APPENDIX G

Section 59

Outfall 009, February 22, 2008

MECX Data Validation Reports

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IRB2341

Prepared by

MEC^x, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: IRB2341 Project Manager: B. Kelly

Matrix: Water

QC Level: IV
No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 009) IRB2341-01	30307-001, 8022512-01, 8611- 001	Water	02/22/08 1030	200.8, 245.1, 900.0, 901.1, 903.0, 904.0, 905.0, 906.0, 1613, ASTM D-5174, SM2340-B

II. Sample Management

No anomalies were observed regarding sample management. The samples were received at TestAmerica-Irvine and Weck within the temperature limits of 4°C ±2°C. The samples were received at Vista below the temperature limit; however, the samples were not noted to be damaged or frozen. Eberline did not provide temperature information; however, radiological samples are not required to be chilled. According to the case narrative for this SDG, the samples were received intact at all laboratories. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine, Eberline, and Weck, custody seals were not required. Custody seals were intact upon arrival at Vista. If necessary, the client ID was added to the sample result summary by the reviewer.

1

Data Qualifier Reference Table

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
E	Not applicable.	Duplicates showed poor agreement.
1	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
* , *	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: April 7, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - OC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had no target compound detects above the EDL.

• Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHODS 200.8, 245.1—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: April 1, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.8 and 245.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding times, 6 months for metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤0.1 amu and ≤0.9 amu at 10% peak height.
- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP-MS

metals and 85-115% for mercury. All CRI/CRA and check standard recoveries were within the control limits of 70-130%.

- Blanks: There were no applicable detects in the method blanks or CCBs.
- Interference Check Samples: No ICSA/B analyses were performed in association with the sample in this SDG.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Method accuracy was evaluated based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. The bracketing CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on
 the sample result summary were verified against the raw data. No transcription errors or
 calculation errors were noted. Detects reported below the reporting limit were qualified as
 estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit.
 Reported nondetects are valid to the MDL.

There were no detects in the original total metals fraction. To confirm these results, the reviewer requested the laboratory to digested and analyzed new aliquots for both total and dissolved metals. The dissolved metals results were similar to the original analyses but the total metals reanalysis yielded several detects. It was determined by the laboratory that in the original analysis of the total metals, the analyst inadvertently analyzed a blank instead of the total metals fraction. The original report was subsequently revised to include only the reanalysis results.

The reviewer noted that cadmium was detected marginally above the MDL in the dissolved metals sample fraction but was not detected in the total metals fraction and that antimony was detected at a slightly higher concentration in the dissolved metals fraction. In both cases, the difference between the dissolved and total results was within the sensitivity limits of the analytical instruments and, therefore, the reviewer considered the total and dissolved results to be equivalent.

 Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC

data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

 Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.

Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks Date Reviewed: April 2, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The tritium sample was analyzed within 180 days of collection. Aliquots
 for gross alpha and gross beta were prepared within the five-day analytical holding time
 for unpreserved samples. Aliquots for radium-226, radium-228, strontium-90, total
 uranium, and gamma spectroscopy were prepared beyond the five-day holding time for
 unpreserved samples; therefore, results for these analytes were qualified as estimated,
 "J," for detects and, "UJ," for nondetects.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, nondetected gross alpha in the sample was qualified as an estimated nondetect, "UJ." The gross beta detector efficiency was greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. The tritium detector efficiency for the sample was marginally less than 20%; therefore, nondetected tritium was qualified as an estimated nondetect, "UJ." The strontium chemical yield was at least 70% and was considered acceptable. The strontium and radium-226 continuing calibration results were within the laboratory control limits. The radium-228 tracer, yttrium oxalate, yields were greater than 70%. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

Blanks: There were no analytes detected in the method blanks.

DATA VALIDATION REPORT SSFL NPDES
SDG: IRB2341

 Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.

- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this
 data package. The sample results and MDAs reported on the sample result form were
 verified against the raw data and no calculation or transcription errors were noted.
 Reported nondetects are valid to the MDA.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - o Field Duplicates: There were no field duplicate samples identified for this SDG.

ð	Client Data			Sample Data		Laboratory Data				
Name:		Test America-Irvine, CA	CA	Matrix:	Aqueous	Lab Sample:	30307-001	Date Received:	seived:	26-Feb-08
Tag iii.	llected: llected:	22-Feb-08 1030		Sample Size:	1.02 L	QC Batch No.: Date Analyzed DB-5:	9997 10-Mar-08	Date Extracted: Date Analyzed I	Date Extracted: Date Analyzed DB-225;	9-Mar-08 NA
An	Analyte	Conc. (ug/L)	DI a	EMPCb	Qualifiers	Labeled Standard	dard	%R	rcr-ncrq	Oualifiers
2,3	2,3,7,8-TCDD	Q	0.000000769	69100		IS 13C-2,3,7,8-TCDD	DD	74.0	25 - 164	
1,2	1,2,3,7,8-PeCDD	N N	0.00000140	1140		13C-1,2,3,7,8-PeCDD	PeCDD	69.7	25-181	
1,2	1,2,3,4,7,8-HxCDD	£	9610000000	1196		13C-1,2,3,4,7,8-HxCDD	-HxCDD	69.7	32-141	は特別の関いた。
1,2	1,2,3,6,7,8-HxCDD	2	0,00000274	1274		13C-1,2,3,6,7,8-HxCDD	-HxCDD	74.1	28-130	
1,2	1,2,3,7,8,9-HxCDD	2	0,00000191	1610		13C-1,2,3,4,6,7,8-HpCDD	,8-нрсрр	72.0	23-140	
5,1,2	1,2,3,4,6,7,8-HpCDD	0.0000144			ſ	13C-0CDD		63.1	17-157	
8	OCDD	0,000131				13C-2,3,7,8-TCDF	ΏF	77.7	24-169	
2,3	2,3,7,8-TCDF	R	0.000000689	6890	100000000000000000000000000000000000000	13C-1,2,3,7,8-PeCDF	PeCDF	66.3	24-185	
2	1,2,3,7,8-PeCDF	2	0,00000100	100		13C-2,3,4,7,8-PeCDF	PeCDF	8.79	21-178	
2,3	2,3,4,7,8-PeCDF	R	0.00000105	105	,	13C-1,2,3,4,7,8-HxCDF	-HxCDF	68.2	26-152	
1.2	1,2,3,4,7,8-HxCDF	2	0.000000447	10447	The Mark Street	13G-1,2,3,6,7,8-HxCDF	-HxCDF	75.6	26-123	
1,2	,2,3,6,7,8-HxCDF	2	0.00000104	104		13C-2,3,4,6,7,8-HxCDF	-HxCDF	74.3	28-136	
2,3	2,3,4,6,7,8-HxCDF	Q	0,00000117	1117		13C-1,2,3,7,8,9-HxCDF	-HxCDF	73.4	29-147	
1,2	1,2,3,7,8,9-HxCDF	2	0,00000150	150		13C-1,2,3,4,6,7,8-HpCDF	,8-HpCDF	68.3	28 - 143	
DWQ 12	2,3,4,6,7,8-HpCDF	0.00000281				13C-1,2,3,4,7,8,9-HpCDF	9-HpCDF	68.5	26-138	
1.2	1,2,3,4,7,8,9-HpCDF	2	0.00000142	142		13C-OCDF		65.0	17-157	
DO DONOT	ОСДР	0.00000003			1	CRS 37CI-2,3,7,8-TCDD	CDD	112	35-197	
To	Totals					Footnotes				
Tol	Total TCDD	ON	0.00000114	1114		a. Sample specific estimated detection limit.	ed detection limit.			
To	Total PeCDD	2	0.00000233	233		b. Estimated maximum possible concentration	ssible concentration.			
Tot	Total HxCDD	Q	0.00000472	1472	V	c. Method detection limit,				
Ī	Total HpCDD	0.0000340				d. Lower control limit - upper control limit	oper control limit.			
To	Total TCDF	R	0.000000089	6890		The state of the s	Control to the second of the s	A STATE OF THE PARTY OF THE PAR	Maria Alle 191 de la companya de la	
Ğ	Total PeCDF	2	0.00000180	180					William State of the State of t	
To	Total HxCDF	0.00000139		0.0000022	221	The state of the s	And the state of t	The second second		
Į,	Lots! HMCDR	0.0000656	· 中班民首都的 · 解於	THE PARTY AND TH	Contract of the Contract of th	記言二見がいる Mite 別名	を という は という とう		STATE OF THE PARTY	から 大学 できる

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB2341

Sampled: 02/22/08

Received: 02/22/08

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2341-01RE1 (Outfal	l 009 - Water)								
Reporting Units: ug/l									
Antimony J/DNG	EPA 200.8	8D02076	0.20	2.0	0.91	1	04/02/08	04/02/08	J
Cadmium ∪	EPA 200.8	8D02076	0.11	1.0	ND	1	04/02/08	04/02/08	
Copper	EPA 200.8	8D02076	0.75	2.0	2.7	1	04/02/08	04/02/08	
Lead	EPA 200.8	8D02076	0.30	1.0	1.6	1	04/02/08	04/02/08	
Thallium U	EPA 200.8	8D02076	0.20	1.0	ND	1	04/02/08	04/02/08	

LEVEL /U

TestAmerica Irvine

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Troject ID. Trouble Guitair o

Sampled: 02/22/08

Arcadia, CA 91007

Report Number: IRB2341

Received: 02/22/08

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2341-01 (Outfall 009	- Water) - cont.								
Reporting Units: ug/l									
Antimony JDNQ	EPA 200.8-Diss	8B22128	0.20	2.0	0.94	1	02/22/08	02/23/08	J
Cadmium	EPA 200.8-Diss	8B22128	0.11	1.0	0.11	1	02/22/08	02/23/08	J
Copper	EPA 200.8-Diss	8B22128	0.75	2.0	2.6	1	02/22/08	02/23/08	
Lead U	EPA 200.8-Diss	8B22128	0.30	1.0	ND	1	02/22/08	02/23/08	
Thallium 🗼	EPA 200.8-Diss	8B22128	0.20	1.0	ND	1	02/22/08	02/23/08	

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Report Number: IRB2341

Sampled: 02/22/08

Received: 02/22/08

Metals by EPA 200 Series Methods

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2341-01 (Outfall 009 - Wa	iter) - cont.								
Reporting Units: ug/l									
Mercury, Dissolved	EPA 245.1	W8B0982	0.050	0.20	ND	1	02/26/08	02/27/08	
Mercury, Total	EPA 245.1	W8B0982	0.050	0.20	ND	1	02/26/08	02/27/08	

LEVEL IV

Eberline Services

ANALYSIS RESULTS

Client	Lab						
Sample ID Out Fall 009	Sample ID	Collected	Analyzed	Nuclide	Results ± 20	Units	MDA
IRB2341-01	8611-001	02/22/08	03/15/08	GrossAlpha	0.210 ± 0.53	pCi/L	0.89 UJ/R
			03/15/08	Gross Beta	1.84 ± 0.81	pCi/L	1.3
			03/10/08	Ra-228	0.142 ± 0.19	pCi/L	0.48 UJ/H
			03/11/08	K-40 (G)	υ	pCi/L	8.7
			03/11/08	Cs-137 (G)	U	pCi/L	0.70
			03/14/08	H-3	-113 ± 84	pCi/L	150 UJ/R
			03/13/08	Ra-226	0.153 ± 0.36	pCi/L	0.66 UJ/H
			03/10/08	Sr-90	-0.040 ± 0.36	pCi/L	0.87
			03/05/08	Total U	0.515 ± 0.059	pCi/L	0.023 J/H

LEVEL IV

Certified by Report Date 03/19/08
Page 1

APPENDIX G

Section 60

Outfall 009, February 22, 2008 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly
Sampled: 02/22/08
Received: 02/22/08

Issued: 03/14/08 14:51

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID CLIENT ID MATRIX

IRB2341-01 Outfall 009 Water

Reviewed By:

TestAmerica Irvine

Joseph Dock

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Sampled: 02/22/08 Arcadia, CA 91007 Report Number: IRB2341 Received: 02/22/08

Attention: Bronwyn Kelly

METALS

Project ID: Routine Outfall 009

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2341-01 (Outfall 009 - Wa	ter)								
Reporting Units: ug/l									
Antimony	EPA 200.8	8B23034	0.20	2.0	ND	1	02/23/08	02/25/08	
Cadmium	EPA 200.8	8B23034	0.11	1.0	ND	1	02/23/08	02/25/08	
Copper	EPA 200.8	8B23034	0.75	2.0	ND	1	02/23/08	02/25/08	
Lead	EPA 200.8	8B23034	0.30	1.0	ND	1	02/23/08	02/25/08	
Thallium	EPA 200.8	8B23034	0.20	1.0	ND	1	02/23/08	02/25/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/22/08

MWH-Pasadena/Boeing Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IRB2341 Received: 02/22/08

Attention: Bronwyn Kelly

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2341-01 (Outfall 009	- Water) - cont.								
Reporting Units: ug/l									
Antimony	EPA 200.8-Diss	8B22128	0.20	2.0	0.94	1	02/22/08	02/23/08	J
Cadmium	EPA 200.8-Diss	8B22128	0.11	1.0	0.11	1	02/22/08	02/23/08	J
Copper	EPA 200.8-Diss	8B22128	0.75	2.0	2.6	1	02/22/08	02/23/08	
Lead	EPA 200.8-Diss	8B22128	0.30	1.0	ND	1	02/22/08	02/23/08	
Thallium	EPA 200.8-Diss	8B22128	0.20	1.0	ND	1	02/22/08	02/23/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009 MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Sampled: 02/22/08 Arcadia, CA 91007 Report Number: IRB2341 Received: 02/22/08

Attention: Bronwyn Kelly

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2341-01 (Outfall 009 -	Water) - cont.								
Reporting Units: mg/l									
Hexane Extractable Material (Oil &	EPA 1664A	8C03074	1.3	4.7	1.4	1	03/03/08	03/03/08	J
Grease)									
Chloride	EPA 300.0	8B22040	0.25	0.50	13	1	02/22/08	02/23/08	
Nitrate/Nitrite-N	EPA 300.0	8B22040	0.15	0.26	1.5	1	02/22/08	02/23/08	
Sulfate	EPA 300.0	8B22040	0.20	0.50	26	1	02/22/08	02/23/08	
Total Dissolved Solids	SM2540C	8B26076	10	10	140	1	02/26/08	02/26/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Sampled: 02/22/08
Report Number: IRB2341 Received: 02/22/08

Attention: Bronwyn Kelly

Arcadia, CA 91007

Metals by EPA 200 Series Methods

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2341-01 (Outfall 009 - Wa	iter) - cont.								
Reporting Units: ug/l									
Mercury, Dissolved	EPA 245.1	W8B0982	0.050	0.20	ND	1	02/26/08	02/27/08	
Mercury, Total	EPA 245.1	W8B0982	0.050	0.20	ND	1	02/26/08	02/27/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Sampled: 02/22/08

Report Number: IRB2341

Received: 02/22/08

SHORT HOLD TIME DETAIL REPORT

Sample ID: Outfall 009 (IRB2341-01) - Water	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
EPA 300.0	2	02/22/2008 10:30	02/22/2008 19:05	02/22/2008 21:00	02/23/2008 00:18
Filtration	1	02/22/2008 10:30	02/22/2008 19:05	02/22/2008 22:44	02/22/2008 22:44

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Report Number: IRB2341

Sampled: 02/22/08 Received: 02/22/08

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B23034 Extracted: 02/23/08	3										
	_										
Blank Analyzed: 02/25/2008 (8B23034-B	LK1)										
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Thallium	ND	1.0	0.20	ug/l							
LCS Analyzed: 02/25/2008 (8B23034-BS	1)										
Antimony	82.7	2.0	0.20	ug/l	80.0		103	85-115			
Cadmium	83.1	1.0	0.11	ug/l	80.0		104	85-115			
Copper	83.7	2.0	0.75	ug/l	80.0		105	85-115			
Lead	85.2	1.0	0.30	ug/l	80.0		106	85-115			
Thallium	84.2	1.0	0.20	ug/l	80.0		105	85-115			
Matrix Spike Analyzed: 02/25/2008 (8B2	23034-MS1)				Sou	rce: IRB2	2213-01				
Antimony	90.8	2.0	0.20	ug/l	80.0	ND	113	70-130			
Cadmium	85.2	1.0	0.11	ug/l	80.0	ND	107	70-130			
Copper	78.1	2.0	0.75	ug/l	80.0	2.46	95	70-130			
Lead	76.1	1.0	0.30	ug/l	80.0	ND	95	70-130			
Thallium	76.2	1.0	0.20	ug/l	80.0	0.202	95	70-130			
Matrix Spike Analyzed: 02/25/2008 (8B2	23034-MS2)				Sou	rce: IRB	1758-01				
Antimony	88.8	2.0	0.20	ug/l	80.0	ND	111	70-130			
Cadmium	84.2	1.0	0.11	ug/l	80.0	ND	105	70-130			
Copper	78.2	2.0	0.75	ug/l	80.0	6.07	90	70-130			
Lead	79.0	1.0	0.30	ug/l	80.0	1.87	96	70-130			
Thallium	77.0	1.0	0.20	ug/l	80.0	ND	96	70-130			
Matrix Spike Dup Analyzed: 02/25/2008	(8B23034-M	SD1)			Sou	rce: IRB2	2213-01				
Antimony	90.6	2.0	0.20	ug/l	80.0	ND	113	70-130	0	20	
Cadmium	85.1	1.0	0.11	ug/l	80.0	ND	106	70-130	0	20	
Copper	77.2	2.0	0.75	ug/l	80.0	2.46	93	70-130	1	20	
Lead	75.0	1.0	0.30	ug/l	80.0	ND	94	70-130	1	20	
Thallium	74.2	1.0	0.20	ug/l	80.0	0.202	93	70-130	3	20	

TestAmerica Irvine

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/22/08

Report Number: IRB2341 Received: 02/22/08

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B22128 Extracted: 02/22/08	_										
Blank Analyzed: 02/23/2008 (8B22128-Bl	LK1)										
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Thallium	ND	1.0	0.20	ug/l							
LCS Analyzed: 02/23/2008 (8B22128-BS1	1)										
Antimony	83.9	2.0	0.20	ug/l	80.0		105	85-115			
Cadmium	84.0	1.0	0.11	ug/l	80.0		105	85-115			
Copper	83.0	2.0	0.75	ug/l	80.0		104	85-115			
Lead	82.4	1.0	0.30	ug/l	80.0		103	85-115			
Thallium	80.2	1.0	0.20	ug/l	80.0		100	85-115			
Matrix Spike Analyzed: 02/23/2008 (8B2	2128-MS1)				Sou	rce: IRB2	2337-01				
Antimony	86.6	2.0	0.20	ug/l	80.0	0.439	108	70-130			
Cadmium	83.8	1.0	0.11	ug/l	80.0	ND	105	70-130			
Copper	78.5	2.0	0.75	ug/l	80.0	ND	98	70-130			
Lead	74.4	1.0	0.30	ug/l	80.0	ND	93	70-130			
Thallium	79.2	1.0	0.20	ug/l	80.0	ND	99	70-130			
Matrix Spike Dup Analyzed: 02/23/2008	(8B22128-M	SD1)			Sou	rce: IRB2	2337-01				
Antimony	88.3	2.0	0.20	ug/l	80.0	0.439	110	70-130	2	20	
Cadmium	85.8	1.0	0.11	ug/l	80.0	ND	107	70-130	2	20	
Copper	79.1	2.0	0.75	ug/l	80.0	ND	99	70-130	1	20	
Lead	76.2	1.0	0.30	ug/l	80.0	ND	95	70-130	2	20	
Thallium	80.7	1.0	0.20	ug/l	80.0	ND	101	70-130	2	20	

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Report Number: IRB2341

Sampled: 02/22/08 Received: 02/22/08

METHOD BLANK/QC DATA

INORGANICS

	-	Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B22040 Extracted: 02/22/08	=										
Blank Analyzed: 02/22/2008 (8B22040-B)	· ·										
Chloride	ND	0.50	0.25	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Sulfate	ND	0.50	0.20	mg/l							
LCS Analyzed: 02/22/2008 (8B22040-BS)	1)										
Chloride	4.90	0.50	0.25	mg/l	5.00		98	90-110			
Sulfate	9.58	0.50	0.20	mg/l	10.0		96	90-110			
Matrix Spike Analyzed: 02/22/2008 (8B2	2040-MS1)				Sou	rce: IRB2	2046-01				
Chloride	135	10	5.0	mg/l	50.0	91.1	89	80-120			
Sulfate	289	10	4.0	mg/l	100	205	84	80-120			
Matrix Spike Analyzed: 02/22/2008 (8B2	2040-MS2)				Sou	rce: IRB2	2244-02				
Chloride	20.0	0.50	0.25	mg/l	5.00	15.0	101	80-120			
Sulfate	51.5	0.50	0.20	mg/l	10.0	41.6	99	80-120			
Matrix Spike Dup Analyzed: 02/22/2008	(8B22040-M	SD1)			Sou	rce: IRB2	2046-01				
Chloride	137	10	5.0	mg/l	50.0	91.1	91	80-120	1	20	
Sulfate	294	10	4.0	mg/l	100	205	89	80-120	2	20	
Batch: 8B26076 Extracted: 02/26/08	_										
Blank Analyzed: 02/26/2008 (8B26076-B	LK1)										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 02/26/2008 (8B26076-BS)	1)										
Total Dissolved Solids	984	10	10	mg/l	1000		98	90-110			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/22/08

Report Number: IRB2341

Received: 02/22/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B26076 Extracted: 02/26/08	_										
Duplicate Analyzed: 02/26/2008 (8B2607) Total Dissolved Solids	6-DUP1) 705	10	10	mg/l	Sour	rce: IRB2 699	2347-11		1	10	
Batch: 8C03074 Extracted: 03/03/08	<u>-</u>										
Blank Analyzed: 03/03/2008 (8C03074-B	LK1)										
Hexane Extractable Material (Oil & Grease)	ND	5.0	1.4	mg/l							
LCS Analyzed: 03/03/2008 (8C03074-BS	1)										MNR1
Hexane Extractable Material (Oil & Grease)	18.9	5.0	1.4	mg/l	20.2		94	78-114			
LCS Dup Analyzed: 03/03/2008 (8C0307-	4-BSD1)										
Hexane Extractable Material (Oil & Grease)	19.3	5.0	1.4	mg/l	20.2		96	78-114	2	11	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/22/08

Report Number: IRB2341

Received: 02/22/08

METHOD BLANK/QC DATA

Metals by EPA 200 Series Methods

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: W8B0982 Extracted: 02/26/0	8										
Blank Analyzed: 02/27/2008 (W8B0982-l	BLK1)										
Mercury, Dissolved	ND	0.20	0.050	ug/l							
Mercury, Total	ND	0.20	0.050	ug/l							
LCS Analyzed: 02/27/2008 (W8B0982-B	S1)										
Mercury, Dissolved	0.920	0.20	0.050	ug/l	1.00		92	85-115			
Mercury, Total	0.920	0.20	0.050	ug/l	1.00		92	85-115			
Matrix Spike Analyzed: 02/27/2008 (W8	B0982-MS1)				Sou	rce: 8022	631-01				
Mercury, Dissolved	1.95	0.40	0.10	ug/l	2.00	ND	98	70-130			
Mercury, Total	1.95	0.40	0.10	ug/l	2.00	0.0950	93	70-130			
Matrix Spike Analyzed: 02/27/2008 (W8	B0982-MS2)				Sou	rce: 8022	633-01				
Mercury, Dissolved	1.91	0.40	0.10	ug/l	2.00	ND	96	70-130			
Mercury, Total	1.91	0.40	0.10	ug/l	2.00	ND	96	70-130			
Matrix Spike Dup Analyzed: 02/27/2008	(W8B0982-M	SD1)	Source: 8022631-01								
Mercury, Dissolved	2.00	0.40	0.10	ug/l	2.00	ND	100	70-130	2	20	
Mercury, Total	2.00	0.40	0.10	ug/l	2.00	0.0950	95	70-130	2	20	
Matrix Spike Dup Analyzed: 02/27/2008	(W8B0982-M	SD2)			Sou	rce: 8022	633-01				
Mercury, Dissolved	1.93	0.40	0.10	ug/l	2.00	ND	96	70-130	1	20	
Mercury, Total	1.93	0.40	0.10	ug/l	2.00	ND	96	70-130	1	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Sampled: 02/22/08 Arcadia, CA 91007 Report Number: IRB2341 Received: 02/22/08

Attention: Bronwyn Kelly

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LahNasahas	A	Amalasta	TI\$4	D14	MDI	Compliance
<u>LabNumber</u>	Analysis	Analyte	Units	Result	MRL	Limit
IRB2341-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	1.42	4.7	15
IRB2341-01	Antimony-200.8	Antimony	ug/l	0.012	2.0	6
IRB2341-01	Cadmium-200.8	Cadmium	ug/l	0.015	1.0	4
IRB2341-01	Chloride - 300.0	Chloride	mg/l	13	0.50	150
IRB2341-01	Copper-200.8	Copper	ug/l	0.11	2.0	14
IRB2341-01	Hg_w 245.1	Mercury, Total	ug/l	0.014	0.20	0.2
IRB2341-01	Lead-200.8	Lead	ug/l	0.021	1.0	5.2
IRB2341-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	1.54	0.26	10
IRB2341-01	Sulfate-300.0	Sulfate	mg/l	26	0.50	250
IRB2341-01	TDS - SM 2540C	Total Dissolved Solids	mg/l	139	10	850
IRB2341-01	Thallium-200.8	Thallium	ug/l	0	1.0	2

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200 Sampled: 02/22/08

Arcadia, CA 91007 Report Number: IRB2341 Received: 02/22/08

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

DATA QUALIFIERS AND DEFINITIONS

Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 02/22/08

Report Number: IRB2341 Received: 02/22/08

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EPA 1664A	Water		
EPA 200.8-Diss	Water	X	X
EPA 200.8	Water	X	X
EPA 300.0	Water	X	X
Filtration	Water	N/A	N/A
SM2540C	Water	X	

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Eberline Services

2030 Wright Avenue - Richmond, CA 94804 Analysis Performed: Gamma Spec

Samples: IRB2341-01

Analysis Performed: Gross Alpha

Samples: IRB2341-01

Analysis Performed: Gross Beta Samples: IRB2341-01

Analysis Performed: Radium, Combined

Samples: IRB2341-01

Analysis Performed: Strontium 90

Samples: IRB2341-01

Analysis Performed: Tritium

Samples: IRB2341-01

Analysis Performed: Uranium, Combined

Samples: IRB2341-01

TestAmerica Irvine

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007
Report Number: IRB2341
Sampled: 02/22/08
Received: 02/22/08

Attention: Bronwyn Kelly

Vista Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762 Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IRB2341-01

Analysis Performed: EDD + Level 4

Samples: IRB2341-01

Weck Laboratories, Inc

14859 E. Clark Avenue - City of Industry, CA 91745

Method Performed: EPA 245.1 Samples: IRB2341-01

TestAmerica Irvine

Test America version 12/20/07	Ca Version 12.	2/20/07	2	CHAIN OF	I OF C	TRB234 CUSTODY FORM	⊬/Q	RE22 FO	34 RM		made	Page 1 of 1	_
Client Name/Address	Iress		Project							ANALYSIS	SREQUIRED		
MWH-Arcadia 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Test America Contact. Joseph Doak	t enue, Suite 200 rct: Joseph Doa	~	Boeing-S Routine Stormwa	Boeing-SSFL NPDES Routine Outfall 009 Stormwater at WS-13	ທ <u> </u> ຕ	IT ,1				R-H) n (0.4), Total 226 muibeA mu		Field readings: Temp = 52.2°	-,
Project Manager: Bronwyn Kelly Sampler: MARIX AL	Bronwyn Ke		Phone Number: (626) 568-6691 Fax Number: (620) 660	umber: 3-6691 iber:		scoverable Cu, Pb, Hg	ono illa brig 9361) əssə	ON+EON ,		pha(900.0 Sr-90 (905 ed Radium rt 903.1) & r4.0), Urani K-40, CS-1	Toxieity ssolved Me T, Hg, Ti	pH = 7.5 Time of readings = 10:30	
Barroso, R.	5		CI CO-80C (070)	C C C C C C C C C C C C C C C C C C C		Cq'			S	a(90), 6.0), 3.0 o 3.0 o 8.0),	al Dis		
Sample Sample Description Matrix	Container Type	Cont.	Sampling Date/Time	Preservative	Bottle #	'9S			αT	198 (90) 100 (90) 323 (90)	toT	Comments	
-	=	-	80-27-2	HNO3	14	×							
Outfail 009- W	1L Poly	-	10:130	HNO3	18	×							
Outfall 009 W	1L Amber	2		None	2A, 2B		×						
Outfall 009 W	1L Amber	2		HCI	3A, 3B		<u>×</u>						
Outfall 009 W	500 ml Poly	2		None	4A, 4B			×					
Outfall 009 W	500 ml Poly	-		None	5				×				
Outfall 009 W	2.5 Gal Cube 500 ml Amber			None None	6A 6B					×		Unfiltered and unpreserved analysis	<u>.s</u>
Outel 009 14	1 Cal Poly	1	1	None	 		1				×	UMy test if escend rain event of the year	Year .
Outfall 009 W	1L Poly	-	80.22-2	None	8						×	Filter w/in 24hrs of receipt at lab	
			10:30										
							+-						
												(DD)	/
								-				2,50	1
							H					(22/08	
Relinquished By	4	Date/ 2.22.0 £	Date/Time:	204/	Received	To be	~ 3	6	Date/Time	7	4 0€	Turn around Time: (check) 24 Hours 5 Days	
Relinquished By	6	A	Date/Time:		Received B	By C	1		Date/Time:	Januari Janua Janua Janua Janua Ja Ja Ja Ja Ja Ja Ja Ja Ja Ja Ja Ja Ja	4	48 Hours 10 Days	
Relinquished By	0		T2	50	n n	A 1		(Date/Time:	ate/Time:		72 Hours Normal Sample Integrity (check) (6.2)	7
				3.7		\						7	7

SUBCONTRACT ORDER - PROJECT # IRB2341 y

		TF	
TestAmerica Irvine	G LABORATORY:	W-1 7 1	RECEIVING LABORATORY:
	100	Weck Laborator	
17461 Derian Avenue. Suite	100	14859 E. Clark A	
Irvine, CA 92614		Phone :(626) 33	
Phone: (949) 261-1022		Fax: (626) 336-	
Fax: (949) 260-3297		Fax. (020) 550-	2034
Project Manager: Joseph Doal		Project Location:	California
		-	
Analysis	d unless specific due date is requeste Expiration	ed. => Due Date:	Comments
Sample ID: IRB2341-01√Wate	er Sampled: 02/22/08 10:30	ph=7.5 temp=52.2	
Level 4 Data Package - Weck			Out to Weck
Mercury - 245.1, Diss -OUT Mercury - 245.1-OUT	03/21/08 10:30 Already filter 03/21/08 10:30	ecl	Weck, Boeing, J flags Weck, Boeing, permit, J flags, if result>ND, call TA
Containers Supplied: 125 mL Poly w/HNO3 (IRB23- 125 mL Poly (IRB2341-01N)	41-01M)		
	•		
	4.00		
\wedge		INTEGRITY:	
	□ No Sample labels/COC agree:□ No Samples Preserved Properly:	Yes No	Samples Received On Ice:: Samples Received at (temp):
(Januar)	2/25/08/09/10=	Es Roe	- 2650× 0940
Released By		Received By V	Date Time
BOX	2/24 R/ 1/38	Jamabiner	2/15/03/1038
Released By		Received By	Date Time

Weck Laboratories, Inc.

Analytical Laboratory Services - Since 1964

14859 E. Clark Ave., Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634 info@wecklabs.com www.wecklabs.com

CERTIFICATE OF ANALYSIS

Client: TestAmerica, Inc. - Irvine

Report Date:

02/28/08 07:51

17461 Derian Ave, Suite 100

Received Date:

02/25/08 10:38

Irvine, CA 92614

Turn Around:

Normal

Attention: Joseph Doak

Work Order #:

8022512

. (01111)

Phone: (949) 261-1022

Fax: (949) 260-3297

Client Project: IRB2341

NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

Dear Joseph Doak:

Enclosed are the results of analyses for samples received 02/25/08 10:38 with the Chain of Custody document. The samples were received in good condition. The samples were received at 3.7 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Reviewed by:

Kim G Tu

Project Manager

Page 1 of 6

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8022512 Project ID: IRB2341 Date Received: 02/25/08 10:38 Date Reported: 02/28/08 07:51

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Sampled by:	Sample Comments	Laboratory	Matrix	Date Sampled
IRB2341-01	Client		8022512-01	Water	02/22/08 10:30

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8022512 Project ID: IRB2341 Date Received: 02/25/08 10:38 Date Reported: 02/28/08 07:51

IRB2341-01 8022512-01 (Water)

Date Sampled: 02/22/08 10:30

Metals by EPA 200 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Analyst	Data Qualifiers
Mercury, Dissolved	ND	0.050	ug/l	0.20	1	EPA 245.1	W8B0982	02/26/08	02/27/08	jlp	
Mercury, Total	ND	0.050	ug/l	0.20	1	EPA 245.1	W8B0982	02/26/08	02/27/08	jlp	

Week Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8022512 Project ID: IRB2341 Date Received: 02/25/08 10:38 Date Reported: 02/28/08 07:51

QUALITY CONTROL SECTION

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8022512 Project ID: IRB2341 Date Received: 02/25/08 10:38 Date Reported: 02/28/08 07:51

Metals by EPA 200 Series Methods - Quality Control

%REC

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch W8B0982 - EPA 245.1										
Blank (W8B0982-BLK1)				Analyzed:	02/27/08					
Mercury, Dissolved	ND	0.20	ug/l							
Mercury, Total	ND	0.20	ug/l							
LCS (W8B0982-BS1)		Analyzed: 02/27/08								
Mercury, Dissolved	0.920	0.20	ug/l	1.00		92	85-115			
Mercury, Total	0.920	0.20	ug/l	1.00		92	85-115			
Matrix Spike (W8B0982-MS1)	So	urce: 8022631	-01	Analyzed:	02/27/08					
Mercury, Dissolved	1.95	0.40	ug/l	2.00	ND	98	70-130			
Mercury, Total	1.95	0.40	ug/l	2.00	0.0950	93	70-130			
Matrix Spike (W8B0982-MS2)	So	urce: 8022633	-01	Analyzed:	02/27/08					
Mercury, Dissolved	1.91	0.40	ug/l	2.00	ND	96	70-130			
Mercury, Total	1.91	0.40	ug/l	2.00	ND	96	70-130			
Matrix Spike Dup (W8B0982-MSD1)	So	urce: 8022631	-01	Analyzed:	02/27/08					
Mercury, Dissolved	2.00	0.40	ug/l	2.00	ND	100	70-130	2	20	
Mercury, Total	2.00	0.40	ug/l	2.00	0.0950	95	70-130	2	20	
Matrix Spike Dup (W8B0982-MSD2)	So	urce: 8022633	-01	Analyzed:	02/27/08					
Mercury, Dissolved	1.93	0.40	ug/l	2.00	ND	96	70-130	0.9	20	
Mercury, Total	1.93	0.40	ug/l	2.00	ND	96	70-130	0.9	20	

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100

Irvine CA, 92614

Report ID: 8022512 Date Received: 02/25/08 10:38 Project ID: IRB2341 Date Reported: 02/28/08 07:51

Notes and Definitions

ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)

Sample results reported on a dry weight basis dry

Relative Percent Difference RPD

Percent Recovery % Rec

Sub Subcontracted analysis, original report available upon request

MDL Method Detection Limit

MDA Minimum Detectable Activity

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

March 20, 2008

Mr. Joseph Doak Test America, Inc. 17461 Derian Avenue, Suite 100 Irvine, CA 92614

Reference: Test America Project Nos. IRB1995, IRB2337, IRB2341, IRB2342, IRB2399

IRB2400, IRB2401, IRB2403

Eberline Services NELAP Cert #01120CA

Eberline Services Reports R802140-8609, R802169-8610, R802170-8611

R802171-8612, R802172-8613, R802173-8614

R802174-8615, R802175-8616

Dear Mr. Doak:

Attached are data reports for eight water samples. The samples were received at Eberline Services on February 22, 26, 2008 under eight separate Test America subcontract orders. The samples were analyzed according to the accompanying Test America Subcontract Order Forms, the requested analyses were: gross alpha/gross beta (EPA 900.0), tritium (H-3, EPA906.0), Sr-90 (EPA905.0), Ra-226 (EPA903.1), Ra-228 (EPA 904.0), total uranium (ASTM D-5174), and gamma spectroscopy (EPA901.1, K-40 and Cs-137 only). The parenthetical G after a nuclide indicates that the result was obtained by gamma spectroscopy; a "U" in the results column indicates that the nuclide was not detected greater than the indicated minimum detectable activity (MDA). The samples were not filtered prior to analysis. The samples were analyzed in batches with common QC samples. Batch quality control samples consisted of LCS's, blank analyses, duplicate analyses, and matrix spike analyses (gross alpha/gross beta, H-3, Ra-226, Total-U only). All samples were batched with QC samples 8609-002, 003, 004, and 005 for all analyses. All QC sample results were within the limits defined in Eberline Services Quality Control Procedures Manual.

Please call me if you have any questions concerning this report.

Regards,

Melissa Mannion

Senior Program Manager

melesso Mamm

MCM/njv

Enclosure: Reports

Analytical Services 2030 Wright Avenue P.O. Box 4040 Richmond, California 94804-0040 (510) 235-2633 Fax (510) 235-0438 Toll Free (800) 841-5487 www.eberlineservices.com

NPDES - 2349

Eberline Services

ANALYSIS RESULTS

 SDG
 8611
 Client
 TA IRVINE

 Work Order
 R802170-01
 Contract
 PROJECT# IRB2341

 Received Date
 02/26/08
 Matrix
 WATER

Client Sample ID	Lab Sample ID	Collected Analyzed	Nuclide	Results ± 20	<u>Units</u>	MDA
IRB2341-01	8611-001	02/22/08 03/15/08	GrossAlpha	0.210 ± 0.53	pCi/L	0.89
		03/15/08	Gross Beta	1.84 ± 0.81	pCi/L	1.3
		03/10/08	Ra-228	0.142 ± 0.19	pCi/L	0.48
		03/11/08	K-40 (G)	U	pCi/L	8.7
		03/11/08	Cs-137 (G)	U	pCi/L	0.70
		03/14/08	H-3	-113 <u>+</u> 84	pCi/L	150
		03/13/08	Ra-226	0.153 ± 0.36	pCi/L	0.66
		03/10/08	Sr-90	-0.040 ± 0.36	pCi/L	0.87
		03/05/08	Total U	0.515 ± 0.059	pCi/L	0.023

Certified by No. 100 Page 1

Eberline Services

QC RESULTS

SDG <u>8611</u>
Work Order <u>R802170-01</u>

Received Date 02/26/08

Client TA IRVINE
Contract PROJECT# IRB2341

Matrix WATER

Lab							
Sample ID	Nuclide	Resul	ts	<u>Units</u>	Amount Added	MDA	Evaluation
LCS							
8609-002	GrossAlpha	12.8 <u>+</u>	0.90	pCi/Smpl	10.2	0.25	125% recovery
	Gross Beta	8.65 ±	0.36	pCi/Smpl	9.37	0.27	92% recovery
	Ra-228	9.55 ±	0.58	pCi/Smpl	8.63	0.79	111% recovery
	Co-60 (G)	216 ±	6.8	pCi/Smpl	223	3.1	97% recovery
	Cs-137 (G)	247 <u>+</u>	6.5	pCi/Smpl	235	4.3	105% recovery
	Am-241 (G)	208 ±	15	pCi/Smpl	254	17	82% recovery
	H-3	222 ±	14	pCi/Smpl	239	15	93% recovery
	Ra-226	4.52 ±	0.24	pCi/Smpl	4.46	0.081	101% recovery
	Sr-90	10.4 ±	0.75	pCi/Smpl	9.38	0.30	111% recovery
	Total U	1.10 ±	0.13	pCi/Smpl	1.13	0.005	97% recovery
BLANK							
8609-003	GrossAlpha	0 ±	0.15	pCi/Smpl	NA	0.28	<mda< td=""></mda<>
	Gross Beta	-0.185 ±	0.27	pCi/Smpl	NA	0.44	<mda< td=""></mda<>
	Ra-228	-0.178 ±	0.26	pCi/Smpl	NA	0.76	<mda< td=""></mda<>
	K-40 (G)	U		pCi/Smpl	NA	140	<mda< td=""></mda<>
	Cs-137 (G)	U		pCi/Smpl	NA	5.3	<mda< td=""></mda<>
	H-3	-3.37 ±	8.5	pCi/Smpl	NA	14	<mda< td=""></mda<>
	Ra-226	-0.003 ±	0.035	pCi/Smpl	NA	0.071	<mda< td=""></mda<>
	Sr-90	-0.157 ±	0.21	pCi/Smpl	NA	0.57	<mda< td=""></mda<>
	Total U	0.00E 00 ±	2.0E-04	pCi/Smpl	NA	4.6E-04	<mda< td=""></mda<>

	DUPLICATES				ORIGINALS			
								30
Sample ID	Nuclide	Results ± 20	MDA	Sample ID	Results ± 20	\underline{MDA}	RPD	(Tot) Eval
8609-004	GrossAlpha	1.98 ± 1.7	2.4	8609-001	3.00 ± 2.0	2.8	41	164 satis.
	Gross Beta	4.45 ± 1.4	2.0		2.91 ± 2.0	3.3	42	108 satis.
	K-40 (G)	U	20		U	39	-	0 satis.
	Cs-137 (G)	Ū	1.1		U	1.7	-	0 satis.
	H-3	-43.9 ± 86	150		-40.9 ± 84	140	-	0 satis.
	Ra-226	0.125 ± 0.40	0.74		-0.003 ± 0.41	0.79	-	0 satis.
	Sr-90	0.093 ± 0.38	0.86		0.137 ± 0.49	1.1	-	0 satis.
	Total U	1.19 ± 0.13	0.023		1.30 ± 0.15	0.023	9	31 satis.

Certified by

Report Date <u>03/19/08</u>

Page 2

Eberline Services

QC RESULTS

SDG <u>8611</u>
Work Order <u>R802170-01</u>
Received Date <u>02/26/08</u>

Client TA IRVINE

Contract PROJECT# IRB2341

Matrix WATER

ORIGINAL SAMPLE SPIKED SAMPLE Sample ID Nuclide Results ± 20 MDA 8609-001 3.00 ± 2.0 2.8 164 124 8609-005 GrossAlpha 207 ± 11 2.6 148 ± 4.0 2.4 2.91 ± 2.0 3.3 144 101 Gross Beta -40.9 ± 84 140 16000 93 14800 ± 280 H-3 150 -0.003 ± 0.41 0.79 112 101 Ra-226 113 ± 4.4 0.81 1.30 ± 0.15 0.023 113 99 Total U 113 ± 14 2.3

Certified by NReport Date 03/19/08
Page 3

SUBCONTRACT ORDER

TestAmerica Irvine

IRB2341

8611

 $^{\circ}C$

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Eberline Services

2030 Wright Avenue Richmond, CA 94804

Phone:(510) 235-2633

Fax: (510) 235-0438

Project Location: California

Receipt Temperature:

Ice: Y / N

Analysis	Units	Due	Expires	Comments
Sample ID: IRB2341-01	Water		Sampled: 02/22/08 10:3	0 ph=7.5 temp=52.2
Gamma Spec-O	mg/kg	03/04/08	02/21/09 10:30	Boeing, permit, J flags, K-40 and CS-137 only
Gross Alpha-O	pCi/L	03/04/08	08/20/08 10:30	Boeing, permit, J flags
Gross Beta-O	pCi/L	03/04/08	08/20/08 10:30	Boeing, permit, J flags
Level 4 Data Package - Out	N/A	03/04/08	03/21/08 10:30	
Radium, Combined-O	pCi/L	03/04/08	02/21/09 10:30	Boeing, permit, J flags
Strontium 90-O	pCi/L	03/04/08	02/21/09 10:30	Boeing, permit, J flags
Tritium-O	pCi/L	03/04/08	02/21/09 10:30	Boeing, permit, J flags
Uranium, Combined-O	pCi/L	03/04/08	02/21/09 10:30	Boeing, permit, J flags
Containers Supplied:	((500°4	Amber)		

Released By

FED EX

Date/Time

Page 1 of 1

NPDES - 2353

RICHMOND, CA LABORATORY

SAMPLE RECEIPT CHECKLIST

Client: TEST AMERICA City IRVINE State CA	
Date/Time received 2/26/08 10:00 CoC No. 1RB2341	
Container I.D. No. TEST AMER. Requested TAT (Days) STAN DP.O. Received Yes [] No.	0[]
INSPECTION	
1. Custody seals on shipping container intact? Yes [√] No [] N/A []
] N/A []
] N/A [1/]
4. Custody seals on sample containers dated & signed? Yes [] No [
5. Packing material is: Wet [] Dry [] N/AV
6. Number of samples in shipping container: Sample Matrix	,
7. Number of containers per sample: 2 (Or see CoC)	
8. Samples are in correct container Yes [√] No []	
9. Paperwork agrees with samples? Yes [] No []	/
10. Samples have: Tape [] Hazard labels [] Rad labels [] Appropriate sample labe	t j
11. Samples are: In good condition [] Leaking [] Broken Container [] Missi	ng []
12. Samples are: Preserved [] Not preserved [] pH 6 Preservative	
13. Describe any anomalies:	
14. Was P.M. notified of any anomalies? Yes [] No [] Date	
2/2// 2	
15. Inspected by Date: 42.708 Time:	William Control According and Control
Customer Beta/Gamma Ion Chamber Customer Beta/Gamma Ion Chamber Sample No. cpm mR/hr Wipe Sample No. cpm mR/hr	
IRB2341 60	Wipc
on Chamber Ser. No Calibration date	
eta/Gamma Meter Ser. No	
eta/Gamma Meter Ser. No	2007

Form SCP-02, 07-30-07

"over 55 years of quality nuclear services"

March 14, 2008

Vista Project I.D.: 30307

Mr. Joseph Doak Test America-Irvine, CA 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Mr. Doak,

Enclosed are the results for the one aqueous sample received at Vista Analytical Laboratory on February 26, 2008 under your Project Name "IRB2341". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Vista's current certifications, and copies of the raw data (if requested).

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha M. Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.

Section I: Sample Inventory Report Date Received: 2/26/2008

<u>Vista Lab. ID</u> <u>Client Sample ID</u>

30307-001 IRB2341-01

Project 30307 NPDES - 2356
Page 2 of 250

SECTION II

Project 30307 NPDES - 2357
Page 3 of 250

Method Blanl	k					1				EPA Me	thod 1613
Matrix:	Aqueous		QC Batch No.:	99	997	Lab	Sample:	0-MB001			
Sample Size:	1.00 L		Date Extracted:	9.	-Mar-08	Date	Analyzed DB-5:	10-Mar-08	Date An	alyzed DB-225	: NA
Analyte	Conc. ((ug/L)	DL a	EMPC b	Qualifiers		Labeled Standa	rd	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD		ND	0.000000937			<u>IS</u>	13C-2,3,7,8-TCI	DD .	87.0	25 - 164	
1,2,3,7,8-PeCD	DD	ND	0.00000106				13C-1,2,3,7,8-Pe	eCDD	77.8	25 - 181	
1,2,3,4,7,8-HxC	CDD	ND	0.00000142				13C-1,2,3,4,7,8-	HxCDD	82.4	32 - 141	
1,2,3,6,7,8-HxC	CDD	ND	0.00000142				13C-1,2,3,6,7,8-	HxCDD	88.5	28 - 130	
1,2,3,7,8,9-HxC	CDD	ND	0.00000136				13C-1,2,3,4,6,7,	8-HpCDD	81.0	23 - 140	
1,2,3,4,6,7,8-H ₁	pCDD	ND	0.00000250				13C-OCDD		72.3	17 - 157	
OCDD	-	ND	0.00000890				13C-2,3,7,8-TCI	OF	85.2	24 - 169	
2,3,7,8-TCDF		ND	0.000000547				13C-1,2,3,7,8-Pe	eCDF	73.1	24 - 185	
1,2,3,7,8-PeCD	F	ND	0.000000924				13C-2,3,4,7,8-Pe	eCDF	73.2	21 - 178	
2,3,4,7,8-PeCD		ND	0.000000985				13C-1,2,3,4,7,8-	HxCDF	82.4	26 - 152	
1,2,3,4,7,8-HxC	CDF	ND	0.000000699				13C-1,2,3,6,7,8-	HxCDF	94.2	26 - 123	
1,2,3,6,7,8-HxC	CDF	ND	0.000000669				13C-2,3,4,6,7,8-	HxCDF	89.8	28 - 136	
2,3,4,6,7,8-HxC		ND	0.000000795				13C-1,2,3,7,8,9-	HxCDF	83.4	29 - 147	
1,2,3,7,8,9-HxC		ND	0.00000107				13C-1,2,3,4,6,7,8	8-HpCDF	79.0	28 - 143	
1,2,3,4,6,7,8-H ₁	pCDF	ND	0.000000964				13C-1,2,3,4,7,8,9	9-HpCDF	81.7	26 - 138	
1,2,3,4,7,8,9-H ₁	-	ND	0.00000105				13C-OCDF	•	72.4	17 - 157	
OCDF		ND	0.00000275			CRS	37Cl-2,3,7,8-TC	DD	113	35 - 197	
Totals						Foot	tnotes				
Total TCDD		ND	0.000000937			a. San	nple specific estimated	detection limit.			
Total PeCDD		ND	0.00000167			b. Est	imated maximum possil	ole concentration.			
Total HxCDD		ND	0.00000235			c. Me	thod detection limit.				
Total HpCDD		ND	0.00000320			d. Lov	wer control limit - upper	control limit.			
Total TCDF		ND	0.000000547								
Total PeCDF		ND	0.000000953								
Total HxCDF		ND	0.000000792								
Total HpCDF		ND	0.00000100								

Analyst: MAS Approved By: Martha M. Maier 14-Mar-2008 12:59

OPR Results						EP.	A Method 1	1613
Matrix: Sample Size:	Aqueous 1.00 L		QC Batch No.: Date Extracted:	9997 9-Mar-08	Lab Sample: 0-OPR001 Date Analyzed DB-5: 10-Mar-08	Date Analy	zed DB-225:	NA
Analyte		Spike Conc.	Conc. (ng/mL)	OPR Limits	Labeled Standard	%R	LCL-UCL	Qualifier
2,3,7,8-TCDE)	10.0	10.5	6.7 - 15.8	<u>IS</u> 13C-2,3,7,8-TCDD	84.4	25 - 164	
1,2,3,7,8-PeC	DD	50.0	50.9	35 - 71	13C-1,2,3,7,8-PeCDD	78.2	25 - 181	
1,2,3,4,7,8-Hx	xCDD	50.0	49.8	35 - 82	13C-1,2,3,4,7,8-HxCDD	77.7	32 - 141	
1,2,3,6,7,8-H2	xCDD	50.0	50.3	38 - 67	13C-1,2,3,6,7,8-HxCDD	80.5	28 - 130	
1,2,3,7,8,9-Hz	xCDD	50.0	50.3	32 - 81	13C-1,2,3,4,6,7,8-HpCDD	77.6	23 - 140	
1,2,3,4,6,7,8-1	HpCDD	50.0	51.0	35 - 70	13C-OCDD	67.4	17 - 157	
OCDD		100	102	78 - 144	13C-2,3,7,8-TCDF	82.6	24 - 169	
2,3,7,8-TCDF	7	10.0	9.70	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	72.2	24 - 185	
1,2,3,7,8-PeC	DF	50.0	51.5	40 - 67	13C-2,3,4,7,8-PeCDF	73.8	21 - 178	
2,3,4,7,8-PeC	DF	50.0	51.5	34 - 80	13C-1,2,3,4,7,8-HxCDF	78.8	26 - 152	
1,2,3,4,7,8-Hz	xCDF	50.0	52.0	36 - 67	13C-1,2,3,6,7,8-HxCDF	82.8	26 - 123	
1,2,3,6,7,8-Hx	xCDF	50.0	52.6	42 - 65	13C-2,3,4,6,7,8-HxCDF	78.7	28 - 136	
2,3,4,6,7,8-Hx	xCDF	50.0	53.6	35 - 78	13C-1,2,3,7,8,9-HxCDF	78.2	29 - 147	
1,2,3,7,8,9-Hx	xCDF	50.0	51.9	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	74.8	28 - 143	
1,2,3,4,6,7,8-1	HpCDF	50.0	52.4	41 - 61	13C-1,2,3,4,7,8,9-HpCDF	75.3	26 - 138	
1,2,3,4,7,8,9-1	HpCDF	50.0	52.1	39 - 69	13C-OCDF	67.4	17 - 157	
OCDF		100	103	63 - 170	<u>CRS</u> 37Cl-2,3,7,8-TCDD	107	35 - 197	

Analyst: MAS Approved By: Martha M. Maier 14-Mar-2008 12:59

Sample ID: IRB	2341-01								EPA N	Aethod 1613
Client Data			Sample Data		Lab	oratory Data				
	America-Irvine, CA		Matrix:	Aqueous	Lab	Sample:	30307-001	Date Re	ceived:	26-Feb-08
	2341 Feb-08		Sample Size:	1.02 L	QC	Batch No.:	9997	Date Ex	tracted:	9-Mar-08
Time Collected: 22-1					Date	Analyzed DB-5:	10-Mar-08	Date An	alyzed DB-225:	NA
Analyte	Conc. (ug/L)	D L a	EMPC ^b	Qualifiers		Labeled Stand	ard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ND	0.000000	769		<u>IS</u>	13C-2,3,7,8-TCI	OD	74.0	25 - 164	
1,2,3,7,8-PeCDD	ND	0.000001	40			13C-1,2,3,7,8-Pe	eCDD	69.7	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.000001	96			13C-1,2,3,4,7,8-	HxCDD	69.7	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.000002	74			13C-1,2,3,6,7,8-	HxCDD	74.1	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.000001	91			13C-1,2,3,4,6,7,	8-HpCDD	72.0	23 - 140	
1,2,3,4,6,7,8-HpCDD	0.0000144			J		13C-OCDD		63.1	17 - 157	
OCDD	0.000131					13C-2,3,7,8-TCI	OF	77.7	24 - 169	
2,3,7,8-TCDF	ND	0.000000	689			13C-1,2,3,7,8-Pe	eCDF	66.3	24 - 185	
1,2,3,7,8-PeCDF	ND	0.000001	00			13C-2,3,4,7,8-Pe	eCDF	67.8	21 - 178	
2,3,4,7,8-PeCDF	ND	0.000001	05			13C-1,2,3,4,7,8-	HxCDF	68.2	26 - 152	
1,2,3,4,7,8-HxCDF	ND	0.000000	447			13C-1,2,3,6,7,8-	HxCDF	75.6	26 - 123	
1,2,3,6,7,8-HxCDF	ND	0.000001	04			13C-2,3,4,6,7,8-	HxCDF	74.3	28 - 136	
2,3,4,6,7,8-HxCDF	ND	0.000001	17			13C-1,2,3,7,8,9-	HxCDF	73.4	29 - 147	
1,2,3,7,8,9-HxCDF	ND	0.000001	50			13C-1,2,3,4,6,7,	8-HpCDF	68.3	28 - 143	
1,2,3,4,6,7,8-HpCDF	0.00000281			J		13C-1,2,3,4,7,8,9	9-HpCDF	68.5	26 - 138	
1,2,3,4,7,8,9-HpCDF	ND	0.000001	42			13C-OCDF		65.0	17 - 157	
OCDF	0.00000603			J	CRS	37Cl-2,3,7,8-TC	DD	112	35 - 197	
Totals					Foo	otnotes				
Total TCDD	ND	0.000001	14		a. Sa	mple specific estimate	d detection limit.			
Total PeCDD	ND	0.000002	33		b. Es	stimated maximum pos	sible concentration.			
Total HxCDD	ND	0.000004	72		c. M	ethod detection limit.				
Total HpCDD	0.0000340				d. Lo	ower control limit - upp	per control limit.			
Total TCDF	ND	0.000000	689							
Total PeCDF	ND	0.000001	80							
Total HxCDF	0.00000139		0.000002	221						
Total HpCDF	0.00000656									

Analyst: MAS Approved By: Martha M. Maier 14-Mar-2008 12:59

Project 30307

Project 30307

NPDES - 2360
Page 6 of 250

APPENDIX

Project 30307 NPDES - 2361 Page 7 of 250

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D Dilution

E The amount detected is above the High Calibration Limit.

P The amount reported is the maximum possible concentration due to possible

chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.

I Chemical Interference

J The amount detected is below the Low Calibration Limit.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated detection limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit – concentrations that correspond to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

SUBCONTRACT ORDER

TestAmerica Irvine

IRB2341

1.30

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Vista Analytical Laboratory-SUB

1104 Windfield Way

El Dorado Hills, CA 95762

Phone: (916) 673-1520

Fax: (916) 673-0106

Project Location: California

Receipt Temperature:

°C

Ice: Y / N

Analysis	Units	Due	Expires	Comments
Sample ID: IRB2341-01	Water		Sampled: 02/22/08 10:30	ph=7.5 temp=52.2
1613-Dioxin-HR-Alta	ug/l	03/04/08	02/29/08 10:30	J flags,17 congeners,no
EDD + Level 4	N/A	03/04/08	03/21/08 10:30	TEQ,ug/L,sub=Vista Excel EDD email to pm,Include Std logs for Lvl IV
Containers Supplied:				
1 L Amber (C)	1 L Amber (D)			

Released By Fedex

2/26/08

Date/Time

Date/Time

Page 1 of 1

Project 30307

Released By

NPDES - 2364 Page 10 of 250

SAMPLE LOG-IN CHECKLIST

Vista Project #: 36367 TAT UNSPECIFIE

	Date/Time		Initials:		Locat	tion: W	2-2	
Samples Arrival:	2/26/08 0	1910	PSS	3	Shelf	/Rack:	1/A	
	Date/Time		Initials:		Locat		ノアーコ	
Logged In:	2/27/08 0901		919		Shelf/Rack: E2			
Delivered By:	FedEx UP	s	Cal	DHL	- [Hand Delivered	Other	
Preservation:	lce	Blue	e ice Dr		y Ice	None		
Temp °C /.	3° Time:	093	52 T			Thermometer ID: IR-1		

						YES	NO	NA
Adequate Sample Volume Recei	ved?					\ _		
Holding Time Acceptable?						✓		
Shipping Container(s) Intact?	. <u></u>					V,		
Shipping Custody Seals Intact?						/		
Shipping Documentation Present	t?		<u> </u>		-	~		
Airbill Trk # 7	-183 8	170 416	3	•		V		
Sample Container Intact?						\checkmark		
Sample Custody Seals Intact?								
Chain of Custody / Sample Docu	mentation P	resent?	· ·					
COC Anomaly/Sample Acceptar	ice Form cor	npleted?						
If Chlorinated or Drinking Water	Samples, Ac	ceptable Pres	ervatio	n?				V
Na ₂ S ₂ O ₃ Preservation Document	ted?	coc		San Cont	nple ainer	٠.	Mone	
Shipping Container	Vista	Client	Reta	in	Re	turŋ	Disp	ose

Comments:

APPENDIX G

Section 61

Outfall 010, January 5, 2008

MECX Data Validation Reports

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IRA0400

Prepared by

MEC^x, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: IRA0400
Project Manager: B. Kelly

Matrix: Soil QC Level: IV

No. of Samples: 1
No. of Reanalyses/Dilutions: 1

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 010	IRA0400-01	30126-001, 8010770-01, 8679- 001	Water	01/05/08 0920	200.8, 245.1, 300.0, 900.0, 901.1, 903.1, 904.0, 905.0, 906.0, 1613, ASTM D-5174
Outfall 010RE	IRA0400-01RE	N/A	Water	01/05/08 0920	300.0

II. Sample Management

No anomalies were observed regarding sample management. The sample in this SDG was received at TestAmerica-Irvine, Eberline, and Weck within the temperature limits of 4°C ±2°C. The sample was received below the temperature limits at Vista; however, the sample was not noted to have been frozen. According to the case narrative for this SDG, the sample was received intact at all laboratories. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine, custody seals were not required. Custody seals were intact upon arrival at Eberline, Vista, and Weck. If necessary, the client ID was added to the sample result summary by the reviewer.

1

Project: SSFL NPDES
DATA VALIDATION REPORT SDG: IRA0400

Data Qualifier Reference Table

Qualifie	er Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Project: SSFL NPDES
DATA VALIDATION REPORT SDG: IRA0400

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

DATA VALIDATION REPORT Project: SSFL NPDES SDG: IRA0400

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: February 28, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had no target compound detects above the EDL.

 Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHODS 200.8, 245.1—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: February 29, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.8 and 245.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding times, 6 months for metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.
- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP-MS metals and 85-115% for mercury.

6 Revision 1

Blanks: There were no applicable detects in the method blanks or CCBs.

Interference Check Samples: ICSA/B analyses were performed in association with the
total metals analyses only. Recoveries were within the method-established control limits.
Cadmium, copper, and lead were reported in the 6020 ICSA solution; however, the
reviewer was not able to ascertain if the detection was indicative of matrix interference.

- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the sample in this SDG for the 6020 total metals only. All recoveries and RPDs were within the laboratory-established control limits. Evaluation of mercury method accuracy was based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. The bracketing CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

7 Revision 1

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: March 3, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (2/94).

 Holding Times: The tritium sample was analyzed within 180 days of collection. Aliquots for gross alpha, gross beta, radium-226, radium-228, strontium-90, and gamma spectroscopy were prepared within the five-day analytical holding time for unpreserved samples. The aliquot for total uranium was prepared within five days of collection.

• Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, nondetected gross alpha in the sample was qualified as an estimated nondetect, "UJ." The gross beta detector efficiency was greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. The tritium detector efficiency for the sample was at least 20% and was considered acceptable. The internal spike efficiency to default efficiency ratios was near 1, indicating that quenching did not occur.

The strontium chemical yield was at least 70% and was considered acceptable. The strontium continuing calibration results were within the laboratory control limits.

The radium-226 cell efficiencies were determined in September 2006. The radium-226 continuing calibration results were within the laboratory-established control limits. The radium-228 calibration utilized actinium-228 and was verified in February 2001. The radium-228 tracer, yttrium oxalate yields were greater than 70%.

The gamma spectroscopy geometry-specific, detector efficiencies were determined in September 1999 and February 2007. All analytes were determined at the maximum photopeak energy.

The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All calibration check standard recoveries were within 90-110% and were deemed acceptable.

Blanks: There were no analytes detected in the method blank.

 Blank Spikes and Laboratory Control Samples: The gross alpha recovery was above the control limit at 129%; however, gross alpha was not detected in the samples. The remaining recoveries were within laboratory-established control limits.

- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this
 data package. The sample results and MDAs reported on the sample result form were
 verified against the raw data and no calculation or transcription errors were noted.
 Reported nondetects are valid to the MDA.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

D. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks

Date Reviewed: March 3, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Method 300.0 and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The sample was originally analyzed within the 48-hour holding time for nitrate/nitrite. The sample was subsequently reanalyzed outside of holding time. Nitrate/nitrite reported in the reanalysis was qualified as estimated, "J."
- Calibration: Calibration criteria were met. Initial calibration r^2 values were ≥ 0.995 and all initial and continuing calibration recoveries were within 90-110%.
- Blanks: There were no applicable detects in the method blanks or CCBs.
- Blank Spikes and Laboratory Control Samples: A nitrate/nitrite LCS recovery was not listed by the laboratory, but during the review of the raw data, the reviewer noted an

9 Revision 1

DATA VALIDATION REPORT SDG: IRA0400

acceptable recovery. An LCS was also analyzed with the reanalysis and the reviewer noted an acceptable nitrate/nitrite recovery.

- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed. Method accuracy was evaluated based on LCS results.
- Sample Result Verification: The sample results were verified against the raw data. No
 transcription or calculation errors were noted. After the original analysis, the laboratory
 determined that the original analysis was performed on a sample aliquot that had been
 preserved with nitric acid. The laboratory subsequently reanalyzed the sample from an
 unpreserved aliquot. The reviewer rejected, "R," the original nitrate/nitrite result in favor of
 the reanalysis result.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

10 Revision 1

	1
=	3
-	4
0	1
6	3
	1110110

Data			Sample Data		Laboratory Data	10 To			
Name: Test Test Project: IRA	Test America-Irvine, CA IRA0400		Matrix:	Aqueous		30126-001	Date Received:	teived:	8-Jan-08
Date Collected: 5-Jar Time Collected: 0920	5-Jan-08 0920		Sample Size:	1.01 L	QC Batch No.: 9886 Date Analyzed DB-5: 19-Ja	9886 19-Jan-08	Date Extracted: Date Analyzed I	Date Extracted: Date Analyzed DB-225;	17-Jan-08
Analyte	Conc. (ug/L)	DL a	EMPCb	Qualifiers	Labeled Standard		%R	rcr-ncr _q	Ö
2,3,7,8-TCDD	Ð	0.00000123		下海 教 教 经 及	IS 13C-23.7.8-TCDD		ALL	25 161	1.49
1,2,3,7,8-PeCDD	N	0.00000244					603	25 - 181	· 中国的一种国际公司
1,2,3,4,7,8-HxCDD	Ą	0.00000226			13C-1,2,3,4,7,8-HxCDD	0	199	32-161	· · · · · · · · · · · · · · · · · · ·
1,2,3,6,7,8-HxCDD	2	0.00000236			13C-1,2,3,6,7,8-HxCDD	٥	66.5	28 - 130	STATE OF THE STATE
1,2,3,7,8,9-HxCDD	NO.	0.00000222			13C-1,2,3,4,6,7,8-HpCDD	QQ	74.6	23 - 140	
1,2,3,4,6,7,8-HpCDD	2	0.00000445	State State State	THE PARTY DESCRIPTION OF	13C-OCDD		60.7	17-157	AND THE RESIDENCE OF THE PARTY
OCDU	0.0000227			1	13C-2,3,7,8-TCDF		74.8	24-169	
2,3,7,8-TCDF	2	0.00000105			13C-1,2,3,7,8-PeCDF		62.8	24 - 185	
1,2,3,7,8-PeCDF	Ŋ	0.00000171			13C-2,3,4,7,8-PeCDF		66.4	21 - 178	
2,3,4,7,8-PeCDF	2	0.00000162			13C-1,2,3,4,7,8-HxCDF	Įr.	63.7	26-152	
1,2,3,4,7,8-HxCDF	R	0.000000759	6		13C-1,2,3,6,7,8-HxCDF		64.4	26 - 123	
1,2,3,6,7,8-HxCDF	2	0.0000000831			13C-2,3,4,6,7,8-HxCDF	[r	66.3	28 - 136	
2,3,4,6,7,8-HxCDF	Q	0.000000866	9		13C-1,23,7,8,9-HxCDF		67.8	29-147	
1,2,3,7,8,9-HxCDF	2	0.00000116			13C-1.2.3.4.6.7.8-HpCDF	OF	75.1	28 - 143	
1,2,3,4,6,7,8-HpCDF	Ŋ	0.000000822	2		13C-1.2.3.4.7.8.9-HoCDF)F	68.6	26-138	
1,2,3,4,7,8,9-HpCDF	Q	0.00000112			13C-OCDF		58.5	17-157	Service of the servic
OCDF	SQ.	0.00000498			CRS 37CI-2,3,7,8-TCDD	in the second	103	35-197	
Totals					Footnotes				
Total TCDD	Q.	0.00000123			a. Sample specific estimated detection limit.	imit.			
Total PeCDD	Ð	0.00000312			b. Estimated maximum possible concentration	pentration.			
Total HxCDD	N	0.00000228			c. Method detection limit.		Part of the state	Company of the second	
Total HpCDD	0.00000333				d. Lower control limit - upper control limit.	I limit			
Total TCDF	R	0.00000105					Marie Land Transfer	A THE PART OF THE PARTY OF THE	
Total PeCDF	R	0.00000166					为他的		被到水林花花的
Total HxCDF	Q	0.000000896	9			を有限したない	STATE OF STA	があることはいいでき	
Total HoCDF	Q	0.000000051	St. Carlotte St.		日 ·	大型 新工工	新世界 马酮	CONTRACTOR OF SUPPLIES	PRINSE SAFAL SEED (THE

Approved By:

Martha M. Maier 23-Jan-2008 09:52

Analyst: MAS

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200

Report Number: IRA0400

Sampled: 01/05/08

Attention: Bronwyn Kelly

Arcadia, CA 91007

Received: 01/05/08

METALS

			-							
Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID:	: IRA0400-01 (Outfall 010 -	Water)								
Repor	ting Units: ug/l									
Antimony	J/DNQ	EPA 200.8	8A07086	0.20	2.0	0.35	1	01/07/08	01/08/08	J
Cadmium	U	EPA 200.8	8A07086	0.11	1.0	ND	1	01/07/08	01/08/08	
Copper	1	EPA 200.8	8A07086	0.75	2.0	ND	1	01/07/08	01/08/08	
Lead		EPA 200.8	8A07086	0.30	1.0	ND	1	01/07/08	01/08/08	
Thallium	V	EPA 200.8	8A07086	0.20	1.0	ND	1	01/07/08	01/08/08	

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IRA0400

Sampled: 01/05/08

Received: 01/05/08

DISSOLVED METALS

Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IRA0400-01 (Outfall 010 - Water) - cont.											
Report	ing Units: ug/l										
Antimony	J/DNQ	EPA 200.8-Diss	8A08129	0.20	2.0	0.33	1	01/08/08	01/08/08	J	
Cadmium	U ,	EPA 200.8-Diss	8A08129	0.11	1.0	ND	1	01/08/08	01/08/08		
Copper	1	EPA 200.8-Diss	8A08129	0.75	2.0	ND	1	01/08/08	01/08/08		
Lead		EPA 200.8-Diss	8A08129	0.30	1.0	ND	1	01/08/08	01/08/08		
Thallium	V	EPA 200.8-Diss	8A08129	0.20	1.0	ND	1	01/08/08	01/08/08		

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Report Number: IRA0400

Sampled: 01/05/08

Received: 01/05/08

Metals by EPA 200 Series Methods

Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA0400-01 Reporting Units: ug		0 - Water) - cont.								
Mercury, Dissolved	U	EPA 245.1	W8A0148	0.050	0.20	ND	1	01/08/08	01/09/08	
Mercury, Total	4	EPA 245.1	W8A0148	0.050	0.20	ND	1	01/08/08	01/09/08	

LEVEL (V

TestAmerica Irvine

Joseph Doak Project Manager

Eberline Services

ANALYSIS RESULTS

SDG	8679	Client	TA IRVINE
Work Order	R801026-01	Contract	PROJECT# IRA0400
Received Date	01/08/08	Matrix	WATER

Client		Lab						
Sample ID		Sample ID	Collected	Analyzed	Nuclide	Results ± 20	Units	MDA
Outfall	010							
IRA0400-01		8679-001	01/05/08	01/24/08	GrossAlpha	-0.213 ± 0.79	pCi/L	1.4 UJ/R
				01/24/08	Gross Beta	13.0 ± 1.3	pCi/L	1.7
				01/23/08	Ra-228	-0.111 ± 0.18	pCi/L	0.42 U
				01/14/08	K-40 (G)	U	pCi/L	22 U
				01/14/08	Cs-137 (G)	U	pCi/L	0.88 U
				01/23/08	H-3	-38.8 ± 88	pCi/L	150 U
				01/25/08	Ra-226	-0.081 ± 0.38	pCi/L	0.84
				01/28/08	Sr-90	0.213 ± 0.41	pCi/L	0.87 U
				02/15/08	Total U	0.212 ± 0.034	pCi/L	0.021

LEVEL IV

Pm 3/5/08

Certified by Report Date 02/19/08
Page 1

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 010

Report Number: IRA0400

Sampled: 01/05/08

Received: 01/05/08

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA0400-01 (Outfall 010 -	Water) - cont.								
Reporting Units: mg/l									
Hexane Extractable Material (Oil & 🗡	EPA 1664A	8A07065	1.3	4.7	ND	1	01/07/08	01/07/08	
Grease)									
Chloride	EPA 300.0	8A06026	5.0	10	43	20	01/06/08	01/06/08	
Nitrate/Nitrite-N R/D	EPA 300.0	8A06026	15	26	400	100	01/06/08	01/06/08	A-01
Sulfate *	EPA 300.0	8A06026	4.0	10	24	20	01/06/08	01/06/08	
Total Dissolved Solids *	SM2540C	8A08084	10	10	240	1	01/08/08	01/08/08	
Sample ID: IRA0400-01RE1 (Outfall 0	10 - Water)								
Reporting Units: mg/l									
Nitrate/Nitrite-N	EPA 300.0	8B18046	0.15	0.26	0.62	1	01/18/08	02/18/08	H

* Analysis not validated

LEVEL IV

Joseph Doak Project Manager

APPENDIX G

Section 62

Outfall 010, January 5, 2008 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Routine Outfall 010

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly

Sampled: 01/05/08 Received: 01/05/08

Issued: 02/21/08 14:11

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: This final report includes the initial and re-analysis for Nitrate+Nitrite. See corrective action.

LABORATORY ID CLIENT ID MATRIX
IRA0400-01 Outfall 010 Water

Reviewed By:

TestAmerica Irvine

Joseph Doal

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 010

Report Number: IRA0400 Sampled: 01/05/08
Received: 01/05/08

CORRECTIVE ACTION REPORT

Department: Wet Chemistry Date: 02/18/2008

Method: EPA 300.0 Matrix: Water

QC Batch: 8A06026

Identification and Definition of Problem:

The nitrate results for IRA0398-01 and IRA0400-01 were reported incorrectly.

Determination of the Cause of the Problem:

The nitrate results were reported from a nitric acid-preserved container due to analyst error

Corrective Action Taken:

Nitrate results for samples IRA0398-01 and IRA0400-01 have been revised to include results from the unpreserved containers provided (sample suffix RE1), albeit outside the method-specified holding time, as well as the original results from the incorrect containers. Results have been qualified to note holding time exceedance. All personnel involved with the incorrect analysis have been retrained and discipinary taken.

Quality Assurance Approval:

Dave Dawes

TestAmerica Irvine

Date: 02/20/2008 04:01 PM

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: IRA0400

Sampled: 01/05/08
Received: 01/05/08

Attention: Bronwyn Kelly

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA0400-01 (Outfall 010 - Wa	nter)								
Reporting Units: ug/l									
Antimony	EPA 200.8	8A07086	0.20	2.0	0.35	1	01/07/08	01/08/08	J
Cadmium	EPA 200.8	8A07086	0.11	1.0	ND	1	01/07/08	01/08/08	
Copper	EPA 200.8	8A07086	0.75	2.0	ND	1	01/07/08	01/08/08	
Lead	EPA 200.8	8A07086	0.30	1.0	ND	1	01/07/08	01/08/08	
Thallium	EPA 200.8	8A07086	0.20	1.0	ND	1	01/07/08	01/08/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 010

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200

Sampled: 01/05/08 Arcadia, CA 91007 Report Number: IRA0400 Received: 01/05/08

Attention: Bronwyn Kelly

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA0400-01 (Outfall 010 - \)	Water) - cont.								
Reporting Units: ug/l									
Antimony	EPA 200.8-Diss	8A08129	0.20	2.0	0.33	1	01/08/08	01/08/08	J
Cadmium	EPA 200.8-Diss	8A08129	0.11	1.0	ND	1	01/08/08	01/08/08	
Copper	EPA 200.8-Diss	8A08129	0.75	2.0	ND	1	01/08/08	01/08/08	
Lead	EPA 200.8-Diss	8A08129	0.30	1.0	ND	1	01/08/08	01/08/08	
Thallium	EPA 200.8-Diss	8A08129	0.20	1.0	ND	1	01/08/08	01/08/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Sampled: 01/05/08 Arcadia, CA 91007 Report Number: IRA0400 Received: 01/05/08

Attention: Bronwyn Kelly

INORGANICS

Project ID: Routine Outfall 010

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA0400-01 (Outfall 010 - V	Vater) - cont.								
Reporting Units: mg/l									
Hexane Extractable Material (Oil &	EPA 1664A	8A07065	1.3	4.7	ND	1	01/07/08	01/07/08	
Grease)									
Chloride	EPA 300.0	8A06026	5.0	10	43	20	01/06/08	01/06/08	
Nitrate/Nitrite-N	EPA 300.0	8A06026	15	26	400	100	01/06/08	01/06/08	A-01
Sulfate	EPA 300.0	8A06026	4.0	10	24	20	01/06/08	01/06/08	
Total Dissolved Solids	SM2540C	8A08084	10	10	240	1	01/08/08	01/08/08	
Sample ID: IRA0400-01RE1 (Outfall 01	0 - Water)								
Reporting Units: mg/l									
Nitrate/Nitrite-N	EPA 300.0	8B18046	0.15	0.26	0.62	1	01/18/08	02/18/08	Н

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IRA0400

Sampled: 01/05/08

Received: 01/05/08

Metals by EPA 200 Series Methods

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA0400-01 (Outfall 010 - Wa Reporting Units: ug/l	ter) - cont.								
Mercury, Dissolved	EPA 245.1 EPA 245.1	W8A0148 W8A0148	0.050 0.050	0.20 0.20	ND ND	1	01/08/08 01/08/08	01/09/08 01/09/08	
Mercury, Total	EPA 243.1	W 0AU140	0.030	0.20	ND	1	01/08/08	01/09/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 010

Sampled: 01/05/08

Report Number: IRA0400

Received: 01/05/08

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 010 (IRA0400-01) - Water	er				
EPA 300.0	2	01/05/2008 09:20	01/05/2008 19:00	01/06/2008 07:00	01/06/2008 10:49
Sample ID: Outfall 010 (IRA0400-01RE1) -	Water				
EPA 300.0	2	01/05/2008 09:20	01/05/2008 19:00	01/18/2008 07:00	02/18/2008 11:48

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 01/05/08

Report Number: IRA0400 Received: 01/05/08

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8A07086 Extracted: 01/07/08											
	=										
Blank Analyzed: 01/08/2008 (8A07086-B	LK1)										
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Thallium	ND	1.0	0.20	ug/l							
LCS Analyzed: 01/08/2008 (8A07086-BS)	1)										
Antimony	81.7	2.0	0.20	ug/l	80.0		102	85-115			
Cadmium	86.8	1.0	0.11	ug/l	80.0		109	85-115			
Copper	84.2	2.0	0.75	ug/l	80.0		105	85-115			
Lead	85.6	1.0	0.30	ug/l	80.0		107	85-115			
Thallium	90.0	1.0	0.20	ug/l	80.0		113	85-115			
Matrix Spike Analyzed: 01/08/2008 (8A0	7086-MS1)				Sou	rce: IRA	0400-01				
Antimony	83.3	2.0	0.20	ug/l	80.0	0.351	104	70-130			
Cadmium	86.4	1.0	0.11	ug/l	80.0	ND	108	70-130			
Copper	81.9	2.0	0.75	ug/l	80.0	ND	102	70-130			
Lead	86.5	1.0	0.30	ug/l	80.0	ND	108	70-130			
Thallium	93.0	1.0	0.20	ug/l	80.0	ND	116	70-130			
Matrix Spike Dup Analyzed: 01/08/2008	(8A07086-M	SD1)			Sou	rce: IRA	0400-01				
Antimony	83.0	2.0	0.20	ug/l	80.0	0.351	103	70-130	0	20	
Cadmium	86.4	1.0	0.11	ug/l	80.0	ND	108	70-130	0	20	
Copper	82.1	2.0	0.75	ug/l	80.0	ND	103	70-130	0	20	
Lead	86.0	1.0	0.30	ug/l	80.0	ND	108	70-130	1	20	
Thallium	93.9	1.0	0.20	ug/l	80.0	ND	117	70-130	1	20	

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 01/05/08

Report Number: IRA0400 Received: 01/05/08

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A08129 Extracted: 01/08/08											
DATE OF TOO 129 END WEEKEN OF TOO 100 OF TOO	=										
Blank Analyzed: 01/08/2008 (8A08129-Bl	LK1)										
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Thallium	ND	1.0	0.20	ug/l							
LCS Analyzed: 01/08/2008 (8A08129-BS1	1)										
Antimony	78.0	2.0	0.20	ug/l	80.0		98	85-115			
Cadmium	79.9	1.0	0.11	ug/l	80.0		100	85-115			
Copper	76.8	2.0	0.75	ug/l	80.0		96	85-115			
Lead	85.3	1.0	0.30	ug/l	80.0		107	85-115			
Thallium	86.4	1.0	0.20	ug/l	80.0		108	85-115			
Matrix Spike Analyzed: 01/08/2008 (8A0	8129-MS1)				Sou	rce: IRA	0393-01				
Antimony	79.2	2.0	0.20	ug/l	80.0	0.570	98	70-130			
Cadmium	76.6	1.0	0.11	ug/l	80.0	ND	96	70-130			
Copper	76.2	2.0	0.75	ug/l	80.0	2.23	92	70-130			
Lead	83.2	1.0	0.30	ug/l	80.0	ND	104	70-130			
Thallium	84.3	1.0	0.20	ug/l	80.0	ND	105	70-130			
Matrix Spike Dup Analyzed: 01/08/2008	(8A08129-M	SD1)			Sou	rce: IRA	0393-01				
Antimony	79.1	2.0	0.20	ug/l	80.0	0.570	98	70-130	0	20	
Cadmium	76.4	1.0	0.11	ug/l	80.0	ND	96	70-130	0	20	
Copper	76.0	2.0	0.75	ug/l	80.0	2.23	92	70-130	0	20	
Lead	82.9	1.0	0.30	ug/l	80.0	ND	104	70-130	0	20	
Thallium	83.6	1.0	0.20	ug/l	80.0	ND	104	70-130	1	20	

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 01/05/08

Report Number: IRA0400

Received: 01/05/08

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8A06026 Extracted: 01/06/08	<u> </u>										
Blank Analyzed: 01/06/2008 (8A06026-B	LK1)										
Chloride	ND	0.50	0.25	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Sulfate	0.320	0.50	0.20	mg/l							J
LCS Analyzed: 01/06/2008 (8A06026-BS	1)										
Chloride	4.53	0.50	0.25	mg/l	5.00		91	90-110			
Sulfate	9.97	0.50	0.20	mg/l	10.0		100	90-110			
Matrix Spike Analyzed: 01/06/2008 (8A0	6026-MS1)				Sou	rce: IRA	0399-01				
Chloride	12.9	0.50	0.25	mg/l	5.00	7.84	101	80-120			
Sulfate	22.3	0.50	0.20	mg/l	10.0	12.0	103	80-120			
Matrix Spike Dup Analyzed: 01/06/2008	(8A06026-MS	SD1)			Sou	rce: IRA	0399-01				
Chloride	12.6	0.50	0.25	mg/l	5.00	7.84	94	80-120	3	20	
Sulfate	21.6	0.50	0.20	mg/l	10.0	12.0	96	80-120	3	20	
Batch: 8A07065 Extracted: 01/07/08	}										
	_										
Blank Analyzed: 01/07/2008 (8A07065-B	LK1)										
Hexane Extractable Material (Oil &	ND	5.0	1.4	mg/l							
Grease)											
LCS Analyzed: 01/07/2008 (8A07065-BS	1)										MNR1
Hexane Extractable Material (Oil &	17.9	5.0	1.4	mg/l	20.2		89	78-114			
Grease)											
LCS Dup Analyzed: 01/07/2008 (8A0706	5-BSD1)										
Hexane Extractable Material (Oil &	18.6	5.0	1.4	mg/l	20.2		92	78-114	4	11	
Grease)											

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 01/05/08

Report Number: IRA0400

Received: 01/05/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A08084 Extracted: 01/08/08	-										
Blank Analyzed: 01/08/2008 (8A08084-B	LK1)										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 01/08/2008 (8A08084-BS	1)										
Total Dissolved Solids	996	10	10	mg/l	1000		100	90-110			
Duplicate Analyzed: 01/08/2008 (8A0808	4-DUP1)				Sou	rce: IRA	0400-01				
Total Dissolved Solids	238	10	10	mg/l		240			1	10	
Batch: 8B18046 Extracted: 02/18/08	-										
Blank Analyzed: 02/18/2008 (8B18046-B	LK1)										
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 010

Sampled: 01/05/08

Report Number: IRA0400 Received: 01/05/08

METHOD BLANK/QC DATA

Metals by EPA 200 Series Methods

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: W8A0148 Extracted: 01/08/	08										
Blank Analyzed: 01/09/2008 (W8A0148-	,										
Mercury, Dissolved	ND	0.20	0.050	ug/l							
Mercury, Total	ND	0.20	0.050	ug/l							
LCS Analyzed: 01/09/2008 (W8A0148-F	BS1)										
Mercury, Dissolved	0.965	0.20	0.050	ug/l	1.00		96	85-115			
Mercury, Total	0.965	0.20	0.050	ug/l	1.00		96	85-115			
Matrix Spike Analyzed: 01/09/2008 (W8	3A0148-MS1)				Sou						
Mercury, Dissolved	1.97	0.40	0.10	ug/l	2.00	ND	98	70-130			
Mercury, Total	1.97	0.40	0.10	ug/l	2.00	ND	98	70-130			
Matrix Spike Analyzed: 01/09/2008 (W	3A0148-MS2)				Sou	rce: 7120	722-03				
Mercury, Dissolved	1.88	0.40	0.10	ug/l	2.00	ND	94	70-130			
Mercury, Total	1.88	0.40	0.10	ug/l	2.00	ND	94	70-130			
Matrix Spike Dup Analyzed: 01/09/2008	8 (W8A0148-M	ISD1)			Sou	rce: 7120	722-01				
Mercury, Dissolved	1.92	0.40	0.10	ug/l	2.00	ND	96	70-130	2	20	
Mercury, Total	1.92	0.40	0.10	ug/l	2.00	ND	96	70-130	2	20	
Matrix Spike Dup Analyzed: 01/09/2008	3 (W8A0148-M	ISD2)			Sou	rce: 7120	722-03				
Mercury, Dissolved	1.96	0.40	0.10	ug/l	2.00	ND	98	70-130	4	20	
Mercury, Total	1.96	0.40	0.10	ug/l	2.00	ND	98	70-130	4	20	
3 /				0		- 12					

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200 Sampled: 01/05/08

Arcadia, CA 91007 Report Number: IRA0400 Received: 01/05/08
Attention: Bronwyn Kelly

DATA QUALIFIERS AND DEFINITIONS

A-01 Please see Corrective Action Report.

H Sample analysis performed past method-specified holding time.

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the

Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

MWH-Pasadena/Boeing

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 010

Sampled: 01/05/08

Report Number: IRA0400

Received: 01/05/08

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EPA 1664A	Water		
EPA 200.8-Diss	Water	X	X
EPA 200.8	Water	X	X
EPA 300.0	Water	X	X
SM2540C	Water	X	

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chrnic

Samples: IRA0400-01

Eberline Services - SUB

2030 Wright Avenue - Richmond, CA 94804

Analysis Performed: Gamma Spec

Samples: IRA0400-01

Analysis Performed: Gross Alpha

Samples: IRA0400-01

Analysis Performed: Gross Beta

Samples: IRA0400-01

Analysis Performed: Radium, Combined

Samples: IRA0400-01

Analysis Performed: Strontium 90

Samples: IRA0400-01

Analysis Performed: Tritium Samples: IRA0400-01

Analysis Performed: Uranium, Combined

Samples: IRA0400-01

TestAmerica Irvine

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 010

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: IRA0400

Sampled: 01/05/08
Received: 01/05/08

Attention: Bronwyn Kelly

Vista Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762 Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IRA0400-01

Analysis Performed: EDD + Level 4

Samples: IRA0400-01

Weck Laboratories, Inc

14859 E. Clark Avenue - City of Industry, CA 91745

Method Performed: EPA 245.1 Samples: IRA0400-01

Page 1 of 1	Q		Field readings	Temp = 5.3 ×	1 1		Time of readings = $9 \ge c$		Comments							Unfiltered and unpreserved analysis	Only test if second rain event of the year	Filter w/in 24 hrs of receipt at lab		10/5/01		20.0	Turn around Time: (check) 24 Hours 5 Days	48 Hours 10 Days	72 Hours Normal X	Sample Integrity: (check) Intact On Ice: 3
FHUEL	UIRE		'qs	:slete				lal D , Cu									!	×								ις Ξ
7	S RE(-			ξλ	ioix	оТ э	inoı	чэ								×						27	\sim		
	ANALYSIS REQUIRED) otal	n (H-3 7.0), Td 226 DibsAuin	nui) mu 8 (S insi	inT , 90 (9 90 (10) 93.1) 10 (0) 10 (0)	0.0) Sr-9 ied F or 90 K-4	18(90) (0.90) (0.90)	(90 (90 (90 (90 (90 (90							×							80/	6013/ 10/		
Σ			SS	.orව ,(0.0	06)5	ylbps:		at na						×				_	+			 Date/Ime:	Dafte/Time	/ / / Date/Time:	
OR		-		N-	 ₹OI	N+ ^ε ('' NC	os.						×										۵	کام	
<u>⊾</u>		F	(-HEW	7 99	91) ə	.e92	9 8 —	l!O				×										4		300	
OD			(5	genera	duo	all c	guq) aa	DΤ			×				·			_	-	ļ		 3			
JSTODY FORM			19	Metals Tl				al Ri		×	×			;						:			مکنه	>	કું ≥	
I OF CI		⊥ ⊥		ng 203					Bottle #	1A	18	2A, 2B	3A, 3B	4A, 4B	5	68 68	7	8					Record B	Received B	Received	
CHAIN		Boeing-SSFL NPDES	Routine Outfall 010	Stormwater at Building 203	mher	3-6691	ber:	2	Preservative	HNO3	HNO3	None	HCI	None	None	None	None	None					153	0001		
HOH	Project	Boeing-S	Routine	Stormwa	Dhone Number	(626) 568-6691	Fax Number:	(020)	Sampling Date/Time	5.08							4	1-5.08					Date/Time:	Date/Time:	Date/Time:	
18 J		_		äk	1) S			# of Cont.	-	-	2	2	2	1		_	-				<u> </u>	1-5	M		
Version 1	.sse		ne. Suite 20	t: Joseph Do	N average	DIONWYII T	CML, A	•	Container	1L Poly	1L Poly	1L Amber	1L Amber	500 ml Poly	500 ml Poly	2.5 Gal Cube 500 ml Amber	1 Gal Poly	1L Poly					,	782	8	
heric	e/Addr	cioc.		91007 Contac		nager.	1781-15	SO R.	Sample		3	3	>	3	>	>		3					Ed By	1 By		
JRA0400 Test America version 12/2007	Client Name/Address		NIVVIT-ALCACIA 618 Michillinda Avenue Surte 200	Arcadia, CA 91007 Test America Contact: Joseph Doak	100	Project Manager. Brottwyll Nelly	Sampler. ////////////////////////////////////	Burrasa R.	Sample	+	Outfall 010-	Outfall 010	Outfall 010	Outfall 010	Outfall 010	Outfall 010	Outfall 010	Outfall 010					Relinquished By	<u>8</u>	Relinquished By	

LABORATORY REPORT

Date:

January 13, 2008

Client:

TestAmerica, Irvine

17461 Derian Ave., Suite 100

Irvine, CA 92614 Attn: Joseph Doak

"dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003

(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.:

A-08010506

Sample I.D.:

IRA0400-01 (Outfall 010)

Sample Control:

The sample was received by ATL within the recommended hold time, chilled (sample brought directly from field) and with the chain of custody record attached. Testing conducted on only one sample per client instruction (rain runoff sample).

Date Sampled:

01/05/08

Date Received:

01/05/08

Temp. Received:

6°C

Chlorine (TRC):

0.0 mg/l

Date Tested:

01/06/08 to 01/12/08

Sample Analysis:

The following analyses were performed on your sample:

Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

Result Summary:

NOEC TUC

Ceriodaphnia Survival:

 $\frac{100\%}{100\%} \qquad \frac{100}{1.0}$

Ceriodaphnia Reproduction:

100% 1.0

Quality Control:

Reviewed and approved by:

Joseph A. LeMay

Laboratory Director

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

Lab No.: A-08010506-001 Date Tested: 01/06/08 to 01/12/08

Client/ID: Test America - Outfall 010

TEST SUMMARY

Test type: Daily static-renewal. Endpoints: Survival and Reproduction.

Species: *Ceriodaphnia dubia*. Source: In-laboratory culture. Age: < 24 hrs; all released within 8 hrs. Food: .1 ml YTC, algae per day.

Test vessel size: 30 ml.

Test solution volume: 15 ml.

Number of test organisms per vessel: 1. Number of replicates: 10.

Temperature: 25 +/- 1°C. Photoperiod: 16/8 hrs. light/dark cycle.

Dilution water: Mod. hard reconstituted (MHRW). Test duration: 6 days.

QA/QC Batch No.: RT-080106. Statistics: ToxCalc computer program.

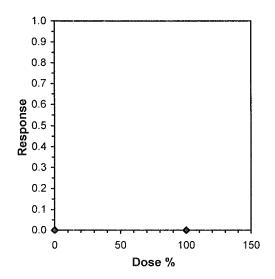
RESULTS SUMMARY

Sample Concentration	Percent Survival	Mean Number of Young Per Female
Control	100%	19.4
100% Sample	100%	22.9
* Sample not s	tatistically significantly le	ss than Control.

CHRONIC TOXICITY

Survival NOEC	100%
Survival TUc	1.0
Reproduction NOEC	100%
Reproduction TUc	1.0

QA/QC TEST ACCEPTABILITY

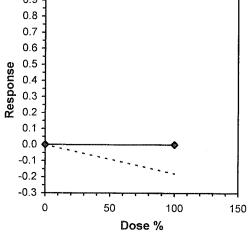

Parameter	Result
Control survival ≥80%	Pass (100% survival)
≥15 young per surviving control female	Pass (19.4 young)
≥60% surviving controls had 3 broods	Pass (80% with 3 broods)
PMSD <47% for reproduction; if >47% and no toxicity at IWC, the test must be repeated	Pass (PMSD = 19.5%)
Statistically significantly different concentrations relative difference > 13%	Pass (no concentration significantly different)
Concentration response relationship acceptable	Pass (no significant response at concentration tested)

<u></u>	Ceriodaphnia Survival and Reproduction Test-Survival Day 6													
Start Date:	1/6/2008 1	3:00	Test ID:	8010506c			Sample ID		Outfall 010)				
End Date:	1/12/2008	13:00	Lab ID:	CAATL-Ac	uatic Test	ing Labs	Sample Ty	rpe:	EFF2-Indu	ıstrial				
Sample Date:	1/5/2008 0	9:20	Protocol:	FWCH 4T	H-EPA-82	1-R-02-0 Test Species:			CD-Cerioo	laphnia dubia				
Comments:														
Conc-%	1	2	3	4	5	6	7	8	9	10				
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000				
100	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000				

				Not				Fisher's 1-Tailed				
Conc-%	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Mean	N-Mean		
D-Control	1.0000	1.0000	0	10	10	10			1.0000	1.0000		
100	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000		

Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	
Fisher's Exact Test	100	>100		1	
Treatments vs D-Control					

Linear Interpolation (200 Resamples) Skew Point IC05 95% CL SD % >100 IC10 >100 IC15 >100 IC20 >100 IC25 >100 >100 IC40 IC50 >100


	Ceriodaphnia Survival and Reproduction Test-Reproduction												
Start Date:	1/6/2008 1	3:00	Test ID:	8010506c			Sample ID):	Outfall 010)			
End Date:	1/12/2008	13:00	Lab ID:	CAATL-Ac	uatic Tes	ting Labs	ıstrial						
Sample Date:	1/5/2008 0	9:20	Protocol:					•	CD-Ceriodaphnia dubia				
Comments:									02 0000	aprima adola			
Conc-%	1	2	3	4	5	6	7	8	9	10			
D-Control	24.000	17.000	19.000	11.000	20.000	16.000	20.000	19.000	25.000	23.000			
100	24.000	23.000	28.000	25.000	25.000	25.000	14.000	24.000	12.000	29.000			

		_		Transforn	n: Untran	sformed		Rank	1-Tailed	Isot	onic
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Mean	N-Mean
D-Control	19.400	1.0000	19.400	11.000	25.000	21.350	10			21.150	1.0000
100	22.900	1.1804	22.900	12.000	29.000	24.222	10	130.00	82.00	21.150	1.0000

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.05)	0.89099	0.905	-1.0467	0.56243
F-Test indicates equal variances (p = 0.40)	1.79339	6.54109		
Hypothesis Test (1-tail, 0.05)				

Wilcoxon Two-Sample Test indicates no significant differences
Treatments vs D-Control

			Li	near Interpolation	n (200 Resamples)	31.1
Point	%	SD	95% CL	Skew	. ,	
IC05	>100				Value	
IC10	>100					
IC15	>100				1.0	
IC20	>100				0.9	
IC25	>100				4	
IC40	>100				0.8 -	
IC50	>100				0.7	
					0.6 -	
					<u>o</u> 0.5 -	ľ
					<u> </u>	ł · · · · · · · · · · · · · · · · · · ·

CERIODAPHNIA DUBIA CHRONIC BIOASSAY **EPA METHOD 1002.0 Raw Data Sheet**

Lab No.: A-08010506

Client ID:	TestAmer		all 01	0		·								Start	Date: 01	/06/200	08
		DAY	1	D	AY 2		DAY	7 3	D	AY 4		DAY :	5		OAY 6	DA	
<u> </u>		0 hr	24hr	0 hr	24hr) hr	24hr	0 hr	24hr	0	hr	24hr	0 hr	24hr	0 hr	24hr
Analyst I	Initials:	h	M	h	h		A	h	1/1	M		1	K	h	h		ARRAGON,
Time of R	eadings:	(300 1	400	1400	1300	2 / 2	a)	230	9230	11300	130	WI	300	1300	1300	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	agrandant
	DO	7-5	2-2	7-3	8,0	2 >		7-7	7-2	7-5	7-	8.	80	7-8	8.0		
Control	pН	7-8	24	2-4	7-2	1 7	-3	7-3	7- Z	7-4	7.	4 7	24	7-4	7-5	Continues of	
	Temp	242 2	91	25-5	25.0	2		24.9	246	24.7	25	162	4.6	24.4	25.1		Walter Street,
	DO	9-1 6	2.2	9.1	7.9	10	/. [·	78	9.2	76	10.	2 8	3.4	10.6	8.3	Villanda Santa	
100%	рН	7.3 -	21	ファン	7.4	1 7-	0	7.4	7-1	74	7	/ 5	7-4	7:1	74		
	Тетр	2442	50	26-1	25-	25	0 2	250 24.5 24.3 24.1					45	25-(249		
	Additional Parameters Conductivity (umohms)								Co	ntrol		/ / · · · · · · · · · · · · · · · · · ·			100% Sam	ple	
	_		3	50					346								
	All		Mar.		4				***************************************	84		***************************************					
	Hardness (mg/l CaCO ₃)								- 0	18					125		
	An	ımonia (mg/l	NH ₃ -N)				60-1						0.2				
							Sourc	ce of Nec	nates								
Rep	licate:	A		В		С	D		Е	F		G		Н	I		J
Broo	od ID:	3.		367	10	<u>S</u>	(5		25	3F	,	11-	7 2	2D	IC	2:	7
Sample		Day		l .	Number of Young Produced					1		al Live	No. Live		alyst		
		1	A	B	C	D	E	F	G	H	_ <u>I</u>	J	<u> </u>	oung	Adults	Ini	tials
		2	0	0	0	0	0	10	0	0	0	0	-	2	10		1
		3	3	2	0	0		0	3	0	<u>0</u> 3	0		ン	10	1	1
		4	0	0	7	9	2	0	0	2	<u> </u>	2	<u> </u>	8	10		
Control		5	8	6	6	7	7	0	G	7	9	8	, ,	J	10		,
		6	13	9	10	0	10	12	1/(10	13	13	10 10	7	10		
		7	sylvenhalangahan.			<i></i>	graphene.	- Quantum	-				_				
		Total	24	17	19	1/	20	16	20	19	Z.S	23	19	14	10		7
		1	0	0	0	0	0	0	0	0	0	0	C	シー	10	1	之
	-	2	0	0	0	0	0	0	0	C	0	0		2	10	/2	2
		3	U		3	0	<u> </u>	3	0	4	0	U	10		10		í
100%	-	4	0	5	0	5	<u></u>	0	5	0	4	5	2	3	10	1	4
		5	9	8	10	8	<u> </u>	4	9	8	8	9	8.		10		2
			11 1 1	10	15	12	14	13	101	12	0	15	1 ir	2	10		
		6		10		-				- ' -			 		10_		
		7 Total	24	7.3	20		7:5		14	24	12	79	27		70	1	

Circled fourth brood not used in statistical analysis.

7th day only used if <60% of the surviving control females have produced their third brood.

TestAmerica Irvine

IRA0400

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Aquatic Testing Laboratories-SUB 4350 Transport Street, Unit 107

Ventura, CA 93003 Phone :(805) 650-0546 Fax: (805) 650-0756

Project Location: California

Receipt Temperature: _____°C

Ice: (Y)

Analysis Units Due **Expires** Comments Sample ID: IRA0400-01 Water ph=7.4, temp=53.8 Sampled: 01/05/08 09:20 Bioassay-7 dy Chmic N/A 01/06/08 21:20 01/16/08 Cerio, EPA/821-R02-013, Sub to Aquatic testing Containers Supplied: 1 gal Poly (M)

Released By

Date/Time

Released By

Received By

Date/Time

Received By

Date/Time

Page 1 of 1

CHAIN OF CUSTODY FORM

Page 1 of

Only test if second rain event of the year Unfiltered and unpreserved analysis Filter w/in 24hrs of receipt at X Time of readings = 920Sample Integrity: (check)
Intact
On Ice: Normal 10 Days (check) s Sc Field readings: 53 Temp = 24 Hours 48 Hours 72 Hours ANALYSIS REQUIRED Cq, Cu, Pb, Hg, TI × Total Dissolved Metals: Sb, Chronic Toxicity × (1.10e to 0.10e) (908.0), K-40, CS-137 muins1U ,(0.409) 8SS muibsA & (1.609 to 0.609) × Combined Radium 226 Co LetoT, (0.309) 99-12, (0.309) Beta(900.0), Tritium (H-3) 0-5-0 Date/Time: Gross Alpha(900.0), Gross × TDS CL' 204' NO3+NO5-N 77 Oil & Grease (1664-HEM) TCDD (and all congeners) × Sb, Cd, Cu, Pb, Hg, TI × Total Recoverable Metals: Received By Received/By Received By Bottle # 2A, 2B 3A, 3B 4A, 4B 8 Stormwater at Building 203 ₹ 6A 6B ∞ Boeing-SSFL NPDES Routine Outfall 010 Preservative (626) 568-6515 (626) 568-6691 Phone Number HNO3 None None None HNO3 None None None None 오 Fax Number: 0/10/10 Sampling Date/Time Date/Time: Date/Time Date/Time 0240 Project Test America version 12/20/07 Project Manager: Bronwyn Kelly # of Cont. Test America Contact: Joseph Doak 618 Michillinda Avenue, Suite 200 TY 2.5 Gal Cube 500 ml Amber 1 Gal Poly Container 1L Amber 1L Amber Sampler. INAP.ISCAL, J 1L Poly 1L Poly 500 ml Poly 500 ml Poly 1L Poly Client Name/Address: Sample Matrix Barraso, R. Arcadia, CA 91007 MWH-Arcadia Relinquished By Relinquished By 3 ≥ ≥ ≥ Relinquished By ≥ ≥ Description Outfall 010-Outfall 010 Outfall 010 Sample

NPDES - 2407

REFERENCE TOXICANT DATA

CERIODAPHNIA CHRONIC BIOASSAY

EPA METHOD 1002.0 REFERENCE TOXICANT - NaCl

QA/QC Batch No.: RT-080106

Date Tested: 01/06/08 to 01/12/08

TEST SUMMARY

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*.

Age: <24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 +/- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

Reference Toxicant: Sodium chloride (NaCl).

Endpoints: Survival and Reproduction.

Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 20 ml.

Number of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 6 days.

Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Surv	ival	Mean Number of Young Per Female		
Control	100%		20.5		
0.25 g/l	100%		19.5		
0.5 g/l	100%		19.5		
1.0 g/l	100%		14.0	*	
2.0 g/l	80%		3.2	*	
4.0 g/l	0%	*	0	**	

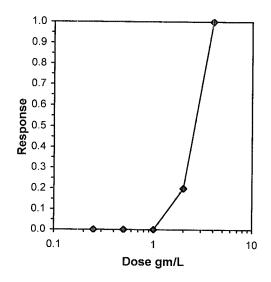
^{*} Statistically significantly less than control at P = 0.05 level

CHRONIC TOXICITY

Survival LC50	2.5 g/l
Reproduction IC25	0.88 g/l

QA/QC TEST ACCEPTABILITY

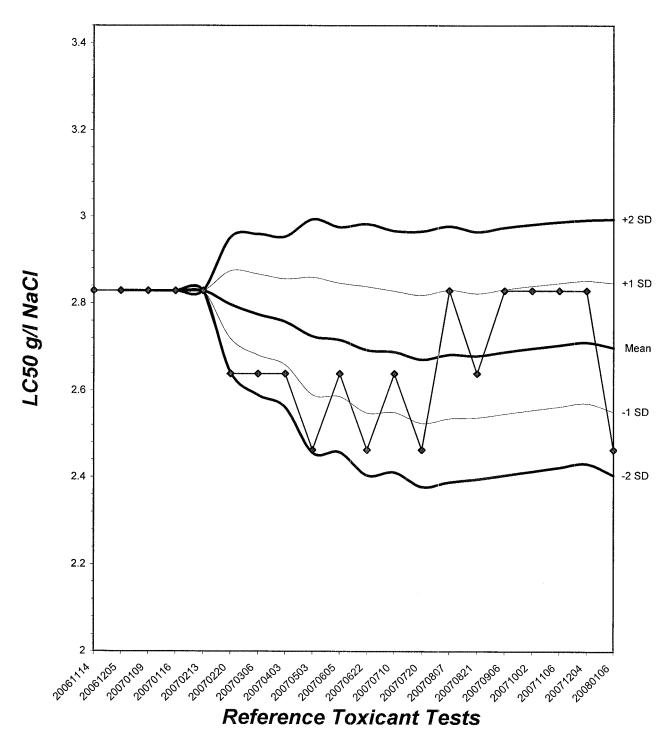
Parameter	Result
Control survival ≥80%	Pass (100% Survival)
≥15 young per surviving control female	Pass (20.5 young)
≥60% surviving controls had 3 broods	Pass (90% with 3 broods)
PMSD <47% for reproduction	Pass (PMSD = 19.1%)
Stat. sig. diff. conc. relative difference > 13%	Pass (Stat. sig. diff. conc. = 31.7%)
Concentration response relationship acceptable	Pass (Response curve normal)


^{**} Reproduction data from concentrations greater than survival NOEC are excluded from statistical analysis.

			Cerioda	aphnia Su	rvival and	Reprod	uction Tes	t-Surviv	al Day 6	
Start Date:	1/6/2008 1	13:00		RT-08010			Sample ID		REF-Ref	Toxicant
End Date:	1/12/2008	13:00	Lab ID:	CAATL-Ad	quatic Tes	ting Labs	Sample Tv	vpe:		dium chloride
Sample Date: Comments:	1/6/2008			rotocol: FWCH-EPA-821-R-02-013 Test Species: CD-Ceriodaphnia dubia						
Conc-gm/L	1	2	3	4	5	6	7	8	9	10
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0.25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0.5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000
4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

				Not			Fisher's	1-Tailed	Number	Total
Conc-gm/L	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Resp	Number
D-Control	1.0000	1.0000	0	10	10	10		***	0	10
0.25	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
0.5	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
1	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
2	0.8000	0.8000	2	8	10	10	0.2368	0.0500	2	10
4	0.0000	0.0000	10	0	10	10	3.2000	0.0000	10	10

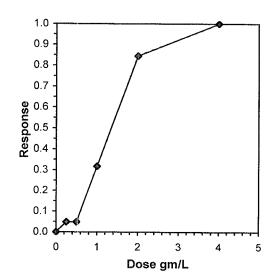
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	
Fisher's Exact Test	2	4	2.82843		
Treatments vs D-Control					


	w.			Trimmed Spearman-Karber
Trim Level	EC50	95%	CL	•
0.0%	2.4623	2.0663	2.9342	
5.0%	2.5108	2.0545	3.0683	
10.0%	2.5519	1.9976	3.2599	1.0 —
20.0%	2.5937	2.2616	2.9745	1.0
Auto-0.0%	2.4623	2.0663	2.9342	0.9 -

NPDES - 2410

Ceriodaphnia dubia Chronic Survival Laboratory Control Chart

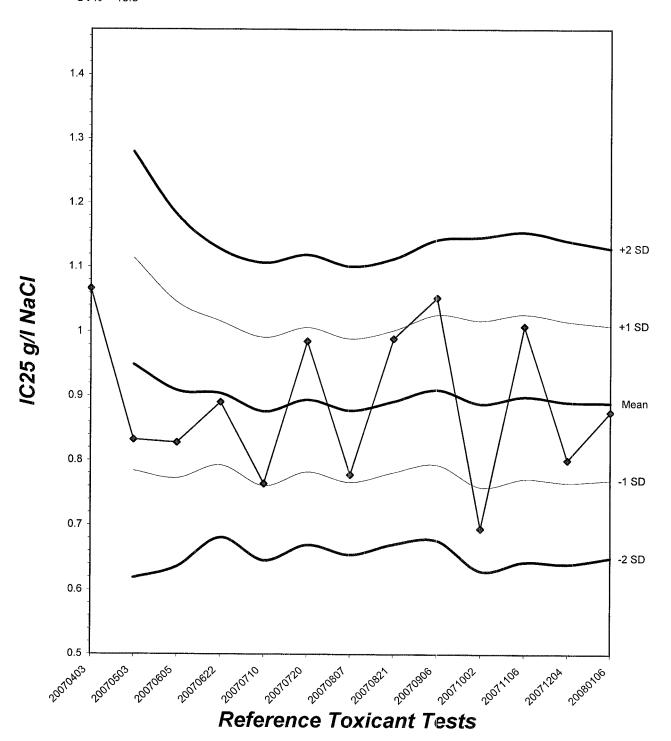
CV% = 5.46


			Ceriod	aphnia Su	rvival and	Reprod	uction Tes	st-Repro	duction	
Start Date:	1/6/2008 1	3:00	Test ID:	RT-08010	6c	The second secon	Sample ID):	REF-Ref	Γoxicant
End Date:	1/12/2008	13:00	Lab ID:	CAATL-Ad	quatic Tes	ting Labs	Sample Ty	/pe:		dium chloride
Sample Date:	1/6/2008		Protocol:	FWCH-EF	PA-821-R-	02-013	Test Spec	ies:	CD-Cerioo	laphnia dubia
Comments:										•
Conc-gm/L	1	2	3	4	5	6	7	8	9	10
D-Control	23.000	11.000	21.000	21.000	23.000	20.000	19.000	22.000	20.000	25.000
0.25	12.000	24.000	19.000	22.000	9.000	20.000	21.000	21.000	22.000	25.000
0.5	21.000	19.000	21.000	22.000	16.000	12.000	22.000	21.000	22.000	19.000
1	19.000	9.000	9.000	19.000	14.000	10.000	16.000	17.000	19.000	8.000
2	8.000	2.000	2.000	5.000	4.000	3.000	3.000	5.000	0.000	0.000
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

		_		Transforn	n: Untran	sformed		Rank	1-Tailed	Isote	onic
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Mean	N-Mean
D-Control	20.500	1.0000	20.500	11.000	25.000	18.432	10			20.500	1.0000
0.25	19.500	0.9512	19.500	9.000	25.000	26.177	10	102.00	76.00	19.500	0.9512
0.5	19.500	0.9512	19.500	12.000	22.000	16.617	10	94.50	76.00	19.500	0.9512
*1	14.000	0.6829	14.000	8.000	19.000	32.819	10	62.50	76.00	14.000	0.6829
*2	3.200	0.1561	3.200	0.000	8.000	76.263	10	55.00	76.00	3.200	0.1561
4	0.000	0.0000	0.000	0.000	0.000	0.000	10			0.000	0.0000

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	n-normal di	stribution	$(p \le 0.05)$		0.91281	0.947	-0.9793	0.67912
Bartlett's Test indicates equal var	riances (p =	= 0.25)			5.39	13.2767		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	7":		/447 DA	***************************************
Steel's Many-One Rank Test	0.5	1	0.70711		*/m-yl	***************************************	18 14 14	
Treatments vs D-Control								

				Linea	ar Interpolation	on (200 Resamples)
Point	gm/L	SD	95%		Skew	. ,
IC05	0.5023	0.1876	0.0809	0.6178	-0.0659	***************************************
IC10	0.5955	0.1768	0.1617	0.7497	-0.5184	
IC15	0.6886	0.1424	0.2426	0.9253	-0.5389	1.0
IC20	0.7818	0.1259	0.4995	1.0352	0.2728	
ICOE	0.0750	0.4004	0.0440	4 400 4	0.01.00	0.9 ┪


IC25 0.8750 0.1224 0.6413 1.1094 0.3153 IC40 1.1574 0.1139 0.9216 1.3331 -0.0890 IC50 1.3472 0.0972 1.1197 1.4847 -0.4227

Reviewed by

Ceriodaphnia dubia Chronic Reproduction Laboratory Control Chart

CV% = 13.5

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-080106

Start Date: 01/06/2008

				Nu	mbei	of Y	oung	Produ	uced			Total No.		Analyst
Sample	Day	A	В	С	D	E	F	G	Н	I	J	Live Young	Live Adults	Initials
	1	0	0	0	U	\mathcal{O}	0	\bigcirc	0	\mathcal{O}	\circ	0	10	2
	2	0	0	0	0	0	C	0	\mathcal{C}	0	\bigcirc	C	10	2
	3	0	0	2	0	0	0	3	C		0	8	10	2
	4	ч	3	0	4	3	Z	0	2	0	3	21	10	In
Control	5	9	8	フ	フ	6	フ	6	7	6	7	70	10	M
	6	10	0	12	10	14	1	10	13	11	کا	106	10	
	7	_	, marketing	· ·	-		_		gapan,		-			
	Total	23	ΝÍ	21	əl	73	20	19	22	20	<i>35</i>	205	10	h
	1	0	0	0	0	0	0	0	0	\circ	0	0	10	
	2	0	0	0	0	0	0	0	0	0	0	0	10	
	3	0	3	0	3	0	2_	\cdot	\mathcal{C}	7	0	(1	10	In
0.25 //	4	4	0	2	0	3	6	4	٦	0	3	24	10	h
0.25 g/l	5	8	8	フ	5	6	\mathcal{O}	7	6	7	8	62	10	h
	6	0	13	10	14	0	12	10	13	12	14	98	10	
	7			_{production}		-	_	Junear	eggillilarere.	gggenein ba _k ,			10 10 10 10 10 10 10 10 10	
	Total	12	24	19	22	9	20	21	2[22	25	195	10	
	1	0	0	0	0	0	\mathcal{O}	0	0	0	\circ	0	10	A
	2	0	0	0	0	0	\mathcal{O}	0	0	0	0	0	10	h
	3	2	0	2	0	0	\subset	3	یک	-0	0	9	10	Â
0.5 - /1	4	0	3	0	3	ij	3	C	0	3	3	19	10	M
0.5 g/l	5	9	6	フ	7	0	9	8	7	フ	6	66	10	
	6	10	10	12	12	12	0	\ (ि	12	10	101	10	6
	7		~			*******	. د د د د د د د د د د د د د د د د د د د	-	_	-	,	***************************************	T-MATERIAL TO THE TOTAL THE TOTAL TO THE TOTAL THE TOTAL TO THE TOTAL THE TOTAL TO THE TOTAL TOT	4
	Total	21	19	21	22	16	12	22	21	22	19	195	10	1

Circled fourth brood not used in statistical analysis.

^{7&}lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-080106

Start Date: 01/06/2008

G I				Nı	ımbe	r of Y	oung	Produ	ced			Total	No.	Analyst
Sample	Day	A	В	С	D	E	F	G	Н	I	J	Live Young	Live Adults	Initials
	1	0	0	0	0	0	0	0	0	0	0	0	10	h
	2	0	0	0	0	0	0	0	0	0	\mathcal{C}	0	10	
	3	0	0	0	0	0	3	0	0	2	0		10	
1.0 ~/1	4	3	~~	て	3	0	0	3	2	0	2	17	10	h
1.0 g/l	5	5	2	>	ادر	5	7		L	7	عا	57	10	la l
	6	1(0	0	12	9	0	8	11	10	0	61	10	
	7	1		-		- Et 🦟	-spittlema.	-		Continue	open and		. 8h	
	Total	19	9	9	19	14	10	16	17	19	8	140	10	
	1	0	0	\circ	0	0	0	0	0	X	0	0	9	h
	2	0	0	0	0	0	0	0	0		0	0	9	6
	3	0	0	0	0	0	0	0	0	_	\mathcal{O}	0	9	
2.0 -/1	4	S	0	又	3	0	0	0	2	, comme	0	9	9	
2.0 g/l	5	3	0	0	2	2	3	3	0	4/Hanning	0	13	9	
	6	3	2	- 0	0	2	C	0	3	~	X	10	8	
	7		- Calendaria				Topper.	-gammar-	_	- Martine		with the state of	-	_e d/Similaring
	Total	B	2	2	5	4	3	3	5	0	0	32	8	~
	1	×	X	X	X	X	X	X	X	\nearrow	入	0	0	2
	2	_	ageldin.		Appendix	-unader-		2,000	***************************************	سعب			حسنشی	
	3		4	e mounte	,_			(.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-		grand and the same of the same		
4.0 - /1	4	Jennessen-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,)	gaganten.	_	gagarane solver.	question.			· Bayermannan	,	
4.0 g/l	5	_	ę		, ministra		-)	Property.	-		Quantity and the same of the s	pan.	
	6		formers.		* Name		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Newson.	(£2000	general de la constant de la constan		- Control of the Cont
	7					garan.	,	g.	and the same of th	É.o.o.	· .		Quempares.	
	Total	\circ	\mathcal{C}	0	\mathcal{O}	0	C	\circ	0	0	0	0	0	2

Circled fourth brood not used in statistical analysis.

^{7&}lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

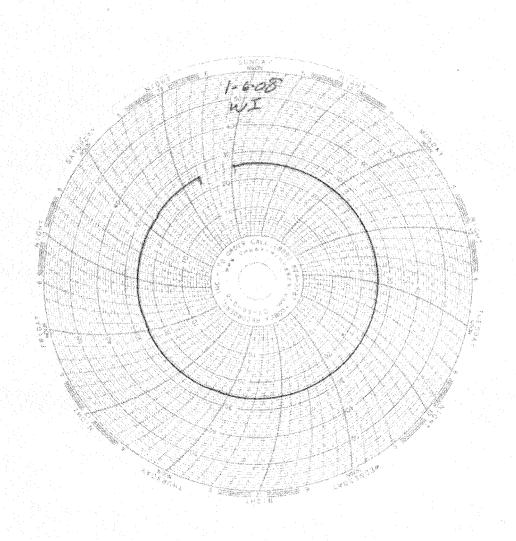
Reference Toxicant - NaCl Water Chemistries Raw Data Sheet

QA/QC No	o.: RT-08	30106										Start	Date: (01/06/20	800
		DA	Y 1	DA	Y 2	DA	Y 3	DA	Y 4	DAY 5		DAY 6		DA	Y 7
		Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
Analyst I	nitials:	n	\mathcal{L}	1		1	1~	1	1	1	2	1	1/2	يمسفوا ويميوسون	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Time of Re	eadings:	1300	1330	1330	1300	1300	1230	1270	1300	1300	1300	130	Da	garante and a	
	DO	7-6	7.2	2.4	7.7	74	7.6	7.4	7.5	8,2	7-8	7.9	7.7		
Control	pН	76	7.4	7-4	7.3	7.3	7.2	7.2	7-7	7.5	7-6	7-9	7.6		
	Temp	243	25-1	25.4	24.8	241	24.5	249	25-1	244	24.0	24:6	25-1	_	
	DO	7.5	7-3	7.5	7.5	7-5	7-7	7-3	24	8,2	2.8	79	7.7	***************************************	-particular
0.25 g/l	рН	75	7.3	2.4	74	7.0	7.2	7.3	7.4	26	5-5	7.6	7.7	,	_
	Temp	244	252	253	249	242	24.5	24.7	250	24.4	25.1	246	29.1		_
	DO	7.4	22	7.4	7-6	7.11	7.6	7-4	26	8.5	7-6	8.0	78	egandida egota,	
0.5 g/l	pН	7.5	23	74	7.4	7-4	7.2	7-3	7.5	7.6	25	7.7	7-7	-	
	Temp	243	251	25.3	24.9	24.1	25.2	246	24.9	24.4	249	24.4	249		
	DO	7.5	22	76	2.7	7.3	7.8	74	24	P. U	25	7-7	7-7		
1.0 g/l	рН	7.5	7.3	7-0	7.5	7-4	7.2	7-3	7.5	7,0	> -t	7.9	7-6	1	
	Temp	244	25.2	25-1	247	24.2	25.2	24.6	25.0	244	249	24.6	250		
	DO	7.4	74	7.6	7.5	24	28	22	7.6	8.2	7-6	26	7.7		_
2.0 g/l	рН	7.5	7-4	7-6	7.6	7.4	2.3	72	7.6	75	7-6	29	7.6.		
	Temp	245	251	24-0	246	24.2	253	24-8	25.2	24-4	24.8	24.6	25/		
	DO	7-5	7-8	Nagaripassan and American and A	1994 Bass	*Granus.	- AMERICAN STATE OF THE STATE O	C. Palantina.	Commence	, p. 600 (1000)	Than grain.	and the second	·	4	-
4.0 g/l	рН	7,4	7-8	- Chapter on the Chapter of the Chap	-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Allen and the second	guzztiin-ru.		Topocara _{les}				eser.	-
	Temp	243	24.6	**************************************	no consessions				_		and the same of th		,		,

		Control		High Concentration				
Additional Parameters	Day 1	Day 3	Day 5	Day 1	Day 3	Day 5		
Conductivity (μS)	350	348	305	6400	3100	3210		
Alkalinity (mg/l CaCO ₃)	66	65	63	65	66	64		
Hardness (mg/l CaCO ₂)	95	90	95	65	6)	98		

Dissolved Oxygen (DO) readings are in mg/l O2; Temperature (Temp) readings are in °C.

Transcoo (ing.	3,7					12_	<u> </u>			
				Source of	Neonates					
Replicate:	A	В	С	D	Е	F	G	Н	I	J
Brood ID:	ZB	Ιß	30	2-6	LA	30	38	26	46	7-61



Laboratory Temperature Chart

QA/QC Batch No: RT-080106

Date Tested: 01/06/08 to 01/12/08

Acceptable Range: 25+/- 1°C

February 20, 2008

Mr. Joseph Doak Test America, Inc. 17461 Derian Avenue, Suite 100 Irvine, CA 92614

Reference: Test America Project Nos. IRA0393, IRA0398, IRA0399, IRA0400, IRA0906

Eberline Services NELAP Cert #01120CA

Eberline Services Reports R801023-8676, R801024-8677, R801025-8678

R801029-8679, R801048-8680

Dear Mr. Doak:

Enclosed are results from the analyses of five water samples. Four of the samples were received at Eberline Services on January 8, and one on January 12, 2008. The samples were analyzed according to the accompanying Test America Subcontract Order Forms, the requested analyses were: gross alpha/gross beta (EPA 900.0), tritium (H-3, EPA906.0), Sr-90 (EPA905.0), Ra-226 (EPA903.1), Ra-228 (EPA 904.0), total uranium (ASTM D-5174), and gamma spectroscopy (EPA901.1, K-40 and Cs-137). Batch quality control samples consisted of LCS's, blank analyses, duplicate analyses, and matrix spike analyses (gross alpha/gross beta, H-3, Ra-226, Total-U only). All QC sample results were within the limits defined in Eberline Services Quality Control Procedures Manual.

Please call me if you have any questions concerning this report.

Regards,

Melissa Mannion

Senior Program Manager

Melina Manmu

MCM/njv

Enclosure: Reports/CoC's

Invoices

Eberline Services

ANALYSIS RESULTS

SDG <u>8679</u>
Work Order <u>R801026-01</u>

Received Date 01/08/08

Client TA IRVINE

Contract PROJECT# IRA0400

Matrix WATER

Lab Sample ID	Collected Analyzed	Nuclide	Results ± 20	<u>Units</u>	MDA
8679-001	01/05/08 01/24/08	GrossAlpha	-0.213 ± 0.79	pCi/L	1.4
	01/24/08	Gross Beta	13.0 ± 1.3	pCi/L	1.7
	01/23/08	Ra-228	-0.111 ± 0.18	pCi/L	0.42
	01/14/08	K-40 (G)	U	pCi/L	22
	01/14/08	Cs-137 (G)	U	pCi/L	0.88
	01/23/08	H-3	-38.8 ± 88	pCi/L	150
	01/25/08	Ra-226	-0.081 ± 0.38	pCi/L	0.84
	01/28/08	Sr-90	0.213 ± 0.41	pCi/L	0.87
	02/15/08	Total U	0.212 ± 0.034	pCi/L	0.021
	Sample ID	Sample ID Collected Analyzed 8679-001 01/05/08 01/24/08	Sample ID Collected Analyzed Nuclide 8679-001 01/05/08 01/24/08 GrossAlpha 01/24/08 Gross Beta 01/23/08 Ra-228 01/14/08 K-40 (G) 01/14/08 Cs-137 (G) 01/23/08 H-3 01/25/08 Ra-226	Sample ID Collected Analyzed Nuclide Results ± 20 8679-001 01/05/08 01/24/08 GrossAlpha -0.213 ± 0.79 01/24/08 Gross Beta 13.0 ± 1.3 01/23/08 Ra-228 -0.111 ± 0.18 01/14/08 K-40 (G) U 01/14/08 Cs-137 (G) U 01/23/08 H-3 -38.8 ± 88 01/25/08 Ra-226 -0.081 ± 0.38 01/28/08 Sr-90 0.213 ± 0.41	Sample ID Collected Analyzed Nuclide Results ± 2σ Units 8679-001 01/05/08 01/24/08 GrossAlpha -0.213 ± 0.79 pCi/L 01/24/08 Gross Beta 13.0 ± 1.3 pCi/L 01/23/08 Ra-228 -0.111 ± 0.18 pCi/L 01/14/08 K-40 (G) U pCi/L 01/14/08 Cs-137 (G) U pCi/L 01/23/08 H-3 -38.8 ± 88 pCi/L 01/25/08 Ra-226 -0.081 ± 0.38 pCi/L 01/28/08 Sr-90 0.213 ± 0.41 pCi/L

Certified by Report Date 02/19/08
Page 1

Eberline Services

QC RESULTS

 SDG
 8679
 Client
 TA IRVINE

 Work Order
 R801026-01
 Contract
 PROJECT# IRA0400

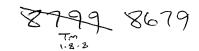
 Received Date
 01/08/08
 Matrix
 WATER

Lab									
Sample ID	Nuclide	Results	Units	Amount	Added	MDA	Evaluati	.on	
LCS			a: /a	1		0.43	1000		
8676-002	GrossAlpha	13.0 ± 0.93	pCi/Smp			0.43	129% rec	_	
	Gross Beta	9.21 ± 0.38	pCi/Smp			0.29	98% reco	-	
	Ra-228	7.16 ± 0.54	pCi/Smp			0.85	90% reco	_	
	Co-60 (G)	220 ± 17	pCi/Smp			11	96% reco	_	
	Cs-137 (G)	256 ± 14	pCi/Smp			9.8	108% red	_	
	H-3	189 ± 14	pCi/Smp			15	93% reco	_	
	Ra-226	4.87 ± 0.23	pCi/Smp			0.083	109% red	_	
	Sr-90	8.90 ± 0.73	pCi/Smp			0.33	95% reco	-	
	Total U	1.05 ± 0.12	pCi/Smp	pl 1.1	.3	0.004	93% reco	overy	
BLANK									
8676-003	GrossAlpha	0.067 ± 0.16	pCi/Smp	ol lo	IA	0.27	<mda< td=""><td></td><td></td></mda<>		
	Gross Beta	-0.079 ± 0.26	pCi/Smp	pl N	IA	0.44	<mda< td=""><td></td><td></td></mda<>		
	Ra-228	-0.491 ± 0.26	pCi/Smp	ol N	IA	0.79	<mda< td=""><td></td><td></td></mda<>		
	K-40 (G)	U	pCi/Smp	pl N	IA	220	<mda< td=""><td></td><td></td></mda<>		
	Cs-137 (G)	Ū	pCi/Smp	pl N	IA	8.0	<mda< td=""><td></td><td></td></mda<>		
	H-3	-1.49 ± 8.7	pCi/Smp	ol N	JA	15	<mda< td=""><td></td><td></td></mda<>		
	Ra-226	-0.012 ± 0.035	pCi/Smp	pl N	IA.	0.083	<mda< td=""><td></td><td></td></mda<>		
	Sr-90	-0.030 ± 0.18	pCi/Sm	ol N	IA.	0.45	<mda< td=""><td></td><td></td></mda<>		
	Total U	0.00E 00 ± 1.8E-	04 pCi/Smp	ol lo	IA.	4.2E-04	<mda< td=""><td></td><td></td></mda<>		
	DUPLICATES				ORIGINALS				
g	M 3 d d .	Decults 125	MDA	Cample ID	Results ±	2σ MDA	RPD	3σ (Tot)	Erra l
Sample ID	GrossAlpha	Results $\pm 2\sigma$ -0.027 ± 1.1	MDA 1.9	<u>Sample ID</u> 8676-001	0.784 ± 2.		<u>101 D</u>		satis.
0070-004	Gross Beta	62.4 ± 2.4	2.4	0070 001	62.4 ± 2.		0		satis.
	K-40 (G)	U	32		62.0 ± 8.				satis.
	Cs-137 (G)	Ū	1.1		U U	0.5			satis.
	H-3	-71.6 + 86	150		-15.1 ± 88				satis.
	Ra-226	-0.062 ± 0.36	0.71		0.081 ± 0.				satis.
	Sr-90	-0.067 ± 0.35	0.86		0.063 ± 0.				satis.
	Total U	2.58 ± 0.29	0.021		2.58 ± 0.				satis.
	iotai o	2.30 ± 0.29	0.021	I	2.30 1 0.	23 0.0			DOCULO.
	SPIKED SAMPL	E		ORT	IGINAL SAMPL	Е			
	STIRLD DRIFT								
Sample ID	Nuclide	Results ± 20	MDA	Sample ID	Results ±	2σ MDA	Adde	ed <u>%1</u>	Recv

Certified by Report Date 02/19/08
Page 2

Eberline Services

SDG <u>8679</u> Work Order <u>R8010</u> Received Date <u>01/08</u>				Contract	TA IRV PROJEC	INE T# IRA040	00	
8676-005 GrossAlpha	154 ± 8.1	2.8	8676-001	0.784 <u>+</u>	2.0	2.8	115	133
Gross Beta	161 ± 3.3	1.5		62.4 ±	2.4	2.1	102	97
H-3	15700 ± 510	260		-15.1 ±	88	150	16100	98
Ra-226	116 ± 4.3	0.75		0.081 ±	0.44	0.81	112	103
Total U	111 ± 14	2.1		2.58 ±	0.29	0.021	113	96


Certified by No. 202/19/08

Report Date 02/19/08

Page 3

SUBCONTRACT ORDER

TestAmerica Irvine IRA0400

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Released By

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Eberline Services - SUB

2030 Wright Avenue

Richmond, CA 94804

Phone: (510) 235-2633

Fax: (510) 235-0438

Project Location: California

Receipt Temperature: 4.5

Ice:

Analysis	Units	Due	Expires	Comments
Sample ID: IRA0400-01	Water		Sampled: 01/05/08 09	g-20 ph=7.4, temp=53.8
Gamma Spec-O	mg/kg	01/16/08	01/04/09 09:20	Boeing, J flags, K-40 and CS-137 only
Gross Alpha-O	pCi/L	01/16/08	07/03/08 09:20	Out to Eberline
Gross Beta-O	pCi/L	01/16/08	07/03/08 09:20	Out to eberline
Level 4 Data Package - Ou	t N/A	01/16/08	02/02/08 09:20	
Radium, Combined-O	pCi/L	01/16/08	01/04/09 09:20	Out to Eberline
Strontium 90-O	pCi/L	01/16/08	01/04/09 09:20	Out to Eberline
Tritium-O	pCi/L	01/16/08	01/04/09 09:20	Out to Eberline
Uranium, Combined-O	pCi/L	01/16/08	01/04/09 09:20	Out to Eberline
Containers Supplied:				
2.5 gal Poly (K)	500 mL Amb	per (L)		

Released By Received By 01/08/08

> Date/Time Date/Time Page 1 of 1 NPDES - 2422

January 23, 2008

Vista Project I.D.: 30126

Mr. Joseph Doak Test America-Irvine, CA 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Mr. Doak,

Enclosed are the results for the one aqueous sample received at Vista Analytical Laboratory on January 08, 2008 under your Project Name "IRA0400". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Vista's current certifications, and copies of the raw data (if requested).

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha M. Maier

Manylo nover

Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.

Section I: Sample Inventory Report Date Received: 1/8/2008

<u>Vista Lab. ID</u> <u>Client Sample ID</u>

30126-001 IRA0400-01

SECTION II

Project 30126 NPDES - 2425
Page 3 of 254

Method Blank	S									EPA Method 1613
Matrix:	Aqueous		QC Batch No.:	98	386	Lab	Sample:	0-MB001		
Sample Size:	1.00 L		Date Extracted	: 1′	7-Jan-08	Date	Analyzed DB-5:	19-Jan-08	Date An	alyzed DB-225: NA
Sumpre Size.	1.00 E		Date Britanetes		, , , , , , , , , , , , , , , , , , , 	Bute	7 mary 200 BB 5.	17 8411 00	2410 1111	ary 200 DD 220. 1111
Analyte	Conc. (u	ıg/L)	DL a	EMPC b	Qualifiers		Labeled Standa	rd	%R	LCL-UCL ^d Qualifiers
2,3,7,8-TCDD]	ND	0.00000111			<u>IS</u>	13C-2,3,7,8-TCI	OD	85.7	25 - 164
1,2,3,7,8-PeCDI	D 1	ND	0.00000171				13C-1,2,3,7,8-Pe	eCDD	76.8	25 - 181
1,2,3,4,7,8-HxC	DD 1	ND	0.00000174				13C-1,2,3,4,7,8-	HxCDD	75.3	32 - 141
1,2,3,6,7,8-HxC	DD 1	ND	0.00000184				13C-1,2,3,6,7,8-	HxCDD	75.1	28 - 130
1,2,3,7,8,9-HxC	DD 1	ND	0.00000172				13C-1,2,3,4,6,7,	8-HpCDD	87.8	23 - 140
1,2,3,4,6,7,8-Hp	CDD 1	ND	0.00000243				13C-OCDD		70.8	17 - 157
OCDD]	ND	0.00000780				13C-2,3,7,8-TCI	OF	83.6	24 - 169
2,3,7,8-TCDF]	ND	0.00000116				13C-1,2,3,7,8-Pe	eCDF	72.8	24 - 185
1,2,3,7,8-PeCDI	F]	ND	0.00000159				13C-2,3,4,7,8-Pe	eCDF	75.3	21 - 178
2,3,4,7,8-PeCDI	F]	ND	0.00000156				13C-1,2,3,4,7,8-	HxCDF	72.9	26 - 152
1,2,3,4,7,8-HxC	DF 1	ND	0.000000815				13C-1,2,3,6,7,8-	HxCDF	73.2	26 - 123
1,2,3,6,7,8-HxC	DF 1	ND	0.000000832				13C-2,3,4,6,7,8-	HxCDF	76.3	28 - 136
2,3,4,6,7,8-HxC	DF 1	ND	0.000000894				13C-1,2,3,7,8,9-	HxCDF	79.4	29 - 147
1,2,3,7,8,9-HxC	DF 1	ND	0.00000120				13C-1,2,3,4,6,7,8	8-HpCDF	88.5	28 - 143
1,2,3,4,6,7,8-Hp	CDF 1	ND	0.000000977				13C-1,2,3,4,7,8,9	9-HpCDF	86.1	26 - 138
1,2,3,4,7,8,9-Hp	CDF]	ND	0.00000133				13C-OCDF		72.3	17 - 157
OCDF		ND	0.00000313			CRS	37Cl-2,3,7,8-TC	DD	105	35 - 197
Totals						Foot	tnotes			
Total TCDD]	ND	0.00000111			a. San	nple specific estimated	detection limit.		
Total PeCDD]	ND	0.00000373				imated maximum possil			
Total HxCDD]	ND	0.00000177			c. Me	thod detection limit.			
Total HpCDD]	ND	0.00000314			d. Lov	wer control limit - upper	r control limit.		
Total TCDF]	ND	0.00000116							
Total PeCDF]	ND	0.00000157							
Total HxCDF]	ND	0.000000928							
Total HpCDF]	ND	0.00000114							

Analyst: MAS Approved By: Martha M. Maier 23-Jan-2008 09:52

OPR Results				EPA Met	hod 1613
Matrix: Aqueous Sample Size: 1.00 L	QC Batch Date Extr	7000	Lab Sample: 0-OPR00 Date Analyzed DB-5: 19-Jan-08		-225: NA
Analyte	Spike Conc. Conc. (r	g/mL) OPR Limits	Labeled Standard	%R LCL-	UCL Qualifier
2,3,7,8-TCDD	10.0 10.4	6.7 - 15.8	<u>IS</u> 13C-2,3,7,8-TCDD	76.2 25 -	- 164
1,2,3,7,8-PeCDD	50.0 52.4	35 - 71	13C-1,2,3,7,8-PeCDD	68.3 25 -	- 181
1,2,3,4,7,8-HxCDD	50.0 52.8	35 - 82	13C-1,2,3,4,7,8-HxCDD	66.2 32 -	- 141
1,2,3,6,7,8-HxCDD	50.0 51.4	38 - 67	13C-1,2,3,6,7,8-HxCDD	66.8 28 -	- 130
1,2,3,7,8,9-HxCDD	50.0 52.3	32 - 81	13C-1,2,3,4,6,7,8-HpCDD	87.2 23 -	- 140
1,2,3,4,6,7,8-HpCDD	50.0 51.7	35 - 70	13C-OCDD	70.1 17 -	- 157
OCDD	100 103	78 - 144	13C-2,3,7,8-TCDF	74.1 24 -	- 169
2,3,7,8-TCDF	10.0 9.7	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	64.3 24 -	- 185
1,2,3,7,8-PeCDF	50.0 50.9	40 - 67	13C-2,3,4,7,8-PeCDF	67.4 21 -	- 178
2,3,4,7,8-PeCDF	50.0 51.2	2 34 - 80	13C-1,2,3,4,7,8-HxCDF	62.5 26 -	- 152
1,2,3,4,7,8-HxCDF	50.0 51.5	36 - 67	13C-1,2,3,6,7,8-HxCDF	63.5 26 -	- 123
1,2,3,6,7,8-HxCDF	50.0 52.2	2 42 - 65	13C-2,3,4,6,7,8-HxCDF	66.6 28 -	- 136
2,3,4,6,7,8-HxCDF	50.0 52.3	35 - 78	13C-1,2,3,7,8,9-HxCDF	69.3 29 -	- 147
1,2,3,7,8,9-HxCDF	50.0 51.3	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	76.7 28 -	- 143
1,2,3,4,6,7,8-HpCDF	50.0 50.6	5 41 - 61	13C-1,2,3,4,7,8,9-HpCDF	85.4 26 -	- 138
1,2,3,4,7,8,9-HpCDF	50.0 51.2	2 39 - 69	13C-OCDF	71.9 17 -	- 157
OCDF	100 104	63 - 170	<u>CRS</u> 37C1-2,3,7,8-TCDD	84.4 35 -	- 197

Analyst: MAS Approved By: Martha M. Maier 23-Jan-2008 09:52

Sample ID: IRA	0400-01								EPA N	Aethod 1613
	America-Irvine, CA		Sample Data Matrix:	Aqueous		oratory Data Sample:	30126-001	Date Re	ceived:	8-Jan-08
Project: IRA0 Date Collected: 5-Jan Time Collected: 0920			Sample Size:	1.01 L	_	Batch No.: Analyzed DB-5:	9886 19-Jan-08	Date Ex Date An	tracted: alyzed DB-225:	17-Jan-08 NA
Analyte	Conc. (ug/L)	D L a	EMPC ^b	Qualifiers		Labeled Standa	nrd	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ND	0.000001	23		<u>IS</u>	13C-2,3,7,8-TCD	DD	77.4	25 - 164	
1,2,3,7,8-PeCDD	ND	0.000002	44			13C-1,2,3,7,8-Pe	CDD	69.3	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.000002	26			13C-1,2,3,4,7,8-I	HxCDD	66.1	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.000002	36			13C-1,2,3,6,7,8-I	HxCDD	66.5	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.000002	22			13C-1,2,3,4,6,7,8	-HpCDD	74.6	23 - 140	
1,2,3,4,6,7,8-HpCDD	ND	0.000004	45			13C-OCDD		60.7	17 - 157	
OCDD	0.0000227			J		13C-2,3,7,8-TCD)F	74.8	24 - 169	
2,3,7,8-TCDF	ND	0.000001	05			13C-1,2,3,7,8-Pe	CDF	62.8	24 - 185	
1,2,3,7,8-PeCDF	ND	0.000001	71			13C-2,3,4,7,8-Pe	CDF	66.4	21 - 178	
2,3,4,7,8-PeCDF	ND	0.000001	62			13C-1,2,3,4,7,8-I	HxCDF	63.7	26 - 152	
1,2,3,4,7,8-HxCDF	ND	0.000000	759			13C-1,2,3,6,7,8-I	HxCDF	64.4	26 - 123	
1,2,3,6,7,8-HxCDF	ND	0.000000	831			13C-2,3,4,6,7,8-I	HxCDF	66.3	28 - 136	
2,3,4,6,7,8-HxCDF	ND	0.000000	866			13C-1,2,3,7,8,9-I	HxCDF	67.8	29 - 147	
1,2,3,7,8,9-HxCDF	ND	0.000001	16			13C-1,2,3,4,6,7,8	-HpCDF	75.1	28 - 143	
1,2,3,4,6,7,8-HpCDF	ND	0.000000	822			13C-1,2,3,4,7,8,9	-HpCDF	68.6	26 - 138	
1,2,3,4,7,8,9-HpCDF	ND	0.000001	12			13C-OCDF		58.5	17 - 157	
OCDF	ND	0.000004	98		CRS	37Cl-2,3,7,8-TCl	OD	103	35 - 197	
Totals					Foo	tnotes				
Total TCDD	ND	0.000001	23		a. Sa	mple specific estimated	detection limit.			
Total PeCDD	ND	0.000003	12		b. Es	timated maximum poss	ible concentration.			
Total HxCDD	ND	0.000002	28		c. M	ethod detection limit.				
Total HpCDD	0.00000333				d. Lo	ower control limit - upp	er control limit.			
Total TCDF	ND	0.000001	05							
Total PeCDF	ND	0.000001	66							
Total HxCDF	ND	0.000000	896							
Total HpCDF	ND	0.000000	951							

Analyst: MAS Approved By: Martha M. Maier 23-Jan-2008 09:52

APPENDIX

Project 30126 NPDES - 2429
Page 7 of 254

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D Dilution

P The amount reported is the maximum possible concentration due to possible

chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.

I Chemical Interference

J The amount detected is below the Lower Calibration Limit of the instrument.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated detection limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit – concentrations that correspond to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

SUBCONTRACT ORDER

TestAmerica Irvine

IRA0400

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Vista Analytical Laboratory-SUB

1104 Windfield Way

El Dorado Hills, CA 95762 Phone: (916) 673-1520

Fax: (916) 673-0106

Project Location: California

Receipt Temperature:

°C

Ice: Y / N

Analysis	Units	Due	Expires	Comments
Sample ID: IRA0400-01	Water		Sampled: 01/05/08 09:20	ph=7.4, temp=53.8
1613-Dioxin-HR-Alta	ug/l	01/16/08	01/12/08 09:20	J flags,17 congeners,no TEQ,ug/L,sub=Vista
Containers Supplied:				•
1 L Amber (C)	1 L Amber (D)			

Date/Time Released By

Date/Time

NPDES - 2432 Page 10 of 254

Released By Project 30126

SAMPLE LOG-IN CHECKLIST

30126

Vista Project #: _

Vista Analytical Laboratory
TAT Standard

	Date/Time		Initials:		Location:	W	R-2
Samples Arrival:	1/8/08	0909	USA!		Shelf/Rac	k:/	1 A
	Date/Time		Initials:		Location:	W	R-2
Logged In:	1/8/08	1246	PSE)	Shelf/Rac	k:	23
Delivered By:	FedEx	UPS	Cal	DHL	Ha Deliv		Other
Preservation:	lce	Blu	e Ice	Dr	y Ice		None
Temp °C 0. ₹	1°C	Time:	9924		Thermom	eter I	D : IR-1

The Control of Control				YES	NO	NA
Adequate Sample Volume Recei	ved?			V		
Holding Time Acceptable?		V				
Shipping Container(s) Intact?			- 41	V		
Shipping Custody Seals Intact?						
Shipping Documentation Presen	t?				-	
Airbill Trk# 7	92626	74 2469		V		
Sample Container Intact?	. :			V		
Sample Custody Seals Intact?						V
Chain of Custody / Sample Docu	ımentation P	resent?		V		
COC Anomaly/Sample Acceptar	ice Form con	npleted?				
If Chlorinated or Drinking Water	Samples, Ac	ceptable Preser	vation?			V
Na ₂ S ₂ O ₃ Preservation Document		coc	Sample Container		None	
Shipping Container	Vista	Client	Retain R	eturn	Disp	ose
Comments:						

SUBCONTRACT ORDER

TestAmerica Irvine

IRA0400

8010770

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Weck Laboratories, Inc-SUB

14859 E. Clark Avenue

City of Industry, CA 91745

Phone :(626) 336-2139

Fax: (626) 336-2634

Project Location: California

Receipt Temperature: 3.1 °C

Ice:

Y / N

Analysis	Units	Due	Expires	Comments
Sample ID: IRA0400-01	Water		Sampled: 01/	/05/08 09:20 ph=7.4, temp=53.8
Level 4 + EDD-OUT	N/A	01/16/08	02/02/08 09:20	Sub to Weck, transfer file EDD
Level 4 Data Package - Wec	N/A	01/16/08	02/02/08 09:20	Out to Weck
Mercury - 245.1, Diss -OUT	mg/l	01/16/08	02/02/08 09:20	Weck, Boeing, J flags
Mercury - 245.1-OUT	mg/l	01/16/08	02/02/08 09:20	Weck,Boeing, permit, J flags, if result>ND,call TA
Containers Supplied:				
125 mL Poly w/HNO3 1: (N)	25 mL Pol	y (O)		

Released By

Released By

1/7/08 142

Received By

Date/Time

17/08 1420

Received By

Date/Time NPDES - Page 1 of 1

Weck Laboratories, Inc.

Analytical Laboratory Services - Since 1964

14859 E. Clark Ave., Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634 info@wecklabs.com www.wecklabs.com

CERTIFICATE OF ANALYSIS

TestAmerica, Inc. - Irvine **Client:**

Report Date:

01/10/08 08:44

17461 Derian Ave, Suite 100

Received Date:

01/07/08 14:20

Irvine, CA 92614

Turn Around:

7 days

Attention: Joseph Doak

Fax: (949) 260-3297

Work Order #:

8010770

Phone: (949) 261-1022

Client Project:

IRA0400

NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

Dear Joseph Doak:

Enclosed are the results of analyses for samples received 01/07/08 14:20 with the Chain of Custody document. The samples were received in good condition. The samples were received at 3.1 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Reviewed by:

Kim G Tu

Project Manager

Page 1 of 6

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8010770 Project ID: IRA0400 Date Received: 01/07/08 14:20 Date Reported: 01/10/08 08:44

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Sampled by:	Sample Comments	Laboratory	Matrix	Date Sampled
IRA0400-01	Client		8010770-01	Water	01/05/08 09:20

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8010770 Project ID: IRA0400 Date Received: 01/07/08 14:20 Date Reported: 01/10/08 08:44

IRA0400-01 8010770-01 (Water)

Date Sampled: 01/05/08 09:20

Metals by EPA 200 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Dissolved	ND	0.050	ug/l	0.20	1	EPA 245.1	W8A0148	01/08/08	01/09/08 j	p
Mercury, Total	ND	0.050	ug/l	0.20	1	EPA 245.1	W8A0148	01/08/08	01/09/08 j	p

Week Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8010770 Project ID: IRA0400 Date Received: 01/07/08 14:20 Date Reported: 01/10/08 08:44

QUALITY CONTROL SECTION

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8010770 Project ID: IRA0400 Date Received: 01/07/08 14:20 Date Reported: 01/10/08 08:44

Metals by EPA 200 Series Methods - Quality Control

%REC

	Reporting		***	Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch W8A0148 - EPA 245.1										
Blank (W8A0148-BLK1)				Analyzed: 01/09/08						
Mercury, Dissolved	ND	0.20	ug/l							
Mercury, Total	ND	0.20	ug/l							
LCS (W8A0148-BS1)				Analyzed: 01/09/08						
Mercury, Dissolved	0.965	0.20	ug/l	1.00		96	85-115			
Mercury, Total	0.965	0.20	ug/l	1.00		96	85-115			
Matrix Spike (W8A0148-MS1)	Source: 7120722-01			Analyzed:	01/09/08					
Mercury, Dissolved	1.97	0.40	ug/l	2.00	ND	98	70-130			
Mercury, Total	1.97	0.40	ug/l	2.00	ND	98	70-130			
Matrix Spike (W8A0148-MS2)	Source: 7120722-03			Analyzed:	01/09/08					
Mercury, Dissolved	1.88	0.40	ug/l	2.00	ND	94	70-130			
Mercury, Total	1.88	0.40	ug/l	2.00	ND	94	70-130			
Matrix Spike Dup (W8A0148-MSD1)	Source: 7120722-01			Analyzed:	01/09/08					
Mercury, Dissolved	1.92	0.40	ug/l	2.00	ND	96	70-130	2	20	
Mercury, Total	1.92	0.40	ug/l	2.00	ND	96	70-130	2	20	
Matrix Spike Dup (W8A0148-MSD2)	Source: 7120722-03			Analyzed:	01/09/08					
Mercury, Dissolved	1.96	0.40	ug/l	2.00	ND	98	70-130	4	20	
Mercury, Total	1.96	0.40	ug/l	2.00	ND	98	70-130	4	20	

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100

Irvine CA, 92614

Report ID: 8010770 Project ID: IRA0400

Date Received: 01/07/08 14:20 Date Reported: 01/10/08 08:44

Notes and Definitions

ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

% Rec Percent Recovery

Sub Subcontracted analysis, original report available upon request

MDL Method Detection Limit

MDA Minimum Detectable Activity

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.