day Young Adults A В \mathbf{C} E Initials H J 0 10 0 2 0 10 3 3 5 if 3 3 0 4 ゝ 0 Control 5 55 6 10 7 7 9 6 28 つフ Total G 28 30 30 26 279 0 0 1 C 2 3 G 4 2 0 100% 5 0 6 10 7 7 0 Total 30 7-8 28 300

Circled fourth brood not used in statistical analysis.

^{7&}lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

SUBCONTRACT ORDER

TestAmerica Irvine

IRA2565

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Aquatic Testing Laboratories-SUB 4350 Transport Street, Unit 107

Ventura, CA 93003

Phone: (805) 650-0546

Fax: (805) 650-0756

Project Location: California

Receipt Temperature:

Ice: Y N

Analysis	Units	Due	Expires	Comments
Sample ID: IRA2565-01	Water		Sampled: 01/27/08 09:00	
Bioassay-7 dy Chrnic	N/A	02/06/08	01/28/08 21:00	Cerio, EPA/821-R02-013, Sub to Aquatic testing
Containers Supplied:				
1 gal Poly (AC)				

Refeased By Date/Time

Released By Date/Vime

Received By
Received By

Date/Time

Page 1 of 1

110000 000

NPDES - 2778

REFERENCE TOXICANT DATA

CERIODAPHNIA CHRONIC BIOASSAY

EPA METHOD 1002.0 REFERENCE TOXICANT - NaCl

QA/QC Batch No.: RT-080106 Date Tested: 01/06/08 to 01/12/08

TEST SUMMARY

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*.

Age: <24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 +/- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

Reference Toxicant: Sodium chloride (NaCl).

Endpoints: Survival and Reproduction.

Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 20 ml.

Number of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 6 days.

Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Surv	ival	Mean Numb Young Per F	
Control	100%		20.5	
0.25 g/l	100%		19.5	
0.5 g/l	100%		19.5	
1.0 g/l	100%		14.0	*
2.0 g/l	80%		3.2	*
4.0 g/l	0%	*	0	**

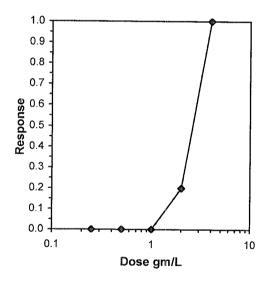
^{*} Statistically significantly less than control at P=0.05 level ** Reproduction data from concentrations greater than survival NOEC are

CHRONIC TOXICITY

Survival LC50	2.5 g/l
Reproduction IC25	0.88 g/l

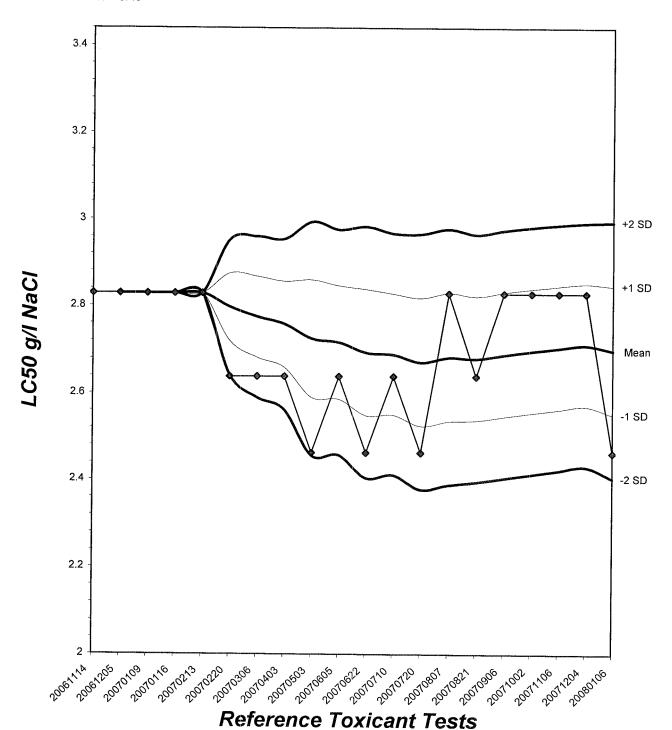
QA/QC TEST ACCEPTABILITY

Parameter	Result
Control survival ≥80%	Pass (100% Survival)
≥15 young per surviving control female	Pass (20.5 young)
≥60% surviving controls had 3 broods	Pass (90% with 3 broods)
PMSD <47% for reproduction	Pass (PMSD = 19.1%)
Stat. sig. diff. conc. relative difference > 13%	Pass (Stat. sig. diff. conc. = 31.7%)
Concentration response relationship acceptable	Pass (Response curve normal)


excluded from statistical analysis.

			Cerioda	aphnia Su	rvival and	Reprod	uction Tes	st-Surviv	al Day 6	
Start Date:	1/6/2008 1	3:00		RT-08010			Sample ID		REF-Ref Toxicant	
End Date:			Lab ID:	CAATL-Ad	quatic Tes	ting Labs				dium chloride
Sample Date: Comments:				FWCH-EF		02-013	Test Spec			laphnia dubia
Conc-gm/L	1	2	3	4	5	6	7	8	9	10
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0.25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0.5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000
4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

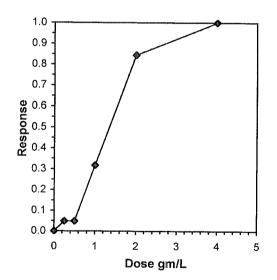
				Not			Fisher's	1-Tailed	Number	Total
Conc-gm/L	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Resp	Number
D-Control	1.0000	1.0000	0	10	10	10				10
0.25	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
0.5	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
1	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
2	0.8000	0.8000	2	8	10	10	0.2368	0.0500	2	10
4	0.0000	0.0000	10	0	10	10	0.2000	0.0000	10	10


Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	
Fisher's Exact Test	2	4	2.82843	************	
Treatments vs D-Control					

Trim Level	EC50	95%	CL	Trimmed Spearman-Karber
0.0%	2.4623	2.0663	2.9342	
5.0%	2.5108	2.0545	3.0683	
10.0%	2.5519	1.9976	3.2599	1.0 —
20.0%	2.5937	2.2616	2.9745	-
Auto-0.0%	2.4623	2.0663	2.9342	0.9

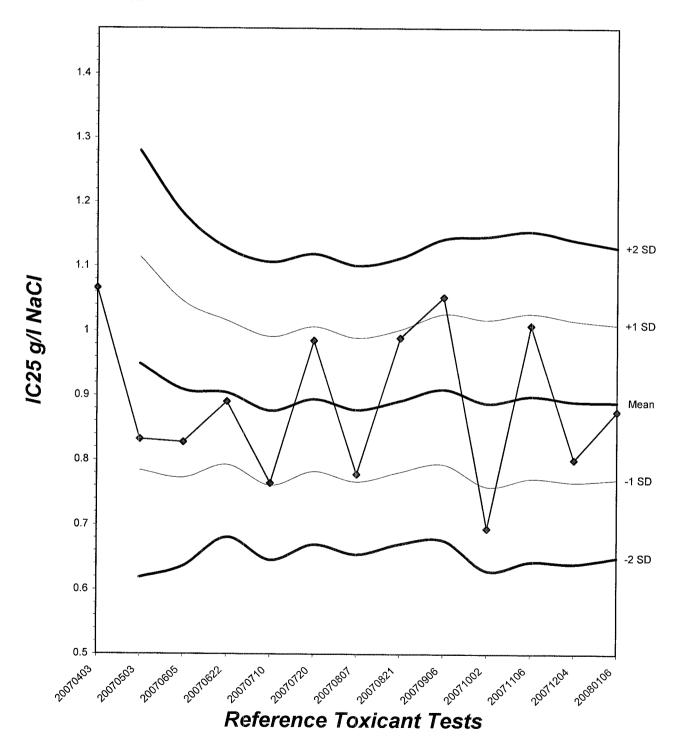
Ceriodaphnia dubia Chronic Survival Laboratory Control Chart

CV% = 5.46



			Ceriod	aphnia Su	rvival and	Reprodu	uction Tes	st-Repro	duction		
Start Date:	1/6/2008	13:00	Test ID:	RT-08010	6c		Sample ID		REF-Ref Toxicant		
End Date:			Lab ID:	0.4.77					dium chloride		
Sample Date: Comments:	1/6/2008			FWCH-EF		-	Test Spec	•		laphnia dubia	
Conc-gm/L	1	2	3	4	5	6	7	8	9	10	
D-Control	23.000	11.000	21.000	21.000	23.000	20.000	19.000	22.000	20.000	25.000	
0.25	12.000	24.000	19.000	22.000	9.000	20.000	21.000	21.000	22.000	25.000	
0.5	21.000	19.000	21.000	22.000	16.000	12.000	22.000	21.000	22.000	19.000	
1	19.000	9.000	9.000	19.000	14.000	10.000	16.000	17.000	19.000	8.000	
2	8.000	2.000	2.000	5.000	4.000	3.000	3.000	5.000	0.000	0.000	
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

		_		Transforn	n: Untran	sformed	Rank	1-Tailed	Isotonic		
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Mean	N-Mean
D-Control	20.500	1.0000	20.500	11.000	25.000	18.432	10	***************************************	***************************************	20.500	1.0000
0.25	19.500	0.9512	19.500	9.000	25.000	26.177	10	102.00	76.00	19.500	0.9512
0.5	19.500	0.9512	19.500	12.000	22.000	16.617	10	94.50	76.00	19.500	0.9512
*1	14.000	0.6829	14.000	8.000	19.000	32.819	10	62.50	76.00	14.000	0.6829
*2	3.200	0.1561	3.200	0.000	8.000	76.263	10	55.00	76.00	3.200	0.1561
4	0.000	0.0000	0.000	0.000	0.000	0.000	10	00.00	70.00	0.000	0.0000


Auxiliary Tests			······································	Statistic	Critical	Skew	Kurt	
Shapiro-Wilk's Test indicates nor	n-normal dis	stribution		0.91281	0.947		0.67912	
Bartlett's Test indicates equal var	,		5.39	13.2767	0.0700	0.07012		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU		10.2707	***************************************	·
Steel's Many-One Rank Test	0.5	1	0.70711				W. W	
Treatments vs D-Control								

			Linear Interpolation (200 Resamples										
Point	gm/L	SD	95%		Skew	. ,							
IC05	0.5023	0.1876	0.0809	0.6178	-0.0659								
IC10	0.5955	0.1768	0.1617	0.7497	-0.5184								
IC15	0.6886	0.1424	0.2426	0.9253	-0.5389	1.0 -							
IC20	0.7818	0.1259	0.4995	1.0352	0.2728	4							
IC25	0.8750	0.1224	0.6413	1.1094	0.3153	0.9 -							
IC40	1.1574	0.1139	0.9216	1.3331	-0.0890	0.8 -							
IC50	1.3472	0.0972	1.1197	1.4847	-0.4227	0.7							

Ceriodaphnia dubia Chronic Reproduction Laboratory Control Chart

CV% = 13.5

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-080106

Start Date: 01/06/2008

				Nu	ımbe	r of Y	oung	Prodi	uced			Total	No.	
Sample	Day	A	В	C	D	E	F	G	Н	I	J	Live Young	Live Adults	Analyst Initials
	1	0	0	0	U	0	0	0	0	0	C	0	10	2
	2	0	0	0	0	0	C	0	\mathcal{C}	0	C	\mathcal{C}	10	2
	3	0	0	2_	0	0	0	3	C	3	0	8	10	2
Control	4	4	3	0	4	3	2	0	2	0	3	21	10	In
Control	5	9	8	フ	7	6	7	6	2	6	7	70	10	
	6	10	0	12	10	14	11	10	13	11	کا	106	10	
	7	,,		· Victoria	-				_	متسيي			-	- Carrier
	Total	23	ì	21	21	73	20	19	22	20	25	205	10	h
	1	0	0	0	0	0	0	0	0	\circ	\mathcal{C}	\Box	10	
	2	0	0	0	0	0	(2)	0	0	0	0	0	10	
	3	0	3	0	3	0	2	0	\mathcal{C}	3	$\mathcal{C}_{\mathcal{L}}$	(1	10	In
0.25 g/l	4	4	\mathcal{O}	2	0	3	6	4	2_	\mathcal{O}	3	24	10	h
0.23 g/1	5	8	8	フ	5	6	0	7	6	7	8	62	10	
	6	0	13	10	14	0	12	10	13	12	i4	98	10	
	7			,		randomenta.	(, ruman	gamatin.	augmenterion			namen and the same	
	Total	12	24	19	22	9	20	21	21	ZZ	25	195	10	
	1	0	0	0	0	0	\mathcal{O}	0	0	0	0	0	10	A
	2	0	0	0	0	0	\bigcirc	0	0	C	0	0	10	h
	3	2	0	2_	0	0	\bigcirc	3	٢	-0	0	a	10	A
0.5 ~/1	4	0	3	0	3	4	3	\subset	0	3	_\$	19	10	1/1
0.5 g/l	5	9	6	7	フ	0	9	8	7	7	6	66	10	
	6	10	10	12	12	12	0	11	12	12	10	101	10	6
	7	_	1			·	مسيسيس	-1002000AAG		-	ga r	y continuing and the continues of	734	•
	Total	21	19	٦1	22	16	12	22	21	22	19	195	10	1

Circled fourth brood not used in statistical analysis.

^{7&}lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-080106

Start Date: 01/06/2008

				N	umbe	r of Y	oung	Produ	ıced			Total	No.	A 1
Sample	Day	A	В	С	D	E	F	G	Н	I	J	Live Young	Live Adults	Analyst Initials
	1	0	0	0	0	0	0	0	0	0	0	0	10	h
	2	0	0	0	0	0	0	0	0	0	C	0	10	h
	3	0	0	0	0	0	3	0	0	2	0		10	
1.0 g/l	4	3	2	2	3	0	0	3	2	0	2	17	10	h
1.0 g/1	5	5	2	>	4	5	7	_\$	4	7	ص	57	10	
	6	1(0	0	12	9	0	8	11	10	0	61	10	
	7	~		<u></u>	_	.p	пуска	-		· Comme	-		sh e .	
	Total	19	9	9	19	14	10	16	17	19	8	140	10	
	11	0	0	0	0	0	0	0	0	X	0	0	9	h
	2	0	0	0	0	0	0	0	0	19990	0	0	a	
	3	O	0	0/	0	0	0	0	O	/	0	0	9	
2.0 ~/1	4	N	0	又	3	0	0	0	2		0	9	9	1
2.0 g/l	5	3	Ò	0	2	2	3	3	0	-	0	[3	9	
	6	3	2	0	0	2	\mathcal{C}	0	3		X	10	8	0
	7		CONTRACTOR			C.man.	*ngggon	_{ag} pointine are		. market	Eronaum.	entrance.		4 Park Park Commander
	Total	8	2	2	5	4	3	3	5	0	0	32	8	0
	1	×	\times	X	\times	X	X	X	X	\nearrow	入	0	0	2
	2	_							***************************************	german.				
	3		eparane							-			· ·	,
40~/1	4	 	,	parameter,)			e	Spinnen			Representation of the second	,	Jan Marian
4.0 g/l	5	Name of the last o	-				_	_	**************************************	eneman,	e ^{consta} nte.	dougo and the second	,	parameter.
	6	,	,		_					~	~~~	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		CARACT CHARACT
	7		-			giliania			, sisteman	Queen.			Spristlemanneger.	
	Total	0	0	c	0	0	C	\circ	0	0	0	0	0	2

Circled fourth brood not used in statistical analysis.

^{7&}lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Water Chemistries Raw Data Sheet

QA/QC No.: RT-080106

Replicate:

Brood ID:

Start Date: 01/06/2008

Q111 QC 11	0 101 00											Start	Date. 0	1700/2008	
		DAY 1 D		DA	AY 2	DA	AY 3	D	AY 4	DA	XY 5	DAY 6		DA	Y 7
		Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
Analyst 1	nitials:	n	1/2	V	1/2	1	1/~	1	19~	1	1		1/4	and the second second	· Personal Control of
Time of Readings:		130	1330	1330	13W	1300	1230	127 C	1,300	1300	1300	130	Da	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	DO	7.6	7,2	24	7.7	24	7.6	24	7.5	8,2	7-8	7.9	フン		100000000000000000000000000000000000000
Control	pН	76	24	7-4	7.3	7.3	7.2	7-2	7-7	7.5	7-6	7-9	7.6	name and the	
	Temp	243	25.1	25,4	24.8	241	24.5	244	25.1	244	24.0	246	25-1		***************************************
	DO	7.5	7-3	7.5	7.5	7-5	7.7	7-3	7.4	8,2	7.8	7.9	7.7		-parriera
0.25 g/l	рН	75	7.3	2-4	74	7.0	7-2	7.3	7.4	26	7-5	7.6	7.7	and the same of th	(
	Тетр	244	252	253	249	242	24.5	24.7	250	24.4	25-1	24.6	25-1		garding.
	DO	24	22	24	7-6	7.11	7.5	7-4	7.6	8.5	7-6	8.0	78:	cy-Grandon.	
0.5 g/l	pН	7.5	73	74	7.4	7-4	7.2	7-3	7.5	7.6	7-5	7:7	2-7	-	
	Temp	243	251	25.3	249	24.1	25.2	246	24.5	24.4	249	24.4	249	-	
	DO	7.5	22	76	2.7	7.3	7.8	24	7-4	8, d	75	7-7	7-7		
1.0 g/l	рН	7.5	7.3	7-0	7.5	7.4	7.2	7-3	75	7.0)-l	7.4	7-6		_
	Temp	244	25.2	25-1	247	24.2		24.6	7 25.0	24.4	249	24.6	250		
	DO	7.4	24	76	7.5	74	28	22	7.6	8.2	7-6	26	7.7	TOTAL CONTRACTOR OF THE PARTY O	
2.0 g/l	рН	7.5	7.4	7-6	7.6	7.4	2.3	72	7.6	75	7-6	29	7.6		
	Temp	245		24-0	246	24.2	253	24.8	25.2	24-4	24.8	24.6	25.1		
	DO	7-5	7-8	i-Imagement	man,	National-	- AMARINAN	a) rice province	4)degrames constraints.	AL PERSONNEL	Chapter.	entire en	r,magaza _n ,	- frances	***************************************
4.0 g/l	рН	7.6	7-8	4mm-	-		-	ggitten.	,	Speniele	quee			-	
	Temp	243	24.6	TENSES CONTRACTOR	-department	.Aup-		- Andrews				_{Server}	,		page page 1
	Dis	ssolved	Oxyge	n (DO)	reading	s are ir	n mg/l (O ₂ ; Ten	perature	(Temp)	reading	gs are ir	ı°C.		
Additional Parameters							Contr	ol				High Concentration		on	
		. ar amet			Day	1	Day 3		Day 5	Day 1		Day 3		D:	ay 5
	Conducti	vity (μS))		350	9	348		305	6400		3100		32	40
	Alkalinity (66		65		63	16	, 5_		6	6	1
Hardness (mg/l CaCO ₃)					98		97		98	1 6	8	4	9)		8

Source of Neonates

G

Η

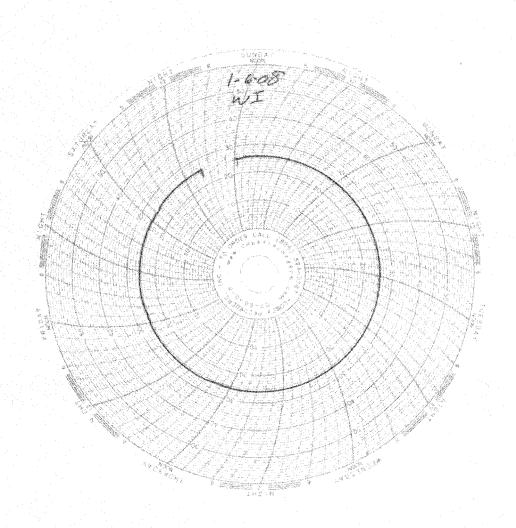
D

В

IB

C

7-61



Laboratory Temperature Chart

QA/QC Batch No: RT-080106

Date Tested: 01/06/08 to 01/12/08

Acceptable Range: 25+/- 1°C

February 27 2008

Mr. Joseph Doak Test America, Inc. 17461 Derian Avenue, Suite 100 Irvine, CA 92614

Reference: Eberline Services NELAP Cert #01120CA

Test America Project Nos. IRA2496, IRA2497, IRA2499, IRA2500

IRA2506, IRA2565

Eberline Services Reports R801170-8687, R801171-8688, R801172-8689

R801173-8690, R801174-8691, R801175-8692

Dear Mr. Doak:

Enclosed are results from the analyses of six water samples received on January 29, 2008. The samples were analyzed according to the accompanying Test America Subcontract Order Forms, the requested analyses were: gross alpha/gross beta (EPA 900.0), tritium (H-3, EPA906.0), Sr-90 (EPA905.0), Ra-226 (EPA903.1), Ra-228 (EPA 904.0), total uranium (ASTM D-5174), and gamma spectroscopy (EPA901.1, K-40 and Cs-137 only). The parenthetical G after a nuclide indicates that the result was obtained by gamma spectroscopy; a "U" in the results column indicates that the nuclide was not detected greater than the indicated minimum detectable activity (MDA). The samples were not filtered prior to analysis. The samples were analyzed in batches with common QC samples. All samples were batched with QC samples 8687-002, 003, 004, and 005, except for total uranium analysis; the QC samples for total-U analysis are 8682-002, 003, 004, and 005. Batch quality control samples consisted of LCS's, blank analyses, duplicate analyses, and matrix spike analyses (gross alpha/gross beta, H-3, Ra-226, Total-U only). All QC sample results were within the limits defined in Eberline Services Quality Control Procedures Manual.

Please call me if you have any questions concerning this report.

Regards,

Melissa Mannion

Senior Program Manager

Melina Mann

MCM/njv

Enclosure: Reports/CoC's

Analytical Services 2030 Wright Avenue P.O. Box 4040 Richmond, California 94804-0040 (510) 235-2633 Fax (510) 235-0438 Toll Free (800) 841-5487 www.ehences-2789

Eberline Services

ANALYSIS RESULTS

 SDG
 8692
 Client
 TA IRVINE

 Work Order
 R801175-01
 Contract
 PR0JECT# IRA2565

 Received Date
 01/29/08
 Matrix
 WATER

Client	Lab					
Sample ID	Sample ID	Collected Analyzed	<u>Nuclide</u>	Results $\pm 2\sigma$	<u>Units</u>	MDA
IRA2565-01	8692-001	01/27/08 02/16/08	GrossAlpha	1.29 ± 0.48	pCi/L	0.57
		02/16/08	Gross Beta	3.03 ± 0.60	pCi/L	0.87
		02/20/08	Ra-228	-0.085 ± 0.18	pCi/L	0.51
		02/15/08	K-40 (G)	ū	pCi/L	55
		02/15/08	Cs-137 (G)	U	pCi/L	2.0
		02/21/08	H-3	-90.4 ± 92	pCi/L	160
		02/20/08	Ra-226	-0.114 ± 0.38	pCi/L	0.83
		02/14/08	Sr-90	-0.007 ± 0.26	pCi/L	0.54
		02/19/08	Total U	0.101 ± 0.015	pCi/L	0.022

Certified by 27 Report Date 02/27/08 Page 1

Eberline Services

QC RESULTS

SDG 8692

Client TA IRVINE

Work Order <u>R801175-01</u>
Received Date <u>01/29/08</u>

Contract PROJECT# IRA2565

Matrix <u>WATER</u>

Lab						
Sample ID	Nuclide	Results	<u>Units</u>	Amount Added	MDA	<u>Evaluation</u>
LCS						
8682-002	GrossAlpha	10.6 ± 0.84	pCi/Smpl	10.1	0.29	105% recovery
	Gross Beta	9.49 ± 0.38	pCi/Smpl	9.39	0.29	101% recovery
	Ra-228	8.69 ± 0.54	pCi/Smpl	8.73	0.75	100% recovery
	Co-60 (G)	223 ± 11	pCi/Smpl	226	7.0	99% recovery
	Cs-137 (G)	253 ± 11	pCi/Smpl	236	8.1	107% recovery
	Am-241 (G)	215 ± 37	pCi/Smpl	252	47	85% recovery
	H-3	228 ± 14	pCi/Smpl	240	16	95% recovery
	Ra-226	5.92 ± 0.27	pCi/Smpl	5.58	0.085	106% recovery
	Sr-90	9.45 ± 0.73	pCi/Smpl	9.40	0.32	101% recovery
	Total U	1.06 ± 0.12	pCi/Smpl	1.13	0.004	94% recovery
BLANK						
8682-003	GrossAlpha	0.006 ± 0.13	pCi/Smpl	NA	0.25	<mda< td=""></mda<>
	Gross Beta	-0.090 ± 0.27	pCi/Smpl	NA	0.44	<mda< td=""></mda<>
	Ra-228	-0.089 ± 0.33	pCi/Smpl	NA	0.78	<mda< td=""></mda<>
	K-40 (G)	U	pCi/Smpl	NA	190	<mda< td=""></mda<>
	Cs-137 (G)	U	pCi/Smpl	NA	7.4	<mda< td=""></mda<>
	H-3	-4.88 ± 9.0	pCi/Smpl	NA	15	<mda< td=""></mda<>
	Ra-226	-0.014 ± 0.026	pCi/Smpl	NA	0.071	<mda< td=""></mda<>
	Sr-90	0.078 ± 0.24	pCi/Smpl	NA	0.54	<mda< td=""></mda<>
	Total U	0.00E 00 ± 1.9E-04	pCi/Smpl	NA	4.4E-04	<mda< td=""></mda<>
LCS						
8687-002	GrossAlpha	13.1 ± 0.92	pCi/Smpl	11.2	0.23	117% recovery
	Gross Beta	11.4 ± 0.46	pCi/Smpl	11.3	0.44	101% recovery
	Ra-228	10.3 ± 0.62	pCi/Smpl	9.87	0.85	104% recovery
	Co-60 (G)	504 ± 11	pCi/Smpl	525	6.4	96% recovery
	Cs-137 (G)	586 ± 10	pCi/Smpl	566	6.9	104% recovery
	Am-241 (G)	602 ± 20	pCi/Smpl	610	23	99% recovery
	H-3	250 ± 15	pCi/Smpl	263	16	95% recovery
	Ra-226	5.35 ± 0.25	pCi/Smpl	5.58	0.082	96% recovery
	Sr-90	10.7 ± 0.79	pCi/Smpl	10.3	0.34	104% recovery
BLANK						
8687-003	GrossAlpha	0.023 ± 0.14	pCi/Smpl	NA	0.25	<mda< td=""></mda<>
	Gross Beta	-0.044 ± 0.15	pCi/Smpl	NA	0.26	<mda< td=""></mda<>
	Ra-228	-0.313 ± 0.39	pCi/Smpl	NA	1.1	<mda< td=""></mda<>

Certified by Myv
Report Date 02/27/08

Page 2

Eberline Services

SDC Work Order Received Date		75-01		Contrac	t <u>TA IRVINE</u> t <u>PROJECT# I</u> x <u>WATER</u>	RA2565
K-40) (G)	Ū	pCi/Smpl	NA	26	<mda< td=""></mda<>
Cs-1	.37 (G)	U	pCi/Smpl	NA	2.2	<mda< td=""></mda<>
H-3		-7.14 ± 9.0	pCi/Smpl	AN	16	<mda< td=""></mda<>
Ra-2	226	-0.013 ± 0.036	pCi/Smpl	AN	0.081	<mda< td=""></mda<>
Sr-9	9.0	0.036 + 0.20	pCi/Smpl	NA	0.45	<mda< td=""></mda<>

	DUPLICATES				ORIGINALS						
									3 σ		
Sample ID	Nuclide	Results	s <u>±</u> 2σ	MDA	Sample ID	Results ± 2σ	MDA	RPD	(Tot)	<u>Eval</u>	
8682-004	GrossAlpha	3.13 ±	2.1	2.2	8682-001	2.52 ± 2.0	2.4	22	160	satis.	
	Gross Beta	42.1 ±	2.3	2.1		42.3 ± 2.4	2.4	0	44	satis.	
	Ra-228	0.070 ±	0.15	0.42		0.145 ± 0.17	0.44	_	0	satis.	
	K-40 (G)	42.6 ±	18	9.6		36.0 ± 19	13	17	102	satis.	
	Cs-137 (G)	U		0.92		U	1.1	-	0	satis.	
	H-3	-73.7	£ 92	160		-62.4 ± 94	160	-	0	satis.	
	Ra-226	0.111	£ 0.44	0.80		-0.149 ± 0.46	0.96	-	0	satis.	
	Sr-90	-0.108	£ 0.44	1.1		0.032 ± 0.30	0.58	· max	0	satis.	
	Total U	2.88	± 0.32	0.022		2.75 ± 0.30	0.022	5	30	satis.	
8687-004	GrossAlpha	2.52	<u>+</u> 1.2	1.5	8687-001	2.21 ± 1.1	1.4	13	112	satis.	
	Gross Beta	4.02	± 1.0	1.5		4.33 ± 1.0	1.5	7	66	satis.	
	Ra-228	0.123 :	± 0.17	0.47		0.159 ± 0.19	0.49	-	0	satis.	
	K-40 (G)	U		35		U	12	-	0	satis.	
	Cs-137 (G)	U		1.5		Ū	0.53	-	0	satis.	
	H-3	-114	± 91	160		-77.4 ± 91	160	-	0	satis.	
	Ra-226	-0.221	± 0.37	0.81		0.047 ± 0.45	0.83	-	0	satis.	
	Sr-90	-0.019	± 0.24	0.58		0.076 ± 0.32	0.68	-	0	satis.	

	SPIKED SAMPLE			OR	IGINAL SAMPLE			
Sample ID	Nuclide	Results ± 2σ	<u>MDA</u>	Sample ID	Results ± 20	MDA	Added	%Recv
8682-005	GrossAlpha	225 ± 12	2.5	8682-001	2.52 ± 2.0	2.4	163	136
	Gross Beta	192 ± 4.5	2.4		42.3 ± 2.4	2.4	145	103
	H-3	15800 ± 310	160		-62.4 ± 94	160	16000	99
	Ra-226	124 ± 4.7	0.94		-0.149 ± 0.46	0.96	112	111
	Total U	120 ± 15	2.2		2.75 ± 0.30	0.022	113	104
8687-005	GrossAlpha	153 ± 7.3	1.3	8687-001	2.21 ± 1.1	1.4	114	132
	Gross Beta	107 ± 2.7	1.3		4.33 ± 1.0	1.5	103	100
	H-3	14900 ± 300	160		-77.4 ± 91	160	16000	94
	Ra-226	134 ± 4.9	0.85		0.047 ± 0.45	0.83	123	109

Certified by Report Date 02/27/08
Page 3

SUBCONTRACT ORDER

TestAmerica Irvine IRA2565

8692

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614 Phone: (949) 261-1022

Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Eberline Services - SUB 2030 Wright Avenue Richmond, CA 94804 Phone :(510) 235-2633

Phone :(510) 235-2633 Fax: (510) 235-0438

Project Location: California

Receipt Temperature: 0 ___°C

Ice: Y/ N

Analysis	Units	Due	Expires	Comments
Sample ID: IRA2565-01	Water		Sampled: 01/27/08 09:	:00
EDD + Level 4	N/A	02/06/08	02/24/08 09:00	Excel EDD email to pm,Include Std logs for LvI IV
Gamma Spec-O	mg/kg	02/06/08	01/26/09 09:00	Boeing, permit, J flags, K-40 and CS-137 only
Gross Alpha-O	pCi/L	02/06/08	07/25/08 09:00	Boeing, permit, J flags
Gross Beta-O	pCi/L	02/06/08	07/25/08 09:00	Boeing, permit, J flags
Radium, Combined-O	pCi/L	02/06/08	01/26/09 09:00	Boeing, permit, J flags
Strontium 90-0	pCi/L	02/06/08	01/26/09 09:00	Boeing, permit, J flags
Tritium-O	pCi/L	02/06/08	01/26/09 09:00	Boeing, permit, J flags
Uranium, Combined-O	pCi/L	02/06/08	01/26/09 09:00	Boeing, permit, J flags
Containers Supplied:				
2.5 gal Poly (AA)	500 mL Aml	ber (AB)		

Released By

Date/Time

Date/Time

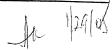
Received By

Received By

Date/Time

6. 24 68 10.15

Received By


Date/Time

Page 1 of 1

RICHMOND, CA LABORATORY

SAMPLE RECEIPT CHECKLIST

Ciren	TEST AMETUCA SITY / MINE STATE CA
Date:	Time received 01/29/8/01/5 200 No /NA 2565
Conta	ainer 2 No / LE CHEST Requested TAT (Davs P.C. Received Yes] No []
	INSPECTION
	Custody seals on shipping container intact?
	Sustoom seals on shipping container dated 2 signed?
	Sustody seals or sample container; intact?
	Custody seals on sample containers dated & signed? The State No. 10 N/4 🗴
	Fracking material is:
	Number of samples in shipping container Sample Matri: W
	Number of containers per sample \mathcal{V} . (Or see Co.)
	Samples are in correct container (res V) No.
	Fraperwork agrees with samples? Yes X No. 1
-	Samples have Tabe : Hazard labels : Flad labels : Appropriate sample labels : X
-	Samples are in good condition Leaking Broken Container Missimo
-	Samples are Preserved Not preserved X pr Preservative
-	Describe any anomalies
,	
-	Was F.M. notified of any anomalies' res No. Date Inspected by Date Date
	inspected by Date 01 24 08 Time 0 300 Sharinger Details amms ion Chairinger Details amms ion Chairinger
Cus Sami	Inspected by Date 01 24 08 Time 0 300 Stamper to Chamber bie No. com mR/m Wide Sample No. com mR/m wide
Cus Sami	inspected by Date 0(24 08 Time 00 300 Time 100 Chairmper Die No. Common MR/n. Wine Sample No. Common MR/n. Wine Sample No. Common MR/n.
Cus Sami	Inspected by Date 01 24 08 Time 0 300 Stamper to Chamber bie No. com mR/m Wide Sample No. com mR/m wide
- Cus Sami	Inspected by Date 01 24 08 Time 0 300 Stamper to Chamber bie No. com mR/m Wide Sample No. com mR/m wide
Sus Sami	Inspected by Date 01 24 08 Time 0 300 Stamper to Chamber bie No. com mR/m Wide Sample No. com mR/m wide
Sus Sami	Inspected by Date 01 24 08 Time 0 300 Stamper to Chamber bie No. com mR/m Wide Sample No. com mR/m wide
- Cus Sami	Inspected by Date 01 24 08 Time 0 300 Stamper to Chamber bie No. com mR/m Wide Sample No. com mR/m wide
Cus Sami	Inspected by Date 01 24 08 Time 0 300 Stamper to Chamber bie No. com mR/m Wide Sample No. com mR/m wide
Cus Sami	Inspected by Date 01 24 08 Time 0 300 Stamper to Chamber bie No. com mR/m Wide Sample No. com mR/m wide
Cus Sami	Inspected by Date 01 24 08 Time 0 300 Stamper to Chamber bie No. com mR/m Wide Sample No. com mR/m wide
Cus Sami	Inspected by Date 01 24 08 Time 0 300 Stamper to Chamber bie No. com mR/m Wide Sample No. com mR/m wide
Cus Sami	Inspected by Date 01 24 08 Time 0 300 Stamper to Chamber bie No. com mR/m Wide Sample No. com mR/m wide
Cus Sami	Inspected by Date 01 24 08 Time 0 36 Itomer Beta/Samme Itol Chamber Wide Sample No com mR./m. wide 2565- 460
Cus Sami	Inspected by Date 8t 24 0 8 Time 10 30 Itomer Beta/Samma 10 Chairmer Die No
Cus Sami IA	Inspected by Date 01 24 08 Time 0 36 Itomer Beta/Samma to Chamber Die No Com mR/m Wide Sample No Com mR/m wide 12565 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

over 55 years of quality nuclear cervise:

February 09, 2008

Vista Project I.D.: 30207

Mr. Joseph Doak Test America-Irvine, CA 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Mr. Doak,

Enclosed are the results for the one aqueous sample received at Vista Analytical Laboratory on January 29, 2008 under your Project Name "IRA2565". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Vista's current certifications, and copies of the raw data (if requested).

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha M. Maier Laboratory Director

Marcho Moier

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.

Section I: Sample Inventory Report Date Received: 1/29/2008

<u>Vista Lab. ID</u> <u>Client Sample ID</u>

30207-001 IRA2565-01

NPDES - 2796 Page 2 of 282

SECTION II

Project 30207 NPDES - 2797
Page 3 of 282

Method Blank							EPA Method 1613
Matrix: Aq	jueous	QC Batch No.:	9921	Lab Sample:	0-MB001		
Sample Size: 1	1.00 L	Date Extracted:	2-Feb-08	Date Analyzed DB	8-5: 6-Feb-08	Date An	alyzed DB-225: NA
Analyte	Conc. (ug/L)	DL ^a EM	IPC b Qualifiers	Labeled Sta	ndard	%R	LCL-UCL ^d Qualifiers
2,3,7,8-TCDD	ND	0.00000165		<u>IS</u> 13C-2,3,7,8-	-TCDD	73.6	25 - 164
1,2,3,7,8-PeCDD	ND	0.00000120		13C-1,2,3,7,	,8-PeCDD	76.1	25 - 181
1,2,3,4,7,8-HxCDD) ND	0.00000316		13C-1,2,3,4,	,7,8-HxCDD	74.4	32 - 141
1,2,3,6,7,8-HxCDD) ND	0.00000300		13C-1,2,3,6,	,7,8-HxCDD	73.5	28 - 130
1,2,3,7,8,9-HxCDD) ND	0.00000295		13C-1,2,3,4,	,6,7,8-HpCDD	77.2	23 - 140
1,2,3,4,6,7,8-HpCD	DD ND	0.00000197		13C-OCDD		65.9	17 - 157
OCDD	ND	0.00000682		13C-2,3,7,8-	-TCDF	72.7	24 - 169
2,3,7,8-TCDF	ND	0.000000988		13C-1,2,3,7,	,8-PeCDF	80.3	24 - 185
1,2,3,7,8-PeCDF	ND	0.00000123		13C-2,3,4,7,	,8-PeCDF	66.6	21 - 178
2,3,4,7,8-PeCDF	ND	0.00000151		13C-1,2,3,4,	,7,8-HxCDF	95.5	26 - 152
1,2,3,4,7,8-HxCDF	ND	0.000000596		13C-1,2,3,6,	,7,8-HxCDF	77.3	26 - 123
1,2,3,6,7,8-HxCDF	ND	0.000000816		13C-2,3,4,6,	,7,8-HxCDF	67.6	28 - 136
2,3,4,6,7,8-HxCDF	ND	0.000000976		13C-1,2,3,7,	,8,9-HxCDF	76.1	29 - 147
1,2,3,7,8,9-HxCDF	ND	0.00000111		13C-1,2,3,4,	,6,7,8-HpCDF	72.0	28 - 143
1,2,3,4,6,7,8-HpCD	DF ND	0.00000146		13C-1,2,3,4,	,7,8,9-HpCDF	75.2	26 - 138
1,2,3,4,7,8,9-HpCD	DF ND	0.00000154		13C-OCDF		71.7	17 - 157
OCDF	ND	0.00000455		<u>CRS</u> 37Cl-2,3,7,8	3-TCDD	77.0	35 - 197
Totals				Footnotes			
Total TCDD	ND	0.00000165		a. Sample specific estim	nated detection limit.		
Total PeCDD	ND	0.00000209		b. Estimated maximum			
Total HxCDD	ND	0.00000304		c. Method detection lim	-		
Total HpCDD	0.0000013	88		d. Lower control limit -	upper control limit.		
Total TCDF	ND	0.000000988					
Total PeCDF	ND	0.00000136					
Total HxCDF	ND	0.000000843					
Total HpCDF	ND	0.00000150					

Analyst: MAS William J. Luksemburg 08-Feb-2008 12:16

OPR Results					EP	A Method 1	1613
	Aqueous .00 L	QC Batch No.: Date Extracted:	9921 2-Feb-08	Lab Sample: 0-OPR001 Date Analyzed DB-5: 6-Feb-08	Date Analy	zed DB-225:	NA
Analyte	Spike Conc.	Conc. (ng/mL)	OPR Limits	Labeled Standard	%R	LCL-UCL	Qualifier
2,3,7,8-TCDD	10.0	11.2	6.7 - 15.8	<u>IS</u> 13C-2,3,7,8-TCDD	77.8	25 - 164	
1,2,3,7,8-PeCDD	50.0	55.0	35 - 71	13C-1,2,3,7,8-PeCDD	74.8	25 - 181	
1,2,3,4,7,8-HxCD	D 50.0	54.7	35 - 82	13C-1,2,3,4,7,8-HxCDD	74.8	32 - 141	
1,2,3,6,7,8-HxCD	D 50.0	54.1	38 - 67	13C-1,2,3,6,7,8-HxCDD	75.4	28 - 130	
1,2,3,7,8,9-HxCD	D 50.0	54.8	32 - 81	13C-1,2,3,4,6,7,8-HpCDD	80.9	23 - 140	
1,2,3,4,6,7,8-HpC	DD 50.0	54.0	35 - 70	13C-OCDD	71.4	17 - 157	
OCDD	100	113	78 - 144	13C-2,3,7,8-TCDF	77.3	24 - 169	
2,3,7,8-TCDF	10.0	10.7	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	73.3	24 - 185	
1,2,3,7,8-PeCDF	50.0	55.0	40 - 67	13C-2,3,4,7,8-PeCDF	66.3	21 - 178	
2,3,4,7,8-PeCDF	50.0	55.4	34 - 80	13C-1,2,3,4,7,8-HxCDF	90.2	26 - 152	
1,2,3,4,7,8-HxCD	F 50.0	54.4	36 - 67	13C-1,2,3,6,7,8-HxCDF	73.1	26 - 123	
1,2,3,6,7,8-HxCD	F 50.0	56.0	42 - 65	13C-2,3,4,6,7,8-HxCDF	69.8	28 - 136	
2,3,4,6,7,8-HxCD	F 50.0	56.1	35 - 78	13C-1,2,3,7,8,9-HxCDF	74.7	29 - 147	
1,2,3,7,8,9-HxCD	F 50.0	55.4	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	71.2	28 - 143	
1,2,3,4,6,7,8-HpC	DF 50.0	55.5	41 - 61	13C-1,2,3,4,7,8,9-HpCDF	77.2	26 - 138	
1,2,3,4,7,8,9-HpC	DF 50.0	55.7	39 - 69	13C-OCDF	72.9	17 - 157	
OCDF	100	106	63 - 170	<u>CRS</u> 37Cl-2,3,7,8-TCDD	86.5	35 - 197	

Analyst: MAS William J. Luksemburg 08-Feb-2008 12:16

Sample ID: IRA	2565-01								EPA I	Method 1613
Client Data			Sample Data		Lab	oratory Data				
	t America-Irvine, CA		Matrix:	Aqueous	Lab	Sample:	30207-001	Date Re	ceived:	29-Jan-08
3	A2565 Jan-08		Sample Size:	1.00 L	QC	Batch No.:	9921	Date Ex	tracted:	2-Feb-08
Time Collected: 090					Date	Analyzed DB-5:	6-Feb-08	Date An	alyzed DB-225:	NA
Analyte	Conc. (ug/L)	D L a	EMPC ^b	Qualifiers		Labeled Standa	ard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ND	0.000000	921		<u>IS</u>	13C-2,3,7,8-TCD	DD	85.3	25 - 164	
1,2,3,7,8-PeCDD	ND	0.000001	62			13C-1,2,3,7,8-Pe	CDD	80.3	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.000001	78			13C-1,2,3,4,7,8-H	HxCDD	76.3	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.000004	30			13C-1,2,3,6,7,8-H	HxCDD	76.5	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.000006	85			13C-1,2,3,4,6,7,8	-HpCDD	82.6	23 - 140	
1,2,3,4,6,7,8-HpCDD	0.0000632					13C-OCDD		71.0	17 - 157	
OCDD	0.000718					13C-2,3,7,8-TCD	F	86.1	24 - 169	
2,3,7,8-TCDF	ND	0.000000	728			13C-1,2,3,7,8-Pe	CDF	84.9	24 - 185	
1,2,3,7,8-PeCDF	ND	0.000001	01			13C-2,3,4,7,8-Pe	CDF	73.2	21 - 178	
2,3,4,7,8-PeCDF	ND	0.000001	65			13C-1,2,3,4,7,8-H	HxCDF	93.8	26 - 152	
1,2,3,4,7,8-HxCDF	ND	0.000001	51			13C-1,2,3,6,7,8-H	HxCDF	75.6	26 - 123	
1,2,3,6,7,8-HxCDF	ND	0.000002	05			13C-2,3,4,6,7,8-H	HxCDF	70.3	28 - 136	
2,3,4,6,7,8-HxCDF	ND	0.000001	76			13C-1,2,3,7,8,9-H	HxCDF	76.8	29 - 147	
1,2,3,7,8,9-HxCDF	ND	0.000001	09			13C-1,2,3,4,6,7,8	-HpCDF	73.3	28 - 143	
1,2,3,4,6,7,8-HpCDF	0.0000149			J		13C-1,2,3,4,7,8,9	-HpCDF	77.2	26 - 138	
1,2,3,4,7,8,9-HpCDF	ND	0.000003	44			13C-OCDF		75.4	17 - 157	
OCDF	0.0000456			J	CRS	37Cl-2,3,7,8-TCI	OD	89.1	35 - 197	
Totals					Foo	otnotes				
Total TCDD	ND	0.000000	921		a. Sa	imple specific estimated	detection limit.			
Total PeCDD	ND	0.000001	62		b. E	stimated maximum poss	ible concentration.			
Total HxCDD	0.0000117				c. M	ethod detection limit.				
Total HpCDD	0.000169			В	d. L	ower control limit - uppe	er control limit.			
Total TCDF	ND	0.000001	17							
Total PeCDF	ND		0.000000	0946						
Total HxCDF	0.00000502		0.000010)7						
Total HpCDF	0.0000412									

Analyst: MAS William J. Luksemburg 08-Feb-2008 12:16

Project 30207

Project 30207

Page 6 of 282

APPENDIX

Project 30207 NPDES - 2801
Page 7 of 282

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D Dilution

E The amount detected is above the High Calibration Limit.

P The amount reported is the maximum possible concentration due to possible

chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.

I Chemical Interference

J The amount detected is below the Low Calibration Limit.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated detection limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit – concentrations that correspond to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

SUBCONTRACT ORDER

TestAmerica Irvine **IRA2565**

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Vista Analytical Laboratory-SUB

°C

1104 Windfield Way

El Dorado Hills, CA 95762

Phone: (916) 673-1520

Fax: (916) 673-0106

Project Location: California

Receipt Temperature:

Ice: Y / N

Analysis Units Due **Expires** Comments Sample ID: IRA2565-01 Water Sampled: 01/27/08 09:00 1613-Dioxin-HR-Alta 02/06/08 02/03/08 09:00 J flags,17 congeners,no ug/l TEQ,ug/L,sub=Vista Level 4 Data Package - Out N/A 02/06/08 02/24/08 09:00 Containers Supplied: 1 L Amber (D) 1 L Amber (E)

Date/Time

Page 1 of 1

NPDES - 2804 Page 10 of 282

Released By

SAMPLE LOG-IN CHECKLIST

Vista Project #:	30207				_ TAT_	ınspe	cified	
Samples Arrival:	Date/Time	0905	Initials:	43215		Location: WR-2 Shelf/Rack: N/4		
Logged In:	Date/Time 1/29/68	1229	Initials:	•	Location	V	2-2 C2	
Delivered By:	FedEx	UPS	Cal	DHL	Ha Deliv		Other	
Preservation:	lce) E	Blue Ice	Dr	y Ice		None	
Temp °C .	100	Time:	0914		Thermon	neter II	D: IR-1	

						YES	NO	NA	
Adequate Sample Volume Recei	ved?					V			
Holding Time Acceptable?									
Shipping Container(s) Intact?									
Shipping Custody Seals Intact?				4		V			
Shipping Documentation Presen	:. !?					V	}		
Airbill Trk#	1997	9227	192	75					
Sample Container Intact?					-	1	-		
Sample Custody Seals Intact?						,	1	V	
Chain of Custody / Sample Docu	mentation P	resent?			•	V			
COC Anomaly/Sample Acceptar	ice Form con	npleted?							
If Chlorinated or Drinking Water	Samples, Ac	ceptable Pre	servat	ion?				V	
Na ₂ S ₂ O ₃ Preservation Documented? COC Sample Container									
Shipping Container	Vista ¨	Client	Re	tain	Re	turn	Disp	oose	
Comments:									

Sample Login 3/2007 rmh NPDES - 2805 Page 11 of 282

SUBCONTRACT ORDER

TestAmerica Irvine IRA2565

8012803

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Weck Laboratories, Inc.

14859 E. Clark Avenue

City of Industry, CA 91745

Phone: (626) 336-2139

Fax: (626) 336-2634

Project Location: California

Receipt Temperature:___

°C

Y / N

Ice:

Analysis	Units	Due	Expires	Comments
Sample ID: IRA2565-01	Water		Sampled: 01/27/08 09:00)
Level 4 Data Package - Wed	N/A	02/06/08	02/24/08 09:00	
Mercury - 245.1, Diss -OUT	mg/l	02/06/08	02/24/08 09:00	Boeing, permit, J flags, Filter and pres ASAP before 9:00am!!!
Mercury - 245.1-OUT	mg/l	01/29/08	02/24/08 09:00	Boeing, permit, J flags
Containers Supplied:				
- ` '	25 mL Poly AF)	y w/HNO3		

Refeased By 7

Released By

____ Date/Time

Date/Time

Received By

Received By

Date/Illr

1/28/08

Date/Time NPDES - 2896 1 of 1

Weck Laboratories, Inc.

Analytical Laboratory Services - Since 1964

14859 E. Clark Ave., Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634 info@wecklabs.com www.wecklabs.com

CERTIFICATE OF ANALYSIS

Client: TestAmerica, Inc. - Irvine

Report Date:

01/30/08 12:53

17461 Derian Ave, Suite 100

Received Date:

01/28/08 08:45

Irvine, CA 92614

Turn Around:

1 day

Attention: Joseph Doak

Work Order #:

8012803

Phone: (949) 261-1022

Fax: (949) 260-3297

Client Project: IRA2565

NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

Dear Joseph Doak:

Enclosed are the results of analyses for samples received 01/28/08 08:45 with the Chain of Custody document. The samples were received in good condition. The samples were received at 7.9 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Reviewed by:

Kim G Tu

Project Manager

Page 1 of 6

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8012803 Project ID: IRA2565 Date Received: 01/28/08 08:45 Date Reported: 01/30/08 12:53

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Sampled by:	Sample Comments	Laboratory	Matrix	Date Sampled	
IRA2565-01	Client		8012803-01	Water	01/27/08 09:00	

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8012803 Project ID: IRA2565 Date Received: 01/28/08 08:45 Date Reported: 01/30/08 12:53

IRA2565-01 8012803-01 (Water)

Date Sampled: 01/27/08 09:00

Metals by EPA 200 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Dissolved	ND	0.050	ug/l	0.20	1	EPA 245.1	W8A1034	01/29/08	01/30/08 jlp)
Mercury, Total	ND	0.050	ug/l	0.20	1	EPA 245.1	W8A1034	01/29/08	01/30/08 jlp)

Week Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8012803 Project ID: IRA2565 Date Received: 01/28/08 08:45 Date Reported: 01/30/08 12:53

QUALITY CONTROL SECTION

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8012803 Project ID: IRA2565 Date Received: 01/28/08 08:45 Date Reported: 01/30/08 12:53

Metals by EPA 200 Series Methods - Quality Control

%REC

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers		
Batch W8A1034 - EPA 245.1												
Blank (W8A1034-BLK1)						zed: 01/30/08						
Mercury, Dissolved	ND	0.20	ug/l									
Mercury, Total	ND	0.20	ug/l									
LCS (W8A1034-BS1)				Analyzed:	01/30/08							
Mercury, Dissolved	0.986	0.20	ug/l	1.00		99	85-115					
Mercury, Total	0.986	0.20	ug/l	1.00		99	85-115					
Matrix Spike (W8A1034-MS1)	Sou	ırce: 8012803	-01	Analyzed:	01/30/08							
Mercury, Dissolved	2.06	0.40	ug/l	2.00	ND	103	70-130					
Mercury, Total	2.06	0.40	ug/l	2.00	ND	103	70-130					
Matrix Spike Dup (W8A1034-MSD1)	Sou	ırce: 8012803	-01	Analyzed:	01/30/08							
Mercury, Dissolved	2.02	0.40	ug/l	2.00	ND	101	70-130	2	20			
Mercury, Total	2.02	0.40	ug/l	2.00	ND	101	70-130	2	20			

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100

Irvine CA, 92614

Report ID: 8012803 Project ID: IRA2565

Date Received: 01/28/08 08:45 Date Reported: 01/30/08 12:53

Notes and Definitions

ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

% Rec Percent Recovery

Sub Subcontracted analysis, original report available upon request

MDL Method Detection Limit

MDA Minimum Detectable Activity

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

APPENDIX G

Section 75

Outfall 011 - BMP Effectiveness, January 27-28, 2008 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: BMP Effectiveness Monitoring Program

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly

Sampled: 01/27/08-01/28/08

Received: 01/28/08 Revised: 04/30/08 13:07

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, I page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

ADDITIONAL

INFORMATION: This is a Revised report to correct date and sampling times in accordance with the revised Chain of custody per clients request.

LABORATORY ID	CLIENT ID	MATRIX
IRA2667-01	011 EFF-1	Water
IRA2667-02	011 EFF-2	Water
IRA2667-03	011 EFF-3	Water
IRA2667-04	011 EFF-4	Water
IRA2667-05	011 EFF-5	Water
IRA2667-06	011 EFF-6	Water
IRA2667-07	011 EFF-7	Water
IRA2667-08	011 EFF-8	Water
IRA2667-09	011 EFF-9	Water
IRA2667-10	011 EFF-10	Water
IRA2667-11	011 EFF-11	Water
IRA2667-12	011 EFF-12	Water
IRA2667-13	011 EFF-13	Water
IRA2667-14	011 EFF-14	Water
IRA2667-15	011 EFF-15	Water
IRA2667-16	011 EFF-16	Water
IRA2667-17	011 EFF-17	Water
IRA2667-18	011 EFF-18	Water
IRA2667-19	011 EFF-19	Water
IRA2667-20	011 EFF-20	Water
IRA2667-21	011 EFF-21	Water
IRA2667-22	011 EFF-22	Water
IRA2667-23	011 EFF-23	Water

TestAmerica Irvine

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: BMP Effectiveness

618 Michillinda Avenue, Suite 200 Monitoring Program Sampled: 01/27/08-01/28/08

Arcadia, CA 91007 Report Number: IRA2667 Received: 01/28/08

Attention: Bronwyn Kelly

LABORATORY ID

IRA2667-24

CLIENT ID MATRIX

011 EFF-24 Water

Reviewed By:

TestAmerica Irvine

Joseph Dock

Joseph Doak Project Manager

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Arcadia, CA 91007

618 Michillinda Avenue, Suite 200

Project ID: BMP Effectiveness

Monitoring Program

Report Number: IRA2667

Sampled: 01/27/08-01/28/08

Received: 01/28/08

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: IRA2667-01 (011 EFF-1 - W	ater)				Sample	ed: 01/27/	08				
Reporting Units: g/cc Density	Displacement	8B04115	N/A	NA	0.99	1	02/04/08	02/04/08			
Sample ID: IRA2667-02 (011 EFF-2 - Water Reporting Units: g/cc	ater)				Sample	Sampled: 01/27/08					
Density	Displacement	8B04115	N/A	NA	0.99	1	02/04/08	02/04/08			
Sample ID: IRA2667-03 (011 EFF-3 - Water Reporting Units: g/cc	ater)				Sample	ed: 01/27/	08				
Density	Displacement	8B04115	N/A	NA	0.99	1	02/04/08	02/04/08			
Sample ID: IRA2667-04 (011 EFF-4 - W	4 - Water) Sampled: 01/27/08										
Reporting Units: g/cc Density	Displacement	8B04115	N/A	NA	0.99	1	02/04/08	02/04/08			
Sample ID: IRA2667-05 (011 EFF-5 - We Reporting Units: g/cc	ater)				Sample	ed: 01/27/	08				
Density	Displacement	8B04115	N/A	NA	1.0	1	02/04/08	02/04/08			
Sample ID: IRA2667-06 (011 EFF-6 - Water Reporting Units: g/cc	ater)				Sample	ed: 01/27/	08				
Density	Displacement	8B04115	N/A	NA	0.99	1	02/04/08	02/04/08			
Sample ID: IRA2667-07 (011 EFF-7 - Water Reporting Units: g/cc	ater)				Sample	ed: 01/27/	08				
Density	Displacement	8B04115	N/A	NA	1.0	1	02/04/08	02/04/08			
Sample ID: IRA2667-08 (011 EFF-8 - Washing Units: g/cc	ater)				Sample	ed: 01/27/	08				
Density	Displacement	8B04115	N/A	NA	1.0	1	02/04/08	02/04/08			
Sample ID: IRA2667-09 (011 EFF-9 - W	ater)				Sample	ed: 01/27/	08				
Reporting Units: g/cc Density	Displacement	8B04115	N/A	NA	0.99	1	02/04/08	02/04/08			
Sample ID: IRA2667-10 (011 EFF-10 - Water)					Sample	ed: 01/27/	08				
Reporting Units: g/cc Density	Displacement	8B04115	N/A	NA	0.99	1	02/04/08	02/04/08			

TestAmerica Irvine

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: BMP Effectiveness

618 Michillinda Avenue, Suite 200

Monitoring Program Sampled: 01/27/08-01/28/08

Arcadia, CA 91007

Report Number: IRA2667

Received: 01/28/08

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IRA2667-11 (011 EFF-11 - V	Vater)				Sample	ed: 01/27/	08			
Reporting Units: g/cc Density	Displacement	8B04115	N/A	NA	0.99	1	02/04/08	02/04/08		
Sample ID: IRA2667-12 (011 EFF-12 - V Reporting Units: g/cc	Vater)				Sample	Sampled: 01/27/08				
Density	Displacement	8B04115	N/A	NA	1.0	1	02/04/08	02/04/08		
Sample ID: IRA2667-13 (011 EFF-13 - V Reporting Units: g/cc	Vater)				Sample	ed: 01/27/0	08			
Density	Displacement	8B04115	N/A	NA	0.98	1	02/04/08	02/04/08		
Sample ID: IRA2667-14 (011 EFF-14 - V Reporting Units: g/cc	Vater)				Sample	ed: 01/27/0	08			
Density	Displacement	8B04115	N/A	NA	0.99	1	02/04/08	02/04/08		
Sample ID: IRA2667-15 (011 EFF-15 - V Reporting Units: g/cc	Vater)				Sample	ed: 01/27/0	08			
Density	Displacement	8B04115	N/A	NA	0.99	1	02/04/08	02/04/08		
Sample ID: IRA2667-16 (011 EFF-16 - V Reporting Units: g/cc	Vater)				Sample	Sampled: 01/27/08 0.99				
Density	Displacement	8B04115	N/A	NA	0.99	1	02/04/08	02/04/08		
Sample ID: IRA2667-17 (011 EFF-17 - V Reporting Units: g/cc	Vater)				Sample	ed: 01/28/	08			
Density	Displacement	8B04115	N/A	NA	0.98	1	02/04/08	02/04/08		
Sample ID: IRA2667-18 (011 EFF-18 - V Reporting Units: g/cc	Vater)				Sample	ed: 01/28/0	08			
Density general green	Displacement	8B04115	N/A	NA	1.0	1	02/04/08	02/04/08		
Sample ID: IRA2667-19 (011 EFF-19 - V Reporting Units: g/cc	Vater)				Sample	ed: 01/28/0	08			
Density	Displacement	8B04115	N/A	NA	0.99	1	02/04/08	02/04/08		
Sample ID: IRA2667-20 (011 EFF-20 - Water) Reporting Units: g/cc					Sample	ed: 01/28/	08			
Density	Displacement	8B04120	N/A	NA	0.99	1	02/04/08	02/04/08		

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: BMP Effectiveness

Monitoring Program

Report Number: IRA2667

Received: 01/28/08

Sampled: 01/27/08-01/28/08

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: IRA2667-21 (011 EFF-21 - V	Vater)				Sample	ed: 01/28/	08				
Reporting Units: g/cc Density	Displacement	8B04120	N/A	NA	0.99	1	02/04/08	02/04/08			
Sample ID: IRA2667-22 (011 EFF-22 - V Reporting Units: g/cc	Vater)				Sample	Sampled: 01/28/08					
Density	Displacement	8B04120	N/A	NA	0.99	1	02/04/08	02/04/08			
Sample ID: IRA2667-23 (011 EFF-23 - V Reporting Units: g/cc	Vater)				Sample	Sampled: 01/28/08					
Density	Displacement	8B04120	N/A	NA	0.99	1	02/04/08	02/04/08			
Sample ID: IRA2667-24 (011 EFF-24 - V Reporting Units: g/cc	Vater)				Sample	ed: 01/28/	08				
Density	Displacement	8B04120	N/A	NA	0.99	1	02/04/08	02/04/08			
Sample ID: IRA2667-01 (011 EFF-1 - W Reporting Units: mg/l	ater)				Sample	ed: 01/27/	08				
Sediment	ASTM D3977	8B04124	10	10	45	1	02/04/08	02/05/08			
Sample ID: IRA2667-02 (011 EFF-2 - W Reporting Units: mg/l	ater)				Sample	ed: 01/27/	08				
Sediment	ASTM D3977	8B04124	10	10	44	1	02/04/08	02/05/08			
Sample ID: IRA2667-03 (011 EFF-3 - W Reporting Units: mg/l	ater)				Sample	ed: 01/27/	08				
Sediment	ASTM D3977	8B04124	10	10	35	1	02/04/08	02/05/08			
Sample ID: IRA2667-04 (011 EFF-4 - W Reporting Units: mg/l	ater)				Sample	ed: 01/27/	08				
Sediment Sediment	ASTM D3977	8B04124	10	10	30	1	02/04/08	02/05/08			
Sample ID: IRA2667-05 (011 EFF-5 - W Reporting Units: mg/l	ater)				Sample	ed: 01/27/	08				
Sediment	ASTM D3977	8B04124	10	10	42	1	02/04/08	02/05/08			
Sample ID: IRA2667-06 (011 EFF-6 - Water)					Sample	ed: 01/27/	08				
Reporting Units: mg/l Sediment	ASTM D3977	8B04124	10	10	37	1	02/04/08	02/05/08			

TestAmerica Irvine

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: BMP Effectiveness

Monitoring Program

Report Number: IRA2667

Received: 01/28/08

Sampled: 01/27/08-01/28/08

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: IRA2667-07 (011 EFF-7 - W	ater)				Sample	ed: 01/27/	08				
Reporting Units: mg/l Sediment	ASTM D3977	8B04124	10	10	47	1	02/04/08	02/05/08			
Sample ID: IRA2667-08 (011 EFF-8 - W Reporting Units: mg/l	ater)				Sample	Sampled: 01/27/08					
Sediment	ASTM D3977	8B04124	10	10	75	1	02/04/08	02/05/08			
Sample ID: IRA2667-09 (011 EFF-9 - W Reporting Units: mg/l	ater)				Sample	ed: 01/27/	08				
Sediment Sediment	ASTM D3977	8B04124	10	10	120	1	02/04/08	02/05/08			
Sample ID: IRA2667-10 (011 EFF-10 - V Reporting Units: mg/l	S-10 - Water) Sampled: 01/27/08										
Sediment Sediment	ASTM D3977	8B04124	10	10	130	1	02/04/08	02/05/08			
Sample ID: IRA2667-11 (011 EFF-11 - V Reporting Units: mg/l	Water)				Sample	ed: 01/27/	08				
Sediment	ASTM D3977	8B04124	10	10	81	1	02/04/08	02/05/08			
Sample ID: IRA2667-12 (011 EFF-12 - V Reporting Units: mg/l	Water)				Sample	ed: 01/27/	08				
Sediment	ASTM D3977	8B04124	10	10	64	1	02/04/08	02/05/08			
Sample ID: IRA2667-13 (011 EFF-13 - V Reporting Units: mg/l	Water)				Sample	ed: 01/27/	08				
Sediment	ASTM D3977	8B04124	10	10	46	1	02/04/08	02/05/08			
Sample ID: IRA2667-14 (011 EFF-14 - V Reporting Units: mg/l	Water)				Sample	ed: 01/27/	08				
Sediment	ASTM D3977	8B04124	10	10	48	1	02/04/08	02/05/08			
Sample ID: IRA2667-15 (011 EFF-15 - V Reporting Units: mg/l	Water)				Sample	ed: 01/27/	08				
Sediment	ASTM D3977	8B04124	10	10	41	1	02/04/08	02/05/08			
Sample ID: IRA2667-16 (011 EFF-16 - Water) Reporting Units: mg/l					Sample	ed: 01/27/	08				
Sediment	ASTM D3977	8B04124	10	10	42	1	02/04/08	02/05/08			

TestAmerica Irvine

Joseph Doak Project Manager

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: BMP Effectiveness

Monitoring Program

Report Number: IRA2667

Sampled: 01/27/08-01/28/08

Received: 01/28/08

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2667-17 (011 EFF-17 - V	Water)				Sample	ed: 01/28/0	08		
Sediment Sediment	ASTM D3977	8B04124	10	10	37	1	02/04/08	02/05/08	
Sample ID: IRA2667-18 (011 EFF-18 - V Reporting Units: mg/l	Water)				Sample	ed: 01/28/0	08		
Sediment	ASTM D3977	8B04124	10	10	35	1	02/04/08	02/05/08	
Sample ID: IRA2667-19 (011 EFF-19 - V Reporting Units: mg/l	Water)				Sample	ed: 01/28/0	08		
Sediment	ASTM D3977	8B04124	10	10	35	1	02/04/08	02/05/08	
Sample ID: IRA2667-20 (011 EFF-20 - V Reporting Units: mg/l	Water)				Sample	ed: 01/28/0	08		
Sediment	ASTM D3977	8B04125	10	10	58	1	02/04/08	02/05/08	
Sample ID: IRA2667-21 (011 EFF-21 - V Reporting Units: mg/l	Water)				Sample	ed: 01/28/0	08		
Sediment	ASTM D3977	8B04125	10	10	76	1	02/04/08	02/05/08	
Sample ID: IRA2667-22 (011 EFF-22 - V Reporting Units: mg/l	Water)				Sample	ed: 01/28/0	08		
Sediment	ASTM D3977	8B04125	10	10	61	1	02/04/08	02/05/08	
Sample ID: IRA2667-23 (011 EFF-23 - V Reporting Units: mg/l	Water)				Sample	ed: 01/28/0	08		
Sediment	ASTM D3977	8B04125	10	10	47	1	02/04/08	02/05/08	
Sample ID: IRA2667-24 (011 EFF-24 - V	Water)				Sample	ed: 01/28/0	08		
Reporting Units: mg/l Sediment	ASTM D3977	8B04125	10	10	36	1	02/04/08	02/05/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: BMP Effectiveness

Monitoring Program

Report Number: IRA2667

Sampled: 01/27/08-01/28/08

Received: 01/28/08

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04115 Extracted: 02/04/08	_										
					~						
Duplicate Analyzed: 02/04/2008 (8B0411	5-DUP1)				Sou	rce: IRA	2667-01				
Density	0.992	NA	N/A	g/cc		0.990			0	20	
Batch: 8B04120 Extracted: 02/04/08	_										
Duplicate Analyzed: 02/04/2008 (8B0412	0-DUP1)				Sou	rce: IRA	2668-01				
Density	0.987	NA	N/A	g/cc		0.984			0	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: BMP Effectiveness

Monitoring Program Sampled: 01/27/08-01/28/08

Report Number: IRA2667 Received: 01/28/08

DATA QUALIFIERS AND DEFINITIONS

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Arcadia, CA 91007

618 Michillinda Avenue, Suite 200

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: BMP Effectiveness

Monitoring Program Sampled: 01/27/08-01/28/08

Report Number: IRA2667 Received: 01/28/08

Certification Summary

TestAmerica Irvine

Displacement

MethodMatrixNelacCaliforniaASTM D3977Water

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting

the laboratory or visiting our website at www.testamericainc.com

Water

1,29,28 082 Page 1 of 91,00 00:00 2.00 2,00 3:00 4,00 00.1 00; 00/2 2:00 00:11 11:00 0019 2:00 00:3 Sampling Date Corrections 2:00 90.08 1:00 9 8:18 Comments Normal Sample Integrity: (check) Intact On Ice: Time of readings = $N\mu$ 10 Days Turn around Time: (check)
24 Hours 5 Days 3.6 -27-08 91-27-08 1-27-08 -27-08 -27-08 -27-08 -27-08 -27-08 -27-08 -28-08 1-27-08 1-27-08 1-27-08 -27-08 -28-D8 -27-08 80-22--28-08 30-82--28-cs Field readings: Temp = 48 Hours 72 Hours REQUIRED = Hd コーンファイト 1420 ANALYSIS 0191 20-82-1 Date/Time: Ot / THE STATE OF THE S Date/Time: Date/Time: TRAZUGT CHAIN OF CUSTODY FORM (1997-1997) Suspended Sediment Concentration (SSC, ASTM-× Bottle # 13 4 15 16 128 19 2 3 2 2 24 10 7 12 17 Effectiveness Monitoring Program Preservative Received By Received By Received By Project: Boeing BMP None -27-08:40 None 626) 568-6515 Phone Number (626) 568-6691 Fax Number: Sampling Date/Time 80-82-1 Date/Time Date/Time: #of Cont 10 K Fest America version 12/20/07 500 mL Poly Test America Contact: Joseph Doak Project Manager: Bronwyn Kelly Container 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 4 Sampler: // Chow Sample Matrix Client Name/Address: 3 3 ≥ ≥ 3|3|3|3|3|3|3 333333 ∣≥∣ ≥ MWH-Arcadia ∣≥ Relinquished By Relineuished By Hirquished By Sample Description 011 EFF-15 011 EFF-18 011 EFF-19 011 EFF-22 011 EFF-23 011 EFF-24 011 EFF-12 011 EFF-13 011 EFF-14 011 EFF-16 011 EFF-17 011 EFF-20 011 EFF-21 011 EFF-10 011 EFF-11 011 EFF-5 011 EFF-6 011 EFF-9 011 EFF-2 011 EFF-3 011 EFF-4 011 EFF-7 011 EFF-8 011 EFF-1

9

NPDES