# **APPENDIX G**

# **Section 63**

Outfall 010 - BMP Effectiveness, January 4-5, 2008 Test America Analytical Laboratory Report



#### LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: BMP Effectiveness

618 Michillinda Avenue, Suite 200 Monitoring Program

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 01/04/08-01/05/08

Received: 01/07/08 Issued: 01/16/08 13:40

#### NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 4 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

#### SAMPLE CROSS REFERENCE

| LABORATORY ID | CLIENT ID  | MATRIX |
|---------------|------------|--------|
| IRA0414-01    | 006 EFF-1  | Water  |
| IRA0414-02    | 006 EFF-2  | Water  |
| IRA0414-03    | 006 EFF-3  | Water  |
| IRA0414-04    | 006 EFF-4  | Water  |
| IRA0414-05    | 006 EFF-5  | Water  |
| IRA0414-06    | 006 EFF-6  | Water  |
| IRA0414-07    | 006 EFF-7  | Water  |
| IRA0414-08    | 006 EFF-8  | Water  |
| IRA0414-09    | 006 EFF-9  | Water  |
| IRA0414-10    | 006 EFF-10 | Water  |
| IRA0414-11    | 006 EFF-11 | Water  |
| IRA0414-12    | 006 EFF-12 | Water  |
| IRA0414-13    | 006 INF-1  | Water  |
| IRA0414-14    | 006 INF-2  | Water  |
| IRA0414-15    | 006 INF-3  | Water  |
| IRA0414-16    | 006 INF-4  | Water  |
| IRA0414-17    | 010 EFF-1  | Water  |
| IRA0414-18    | 010 EFF-2  | Water  |
| IRA0414-19    | 010 EFF-3  | Water  |
| IRA0414-20    | 010 EFF-4  | Water  |
| IRA0414-21    | 010 EFF-5  | Water  |
| IRA0414-22    | 010 EFF-6  | Water  |
| IRA0414-23    | 010 EFF-7  | Water  |





MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: BMP Effectiveness

Monitoring Program Sampled: 01/04/08-01/05/08

Report Number: IRA0414 Received: 01/07/08

| LABORATORY ID | CLIENT ID  | MATRIX |
|---------------|------------|--------|
| IRA0414-24    | 010 EFF-8  | Water  |
| IRA0414-25    | 010 EFF-9  | Water  |
| IRA0414-26    | 010 EFF-10 | Water  |
| IRA0414-27    | 010 EFF-11 | Water  |
| IRA0414-28    | 010 EFF-12 | Water  |
| IRA0414-29    | 010 EFF-13 | Water  |
| IRA0414-30    | 010 EFF-14 | Water  |
| IRA0414-31    | 010 EFF-15 | Water  |
| IRA0414-32    | 010 EFF-16 | Water  |
| IRA0414-33    | 010 EFF-17 | Water  |
| IRA0414-34    | 010 INF-1  | Water  |
| IRA0414-35    | 010 INF-2  | Water  |
| IRA0414-36    | 010 INF-3  | Water  |
| IRA0414-37    | 010 INF-4  | Water  |
| IRA0414-38    | 010 INF-5  | Water  |
| IRA0414-39    | 010 INF-6  | Water  |
| IRA0414-40    | 010 INF-7  | Water  |
| IRA0414-41    | 010 INF-8  | Water  |
| IRA0414-42    | 010 INF-9  | Water  |
| IRA0414-43    | 010 INF-10 | Water  |
| IRA0414-44    | 010 INF-11 | Water  |
| IRA0414-45    | 010 INF-12 | Water  |
| IRA0414-46    | 010 INF-13 | Water  |
| IRA0414-47    | 010 INF-14 | Water  |
|               |            |        |

Reviewed By:

**TestAmerica Irvine** 

Joseph Dock



618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Arcadia, CA 91007

Project ID: BMP Effectiveness

Monitoring Program

Report Number: IRA0414

Sampled: 01/04/08-01/05/08

Received: 01/07/08

#### **INORGANICS**

|                                                                    |                         | INOR               | GANICS             |                  |                    |                       |                       |                    |
|--------------------------------------------------------------------|-------------------------|--------------------|--------------------|------------------|--------------------|-----------------------|-----------------------|--------------------|
| Analyte                                                            | Method                  | Batch              | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted     | Date<br>Analyzed      | Data<br>Qualifiers |
| Sample ID: IRA0414-01 (006 EFF-1 - Water)                          |                         |                    |                    | Sampled          | : 01/04/08         |                       |                       |                    |
| Reporting Units: g/cc                                              |                         |                    |                    | •                |                    |                       |                       |                    |
| Density                                                            | Displacement            | 8A08079            | NA                 | 1.0              | 1                  | 1/8/2008              | 1/10/2008             |                    |
| Sample ID: IRA0414-01 (006 EFF-1 - Water)                          |                         |                    |                    | Sampled          | : 01/04/08         |                       |                       |                    |
| Reporting Units: mg/l                                              | ACTM D2077              | 0 4 1 ( 0 0 2      | 10                 | 40               | 1                  | 1/1//2000             | 1/1//2009             |                    |
| Sediment Total Suspended Solids                                    | ASTM D3977<br>EPA 160.2 | 8A16083<br>8A07105 | 10<br>10           | 48<br>48         | 1<br>1             | 1/16/2008<br>1/7/2008 | 1/16/2008<br>1/7/2008 |                    |
| Total Suspended Solids                                             | E1 A 100.2              | 6A0/103            | 10                 | 40               | 1                  | 1///2008              | 1///2008              |                    |
| Sample ID: IRA0414-02 (006 EFF-2 - Water)<br>Reporting Units: g/cc |                         |                    |                    | Sampled          | : 01/04/08         |                       |                       |                    |
| Density                                                            | Displacement            | 8A08079            | NA                 | 1.0              | 1                  | 1/8/2008              | 1/10/2008             |                    |
| Sample ID: IRA0414-02 (006 EFF-2 - Water)<br>Reporting Units: mg/l |                         |                    |                    | Sampled          | : 01/04/08         |                       |                       |                    |
| Sediment                                                           | <b>ASTM D3977</b>       | 8A16083            | 10                 | 42               | 1                  | 1/16/2008             | 1/16/2008             |                    |
| <b>Total Suspended Solids</b>                                      | EPA 160.2               | 8A07105            | 10                 | 42               | 1                  | 1/7/2008              | 1/7/2008              |                    |
| Sample ID: IRA0414-03 (006 EFF-3 - Water) Reporting Units: g/cc    |                         |                    |                    | Sampled          | : 01/04/08         |                       |                       |                    |
| Density                                                            | Displacement            | 8A08079            | NA                 | 1.0              | 1                  | 1/8/2008              | 1/10/2008             |                    |
| Sample ID: IRA0414-03 (006 EFF-3 - Water)<br>Reporting Units: mg/l |                         |                    |                    | Sampled          | : 01/04/08         |                       |                       |                    |
| Sediment                                                           | <b>ASTM D3977</b>       | 8A16083            | 10                 | 42               | 1                  | 1/16/2008             | 1/16/2008             |                    |
| <b>Total Suspended Solids</b>                                      | EPA 160.2               | 8A07105            | 10                 | 42               | 1                  | 1/7/2008              | 1/7/2008              |                    |
| Sample ID: IRA0414-04 (006 EFF-4 - Water) Reporting Units: g/cc    |                         |                    |                    | Sampled          | : 01/04/08         |                       |                       |                    |
| Density                                                            | Displacement            | 8A08079            | NA                 | 0.99             | 1                  | 1/8/2008              | 1/10/2008             |                    |
| Sample ID: IRA0414-04 (006 EFF-4 - Water) Reporting Units: mg/l    |                         |                    |                    | Sampled          | : 01/04/08         |                       |                       |                    |
| Sediment                                                           | <b>ASTM D3977</b>       | 8A16083            | 10                 | 29               | 1                  | 1/16/2008             | 1/16/2008             |                    |
| <b>Total Suspended Solids</b>                                      | EPA 160.2               | 8A07105            | 10                 | 29               | 1                  | 1/7/2008              | 1/7/2008              |                    |
| Sample ID: IRA0414-05 (006 EFF-5 - Water) Reporting Units: g/cc    |                         |                    |                    | Sampled          | : 01/04/08         |                       |                       |                    |
| Density                                                            | Displacement            | 8A08079            | NA                 | 1.0              | 1                  | 1/8/2008              | 1/10/2008             |                    |
| Sample ID: IRA0414-05 (006 EFF-5 - Water)<br>Reporting Units: mg/l |                         |                    |                    | Sampled          | : 01/04/08         |                       |                       |                    |
| Sediment                                                           | ASTM D3977              | 8A16083            | 10                 | 30               | 1                  | 1/16/2008             | 1/16/2008             |                    |
| <b>Total Suspended Solids</b>                                      | EPA 160.2               | 8A07105            | 10                 | 30               | 1                  | 1/7/2008              | 1/7/2008              |                    |

#### **TestAmerica Irvine**



MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: BMP Effectiveness

Monitoring Program

Report Number: IRA0414

Received: 01/07/08

Sampled: 01/04/08-01/05/08

#### **INORGANICS**

|                                                                    |              | 11.011  | 01111              |                  |                    |                   |                  |                    |
|--------------------------------------------------------------------|--------------|---------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Analyte                                                            | Method       | Batch   | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
| Sample ID: IRA0414-06 (006 EFF-6 - Water)                          |              |         |                    | Sampled          | 01/05/08           |                   |                  |                    |
| Reporting Units: g/cc                                              |              |         |                    |                  |                    |                   |                  |                    |
| Density                                                            | Displacement | 8A08079 | NA                 | 0.99             | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-06 (006 EFF-6 - Water)                          |              |         |                    | Sampled          | 01/05/08           |                   |                  |                    |
| Reporting Units: mg/l                                              |              |         |                    | •                |                    |                   |                  |                    |
| Sediment                                                           | ASTM D3977   | 8A16083 | 10                 | 18               | 1                  | 1/16/2008         | 1/16/2008        |                    |
| <b>Total Suspended Solids</b>                                      | EPA 160.2    | 8A07105 | 10                 | 18               | 1                  | 1/7/2008          | 1/7/2008         |                    |
| Sample ID: IRA0414-07 (006 EFF-7 - Water)                          |              |         |                    | Sampled          | 01/05/08           |                   |                  |                    |
| Reporting Units: g/cc                                              |              |         |                    | •                |                    |                   |                  |                    |
| Density                                                            | Displacement | 8A08079 | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-07 (006 EFF-7 - Water)                          |              |         |                    | Sampled          | 01/05/08           |                   |                  |                    |
| Reporting Units: mg/l                                              |              |         |                    | Sumpreu          | . 01,00,00         |                   |                  |                    |
| Sediment                                                           | ASTM D3977   | 8A16083 | 10                 | 20               | 1                  | 1/16/2008         | 1/16/2008        |                    |
| <b>Total Suspended Solids</b>                                      | EPA 160.2    | 8A07105 | 10                 | 20               | 1                  | 1/7/2008          | 1/7/2008         |                    |
| Sample ID: IRA0414-08 (006 EFF-8 - Water)                          |              |         |                    | Sampled          | 01/05/08           |                   |                  |                    |
| Reporting Units: g/cc                                              |              |         |                    | Sumpicu          | 01/02/00           |                   |                  |                    |
| Density                                                            | Displacement | 8A08079 | NA                 | 0.99             | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-08 (006 EFF-8 - Water)                          |              |         |                    | Sampled          | : 01/05/08         |                   |                  |                    |
| Reporting Units: mg/l                                              |              |         |                    | Sampicu          | 01/05/00           |                   |                  |                    |
| Sediment                                                           | ASTM D3977   | 8A16083 | 10                 | 11               | 1                  | 1/16/2008         | 1/16/2008        |                    |
| <b>Total Suspended Solids</b>                                      | EPA 160.2    | 8A07105 | 10                 | 11               | 1                  | 1/7/2008          | 1/7/2008         |                    |
| Sample ID: IRA0414-09 (006 EFF-9 - Water)                          |              |         |                    | Sampled          | : 01/05/08         |                   |                  |                    |
| Reporting Units: g/cc                                              |              |         |                    | Sampleu          | 01/03/00           |                   |                  |                    |
| Density                                                            | Displacement | 8A08079 | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Samula ID. ID 40414 00 (006 FFF 0 Water)                           | •            |         |                    | Compled          | . 01/05/00         |                   |                  |                    |
| Sample ID: IRA0414-09 (006 EFF-9 - Water)<br>Reporting Units: mg/l |              |         |                    | Sampleu          | : 01/05/08         |                   |                  |                    |
| Sediment                                                           | ASTM D3977   | 8A16083 | 10                 | 11               | 1                  | 1/16/2008         | 1/16/2008        |                    |
| <b>Total Suspended Solids</b>                                      | EPA 160.2    | 8A07105 | 10                 | 11               | 1                  | 1/7/2008          | 1/7/2008         |                    |
| Sample ID: IRA0414-10 (006 EFF-10 - Water                          | •)           |         |                    | Sampled          | 01/05/08           |                   |                  |                    |
| Reporting Units: g/cc                                              | • )          |         |                    | Sampicu          | 01/05/00           |                   |                  |                    |
| Density                                                            | Displacement | 8A08079 | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-10 (006 EFF-10 - Water                          | ·)           |         |                    | Sampled          | : 01/05/08         |                   |                  |                    |
| Reporting Units: mg/l                                              | ,            |         |                    | Sampicu          | 01/03/00           |                   |                  |                    |
| Sediment                                                           | ASTM D3977   | 8A16083 | 10                 | 20               | 1                  | 1/16/2008         | 1/16/2008        |                    |
| Total Suspended Solids                                             | EPA 160.2    | 8A07106 | 10                 | 20               | 1                  | 1/7/2008          | 1/7/2008         |                    |
| _                                                                  |              |         |                    |                  |                    |                   |                  |                    |

#### **TestAmerica Irvine**



MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: BMP Effectiveness

Monitoring Program Sampled: 01/04/08-01/05/08

Report Number: IRA0414 Received: 01/07/08

#### **INORGANICS**

| Analyte                                    | Method    | Batch    | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|--------------------------------------------|-----------|----------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: IRA0414-11 (006 EFF-11 - Water) |           |          |                    | Sampled:         | 01/05/08           |                   |                  |                    |
| Reporting Units: g/cc                      |           |          |                    | oumprous.        | 01/00/00           |                   |                  |                    |
|                                            | placement | 8A08079  | NA                 | 0.99             | 1                  | 1/8/2008          | 1/10/2008        |                    |
| C                                          | •         |          |                    | C1- J.           | 01/05/00           |                   |                  |                    |
| Sample ID: IRA0414-11 (006 EFF-11 - Water) |           |          |                    | Sampled:         | 01/05/08           |                   |                  |                    |
| Reporting Units: mg/l Sediment AST         | ГМ D3977  | 8A16083  | 10                 | 38               | 1                  | 1/16/2008         | 1/16/2008        |                    |
|                                            | PA 160.2  | 8A07106  | 10                 | 38               | 1                  | 1/7/2008          | 1/7/2008         |                    |
| Total Suspended Solids                     | A 100.2   | 0A0/100  | 10                 | 30               | 1                  | 1///2006          | 1///2008         |                    |
| Sample ID: IRA0414-12 (006 EFF-12 - Water) |           |          |                    | Sampled:         | 01/05/08           |                   |                  |                    |
| Reporting Units: g/cc                      |           |          |                    |                  |                    |                   |                  |                    |
| <b>Density</b> Disp                        | placement | 8A08079  | NA                 | 0.99             | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-12 (006 EFF-12 - Water) |           |          |                    | Sampled:         | 01/05/08           |                   |                  |                    |
| Reporting Units: mg/l                      |           |          |                    | •                |                    |                   |                  |                    |
|                                            | ГМ D3977  | 8A16083  | 10                 | 29               | 1                  | 1/16/2008         | 1/16/2008        |                    |
| Total Suspended Solids EP                  | PA 160.2  | 8A07106  | 10                 | 29               | 1                  | 1/7/2008          | 1/7/2008         |                    |
| Sample ID: ID 40/1/4 12 (006 INE 1 Water)  |           |          |                    | Campled          | 01/04/09           |                   |                  |                    |
| Sample ID: IRA0414-13 (006 INF-1 - Water)  |           |          |                    | Sampled:         | 01/04/08           |                   |                  |                    |
| Reporting Units: g/cc Density Disp         | placement | 8A08079  | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Dist                                       | piacement | 0A00077  | IVA                | 1.0              | 1                  | 1/6/2006          | 1/10/2008        |                    |
| Sample ID: IRA0414-13 (006 INF-1 - Water)  |           |          |                    | Sampled:         | 01/04/08           |                   |                  |                    |
| Reporting Units: mg/l                      |           |          |                    |                  |                    |                   |                  |                    |
|                                            | ГМ D3977  | 8A16083  | 10                 | 120              | 1                  | 1/16/2008         | 1/16/2008        |                    |
| Total Suspended Solids EP                  | PA 160.2  | 8A07106  | 10                 | 120              | 1                  | 1/7/2008          | 1/7/2008         |                    |
| Sample ID: IRA0414-14 (006 INF-2 - Water)  |           |          |                    | Sampled:         | 01/04/08           |                   |                  |                    |
| Reporting Units: g/cc                      |           |          |                    | •                |                    |                   |                  |                    |
|                                            | placement | 8A08079  | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Samula ID. ID A0414 14 (006 INF 2 Water)   |           |          |                    | Campled          | 01/04/09           |                   |                  |                    |
| Sample ID: IRA0414-14 (006 INF-2 - Water)  |           |          |                    | Sampled:         | 01/04/00           |                   |                  |                    |
| Reporting Units: mg/l Sediment AST         | ГМ D3977  | 8A16083  | 10                 | 110              | 1                  | 1/16/2008         | 1/16/2008        |                    |
|                                            | PA 160.2  | 8A07106  | 10                 | 110              | 1                  | 1/7/2008          | 1/7/2008         |                    |
| Total Suspended Solids                     | 11 100.2  | 0/10/100 | 10                 | 110              | 1                  | 1///2000          | 1///2000         |                    |
| Sample ID: IRA0414-15 (006 INF-3 - Water)  |           |          |                    | Sampled:         | 01/04/08           |                   |                  |                    |
| Reporting Units: g/cc                      |           |          |                    |                  |                    |                   |                  |                    |
| <b>Density</b> Disp                        | placement | 8A08079  | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-15 (006 INF-3 - Water)  |           |          |                    | Sampled:         | 01/04/08           |                   |                  |                    |
| Reporting Units: mg/l                      |           |          |                    | •                |                    |                   |                  |                    |
|                                            | ГМ D3977  | 8A16083  | 10                 | 73               | 1                  | 1/16/2008         | 1/16/2008        |                    |
| Total Suspended Solids EP                  | PA 160.2  | 8A07106  | 10                 | 73               | 1                  | 1/7/2008          | 1/7/2008         |                    |

#### **TestAmerica Irvine**

Sampled: 01/04/08-01/05/08



MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness

Monitoring Program

Report Number: IRA0414 Received: 01/07/08

#### **INORGANICS**

|                                                                    |              | 21,021  | 011111             |                  |                    |                   |                  |                    |
|--------------------------------------------------------------------|--------------|---------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Analyte                                                            | Method       | Batch   | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
| Sample ID: IRA0414-16 (006 INF-4 - Water)                          |              |         |                    | Sampled          | : 01/04/08         |                   |                  |                    |
| Reporting Units: g/cc Density                                      | Displacement | 8A08079 | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-16 (006 INF-4 - Water)                          |              |         |                    | Sampled          | : 01/04/08         |                   |                  |                    |
| Reporting Units: mg/l<br>Sediment                                  | ASTM D3977   | 8A16083 | 10                 | 72               | 1                  | 1/16/2008         | 1/16/2008        |                    |
| Total Suspended Solids                                             | EPA 160.2    | 8A07106 | 10                 | 72               | 1                  | 1/7/2008          | 1/7/2008         |                    |
| Sample ID: IRA0414-17 (010 EFF-1 - Water)<br>Reporting Units: g/cc |              |         |                    | Sampled          | : 01/04/08         |                   |                  |                    |
| Density                                                            | Displacement | 8A08079 | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-17 (010 EFF-1 - Water)<br>Reporting Units: mg/l |              |         |                    | Sampled          | : 01/04/08         |                   |                  |                    |
| Sediment                                                           | ASTM D3977   | 8A16083 | 10                 | 66               | 1                  | 1/16/2008         | 1/16/2008        |                    |
| Total Suspended Solids                                             | EPA 160.2    | 8A07106 | 10                 | 66               | 1                  | 1/7/2008          | 1/7/2008         |                    |
| Sample ID: IRA0414-18 (010 EFF-2 - Water)<br>Reporting Units: g/cc |              |         |                    | Sampled          | : 01/04/08         |                   |                  |                    |
| Density                                                            | Displacement | 8A08079 | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-18 (010 EFF-2 - Water)<br>Reporting Units: mg/l |              |         |                    | Sampled          | : 01/04/08         |                   |                  |                    |
| Sediment                                                           | ASTM D3977   | 8A16083 | 10                 | 39               | 1                  | 1/16/2008         | 1/16/2008        |                    |
| Total Suspended Solids                                             | EPA 160.2    | 8A07106 | 10                 | 39               | 1                  | 1/7/2008          | 1/7/2008         |                    |
| Sample ID: IRA0414-19 (010 EFF-3 - Water)<br>Reporting Units: g/cc |              |         |                    | Sampled          | : 01/04/08         |                   |                  |                    |
| Density                                                            | Displacement | 8A08079 | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-19 (010 EFF-3 - Water)<br>Reporting Units: mg/l |              |         |                    | Sampled          | : 01/04/08         |                   |                  |                    |
| Sediment                                                           | ASTM D3977   | 8A16083 | 10                 | 44               | 1                  | 1/16/2008         | 1/16/2008        |                    |
| Total Suspended Solids                                             | EPA 160.2    | 8A07106 | 10                 | 44               | 1                  | 1/7/2008          | 1/7/2008         |                    |
| Sample ID: IRA0414-20 (010 EFF-4 - Water)<br>Reporting Units: g/cc |              |         |                    | Sampled          | : 01/04/08         |                   |                  |                    |
| Density                                                            | Displacement | 8A08079 | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-20 (010 EFF-4 - Water)                          |              |         |                    | Sampled          | : 01/04/08         |                   |                  |                    |
| Reporting Units: mg/l Sediment                                     | ASTM D3977   | 8A16083 | 10                 | 22               | 1                  | 1/16/2008         | 1/16/2008        |                    |
| Total Suspended Solids                                             | EPA 160.2    | 8A07106 | 10                 | 22               | 1                  | 1/7/2008          | 1/7/2008         |                    |

#### **TestAmerica Irvine**



MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Project ID: BMP Effectiveness

Monitoring Program

Arcadia, CA 91007

Report Number: IRA0414

Sampled: 01/04/08-01/05/08

Received: 01/07/08

|     | _ ~ |                         |     |
|-----|-----|-------------------------|-----|
| INO | K(; | $\mathbf{A} \mathbf{N}$ | ICS |

|                                                                    |              | mon     | GHITES             |                  |                    |                   |                  |                    |
|--------------------------------------------------------------------|--------------|---------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Analyte                                                            | Method       | Batch   | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
| Sample ID: IRA0414-21 (010 EFF-5 - Water)                          | 1            |         |                    | Sampled          | : 01/04/08         |                   |                  |                    |
| Reporting Units: g/cc Density                                      | Displacement | 8A08080 | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-21 (010 EFF-5 - Water) Reporting Units: mg/l    | )            |         |                    | Sampled          | : 01/04/08         |                   |                  |                    |
| Sediment                                                           | ASTM D3977   | 8A16085 | 10                 | 22               | 1                  | 1/16/2008         | 1/16/2008        |                    |
| <b>Total Suspended Solids</b>                                      | EPA 160.2    | 8A07106 | 10                 | 22               | 1                  | 1/7/2008          | 1/7/2008         |                    |
| Sample ID: IRA0414-22 (010 EFF-6 - Water) Reporting Units: g/cc    | 1            |         |                    | Sampled          | : 01/05/08         |                   |                  |                    |
| Density                                                            | Displacement | 8A08080 | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-22 (010 EFF-6 - Water) Reporting Units: mg/l    | •            |         |                    | Sampled          | : 01/05/08         |                   |                  |                    |
| Sediment                                                           | ASTM D3977   | 8A16085 | 10                 | 12               | 1                  | 1/16/2008         | 1/16/2008        |                    |
| <b>Total Suspended Solids</b>                                      | EPA 160.2    | 8A07106 | 10                 | 12               | 1                  | 1/7/2008          | 1/7/2008         |                    |
| Sample ID: IRA0414-23 (010 EFF-7 - Water)<br>Reporting Units: g/cc | •            |         |                    | Sampled:         | : 01/05/08         |                   |                  |                    |
| Density                                                            | Displacement | 8A08080 | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-23 (010 EFF-7 - Water) Reporting Units: mg/l    | )            |         |                    | Sampled          | : 01/05/08         |                   |                  |                    |
| Sediment                                                           | ASTM D3977   | 8A16085 | 10                 | 10               | 1                  | 1/16/2008         | 1/16/2008        |                    |
| <b>Total Suspended Solids</b>                                      | EPA 160.2    | 8A07106 | 10                 | 10               | 1                  | 1/7/2008          | 1/7/2008         |                    |
| Sample ID: IRA0414-24 (010 EFF-8 - Water) Reporting Units: g/cc    | )            |         |                    | Sampled          | : 01/05/08         |                   |                  |                    |
| Density                                                            | Displacement | 8A08080 | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-24 (010 EFF-8 - Water) Reporting Units: mg/l    | )            |         |                    | Sampled          | : 01/05/08         |                   |                  |                    |
| Sediment                                                           | ASTM D3977   | 8A16085 | 10                 | 10               | 1                  | 1/16/2008         | 1/16/2008        |                    |
| <b>Total Suspended Solids</b>                                      | EPA 160.2    | 8A08116 | 10                 | 10               | 1                  | 1/8/2008          | 1/8/2008         |                    |
| Sample ID: IRA0414-25 (010 EFF-9 - Water) Reporting Units: g/cc    | )            |         |                    | Sampled          | : 01/05/08         |                   |                  |                    |
| Density                                                            | Displacement | 8A08080 | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-25 (010 EFF-9 - Water) Reporting Units: mg/l    | 1            |         |                    | Sampled          | : 01/05/08         |                   |                  |                    |
| Sediment                                                           | ASTM D3977   | 8A16085 | 10                 | ND               | 1                  | 1/16/2008         | 1/16/2008        |                    |
| Total Suspended Solids                                             | EPA 160.2    | 8A08116 | 10                 | ND               | 1                  | 1/8/2008          | 1/8/2008         |                    |

#### **TestAmerica Irvine**



MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Project ID: BMP Effectiveness

Monitoring Program

Arcadia, CA 91007

Report Number: IRA0414

Sampled: 01/04/08-01/05/08

Received: 01/07/08

#### **INORGANICS**

|                                            |              | mon     | GHITTES            |                   |                    |                   |                  |                    |
|--------------------------------------------|--------------|---------|--------------------|-------------------|--------------------|-------------------|------------------|--------------------|
| Analyte                                    | Method       | Batch   | Reporting<br>Limit | Sample<br>Result  | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
| Sample ID: IRA0414-26 (010 EFF-10 - Wa     | iter)        |         |                    | Sampled           | 01/05/08           |                   |                  |                    |
| Reporting Units: g/cc                      | ,            |         |                    | •                 |                    |                   |                  |                    |
| Density                                    | Displacement | 8A08080 | NA                 | 1.0               | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-26 (010 EFF-10 - Wa     | ater)        |         |                    | Sampled           | 01/05/08           |                   |                  |                    |
| Reporting Units: mg/l                      | iter)        |         |                    | Sampica           | 01/05/00           |                   |                  |                    |
| Sediment                                   | ASTM D3977   | 8A16085 | 10                 | ND                | 1                  | 1/16/2008         | 1/16/2008        |                    |
| Total Suspended Solids                     | EPA 160.2    | 8A08116 | 10                 | ND                | 1                  | 1/8/2008          | 1/8/2008         |                    |
| Sample ID: IRA0414-27 (010 EFF-11 - Wa     | nter)        |         |                    | Sampled           | 01/05/08           |                   |                  |                    |
| Reporting Units: g/cc                      |              |         |                    | Sumpieu           | 01/02/00           |                   |                  |                    |
| Density                                    | Displacement | 8A08080 | NA                 | 1.0               | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-27 (010 EFF-11 - Wa     | ntar)        |         |                    | Sampled           | : 01/05/08         |                   |                  |                    |
| Reporting Units: mg/l                      | iter)        |         |                    | Sampicu           | 01/03/00           |                   |                  |                    |
| Sediment                                   | ASTM D3977   | 8A16085 | 10                 | ND                | 1                  | 1/16/2008         | 1/16/2008        |                    |
| Total Suspended Solids                     | EPA 160.2    | 8A08116 | 10                 | ND                | 1                  | 1/8/2008          | 1/8/2008         |                    |
| Sample ID: IRA0414-28 (010 EFF-12 - Water) |              |         |                    | Sampled           | 01/05/08           |                   |                  |                    |
| Reporting Units: g/cc                      |              |         |                    | Sumpreus          | 01,00,00           |                   |                  |                    |
| Density                                    | Displacement | 8A08080 | NA                 | 0.99              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-28 (010 EFF-12 - Wa     | nter)        |         |                    | Sampled           | 01/05/08           |                   |                  |                    |
| Reporting Units: mg/l                      |              |         |                    | Sampica           | 01/05/00           |                   |                  |                    |
| Sediment                                   | ASTM D3977   | 8A16085 | 10                 | ND                | 1                  | 1/16/2008         | 1/16/2008        |                    |
| Total Suspended Solids                     | EPA 160.2    | 8A08116 | 10                 | ND                | 1                  | 1/8/2008          | 1/8/2008         |                    |
| Sample ID: IRA0414-29 (010 EFF-13 - Wa     | nter)        |         |                    | Sampled: 01/05/08 |                    |                   |                  |                    |
| Reporting Units: g/cc                      |              |         |                    | Sumpreus          | 01,00,00           |                   |                  |                    |
| Density                                    | Displacement | 8A08080 | NA                 | 1.0               | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-29 (010 EFF-13 - Wa     | iter)        |         |                    | Sampled           | 01/05/08           |                   |                  |                    |
| Reporting Units: mg/l                      |              |         |                    | Sampica           | 01/05/00           |                   |                  |                    |
| Sediment                                   | ASTM D3977   | 8A16085 | 10                 | ND                | 1                  | 1/16/2008         | 1/16/2008        |                    |
| Total Suspended Solids                     | EPA 160.2    | 8A08116 | 10                 | ND                | 1                  | 1/8/2008          | 1/8/2008         |                    |
| Sample ID: IRA0414-30 (010 EFF-14 - Wa     | nter)        |         |                    | Sampled           | : 01/05/08         |                   |                  |                    |
| Reporting Units: g/cc                      |              |         |                    | Sumpreus          | 01,00,00           |                   |                  |                    |
| Density                                    | Displacement | 8A08080 | NA                 | 1.0               | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-30 (010 EFF-14 - Wa     | iter)        |         |                    | Sampled           | 01/05/08           |                   |                  |                    |
| Reporting Units: mg/l                      | ,            |         |                    | Sampica           | 01/05/00           |                   |                  |                    |
| Sediment                                   | ASTM D3977   | 8A16085 | 10                 | ND                | 1                  | 1/16/2008         | 1/16/2008        |                    |
| Total Suspended Solids                     | EPA 160.2    | 8A08116 | 10                 | ND                | 1                  | 1/8/2008          | 1/8/2008         |                    |
|                                            |              |         |                    |                   |                    |                   |                  |                    |

#### **TestAmerica Irvine**



MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Project ID: BMP Effectiveness

Monitoring Program

Arcadia, CA 91007

Report Number: IRA0414

Received: 01/07/08

Sampled: 01/04/08-01/05/08

#### **INORGANICS**

|                                                                |                   | INOR    | RGANICS            |                  |                    |                   |                  |                    |
|----------------------------------------------------------------|-------------------|---------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Analyte                                                        | Method            | Batch   | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
| Sample ID: IRA0414-31 (010 EFF-15 - V<br>Reporting Units: g/cc | Water)            |         |                    | Sampled          | : 01/05/08         |                   |                  |                    |
| Density                                                        | Displacement      | 8A08080 | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-31 (010 EFF-15 - V                          | Water)            |         |                    | Sampled          | : 01/05/08         |                   |                  |                    |
| Sediment                                                       | ASTM D3977        | 8A16085 | 10                 | ND               | 1                  | 1/16/2008         | 1/16/2008        |                    |
| Total Suspended Solids                                         | EPA 160.2         | 8A08116 | 10                 | ND               | 1                  | 1/8/2008          | 1/8/2008         |                    |
| Sample ID: IRA0414-32 (010 EFF-16 - Neporting Units: g/cc      | Water)            |         |                    | Sampled          | : 01/05/08         |                   |                  |                    |
| Density                                                        | Displacement      | 8A08080 | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-32 (010 EFF-16 - Neporting Units: mg/l      | Water)            |         |                    | Sampled          | : 01/05/08         |                   |                  |                    |
| Sediment                                                       | <b>ASTM D3977</b> | 8A16085 | 10                 | ND               | 1                  | 1/16/2008         | 1/16/2008        |                    |
| Total Suspended Solids                                         | EPA 160.2         | 8A08116 | 10                 | ND               | 1                  | 1/8/2008          | 1/8/2008         |                    |
| Sample ID: IRA0414-33 (010 EFF-17 - V<br>Reporting Units: g/cc | Water)            |         |                    | Sampled          | : 01/05/08         |                   |                  |                    |
| Density                                                        | Displacement      | 8A08080 | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-33 (010 EFF-17 - V<br>Reporting Units: mg/l | Water)            |         |                    | Sampled          | : 01/05/08         |                   |                  |                    |
| Sediment                                                       | <b>ASTM D3977</b> | 8A16085 | 10                 | ND               | 1                  | 1/16/2008         | 1/16/2008        |                    |
| Total Suspended Solids                                         | EPA 160.2         | 8A08116 | 10                 | ND               | 1                  | 1/8/2008          | 1/8/2008         |                    |
| Sample ID: IRA0414-34 (010 INF-1 - W<br>Reporting Units: g/cc  | ater)             |         |                    | Sampled          | : 01/04/08         |                   |                  |                    |
| Density                                                        | Displacement      | 8A08080 | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-34 (010 INF-1 - W<br>Reporting Units: mg/l  | ater)             |         |                    | Sampled          | : 01/04/08         |                   |                  |                    |
| Sediment                                                       | ASTM D3977        | 8A16085 | 10                 | 170              | 1                  | 1/16/2008         | 1/16/2008        |                    |
| <b>Total Suspended Solids</b>                                  | EPA 160.2         | 8A08116 | 10                 | 170              | 1                  | 1/8/2008          | 1/8/2008         |                    |
| Sample ID: IRA0414-35 (010 INF-2 - W<br>Reporting Units: g/cc  | ater)             |         |                    | Sampled          | : 01/04/08         |                   |                  |                    |
| Density                                                        | Displacement      | 8A08080 | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-35 (010 INF-2 - W<br>Reporting Units: mg/l  | ater)             |         |                    | Sampled          | : 01/04/08         |                   |                  |                    |
| Sediment                                                       | <b>ASTM D3977</b> | 8A16085 | 10                 | 150              | 1                  | 1/16/2008         | 1/16/2008        |                    |
| <b>Total Suspended Solids</b>                                  | EPA 160.2         | 8A08116 | 10                 | 160              | 1                  | 1/8/2008          | 1/8/2008         |                    |

#### **TestAmerica Irvine**



MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Project ID: BMP Effectiveness

Monitoring Program

Report Number: IRA0414

Sampled: 01/04/08-01/05/08 Received: 01/07/08

Attention: Bronwyn Kelly

Arcadia, CA 91007

|                                                                    |              | INOR    | GANICS             |                  |                    |                   |                  |                    |
|--------------------------------------------------------------------|--------------|---------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Analyte                                                            | Method       | Batch   | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
| Sample ID: IRA0414-36 (010 INF-3 - Water)                          |              |         |                    | Sampled          | : 01/04/08         |                   |                  |                    |
| Reporting Units: g/cc                                              |              |         |                    | •                |                    |                   |                  |                    |
| Density                                                            | Displacement | 8A08080 | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-36 (010 INF-3 - Water)<br>Reporting Units: mg/l |              |         |                    | Sampled          | : 01/04/08         |                   |                  |                    |
| Sediment                                                           | ASTM D3977   | 8A16085 | 10                 | 270              | 1                  | 1/16/2008         | 1/16/2008        |                    |
| Total Suspended Solids                                             | EPA 160.2    | 8A08116 | 10                 | 270              | 1                  | 1/8/2008          | 1/8/2008         |                    |
| Sample ID: IRA0414-37 (010 INF-4 - Water) Reporting Units: g/cc    |              |         |                    | Sampled          | : 01/04/08         |                   |                  |                    |
| Density                                                            | Displacement | 8A08080 | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-37 (010 INF-4 - Water)<br>Reporting Units: mg/l |              |         |                    | Sampled          | : 01/04/08         |                   |                  |                    |
| Sediment                                                           | ASTM D3977   | 8A16085 | 10                 | 260              | 1                  | 1/16/2008         | 1/16/2008        |                    |
| <b>Total Suspended Solids</b>                                      | EPA 160.2    | 8A08116 | 10                 | 260              | 1                  | 1/8/2008          | 1/8/2008         |                    |
| Sample ID: IRA0414-38 (010 INF-5 - Water) Reporting Units: g/cc    |              |         |                    | Sampled          | : 01/04/08         |                   |                  |                    |
| Density                                                            | Displacement | 8A08080 | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-38 (010 INF-5 - Water)<br>Reporting Units: mg/l |              |         |                    | Sampled          | : 01/04/08         |                   |                  |                    |
| Sediment                                                           | ASTM D3977   | 8A16085 | 10                 | 510              | 1                  | 1/16/2008         | 1/16/2008        |                    |
| <b>Total Suspended Solids</b>                                      | EPA 160.2    | 8A08116 | 10                 | 510              | 1                  | 1/8/2008          | 1/8/2008         |                    |
| Sample ID: IRA0414-39 (010 INF-6 - Water) Reporting Units: g/cc    |              |         |                    | Sampled          | : 01/05/08         |                   |                  |                    |
| Density                                                            | Displacement | 8A08080 | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-39 (010 INF-6 - Water)<br>Reporting Units: mg/l |              |         |                    | Sampled          | : 01/05/08         |                   |                  |                    |
| Sediment                                                           | ASTM D3977   | 8A16085 | 10                 | 310              | 1                  | 1/16/2008         | 1/16/2008        |                    |
| <b>Total Suspended Solids</b>                                      | EPA 160.2    | 8A08116 | 10                 | 310              | 1                  | 1/8/2008          | 1/8/2008         |                    |
| Sample ID: IRA0414-40 (010 INF-7 - Water)<br>Reporting Units: g/cc |              |         |                    | Sampled          | : 01/05/08         |                   |                  |                    |
| Density                                                            | Displacement | 8A08080 | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-40 (010 INF-7 - Water)<br>Reporting Units: mg/l |              |         |                    | Sampled          | : 01/05/08         |                   |                  |                    |
| Sediment                                                           | ASTM D3977   | 8A16085 | 10                 | 280              | 1                  | 1/16/2008         | 1/16/2008        |                    |
| <b>Total Suspended Solids</b>                                      | EPA 160.2    | 8A08116 | 10                 | 280              | 1                  | 1/8/2008          | 1/8/2008         |                    |

#### **TestAmerica Irvine**



MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Project ID: BMP Effectiveness

Monitoring Program

Arcadia, CA 91007

Report Number: IRA0414

Sampled: 01/04/08-01/05/08 Received: 01/07/08

| IN | 10 | R | GA | N | 10 | 25 |
|----|----|---|----|---|----|----|
|    |    |   |    |   |    |    |

|                                                                    |                   | INOR     | GANICS             |                  |                    |                   |                  |                    |
|--------------------------------------------------------------------|-------------------|----------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Analyte                                                            | Method            | Batch    | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
| Sample ID: IRA0414-41 (010 INF-8 - Water)                          | 1                 |          |                    | Sampled          | : 01/05/08         |                   |                  |                    |
| Reporting Units: g/cc                                              |                   |          |                    | •                |                    |                   |                  |                    |
| Density                                                            | Displacement      | 8A08081  | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-41 (010 INF-8 - Water)                          | 1                 |          |                    | Sampled          | : 01/05/08         |                   |                  |                    |
| Reporting Units: mg/l                                              |                   |          |                    | ~p               |                    |                   |                  |                    |
| Sediment                                                           | <b>ASTM D3977</b> | 8A16086  | 10                 | 140              | 1                  | 1/16/2008         | 1/16/2008        |                    |
| <b>Total Suspended Solids</b>                                      | EPA 160.2         | 8A08117  | 10                 | 140              | 1                  | 1/8/2008          | 1/8/2008         |                    |
| Sample ID: IRA0414-42 (010 INF-9 - Water)                          | 1                 |          |                    | Sampled          | : 01/05/08         |                   |                  |                    |
| Reporting Units: g/cc                                              |                   |          |                    | Sumpicu          | . 01/05/00         |                   |                  |                    |
| Density                                                            | Displacement      | 8A08081  | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: ID 40414 42 (010 INE 0 Water)                           |                   |          |                    | Campled          | . 01/05/09         |                   |                  |                    |
| Sample ID: IRA0414-42 (010 INF-9 - Water)<br>Reporting Units: mg/l |                   |          |                    | Sampleu          | : 01/05/08         |                   |                  |                    |
| Sediment                                                           | ASTM D3977        | 8A16086  | 10                 | 86               | 1                  | 1/16/2008         | 1/16/2008        |                    |
| <b>Total Suspended Solids</b>                                      | EPA 160.2         | 8A08117  | 10                 | 86               | 1                  | 1/8/2008          | 1/8/2008         |                    |
| Sample ID: IRA0414-43 (010 INF-10 - Water                          | n)                |          |                    | Sampled          | : 01/05/08         |                   |                  |                    |
| Reporting Units: g/cc                                              | 1)                |          |                    | Sampicu          | . 01/03/06         |                   |                  |                    |
| Density                                                            | Displacement      | 8A08081  | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| ·                                                                  |                   |          |                    |                  |                    |                   |                  |                    |
| Sample ID: IRA0414-43 (010 INF-10 - Water                          | r)                |          |                    | Sampled          | : 01/05/08         |                   |                  |                    |
| Reporting Units: mg/l<br>Sediment                                  | ASTM D3977        | 8A16086  | 10                 | 71               | 1                  | 1/16/2008         | 1/16/2008        |                    |
| Total Suspended Solids                                             | EPA 160.2         | 8A08117  | 10                 | 71               | 1                  | 1/8/2008          | 1/8/2008         |                    |
| •                                                                  |                   |          |                    |                  |                    |                   |                  |                    |
| Sample ID: IRA0414-44 (010 INF-11 - Water                          | r)                |          |                    | Sampled          | : 01/05/08         |                   |                  |                    |
| Reporting Units: g/cc Density                                      | Displacement      | 8A08081  | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Delisity                                                           | Displacement      | 0/100001 | IVA                | 1.0              | 1                  | 1/0/2000          | 1/10/2000        |                    |
| Sample ID: IRA0414-44 (010 INF-11 - Water<br>Reporting Units: mg/l | r)                |          |                    | Sampled          | : 01/05/08         |                   |                  |                    |
| Sediment                                                           | <b>ASTM D3977</b> | 8A16086  | 10                 | 64               | 1                  | 1/16/2008         | 1/16/2008        |                    |
| <b>Total Suspended Solids</b>                                      | EPA 160.2         | 8A08117  | 10                 | 64               | 1                  | 1/8/2008          | 1/8/2008         |                    |
| Sample ID: IRA0414-45 (010 INF-12 - Water                          | r)                |          |                    | Sampled          | : 01/05/08         |                   |                  |                    |
| Reporting Units: g/cc                                              | ,                 |          |                    | ~p               |                    |                   |                  |                    |
| Density                                                            | Displacement      | 8A08081  | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-45 (010 INF-12 - Water                          |                   |          |                    | Sampled          | : 01/05/08         |                   |                  |                    |
| Reporting Units: mg/l                                              | • •               |          |                    | Sampicu          | . 51/55/00         |                   |                  |                    |
| Sediment                                                           | ASTM D3977        | 8A16086  | 10                 | 56               | 1                  | 1/16/2008         | 1/16/2008        |                    |
| <b>Total Suspended Solids</b>                                      | EPA 160.2         | 8A08117  | 10                 | 56               | 1                  | 1/8/2008          | 1/8/2008         |                    |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: BMP Effectiveness

618 Michillinda Avenue, Suite 200

Monitoring Program Sampled: 01/04/08-01/05/08

Arcadia, CA 91007 Attention: Bronwyn Kelly Report Number: IRA0414

Received: 01/07/08

| Analyte                                 | Method            | Batch   | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|-----------------------------------------|-------------------|---------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: IRA0414-46 (010 INF-13 - Wat | er)               |         |                    | Sampled:         | 01/05/08           |                   |                  |                    |
| Reporting Units: g/cc                   |                   |         |                    |                  |                    |                   |                  |                    |
| Density                                 | Displacement      | 8A08081 | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-46 (010 INF-13 - Wat | er)               |         |                    | Sampled:         | 01/05/08           |                   |                  |                    |
| Reporting Units: mg/l                   |                   |         |                    |                  |                    |                   |                  |                    |
| Sediment                                | <b>ASTM D3977</b> | 8A16086 | 10                 | 53               | 1                  | 1/16/2008         | 1/16/2008        |                    |
| <b>Total Suspended Solids</b>           | EPA 160.2         | 8A08117 | 10                 | 53               | 1                  | 1/8/2008          | 1/8/2008         |                    |
| Sample ID: IRA0414-47 (010 INF-14 - Wat | er)               |         |                    | Sampled:         | 01/05/08           |                   |                  |                    |
| Reporting Units: g/cc                   |                   |         |                    |                  |                    |                   |                  |                    |
| Density                                 | Displacement      | 8A08081 | NA                 | 1.0              | 1                  | 1/8/2008          | 1/10/2008        |                    |
| Sample ID: IRA0414-47 (010 INF-14 - Wat | er)               |         |                    | Sampled:         | 01/05/08           |                   |                  |                    |
| Reporting Units: mg/l                   |                   |         |                    |                  |                    |                   |                  |                    |
| Sediment                                | <b>ASTM D3977</b> | 8A16086 | 10                 | 58               | 1                  | 1/16/2008         | 1/16/2008        |                    |
| <b>Total Suspended Solids</b>           | EPA 160.2         | 8A08117 | 10                 | 58               | 1                  | 1/8/2008          | 1/8/2008         |                    |



MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness

Monitoring Program Sampled: 01/04/08-01/05/08

Report Number: IRA0414 Received: 01/07/08

#### METHOD BLANK/QC DATA

### **INORGANICS**

|                                      |            | Reporting |       | Spike | Source    |          | %REC   |     | RPD   | Data       |
|--------------------------------------|------------|-----------|-------|-------|-----------|----------|--------|-----|-------|------------|
| Analyte                              | Result     | Limit     | Units | Level | Result    | %REC     | Limits | RPD | Limit | Qualifiers |
| Batch: 8A07105 Extracted: 01/07/08   |            |           |       |       |           |          |        |     |       |            |
| Blank Analyzed: 01/07/2008 (8A07105  | S-BLK1)    |           |       |       |           |          |        |     |       |            |
| Total Suspended Solids               | ND         | 10        | mg/l  |       |           |          |        |     |       |            |
| LCS Analyzed: 01/07/2008 (8A07105-   | BS1)       |           |       |       |           |          |        |     |       |            |
| Total Suspended Solids               | 965        | 10        | mg/l  | 1000  |           | 96       | 85-115 |     |       |            |
| Duplicate Analyzed: 01/07/2008 (8A07 | 7105-DUP1) |           |       |       | Source: I | RA0401-0 | 1      |     |       |            |
| Total Suspended Solids               | ND         | 10        | mg/l  |       | ND        |          |        |     | 10    |            |
| Batch: 8A07106 Extracted: 01/07/08   |            |           |       |       |           |          |        |     |       |            |
| Blank Analyzed: 01/07/2008 (8A07106  | 5-BLK1)    |           |       |       |           |          |        |     |       |            |
| Total Suspended Solids               | ND         | 10        | mg/l  |       |           |          |        |     |       |            |
| LCS Analyzed: 01/07/2008 (8A07106-1  | BS1)       |           |       |       |           |          |        |     |       |            |
| Total Suspended Solids               | 973        | 10        | mg/l  | 1000  |           | 97       | 85-115 |     |       |            |
| Duplicate Analyzed: 01/07/2008 (8A07 | 7106-DUP1) |           |       |       | Source: I | RA0414-2 | 3      |     |       |            |
| Total Suspended Solids               | 11.0       | 10        | mg/l  |       | 10.0      |          |        | 10  | 10    |            |
| Batch: 8A08079 Extracted: 01/08/08   |            |           |       |       |           |          |        |     |       |            |
| Duplicate Analyzed: 01/10/2008 (8A08 | 8079-DUP1) |           |       |       | Source: I | RA0414-0 | 1      |     |       |            |
| Density                              | 1.00       | NA        | g/cc  |       | 1.00      |          |        | 0   | 20    |            |
| Batch: 8A08080 Extracted: 01/08/08   |            |           |       |       |           |          |        |     |       |            |
| Duplicate Analyzed: 01/10/2008 (8A08 | 8080-DUP1) |           |       |       | Source: I | RA0414-2 | 1      |     |       |            |
| Density                              | 1.00       | NA        | g/cc  |       | 1.00      |          |        | 0   | 20    |            |

#### **TestAmerica Irvine**

0/ DEC

 $\mathbf{D}\mathbf{D}\mathbf{D}$ 

Data



MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: BMP Effectiveness

Monitoring Program Sampled: 01/04/08-01/05/08

Report Number: IRA0414 Received: 01/07/08

Cnilco Course

#### METHOD BLANK/QC DATA

#### **INORGANICS**

Donouting

|                                                |           | Reporting |       | Spike | Source    |          | %REC   |     | RPD   | Data       |
|------------------------------------------------|-----------|-----------|-------|-------|-----------|----------|--------|-----|-------|------------|
| Analyte                                        | Result    | Limit     | Units | Level | Result    | %REC     | Limits | RPD | Limit | Qualifiers |
| Batch: 8A08081 Extracted: 01/08/08             |           |           |       |       |           |          |        |     |       |            |
| Duplicate Analyzed: 01/10/2008 (8A080)         | R1-DIJP1) |           |       |       | Source: I | RA0414-4 | 1      |     |       |            |
| Density                                        | 1.00      | NA        | g/cc  |       | 1.00      |          | •      | 0   | 20    |            |
| Batch: 8A08116 Extracted: 01/08/08             |           |           |       |       |           |          |        |     |       |            |
| Blank Analyzed: 01/08/2008 (8A08116-E          | BLK1)     |           |       |       |           |          |        |     |       |            |
| Total Suspended Solids                         | ND        | 10        | mg/l  |       |           |          |        |     |       |            |
| LCS Analyzed: 01/08/2008 (8A08116-BS           | S1)       |           |       |       |           |          |        |     |       |            |
| Total Suspended Solids                         | 991       | 10        | mg/l  | 1000  |           | 99       | 85-115 |     |       |            |
| <b>Duplicate Analyzed: 01/08/2008 (8A081</b>   | 16-DUP1)  |           |       |       | Source: I | RA0414-3 | 0      |     |       |            |
| Total Suspended Solids                         | ND        | 10        | mg/l  |       | ND        |          |        |     | 10    |            |
| Batch: 8A08117 Extracted: 01/08/08             |           |           |       |       |           |          |        |     |       |            |
| Blank Analyzed: 01/08/2008 (8A08117-E          | BLK1)     |           |       |       |           |          |        |     |       |            |
| Total Suspended Solids                         | ND        | 10        | mg/l  |       |           |          |        |     |       |            |
| LCS Analyzed: 01/08/2008 (8A08117-BS           | S1)       |           |       |       |           |          |        |     |       |            |
| Total Suspended Solids                         | 993       | 10        | mg/l  | 1000  |           | 99       | 85-115 |     |       |            |
| <b>Duplicate Analyzed: 01/08/2008 (8A081</b> ) | 17-DUP1)  |           |       |       | Source: I | RA0446-0 | 1      |     |       |            |
| Total Suspended Solids                         | ND        | 10        | mg/l  |       | ND        |          |        |     | 10    |            |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: BMP Effectiveness

Monitoring Program Sampled: 01/04/08-01/05/08

Report Number: IRA0414 Received: 01/07/08

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

## DATA QUALIFIERS AND DEFINITIONS

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

**RPD** Relative Percent Difference



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: BMP Effectiveness

Monitoring Program Sampled: 01/04/08-01/05/08

Report Number: IRA0414 Received: 01/07/08

### **Certification Summary**

#### **TestAmerica Irvine**

| Method       | Matrix | Nelac | California |
|--------------|--------|-------|------------|
| ASTM D3977   | Water  |       |            |
| Displacement | Water  |       |            |
| EPA 160.2    | Water  | X     | X          |

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

| Page 1 of 1                  | REQUIRED           | Fiold reading:                       | Temp = The                                             |                                   | of reg                         | Comments                    | 30                               |               |     |        |               |   |     |               |               |               |               |               |                 |               |               |               |               |               |               |               |               |               | \(\frac{1}{2}\) | Turn around Time: (check) 24 Hours 5 Days | 48 Hours 10 Days | 72 Hours Normal     | Sample Interativ: (check) | Intact On Ice:   | 00               |     |
|------------------------------|--------------------|--------------------------------------|--------------------------------------------------------|-----------------------------------|--------------------------------|-----------------------------|----------------------------------|---------------|-----|--------|---------------|---|-----|---------------|---------------|---------------|---------------|---------------|-----------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|-----------------|-------------------------------------------|------------------|---------------------|---------------------------|------------------|------------------|-----|
| FORM                         | ANALYSIS           |                                      | -MT&                                                   | A, 'C, A                          | SS) L                          | (796 r-77                   | Conc                             | ×             | × ; | × >    | < ×           | × | ×   | ×             | ×             | ×             | ×             | ×< ;          |                 | \<br>\<br>\   | (             | (X            | N ×           | <b>)</b> ×    | ×             | × ;           | /<br>/<br>×/> | ××            | Date/Time:      | 187 01/06/08 12/0                         |                  |                     |                           |                  | 0000 30/10/ Jano |     |
| F CUSTODY FORM               |                    | Monitoring                           |                                                        | ţuə                               |                                | S bebne                     | Preservative Bottle #            |               |     |        | None 5        |   |     |               |               |               |               |               |                 |               | None 15       | None 17       |               |               |               |               | None 22       | None 23       | ved By          | No.                                       | Served By        |                     |                           | Received By FXIM | 16/W/J           | × × |
| IRROHIY CHAIN OF             | Project Bosing BMP | Effectiveness Monitoring             | Program                                                |                                   | Phone Number (626) 568-6691    | Fax Number: (626) 568-6515  | Sampling<br>Date/Time            | 1/4/08 - 1940 |     | $\top$ | 1/4/08 - 2240 |   | T - |               |               |               |               | 1/5/08 - 0640 |                 |               |               |               |               |               |               |               |               |               | Time.           | 3/6                                       |                  | . `                 | Rt/ 8%                    | -                |                  |     |
| IRPO                         | VELSION 12/20/07   |                                      | Suite 200                                              | Joseph Doak                       | nwyn Kelly                     | 200                         | Container # of Type Cont.        | S S           |     | _      | 500 mL Poly 1 | ļ | _   | 500 mL Poly 1 | 500 mi. Poly  | - 500 mL Pely 4 | 500 mL Poly 1 | 500 mL Poly 1 | 500 mL Poly 1 | 500 mL Polv 1 | 500 mL Poly 1   | )<br>)                                    | The Constitute   | 47                  | Meen                      | Date             |                  |     |
| IR I America Vaccion 1200007 | מסויסוול ומטו      | Client Name/Address.<br>MWH-Arca dia | 618 Michillinda Avenue, Suite 200<br>Arcadia, CA 91007 | Test America Contact: Joseph Doak | Project Manager: Bronwyn Kelly | Sampler: J. M. Dr. C. O. L. | Sample Sample Description Matrix | -             |     |        | 006 EFF-4 W   |   |     |               |               | 006 EFF-10 W  | 006 EFF-11 W  | 006 EFF-12 W  |                 |               |               |               | 006 EFF-1/ W  |               |               | 006 EFF-21 W  |               | 1             | 006 EFF-24 W    | Kelling Div                               | 0                | Kelinguished Ey For | /ahale                    | Relinguished By  |                  |     |

| Test America Version 12/20/07                          | rica 🗸     | ersion 12/20/07      |               | CHAIN OF                      | _            | TOD      | CUSTODY FORM | 5              |             |          | Page 1 of 1               |
|--------------------------------------------------------|------------|----------------------|---------------|-------------------------------|--------------|----------|--------------|----------------|-------------|----------|---------------------------|
| Client Name/Address                                    | ddress     |                      |               | Project: Boeing BM            | g BMP        |          |              |                | ANALYSIS RE | REQUIRED |                           |
| MWH-Arcadia                                            | <u>=</u>   |                      |               | Effectiveness Monitoring      | Monitoring   |          |              |                |             | n<br>G   | Field readings:           |
| 618 Michillinda Avenue. Suite 200<br>Arcadia, CA 91007 | Avenue. \$ | Suite 200            |               | Program                       |              |          | -MTS         |                |             | Temp =   | <b>412</b> = d            |
| Test America Contact: Joseph Doak                      | ontact: Ju | oseph Doak           |               |                               |              |          | C, A         |                |             | <br>     |                           |
| Project Manager: Bronwyn Kelly                         | ler: Bror  | wvn Kelly            |               | Phone Number                  | ij           |          | SS           |                |             | 5.       |                           |
|                                                        | 0 201162   | ,                    |               | (626) 568-6691                | _            |          | ) uoi        |                |             | Time     | Time of readings = NA     |
| Sampler: J manis (f)                                   | י אויאטו   | , <i>t</i>           |               | rax Number:<br>(626) 568-6515 | 2            |          | penced       |                |             |          | Comments                  |
| Sample                                                 | Sample     | Container<br>Type    | # of<br>Cont. | Sampling<br>Date/Time         | Preservative | Bottle # | Con          |                |             |          |                           |
| 006 INF-1                                              | 8          | 500 mL Poly          | -             |                               | None         | -        | ×            |                |             |          |                           |
| 006 INF-2                                              | ×          | 500 mL Poly          | -             | П                             | None         | 2        | ×            |                |             |          |                           |
| 006 INF-3                                              | Μ          | 500 mL Poly          | -             |                               | None         | 3        | ×            |                |             |          |                           |
| 006 INF-4                                              | ×          | 500 mL Poly          | -             | 1/4/08 – 2210                 | None         | 4 4      | × >          |                |             |          |                           |
| 006 INE-5                                              | <b>A</b>   | SOOTHE POLY          |               |                               |              | ٥        |              |                |             |          |                           |
| 006 INF-6                                              | >          | 500 mL Poly          | -             |                               | None         | م        |              |                |             |          |                           |
| 006 INF-7                                              | × :        | 500 mL Poly          | -             |                               | None         | _ α      | \\\          |                |             |          |                           |
| 006 INF-8                                              | > =        | 500 mL Poly          | -             |                               | None         | 0        | ×            |                |             |          |                           |
| 006 INF-9                                              | > >        | 500 ml Poly          | - -           |                               | None         | 9        | ×            |                |             |          |                           |
| 006 INE-11                                             | :   3      | 500 ml Poly          | -             |                               | None         | 1        | ×            |                |             |          |                           |
| 000 INF-12                                             | :   >      | 500 mir Poly         | ,-            |                               | Nonc         | 12       | ×            |                |             |          |                           |
| 006 INF-13                                             | 3          | 500 mL Poly          | -             |                               | None         | 13       | ×            |                |             |          |                           |
| 006 INF-14                                             | >          | 500 mL Poly          | 1             |                               | None         | 14       | ×;           |                | )           |          |                           |
| 006 INF-15                                             | 8          | 500 mL Poly          | -             |                               | None         | 15       | ×;           |                |             |          |                           |
| 006 INF-16                                             | ۸          | 500 mL Poly          | -             |                               | None         | 9 !      | ×            |                |             | -        |                           |
| 006 INF-17                                             | Μ          | 500 mL Poly          | -             |                               | None         | 14       | × ;          |                |             |          |                           |
| 006 INF-18                                             | Μ          | 500 mL Poly          | -             |                               | None         | 18       | ×);          |                |             | -        |                           |
| 006 INF-19                                             | Λ          | 500 mL Poly          | -             |                               | None         | 19       | × >          |                |             |          |                           |
| 006 INF-20                                             | >          | 500 mL Poly          |               |                               | None         | 3 2      | \<br><\>     |                |             |          |                           |
| 006 INF-21                                             | > .        | 500 mL Poly          | - -           |                               | None         | 22       | <\×          |                |             |          |                           |
| 006 INF-22                                             | <b>X</b>   | 500 mL Poly          | - -           |                               | None         | 23       | <br> <br>    |                |             |          |                           |
| 006 INF-23                                             | 3 3        | 500 ml Poly          | -             |                               | None         | 24       |              |                |             | /        |                           |
| Relinguished By                                        | <u> </u>   |                      | Date/Time     |                               | Received By  |          | (            | Date/Time:/    |             | L L      | omind Time: (check)       |
| 18                                                     |            | )<br>)               |               | 12,0                          | {            |          | 7            | 10             | 0121 8      | 24 H     | 24 Hours 5 Days           |
| Dolinguished D                                         |            | においた。<br>A Date/Lime | )ate/Ti       | me:                           | Received By  | 7        |              | Date/Time:     |             | 48 H     | 48 Hours 10 Days          |
| A)                                                     |            | TAT O                | õ             | 01/64/2 1/2                   |              |          |              |                |             | 72 H     | 72 Hours Normal X         |
| 7                                                      | d          | George               | 1             | 1/ 80/                        |              |          |              | Doto/Timo:     |             | Sam      | Sample Integrity: (check) |
| Relinquished By                                        | ,          |                      | Date/Time:    | me:                           | Received by  |          |              | Date/ I III e. |             |          |                           |
|                                                        |            |                      |               |                               |              | :        |              |                |             |          |                           |
|                                                        |            |                      |               |                               |              |          |              |                |             |          |                           |

| Test America Version 12/20/07                          | erica .          | ersion 12/20/07/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ٨                             | CHAIN OF CUSTODY FORM                           | JF CUS                   | TOD            | Y FO                       | RM           |          |          |          | Page 1 of 1                                 |
|--------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------|--------------------------|----------------|----------------------------|--------------|----------|----------|----------|---------------------------------------------|
| Client Name/Address.                                   | Address.         | And of the property of the control o |                               | Project: Boeing BMI                             | g BMP                    |                |                            |              |          | ANALYSIS | REQUIRED |                                             |
| MWH-Arcadia                                            | dia              | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | Effectiveness Monitoring                        | , Monitorin <sub>e</sub> | ם              |                            |              |          |          |          |                                             |
| 618 Michillinda Avenue, Suite 200<br>Arcadia, CA 91007 | Avenue<br>007    | Suite 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | rogram                                          |                          |                | -MTS                       |              |          |          |          | Temp = _k) #                                |
| Test America Contact: Joseph Doak                      | )ontact: J       | oseph Doak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                 |                          |                |                            |              |          |          |          | · «                                         |
| Project Manager: Bronwyn Kelly                         | ger: Bro         | nwyn Kelly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | Phone Number                                    | yr.<br>1                 |                |                            |              |          |          |          |                                             |
| Sampler: J Market                                      | T Sincesor       | J<br>5 <b>6</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | (626) 506-6691<br>Fax Number:<br>(626) 568-6515 | <u> </u>                 | _ <del>-</del> | ded Se<br>tration<br>1997) |              |          |          |          | Time of readings = $\mathcal{N}\mathcal{H}$ |
|                                                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                 |                          |                | uceu                       |              |          |          |          | Comments                                    |
| Sample<br>Description                                  | Sample<br>Matrix | Container<br>Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | # of<br>Cont.                 | Sampling<br>Date/Time                           | Preservative             | Bottle #       | Col                        |              |          |          |          |                                             |
| 010 EFF-1                                              | Μ                | 500 mL Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                             | П                                               | None                     | -              | ×                          |              |          |          |          |                                             |
| 010 EFF-2                                              | Μ                | 500 mL Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                             | T                                               | None                     | 2              | ×                          |              |          |          |          |                                             |
| 010 EFF-3                                              | ≥                | 500 mL Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | ┪                                               | None                     | က              | ×                          |              |          |          |          |                                             |
| 010 EFF-4                                              | 3 3              | 500 mL Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | 1/4/08 - 2245                                   | None                     | 4 α            | ××                         | +            |          |          |          |                                             |
| 010 EFF-6                                              | :   >            | 500 ml Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                             | $\top$                                          | None                     | 9              | ×                          |              |          |          |          |                                             |
| 010 EFF-7                                              | :  ≥             | 500 mL Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                             |                                                 | None                     | 2              | ×                          |              |          |          |          |                                             |
| 010 EFF-8                                              | >                | 500 mL Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                             | 1/5/08 – 0245                                   | None                     | 8              | ×                          |              |          |          |          |                                             |
| 010 EFF-9                                              | W                | 500 mL Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                             | 1/5/08 - 0345                                   | None                     | 6              | ×                          |              |          |          |          |                                             |
| 010 EFF-10                                             | Μ                | 500 mL Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                             | 1/5/08 - 0445                                   | None                     | 10             | ×                          |              |          |          |          |                                             |
| 010 EFF-11                                             | >                | 500 mL Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                             |                                                 | None                     | 7              | ×                          |              |          |          |          |                                             |
| 010 EFF 12                                             | ≱:               | 500 mL Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ţ.                            | _†                                              | None                     | 51             | ×:                         |              |          |          | _        |                                             |
| 010 EFF-13                                             | ×                | 500 mL Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                             | 1/5/08 – 0745                                   | None                     | 13             | ×                          |              |          |          |          |                                             |
| 010 EFF-14                                             | ≥                | 500 mL Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                             | 1/5/08 - 0845                                   | None                     | 14             | ×                          |              |          |          |          |                                             |
| 010 EFF-15                                             | ≥                | 500 mL Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                             | 1/5/08 - 0945                                   | None                     | 15             | ×                          |              |          |          |          |                                             |
| 010 EFF-16                                             | >                | 500 mL Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                             | 1/5/08 – 1045                                   | None                     | 16             | ×;                         |              |          |          |          |                                             |
| 010 EFF-17                                             | ≥                | 500 mL Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                             | 1/5/08 – 1145                                   | None                     | 17             | ×;                         |              |          |          |          |                                             |
| 040 EEE-18                                             |                  | 500 ml Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{\parallel}{\parallel}$ |                                                 | None                     | 8              | *                          | /            | •        | -        |          |                                             |
| 010 EFF-19                                             | >                | 500 mL Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                             |                                                 | None                     | 19             | ×                          | 1            |          |          |          |                                             |
| 010 EFF-20                                             | ≥                | 500 mL Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                                                 | None                     | 8              | ×  ;                       |              |          |          | +        |                                             |
| 010 EFF-21                                             | ≥ }              | 500 mL Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - -                           |                                                 | None                     | 72             | <b>&lt;</b>  >             |              | )        | \\ \/    |          |                                             |
| 010 EFF-22                                             | > <b>&gt;</b>    | 500 ml Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -   +                         |                                                 | None                     | 27 56          | <\>                        | +            | +        | /        |          |                                             |
| 010 EFF-23                                             | 3 3              | 500 ml Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\bot$                        |                                                 | None                     | 24             | < ×                        |              |          |          |          |                                             |
| Relinguished By                                        | 7                | 000 mm cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date/Time:                    |                                                 | Received By              |                | ] '                        | Date/Til     | ne: /    |          | <u> </u> |                                             |
| A A                                                    |                  | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | 1713                                            | Q.                       | . •            | J.                         | ,0 FM        | 0//01/0  | , ,      | 0/2      | Turn around Time: (check) 24 Hours 5 Days   |
|                                                        | V                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | į                             |                                                 |                          | 5              | 2000                       |              |          |          |          |                                             |
| Neiminguisined (1)                                     | <b>M</b>         | 18 18 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6/26/20                       | 123                                             | received by              |                |                            | Da(6)        | <u>.</u> |          |          | 72 Hours Normal X                           |
| 3                                                      | 2                | $\mathbb{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | // x                                            |                          |                |                            | Ė            |          |          |          | Sample Integrity: (check)                   |
| Relinquished <b>B</b> y                                | _                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date/Time:                    | <br>                                            | Received By              |                |                            | Date/ I ime: | ле:      |          |          | Intact On Ice:                              |
|                                                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                 |                          |                |                            |              |          |          |          |                                             |

| Test America version 12/20/07                                           | rica 🗸                     | Persion 12/20/67          |               | CHAIN OF CUSTODY FORM             | OF CUS       | TOD      | Y FO                             | RM         |          |     |             |           | Page 1 of 1                              |
|-------------------------------------------------------------------------|----------------------------|---------------------------|---------------|-----------------------------------|--------------|----------|----------------------------------|------------|----------|-----|-------------|-----------|------------------------------------------|
| Client Name/Address:                                                    | ddress.                    |                           |               | Project: Boeing BMI               | g BMP        |          | -                                | -          |          | ANA | ANALYSIS RE | REQUIRED  | Q                                        |
| MWH-Arcadia                                                             | ā                          |                           |               | Effectiveness Monitoring          | : Monitoring |          |                                  |            |          |     |             | L         | 1 - 1                                    |
| 618 Michillinda Avenue, Suite 200<br>Arcadia CA 91007                   | Avenue,                    | Suite 200                 |               | Program                           |              |          | -MT                              |            |          |     |             | L         | Fleid readings                           |
|                                                                         | -<br>-                     | -<br>-                    |               |                                   |              |          | tı                               |            |          |     |             |           | Temp = AJ#                               |
| Test America Contact: Joseph Doak                                       | ontact: J                  | oseph Doak                |               |                                   |              |          | SC,                              |            |          |     |             | <u> </u>  | $\mathcal{H}(\mathcal{V}) = Hd$          |
| Project Manager: Bronwyn Kelly R 18 18 18 18 18 18 18 18 18 18 18 18 18 | lanager: Bronv<br>R Kannso | nwyn Kelly<br>c           |               | Phone Number:<br>  (626) 568-6691 | <u>.</u> –   |          | 3S) u                            |            |          |     |             | <u> </u>  | 5                                        |
| Sampler: J mmi's (A                                                     | s sind                     | , 0.                      |               | Fax Number:<br>(626) 568-6515     | 5            |          | S bebnac<br>centratio<br>77-1997 |            |          |     |             |           | Comments                                 |
| Sample                                                                  | Sample<br>Matrix           | Container<br>Type         | # of<br>Cont. | Sampling<br>Date/Time             | Preservative | Bottle # | uoO                              | ····       |          |     |             |           |                                          |
| 010 INF-1                                                               | ≥                          | 500 mL Poly               | -             | 1/4/08 – 1930                     | None         | -        | ×                                |            |          |     |             |           |                                          |
| 010 INF-2                                                               | 3                          | 500 mL Poly               | -             |                                   | None         | 2        | ×                                |            |          |     |             |           |                                          |
| 010 INF-3                                                               | >                          | 500 mL Poly               | -             | 7                                 | None         | m .      | ×                                |            |          |     | -           |           |                                          |
| 010 INF-4                                                               | 3 3                        | 500 mL Poly               | -             | 1/4/08 - 2230                     | None         | 4 10     | × ×                              |            |          |     |             |           |                                          |
| 010 INF-6                                                               | 3                          | 500 mL Poly               | -             | 1/5/08 - 0030                     | None         | 9        | ×                                |            |          |     |             |           |                                          |
| 010 INF-7                                                               | <b> </b>                   | 500 mL Poly               | -             | 1/5/08 - 0130                     | None         | 7        | ×                                |            |          |     |             |           |                                          |
| 010 INF-8                                                               | 3                          | 500 mL Poly               | -             | 1/5/08 - 0230                     | None         | 8        | ×                                |            |          |     |             |           |                                          |
| 010 INF-9                                                               | >                          | 500 mL Poly               | -             | 1/5/08 - 0330                     | None         | o        | ×                                |            |          |     |             |           |                                          |
| 010 INF-10                                                              | >                          | 500 mL Poly               |               | 1/5/08 - 0430                     | None         | 9        | × ×                              |            |          |     |             | 1         |                                          |
| 010 INF-11                                                              | ≥                          | 500 mL Poly               |               | 1/5/08 - 0530                     | None         | ; 2      | × ;                              |            | _        | +   |             | +         |                                          |
| 010 INF-12                                                              | ≥ :                        | 500 mL Poly               | _             | 1/3/08 - 0030                     | NOIR         | 7 5      | < >                              | +          | +        |     |             | $\dagger$ |                                          |
| 010 INF-13                                                              | 3 3                        | 500 mL Poly               | - -           | 1/5/08 - 0/30                     | None         | 5 4      | < ×                              |            |          |     |             |           |                                          |
| 040 INF 45                                                              | :                          | 300 mt Poly               |               | П                                 | None         | 16       | *                                |            | -        |     |             |           |                                          |
| 010 INF-16                                                              | :  >                       | 500 mL Poly               | -             |                                   | None         | 16       | ×                                |            |          |     |             |           |                                          |
| 010 INF-17                                                              | ≥                          | 500 mL Poly               | -             |                                   | None         | 17       | ×                                |            |          |     |             |           |                                          |
| 010 INF-18                                                              | 3                          | 500 mL Poly               | -             |                                   | None         | 18       | ×                                |            |          |     |             |           |                                          |
| 010 INF-19                                                              | 3                          | 500 mL Poly               | -             |                                   | None         | 19       | ×                                |            | M        |     |             |           |                                          |
| 010 INF-20                                                              | ≥                          | 500 mL Poly               | -             |                                   | None         | 2 2      | ×                                |            | }        | ×   |             |           |                                          |
| 010 INF-21                                                              | 3                          | 500 mL Poly               |               |                                   | None         | 17       | < >                              |            | <i>/</i> | 1   |             |           |                                          |
| 010 INF-22                                                              | 8                          | 500 mL Poly               | - -           |                                   | None         | 3 8      | < ×                              |            |          |     | /           |           |                                          |
| 010 INF-23                                                              | 3 3                        | 500 mL Polv               | L             |                                   | None         | 24       | ×                                |            |          |     |             |           |                                          |
| Relinquished By                                                         |                            | 1-6-08                    | Date/Time:    |                                   | Regalved By  |          | (                                | Date/Time  | ne: /    | ,   | ,           | _         | furn around Time: (check)                |
| J. S.                               | K                          |                           |               | 1212                              | She          | 7        | Green                            | 21         | 0/00/    | 0   | 12/2        |           | 24 Hours 5 Days                          |
| Relinquished                                                            | 71                         | 6: HVO FO. P.C. Date/Time | Jate/Tir      | ne;                               | Received By  |          |                                  | Date/Time  | ne:      |     |             | 7         | 48 Hours 10 Days                         |
| \$ E                                                                    |                            |                           | 10/0 IH       | JEDI 0/49/1                       | <u> </u>     |          |                                  | •          |          |     |             |           | 72 Hours Normal X                        |
| Relinquished By                                                         | 4                          |                           | Date/Time:    | 02                                | Received By  | į        |                                  | Date/Time: | ne:      |     |             |           | Sample Integrity: (check) Intact On Ice: |
|                                                                         |                            |                           |               |                                   |              |          |                                  |            |          |     |             |           |                                          |
|                                                                         |                            |                           |               |                                   |              |          |                                  |            |          |     |             |           |                                          |

# **APPENDIX G**

# **Section 64**

Outfall 010, January 22, 2008

MECX Data Validation Reports



# DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IRA2025

Prepared by

MEC<sup>x</sup>, LLC 12269 East Vassar Drive Aurora, CO 80014

#### I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: IRA2025
Project Manager: B. Kelly

Matrix: Soil QC Level: IV

No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

**Table 1. Sample Identification** 

| Client ID   | Laboratory ID | Sub-Laboratory ID        | Matrix | Collected     | Method                                                                             |
|-------------|---------------|--------------------------|--------|---------------|------------------------------------------------------------------------------------|
| Outfall 010 | IRA2025-01    | 30191-001,<br>8012320-01 | Water  | 01/22/08 1005 | 200.8, 245.1, 900.0,<br>901.1, 903.0, 904.0,<br>905.0, 906.0, 1613,<br>ASTM D-5174 |

#### **II. Sample Management**

No anomalies were observed regarding sample management. The sample in this SDG was received at TestAmerica-Irvine and Eberline within the temperature limits of 4°C ±2°C. The sample was received below the temperature limit at Vista; however, the sample was not noted to have been frozen. The sample was received above temperature limits at Weck; however, mercury is not considered volatile. According to the case narrative for this SDG, the sample was received intact at all laboratories. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine, custody seals were not required. Custody seals were intact upon arrival at Eberline and Vista. Custody seals were not present on the cooler received at Weck. If necessary, the client ID was added to the sample result summary by the reviewer.

# **Data Qualifier Reference Table**

| Qualifie | r Organics                                                                                                                                                                                                                                                              | Inorganics                                                                                                                                                                                                                                                                                  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U        | The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.                                                                           | The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only. |
| J        | The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.                                                                                                                                    | The associated value is an estimated quantity.                                                                                                                                                                                                                                              |
| N        | The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."                                                                                                                                         | Not applicable.                                                                                                                                                                                                                                                                             |
| NJ       | The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.                                                                                                   | Not applicable.                                                                                                                                                                                                                                                                             |
| UJ       | The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. | The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.                                                                                                                                                                |
| R        | The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.                                                | The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.                                                                    |

# **Qualification Code Reference Table**

| Qualifier | Organics                                                                       | Inorganics                                                                                    |
|-----------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Н         | Holding times were exceeded.                                                   | Holding times were exceeded.                                                                  |
| S         | Surrogate recovery was outside QC limits.                                      | The sequence or number of standards used for the calibration was incorrect                    |
| С         | Calibration %RSD or %D was noncompliant.                                       | Correlation coefficient is <0.995.                                                            |
| R         | Calibration RRF was <0.05.                                                     | %R for calibration is not within control limits.                                              |
| В         | Presumed contamination as indicated by the preparation (method) blank results. | Presumed contamination as indicated by the preparation (method) or calibration blank results. |
| L         | Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits. | Laboratory Control Sample %R was not within control limits.                                   |
| Q         | MS/MSD recovery was poor or RPD high.                                          | MS recovery was poor.                                                                         |
| E         | Not applicable.                                                                | Duplicates showed poor agreement.                                                             |
| 1         | Internal standard performance was unsatisfactory.                              | ICP ICS results were unsatisfactory.                                                          |
| Α         | Not applicable.                                                                | ICP Serial Dilution %D were not within control limits.                                        |
| M         | Tuning (BFB or DFTPP) was noncompliant.                                        | Not applicable.                                                                               |
| Т         | Presumed contamination as indicated by the trip blank results.                 | Not applicable.                                                                               |
| +         | False positive – reported compound was not present.                            | Not applicable.                                                                               |
| -         | False negative – compound was present but not reported.                        | Not applicable.                                                                               |
| F         | Presumed contamination as indicated by the FB or ER results.                   | Presumed contamination as indicated by the FB or ER results.                                  |
| \$        | Reported result or other information was incorrect.                            | Reported result or other information was incorrect.                                           |
| ?         | TIC identity or reported retention time has been changed.                      | Not applicable.                                                                               |

### **Qualification Code Reference Table Cont.**

| D         | The analysis with this flag should not be used because another more technically sound analysis is available.                                                                                                                                                 | The analysis with this flag should not be used because another more technically sound analysis is available.                                                                                                                                                 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Р         | Instrument performance for pesticides was poor.                                                                                                                                                                                                              | Post Digestion Spike recovery was not within control limits.                                                                                                                                                                                                 |
| DNQ       | The reported result is above the method detection limit but is less than the reporting limit.                                                                                                                                                                | The reported result is above the method detection limit but is less than the reporting limit.                                                                                                                                                                |
| *11, *111 | Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found. | Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found. |

### III. Method Analyses

#### A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: February 29, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{X}$  Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
  - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
  - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
  - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
  - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had no target compound detects above the EDL.

DATA VALIDATION REPORT SSFL NPDES
SSFL NPDES
SDG: IRA2025

 Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Any EMPC value was qualified as an estimated nondetect, "UJ." Nondetects are valid to the estimated detection limit (EDL).

# B. EPA METHODS 200.8, 245.1—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: March 4, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{\times}$  Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.8 and 245.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding times, 6 months for metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.

DATA VALIDATION REPORT SSFL NPDES
SSFL NPDES
SDG: IRA2025

• Calibration: Calibration criteria were met. Mercury initial calibration r<sup>2</sup> values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP-MS metals and 85-115% for mercury.

- Blanks: There were no applicable detects in the method blanks or CCBs.
- Interference Check Samples: No ICSA/B analyses were performed in association with the metals analyses only.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the sample in this SDG for the 6020 total and dissolved analytes. All recoveries and RPDs were within the laboratory-established control limits. Evaluation of the mercury method accuracy was based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. The bracketing CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.

### C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: March 4, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The tritium sample was analyzed within 180 days of collection. Aliquots for gross alpha, gross beta, radium-226, radium-228, strontium-90, and gamma spectroscopy were prepared within the five-day analytical holding time for unpreserved samples. The aliquot for total uranium was prepared within five days of collection.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, gross alpha detected in the sample was qualified as an estimated detect, "J." The gross beta detector efficiency was greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. The tritium detector efficiency for the sample was at least 20% and was considered acceptable. The internal spike efficiency to default efficiency ratios was near 1, indicating that quenching was not significant.

The strontium chemical yield was at least 70% and was considered acceptable. The strontium continuing calibration results were within the laboratory control limits.

The radium-226 cell efficiencies were determined in September 2006. The radium-226 continuing calibration results were within the laboratory-established control limits. The radium-228 calibration utilized actinium-228 and was verified in February 2001. The radium-228 tracer, yttrium oxalate yields were greater than 70%.

The gamma spectroscopy geometry-specific, detector efficiencies were determined in September 1999 and February 2007. All analytes were determined at the maximum photopeak energy.

The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: There were no analytes detected in the method blanks.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.

DATA VALIDATION REPORT SSFL NPDES

SSFL NPDES
SDG: IRA2025

 Laboratory Duplicates: A laboratory duplicate analysis was performed on the sample in this SDG for gross alpha, gross beta, tritium, radium-228, radium-226, strontium-40, total uranium, potassium-40, and cesium-137. The RPDs were within the laboratoryestablished control limits.

- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed for the sample in this SDG for gross alpha, gross beta, tritium, radium-226, and total uranium. The gross alpha recovery was above the control limit; therefore, gross alpha detected in the site sample was qualified as an estimated detect, "J." The remaining recoveries were within the laboratory-established control limits. Method accuracy for the remaining methods was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this
  data package. The sample results and MDAs reported on the sample result form were
  verified against the raw data and no calculation or transcription errors were noted.
  Reported nondetects are valid to the MDA.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.

| Client Data                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Sample Data  |                                         | Laboratory Data                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|-----------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            | Test Ameri                   | Test America-Irvine, CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | Matrix:      | Aqueous                                 | Lab Sample:                                   | 30191-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date Received;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24-Jan-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Project:  Date Collected:  Time Collected: | LKA2025<br>22-Jan-08<br>1005 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Sample Size: | 1.01 L                                  | QC Batch No.:<br>Date Analyzed DB-5:          | 9906<br>29-Jan-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date Extracted:<br>Date Analyzed DB-225:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27-Jan-08<br>: NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Analyte                                    | Conc.                        | (ng/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DI a         | EMPCb        | Qualifiers                              | Labeled Standard                              | ard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %R LCL-UCL <sup>d</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d Oualifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 23.7.8-TCDD                                | R                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56900000000  | \$69         |                                         | IS 13C-2,3,7,8-TCDD                           | σο                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 81.8 25-164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.2.3,7.8-PeCDD                            | 8                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000000970  | 026          |                                         | 13C-1,2,3,7,8-PeCDD                           | CDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 72.5 25-181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 - 15 - 15 - 15 - 15 - 15 - 15 - 15 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.2.3.4.7.8-HxCDD                          | 2                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00000188   | 88           | 1000年の日本                                | 13C-1,2,3,4,7,8-HxCDD                         | НхСDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 78.9 32-141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 123.6.7.8-HxCDD                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00000198   | 98           |                                         | 13C-1,2,3,6,7,8-HxCDL                         | HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 77.2 28-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A CONTRACTOR OF THE PARTY OF TH |
| 1.2.3.7.8.9-HxCDD                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00000185   | 88           |                                         | 13C-1,2,3,4,6,7,8-HpCDD                       | 8-нрсрр                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 82.2 23-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| T[DN9 1.2.3.4.6.7.8-HoCDD                  | Δ                            | 0.00000458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |              | 7                                       | 13C-OCDD                                      | The state of the s | 67.4 17-157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Contra distribute about to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| OCDD SNO                                   |                              | 0.0000309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |              |                                         | 13C-2,3,7,8-TCDF                              | DF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 84.6 24-169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.3.7.8-TCDF                               | 2                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000000598  | 8650         |                                         | 13C-1,2,3,7,8-Pe                              | eCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Section of the Party of the Section Se |
| 1237.8-PeCDF                               | 2                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000000712  | 712          |                                         | 13C-2,3,4,7,8-PeCDF                           | <b>CDF</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70.0 21-178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.3.4.7.8-PeCDF                            | 2                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000000665  | 9999         |                                         | 13C-1,2,3,4,7,8-HxCDF                         | HxCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 71.0 26-152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A STATE OF THE PARTY OF THE PAR |
| 1.2,3.4.7.8-HxCDF                          | 9                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000000875  | 875          |                                         | 13C-1,2,3,6,7,8-HxCDF                         | HxCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 72.9 26-123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2,3,6,7,8-HxCDF                          | F NO                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000000000  | 903          | And the second second                   | 13C-2,3,4,6,7,8-HxCDF                         | -HxCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | COCOL CONTROL PORTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2,3,4,6,7,8-HxCDF                          | 9                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000000980  | 0860         |                                         | 13C-1,2,3,7,8,9-HxCDF                         | HxCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 75.6 29-147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2,3,7,8,9-HxCDF                          | B                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00000120   | 120          |                                         | 13C-1,2,3,4,6,7.8-HpCDF                       | 8-НрСDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1,2,3,4,6,7,8-HpCDF                        | OF NO                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000000865  | 3865         |                                         | 13C-1,2,3,4,7,8,9-HpCDF                       | 9-нрСDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 74.8 26-138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2,3,4,7,8,9-HpCDF                        | DF ND                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000000857  | 1857         |                                         | 13C-0CDF                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 69.8 17-157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2011年の日本の日本の日本                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| OCDF                                       | N                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00000362   | 362          |                                         | CRS 37CI-2,3,7,8-TCDD                         | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 89.5 35-197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Totals                                     |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                                         | Footnotes                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total TCDD                                 | Q                            | THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COL | 0.00000180   | 180          |                                         | a. Sample specific estimated detection limit. | ed detection limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.00 Telephone (1.00 Telephone | The White Control of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Total PeCDD                                | 8                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000000501  | 501          |                                         | b. Estimated maximum possible concentration.  | saible concentration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total HxCDD                                | 2                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00000191   | 191          |                                         | c. Method detection limit.                    | ACCESS TO SECURITY OF THE PARTY |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Total HpCDD                                | 0.00                         | 0.00000086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |              |                                         | d. Lower control limit - upper control limit  | per control limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total TCDF                                 | 2                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000000944 | 100          |                                         |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The state of the s |
| Total PeCDF                                | 2                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 0.000000474  | 00474                                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total HxCDF                                | 2                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000000982 | 0982         | Control of the control                  | THE RESERVE OF THE PARTY NAMED IN             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MAG SHOWER THE RESERVED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | THE TRUBUSTICATION OF THE PARTY |
| Tatal HACDE                                | g                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00000180   | 180          | 一十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二 | スかながられているととからした                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | の記念におかった                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Report Number: IRA2025

Sampled: 01/22/08

Received: 01/22/08

#### DISSOLVED METALS

| Analyte                        | Method                | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|--------------------------------|-----------------------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: IRA2025-01 (Outfall | 010 - Water) - cont.  |         |              |                    |                  |                    |                   |                  |                    |
| Reporting Units: ug/l          |                       |         |              |                    |                  |                    |                   |                  |                    |
| Antimony JONQ                  | EPA 200.8-Diss        | 8A22140 | 0.20         | 2.0                | 0.61             | 1                  | 01/22/08          | 01/23/08         | J                  |
| Cadmium U                      | EPA 200.8-Diss        | 8A22140 | 0.11         | 1.0                | ND               | 1                  | 01/22/08          | 01/23/08         |                    |
| Copper                         | EPA 200.8-Diss        | 8A22140 | 0.75         | 2.0                | 3.4              | 1                  | 01/22/08          | 01/23/08         |                    |
| Lead                           | <b>EPA 200.8-Diss</b> | 8A22140 | 0.30         | 1.0                | ND               | 1                  | 01/22/08          | 01/23/08         |                    |
| Thallium U                     | EPA 200.8-Diss        | 8A22140 | 0.20         | 1.0                | ND               | 1                  | 01/22/08          | 01/23/08         |                    |





17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 010

Report Number: IRA2025

Sampled: 01/22/08

Received: 01/22/08

#### **METALS**

| Analyte    |                     | Method       | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|------------|---------------------|--------------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: | IRA2025-01 (Outfall | 010 - Water) |         |              |                    |                  |                    |                   |                  |                    |
| Report     | ing Units: ug/l     |              |         |              |                    |                  |                    |                   |                  |                    |
| Antimony   | J/DNG               | EPA 200.8    | 8A23079 | 0.20         | 2.0                | 0.63             | 1                  | 01/23/08          | 01/24/08         | J                  |
| Cadmium    | U                   | EPA 200.8    | 8A23079 | 0.11         | 1.0                | ND               | 1                  | 01/23/08          | 01/24/08         |                    |
| Copper     |                     | EPA 200.8    | 8A23079 | 0.75         | 2.0                | 4.0              | 1                  | 01/23/08          | 01/24/08         |                    |
| Lead       | O                   | EPA 200.8    | 8A23079 | 0.30         | 1.0                | ND               | 1                  | 01/23/08          | 01/24/08         |                    |
| Thallium   | D                   | EPA 200.8    | 8A23079 | 0.20         | 1.0                | ND               | 1                  | 01/23/08          | 01/24/08         |                    |

LEVEL IV

**TestAmerica Irvine** 



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRA2025

Sampled: 01/22/08

Received: 01/22/08

### Metals by EPA 200 Series Methods

| Analyte                                | Method         | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|----------------------------------------|----------------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: IRA2025-01 (Outfall 010 - V | Water) - cont. |         |              |                    |                  |                    |                   |                  |                    |
| Reporting Units: ug/l                  |                |         |              |                    |                  |                    |                   |                  |                    |
| Mercury, Dissolved                     | EPA 245.1      | W8A0913 | 0.050        | 0.20               | ND               | 1                  | 01/25/08          | 01/28/08         |                    |
| Mercury, Total                         | EPA 245.1      | W8A0913 | 0.050        | 0.20               | ND               | 1                  | 01/25/08          | 01/28/08         |                    |



**TestAmerica Irvine** 

## Eberline Services

## ANALYSIS RESULTS

| SDG 80          | 682       | Client   | TA IRVINE        |
|-----------------|-----------|----------|------------------|
| Work Order R    | 801142-01 | Contract | PROJECT# IRA2025 |
| Received Date 0 | 1/24/08   | Matrix   | WATER            |

| Client                   | Lab       |                    |            |                   |       |           |
|--------------------------|-----------|--------------------|------------|-------------------|-------|-----------|
| Sample ID<br>Outfall 010 | Sample ID | Collected Analyzed | Nuclide    | Results ± 20      | Units | MDA       |
| IRA2025-01               | 8682-001  | 01/22/08 02/06/08  | GrossAlpha | 2.52 ± 2.0        | pCi/L | 2.4 J/R,Q |
|                          |           | 02/06/08           | Gross Beta | 42.3 ± 2.4        | pCi/L | 2.4       |
|                          |           | 02/04/08           | Ra-228     | $0.145 \pm 0.17$  | pCi/L | 0.44 U    |
|                          |           | 02/05/08           | K-40 (G)   | 36.0 ± 19         | pCi/L | 13        |
|                          |           | 02/05/08           | Cs-137 (G) | υ                 | pCi/L | 1.1 Ų     |
|                          |           | 02/15/08           | H-3        | $-62.4 \pm 94$    | pCi/L | 160       |
|                          |           | 02/11/08           | Ra-226     | $-0.149 \pm 0.46$ | pCi/L | 0.96      |
|                          |           | 02/07/08           | Sr-90      | $0.032 \pm 0.30$  | pCi/L | 0.58      |
|                          |           | 02/19/08           | Total U    | $2.75 \pm 0.30$   | pCi/L | 0.022     |

LEVEL IV

| 10-                         |  |
|-----------------------------|--|
| Certified by                |  |
| Report Date <u>02/22/08</u> |  |
| Page 1                      |  |

## **APPENDIX G**

## **Section 65**

Outfall 010, January 22, 2008 Test America Analytical Laboratory Report





## LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Routine Outfall 010

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly
Sampled: 01/22/08
Received: 01/22/08

Issued: 02/25/08 10:23

#### NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

#### SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: This is a final report to include all subcontract data.

LABORATORY ID CLIENT ID MATRIX
IRA2025-01 Outfall 010 Water

Reviewed By:

**TestAmerica Irvine** 

Joseph Dock

Joseph Doak Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: IRA2025

Sampled: 01/22/08
Received: 01/22/08

Attention: Bronwyn Kelly

## **METALS**

| Analyte                                | Method    | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|----------------------------------------|-----------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: IRA2025-01 (Outfall 010 - V | Vater)    |         |              |                    |                  |                    |                   |                  |                    |
| Reporting Units: ug/l                  |           |         |              |                    |                  |                    |                   |                  |                    |
| Antimony                               | EPA 200.8 | 8A23079 | 0.20         | 2.0                | 0.63             | 1                  | 01/23/08          | 01/24/08         | J                  |
| Cadmium                                | EPA 200.8 | 8A23079 | 0.11         | 1.0                | ND               | 1                  | 01/23/08          | 01/24/08         |                    |
| Copper                                 | EPA 200.8 | 8A23079 | 0.75         | 2.0                | 4.0              | 1                  | 01/23/08          | 01/24/08         |                    |
| Lead                                   | EPA 200.8 | 8A23079 | 0.30         | 1.0                | ND               | 1                  | 01/23/08          | 01/24/08         |                    |
| Thallium                               | EPA 200.8 | 8A23079 | 0.20         | 1.0                | ND               | 1                  | 01/23/08          | 01/24/08         |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 010

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200

Sampled: 01/22/08 Arcadia, CA 91007 Report Number: IRA2025 Received: 01/22/08

Attention: Bronwyn Kelly

## **DISSOLVED METALS**

| Analyte                                | Method         | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|----------------------------------------|----------------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: IRA2025-01 (Outfall 010 - ' | Water) - cont. |         |              |                    |                  |                    |                   |                  |                    |
| Reporting Units: ug/l                  |                |         |              |                    |                  |                    |                   |                  |                    |
| Antimony                               | EPA 200.8-Diss | 8A22140 | 0.20         | 2.0                | 0.61             | 1                  | 01/22/08          | 01/23/08         | J                  |
| Cadmium                                | EPA 200.8-Diss | 8A22140 | 0.11         | 1.0                | ND               | 1                  | 01/22/08          | 01/23/08         |                    |
| Copper                                 | EPA 200.8-Diss | 8A22140 | 0.75         | 2.0                | 3.4              | 1                  | 01/22/08          | 01/23/08         |                    |
| Lead                                   | EPA 200.8-Diss | 8A22140 | 0.30         | 1.0                | ND               | 1                  | 01/22/08          | 01/23/08         |                    |
| Thallium                               | EPA 200.8-Diss | 8A22140 | 0.20         | 1.0                | ND               | 1                  | 01/22/08          | 01/23/08         |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: IRA2025

Sampled: 01/22/08
Received: 01/22/08

Attention: Bronwyn Kelly

## **INORGANICS**

| Analyte                                | Method         | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|----------------------------------------|----------------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: IRA2025-01 (Outfall 010 - V | Vater) - cont. |         |              |                    |                  |                    |                   |                  |                    |
| Reporting Units: mg/l                  |                |         |              |                    |                  |                    |                   |                  |                    |
| Hexane Extractable Material (Oil &     | EPA 1664A      | 8A28083 | 1.3          | 4.8                | ND               | 1                  | 01/28/08          | 01/28/08         |                    |
| Grease)                                |                |         |              |                    |                  |                    |                   |                  |                    |
| Chloride                               | EPA 300.0      | 8A22048 | 5.0          | 10                 | 72               | 20                 | 01/22/08          | 01/23/08         |                    |
| Nitrate/Nitrite-N                      | EPA 300.0      | 8A22048 | 0.15         | 0.26               | 2.5              | 1                  | 01/22/08          | 01/23/08         |                    |
| Sulfate                                | EPA 300.0      | 8A22048 | 0.20         | 0.50               | 46               | 1                  | 01/22/08          | 01/23/08         |                    |
| <b>Total Dissolved Solids</b>          | SM2540C        | 8A23102 | 10           | 10                 | 480              | 1                  | 01/23/08          | 01/23/08         |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 01/22/08

MWH-Pasadena/Boeing Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IRA2025 Received: 01/22/08

Attention: Bronwyn Kelly

## Metals by EPA 200 Series Methods

| Analyte                                             | Method    | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |  |  |
|-----------------------------------------------------|-----------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|--|--|
| Sample ID: IRA2025-01 (Outfall 010 - Water) - cont. |           |         |              |                    |                  |                    |                   |                  |                    |  |  |
| Reporting Units: ug/l                               |           |         |              |                    |                  |                    |                   |                  |                    |  |  |
| Mercury, Dissolved                                  | EPA 245.1 | W8A0913 | 0.050        | 0.20               | ND               | 1                  | 01/25/08          | 01/28/08         |                    |  |  |
| Mercury, Total                                      | EPA 245.1 | W8A0913 | 0.050        | 0.20               | ND               | 1                  | 01/25/08          | 01/28/08         |                    |  |  |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 010

Sampled: 01/22/08

Report Number: IRA2025

Received: 01/22/08

## SHORT HOLD TIME DETAIL REPORT

|                                             | Hold Time Date/Time |                  | Date/Time        | Date/Time        | Date/Time        |
|---------------------------------------------|---------------------|------------------|------------------|------------------|------------------|
|                                             | (in days)           | Sampled          | Received         | Extracted        | Analyzed         |
| Sample ID: Outfall 010 (IRA2025-01) - Water | er                  |                  |                  |                  |                  |
| EPA 300.0                                   | 2                   | 01/22/2008 10:05 | 01/22/2008 17:05 | 01/22/2008 18:00 | 01/23/2008 00:08 |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 01/22/08

Report Number: IRA2025 Received: 01/22/08

## METHOD BLANK/QC DATA

#### **METALS**

|                                        |            | Reporting |      |       | Spike | Source   |         | %REC   |     | RPD   | Data       |
|----------------------------------------|------------|-----------|------|-------|-------|----------|---------|--------|-----|-------|------------|
| Analyte                                | Result     | Limit     | MDL  | Units | Level | Result   | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 8A23079 Extracted: 01/23/08     |            |           |      |       |       |          |         |        |     |       |            |
|                                        | _          |           |      |       |       |          |         |        |     |       |            |
| Blank Analyzed: 01/24/2008 (8A23079-B  | LK1)       |           |      |       |       |          |         |        |     |       |            |
| Antimony                               | ND         | 2.0       | 0.20 | ug/l  |       |          |         |        |     |       |            |
| Cadmium                                | ND         | 1.0       | 0.11 | ug/l  |       |          |         |        |     |       |            |
| Copper                                 | ND         | 2.0       | 0.75 | ug/l  |       |          |         |        |     |       |            |
| Lead                                   | ND         | 1.0       | 0.30 | ug/l  |       |          |         |        |     |       |            |
| Thallium                               | ND         | 1.0       | 0.20 | ug/l  |       |          |         |        |     |       |            |
| LCS Analyzed: 01/24/2008 (8A23079-BS   | 1)         |           |      |       |       |          |         |        |     |       |            |
| Antimony                               | 85.6       | 2.0       | 0.20 | ug/l  | 80.0  |          | 107     | 85-115 |     |       |            |
| Cadmium                                | 89.8       | 1.0       | 0.11 | ug/l  | 80.0  |          | 112     | 85-115 |     |       |            |
| Copper                                 | 85.6       | 2.0       | 0.75 | ug/l  | 80.0  |          | 107     | 85-115 |     |       |            |
| Lead                                   | 85.9       | 1.0       | 0.30 | ug/l  | 80.0  |          | 107     | 85-115 |     |       |            |
| Thallium                               | 85.4       | 1.0       | 0.20 | ug/l  | 80.0  |          | 107     | 85-115 |     |       |            |
| Matrix Spike Analyzed: 01/24/2008 (8A2 | 3079-MS1)  |           |      |       | Sou   | rce: IRA | 2025-01 |        |     |       |            |
| Antimony                               | 86.9       | 4.0       | 0.40 | ug/l  | 80.0  | 0.633    | 108     | 70-130 |     |       |            |
| Cadmium                                | 84.0       | 2.0       | 0.22 | ug/l  | 80.0  | ND       | 105     | 70-130 |     |       |            |
| Copper                                 | 82.4       | 4.0       | 1.5  | ug/l  | 80.0  | 3.95     | 98      | 70-130 |     |       |            |
| Lead                                   | 83.9       | 2.0       | 0.60 | ug/l  | 80.0  | ND       | 105     | 70-130 |     |       |            |
| Thallium                               | 82.1       | 2.0       | 0.40 | ug/l  | 80.0  | ND       | 103     | 70-130 |     |       |            |
| Matrix Spike Dup Analyzed: 01/24/2008  | (8A23079-M | SD1)      |      |       | Sou   | rce: IRA | 2025-01 |        |     |       |            |
| Antimony                               | 89.6       | 4.0       | 0.40 | ug/l  | 80.0  | 0.633    | 111     | 70-130 | 3   | 20    |            |
| Cadmium                                | 85.5       | 2.0       | 0.22 | ug/l  | 80.0  | ND       | 107     | 70-130 | 2   | 20    |            |
| Copper                                 | 83.1       | 4.0       | 1.5  | ug/l  | 80.0  | 3.95     | 99      | 70-130 | 1   | 20    |            |
| Lead                                   | 85.7       | 2.0       | 0.60 | ug/l  | 80.0  | ND       | 107     | 70-130 | 2   | 20    |            |
| Thallium                               | 84.4       | 2.0       | 0.40 | ug/l  | 80.0  | ND       | 106     | 70-130 | 3   | 20    |            |

#### **TestAmerica Irvine**

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 01/22/08

Report Number: IRA2025 Received: 01/22/08

## METHOD BLANK/QC DATA

## **DISSOLVED METALS**

|                                        |            | Reporting |      |       | Spike | Source   |         | %REC   |     | RPD   | Data       |
|----------------------------------------|------------|-----------|------|-------|-------|----------|---------|--------|-----|-------|------------|
| Analyte                                | Result     | Limit     | MDL  | Units | Level | Result   | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 8A22140 Extracted: 01/22/08     |            |           |      |       |       |          |         |        |     |       |            |
|                                        | _          |           |      |       |       |          |         |        |     |       |            |
| Blank Analyzed: 01/23/2008 (8A22140-B  | LK1)       |           |      |       |       |          |         |        |     |       |            |
| Antimony                               | ND         | 2.0       | 0.20 | ug/l  |       |          |         |        |     |       |            |
| Cadmium                                | ND         | 1.0       | 0.11 | ug/l  |       |          |         |        |     |       |            |
| Copper                                 | ND         | 2.0       | 0.75 | ug/l  |       |          |         |        |     |       |            |
| Lead                                   | ND         | 1.0       | 0.30 | ug/l  |       |          |         |        |     |       |            |
| Thallium                               | ND         | 1.0       | 0.20 | ug/l  |       |          |         |        |     |       |            |
| LCS Analyzed: 01/23/2008 (8A22140-BS   | 1)         |           |      |       |       |          |         |        |     |       |            |
| Antimony                               | 88.2       | 2.0       | 0.20 | ug/l  | 80.0  |          | 110     | 85-115 |     |       |            |
| Cadmium                                | 80.6       | 1.0       | 0.11 | ug/l  | 80.0  |          | 101     | 85-115 |     |       |            |
| Copper                                 | 81.1       | 2.0       | 0.75 | ug/l  | 80.0  |          | 101     | 85-115 |     |       |            |
| Lead                                   | 81.8       | 1.0       | 0.30 | ug/l  | 80.0  |          | 102     | 85-115 |     |       |            |
| Thallium                               | 78.5       | 1.0       | 0.20 | ug/l  | 80.0  |          | 98      | 85-115 |     |       |            |
| Matrix Spike Analyzed: 01/23/2008 (8A2 | 2140-MS1)  |           |      |       | Sou   | rce: IRA | 2025-01 |        |     |       |            |
| Antimony                               | 91.8       | 2.0       | 0.20 | ug/l  | 80.0  | 0.608    | 114     | 70-130 |     |       |            |
| Cadmium                                | 79.4       | 1.0       | 0.11 | ug/l  | 80.0  | ND       | 99      | 70-130 |     |       |            |
| Copper                                 | 80.4       | 2.0       | 0.75 | ug/l  | 80.0  | 3.44     | 96      | 70-130 |     |       |            |
| Lead                                   | 79.1       | 1.0       | 0.30 | ug/l  | 80.0  | ND       | 99      | 70-130 |     |       |            |
| Thallium                               | 76.0       | 1.0       | 0.20 | ug/l  | 80.0  | ND       | 95      | 70-130 |     |       |            |
| Matrix Spike Dup Analyzed: 01/23/2008  | (8A22140-M | SD1)      |      |       | Sou   | rce: IRA | 2025-01 |        |     |       |            |
| Antimony                               | 94.5       | 2.0       | 0.20 | ug/l  | 80.0  | 0.608    | 117     | 70-130 | 3   | 20    |            |
| Cadmium                                | 80.0       | 1.0       | 0.11 | ug/l  | 80.0  | ND       | 100     | 70-130 | 1   | 20    |            |
| Copper                                 | 82.0       | 2.0       | 0.75 | ug/l  | 80.0  | 3.44     | 98      | 70-130 | 2   | 20    |            |
| Lead                                   | 78.6       | 1.0       | 0.30 | ug/l  | 80.0  | ND       | 98      | 70-130 | 1   | 20    |            |
| Thallium                               | 75.8       | 1.0       | 0.20 | ug/l  | 80.0  | ND       | 95      | 70-130 | 0   | 20    |            |



MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 01/22/08

Report Number: IRA2025 Received: 01/22/08

## METHOD BLANK/QC DATA

## **INORGANICS**

| Analyte                                   | Result     | Reporting<br>Limit | MDL  | Units | Spike<br>Level | Source   | %REC    | %REC   | RPD  | RPD<br>Limit | Data<br>Qualifiers |
|-------------------------------------------|------------|--------------------|------|-------|----------------|----------|---------|--------|------|--------------|--------------------|
| •                                         |            | Lillit             | MIDL | Units | Level          | Result   | /OKEC   | Limits | KI D | Lillit       | Quanners           |
| <b>Batch: 8A22048 Extracted: 01/22/08</b> | _          |                    |      |       |                |          |         |        |      |              |                    |
| Blank Analyzed: 01/22/2008 (8A22048-B     | LK1)       |                    |      |       |                |          |         |        |      |              |                    |
| Chloride                                  | ND         | 0.50               | 0.25 | mg/l  |                |          |         |        |      |              |                    |
| Nitrate/Nitrite-N                         | ND         | 0.26               | 0.15 | mg/l  |                |          |         |        |      |              |                    |
| Sulfate                                   | ND         | 0.50               | 0.20 | mg/l  |                |          |         |        |      |              |                    |
| LCS Analyzed: 01/22/2008 (8A22048-BS)     | 1)         |                    |      |       |                |          |         |        |      |              |                    |
| Chloride                                  | 5.35       | 0.50               | 0.25 | mg/l  | 5.00           |          | 107     | 90-110 |      |              | M-3                |
| Sulfate                                   | 10.2       | 0.50               | 0.20 | mg/l  | 10.0           |          | 102     | 90-110 |      |              |                    |
| Matrix Spike Analyzed: 01/22/2008 (8A2    | 2048-MS1)  |                    |      |       | Sou            | rce: IRA | 1989-01 |        |      |              |                    |
| Sulfate                                   | 48.7       | 2.5                | 1.0  | mg/l  | 10.0           | 39.0     | 97      | 80-120 |      |              |                    |
| Matrix Spike Analyzed: 01/22/2008 (8A2    | 2048-MS2)  |                    |      |       | Sou            | rce: IRA | 2022-01 |        |      |              |                    |
| Chloride                                  | 25.1       | 1.0                | 0.50 | mg/l  | 5.00           | 20.7     | 88      | 80-120 |      |              |                    |
| Sulfate                                   | 23.4       | 1.0                | 0.40 | mg/l  | 10.0           | 13.7     | 97      | 80-120 |      |              |                    |
| Matrix Spike Dup Analyzed: 01/22/2008     | (8A22048-M | ISD1)              |      |       | Sou            | rce: IRA | 1989-01 |        |      |              |                    |
| Sulfate                                   | 48.2       | 2.5                | 1.0  | mg/l  | 10.0           | 39.0     | 92      | 80-120 | 1    | 20           |                    |
| Batch: 8A23102 Extracted: 01/23/08        | <u>-</u>   |                    |      |       |                |          |         |        |      |              |                    |
| Blank Analyzed: 01/23/2008 (8A23102-B     | LK1)       |                    |      |       |                |          |         |        |      |              |                    |
| Total Dissolved Solids                    | ND         | 10                 | 10   | mg/l  |                |          |         |        |      |              |                    |
| LCS Analyzed: 01/23/2008 (8A23102-BS      | 1)         |                    |      |       |                |          |         |        |      |              |                    |
| Total Dissolved Solids                    | 1010       | 10                 | 10   | mg/l  | 1000           |          | 101     | 90-110 |      |              |                    |
| Duplicate Analyzed: 01/23/2008 (8A2310    | 2-DUP1)    |                    |      |       | Sou            | rce: IRA | 1941-04 |        |      |              |                    |
| Total Dissolved Solids                    | 80.0       | 10                 | 10   | mg/l  |                | 78.0     |         |        | 3    | 10           |                    |

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 01/22/08

Report Number: IRA2025

Received: 01/22/08

## METHOD BLANK/QC DATA

## **INORGANICS**

| Analyte                                    | Result   | Reporting<br>Limit | MDL | Units | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Data<br>Oualifiers |
|--------------------------------------------|----------|--------------------|-----|-------|----------------|------------------|------|----------------|-----|--------------|--------------------|
| Batch: 8A28083 Extracted: 01/28/03         | <u>8</u> |                    |     |       |                |                  |      |                |     |              |                    |
| Blank Analyzed: 01/28/2008 (8A28083-F      | BLK1)    |                    |     |       |                |                  |      |                |     |              |                    |
| Hexane Extractable Material (Oil & Grease) | ND       | 5.0                | 1.4 | mg/l  |                |                  |      |                |     |              |                    |
| LCS Analyzed: 01/28/2008 (8A28083-BS       | 51)      |                    |     |       |                |                  |      |                |     |              | MNR1               |
| Hexane Extractable Material (Oil & Grease) | 20.2     | 5.0                | 1.4 | mg/l  | 20.2           |                  | 100  | 78-114         |     |              |                    |
| LCS Dup Analyzed: 01/28/2008 (8A2808       | 3-BSD1)  |                    |     |       |                |                  |      |                |     |              |                    |
| Hexane Extractable Material (Oil & Grease) | 21.2     | 5.0                | 1.4 | mg/l  | 20.2           |                  | 105  | 78-114         | 5   | 11           |                    |

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 01/22/08

Report Number: IRA2025

Received: 01/22/08

## METHOD BLANK/QC DATA

## Metals by EPA 200 Series Methods

| Analyte                                  | Result       | Reporting<br>Limit | MDL   | Units | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD  | RPD<br>Limit | Data<br>Oualifiers |
|------------------------------------------|--------------|--------------------|-------|-------|----------------|------------------|--------|----------------|------|--------------|--------------------|
| •                                        |              | Limit              | MIDL  | Units | Level          | Kesuit           | /OKEC  | Limits         | KI D | Lillit       | Quanners           |
| <b>Batch: W8A0913 Extracted: 01/25/0</b> | <u>08</u>    |                    |       |       |                |                  |        |                |      |              |                    |
| Blank Analyzed: 01/28/2008 (W8A0913-     | ·BLK1)       |                    |       |       |                |                  |        |                |      |              |                    |
| Mercury, Dissolved                       | ND           | 0.20               | 0.050 | ug/l  |                |                  |        |                |      |              |                    |
| Mercury, Total                           | ND           | 0.050              | 0.025 | ug/l  |                |                  |        |                |      |              |                    |
| LCS Analyzed: 01/28/2008 (W8A0913-B      | SS1)         |                    |       |       |                |                  |        |                |      |              |                    |
| Mercury, Dissolved                       | 0.967        | 0.20               | 0.050 | ug/l  | 1.00           |                  | 97     | 85-115         |      |              |                    |
| Mercury, Total                           | 0.967        | 0.050              | 0.025 | ug/l  | 1.00           |                  | 97     | 85-115         |      |              |                    |
| Matrix Spike Analyzed: 01/28/2008 (W8    | 3A0913-MS1)  |                    |       |       | Sou            | rce: 8012        | 328-01 |                |      |              |                    |
| Mercury, Dissolved                       | 1.01         | 0.20               | 0.050 | ug/l  | 1.00           | ND               | 101    | 70-130         |      |              |                    |
| Mercury, Total                           | 1.01         | 0.050              | 0.025 | ug/l  | 1.00           | ND               | 101    | 70-130         |      |              |                    |
| Matrix Spike Analyzed: 01/28/2008 (W8    | 3A0913-MS2)  |                    |       |       | Sou            | rce: 8012        | 328-02 |                |      |              |                    |
| Mercury, Dissolved                       | 0.978        | 0.20               | 0.050 | ug/l  | 1.00           | ND               | 98     | 70-130         |      |              |                    |
| Mercury, Total                           | 0.978        | 0.050              | 0.025 | ug/l  | 1.00           | ND               | 98     | 70-130         |      |              |                    |
| Matrix Spike Dup Analyzed: 01/28/2008    | 3 (W8A0913-M | (SD1)              |       |       | Sou            | rce: 8012        | 328-01 |                |      |              |                    |
| Mercury, Dissolved                       | 0.992        | 0.20               | 0.050 | ug/l  | 1.00           | ND               | 99     | 70-130         | 2    | 20           |                    |
| Mercury, Total                           | 0.992        | 0.050              | 0.025 | ug/l  | 1.00           | ND               | 99     | 70-130         | 2    | 20           |                    |
| Matrix Spike Dup Analyzed: 01/28/2008    | 3 (W8A0913-M | (SD2)              |       |       | Sou            | rce: 8012        | 328-02 |                |      |              |                    |
| Mercury, Dissolved                       | 1.01         | 0.20               | 0.050 | ug/l  | 1.00           | ND               | 101    | 70-130         | 3    | 20           |                    |
| Mercury, Total                           | 1.01         | 0.050              | 0.025 | ug/l  | 1.00           | ND               | 101    | 70-130         | 3    | 20           |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200

Sampled: 01/22/08

Arcadia, CA 91007 Report Number: IRA2025 Received: 01/22/08
Attention: Bronwyn Kelly

## DATA QUALIFIERS AND DEFINITIONS

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was

accepted based on acceptable recovery in the Blank Spike (LCS).

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

MWH-Pasadena/Boeing

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

**RPD** Relative Percent Difference



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 01/22/08

Report Number: IRA2025 Received: 01/22/08

## **Certification Summary**

#### **TestAmerica Irvine**

| Method         | Matrix | Nelac | California |
|----------------|--------|-------|------------|
| EDD + Level 4  | Water  |       |            |
| EPA 1664A      | Water  |       |            |
| EPA 200.8-Diss | Water  | X     | X          |
| EPA 200.8      | Water  | X     | X          |
| EPA 300.0      | Water  | X     | X          |
| SM2540C        | Water  | X     |            |

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

#### **Subcontracted Laboratories**

#### Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chrnic

Samples: IRA2025-01

#### **Eberline Services - SUB**

2030 Wright Avenue - Richmond, CA 94804

Analysis Performed: Gamma Spec

Samples: IRA2025-01

Analysis Performed: Gross Alpha

Samples: IRA2025-01

Analysis Performed: Gross Beta

Samples: IRA2025-01

Analysis Performed: Radium, Combined

Samples: IRA2025-01

Analysis Performed: Strontium 90

Samples: IRA2025-01

Analysis Performed: Tritium

Samples: IRA2025-01

Analysis Performed: Uranium, Combined

Samples: IRA2025-01

## TestAmerica Irvine

Joseph Doak Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007
Report Number: IRA2025
Sampled: 01/22/08
Received: 01/22/08

Arcadia, CA 91007 Report Number: IRA2025 Attention: Bronwyn Kelly

Vista Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762 Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IRA2025-01

#### **Weck Laboratories, Inc**

14859 E. Clark Avenue - City of Industry, CA 91745

Method Performed: EPA 245.1 Samples: IRA2025-01

| Page 1 of 1                  | 0                    | Field readings.<br>Temp = 46.8°                                                                             | pH = <b>§. 3</b><br>Time of readings = <b>70</b>                                                                                | Comments                             |                  |                     |             |             |                |                | Unfiltered and unpreserved analysis | Only test if first and second rain event of the year | Filter w/in 24hrs of receipt at lab | 300 | Turn around Time: (check) 24 Hours 5 Days 48 Hours 10 Days | ntegrity: (che        |
|------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------|---------------------|-------------|-------------|----------------|----------------|-------------------------------------|------------------------------------------------------|-------------------------------------|-----|------------------------------------------------------------|-----------------------|
| IN.                          | JUIRE                |                                                                                                             | al Cissolved Me<br>T. Cu, Pb, Hg, Tl                                                                                            |                                      |                  |                     |             |             |                |                |                                     |                                                      | ×                                   |     | 75 4                                                       |                       |
| 00                           | S RE                 |                                                                                                             | ronic Toxicity                                                                                                                  | чэ                                   |                  |                     |             |             |                |                |                                     | ×                                                    |                                     |     |                                                            | x C : Z               |
| 5 IRAZORS                    | ANALYSIS REQUIRED    | m (K-H) m<br>S.O., (O.5<br>ASS r<br>muibeA<br>muin                                                          | as Alpha(900.03 Alpha(900.03 (909)   6.0), Sr-90 (909)   7.0 or 903.1) & (904.0), K-40, CS-8.0), K-40, CS-10.00   7.0 or 901.1) | (90)<br>(90)<br>(90)<br>(90)<br>(90) |                  |                     |             |             |                |                | ×                                   |                                                      |                                     |     | ime: 400 / 400 / 1400 / 1400 / 1400                        | (12708 (              |
| <b>RM</b>                    |                      |                                                                                                             | S                                                                                                                               | SQT                                  | $\downarrow$     |                     | 1           |             |                | ×              |                                     |                                                      |                                     |     | Date/Time:                                                 | Date/Time:            |
| ₹ <u>G</u>                   |                      | . N-2                                                                                                       | ON+EON 'JOS                                                                                                                     | Cl.,                                 |                  |                     |             |             | ×              |                |                                     |                                                      |                                     |     | 1                                                          |                       |
|                              |                      |                                                                                                             | & Grease (166                                                                                                                   |                                      | -                |                     |             | ×           |                |                |                                     |                                                      |                                     |     |                                                            |                       |
| CUSTODY FORM                 |                      |                                                                                                             | al Recoverable<br>Cdr. Cu., Pb., Ho                                                                                             |                                      | ×                | ×                   | ×           |             |                |                |                                     |                                                      |                                     |     |                                                            |                       |
|                              |                      | ng 203                                                                                                      |                                                                                                                                 | Bottle #                             | 4F               | 18                  | 2A, 2B      | 3A, 3B      | 4A, 4B         | 5              | 6A<br>6B                            | 7                                                    | 8                                   |     | Received By                                                | Received By           |
| CHAIN OF                     |                      | Boeing-SSFL NPDES<br><b>Routine Outfall 010</b><br>Stormwater at Building 203                               | mber:<br>-6691<br>ber:<br>-6515                                                                                                 | Preservative                         | HNO <sub>3</sub> | HNO <sub>3</sub>    | None        | ΗĊΙ         | None           | None           | None<br>None                        | None                                                 | None                                |     | <i>3</i>                                                   | 7/26                  |
|                              | Project.             | Boeing-SS<br>Routine (<br>Stormwate                                                                         | Phone Number: (626) 568-6691 Fax Number: (626) 568-6515                                                                         | Sampling<br>Date/Time                | 80.23-1          |                     |             |             |                |                |                                     | ->                                                   | 10:15                               |     | Date/Time:                                                 | 1/22/ož<br>Date/Time: |
| 2/20/0.                      |                      | 30<br>sak                                                                                                   | (elly                                                                                                                           | # of<br>Cont.                        | 1                | -                   | 2           | 2           | 2              | 1              |                                     | -                                                    | -                                   |     |                                                            | [ix                   |
| est America version 12/20/07 | SS:                  | MWWH-Arcadia<br>318 Michillinda Avenue. Suite 200<br>Arcadia, CA 91007<br>Test America Contact: Joseph Doak | Bronwyn F                                                                                                                       | Container<br>Type                    | 1L Poly          | 1L Poly             | 1L Amber    | 1L Amber    | 500 ml<br>Poly | 500 ml<br>Poly | 2.5 Gal Cube<br>500 ml Amber        | 1 Gal Poly                                           | 1L Poly                             |     |                                                            |                       |
| neric                        | ne/Addre             | cadia<br>nda Aven<br>v 91007<br>a Contact                                                                   | anager:                                                                                                                         | Sample<br>Matrix                     | >                | <b>X</b>            | 8           | Μ           | >              | >              | 8                                   | 3                                                    | 3                                   |     | uished By uished By                                        | A September 1         |
| Test Ar                      | Client Name/Address: | MWH-Arcadia<br>618 Michillinda Avenue, Suite 200<br>Arcadia, CA 91007<br>Test America Contact: Joseph Doal  | Project Manager: Bronwyn Kelly Sampler: M. R. K. K. J. Barras, C. Barras, C.                                                    | Sample<br>Description                | Outfall 010      | Outfall 010-<br>Dup | Outfall 010 | Outfall 010 | Outfall 010    | Outfall 010    | Outfall 010                         | Outfall 010                                          | Outfall 010                         |     | Relinquished By Relinquished By                            | Kelinquished By       |

## LABORATORY REPORT

Date:

January 30, 2008

**Client:** 

TestAmerica - Irvine

17461 Derian Ave., Suite 100

Irvine, CA 92614 Attn: Joseph Doak Aquatic Testing Laboratories

"dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003

(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

**Laboratory No.:** 

A-08012308-001

Sample ID.:

IRA2025-01 (Outfall 010)

**Sample Control:** 

The sample was received by ATL within the recommended hold time, in a chilled state, and with the chain of custody record attached. Testing was conducted on only

one sample per client instruction.

Date Sampled:

01/22/08

Date Received:

01/23/08

Temp. Received:

2°C

Chlorine (TRC):

0.0 mg/l

Date Tested:

01/23/08 to 01/29/08

**Sample Analysis:** 

The following analyses were performed on your sample:

Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

**Result Summary:** 

**Chronic:** 

NOEC

TUc

Ceriodaphnia Survival:

100%

1.0

Ceriodaphnia Reproduction:

100%

1.0

**Quality Control:** 

Reviewed and approved by:

Joseph A. KeMay

Laboratory Director

## CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0



Lab No.: A-08012308-001

Client/ID: Test America - Outfall 010

Date Tested: 01/23/08 to 01/29/08

#### **TEST SUMMARY**

Test type: Daily static-renewal.

Species: Ceriodaphnia dubia.

Age: < 24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 + /- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

QA/QC Batch No.: RT-080106.

Endpoints: Survival and Reproduction.

Source: In-laboratory culture.

Food: .1 ml YTC, algae per day.

Test solution volume: 15 ml. Number of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 6 days.

Statistics: ToxCalc computer program.

## **RESULTS SUMMARY**

| Sample Concentration | Percent Survival | Mean Number of Young<br>Per Female |
|----------------------|------------------|------------------------------------|
| Control              | 100%             | 26.8                               |
| 100% Sample          | 100%             | 28.9                               |

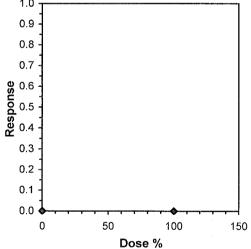
## **CHRONIC TOXICITY**

| Survival NOEC     | 100% |
|-------------------|------|
| Survival TUc      | 1.0  |
| Reproduction NOEC | 100% |
| Reproduction TUc  | 1.0  |

## QA/QC TEST ACCEPTABILITY

| Parameter                                                                             | Result                                                 |
|---------------------------------------------------------------------------------------|--------------------------------------------------------|
| Control survival ≥80%                                                                 | Pass (100% survival)                                   |
| ≥15 young per surviving control female                                                | Pass (26.8 young)                                      |
| ≥60% surviving controls had 3 broods                                                  | Pass (100% with 3 broods)                              |
| PMSD <47% for reproduction; if >47% and no toxicity at IWC, the test must be repeated | Pass (PMSD = 14.8%)                                    |
| Statistically significantly different concentrations relative difference > 13%        | Pass (no concentration significantly different)        |
| Concentration response relationship acceptable                                        | Pass (no significant response at concentration tested) |

|              |                 | Ceriod    | aphnia Survival | and Reproduction Test-Survi | val Day 6             |  |
|--------------|-----------------|-----------|-----------------|-----------------------------|-----------------------|--|
| Start Date:  | 1/23/2008 14:00 | Test ID:  | 8012308         | Sample ID:                  | Outfall 010           |  |
| End Date:    | 1/29/2008 15:00 | Lab ID:   | CAATL-Aquatic   | Testing Labs Sample Type:   | EFF2-Industrial       |  |
| Sample Date: | 1/22/2008 10:05 | Protocol: | FWCH 4TH-EPA    | \-821-R-02-0 Test Species:  | CD-Ceriodaphnia dubia |  |
| Commonto:    |                 |           |                 |                             |                       |  |


| Comments. |        |        |        |        |        |        |        |        | ·      |        |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Conc-%    | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     |
| D-Control | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 100       | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |

|           |        |        |      | Not  |       |    | Fisher's | 1-Tailed | Isot   | onic   |
|-----------|--------|--------|------|------|-------|----|----------|----------|--------|--------|
| Conc-%    | Mean   | N-Mean | Resp | Resp | Total | N  | Exact P  | Critical | Mean   | N-Mean |
| D-Control | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 |          |          | 1.0000 | 1.0000 |
| 100       | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 | 1.0000   | 0.0500   | 1.0000 | 1.0000 |

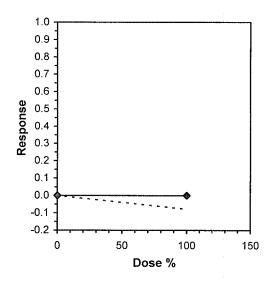
| Hypothesis Test (1-tail, 0.05) | NOEC | LOEC | ChV | TU |  |
|--------------------------------|------|------|-----|----|--|
| Fisher's Exact Test            | 100  | >100 |     | 1  |  |
| Treatments vs D-Control        |      |      |     |    |  |

Treatments vs D-Control

Linear Interpolation (200 Resamples) **Point** SD 95% CL Skew % IC05 >100 IC10 >100 IC15 >100 1.0 IC20 >100 0.9 IC25 >100 IC40 >100 8.0 IC50 >100 0.7



|              |           |        | Cerioda   | aphnia Su | rvival and | Reprod    | uction Tes       | st-Repro | duction     |               |
|--------------|-----------|--------|-----------|-----------|------------|-----------|------------------|----------|-------------|---------------|
| Start Date:  | 1/23/2008 | 14:00  | Test ID:  | 8012308   |            |           | Sample ID        | );       | Outfall 010 | )             |
| End Date:    | 1/29/2008 | 15:00  | Lab ID:   | CAATL-Ac  | uatic Test | ting Labs | Sample Ty        | /pe:     | EFF2-Indu   | ıstrial       |
| Sample Date: | 1/22/2008 | 10:05  | Protocol: | FWCH 4T   | H-EPA-82   | 1-R-02-0  | <b>Test Spec</b> | ies:     | CD-Cerioo   | laphnia dubia |
| Comments:    |           |        |           |           |            |           |                  |          |             |               |
| Conc-%       | 1         | 2      | 3         | 4         | 5          | 6         | 7                | 8        | 9           | 10            |
| D-Control    | 27.000    | 32.000 | 26.000    | 27.000    | 27.000     | 25.000    | 32.000           | 18.000   | 33.000      | 21.000        |
| 100          | 29.000    | 34.000 | 17.000    | 31.000    | 32.000     | 32.000    | 23.000           | 26,000   | 34.000      | 31.000        |


|           |        |        |        | Transform: Untransformed |        |        |    |        |          |       | Isot   | onic   |
|-----------|--------|--------|--------|--------------------------|--------|--------|----|--------|----------|-------|--------|--------|
| Conc-%    | Mean   | N-Mean | Mean   | Min                      | Max    | CV%    | N  | t-Stat | Critical | MSD   | Mean   | N-Mean |
| D-Control | 26.800 | 1.0000 | 26.800 | 18.000                   | 33.000 | 17.921 | 10 |        |          |       | 27.850 | 1.0000 |
| 100       | 28.900 | 1.0784 | 28.900 | 17.000                   | 34.000 | 18.772 | 10 | -0.917 | 1.734    | 3.973 | 27.850 | 1.0000 |

| Auxiliary Tests                                              | Statistic |         | Critical |       | Skew    | Kurt    |
|--------------------------------------------------------------|-----------|---------|----------|-------|---------|---------|
| Shapiro-Wilk's Test indicates normal distribution (p > 0.05) | 0.91596   |         | 0.905    |       | -0.9124 | 0.31456 |
| F-Test indicates equal variances (p = 0.72)                  | 1.27601   |         | 6.54109  |       |         |         |
| Hypothesis Test (1-tail, 0.05)                               | MSDu      | MSDp    | MSB      | MSE   | F-Prob  | df      |
| Homoscedastic t Test indicates no significant differences    | 3.97324   | 0.14826 | 22.05    | 26.25 | 0.37151 | 1, 18   |
| Treatments vs D-Control                                      |           |         |          |       |         | •       |

| Cost |

>100

>100



IC40

IC50

## CERIODAPHNIA DUBIA CHRONIC BIOASSAY EPA METHOD 1002.0 Raw Data Sheet



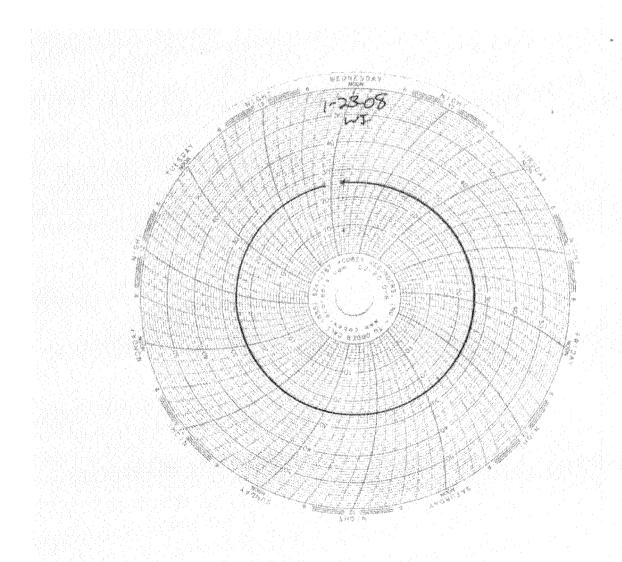
Lab No.: A-08012308-001

Client ID: TestAmerica - IRA2025-01 (Outfall 010) Start Date: 01/23/2008

| Client ID: TestAmerica - IRA2025-01 (Outfall 010) |                                   |            |                    |          |      |      |         |               |      |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Start Date: 01/23/2008 |                             |          |         | 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------|-----------------------------------|------------|--------------------|----------|------|------|---------|---------------|------|----------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------|-----------------------------|----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                   |                                   | D          | AY 1               |          | DA   | Y 2  |         | DAY 3         |      | DA       | Y 4   | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DAY 5 |                        | DA                          | Y 6      | D.      | AY 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                   |                                   | 0 hr       | 24h                | ır       | 0 hr | 24hr | 0 hr    |               | 24hr | 0 hr     | 24hr  | 0 hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24    | 4hr                    | 0 hr                        | 24hr     | 0 hr    | 24hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Analyst Iı                                        | nitials:                          | Z~-        | 2                  |          | 2~   | Rn   | R       | - 2           | 2    | 2_       | 1/2   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -12   | <u>~</u>               | on                          | En       | R       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Time of Re                                        | adings:                           | 1400       | 140                | عال      | SHOO | 1400 | 140     | υ /s          | W    | 1500     | 1300  | 1700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | يئ [ر | a                      | 1500                        | 1500     | 15W     | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                   | DO                                | 8.7        | 5.                 |          | 8.0  | 8.2  | 8.0     | ) 8           | 0    | 7.9      | 76    | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7 2   | 7                      | 7-9                         | 8.1      | 8.9     | querran.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Control                                           | pН                                | 7.8        | 7.                 | 7        | 7.10 | 2.8  | 2.5     |               | 29   | 7.7      | 7.6   | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , 2   | 6                      | 7-8                         | 8.0      | 8.0     | Squagardin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                   | Temp                              | 25.1       | 24.                | 4 2      | 4.7  | 24.8 | 25.     | 3 2           | S.U  | 25.4     | 24.7  | 25-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20    | 1.7                    | 24.2                        | 24.9     | 24.2    | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                   | DO                                | 10.5       | 8.                 |          | 09   | 8,5  | 10.     | 5 8           | 1,2  | 10.3     | 7.6   | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 27                     | 101                         | 8,3      | 10.1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100%                                              | рН                                | 8.3        | 8.                 | 3 8      | 3.3  | 8.3  | 8       | 38            | .3   | 8.2      | 8,2   | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8     | 2                      | 8-1                         | 8.3      | 8.2     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   | Temp                              | 24.5       | 24.                | 32       | 4.7  | 24.8 | 24      | 42            | 5.0  | 25.0     | 24.8  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7 2   | 4:3                    | 249                         | 248      | 24.4    | Name of the last o |
|                                                   | Ad                                | lditional  | Param              | ieters   |      |      |         |               |      | Con      | itrol |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                        |                             | 100% Sar | nple    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   | Conductivity (umohms)             |            |                    |          |      |      |         |               |      | 2        | 90    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                        |                             | C035     | *       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Alkalinity (mg/l CaCO <sub>3</sub> )              |                                   |            |                    |          |      |      |         |               |      |          | 160   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                        |                             | 242      | <b></b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hardness (mg/l CaCO <sub>3</sub> )                |                                   |            |                    |          |      |      |         |               |      |          | 98    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                        |                             | 200      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   | Ammonia (mg/l NH <sub>3</sub> -N) |            |                    |          |      |      |         | 20,2 0.4      |      |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                        |                             |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   |                                   |            | Source of Neonates |          |      |      |         |               |      |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                        |                             |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rep                                               | licate:                           |            | Α                  |          | В    | (    |         | D             |      | Е        | F     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G     |                        | Н                           | I        |         | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Bro                                               | od ID:                            |            | <u> </u>           |          | E2   | G,   | 2       | HI            |      | <u> </u> | AS    | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BC    |                        | <u> </u>                    | G6       | 1       | H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Carral a                                          |                                   | Dan        |                    |          |      |      |         |               |      |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tot   | al Live                | No. Liv                     | e I      | Analyst |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample                                            |                                   | Day        |                    | A        | В    | C    | D       | E             | F    | G        | н     | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | J     | L                      | oung                        | Adults   | •       | Initials<br>—————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                   |                                   | 1          |                    | 0        | 0    | 0    | 0       | 0             | 0    | 0        | 0     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0     | C                      |                             | 10       |         | 2_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                   |                                   | 2          |                    | 0        | 0    | 0    | 0       | 0             | 0    | 10       | 0     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0     | C                      | ———I                        | 10       |         | <u>~</u> _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                   | ļ                                 | 3          |                    | 5        | Ч    | 5    | 4       | 4             | 3    | 3        | 4     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3     |                        | 10                          | 10       |         | <del>/////</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Control                                           | <del></del>                       | 4          |                    | 10       | U    | 2    | 10      | 8             | 8    | 0        | 6     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0     |                        | 19                          | 10       |         | <u>V 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                   | <u> </u>                          | 5          |                    | 0        | 12   |      | 9       | <u> 0</u>     | 0    | 113      |       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10    | U                      | 16                          | 10       |         | <sup>y</sup> an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   |                                   | 6          |                    | 12       | 1 60 | 14   | 13      | 15            | 14   | 16       | 8     | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8     | 1                      | 33                          | 10       | _       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                                                 |                                   | 7<br>Total |                    | 27       | 32   | 26   | 27      | 27            | 25   | 32       | 18    | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.I   | 7                      | 68                          | 10       |         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                   |                                   | I          |                    | /2       | 10   | 0    | 0       | 0             | 0    | 10       | (2)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     | 6                      |                             | 10       |         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                   |                                   | 2          |                    | 1)       | 0    | 0    | 0       | <u>/</u> )    | 0    | 10       | 0     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0     |                        | 77                          | 10       |         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                   |                                   | 3          |                    | 5        | 5    | 4    | u       | 5             | 3    | 14       | 4     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4     | i                      | 15                          | 10       |         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1000                                              |                                   | 4          |                    | 0        | 12   | 0    | 0       | 11            | 10   | 0        | 0     | $\circ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ò     | 3                      | 3                           | 10       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100%                                              |                                   | 5          |                    | 10       | 0    | 13   | 12      | S             | X\   | 17 9     | 10    | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13    | 1                      | 12                          | IV       |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                   |                                   | 6          |                    | 14       | 17   | 0    | 15      | $\mathcal{O}$ |      | 10       | 12    | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14    | 0                      | 19                          | 10       |         | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                   |                                   | 7          |                    | <u> </u> |      |      | Years . |               |      | -        |       | A CONTRACTOR OF THE PARTY OF TH |       |                        | Quantities of the second of |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                   |                                   | Total      |                    | 24       | 34   | 117  | 311     | 32            | 32   | 2 23     | 26    | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31    | 2                      | 89                          | 10       |         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Circled fourth brood not used in statistical analysis.

<sup>7&</sup>lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.




# Laboratory Temperature Chart

QA/QC Batch No: A-08012308

Date Tested: 01/23/08 to 01/29/08

Acceptable Range: 25+/- 1°C



## SUBCONTRACT ORDER

## TestAmerica Irvine

## **IRA2025**

**SENDING LABORATORY:** 

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

**RECEIVING LABORATORY:** 

Aquatic Testing Laboratories-SUB

4350 Transport Street, Unit 107

Ventura, CA 93003

Phone :(805) 650-0546

Fax: (805) 650-0756

Project Location: California

Receipt Temperature: 2 °C

Ice: ( V / N

| Analysis              | Units | Due      | Expires                        | Comments                                       |
|-----------------------|-------|----------|--------------------------------|------------------------------------------------|
| Sample ID: IRA2025-01 | Water |          | Sampled: <b>01/22/08 10:05</b> | ph=8.3, temp=46.8                              |
| Bioassay-7 dy Chrnic  | N/A   | 01/31/08 | 01/23/08 22:05                 | Cerio, EPA/821-R02-013, Sub to Aquatic testing |
| Containers Supplied:  |       |          |                                |                                                |
| 1 gal Poly (M)        |       |          |                                |                                                |

Released By

Released By

Pate/Time

423/00 12/0

Date/Time

Received By

Received By

Date/Time

1-23-08

NPDES - 2500

Page 1 of 1



# REFERENCE TOXICANT DATA

## CERIODAPHNIA CHRONIC BIOASSAY

## EPA METHOD 1002.0 REFERENCE TOXICANT - NaCl



QA/QC Batch No.: RT-080106

Date Tested: 01/06/08 to 01/12/08

#### **TEST SUMMARY**

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*.

Age: <24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 +/- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

Reference Toxicant: Sodium chloride (NaCl).

Endpoints: Survival and Reproduction.

Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 20 ml.

Number of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 6 days.

Statistics: ToxCalc computer program.

#### RESULTS SUMMARY

| Sample Concentration | Percent Surv | vival | Mean Number of<br>Young Per Female |    |  |
|----------------------|--------------|-------|------------------------------------|----|--|
| Control              | 100%         |       | 20.5                               |    |  |
| 0.25 g/l             | 100%         |       | 19.5                               |    |  |
| 0.5 g/l              | 100%         |       | 19.5                               |    |  |
| 1.0 g/l              | 100%         |       | 14.0                               | *  |  |
| 2.0 g/l              | 80%          |       | 3.2                                | *  |  |
| 4.0 g/l              | 0%           | *     | 0                                  | ** |  |

<sup>\*</sup> Statistically significantly less than control at P = 0.05 level

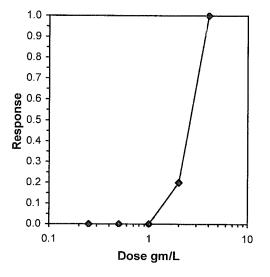
\*\* Reproduction data from concentrations greater than survival NOEC are

excluded from statistical analysis.

#### **CHRONIC TOXICITY**

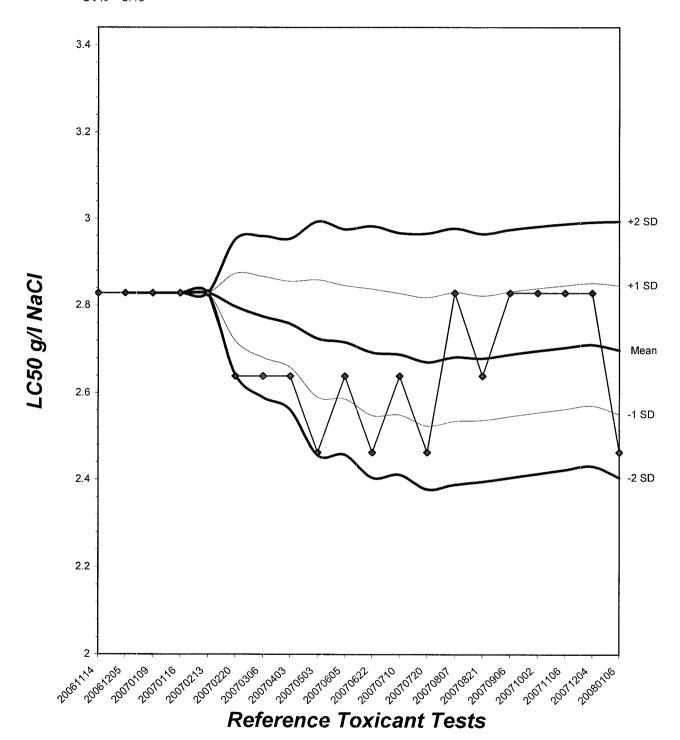
| Survival LC50     | 2.5 g/l  |
|-------------------|----------|
| Reproduction IC25 | 0.88 g/l |

## QA/QC TEST ACCEPTABILITY


| Parameter                                        | Result                                |
|--------------------------------------------------|---------------------------------------|
| Control survival ≥80%                            | Pass (100% Survival)                  |
| ≥15 young per surviving control female           | Pass (20.5 young)                     |
| ≥60% surviving controls had 3 broods             | Pass (90% with 3 broods)              |
| PMSD <47% for reproduction                       | Pass (PMSD = 19.1%)                   |
| Stat. sig. diff. conc. relative difference > 13% | Pass (Stat. sig. diff. conc. = 31.7%) |
| Concentration response relationship acceptable   | Pass (Response curve normal)          |

|              |            |        | Cerioda   | aphnia Su | rvival and | Reprod    | uction Tes | t-Surviv | al Day 6  |               |
|--------------|------------|--------|-----------|-----------|------------|-----------|------------|----------|-----------|---------------|
| Start Date:  | 1/6/2008 1 | 3:00   | Test ID:  | RT-08010  | 6c         |           | Sample ID  | );       | REF-Ref   | Toxicant      |
| End Date:    | 1/12/2008  | 13:00  | Lab ID:   | CAATL-Ad  | quatic Tes | ting Labs | Sample Ty  | /pe:     | NACL-Soc  | dium chloride |
| Sample Date: | 1/6/2008   |        | Protocol: | FWCH-EF   | PA-821-R-  | 02-013    | Test Spec  | ies:     | CD-Cerioo | laphnia dubia |
| Comments:    |            |        |           |           |            |           |            |          |           |               |
| Conc-gm/L    | 1          | 2      | 3         | 4         | 5          | 6         | 7          | 8        | 9         | 10            |
| D-Control    | 1.0000     | 1.0000 | 1.0000    | 1.0000    | 1.0000     | 1.0000    | 1.0000     | 1.0000   | 1.0000    | 1.0000        |
| 0.25         | 1.0000     | 1.0000 | 1.0000    | 1.0000    | 1.0000     | 1.0000    | 1.0000     | 1.0000   | 1.0000    | 1.0000        |
| 0.5          | 1.0000     | 1.0000 | 1.0000    | 1.0000    | 1.0000     | 1.0000    | 1.0000     | 1.0000   | 1.0000    | 1.0000        |
| 1            | 1.0000     | 1.0000 | 1.0000    | 1.0000    | 1.0000     | 1.0000    | 1.0000     | 1.0000   | 1.0000    | 1.0000        |
| 2            | 1.0000     | 1.0000 | 1.0000    | 1.0000    | 1.0000     | 1.0000    | 1.0000     | 1.0000   | 0.0000    | 0.0000        |
| 4            | 0.0000     | 0.0000 | 0.0000    | 0.0000    | 0.0000     | 0.0000    | 0.0000     | 0.0000   | 0.0000    | 0.0000        |

|           |        |        |      | Not  |       |    | Fisher's | 1-Tailed | Number | Total  |
|-----------|--------|--------|------|------|-------|----|----------|----------|--------|--------|
| Conc-gm/L | Mean   | N-Mean | Resp | Resp | Total | N  | Exact P  | Critical | Resp   | Number |
| D-Control | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 |          |          | 0      | 10     |
| 0.25      | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 | 1.0000   | 0.0500   | 0      | 10     |
| 0.5       | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 | 1.0000   | 0.0500   | 0      | 10     |
| 1         | 1.0000 | 1.0000 | 0    | 10   | 10    | 10 | 1.0000   | 0.0500   | 0      | 10     |
| 2         | 0.8000 | 0.8000 | 2    | 8    | 10    | 10 | 0.2368   | 0.0500   | 2      | 10     |
| 4         | 0.0000 | 0.0000 | 10   | 0    | 10    | 10 |          | 0.0000   | 10     | 10     |


| Hypothesis Test (1-tail, 0.05) | NOEC | LOEC | ChV     | TU                                      |  |
|--------------------------------|------|------|---------|-----------------------------------------|--|
| Fisher's Exact Test            | 2    | 4    | 2.82843 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 |  |
| Treatments vs D-Control        |      |      |         |                                         |  |

| • |            |        |        |        | Trimono d On a result. It is |
|---|------------|--------|--------|--------|------------------------------|
|   | Trim Level | EC50   | 95%    | CL     | Trimmed Spearman-Karber      |
| • | 0.0%       | 2.4623 | 2.0663 | 2.9342 |                              |
|   | 5.0%       | 2.5108 | 2.0545 | 3.0683 |                              |
|   | 10.0%      | 2.5519 | 1.9976 | 3.2599 | 1.0 —                        |
|   | 20.0%      | 2.5937 | 2.2616 | 2.9745 | 4                            |
|   | Auto-0.0%  | 2 4623 | 2 0663 | 2 9342 | 0.9                          |

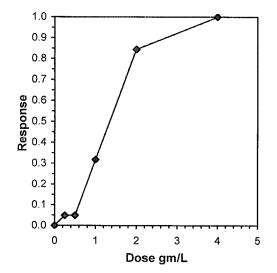


## Ceriodaphnia dubia Chronic Survival Laboratory Control Chart

CV% = 5.46

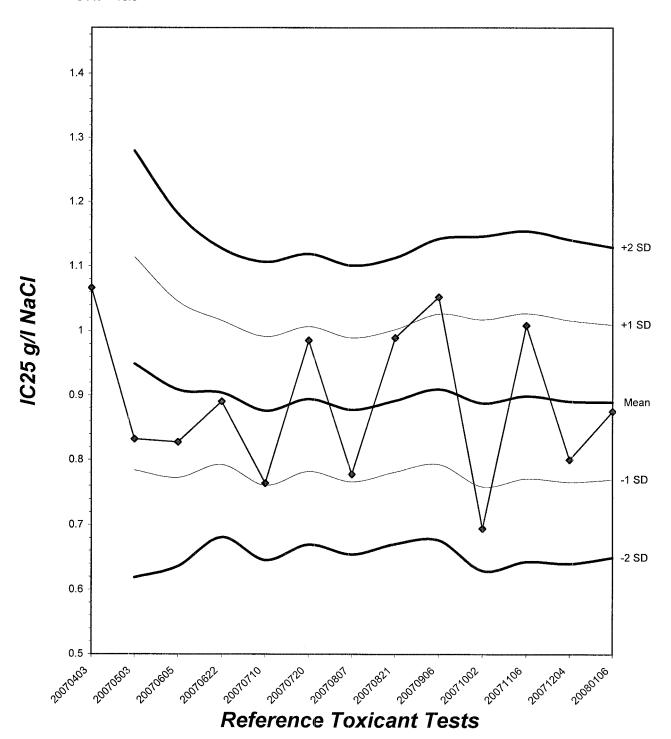


|              |            |        | Ceriod    | aphnia Su | rvival and | Reprodu   | uction Tes | st-Repro | duction   |               |
|--------------|------------|--------|-----------|-----------|------------|-----------|------------|----------|-----------|---------------|
| Start Date:  | 1/6/2008 1 | 3:00   | Test ID:  | RT-08010  | 6c         |           | Sample ID  | );       | REF-Ref   | oxicant       |
| End Date:    | 1/12/2008  | 13:00  | Lab ID:   | CAATL-Ac  | quatic Tes | ting Labs | Sample Ty  | /pe:     | NACL-Soc  | lium chloride |
| Sample Date: | 1/6/2008   |        | Protocol: | FWCH-EF   | A-821-R-   | 02-013    | Test Spec  | ies:     | CD-Cerioo | laphnia dubia |
| Comments:    |            |        |           |           | N. 6       |           |            |          |           |               |
| Conc-gm/L    | 1          | 2      | 3         | 4         | 5          | 6         | 7          | 8        | 9         | 10            |
| D-Control    | 23.000     | 11.000 | 21.000    | 21.000    | 23.000     | 20.000    | 19.000     | 22.000   | 20.000    | 25.000        |
| 0.25         | 12.000     | 24.000 | 19.000    | 22.000    | 9.000      | 20.000    | 21.000     | 21.000   | 22.000    | 25.000        |
| 0.5          | 21.000     | 19.000 | 21.000    | 22.000    | 16.000     | 12.000    | 22.000     | 21.000   | 22.000    | 19.000        |
| 1            | 19.000     | 9.000  | 9.000     | 19.000    | 14.000     | 10.000    | 16.000     | 17.000   | 19.000    | 8.000         |
| 2            | 8.000      | 2.000  | 2.000     | 5.000     | 4.000      | 3.000     | 3.000      | 5.000    | 0.000     | 0.000         |
| 4            | 0.000      | 0.000  | 0.000     | 0.000     | 0.000      | 0.000     | 0.000      | 0.000    | 0.000     | 0.000         |


|           |        | _      |        | Transform: Untra |        |        |    | Rank   | 1-Tailed | isote  | onic   |
|-----------|--------|--------|--------|------------------|--------|--------|----|--------|----------|--------|--------|
| Conc-gm/L | Mean   | N-Mean | Mean   | Min              | Max    | CV%    | N  | Sum    | Critical | Mean   | N-Mean |
| D-Control | 20.500 | 1.0000 | 20.500 | 11.000           | 25.000 | 18.432 | 10 |        |          | 20.500 | 1.0000 |
| 0.25      | 19.500 | 0.9512 | 19.500 | 9.000            | 25.000 | 26.177 | 10 | 102.00 | 76.00    | 19.500 | 0.9512 |
| 0.5       | 19.500 | 0.9512 | 19.500 | 12.000           | 22.000 | 16.617 | 10 | 94.50  | 76.00    | 19.500 | 0.9512 |
| *1        | 14.000 | 0.6829 | 14.000 | 8.000            | 19.000 | 32.819 | 10 | 62.50  | 76.00    | 14.000 | 0.6829 |
| *2        | 3.200  | 0.1561 | 3.200  | 0.000            | 8.000  | 76.263 | 10 | 55.00  | 76.00    | 3.200  | 0.1561 |
| 4         | 0.000  | 0.0000 | 0.000  | 0.000            | 0.000  | 0.000  | 10 |        |          | 0.000  | 0.0000 |

| Auxiliary Tests                     |              |            |                | *************************************** | Statistic                               | Critical | Skew                                                                                                          | Kurt    |
|-------------------------------------|--------------|------------|----------------|-----------------------------------------|-----------------------------------------|----------|---------------------------------------------------------------------------------------------------------------|---------|
| Shapiro-Wilk's Test indicates nor   | n-normal dis | stribution | $(p \le 0.05)$ |                                         | 0.91281                                 | 0.947    | -0.9793                                                                                                       | 0.67912 |
| Bartlett's Test indicates equal va- | riances (p = | 0.25)      |                |                                         | 5.39                                    | 13.2767  |                                                                                                               |         |
| Hypothesis Test (1-tail, 0.05)      | NOEC         | LOEC       | ChV            | TU                                      | , , , , , , , , , , , , , , , , , , , , |          | 7 - 1844 - January 1844 - 1844 - 1844 - 1844 - 1844 - 1844 - 1844 - 1844 - 1844 - 1844 - 1844 - 1844 - 1844 - |         |
| Steel's Many-One Rank Test          | 0.5          | 1          | 0.70711        |                                         |                                         |          |                                                                                                               |         |
| The above and a see D. On of sel    |              |            |                |                                         |                                         |          |                                                                                                               |         |

Treatments vs D-Control


| Linear Interpolation (200 Resamp | ibiesi |
|----------------------------------|--------|
|----------------------------------|--------|

| Point | gm/L   | SD     | 95%    | CL     | Skew    |
|-------|--------|--------|--------|--------|---------|
| IC05  | 0.5023 | 0.1876 | 0.0809 | 0.6178 | -0.0659 |
| IC10  | 0.5955 | 0.1768 | 0.1617 | 0.7497 | -0.5184 |
| IC15  | 0.6886 | 0.1424 | 0.2426 | 0.9253 | -0.5389 |
| IC20  | 0.7818 | 0.1259 | 0.4995 | 1.0352 | 0.2728  |
| IC25  | 0.8750 | 0.1224 | 0.6413 | 1.1094 | 0.3153  |
| IC40  | 1.1574 | 0.1139 | 0.9216 | 1.3331 | -0.0890 |
| IC50  | 1.3472 | 0.0972 | 1.1197 | 1.4847 | -0.4227 |



# Ceriodaphnia dubia Chronic Reproduction Laboratory Control Chart

CV% = 13.5



## CERIODAPHNIA DUBIA CHRONIC BIOASSAY

## Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet



QA/QC No.: RT-080106

Start Date: 01/06/2008

|          |       |    |          | Nu    | ımbeı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r of Y | oung          | Produ         | uced          |             |               | Total                     | No.            | Analyst  |
|----------|-------|----|----------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|---------------|---------------|-------------|---------------|---------------------------|----------------|----------|
| Sample   | Day   | A  | В        | С     | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E      | F             | G             | Н             | I           | J             | Live<br>Young             | Live<br>Adults | Initials |
|          | 1     | 0  | 0        | 0     | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0      | 0             | $\mathcal{O}$ | 0             | 0           | $\bigcirc$    | 0                         | 10             | 2        |
|          | 2     | 0  | 0        | 0     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0      | C             | 0             | C             | 0           | C             | C                         | 10             | 2        |
|          | 3     | 0  | 0        | 2     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0      | 0             | 3             | C             | 3           | 0             | 8                         | 10             | 2        |
| G ( 1    | 4     | 4  | 3        | 0     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3      | 2             | 0             | 2             | 0           | 3             | 21                        | 10             | In       |
| Control  | 5     | 9  | 8        | フ     | フ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6      | フ             | 6             | 2             | 6           | 7             | 70                        | 10             | M        |
|          | 6     | 10 | 0        | 12    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14     | 15            | 10            | 13            | 11          | کا            | 106                       | 10             |          |
|          | 7     | _  | gagerer. | -auge | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | *****         | ggata.        |               | -           | -             |                           |                |          |
|          | Total | 23 | 11       | 21    | ગ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 73     | 20            | 19            | 22            | 20          | 35            | 205                       | 10             | h        |
|          | 1     | 0  | 0        | 0     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0      | 0             | 0             | 0             | $\Diamond$  | 0             | 0                         | 10             |          |
|          | 2     | 0  | 0        | 0     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0      | 0             | 0             | 0             | 0           | 0             | 0                         | 10             |          |
|          | 3     | 0  | 3        | 0     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0      | ユ             | $\cdot C$     | $\mathcal{C}$ | 7           | $\mathcal{C}$ | (1                        | 10             | In       |
| 0.25 -/1 | 4     | Ч  | 0        | 2     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3      | 6             | 4             | 2             | 0           | 3             | 24                        | 10             | h        |
| 0.25 g/l | 5     | 8  | 8        | フ     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6      | 0             | フ             | 6             | 7           | 3             | 62                        | 10             |          |
|          | 6     | 0  | B        | (D    | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0      | 12            | 10            | 13            | 12          | 14            | 98                        | 10             |          |
|          | 7     |    |          |       | and the same of th | -promo | 1             |               | sylliative.   | Salar Maria |               |                           |                |          |
|          | Total | 12 | 24       | 19    | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9      | 20            | 21            | 21            | ZZ          | 25            | 195                       | 10             | 9        |
|          | 1     | 0  | 0        | 0     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0      | $\mathcal{O}$ | 0             | 0             | 0           | 0             | 0                         | 10             | A        |
|          | 2     | 0  | 0        | 0     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0      | $\bigcirc$    | $\bigcirc$    | 0             | 0           | 0             | 0                         | 10             | h        |
|          | 3     | 2  | 0        | 2     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0      | $\subset$     | 3             | `ک            | -0          | 0             | $\alpha$                  | 10             | h        |
| 0.5 ~/1  | 4     | 0  | 3        | 0     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4      | 3             |               | 0             | 3           | 3             | 19                        | 10             | 1/1      |
| 0.5 g/l  | 5     | 9  | 6        | 7     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0      | 9             | 8             | 7             | フ           | 6             | 66                        | 10             |          |
|          | 6     | 10 | 10       | 12    | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12     | 0             | 11            | 12            | 12          | 10            | 101                       | 10             | 6        |
|          | 7     |    | ~        |       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |               |               |               | _           |               | Col-Management (Colombia) |                |          |
|          | Total | 21 | 19       | 21    | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16     | 12            | 22            | 21            | 22          | 19            | 195                       | 10             | 1        |

Circled fourth brood not used in statistical analysis.

<sup>7&</sup>lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

## CERIODAPHNIA DUBIA CHRONIC BIOASSAY

## Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet



QA/QC No.: RT-080106

Start Date: 01/06/2008

|         |       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nu        | ımbe          | r of Y      | oung                                    | Produ        | ced       |            |                      | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No.                                     | Analyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------|-------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|-------------|-----------------------------------------|--------------|-----------|------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample  | Day   | A                                       | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C         | D             | E           | F                                       | G            | н         | I          | J                    | Live<br>Young                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Live<br>Adults                          | Initials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ,       | 1     | 0                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0         | 0             | 0           | 0                                       | 0            | 0         | 0          | 0                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                      | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | 2     | 0                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0         | 0             | 0           | 0                                       | 0            | 0         | 0          | $\mathcal{C}$        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | 3     | 0                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0         | 0             | 0           | 3                                       | 0            | 0         | 2          | 0                    | _5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.0 ~/1 | 4     | 3                                       | ~2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2         | 3             | 0           | 0                                       | 3            | 2         | 0          | 2                    | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.0 g/l | 5     | 5                                       | Ņ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | >         | 4             | 5           | 7                                       | _            | Ч         | 7          | ص                    | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                      | le le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | 6     | 1(                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0         | 12            | 9           | 0                                       | 8            | 11        | 10         | 0                    | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | 7 – – |                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | er 🗪      |               | - American  |                                         | Constitution | 4         |            | 1 f () <del>()</del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | Total | 19                                      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9         | 19            | 14          | 10                                      | 16           | 17        | 19         | 8                    | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | 1     | 0                                       | O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\sim$    | 0             | 0           | 0                                       | 0            | 0         | X          | 0                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                                       | h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | 2     | 0                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0         | 0             | 0           | 0                                       | 0            | 0         |            | 0                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | 3     | O                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\circ$   | 0             | 0           | 0                                       | 0            | 0         | *          | 0                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20 4    | 4     | 2                                       | $\circ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 又         | 3             | 0           | 0                                       | 0            | 2         |            | 0                    | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.0 g/l | 5     | 3                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0         | 2             | 2           | 3                                       | 3            | 0         | -          | 0                    | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | 6     | 3                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0        | 0             | 2           | O                                       | 0            | 3         | -          | X                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | 7     | _                                       | - American                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |               | V.          | *Total angles in a second               |              | _         | cptomote   | Carren               | a constant of the constant of | *************************************** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | Total | 8                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2         | 5             | 4           | 3                                       | 3            | 5         | 0          | 0                    | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | 1     | X                                       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X         | $\times$      | X           | 入                                       | ×            | X         | $\nearrow$ | 人                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | 2     | _                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Apparature.   |             |                                         |              |           | 4000-      |                      | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | 3     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _مندس     | (             |             | -                                       | _            |           | 7          | -                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ¥*************************************  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.0 "   | 4     |                                         | galleng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , parting | )             |             | _                                       | 4.00         | Quantum,  |            | ,                    | Marian Maria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.0 g/l | 5     | *************************************** | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·         | -             | opplettern. | *************************************** | (            | dan.      | ~          | Shall water          | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | production.                             | g allemantes and the same of t |
|         | 6     | gallerio (mana)                         | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | -             | -           |                                         | <i>~</i>     | Yann.     | 1          | ,                    | parameter .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | grander .                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | 7     |                                         | THE STATE OF THE S |           |               | -           |                                         | _            | , gamenia | Comme      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>Q-43-</b>                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | Total | 0                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0         | $\mathcal{O}$ | 0           | C                                       | $\circ$      | 0         | 0          | 0                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>C</i> >                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Circled fourth brood not used in statistical analysis.

<sup>7&</sup>lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

## CERIODAPHNIA DUBIA CHRONIC BIOASSAY

## Reference Toxicant - NaCl Water Chemistries Raw Data Sheet

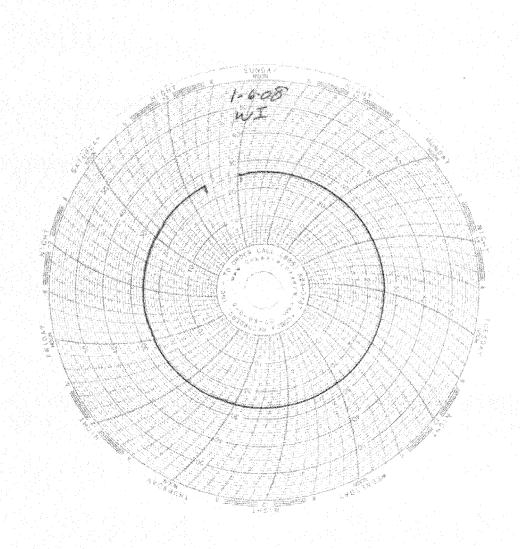


| QA/QC No  | o.: RT-08 | 80106   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                         | Start                | Date: (        | )1/06/20             | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------|-----------|---------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|-------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------|----------------------|----------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |           | DA      | Y 1   | DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Y 2          | DA        | Y 3   | DA                       | Y 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DA                                     | Y 5                                     | DA                   | Y 6            | DA                   | Y 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           |           | Initial | Final | Initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Final        | Initial   | Final | Initial                  | Final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Initial                                | Final                                   | Initial              | Final          | Initial              | Final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Analyst I | nitials:  | n       | 1     | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1            | 1         | 1     | 1                        | 2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                      | 2                                       | <i></i>              | - Ch           |                      | No. of Street, or other Persons, or other Person |
| Time of R | eadings:  | (30)    | 1330  | 1330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13W          | 1300      | 1230  | 1270                     | 1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1300                                   | 1300                                    | 130                  | 1200           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | DO        | 7-6     | 7.2   | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.7          | 7.4       | 76    | 24                       | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8,2                                    | 7-8                                     | 7.9                  | フン             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Control   | pН        | 74      | 74    | 7-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.3          | 7.3       | 7.2   | 7.2                      | 7-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.5                                    | 7-6                                     | 7-9                  | 7.6            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | Temp      | 243     | 25-1  | 25.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24.8         | 24.1      | 24.9  | 249                      | 25-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 244                                    | 25.0                                    | 246                  | 25-1           |                      | and the same of th |
|           | DO        | 7.5     | 7-3   | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.5          | 7-5       | 7-7   | 7-3                      | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8,2                                    | 2.8                                     | 7-9                  | 7.7            | ng nggaggangaharrass |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.25 g/l  | рН        | 75      | 7.3   | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74           | 7.0       | 7-2   | 2.3                      | 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26                                     | 7-5                                     | 76                   | 7.7            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | Temp      | 244     | 252   | 253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 249          | 242       | 24.5  | 24.7                     | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24.4                                   | 25-1                                    | 24,6                 | 29-1           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | DO        | 24      | 7.2   | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.6          | 7.11      | 7.5   | 7-4                      | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.5                                    | 7-6                                     | 8.0                  | 78             | spanner.             | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.5 g/l   | рН        | 7.5     | 23    | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.4          | 7.4       | 7.2   | 7-3                      | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.6                                    | 25                                      | 7-2                  | 2-7            | ,                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | Temp      | 243     | 251   | 25.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 249          | 24.1      | 25.2  | 246                      | 24.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 244                                    | 249                                     | 24.4                 | 249            | -                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | DO        | 7.5     | 22    | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ).)          | 7.3       | 7.8   | 24                       | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8, d                                   | 70                                      | 7-7                  | 7-7            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.0 g/l   | pН        | 7.5     | 7.3   | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7-5          | 7.4       | 7.2   | 7-3                      | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70                                     | >-l                                     | 7.4                  | 7-6            | <u>`</u>             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | Temp      | 244     | 25.2  | 25-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24.7         | 24.2      | 25.2  | 24.6                     | 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24.4                                   | 249                                     | 24.6                 | 250            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | DO        | 7.4     | 24    | 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.5          | 74        | 28    | 22                       | 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.2                                    | 7-6                                     | 76                   | 7.7            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.0 g/l   | pН        | 7.5     | 7.4   | 7-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.6          | 7.4       | 7.3   | 72                       | 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75                                     | 7-6                                     | 29                   | 7-6            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | Temp      | 245     | 25-1  | 24-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 246          | 24-2      | 253   | 24.8                     | 25.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24-4                                   | 248                                     | 24.6                 | 25/            |                      | $\overline{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|           | DO        | 7-5     | 7.8   | (tanapatanana)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7450au,      | Nationer. |       | 47.MERCHANNA             | Manufacture (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        | Comment.                                | Manage of the second | - particular - | - American           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4.0 g/l   | рН        | 7.6     | 7-8   | Walana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4000000      |           |       |                          | and the latest termination of the latest ter | Перборина                              | yamana                                  | commerce.            | -              | ***                  | `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           | Temp      | 243     | 24.6  | (Sample of the Control of the Contro | - Caracanana | ,Nimapa-  | 2000  | - Allegania and a second | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ************************************** | *************************************** | gast.                | y selection    |                      | gendere,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Dissolved Oxygen (DO) readings are in mg/l O<sub>2</sub>; Temperature (Temp) readings are in °C.

| Adam                               |       | Control |       | High Concentration |       |       |  |
|------------------------------------|-------|---------|-------|--------------------|-------|-------|--|
| Additional Parameters              | Day 1 | Day 3   | Day 5 | Day 1              | Day 3 | Day 5 |  |
| Conductivity (μS)                  | 350   | 348     | 305   | 6400               | 3100  | 3210  |  |
| Alkalinity (mg/l CaCO3)            | 66    | 65      | 63    | 65                 | 66    | 64    |  |
| Hardness (mg/l CaCO <sub>3</sub> ) | 98    | 9)      | 98    | 98                 | 9)    | 98    |  |

| Source of Neonates |    |    |    |     |    |    |    |     |    |      |  |  |  |
|--------------------|----|----|----|-----|----|----|----|-----|----|------|--|--|--|
| Replicate:         | A  | В  | С  | D   | Е  | F  | G  | Н   | ı  | J    |  |  |  |
| Brood ID:          | 23 | įβ | 30 | 2-6 | 2A | 3D | 38 | 26/ | 36 | 7-60 |  |  |  |




# Laboratory Temperature Chart

*QA/QC Batch No: RT-080106* 

Date Tested: 01/06/08 to 01/12/08

Acceptable Range: 25+/- 1°C





February 22, 2008

Mr. Joseph Doak Test America, Inc. 17461 Derian Avenue, Suite 100 Irvine, CA 92614

Reference: Eberline Services NELAP Cert #01120CA

Test America Project Nos. IRA1233, IRA2025, IRA2352, IRA2350,

IRA2349, IRA2156

Eberline Services Reports R801067-8681, R801142-8682, R801161-8683

R801162-8684, R801163-8685, R801164-8686

Dear Mr. Doak:

Enclosed are results from the analyses of six water samples. One sample was received on January 16, one on January 24, three on January 26, and one on January 28, 2008. The samples were analyzed according to the accompanying Test America Subcontract Order Forms, the requested analyses were: gross alpha/gross beta (EPA 900.0), tritium (H-3, EPA906.0), Sr-90 (EPA905.0), Ra-226 (EPA903.1), Ra-228 (EPA 904.0), total uranium (ASTM D-5174), and gamma spectroscopy (EPA901.1, K-40 and Cs-137 only). Batch quality control samples consisted of LCS's, blank analyses, duplicate analyses, and matrix spike analyses (gross alpha/gross beta, H-3, Ra-226, Total-U only). All QC sample results were within the limits defined in Eberline Services Quality Control Procedures Manual.

Please call me if you have any questions concerning this report.

Regards,

Melissa Mannion

Senior Program Manager

Melen Marmon

MCM/njv

Enclosure: Reports/CoC's

Invoices

## Eberline Services

## ANALYSIS RESULTS

 SDG
 8682
 Client
 TA IRVINE

 Work Order
 R801142-01
 Contract
 PROJECT# IRA2025

 Received Date
 01/24/08
 Matrix
 WATER

| Client Sample ID | Lab<br>Sample ID | Collected Analyze | d <u>Nuclide</u> | Results ± 20      | <u>Units</u> | MDA   |
|------------------|------------------|-------------------|------------------|-------------------|--------------|-------|
| IRA2025-01       | 8682-001         | 01/22/08 02/06/0  | 8 GrossAlpha     | 2.52 ± 2.0        | pCi/L        | 2.4   |
|                  |                  | 02/06/0           | 8 Gross Beta     | $42.3 \pm 2.4$    | pCi/L        | 2.4   |
|                  |                  | 02/04/0           | 8 Ra-228         | $0.145 \pm 0.17$  | pCi/L        | 0.44  |
|                  |                  | 02/05/0           | 8 K-40 (G)       | 36.0 ± 19         | pCi/L        | 13    |
|                  |                  | 02/05/0           | 8 Cs-137 (G)     | U                 | pCi/L        | 1.1   |
|                  |                  | 02/15/0           | 8 H-3            | -62.4 ± 94        | pCi/L        | 160   |
|                  |                  | 02/11/0           | 8 Ra-226         | $-0.149 \pm 0.46$ | pCi/L        | 0.96  |
|                  |                  | 02/07/0           | 8 Sr-90          | $0.032 \pm 0.30$  | pCi/L        | 0.58  |
|                  |                  | 02/19/0           | 8 Total U        | $2.75 \pm 0.30$   | pCi/L        | 0.022 |

Certified by Yy Report Date 02/22/08 Page 1

### Eberline Services

## QC RESULTS

 SDG
 8682
 Client
 TA IRVINE

 Work Order
 R801142-01
 Contract
 PR0JECT# IRA2025

 Received Date
 01/24/08
 Matrix
 WATER

| Lab       |            |                    |          |              |         |                     |
|-----------|------------|--------------------|----------|--------------|---------|---------------------|
| Sample ID | Nuclide    | Results            | Units    | Amount Added | MDA     | <u>Evaluation</u>   |
|           |            |                    |          |              |         |                     |
|           |            |                    |          |              |         |                     |
| LCS       |            |                    |          |              |         |                     |
| 8682-002  | GrossAlpha | $10.6 \pm 0.84$    | pCi/Smpl | 10.1         | 0.29    | 105% recovery       |
|           | Gross Beta | $9.49 \pm 0.38$    | pCi/Smpl | 9.39         | 0.29    | 101% recovery       |
|           | Ra-228     | $8.69 \pm 0.54$    | pCi/Smpl | 8.73         | 0.75    | 100% recovery       |
|           | Co-60 (G)  | 223 ± 11           | pCi/Smpl | 226          | 7.0     | 99% recovery        |
|           | Cs-137 (G) | 253 ± 11           | pCi/Smpl | 236          | 8.1     | 107% recovery       |
|           | Am-241 (G) | $215 \pm 37$       | pCi/Smpl | 252          | 47      | 85% recovery        |
|           | H-3        | 228 ± 14           | pCi/Smpl | 240          | 16      | 95% recovery        |
|           | Ra-226     | 5.92 ± 0.27        | pCi/Smpl | 5.58         | 0.085   | 106% recovery       |
|           | Sr-90      | 9.45 ± 0.73        | pCi/Smpl | 9.40         | 0.32    | 101% recovery       |
|           | Total U    | $1.06 \pm 0.12$    | pCi/Smpl | 1.13         | 0.004   | 94% recovery        |
|           |            |                    |          |              |         |                     |
| BLANK     |            |                    |          |              |         |                     |
| 8682-003  | GrossAlpha | $0.006 \pm 0.13$   | pCi/Smpl | NA           | 0.25    | <mda< td=""></mda<> |
|           | Gross Beta | $-0.090 \pm 0.27$  | pCi/Smpl | NA           | 0.44    | <mda< td=""></mda<> |
|           | Ra-228     | -0.089 ± 0.33      | pCi/Smpl | NA           | 0.78    | <mda< td=""></mda<> |
|           | K-40 (G)   | U                  | pCi/Smpl | NA           | 190     | <mda< td=""></mda<> |
|           | Cs-137 (G) | U                  | pCi/Smpl | NA           | 7.4     | <mda< td=""></mda<> |
|           | H-3        | -4.88 ± 9.0        | pCi/Smpl | NA           | 15      | <mda< td=""></mda<> |
|           | Ra-226     | -0.014 ± 0.026     | pCi/Smpl | NA           | 0.071   | <mda< td=""></mda<> |
|           | Sr-90      | $0.078 \pm 0.24$   | pCi/Smpl | NA           | 0.54    | <mda< td=""></mda<> |
|           | Total U    | 0.00E 00 ± 1.9E-04 | pCi/Smpl | NA           | 4.4E-04 | <mda< td=""></mda<> |
|           |            |                    |          |              |         |                     |

|             | DUPLICATES |              |              |           | ORIGINALS        |      |     |       |             |
|-------------|------------|--------------|--------------|-----------|------------------|------|-----|-------|-------------|
|             |            |              |              |           |                  |      |     | 3σ    |             |
| Sample ID 1 | Nuclide    | Results ± 20 | σ <u>MDA</u> | Sample ID | Results ± 20     | MDA  | RPD | (Tot) | <u>Eval</u> |
| 8682-004    | GrossAlpha | 3.13 ± 2.1   | 2.2          | 8682-001  | $2.52 \pm 2.0$   | 2.4  | 22  | 160   | satis.      |
|             | Gross Beta | 42.1 ± 2.3   | 2.1          |           | $42.3 \pm 2.4$   | 2.4  | 0   | 44    | satis.      |
| F           | Ra-228     | 0.070 ± 0.1  | 5 0.42       |           | $0.145 \pm 0.17$ | 0.44 | -   | 0     | satis.      |

Certified by 70 PREPORT Date 02/22/08

Page 2

## Eberline Services

| SDG           | 8682  |               |       | Client   | TA IRV  | INE      |     |     |        |
|---------------|-------|---------------|-------|----------|---------|----------|-----|-----|--------|
| Work Order    | R8011 | 42-01         |       | Contract | PROJEC' | T# IRA20 | 25  |     |        |
| Received Date | 01/24 | /08           |       | Matrix   | WATER   |          |     |     |        |
| K-40          | (G)   | 42.6 ± 18     | 9.6   | 36.0 ±   | 19      | 13       | 17  | 102 | satis. |
| Cs-137        | (G)   | Ū             | 0.92  | Ū        |         | 1.1      | *** | 0   | satis. |
| Tl-208        | (G)   | U             | 1.2   | Ū        |         |          | 200 | 302 | satis. |
| Pb-210        | (G)   | U             | 230   | U        |         |          | 200 | 302 | satis. |
| Bi-212        | (G)   | U             | 7.7   | U        |         |          | 200 | 302 | satis. |
| Pb-212        | (G)   | Ū             | 1.6   | Ū        |         |          | 200 | 302 | satis. |
| Bi-214        | (G)   | U             | 2.1   | ט        |         |          | 200 | 301 | satis. |
| Pb-214        | (G)   | U             | 2.2   | ט        |         |          | 200 | 302 | satis. |
| Ra-226        | (G)   | U             | 18    | U        |         |          | 200 | 302 | satis. |
| Ac-228        | (G)   | U             | 5.0   | U        |         |          | 200 | 302 | satis. |
| Th-234        | (G)   | U             | 31    | ט        |         |          | 200 | 302 | satis. |
| U-235         | (G)   | U             | 6.5   | U        |         |          | 200 | 302 | satis. |
| U-238         | (G)   | U             | 130   | Ū        |         |          | 200 | 302 | satis. |
| Am-241        | (G)   | U             | 6.7   | U        |         |          | 200 | 302 | satis. |
| H-3           |       | -73.7 ± 92    | 160   | -62.4 ±  | 94      | 160      | No. | 0   | satis. |
| Ra-226        |       | 0.111 ± 0.44  | 0.80  | -0.149 ± | 0.46    | 0.96     | -   | 0   | satis. |
| Sr-90         |       | -0.108 ± 0.44 | 1.1   | 0.032 ±  | 0.30    | 0.58     | -   | 0   | satis. |
| Total (       | J     | 2.88 ± 0.32   | 0.022 | 2.75 ±   | 0.30    | 0.022    | 5   | 30  | satis. |

|           | SPIKED SAMPLE  |               |            | ORI       | IGINAL SAMPLE     |       |       |       |
|-----------|----------------|---------------|------------|-----------|-------------------|-------|-------|-------|
|           |                |               |            |           |                   |       |       |       |
| Sample ID | <u>Nuclide</u> | Results ± 20  | <u>MDA</u> | Sample ID | Results ± 20      | MDA   | Added | %Recv |
| 8682-005  | GrossAlpha     | $225 \pm 12$  | 2.5        | 8682-001  | $2.52 \pm 2.0$    | 2.4   | 163   | 136   |
|           | Gross Beta     | 192 ± 4.5     | 2.4        |           | $42.3 \pm 2.4$    | 2.4   | 145   | 103   |
|           | H-3            | 15800 ± 310   | 160        |           | $-62.4 \pm 94$    | 160   | 16000 | 99    |
|           | Ra-226         | $124 \pm 4.7$ | 0.94       |           | $-0.149 \pm 0.46$ | 0.96  | 112   | 111   |
|           | Total U        | 120 ± 15      | 2.2        |           | $2.75 \pm 0.30$   | 0.022 | 113   | 104   |

# TestAmerica Irvine IRA2025

## SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

### RECEIVING LABORATORY:

Eberline Services - SUB 2030 Wright Avenue Richmond, CA 94804 Phone :(510) 235-2633 Fax: (510) 235-0438

Project Location: California

 $^{\circ}$ C

Receipt Temperature: 4

Ice: (Y)/ N

| Analysis                  | Units     | Due      | Expires                 | Comments                              |
|---------------------------|-----------|----------|-------------------------|---------------------------------------|
| Sample ID: IRA2025-01     | Water     |          | Sampled: 01/22/08 10:05 | ph=8.3, temp=46.8                     |
| Gamma Spec-O              | mg/kg     | 01/31/08 | 01/21/09 10:05          | Boeing, J flags, K-40 and CS-137 only |
| Gross Alpha-O             | pCi/L     | 01/31/08 | 07/20/08 10:05          | Boeing, J flags                       |
| Gross Beta-O              | pCi/L     | 01/31/08 | 07/20/08 10:05          | Boeing, J flags                       |
| Level 4 Data Package - Ou | t N/A     | 01/31/08 | 02/19/08 10:05          |                                       |
| Radium, Combined-O        | pCi/L     | 01/31/08 | 01/21/09 10:05          | Boeing, J flags                       |
| Strontium 90-0            | pCi/L     | 01/31/08 | 01/21/09 10:05          | Boeing, J flags                       |
| Tritium-O                 | pCi/L     | 01/31/08 | 01/21/09 10:05          | Boeing, J flags                       |
| Uranium, Combined-O       | pCi/L     | 01/31/08 | 01/21/09 10:05          | Boeing, J flags                       |
| Containers Supplied:      |           |          |                         |                                       |
|                           | 500 mL Am | ber (L)  |                         |                                       |

Released By Date/Time

Released By

Date/Time

Received By Date/Time

ived By Date/Time

Page 1 of 1

09:15



January 29, 2008

Vista Project I.D.: 30191

Mr. Joseph Doak Test America-Irvine, CA 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Mr. Doak,

Enclosed are the results for the one aqueous sample received at Vista Analytical Laboratory on January 24, 2008 under your Project Name "IRA2025". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A rush turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Vista's current certifications, and copies of the raw data (if requested).

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha M. Maier Laboratory Director



Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.



# Section I: Sample Inventory Report Date Received: 1/24/2008

<u>Vista Lab. ID</u> <u>Client Sample ID</u>

30191-001 IRA2025-01

NPDES - 2517 Page 2 of 249

# **SECTION II**

Project 30191 NPDES - 2518
Page 3 of 249

| Method Blanl                 | k       |        |                 |        |            |           |                           |                    |         | EPA Met              | thod 1613  |
|------------------------------|---------|--------|-----------------|--------|------------|-----------|---------------------------|--------------------|---------|----------------------|------------|
| Matrix:                      | Aqueous |        | QC Batch No.:   | 9      | 9906       | Lab       | Sample:                   | 0-MB001            |         |                      |            |
| Sample Size:                 | 1.00 L  |        | Date Extracted: | 2      | 27-Jan-08  | Date      | Analyzed DB-5:            | 29-Jan-08          | Date An | alyzed DB-225:       | NA         |
|                              |         |        | 9               | h      |            |           |                           |                    |         | d                    |            |
| Analyte                      | Conc. ( | (ug/L) | <b>DL</b> a     | EMPC b | Qualifiers |           | Labeled Standa            | ırd                | %R      | LCL-UCL <sup>d</sup> | Oualifiers |
| 2,3,7,8-TCDD                 |         | ND     | 0.000000647     |        |            | <u>IS</u> | 13C-2,3,7,8-TCI           | DD                 | 86.5    | 25 - 164             |            |
| 1,2,3,7,8-PeCD               | D       | ND     | 0.00000122      |        |            |           | 13C-1,2,3,7,8-Pe          | eCDD               | 79.3    | 25 - 181             |            |
| 1,2,3,4,7,8-HxC              | CDD     | ND     | 0.00000111      |        |            |           | 13C-1,2,3,4,7,8-          | HxCDD              | 88.1    | 32 - 141             |            |
| 1,2,3,6,7,8-HxC              | CDD     | ND     | 0.00000109      |        |            |           | 13C-1,2,3,6,7,8-          | HxCDD              | 86.9    | 28 - 130             |            |
| 1,2,3,7,8,9-HxC              | CDD     | ND     | 0.00000105      |        |            |           | 13C-1,2,3,4,6,7,          | 8-HpCDD            | 91.4    | 23 - 140             |            |
| 1,2,3,4,6,7,8-H <sub>I</sub> | pCDD    | ND     | 0.00000123      |        |            |           | 13C-OCDD                  |                    | 73.6    | 17 - 157             |            |
| OCDD                         |         | ND     | 0.00000681      |        |            |           | 13C-2,3,7,8-TCI           | DF                 | 90.4    | 24 - 169             |            |
| 2,3,7,8-TCDF                 |         | ND     | 0.000000578     |        |            |           | 13C-1,2,3,7,8-Pe          | eCDF               | 76.2    | 24 - 185             |            |
| 1,2,3,7,8-PeCD               | F       | ND     | 0.000000800     |        |            |           | 13C-2,3,4,7,8-Pe          | eCDF               | 77.2    | 21 - 178             |            |
| 2,3,4,7,8-PeCD               | F       | ND     | 0.000000796     |        |            |           | 13C-1,2,3,4,7,8-          | HxCDF              | 80.4    | 26 - 152             |            |
| 1,2,3,4,7,8-HxC              | CDF     | ND     | 0.000000512     |        |            |           | 13C-1,2,3,6,7,8-          | HxCDF              | 82.8    | 26 - 123             |            |
| 1,2,3,6,7,8-HxC              | CDF     | ND     | 0.000000533     |        |            |           | 13C-2,3,4,6,7,8-          | HxCDF              | 82.6    | 28 - 136             |            |
| 2,3,4,6,7,8-HxC              | CDF     | ND     | 0.000000583     |        |            |           | 13C-1,2,3,7,8,9-          | HxCDF              | 91.5    | 29 - 147             |            |
| 1,2,3,7,8,9-HxC              | CDF     | ND     | 0.000000671     |        |            |           | 13C-1,2,3,4,6,7,          | 8-HpCDF            | 81.2    | 28 - 143             |            |
| 1,2,3,4,6,7,8-H <sub>1</sub> | pCDF    | ND     | 0.000000428     |        |            |           | 13C-1,2,3,4,7,8,9         | 9-HpCDF            | 85.2    | 26 - 138             |            |
| 1,2,3,4,7,8,9-H <sub>1</sub> | pCDF    | ND     | 0.000000460     |        |            |           | 13C-OCDF                  |                    | 78.4    | 17 - 157             |            |
| OCDF                         |         | ND     | 0.00000140      |        |            | CRS       | 37Cl-2,3,7,8-TC           | DD                 | 84.0    | 35 - 197             |            |
| Totals                       |         |        |                 |        |            | Foot      | tnotes                    |                    |         |                      |            |
| Total TCDD                   |         | ND     | 0.00000122      |        |            | a. Sar    | nple specific estimated   | detection limit.   |         |                      |            |
| Total PeCDD                  |         | ND     | 0.00000195      |        |            | b. Est    | imated maximum possi      | ble concentration. |         |                      |            |
| Total HxCDD                  |         | ND     | 0.00000207      |        |            | c. Me     | thod detection limit.     |                    |         |                      |            |
| Total HpCDD                  |         | ND     | 0.00000302      |        |            | d. Lov    | wer control limit - upper | r control limit.   |         |                      |            |
| Total TCDF                   |         | ND     | 0.000000578     |        |            |           |                           |                    |         |                      |            |
| Total PeCDF                  |         | ND     | 0.00000209      |        |            |           |                           |                    |         |                      |            |
| Total HxCDF                  |         | ND     | 0.000000573     |        |            |           |                           |                    |         |                      |            |
| Total HpCDF                  |         | ND     | 0.000000443     |        |            |           |                           |                    |         |                      |            |

Analyst: MAS William J. Luksemburg 29-Jan-2008 14:46

| <b>OPR Results</b> |         |             |                 |            |                               | EP.        | A Method 1  | 1613      |
|--------------------|---------|-------------|-----------------|------------|-------------------------------|------------|-------------|-----------|
| Matrix:            | Aqueous |             | QC Batch No.:   | 9906       | Lab Sample: 0-OPR001          |            |             |           |
| Sample Size:       | 1.00 L  |             | Date Extracted: | 27-Jan-08  | Date Analyzed DB-5: 29-Jan-08 | Date Analy | zed DB-225: | NA        |
| Analyte            |         | Spike Conc. | Conc. (ng/mL)   | OPR Limits | Labeled Standard              | %R         | LCL-UCL     | Qualifier |
| 2,3,7,8-TCDD       | )       | 10.0        | 9.57            | 6.7 - 15.8 | <u>IS</u> 13C-2,3,7,8-TCDD    | 89.2       | 25 - 164    |           |
| 1,2,3,7,8-PeC      | DD      | 50.0        | 48.6            | 35 - 71    | 13C-1,2,3,7,8-PeCDD           | 80.6       | 25 - 181    |           |
| 1,2,3,4,7,8-Hz     | xCDD    | 50.0        | 45.8            | 35 - 82    | 13C-1,2,3,4,7,8-HxCDD         | 89.6       | 32 - 141    |           |
| 1,2,3,6,7,8-Hz     | xCDD    | 50.0        | 46.7            | 38 - 67    | 13C-1,2,3,6,7,8-HxCDD         | 87.3       | 28 - 130    |           |
| 1,2,3,7,8,9-Hz     | xCDD    | 50.0        | 47.0            | 32 - 81    | 13C-1,2,3,4,6,7,8-HpCDD       | 91.5       | 23 - 140    |           |
| 1,2,3,4,6,7,8-1    | HpCDD   | 50.0        | 45.3            | 35 - 70    | 13C-OCDD                      | 73.9       | 17 - 157    |           |
| OCDD               |         | 100         | 95.0            | 78 - 144   | 13C-2,3,7,8-TCDF              | 93.6       | 24 - 169    |           |
| 2,3,7,8-TCDF       | 7       | 10.0        | 8.78            | 7.5 - 15.8 | 13C-1,2,3,7,8-PeCDF           | 79.3       | 24 - 185    |           |
| 1,2,3,7,8-PeC      | DF      | 50.0        | 45.0            | 40 - 67    | 13C-2,3,4,7,8-PeCDF           | 78.5       | 21 - 178    |           |
| 2,3,4,7,8-PeC      | DF      | 50.0        | 45.9            | 34 - 80    | 13C-1,2,3,4,7,8-HxCDF         | 79.6       | 26 - 152    |           |
| 1,2,3,4,7,8-Hz     | xCDF    | 50.0        | 46.7            | 36 - 67    | 13C-1,2,3,6,7,8-HxCDF         | 82.1       | 26 - 123    |           |
| 1,2,3,6,7,8-Hz     | xCDF    | 50.0        | 46.4            | 42 - 65    | 13C-2,3,4,6,7,8-HxCDF         | 81.7       | 28 - 136    |           |
| 2,3,4,6,7,8-Hz     | xCDF    | 50.0        | 46.5            | 35 - 78    | 13C-1,2,3,7,8,9-HxCDF         | 88.5       | 29 - 147    |           |
| 1,2,3,7,8,9-Hz     | xCDF    | 50.0        | 45.4            | 39 - 65    | 13C-1,2,3,4,6,7,8-HpCDF       | 80.1       | 28 - 143    |           |
| 1,2,3,4,6,7,8-1    | HpCDF   | 50.0        | 45.1            | 41 - 61    | 13C-1,2,3,4,7,8,9-HpCDF       | 86.5       | 26 - 138    |           |
| 1,2,3,4,7,8,9-1    | HpCDF   | 50.0        | 44.9            | 39 - 69    | 13C-OCDF                      | 79.2       | 17 - 157    |           |
| OCDF               |         | 100         | 91.4            | 63 - 170   | <u>CRS</u> 37Cl-2,3,7,8-TCDD  | 82.9       | 35 - 197    |           |

Analyst: MAS William J. Luksemburg 29-Jan-2008 14:46

| Sample ID: IRAZ                     | 2025-01            |           |                          |            |           |                          |                      |         | EPA N                | Method 1613 |
|-------------------------------------|--------------------|-----------|--------------------------|------------|-----------|--------------------------|----------------------|---------|----------------------|-------------|
| Client Data                         |                    |           | Sample Data              |            | Lab       | oratory Data             |                      |         |                      |             |
|                                     | America-Irvine, CA |           | Matrix:                  | Aqueous    | Lab       | Sample:                  | 30191-001            | Date Re | ceived:              | 24-Jan-08   |
| Project: IRA2 Date Collected: 22-Ja | 2025<br>an-08      |           | Sample Size:             | 1.01 L     | QC I      | Batch No.:               | 9906                 | Date Ex | tracted:             | 27-Jan-08   |
| Time Collected: 1005                |                    |           |                          |            | Date      | Analyzed DB-5:           | 29-Jan-08            | Date An | alyzed DB-225:       | NA          |
| Analyte                             | Conc. (ug/L)       | DL a      | <b>EMPC</b> <sup>b</sup> | Qualifiers |           | Labeled Standa           | ard                  | %R      | LCL-UCL <sup>d</sup> | Qualifiers  |
| 2,3,7,8-TCDD                        | ND                 | 0.0000006 | 595                      |            | <u>IS</u> | 13C-2,3,7,8-TCI          | )D                   | 81.8    | 25 - 164             |             |
| 1,2,3,7,8-PeCDD                     | ND                 | 0.0000009 | 970                      |            |           | 13C-1,2,3,7,8-Pe         | eCDD                 | 72.5    | 25 - 181             |             |
| 1,2,3,4,7,8-HxCDD                   | ND                 | 0.0000018 | 38                       |            |           | 13C-1,2,3,4,7,8-         | HxCDD                | 78.9    | 32 - 141             |             |
| 1,2,3,6,7,8-HxCDD                   | ND                 | 0.0000019 | 98                       |            |           | 13C-1,2,3,6,7,8-         | HxCDD                | 77.2    | 28 - 130             |             |
| 1,2,3,7,8,9-HxCDD                   | ND                 | 0.0000018 | 35                       |            |           | 13C-1,2,3,4,6,7,8        | 8-HpCDD              | 82.2    | 23 - 140             |             |
| 1,2,3,4,6,7,8-HpCDD                 | 0.00000458         |           |                          | J          |           | 13C-OCDD                 |                      | 67.4    | 17 - 157             |             |
| OCDD                                | 0.0000309          |           |                          | J          |           | 13C-2,3,7,8-TCI          | OF                   | 84.6    | 24 - 169             |             |
| 2,3,7,8-TCDF                        | ND                 | 0.0000005 | 598                      |            |           | 13C-1,2,3,7,8-Pe         | eCDF                 | 69.1    | 24 - 185             |             |
| 1,2,3,7,8-PeCDF                     | ND                 | 0.0000007 | 712                      |            |           | 13C-2,3,4,7,8-Pe         | eCDF                 | 70.0    | 21 - 178             |             |
| 2,3,4,7,8-PeCDF                     | ND                 | 0.0000006 | 565                      |            |           | 13C-1,2,3,4,7,8-         | HxCDF                | 71.0    | 26 - 152             |             |
| 1,2,3,4,7,8-HxCDF                   | ND                 | 0.0000000 | 375                      |            |           | 13C-1,2,3,6,7,8-         | HxCDF                | 72.9    | 26 - 123             |             |
| 1,2,3,6,7,8-HxCDF                   | ND                 | 0.0000009 | 903                      |            |           | 13C-2,3,4,6,7,8-         | HxCDF                | 72.2    | 28 - 136             |             |
| 2,3,4,6,7,8-HxCDF                   | ND                 | 0.0000009 | 980                      |            |           | 13C-1,2,3,7,8,9-1        | HxCDF                | 75.6    | 29 - 147             |             |
| 1,2,3,7,8,9-HxCDF                   | ND                 | 0.0000012 | 20                       |            |           | 13C-1,2,3,4,6,7,8        | 8-HpCDF              | 69.5    | 28 - 143             |             |
| 1,2,3,4,6,7,8-HpCDF                 | ND                 | 0.0000000 | 365                      |            |           | 13C-1,2,3,4,7,8,9        | 9-HpCDF              | 74.8    | 26 - 138             |             |
| 1,2,3,4,7,8,9-HpCDF                 | ND                 | 0.0000000 | 357                      |            |           | 13C-OCDF                 |                      | 69.8    | 17 - 157             |             |
| OCDF                                | ND                 | 0.0000036 | 52                       |            | CRS       | 37Cl-2,3,7,8-TC          | DD                   | 89.5    | 35 - 197             |             |
| Totals                              |                    |           |                          |            | Foo       | otnotes                  |                      |         |                      |             |
| Total TCDD                          | ND                 | 0.0000018 | 30                       |            | a. Sa     | imple specific estimated | d detection limit.   |         |                      |             |
| Total PeCDD                         | ND                 | 0.0000050 | )1                       |            | b. Es     | stimated maximum pos     | sible concentration. |         |                      |             |
| Total HxCDD                         | ND                 | 0.0000019 | 91                       |            | c. M      | ethod detection limit.   |                      |         |                      |             |
| Total HpCDD                         | 0.00000986         |           |                          |            | d. Lo     | ower control limit - upp | per control limit.   |         |                      |             |
| Total TCDF                          | ND                 | 0.0000009 | 944                      |            |           |                          |                      |         |                      |             |
| Total PeCDF                         | ND                 |           | 0.000000                 | )474       |           |                          |                      |         |                      |             |
| Total HxCDF                         | ND                 | 0.0000009 | 982                      |            |           |                          |                      |         |                      |             |
| Total HpCDF                         | ND                 | 0.0000018 | 30                       |            |           |                          |                      |         |                      |             |

Analyst: William J. Luksemburg 29-Jan-2008 14:46

Project 30191 Page 6 of 249

# **APPENDIX**

Project 30191 NPDES - 2522
Page 7 of 249

# **DATA QUALIFIERS & ABBREVIATIONS**

B This compound was also detected in the method blank.

D Dilution

P The amount reported is the maximum possible concentration due to possible

chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.

I Chemical Interference

J The amount detected is below the Lower Calibration Limit of the instrument.

\* See Cover Letter

**Conc.** Concentration

DL Sample-specific estimated detection limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

**EMPC** Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit – concentrations that correspond to low calibration point

ND Not Detected

**TEQ** Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

# **CERTIFICATIONS**

| Accrediting Authority                       | Certificate Number     |
|---------------------------------------------|------------------------|
| State of Alaska, DEC                        | CA413-02               |
| State of Arizona                            | AZ0639                 |
| State of Arkansas, DEQ                      | 05-013-0               |
| State of Arkansas, DOH                      | Reciprocity through CA |
| State of California – NELAP Primary AA      | 02102CA                |
| State of Colorado                           |                        |
| State of Connecticut                        | PH-0182                |
| State of Florida, DEP                       | E87777                 |
| Commonwealth of Kentucky                    | 90063                  |
| State of Louisiana, Health and Hospitals    | LA050001               |
| State of Louisiana, DEQ                     | 01977                  |
| State of Maine                              | CA0413                 |
| State of Michigan                           | 81178087               |
| State of Mississippi                        | Reciprocity through CA |
| Naval Facilities Engineering Service Center |                        |
| State of Nevada                             | CA413                  |
| State of New Jersey                         | CA003                  |
| State of New Mexico                         | Reciprocity through CA |
| State of New York, DOH                      | 11411                  |
| State of North Carolina                     | 06700                  |
| State of North Dakota, DOH                  | R-078                  |
| State of Oklahoma                           | D9919                  |
| State of Oregon                             | CA200001-002           |
| State of Pennsylvania                       | 68-00490               |
| State of South Carolina                     | 87002001               |
| State of Tennessee                          | 02996                  |
| State of Texas                              | TX247-2005A            |
| U.S. Army Corps of Engineers                |                        |
| State of Utah                               | 9169330940             |
| Commonwealth of Virginia                    | 00013                  |
| State of Washington                         | C1285                  |
| State of Wisconsin                          | 998036160              |
| State of Wyoming                            | 8TMS-Q                 |

#### SUBCONTRACT ORDER

# **TestAmerica Irvine IRA2025**

### **SENDING LABORATORY:**

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Vista Analytical Laboratory- SUB

1104 Windfield Way

El Dorado Hills, CA 95762 Phone: (916) 673-1520

Fax: (916) 673-0106

Project Location: California

Receipt Temperature: 0.1

N Ice?

30191

| Analysis              | Units         | Due      | Expires                        | Comments                                      |   |
|-----------------------|---------------|----------|--------------------------------|-----------------------------------------------|---|
| Sample ID: IRA2025-01 | Water         |          | Sampled: <b>01/22/08 10:05</b> | ph=8.3, temp=46.8                             |   |
| 1613-Dioxin-HR-Alta   | ug/l          | 01/31/08 | 01/29/08 10:05                 | J flags,17 congeners,no<br>TEQ,ug/L,sub=Vista |   |
| Containers Supplied:  |               |          |                                | •                                             |   |
| 1 L Amber (C)         | 1 L Amber (D) |          |                                |                                               | ٠ |

Date/Time

Page 1 of 1 NPDES - 2525 Page 10 of 249

Released By Project 30191

# SAMPLE LOG-IN CHECKLIST



| Vista Project #:                                        | 30            | 191          |              | ······································ | T.           | AT           | 7                   |          | <del></del> |
|---------------------------------------------------------|---------------|--------------|--------------|----------------------------------------|--------------|--------------|---------------------|----------|-------------|
|                                                         | Date/Time     |              | Initials:    |                                        | Loc          | ation:       | WX                  | 2-2      |             |
| Samples Arrival:                                        | 1/24/08       | 0853         | 481          | 3                                      | She          | lf/Rac       | :k: <u>N</u>        | /A       |             |
|                                                         | Date/Time     |              | Initials:    |                                        |              | ation:       |                     | 2-2      |             |
| Logged In:                                              | 1/24/88       | 1348         | B            | B                                      | She          | lf/Rac       | :k: <i><u>}</u></i> | 3-4      |             |
| Delivered By:                                           | FedEx         | UPS          | Cal          | DHL                                    | -            | Har<br>Deliv |                     | Oth      | ıer         |
| Preservation:                                           | lce           | В            | lue Ice      | Dr                                     | y Ice        |              |                     | None     |             |
| Temp °C 💍 ·                                             | . 1           | Time: (      | 7905         |                                        | The          | rmom         | eter IC             | ): IR-   | 1           |
|                                                         |               |              |              |                                        |              |              |                     |          |             |
|                                                         |               |              |              |                                        |              |              | YES                 | NO       | NA          |
| Adequate Sample \                                       | Volume Rece   | ived?        |              |                                        |              |              |                     |          |             |
| Holding Time Acce                                       | ptable?       |              |              |                                        |              |              | V                   |          |             |
| Shipping Container                                      | r(s) Intact?  |              | ·            |                                        |              |              |                     |          |             |
| Shipping Custody S                                      | Seals Intact? |              |              |                                        |              |              | V,                  |          |             |
| Shipping Documen                                        | tation Preser | nt?          |              |                                        |              |              | <b>1</b>            |          |             |
| Airbill                                                 | Trk#          | 79835        | 858 301      | 3                                      |              |              | V ,                 |          |             |
| Sample Container                                        | Intact?       |              |              |                                        |              | -            | V                   |          |             |
| Sample Custody S                                        | eals Intact?  |              |              |                                        |              |              | ,                   | e.       | V           |
| Chain of Custody /                                      | Sample Doci   | umentation P | resent?      |                                        |              |              | V                   |          |             |
| COC Anomaly/San                                         | nple Acceptar | nce Form con | npleted?     |                                        |              |              |                     | <b>V</b> |             |
| If Chlorinated or Dr                                    | inking Water  | Samples, Ac  | ceptable Pre | eservatio                              | n?           |              |                     |          | V           |
| Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> Preservat | ion Documen   | ited?        | coc          |                                        | Sam<br>Conta |              | (                   | None     |             |
| Shipping Container                                      | <b>-</b>      | Vista        | (Client)     | Reta                                   |              | Ret          | urn                 | Disp     | ose         |

Retain

Sample Login 3/2007 rmh NPDES - 2526 Page 11 of 249

Dispose

Comments:

### SUBCONTRACT ORDER

# TestAmerica Irvine **IRA2025**

8012370

**SENDING LABORATORY:** 

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614 Phone: (949) 261-1022

Fax: (949) 260-3297 Project Manager: Joseph Doak **RECEIVING LABORATORY:** 

Weck Laboratories, Inc-SUB

14859 E. Clark Avenue City of Industry, CA 91745

Phone: (626) 336-2139 Fax: (626) 336-2634

Project Location: California

Receipt Temperature: 19.2

| Analysis                    | Units      | Due      | Expires                 | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------|------------|----------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample ID: IRA2025-01       | Water      |          | Sampled: 01/22/08 10:05 | ph=8.3, temp=46.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Level 4 + EDD-OUT           | N/A        | 01/31/08 | 02/19/08 10:05          | Sub to Weck, transfer file EDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Level 4 Data Package - Wed  | N/A        | 01/31/08 | 02/19/08 10:05          | Out to Weck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Mercury - 245.1, Diss -OUT  | mg/l       | 01/31/08 | 02/19/08 10:05          | Weck, Boeing, J flags                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Mercury - 245.1-OUT         | mg/l       | 01/31/08 | 02/19/08 10:05          | Weck,Boeing, permit, J flags, if result>ND,call TA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Containers Supplied:        |            |          |                         | And the second s |
| 125 mL Poly w/HNO3 1<br>(N) | 25 mL Poly | / (O)    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Released By

Released By

Received By amabmor Received By

Date/Time 1/23/08/1105

Page 1 of 1 Date/Time



# Weck Laboratories, Inc.

Analytical Laboratory Services - Since 1964

14859 E. Clark Ave., Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634 info@wecklabs.com www.wecklabs.com

### **CERTIFICATE OF ANALYSIS**

TestAmerica, Inc. - Irvine **Client:** 

**Report Date:** 

01/29/08 15:46

17461 Derian Ave, Suite 100

**Received Date:** 

01/23/08 11:05

Irvine, CA 92614

**Turn Around:** 

6 days

Attention: Joseph Doak

Fax: (949) 260-3297

Work Order #:

8012320

Phone: (949) 261-1022

**Client Project:** 

IRA2025

### NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

#### Dear Joseph Doak:

Enclosed are the results of analyses for samples received 01/23/08 11:05 with the Chain of Custody document. The samples were received in good condition. The samples were received at 18.2 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Reviewed by:

Kim G Tu

Project Manager



Page 1 of 6



Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8012320 Project ID: IRA2025 Date Received: 01/23/08 11:05 Date Reported: 01/29/08 15:46

#### ANALYTICAL REPORT FOR SAMPLES

| Sample ID  | Sampled by: | Sample Comments | Laboratory | Matrix | Date Sampled   |
|------------|-------------|-----------------|------------|--------|----------------|
| IRA2025-01 | Client      |                 | 8012320-01 | Water  | 01/22/08 10:05 |



Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8012320 Project ID: IRA2025 Date Received: 01/23/08 11:05 Date Reported: 01/29/08 15:46

IRA2025-01 8012320-01 (Water)

Date Sampled: 01/22/08 10:05

### Metals by EPA 200 Series Methods

| Analyte            | Result | MDL   | Units | Reporting<br>Limit | Dilution<br>Factor | Method    | Batch<br>Number | Date<br>Prepared | Date<br>Analyzed |     | Data<br>Qualifiers |
|--------------------|--------|-------|-------|--------------------|--------------------|-----------|-----------------|------------------|------------------|-----|--------------------|
| Mercury, Dissolved | ND     | 0.050 | ug/l  | 0.20               | 1                  | EPA 245.1 | W8A0913         | 01/25/08         | 01/28/08         | jlp |                    |
| Mercury, Total     | ND     | 0.050 | ug/l  | 0.20               | 1                  | EPA 245.1 | W8A0913         | 01/25/08         | 01/28/08         | jlp |                    |



Week Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8012320 Project ID: IRA2025 Date Received: 01/23/08 11:05 Date Reported: 01/29/08 15:46

# QUALITY CONTROL SECTION



Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8012320 Project ID: IRA2025 Date Received: 01/23/08 11:05 Date Reported: 01/29/08 15:46

### Metals by EPA 200 Series Methods - Quality Control

%REC

|                                 |        | Reporting          |       | Spike              | Source   |      | %REC   |     | RPD   | Data       |
|---------------------------------|--------|--------------------|-------|--------------------|----------|------|--------|-----|-------|------------|
| Analyte                         | Result | Limit              | Units | Level              | Result   | %REC | Limits | RPD | Limit | Qualifiers |
| Batch W8A0913 - EPA 245.1       |        |                    |       |                    |          |      |        |     |       |            |
| Blank (W8A0913-BLK1)            |        |                    |       | Analyzed:          | 01/28/08 |      |        |     |       |            |
| Mercury, Dissolved              | ND     | 0.20               | ug/l  |                    |          |      |        |     |       |            |
| Mercury, Total                  | ND     | 0.050              | ug/l  |                    |          |      |        |     |       |            |
| LCS (W8A0913-BS1)               |        |                    |       | Analyzed:          | 01/28/08 |      |        |     |       |            |
| Mercury, Dissolved              | 0.967  | 0.20               | ug/l  | 1.00               |          | 97   | 85-115 |     |       |            |
| Mercury, Total                  | 0.967  | 0.050              | ug/l  | 1.00               |          | 97   | 85-115 |     |       |            |
| Matrix Spike (W8A0913-MS1)      | So     | ource: 8012328     | 3-01  | Analyzed:          | 01/28/08 |      |        |     |       |            |
| Mercury, Dissolved              | 1.01   | 0.20               | ug/l  | 1.00               | ND       | 101  | 70-130 |     |       |            |
| Mercury, Total                  | 1.01   | 0.050              | ug/l  | 1.00               | ND       | 101  | 70-130 |     |       |            |
| Matrix Spike (W8A0913-MS2)      | So     | Source: 8012328-02 |       | Analyzed:          | 01/28/08 |      |        |     |       |            |
| Mercury, Dissolved              | 0.978  | 0.20               | ug/l  | 1.00               | ND       | 98   | 70-130 |     |       |            |
| Mercury, Total                  | 0.978  | 0.050              | ug/l  | 1.00               | ND       | 98   | 70-130 |     |       |            |
| Matrix Spike Dup (W8A0913-MSD1) | So     | Source: 8012328-01 |       | Analyzed: 01/28/08 |          |      |        |     |       |            |
| Mercury, Dissolved              | 0.992  | 0.20               | ug/l  | 1.00               | ND       | 99   | 70-130 | 2   | 20    |            |
| Mercury, Total                  | 0.992  | 0.050              | ug/l  | 1.00               | ND       | 99   | 70-130 | 2   | 20    |            |
| Matrix Spike Dup (W8A0913-MSD2) | So     | ource: 8012328     | 3-02  | Analyzed:          | 01/28/08 |      |        |     |       |            |
| Mercury, Dissolved              | 1.01   | 0.20               | ug/l  | 1.00               | ND       | 101  | 70-130 | 3   | 20    |            |
| Mercury, Total                  | 1.01   | 0.050              | ug/l  | 1.00               | ND       | 101  | 70-130 | 3   | 20    |            |



Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8012320 Project ID: IRA2025

Date Received: 01/23/08 11:05 Date Reported: 01/29/08 15:46

#### **Notes and Definitions**

ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

% Rec Percent Recovery

Sub Subcontracted analysis, original report available upon request

MDL Method Detection Limit

MDA Minimum Detectable Activity

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

# **APPENDIX G**

# **Section 66**

Outfall 010 - BMP Effectiveness, January 22, 2008 Test America Analytical Laboratory Report



### LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: BMP Effectiveness
618 Michillinda Avenue, Suite 200 Monitoring Program

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Attention: Bronwyn Kelly

Sampled: 01/22/08 Received: 01/26/08

Issued: 02/06/08 18:11

#### NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

#### SAMPLE CROSS REFERENCE

| LABORATORY ID | CLIENT ID | MATRIX |
|---------------|-----------|--------|
| IRA2570-01    | 010 EFF-1 | Water  |
| IRA2570-02    | 010 EFF-2 | Water  |
| IRA2570-03    | 010 EFF-3 | Water  |
| IRA2570-04    | 010 EFF-4 | Water  |
| IRA2570-05    | 010 EFF-5 | Water  |
| IRA2570-06    | 010 EFF-6 | Water  |
| IRA2570-07    | 010 EFF-7 | Water  |
| IRA2570-08    | 010 EFF-8 | Water  |
| IRA2570-09    | 010 EFF-9 | Water  |

Reviewed By:

**TestAmerica Irvine** 

Joseph Dock

Joseph Doak Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: BMP Effectiveness

618 Michillinda Avenue, Suite 200 Monitoring Program Sampled: 01/22/08

Arcadia, CA 91007 Report Number: IRA2570 Received: 01/26/08

Attention: Bronwyn Kelly

### **INORGANICS**

|                                                                |              | 1111    | JNUA         | NICS               |                  |                    |                   |                  |                    |
|----------------------------------------------------------------|--------------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Analyte                                                        | Method       | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
| Sample ID: IRA2570-01 (010 EFF-1 - Wa<br>Reporting Units: g/cc | ater)        |         |              |                    |                  |                    |                   |                  |                    |
| Density                                                        | Displacement | 8B01116 | N/A          | NA                 | 1.0              | 1                  | 02/01/08          | 02/01/08         |                    |
| Sample ID: IRA2570-02 (010 EFF-2 - Wa<br>Reporting Units: g/cc | nter)        |         |              |                    |                  |                    |                   |                  |                    |
| Density                                                        | Displacement | 8B01116 | N/A          | NA                 | 1.0              | 1                  | 02/01/08          | 02/01/08         |                    |
| Sample ID: IRA2570-03 (010 EFF-3 - Wa<br>Reporting Units: g/cc |              |         |              |                    |                  |                    |                   |                  |                    |
| Density                                                        | Displacement | 8B01116 | N/A          | NA                 | 0.99             | 1                  | 02/01/08          | 02/01/08         |                    |
| Sample ID: IRA2570-04 (010 EFF-4 - Wa<br>Reporting Units: g/cc | •            | 0001116 | 27/4         |                    |                  |                    | 0.01/0.0          | 00/04/00         |                    |
| Density                                                        | Displacement | 8B01116 | N/A          | NA                 | 0.99             | 1                  | 02/01/08          | 02/01/08         |                    |
| Sample ID: IRA2570-05 (010 EFF-5 - Wa<br>Reporting Units: g/cc | •            |         |              |                    |                  |                    |                   |                  |                    |
| Density                                                        | Displacement | 8B01116 | N/A          | NA                 | 0.99             | 1                  | 02/01/08          | 02/01/08         |                    |
| Sample ID: IRA2570-06 (010 EFF-6 - Wa<br>Reporting Units: g/cc | nter)        |         |              |                    |                  |                    |                   |                  |                    |
| Density                                                        | Displacement | 8B01116 | N/A          | NA                 | 0.99             | 1                  | 02/01/08          | 02/01/08         |                    |
| Sample ID: IRA2570-07 (010 EFF-7 - Wa<br>Reporting Units: g/cc | ater)        |         |              |                    |                  |                    |                   |                  |                    |
| Density                                                        | Displacement | 8B01116 | N/A          | NA                 | 0.99             | 1                  | 02/01/08          | 02/01/08         |                    |
| Sample ID: IRA2570-08 (010 EFF-8 - Wa<br>Reporting Units: g/cc | nter)        |         |              |                    |                  |                    |                   |                  |                    |
| Density                                                        | Displacement | 8B01116 | N/A          | NA                 | 0.99             | 1                  | 02/01/08          | 02/01/08         |                    |
| Sample ID: IRA2570-09 (010 EFF-9 - Wa<br>Reporting Units: g/cc | nter)        |         |              |                    |                  |                    |                   |                  |                    |
| Density                                                        | Displacement | 8B01116 | N/A          | NA                 | 0.99             | 1                  | 02/01/08          | 02/01/08         |                    |
| Sample ID: IRA2570-01 (010 EFF-1 - Wa<br>Reporting Units: mg/l | nter)        |         |              |                    |                  |                    |                   |                  |                    |
| Sediment                                                       | ASTM D3977   | 8B04106 | 10           | 10                 | ND               | 1                  | 02/04/08          | 02/05/08         |                    |

### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: BMP Effectiveness MWH-Pasadena/Boeing

Monitoring Program 618 Michillinda Avenue, Suite 200

Sampled: 01/22/08 Arcadia, CA 91007 Report Number: IRA2570 Received: 01/26/08

Attention: Bronwyn Kelly

### **INORGANICS**

| Analyte                                                           | Method         | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|-------------------------------------------------------------------|----------------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: IRA2570-02 (010 EFF-2 - W                              | ater)          |         |              |                    |                  |                    |                   |                  |                    |
| Reporting Units: mg/l                                             |                |         |              |                    |                  |                    |                   |                  |                    |
| Sediment                                                          | ASTM D3977     | 8B04106 | 10           | 10                 | ND               | 1                  | 02/04/08          | 02/05/08         |                    |
| Sample ID: IRA2570-03 (010 EFF-3 - W                              | ater)          |         |              |                    |                  |                    |                   |                  |                    |
| Reporting Units: mg/l                                             |                |         |              |                    |                  |                    |                   |                  |                    |
| Sediment                                                          | ASTM D3977     | 8B04106 | 10           | 10                 | ND               | 1                  | 02/04/08          | 02/05/08         |                    |
| Sample ID: IRA2570-04 (010 EFF-4 - W                              | ater)          |         |              |                    |                  |                    |                   |                  |                    |
| Reporting Units: mg/l                                             |                | 0704406 | 4.0          | 4.0                |                  |                    | 00/04/00          | 00/07/00         |                    |
| Sediment                                                          | ASTM D3977     | 8B04106 | 10           | 10                 | ND               | 1                  | 02/04/08          | 02/05/08         |                    |
| Sample ID: IRA2570-05 (010 EFF-5 - W                              | ater)          |         |              |                    |                  |                    |                   |                  |                    |
| Reporting Units: mg/l                                             | A CTM D2077    | 0004106 | 10           | 10                 | NID              | 1                  | 02/04/00          | 02/05/00         |                    |
| Sediment                                                          | ASTM D3977     | 8B04106 | 10           | 10                 | ND               | 1                  | 02/04/08          | 02/05/08         |                    |
| Sample ID: IRA2570-06 (010 EFF-6 - W                              | ater)          |         |              |                    |                  |                    |                   |                  |                    |
| Reporting Units: mg/l Sediment                                    | ASTM D3977     | 8B04106 | 10           | 10                 | ND               | 1                  | 02/04/08          | 02/05/08         |                    |
| Sediment                                                          | ASTM D39//     | 6D04100 | 10           | 10                 | ND               | 1                  | 02/04/08          | 02/03/08         |                    |
| Sample ID: IRA2570-07 (010 EFF-7 - W                              | ater)          |         |              |                    |                  |                    |                   |                  |                    |
| Reporting Units: mg/l Sediment                                    | ASTM D3977     | 8B04106 | 10           | 10                 | ND               | 1                  | 02/04/08          | 02/05/08         |                    |
|                                                                   |                | 0004100 | 10           | 10                 | ND               | 1                  | 02/04/08          | 02/03/08         |                    |
| Sample ID: IRA2570-08 (010 EFF-8 - W                              | ater)          |         |              |                    |                  |                    |                   |                  |                    |
| Reporting Units: mg/l Sediment                                    | ASTM D3977     | 8B04106 | 10           | 10                 | ND               | 1                  | 02/04/08          | 02/05/08         |                    |
|                                                                   |                | 0001100 | 10           | 10                 | ND               | •                  | 02/01/00          | 02/03/00         |                    |
| Sample ID: IRA2570-09 (010 EFF-9 - Williams Reporting Units: mg/l | ater)          |         |              |                    |                  |                    |                   |                  |                    |
| Sediment Sediment                                                 | ASTM D3977     | 8B04106 | 10           | 10                 | ND               | 1                  | 02/04/08          | 02/05/08         |                    |
| Seamon                                                            | 1151111 155711 | 0201100 | 10           | 10                 | 1112             | 1                  | 02,01/00          | 02,03/00         |                    |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: BMP Effectiveness

Monitoring Program

Report Number: IRA2570

Sampled: 01/22/08

Received: 01/26/08

### METHOD BLANK/QC DATA

### **INORGANICS**

|                                             |           | Reporting |     |       | Spike | Source   |         | %REC   |     | RPD   | Data       |
|---------------------------------------------|-----------|-----------|-----|-------|-------|----------|---------|--------|-----|-------|------------|
| Analyte                                     | Result    | Limit     | MDL | Units | Level | Result   | %REC    | Limits | RPD | Limit | Qualifiers |
| Batch: 8B01116 Extracted: 02/01/            | 08        |           |     |       |       |          |         |        |     |       |            |
| <b>Duplicate Analyzed: 02/01/2008 (8B01</b> | 116-DUP1) |           |     |       | Sou   | rce: IRA | 2570-01 |        |     |       |            |
| Density                                     | 0.999     | NA        | N/A | g/cc  |       | 1.00     |         |        | 0   | 20    |            |



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: BMP Effectiveness

Monitoring Program Sampled: 01/22/08

Report Number: IRA2570 Received: 01/26/08

Arcadia, CA 91007 Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

# DATA QUALIFIERS AND DEFINITIONS

**ND** Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

**RPD** Relative Percent Difference



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness

Monitoring Program

Report Number: IRA2570

Sampled: 01/22/08

Received: 01/26/08

### **Certification Summary**

### **TestAmerica Irvine**

Displacement

| Method     | Matrix | Nelac | California |
|------------|--------|-------|------------|
| ASTM D3977 | Water  |       |            |

Water

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

| \<br>\<br>+                       | ()<br>           |                 |               | PO NIANO                  |                                            | ¥<br>YUOTSIIO | IPA2570<br>Y FORM                      | J RA 2557 0        | Dage 1 of 1                      |
|-----------------------------------|------------------|-----------------|---------------|---------------------------|--------------------------------------------|---------------|----------------------------------------|--------------------|----------------------------------|
| est Amenica Version 12/20/07      | 2<br>2<br>2      | ersion 12/20/07 |               |                           | » DWO                                      | )             |                                        | ANAI YSIS REQUIRED |                                  |
| Client Name/Address:              | Address:         |                 |               | Project <b>boeing bin</b> | g DIVIT                                    |               |                                        |                    |                                  |
| MWH-Arcadia                       | Jia              |                 |               | Effectiveness Moni        | Monitoring                                 |               |                                        |                    | Field readings:                  |
| 618 Michillinda Avenue, Suite 200 | Avenue, 3        | Suite 200       |               | Program                   |                                            |               | -W.                                    |                    | 4/                               |
| Arcadia, CA 91007                 | 200              |                 |               |                           |                                            |               | TS/                                    |                    | Temp = //                        |
| Test America Contact: Joseph Doak | ontact: J        | oseph Doak      |               |                           |                                            |               | C. ∤                                   |                    | #/V = Ha                         |
| Project Manager: Bronwyn Kelly    | Jer. Broi        | nwvn Kellv      |               | Phone Number              |                                            |               | SS                                     |                    | 2                                |
| Tolor Maria                       |                  | 7 4 34.         |               | (626) 568-6691            | <b>-</b>                                   | =             | ) uo                                   |                    | Time of readings = $\mathcal{N}$ |
| Sampler:                          | 7. VY 11 9 14    | , ¿             |               | Fax Number:               |                                            | <u> </u>      | oite:                                  |                    |                                  |
| 7                                 | 5790             |                 |               | (626) 568-6515            | 2                                          |               | pendi                                  |                    | Comments                         |
| Sample                            | Sample           | Container       | # of<br>Cont. | Sampling<br>Date/Time     | Preservative                               | Bottle #      | Con                                    |                    |                                  |
| 040 FFE-1                         | 3                | 500             | -             | 6                         | None                                       | 1             | ×                                      |                    |                                  |
| 010 EFF-2                         | :  3             | 500 mL Poly     | -             | 01/22/08-0519             | None                                       | 2             | ×                                      |                    |                                  |
| 010 EFF-3                         |                  | 500 mL Poly     | _             |                           | None                                       | 3             | ×                                      |                    |                                  |
| 010 EFF-4                         | >                | 500 mL Poly     | ٦             | $\neg$                    | None                                       | 4             | ×                                      |                    |                                  |
| 010 EFF-5                         | >                | 500 mL Poly     | 1             |                           | None                                       | 5             | ×                                      |                    |                                  |
| 010 EFF-6                         | M                | 500 mL Poly     | -             |                           | None                                       | 9 1           | × >                                    |                    |                                  |
| 010 EFF-7                         | Χ                | 500 mL Poly     | -             | $\neg$                    | None                                       |               | < >                                    |                    |                                  |
| 010 EFF-8                         | *                | 500 mL Poly     | -             |                           | None                                       | ω             | × ;                                    |                    |                                  |
| 010 EFF-9                         | >                | 500 mL Poly     | -             | 01/22/08-1219             | None                                       | o :           | × ;                                    |                    |                                  |
| 949 EFF 49                        | *                | 500 mL Poly     |               |                           | None                                       |               | *                                      |                    |                                  |
| 940 EFF-44                        | *                | 500 mt Poly     |               |                           | None                                       |               | * 7                                    |                    |                                  |
| 840 EFF-12                        | *                | 500 ml Poly     | $\frac{1}{2}$ |                           | None                                       |               |                                        |                    |                                  |
| 040 EFF 43                        | *                | 500 mL Poly     | +             |                           | None                                       |               | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                    |                                  |
| 040 EFF 14                        | *                | 500 ml Poly     | 1             |                           | None                                       |               | *                                      |                    | 100/00                           |
| 040 EFF 15                        | ×                | 500 ml Poly     | +             |                           | None                                       | <u>.</u>      | *                                      |                    | W   280                          |
| 010 EFF 16                        |                  | 500 ml Poly     | +             |                           | None                                       |               | *                                      |                    |                                  |
| 1010                              | *                | 500 mL Poly     | +             |                           | None                                       | +             | *                                      |                    | (2)0)                            |
| 040 555 48                        | *                | 500 ml Poly     | +             |                           | None                                       | 4             | *                                      |                    |                                  |
| 040 555 40                        | 8                | 500 mt Poly     | +             |                           | None                                       | 10            | <br>                                   |                    |                                  |
| 040 555.90                        | :  \$            | 500 ml Poly     | -             |                           | None                                       | 50            | *                                      |                    |                                  |
| 62 11010                          | : A              | 300 mt Poly     | +             |                           | None                                       | 24            | ×                                      |                    |                                  |
| 040 555 69                        | :   \$           | 500 mt Pots     | -             |                           | None                                       | 55            | *                                      |                    |                                  |
| 040 555 00                        |                  | FOO m! Doly     | -             |                           | Mono                                       | 23            | ×                                      |                    |                                  |
| 040 555 24                        | 181              |                 |               |                           | None                                       | 2             | *                                      |                    |                                  |
| Relinatished By                   | -/               |                 | Date/Time:    | me:                       | Received (By                               | 7             | Date/Time:                             | (                  | Turn around Time: (check)        |
| 0                                 |                  |                 | 1.5           | 1225                      | X                                          | 5             |                                        | 7,-7 (-1, 08 1745) | 24 Hours 5 Days                  |
|                                   |                  |                 | i.            | .08                       | Received By                                |               | Date/Time:                             |                    | 48 Hours 10 Days                 |
| Relinquished By                   | ^                |                 |               | ΰΕ                        | מבים המים המים המים המים המים המים המים המ |               |                                        |                    | X Normal                         |
|                                   | c<br>2           |                 | 7-5           | 6-08 153                  |                                            |               |                                        |                    | todrityr (chec                   |
| Relinquished By                   | \<br>\<br>\<br>> | )               | Date/Time:    | me:                       | Received By                                | -             | Date/Time:                             | io.                | Intact On Ice:                   |
|                                   |                  |                 |               |                           | 0,0                                        | #10           | )<br>Y                                 | 106/201            | 2012/26                          |
|                                   |                  |                 |               |                           | 1                                          | 1771          |                                        | 100000             | 12/2                             |
|                                   |                  |                 |               |                           |                                            |               | L<br>\                                 |                    |                                  |

# **APPENDIX G**

# **Section 67**

Outfall 010, February 3, 2008

MECX Data Validation Reports



# DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IRB0153

Prepared by

MEC<sup>x</sup>, LLC 12269 East Vassar Drive Aurora, CO 80014 DATA VALIDATION REPORT SSFL NPDES

SSFL NPDES
SDG: IRB0153

### I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: IRB0153
Project Manager: B. Kelly

Matrix: Water
QC Level: IV

No. of Samples: 1

No. of Reanalyses/Dilutions: 0
Laboratory: TestAmerica-Irvine

**Table 1. Sample Identification** 

| Client ID   | Laboratory ID | Sub-Laboratory ID                                    | Matrix | Collected     | Method                                                                                              |
|-------------|---------------|------------------------------------------------------|--------|---------------|-----------------------------------------------------------------------------------------------------|
| Outfall 010 | IRB0153-01    | 30236-001,<br>8020453-01,<br>CRB0036-01,<br>8601-001 | Water  | 02/03/08 1410 | 200.7, 200.8, 245.1,<br>525.2, 900.0, 901.1,<br>903.0, 904.0, 905.0,<br>906.0, 1613, ASTM<br>D-5174 |

### **II. Sample Management**

No anomalies were observed regarding sample management. The samples in this SDG were received at TestAmerica-Irvine above the temperature limits; however, the samples had insufficient time to cool in transit. The samples were received below the temperature limits at Vista and Weck; however, the samples were not noted to have been frozen. The sample was received within the temperature limits at Eberline and TestAmerica-Colton. According to the case narrative for this SDG, the sample was received intact at all laboratories. The FedEx courier did not relinquish the sample to Eberline. The remaining COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine and Weck, custody seals were not required. Container custody seals were intact upon arrival at Eberline and Vista. If necessary, the client ID was added to the sample result summary by the reviewer.

DATA VALIDATION REPORT SSFL NPDES SDG: SSFL NPDES SDG: IRB0153

# **Data Qualifier Reference Table**

| Qualifie | r Organics                                                                                                                                                                                                                                                              | Inorganics                                                                                                                                                                                                                                                                                  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U        | The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.                                                                           | The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only. |
| J        | The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.                                                                                                                                    | The associated value is an estimated quantity.                                                                                                                                                                                                                                              |
| N        | The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."                                                                                                                                         | Not applicable.                                                                                                                                                                                                                                                                             |
| NJ       | The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.                                                                                                   | Not applicable.                                                                                                                                                                                                                                                                             |
| UJ       | The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. | The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.                                                                                                                                                                |
| R        | The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.                                                | The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.                                                                    |

DATA VALIDATION REPORT Project: SSFL NPDES SDG: IRB0153

# **Qualification Code Reference Table**

| Qualifier | Organics                                                                       | Inorganics                                                                                    |
|-----------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Н         | Holding times were exceeded.                                                   | Holding times were exceeded.                                                                  |
| S         | Surrogate recovery was outside QC limits.                                      | The sequence or number of standards used for the calibration was incorrect                    |
| С         | Calibration %RSD or %D was noncompliant.                                       | Correlation coefficient is <0.995.                                                            |
| R         | Calibration RRF was <0.05.                                                     | %R for calibration is not within control limits.                                              |
| В         | Presumed contamination as indicated by the preparation (method) blank results. | Presumed contamination as indicated by the preparation (method) or calibration blank results. |
| L         | Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits. | Laboratory Control Sample %R was not within control limits.                                   |
| Q         | MS/MSD recovery was poor or RPD high.                                          | MS recovery was poor.                                                                         |
| E         | Not applicable.                                                                | Duplicates showed poor agreement.                                                             |
| 1         | Internal standard performance was unsatisfactory.                              | ICP ICS results were unsatisfactory.                                                          |
| Α         | Not applicable.                                                                | ICP Serial Dilution %D were not within control limits.                                        |
| M         | Tuning (BFB or DFTPP) was noncompliant.                                        | Not applicable.                                                                               |
| Т         | Presumed contamination as indicated by the trip blank results.                 | Not applicable.                                                                               |
| +         | False positive – reported compound was not present.                            | Not applicable.                                                                               |
| -         | False negative – compound was present but not reported.                        | Not applicable.                                                                               |
| F         | Presumed contamination as indicated by the FB or ER results.                   | Presumed contamination as indicated by the FB or ER results.                                  |
| \$        | Reported result or other information was incorrect.                            | Reported result or other information was incorrect.                                           |
| ?         | TIC identity or reported retention time has been changed.                      | Not applicable.                                                                               |

DATA VALIDATION REPORT Project: SSFL NPDES SDG: IRB0153

## **Qualification Code Reference Table Cont.**

| D         | The analysis with this flag should not be used because another more technically sound analysis is available.                                                                                                                                                 | The analysis with this flag should not be used because another more technically sound analysis is available.                                                                                                                                                 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Р         | Instrument performance for pesticides was poor.                                                                                                                                                                                                              | Post Digestion Spike recovery was not within control limits.                                                                                                                                                                                                 |
| DNQ       | The reported result is above the method detection limit but is less than the reporting limit.                                                                                                                                                                | The reported result is above the method detection limit but is less than the reporting limit.                                                                                                                                                                |
| *11, *111 | Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found. | Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found. |

4 Revision 0

DATA VALIDATION REPORT SSFL NPDES
SSFL NPDES
SDG: IRB0153

### III. Method Analyses

### A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: E. Wessling Date Reviewed: April 4, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{X}$  Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
  - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
  - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
  - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
  - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: OCDD was reported in the method blank at 0.00000899 μg/L. The detect for OCDD in the sample was less than five times the concentration reported in the method blank; therefore, the OCDD detect was qualified as an estimated nondetect, "UJ," and

5 Revision 0

raised to the reporting limit in sample Outfall 004. The method blank had no other target compound detects above the EDL.

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was
  verified by recalculating any sample detects and a representative number of blank spike
  concentrations. The laboratory calculated and reported compound-specific detection
  limits. Any detects below the laboratory lower calibration level were qualified as
  estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit.
  Nondetects are valid to the estimated detection limit (EDL).

# B. EPA METHODS 200.7, 200.8, 245.1—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: March 26, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{\times}$  Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.7, 200.8, and 245.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding times, 6 months for metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤0.1 amu and ≤0.9 amu at 10% peak height, except for cerium associated with the dissolved metals fraction. The cerium mass calibration marginally exceeded the control limit; therefore, antimony, lead,

DATA VALIDATION REPORT Project: SSFL NPDES

SDG: IRB0153

and thallium were qualified as estimated in the dissolved metals fraction, "J," for detects and, "UJ," for nondetects.

- Calibration: Calibration criteria were met. Mercury initial calibration r<sup>2</sup> values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP-MS metals and 85-115% for mercury. All CRI/CRA and check standard recoveries were within the control limits of 70-130%.
- Blanks: Selenium was reported in the method blank associated with the total metals fraction at -8.4 µg/L; therefore, nondetected selenium in the total metals fraction was qualified as an estimated nondetect, "UJ." There were no other applicable detects in the method blanks or CCBs.
- Interference Check Samples: ICSA/B analyses were performed in association with all analyses except total antimony. Recoveries were within the method-established control limits. Most analytes were reported in the ICSA solutions. No 6010 analytes required qualification as the concentrations of the interferents were not significant. For the 6020 analytes, the reviewer was not able to ascertain if the detections were indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the sample in this SDG for the total 6010 analytes. MS/MSD recoveries are not evaluated if the native concentration of an analyte is 4x the spike concentration. All recoveries and RPDs were within the laboratory-established control limits. Evaluation of mercury method accuracy was based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. The bracketing CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

The reviewer noted that zinc was detected at a slightly higher concentration in the dissolved metals sample fraction. The difference between the zinc results is within the

sensitivity limits of the analytical instrument and, therefore, the reviewer considered the two results to be equivalent.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.

### C. EPA METHOD 525.2 — Pesticides

Reviewed By: P. Meeks

Date Reviewed: March 27, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{X}$  Data Validation Procedure for Organochlorine Pesticides by GC (DVP-4, Rev. 0), EPA Method 525.2, and the National Functional Guidelines for Organic Data Review (02/94).

- Holding Times: Extraction and analytical holding times were met. The water sample pH
  was not adjusted within 24 hours; therefore, nondetected diazinon was qualified as an
  estimated nondetect, "UJ." The sample was analyzed within 30 days of extraction.
- GC/MS Tuning: The DFTPP tunes met the method abundance criteria. The sample was analyzed within 12 hours of the DFTPP injection time.
- Calibration: Calibration criteria were met. For both target compounds, initial calibration average RRFs were ≥0.05 and %RSDs ≤30%. Continuing calibration RRFs were ≥0.05 and applicable target compound responses were within the method QC limits of 70-130%.
- Blanks: The method blank had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries and RPDs were within laboratory-established QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample from this SDG. Evaluation of method accuracy and precision was based on the LCS/LCSD results.

 Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The internal standard area counts and retention times were within the method control limits established by the continuing calibration standards of ±30%.
- Compound Identification: Compound identification was verified. The laboratory analyzed for chlorpyrifos and diazinon by Method 525.2. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Reported nondetects are valid to the reporting limit.
- System Performance: Review of the raw data indicated no problems with system performance.

#### D. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: March 28, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The tritium sample was analyzed within 180 days of collection. Aliquots
  for gross alpha and gross beta, were prepared within the five-day analytical holding time
  for unpreserved samples. Aliquots for radium-226, radium-228, strontium-90, total
  uranium, and gamma spectroscopy were prepared beyond the five-day holding time for
  unpreserved samples; therefore, results for these analytes were qualified as estimated,
  "J," for detects and, "UJ," for nondetects.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, nondetected gross alpha in the sample was qualified as an estimated nondetect, "UJ." The gross beta detector efficiency was greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. The tritium detector efficiency for the sample was at least 20% and was considered acceptable. The strontium chemical yield was at least 70% and was considered acceptable. The strontium continuing calibration results were within the laboratory control limits. The radium-226 continuing calibration results were within the laboratory-established control limits. The radium-228 tracer, yttrium oxalate, yields were greater than 70%. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: There were no analytes detected in the method blanks.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this
  data package. The sample results and MDAs reported on the sample result form were
  verified against the raw data and no calculation or transcription errors were noted.
  Reported nondetects are valid to the MDA.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
   Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.

| Client Data         |                                                |              | Sample Data             |                   | Laboratory Data                               |                                |                                                      |                                                            |                             |
|---------------------|------------------------------------------------|--------------|-------------------------|-------------------|-----------------------------------------------|--------------------------------|------------------------------------------------------|------------------------------------------------------------|-----------------------------|
| :pa                 | Test America-Irvine, CA<br>IRB0153<br>3-Feb-08 |              | Matrix:<br>Sample Size: | Aqueous<br>1.01 L | 85                                            | 30237-001<br>9953<br>19-Feb-08 | Date Received:<br>Date Extracted:<br>Date Analyzed I | Date Received:<br>Date Extracted:<br>Date Analyzed DB-225: | 5-Feb-08<br>15-Feb-08<br>NA |
| Analyte             | Conc. (ug/L)                                   | DF a         | EMPCb                   | Qualifiers        | Labeled Standard                              |                                | %R                                                   | rcr-ncr <sub>q</sub>                                       | Oualifiers                  |
| 2,3,7,8-TCDD        | ND                                             | 0.000000568  | 999                     |                   | IS 13C-2,3,7,8-TCDD                           |                                | 7.97                                                 | 25 - 164                                                   |                             |
| 1,2,3,7,8-PeCDD     | ND                                             | 0.0000000661 | 1661                    |                   | 13C-1,2,3,7,8-PeCDD                           | D                              | 8.69                                                 | 25 - 181                                                   |                             |
| 1,2,3,4,7,8-HxCDD   | NO.                                            | 0.00000124   | 24                      |                   | 13C-1,2,3,4,7,8-HxCDD                         | DD                             | 72.3                                                 | 32 - 141                                                   |                             |
| 1,2,3,6,7,8-HxCDD   | ND                                             | 0.00000126   | 26                      |                   | 13C-1,2,3,6,7,8-HxCDD                         | DD                             | 72.4                                                 | 28 - 130                                                   |                             |
| 1,2,3,7,8,9-HxCDD   | ND                                             | 0.00000120   | 20                      |                   | 13C-1,2,3,4,6,7,8-HpCDD                       | CDD                            | 77.6                                                 | 23 - 140                                                   |                             |
| 1,2,3,4,6,7,8-HpCDD | 0.00000149                                     |              |                         | r                 | 13C-OCDD                                      |                                | 72.3                                                 | 17 - 157                                                   |                             |
| OCDD                | 0.0000124                                      |              |                         | J,B               | 13C-2,3,7,8-TCDF                              |                                | 81.3                                                 | 24 - 169                                                   |                             |
| 2,3,7,8-TCDF        | ND                                             | 0.000000439  | 439                     |                   | 13C-1,2,3,7,8-PeCDF                           | fy                             | 8.69                                                 | 24 - 185                                                   |                             |
| 1,2,3,7,8-PeCDF     | ND                                             | 0.0000000607 | 209                     |                   | 13C-2,3,4,7,8-PeCDF                           | f*.                            | 70.4                                                 | 21 - 178                                                   |                             |
| 2,3,4,7,8-PeCDF     | ND                                             | 0.000000649  | 649                     |                   | 13C-1,2,3,4,7,8-HxCDF                         | DF                             | 6.69                                                 | 26 - 152                                                   |                             |
| 1,2,3,4,7,8-HxCDF   | ND                                             | 0.0000000647 | 647                     |                   | 13C-1,2,3,6,7,8-HxCDF                         | DF                             | 9.89                                                 | 26 - 123                                                   |                             |
| 1,2,3,6,7,8-HxCDF   | ND                                             | 0.0000000678 | 829                     |                   | 13C-2,3,4,6,7,8-HxCDF                         | DF                             | 67.4                                                 | 28 - 136                                                   |                             |
| 2,3,4,6,7,8-HxCDF   | ND                                             | 0.000000748  | 748                     |                   | 13C-1,2,3,7,8,9-HxCDF                         | DF                             | 73.3                                                 | 29 - 147                                                   |                             |
| 1,2,3,7,8,9-HxCDF   | ND                                             | 0.000000961  | 1961                    |                   | 13C-1,2,3,4,6,7,8-HpCDF                       | CDF                            | 71.6                                                 | 28 - 143                                                   |                             |
| 1,2,3,4,6,7,8-HpCDF | ND                                             | 0.00000119   | 19                      |                   | 13C-1,2,3,4,7,8,9-HpCDF                       | CDF                            | 74.3                                                 | 26 - 138                                                   |                             |
| 1,2,3,4,7,8,9-HpCDF | ND                                             | 0.000000738  | 738                     |                   | 13C-OCDF                                      |                                | 76.2                                                 | 17 - 157                                                   |                             |
| OCDF                | ND                                             | 0.00000406   | 90                      |                   | CRS 37CI-2,3,7,8-TCDD                         |                                | 88.0                                                 | 35 - 197                                                   |                             |
| Totals              |                                                |              |                         |                   | Footnotes                                     |                                |                                                      |                                                            |                             |
| Total TCDD          | ND                                             | 0.0000000865 | 865                     |                   | a. Sample specific estimated detection limit. | ction limit.                   |                                                      |                                                            |                             |
| Total PeCDD         | ND                                             | 0.00000132   | 32                      |                   | b. Estimated maximum possible concentration.  | oncentration.                  |                                                      |                                                            |                             |
| Total HxCDD         | ND                                             | 0.00000123   | 23                      |                   | c. Method detection limit.                    |                                |                                                      |                                                            |                             |
| Total HpCDD         | 0.00000363                                     |              |                         |                   | d. Lower control limit - upper control limit. | trol limit.                    |                                                      |                                                            |                             |
| Total TCDF          | ND                                             | 0.000000439  | 439                     |                   |                                               |                                |                                                      |                                                            |                             |
| Total PeCDF         | ND                                             | 0.000000628  | 528                     |                   |                                               |                                |                                                      |                                                            |                             |
| Total HxCDF         | ND                                             | 0.000000753  | 753                     |                   |                                               |                                |                                                      |                                                            |                             |
| Total HpCDF         | ND                                             | 0.00000123   | 23                      |                   |                                               |                                |                                                      |                                                            |                             |

2 7 3 3

Project 30237



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Project ID: Annual Outfall 010

Sampled: 02/03/08

Arcadia, CA 91007

Report Number: IRB0153

Received: 02/03/08

METALS

|                  | 1                                                                  | VIL I A                                                                                             | LO                                                                                                                              |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method           | Batch                                                              | MDL<br>Limit                                                                                        | Reporting<br>Limit                                                                                                              | Sample<br>Result                                                                                                                                                                                                                                                                                                                   | Dilution<br>Factor                                                                                                                                                                                                                                                                                                                                                                                                       | Date<br>Extracted                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date<br>Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Data<br>Qualifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| - Water) - cont. |                                                                    |                                                                                                     |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SM2340B          | [CALC]                                                             | N/A                                                                                                 | 0.33                                                                                                                            | 160                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                        | 02/04/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02/04/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| EPA 200.7        | 8B04079                                                            | 0.020                                                                                               | 0.050                                                                                                                           | ND                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                        | 02/04/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02/04/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| EPA 200.7        | 8B04079                                                            | 0.050                                                                                               | 0.10                                                                                                                            | 53                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                        | 02/04/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02/04/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| EPA 200.7        | 8B04079                                                            | 0.015                                                                                               | 0.040                                                                                                                           | 0.095                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                        | 02/04/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02/04/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| EPA 200.7        | 8B04079                                                            | 0.012                                                                                               | 0.020                                                                                                                           | 7.6                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                        | 02/04/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02/04/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  | - Water) - cont.<br>SM2340B<br>EPA 200.7<br>EPA 200.7<br>EPA 200.7 | Method Batch - Water) - cont.  SM2340B [CALC] EPA 200.7 8B04079 EPA 200.7 8B04079 EPA 200.7 8B04079 | Method Batch Limit - Water) - cont.  SM2340B [CALC] N/A EPA 200.7 8B04079 0.020 EPA 200.7 8B04079 0.050 EPA 200.7 8B04079 0.015 | Method         Batch         Limit         Limit           - Water) - cont.         SM2340B         [CALC]         N/A         0.33           EPA 200.7         8B04079         0.020         0.050           EPA 200.7         8B04079         0.050         0.10           EPA 200.7         8B04079         0.015         0.040 | Method         Batch         MDL Limit         Reporting Limit         Sample Result           - Water) - cont.           SM2340B         [CALC]         N/A         0.33         160           EPA 200.7         8B04079         0.020         0.050         ND           EPA 200.7         8B04079         0.050         0.10         53           EPA 200.7         8B04079         0.015         0.040         0.095 | Method         Batch         MDL Limit         Reporting Limit         Sample Result         Dilution Factor           - Water) - cont.         SM2340B         [CALC]         N/A         0.33         160         1           EPA 200.7         8B04079         0.020         0.050         ND         1           EPA 200.7         8B04079         0.050         0.10         53         1           EPA 200.7         8B04079         0.015         0.040         0.095         1 | Method         Batch         MDL Limit         Reporting Limit         Sample Result         Dilution Factor         Date Extracted           - Water) - cont.           SM2340B         [CALC]         N/A         0.33         160         1         02/04/08           EPA 200.7         8B04079         0.020         0.050         ND         1         02/04/08           EPA 200.7         8B04079         0.050         0.10         53         1         02/04/08           EPA 200.7         8B04079         0.015         0.040         0.095         1         02/04/08 | Method         Batch         Limit         Reporting Limit         Sample Result         Dilution Factor         Date Extracted         Date Analyzed           - Water) - cont.         SM2340B         [CALC]         N/A         0.33         160         1         02/04/08         02/04/08           EPA 200.7         8B04079         0.020         0.050         ND         1         02/04/08         02/04/08           EPA 200.7         8B04079         0.050         0.10         53         1         02/04/08         02/04/08           EPA 200.7         8B04079         0.015         0.040         0.095         1         02/04/08         02/04/08 |



**TestAmerica Irvine** 



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 010

Report Number: IRB0153

Sampled: 02/03/08

Received: 02/03/08

#### **METALS**

|                                   |                     |         | ************************************** |                    |                  |                    |                   |                  |                    |
|-----------------------------------|---------------------|---------|----------------------------------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Analyte                           | Method              | Batch   | MDL<br>Limit                           | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
| Sample ID: IRB0153-01 (Outfall 01 | 10 - Water) - cont. |         |                                        |                    |                  |                    |                   |                  |                    |
| Reporting Units: ug/l             |                     |         |                                        |                    |                  |                    |                   |                  |                    |
| Aluminum                          | EPA 200.7           | 8B04079 | 40                                     | 50                 | 95               | 1                  | 02/04/08          | 02/04/08         |                    |
| Antimony J/DN Q                   | EPA 200.8           | 8B04080 | 0.20                                   | 2.0                | 0.35             | 1                  | 02/04/08          | 02/05/08         | J                  |
| Arsenic U                         | EPA 200.7           | 8B04079 | 7.0                                    | 10                 | ND               | 1                  | 02/04/08          | 02/04/08         |                    |
| Beryllium                         | EPA 200.7           | 8B04079 | 0.90                                   | 2.0                | ND               | 1                  | 02/04/08          | 02/04/08         |                    |
| Cadmium                           | EPA 200.8           | 8B04080 | 0.11                                   | 1.0                | ND               | 1                  | 02/04/08          | 02/04/08         |                    |
| Chromium JANQ                     | EPA 200.7           | 8B04079 | 2.0                                    | 5.0                | 2.2              | 1                  | 02/04/08          | 02/04/08         | J                  |
| Copper                            | EPA 200.8           | 8B04080 | 0.75                                   | 2.0                | ND               | 1                  | 02/04/08          | 02/04/08         |                    |
| Lead                              | EPA 200.8           | 8B04080 | 0.30                                   | 1.0                | ND               | 1                  | 02/04/08          | 02/04/08         |                    |
| Nickel V                          | EPA 200.7           | 8B04079 | 2.0                                    | 10                 | ND               | 1                  | 02/04/08          | 02/04/08         |                    |
| Selenium UT/B                     | EPA 200.7           | 8B04079 | 8.0                                    | 10                 | ND               | 1                  | 02/04/08          | 02/04/08         |                    |
| Silver                            | EPA 200.7           | 8B04079 | 6.0                                    | 10                 | ND               | 1                  | 02/04/08          | 02/04/08         |                    |
| Thallium                          | EPA 200.8           | 8B04080 | 0.20                                   | 1.0                | ND               | 1                  | 02/04/08          | 02/04/08         |                    |
| Vanadium V                        | EPA 200.7           | 8B04079 | 3.0                                    | 10                 | ND               | 1                  | 02/04/08          | 02/04/08         |                    |
| Zine TONQ                         | EPA 200.7           | 8B04079 | 6.0                                    | 20                 | 9.2              | 1                  | 02/04/08          | 02/04/08         | J                  |

LEVEL IV

**TestAmerica Irvine** 



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 010

Comm

Sampled: 02/03/08

Report Number: IRB0153

Received: 02/03/08

#### **DISSOLVED METALS**

| Analyte                                | Method                           | Batch              | MDL<br>Limit   | Reporting<br>Limit | Sample<br>Result |   | Date<br>Extracted    | Date<br>Analyzed     | Data<br>Oualifiers |
|----------------------------------------|----------------------------------|--------------------|----------------|--------------------|------------------|---|----------------------|----------------------|--------------------|
| Sample ID: IRB0153-01 (Outfall 010 - V |                                  |                    |                |                    |                  |   |                      | ,                    | •                  |
| Boron ()                               | EPA 200.7-Diss                   | 8B05111            | 0.020          | 0.050              | ND               | 1 | 02/05/08             | 02/06/08             |                    |
| Calcium<br>Iron JANQ                   | EPA 200.7-Diss<br>EPA 200.7-Diss | 8B05111<br>8B05111 | 0.050<br>0.015 | 0.10<br>0.040      | 53<br>0.016      | 1 | 02/05/08<br>02/05/08 | 02/06/08<br>02/06/08 | J                  |
| Magnesium                              | EPA 200.7-Diss                   | 8B05111            | 0.012          | 0.020              | 7.4              | 1 | 02/05/08             | 02/06/08             |                    |
| Hardness (as CaCO3)                    | SM2340B                          | 8B05111            | 1.0            | 1.0                | 160              | 1 | 02/05/08             | 02/06/08             |                    |

LEVEL IV



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 010

Report Number: IRB0153

Sampled: 02/03/08

Received: 02/03/08

## DISSOLVED METALS

| Analyte                            | Method                | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|------------------------------------|-----------------------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: IRB0153-01 (Outfall 010 | - Water) - cont.      |         |              |                    |                  |                    |                   |                  |                    |
| Reporting Units: ug/l              |                       |         |              |                    |                  |                    |                   |                  |                    |
| Aluminum U                         | EPA 200.7-Diss        | 8B05111 | 40           | 50                 | ND               | 1                  | 02/05/08          | 02/06/08         |                    |
| Antimony J/DNQ XIII                | <b>EPA 200.8-Diss</b> | 8B04144 | 0.20         | 2.0                | 0.34             | 1                  | 02/04/08          | 02/05/08         | J                  |
| Arsenic                            | <b>EPA 200.7-Diss</b> | 8B05111 | 7.0          | 10                 | ND               | 1                  | 02/05/08          | 02/06/08         |                    |
| Beryllium ,                        | EPA 200.7-Diss        | 8B05111 | 0.90         | 2.0                | ND               | 1                  | 02/05/08          | 02/06/08         |                    |
| Cadmium                            | <b>EPA 200.8-Diss</b> | 8B04144 | 0.11         | 1.0                | ND               | 1                  | 02/04/08          | 02/05/08         |                    |
| Chromium                           | <b>EPA 200.7-Diss</b> | 8B05111 | 2.0          | 5.0                | ND               | 1                  | 02/05/08          | 02/06/08         |                    |
| Copper                             | <b>EPA 200.8-Diss</b> | 8B04144 | 0.75         | 2.0                | ND               | 1                  | 02/04/08          | 02/05/08         |                    |
| Lead UT (XIII                      | EPA 200.8-Diss        | 8B04144 | 0.30         | 1.0                | ND               | 1                  | 02/04/08          | 02/05/08         |                    |
| Nickel ()                          | EPA 200.7-Diss        | 8B05111 | 2.0          | 10                 | ND               | 1                  | 02/05/08          | 02/06/08         |                    |
| Selenium                           | EPA 200.7-Diss        | 8B05111 | 8.0          | 10                 | ND               | 1                  | 02/05/08          | 02/06/08         |                    |
| Silver $\sqrt{}$                   | EPA 200.7-Diss        | 8B05111 | 6.0          | 10                 | ND               | 1                  | 02/05/08          | 02/06/08         |                    |
| Thallium OJ/*III                   | <b>EPA 200.8-Diss</b> | 8B04144 | 0.20         | 1.0                | ND               | 1                  | 02/04/08          | 02/05/08         |                    |
| Vanadium ∪                         | EPA 200.7-Diss        | 8B05111 | 3.0          | 10                 | ND               | 1                  | 02/05/08          | 02/06/08         |                    |
| Zinc J/DNQ                         | EPA 200.7-Diss        | 8B05111 | 6.0          | 20                 | 11               | 1                  | 02/05/08          | 02/06/08         | J                  |

LEVEL IV

**TestAmerica Irvine** 



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 010

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Report Number: IRB0153

Sampled: 02/03/08

Received: 02/03/08

Attention: Bronwyn Kelly

## Metals by EPA 200 Series Methods

| Analyte            |                  | Method           | Batch   | MDL<br>Limit | Reporting<br>Limit | Sample<br>Result | Dilution<br>Factor | Date<br>Extracted | Date<br>Analyzed | Data<br>Qualifiers |
|--------------------|------------------|------------------|---------|--------------|--------------------|------------------|--------------------|-------------------|------------------|--------------------|
| Sample ID: IRB0153 | -01 (Outfall 010 | - Water) - cont. |         |              |                    |                  |                    |                   |                  |                    |
| Reporting Units:   | ug/l             |                  |         |              |                    |                  |                    |                   |                  |                    |
| Mercury, Dissolved | $\cup$           | EPA 245.1        | W8B0147 | 0.050        | 0.20               | ND               | 1                  | 02/05/08          | 02/07/08         |                    |
| Mercury, Total     | V                | EPA 245.1        | W8B0147 | 0.050        | 0.20               | ND               | 1                  | 02/05/08          | 02/07/08         |                    |

LEVEC IV



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 010

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Report Number: IRB0153

Sampled: 02/03/08

Received: 02/03/08

Attention: Bronwyn Kelly

## ORGANIC COMPOUNDS BY GC/MS (EPA 525.2)

| Method           | Batch                                                 | MDL<br>Limit                                                          | Reporting<br>Limit                                                                              | Sample<br>Result                                                                                                | Dilution<br>Factor                                                                                                                                                                                                                                                                                        | Date<br>Extracted                                                                                                                                                                                                                                                                                                                            | Date<br>Analyzed                                                                                                                                                                                                                                                                                                                                                                                 | Data<br>Qualifiers                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------|-------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - Water) - cont. |                                                       |                                                                       |                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                  | P, pH                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  |                                                       |                                                                       |                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| EPA 525.2        | C8B0516                                               | 0.10                                                                  | 1.0                                                                                             | ND                                                                                                              | 1                                                                                                                                                                                                                                                                                                         | 02/05/08                                                                                                                                                                                                                                                                                                                                     | 02/07/08                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| EPA 525.2        | C8B0516                                               | 0.24                                                                  | 0.25                                                                                            | ND                                                                                                              | 1                                                                                                                                                                                                                                                                                                         | 02/05/08                                                                                                                                                                                                                                                                                                                                     | 02/07/08                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ne (70-130%)     |                                                       |                                                                       |                                                                                                 | 91%                                                                                                             |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0%)              |                                                       |                                                                       |                                                                                                 | 108 %                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |                                                       |                                                                       |                                                                                                 | 95 %                                                                                                            |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  | - Water) - cont.  EPA 525.2  EPA 525.2  ine (70-130%) | - Water) - cont.  EPA 525.2 C8B0516  EPA 525.2 C8B0516  are (70-130%) | Method Batch Limit - Water) - cont.  EPA 525.2 C8B0516 0.10 EPA 525.2 C8B0516 0.24 ne (70-130%) | Method Batch Limit Limit  - Water) - cont.  EPA 525.2 C8B0516 0.10 1.0 EPA 525.2 C8B0516 0.24 0.25 ae (70-130%) | Method         Batch         Limit         Limit         Result           - Water) - cont.         EPA 525.2         C8B0516         0.10         1.0         ND           EPA 525.2         C8B0516         0.24         0.25         ND           ne (70-130%)         91 %           0%)         108 % | Method         Batch         Limit         Limit         Result         Factor           - Water) - cont.         EPA 525.2         C8B0516         0.10         1.0         ND         1           EPA 525.2         C8B0516         0.24         0.25         ND         1           ne (70-130%)         91 %           0%)         108 % | Method         Batch         Limit         Limit         Result         Factor         Extracted           - Water) - cont.         EPA 525.2         C8B0516         0.10         1.0         ND         1         02/05/08           EPA 525.2         C8B0516         0.24         0.25         ND         1         02/05/08           ne (70-130%)         91 %           0%)         108 % | Method         Batch         Limit         Limit         Result         Factor         Extracted         Analyzed           - Water) - cont.         EPA 525.2         C8B0516         0.10         1.0         ND         1         02/05/08         02/07/08           EPA 525.2         C8B0516         0.24         0.25         ND         1         02/05/08         02/07/08           ne (70-130%)         91 %           0%)         108 % |



**TestAmerica Irvine** 

## Eberline Services

## ANALYSIS RESULTS

| Client     | Lab       |                    |            |                   |       |           |
|------------|-----------|--------------------|------------|-------------------|-------|-----------|
| Sample ID  | Sample ID | Collected Analyzed | Nuclide    | Results + 20      | Units | MDA       |
| outfall or | 6         |                    |            |                   |       | 1/-       |
| IRB0153-01 | 8601-001  | 02/03/08 02/26/08  | GrossAlpha | $0.302 \pm 0.73$  | pCi/L | 1.2 UJ/R  |
|            |           | 02/26/08           | Gross Beta | $5.04 \pm 0.94$   | pCi/L | 1.4       |
|            |           | 02/27/08           | Ra-228     | $0.157 \pm 0.20$  | pCi/L | 0.53 UJ/H |
|            |           | 02/25/08           | K-40 (G)   | υ                 | pCi/L | 19        |
|            |           | 02/25/08           | Cs-137 (G) | σ                 | pCi/L | 0.90 🗸    |
|            |           | 02/29/08           | H-3        | -51.6 ± 88        | pCi/L | 150 U     |
|            |           | 03/04/08           | Ra-226     | $0.266 \pm 0.39$  | pCi/L | 0.66 UJ/H |
|            |           | 02/18/08           | Sr-90      | $0.005 \pm 0.36$  | pCi/L | 0.84      |
|            |           | 02/26/08           | Total U    | $0.386 \pm 0.043$ | pCi/L | 0.022 J/H |

LEVEL IV

Certified by Report Date 04/02/08
Page 1