APPENDIX G

Section 5

Outfall 001, February 24, 2008

MECX Data Validation Reports

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IRB2399

Prepared by

MEC^x, LLC 12269 East Vassar Drive Aurora, CO 80014 DATA VALIDATION REPORT Project: SSFL NPDES SDG: IRB2399

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: IRB2399
Project Manager: B. Kelly

Matrix: Water QC Level: IV

No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 001	IRB2399-01	30309-001, 8022634-01, 8613- 001	Water	02/24/08 1045	120.1, 160.2, 160.5, 180.1, 200.7, 200.8, 245.1, 900.0, 901.1, 903.0, 904.0, 905.0, 906.0, 1613, ASTM D-5174, SM2340-B

II. Sample Management

No anomalies were observed regarding sample management. The sample was received at Weck within the temperature limits of 4°C ±2°C. The samples were received at TestAmerica-Irvine and Vista below the temperature limit; however, the samples were not noted to be damaged or frozen. Eberline did not provide temperature information; however, radiological samples are not required to be chilled. According to the case narrative for this SDG, the samples were received intact at all laboratories. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine, Eberline, and Weck, custody seals were not required. Custody seals were intact upon arrival at Vista. If necessary, the client ID was added to the sample result summary by the reviewer.

1

Data Qualifier Reference Table

Qualifie	organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

DATA VALIDATION REPORT Project: SSFL NPDES SDG: IRB2399

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
E	Not applicable.	Duplicates showed poor agreement.
1	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

DATA VALIDATION REPORT Project: SSFL NPDES SDG: IRB2399

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
* , *	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: April 7, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - OC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had no target compound detects above the EDL.

 Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHODS 200.7, 200.8, 245.1—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: April 1, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.7, 200.8, and 245.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding times, 6 months for metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤0.1 amu and ≤0.9 amu at 10% peak height.
- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP-MS

metals and 85-115% for mercury. All CRI/CRA and check standard recoveries were within the control limits of 70-130%.

- Blanks: Selenium was detected in a CCB bracketing the total metals analysis at 0.513 µg/L; therefore, total selenium detected in the sample was qualified as an estimated nondetect, "UJ." There were no other applicable detects in the method blanks or CCBs.
- Interference Check Samples: ICSA/B analyses were performed in association with all analyses except total antimony. Recoveries were within the method-established control limits. Most analytes were reported in the ICSA solutions. No 6010 analytes required qualification as the concentrations of the interferents were not significant. For the 6020 analytes, the reviewer was not able to ascertain if the detections were indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the sample in this SDG for the total 6020 metals. The recoveries and RPDs were within the laboratoryestablished control limits. Mercury method accuracy was evaluated based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. The bracketing CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on
 the sample result summary were verified against the raw data. No transcription errors or
 calculation errors were noted. Detects reported below the reporting limit were qualified as
 estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit.
 Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

DATA VALIDATION REPORT Project: SSFL NPDES SDG: IRB2399

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks Date Reviewed: April 2, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The tritium sample was analyzed within 180 days of collection. Aliquots
 for gross alpha and gross beta were prepared within the five-day analytical holding time
 for unpreserved samples. Aliquots for radium-226, radium-228, strontium-90, total
 uranium, and gamma spectroscopy were prepared beyond the five-day holding time for
 unpreserved samples; therefore, results for these analytes were qualified as estimated,
 "J," for detects and, "UJ," for nondetects.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, gross alpha detected in the sample was qualified as an estimated detect, "J." The gross beta detector efficiency was greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. The tritium detector efficiency for the sample was at least 20% and was considered acceptable. The strontium chemical yield was at least 70% and was considered acceptable. The strontium and radium-226 continuing calibration results were within the laboratory control limits. The radium-228 tracer, yttrium oxalate, yields were greater than 70%. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: There were no analytes detected in the method blanks.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample results and MDAs reported on the sample result form were

verified against the raw data and no calculation or transcription errors were noted. Reported nondetects are valid to the MDA.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

D. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks Date Reviewed: April 3, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Methods 120.1, 160.2, 160.5, 180.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: Analytical holding times, 24 hours for conductivity, 48 hours for settleable solids and turbidity, and seven days for TSS, were met.
- Calibration: The conductivity and turbidity check standard recoveries were acceptable.
 The TSS balance calibration logs were acceptable. Calibration is not applicable to settleable solids.
- Blanks: Turbidity was detected in the method blank but not at a concentration sufficient to qualify the site samples. Method blanks and CCBs had no other detects.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits. The LCS is not applicable to settleable solids or turbidity.
- Laboratory Duplicates: No laboratory duplicate analyses were performed for the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. For the applicable methods, method accuracy was evaluated based on the LCS results.
- Sample Result Verification: Review is not applicable at a Level V validation. Nondetects are valid to the reporting limit. Turbidity was reported from a 5x dilution.

 Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- o Field Duplicates: There were no field duplicate samples identified for this SDG.

_	Client Data			Sample Data		Laboratory Data				
	Name: Test	Test America-Irvine, CA		Matrix:	Aqueous	Lab Sample:	30309-001	Date Received:	ived:	26-Feb-08
	llected:	24-Feb-08 1200		Sample Size:	1.02 L	QC Batch No.: Date Analyzed DB-5:	9997 11-Mar-08	Date Extracted: Date Analyzed I	Date Extracted: Date Analyzed DB-225:	9-Mar-08 NA
	Analyte	Conc. (ug/L)	DL a	EMPCb	Qualifiers	Labeled Standard	dard	%R I	rcr-ncrq	Qualifiers
	2,3,7,8-TCDD	2	0.000000521	21		IS 13C-2,3,7,8-TCDD	DD	78.5	25-164	
	1,2,3,7,8-PeCDD	R	0.00000110	0		13C-1,2,3,7,8-PeCDD	есрр	72.1	25-181	
	1,2,3,4,7,8-HxCDD	8	0:00000226	90		13C-1,2,3,4,7,8-HxCDD	-HxCDD	0.79	32-141	
	1,2,3,6,7,8-HxCDD	Q.	0.00000230	10		13C-1,2,3,6,7,8-HxCDD	-HxCDD	71.9	28-130	
_	1,2,3,7,8,9-HxCDD	R	0.00000218	∞		13C-12,3,4,6,7,8-HpCDD	,8-нрСDD	72.0	23 - 140	
DNG	1,2,3,4,6,7,8-HpCDD	0.0000107	Action to Control Security	Section of the second	J.	13C-0CDD	A STATE OF THE PROPERTY OF THE	59.7	17-157	
	OCDD	0.0000952		THE STATE OF THE		13C-2,3,7,8-TCDF	:DF	76.1	24-169	
7	2,3,7,8-TCDF	2	0.00000105	5	man Training and the second	13C-1,2,3,7,8-PeCDF	PeCDF	64.4	24 - 185	
J	1,2,3,7,8-PeCDF	2	0.00000116	9	STATE OF THE PARTY	13C-23,4,7,8-PeCDF	PeCDF	62.9	21-178	
12	2,3,4,7,8-PeCDF	8	0.00000132	12		13C-1,2,3,4,7,8-HxCDI	-HxCDF	4.49	26-152	
-107.00	1,2,3,4,7,8-HxCDF	8	0.00000145			13C-1,2,3,6,7,8-HxCDF	-HxCDF	72.2	26-123	
	1,2,3,6,7,8-HxCDF	QN.	0.00000147	17		13C-2,3,4,6,7,8-HxCDF	-HxCDF	70.4	28-136	
-1 -1 h	2,3,4,6,7,8-HxCDF	8	0.000000775	775		13C-12,3,7,8,9-HxCDF	-HxCDF	9.07	29-147	
-	1,2,3,7,8,9-HxCDF	ND	0.00000098	181	100	13C-1,2,3,4,6,7,8-HpCDF	,8-HpCDF	66.4	28 - 143	
DING	1,2,3,4,6,7,8-HpCDF	0.00000228		を確しない		13C-1,2,3,4,7,8,9-HpCDF	,9-нрСDF	69.5	26-138	
3	1,2,3,4,7,8,9-HpCDF	ON.	0.00000082	320	Action of the party of the part		1000	63.1	17-157	
STANG	OCDF	0.00000541				CRS 37CI-2,3,7,8-TCDD	CIDD	11.5	35-197	
	Totals					Footnotes				
7	Total TCDD	ND	0.0000010	00		a. Sample specific estimated detection limit.	ed detection limit.			
	Total PeCDD	2	0.00000205	25		b. Estimated maximum possible concentration	ssible concentration.			
-	Total HxCDD	2	0.00000413	3	A VOTA BETTER TO THE PERSON OF	c. Method detection limit.				
	Total HpCDD	0.0000221				d. Lower control limit - upper control limit	oper control limit.	1970		
3:	Total TCDF	2	0.00000103	15	1274, 1640,094, 1840,000	The second secon	200 14 (See 1. 100 to 274 (See 1. 100)	The "The paper of C - 26	** 02 W 200 CAN 20 CAN	
2,	Total PeCDF	2	0.00000170	0,	新兴区区东					
567	Total HxCDF	0.00000118		THE PROPERTY OF	THE WASH THE				おが保証される	Min the state of the

Analyst: MAS

Approved By: Martha M. Maier 14-Mar-2008 13:05

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 001

618 Michillinda Avenue, Suite 200

Sampled: 02/24/08 Received: 02/25/08 Report Number: IRB2399

Attention: Bronwyn Kelly

Arcadia, CA 91007

METALS

		•							
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2399-01 (Outfall 001 -	Water) - cont.								
Reporting Units: mg/l									
Iron 🦎	EPA 200.7	8B25079	0.015	0.040	3.5	1	02/25/08	02/25/08	
Sample ID: IRB2399-01 (Outfall 001 -	Water)								
Reporting Units: ug/l									
Cadmium ()	EPA 200.8	8B25070	0.11	1.0	ND	1	02/25/08	02/25/08	
Copper	EPA 200.8	8B25070	0.75	2.0	3.9	1	02/25/08	02/25/08	
Lead	EPA 200.8	8B25070	0.30	1.0	1.6	1	02/25/08	02/25/08	
Manganese	EPA 200.7	8B25079	7.0	20	45	1	02/25/08	02/25/08	
Selenium UJ/B	EPA 200.8	8B25070	0.30	2.0	0.60	1	02/25/08	02/25/08	J
Zinc J/DNQ *	EPA 200.7	8B25079	6.0	20	19	1	02/25/08	02/25/08	J

en alilos

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Report Number: IRB2399

Sampled: 02/24/08

Received: 02/25/08

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2399-01 (Outfall 001 - V	Water) - cont.								
Reporting Units: mg/l									
Iron 📉	EPA 200.7-Diss	8B25122	0.015	0.040	0.14	1	02/25/08	02/26/08	
Sample ID: IRB2399-01 (Outfall 001 - 1	Water)								
Reporting Units: ug/l									
Cadmium U	EPA 200.8-Diss	8B25123	0.11	1.0	ND	1	02/25/08	02/26/08	
Copper JIDNQ	EPA 200.8-Diss	8B25123	0.75	2.0	1.8	1	02/25/08	02/26/08	J
Lead ()	EPA 200.8-Diss	8B25123	0.30	1.0	ND	1	02/25/08	02/26/08	
Manganese X J/DNQ	EPA 200.7-Diss	8B25122	7.0	20	10	1	02/25/08	02/26/08	J
Selenium	EPA 200.8-Diss	8B25123	0.30	2.0	ND	1	02/25/08	02/26/08	
Zinc 💥 U	EPA 200.7-Diss	8B25122	6.0	20	ND	1	02/25/08	02/26/08	

LEVEL IU

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 001

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Report Number: IRB2399

Sampled: 02/24/08

Received: 02/25/08

Attention: Bronwyn Kelly

Metals by EPA 200 Series Methods

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2399-01 (Outfa	dl 001 - Water) - cont.								
Reporting Units: ug/l									
Mercury, Dissolved (EPA 245.1	W8B0982	0.050	0.20	ND	1	02/26/08	02/27/08	
Mercury, Total	EPA 245.1	W8B0982	0.050	0.20	ND	1	02/26/08	02/27/08	

LEVEL IV

TestAmerica Irvine

Eberline Services

ANALYSIS RESULTS

SDG 8613	Client TA IRVINE
Work Order R802172-01	Contract PROJECT# IRB2399
Received Date 02/26/08	Matrix WATER

Client	Lab						
Sample ID	Sample ID	Collected	Analyzed	Nuclide	Results ± 2σ	Units	MDA
Outfall 00	8613-001	02/24/08	03/16/08	GrossAlpha	3.00 ± 0.96	pCi/L	1.0 J/R
			03/16/08	Gross Beta	4.12 ± 0.66	pCi/L	0.92
			03/10/08	Ra-228	0.132 ± 0.19	pCi/L	0.46 UJ/th
			03/12/08	K-40 (G)	Ω	pCi/L	48
			03/12/08	Cs-137 (G)	σ	pCi/L	1.9 ₩
			03/14/08	H-3	24.5 ± 88	pCi/L	150 U
			03/14/08	Ra-226	0.262 ± 0.43	pCi/L	0.75 JJ/H
			03/10/08	Sr-90	-0.085 ± 0.31	pCi/L	0.76 ₩
			03/05/08	Total U	0.510 ± 0.058	pCi/L	0.023 J/H

LEVEL IV

Certified by Report Date 03/20/08
Page 1

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 001

Report Number: IRB2399

Sampled: 02/24/08

Received: 02/25/08

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2399-01 (Outfall 001 - V	Vater) - cont.								
Reporting Units: mg/l									
Hexane Extractable Material (Oil & 💥	EPA 1664A	8C04046	1.3	4.7	1.9	1	03/04/08	03/04/08	J
Grease)									
Ammonia-N (Distilled)	EPA 350.2	8B26101	0.30	0.50	ND	1	02/26/08	02/26/08	
Biochemical Oxygen Demand	EPA 405.1	8B25101	0.59	2.0	1.7	1	02/25/08	03/01/08	J
Chloride	EPA 300.0	8B25042	0.25	0.50	16	1	02/25/08	02/25/08	
Nitrate-N	EPA 300.0	8B25042	0.060	0.11	0.51	1	02/25/08	02/25/08	
Nitrite-N	EPA 300.0	8B25042	0.090	0.15	ND	1	02/25/08	02/25/08	
Nitrate/Nitrite-N	EPA 300.0	8B25042	0.15	0.26	0.51	1	02/25/08	02/25/08	
Sulfate	EPA 300.0	8B25042	0.20	0.50	53	1	02/25/08	02/25/08	M-3
Surfactants (MBAS)	SM5540-C	8B25103	0.044	0.10	ND	1	02/25/08	02/25/08	
Total Dissolved Solids	SM2540C	8B27119	10	10	240	1	02/27/08	02/27/08	
Total Suspended Solids	EPA 160.2	8B28123	10	10	38	1	02/28/08	02/28/08	

* Analysis not validated

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

ıg

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001

Report Number: IRB2399

Sampled: 02/24/08

Received: 02/25/08

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2399-01 (Outfall 001 - W	ater) - cont.								
Reporting Units: ml/l/hr									
Total Settleable Solids	EPA 160.5	8B26062	0.10	0.10	0.20	1	02/26/08	02/26/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Report Number: IRB2399

Sampled: 02/24/08

Received: 02/25/08

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor		Date Analyzed	Data Qualifiers
Sample ID: IRB2399-01 (Outfall 001 -	- Water) - cont.								
Reporting Units: NTU									
Turbidity	EPA 180.1	8B26063	0.20	5.0	76	5	02/26/08	02/26/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 001

618 Michillinda Avenue, Suite 200

Attention: Bronwyn Kelly

Sampled: 02/24/08

Arcadia, CA 91007

Report Number: IRB2399

Received: 02/25/08

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2399-01 (Outfall 001 -	Water) - cont.								
Reporting Units: umhos/cm									
Specific Conductance	EPA 120.1	8B27115	1.0	1.0	310	1	02/27/08	02/27/08	

APPENDIX G

Section 6

Outfall 001, February 24, 2008 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Routine Outfall 001

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 02/24/08

Received: 02/25/08 Issued: 03/14/08 15:48

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at 1°C, on ice and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica

Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: Results that fall between the MDL and RL are 'J' flagged.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID	CLIENT ID	MATRIX
IRB2399-01	Outfall 001	Water
IRB2399-02	Trip Blanks	Water

Reviewed By:

TestAmerica Irvine

Joseph Dock

MWH-Pasadena/Boeing

Project ID: Routine Outfall 001

618 Michillinda Avenue, Suite 200

Sampled: 02/24/08 Arcadia, CA 91007 Report Number: IRB2399 Received: 02/25/08

Attention: Bronwyn Kelly

PURGEABLES BY GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2399-01 (Outfall 001 - Wa	iter)								
Reporting Units: ug/l	,								
1,1,1-Trichloroethane	EPA 624	8B27001	0.30	0.50	ND	1	02/27/08	02/27/08	
1,1,2-Trichloroethane	EPA 624	8B27001	0.30	0.50	ND	1	02/27/08	02/27/08	
1,1-Dichloroethane	EPA 624	8B27001	0.27	0.50	ND	1	02/27/08	02/27/08	
1,1-Dichloroethene	EPA 624	8B27001	0.42	0.50	ND	1	02/27/08	02/27/08	
1,2-Dichloroethane	EPA 624	8B27001	0.28	0.50	ND	1	02/27/08	02/27/08	
Benzene	EPA 624	8B27001	0.28	0.50	ND	1	02/27/08	02/27/08	
Carbon tetrachloride	EPA 624	8B27001	0.28	0.50	ND	1	02/27/08	02/27/08	
Chloroform	EPA 624	8B27001	0.33	0.50	ND	1	02/27/08	02/27/08	
Ethylbenzene	EPA 624	8B27001	0.25	0.50	ND	1	02/27/08	02/27/08	
Tetrachloroethene	EPA 624	8B27001	0.32	0.50	ND	1	02/27/08	02/27/08	
Toluene	EPA 624	8B27001	0.36	0.50	ND	1	02/27/08	02/27/08	
Trichloroethene	EPA 624	8B27001	0.26	0.50	ND	1	02/27/08	02/27/08	
Trichlorofluoromethane	EPA 624	8B27001	0.34	0.50	ND	1	02/27/08	02/27/08	
Trichlorotrifluoroethane (Freon 113)	EPA 624	8B27001	0.50	5.0	ND	1	02/27/08	02/27/08	
Vinyl chloride	EPA 624	8B27001	0.30	0.50	ND	1	02/27/08	02/27/08	
Xylenes, Total	EPA 624	8B27001	0.90	1.5	ND	1	02/27/08	02/27/08	
Surrogate: Dibromofluoromethane (80-120	%)				95 %				
Surrogate: Toluene-d8 (80-120%)					102 %				
Surrogate: 4-Bromofluorobenzene (80-1209	%)				89 %				
Sample ID: IRB2399-02 (Trip Blanks - W	ater)								
Reporting Units: ug/l									
1,1,1-Trichloroethane	EPA 624	8B27001	0.30	0.50	ND	1	02/27/08	02/27/08	
1,1,2-Trichloroethane	EPA 624	8B27001	0.30	0.50	ND	1	02/27/08	02/27/08	
1,1-Dichloroethane	EPA 624	8B27001	0.27	0.50	ND	1	02/27/08	02/27/08	
1,1-Dichloroethene	EPA 624	8B27001	0.42	0.50	ND	1	02/27/08	02/27/08	
1,2-Dichloroethane	EPA 624	8B27001	0.28	0.50	ND	1	02/27/08	02/27/08	
Benzene	EPA 624	8B27001	0.28	0.50	ND	1	02/27/08	02/27/08	
Carbon tetrachloride	EPA 624	8B27001	0.28	0.50	ND	1	02/27/08	02/27/08	
Chloroform	EPA 624	8B27001	0.33	0.50	ND	1	02/27/08	02/27/08	
Ethylbenzene	EPA 624	8B27001	0.25	0.50	ND	1	02/27/08	02/27/08	
Tetrachloroethene	EPA 624	8B27001	0.32	0.50	ND	1	02/27/08	02/27/08	
Toluene	EPA 624	8B27001	0.36	0.50	ND	1	02/27/08	02/27/08	
Trichloroethene	EPA 624	8B27001	0.26	0.50	ND	1	02/27/08	02/27/08	
Trichlorofluoromethane	EPA 624	8B27001	0.34	0.50	ND	1	02/27/08	02/27/08	
Trichlorotrifluoroethane (Freon 113)	EPA 624	8B27001	0.50	5.0	ND	1	02/27/08	02/27/08	
Vinyl chloride	EPA 624	8B27001	0.30	0.50	ND	1	02/27/08	02/27/08	
Xylenes, Total	EPA 624	8B27001	0.90	1.5	ND	1	02/27/08	02/27/08	
Surrogate: Dibromofluoromethane (80-120	%)				95 %				
Surrogate: Toluene-d8 (80-120%)					99 %				
Surrogate: 4-Bromofluorobenzene (80-1209)	%)				88 %				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 001

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200

Sampled: 02/24/08 Arcadia, CA 91007 Report Number: IRB2399 Received: 02/25/08

Attention: Bronwyn Kelly

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2399-01 (Outfall 001 - Wate	er)								
Reporting Units: ug/l									
Bis(2-ethylhexyl)phthalate	EPA 625	8B26048	1.6	4.7	ND	0.943	02/26/08	02/28/08	
2,4-Dinitrotoluene	EPA 625	8B26048	0.19	8.5	ND	0.943	02/26/08	02/28/08	
N-Nitrosodimethylamine	EPA 625	8B26048	0.094	7.5	ND	0.943	02/26/08	02/28/08	
Pentachlorophenol	EPA 625	8B26048	0.094	7.5	ND	0.943	02/26/08	02/28/08	
2,4,6-Trichlorophenol	EPA 625	8B26048	0.094	5.7	ND	0.943	02/26/08	02/28/08	
Surrogate: 2-Fluorophenol (30-120%)					74 %				
Surrogate: Phenol-d6 (35-120%)					73 %				
Surrogate: 2,4,6-Tribromophenol (40-120%)					113 %				
Surrogate: Nitrobenzene-d5 (45-120%)					85 %				
Surrogate: 2-Fluorobiphenyl (50-120%)					87 %				
Surrogate: Terphenyl-d14 (50-125%)					104 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 001

618 Michillinda Avenue, Suite 200

Sampled: 02/24/08 Report Number: IRB2399 Received: 02/25/08

Arcadia, CA 91007 Attention: Bronwyn Kelly

ORGANOCHLORINE PESTICIDES (EPA 608)

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IRB2399-01 (Outfall 001 - Water	er) - cont.								
Reporting Units: ug/l									
alpha-BHC	EPA 608	8B25062	0.0024	0.0094	ND	0.943	02/25/08	02/26/08	
Surrogate: Decachlorobiphenyl (45-120%)					79 %				
Surrogate: Tetrachloro-m-xylene (35-115%)					77 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 001

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007
Report Number: IRB2399
Sampled: 02/24/08
Received: 02/25/08

Attention: Bronwyn Kelly

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2399-01 (Outfall 001 -	Water) - cont.								
Reporting Units: mg/l									
Iron	EPA 200.7	8B25079	0.015	0.040	3.5	1	02/25/08	02/25/08	
Sample ID: IRB2399-01 (Outfall 001 -	Water)								
Reporting Units: ug/l									
Cadmium	EPA 200.8	8B25070	0.11	1.0	ND	1	02/25/08	02/25/08	
Copper	EPA 200.8	8B25070	0.75	2.0	3.9	1	02/25/08	02/25/08	
Lead	EPA 200.8	8B25070	0.30	1.0	1.6	1	02/25/08	02/25/08	
Manganese	EPA 200.7	8B25079	7.0	20	45	1	02/25/08	02/25/08	
Selenium	EPA 200.8	8B25070	0.30	2.0	0.60	1	02/25/08	02/25/08	J
Zinc	EPA 200.7	8B25079	6.0	20	19	1	02/25/08	02/25/08	J

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/24/08

MWH-Pasadena/Boeing Project ID: Routine Outfall 001

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IRB2399 Received: 02/25/08

Attention: Bronwyn Kelly

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2399-01 (Outfall 001	- Water) - cont.								
Reporting Units: mg/l									
Iron	EPA 200.7-Diss	8B25122	0.015	0.040	0.14	1	02/25/08	02/26/08	
Sample ID: IRB2399-01 (Outfall 001	- Water)								
Reporting Units: ug/l									
Cadmium	EPA 200.8-Diss	8B25123	0.11	1.0	ND	1	02/25/08	02/26/08	
Copper	EPA 200.8-Diss	8B25123	0.75	2.0	1.8	1	02/25/08	02/26/08	J
Lead	EPA 200.8-Diss	8B25123	0.30	1.0	ND	1	02/25/08	02/26/08	
Manganese	EPA 200.7-Diss	8B25122	7.0	20	10	1	02/25/08	02/26/08	J
Selenium	EPA 200.8-Diss	8B25123	0.30	2.0	ND	1	02/25/08	02/26/08	
Zinc	EPA 200.7-Diss	8B25122	6.0	20	ND	1	02/25/08	02/26/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 001

Sampled: 02/24/08

Report Number: IRB2399

Received: 02/25/08

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2399-01 (Outfall 001 -	- Water) - cont.								
Reporting Units: mg/l									
Hexane Extractable Material (Oil &	EPA 1664A	8C04046	1.3	4.7	1.9	1	03/04/08	03/04/08	J
Grease)									
Ammonia-N (Distilled)	EPA 350.2	8B26101	0.30	0.50	ND	1	02/26/08	02/26/08	
Biochemical Oxygen Demand	EPA 405.1	8B25101	0.59	2.0	1.7	1	02/25/08	03/01/08	J
Chloride	EPA 300.0	8B25042	0.25	0.50	16	1	02/25/08	02/25/08	
Nitrate-N	EPA 300.0	8B25042	0.060	0.11	0.51	1	02/25/08	02/25/08	
Nitrite-N	EPA 300.0	8B25042	0.090	0.15	ND	1	02/25/08	02/25/08	
Nitrate/Nitrite-N	EPA 300.0	8B25042	0.15	0.26	0.51	1	02/25/08	02/25/08	
Sulfate	EPA 300.0	8B25042	0.20	0.50	53	1	02/25/08	02/25/08	M-3
Surfactants (MBAS)	SM5540-C	8B25103	0.044	0.10	ND	1	02/25/08	02/25/08	
Total Dissolved Solids	SM2540C	8B27119	10	10	240	1	02/27/08	02/27/08	
Total Suspended Solids	EPA 160.2	8B28123	10	10	38	1	02/28/08	02/28/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001

Sampled: 02/24/08

Report Number: IRB2399

Received: 02/25/08

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2399-01 (Outfall 001 - Wat Reporting Units: ml/l/hr	ter) - cont.								
Total Settleable Solids	EPA 160.5	8B26062	0.10	0.10	0.20	1	02/26/08	02/26/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001

Sampled: 02/24/08

Report Number: IRB2399

Received: 02/25/08

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2399-01 (Outfall 001 - Wat Reporting Units: NTU	ter) - cont.								
Turbidity	EPA 180.1	8B26063	0.20	5.0	76	5	02/26/08	02/26/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/24/08

MWH-Pasadena/Boeing

Project ID: Routine Outfall 001

618 Michillinda Avenue, Suite 200

Report Number: IRB2399 Received: 02/25/08

Attention: Bronwyn Kelly

Arcadia, CA 91007

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2399-01 (Outfall 001 - V	Vater) - cont.								
Reporting Units: ug/l									
Total Cyanide	EPA 335.2	8B26098	2.2	5.0	ND	1	02/26/08	02/26/08	
Perchlorate	EPA 314.0	8B25050	1.5	4.0	ND	1	02/25/08	02/25/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001

Sampled: 02/24/08

Report Number: IRB2399

Received: 02/25/08

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2399-01 (Outfall 001 - Water) - cont.									
Reporting Units: umhos/cm									
Specific Conductance	EPA 120.1	8B27115	1.0	1.0	310	1	02/27/08	02/27/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 001

Sampled: 02/24/08

Report Number: IRB2399

Received: 02/25/08

Metals by EPA 200 Series Methods

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2399-01 (Outfall 001 - V	Water) - cont.								
Mercury, Dissolved Mercury, Total	EPA 245.1 EPA 245.1	W8B0982 W8B0982	0.050 0.050	0.20 0.20	ND ND	1 1	02/26/08 02/26/08	02/27/08 02/27/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001

Sampled: 02/24/08

Report Number: IRB2399 Received: 02/25/08

SHORT HOLD TIME DETAIL REPORT

Sample ID: Outfall 001 (IRB2399-01) - Wate	Hold Time (in days) r	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
EPA 160.5	2	02/24/2008 12:00	02/25/2008 05:20	02/26/2008 09:25	02/26/2008 09:25
EPA 180.1	2	02/24/2008 12:00	02/25/2008 05:20	02/26/2008 09:55	02/26/2008 09:55
EPA 300.0	2	02/24/2008 12:00	02/25/2008 05:20	02/25/2008 07:00	02/25/2008 08:56
EPA 405.1	2	02/24/2008 12:00	02/25/2008 05:20	02/25/2008 16:53	03/01/2008 10:00
Filtration	1	02/24/2008 12:00	02/25/2008 05:20	02/25/2008 09:45	02/25/2008 10:11
SM5540-C	2	02/24/2008 12:00	02/25/2008 05:20	02/25/2008 19:44	02/25/2008 22:16

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Report Number: IRB2399

Sampled: 02/24/08 Received: 02/25/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B27001 Extracted: 02/27											
Blank Analyzed: 02/27/2008 (8B2700	1-BLK1)										
1,1,1-Trichloroethane	ND	0.50	0.30	ug/l							
1,1,2-Trichloroethane	ND	0.50	0.30	ug/l							
1,1-Dichloroethane	ND	0.50	0.27	ug/l							
1,1-Dichloroethene	ND	0.50	0.42	ug/l							
1,2-Dichloroethane	ND	0.50	0.28	ug/l							
Benzene	ND	0.50	0.28	ug/l							
Carbon tetrachloride	ND	0.50	0.28	ug/l							
Chloroform	ND	0.50	0.33	ug/l							
Ethylbenzene	ND	0.50	0.25	ug/l							
Tetrachloroethene	ND	0.50	0.32	ug/l							
Toluene	ND	0.50	0.36	ug/l							
Trichloroethene	ND	0.50	0.26	ug/l							
Trichlorofluoromethane	ND	0.50	0.34	ug/l							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	0.50	ug/l							
Vinyl chloride	ND	0.50	0.30	ug/l							
Xylenes, Total	ND	1.5	0.90	ug/l							
Surrogate: Dibromofluoromethane	23.8			ug/l	25.0		95	80-120			
Surrogate: Toluene-d8	25.2			ug/l	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	22.2			ug/l	25.0		89	80-120			
LCS Analyzed: 02/27/2008 (8B27001-	-BS1)										
1,1,1-Trichloroethane	22.8	0.50	0.30	ug/l	25.0		91	65-135			
1,1,2-Trichloroethane	26.2	0.50	0.30	ug/l	25.0		105	70-125			
1,1-Dichloroethane	23.7	0.50	0.27	ug/l	25.0		95	70-125			
1,1-Dichloroethene	22.6	0.50	0.42	ug/l	25.0		90	70-125			
1,2-Dichloroethane	22.6	0.50	0.28	ug/l	25.0		90	60-140			
Benzene	24.8	0.50	0.28	ug/l	25.0		99	70-120			
Carbon tetrachloride	25.0	0.50	0.28	ug/l	25.0		100	65-140			
Chloroform	24.2	0.50	0.33	ug/l	25.0		97	70-130			
Ethylbenzene	25.4	0.50	0.25	ug/l	25.0		102	75-125			
Tetrachloroethene	25.6	0.50	0.32	ug/l	25.0		102	70-125			
Toluene	25.6	0.50	0.36	ug/l	25.0		102	70-120			
Trichloroethene	26.4	0.50	0.26	ug/l	25.0		106	70-125			
Trichlorofluoromethane	23.5	0.50	0.34	ug/l	25.0		94	65-145			
Vinyl chloride	23.5	0.50	0.30	ug/l	25.0		94	55-135			
Xylenes, Total	78.8	1.5	0.90	ug/l	75.0		105	70-125			
TestAmerica Irvine											

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Report Number: IRB2399

Sampled: 02/24/08 Received: 02/25/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

A l	D14	Reporting Limit	MDI	T.T	Spike	Source	0/ DEC	%REC	DDD	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B27001 Extracted: 02/27/08	_										
LCS Applying d. 02/27/2009 (9D27001 DS	1)										
LCS Analyzed: 02/27/2008 (8B27001-BS				//	25.0		0.0	00.120			
Surrogate: Dibromofluoromethane	24.6			ug/l	25.0		98	80-120 80-120			
Surrogate: Toluene-d8	25.2 23.8			ug/l	25.0 25.0		101 95	80-120 80-120			
Surrogate: 4-Bromofluorobenzene	23.8			ug/l	23.0		93	80-120			
Matrix Spike Analyzed: 02/27/2008 (8B2	7001-MS1)				Sou	rce: IRB2	2405-01				
1,1,1-Trichloroethane	20.1	0.50	0.30	ug/l	25.0	ND	80	65-140			
1,1,2-Trichloroethane	23.8	0.50	0.30	ug/l	25.0	ND	95	65-130			
1,1-Dichloroethane	20.7	0.50	0.27	ug/l	25.0	ND	83	65-130			
1,1-Dichloroethene	19.6	0.50	0.42	ug/l	25.0	ND	78	60-130			
1,2-Dichloroethane	20.8	0.50	0.28	ug/l	25.0	ND	83	60-140			
Benzene	22.3	0.50	0.28	ug/l	25.0	ND	89	65-125			
Carbon tetrachloride	22.5	0.50	0.28	ug/l	25.0	ND	90	65-140			
Chloroform	21.0	0.50	0.33	ug/l	25.0	ND	84	65-135			
Ethylbenzene	23.0	0.50	0.25	ug/l	25.0	ND	92	65-130			
Tetrachloroethene	23.4	0.50	0.32	ug/l	25.0	ND	94	65-130			
Toluene	23.4	0.50	0.36	ug/l	25.0	ND	93	70-125			
Trichloroethene	23.9	0.50	0.26	ug/l	25.0	ND	96	65-125			
Trichlorofluoromethane	20.5	0.50	0.34	ug/l	25.0	ND	82	60-145			
Vinyl chloride	20.4	0.50	0.30	ug/l	25.0	ND	81	45-140			
Xylenes, Total	71.5	1.5	0.90	ug/l	75.0	ND	95	60-130			
Surrogate: Dibromofluoromethane	23.8			ug/l	25.0		95	80-120			
Surrogate: Toluene-d8	25.2			ug/l	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	23.7			ug/l	25.0		95	80-120			
Matrix Spike Dup Analyzed: 02/27/2008	(8B27001-M	SD1)			Sou	rce: IRB2	2405-01				
1,1,1-Trichloroethane	21.6	0.50	0.30	ug/l	25.0	ND	86	65-140	7	20	
1,1,2-Trichloroethane	26.3	0.50	0.30	ug/l	25.0	ND	105	65-130	10	25	
1,1-Dichloroethane	22.7	0.50	0.27	ug/l	25.0	ND	91	65-130	9	20	
1,1-Dichloroethene	21.0	0.50	0.42	ug/l	25.0	ND	84	60-130	7	20	
1,2-Dichloroethane	22.7	0.50	0.28	ug/l	25.0	ND	91	60-140	9	20	
Benzene	23.6	0.50	0.28	ug/l	25.0	ND	95	65-125	6	20	
Carbon tetrachloride	23.9	0.50	0.28	ug/l	25.0	ND ND	96	65-140	6	25	
Chloroform	23.0	0.50	0.33	ug/l	25.0	ND ND	92	65-135	9	20	
Ethylbenzene	24.1	0.50	0.25	ug/l	25.0	ND ND	96	65-130	4	20	
Tetrachloroethene	24.3	0.50	0.32	ug/l	25.0	ND ND	97	65-130	4	20	
Toluene	24.9	0.50	0.36	ug/l	25.0	ND ND	100	70-125	7	20	
Totache	Δπ.)	0.50	0.50	ug/1	23.0	MD	100	10 123	,	20	

TestAmerica Irvine

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Tioject ID. Routine Outlan 661

Report Number: IRB2399

Sampled: 02/24/08 Received: 02/25/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B27001 Extracted: 02/27/08	_										
					_						
Matrix Spike Dup Analyzed: 02/27/2008	(8B27001-MS	D1)			Sou	rce: IRB2	2405-01				
Trichloroethene	25.0	0.50	0.26	ug/l	25.0	ND	100	65-125	4	20	
Trichlorofluoromethane	21.9	0.50	0.34	ug/l	25.0	ND	88	60-145	7	25	
Vinyl chloride	21.8	0.50	0.30	ug/l	25.0	ND	87	45-140	7	30	
Xylenes, Total	74.6	1.5	0.90	ug/l	75.0	ND	99	60-130	4	20	
Surrogate: Dibromofluoromethane	24.7			ug/l	25.0		99	80-120			
Surrogate: Toluene-d8	25.4			ug/l	25.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	23.8			ug/l	25.0		95	80-120			

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001

DD2200

Report Number: IRB2399

Sampled: 02/24/08

Received: 02/25/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B26048 Extracted: 02/2	6/08										
Blank Analyzed: 02/28/2008 (8B260-	48-BLK1)										
Bis(2-ethylhexyl)phthalate	2.06	5.0	1.7	ug/l							J
2,4-Dinitrotoluene	ND	9.0	0.20	ug/l							
N-Nitrosodimethylamine	ND	8.0	0.10	ug/l							
Pentachlorophenol	ND	8.0	0.10	ug/l							
2,4,6-Trichlorophenol	ND	6.0	0.10	ug/l							
Surrogate: 2-Fluorophenol	13.5			ug/l	20.0		68	30-120			
Surrogate: Phenol-d6	11.1			ug/l	20.0		56	35-120			
Surrogate: 2,4,6-Tribromophenol	18.2			ug/l	20.0		91	40-120			
Surrogate: Nitrobenzene-d5	6.54			ug/l	10.0		65	45-120			
Surrogate: 2-Fluorobiphenyl	7.52			ug/l	10.0		75	50-120			
Surrogate: Terphenyl-d14	10.5			ug/l	10.0		105	50-125			
LCS Analyzed: 02/28/2008 (8B26048	3-BS1)										MNR1
Bis(2-ethylhexyl)phthalate	11.2	5.0	1.7	ug/l	10.0		112	65-130			
2,4-Dinitrotoluene	9.00	9.0	0.20	ug/l	10.0		90	65-120			
N-Nitrosodimethylamine	7.00	8.0	0.10	ug/l	10.0		70	45-120			J
Pentachlorophenol	8.94	8.0	0.10	ug/l	10.0		89	50-120			
2,4,6-Trichlorophenol	8.88	6.0	0.10	ug/l	10.0		89	55-120			
Surrogate: 2-Fluorophenol	13.3			ug/l	20.0		66	30-120			
Surrogate: Phenol-d6	13.0			ug/l	20.0		65	35-120			
Surrogate: 2,4,6-Tribromophenol	19.5			ug/l	20.0		97	40-120			
Surrogate: Nitrobenzene-d5	7.84			ug/l	10.0		78	45-120			
Surrogate: 2-Fluorobiphenyl	8.14			ug/l	10.0		81	50-120			
Surrogate: Terphenyl-d14	8.86			ug/l	10.0		89	50-125			
LCS Dup Analyzed: 02/28/2008 (8B2	26048-BSD1)										
Bis(2-ethylhexyl)phthalate	11.3	5.0	1.7	ug/l	10.0		113	65-130	1	20	
2,4-Dinitrotoluene	8.88	9.0	0.20	ug/l	10.0		89	65-120	1	20	J
N-Nitrosodimethylamine	7.08	8.0	0.10	ug/l	10.0		71	45-120	1	20	J
Pentachlorophenol	8.56	8.0	0.10	ug/l	10.0		86	50-120	4	25	
2,4,6-Trichlorophenol	8.46	6.0	0.10	ug/l	10.0		85	55-120	5	30	
Surrogate: 2-Fluorophenol	13.8			ug/l	20.0		69	30-120			
Surrogate: Phenol-d6	12.5			ug/l	20.0		62	35-120			
Surrogate: 2,4,6-Tribromophenol	19.2			ug/l	20.0		96	40-120			
Surrogate: Nitrobenzene-d5	7.28			ug/l	10.0		73	45-120			
Surrogate: 2-Fluorobiphenyl	7.74			ug/l	10.0		77	50-120			

TestAmerica Irvine

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Sampled: 02/24/08

Report Number: IRB2399

Received: 02/25/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Ratch: 8R26048 Extracted: 02/26/0	8										

LCS Dup Analyzed: 02/28/2008 (8B26048-BSD1)

Surrogate: Terphenyl-d14 10.0 50-125 ug/l

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Sar

Report Number: IRB2399

Sampled: 02/24/08 Received: 02/25/08

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B25062 Extracted: 02/25/08	<u>-</u>										
Blank Analyzed: 02/25/2008 (8B25062-B	LK1)										
alpha-BHC	ND	0.010	0.0025	ug/l							
Surrogate: Decachlorobiphenyl	0.434			ug/l	0.500		87	45-120			
Surrogate: Tetrachloro-m-xylene	0.427			ug/l	0.500		85	35-115			
LCS Analyzed: 02/25/2008 (8B25062-BS	1)										MNR1
alpha-BHC	0.442	0.010	0.0025	ug/l	0.500		88	45-115			
Surrogate: Decachlorobiphenyl	0.441			ug/l	0.500		88	45-120			
Surrogate: Tetrachloro-m-xylene	0.425			ug/l	0.500		85	35-115			
LCS Dup Analyzed: 02/25/2008 (8B2506)	2-BSD1)										
alpha-BHC	0.408	0.010	0.0025	ug/l	0.500		82	45-115	8	30	
Surrogate: Decachlorobiphenyl	0.439			ug/l	0.500		88	45-120			
Surrogate: Tetrachloro-m-xylene	0.384			ug/l	0.500		77	35-115			

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Report Number: IRB2399

Sampled: 02/24/08 Received: 02/25/08

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B25070 Extracted: 02/25/08	_										
Blank Analyzed: 02/25/2008 (8B25070-B	I K 1)										
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.73	ug/l							
Selenium	ND	2.0	0.30	ug/l							
Scientini	ND	2.0	0.50	ug/1							
LCS Analyzed: 02/25/2008 (8B25070-BS	1)										
Cadmium	84.8	1.0	0.11	ug/l	80.0		106	85-115			
Copper	82.8	2.0	0.75	ug/l	80.0		104	85-115			
Lead	88.4	1.0	0.30	ug/l	80.0		111	85-115			
Selenium	84.0	2.0	0.30	ug/l	80.0		105	85-115			
Matrix Spike Analyzed: 02/25/2008 (8B2	5070-MS1)				Sou	rce: IRB2	2399-01				
Cadmium	77.2	1.0	0.11	ug/l	80.0	ND	97	70-130			
Copper	77.8	2.0	0.75	ug/l	80.0	3.87	92	70-130			
Lead	83.3	1.0	0.30	ug/l	80.0	1.63	102	70-130			
Selenium	80.3	2.0	0.30	ug/l	80.0	0.601	100	70-130			
Matrix Spike Dup Analyzed: 02/25/2008	(8B25070-MS	5 D 1)			Sou	rce: IRB2	2399-01				
Cadmium	76.9	1.0	0.11	ug/l	80.0	ND	96	70-130	1	20	
Copper	77.2	2.0	0.75	ug/l	80.0	3.87	92	70-130	1	20	
Lead	82.4	1.0	0.30	ug/l	80.0	1.63	101	70-130	1	20	
Selenium	79.4	2.0	0.30	ug/l	80.0	0.601	98	70-130	1	20	
Batch: 8B25079 Extracted: 02/25/08											
Blank Analyzed: 02/25/2008 (8B25079-B	LK1)										
Iron	ND	0.040	0.015	mg/l							
				U							

TestAmerica Irvine

Joseph Doak Project Manager

Manganese

Zinc

ND

ND

20

20

7.0

6.0

ug/l

ug/l

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Report Number: IRB2399

Sampled: 02/24/08 Received: 02/25/08

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B25079 Extracted: 02/25/08	_										
LCS Analyzed: 02/25/2008 (8B25079-BS	1)										
Iron	0.494	0.040	0.015	mg/l	0.500		99	85-115			
Manganese	498	20	7.0	ug/l	500		100	85-115			
Zinc	478	20	6.0	ug/l	500		96	85-115			
Matrix Spike Analyzed: 02/25/2008 (8B2	5079-MS1)				Sou	rce: IRB1	1985-01				
Iron	0.971	0.40	0.15	mg/l	0.500	0.506	93	70-130			
Manganese	473	200	70	ug/l	500	ND	95	70-130			
Zinc	467	200	60	ug/l	500	ND	93	70-130			
Matrix Spike Dup Analyzed: 02/25/2008	(8B25079-MS	SD1)	Source: IRB1985-01								
Iron	1.01	0.40	0.15	mg/l	0.500	0.506	101	70-130	4	20	
Manganese	474	200	70	ug/l	500	ND	95	70-130	0	20	
Zinc	478	200	60	ug/l	500	ND	96	70-130	2	20	

....

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Ct ID. Routine Outlan 601

Report Number: IRB2399

Sampled: 02/24/08 Received: 02/25/08

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B25122 Extracted: 02/25/08											
	•										
Blank Analyzed: 02/26/2008 (8B25122-B	LK1)										
Iron	ND	0.040	0.015	mg/l							
Manganese	ND	20	7.0	ug/l							
Zinc	ND	20	6.0	ug/l							
LCS Analyzed: 02/26/2008 (8B25122-BS)	1)										
Iron	0.975	0.040	0.015	mg/l	1.00		98	85-115			
Manganese	959	20	7.0	ug/l	1000		96	85-115			
Zinc	963	20	6.0	ug/l	1000		96	85-115			
Matrix Spike Analyzed: 02/26/2008 (8B2	5122-MS1)				Sou	rce: IRB	2473-01				
Iron	1.01	0.040	0.015	mg/l	1.00	ND	101	70-130			
Manganese	980	20	7.0	ug/l	1000	ND	98	70-130			
Zinc	1010	20	6.0	ug/l	1000	28.9	99	70-130			
Matrix Spike Dup Analyzed: 02/26/2008	(8B25122-M	SD1)			Sou	rce: IRB	2473-01				
Iron	1.03	0.040	0.015	mg/l	1.00	ND	103	70-130	2	20	
Manganese	999	20	7.0	ug/l	1000	ND	100	70-130	2	20	
Zinc	1030	20	6.0	ug/l	1000	28.9	100	70-130	1	20	
Batch: 8B25123 Extracted: 02/25/08	_										
Blank Analyzed: 02/26/2008 (8B25123-B	LK1)										
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Selenium	ND	2.0	0.30	ug/l							

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Sampled: 02/24/08

Report Number: IRB2399 Received: 02/25/08

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B25123 Extracted: 02/25/08											
LCS Analyzed: 02/26/2008 (8B25123-BS1)										
Cadmium	78.9	1.0	0.11	ug/l	80.0		99	85-115			
Copper	80.6	2.0	0.75	ug/l	80.0		101	85-115			
Lead	83.1	1.0	0.30	ug/l	80.0		104	85-115			
Selenium	78.7	2.0	0.30	ug/l	80.0		98	85-115			
Matrix Spike Analyzed: 02/26/2008 (8B25	3123-MS1)				Sou	rce: IRB2	2107-01				
Cadmium	77.0	1.0	0.11	ug/l	80.0	ND	96	70-130			
Copper	69.6	2.0	0.75	ug/l	80.0	1.17	85	70-130			
Lead	77.8	1.0	0.30	ug/l	80.0	ND	97	70-130			
Selenium	97.0	2.0	0.30	ug/l	80.0	0.917	120	70-130			
Matrix Spike Dup Analyzed: 02/26/2008 ((8B25123-MS	SD1)	Source: IRB2107-01								
Cadmium	82.5	1.0	0.11	ug/l	80.0	ND	103	70-130	7	20	
Copper	71.8	2.0	0.75	ug/l	80.0	1.17	88	70-130	3	20	
Lead	79.1	1.0	0.30	ug/l	80.0	ND	99	70-130	2	20	
Selenium	101	2.0	0.30	ug/l	80.0	0.917	125	70-130	4	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Sampled: 02/24/08

Report Number: IRB2399

Received: 02/25/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B25042 Extracted: 02/25/08	_										
DI I A I I 02/25/2000 (0D250 42 D	F T24)										
Blank Analyzed: 02/25/2008 (8B25042-B	*	0.50	0.25								
Chloride	ND	0.50	0.25	mg/l							
Nitrate-N Nitrite-N	ND ND	0.11	0.060	mg/l							
Nitrite-N Nitrate/Nitrite-N	ND ND	0.15	0.090	mg/l							
	ND ND	0.26	0.15	mg/l							
Sulfate	ND	0.50	0.20	mg/l							
LCS Analyzed: 02/25/2008 (8B25042-BS	1)										
Chloride	5.09	0.50	0.25	mg/l	5.00		102	90-110			
Nitrate-N	1.09	0.11	0.060	mg/l	1.13		96	90-110			
Nitrite-N	1.49	0.15	0.090	mg/l	1.52		98	90-110			
Sulfate	9.95	0.50	0.20	mg/l	10.0		99	90-110			M-3
Matrix Spike Analyzed: 02/25/2008 (8B2	5042-MS1)				Sou	rce: IRB	2399-01				
Chloride	20.2	0.50	0.25	mg/l	5.00	15.9	88	80-120			
Nitrate-N	1.61	0.11	0.060	mg/l	1.13	0.512	97	80-120			
Nitrite-N	1.74	0.15	0.090	mg/l	1.52	ND	115	80-120			
Matrix Spike Dup Analyzed: 02/25/2008	(8B25042-MS	SD1)			Sou	rce: IRB	2399-01				
Chloride	20.2	0.50	0.25	mg/l	5.00	15.9	87	80-120	0	20	
Nitrate-N	1.56	0.11	0.060	mg/l	1.13	0.512	93	80-120	3	20	
Nitrite-N	1.76	0.15	0.090	mg/l	1.52	ND	116	80-120	1	20	
Batch: 8B25050 Extracted: 02/25/08	_										
Blank Analyzed: 02/25/2008 (8B25050-B	,										
Perchlorate	ND	4.0	1.5	ug/l							

TestAmerica Irvine

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Sampled: 02/24/08

Report Number: IRB2399 Received: 02/25/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Oualifiers
Batch: 8B25050 Extracted: 02/25/08		Limit	MDL	Omes	Level	Result	/UKEC	Limits	KI D	Limit	Quanners
Daten. ob25050 Extracted. 02/25/00	-										
LCS Analyzed: 02/25/2008 (8B25050-BS)	1)										
Perchlorate	48.8	4.0	1.5	ug/l	50.0		98	85-115			
Matrix Spike Analyzed: 02/25/2008 (8B2	5050-MS1)				Sou	rce: IRB2	309-01				
Perchlorate	55.6	4.0	1.5	ug/l	50.0	ND	111	80-120			
Matrix Spike Dup Analyzed: 02/25/2008	(8B25050-MS	D 1)			Sou	rce: IRB2	309-01				
Perchlorate	56.6	4.0	1.5	ug/l	50.0	ND	113	80-120	2	20	
Batch: 8B25101 Extracted: 02/25/08	-										
Blank Analyzed: 03/01/2008 (8B25101-B	LK1)										
Biochemical Oxygen Demand	ND	2.0	0.59	mg/l							
LCS Analyzed: 03/01/2008 (8B25101-BS)	l)										
Biochemical Oxygen Demand	184	100	30	mg/l	198		93	85-115			
LCS Dup Analyzed: 03/01/2008 (8B2510)	I-BSD1)										
Biochemical Oxygen Demand	184	100	30	mg/l	198		93	85-115	0	20	
Batch: 8B25103 Extracted: 02/25/08	-										
Blank Analyzed: 02/25/2008 (8B25103-B	LK1)										
Surfactants (MBAS)	ND	0.10	0.044	mg/l							
LCS Analyzed: 02/25/2008 (8B25103-BS)	1)										
Surfactants (MBAS)	0.265	0.10	0.044	mg/l	0.250		106	90-110			

TestAmerica Irvine

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Sampled: 02/24/08

Report Number: IRB2399

Received: 02/25/08

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B25103 Extracted: 02/25/08											
	_										
Matrix Spike Analyzed: 02/25/2008 (8B2	5103-MS1)				Sou	rce: IRB2	2403-01				
Surfactants (MBAS)	0.287	0.10	0.044	mg/l	0.250	ND	115	50-125			
Matrix Spike Dup Analyzed: 02/25/2008	(8B25103-MS	D1)			Sou	rce: IRB2	2403-01				
Surfactants (MBAS)	0.276	0.10	0.044	mg/l	0.250	ND	111	50-125	4	20	
Batch: 8B26063 Extracted: 02/26/08	<u> </u>										
	_										
Blank Analyzed: 02/26/2008 (8B26063-B	LK1)										
Turbidity	0.100	1.0	0.040	NTU							J
Duplicate Analyzed: 02/26/2008 (8B2606	3-DUP1)				Sou	rce: IRB2	2402-01				
Turbidity	2.98	1.0	0.040	NTU		3.03			2	20	
Batch: 8B26098 Extracted: 02/26/08											
	_										
Blank Analyzed: 02/26/2008 (8B26098-B	LK1)										
Total Cyanide	ND	5.0	2.2	ug/l							
LCS Analyzed: 02/26/2008 (8B26098-BS	1)										
Total Cyanide	197	5.0	2.2	ug/l	200		99	90-110			
Matrix Spike Analyzed: 02/26/2008 (8B2	6098-MS1)	Sou	rce: IRB2	2473-01							
Total Cyanide	198	5.0	2.2	ug/l	200	ND	99	70-115			
Matrix Spike Dup Analyzed: 02/26/2008	(8B26098-MS	D 1)			Sou	rce: IRB2	2473-01				
Total Cyanide	200	5.0	2.2	ug/l	200	ND	100	70-115	1	15	

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Sampled: 02/24/08

Report Number: IRB2399

Received: 02/25/08

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B26101 Extracted: 02/26/08											
Blank Analyzed: 02/26/2008 (8B26101-Bl	LK1)										
Ammonia-N (Distilled)	ND	0.50	0.30	mg/l							
LCS Analyzed: 02/26/2008 (8B26101-BS1	1)										
Ammonia-N (Distilled)	10.1	0.50	0.30	mg/l	10.0		101	80-115			
Matrix Spike Analyzed: 02/26/2008 (8B20	6101-MS1)				Sou	rce: IRB2	2399-01				
Ammonia-N (Distilled)	10.1	0.50	0.30	mg/l	10.0	ND	101	70-120			
Matrix Spike Dup Analyzed: 02/26/2008	(8B26101-MS	5D1)			Sou	rce: IRB2	2399-01				
Ammonia-N (Distilled)	10.1	0.50	0.30	mg/l	10.0	ND	101	70-120	0	15	
Batch: 8B27115 Extracted: 02/27/08	-										
Duplicate Analyzed: 02/27/2008 (8B2711:	5-DUP1)				Sou	rce: IRB2	2090-01				
Specific Conductance	150	1.0	1.0	umhos/cm		150			0	5	
Reference Analyzed: 02/27/2008 (8B2711	5-SRM1)										
Specific Conductance	549	1.0	1.0	umhos/cm	530		104	90-110			
Batch: 8B27119 Extracted: 02/27/08	-										
Blank Analyzed: 02/27/2008 (8B27119-Bl	LK1)										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 02/27/2008 (8B27119-BS1	1)										
Total Dissolved Solids	980	10	10	mg/l	1000		98	90-110			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Sampled: 02/24/08

Report Number: IRB2399

Received: 02/25/08

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B27119 Extracted: 02/27/	<u>′08</u>										
D. W											
Duplicate Analyzed: 02/27/2008 (8B27	,				Sou	rce: IRB	2154-02				
Total Dissolved Solids	4760	10	10	mg/l		4760			0	10	
Batch: 8B28123 Extracted: 02/28/	<u>′08</u>										
Blank Analyzed: 02/28/2008 (8B28123	-BLK1)										
Total Suspended Solids	ND	10	10	mg/l							
LCS Analyzed: 02/28/2008 (8B28123-	BS1)										
Total Suspended Solids	1030	10	10	mg/l	1000		103	85-115			
Duplicate Analyzed: 02/28/2008 (8B28	3123-DUP1)				Sou	rce: IRB	2355-10				
Total Suspended Solids	ND	10	10	mg/l		ND				10	
Batch: 8C04046 Extracted: 03/04/	/08										
Blank Analyzed: 03/04/2008 (8C04046	5-BLK1)										
Hexane Extractable Material (Oil &	ND	5.0	1.4	mg/l							
Grease)											
LCS Analyzed: 03/04/2008 (8C04046-	BS1)										MNR1
Hexane Extractable Material (Oil & Grease)	18.1	5.0	1.4	mg/l	20.2		90	78-114			
,	10.46 PGP4)										
LCS Dup Analyzed: 03/04/2008 (8C04	,										
Hexane Extractable Material (Oil & Grease)	18.9	5.0	1.4	mg/l	20.2		94	78-114	4	11	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Sampled: 02/24/08

Report Number: IRB2399

Received: 02/25/08

METHOD BLANK/QC DATA

Metals by EPA 200 Series Methods

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: W8B0982 Extracted: 02/26/	08_										
Blank Analyzed: 02/27/2008 (W8B0982-	·BLK1)										
Mercury, Dissolved	ND	0.20	0.050	ug/l							
Mercury, Total	ND	0.20	0.050	ug/l							
LCS Analyzed: 02/27/2008 (W8B0982-E	SS1)										
Mercury, Dissolved	0.920	0.20	0.050	ug/l	1.00		92	85-115			
Mercury, Total	0.920	0.20	0.050	ug/l	1.00		92	85-115			
Matrix Spike Analyzed: 02/27/2008 (W8	3B0982-MS1)				Sou	rce: 8022	631-01				
Mercury, Dissolved	1.95	0.40	0.10	ug/l	2.00	ND	98	70-130			
Mercury, Total	1.95	0.40	0.10	ug/l	2.00	0.0950	93	70-130			
Matrix Spike Analyzed: 02/27/2008 (W8	3B0982-MS2)				Sou	rce: 8022	633-01				
Mercury, Dissolved	1.91	0.40	0.10	ug/l	2.00	ND	96	70-130			
Mercury, Total	1.91	0.40	0.10	ug/l	2.00	ND	96	70-130			
Matrix Spike Dup Analyzed: 02/27/2008	3 (W8B0982-M	(SD1)			Sou	rce: 8022	631-01				
Mercury, Dissolved	2.00	0.40	0.10	ug/l	2.00	ND	100	70-130	2	20	
Mercury, Total	2.00	0.40	0.10	ug/l	2.00	0.0950	95	70-130	2	20	
Matrix Spike Dup Analyzed: 02/27/2008	3 (W8B0982-M	(SD2)			Sou	rce: 8022	633-01				
Mercury, Dissolved	1.93	0.40	0.10	ug/l	2.00	ND	96	70-130	1	20	
Mercury, Total	1.93	0.40	0.10	ug/l	2.00	ND	96	70-130	1	20	

Sampled: 02/24/08

Received: 02/25/08

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

Project ID: Routine Outfall 001

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IRB2399

Attention: Bronwyn Kelly

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
IRB2399-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	1.90	4.7	10
IRB2399-01	608-Pest Boeing 001/002 Q (LL)	alpha-BHC	ug/l	0	0.0094	0.01
IRB2399-01	624-Boeing 001/002 Q (Fr113+X),	•	ug/l	0	0.50	3.2
IRB2399-01	624-Boeing 001/002 Q (Fr113+X),		ug/l	0	0.50	5
IRB2399-01	625-Boeing 001/002 Q-LL	2,4,6-Trichlorophenol	ug/l	0	5.7	6.5
IRB2399-01	625-Boeing 001/002 Q-LL	2,4-Dinitrotoluene	ug/l	0	8.5	9.1
IRB2399-01	625-Boeing 001/002 Q-LL	Bis(2-ethylhexyl)phthalate	ug/l	1.53	4.7	4
IRB2399-01	625-Boeing 001/002 Q-LL	N-Nitrosodimethylamine	ug/l	0	7.5	8.1
IRB2399-01	625-Boeing 001/002 Q-LL	Pentachlorophenol	ug/l	0	7.5	8.2
IRB2399-01	Ammonia-N, Titr (350.2) w/dist	Ammonia-N (Distilled)	mg/l	0.28	0.50	2
IRB2399-01	BOD	Biochemical Oxygen Demand	mg/l	1.72	2.0	20
IRB2399-01	Cadmium-200.8	Cadmium	ug/l	0.089	1.0	2
IRB2399-01	Chloride - 300.0	Chloride	mg/l	16	0.50	150
IRB2399-01	Copper-200.8	Copper	ug/l	3.87	2.0	7.1
IRB2399-01	Cyanide-335.2 5ppb	Total Cyanide	ug/l	1.97	5.0	5
IRB2399-01	Hg w 245.1	Mercury, Total	ug/l	0.017	0.20	0.2
IRB2399-01	Iron-200.7	Iron	mg/l	3.48	0.040	0.3
IRB2399-01	Lead-200.8	Lead	ug/l	1.63	1.0	2.6
IRB2399-01	Manganese-200.7	Manganese	ug/l	45	20	50
IRB2399-01	MBAS - SM5540-C	Surfactants (MBAS)	mg/l	0.032	0.10	0.5
IRB2399-01	Nitrate-N, 300.0	Nitrate-N	mg/l	0.51	0.11	8
IRB2399-01	Nitrite-N, 300.0	Nitrite-N	mg/l	0	0.15	1
IRB2399-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	0.51	0.26	8
IRB2399-01	Perchlorate 314.0-DEFAULT	Perchlorate	ug/l	0	4.0	6
IRB2399-01	Selenium-200.8	Selenium	ug/l	0.60	2.0	4.1
IRB2399-01	Settleable Solids	Total Settleable Solids	ml/l/hr	0.20	0.10	0.1
IRB2399-01	Sulfate-300.0	Sulfate	mg/l	53	0.50	300
IRB2399-01	TDS - SM 2540C	Total Dissolved Solids	mg/l	235	10	950
IRB2399-01	TSS - EPA 160.2	Total Suspended Solids	mg/l	38	10	15
IRB2399-01	Zinc-200.7	Zinc	ug/l	19	20	54

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

TestAmerica Irvine

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 001

Sampled: 02/24/08

Report Number: IRB2399

Received: 02/25/08

T abNasabas	A	Amalasta	T7:4	D14	MDI	Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
IRB2399-02	624-Boeing 001/002	Q (Fr113+X), L1,1-Dichloroethene	ug/l	0	0.50	3.2
IRB2399-02	624-Boeing 001/002	Q (Fr113+X), LTrichloroethene	ug/l	0	0.50	5

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 001

618 Michillinda Avenue, Suite 200 Sampled: 02/24/08

Arcadia, CA 91007 Report Number: IRB2399 Received: 02/25/08

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

DATA QUALIFIERS AND DEFINITIONS

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was

accepted based on acceptable recovery in the Blank Spike (LCS).

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 001

Sampled: 02/24/08

Report Number: IRB2399

Received: 02/25/08

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EPA 120.1	Water	X	X
EPA 160.2	Water	X	X
EPA 160.5	Water	X	X
EPA 1664A	Water		
EPA 180.1	Water	X	X
EPA 200.7-Diss	Water	X	X
EPA 200.7	Water	X	X
EPA 200.8-Diss	Water	X	X
EPA 200.8	Water	X	X
EPA 300.0	Water	X	X
EPA 314.0	Water	X	X
EPA 335.2	Water	X	X
EPA 350.2	Water		X
EPA 405.1	Water	X	X
EPA 608	Water	X	X
EPA 624	Water	X	X
EPA 625	Water	X	X
Filtration	Water	N/A	N/A
SM2540C	Water	X	
SM5540-C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 001

618 Michillinda Avenue, Suite 200 Sampled: 02/24/08

Arcadia, CA 91007 Report Number: IRB2399 Received: 02/25/08
Attention: Bronwyn Kelly

Eberline Services

2030 Wright Avenue - Richmond, CA 94804 Analysis Performed: Gamma Spec

Samples: IRB2399-01

Analysis Performed: Gross Alpha

Samples: IRB2399-01

Analysis Performed: Gross Beta Samples: IRB2399-01

Analysis Performed: Radium, Combined

Samples: IRB2399-01

Analysis Performed: Strontium 90

Samples: IRB2399-01

Analysis Performed: Tritium Samples: IRB2399-01

Analysis Performed: Uranium, Combined

Samples: IRB2399-01

Vista Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762

Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IRB2399-01

Weck Laboratories, Inc

14859 E. Clark Avenue - City of Industry, CA 91745

Method Performed: EPA 245.1 Samples: IRB2399-01

TestAmerica Irvine

Page 1 of 2	
」 KB2894 4	
IN OF CUSTODY FORM	The property of the second sec

Test A	meric	Test America Version 12/20/07	12/20/		CHAIN O	F CUSTODY FORM	[OD)	F	OR	5		1	· 	入の	3	2	4 Page 1 of
Client Name/Address	ne/Addr	ess.		Project	The state of the s		La contra de la contra del la contra del la contra del la contra de la contra del					ANAL	TYSIS	REC	REQUIRED	۔ ص	
MWH-Arcadia	rcadia			Boeing-SSFL NPDES	NPDES											,əı	
618 Michillin da Ave Arcadia, CA 91007	in da Aver A 91007	618 Michillin da Avenue, Suite 200 Arcadia, CA 91007	008	Routine Outfall 001	tall 001	ેટોદા								e i salamanan da dana		.91	Fleid readings:
Test Americ	za Contac	Test America Contact: Joseph Doak	oak			iaM e								(2		eledti	: 1 d
Project Ma	anager:	Project Manager: Bronwyn Kelly	Kelly	(626) 568-6691	er: 91	erable	cq' a	olids all cor	361) e 31 rec	egree	ABM) DN+ _E (itrite-1	ST , SC	(320	(809)	2,4 Dit (SVOC	pH = 7 s
Sampler: Myeiscal,	MARIS	CAL. 4.		Fax Number:	· L	J	,gH	gue				rate]Τ , γ ι	ytivity ——— N-sir	знс	εμλιμε	Time of readings = /2こりぐ
Farrosc, R	J. 3. 5. K	7		C1 C0-80C (070)	CIO	אן שי	'qд ') aa				rchlc	rbidi		g eyo	:(S- G	Comments
Sample	Sample	Container Type	Cont.	Sampling Date/Time	Preservative	Bottle #	Cu Fe	ΟŢ				9d	nΤ		μA	si8	
Outfall 001	3	1L Poly	-	89.HZ/R	HNO3	14	×										24 TAT; Mn and Fe exceeded 2/28/06 and 4/15/06, resp.
Outfall 001	3	1L Poly	-		HNO3	18	×				<u> </u>						24 TAT
Outfall 001	3	1L Poly	-		None	2	×										
Outfall 001	3	1L Amber	2		None	3A, 3B		×									N
Outfall 001	>	1L Amber	2		HC	4A, 4B		. 1	×					_			2 (35 (0)
Outfall 001	≥	500 ml Poly	-		NaOH	5			×								R.H.
Outfall 001	>	1L Poly	-		None	9				×							
Outfall 001	M	500 ml Poly	7		None	7A, 7B					×						
Ontfall 001	3	500 ml Poly	7		None	8A, 8B			_			×					24 TAT
Ontfall 001	3	500 ml Poly	-		None	6						×					24 TAT
Outfall 001	>	500 ml Poly	2		None	10A, 10B							×	\dashv			
Outfall 001	8	500 ml Poly	-		H ₂ SO ₄	11								×			
Outfall 001	Α	1L Amber	2	→	None	12A, 12B				\Box				\dashv	×		
Outfall 001	3	1L Amber	2	12.24.08	None	13A, 13B	\uparrow	7					\dashv			×	
Relinquished By	d By				ı	Kecelved By					i i			25		around Time	Turn around Time: (check)
Chin	Bar	mar	B	2-24-08 (Y	(30 4		3	1	4	- 7)	1	124	CA C	4		Suns	o Days
Relinquished By	d By			Date(Time:	1745	Received By))			Date	Date/Time:				48 Hours	ours	Normal +
Relinquished By) -	3	Da te/Time:		Received By	70			=	Date/Time:				Samp	le Integrity:	Sample Integrity: (check) Infact On loe:
Kec	1	idae	4	125/08 0	0250	Chrost	A	K		7	25/08	8	327				5.411.5
		0				_		7									

SUBCONTRACT ORDER

TestAmerica Irvine

IRB2399

8022630

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Weck Laboratories, Inc 14859 E. Clark Avenue City of Industry, CA 91745

Phone :(626) 336-2139 Fax: (626) 336-2634

Project Location: California

Receipt Temperature: 44 °C

Ice: (Ŷ) / N

Analysis	Units	Due	Expires	Comments
Sample ID: IRB2399-01	Water		Sampled: 02/24/08 1	12:00
Level 4 Data Package - Wet	c N/A	03/05/08	03/23/08 12:00	
Mercury - 245.1, Diss -OUT	ug/l	03/05/08	03/23/08 12:00	Boeing, J flags, Out to Weck
Mercury - 245.1-OUT	ug/l	02/26/08	03/23/08 12:00	Boeing, permit, J flags, out to Weck
Containers Supplied:				
125 mL Poly w/HNO3 2 (AD)	50 mL Pol	y (AE)		

Released By

Date Vime

Received By
Received By

Date/Time

Date/Time NPDES

NPDESP331 1 of 1

Weck Laboratories, Inc.

Analytical Laboratory Services - Since 1964

14859 E. Clark Ave., Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634 info@wecklabs.com www.wecklabs.com

CERTIFICATE OF ANALYSIS

Client: TestAmerica, Inc. - Irvine

Report Date:

02/27/08 16:13

17461 Derian Ave, Suite 100

Received Date:

02/26/08 12:05

Irvine, CA 92614

Turn Around:

1 day

Attention: Joseph Doak

Work Order #:

Phone: (949) 261-1022

8022630

Fax: (949) 260-3297

Client Project: IRB2399

NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

Dear Joseph Doak:

Enclosed are the results of analyses for samples received 02/26/08 12:05 with the Chain of Custody document. The samples were received in good condition. The samples were received at 4.6 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Reviewed by:

Kim G Tu

Project Manager

Page 1 of 6

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8022630 Project ID: IRB2399 Date Received: 02/26/08 12:05 Date Reported: 02/27/08 16:13

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Sampled by:	Sample Comments	Laboratory	Matrix	Date Sampled
IRB2399-01	Client		8022630-01	Water	02/24/08 12:00

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8022630 Project ID: IRB2399 Date Received: 02/26/08 12:05 Date Reported: 02/27/08 16:13

IRB2399-01 8022630-01 (Water)

Date Sampled: 02/24/08 12:00

Metals by EPA 200 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Analyst	Data Qualifiers
Mercury, Dissolved	ND	0.050	ug/l	0.20	1	EPA 245.1	W8B0982	02/26/08	02/27/08	jlp	
Mercury, Total	ND	0.050	ug/l	0.20	1	EPA 245.1	W8B0982	02/26/08	02/27/08	jlp	

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626 336 2139 Fax 626

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8022630 Project ID: IRB2399 Date Received: 02/26/08 12:05 Date Reported: 02/27/08 16:13

QUALITY CONTROL SECTION

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8022630 Project ID: IRB2399 Date Received: 02/26/08 12:05 Date Reported: 02/27/08 16:13

Metals by EPA 200 Series Methods - Quality Control

%REC

		Reporting		Spike	Spike Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch W8B0982 - EPA 245.1										
Blank (W8B0982-BLK1)				Analyzed:	02/27/08					
Mercury, Dissolved	ND	0.20	ug/l							
Mercury, Total	ND	0.20	ug/l							
LCS (W8B0982-BS1)			Analyzed: 02/27/08							
Mercury, Dissolved	0.920	0.20	ug/l	1.00		92	85-115			
Mercury, Total	0.920	0.20	ug/l	1.00		92	85-115			
Matrix Spike (W8B0982-MS1)	So	ource: 8022631	-01	Analyzed: 02/27/08						
Mercury, Dissolved	1.95	0.40	ug/l	2.00	ND	98	70-130			
Mercury, Total	1.95	0.40	ug/l	2.00	0.0950	93	70-130			
Matrix Spike (W8B0982-MS2)	So	ource: 8022633	5-01	Analyzed: 02/27/08						
Mercury, Dissolved	1.91	0.40	ug/l	2.00	ND	96	70-130			
Mercury, Total	1.91	0.40	ug/l	2.00	ND	96	70-130			
Matrix Spike Dup (W8B0982-MSD1)	So	ource: 8022631	-01	Analyzed:	02/27/08					
Mercury, Dissolved	2.00	0.40	ug/l	2.00	ND	100	70-130	2	20	
Mercury, Total	2.00	0.40	ug/l	2.00	0.0950	95	70-130	2	20	
Matrix Spike Dup (W8B0982-MSD2)	So	ource: 8022633	i-01	Analyzed:	02/27/08					
Mercury, Dissolved	1.93	0.40	ug/l	2.00	ND	96	70-130	0.9	20	
Mercury, Total	1.93	0.40	ug/l	2.00	ND	96	70-130	0.9	20	

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614

Report ID: 8022630 Project ID: IRB2399 Date Received: 02/26/08 12:05 Date Reported: 02/27/08 16:13

Notes and Definitions

ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)

Sample results reported on a dry weight basis dry

Relative Percent Difference RPD

Percent Recovery % Rec

Sub Subcontracted analysis, original report available upon request

MDL Method Detection Limit

MDA Minimum Detectable Activity

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

March 20, 2008

Mr. Joseph Doak Test America, Inc. 17461 Derian Avenue, Suite 100 Irvine, CA 92614

Reference: Test America Project Nos. IRB1995, IRB2337, IRB2341, IRB2342, IRB2399

IRB2400, IRB2401, IRB2403

Eberline Services NELAP Cert #01120CA

Eberline Services Reports R802140-8609, R802169-8610, R802170-8611

R802171-8612, R802172-8613, R802173-8614

R802174-8615, R802175-8616

Dear Mr. Doak:

Attached are data reports for eight water samples. The samples were received at Eberline Services on February 22, 26, 2008 under eight separate Test America subcontract orders. The samples were analyzed according to the accompanying Test America Subcontract Order Forms, the requested analyses were: gross alpha/gross beta (EPA 900.0), tritium (H-3, EPA906.0), Sr-90 (EPA905.0), Ra-226 (EPA903.1), Ra-228 (EPA 904.0), total uranium (ASTM D-5174), and gamma spectroscopy (EPA901.1, K-40 and Cs-137 only). The parenthetical G after a nuclide indicates that the result was obtained by gamma spectroscopy; a "U" in the results column indicates that the nuclide was not detected greater than the indicated minimum detectable activity (MDA). The samples were not filtered prior to analysis. The samples were analyzed in batches with common QC samples. Batch quality control samples consisted of LCS's, blank analyses, duplicate analyses, and matrix spike analyses (gross alpha/gross beta, H-3, Ra-226, Total-U only). All samples were batched with QC samples 8609-002, 003, 004, and 005 for all analyses. All QC sample results were within the limits defined in Eberline Services Quality Control Procedures Manual.

Please call me if you have any questions concerning this report.

Regards,

Melissa Mannion

Senior Program Manager

melesso Mamm

MCM/njv

Enclosure: Reports

Analytical Services
2030 Wright Avenue
P.O. Box 4040
Richmond, California 94804-0040
(510) 235-2633 Fax (510) 235-0438
Toll Free (800) 841-5487
www.eherlineses.com

Eberline Services

ANALYSIS RESULTS

SDG 8613

Work Order R802172-01

Received Date 02/26/08

Client TA IRVINE

Contract PROJECT# IRB2399

Matrix WATER

Client Sample ID	Lab Sample ID	Collected An	nalyzed	<u>Nuclide</u>	Results ± 20	<u>Units</u>	MDA
IRB2399-01	8613-001	02/24/08 03	3/16/08	GrossAlpha	3.00 ± 0.96	pCi/L	1.0
		03	3/16/08	Gross Beta	4.12 ± 0.66	pCi/L	0.92
		03	3/10/08	Ra-228	0.132 ± 0.19	pCi/L	0.46
		03	3/12/08	K-40 (G)	U	pCi/L	48
		03	3/12/08	Cs-137 (G)	U	pCi/L	1.9
		03	3/14/08	H-3	24.5 ± 88	pCi/L	150
		03	3/14/08	Ra-226	0.262 ± 0.43	pCi/L	0.75
		03	3/10/08	Sr-90	-0.085 ± 0.31	pCi/L	0.76
		03	3/05/08	Total U	0.510 ± 0.058	pCi/L	0.023

Certified by Report Date 03/20/08

Page 1

Eberline Services

QC RESULTS

SDG <u>8613</u> Work Order R802172-01

Client TA IRVINE Contract PROJECT# IRB2399

Received Date 02/26/08 Matrix WATER

Lab						
Sample ID	Nuclide	Results	<u>Units</u>	Amount Added	MDA	Evaluation
LCS						
8609-002	GrossAlpha	12.8 ± 0.90	pCi/Smpl	10.2	0.25	125% recovery
	Gross Beta	8.65 ± 0.36	pCi/Smpl	9.37	0.27	92% recovery
	Ra-228	9.55 ± 0.58	pCi/Smpl	8.63	0.79	111% recovery
	Co-60 (G)	216 ± 6.8	pCi/Smpl	223	3.1	97% recovery
	Cs-137 (G)	247 ± 6.5	pCi/Smpl	235	4.3	105% recovery
	Am-241 (G)	208 ± 15	pCi/Smpl	254	17	82% recovery
	H-3	222 ± 14	pCi/Smpl	239	15	93% recovery
	Ra-226	4.52 ± 0.24	pCi/Smpl	4.46	0.081	101% recovery
	Sr-90	10.4 ± 0.75	pCi/Smpl	9.38	0.30	111% recovery
	Total U	1.10 ± 0.13	pCi/Smpl	1.13	0.005	97% recovery
BLANK						
8609-003	GrossAlpha	0 ± 0.15	pCi/Smpl	NA	0.28	<mda< td=""></mda<>
	Gross Beta	-0.185 ± 0.27	pCi/Smpl	NA	0.44	<mda< td=""></mda<>
	Ra-228	-0.178 ± 0.26	pCi/Smpl	NA	0.76	<mda< td=""></mda<>
	K-40 (G)	Ū	pCi/Smpl	NA	140	<mda< td=""></mda<>
	Cs-137 (G)	U	pCi/Smpl	NA	5.3	<mda< td=""></mda<>
	H-3	-3.37 ± 8.5	pCi/Smpl	NA	14	<mda< td=""></mda<>
	Ra-226	-0.003 ± 0.035	pCi/Smpl	NA	0.071	<mda< td=""></mda<>
	Sr-90	-0.157 ± 0.21	pCi/Smpl	NA	0.57	<mda< td=""></mda<>
	Total U	0.00E 00 ± 2.0E-04	pCi/Smpl	NA	4.6E-04	<mda< td=""></mda<>

DUPLICATE	S			ORIGINALS				
							3σ	
Sample ID Nuclide	Results ± 20	MDA	Sample ID	Results ± 20	MDA	RPD	(Tot)	Eval
8609-004 GrossAlpha	1.98 ± 1.7	2.4	8609-001	3.00 ± 2.0	2.8	41	164	satis.
Gross Beta	4.45 ± 1.4	2.0		2.91 ± 2.0	3.3	42	108	satis.
K-40 (G)	U	20		Ū	39	-	0	satis.
Cs-137 (G)	U	1.1		Ū	1.7	-	0	satis.
H-3	-43.9 ± 86	150		-40.9 ± 84	140	-	0	satis.
Ra-226	0.125 ± 0.40	0.74		-0.003 ± 0.41	0.79	-	0	satis.
Sr-90	0.093 ± 0.38	0.86		0.137 ± 0.49	1.1	**	0	satis.
Total U	1.19 ± 0.13	0.023	1	1.30 ± 0.15	0.023	9	31	satis.

Certified by Report Date <u>03/20/08</u>

Page 2

Eberline Services

QC RESULTS

SDG <u>8613</u>
Work Order <u>R802172-01</u>
Received Date <u>02/26/08</u>

Client TA IRVINE

Contract PR0JECT# IRB2399

Matrix WATER

SPIKEL	SAMPLE		OR:	IGINAL SAMPLE			
Sample ID Nuclid	de Results <u>+</u> 20	MDA	Sample ID	Results ± 20	MDA	Added	<u>%Recv</u>
8609-005 GrossA	Alpha 207 ± 11	2.6	8609-001	3.00 ± 2.0	2.8	164	124
Gross	Beta 148 ± 4.0	2.4		2.91 ± 2.0	3.3	144	101
H-3	14800 ± 280	150		-40.9 ± 84	140	16000	93
Ra-226	113 ± 4.4	0.81		-0.003 ± 0.41	0.79	112	101
Total	U 113 ± 14	2.3		1.30 ± 0.15	0.023	113	99

Certified by

Report Date 03/20/08

Page 3

8613

SUBCONTRACT ORDER - PROJECT # IRB2399

TestAmerica Irvine 17461 Derian Avenue. Suite Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297 Project Manager: Joseph Doa		Eberline Services 2030 Wright Avenue Richmond, CA 94804 Phone:(510) 235-2633 Fax: (510) 235-0438 Project Location: California					
Standard TAT is requeste Analysis	ed unless specific due date is requ Expiration	nested. => Due Date: Initials: Comments					
Sample ID: IRB2399-01 Wa Gamma Spec-O Gross Alpha-O Gross Beta-O Level 4 Data Package - Out Radium, Combined-O Strontium 90-O Tritium-O Uranium, Combined-O Containers Supplied: 2.5 gal Poly (IRB2399-01AA 500 mL Amber (IRB2399-01	ter Sampled: 02/24/08 12:00 02/23/09 12:00 08/22/08 12:00 08/22/08 12:00 03/23/08 12:00 02/23/09 12:00 02/23/09 12:00 02/23/09 12:00 02/23/09 12:00	Out to Eberline, K-40 and CS-137 only Out to Eberline pCui, Out to Eberline					
	SAM	APLE INTEGRITY:					
All containers intact: Yes Custody Seals Present: Yes Released By	No Sample labels/COC ag Samples Preserved Pro 2 25 0 8 17:0 Date Time	operly: Yes No Samples Received at (temp):					
Released By	Date Time	Received By Date Time					

RICHMOND, CA LABORATORY

SAMPLE RECEIPT CHECKLIST

Client: <u>T</u>	EST AMERIC	CA	_City_ <i>IRV</i>	INE	State	. CA					
Date/Time	e received <u>426/08</u>	10:000coc N	10. <u>IRB 23</u>	399							
	r I.D. No. N/A				eceived Yes	[] No[]					
INSPECTION											
1. C	Custody seals on ship	ping container i	ntact?		Yes [V]	No[] N/A	[]				
2. 0	Custody seals on ship	ping container o	dated & signe	d?	Yes [🗸]		` ;				
ł	Custody seals on sam	•			Yes[]	, ,					
	The transfer defined in the tr										
ł .	3										
•	6. Number of samples in shipping container: Sample Matrix WATER										
ŀ	Number of containers		<u> </u>								
	Samples are in correct			Yes [V]							
	Paperwork agrees with	,	labala [] [Yes []							
1	Samples have: Tape Samples are: In go		/								
	Samples are: Presen						J				
	Describe any anomalie		reserved [•] pi i i i	eservative						
10.	and any anomalic	55.									
							7				
14. V	Vas P.M. notified of a	any anomalies?	Yes	[] No[] Date						
	nspected by	Ik			e: 1310						
Custom	,	lon Chamber			Beta/Gamma	Lan Chamba					
Sample I		mR/hr	Wipe	Customer Sample No.	cpm	lon Chamber mR/hr	wipe				
1RB 239	99 460										
						The state of the s					
				ACCUSANCE AND AC							
Ion Chambe	er Ser. No			Calibration data	2						
Alpha Meter			***************************************	Calibration date							
•	na Meter Ser. No	100402			9 may	2007	Marian April 1900 Apri				
_ 3.0. 3011111		.00/400		Cambration date	1 071 009	U-U-U					

Form SCP-02, 07-30-07

"over 55 years of quality nuclear services"

March 14, 2008

Vista Project I.D.: 30309

Mr. Joseph Doak Test America-Irvine, CA 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Mr. Doak,

Enclosed are the results for the one aqueous sample received at Vista Analytical Laboratory on February 26, 2008 under your Project Name "IRB2399". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Vista's current certifications, and copies of the raw data (if requested).

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha M. Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.

Section I: Sample Inventory Report Date Received: 2/26/2008

<u>Vista Lab. ID</u> <u>Client Sample ID</u>

30309-001 IRB2399-01

NPDES - 325 Page 2 of 251

SECTION II

Project 30309 NPDES - 326
Page 3 of 251

Method Blank						EPA Method 1613
Matrix:	Aqueous	QC Batch No.:	9997	Lab Sample: 0-MB001		
Sample Size:	1.00 L	Date Extracted:	9-Mar-08	Date Analyzed DB-5: 10-Mar-08	Date An	alyzed DB-225: NA
	1.00 L	D W.O ZAWAGOON) IVIAI 00	Bute I mary zea BB 5. 10 Iviai 00	Dute 111	au 200 DD 220. 1411
Analyte	Conc. (ug/L)	DL a EMPO	Description Qualifiers	Labeled Standard	%R	LCL-UCL ^d Qualifiers
2,3,7,8-TCDD	ND	0.000000937		<u>IS</u> 13C-2,3,7,8-TCDD	87.0	25 - 164
1,2,3,7,8-PeCDD	ND	0.00000106		13C-1,2,3,7,8-PeCDD	77.8	25 - 181
1,2,3,4,7,8-HxCD	DD ND	0.00000142		13C-1,2,3,4,7,8-HxCDD	82.4	32 - 141
1,2,3,6,7,8-HxCD	DD ND	0.00000142		13C-1,2,3,6,7,8-HxCDD	88.5	28 - 130
1,2,3,7,8,9-HxCD	DD ND	0.00000136		13C-1,2,3,4,6,7,8-HpCDD	81.0	23 - 140
1,2,3,4,6,7,8-HpC	CDD ND	0.00000250		13C-OCDD	72.3	17 - 157
OCDD	ND	0.00000890		13C-2,3,7,8-TCDF	85.2	24 - 169
2,3,7,8-TCDF	ND	0.000000547		13C-1,2,3,7,8-PeCDF	73.1	24 - 185
1,2,3,7,8-PeCDF	ND	0.000000924		13C-2,3,4,7,8-PeCDF	73.2	21 - 178
2,3,4,7,8-PeCDF	ND	0.000000985		13C-1,2,3,4,7,8-HxCDF	82.4	26 - 152
1,2,3,4,7,8-HxCD	OF ND	0.000000699		13C-1,2,3,6,7,8-HxCDF	94.2	26 - 123
1,2,3,6,7,8-HxCE	OF ND	0.000000669		13C-2,3,4,6,7,8-HxCDF	89.8	28 - 136
2,3,4,6,7,8-HxCD	OF ND	0.000000795		13C-1,2,3,7,8,9-HxCDF	83.4	29 - 147
1,2,3,7,8,9-HxCD	OF ND	0.0000107		13C-1,2,3,4,6,7,8-HpCDF	79.0	28 - 143
1,2,3,4,6,7,8-HpC	CDF ND	0.000000964		13C-1,2,3,4,7,8,9-HpCDF	81.7	26 - 138
1,2,3,4,7,8,9-HpC	CDF ND	0.00000105		13C-OCDF	72.4	17 - 157
OCDF	ND	0.00000275		<u>CRS</u> 37Cl-2,3,7,8-TCDD	113	35 - 197
Totals				Footnotes		
Total TCDD	ND	0.000000937		a. Sample specific estimated detection limit.		
Total PeCDD	ND	0.00000167		b. Estimated maximum possible concentration.		
Total HxCDD	ND	0.00000235		c. Method detection limit.		
Total HpCDD	ND	0.00000320		d. Lower control limit - upper control limit.		
Total TCDF	ND	0.000000547				
Total PeCDF	ND	0.000000953				
Total HxCDF	ND	0.000000792				
Total HpCDF	ND	0.0000100				

Analyst: MAS Approved By: Martha M. Maier 14-Mar-2008 13:05

OPR Results						EP.	A Method 1	1613
Matrix: Sample Size:	Aqueous 1.00 L		QC Batch No.: Date Extracted:	9997 9-Mar-08	Lab Sample: 0-OPR001 Date Analyzed DB-5: 10-Mar-08	Date Analy	zed DB-225:	NA
Analyte		Spike Conc.	Conc. (ng/mL)	OPR Limits	Labeled Standard	%R	LCL-UCL	Qualifier
2,3,7,8-TCDE)	10.0	10.5	6.7 - 15.8	<u>IS</u> 13C-2,3,7,8-TCDD	84.4	25 - 164	
1,2,3,7,8-PeC	DD	50.0	50.9	35 - 71	13C-1,2,3,7,8-PeCDD	78.2	25 - 181	
1,2,3,4,7,8-Hx	xCDD	50.0	49.8	35 - 82	13C-1,2,3,4,7,8-HxCDD	77.7	32 - 141	
1,2,3,6,7,8-H2	xCDD	50.0	50.3	38 - 67	13C-1,2,3,6,7,8-HxCDD	80.5	28 - 130	
1,2,3,7,8,9-Hz	xCDD	50.0	50.3	32 - 81	13C-1,2,3,4,6,7,8-HpCDD	77.6	23 - 140	
1,2,3,4,6,7,8-1	HpCDD	50.0	51.0	35 - 70	13C-OCDD	67.4	17 - 157	
OCDD		100	102	78 - 144	13C-2,3,7,8-TCDF	82.6	24 - 169	
2,3,7,8-TCDF	7	10.0	9.70	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	72.2	24 - 185	
1,2,3,7,8-PeC	DF	50.0	51.5	40 - 67	13C-2,3,4,7,8-PeCDF	73.8	21 - 178	
2,3,4,7,8-PeC	DF	50.0	51.5	34 - 80	13C-1,2,3,4,7,8-HxCDF	78.8	26 - 152	
1,2,3,4,7,8-Hz	xCDF	50.0	52.0	36 - 67	13C-1,2,3,6,7,8-HxCDF	82.8	26 - 123	
1,2,3,6,7,8-Hx	xCDF	50.0	52.6	42 - 65	13C-2,3,4,6,7,8-HxCDF	78.7	28 - 136	
2,3,4,6,7,8-Hx	xCDF	50.0	53.6	35 - 78	13C-1,2,3,7,8,9-HxCDF	78.2	29 - 147	
1,2,3,7,8,9-Hx	xCDF	50.0	51.9	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	74.8	28 - 143	
1,2,3,4,6,7,8-1	HpCDF	50.0	52.4	41 - 61	13C-1,2,3,4,7,8,9-HpCDF	75.3	26 - 138	
1,2,3,4,7,8,9-1	HpCDF	50.0	52.1	39 - 69	13C-OCDF	67.4	17 - 157	
OCDF		100	103	63 - 170	<u>CRS</u> 37Cl-2,3,7,8-TCDD	107	35 - 197	

Analyst: MAS Approved By: Martha M. Maier 14-Mar-2008 13:05

Sample ID: IRB	2399-01								EPA N	Aethod 1613
Client Data			Sample Data		Lab	oratory Data				
	America-Irvine, CA		Matrix:	Aqueous	Lab	Sample:	30309-001	Date Re	ceived:	26-Feb-08
	2399 Feb-08		Sample Size:	1.02 L	QC :	Batch No.:	9997	Date Ex	tracted:	9-Mar-08
Time Collected: 24-1					Date	Analyzed DB-5:	11-Mar-08	Date An	alyzed DB-225:	NA
Analyte	Conc. (ug/L)	DL a	EMPC ^b	Qualifiers		Labeled Stand	ard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ND	0.000000	521		<u>IS</u>	13C-2,3,7,8-TCI	OD	78.5	25 - 164	
1,2,3,7,8-PeCDD	ND	0.000001	10			13C-1,2,3,7,8-Pe	eCDD	72.1	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.000002	26			13C-1,2,3,4,7,8-	HxCDD	67.0	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.000002	30			13C-1,2,3,6,7,8-	HxCDD	71.9	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.000002	18			13C-1,2,3,4,6,7,	8-HpCDD	72.0	23 - 140	
1,2,3,4,6,7,8-HpCDD	0.0000107			J		13C-OCDD		59.7	17 - 157	
OCDD	0.0000952					13C-2,3,7,8-TCI	OF	76.1	24 - 169	
2,3,7,8-TCDF	ND	0.000001	05			13C-1,2,3,7,8-Pe	eCDF	64.4	24 - 185	
1,2,3,7,8-PeCDF	ND	0.000001	16			13C-2,3,4,7,8-Pe	eCDF	65.9	21 - 178	
2,3,4,7,8-PeCDF	ND	0.000001	32			13C-1,2,3,4,7,8-	HxCDF	64.4	26 - 152	
1,2,3,4,7,8-HxCDF	ND	0.000001	45			13C-1,2,3,6,7,8-	HxCDF	72.2	26 - 123	
1,2,3,6,7,8-HxCDF	ND	0.000001	47			13C-2,3,4,6,7,8-	HxCDF	70.4	28 - 136	
2,3,4,6,7,8-HxCDF	ND	0.000000	775			13C-1,2,3,7,8,9-	HxCDF	70.6	29 - 147	
1,2,3,7,8,9-HxCDF	ND	0.000000	981			13C-1,2,3,4,6,7,	8-HpCDF	66.4	28 - 143	
1,2,3,4,6,7,8-HpCDF	0.00000228			J		13C-1,2,3,4,7,8,9	9-HpCDF	69.5	26 - 138	
1,2,3,4,7,8,9-HpCDF	ND	0.000000	820			13C-OCDF		63.1	17 - 157	
OCDF	0.00000541			J	CRS	37Cl-2,3,7,8-TC	DD	115	35 - 197	
Totals					Foo	otnotes				
Total TCDD	ND	0.000001	00		a. Sa	imple specific estimate	d detection limit.			
Total PeCDD	ND	0.000002	05		b. Es	stimated maximum pos	sible concentration.			
Total HxCDD	ND	0.000004	13		c. M	ethod detection limit.				
Total HpCDD	0.0000221				d. Lo	ower control limit - upp	per control limit.			
Total TCDF	ND	0.000001	05							
Total PeCDF	ND	0.000001	70							
Total HxCDF	0.00000118									
Total HpCDF	0.00000557									

Analyst: MAS Approved By: Martha M. Maier 14-Mar-2008 13:05

Project 30309

Project 30309

NPDES - 329
Page 6 of 251

APPENDIX

Project 30309 NPDES - 330
Page 7 of 251

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D Dilution

E The amount detected is above the High Calibration Limit.

P The amount reported is the maximum possible concentration due to possible

chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.

I Chemical Interference

J The amount detected is below the Low Calibration Limit.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated detection limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit – concentrations that correspond to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

SUBCONTRACT ORDER

TestAmerica Irvine

IRB2399

30309

°C

1.30 €

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Vista Analytical Laboratory- SUB

1104 Windfield Way

El Dorado Hills, CA 95762

Phone :(916) 673-1520

Fax: (916) 673-0106

Project Location: California

Receipt Temperature:

Ice: Y / N

Analysis	Units	Due	Expires	Comments
Sample ID: IRB2399-01	Water		Sampled: 02/24/08 12:00	
1613-Dioxin-HR-Alta	ug/l	03/05/08	03/02/08 12:00	J flags,17 congeners,no
Level 4 + EDD-OUT	N/A	03/05/08	03/23/08 12:00	TEQ,ug/L,sub=Vista **LEVEL IV QC, ACCESS 7 EDD**
Containers Supplied: 1 L Amber (D)	1 L Amber (E)			

Released By

Released By Project 30309

2/26/08

Received By Anni Anni

Date/Time

Received By Date/T

NPDESag 338 of 1 Page 10 of 251

SAMPLE LOG-IN CHECKLIST

30309 Vista Project #: Location: WR-Date/Time Initials: Samples Arrival: 0910 2/26/08 Shelf/Rack: Date/Time Initials: Location: Logged In: 2/27/08 0914 Shelf/Rack: Hand FedEx UPS **Delivered By:** DHL Cal Other Delivered Preservation: Blue Ice Dry Ice lce None 1.3 Thermometer ID: IR-1 Temp °C Time:

The second secon				Į.	YES	NO	NA
Adequate Sample Volume Recei	ved?						
Holding Time Acceptable?			,		✓	-	
Shipping Container(s) Intact?					V,		
Shipping Custody Seals Intact?			i.				
Shipping Documentation Present	t?				~		
Airbill Trk# 7	183 8	170 416	3				
Sample Container Intact?					$\sqrt{}$		
Sample Custody Seals Intact?							V
Chain of Custody / Sample Docu	ımentation P	resent?		,			
COC Anomaly/Sample Acceptar	ice Form con	npleted?	:				\checkmark
If Chlorinated or Drinking Water	Samples, Ac	ceptable Pre	servation?				J
Na ₂ S ₂ O ₃ Preservation Document	ted?	COC	i	mple tainer		None)
Shipping Container	Vista	Client	Retain	Re	turn	Disp	ose

Comments:

APPENDIX G

Section 7

Outfall 002, January 25, 2008

MECX Data Validation Reports

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IRA2496

Prepared by

MEC^x, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00 Sample Delivery Group: IRA2496

nple Delivery Group: IRA2496
Project Manager: B. Kelly

Matrix: Soil QC Level: IV

No. of Samples: 1
No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 002	IRA2496-01	30208-001	Water	01/25/08 0940	120.1, 160.2, 160.5, 180.1, 200.8, 245.1, 200.7, 200.8, 625, 624, 900.0, 901.1, 903.1, 904.0, 905.0, 906.0, 1613, ASTM D-5174
Trip Blank	IRA2496-02	N/A	Water	01/25/08	624

II. Sample Management

No anomalies were observed regarding sample management. The sample in this SDG was received at TestAmerica-Irvine within the temperature limits of 4°C ±2°C. The sample was received below the temperature limit at Vista; however, the sample was not noted to have been frozen. The sample was received above the temperature limit at Weck; however, mercury is not considered a volatile analyte. No receipt temperature was noted by Eberline; however, radiological samples are not required to be chilled. According to the case narrative for this SDG, the sample was received intact at all laboratories. Eberline did not sign the transfer COC. The remaining COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine, custody seals were not required. Custody seals were intact upon arrival at Eberline and Vista. Custody seals were not present on the cooler upon receipt at Weck. If necessary, the client ID was added to the sample result summary by the reviewer.

Data Qualifier Reference Table

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
* , *	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: March 1, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: Total HpCDD was detected in the method blank above the EDL. The result in the sample was qualified as estimated, "J," as a portion of the reported total HpCDD was

DATA VALIDATION REPORT SSFL NPDES
SSFL NPDES
SDG: IRA2496

considered to be method blank contamination. The method blank had no other target compound detects above the EDL.

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHODS 245.1, 200.7, 200.8—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: March 6, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{x} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 245.1, 200.7, and 200.8, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding times, 6 months for metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.

• Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP-MS metals and 85-115% for mercury. Mercury was recovered at 66% in the MDL check standard; however, mercury was not detected in the site sample. All remaining MDL and reporting limit check standards were recovered within 70-130%.

- Blanks: There were no applicable detects in the method blanks or CCBs.
- Interference Check Samples: ICSA/B analyses were performed in association with the ICP metals and the ICP-MS total metals analyses. Recoveries were within the methodestablished control limits. Most analytes were reported in the 6020 ICSA solution; however, the reviewer was not able to ascertain if the detection was indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample in this SDG. Evaluation of method accuracy was based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. The bracketing CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - o Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: March 3, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The tritium sample was analyzed within 180 days of collection. Aliquots
 for gross alpha and, gross beta were prepared within the five-day analytical holding time
 for unpreserved samples. The aliquots for radium-226, radium-228, strontium-90,
 gamma spectroscopy, and total uranium were prepared beyond the five-day holding time
 for unpreserved samples; therefore, these results were qualified as estimated, "J," for
 detects and, "UJ," for nondetects.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, gross alpha detected in the sample was qualified as an estimated detect, "J." The gross beta detector efficiency was greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. The tritium detector efficiency for the sample was at least 20% and was considered acceptable. The internal spike efficiency to default efficiency ratios was near 1, indicating that quenching did not occur.

The strontium chemical yield was at least 70% and was considered acceptable. The strontium continuing calibration results were within the laboratory control limits.

The radium-226 cell efficiencies were determined in September 2006. The radium-226 continuing calibration results were within the laboratory-established control limits. The radium-228 calibration utilized actinium-228 and was verified in February 2001. The radium-228 tracer, yttrium oxalate yields were greater than 70%.

The gamma spectroscopy geometry-specific, detector efficiencies were determined in September 1999 and February 2007. All analytes were determined at the maximum photopeak energy.

The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All calibration check standard recoveries were within 90-110% and were deemed acceptable.

Blanks: There were no analytes detected in the method blank.

DATA VALIDATION REPORT SSFL NPDES
SSFL NPDES
SDG: IRA2496

 Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.

- Laboratory Duplicates: A laboratory duplicate analysis was performed on the sample in this SDG for gross alpha, gross beta, radium-226, radium-228, tritium, strontium-90, and the gamma spectroscopy analytes. The RPDs were within the laboratory-established control limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed for the sample in this SDG for gross alpha, gross beta, radium-226, and tritium. The gross alpha recovery was above the control limit; therefore, gross alpha detected in the sample was qualified as an estimated detect, "J." The remaining recoveries were within the laboratory-established control limits. Method accuracy for the remaining analytes was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this
 data package. The sample results and MDAs reported on the sample result form were
 verified against the raw data and no calculation or transcription errors were noted.
 Reported nondetects are valid to the MDA.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

D. EPA METHOD 625—Semivolatile Organic Compounds (SVOCs)

Reviewed By: L. Calvin

Date Reviewed: March 1, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Semivolatile Organics (DVP-3, Rev. 0), EPA Method 8270C, and the National Functional Guidelines for Organic Data Review (2/94).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted within seven days of collection and analyzed within 40 days of extraction.
- GC/MS Tuning: The DFTPP tunes met the method abundance criteria. Samples were analyzed within 12 hours of the DFTPP injection time.

• Calibration: Calibration criteria were met. For applicable target compounds, initial calibration average RRFs were ≥0.05 and %RSDs ≤35%. Continuing calibration RRFs were ≥0.05 and %Ds ≤20%.

- Blanks: Method blanks had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries and RPDs were within laboratory-established QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample of this SDG. Evaluation of method accuracy and precision was based on LSC/LSCD results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The internal standard area counts and retention times were within the control limits established by the continuing calibration standards:
 -50%/+100% for internal standard areas and ±30 seconds for retention times.
- Compound Identification: Compound identification was verified. The laboratory analyzed
 for five semivolatile target compounds by EPA Method 625. Review of the sample
 chromatogram, retention times, and spectra indicated no problems with target compound
 identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review of the raw data indicated no problems with system performance.

E. EPA METHOD 624—Volatile Organic Compounds (VOCs)

Reviewed By: L. Calvin

Date Reviewed: March 1, 2008

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Volatile Organics (DVP-2, Rev. 0), EPA Method 8260B, and the National Functional Guidelines for Organic Data Review (2/94).

- Holding Times: Analytical holding times were met. The preserved water samples were analyzed within 14 days of collection.
- GC/MS Tuning: The BFB tunes met the method abundance criteria. Samples were analyzed within 12 hours of the BFB injection time.
- Calibration: Calibration criteria were met. For applicable target compounds, initial calibration average RRFs were ≥0.05 and %RSDs ≤35%. Continuing calibration RRFs were ≥0.05 and %Ds ≤20%.
- Blanks: The method blank had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample of this SDG. Evaluation of method accuracy was based on LSC results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Trip Blanks: Sample Trip Blank was the trip blank associated with site sample
 Outfall 002. The trip blank had no target compound detects above the MDL.
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The internal standard area counts and retention times were within the control limits established by the continuing calibration standards:
 -50%/+100% for internal standard areas and ±30 seconds for retention times.

 Compound Identification: Compound identification was verified. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.

- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any results reported between the MDL and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review of the raw data indicated no problems with system performance.

F. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks

Date Reviewed: March 6, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Methods 120.1, 160.2, 160.5, 180.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: Analytical holding times 48 hours for settleable solids and turbidity, seven days for TSS, and 28 days for conductivity, were met.
- Calibration: The conductivity and turbidity check standard recoveries were acceptable.
 The balance calibration logs were acceptable. Calibration is not applicable to settleable solids.
- Blanks: Turbidity was detected in the method blank but not at a concentration sufficient to qualify the site samples. Method blanks and CCBs had no other detects.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits. The LCS is not applicable to settleable solids or turbidity.
- Laboratory Duplicates: No laboratory duplicate analyses were performed for the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. For the applicable methods, method accuracy was evaluated based on the LCS results.

• Sample Result Verification: Review is not applicable at a Level V validation. Nondetects are valid to the reporting limit. Turbidity was reported from a 5× dilution.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - o Field Duplicates: There were no field duplicate samples identified for this SDG.

Data			Sample Data		Laboratory Data				
Name: Teg	Test America-Irvine, CA		Matrix:	Aqueous	Lab Sample: 302	30208-001	Date Received:	eived:	29-Jan-08
llected: llected:	25-Jan-08 0940		Sample Size:	1.01 L	QC Batch No.: 992 I Date Analyzed DB-5: 7-Fe	9921 7-Feb-08	Date Extracted: Date Analyzed I	Date Extracted: Date Analyzed DB-225:	2-Feb-08 NA
Analyte	Conc. (ug/L)	DL a	EMPCb	Qualifiers	Labeled Standard		%R	rcr-ncr _q	Oualifiers
2,3,7,8-TCDD	2	0.000000925	925		IS 13C-2,3,7,8-TCDD		84.0	25 - 164	
1,2,3,7,8-PeCDD	NO	0.00000169	69		13C-1,2,3,7,8-PeCDD		76.5	25 - 181	
1,2,3,4,7,8-HxCDD	g	0.00000232	32		13C-1,2,3,4,7,8-HxCDD	D	76.0	32 - 141	
1,2,3,6,7,8-HxCDD	2	0.0000028	81		13C-1,2,3,6,7,8-HxCDD	٥	76.4	28 - 130	
1,2,3,7,8,9-HxCDD	0.00000242				13C-1,2,3,4,6,7,8-HpCDD	60	80.7	23 - 140	
1,2,3,4,6,7,8-HpCDD	0.0000860		Control of the Contro	A CONTRACTOR OF THE CONTRACTOR	13C-OCDD		67.1	17 - 157	
ОСОО	0.00103				13C-2,3,7,8-TCDF		78.5	24 - 169	
2,3,7,8-TCDF	2	0.000000812	812	A VALUE OF STREET	13C-1,2,3,7,8-PeCDF		74.8	24 - 185	
1,2,3,7,8-PeCDF	2	0.00000112	12		13C-2,3,4,7,8-PeCDF	(P.A.	629	21 - 178	
2,3,4,7,8-PeCDF	2	0.00000121	21	The second second	13C-1,2,3,4,7,8-HxCDF	(Ta	82.5	26 - 152	
1,2,3,4,7,8-HxCDF	2	0.000000815	815		13C-1,2,3,6,7,8-HxCDF	TL.	72.7	26 - 123	
1,2,3,6,7,8-HxCDF	0.00000101			-	13C-2,3,4,6,7,8-HxCDF	(Y.	70.3	28 - 136	
2,3,4,6,7,8-HxCDF	2	0.00000102	02		13C-1,2,3,7,8,9-HxCDF	L.	76.4	29 - 147	
1,2,3,7,8,9-HxCDF	S S	0.000000854	854		13C-1,2,3,4,6,7,8-HpCDF	OF	71.8	28 - 143	
1,2,3,4,6,7,8-HpCDF	0.0000188	100			13C-1,2,3,4,7,8,9-HpCDF	占	75.7	26-138	
1,2,3,4,7,8,9-HpCDF	2	0.00000278	82		13C-OCDF		72.4	17-157	
OCDF	0.0000562				CRS 37CI-2,3,7,8-TCDD		85.6	35 - 197	
Totals					Footnotes				
Total TCDD	QN	0.00000191	91		a. Sample specific estimated detection limit	on limit.			
Total PeCDD	B	0.000003	3379		b. Estimated maximum possible concentration.	icentration.			
Total HxCDD	0.0000208				c. Method detection limit.		4 17 . 4		The St. of the St.
Total HpCDD	0.000185			Ф	d. Lower control limit - upper control limi	of limit.			
Total TCDF	0.00000236							A CONTRACTOR AND A CONT	At the contract of the
Total PeCDF	0.00000101		0.00000272	72			10 X 10 10 10 10 10 10 10 10 10 10 10 10 10		
Total HxCDF	0.0000153								
Toral Bronk	0.0000538					\$120 St. 18 18 18 18 18 18 18 18 18 18 18 18 18	海路の でいる	第二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	小路海上上

Analyst: MAS

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Project ID: Routine Outfall 002

Sampled: 01/25/08

Arcadia, CA 91007

Report Number: IRA2496

Received: 01/25/08

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2496-01 (Outfall 0	02 - Water) - cont.								
Reporting Units: mg/l									
Barium	EPA 200.8	8A26027	0.00040	0.0010	0.065	1	01/26/08	01/26/08	
Iron	EPA 200.7	8A26028	0.015	0.040	4.3	1	01/26/08	01/28/08	
Sample ID: IRA2496-01 (Outfall 0	02 - Water)								
Reporting Units: ug/l									
Arsenic	EPA 200.8	8A26027	0.70	1.0	2.4	1	01/26/08	01/26/08	
Beryllium J/DNQ	EPA 200.8	8A26027	0.20	0.50	0.29	1	01/26/08	01/26/08	J
Cadmium 🖟	EPA 200.8	8A26027	0.11	1.0	0.18	1	01/26/08	01/26/08	J
Chromium	EPA 200.8	8A26027	0.70	2.0	9.7	1	01/26/08	01/26/08	
Copper	EPA 200.8	8A26027	0.75	2.0	8.4	1	01/26/08	01/26/08	
Lead	EPA 200.8	8A26027	0.30	1.0	7.1	1	01/26/08	01/26/08	
Manganese	EPA 200.8	8A26027	0.75	1.0	120	1	01/26/08	01/28/08	
Nickel	EPA 200.8	8A26027	0.90	2.0	7.2	1	01/26/08	01/26/08	
Selenium ()	EPA 200.8	8A26027	0.30	2.0	ND	1	01/26/08	01/26/08	
Zinc	EPA 200.7	8A26028	6.0	20	36	1	01/26/08	01/28/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 002

Report Number: IRA2496

Sampled: 01/25/08

Received: 01/25/08

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2496-01 (Outfall	002 - Water) - cont.								
Reporting Units: mg/l									
Barium	EPA 200.8-Diss	8B04109	0.00080	0.0020	0.019	2	02/04/08	02/05/08	
Iron	EPA 200.7-Diss	8A25155	0.015	0.040	0.10	1	01/25/08	01/26/08	
Sample ID: IRA2496-01 (Outfall	002 - Water)								
Reporting Units: ug/l									
Arsenic U	EPA 200.8-Diss	8B04109	1.4	2.0	ND	2	02/04/08	02/05/08	RL1
Beryllium	EPA 200.8-Diss	8B04109	0.40	1.0	ND	2	02/04/08	02/05/08	RL1
Cadmium	EPA 200.8-Diss	8B04109	0.22	2.0	ND	2	02/04/08	02/05/08	RL1
Chromium	EPA 200.8-Diss	8B04109	1.4	4.0	ND	2	02/04/08	02/05/08	RL1
Copper J/DNG	EPA 200.8-Diss	8B04109	1.5	4.0	3.1	2	02/04/08	02/05/08	RL1, J
Lead U	EPA 200.8-Diss	8B04109	0.60	2.0	ND	2	02/04/08	02/05/08	RL1
Manganese	EPA 200.8-Diss	8B04109	1.5	2.0	7.7	2	02/04/08	02/05/08	
Nickel J/DN9	EPA 200.8-Diss	8B04109	1.8	4.0	2.2	2	02/04/08	02/05/08	RL1, J
Selenium U	EPA 200.8-Diss	8B04109	0.60	4.0	ND	2	02/04/08	02/05/08	RL1
Zinc	EPA 200.7-Diss	8A25155	6.0	20	ND	1	01/25/08	01/26/08	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 002

Report Number: IRA2496

Sampled: 01/25/08

Received: 01/25/08

Metals by EPA 200 Series Methods

Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2496	-01 (Outfall 002 - V	Vater) - cont.								
Reporting Units:	ug/l									
Mercury, Dissolved	U	EPA 245.1	W8A1034	0.050	0.20	ND	1	01/29/08	01/30/08	
Mercury, Total	U	EPA 245.1	W8A1034	0.050	0.20	ND	1	01/29/08	01/30/08	

LEVEL IV

TestAmerica Irvine

Eberline Services

ANALYSIS RESULTS

Work Order R801170-01 Contract PROJECT# IRA2496	SDG	BDG 8687	Client	TA IRVINE
	Work Order	der <u>R801170-01</u>	Contract	PROJECT# IRA2496
Received Date 01/29/08 Matrix WATER	Received Date	ite 01/29/08	Matrix	WATER

Client	Lab					
Sample ID	Sample ID	Collected Analyzed	Nuclide	Results ± 2σ	Units	MDA
Outfall OOZ						
IRA2496-01	8687-001	01/25/08 02/15/08	GrossAlpha	2.21 ± 1.1	pCi/L	1.4 J/R, Q
		02/15/08	Gross Beta	4.33 ± 1.0	pCi/L	1.5
		02/20/08	Ra-228	0.159 ± 0.19	pCi/L	0.49 UJ/H
		02/12/08	K-40 (G)	σ	pCi/L	12
		02/12/08	Cs-137 (G)	υ	pCi/L	0.53
		02/21/08	H-3	-77.4 ± 91	pCi/L	160 V
		02/20/08	Ra-226	0.047 ± 0.45	pCi/L	0.83 \UJ/H
		02/14/08	Sr-90	0.076 ± 0.32	pCi/L	0.68
		02/19/08	Total U	0.636 ± 0.070	pCi/L	0.022 J/H

LEVEL IV

Certified by Report Date 02/27/08
Page 1

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 002

Report Number: IRA2496

Sampled: 01/25/08

Received: 01/25/08

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2496-01 (Outfal	1 002 - Water)								
Reporting Units: ug/l									
Bis(2-ethylhexyl)phthalate	EPA 625	8A29057	1.6	4.8	5.7	0.966	01/29/08	01/31/08	
2,4-Dinitrotoluene U	EPA 625	8A29057	0.19	8.7	ND	0.966	01/29/08	01/31/08	
N-Nitrosodimethylamine	EPA 625	8A29057	0.097	7.7	ND	0.966	01/29/08	01/31/08	
Pentachlorophenol	EPA 625	8A29057	0.097	7.7	ND	0.966	01/29/08	01/31/08	
2,4,6-Trichlorophenol	EPA 625	8A29057	0.097	5.8	ND	0.966	01/29/08	01/31/08	
Surrogate: 2-Fluorophenol (30-12	20%)				73 %	0.500	01/2//00	01/31/06	
Surrogate: Phenol-d6 (35-120%)					76 %				
Surrogate: 2,4,6-Tribromophenol	(40-120%)				114%				
Surrogate: Nitrobenzene-d5 (45-1					80 %				
Surrogate: 2-Fluorobiphenyl (50-					85 %				
Surrogate: Terphenyl-d14 (50-12:					104%				

Level IV

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 002

Report Number: IRA2496

Sampled: 01/25/08

Received: 01/25/08

PURGEABLES BY GC/MS (EPA 624)

		101	CEABLE	SDIG	CIVIS (EI	A 024)				
Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2496-01	1 (Outfall 002 - W	ater)								
Reporting Units: us		,								
Benzene	u	EPA 624	8A29009	0.28	2.0	ND		01/20/00	01.10.10.0	
Carbon tetrachloride	1	EPA 624	8A29009	0.28	5.0	ND ND	1	01/29/08	01/29/08	
Chloroform		EPA 624	8A29009	0.33	2.0	ND	1	01/29/08	01/29/08	
1,1-Dichloroethane		EPA 624	8A29009	0.27	2.0	ND	1	01/29/08	01/29/08	
1,2-Dichloroethane		EPA 624	8A29009	0.28	2.0	ND	1	01/29/08	01/29/08	
1,1-Dichloroethene		EPA 624	8A29009	0.42	3.0		1	01/29/08	01/29/08	
Ethylbenzene		EPA 624	8A29009	0.42	2.0	ND ND	1	01/29/08	01/29/08	
Tetrachloroethene		EPA 624	8A29009	0.32	2.0		1	01/29/08	01/29/08	
Toluene		EPA 624	8A29009	0.36	2.0	ND	1	01/29/08	01/29/08	
1,1,1-Trichloroethane		EPA 624	8A29009	0.30		ND	1	01/29/08	01/29/08	
1,1,2-Trichloroethane	1	EPA 624	8A29009	0.30	2.0	ND	1	01/29/08	01/29/08	
Trichloroethene	I/DNQ	EPA 624	8A29009	0.30	2.0	ND	1	01/29/08	01/29/08	
Trichlorofluoromethane	0 0147	EPA 624	8A29009		5.0	1.0	1	01/29/08	01/29/08	J
Vinyl chloride	u	EPA 624	8A29009	0.34	5.0	ND	1	01/29/08	01/29/08	
Xylenes, Total	V	EPA 624	8A29009	0.30	5.0	ND	1	01/29/08	01/29/08	
Surrogate: Dibromofluor	omethane (80-120		6A29009	0.90	4.0	ND	1	01/29/08	01/29/08	
Surrogate: Toluene-d8 (8	0-120%)	70)				99 %				
Surrogate: 4-Bromofluore		26)				101 %				
						90 %				
Sample ID: IRA2496-02		ater)								
Reporting Units: ug/	1									
Benzene	U	EPA 624	8A29009	0.28	2.0	ND	1	01/29/08	01/29/08	
Carbon tetrachloride		EPA 624	8A29009	0.28	5.0	ND	1	01/29/08	01/29/08	
Chloroform		EPA 624	8A29009	0.33	2.0	ND	1	01/29/08	01/29/08	
1,1-Dichloroethane		EPA 624	8A29009	0.27	2.0	ND	1	01/29/08	01/29/08	
1,2-Dichloroethane		EPA 624	8A29009	0.28	2.0	ND	1	01/29/08	01/29/08	
1,1-Dichloroethene		EPA 624	8A29009	0.42	3.0	ND	1	01/29/08	01/29/08	
Ethylbenzene		EPA 624	8A29009	0.25	2.0	ND	1	01/29/08	01/29/08	
Tetrachloroethene		EPA 624	8A29009	0.32	2.0	ND	1	01/29/08	01/29/08	
Toluene		EPA 624	8A29009	0.36	2.0	ND	1	01/29/08	01/29/08	
1,1,1-Trichloroethane	The second second	EPA 624	8A29009	0.30	2.0	ND	1	01/29/08	01/29/08	
1,1,2-Trichloroethane		EPA 624	8A29009	0.30	2.0	ND	1	01/29/08	01/29/08	
Trichloroethene		EPA 624	8A29009	0.26	5.0	ND	1	01/29/08	01/29/08	
Trichlorofluoromethane		EPA 624	8A29009	0.34	5.0	ND		01/29/08		
Vinyl chloride	1	EPA 624	8A29009	0.30	5.0	ND			01/29/08	
Xylenes, Total	V	EPA 624	8A29009	0.90	4.0	ND		the terminal and the second	01/29/08	
Surrogate: Dibromofluoro	methane (80-1209	(6)				95%		01/25/08	01/29/08	
Surrogate: Toluene-d8 (80)-120%)					99 %				
Surrogate: 4-Bromofluoro	benzene (80-120%	5)				92 %				

TestAmerica Irvine

Joseph Doak Project Manager Leve

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA2496 <Page 2 of 34>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 002

618 Michillinda Avenue, Suite 200

Report Number: IRA2496

Sampled: 01/25/08

Received: 01/25/08

Arcadia, CA 91007 Attention: Bronwyn Kelly

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IRA2496-01 (Outfall 002 - Wa	ater) - cont.									
Reporting Units: mg/l										
Hexane Extractable Material (Oil & 💥	EPA 1664A	8B04061	1.3	4.8	ND	1	02/04/08	02/04/08		
Grease)										
Ammonia-N (Distilled)	EPA 350.2	8A29110	0.30	0.50	ND	1	01/29/08	01/29/08		
Biochemical Oxygen Demand	EPA 405.1	8A25151	0.59	2.0	2.6	1	01/25/08	01/30/08		
Chloride	EPA 300.0	8A25053	0.25	0.50	17	1	01/25/08	01/25/08		
Nitrate-N	EPA 300.0	8A25053	0.060	0.11	1.2	1	01/25/08	01/25/08		
Nitrite-N	EPA 300.0	8A25053	0.090	0.15	ND	1	01/25/08	01/25/08		
Nitrate/Nitrite-N	EPA 300.0	8A25053	0.15	0.26	1.2	1	01/25/08	01/25/08		
Sulfate	EPA 300.0	8A25053	0.20	0.50	52	1	01/25/08	01/25/08		
Surfactants (MBAS)	SM5540-C	8A25148	0.044	0.10	0.064	1	01/25/08	01/25/08	J	
Total Dissolved Solids	SM2540C	8A31077	10	10	210	1	01/31/08	01/31/08		
Total Suspended Solids	EPA 160.2	8A30131	10	10	140	1	01/30/08	01/30/08		

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly

Project ID: Routine Outfall 002

Report Number: IRA2496

Sampled: 01/25/08

Received: 01/25/08

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers			
Sample ID: IRA2496-01 (Outfall 002 - Water) - cont.												
Reporting Units: ml/l/hr												
Total Settleable Solids	EPA 160.5	8A26035	0.10	0.10	0.30	1	01/26/08	01/26/08				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 002

Report Number: IRA2496

Sampled: 01/25/08

Received: 01/25/08

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers			
Sample ID: IRA2496-01 (Outfall 002 - Water) - cont.												
Reporting Units: NTU												
Turbidity	EPA 180.1	8A26036	0.20	5.0	140	5	01/26/08	01/26/08				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Arcadia, CA 91007

618 Michillinda Avenue, Suite 200

Attention: Bronwyn Kelly

Project ID: Routine Outfall 002

Report Number: IRA2496

Sampled: 01/25/08

Received: 01/25/08

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor		Date Analyzed	Data Qualifiers			
Sample ID: IRA2496-01 (Outfall 002 - Water) - cont.												
Reporting Units: umhos/cm												
Specific Conductance	EPA 120.1	8A31072	1.0	1.0	310	1	01/31/08	01/31/08				

LEVEL IV