APPENDIX G

Section 56

Outfall 009, January 24, 2008 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 01/24/08 Received: 01/24/08

Issued: 02/26/08 12:13

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: This is a final report to include all subcontract data...

LABORATORY ID CLIENT ID MATRIX
IRA2352-01 Outfall 009 Water

Reviewed By:

TestAmerica Irvine

Joseph Dock

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200 Sampled: 01/24/08

Arcadia, CA 91007 Report Number: IRA2352 Received: 01/24/08
Attention: Bronwyn Kelly

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2352-01 (Outfall 009	- Water)								
Reporting Units: ug/l									
Antimony	EPA 200.8	8A25068	0.20	2.0	0.87	1	01/25/08	01/25/08	J
Cadmium	EPA 200.8	8A25068	0.11	1.0	ND	1	01/25/08	01/25/08	
Copper	EPA 200.8	8A25068	0.75	2.0	4.6	1	01/25/08	01/25/08	
Lead	EPA 200.8	8A25068	0.30	1.0	1.3	1	01/25/08	01/25/08	
Thallium	EPA 200.8	8A25068	0.20	1.0	ND	1	01/25/08	01/25/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Received: 01/24/08

MWH-Pasadena/Boeing Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200 Sampled: 01/24/08

Arcadia, CA 91007 Report Number: IRA2352
Attention: Bronwyn Kelly

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2352-01 (Outfall 009 - V	Vater) - cont.								
Reporting Units: ug/l									
Antimony	EPA 200.8-Diss	8A24169	0.20	2.0	0.92	1	01/24/08	01/25/08	J
Cadmium	EPA 200.8-Diss	8A24169	0.11	1.0	ND	1	01/24/08	01/24/08	
Copper	EPA 200.8-Diss	8A24169	0.75	2.0	3.6	1	01/24/08	01/24/08	
Lead	EPA 200.8-Diss	8A24169	0.30	1.0	0.37	1	01/24/08	01/24/08	J
Thallium	EPA 200.8-Diss	8A24169	0.20	1.0	ND	1	01/24/08	01/24/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200 Sampled: 01/24/08

Arcadia, CA 91007 Report Number: IRA2352 Received: 01/24/08
Attention: Bronwyn Kelly

INODCANI

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2352-01 (Outfall 009 -	Water) - cont.								
Reporting Units: mg/l									
Hexane Extractable Material (Oil &	EPA 1664A	8A31085	1.3	4.8	ND	1	01/31/08	01/31/08	
Grease)									
Chloride	EPA 300.0	8A24034	0.25	0.50	7.6	1	01/24/08	01/24/08	
Nitrate/Nitrite-N	EPA 300.0	8A24034	0.15	0.26	1.4	1	01/24/08	01/24/08	
Sulfate	EPA 300.0	8A24034	0.20	0.50	10	1	01/24/08	01/24/08	
Total Dissolved Solids	SM2540C	8A25141	10	10	120	1	01/25/08	01/25/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 01/24/08

MWH-Pasadena/Boeing Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IRA2352 Received: 01/24/08

Attention: Bronwyn Kelly

Metals by EPA 200 Series Methods

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IRA2352-01 (Outfall 009 - Water) - cont.										
Reporting Units: ug/l										
Mercury, Dissolved	EPA 245.1	W8A1053	0.050	0.20	ND	1	01/30/08	01/31/08		
Mercury, Total	EPA 245.1	W8A1053	0.050	0.20	ND	1	01/30/08	01/31/08		

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 009

Sampled: 01/24/08

Report Number: IRA2352

Received: 01/24/08

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 009 (IRA2352-01) - Wate	r				
EPA 300.0	2	01/24/2008 08:30	01/24/2008 18:15	01/24/2008 19:00	01/24/2008 20:26

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Report Number: IRA2352

Sampled: 01/24/08 Received: 01/24/08

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8A25068 Extracted: 01/25/08	3										
Blank Analyzed: 01/25/2008 (8A25068-E	BLK1)										
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Thallium	ND	1.0	0.20	ug/l							
LCS Analyzed: 01/25/2008 (8A25068-BS	51)										
Antimony	84.5	2.0	0.20	ug/l	80.0		106	85-115			
Cadmium	84.8	1.0	0.11	ug/l	80.0		106	85-115			
Copper	86.4	2.0	0.75	ug/l	80.0		108	85-115			
Lead	85.0	1.0	0.30	ug/l	80.0		106	85-115			
Thallium	82.7	1.0	0.20	ug/l	80.0		103	85-115			
Matrix Spike Analyzed: 01/25/2008 (8A2	25068-MS1)				Sou	rce: IRA	2276-02				
Antimony	82.3	2.0	0.20	ug/l	80.0	ND	103	70-130			
Cadmium	82.0	1.0	0.11	ug/l	80.0	ND	102	70-130			
Copper	83.4	2.0	0.75	ug/l	80.0	ND	104	70-130			
Lead	81.0	1.0	0.30	ug/l	80.0	ND	101	70-130			
Thallium	80.4	1.0	0.20	ug/l	80.0	ND	101	70-130			
Matrix Spike Analyzed: 01/25/2008 (8A2	25068-MS2)				Sou	rce: IRA	2349-01				
Antimony	82.9	2.0	0.20	ug/l	80.0	0.445	103	70-130			
Cadmium	82.9	1.0	0.11	ug/l	80.0	0.119	104	70-130			
Copper	86.6	2.0	0.75	ug/l	80.0	1.92	106	70-130			
Lead	77.5	1.0	0.30	ug/l	80.0	1.14	95	70-130			
Thallium	77.7	1.0	0.20	ug/l	80.0	ND	97	70-130			
Matrix Spike Dup Analyzed: 01/25/2008	(8A25068-M	SD1)			Sou	rce: IRA	2276-02				
Antimony	82.2	2.0	0.20	ug/l	80.0	ND	103	70-130	0	20	
Cadmium	82.6	1.0	0.11	ug/l	80.0	ND	103	70-130	1	20	
Copper	83.7	2.0	0.75	ug/l	80.0	ND	105	70-130	0	20	
Lead	81.7	1.0	0.30	ug/l	80.0	ND	102	70-130	1	20	
Thallium	81.7	1.0	0.20	ug/l	80.0	ND	102	70-130	2	20	

TestAmerica Irvine

Joseph Doak Project Manager

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Sampled: 01/24/08

Report Number: IRA2352

Received: 01/24/08

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A24169 Extracted: 01/24/08	_										
	0 1 0 11 (0 DI 1	743									
Blank Analyzed: 01/24/2008-01/25/2008 (,		_							
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Thallium	ND	1.0	0.20	ug/l							
LCS Analyzed: 01/24/2008-01/25/2008 (8	A24169-BS1)										
Antimony	83.6	2.0	0.20	ug/l	80.0		104	85-115			
Cadmium	80.4	1.0	0.11	ug/l	80.0		100	85-115			
Copper	84.6	2.0	0.75	ug/l	80.0		106	85-115			
Lead	78.0	1.0	0.30	ug/l	80.0		97	85-115			
Thallium	81.1	1.0	0.20	ug/l	80.0		101	85-115			
Matrix Spike Analyzed: 01/24/2008-01/25	5/2008 (8A241	.69-MS1)			Sou	rce: IRA	2349-01				
Antimony	86.9	2.0	0.20	ug/l	80.0	0.421	108	70-130			
Cadmium	77.3	1.0	0.11	ug/l	80.0	ND	97	70-130			
Copper	78.7	2.0	0.75	ug/l	80.0	ND	98	70-130			
Lead	75.7	1.0	0.30	ug/l	80.0	ND	95	70-130			
Thallium	77.2	1.0	0.20	ug/l	80.0	ND	97	70-130			
Matrix Spike Dup Analyzed: 01/24/2008-	01/25/2008 (8	A24169-MS	D1)		Sou	rce: IRA	2349-01				
Antimony	86.9	2.0	0.20	ug/l	80.0	0.421	108	70-130	0	20	
Cadmium	78.7	1.0	0.11	ug/l	80.0	ND	98	70-130	2	20	
Copper	79.3	2.0	0.75	ug/l	80.0	ND	99	70-130	1	20	
Lead	73.7	1.0	0.30	ug/l	80.0	ND	92	70-130	3	20	
Thallium	75.6	1.0	0.20	ug/l	80.0	ND	94	70-130	2	20	

TestAmerica Irvine

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 01/24/08

Report Number: IRA2352 Received: 01/24/08

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8A24034 Extracted: 01/24/08	_										
Blank Analyzed: 01/24/2008 (8A24034-B	LK1)										
Chloride	ND	0.50	0.25	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Sulfate	ND	0.50	0.20	mg/l							
LCS Analyzed: 01/24/2008 (8A24034-BS)	1)										
Chloride	4.86	0.50	0.25	mg/l	5.00		97	90-110			M-3
Sulfate	9.69	0.50	0.20	mg/l	10.0		97	90-110			
Matrix Spike Analyzed: 01/24/2008 (8A2	4034-MS1)				Sou	rce: IRA	2329-01				
Sulfate	107	1.0	0.40	mg/l	10.0	97.2	98	80-120			
Matrix Spike Analyzed: 01/25/2008 (8A2	4034-MS2)				Sou	rce: IRA	2354-09				
Sulfate	16.9	0.50	0.20	mg/l	10.0	6.59	103	80-120			
Matrix Spike Dup Analyzed: 01/24/2008	(8A24034-M	SD1)			Sou	rce: IRA	2329-01				
Sulfate	106	1.0	0.40	mg/l	10.0	97.2	84	80-120	1	20	
Batch: 8A25141 Extracted: 01/25/08	_										
Blank Analyzed: 01/25/2008 (8A25141-B)	LK1)										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 01/25/2008 (8A25141-BS)	1)										
Total Dissolved Solids	1000	10	10	mg/l	1000		100	90-110			
Duplicate Analyzed: 01/25/2008 (8A2514	1-DUP1)				Sou	rce: IRA	2124-05				
Total Dissolved Solids	1920	10	10	mg/l		1920			0	10	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Sampled: 01/24/08

Report Number: IRA2352

Received: 01/24/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A31085 Extracted: 01/31/08	_										
Blank Analyzed: 01/31/2008 (8A31085-B	LK1)										
Hexane Extractable Material (Oil & Grease)	ND	5.0	1.4	mg/l							
LCS Analyzed: 01/31/2008 (8A31085-BS	1)										MNR1
Hexane Extractable Material (Oil & Grease)	19.8	5.0	1.4	mg/l	20.2		98	78-114			
LCS Dup Analyzed: 01/31/2008 (8A3108	5-BSD1)										
Hexane Extractable Material (Oil & Grease)	19.4	5.0	1.4	mg/l	20.2		96	78-114	2	11	

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

ect ID. Routine Outlan 009

Report Number: IRA2352

Sampled: 01/24/08 Received: 01/24/08

METHOD BLANK/QC DATA

Metals by EPA 200 Series Methods

	D 1	Reporting	MDI	T T •.	Spike	Source	A/DEG	%REC	DDD	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: W8A1053 Extracted: 01/30/0	<u>)8</u>										
Blank Analyzed: 01/31/2008 (W8A1053-	BLK1)										
Mercury, Dissolved	ND	0.20	0.050	ug/l							
Mercury, Total	ND	0.20	0.050	ug/l							
LCS Analyzed: 01/31/2008 (W8A1053-B	S1)										
Mercury, Dissolved	0.930	0.20	0.050	ug/l	1.00		93	85-115			
Mercury, Total	0.930	0.20	0.050	ug/l	1.00		93	85-115			
Matrix Spike Analyzed: 01/31/2008 (W8	A1053-MS1)				Sou	rce: 8012	822-01				
Mercury, Dissolved	1.38	0.20	0.050	ug/l	1.00	0.431	95	70-130			
Mercury, Total	1.38	0.20	0.050	ug/l	1.00	0.431	95	70-130			
Matrix Spike Analyzed: 01/31/2008 (W8	A1053-MS2)				Sou	rce: 8012	822-02				
Mercury, Dissolved	1.37	0.20	0.050	ug/l	1.00	0.426	94	70-130			
Mercury, Total	1.37	0.20	0.050	ug/l	1.00	0.426	94	70-130			
Matrix Spike Dup Analyzed: 01/31/2008	(W8A1053-M	SD1)			Sou	rce: 8012	822-01				
Mercury, Dissolved	1.35	0.20	0.050	ug/l	1.00	0.431	92	70-130	2	20	
Mercury, Total	1.35	0.20	0.050	ug/l	1.00	0.431	92	70-130	2	20	
Matrix Spike Dup Analyzed: 01/31/2008	(W8A1053-M	SD2)			Sou	rce: 8012	822-02				
Mercury, Dissolved	1.40	0.20	0.050	ug/l	1.00	0.426	97	70-130	2	20	
Mercury, Total	1.40	0.20	0.050	ug/l	1.00	0.426	97	70-130	2	20	

MWH-Pasadena/Boeing

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200 Sampled: 01/24/08

Arcadia, CA 91007 Report Number: IRA2352 Received: 01/24/08
Attention: Bronwyn Kelly

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
IRA2352-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	0.38	4.8	15
IRA2352-01	Antimony-200.8	Antimony	ug/l	0.87	2.0	6
IRA2352-01	Cadmium-200.8	Cadmium	ug/l	0.059	1.0	4
IRA2352-01	Chloride - 300.0	Chloride	mg/l	7.64	0.50	150
IRA2352-01	Copper-200.8	Copper	ug/l	4.55	2.0	14
IRA2352-01	Hg_w 245.1	Mercury, Total	ug/l	0.027	0.20	0.13
IRA2352-01	Lead-200.8	Lead	ug/l	1.26	1.0	5.2
IRA2352-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	1.40	0.26	10
IRA2352-01	Sulfate-300.0	Sulfate	mg/l	10	0.50	250
IRA2352-01	TDS - SM 2540C	Total Dissolved Solids	mg/l	117	10	850
IRA2352-01	Thallium-200.8	Thallium	ug/l	0.0013	1.0	2

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: IRA2352

Sampled: 01/24/08
Received: 01/24/08

Attention: Bronwyn Kelly

DATA QUALIFIERS AND DEFINITIONS

Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was

accepted based on acceptable recovery in the Blank Spike (LCS).

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 009

Sampled: 01/24/08 Received: 01/24/08

Attention: Bronwyn Kelly

Report Number: IRA2352

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EDD + Level 4	Water		
EPA 1664A	Water		
EPA 200.8-Diss	Water	X	X
EPA 200.8	Water	X	X
EPA 300.0	Water	X	X
SM2540C	Water	X	

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chrnic

Samples: IRA2352-01

Eberline Services - SUB

2030 Wright Avenue - Richmond, CA 94804

Analysis Performed: Gamma Spec

Samples: IRA2352-01

Analysis Performed: Gross Alpha

Samples: IRA2352-01

Analysis Performed: Gross Beta

Samples: IRA2352-01

Analysis Performed: Radium, Combined

Samples: IRA2352-01

Analysis Performed: Strontium 90

Samples: IRA2352-01

Analysis Performed: Tritium

Samples: IRA2352-01

Analysis Performed: Uranium, Combined

Samples: IRA2352-01

TestAmerica Irvine

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: IRA2352

Sampled: 01/24/08
Received: 01/24/08

Attention: Bronwyn Kelly

Vista Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762 Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IRA2352-01

Weck Laboratories, Inc

14859 E. Clark Avenue - City of Industry, CA 91745

Method Performed: EPA 245.1 Samples: IRA2352-01

(FA2352 Page 1 of 1	2	Field readings	etals	M bəv	ronic To readings = $\mathcal{C}_{\mathcal{C}}}}}}}}}}$	loΤ							Unfiltered and unpreserved analysis	X Only test if first and second rain event of the year	X Filter w/in 24hrs of receipt at lab		100 / / / / / / / / / / / / / / / / / /	X)	Turn around Time: (check) 24 Hours 5 Days	1	72 Hours Normal Company	Intact On Ice:
TPA2352	ANALYSIS	-3) Total	H) (M. 6.0), 7.855 Madi Mulir	, Tritiu 90) 06 8 (sadiun 93.1) 8 9. Urar 90, CS	18(9C0.0) 18(9C0.0) 18(0), Sr-9 18(0)4(0) 18(0)4(0) 18(0)4(0)	(90) (90) (90) (90)							×						168	e: 8 18		
USTODY FORM 101252			. N- ² (Ο Ν + ^ε (& Grease	, IO TD				×	×	×			31				Date/Time	Date/Time:	Date/Time	
	اً ا	rs)	JT ,Β eneβr	PK, H	al Recov Cd; Cu; DD (and	SP.	×	×	×										By		à à	
OFC	3	0 a cc	2			Bottle #	1A	18	2A, 2B	3A, 3B	4A, 4B	2	68 68	7	8					Received	Received	
CHAIN OF	30014	Boeing-Sort INPUES Routine Outfall 009 Stormwater at WS-13	g .	umber: 3-6691	ber: 3-6515	Preservative	HNO ₃	HNO3	None	HCi	None	None	None	None	None				1535	2181 891		Į.
7	Project	Routine Stormwat		Phone Number: (626) 568-6691	Fax Number: (626) 569-6515	Sampling Date/Time	63.289								06: 60				Date/Time:	Date/Time:	Date/Time:	
12/20/0]		00	oak	Kelly		# of Cont.	-	-	2	2	2	-		-	-				ဆ	17		
Test America version 12/20/07	ess	MWH-Arcadia 618 Michillinda Avenue, Suite 200	Arcadia, UA 91007 Test America Contact: Joseph Doak	Bronwyn Kelly	49 7 Br	Container Type	무	1L Poly	1L Amber	1L Amber	500 ml Poly	500 ml Poly	2.5 Gal Cube 500 ml Amber	1 Gal Poly	1L Poly				1-34-0			
\meric	Client Name/Address	Arcadia Illinda Avel	CA 91007	Project Manager:	Sampler: R B∂Nβ C A	Sample n Matrix	Ħ	м -е	8	3	3	X	X	X	X				hed By	hed By	hed By	
Test ⊿	Client Na	MWH-Arcadia 618 Michillinda Ave	Arcadia, CA 91007 Test America Conta	Project N	Sampler	Sample	Outfall 009	Outfall 009- Dup	Outfall 009	Outfall 009	Outfall 009	Outfall 009	Outfall 009	Outfall 009	Outfall 009				Relinguished By	Relinguished By	Refinition By	

LABORATORY REPORT

Date:

February 1, 2008

Client:

TestAmerica - Irvine

17461 Derian Ave., Suite 100

Irvine, CA 92614 Attn: Joseph Doak Laboratories

"dedicated to providing quality aquatic toxicity testing"

Aquatic Testing

4350 Transport Street, Unit 107

Ventura, CA 93003

(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.:

A-08012505-001

Sample ID.:

IRA2352-01 (Outfall 009)

Sample Control:

The sample was received by ATL within the recommended hold time, in a chilled

state, and with the chain of custody record attached. Testing was conducted on only

one sample per client instruction.

Date Sampled:

01/24/08

Date Received:

01/25/08

Temp. Received:

1°C

Chlorine (TRC):

0.0 mg/l

Date Tested:

01/25/08 to 02/01/08

Sample Analysis:

The following analyses were performed on your sample:

Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

Result Summary:

Chronic:

NOEC

TUc

Ceriodaphnia Survival:

100%

1.0

Ceriodaphnia Reproduction:

100%

1.0

Quality Control:

Reviewed and approved by:

Joseph A. LeMay

Laboratory Director

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

Lab No.: A-08012505-001

Client/ID: Test America - Outfall 009

Date Tested: 01/25/08 to 02/01/08

TEST SUMMARY

Test type: Daily static-renewal. Endpoints: Survival and Reproduction.

Species: *Ceriodaphnia dubia*. Source: In-laboratory culture. Age: < 24 hrs; all released within 8 hrs. Food: .1 ml YTC, algae per day.

Test vessel size: 30 ml.

Test solution volume: 15 ml.

Number of test organisms per vessel: 1. Number of replicates: 10.

Temperature: 25 +/- 1°C. Photoperiod: 16/8 hrs. light/dark cycle.

Dilution water: Mod. hard reconstituted (MHRW). Test duration: 7 days.

QA/QC Batch No.: RT-080106. Statistics: ToxCalc computer program.

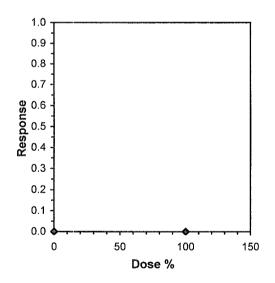
RESULTS SUMMARY

Sample Concentration	Percent Survival	Mean Number of Young Per Female									
Control	100%	24.8									
100% Sample	100%	27.8									
Sample not statistically significantly less than Control for either endpoint											

CHRONIC TOXICITY

Survival NOEC	100%
Survival TUc	1.0
Reproduction NOEC	100%
Reproduction TUc	1.0

QA/QC TEST ACCEPTABILITY


Parameter	Result
Control survival ≥80%	Pass (100% survival)
≥15 young per surviving control female	Pass (24.8 young)
≥60% surviving controls had 3 broods	Pass (100% with 3 broods)
PMSD < 47% for reproduction; if > 47% and no toxicity at IWC, the test must be repeated	Pass (PMSD = 8.8%)
Statistically significantly different concentrations relative difference > 13%	Pass (no concentration significantly different)
Concentration response relationship acceptable	Pass (no significant response at concentration tested)

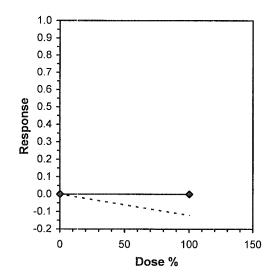
ti il diagrama di santa di sa	WANTE OF THE PARTY		Cerioda	aphnia Sui	rvival and	Reprod	uction Tes	t-7 Day S	Survival	
Start Date:	1/25/2008	14:00	Test ID:	8012505			Sample ID	:	Outfall 009	9
End Date:	2/1/2008 1	13:00	Lab ID:	CAATL-Ad	quatic Test	ting Labs	Sample Ty	/pe:	EFF2-Indu	ıstrial
Sample Date:	1/24/2008	08:30	Protocol:	FWCH 4T	H-EPA-82	1-R-02-0	Test Spec	ies:	CD-Cerioo	laphnia dubia
Comments:										
Conc-%	1	2	3	4	5	6	7	8	9	10
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
100	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

				Not			Fisher's	lsot	Isotonic			
Conc-%	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Mean	N-Mean		
D-Control	1.0000	1.0000	0	10	10	10			1.0000	1.0000		
100	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000		

Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	
Fisher's Exact Test	100	>100		1	
Treatments vs D-Control					

Linear Interpolation (200 Resamples) Skew Point IC05 SD 95% CL % >100 IC10 >100 >100 IC15 IC20 >100 IC25 >100 IC40 >100 >100 IC50

Reviewed by:


AND THE RESIDENCE OF THE PARTY	—		Ceriod	aphnia Su	rvival and	Reprod	uction Tes	t-Repro	duction		
Start Date:	1/25/2008	14:00	Test ID: 8012505 Sample ID: Outfall 009								
End Date:	2/1/2008 1	3:00	Lab ID:	CAATL-Aquatic Testing Labs Sample Type: EFF2-Industrial							
Sample Date:	1/24/2008	08:30	Protocol:	FWCH 4T	H-EPA-82	1-R-02-0	Test Spec	ies:	CD-Cerioo	laphnia dubia	
Comments:											
Conc-%	1	2	3	4	5	6	7	8	9	10	
D-Control	27.000	27.000	26.000	22.000	27.000	25.000	22.000	23.000	25.000	24.000	
						26.000	34.000	32,000	29.000		

		_		Transforn	n: Untran	sformed	11120 220 00 01 01 01 00 00 00		1-Tailed		Isotonic		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	_ t⊸Stat	Critical	MSD	Mean	N-Mean	
D-Control	24.800	1.0000	24.800	22.000	27.000	8.020	10				26.300	1.0000	
100	27.800	1.1210	27.800	23.000	34.000	12.438	10	-2.378	1.734	2.187	26.300	1.0000	

Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.05)	0.97424		0.905		0.36765	-0.0017
F-Test indicates equal variances (p = 0.11)	3.02247		6.54109			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates no significant differences	2.18733	0.0882	45	7.95556	0.02867	1, 18
Treatments vs D-Control						•

Linear Interpolation (200 Resamples)

Point	%	SD	95% CL	Skew
IC05	>100			201110010011001100110011001100110011001
IC10	>100			
IC15	>100			
IC20	>100			
IC25	>100			
IC40	>100			
IC50	>100			

Reviewed by:

NPDES - 2160

CERIODAPHNIA DUBIA CHRONIC BIOASSAY **EPA METHOD 1002.0 Raw Data Sheet**

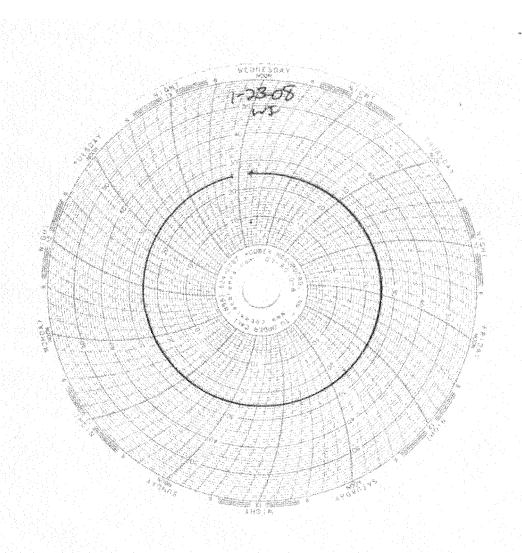
Lab No.: A-08012505-001

Client ID: TestAmerica - IRA2352-01 (Outfall 009) Start Date: 01/25/2008

						V 2	TÍ I				DAY 4 DAY 5								
		0 hr	DAY 1	lhr	0 hr	Y 2 24hr	0 hr		24hr	0 hr	24hr	0 hr		24hr	0 hr	AY 6 24hr	0 hr	24hr	
Analyst Ir	nitials:	2.	- 24		~	24m	1		1	1	24111			2411	2~	24111	O III	2411	
Time of Re		1400		$\overline{}$	(S'U)	1300	130		540	150	1500	154	T	SID	1500	ISOV	/SV	+ -	
	DO	8,0	8		7.9	26	2-7	T	27	29	7.8	8.0	. T	2,0	8.1	8,4	8.2	† 	
Control	pН	7.8	8.		77	7-6	2.0	.	26	7-8	8.0	80		2.7	7-8	314	7.7	7.8	
Control	Temp				2001)	24.6	╟			24,2		11	1	5.0	24.6	21111	200	1241	
		25.3	$\dot{ au}$	٣Ë	<u> 45.9</u>		25			'	24.4	1			<u> </u>	T	25.1	1.0	
	DO	10.8	9.	, 1	10.6	7.8	9.7	1 2	22	7.2	8.4	10.		,2	10.8	8.6	9.9	78	
100%	pН	7.1	$\frac{Z_{ij}}{2}$	2	7.0	1.4	2-1		24		7.2	6.0			7.0	7.2	7.0	7.4	
	Temp	29.1	-124	<u>ما گ</u>	24.7	24.6	124	2 2	4.2		244	24.	5 2	4.9	24.9	24.3	24.	d 24-1	
		lditiona									itrol			·		100% San			
		nductivi	<u> </u>	ohms)						,2.	90					147)		
		kalinity (<u></u>	<u></u>					43			
		ardness (<u> </u>	8					56			
	An	nmonia	mg/l N	(H ₃ -N)					<0.2 0.4										
-1								Source of Neonates											
Repl	Replicate:		A	+	В	C		D		E	F	_	G		H	I .	,	J J	
Broo	od ID:		<u># </u>		BI	I Ci		<u>D:</u>		E3	<u> </u> /+1:	3	44	<u> </u>	<u> </u>	FE	2 0	<i>GS</i>	
Sample		Day			T	T	T		l	roduced	1 1				al Live	No. Liv		Analyst	
	<u> </u>			A	В	С	D	E	F	G	Н	I	J	<u>'</u>	oung	Adults		Initials	
	-	1		0	()	10		()	0	10	0	0	<u>0</u>			10		Cn.	
		2		0	4	0	0	0	0	10	2	0	0	∦ 		10		En !	
		3 4		0 4	8	0	4	3	3	4	0	<u>0</u> 5	4	1	8	10		2	
Control		5	***************************************	7	0	3	5	<u>S</u>	7	6	7	<u> </u>	9		8	<u> 10</u>	╢ᢇ		
		6	~~~~	0	15	0	0	10	15		(5)	$\frac{\mathcal{O}}{t}$	5	1 i		10	$\dashv \vdash$	h	
		7		16	0	12	<u> </u>	<u>.</u>	Ö	12	il	12	11	8		10			
		Total		27	27	26	22	2 7	25		23	25	24	╫┷	48	10			
		1		0	0	0	0	0	$\langle \cdot \rangle$	70	\circ	$\langle \rangle$	0		^)	10		m	
		2	HAMBOTA BOOM	()	0	0	7)	()	0	0	 	0	0			10		Ru	
		3		C	0	4	0	0	0	6	L	_	_	1 5	3	10		2	
1000/		4		5	3	0	5	4	15	5	0	4	5	3	4	10		h	
100%		5		2	8	7	9	8	7	12	iu	10	10	8	8	10		b	
		6		15	0	12	0	0	\mathcal{O}	0	C	0	4	7	58	10	-	1/1	
		7		18	16	(1)	10	12	16	17	18	15	(16		(0	10		4	
ii .						DIFFS.	3012	24 l	26						28			10 0	

Circled fourth brood not used in statistical analysis.

7th day only used if <60% of the surviving control females have produced their third brood.



Laboratory Temperature Chart

QA/QC Batch No: A-08012505

Date Tested: 01/25/08 to 02/01/08

Acceptable Range: 25+/- 1°C

SUBCONTRACT ORDER

TestAmerica Irvine

IRA2352

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Aquatic Testing Laboratories-SUB

4350 Transport Street, Unit 107

Ventura, CA 93003

Phone: (805) 650-0546

Fax: (805) 650-0756

Project Location: California

Receipt Temperature: /e ()

Ice: (Y) / N

Analysis	Units	Due	Expires	Comments
Sample ID: IRA2352-01	Water		Sampled: 01/24/08 08:30	ph=7.4 temp=44
Bioassay-7 dy Chrnic	N/A	02/04/08	01/25/08 20:30	Cerio, EPA/821-R02-013, Sub to AqTox Labs
Containers Supplied: 1 gal Poly (M)				

Released By

Refeased By

Received By

Received By

Page 1 of 1 Date/Time

NPDES - 2163

REFERENCE TOXICANT DATA

CERIODAPHNIA CHRONIC BIOASSAY

EPA METHOD 1002.0 REFERENCE TOXICANT - NaCl

QA/QC Batch No.: RT-080106

Date Tested: 01/06/08 to 01/12/08

TEST SUMMARY

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*.

Age: <24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 +/- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

Reference Toxicant: Sodium chloride (NaCl).

Endpoints: Survival and Reproduction.

Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 20 ml.

Number of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 6 days.

Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Surv	ival	Mean Number of Young Per Female		
Control	100%		20.5		
0.25 g/l	100%		19.5		
0.5 g/l	100%		19.5		
1.0 g/l	100%		14.0	*	
2.0 g/l	80%		3.2	*	
4.0 g/l	0%	*	0	**	

^{*} Statistically significantly less than control at P = 0.05 level

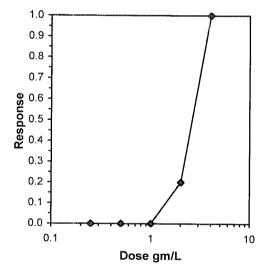
** Reproduction data from concentrations greater than survival NOEC are

excluded from statistical analysis.

CHRONIC TOXICITY

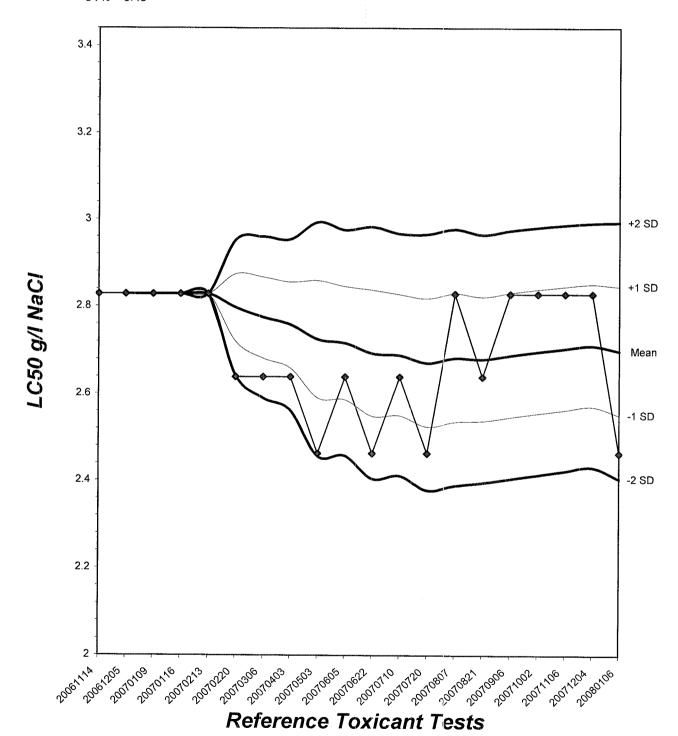
Survival LC50	2.5 g/l
Reproduction IC25	0.88 g/l

QA/QC TEST ACCEPTABILITY


Parameter	Result				
Control survival ≥80%	Pass (100% Survival)				
≥15 young per surviving control female	Pass (20.5 young)				
≥60% surviving controls had 3 broods	Pass (90% with 3 broods)				
PMSD <47% for reproduction	Pass (PMSD = 19.1%)				
Stat. sig. diff. conc. relative difference > 13%	Pass (Stat. sig. diff. conc. = 31.7%)				
Concentration response relationship acceptable	Pass (Response curve normal)				

Ceriodaphnia Survival and Reproduction Test-Survival Day 6												
Start Date:	1/6/2008 1	Test ID:	RT-08010			Sample ID		REF-Ref Toxicant				
End Date:	1/12/2008	13:00	Lab ID:	CAATL-Aquatic Testing La			Sample Tv	vpe:		dium chloride		
Sample Date:	1/6/2008			FWCH-EP			Test Spec	•	CD-Ceriodaphnia dubia			
Comments:						41 14 14				•		
Conc-gm/L	1	2	3	4	5	6	7	8	9	10		
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
0.25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
0.5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
2	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000		
4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		

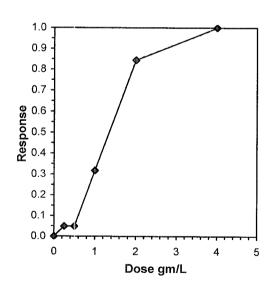
				Not			Fisher's	1-Tailed	Number	Total
Conc-gm/L	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Resp	Number
D-Control	1.0000	1.0000	0	10	10	10			0	10
0.25	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
0.5	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
1	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
2	0.8000	0.8000	2	8	10	10	0.2368	0.0500	2	10
4	0.0000	0.0000	10	Ó	10	10	0.2000	0.0000	10	10


Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	
Fisher's Exact Test	2	4	2.82843		
Treatments vs D-Control					

	Trim Level	EC50	95%	CL	Trimmed Spearman-Karber
_	0.0%	2.4623	2.0663	2.9342	
	5.0%	2.5108	2.0545	3.0683	
	10.0%	2.5519	1.9976	3.2599	1.0 —
	20.0%	2.5937	2.2616	2.9745	4
	Auto-0.0%	2.4623	2.0663	2.9342	0.9

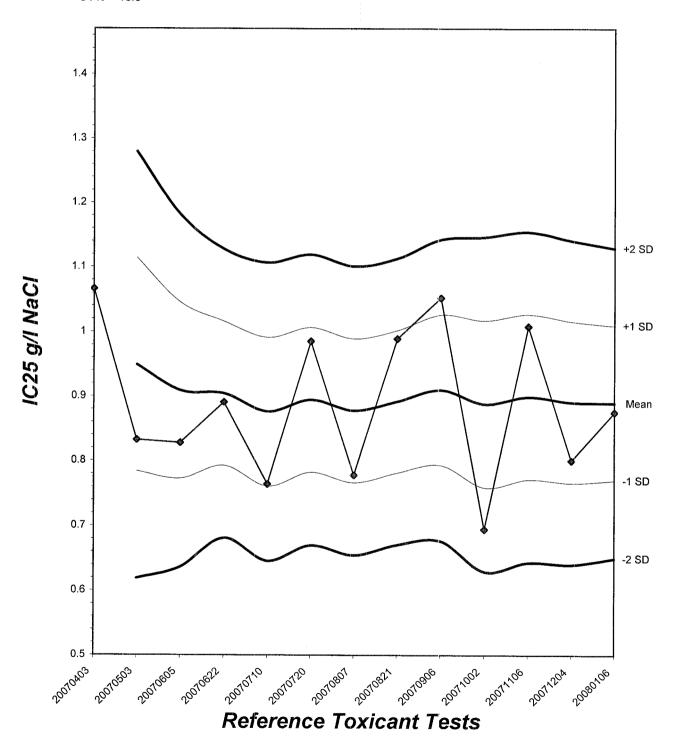
Ceriodaphnia dubia Chronic Survival Laboratory Control Chart

CV% = 5.46


			Ceriod	aphnia Su	rvival and	Reprod	uction Tes	st-Repro	duction	
Start Date:	1/6/2008 13:00 Test ID:			RT-08010	6c	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Sample ID);	REF-Ref	Toxicant
End Date:	1/12/2008	13:00	Lab ID:	CAATL-Ad	quatic Tes	ting Labs	Sample Ty	vpe:	NACL-Soc	dium chloride
Sample Date:	1/6/2008			FWCH-EF						laphnia dubia
Comments:			· · · · · · · · · · · · · · · · · · ·		****		ranch company			
Conc-gm/L	1	2	3	4	5	6	7	8	9	10
D-Control	23.000	11.000	21.000	21.000	23.000	20.000	19.000	22.000	20.000	25.000
0.25	12.000	24.000	19.000	22.000	9.000	20.000	21.000	21.000	22.000	25.000
0.5	21.000	19.000	21.000	22.000	16.000	12.000	22.000	21.000	22.000	19.000
1	19.000	9.000	9.000	19.000	14.000	10.000	16.000	17.000	19.000	8.000
2	8.000	2.000	2.000	5.000	4.000	3.000	3.000	5.000	0.000	0.000
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

		_		Transforn	n: Untran	sformed	***************************************	Rank	1-Tailed	Isot	onic
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	N	- Sum	Critical	Mean	N-Mean
D-Control	20.500	1.0000	20.500	11.000	25.000	18.432	10		404/2	20.500	1.0000
0.25	19.500	0.9512	19.500	9.000	25.000	26.177	10	102.00	76.00	19.500	0.9512
0.5	19.500	0.9512	19.500	12.000	22.000	16.617	10	94.50	76.00	19.500	0.9512
*1	14.000	0.6829	14.000	8.000	19.000	32.819	10	62.50	76.00	14.000	0.6829
*2	3.200	0.1561	3.200	0.000	8.000	76.263	10	55.00	76.00	3.200	0.1561
4	0.000	0.0000	0.000	0.000	0.000	0.000	10			0.000	0.0000

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor			$(p \le 0.05)$		0.91281	0.947	-0.9793	0.67912
Bartlett's Test indicates equal var	iances (p =	0.25)			5.39	13.2767		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	(4) (4)			*****
Steel's Many-One Rank Test	0.5	1	0.70711					***************************************
Transferanta un D. Causturi								


Treatments vs D-Control

				Linea	ar Interpolati	ion (200 Resamples)
Point	gm/L	SD	95% CL		Skew	. ,
IC05	0.5023	0.1876	0.0809	0.6178	-0.0659	
IC10	0.5955	0.1768	0.1617	0.7497	-0.5184	
IC15	0.6886	0.1424	0.2426	0.9253	-0.5389	1.0
IC20	0.7818	0.1259	0.4995	1.0352	0.2728	4
IC25	0.8750	0.1224	0.6413	1.1094	0.3153	0.9
IC40	1.1574	0.1139	0.9216	1.3331	-0.0890	0.8 -
IC50	1.3472	0.0972	1.1197	1.4847	-0.4227	0.7.

Ceriodaphnia dubia Chronic Reproduction Laboratory Control Chart

CV% = 13.5

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-080106

Start Date: 01/06/2008

			- 1944 - 1945 - 1945	Nu	ımbei	r of Y	oung	 Produ	ıced		- Anne Around	Total	No.	Analyst
Sample	Day	A	В	С	D	E	F	G	Н	H	J	Live Young	Live Adults	Initials
	1	0	0	0	U	\cup	0	\bigcirc	0	0	\overline{C}	0	10	2
	2	0	0	0	0	0	\circ	0	0	0	C	\circ	10	2
	3	0	0	2	O	0	0	3	0	7	0	8	10	2
	4	4	3	0	4	3	2	Ö	Ν	0	Š	21	10	gr
Control	5	9	8	フ	7	6	フ	6	7	6	7	70	10	
	6	10	Ó	12	10	14	Ì	10	13	11	کا	106	10	
	7		سسير		~		_		_	-		SANGET STORY	gjellow _{ines} .	
	Total	23)/	21	સ	73	20	19	22	20	<i>35</i>	205	10	h
	1	0	0	0	0	0	0	0	0	ò	0	\mathcal{O}	10	
	2	0	0	0	0	0	0	0	0	0	0	0	10	
	3	0	3	0	3	0	2	\cdot	0	7	0	((10	In
0.25 /	4	4	U	2	2	3	6	4	2	0	3	24	10	6
0.25 g/l	5	8	8	フ	5	6	0	7	6	7	8	62	10	6
	6	0	13	(D	14	0	12	10	13	12	14	98	10	
	7	-				-parabonium,	1			September 44.			ng/Stategapan .	
	Total	12	24	19	22	9	20	ZL	2]	Z2	25	195	10	5
	1	0	0	0	0	0	\mathcal{O}	0	0	<u></u>	\circ	0	10	A
	2	0	0	0	0	0	\bigcirc	0	0	0	0	0	10	h
	3	2	0	2	0	0	\subset	3	``Z_	-0	0	a	10	6
0.5 ~/1	4	0	3	0	3	4	3	\mathcal{C}	0	3	3	19	10	M
0.5 g/l	5	9	6	フ	7	0	9	8	7	フ	6	6b	10	1
	6	10	10	12	12	12	0	11	ĨZ	12	10	101	10	6
	7		-			yearne.	سسسس	yestistores			\$ 14.	, and the same of	7744	4
	Total	21	19	21	22	16	12	22	21	22	19	195	10	1

Circled fourth brood not used in statistical analysis.

^{7&}lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-080106

Start Date: 01/06/2008

G 1	Day			Nı	ımbe	r of Y	oung	Produ	ced			Total	No.	Analyst
Sample		A	В	С	D	E	F	G	н	1	J	Live Young	Live Adults	Initials
	1	0	0	0	0	0	0	0	0	0	0	0	10	M
	2	0	0	0	0	O	0	0	0	0	C	0	10	6
	3	0	0	0	0	0	3	0	0	2	0		10	
1.0 ~/1	4	3	2	2	٦	0	0	3	2	0	2	17	10	h
1.0 g/l	5	5	Ņ	>	4	5	7	<u></u>	7	7	ص	57	10	
	6	1(0	0	12	9	0	8	11	10	0	61	10	
	7	1	, parent.	·	_	4- 	-	approximation,		- Specialists	-		1/0/2	
	Total	19	9	9	19	14	10	16	17	19	8	140	10	
	1	0	0	\sim	0	0	0	0	0	X	0	0	9	h
	2	0	0	0	0	0	0	0	0	Commence,	0	0	9	
	3	O	0		0	0	0	0	C	1	0	0	g	1
2.0 //	4	S	0	又	3	0	0	0	2	garante.	0	9	g	
2.0 g/l	5	3	Û	0	2	2	3	3	0	110000000	0	13	a	
	6	3	2	0	0	2	C	0	3	printering.	X	10	8	
	7	_	Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the	_	9/2	Carrier.	Manager .	40	,	*COMMUNICATION	Danner.	approximate and a second	***************************************	,
	Total	8	2	2	5	4	3	3	5	0	0	32	8	
	1	X	X	X	X	X	入	X	λ	\nearrow	人	0	0	2
	2							e e e e e e e e e e e e e e e e e e e	-sibilité _{re}					(
	3			_e mran.		_	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(* Andrews	-	1		\$ management	
4.0 /1	4	-)				-			·		
4.0 g/l	5	-	ę	haloggapaadax	- Andrewson - Andr		_		Pennana.	Engles	· ·	Ç-Tillerin (Tillerin (Till	<i>y</i>	parameter.
	6	-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-		_	dustries.	Volume,	~	pilling.		graven Alexan.	
	7			-		general constraints of the const		,		ę			q-area-	ę
	Total	\circ	0	0	0	0	c	\circ	0	0	0	0	0	2

Circled fourth brood not used in statistical analysis. 7^{th} day only used if <60% of the surviving control females have produced their third brood.

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

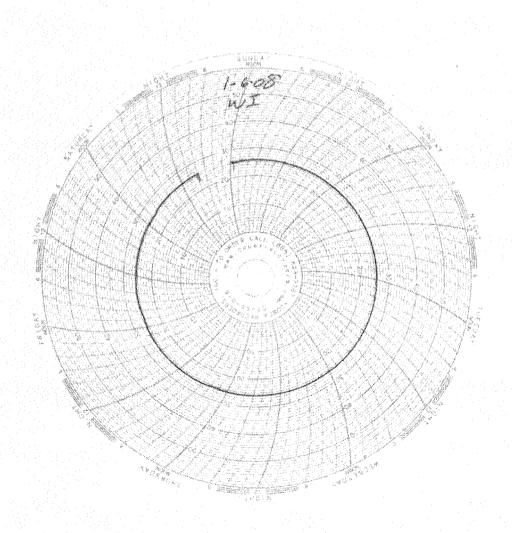
Reference Toxicant - NaCl Water Chemistries Raw Data Sheet

QA/QC No.: RT-080106													Start Date: 01/06/2008		
		DA	Y 1	DAY 2		DAY 3		DAY 4		DAY 5		DAY 6		DA	Y 7
	***	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
Analyst I	nitials:	n	1/2	N	4	1	1/2	1	9-	1	2		the	an ambandad kalenda	والمحري
Time of R	eadings:	1300	1330	1330	13W	Ba	1230	1270	1300	1300	1300	130	Da	- Security	
	DO	7-6	72	2-4	7.7	7.4	76	7.4	7.5	8,2	7-8	7.9	フン		-
Control	pН	76	74	7.4	7.3	7.3	7.2	フン	7-7	7.5	2-6	7-9	7.6	Marian Santa	operation in a
	Temp	243	25-1	25.4	24.8	24.1	24.5	249	25-1	244	25.0	246	25-1		
	DO	7.5	7-3	7.5	7.5	7-5	7.7	7-3	24	8.2	7-8	7-9	7.7	-	
0.25 g/l	рН	75	7.3	2-4	74	7.4	7.2	7.3	7.4	7.4	7-5	7.6	27	guerrana,	
	Temp	244	252	253	249	242	24.5	24.7	250	24.4	25-1	246	25-1		
	DO	74	22	7.4	7-6	7.01	7.6	7-4	26	8.5	7-6	8.0	78	ale all the second second	(
0.5 g/l	pН	7.5	73	74	7.4	7.4	7.2	7.3	7.5	7.6	2-5	2-2	7-7	·	_
	Temp	243	251	35.3	249	24.1	25.2	246	24.9	244	249	24.4	249		
	DO	7.5	22	26).)	7.3	7.8	24	24	8, U	7-5	7-7	7-7		_
1.0 g/l	рН	7.5	7.3	7.0	7.5	7.4	7.2	7-3	7.5	70	>-1	7.9	7-6	~	_
	Temp	244	25.2	25-1	247	24.2	ZS.Z	24.6	25.0	24.4	249	24.6	250		
	DO	7.4	74	7.6	7.5	74	28	22	7.6	8.2	7-6	26	7.7	***************************************	_
2.0 g/l	рН	7.5	7-4	7-6	7.6	7.4	23	72	7.6	75	7-6	29	7.6		_
	Temp	245	25-1	24-0	246	24.2	253	24.8	25.2	24-4	24.8	24.6	25-1		
	DO	7-5	7-8	* atenuals delicated	Stora _n ,	Nazgous-	- AMERICAN STREET	a second	Wasangara		Chapterine.	~	***************************************	Summer	COMMISSION
4.0 g/l	рН	7,6	7.8	National	-		- Alexandria	унделен.		3440000				-	
	Temp	24.3	246	*Blemaw»		Algore .	nace.	3 Marie Carlo		*LEGISTER STATE OF THE STATE OF	gage and the second		,	,	g galliane.

Dissolved Oxygen (DO) readings are in mg/l O₂; Temperature (Temp) readings are in °C.

Additional Parameters		Control		High Concentration				
Additional Parameters	Day 1	Day 3	Day 5	Day 1	Day 3	Day 5		
Conductivity (μS)	350	348	305	6400	3100	3210		
Alkalinity (mg/l CaCO ₃)	66	65	63	65	66	64		
Hardness (mg/l CaCO ₃)	98	97	98	98	9)	98		

Source of Neonates													
Replicate:	A	В	С	D	Е	F	G	Н	I	J			
Brood ID:	23	18	20	2-6	2A	3D	3E	2k	46	761			



Laboratory Temperature Chart

QA/QC Batch No: RT-080106

Date Tested: 01/06/08 to 01/12/08

Acceptable Range: 25+/- 1°C

February 22, 2008

Mr. Joseph Doak Test America, Inc. 17461 Derian Avenue, Suite 100 Irvine, CA 92614

Reference: Eberline Services NELAP Cert #01120CA

Test America Project Nos. IRA1233, IRA2025, IRA2352, IRA2350,

IRA2349, IRA2156

Eberline Services Reports R801067-8681, R801142-8682, R801161-8683

R801162-8684, R801163-8685, R801164-8686

Dear Mr. Doak:

Enclosed are results from the analyses of six water samples. One sample was received on January 16, one on January 24, three on January 26, and one on January 28, 2008. The samples were analyzed according to the accompanying Test America Subcontract Order Forms, the requested analyses were: gross alpha/gross beta (EPA 900.0), tritium (H-3, EPA906.0), Sr-90 (EPA905.0), Ra-226 (EPA903.1), Ra-228 (EPA 904.0), total uranium (ASTM D-5174), and gamma spectroscopy (EPA901.1, K-40 and Cs-137 only). Batch quality control samples consisted of LCS's, blank analyses, duplicate analyses, and matrix spike analyses (gross alpha/gross beta, H-3, Ra-226, Total-U only). All QC sample results were within the limits defined in Eberline Services Quality Control Procedures Manual.

Please call me if you have any questions concerning this report.

Regards,

Melissa Mannion

Senior Program Manager

Melen Marrow

MCM/njv

Enclosure: Reports/CoC's

Invoices

Eberline Services

ANALYSIS RESULTS

 SDG
 8683
 Client
 TA IRVINE

 Work Order
 R801161-01
 Contract
 PROJECT# IRA2352

 Received Date
 01/26/08
 Matrix
 WATER

Client Sample ID	Lab Sample ID	Collected	Analyzed	Nuclide	Results ± 20	<u>Units</u>	MDA
IRA2352-01	8683-001	01/24/08	02/06/08	GrossAlpha	0.769 ± 0.39	pCi/L	0.40
			02/06/08	Gross Beta	1.47 ± 0.55	pCi/L	0.84
			02/04/08	Ra-228	-0.021 ± 0.17	pCi/L	0.46
			01/31/08	K-40 (G)	U	pCi/L	12
			01/31/08	Cs-137 (G)	U	pCi/L	0.61
			02/15/08	H-3	-89.1 ± 92	pCi/L	160
			02/11/08	Ra-226	-0.059 ± 0.40	pCi/L	0.76
			02/07/08	Sr-90	0.195 ± 0.45	pCi/L	0.97
			02/19/08	Total U	0.108 ± 0.015	pCi/L	0.022

Certified by Report Date 02/22/08
Page 1

Eberline Services

QC RESULTS

SDG <u>8683</u>
Work Order <u>R801161-01</u>

Received Date 01/26/08

Client TA IRVINE

Contract PROJECT# IRA2352

Matrix <u>WATER</u>

Lab						
Sample ID	Nuclide	Results	<u>Units</u>	Amount Added	MDA	Evaluation
LCS						
8682-002	GrossAlpha	10.6 ± 0.84	pCi/Smpl	10.1	0.29	105% recovery
	Gross Beta	9.49 ± 0.38	pCi/Smpl	9.39	0.29	101% recovery
	Ra-228	8.69 ± 0.54	pCi/Smpl	8.73	0.75	100% recovery
	Co-60 (G)	223 ± 11	pCi/Smpl	226	7.0	99% recovery
	Cs-137 (G)	253 ± 11	pCi/Smpl	236	8.1	107% recovery
	Am-241 (G)	215 ± 37	pCi/Smpl	252	47	85% recovery
	H-3	228 ± 14	pCi/Smpl	240	16	95% recovery
	Ra-226	5.92 ± 0.27	pCi/Smpl	5.58	0.085	106% recovery
	Sr-90	9.45 ± 0.73	pCi/Smpl	9.40	0.32	101% recovery
	Total U	1.06 ± 0.12	pCi/Smpl	1.13	0.004	94% recovery
BLANK						
8682-003	GrossAlpha	0.006 ± 0.13	pCi/Smpl	NA	0.25	<mda< td=""></mda<>
	Gross Beta	-0.090 ± 0.27	pCi/Smpl	NA	0.44	<mda< td=""></mda<>
	Ra-228	-0.089 ± 0.33	pCi/Smpl	NA	0.78	<mda< td=""></mda<>
	K-40 (G)	U	pCi/Smpl	NA	190	<mda< td=""></mda<>
	Cs-137 (G)	U	pCi/Smpl	NA	7.4	<mda< td=""></mda<>
	H-3	-4.88 ± 9.0	pCi/Smpl	NA	15	<mda< td=""></mda<>
	Ra-226	-0.014 ± 0.026	pCi/Smpl	NA	0.071	<mda< td=""></mda<>
	Sr-90	0.078 ± 0.24	pCi/Smpl	NА	0.54	<mda< td=""></mda<>
	Total U	0.00E 00 + 1.9E-0	04 pCi/Smpl	NA	4.4E-04	<mda< td=""></mda<>
	. = .	_				

DUPLIC	ATES			ORIGINALS			
							3σ
Sample ID Nuclide	Results ± 20	\underline{MDA}	Sample ID	Results ± 20	MDA	RPD (<u> Fot)</u> <u>Eval</u>
8682-004 GrossAlp	ha 3.13 ± 2.1	2.2	8682-001	2.52 ± 2.0	2.4	22	160 satis.
Gross Be	ta 42.1 ± 2.3	2.1		42.3 ± 2.4	2.4	0	44 satis.
Ra-228	0.070 ± 0.15	0.42		0.145 ± 0.17	0.44	-	0 satis.

Certified by ny

Report Date <u>02/22/08</u>

Page 2

Eberline Services

SDG <u>868</u> Work Order R80			Client <u>TA IR</u> Contract PROJE		52		
Received Date 01/			Matrix <u>WATER</u>				
K-40 (G)	42.6 ± 18	9.6	36.0 ± 19	13	17	102	satis.
Cs-137 (G)	U	0.92	Ū	1.1	-	0	satis.
Tl-208 (G)	Ū	1.2	U		200	302	satis.
Pb-210 (G)	Ŭ	230	U		200	302	satis.
Bi-212 (G)	Ŭ	7.7	U		200	302	satis.
Pb-212 (G)	Ŭ	1.6	U		200	302	satis.
Bi-214 (G)	Ŭ	2.1	U		200	301	satis.
Pb-214 (G)	U	2.2	U		200	302	satis.
Ra-226 (G)	Ū	18	U		200	302	satis.
Ac-228 (G)	Ŭ	5.0	Ü		200	302	satis.
Th-234 (G)	Ŭ	31	U		200	302	satis.
U-235 (G)	Ū	6.5	U		200	302	satis.
U-238 (G)	Ū	130	U		200	302	satis.
Am-241 (G)	U	6.7	U		200	302	satis.
H-3	-73.7 ± 92	160	-62.4 ± 94	160	-	0	satis.
Ra-226	0.111 ± 0.44	0.80	-0.149 ± 0.46	0.96	-	0	satis.
Sr-90	-0.108 ± 0.44	1.1	0.032 ± 0.30	0.58	-	0	satis.
Total U	2.88 ± 0.32	0.022	2.75 ± 0.30	0.022	5	30	satis.

	SPIKED SAMPLE			ORIGINAL SAMPLE					
Sample ID	Nuclide	Results ± 20	MDA	Sample ID	Results ± 20	MDA	Added	%Recv	
8682-005	GrossAlpha	225 ± 12	2.5	8682-001	2.52 ± 2.0	2.4	163	136	
	Gross Beta	192 ± 4.5	2.4		42.3 ± 2.4	2.4	145	103	
	H-3	15800 ± 310	160		-62.4 ± 94	160	16000	99	
	Ra-226	124 ± 4.7	0.94		-0.149 ± 0.46	0.96	112	111	
	Total U	120 ± 15	2.2		2.75 ± 0.30	0.022	113	104	

Certified by

Report Date 02/22/08

Page 3

SUBCONTRACT ORDER

TestAmerica Irvine IRA2352

8683

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Eberline Services - SUB

2030 Wright Avenue

Richmond, CA 94804

Phone :(510) 235-2633

Fax: (510) 235-0438

Project Location: California

Receipt Temperature:

Ice: (Y)/

°C

Analysis	Units	Due	Expires	Comments
Sample ID: IRA2352-01	Water		Sampled: 01/24/08 08:30	ph=7.4 temp=44
Gamma Spec-O	mg/kg	02/04/08	01/23/09 08:30	Out to Eberline, K-40 and CS-137 only
Gross Alpha-O	pCi/L	02/04/08	07/22/08 08:30	Out to Eberline
Gross Beta-O	pCi/L	02/04/08	07/22/08 08:30	Out to Eberline
Level 4 Data Package - Ou	t N/A	02/04/08	02/21/08 08:30	
Radium, Combined-O	pCi/L	02/04/08	01/23/09 08:30	Out to Eberline
Strontium 90-O	pCi/L	02/04/08	01/23/09 08:30	Out to Eberline
Tritium-O	pCi/L	02/04/08	01/23/09 08:30	Out to Eberline
Uranium, Combined-O	pCi/L	02/04/08	01/23/09 08:30	Out to Eberline
Containers Supplied:				
2.5 gal Poly (K)	500 mL Am	ber (L)		

Released By

Date/Time

Received By

Date/Time

Received By

Page 1 of 1

Released By

Date/Time

Date/Time

NPDES - 2178

February 09, 2008

Vista Project I.D.: 30203

Mr. Joseph Doak Test America-Irvine, CA 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Mr. Doak,

Enclosed are the results for the one aqueous sample received at Vista Analytical Laboratory on January 26, 2008 under your Project Name "IRA2352". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Vista's current certifications, and copies of the raw data (if requested).

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha M. Maier

Laboratory Director

Marche More

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.

Section I: Sample Inventory Report Date Received: 1/26/2008

<u>Vista Lab. ID</u> <u>Client Sample ID</u>

30203-001 IRA2352-01

NPDES - 2180 Page 2 of 275

SECTION II

Project 30203 NPDES - 2181
Page 3 of 275

Method Blank	S					L				EPA Method 1613
Matrix:	Aqueous		QC Batch No.:	99	917	Lab	Sample:	0-MB001		
Sample Size:	1.00 L		Date Extracted:	31	1-Jan-08	Date	Analyzed DB-5:	6-Feb-08	Date An	alyzed DB-225: NA
1										, , , , , , , , , , , , , , , , , , , ,
Analyte	Conc. (u	g/L)	DL a	EMPC b	Qualifiers		Labeled Standa	ard	%R	LCL-UCL ^d Qualifiers
2,3,7,8-TCDD	N	ND	0.000000997			<u>IS</u>	13C-2,3,7,8-TC	DD	93.4	25 - 164
1,2,3,7,8-PeCDI	D N	ND	0.000000625				13C-1,2,3,7,8-Pe	eCDD	84.1	25 - 181
1,2,3,4,7,8-HxC	DD N	ND	0.00000147				13C-1,2,3,4,7,8-	HxCDD	92.1	32 - 141
1,2,3,6,7,8-HxC	DD N	ND	0.00000149				13C-1,2,3,6,7,8-	HxCDD	91.6	28 - 130
1,2,3,7,8,9-HxC	DD N	ND	0.00000142				13C-1,2,3,4,6,7,	8-HpCDD	94.6	23 - 140
1,2,3,4,6,7,8-Hp	oCDD N	ND	0.00000144				13C-OCDD		78.5	17 - 157
OCDD	N	ND	0.00000845				13C-2,3,7,8-TC	DF	92.5	24 - 169
2,3,7,8-TCDF	N	ND	0.000000679				13C-1,2,3,7,8-Pe	eCDF	79.3	24 - 185
1,2,3,7,8-PeCDI	F N	ND	0.000000815				13C-2,3,4,7,8-Pe	eCDF	77.4	21 - 178
2,3,4,7,8-PeCDI	F N	ND	0.000000838				13C-1,2,3,4,7,8-	HxCDF	93.1	26 - 152
1,2,3,4,7,8-HxC	DF N	ND	0.000000635				13C-1,2,3,6,7,8-	HxCDF	88.7	26 - 123
1,2,3,6,7,8-HxC	DF N	ND	0.000000689				13C-2,3,4,6,7,8-	HxCDF	87.8	28 - 136
2,3,4,6,7,8-HxC	DF N	ND	0.000000752				13C-1,2,3,7,8,9-	HxCDF	97.5	29 - 147
1,2,3,7,8,9-HxC	DF N	ND	0.000000910				13C-1,2,3,4,6,7,	8-HpCDF	85.2	28 - 143
1,2,3,4,6,7,8-Hp	CDF N	ND	0.00000116				13C-1,2,3,4,7,8,	9-HpCDF	90.7	26 - 138
1,2,3,4,7,8,9-Hp	CDF N	ND	0.00000122				13C-OCDF		87.0	17 - 157
OCDF		ND	0.00000291			CRS	37Cl-2,3,7,8-TC	DD	94.5	35 - 197
Totals						Foot	notes			
Total TCDD	N	ND	0.000000997			a. San	nple specific estimated	detection limit.		
Total PeCDD	N	ND	0.00000191			b. Est	imated maximum possi	ble concentration.		
Total HxCDD	N	ND	0.00000146			c. Me	thod detection limit.			
Total HpCDD	N	ND	0.00000353			d. Lov	wer control limit - uppe	r control limit.		
Total TCDF	N	ND	0.000000679							
Total PeCDF	N	ND	0.000000826							
Total HxCDF	N	ND	0.000000742							
Total HpCDF	N	ND	0.00000118							

Analyst: MAS William J. Luksemburg 08-Feb-2008 13:08

OPR Results					EPA	A Method 1	1613
	queous 00 L	QC Batch No.: Date Extracted:	9917 31-Jan-08	Lab Sample: 0-OPR001 Date Analyzed DB-5: 6-Feb-08	Date Analyz	zed DB-225:	NA
Analyte	Spike Conc.	Conc. (ng/mL)	OPR Limits	Labeled Standard	%R	LCL-UCL	Qualifier
2,3,7,8-TCDD	10.0	10.4	6.7 - 15.8	<u>IS</u> 13C-2,3,7,8-TCDD	91.2	25 - 164	
1,2,3,7,8-PeCDD	50.0	48.9	35 - 71	13C-1,2,3,7,8-PeCDD	83.6	25 - 181	
1,2,3,4,7,8-HxCDI	50.0	49.4	35 - 82	13C-1,2,3,4,7,8-HxCDD	89.8	32 - 141	
1,2,3,6,7,8-HxCDI	50.0	50.2	38 - 67	13C-1,2,3,6,7,8-HxCDD	86.1	28 - 130	
1,2,3,7,8,9-HxCDI	50.0	49.0	32 - 81	13C-1,2,3,4,6,7,8-HpCDD	88.4	23 - 140	
1,2,3,4,6,7,8-HpCI	DD 50.0	49.9	35 - 70	13C-OCDD	75.3	17 - 157	
OCDD	100	102	78 - 144	13C-2,3,7,8-TCDF	88.0	24 - 169	
2,3,7,8-TCDF	10.0	9.69	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	76.4	24 - 185	
1,2,3,7,8-PeCDF	50.0	50.2	40 - 67	13C-2,3,4,7,8-PeCDF	74.3	21 - 178	
2,3,4,7,8-PeCDF	50.0	52.2	34 - 80	13C-1,2,3,4,7,8-HxCDF	87.1	26 - 152	
1,2,3,4,7,8-HxCDI	50.0	49.9	36 - 67	13C-1,2,3,6,7,8-HxCDF	83.7	26 - 123	
1,2,3,6,7,8-HxCDI	50.0	50.4	42 - 65	13C-2,3,4,6,7,8-HxCDF	84.8	28 - 136	
2,3,4,6,7,8-HxCDI	50.0	50.8	35 - 78	13C-1,2,3,7,8,9-HxCDF	87.0	29 - 147	
1,2,3,7,8,9-HxCDI	50.0	50.0	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	80.8	28 - 143	
1,2,3,4,6,7,8-HpCI	DF 50.0	51.1	41 - 61	13C-1,2,3,4,7,8,9-HpCDF	87.0	26 - 138	
1,2,3,4,7,8,9-HpCI	DF 50.0	50.1	39 - 69	13C-OCDF	80.9	17 - 157	
OCDF	100	100	63 - 170	<u>CRS</u> 37Cl-2,3,7,8-TCDD	92.1	35 - 197	

Analyst: MAS William J. Luksemburg 08-Feb-2008 13:08

Sample ID: IRA	2352-01								EPA N	Aethod 1613
Client Data			Sample Data		Lab	oratory Data				
	America-Irvine, CA		Matrix:	Aqueous	Lab	Sample:	30203-001	Date Re	ceived:	26-Jan-08
	2352 an-08		Sample Size:	1.00 L	QC	Batch No.:	9917	Date Ex	tracted:	31-Jan-08
Time Collected: 0830					Date	Analyzed DB-5:	6-Feb-08	Date An	alyzed DB-225:	NA
Analyte	Conc. (ug/L)	DL a	EMPC ^b	Qualifiers		Labeled Standa	ırd	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ND	0.000000	874		<u>IS</u>	13C-2,3,7,8-TCD)D	70.1	25 - 164	
1,2,3,7,8-PeCDD	ND	0.000001	04			13C-1,2,3,7,8-Pe	CDD	64.4	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.000001	42			13C-1,2,3,4,7,8-H	HxCDD	88.7	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.000001	47			13C-1,2,3,6,7,8-H	HxCDD	87.5	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.000001	39			13C-1,2,3,4,6,7,8	-HpCDD	89.2	23 - 140	
1,2,3,4,6,7,8-HpCDD	0.00000888			J		13C-OCDD		76.0	17 - 157	
OCDD	0.0000852					13C-2,3,7,8-TCD	F	102	24 - 169	
2,3,7,8-TCDF	ND	0.000000	664			13C-1,2,3,7,8-Pe	CDF	78.9	24 - 185	
1,2,3,7,8-PeCDF	ND	0.000001	60			13C-2,3,4,7,8-Pe	CDF	71.3	21 - 178	
2,3,4,7,8-PeCDF	ND	0.000001	17			13C-1,2,3,4,7,8-H	HxCDF	87.8	26 - 152	
1,2,3,4,7,8-HxCDF	ND	0.000000	654			13C-1,2,3,6,7,8-H	HxCDF	83.3	26 - 123	
1,2,3,6,7,8-HxCDF	ND	0.000000	709			13C-2,3,4,6,7,8-H	HxCDF	82.6	28 - 136	
2,3,4,6,7,8-HxCDF	ND	0.000000	800			13C-1,2,3,7,8,9-H	HxCDF	84.5	29 - 147	
1,2,3,7,8,9-HxCDF	ND	0.000001	04			13C-1,2,3,4,6,7,8	-HpCDF	87.4	28 - 143	
1,2,3,4,6,7,8-HpCDF	ND	0.000002	60			13C-1,2,3,4,7,8,9	-HpCDF	83.9	26 - 138	
1,2,3,4,7,8,9-HpCDF	ND	0.000001	15			13C-OCDF		82.2	17 - 157	
OCDF	ND	0.000014	9		CRS	37Cl-2,3,7,8-TCI	OD	72.2	35 - 197	
Totals					Foo	tnotes				
Total TCDD	ND	0.000001	76		a. Sa	mple specific estimated	detection limit.			
Total PeCDD	ND	0.000002	97		b. Es	timated maximum poss	ible concentration.			
Total HxCDD	ND	0.000003	30		c. M	ethod detection limit.				
Total HpCDD	0.0000203				d. Lo	ower control limit - uppe	er control limit.			
Total TCDF	ND	0.000000	664							
Total PeCDF	ND	0.000001	70							
Total HxCDF	ND	0.000001	92							
Total HpCDF	0.00000172									

Analyst: MAS William J. Luksemburg 08-Feb-2008 13:08

Project 30203

NPDES - 2184
Page 6 of 275

APPENDIX

Project 30203 NPDES - 2185
Page 7 of 275

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D Dilution

E The amount detected is above the High Calibration Limit.

P The amount reported is the maximum possible concentration due to possible

chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.

I Chemical Interference

J The amount detected is below the Low Calibration Limit.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated detection limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit – concentrations that correspond to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

SUBCONTRACT ORDER

TestAmerica Irvine

IRA2352

30203

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Vista Analytical Laboratory-SUB

_{JB} 4.

°C

1104 Windfield Way

El Dorado Hills, CA 95762

Phone :(916) 673-1520

Fax: (916) 673-0106

Project Location: California

Receipt Temperature:

Ice: Y / N

Analysis	Units	Due	Expires	Comments
Sample ID: IRA2352-01	Water		Sampled: 01/24/08 08:30	ph=7.4 temp=44
1613-Dioxin-HR-Alta	ug/l	02/04/08	01/31/08 08:30	J flags,17 congeners,no TEQ,ug/L,sub=Vista
Level 4 + EDD-OUT	N/A	02/04/08	02/21/08 08:30	r EQ,ug/E,Sup=vista
Containers Supplied: 1 L Amber (C)	1 L Amber (D)			

Released By

Date/Time

Date/Time

Received By

Between Liberadies

25708 1 /00 Date/Time

> //8/08 / //() Date/Time

Page 1 of 1

NPDES - 2188 Page 10 of 275

Project 30203

Released By

SAMPLE LOG-IN CHECKLIST

Vista Project #:	30	203	5			т	ΑΤ <u>υ</u>	nspec	ified	1
	Date/Time			Initials:		Loc	ation	: WR	_2_	
Samples Arrival:	1/24/08	\bigcirc	744	TER	Shelf/Rack:					
	Date/Time			Initials:	Loc	ation	: WI	2-2		
Logged In:	1/28/88	128/88 1009			3	She	lf/Ra	2-7		
Delivered By:	FedEx	FedEx UPS			DHL	L Hand C			Oth	ıer
Preservation:	(lce)	>	Blue	e Ice	Di	y Ice		None		
Temp °C 4.		Time:	09	47		The	rmon	neter II	: IR-	1
								YES	NO	NA
Adequate Sample \	∕olume Rece	ived?			·-· · · · · · · · · · · · · · · · · · ·					
Holding Time Acce	ptable?		···					V		
Shipping Container		W	-							
Shipping Custody S	Seals Intact?		·		1 4 1				-	
Shipping Documen	tation Presen	nt?		·				V		

Shipping Documentation Present?

Airbill Trk # 7909 ZS19 0739

Sample Container Intact?

Sample Custody Seals Intact?

Chain of Custody / Sample Documentation Present?

COC Anomaly/Sample Acceptance Form completed?

If Chlorinated or Drinking Water Samples, Acceptable Preservation?

Na₂S₂O₃ Preservation Documented?

COC Sample

Client

Vista

Container

Return

Retain

Comments:

Shipping Container

Dispose

SUBCONTRACT ORDER

TestAmerica Irvine IRA2352 √

8012538

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Weck Laboratories, Inc-SUB

14859 E. Clark Avenue

City of Industry, CA 91745

Phone :(626) 336-2139

Fax: (626) 336-2634

Project Location: California

Receipt Temperature:

Ice: Y / N

Analysis	Units	Due	Expires		Comments
Sample ID: IRA2352-01	Water		Sampled:	01/24/08 08:30	ph=7.4 temp=44
Level 4 Data Package - We	ec N/A	02/04/08	02/21/08 08:30		Out to weck
✓Mercury - 245.1, Diss -OUT	Γ mg/l	02/04/08	02/21/08 08:30		Boeing, J flags/ Out to Weck
Mercury - 245.1-OUT	mg/l	02/04/08	02/21/08 08:30		Boeing, permit, J flags/ Out to Weck
Containers Supplied: 125 mL Poly w/HNO3 (N)	125 mL Pol	y (O)			

ovel &

Released By

Released By

an Celle

Dajeriine

Date/Time

Received By)

Received By

C

Date/Time

Date/Time

Page 1 of 1

P: 20 7.3 NPDES-2190

1 of 1 2190 W

Weck Laboratories, Inc.

Analytical Laboratory Services - Since 1964

14859 E. Clark Ave., Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634 info@wecklabs.com www.wecklabs.com

CERTIFICATE OF ANALYSIS

TestAmerica, Inc. - Irvine **Client:**

Report Date:

02/04/08 10:42

17461 Derian Ave, Suite 100

Received Date:

01/25/08 08:20

Irvine, CA 92614

Turn Around:

6 days

Attention: Joseph Doak

Work Order #:

8012538

Phone: (949) 261-1022 Fax: (949) 260-3297

Client Project:

IRA2352

NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

Dear Joseph Doak:

Enclosed are the results of analyses for samples received 01/25/08 08:20 with the Chain of Custody document. The samples were received in good condition. The samples were received at 7.3 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Reviewed by:

Kim G Tu

Project Manager

Page 1 of 6

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8012538 Project ID: IRA2352 Date Received: 01/25/08 08:20 Date Reported: 02/04/08 10:42

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Sampled by:	Sample Comments	Laboratory	Matrix	Date Sampled
IRA2352-01	Client		8012538-01	Water	01/24/08 08:30

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8012538 Project ID: IRA2352 Date Received: 01/25/08 08:20 Date Reported: 02/04/08 10:42

•

IRA2352-01 8012538-01 (Water)

Date Sampled: 01/24/08 08:30

Metals by EPA 200 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed		Data Qualifiers
Mercury, Dissolved	ND	0.050	ug/l	0.20	1	EPA 245.1	W8A1053	01/30/08	01/31/08	jlp	
Mercury, Total	ND	0.050	ug/l	0.20	1	EPA 245.1	W8A1053	01/30/08	01/31/08	jlp	

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8012538 Project ID: IRA2352 Date Received: 01/25/08 08:20 Date Reported: 02/04/08 10:42

QUALITY CONTROL SECTION

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8012538 Project ID: IRA2352 Date Received: 01/25/08 08:20 Date Reported: 02/04/08 10:42

Metals by EPA 200 Series Methods - Quality Control

%REC

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch W8A1053 - EPA 245.1										
Blank (W8A1053-BLK1)				Analyzed:	01/31/08					
Mercury, Dissolved	ND	0.20	ug/l							
Mercury, Total	ND	0.20	ug/l							
LCS (W8A1053-BS1)				Analyzed:	01/31/08					
Mercury, Dissolved	0.930	0.20	ug/l	1.00		93	85-115			
Mercury, Total	0.930	0.20	ug/l	1.00		93	85-115			
Matrix Spike (W8A1053-MS1)	Source: 8012822-01		Analyzed: 01/31/08							
Mercury, Dissolved	1.38	0.20	ug/l	1.00	0.431	95	70-130			
Mercury, Total	1.38	0.20	ug/l	1.00	0.431	95	70-130			
Matrix Spike (W8A1053-MS2)	So	ource: 8012822	-02	Analyzed: 01/31/08						
Mercury, Dissolved	1.37	0.20	ug/l	1.00	0.426	94	70-130			
Mercury, Total	1.37	0.20	ug/l	1.00	0.426	94	70-130			
Matrix Spike Dup (W8A1053-MSD1)	So	ource: 8012822	-01	Analyzed:	01/31/08					
Mercury, Dissolved	1.35	0.20	ug/l	1.00	0.431	92	70-130	2	20	
Mercury, Total	1.35	0.20	ug/l	1.00	0.431	92	70-130	2	20	
Matrix Spike Dup (W8A1053-MSD2)	So	ource: 8012822	-02	Analyzed:	01/31/08					
Mercury, Dissolved	1.40	0.20	ug/l	1.00	0.426	97	70-130	2	20	
Mercury, Total	1.40	0.20	ug/l	1.00	0.426	97	70-130	2	20	

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8012538 Project ID: IRA2352

Date Received: 01/25/08 08:20 Date Reported: 02/04/08 10:42

Notes and Definitions

ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

% Rec Percent Recovery

Sub Subcontracted analysis, original report available upon request

MDL Method Detection Limit

MDA Minimum Detectable Activity

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

APPENDIX G

Section 57

Outfall 009, February 3, 2008

MECX Data Validation Reports

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IRB0152

Prepared by

MEC^x, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: IRB0152
Project Manager: B. Kelly

Matrix: Water

QC Level: IV No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

С	Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Ou	utfall 009	IRB0152-01	30236-001, 8020454-01, CRB0033-01, 9600-001, 118968	Water	02/03/08 1000	100.2, 160.2, 200.7, 200.8, 245.1, 525.2, 900.0, 901.1, 903.0, 904.0, 905.0, 906.0, 1613, ASTM D-5174

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at TestAmerica-Irvine above the temperature limits; however, the samples had insufficient time to cool. The samples were received below the temperature limits at Vista and Weck; however, the sample was not noted to have been frozen. The sample was received within the temperature limits at Eberline and TestAmerica-Colton. According to the case narrative for this SDG, the sample was received intact at all laboratories. The FedEx courier did not relinquish the sample to Eberline. The remaining COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine and Weck, custody seals were not required. Container custody seals were intact upon arrival at Eberline and Vista. If necessary, the client ID was added to the sample result summary by the reviewer.

Data Qualifier Reference Table

Qualifie	organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
E	Not applicable.	Duplicates showed poor agreement.
1	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 100.2—Asbestos

Reviewed By: P. Meeks

Date Reviewed: March 31, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA 100.2, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The sample was received and filtered beyond the 48 hour holding time; therefore, nondetected asbestos in the sample was qualified as an estimated nondetect, "UJ."
- Calibration: Not applicable to this analysis.
- Blanks: An aqueous blank was analyzed with the sample in this SDG. No asbestos was detected in the blank sample.
- Blank Spikes and Laboratory Control Samples: Not applicable to this analysis.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the site sample.
- Matrix Spike/Matrix Spike Duplicate: Not applicable to this analysis.
- Sample Result Verification: Review is not applicable at a Level V validation. Reported nondetects are valid to the reporting limit.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

B. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: March 24, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: OCDD was reported in the method blank at 0.00000899μ/L; however, the concentration of OCDD in the sample exceeded five times the amount in the method blank and required no qualifications. The method blank had no other target compound detects above the EDL.

 Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the estimated detection limit (EDL).

C. EPA METHODS 200.7, 200.8, 245.1—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: March 26, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.7, 200.8, and 245.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding times, 6 months for metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤0.1 amu and ≤0.9 amu at 10% peak height, except for cerium associated with the dissolved metals fraction. The cerium mass calibration marginally exceeded the control limit; therefore, antimony, lead, and thallium were qualified as estimated in the dissolved metals fraction, "J," for detects and, "UJ," for nondetects.

Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP-MS metals and 85-115% for mercury. All CRI/CRA and check standard recoveries were within the control limits of 70-130%.

- Blanks: Selenium was reported in the method blank associated with the total metals fraction at -8.4 µg/L; therefore, nondetected selenium in the total metals fraction was qualified as an estimated nondetect, "UJ." There were no other applicable detects in the method blanks or CCBs.
- Interference Check Samples: ICSA/B analyses were performed in association with all analyses except total antimony. Recoveries were within the method-established control limits. Most analytes were reported in the ICSA solutions. No 6010 analytes required qualification as the concentrations of the interferents were not significant. For the 6020 analytes, the reviewer was not able to ascertain if the detections were indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: A matrix spike analysis was performed on the sample in this SDG for the total 6020 analytes. All recoveries were within the laboratoryestablished control limits. Evaluation of mercury method accuracy was based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. The bracketing CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

The reviewer noted that boron was detected at a slightly higher concentration in the dissolved metals sample fraction. The difference between the boron results was within the sensitivity limits of the analytical instrument and, therefore, the reviewer considered the two results to be equivalent.

 Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- Field Duplicates: There were no field duplicate samples identified for this SDG.

D. EPA METHOD 525.2 — Pesticides

Reviewed By: P. Meeks

Date Reviewed: March 27, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Organochlorine Pesticides by GC (DVP-4, Rev. 0), EPA Method 525.2, and the National Functional Guidelines for Organic Data Review (02/94).

- Holding Times: Extraction and analytical holding times were met. The water sample pH
 was not adjusted within 24 hours; therefore, nondetected diazinon was qualified as an
 estimated nondetect, UJ." The sample was analyzed within 30 days of extraction.
- GC/MS Tuning: The DFTPP tunes met the method abundance criteria. The sample was analyzed within 12 hours of the DFTPP injection time.
- Calibration: Calibration criteria were met. For both target compounds, initial calibration average RRFs were ≥0.05 and %RSDs ≤30%. Continuing calibration RRFs were ≥0.05 and applicable target compound responses were within the method QC limits of 70-130%.
- Blanks: The method blank had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries and RPDs were within laboratory-established QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample from this SDG. Evaluation of method accuracy and precision was based on the LCS/LCSD results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:

 Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.

- Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The internal standard area counts and retention times were within the method control limits established by the continuing calibration standards of ±30%.
- Compound Identification: Compound identification was verified. The laboratory analyzed for chlorpyrifos and diazinon by Method 525.2. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Reported nondetects are valid to the reporting limit.
- System Performance: Review of the raw data indicated no problems with system performance.

E. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: March 28, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The tritium sample was analyzed within 180 days of collection. Aliquots for gross alpha and gross beta, were prepared within the five-day analytical holding time for unpreserved samples. Aliquots for radium-226, radium-228, strontium-90, total uranium, and gamma spectroscopy were prepared beyond the five-day holding time for unpreserved samples; therefore, results for these analytes were qualified as estimated, "J," for detects and, "UJ," for nondetects.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, gross alpha detected in the sample was qualified as an estimated detect, "J." The gross beta detector efficiency was greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. The tritium detector efficiency for the sample was at least 20% and was

considered acceptable. The strontium chemical yield was at least 70% and was considered acceptable. The strontium continuing calibration results were within the laboratory control limits. The radium-226 continuing calibration results were within the laboratory-established control limits. The radium-228 tracer, yttrium oxalate, yields were greater than 70%. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: There were no analytes detected in the method blanks.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this
 data package. The sample results and MDAs reported on the sample result form were
 verified against the raw data and no calculation or transcription errors were noted.
 Reported nondetects are valid to the MDA.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

F. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks

Date Reviewed: March 28, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Method 160.2, and the National Functional Guidelines for Inorganic Data Review (2/94).

Holding Times: The analytical holding time, seven days for TSS, was met.

DATA VALIDATION REPORT SSFL NPDES
SDG: IRB0152

Calibration: The balance calibration logs were acceptable.

- Blanks: The method blank had no detect.
- Blank Spikes and Laboratory Control Samples: The recovery was within the laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed for the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: Not applicable to this method.
- Sample Result Verification: Review is not applicable at a Level V validation. Nondetects are valid to the reporting limit.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

Analysis of Water by Transmission Electron Microscopy (EPA-600 R 94 134) EPA 100.2

EMS No.

118968

Client

Test America

Sample No. IRB-0152-01

Date Analyzed

2/7/2008

Fibers > 10 μm in length (chrysotile)	UJ/H	BDL*		MFL	
Mass (chrysotile)		0		ug/L	
More/Less than 5 Fibers in Sample (chrysotile)		LESS			
Poisson 95% Confidence Interval		0 to	8.2	MFL	
Detection Limit		22		MEI	

^{*} BDL : Below Detection Limit; MFL: Million Fibers per Liter

Particle Size Distribution (Chrysotile)

Particle Length - Microns

O -0.49	0.50 - 0.99	1.00 - 1.49	1.50 - 1.99	2.00 - 2.49	2.5 - 4.99	5.00 - 9.99	10 & UP
0	0	0	0	0	0	0	0
			Particle Widt	h - Microns			
004	.0509	.114	.1519	.224	.2549	.5099	1 & UP
0	0	0	0	<u> </u>	0	0	0
			Aspect Ra	atio L/W			
0 - 9.9	10 - 19.9	20 - 29.9	30 - 39.9	40 - 49.9	50 - 99	100 - 199	200 & UP
0	0	0	0	0	0	0	0

Client Data			Sample Data		Laboratory Data			
Name: Project: Date Collected: Time Collected:	Test America-Irvine, CA IRB0152 3-Feb-08 1000		Matrix: Sample Size:	Aqueous 1.00 L	Lab Sample: QC Batch No.: Date Analyzed DB-5:	30236-001 9953 19-Feb-08	Date Received: Date Extracted: Date Analyzed DB-225:	5-Feb-08 15-Feb-08 NA
Analyte	Conc. (ug/L)	DI a	EMPCb	Qualifiers	Labeled Standard	dard	%R LCL-UCL ^d	1 Oualifiers
2,3,7,8-TCDD	N	0.000000451	151		IS 13C-2,3,7,8-TCDD	DD.	87.8 25-164	
1,2,3,7,8-PeCDD	QN	0.000000700	002		13C-1,2,3,7,8-PeCDD	eCDD	77.7 25-181	
1,2,3,4,7,8-HxCDD	ON O	0.00000142	12		13C-1,2,3,4,7,8-HxCDD	-HxCDD		· · · · · · · · · · · · · · · · · · ·
[MVQ] 1,2,3,6,7,8-HxCDD	D 0.00000184			J	13C-1,2,3,6,7,8-HxCDD	-HxCDD	81.9 28 - 130	
(1,2,3,7,8,9-HxCDD	D 0.00000142			1	13C-1,2,3,4,6,7,8-HpCDD	,8-нрСDD	86.3 23 - 140	
1,2,3,4,6,7,8-HpCDD	:DD 0.0000332				13C-0CDD		79.7 17-157	
OCDD	0.000259		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	В	13C-2,3,7,8-TCDF	:DF	88.5 24-169	TO SECTION
2,3,7,8-TCDF	QN	0.0000000609	609		13C-1,2,3,7,8-PeCDF	PeCDF	77.4 24-185	
1,2,3,7,8-PeCDF	Ð	0.000000842	342	Sto of the	13C-2,3,4,7,8-PeCDF	PeCDF	76.3 21 - 178	
2,3,4,7,8-PeCDF	ON	0.000000840	340		13C-1,2,3,4,7,8-HxCDF	-HxCDF	79.7 26 - 152	
1,2,3,4,7,8-HxCDF	EN P	0.000000720	720		13C-1,2,3,6,7,8-HxCDF	-HxCDF	77.8 26-123	いい
1,2,3,6,7,8-HxCDF	F ND	0.00000141	† 1		13C-2,3,4,6,7,8-HxCDF	-HxCDF	75.9 28-136	
2,3,4,6,7,8-HxCDF	F NO	0.000000773	773	7 18 1 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13C-1,2,3,7,8,9-HxCDF	-HxCDF	80.8 29 - 147	
1,2,3,7,8,9-HxCDF	F ND	0.000000994	994		13C-1,2,3,4,6,7,8-HpCDF	,8-HpCDF	75.7 28-143	
1,2,3,4,6,7,8-HpCDF	:DF 0.00000562			•	13C-1,2,3,4,7,8,9-HpCDF	,9-HpCDF	79.6 26-138	
1,2,3,4,7,8,9-HpCDF	DF ND	0.000001	1119		13C-0CDF		80.9 17-157	
JANG OCDF	0.0000141			1	CRS 37Cl-2,3,7,8-TCDD	CDD	88.4 35-197	1.2等4分级
Totals					Footnotes			
Total TCDD	ND	0.000000895	395		a. Sample specific estimated detection limit.	ted detection limit.		
Total PeCDD	N	0.00000120	50		b. Estimated maximum possible concentration.	ossible concentration.		
Total HxCDD	0.0000103				c. Method detection limit.			
Total HpCDD	0.0000823				d. Lower control limit - upper control limit.	pper control limit.	を できる	
Total TCDF	NO	0.000000609	609					
Total PeCDF	0.00000107	The same of		SEC. 16. 2			THE RESERVE	
Total HxCDF	6	Short Such B	772	Population Pedia	a the contract of the second	100 CENT	The Part of the Control of the Contr	
Total HpCDF	0.0000158	No. of Street, or other Persons and Street, o	21 42 3			STATE OF THE PARTY	HER STAN SPORTS	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0152

Sampled: 02/03/08

Received: 02/03/08

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0152-01 (Outfall 009 -	Water) - cont.								
Reporting Units: mg/l									
Hardness as CaCO3	SM2340B	[CALC]	N/A	0.33	50	1	02/04/08	02/04/08	
Boron J/DNQ	EPA 200.7	8B04079	0.020	0.050	0.038	1	02/04/08	02/04/08	J
Calcium	EPA 200.7	8B04079	0.050	0.10	13	1	02/04/08	02/04/08	
Iron	EPA 200.7	8B04079	0.015	0.040	1.5	1	02/04/08	02/04/08	
Magnesium	EPA 200.7	8B04079	0.012	0.020	4.0	1	02/04/08	02/04/08	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 009

618 Michillinda Avenue, Suite 200

Attention: Bronwyn Kelly

Arcadia, CA 91007

Report Number: IRB0152

Sampled: 02/03/08

Received: 02/03/08

METALS

	M.A. 1	D. A.I.	MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IRB0152-01 (Outfall 009 - W	ater) - cont.								
Reporting Units: ug/l									
Aluminum	EPA 200.7	8B04079	40	50	1500	1	02/04/08	02/04/08	
Antimony J/DNQ, AND	EPA 200.8	8B04080	0.20	2.0	1.6	1	02/04/08	02/05/08	J
Arsenic	EPA 200.7	8B04079	7.0	10	ND	1	02/04/08	02/04/08	
Beryllium V	EPA 200.7	8B04079	0.90	2.0	ND	1	02/04/08	02/04/08	
Cadmium JONQ	EPA 200.8	8B04080	0.11	1.0	0.16	1	02/04/08	02/04/08	J
Chromium ψ	EPA 200.7	8B04079	2.0	5.0	3.5	1	02/04/08	02/04/08	J
Copper	EPA 200.8	8B04080	0.75	2.0	4.7	1	02/04/08	02/04/08	
Lead	EPA 200.8	8B04080	0.30	1.0	6.0	1	02/04/08	02/04/08	
Nickel J/DNQ	EPA 200.7	8B04079	2.0	10	2.6	1	02/04/08	02/04/08	J
Selenium UT/B	EPA 200.7	8B04079	8.0	10	ND	1	02/04/08	02/04/08	
Silver U	EPA 200.7	8B04079	6.0	10	ND	1	02/04/08	02/04/08	
Thallium 🗸	EPA 200.8	8B04080	0.20	1.0	ND	1	02/04/08	02/04/08	
Vanadium I/DNQ	EPA 200.7	8B04079	3.0	10	3.7	1	02/04/08	02/04/08	J
Zinc	EPA 200.7	8B04079	6.0	20	15	1	02/04/08	02/04/08	J

LEVEL IV

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 009

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Report Number: IRB0152

Sampled: 02/03/08

Attention: Bronwyn Kelly

Received: 02/03/08

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0152-01 (Outfall 009 -	Water) - cont.								
Reporting Units: mg/l									
Boron J/DNQ	EPA 200.7-Diss	8B05111	0.020	0.050	0.039	1	02/05/08	02/06/08	J
Calcium	EPA 200.7-Diss	8B05111	0.050	0.10	13	1	02/05/08	02/06/08	
Iron	EPA 200.7-Diss	8B05111	0.015	0.040	0.11	1	02/05/08	02/06/08	
Magnesium	EPA 200.7-Diss	8B05111	0.012	0.020	3.5	1	02/05/08	02/06/08	
Hardness (as CaCO3)	SM2340B	8B05111	1.0	1.0	47	1	02/05/08	02/06/08	

LEVEL IV

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 009

Sampled: 02/03/08

Report Number: IRB0152

Received: 02/03/08

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0152-01 (Outfall 00	9 - Water) - cont.								
Reporting Units: ug/l									
Aluminum	EPA 200.7-Diss	8B05111	40	50	110	1	02/05/08	02/06/08	
Antimony J/DNQ, *III	EPA 200.8-Diss	8B04144	0.20	2.0	1.5	1	02/04/08	02/05/08	J
Arsenic U	EPA 200.7-Diss	8B05111	7.0	10	ND	1	02/05/08	02/06/08	
Beryllium	EPA 200.7-Diss	8B05111	0.90	2.0	ND	1	02/05/08	02/06/08	
Cadmium	EPA 200.8-Diss	8B04144	0.11	1.0	ND	1	02/04/08	02/05/08	
Chromium	EPA 200.7-Diss	8B05111	2.0	5.0	ND	1	02/05/08	02/06/08	
Copper	EPA 200.8-Diss	8B04144	0.75	2.0	2.4	1	02/04/08	02/05/08	
Lead J/DNQ, *III	EPA 200.8-Diss	8B04144	0.30	1.0	0.54	1	02/04/08	02/05/08	J
Nickel U	EPA 200.7-Diss	8B05111	2.0	10	ND	1	02/05/08	02/06/08	
Selenium	EPA 200.7-Diss	8B05111	8.0	10	ND	1	02/05/08	02/06/08	
Silver ψ	EPA 200.7-Diss	8B05111	6.0	10	ND	1	02/05/08	02/06/08	
Thallium UJ/*III	EPA 200.8-Diss	8B04144	0.20	1.0	ND	1	02/04/08	02/05/08	
Vanadium U	EPA 200.7-Diss	8B05111	3.0	10	ND	1	02/05/08	02/06/08	
Zinc ψ	EPA 200.7-Diss	8B05111	6.0	20	ND	1	02/05/08	02/06/08	

LEVEL IV

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 009

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Report Number: IRB0152

Sampled: 02/03/08

Received: 02/03/08

Attention: Bronwyn Kelly

Metals by EPA 200 Series Methods

Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0152-0	01 (Outfall 009 -	Water) - cont.								
Reporting Units:	ug/l									
Mercury, Dissolved	Ò	EPA 245.1	W8B0147	0.050	0.20	ND	1	02/05/08	02/07/08	
Mercury, Total	1	EPA 245.1	W8B0147	0.050	0.20	ND	1	02/05/08	02/07/08	

LEVEL IV

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 009

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Report Number: IRB0152

Sampled: 02/03/08

Received: 02/03/08

Attention: Bronwyn Kelly

ORGANIC COMPOUNDS BY GC/MS (EPA 525.2)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0152-01 (Outfall 009 - V	Vater) - cont.								P, pH
Reporting Units: ug/l									
Chlorpyrifos ()	EPA 525.2	C8B0516	0.10	1.0	ND	1.01	02/05/08	02/07/08	
Diazinon UJ/H	EPA 525.2	C8B0516	0.24	0.25	ND	1.01	02/05/08	02/07/08	
Surrogate: 1,3-Dimethyl-2-nitrobenzene	(70-130%)				84 %				
Surrogate: Triphenylphosphate (70-130%	6)				121 %				
Surrogate: Perylene-d12 (70-130%)					93 %				

LEVEL IV

Eberline Services

ANALYSIS RESULTS

SDG <u>8600</u>
Work Order <u>R802046-01</u>
Received Date <u>02/03/08</u>

Client TA IRVINE
Contract PROJECT# IRB0152

Matrix WATER___

Client	٠	Lab						
Sample ID		Sample ID	Collected	Analyzed	Nuclide	Results ± 2σ	Units	MDA
Outfull 009								
IRB0152-01		8600-001	02/03/08	02/26/08	GrossAlpha	0.697 ± 0.44	pCi/L	0.60 J/R
				02/26/08	Gross Beta	2.09 ± 0.86	pCi/L	1.4
				02/27/08	Ra-228	-0.128 ± 0.18	pCi/L	0.53 UJ/H
				02/25/08	K-40 (G) .	υ	pCi/L	5.6
				02/25/08	Cs-137 (G)	υ	pCi/L	0.60
				02/29/08	H-3	-65.8 ± 87	pCi/L	150 U
		2.0		03/04/08	Ra-226	2.01 ± 0.64	pCi/L	0.70 J/H
				02/18/08	Sr-90	0.287 ± 0.37	pCi/L	0.75 UJ/H
				02/26/08	Total U	0.205 ± 0.025	pCi/L	0.022 3/4

LEVEL IV

Certified by nOV	
Report Date 03/11/08	
Page 1	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Report Number: IRB0152

Sampled: 02/03/08

Received: 02/03/08

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0152-01 (Outfall 009 - V	Vater) - cont.								
Reporting Units: mg/l	PP 1 16611	0710071					00/10/00	00/10/00	
Hexane Extractable Material (Oil & 🖟	EPA 1664A	8B12074	1.3	4.8	ND	1	02/12/08	02/12/08	
Grease)									
Chloride	EPA 300.0	8B04043	0.25	0.50	7.0	1	02/04/08	02/04/08	
Fluoride	EPA 300.0	8B04043	0.15	0.50	0.21	1	02/04/08	02/04/08	J
Nitrate/Nitrite-N	EPA 300.0	8B04043	0.15	0.26	3.3	1	02/04/08	02/04/08	
Sulfate	EPA 300.0	8B04043	0.20	0.50	11	1	02/04/08	02/04/08	
Total Dissolved Solids	SM2540C	8B07122	10	10	110	1	02/07/08	02/07/08	
Total Suspended Solids	EPA 160.2	8B05134	10	10	62	1	02/05/08	02/05/08	
	1 11	1							

* Analysis not validated LEVEL IV

APPENDIX G

Section 58

Outfall 009, February 3, 2008 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Annual Outfall 009

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly

Sampled: 02/03/08 Received: 02/03/08

Issued: 03/07/08 12:20

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID	CLIENT ID	MATRIX
IRB0152-01	Outfall 009	Water
IRB0152-02	Trip Blanks	Water

Reviewed By:

TestAmerica Irvine

Joseph Dock

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 009

618 Michillinda Avenue, Suite 200 Sampled: 02/03/08

Arcadia, CA 91007 Report Number: IRB0152 Received: 02/03/08
Attention: Bronwyn Kelly

PURGEABLES BY GC/MS (EPA 624)

	ruk	GEADLES	o di G	C/MS (EI	A 024)				
			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IRB0152-01 (Outfall 009 - Wat	er)								
Reporting Units: ug/l	,								
1,1,1-Trichloroethane	EPA 624	8B04024	0.30	0.50	ND	1	02/04/08	02/05/08	
1,1,2,2-Tetrachloroethane	EPA 624	8B04024	0.24	0.50	ND	1	02/04/08	02/05/08	
1,1,2-Trichloroethane	EPA 624	8B04024	0.30	0.50	ND	1	02/04/08	02/05/08	
1,1-Dichloroethane	EPA 624	8B04024	0.27	0.50	ND	1	02/04/08	02/05/08	
1,1-Dichloroethene	EPA 624	8B04024	0.42	0.50	ND	1	02/04/08	02/05/08	
1,2-Dichloroethane	EPA 624	8B04024	0.28	0.50	ND	1	02/04/08	02/05/08	
1,2-Dichlorobenzene	EPA 624	8B04024	0.32	0.50	ND	1	02/04/08	02/05/08	
1,2-Dichloropropane	EPA 624	8B04024	0.35	0.50	ND	1	02/04/08	02/05/08	
1,3-Dichlorobenzene	EPA 624	8B04024	0.35	0.50	ND	1	02/04/08	02/05/08	
1,4-Dichlorobenzene	EPA 624	8B04024	0.37	0.50	ND	1	02/04/08	02/05/08	
Benzene	EPA 624	8B04024	0.28	0.50	ND	1	02/04/08	02/05/08	
Bromodichloromethane	EPA 624	8B04024	0.30	0.50	ND	1	02/04/08	02/05/08	
Bromoform	EPA 624	8B04024	0.40	0.50	ND	1	02/04/08	02/05/08	
Bromomethane	EPA 624	8B04024	0.42	1.0	ND	1	02/04/08	02/05/08	
Carbon tetrachloride	EPA 624	8B04024	0.28	0.50	ND	1	02/04/08	02/05/08	
Chlorobenzene	EPA 624	8B04024	0.36	0.50	ND	1	02/04/08	02/05/08	
Chloroethane	EPA 624	8B04024	0.40	1.0	ND	1	02/04/08	02/05/08	
Chloroform	EPA 624	8B04024	0.33	0.50	ND	1	02/04/08	02/05/08	
Chloromethane	EPA 624	8B04024	0.40	0.50	ND	1	02/04/08	02/05/08	
cis-1,3-Dichloropropene	EPA 624	8B04024	0.22	0.50	ND	1	02/04/08	02/05/08	
Dibromochloromethane	EPA 624	8B04024	0.28	0.50	ND	1	02/04/08	02/05/08	
Ethylbenzene	EPA 624	8B04024	0.25	0.50	ND	1	02/04/08	02/05/08	
Methylene chloride	EPA 624	8B04024	0.95	1.0	ND	1	02/04/08	02/05/08	
Tetrachloroethene	EPA 624	8B04024	0.32	0.50	ND	1	02/04/08	02/05/08	
Toluene	EPA 624	8B04024	0.36	0.50	ND	1	02/04/08	02/05/08	
trans-1,2-Dichloroethene	EPA 624	8B04024	0.27	0.50	ND	1	02/04/08	02/05/08	
trans-1,3-Dichloropropene	EPA 624	8B04024	0.32	0.50	ND	1	02/04/08	02/05/08	
Trichloroethene	EPA 624	8B04024	0.26	0.50	ND	1	02/04/08	02/05/08	
Trichlorofluoromethane	EPA 624	8B04024	0.34	0.50	ND	1	02/04/08	02/05/08	
Trichlorotrifluoroethane (Freon 113)	EPA 624	8B04024	0.50	5.0	ND	1	02/04/08	02/05/08	
Vinyl chloride	EPA 624	8B04024	0.30	0.50	ND	1	02/04/08	02/05/08	
Xylenes, Total	EPA 624	8B04024	0.90	1.5	ND	1	02/04/08	02/05/08	
Surrogate: Dibromofluoromethane (80-120%)	6)				110 %				
Surrogate: Toluene-d8 (80-120%)					102 %				
Surrogate: 4-Bromoflyorohenzene (80-120%)	6)				91%				

Surrogate: 4-Bromofluorobenzene (80-120%)

91 %

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 009

618 Michillinda Avenue, Suite 200 Sampled: 02/03/08

Arcadia, CA 91007 Report Number: IRB0152 Received: 02/03/08
Attention: Bronwyn Kelly

PURGEABLES BY GC/MS (EPA 624)

	101	CLIDEL		`	ĺ			- ·	D (
	36.4.1	D / I	MDL	Reporting		Dilution	Date	Date	Data Qualifiers
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Quaimers
Sample ID: IRB0152-02 (Trip Blanks - Wa	ter)								
Reporting Units: ug/l	,								
1,1,1-Trichloroethane	EPA 624	8B04024	0.30	0.50	ND	1	02/04/08	02/04/08	
1,1,2,2-Tetrachloroethane	EPA 624	8B04024	0.24	0.50	ND	1	02/04/08	02/04/08	
1,1,2-Trichloroethane	EPA 624	8B04024	0.30	0.50	ND	1	02/04/08	02/04/08	
1,1-Dichloroethane	EPA 624	8B04024	0.27	0.50	ND	1	02/04/08	02/04/08	
1,1-Dichloroethene	EPA 624	8B04024	0.42	0.50	ND	1	02/04/08	02/04/08	
1,2-Dichloroethane	EPA 624	8B04024	0.28	0.50	ND	1	02/04/08	02/04/08	
1,2-Dichlorobenzene	EPA 624	8B04024	0.32	0.50	ND	1	02/04/08	02/04/08	
1,2-Dichloropropane	EPA 624	8B04024	0.35	0.50	ND	1	02/04/08	02/04/08	
1,3-Dichlorobenzene	EPA 624	8B04024	0.35	0.50	ND	1	02/04/08	02/04/08	
1,4-Dichlorobenzene	EPA 624	8B04024	0.37	0.50	ND	1	02/04/08	02/04/08	
Benzene	EPA 624	8B04024	0.28	0.50	ND	1	02/04/08	02/04/08	
Bromodichloromethane	EPA 624	8B04024	0.30	0.50	ND	1	02/04/08	02/04/08	
Bromoform	EPA 624	8B04024	0.40	0.50	ND	1	02/04/08	02/04/08	
Bromomethane	EPA 624	8B04024	0.42	1.0	ND	1	02/04/08	02/04/08	
Carbon tetrachloride	EPA 624	8B04024	0.28	0.50	ND	1	02/04/08	02/04/08	
Chlorobenzene	EPA 624	8B04024	0.36	0.50	ND	1	02/04/08	02/04/08	
Chloroethane	EPA 624	8B04024	0.40	1.0	ND	1	02/04/08	02/04/08	
Chloroform	EPA 624	8B04024	0.33	0.50	ND	1	02/04/08	02/04/08	
Chloromethane	EPA 624	8B04024	0.40	0.50	ND	1	02/04/08	02/04/08	
cis-1,3-Dichloropropene	EPA 624	8B04024	0.22	0.50	ND	1	02/04/08	02/04/08	
Dibromochloromethane	EPA 624	8B04024	0.28	0.50	ND	1	02/04/08	02/04/08	
Ethylbenzene	EPA 624	8B04024	0.25	0.50	ND	1	02/04/08	02/04/08	
Methylene chloride	EPA 624	8B04024	0.95	1.0	ND	1	02/04/08	02/04/08	
Tetrachloroethene	EPA 624	8B04024	0.32	0.50	ND	1	02/04/08	02/04/08	
Toluene	EPA 624	8B04024	0.36	0.50	ND	1	02/04/08	02/04/08	
trans-1,2-Dichloroethene	EPA 624	8B04024	0.27	0.50	ND	1	02/04/08	02/04/08	
trans-1,3-Dichloropropene	EPA 624	8B04024	0.32	0.50	ND	1	02/04/08	02/04/08	
Trichloroethene	EPA 624	8B04024	0.26	0.50	ND	1	02/04/08	02/04/08	
Trichlorofluoromethane	EPA 624	8B04024	0.34	0.50	ND	1	02/04/08	02/04/08	
Trichlorotrifluoroethane (Freon 113)	EPA 624	8B04024	0.50	5.0	ND	1	02/04/08	02/04/08	
Vinyl chloride	EPA 624	8B04024	0.30	0.50	ND	1	02/04/08	02/04/08	
Xylenes, Total	EPA 624	8B04024	0.90	1.5	ND	1	02/04/08	02/04/08	
Surrogate: Dibromofluoromethane (80-120%)	6)				111 %				
Surrogate: Toluene-d8 (80-120%)					103 %				
G 4 4 B G 1 (00.1200)	1				02.0/				

Surrogate: 4-Bromofluorobenzene (80-120%)

92 %

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 009

618 Michillinda Avenue, Suite 200 Sampled: 02/03/08

Arcadia, CA 91007 Report Number: IRB0152 Received: 02/03/08

Attention: Bronwyn Kelly

PURGEABLES-- GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0152-01 (Outfall 009 - Wate	er)								
Reporting Units: ug/l									
Acrolein	EPA 624	8B04024	4.0	5.0	ND	1	02/04/08	02/05/08	
Acrylonitrile	EPA 624	8B04024	0.70	2.0	ND	1	02/04/08	02/05/08	
2-Chloroethyl vinyl ether	EPA 624	8B04024	1.8	5.0	ND	1	02/04/08	02/05/08	
Surrogate: Dibromofluoromethane (80-120%))				110 %				
Surrogate: Toluene-d8 (80-120%)					102 %				
Surrogate: 4-Bromofluorobenzene (80-120%)	1				91 %				
Sample ID: IRB0152-02 (Trip Blanks - Wat	er)								
Reporting Units: ug/l									
Acrolein	EPA 624	8B04024	4.0	5.0	ND	1	02/04/08	02/04/08	
Acrylonitrile	EPA 624	8B04024	0.70	2.0	ND	1	02/04/08	02/04/08	
2-Chloroethyl vinyl ether	EPA 624	8B04024	1.8	5.0	ND	1	02/04/08	02/04/08	
Surrogate: Dibromofluoromethane (80-120%))				111 %				
Surrogate: Toluene-d8 (80-120%)					103 %				
Surrogate: 4-Bromofluorobenzene (80-120%)	ı				92 %				

MWH-Pasadena/Boeing Project ID: Annual Outfall 009

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: IRB0152

Sampled: 02/03/08
Received: 02/03/08

Attention: Bronwyn Kelly

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0152-01 (Outfall 009 - Wa	ter)								
Reporting Units: ug/l	,								
Acenaphthene	EPA 625	8B04111	2.9	9.6	ND	0.957	02/04/08	02/08/08	
Acenaphthylene	EPA 625	8B04111	2.9	9.6	ND	0.957	02/04/08	02/08/08	
Aniline	EPA 625	8B04111	2.4	9.6	ND	0.957	02/04/08	02/08/08	
Anthracene	EPA 625	8B04111	1.9	9.6	ND	0.957	02/04/08	02/08/08	
Benzidine	EPA 625	8B04111	8.1	19	ND	0.957	02/04/08	02/08/08	L6
Benzoic acid	EPA 625	8B04111	9.6	19	ND	0.957	02/04/08	02/08/08	
Benzo(a)anthracene	EPA 625	8B04111	1.9	9.6	ND	0.957	02/04/08	02/08/08	
Benzo(b)fluoranthene	EPA 625	8B04111	1.9	9.6	ND	0.957	02/04/08	02/08/08	
Benzo(k)fluoranthene	EPA 625	8B04111	2.4	9.6	ND	0.957	02/04/08	02/08/08	
Benzo(g,h,i)perylene	EPA 625	8B04111	3.8	9.6	ND	0.957	02/04/08	02/08/08	
Benzo(a)pyrene	EPA 625	8B04111	1.9	9.6	ND	0.957	02/04/08	02/08/08	
Benzyl alcohol	EPA 625	8B04111	2.4	19	ND	0.957	02/04/08	02/08/08	
Bis(2-chloroethoxy)methane	EPA 625	8B04111	2.9	9.6	ND	0.957	02/04/08	02/08/08	
Bis(2-chloroethyl)ether	EPA 625	8B04111	2.9	9.6	ND	0.957	02/04/08	02/08/08	
Bis(2-chloroisopropyl)ether	EPA 625	8B04111	2.4	9.6	ND	0.957	02/04/08	02/08/08	
Bis(2-ethylhexyl)phthalate	EPA 625	8B04111	3.8	48	ND	0.957	02/04/08	02/08/08	
4-Bromophenyl phenyl ether	EPA 625	8B04111	2.9	9.6	ND	0.957	02/04/08	02/08/08	
Butyl benzyl phthalate	EPA 625	8B04111	3.8	19	ND	0.957	02/04/08	02/08/08	
4-Chloroaniline	EPA 625	8B04111	1.9	9.6	ND	0.957	02/04/08	02/08/08	
2-Chloronaphthalene	EPA 625	8B04111	2.9	9.6	ND	0.957	02/04/08	02/08/08	
4-Chloro-3-methylphenol	EPA 625	8B04111	2.4	19	ND	0.957	02/04/08	02/08/08	
2-Chlorophenol	EPA 625	8B04111	2.9	9.6	ND	0.957	02/04/08	02/08/08	
4-Chlorophenyl phenyl ether	EPA 625	8B04111	2.4	9.6	ND	0.957	02/04/08	02/08/08	
Chrysene	EPA 625	8B04111	2.4	9.6	ND	0.957	02/04/08	02/08/08	
Dibenz(a,h)anthracene	EPA 625	8B04111	2.9	19	ND	0.957	02/04/08	02/08/08	
Dibenzofuran	EPA 625	8B04111	3.8	9.6	ND	0.957	02/04/08	02/08/08	
Di-n-butyl phthalate	EPA 625	8B04111	2.9	19	ND	0.957	02/04/08	02/08/08	
1,3-Dichlorobenzene	EPA 625	8B04111	2.9	9.6	ND	0.957	02/04/08	02/08/08	
1,4-Dichlorobenzene	EPA 625	8B04111	2.4	9.6	ND	0.957	02/04/08	02/08/08	
1,2-Dichlorobenzene	EPA 625	8B04111	2.9	9.6	ND	0.957	02/04/08	02/08/08	
3,3-Dichlorobenzidine	EPA 625	8B04111	2.9	19	ND	0.957	02/04/08	02/08/08	
2,4-Dichlorophenol	EPA 625	8B04111	3.3	9.6	ND	0.957	02/04/08	02/08/08	
Diethyl phthalate	EPA 625	8B04111	3.3	9.6	ND	0.957	02/04/08	02/08/08	
2,4-Dimethylphenol	EPA 625	8B04111	3.3	19	ND	0.957	02/04/08	02/08/08	
Dimethyl phthalate	EPA 625	8B04111	1.9	9.6	ND	0.957	02/04/08	02/08/08	
4,6-Dinitro-2-methylphenol	EPA 625	8B04111	3.8	19	ND	0.957	02/04/08	02/08/08	
2,4-Dinitrophenol	EPA 625	8B04111	7.7	19	ND	0.957	02/04/08	02/08/08	
2,4-Dinitrotoluene	EPA 625	8B04111	3.3	9.6	ND	0.957	02/04/08	02/08/08	
2,6-Dinitrotoluene	EPA 625	8B04111	1.9	9.6	ND	0.957	02/04/08	02/08/08	
Di-n-octyl phthalate	EPA 625	8B04111	3.3	19	ND	0.957	02/04/08	02/08/08	
Fluoranthene	EPA 625	8B04111	2.9	9.6	ND	0.957	02/04/08	02/08/08	

TestAmerica Irvine

MWH-Pasadena/Boeing Project ID: Annual Outfall 009

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: IRB0152

Sampled: 02/03/08
Received: 02/03/08

Attention: Bronwyn Kelly

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0152-01 (Outfall 009 - Wate	er) - cont.								
Reporting Units: ug/l									
Fluorene	EPA 625	8B04111	2.9	9.6	ND	0.957	02/04/08	02/08/08	
Hexachlorobenzene	EPA 625	8B04111	2.9	9.6	ND	0.957	02/04/08	02/08/08	
Hexachlorobutadiene	EPA 625	8B04111	3.8	9.6	ND	0.957	02/04/08	02/08/08	
Hexachlorocyclopentadiene	EPA 625	8B04111	4.8	19	ND	0.957	02/04/08	02/08/08	
Hexachloroethane	EPA 625	8B04111	3.3	9.6	ND	0.957	02/04/08	02/08/08	
Indeno(1,2,3-cd)pyrene	EPA 625	8B04111	3.3	19	ND	0.957	02/04/08	02/08/08	
Isophorone	EPA 625	8B04111	2.4	9.6	ND	0.957	02/04/08	02/08/08	
2-Methylnaphthalene	EPA 625	8B04111	1.9	9.6	ND	0.957	02/04/08	02/08/08	
2-Methylphenol	EPA 625	8B04111	2.9	9.6	ND	0.957	02/04/08	02/08/08	
4-Methylphenol	EPA 625	8B04111	2.9	9.6	ND	0.957	02/04/08	02/08/08	
Naphthalene	EPA 625	8B04111	2.9	9.6	ND	0.957	02/04/08	02/08/08	
2-Nitroaniline	EPA 625	8B04111	1.9	19	ND	0.957	02/04/08	02/08/08	
3-Nitroaniline	EPA 625	8B04111	2.9	19	ND	0.957	02/04/08	02/08/08	
4-Nitroaniline	EPA 625	8B04111	3.8	19	ND	0.957	02/04/08	02/08/08	
Nitrobenzene	EPA 625	8B04111	2.4	19	ND	0.957	02/04/08	02/08/08	
2-Nitrophenol	EPA 625	8B04111	3.3	9.6	ND	0.957	02/04/08	02/08/08	
4-Nitrophenol	EPA 625	8B04111	5.3	19	ND	0.957	02/04/08	02/08/08	
N-Nitrosodiphenylamine	EPA 625	8B04111	1.9	9.6	ND	0.957	02/04/08	02/08/08	
N-Nitroso-di-n-propylamine	EPA 625	8B04111	3.3	9.6	ND	0.957	02/04/08	02/08/08	
Pentachlorophenol	EPA 625	8B04111	3.3	19	ND	0.957	02/04/08	02/08/08	
Phenanthrene	EPA 625	8B04111	3.3	9.6	ND	0.957	02/04/08	02/08/08	
Phenol	EPA 625	8B04111	1.9	9.6	ND	0.957	02/04/08	02/08/08	
Pyrene	EPA 625	8B04111	3.8	9.6	ND	0.957	02/04/08	02/08/08	
1,2,4-Trichlorobenzene	EPA 625	8B04111	2.4	9.6	ND	0.957	02/04/08	02/08/08	
2,4,5-Trichlorophenol	EPA 625	8B04111	2.9	19	ND	0.957	02/04/08	02/08/08	
2,4,6-Trichlorophenol	EPA 625	8B04111	4.3	19	ND	0.957	02/04/08	02/08/08	
1,2-Diphenylhydrazine/Azobenzene	EPA 625	8B04111	2.4	19	ND	0.957	02/04/08	02/08/08	
N-Nitrosodimethylamine	EPA 625	8B04111	2.4	19	ND	0.957	02/04/08	02/08/08	
Surrogate: 2-Fluorophenol (30-120%)					82 %				
Surrogate: Phenol-d6 (35-120%)					87 %				
Surrogate: 2,4,6-Tribromophenol (40-120%)					68 %				
Surrogate: Nitrobenzene-d5 (45-120%)					82 %				
Surrogate: 2-Fluorobiphenyl (50-120%)					89 %				
Surrogate: Terphenyl-d14 (50-125%)					102 %				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 009 MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200 Sampled: 02/03/08 Arcadia, CA 91007 Report Number: IRB0152 Received: 02/03/08

Attention: Bronwyn Kelly

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0152-01 (Outfall 009 - Water	er) - cont.								
Reporting Units: ug/l									
Aldrin	EPA 608	8B05099	0.0014	0.0047	ND	0.943	02/05/08	02/06/08	
alpha-BHC	EPA 608	8B05099	0.0024	0.0047	ND	0.943	02/05/08	02/06/08	
beta-BHC	EPA 608	8B05099	0.0038	0.0094	ND	0.943	02/05/08	02/06/08	
delta-BHC	EPA 608	8B05099	0.0033	0.0047	ND	0.943	02/05/08	02/06/08	
gamma-BHC (Lindane)	EPA 608	8B05099	0.0028	0.0094	ND	0.943	02/05/08	02/06/08	
Chlordane	EPA 608	8B05099	0.028	0.094	ND	0.943	02/05/08	02/06/08	
4,4'-DDD	EPA 608	8B05099	0.0019	0.0047	ND	0.943	02/05/08	02/06/08	
4,4'-DDE	EPA 608	8B05099	0.0028	0.0047	ND	0.943	02/05/08	02/06/08	
4,4'-DDT	EPA 608	8B05099	0.0038	0.0094	ND	0.943	02/05/08	02/06/08	
Dieldrin	EPA 608	8B05099	0.0019	0.0047	ND	0.943	02/05/08	02/06/08	
Endosulfan I	EPA 608	8B05099	0.0019	0.0047	ND	0.943	02/05/08	02/06/08	
Endosulfan II	EPA 608	8B05099	0.0028	0.0047	ND	0.943	02/05/08	02/06/08	
Endosulfan sulfate	EPA 608	8B05099	0.0028	0.0094	ND	0.943	02/05/08	02/06/08	
Endrin	EPA 608	8B05099	0.0019	0.0047	ND	0.943	02/05/08	02/06/08	
Endrin aldehyde	EPA 608	8B05099	0.0019	0.0094	ND	0.943	02/05/08	02/06/08	
Endrin ketone	EPA 608	8B05099	0.0028	0.0094	ND	0.943	02/05/08	02/06/08	
Heptachlor	EPA 608	8B05099	0.0028	0.0094	ND	0.943	02/05/08	02/06/08	
Heptachlor epoxide	EPA 608	8B05099	0.0024	0.0047	ND	0.943	02/05/08	02/06/08	
Methoxychlor	EPA 608	8B05099	0.0033	0.0047	ND	0.943	02/05/08	02/06/08	
Toxaphene	EPA 608	8B05099	0.066	0.094	ND	0.943	02/05/08	02/06/08	
Surrogate: Decachlorobiphenyl (45-120%)					77 %				
Surrogate: Tetrachloro-m-xylene (35-115%)					70 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 009

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007
Report Number: IRB0152
Sampled: 02/03/08
Received: 02/03/08

Arcadia, CA 91007 Report Number: IRB0152 Rec Attention: Bronwyn Kelly

TOTAL PCBS (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0152-01 (Outfall 009 - Wat	er) - cont.								
Reporting Units: ug/l									
Aroclor 1016	EPA 608	8B05099	0.42	0.47	ND	0.943	02/05/08	02/06/08	
Aroclor 1221	EPA 608	8B05099	0.24	0.47	ND	0.943	02/05/08	02/06/08	
Aroclor 1232	EPA 608	8B05099	0.24	0.47	ND	0.943	02/05/08	02/06/08	
Aroclor 1242	EPA 608	8B05099	0.24	0.47	ND	0.943	02/05/08	02/06/08	
Aroclor 1248	EPA 608	8B05099	0.24	0.47	ND	0.943	02/05/08	02/06/08	
Aroclor 1254	EPA 608	8B05099	0.24	0.47	ND	0.943	02/05/08	02/06/08	
Aroclor 1260	EPA 608	8B05099	0.28	0.47	ND	0.943	02/05/08	02/06/08	
Surrogate: Decachlorobiphenyl (45-120%)					90 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 009

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: IRB0152

Sampled: 02/03/08
Received: 02/03/08

Attention: Bronwyn Kelly

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0152-01 (Outfall 009 - W	ater) - cont.								
Reporting Units: mg/l									
Hardness as CaCO3	SM2340B	[CALC]	N/A	0.33	50	1	02/04/08	02/04/08	
Boron	EPA 200.7	8B04079	0.020	0.050	0.038	1	02/04/08	02/04/08	J
Calcium	EPA 200.7	8B04079	0.050	0.10	13	1	02/04/08	02/04/08	
Iron	EPA 200.7	8B04079	0.015	0.040	1.5	1	02/04/08	02/04/08	
Magnesium	EPA 200.7	8B04079	0.012	0.020	4.0	1	02/04/08	02/04/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 009

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: IRB0152

Sampled: 02/03/08
Received: 02/03/08

Attention: Bronwyn Kelly

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0152-01 (Outfall 009	9 - Water) - cont.								
Reporting Units: ug/l									
Aluminum	EPA 200.7	8B04079	40	50	1500	1	02/04/08	02/04/08	
Antimony	EPA 200.8	8B04080	0.20	2.0	1.6	1	02/04/08	02/05/08	J
Arsenic	EPA 200.7	8B04079	7.0	10	ND	1	02/04/08	02/04/08	
Beryllium	EPA 200.7	8B04079	0.90	2.0	ND	1	02/04/08	02/04/08	
Cadmium	EPA 200.8	8B04080	0.11	1.0	0.16	1	02/04/08	02/04/08	J
Chromium	EPA 200.7	8B04079	2.0	5.0	3.5	1	02/04/08	02/04/08	J
Copper	EPA 200.8	8B04080	0.75	2.0	4.7	1	02/04/08	02/04/08	
Lead	EPA 200.8	8B04080	0.30	1.0	6.0	1	02/04/08	02/04/08	
Nickel	EPA 200.7	8B04079	2.0	10	2.6	1	02/04/08	02/04/08	J
Selenium	EPA 200.7	8B04079	8.0	10	ND	1	02/04/08	02/04/08	
Silver	EPA 200.7	8B04079	6.0	10	ND	1	02/04/08	02/04/08	
Thallium	EPA 200.8	8B04080	0.20	1.0	ND	1	02/04/08	02/04/08	
Vanadium	EPA 200.7	8B04079	3.0	10	3.7	1	02/04/08	02/04/08	J
Zinc	EPA 200.7	8B04079	6.0	20	15	1	02/04/08	02/04/08	J

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 009

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: IRB0152

Sampled: 02/03/08
Received: 02/03/08

Attention: Bronwyn Kelly

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0152-01 (Outfall 009 - V	Water) - cont.								
Reporting Units: mg/l									
Boron	EPA 200.7-Diss	8B05111	0.020	0.050	0.039	1	02/05/08	02/06/08	J
Calcium	EPA 200.7-Diss	8B05111	0.050	0.10	13	1	02/05/08	02/06/08	
Iron	EPA 200.7-Diss	8B05111	0.015	0.040	0.11	1	02/05/08	02/06/08	
Magnesium	EPA 200.7-Diss	8B05111	0.012	0.020	3.5	1	02/05/08	02/06/08	
Hardness (as CaCO3)	SM2340B	8B05111	1.0	1.0	47	1	02/05/08	02/06/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 009

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: IRB0152

Sampled: 02/03/08
Received: 02/03/08

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0152-01 (Outfall 009	- Water) - cont.								
Reporting Units: ug/l									
Aluminum	EPA 200.7-Diss	8B05111	40	50	110	1	02/05/08	02/06/08	
Antimony	EPA 200.8-Diss	8B04144	0.20	2.0	1.5	1	02/04/08	02/05/08	J
Arsenic	EPA 200.7-Diss	8B05111	7.0	10	ND	1	02/05/08	02/06/08	
Beryllium	EPA 200.7-Diss	8B05111	0.90	2.0	ND	1	02/05/08	02/06/08	
Cadmium	EPA 200.8-Diss	8B04144	0.11	1.0	ND	1	02/04/08	02/05/08	
Chromium	EPA 200.7-Diss	8B05111	2.0	5.0	ND	1	02/05/08	02/06/08	
Copper	EPA 200.8-Diss	8B04144	0.75	2.0	2.4	1	02/04/08	02/05/08	
Lead	EPA 200.8-Diss	8B04144	0.30	1.0	0.54	1	02/04/08	02/05/08	J
Nickel	EPA 200.7-Diss	8B05111	2.0	10	ND	1	02/05/08	02/06/08	
Selenium	EPA 200.7-Diss	8B05111	8.0	10	ND	1	02/05/08	02/06/08	
Silver	EPA 200.7-Diss	8B05111	6.0	10	ND	1	02/05/08	02/06/08	
Thallium	EPA 200.8-Diss	8B04144	0.20	1.0	ND	1	02/04/08	02/05/08	
Vanadium	EPA 200.7-Diss	8B05111	3.0	10	ND	1	02/05/08	02/06/08	
Zinc	EPA 200.7-Diss	8B05111	6.0	20	ND	1	02/05/08	02/06/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report

Attention: Bronwyn Kelly

Project ID: Annual Outfall 009

Sampled: 02/03/08

Report Number: IRB0152 Received: 02/03/08

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0152-01 (Outfall 009 - V	Water) - cont.								
Reporting Units: mg/l									
Hexane Extractable Material (Oil &	EPA 1664A	8B12074	1.3	4.8	ND	1	02/12/08	02/12/08	
Grease)									
Chloride	EPA 300.0	8B04043	0.25	0.50	7.0	1	02/04/08	02/04/08	
Fluoride	EPA 300.0	8B04043	0.15	0.50	0.21	1	02/04/08	02/04/08	J
Nitrate/Nitrite-N	EPA 300.0	8B04043	0.15	0.26	3.3	1	02/04/08	02/04/08	
Sulfate	EPA 300.0	8B04043	0.20	0.50	11	1	02/04/08	02/04/08	
Total Dissolved Solids	SM2540C	8B07122	10	10	110	1	02/07/08	02/07/08	
Total Suspended Solids	EPA 160.2	8B05134	10	10	62	1	02/05/08	02/05/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 009

Sampled: 02/03/08

Report Number: IRB0152

Received: 02/03/08

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0152-01 (Outfall 009 - Wa	nter) - cont.								
Reporting Units: ug/l Total Cyanide	EPA 335.2	8B04112	2.2	5.0	ND	1	02/04/08	02/04/08	
Perchlorate	EPA 314.0	8B12073	1.5	4.0	ND ND	1	02/04/08	02/04/08	
reichiorate	EPA 314.0	6D12U/3	1.3	4.0	ND	1	02/12/08	02/12/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 009

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: IRB0152

Sampled: 02/03/08
Received: 02/03/08

Attention: Bronwyn Kelly

ORGANIC COMPOUNDS BY GC/MS (EPA 525.2)

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IRB0152-01 (Outfall 009 - Wat	ter) - cont.								P, pH
Reporting Units: ug/l									
Chlorpyrifos	EPA 525.2	C8B0516	0.10	1.0	ND	1.01	02/05/08	02/07/08	
Diazinon	EPA 525.2	C8B0516	0.24	0.25	ND	1.01	02/05/08	02/07/08	
Surrogate: 1,3-Dimethyl-2-nitrobenzene (70	-130%)				84 %				
Surrogate: Triphenylphosphate (70-130%)					121 %				
Surrogate: Perylene-d12 (70-130%)					93 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 009

Sampled: 02/03/08

Report Number: IRB0152

Received: 02/03/08

Metals by EPA 200 Series Methods

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0152-01 (Outfall 009 - V Reporting Units: ug/l	Vater) - cont.								
Mercury, Dissolved Mercury, Total	EPA 245.1 EPA 245.1	W8B0147 W8B0147	0.050 0.050	0.20 0.20	ND ND	1 1	02/05/08 02/05/08	02/07/08 02/07/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

WWII-I asadena/Boeing

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 009

Sampled: 02/03/08

Report Number: IRB0152 Received: 02/03/08

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 009 (IRB0152-01) - Water	r				
EPA 300.0	2	02/03/2008 10:00	02/03/2008 18:25	02/04/2008 05:00	02/04/2008 07:02
EPA 624	3	02/03/2008 10:00	02/03/2008 18:25	02/04/2008 00:00	02/05/2008 00:18
Sample ID: Trip Blanks (IRB0152-02) - Water	er				
EPA 624	3	02/03/2008 10:00	02/03/2008 18:25	02/04/2008 00:00	02/04/2008 22:23

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Sampled: 02/03/08

Report Number: IRB0152

Received: 02/03/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

	D 1/2	Reporting	MDI	TT *4	Spike	Source	A/DEC	%REC	DDD	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04024 Extracted: 02/04/0	8										
Blank Analyzed: 02/04/2008 (8B04024-I	BLK1)										
1,1,1-Trichloroethane	ND	0.50	0.30	ug/l							
1,1,2,2-Tetrachloroethane	ND	0.50	0.24	ug/l							
1,1,2-Trichloroethane	ND	0.50	0.30	ug/l							
1,1-Dichloroethane	ND	0.50	0.27	ug/l							
1,1-Dichloroethene	ND	0.50	0.42	ug/l							
1,2-Dichloroethane	ND	0.50	0.28	ug/l							
1,2-Dichlorobenzene	ND	0.50	0.32	ug/l							
1,2-Dichloropropane	ND	0.50	0.35	ug/l							
1,3-Dichlorobenzene	ND	0.50	0.35	ug/l							
1,4-Dichlorobenzene	ND	0.50	0.37	ug/l							
Benzene	ND	0.50	0.28	ug/l							
Bromodichloromethane	ND	0.50	0.30	ug/l							
Bromoform	ND	0.50	0.40	ug/l							
Bromomethane	ND	1.0	0.42	ug/l							
Carbon tetrachloride	ND	0.50	0.28	ug/l							
Chlorobenzene	ND	0.50	0.36	ug/l							
Chloroethane	ND	1.0	0.40	ug/l							
Chloroform	ND	0.50	0.33	ug/l							
Chloromethane	ND	0.50	0.40	ug/l							
cis-1,3-Dichloropropene	ND	0.50	0.22	ug/l							
Dibromochloromethane	ND	0.50	0.28	ug/l							
Ethylbenzene	ND	0.50	0.25	ug/l							
Methylene chloride	ND	1.0	0.95	ug/l							
Tetrachloroethene	ND	0.50	0.32	ug/l							
Toluene	ND	0.50	0.36	ug/l							
trans-1,2-Dichloroethene	ND	0.50	0.27	ug/l							
trans-1,3-Dichloropropene	ND	0.50	0.32	ug/l							
Trichloroethene	ND	0.50	0.26	ug/l							
Trichlorofluoromethane	ND	0.50	0.34	ug/l							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	0.50	ug/l							
Vinyl chloride	ND	0.50	0.30	ug/l							
Xylenes, Total	ND	1.5	0.90	ug/l							
Surrogate: Dibromofluoromethane	27.5			ug/l	25.0		110	80-120			
Surrogate: Toluene-d8	25.7			ug/l	25.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	23.1			ug/l	25.0		92	80-120			
·				J							

TestAmerica Irvine

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 009

Report Number: IRB0152

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04024 Extracted: 02/04/0	8										
	<u> </u>										
LCS Analyzed: 02/04/2008 (8B04024-B	S1)										
1,1,1-Trichloroethane	29.2	0.50	0.30	ug/l	25.0		117	65-135			
1,1,2,2-Tetrachloroethane	26.4	0.50	0.24	ug/l	25.0		106	55-130			
1,1,2-Trichloroethane	25.0	0.50	0.30	ug/l	25.0		100	70-125			
1,1-Dichloroethane	28.6	0.50	0.27	ug/l	25.0		114	70-125			
1,1-Dichloroethene	24.7	0.50	0.42	ug/l	25.0		99	70-125			
1,2-Dichloroethane	25.7	0.50	0.28	ug/l	25.0		103	60-140			
1,2-Dichlorobenzene	25.3	0.50	0.32	ug/l	25.0		101	75-120			
1,2-Dichloropropane	25.1	0.50	0.35	ug/l	25.0		100	70-125			
1,3-Dichlorobenzene	25.0	0.50	0.35	ug/l	25.0		100	75-120			
1,4-Dichlorobenzene	23.2	0.50	0.37	ug/l	25.0		93	75-120			
Benzene	24.7	0.50	0.28	ug/l	25.0		99	70-120			
Bromodichloromethane	28.2	0.50	0.30	ug/l	25.0		113	70-135			
Bromoform	21.2	0.50	0.40	ug/l	25.0		85	55-130			
Bromomethane	29.0	1.0	0.42	ug/l	25.0		116	65-140			
Carbon tetrachloride	27.1	0.50	0.28	ug/l	25.0		109	65-140			
Chlorobenzene	23.6	0.50	0.36	ug/l	25.0		94	75-120			
Chloroethane	29.2	1.0	0.40	ug/l	25.0		117	60-140			
Chloroform	29.1	0.50	0.33	ug/l	25.0		116	70-130			
Chloromethane	29.7	0.50	0.40	ug/l	25.0		119	50-140			
cis-1,3-Dichloropropene	22.6	0.50	0.22	ug/l	25.0		90	75-125			
Dibromochloromethane	23.8	0.50	0.28	ug/l	25.0		95	70-140			
Ethylbenzene	25.8	0.50	0.25	ug/l	25.0		103	75-125			
Methylene chloride	27.1	1.0	0.95	ug/l	25.0		108	55-130			
Tetrachloroethene	21.4	0.50	0.32	ug/l	25.0		86	70-125			
Toluene	24.6	0.50	0.36	ug/l	25.0		99	70-120			
trans-1,2-Dichloroethene	28.2	0.50	0.27	ug/l	25.0		113	70-125			
trans-1,3-Dichloropropene	22.6	0.50	0.32	ug/l	25.0		91	70-125			
Trichloroethene	22.9	0.50	0.26	ug/l	25.0		92	70-125			
Trichlorofluoromethane	33.5	0.50	0.34	ug/l	25.0		134	65-145			
Vinyl chloride	29.4	0.50	0.30	ug/l	25.0		118	55-135			
Xylenes, Total	73.8	1.5	0.90	ug/l	75.0		98	70-125			
Surrogate: Dibromofluoromethane	28.5			ug/l	25.0		114	80-120			
Surrogate: Toluene-d8	25.3			ug/l	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	25.8			ug/l	25.0		103	80-120			

TestAmerica Irvine

%REC

RPD

Data

Qualifiers

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 009

Sampled: 02/03/08

Report Number: IRB0152 Received: 02/03/08

Source

Spike

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Reporting

Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: 8B04024 Extracted: 02/0	4/08									
Matrix Spike Analyzed: 02/04/2008	(8B04024-MS1)				Sou	rce: IRA	3076-01			
1,1,1-Trichloroethane	28.3	0.50	0.30	ug/l	25.0	ND	113	65-140		
1,1,2,2-Tetrachloroethane	27.7	0.50	0.24	ug/l	25.0	ND	111	55-135		
1,1,2-Trichloroethane	25.0	0.50	0.30	ug/l	25.0	ND	100	65-130		
1,1-Dichloroethane	27.4	0.50	0.27	ug/l	25.0	ND	109	65-130		
1,1-Dichloroethene	23.1	0.50	0.42	ug/l	25.0	ND	92	60-130		
1,2-Dichloroethane	25.4	0.50	0.28	ug/l	25.0	ND	101	60-140		
1,2-Dichlorobenzene	25.0	0.50	0.32	ug/l	25.0	ND	100	75-125		
1,2-Dichloropropane	24.4	0.50	0.35	ug/l	25.0	ND	98	65-130		
1,3-Dichlorobenzene	24.4	0.50	0.35	ug/l	25.0	ND	98	75-125		
1,4-Dichlorobenzene	22.4	0.50	0.37	ug/l	25.0	ND	90	75-125		
Benzene	24.2	0.50	0.28	ug/l	25.0	ND	97	65-125		
Bromodichloromethane	27.7	0.50	0.30	ug/l	25.0	ND	111	70-135		
Bromoform	21.5	0.50	0.40	ug/l	25.0	ND	86	55-135		
Bromomethane	26.2	1.0	0.42	ug/l	25.0	ND	105	55-145		
Carbon tetrachloride	27.2	0.50	0.28	ug/l	25.0	ND	109	65-140		
Chlorobenzene	22.8	0.50	0.36	ug/l	25.0	ND	91	75-125		
Chloroethane	27.2	1.0	0.40	ug/l	25.0	ND	109	55-140		
Chloroform	28.4	0.50	0.33	ug/l	25.0	ND	114	65-135		
Chloromethane	24.5	0.50	0.40	ug/l	25.0	ND	98	45-145		
cis-1,3-Dichloropropene	22.2	0.50	0.22	ug/l	25.0	ND	89	70-130		
Dibromochloromethane	24.2	0.50	0.28	ug/l	25.0	ND	97	65-140		
Ethylbenzene	25.2	0.50	0.25	ug/l	25.0	ND	101	65-130		
Methylene chloride	25.8	1.0	0.95	ug/l	25.0	ND	103	50-135		
Tetrachloroethene	20.5	0.50	0.32	ug/l	25.0	ND	82	65-130		
Toluene	24.1	0.50	0.36	ug/l	25.0	ND	96	70-125		
trans-1,2-Dichloroethene	26.9	0.50	0.27	ug/l	25.0	ND	107	65-130		
trans-1,3-Dichloropropene	21.9	0.50	0.32	ug/l	25.0	ND	88	65-135		
Trichloroethene	22.5	0.50	0.26	ug/l	25.0	ND	90	65-125		
Trichlorofluoromethane	33.0	0.50	0.34	ug/l	25.0	ND	132	60-145		
Vinyl chloride	26.4	0.50	0.30	ug/l	25.0	ND	106	45-140		
Xylenes, Total	72.5	1.5	0.90	ug/l	75.0	ND	97	60-130		
Surrogate: Dibromofluoromethane	28.7			ug/l	25.0		115	80-120		
Surrogate: Toluene-d8	25.3			ug/l	25.0		101	80-120		
Surrogate: 4-Bromofluorobenzene	25.6			ug/l	25.0		102	80-120		

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 009

Report Number: IRB0152

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04024 Extracted: 02/04/08	<u>3</u>										
Matrix Spike Dup Analyzed: 02/04/2008	3 (8B04024-M	(SD1)			Sou	rce: IRA	3076-01				
1,1,1-Trichloroethane	28.2	0.50	0.30	ug/l	25.0	ND	113	65-140	0	20	
1,1,2,2-Tetrachloroethane	25.6	0.50	0.24	ug/l	25.0	ND	103	55-135	8	30	
1,1,2-Trichloroethane	23.7	0.50	0.30	ug/l	25.0	ND	95	65-130	5	25	
1,1-Dichloroethane	27.2	0.50	0.27	ug/l	25.0	ND	109	65-130	1	20	
1,1-Dichloroethene	23.7	0.50	0.42	ug/l	25.0	ND	95	60-130	3	20	
1,2-Dichloroethane	23.9	0.50	0.28	ug/l	25.0	ND	96	60-140	6	20	
1,2-Dichlorobenzene	23.8	0.50	0.32	ug/l	25.0	ND	95	75-125	5	20	
1,2-Dichloropropane	24.1	0.50	0.35	ug/l	25.0	ND	97	65-130	1	20	
1,3-Dichlorobenzene	23.9	0.50	0.35	ug/l	25.0	ND	95	75-125	2	20	
1,4-Dichlorobenzene	22.2	0.50	0.37	ug/l	25.0	ND	89	75-125	1	20	
Benzene	23.7	0.50	0.28	ug/l	25.0	ND	95	65-125	2	20	
Bromodichloromethane	27.1	0.50	0.30	ug/l	25.0	ND	108	70-135	2	20	
Bromoform	19.8	0.50	0.40	ug/l	25.0	ND	79	55-135	8	25	
Bromomethane	26.7	1.0	0.42	ug/l	25.0	ND	107	55-145	2	25	
Carbon tetrachloride	26.2	0.50	0.28	ug/l	25.0	ND	105	65-140	4	25	
Chlorobenzene	22.4	0.50	0.36	ug/l	25.0	ND	89	75-125	2	20	
Chloroethane	27.8	1.0	0.40	ug/l	25.0	ND	111	55-140	2	25	
Chloroform	28.1	0.50	0.33	ug/l	25.0	ND	112	65-135	1	20	
Chloromethane	26.4	0.50	0.40	ug/l	25.0	ND	105	45-145	7	25	
cis-1,3-Dichloropropene	21.1	0.50	0.22	ug/l	25.0	ND	84	70-130	5	20	
Dibromochloromethane	22.6	0.50	0.28	ug/l	25.0	ND	91	65-140	7	25	
Ethylbenzene	24.7	0.50	0.25	ug/l	25.0	ND	99	65-130	2	20	
Methylene chloride	24.8	1.0	0.95	ug/l	25.0	ND	99	50-135	4	20	
Tetrachloroethene	20.6	0.50	0.32	ug/l	25.0	ND	82	65-130	0	20	
Toluene	23.6	0.50	0.36	ug/l	25.0	ND	94	70-125	2	20	
trans-1,2-Dichloroethene	27.1	0.50	0.27	ug/l	25.0	ND	108	65-130	1	20	
trans-1,3-Dichloropropene	20.8	0.50	0.32	ug/l	25.0	ND	83	65-135	5	25	
Trichloroethene	22.0	0.50	0.26	ug/l	25.0	ND	88	65-125	2	20	
Trichlorofluoromethane	31.5	0.50	0.34	ug/l	25.0	ND	126	60-145	5	25	
Vinyl chloride	26.5	0.50	0.30	ug/l	25.0	ND	106	45-140	0	30	
Xylenes, Total	71.3	1.5	0.90	ug/l	75.0	ND	95	60-130	2	20	
Surrogate: Dibromofluoromethane	28.6			ug/l	25.0		115	80-120			
Surrogate: Toluene-d8	25.1			ug/l	25.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	25.2			ug/l	25.0		101	80-120			

TestAmerica Irvine

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 009

Sampled: 02/03/08

Report Number: IRB0152

Received: 02/03/08

METHOD BLANK/QC DATA

PURGEABLES-- GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04024 Extracted: 02/04/08	<u> </u>										
Blank Analyzed: 02/04/2008 (8B04024-B	,										
Acrolein	ND	5.0	4.0	ug/l							
Acrylonitrile	ND	2.0	0.70	ug/l							
2-Chloroethyl vinyl ether	ND	5.0	1.8	ug/l							
Surrogate: Dibromofluoromethane	27.5			ug/l	25.0		110	80-120			
Surrogate: Toluene-d8	25.7			ug/l	25.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	23.1			ug/l	25.0		92	80-120			
LCS Analyzed: 02/04/2008 (8B04024-BS	1)										
2-Chloroethyl vinyl ether	28.5	5.0	1.8	ug/l	25.0		114	25-170			
Surrogate: Dibromofluoromethane	28.5			ug/l	25.0		114	80-120			
Surrogate: Toluene-d8	25.3			ug/l	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	25.8			ug/l	25.0		103	80-120			
Matrix Spike Analyzed: 02/04/2008 (8B0	4024-MS1)				Sou	rce: IRA	3076-01				
2-Chloroethyl vinyl ether	28.5	5.0	1.8	ug/l	25.0	ND	114	25-170			
Surrogate: Dibromofluoromethane	28.7			ug/l	25.0		115	80-120			
Surrogate: Toluene-d8	25.3			ug/l	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	25.6			ug/l	25.0		102	80-120			
Matrix Spike Dup Analyzed: 02/04/2008	(8B04024-M	ISD1)			Sou	rce: IRA	3076-01				
2-Chloroethyl vinyl ether	26.6	5.0	1.8	ug/l	25.0	ND	107	25-170	7	25	
Surrogate: Dibromofluoromethane	28.6			ug/l	25.0		115	80-120			
Surrogate: Toluene-d8	25.1			ug/l	25.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	25.2			ug/l	25.0		101	80-120			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Sampled: 02/03/08

Report Number: IRB0152 Received: 02/03/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•		Limit	MIDL	Omits	Level	Kesuit	/orec	Limits	KI D	Limit	Quanners
Batch: 8B04111 Extracted: 02/04/03	8										
Blank Analyzed: 02/07/2008 (8B04111-E	BLK1)										
Acenaphthene	ND	10	3.0	ug/l							
Acenaphthylene	ND	10	3.0	ug/l							
Aniline	ND	10	2.5	ug/l							
Anthracene	ND	10	2.0	ug/l							
Benzidine	ND	20	8.5	ug/l							
Benzoic acid	ND	20	10	ug/l							
Benzo(a)anthracene	ND	10	2.0	ug/l							
Benzo(b)fluoranthene	ND	10	2.0	ug/l							
Benzo(k)fluoranthene	ND	10	2.5	ug/l							
Benzo(g,h,i)perylene	ND	10	4.0	ug/l							
Benzo(a)pyrene	ND	10	2.0	ug/l							
Benzyl alcohol	ND	20	2.5	ug/l							
Bis(2-chloroethoxy)methane	ND	10	3.0	ug/l							
Bis(2-chloroethyl)ether	ND	10	3.0	ug/l							
Bis(2-chloroisopropyl)ether	ND	10	2.5	ug/l							
Bis(2-ethylhexyl)phthalate	ND	50	4.0	ug/l							
4-Bromophenyl phenyl ether	ND	10	3.0	ug/l							
Butyl benzyl phthalate	ND	20	4.0	ug/l							
4-Chloroaniline	ND	10	2.0	ug/l							
2-Chloronaphthalene	ND	10	3.0	ug/l							
4-Chloro-3-methylphenol	ND	20	2.5	ug/l							
2-Chlorophenol	ND	10	3.0	ug/l							
4-Chlorophenyl phenyl ether	ND	10	2.5	ug/l							
Chrysene	ND	10	2.5	ug/l							
Dibenz(a,h)anthracene	ND	20	3.0	ug/l							
Dibenzofuran	ND	10	4.0	ug/l							
Di-n-butyl phthalate	ND	20	3.0	ug/l							
1,3-Dichlorobenzene	ND	10	3.0	ug/l							
1,4-Dichlorobenzene	ND	10	2.5	ug/l							
1,2-Dichlorobenzene	ND	10	3.0	ug/l							
3,3-Dichlorobenzidine	ND	20	3.0	ug/l							
2,4-Dichlorophenol	ND	10	3.5	ug/l							
Diethyl phthalate	ND	10	3.5	ug/l							
2,4-Dimethylphenol	ND	20	3.5	ug/l							
Dimethyl phthalate	ND	10	2.0	ug/l							
Toot A monico Invino											

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Sampled: 02/03/08

Report Number: IRB0152

Received: 02/03/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Assolute	D14	Reporting Limit	MDI	11	Spike	Source	0/ DEC	%REC	DDD	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04111 Extracted: 02/04/08	<u>8</u>										
Blank Analyzed: 02/07/2008 (8B04111-F											
4,6-Dinitro-2-methylphenol	ND	20	4.0	ug/l							
2,4-Dinitrophenol	ND	20	8.0	ug/l							
2,4-Dinitrotoluene	ND	10	3.5	ug/l							
2,6-Dinitrotoluene	ND	10	2.0	ug/l							
Di-n-octyl phthalate	ND	20	3.5	ug/l							
Fluoranthene	ND	10	3.0	ug/l							
Fluorene	ND	10	3.0	ug/l							
Hexachlorobenzene	ND	10	3.0	ug/l							
Hexachlorobutadiene	ND	10	4.0	ug/l							
Hexachlorocyclopentadiene	ND	20	5.0	ug/l							
Hexachloroethane	ND	10	3.5	ug/l							
Indeno(1,2,3-cd)pyrene	ND	20	3.5	ug/l							
Isophorone	ND	10	2.5	ug/l							
2-Methylnaphthalene	ND	10	2.0	ug/l							
2-Methylphenol	ND	10	3.0	ug/l							
4-Methylphenol	ND	10	3.0	ug/l							
Naphthalene	ND	10	3.0	ug/l							
2-Nitroaniline	ND	20	2.0	ug/l							
3-Nitroaniline	ND	20	3.0	ug/l							
4-Nitroaniline	ND	20	4.0	ug/l							
Nitrobenzene	ND	20	2.5	ug/l							
2-Nitrophenol	ND	10	3.5	ug/l							
4-Nitrophenol	ND	20	5.5	ug/l							
N-Nitrosodiphenylamine	ND	10	2.0	ug/l							
N-Nitroso-di-n-propylamine	ND	10	3.5	ug/l							
Pentachlorophenol	ND	20	3.5	ug/l							
Phenanthrene	ND	10	3.5	ug/l							
Phenol	ND	10	2.0	ug/l							
Pyrene	ND	10	4.0	ug/l							
1,2,4-Trichlorobenzene	ND	10	2.5	ug/l							
2,4,5-Trichlorophenol	ND	20	3.0	ug/l							
2,4,6-Trichlorophenol	ND	20	4.5	ug/l							
1,2-Diphenylhydrazine/Azobenzene	ND	20	2.5	ug/l							
N-Nitrosodimethylamine	ND	20	2.5	ug/l							
Surrogate: 2-Fluorophenol	159			ug/l	200		80	30-120			
				3							

TestAmerica Irvine

%REC

RPD

Data

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 009

Sampled: 02/03/08 Received: 02/03/08

Report Number: IRB0152

Reporting

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Spike

Source

		Reporting			Spike	Source		%REC		KPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04111 Extracted: 02/04	1/08										
Blank Analyzed: 02/07/2008 (8B0411											
Surrogate: Phenol-d6	166			ug/l	200		83	35-120			
Surrogate: 2,4,6-Tribromophenol	129			ug/l	200		64	40-120			
Surrogate: Nitrobenzene-d5	83.8			ug/l	100		84	45-120			
Surrogate: 2-Fluorobiphenyl	82.4			ug/l	100		82	50-120			
Surrogate: Terphenyl-d14	82.8			ug/l	100		83	50-125			
LCS Analyzed: 02/07/2008 (8B04111-	-BS1)										
Acenaphthene	92.8	10	3.0	ug/l	100		93	60-120			
Acenaphthylene	97.0	10	3.0	ug/l	100		97	60-120			
Aniline	86.7	10	2.5	ug/l	100		87	35-120			
Anthracene	91.1	10	2.0	ug/l	100		91	65-120			
Benzidine	161	20	8.5	ug/l	100		161	30-160			L6
Benzoic acid	74.5	20	10	ug/l	100		74	25-120			
Benzo(a)anthracene	95.9	10	2.0	ug/l	100		96	65-120			
Benzo(b)fluoranthene	87.2	10	2.0	ug/l	100		87	55-125			
Benzo(k)fluoranthene	88.9	10	2.5	ug/l	100		89	50-125			
Benzo(g,h,i)perylene	83.0	10	4.0	ug/l	100		83	45-135			
Benzo(a)pyrene	91.9	10	2.0	ug/l	100		92	55-130			
Benzyl alcohol	99.9	20	2.5	ug/l	100		100	50-120			
Bis(2-chloroethoxy)methane	92.9	10	3.0	ug/l	100		93	55-120			
Bis(2-chloroethyl)ether	86.4	10	3.0	ug/l	100		86	50-120			
Bis(2-chloroisopropyl)ether	98.4	10	2.5	ug/l	100		98	45-120			
Bis(2-ethylhexyl)phthalate	99.9	50	4.0	ug/l	100		100	65-130			
4-Bromophenyl phenyl ether	86.0	10	3.0	ug/l	100		86	60-120			
Butyl benzyl phthalate	104	20	4.0	ug/l	100		104	55-130			
4-Chloroaniline	95.8	10	2.0	ug/l	100		96	55-120			
2-Chloronaphthalene	91.9	10	3.0	ug/l	100		92	60-120			
4-Chloro-3-methylphenol	97.9	20	2.5	ug/l	100		98	60-120			
2-Chlorophenol	86.3	10	3.0	ug/l	100		86	45-120			
4-Chlorophenyl phenyl ether	89.9	10	2.5	ug/l	100		90	65-120			
Chrysene	92.3	10	2.5	ug/l	100		92	65-120			
Dibenz(a,h)anthracene	84.8	20	3.0	ug/l	100		85	50-135			
Dibenzofuran	93.2	10	4.0	ug/l	100		93	65-120			
Di-n-butyl phthalate	85.8	20	3.0	ug/l	100		86	60-125			
1,3-Dichlorobenzene	74.9	10	3.0	ug/l	100		75	35-120			
1,4-Dichlorobenzene	79.8	10	2.5	ug/l	100		80	35-120			

TestAmerica Irvine

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Sampled: 02/03/08

Report Number: IRB0152

Received: 02/03/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•		Limit	MIDL	Cints	Level	Result	/UKEC	Limits	KI D	Limit	Quanners
Batch: 8B04111 Extracted: 02/04/08	<u>s</u>										
LCS Analyzed: 02/07/2008 (8B04111-BS	1)										
1,2-Dichlorobenzene	80.6	10	3.0	ug/l	100		81	40-120			
3,3-Dichlorobenzidine	84.1	20	3.0	ug/l	100		84	45-135			
2,4-Dichlorophenol	91.0	10	3.5	ug/l	100		91	55-120			
Diethyl phthalate	92.2	10	3.5	ug/l	100		92	55-120			
2,4-Dimethylphenol	80.5	20	3.5	ug/l	100		81	40-120			
Dimethyl phthalate	89.5	10	2.0	ug/l	100		90	30-120			
4,6-Dinitro-2-methylphenol	85.8	20	4.0	ug/l	100		86	45-120			
2,4-Dinitrophenol	94.2	20	8.0	ug/l	100		94	40-120			
2,4-Dinitrotoluene	101	10	3.5	ug/l	100		101	65-120			
2,6-Dinitrotoluene	98.1	10	2.0	ug/l	100		98	65-120			
Di-n-octyl phthalate	89.3	20	3.5	ug/l	100		89	65-135			
Fluoranthene	82.3	10	3.0	ug/l	100		82	60-120			
Fluorene	95.6	10	3.0	ug/l	100		96	65-120			
Hexachlorobenzene	80.7	10	3.0	ug/l	100		81	60-120			
Hexachlorobutadiene	76.8	10	4.0	ug/l	100		77	40-120			
Hexachlorocyclopentadiene	105	20	5.0	ug/l	100		105	25-120			
Hexachloroethane	76.5	10	3.5	ug/l	100		77	35-120			
Indeno(1,2,3-cd)pyrene	85.2	20	3.5	ug/l	100		85	45-135			
Isophorone	93.8	10	2.5	ug/l	100		94	50-120			
2-Methylnaphthalene	91.2	10	2.0	ug/l	100		91	55-120			
2-Methylphenol	90.9	10	3.0	ug/l	100		91	50-120			
4-Methylphenol	90.3	10	3.0	ug/l	100		90	50-120			
Naphthalene	87.4	10	3.0	ug/l	100		87	55-120			
2-Nitroaniline	105	20	2.0	ug/l	100		105	65-120			
3-Nitroaniline	97.2	20	3.0	ug/l	100		97	60-120			
4-Nitroaniline	99.5	20	4.0	ug/l	100		99	55-125			
Nitrobenzene	93.5	20	2.5	ug/l	100		94	55-120			
2-Nitrophenol	90.9	10	3.5	ug/l	100		91	50-120			
4-Nitrophenol	90.3	20	5.5	ug/l	100		90	45-120			
N-Nitrosodiphenylamine	94.4	10	2.0	ug/l	100		94	60-120			
N-Nitroso-di-n-propylamine	94.6	10	3.5	ug/l	100		95	45-120			
Pentachlorophenol	76.0	20	3.5	ug/l	100		76	50-120			
Phenanthrene	87.8	10	3.5	ug/l	100		88	65-120			
Phenol	84.3	10	2.0	ug/l	100		84	40-120			
Pyrene	112	10	4.0	ug/l	100		112	55-125			

TestAmerica Irvine

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 009

Report Number: IRB0152

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

A 1 4 -	D14	Reporting Limit	MDI	TI*4	Spike	Source	0/DEC	%REC	DDD	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04111 Extracted: 02/04/03	<u>8</u>										
I CC A 1 1 02/07/2000 (0D04111 D6	147										
LCS Analyzed: 02/07/2008 (8B04111-BS		10	2.5	/1	100		02	45 100			
1,2,4-Trichlorobenzene	82.1	10	2.5	ug/l	100		82	45-120			
2,4,5-Trichlorophenol	94.0	20	3.0	ug/l	100		94	55-120			
2,4,6-Trichlorophenol	91.5	20	4.5	ug/l	100		92	55-120			
1,2-Diphenylhydrazine/Azobenzene	97.8	20	2.5	ug/l	100		98	60-120			
N-Nitrosodimethylamine	98.9	20	2.5	ug/l	100		99	45-120			
Surrogate: 2-Fluorophenol	167			ug/l	200		83	30-120			
Surrogate: Phenol-d6	171			ug/l	200		86	35-120			
Surrogate: 2,4,6-Tribromophenol	153			ug/l	200		77	40-120			
Surrogate: Nitrobenzene-d5	89.0			ug/l	100		89	45-120			
Surrogate: 2-Fluorobiphenyl	87.6			ug/l	100		88	50-120			
Surrogate: Terphenyl-d14	100			ug/l	100		100	50-125			
Matrix Spike Analyzed: 02/07/2008 (8B)	04111-MS1)				Sou	rce: IRA	3018-06				
Acenaphthene	93.7	48	14	ug/l	95.2	ND	98	60-120			
Acenaphthylene	40.8	48	14	ug/l	95.2	ND	43	60-120			M2, J
Aniline	53.5	48	12	ug/l	95.2	ND	56	35-120			
Anthracene	84.9	48	9.5	ug/l	95.2	ND	89	65-120			
Benzidine	ND	95	40	ug/l	95.2	ND		30-160			M2
Benzoic acid	107	95	48	ug/l	95.2	ND	112	25-125			
Benzo(a)anthracene	89.0	48	9.5	ug/l	95.2	ND	94	65-120			
Benzo(b)fluoranthene	83.0	48	9.5	ug/l	95.2	ND	87	55-125			
Benzo(k)fluoranthene	95.6	48	12	ug/l	95.2	ND	100	55-125			
Benzo(g,h,i)perylene	68.7	48	19	ug/l	95.2	ND	72	45-135			
Benzo(a)pyrene	90.1	48	9.5	ug/l	95.2	ND	95	55-130			
Benzyl alcohol	34.9	95	12	ug/l	95.2	ND	37	40-120			M2, J
Bis(2-chloroethoxy)methane	76.3	48	14	ug/l	95.2	ND	80	50-120			
Bis(2-chloroethyl)ether	106	48	14	ug/l	95.2	ND	112	50-120			
Bis(2-chloroisopropyl)ether	86.9	48	12	ug/l	95.2	ND	91	45-120			
Bis(2-ethylhexyl)phthalate	91.0	240	19	ug/l	95.2	ND	96	65-130			J
4-Bromophenyl phenyl ether	75.0	48	14	ug/l	95.2	ND	79	60-120			
Butyl benzyl phthalate	92.6	95	19	ug/l	95.2	ND	97	55-130			J
4-Chloroaniline	19.6	48	9.5	ug/l	95.2	ND	21	55-120			M2, J
2-Chloronaphthalene	83.3	48	14	ug/l	95.2	ND	87	60-120			
4-Chloro-3-methylphenol	84.0	95	12	ug/l	95.2	ND	88	60-120			J
2-Chlorophenol	77.2	48	14	ug/l	95.2	ND	81	45-120			
4-Chlorophenyl phenyl ether	92.5	48	12	ug/l	95.2	ND	97	65-120			

TestAmerica Irvine

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 009

-**J** - - - -

Report Number: IRB0152

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
U		Limit	MIDE	Cilits	Level	Result	70KEC	Limits	KI D	Limit	Quanners
Batch: 8B04111 Extracted: 02/04/0	<u> </u>										
Matrix Spike Analyzed: 02/07/2008 (8B	804111-MS1)				Sou	rce: IRA	3018-06				
Chrysene	85.3	48	12	ug/l	95.2	ND	90	65-120			
Dibenz(a,h)anthracene	71.9	95	14	ug/l	95.2	ND	76	45-135			J
Dibenzofuran	89.2	48	19	ug/l	95.2	ND	94	65-120			
Di-n-butyl phthalate	80.5	95	14	ug/l	95.2	ND	84	60-125			J
1,3-Dichlorobenzene	71.9	48	14	ug/l	95.2	ND	76	35-120			
1,4-Dichlorobenzene	181	48	12	ug/l	95.2	ND	190	35-120			M1
1,2-Dichlorobenzene	139	48	14	ug/l	95.2	65.3	78	40-120			
3,3-Dichlorobenzidine	ND	95	14	ug/l	95.2	ND		45-135			M2
2,4-Dichlorophenol	81.7	48	17	ug/l	95.2	ND	86	55-120			
Diethyl phthalate	89.8	48	17	ug/l	95.2	ND	94	55-120			
2,4-Dimethylphenol	83.3	95	17	ug/l	95.2	ND	87	40-120			J
Dimethyl phthalate	93.8	48	9.5	ug/l	95.2	ND	98	30-120			
4,6-Dinitro-2-methylphenol	121	95	19	ug/l	95.2	ND	128	45-120			M1
2,4-Dinitrophenol	112	95	38	ug/l	95.2	ND	118	40-120			
2,4-Dinitrotoluene	81.5	48	17	ug/l	95.2	ND	86	65-120			
2,6-Dinitrotoluene	81.5	48	9.5	ug/l	95.2	ND	86	65-120			
Di-n-octyl phthalate	87.2	95	17	ug/l	95.2	ND	92	65-135			J
Fluoranthene	82.8	48	14	ug/l	95.2	ND	87	60-120			
Fluorene	93.2	48	14	ug/l	95.2	ND	98	65-120			
Hexachlorobenzene	70.5	48	14	ug/l	95.2	ND	74	60-120			
Hexachlorobutadiene	73.3	48	19	ug/l	95.2	ND	77	40-120			
Hexachlorocyclopentadiene	67.8	95	24	ug/l	95.2	ND	71	25-120			J
Hexachloroethane	68.9	48	17	ug/l	95.2	ND	72	35-120			
Indeno(1,2,3-cd)pyrene	71.6	95	17	ug/l	95.2	ND	75	40-135			J
Isophorone	49.0	48	12	ug/l	95.2	ND	52	50-120			
2-Methylnaphthalene	86.2	48	9.5	ug/l	95.2	ND	90	55-120			
2-Methylphenol	84.3	48	14	ug/l	95.2	ND	88	50-120			
4-Methylphenol	75.9	48	14	ug/l	95.2	ND	80	50-120			
Naphthalene	82.8	48	14	ug/l	95.2	ND	87	55-120			
2-Nitroaniline	91.7	95	9.5	ug/l	95.2	ND	96	65-120			J
3-Nitroaniline	27.3	95	14	ug/l	95.2	ND	29	60-120			M2, J
4-Nitroaniline	51.6	95	19	ug/l	95.2	ND	54	55-125			M2, J
Nitrobenzene	80.4	95	12	ug/l	95.2	ND	84	55-120			J
2-Nitrophenol	75.0	48	17	ug/l	95.2	ND	79	50-120			
4-Nitrophenol	110	95	26	ug/l	95.2	ND	115	45-120			

TestAmerica Irvine

%REC

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 009

Report Number: IRB0152

Reporting

Sampled: 02/03/08 Received: 02/03/08

RPD

Data

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Spike

Source

		Keporung			Spike	Source		OKEC		KI D	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04111 Extracted: 02/04	1/08										
Matrix Spike Analyzed: 02/07/2008 (8B04111-MS1)				Sou	rce: IRA	3018-06				
N-Nitrosodiphenylamine	78.2	48	9.5	ug/l	95.2	ND	82	60-120			
N-Nitroso-di-n-propylamine	ND	48	17	ug/l	95.2	ND		45-120			M2
Pentachlorophenol	81.0	95	17	ug/l	95.2	ND	85	50-120			J
Phenanthrene	84.2	48	17	ug/l	95.2	ND	88	65-120			
Phenol	79.1	48	9.5	ug/l	95.2	ND	83	40-120			
Pyrene	100	48	19	ug/l	95.2	ND	105	55-125			
1,2,4-Trichlorobenzene	197	48	12	ug/l	95.2	130	71	45-120			
2,4,5-Trichlorophenol	88.3	95	14	ug/l	95.2	ND	93	55-120			J
2,4,6-Trichlorophenol	88.8	95	21	ug/l	95.2	ND	93	55-120			J
1,2-Diphenylhydrazine/Azobenzene	ND	95	12	ug/l	95.2	ND		60-120			M2
N-Nitrosodimethylamine	ND	95	12	ug/l	95.2	ND		45-120			M2
Surrogate: 2-Fluorophenol	148			ug/l	190		77	30-120			
Surrogate: Phenol-d6	150			ug/l	190		78	35-120			
Surrogate: 2,4,6-Tribromophenol	147			ug/l	190		77	40-120			
Surrogate: Nitrobenzene-d5	74.0			ug/l	95.2		78	45-120			
Surrogate: 2-Fluorobiphenyl	80.5			ug/l	95.2		84	50-120			
Surrogate: Terphenyl-d14	92.3			ug/l	95.2		97	50-125			
Matrix Spike Dup Analyzed: 02/07/2	008 (8B04111-N	(ISD1)			Sou	rce: IRA	3018-06				
Acenaphthene	91.1	48	14	ug/l	95.2	ND	96	60-120	3	25	
Acenaphthylene	53.7	48	14	ug/l	95.2	ND	56	60-120	27	25	M2, R-3
Aniline	49.4	48	12	ug/l	95.2	ND	52	35-120	8	30	
Anthracene	82.0	48	9.5	ug/l	95.2	ND	86	65-120	3	25	
Benzidine	ND	95	40	ug/l	95.2	ND		30-160		35	M2
Benzoic acid	104	95	48	ug/l	95.2	ND	110	25-125	3	30	
Benzo(a)anthracene	83.4	48	9.5	ug/l	95.2	ND	88	65-120	7	20	
Benzo(b)fluoranthene	79.0	48	9.5	ug/l	95.2	ND	83	55-125	5	25	
Benzo(k)fluoranthene	87.0	48	12	ug/l	95.2	ND	91	55-125	9	30	
Benzo(g,h,i)perylene	65.9	48	19	ug/l	95.2	ND	69	45-135	4	30	
Benzo(a)pyrene	85.2	48	9.5	ug/l	95.2	ND	90	55-130	6	25	
Benzyl alcohol	36.6	95	12	ug/l	95.2	ND	38	40-120	5	30	M2, J
Bis(2-chloroethoxy)methane	70.4	48	14	ug/l	95.2	ND	74	50-120	8	25	
Bis(2-chloroethyl)ether	68.1	48	14	ug/l	95.2	ND	72	50-120	44	25	R
Bis(2-chloroisopropyl)ether	83.1	48	12	ug/l	95.2	ND	87	45-120	4	25	
Bis(2-ethylhexyl)phthalate	86.8	240	19	ug/l	95.2	ND	91	65-130	5	25	J
4-Bromophenyl phenyl ether	69.8	48	14	ug/l	95.2	ND	73	60-120	7	25	

TestAmerica Irvine

%REC

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 009

Report Number: IRB0152

Reporting

Sampled: 02/03/08

Received: 02/03/08

RPD

Data

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Spike

Source

		Keporting			Spike	Source		OKEC		KI D	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04111 Extracted: 02/0	04/08										
Matrix Spike Dup Analyzed: 02/07/	/2008 (8B04111-M	ISD1)			Sou	rce: IRA	3018-06				
Butyl benzyl phthalate	90.5	95	19	ug/l	95.2	ND	95	55-130	2	25	J
4-Chloroaniline	39.1	48	9.5	ug/l	95.2	ND	41	55-120	66	25	M2, R-3, J
2-Chloronaphthalene	78.2	48	14	ug/l	95.2	ND	82	60-120	6	20	
4-Chloro-3-methylphenol	82.4	95	12	ug/l	95.2	ND	86	60-120	2	25	J
2-Chlorophenol	69.2	48	14	ug/l	95.2	ND	73	45-120	11	25	
4-Chlorophenyl phenyl ether	84.3	48	12	ug/l	95.2	ND	88	65-120	9	25	
Chrysene	83.3	48	12	ug/l	95.2	ND	87	65-120	2	25	
Dibenz(a,h)anthracene	69.2	95	14	ug/l	95.2	ND	73	45-135	4	30	J
Dibenzofuran	82.9	48	19	ug/l	95.2	ND	87	65-120	7	25	
Di-n-butyl phthalate	77.4	95	14	ug/l	95.2	ND	81	60-125	4	25	J
1,3-Dichlorobenzene	64.5	48	14	ug/l	95.2	ND	68	35-120	11	25	
1,4-Dichlorobenzene	168	48	12	ug/l	95.2	ND	177	35-120	7	25	MI
1,2-Dichlorobenzene	123	48	14	ug/l	95.2	65.3	61	40-120	12	25	
3,3-Dichlorobenzidine	ND	95	14	ug/l	95.2	ND		45-135		25	M2
2,4-Dichlorophenol	76.4	48	17	ug/l	95.2	ND	80	55-120	7	25	
Diethyl phthalate	85.0	48	17	ug/l	95.2	ND	89	55-120	6	30	
2,4-Dimethylphenol	75.8	95	17	ug/l	95.2	ND	80	40-120	9	25	J
Dimethyl phthalate	87.5	48	9.5	ug/l	95.2	ND	92	30-120	7	30	
4,6-Dinitro-2-methylphenol	112	95	19	ug/l	95.2	ND	118	45-120	8	25	
2,4-Dinitrophenol	91.4	95	38	ug/l	95.2	ND	96	40-120	20	25	J
2,4-Dinitrotoluene	69.1	48	17	ug/l	95.2	ND	73	65-120	16	25	
2,6-Dinitrotoluene	77.2	48	9.5	ug/l	95.2	ND	81	65-120	5	20	
Di-n-octyl phthalate	81.3	95	17	ug/l	95.2	ND	85	65-135	7	20	J
Fluoranthene	79.0	48	14	ug/l	95.2	ND	83	60-120	5	25	
Fluorene	88.1	48	14	ug/l	95.2	ND	92	65-120	6	25	
Hexachlorobenzene	69.5	48	14	ug/l	95.2	ND	73	60-120	1	25	
Hexachlorobutadiene	66.5	48	19	ug/l	95.2	ND	70	40-120	10	25	
Hexachlorocyclopentadiene	41.9	95	24	ug/l	95.2	ND	44	25-120	47	30	R, J
Hexachloroethane	58.5	48	17	ug/l	95.2	ND	61	35-120	16	25	
Indeno(1,2,3-cd)pyrene	67.4	95	17	ug/l	95.2	ND	71	40-135	6	30	J
Isophorone	50.0	48	12	ug/l	95.2	ND	52	50-120	2	25	
2-Methylnaphthalene	79.4	48	9.5	ug/l	95.2	ND	83	55-120	8	20	
2-Methylphenol	73.3	48	14	ug/l	95.2	ND	77	50-120	14	25	
4-Methylphenol	70.0	48	14	ug/l	95.2	ND	74	50-120	8	25	
Naphthalene	82.0	48	14	ug/l	95.2	ND	86	55-120	1	25	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 009

Sampled: 02/03/08

Report Number: IRB0152 Received: 02/03/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04111 Extracted: 02/04/0	08										
Matrix Spike Dup Analyzed: 02/07/200	08 (8B04111-M	(SD1)			Sou	rce: IRA	3018-06				
2-Nitroaniline	85.6	95	9.5	ug/l	95.2	ND	90	65-120	7	25	J
3-Nitroaniline	18.4	95	14	ug/l	95.2	ND	19	60-120	39	25	M2, R-3, J
4-Nitroaniline	31.6	95	19	ug/l	95.2	ND	33	55-125	48	25	M2, R-3, J
Nitrobenzene	80.5	95	12	ug/l	95.2	ND	84	55-120	0	25	J
2-Nitrophenol	72.8	48	17	ug/l	95.2	ND	76	50-120	3	25	
4-Nitrophenol	134	95	26	ug/l	95.2	ND	141	45-120	20	30	M1
N-Nitrosodiphenylamine	60.8	48	9.5	ug/l	95.2	ND	64	60-120	25	25	
N-Nitroso-di-n-propylamine	ND	48	17	ug/l	95.2	ND		45-120		25	M2
Pentachlorophenol	76.7	95	17	ug/l	95.2	ND	80	50-120	5	25	J
Phenanthrene	79.1	48	17	ug/l	95.2	ND	83	65-120	6	25	
Phenol	69.3	48	9.5	ug/l	95.2	ND	73	40-120	13	25	
Pyrene	96.9	48	19	ug/l	95.2	ND	102	55-125	3	25	
1,2,4-Trichlorobenzene	182	48	12	ug/l	95.2	130	55	45-120	8	20	
2,4,5-Trichlorophenol	75.5	95	14	ug/l	95.2	ND	79	55-120	16	30	J
2,4,6-Trichlorophenol	80.5	95	21	ug/l	95.2	ND	84	55-120	10	30	J
1,2-Diphenylhydrazine/Azobenzene	ND	95	12	ug/l	95.2	ND		60-120		25	M2
N-Nitrosodimethylamine	ND	95	12	ug/l	95.2	ND		45-120		25	M2
Surrogate: 2-Fluorophenol	138			ug/l	190		72	30-120			
Surrogate: Phenol-d6	132			ug/l	190		70	35-120			
Surrogate: 2,4,6-Tribromophenol	134			ug/l	190		70	40-120			
Surrogate: Nitrobenzene-d5	72.5			ug/l	95.2		76	45-120			
Surrogate: 2-Fluorobiphenyl	77.3			ug/l	95.2		81	50-120			
Surrogate: Terphenyl-d14	86.6			ug/l	95.2		91	50-125			

%REC

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Sampled: 02/03/08

Report Number: IRB0152

Reporting

Received: 02/03/08

RPD

Data

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Spike

Source

		Keporting			Spike	Source		OKEC		KI D	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B05099 Extracted: 02/05	/08										
Blank Analyzed: 02/06/2008 (8B05099	9-BLK1)										
Aldrin	ND	0.0050	0.0015	ug/l							
alpha-BHC	ND	0.0050	0.0025	ug/l							
beta-BHC	ND	0.010	0.0040	ug/l							
delta-BHC	ND	0.0050	0.0035	ug/l							
gamma-BHC (Lindane)	ND	0.010	0.0030	ug/l							
Chlordane	ND	0.10	0.030	ug/l							
4,4'-DDD	ND	0.0050	0.0020	ug/l							
4,4'-DDE	ND	0.0050	0.0030	ug/l							
4,4'-DDT	ND	0.010	0.0040	ug/l							
Dieldrin	ND	0.0050	0.0020	ug/l							
Endosulfan I	ND	0.0050	0.0020	ug/l							
Endosulfan II	ND	0.0050	0.0030	ug/l							
Endosulfan sulfate	ND	0.010	0.0030	ug/l							
Endrin	ND	0.0050	0.0020	ug/l							
Endrin aldehyde	ND	0.010	0.0020	ug/l							
Endrin ketone	ND	0.010	0.0030	ug/l							
Heptachlor	ND	0.010	0.0030	ug/l							
Heptachlor epoxide	ND	0.0050	0.0025	ug/l							
Methoxychlor	ND	0.0050	0.0035	ug/l							
Toxaphene	ND	0.10	0.070	ug/l							
Surrogate: Decachlorobiphenyl	0.419			ug/l	0.500		84	45-120			
Surrogate: Tetrachloro-m-xylene	0.419			ug/l	0.500		84	35-115			
LCS Analyzed: 02/07/2008 (8B05099-	BS1)										MNR1
Aldrin	0.417	0.0050	0.0015	ug/l	0.500		83	40-115			
alpha-BHC	0.404	0.0050	0.0025	ug/l	0.500		81	45-115			
beta-BHC	0.419	0.010	0.0040	ug/l	0.500		84	55-115			
delta-BHC	0.453	0.0050	0.0035	ug/l	0.500		91	55-115			
gamma-BHC (Lindane)	0.433	0.010	0.0030	ug/l	0.500		87	45-115			
4,4'-DDD	0.496	0.0050	0.0020	ug/l	0.500		99	55-120			
4,4'-DDE	0.488	0.0050	0.0030	ug/l	0.500		98	50-120			
4,4'-DDT	0.491	0.010	0.0040	ug/l	0.500		98	55-120			
Dieldrin	0.455	0.0050	0.0020	ug/l	0.500		91	55-115			
Endosulfan I	0.464	0.0050	0.0020	ug/l	0.500		93	55-115			
Endosulfan II	0.439	0.0050	0.0030	ug/l	0.500		88	55-120			
Endosulfan sulfate	0.506	0.010	0.0030	ug/l	0.500		101	60-120			
Test America Irvine											

TestAmerica Irvine

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 009

Report Number: IRB0152

Sampled: 02/03/08

Received: 02/03/08

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B05099 Extracted: 02/05/08	3										
LCS Analyzed: 02/07/2008 (8B05099-BS	1)										MNR1
Endrin	0.511	0.0050	0.0020	ug/l	0.500		102	55-115			
Endrin aldehyde	0.483	0.010	0.0020	ug/l	0.500		97	50-120			
Endrin ketone	0.520	0.010	0.0030	ug/l	0.500		104	55-120			
Heptachlor	0.406	0.010	0.0030	ug/l	0.500		81	45-115			
Heptachlor epoxide	0.442	0.0050	0.0025	ug/l	0.500		88	55-115			
Methoxychlor	0.508	0.0050	0.0035	ug/l	0.500		102	60-120			
Surrogate: Decachlorobiphenyl	0.436			ug/l	0.500		87	45-120			
Surrogate: Tetrachloro-m-xylene	0.414			ug/l	0.500		83	35-115			
LCS Dup Analyzed: 02/07/2008 (8B0509	9-BSD1)										
Aldrin	0.381	0.0050	0.0015	ug/l	0.500		76	40-115	9	30	
alpha-BHC	0.386	0.0050	0.0025	ug/l	0.500		77	45-115	5	30	
beta-BHC	0.398	0.010	0.0040	ug/l	0.500		80	55-115	5	30	
delta-BHC	0.409	0.0050	0.0035	ug/l	0.500		82	55-115	10	30	
gamma-BHC (Lindane)	0.408	0.010	0.0030	ug/l	0.500		82	45-115	6	30	
4,4'-DDD	0.455	0.0050	0.0020	ug/l	0.500		91	55-120	9	30	
4,4'-DDE	0.444	0.0050	0.0030	ug/l	0.500		89	50-120	9	30	
4,4'-DDT	0.451	0.010	0.0040	ug/l	0.500		90	55-120	9	30	
Dieldrin	0.421	0.0050	0.0020	ug/l	0.500		84	55-115	8	30	
Endosulfan I	0.430	0.0050	0.0020	ug/l	0.500		86	55-115	8	30	
Endosulfan II	0.406	0.0050	0.0030	ug/l	0.500		81	55-120	8	30	
Endosulfan sulfate	0.463	0.010	0.0030	ug/l	0.500		93	60-120	9	30	
Endrin	0.471	0.0050	0.0020	ug/l	0.500		94	55-115	8	30	
Endrin aldehyde	0.442	0.010	0.0020	ug/l	0.500		88	50-120	9	30	
Endrin ketone	0.477	0.010	0.0030	ug/l	0.500		95	55-120	8	30	
Heptachlor	0.373	0.010	0.0030	ug/l	0.500		75	45-115	8	30	
Heptachlor epoxide	0.410	0.0050	0.0025	ug/l	0.500		82	55-115	8	30	
Methoxychlor	0.458	0.0050	0.0035	ug/l	0.500		92	60-120	11	30	
Surrogate: Decachlorobiphenyl	0.403			ug/l	0.500		81	45-120			
Surrogate: Tetrachloro-m-xylene	0.382			ug/l	0.500		76	35-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 009

Sampled: 02/03/08

Report Number: IRB0152 Received: 02/03/08

METHOD BLANK/QC DATA

TOTAL PCBS (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B05099 Extracted: 02/05/08	<u> </u>										
Blank Analyzed: 02/06/2008 (8B05099-B	LK1)										
Aroclor 1016	ND	0.50	0.45	ug/l							
Aroclor 1221	ND	0.50	0.25	ug/l							
Aroclor 1232	ND	0.50	0.25	ug/l							
Aroclor 1242	ND	0.50	0.25	ug/l							
Aroclor 1248	ND	0.50	0.25	ug/l							
Aroclor 1254	ND	0.50	0.25	ug/l							
Aroclor 1260	ND	0.50	0.30	ug/l							
Surrogate: Decachlorobiphenyl	0.420			ug/l	0.500		84	45-120			
LCS Analyzed: 02/06/2008 (8B05099-BS	2)										MNR1
Aroclor 1016	3.28	0.50	0.45	ug/l	4.00		82	50-115			
Aroclor 1260	3.60	0.50	0.30	ug/l	4.00		90	60-120			
Surrogate: Decachlorobiphenyl	0.440			ug/l	0.500		88	45-120			
LCS Dup Analyzed: 02/06/2008 (8B0509	9-BSD2)										
Aroclor 1016	3.13	0.50	0.45	ug/l	4.00		78	50-115	5	30	
Aroclor 1260	3.56	0.50	0.30	ug/l	4.00		89	60-120	1	25	
Surrogate: Decachlorobiphenyl	0.435			ug/l	0.500		87	45-120			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 009

Sampled: 02/03/08

Report Number: IRB0152

Received: 02/03/08

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04079 Extracted: 02/04/08	<u> </u>										
Blank Analyzed: 02/04/2008 (8B04079-B	LK1)										
Aluminum	ND	50	40	ug/l							
Arsenic	ND	10	7.0	ug/l							
Beryllium	ND	2.0	0.90	ug/l							
Boron	ND	0.050	0.020	mg/l							
Calcium	ND	0.10	0.050	mg/l							
Chromium	ND	5.0	2.0	ug/l							
Iron	ND	0.040	0.015	mg/l							
Magnesium	ND	0.020	0.012	mg/l							
Nickel	ND	10	2.0	ug/l							
Selenium	ND	10	8.0	ug/l							
Silver	ND	10	6.0	ug/l							
Vanadium	ND	10	3.0	ug/l							
Zinc	ND	20	6.0	ug/l							
LCS Analyzed: 02/04/2008 (8B04079-BS	1)										
Aluminum	524	50	40	ug/l	500		105	85-115			
Arsenic	504	10	7.0	ug/l	500		101	85-115			
Beryllium	510	2.0	0.90	ug/l	500		102	85-115			
Boron	0.514	0.050	0.020	mg/l	0.500		103	85-115			
Calcium	2.65	0.10	0.050	mg/l	2.50		106	85-115			
Chromium	517	5.0	2.0	ug/l	500		103	85-115			
Iron	0.529	0.040	0.015	mg/l	0.500		106	85-115			
Magnesium	2.63	0.020	0.012	mg/l	2.50		105	85-115			
Nickel	513	10	2.0	ug/l	500		103	85-115			
Selenium	492	10	8.0	ug/l	500		98	85-115			
Silver	262	10	6.0	ug/l	250		105	85-115			
Vanadium	503	10	3.0	ug/l	500		101	85-115			
Zinc	507	20	6.0	ug/l	500		101	85-115			

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 009

Report Number: IRB0152

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04079 Extracted: 02/04/08	}										
	_										
Matrix Spike Analyzed: 02/04/2008 (8B0	4079-MS1)				Sou	rce: IRB(0153-01				
Aluminum	611	50	40	ug/l	500	94.8	103	70-130			
Arsenic	496	10	7.0	ug/l	500	ND	99	70-130			
Beryllium	503	2.0	0.90	ug/l	500	ND	101	70-130			
Boron	0.503	0.050	0.020	mg/l	0.500	ND	101	70-130			
Calcium	53.7	0.10	0.050	mg/l	2.50	52.8	38	70-130			MHA
Chromium	502	5.0	2.0	ug/l	500	2.15	100	70-130			
Iron	0.590	0.040	0.015	mg/l	0.500	0.0952	99	70-130			
Magnesium	9.71	0.020	0.012	mg/l	2.50	7.62	84	70-130			
Nickel	495	10	2.0	ug/l	500	ND	99	70-130			
Selenium	470	10	8.0	ug/l	500	ND	94	70-130			
Silver	256	10	6.0	ug/l	250	ND	103	70-130			
Vanadium	487	10	3.0	ug/l	500	ND	97	70-130			
Zinc	496	20	6.0	ug/l	500	9.15	97	70-130			
Matrix Spike Analyzed: 02/04/2008 (8B0	4079-MS2)				Sou	rce: IRB(0155-01				
Aluminum	1190	50	40	ug/l	500	692	100	70-130			
Arsenic	509	10	7.0	ug/l	500	ND	102	70-130			
Beryllium	515	2.0	0.90	ug/l	500	ND	103	70-130			
Boron	0.503	0.050	0.020	mg/l	0.500	ND	101	70-130			
Calcium	8.02	0.10	0.050	mg/l	2.50	5.65	95	70-130			
Chromium	522	5.0	2.0	ug/l	500	ND	104	70-130			
Iron	0.872	0.040	0.015	mg/l	0.500	0.382	98	70-130			
Magnesium	3.33	0.020	0.012	mg/l	2.50	0.768	102	70-130			
Nickel	515	10	2.0	ug/l	500	ND	103	70-130			
Selenium	487	10	8.0	ug/l	500	ND	97	70-130			
Silver	260	10	6.0	ug/l	250	ND	104	70-130			
Vanadium	501	10	3.0	ug/l	500	ND	100	70-130			
Zinc	538	20	6.0	ug/l	500	32.2	101	70-130			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 009

Sampled: 02/03/08

%REC

RPD

Data

Report Number: IRB0152 Received: 02/03/08

Source

METHOD BLANK/QC DATA

METALS

Snike

Reporting

		Reporting			Spike	Source		%REC		KPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04079 Extracted: 02/04	1/08										
Matrix Spike Dup Analyzed: 02/04/2	008 (8B04079-M	ISD1)			Sou	rce: IRB	0153-01				
Aluminum	600	50	40	ug/l	500	94.8	101	70-130	2	20	
Arsenic	506	10	7.0	ug/l	500	ND	101	70-130	2	20	
Beryllium	516	2.0	0.90	ug/l	500	ND	103	70-130	3	20	
Boron	0.499	0.050	0.020	mg/l	0.500	ND	100	70-130	1	20	
Calcium	53.2	0.10	0.050	mg/l	2.50	52.8	19	70-130	1	20	MHA
Chromium	512	5.0	2.0	ug/l	500	2.15	102	70-130	2	20	
Iron	0.596	0.040	0.015	mg/l	0.500	0.0952	100	70-130	1	20	
Magnesium	9.64	0.020	0.012	mg/l	2.50	7.62	81	70-130	1	20	
Nickel	507	10	2.0	ug/l	500	ND	101	70-130	2	20	
Selenium	491	10	8.0	ug/l	500	ND	98	70-130	4	20	
Silver	256	10	6.0	ug/l	250	ND	102	70-130	0	20	
Vanadium	497	10	3.0	ug/l	500	ND	99	70-130	2	20	
Zinc	513	20	6.0	ug/l	500	9.15	101	70-130	3	20	
Batch: 8B04080 Extracted: 02/04	1/08										
Blank Analyzed: 02/04/2008-02/05/20	008 (8B04080-BI	LK1)									
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Thallium	ND	1.0	0.20	ug/l							
LCS Analyzed: 02/04/2008-02/05/200	8 (8B04080-BS1	a)									
Antimony	84.2	2.0	0.20	ug/l	80.0		105	85-115			
Cadmium	83.7	1.0	0.11	ug/l	80.0		105	85-115			
Copper	83.0	2.0	0.75	ug/l	80.0		104	85-115			
Lead	83.3	1.0	0.30	ug/l	80.0		104	85-115			
Thallium	83.4	1.0	0.20	ug/l	80.0		104	85-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 009

Sampled: 02/03/08

Received: 02/03/08

Report Number: IRB0152

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04080 Extracted: 02/04/08	<u> </u>										
N	= /2000 (OD0 4)	000 MG(1)			C	IDD/	150.01				
Matrix Spike Analyzed: 02/04/2008-02/0	`	,			Sou	rce: IRB(
Antimony	82.0	2.0	0.20	ug/l	80.0	0.423	102	70-130			
Cadmium	80.7	1.0	0.11	ug/l	80.0	0.208	101	70-130			
Copper	78.5	2.0	0.75	ug/l	80.0	1.69	96	70-130			
Lead	76.9	1.0	0.30	ug/l	80.0	0.512	96	70-130			
Thallium	79.0	1.0	0.20	ug/l	80.0	ND	99	70-130			
Matrix Spike Analyzed: 02/04/2008-02/0	5/2008 (8B04	080-MS2)			Sou	rce: IRB(152-01				
Antimony	80.5	2.0	0.20	ug/l	80.0	1.58	99	70-130			
Cadmium	79.1	1.0	0.11	ug/l	80.0	0.164	99	70-130			
Copper	82.5	2.0	0.75	ug/l	80.0	4.75	97	70-130			
Lead	84.1	1.0	0.30	ug/l	80.0	6.01	98	70-130			
Thallium	80.7	1.0	0.20	ug/l	80.0	ND	101	70-130			
Matrix Spike Dup Analyzed: 02/04/2008	-02/05/2008 (8	8B04080-MS	D1)		Sou	rce: IRB(150-01				
Antimony	83.6	2.0	0.20	ug/l	80.0	0.423	104	70-130	2	20	
Cadmium	81.2	1.0	0.11	ug/l	80.0	0.208	101	70-130	1	20	
Copper	79.1	2.0	0.75	ug/l	80.0	1.69	97	70-130	1	20	
Lead	78.6	1.0	0.30	ug/l	80.0	0.512	98	70-130	2	20	
Thallium	80.1	1.0	0.20	ug/l	80.0	ND	100	70-130	1	20	

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 009

Sampled: 02/03/08

Report Number: IRB0152 Received: 02/03/08

METHOD BLANK/QC DATA

DISSOLVED METALS

	_	Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04144 Extracted: 02/04/08	-										
Blank Analyzed: 02/05/2008 (8B04144-Bl	LK1)										
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Thallium	ND	1.0	0.20	ug/l							
LCS Analyzed: 02/05/2008 (8B04144-BS1)										
Antimony	84.8	2.0	0.20	ug/l	80.0		106	85-115			
Cadmium	82.9	1.0	0.11	ug/l	80.0		104	85-115			
Copper	80.0	2.0	0.75	ug/l	80.0		100	85-115			
Lead	80.0	1.0	0.30	ug/l	80.0		100	85-115			
Thallium	82.5	1.0	0.20	ug/l	80.0		103	85-115			
Matrix Spike Analyzed: 02/05/2008 (8B0-	4144-MS1)				Sou	rce: IRB(0073-01				
Antimony	84.0	2.0	0.20	ug/l	80.0	0.305	105	70-130			
Cadmium	84.5	1.0	0.11	ug/l	80.0	0.221	105	70-130			
Copper	77.7	2.0	0.75	ug/l	80.0	1.70	95	70-130			
Lead	74.3	1.0	0.30	ug/l	80.0	ND	93	70-130			
Thallium	76.6	1.0	0.20	ug/l	80.0	ND	96	70-130			
Matrix Spike Dup Analyzed: 02/05/2008	(8B04144-M	SD1)			Sou	rce: IRB(0073-01				
Antimony	83.1	2.0	0.20	ug/l	80.0	0.305	103	70-130	1	20	
Cadmium	84.2	1.0	0.11	ug/l	80.0	0.221	105	70-130	0	20	
Copper	79.5	2.0	0.75	ug/l	80.0	1.70	97	70-130	2	20	
Lead	74.4	1.0	0.30	ug/l	80.0	ND	93	70-130	0	20	
Thallium	76.2	1.0	0.20	ug/l	80.0	ND	95	70-130	0	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 009

Sampled: 02/03/08

Report Number: IRB0152 Received: 02/03/08

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B05111 Extracted: 02/05/08	}										
	_										
Blank Analyzed: 02/06/2008 (8B05111-B	SLK1)										
Aluminum	ND	50	40	ug/l							
Arsenic	ND	10	7.0	ug/l							
Beryllium	ND	2.0	0.90	ug/l							
Boron	ND	0.050	0.020	mg/l							
Calcium	ND	0.10	0.050	mg/l							
Chromium	ND	5.0	2.0	ug/l							
Iron	ND	0.040	0.015	mg/l							
Magnesium	ND	0.020	0.012	mg/l							
Nickel	ND	10	2.0	ug/l							
Selenium	ND	10	8.0	ug/l							
Hardness (as CaCO3)	ND	1.0	1.0	mg/l							
Silver	ND	10	6.0	ug/l							
Vanadium	ND	10	3.0	ug/l							
Zinc	ND	20	6.0	ug/l							
LCS Analyzed: 02/06/2008 (8B05111-BS	1)										
Aluminum	563	50	40	ug/l	500		113	85-115			
Arsenic	525	10	7.0	ug/l	500		105	85-115			
Beryllium	519	2.0	0.90	ug/l	500		104	85-115			
Boron	0.520	0.050	0.020	mg/l	0.500		104	85-115			
Calcium	2.67	0.10	0.050	mg/l	2.50		107	85-115			
Chromium	512	5.0	2.0	ug/l	500		102	85-115			
Iron	0.526	0.040	0.015	mg/l	0.500		105	85-115			
Magnesium	2.60	0.020	0.012	mg/l	2.50		104	85-115			
Nickel	515	10	2.0	ug/l	500		103	85-115			
Selenium	491	10	8.0	ug/l	500		98	85-115			
Silver	256	10	6.0	ug/l	250		102	85-115			
Vanadium	509	10	3.0	ug/l	500		102	85-115			
Zinc	509	20	6.0	ug/l	500		102	85-115			

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 009

- ... t IDD0150

Report Number: IRB0152

Sampled: 02/03/08

Received: 02/03/08

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•		Limit	WIDE	Cints	Level	Result	70KEC	Limits	KI D	Limit	Quanners
Batch: 8B05111 Extracted: 02/05/08	<u>-</u>										
Matrix Spike Analyzed: 02/06/2008 (8B0	5111-MS1)				Sou	rce: IRB	0073-01				
Aluminum	564	50	40	ug/l	500	62.5	100	70-130			
Arsenic	519	10	7.0	ug/l	500	ND	104	70-130			
Beryllium	513	2.0	0.90	ug/l	500	ND	103	70-130			
Boron	0.549	0.050	0.020	mg/l	0.500	0.0311	104	70-130			
Calcium	58.9	0.10	0.050	mg/l	2.50	55.2	147	70-130			MHA
Chromium	502	5.0	2.0	ug/l	500	ND	100	70-130			
Iron	0.554	0.040	0.015	mg/l	0.500	0.0302	105	70-130			
Magnesium	10.3	0.020	0.012	mg/l	2.50	7.52	112	70-130			
Nickel	514	10	2.0	ug/l	500	11.5	101	70-130			
Selenium	486	10	8.0	ug/l	500	ND	97	70-130			
Silver	257	10	6.0	ug/l	250	ND	103	70-130			
Vanadium	507	10	3.0	ug/l	500	ND	101	70-130			
Zinc	509	20	6.0	ug/l	500	11.6	99	70-130			
Matrix Spike Dup Analyzed: 02/06/2008	(8B05111-M	SD1)			Sou	rce: IRB	0073-01				
Aluminum	587	50	40	ug/l	500	62.5	105	70-130	4	20	
Arsenic	541	10	7.0	ug/l	500	ND	108	70-130	4	20	
Beryllium	518	2.0	0.90	ug/l	500	ND	104	70-130	1	20	
Boron	0.554	0.050	0.020	mg/l	0.500	0.0311	105	70-130	1	20	
Calcium	58.4	0.10	0.050	mg/l	2.50	55.2	125	70-130	1	20	MHA
Chromium	517	5.0	2.0	ug/l	500	ND	103	70-130	3	20	
Iron	0.565	0.040	0.015	mg/l	0.500	0.0302	107	70-130	2	20	
Magnesium	10.3	0.020	0.012	mg/l	2.50	7.52	112	70-130	0	20	
Nickel	530	10	2.0	ug/l	500	11.5	104	70-130	3	20	
Selenium	503	10	8.0	ug/l	500	ND	101	70-130	3	20	
Silver	262	10	6.0	ug/l	250	ND	105	70-130	2	20	
Vanadium	518	10	3.0	ug/l	500	ND	104	70-130	2	20	
Zinc	528	20	6.0	ug/l	500	11.6	103	70-130	4	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 009

Report Number: IRB0152

Sampled: 02/03/08

Received: 02/03/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04043 Extracted: 02/04/08											
	-										
Blank Analyzed: 02/04/2008 (8B04043-B	LK1)										
Chloride	ND	0.50	0.25	mg/l							
Fluoride	ND	0.50	0.15	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Sulfate	ND	0.50	0.20	mg/l							
LCS Analyzed: 02/04/2008 (8B04043-BS)	1)										
Chloride	5.33	0.50	0.25	mg/l	5.00		107	90-110			
Fluoride	5.14	0.50	0.15	mg/l	5.00		103	90-110			
Sulfate	10.6	0.50	0.20	mg/l	10.0		106	90-110			M-3
Matrix Spike Analyzed: 02/04/2008 (8B0-	4043-MS1)				Sou	rce: IRB	0146-01				
Chloride	27.0	0.50	0.25	mg/l	5.00	21.6	109	80-120			
Fluoride	5.30	0.50	0.15	mg/l	5.00	0.288	100	80-120			
Matrix Spike Analyzed: 02/04/2008 (8B0	4043-MS2)				Sou	rce: IRB	0156-01				
Chloride	27.7	0.50	0.25	mg/l	5.00	22.9	96	80-120			
Fluoride	5.01	0.50	0.15	mg/l	5.00	0.306	94	80-120			
Matrix Spike Dup Analyzed: 02/04/2008	(8B04043-M	SD1)			Sou	rce: IRB	0146-01				
Chloride	27.2	0.50	0.25	mg/l	5.00	21.6	112	80-120	1	20	
Fluoride	5.46	0.50	0.15	mg/l	5.00	0.288	103	80-120	3	20	
Batch: 8B04112 Extracted: 02/04/08	_										
Blank Analyzed: 02/04/2008 (8B04112-B)	LK1)										
Total Cyanide	ND	5.0	2.2	ug/l							

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 009

Sampled: 02/03/08

Report Number: IRB0152 Received: 02/03/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04112 Extracted: 02/04/08	<u>.</u>										
LCS Analyzed: 02/04/2008 (8B04112-BS)	D										
Total Cyanide	184	5.0	2.2	ug/l	200		92	90-110			
Matrix Spike Analyzed: 02/04/2008 (8B0-	4112-MS1)				Sou	rce: IRA	3072-06				
Total Cyanide	189	5.0	2.2	ug/l	200	ND	94	70-115			
Matrix Spike Dup Analyzed: 02/04/2008	(8B04112-MS	SD1)			Sou	rce: IRA	3072-06				
Total Cyanide	189	5.0	2.2	ug/l	200	ND	95	70-115	0	15	
Batch: 8B05134 Extracted: 02/05/08	-										
Blank Analyzed: 02/05/2008 (8B05134-B	LK1)										
Total Suspended Solids	ND	10	10	mg/l							
LCS Analyzed: 02/05/2008 (8B05134-BS)	1)										
Total Suspended Solids	967	10	10	mg/l	1000		97	85-115			
Duplicate Analyzed: 02/05/2008 (8B0513-	4-DUP1)				Sou	rce: IRB(193-02				
Total Suspended Solids	ND	10	10	mg/l		ND				10	
Batch: 8B07122 Extracted: 02/07/08	_										
Blank Analyzed: 02/07/2008 (8B07122-B	LK1)										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 02/07/2008 (8B07122-BS)	1)										
Total Dissolved Solids	990	10	10	mg/l	1000		99	90-110			

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 009

Sampled: 02/03/08

Report Number: IRB0152 Received: 02/03/08

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B07122 Extracted: 02/07/08											
	_										
Duplicate Analyzed: 02/07/2008 (8B0712	2-DUP1)				Sou	rce: IRB	0146-01				
Total Dissolved Solids	296	10	10	mg/l		292			1	10	
Batch: 8B12073 Extracted: 02/12/08	<u>.</u>										
Blank Analyzed: 02/12/2008 (8B12073-B	LK1)										
Perchlorate	ND	4.0	1.5	ug/l							
LCS Analyzed: 02/12/2008 (8B12073-BS)	1)										
Perchlorate	55.4	4.0	1.5	ug/l	50.0		111	85-115			
Matrix Spike Analyzed: 02/12/2008 (8B1	2073-MS1)				Sou	rce: IRB	0150-01				
Perchlorate	50.5	4.0	1.5	ug/l	50.0	ND	101	80-120			
Matrix Spike Dup Analyzed: 02/12/2008	(8B12073-M	SD1)			Sou	rce: IRB	0150-01				
Perchlorate	50.8	4.0	1.5	ug/l	50.0	ND	102	80-120	1	20	
Batch: 8B12074 Extracted: 02/12/08	<u>!</u>										
Blank Analyzed: 02/12/2008 (8B12074-B	LK1)										
Hexane Extractable Material (Oil & Grease)	ND	5.0	1.4	mg/l							
LCS Analyzed: 02/12/2008 (8B12074-BS	1)										MNR1
Hexane Extractable Material (Oil & Grease)	20.0	5.0	1.4	mg/l	20.2		99	78-114			
LCS Dup Analyzed: 02/12/2008 (8B1207-	4-BSD1)										
Hexane Extractable Material (Oil & Grease)	18.5	5.0	1.4	mg/l	20.2		92	78-114	8	11	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 009

Sampled: 02/03/08

Report Number: IRB0152

Received: 02/03/08

METHOD BLANK/QC DATA

ORGANIC COMPOUNDS BY GC/MS (EPA 525.2)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: C8B0516 Extracted: 02/05/0	8										
Blank Analyzed: 02/07/2008 (C8B0516-l	BLK1)										
Chlorpyrifos	ND	1.0	0.10	ug/l							
Diazinon	ND	0.25	0.24	ug/l							
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.76			ug/l	5.00		95	70-130			
Surrogate: Triphenylphosphate	5.79			ug/l	5.00		116	70-130			
Surrogate: Perylene-d12	5.00			ug/l	5.00		100	70-130			
LCS Analyzed: 02/07/2008 (C8B0516-B	S1)										
Chlorpyrifos	5.48	1.0	0.10	ug/l	5.00		110	70-130			
Diazinon	3.82	0.25	0.24	ug/l	5.00		76	70-130			
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.66			ug/l	5.00		93	70-130			
Surrogate: Triphenylphosphate	5.66			ug/l	5.00		113	70-130			
Surrogate: Perylene-d12	4.87			ug/l	5.00		97	70-130			
LCS Dup Analyzed: 02/07/2008 (C8B05	16-BSD1)										
Chlorpyrifos	4.90	1.0	0.10	ug/l	5.00		98	70-130	11	10	R-7
Diazinon	3.82	0.25	0.24	ug/l	5.00		76	70-130	0	50	
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.50			ug/l	5.00		90	70-130			
Surrogate: Triphenylphosphate	5.52			ug/l	5.00		110	70-130			
Surrogate: Perylene-d12	4.79			ug/l	5.00		96	70-130			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 009

Sampled: 02/03/08

Report Number: IRB0152

Received: 02/03/08

METHOD BLANK/QC DATA

Metals by EPA 200 Series Methods

		Reporting	MDI	T T •4	Spike	Source	A/DEC	%REC	DDD	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: W8B0147 Extracted: 02/05/0	8										
DI 1 1 1 1 02/05/2000 (N/OD0145	DI 174\										
Blank Analyzed: 02/07/2008 (W8B0147-	,										
Mercury, Dissolved	ND	0.20	0.050	ug/l							
Mercury, Total	ND	0.20	0.050	ug/l							
LCS Analyzed: 02/07/2008 (W8B0147-B	S1)										
Mercury, Dissolved	1.04	0.20	0.050	ug/l	1.00		104	85-115			
Mercury, Total	1.04	0.20	0.050	ug/l	1.00		104	85-115			
Matrix Spike Analyzed: 02/07/2008 (W8	B0147-MS1)		Source: 8020444-01								
Mercury, Dissolved	1.04	0.20	0.050	ug/l	1.00	ND	104	70-130			
Mercury, Total	1.04	0.20	0.050	ug/l	1.00	ND	104	70-130			
Matrix Spike Analyzed: 02/07/2008 (W8	B0147-MS2)				Sou	rce: 8020	445-01				
Mercury, Dissolved	1.04	0.20	0.050	ug/l	1.00	ND	104	70-130			
Mercury, Total	1.04	0.20	0.050	ug/l	1.00	ND	104	70-130			
Matrix Spike Dup Analyzed: 02/07/2008	(W8B0147-M	SD1)			Sou	rce: 8020	444-01				
Mercury, Dissolved	1.05	0.20	0.050	ug/l	1.00	ND	105	70-130	1	20	
Mercury, Total	1.05	0.20	0.050	ug/l	1.00	ND	105	70-130	1	20	
Matrix Spike Dup Analyzed: 02/07/2008	(W8B0147-M	SD2)			Sou	rce: 8020	445-01				
Mercury, Dissolved	1.06	0.20	0.050	ug/l	1.00	ND	106	70-130	2	20	
Mercury, Total	1.06	0.20	0.050	ug/l	1.00	ND	106	70-130	2	20	
•				_							

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 009

Sampled: 02/03/08 Received: 02/03/08

Report Number: IRB0152

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
IRB0152-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	0.86	4.8	15
IRB0152-01	Antimony-200.8	Antimony	ug/l	1.58	2.0	6
IRB0152-01	Boron-200.7	Boron	mg/l	0.038	0.050	1
IRB0152-01	Cadmium-200.8	Cadmium	ug/l	0.16	1.0	4
IRB0152-01	Chloride - 300.0	Chloride	mg/l	6.97	0.50	150
IRB0152-01	Copper-200.8	Copper	ug/l	4.75	2.0	14
IRB0152-01	Fluoride-300.0	Fluoride	mg/l	0.21	0.50	1.6
IRB0152-01	Hg_w 245.1	Mercury, Total	ug/l	0.030	0.20	0.2
IRB0152-01	Lead-200.8	Lead	ug/l	6.01	1.0	5.2
IRB0152-01	Nickel-200.7	Nickel	ug/l	2.63	10	100
IRB0152-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	3.30	0.26	10
IRB0152-01	Perchlorate 314.0-DEFAULT	Perchlorate	ug/l	0	4.0	6
IRB0152-01	Sulfate-300.0	Sulfate	mg/l	11	0.50	250
IRB0152-01	TDS - SM 2540C	Total Dissolved Solids	mg/l	109	10	850
IRB0152-01	Thallium-200.8	Thallium	ug/l	0.12	1.0	2

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 009

618 Michillinda Avenue, Suite 200 Sampled: 02/03/08

Arcadia, CA 91007 Report Number: IRB0152 Received: 02/03/08

Attention: Bronwyn Kelly

DATA QUALIFIERS AND DEFINITIONS

J	ſ	Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the
		Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
T	6	Per the EPA methods, henzidine is known to be subject to avidative losses during solvent concentration

M1 The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).

M2 The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).

M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was

accepted based on acceptable recovery in the Blank Spike (LCS).

MHA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information. See Blank Spike (LCS).

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

P The sample, as received, was not preserved in accordance to the referenced analytical method.

pH = 7

R-3

R The RPD exceeded the method control limit due to sample matrix effects. The individual analyte QA/QC recoveries,

however, were within acceptance limits.

The RPD exceeded the acceptance limit due to sample matrix effects.

R-7 LFB/LFBD RPD exceeded the acceptance limit. Recovery met acceptance criteria.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

ADDITIONAL COMMENTS

For 1,2-Diphenylhydrazine:

The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 009

Sampled: 02/03/08

Report Number: IRB0152 Received: 02/03/08

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EPA 160.2	Water	X	X
EPA 1664A	Water		
EPA 200.7-Diss	Water	X	X
EPA 200.7	Water	X	X
EPA 200.8-Diss	Water	X	X
EPA 200.8	Water	X	X
EPA 300.0	Water	X	X
EPA 314.0	Water	X	X
EPA 335.2	Water	X	X
EPA 608	Water	X	X
EPA 624	Water	X	X
EPA 625	Water	X	X
SM2340B	Water	X	X
SM2540C	Water	X	

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-Acute 96hr

Samples: IRB0152-01

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 009

618 Michillinda Avenue, Suite 200 Sampled: 02/03/08

Arcadia, CA 91007 Report Number: IRB0152 Received: 02/03/08
Attention: Bronwyn Kelly

Eberline Services

2030 Wright Avenue - Richmond, CA 94804 Analysis Performed: Gamma Spec

Samples: IRB0152-01

Analysis Performed: Gross Alpha

Samples: IRB0152-01

Analysis Performed: Gross Beta

Samples: IRB0152-01

Analysis Performed: Radium, Combined

Samples: IRB0152-01

Analysis Performed: Strontium 90

Samples: IRB0152-01

Analysis Performed: Tritium Samples: IRB0152-01

Analysis Performed: Uranium, Combined

Samples: IRB0152-01

EMS Laboratories California Cert #1119

117 W. Bellevue Drive - Pasadena, CA 91105

Analysis Performed: Asbestos-TEM (100.2 - DW)

Samples: IRB0152-01

TestAmerica - Ontario, CA California Cert #1169, Arizona Cert #AZ0062, Nevada Cert #CA-242

1014 E. Cooley Drive, Suite AB - Colton, CA 92324

Method Performed: EPA 525.2 Samples: IRB0152-01

Vista Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762

Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IRB0152-01

Weck Laboratories, Inc

14859 E. Clark Avenue - City of Industry, CA 91745

Method Performed: EPA 245.1 Samples: IRB0152-01

TestAmerica Irvine

Test America version 12/20007 CHAIN OF CUSTODY FORM

Page 1 of

unpreserved analysis Filter w/in 24hrs of Time of readings = Unfiltered and receipt at lab Temp = 47.1 Field readings Comments Sample Integrity: (check)
Intact On Ice: 10 Days Normal Turn around Time: (check) 24 Hours 5 Da × (S.001) sotsedaA as Ca CO3 Cd, Cu, Pb, Hg, B, V, Tl. Fe, Al, Ni + PP, Hardness × Total Dissolved Metals: Sb, 72 Hours × 48 Hours Cyanide × Acute and Chronic Toxicity ANALYSIS REQUIRED 200Ce (625) + PP (1.109 to 0.109) (908.0), K-40, CS-137 228 (904.0), Uranium muibeA & (1.509 to 0.509) × Combined Radium 226 (0.806), Sr-90 (905.0), Total Beta(900.0), Tritium (H-3) Gross Alpha(900.0), Gross Chlorpyrifos, Diazinon + PP × Pesticides/PCBs, × VOCs A+A+2CVE Date/Time: Date/Time VOCs (624), xylenes + PP × SST, SQT × Perchlorate CL' 2O⁴' NO³+NO⁵-N' E Oil & Grease (1664-HEM) × TCDD (and all congeners) × Hardness as Ca CO₃ TI, Fe, AI, Ni, + PP, × 2P' Cq' Cn' bp' Hd' B' ∧ Total Recoverable Metals: Received By Received By 15C 16A, 16B, 16C 15A, 15B, 10A, 10B 11A, 11B 6A, 6B, 6C 7A, 7B, 7C 3A, 3B 5A, 5B 8A, 8B 2A, 2B 4 ₹ 6 88 88 5 Project: Boeing-SSFL NPDES Stormwater at WS-13 Annual Outfall 009 Preservative NaOH None None (626) 568-6515 None None None None None None None (626) 568-6691 Phone Number S N H Fax Number: \$0.07 Sampling Date/Time Date/Time Date/Time 22.00 Project Manager: Bronwyn Kelly # of Cont. 3 618 Michillinda Avenue. Suite 200 Arcadia, CA 91007 Test America Contact: Joseph Doak 2.5 Gal Cube 500 ml Amber 1 Gal Poly Container 1L Amber 1L Amber 1L Amber 1L Amber 1L Poly 1L Poly 1L Poly 1L Poly 500 ml Poly 500 ml Poly VOAs VOAs Sampler: Maciscal, J. VOAs VOAs Client Name/Address: Sample Matrix MWH-Arcadia Barross, R Trip Blanks | W > ≥ ≥ ≥ Relinquished By ≥ ≥ ≥ ≥ ≥ ≥ ≥ linquished B Description Trip Blanks Outfall 009 Outfall 009 Outfall 009-Outfall 009 Outfall 009

LABORATORY REPORT

Date:

February 9, 2008

Client:

Test America - Irvine

17461 Derian Ave., Suite 100

Irvine, CA 92614 Attn: Joseph Doak Aquatic Testing Laboratories

"dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003

(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.:

A-08020408-001

Sample ID.:

IRB0152-01 (Outfall 009)

Sample Control:

The sample was received by ATL in a chilled state, within the recommended hold

time and with the chain of custody record attached.

Date Sampled:

02/03/08

Date Received:

02/04/08

Temp. Received:

4°C

Chlorine (TRC):

 $0.0 \, \text{mg/l}$

Date Tested:

02/04/08 to 02/08/08

Sample Analysis:

The following analyses were performed on your sample:

Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0).

Attached are the test data generated from the analysis of your sample.

Result Summary:

Sample ID.

Results

IRB0152-01

100% Survival (TUa = 0.0)

Quality Control:

Reviewed and approved by:

Joseph A. LeMay

Laboratory Director

FATHEAD MINNOW PERCENT SURVIVAL TEST EPA Method 2000.0

Lab No.: A-08020408-001

Client/ID: TestAmerica - IRB0152-01 (Outfall 009)

Start Date: 02/04/2008

TEST SUMMARY

Species: Pimephales promelas.

Age: 14 (1-14) days. Regulations: NPDES.

Test solution volume: 250 ml. Feeding: prior to renewal at 48 hrs.

Number of replicates: 2.

Dilution water: Moderately hard reconstituted water.

Photoperiod: 16/8 hrs light/dark.

Source: In-laboratory Culture. Test type: Static-Renewal.

Test Protocol: EPA-821-R-02-012. Endpoints: Percent Survival at 96 hrs.

Test chamber: 600 ml beakers. Temperature: 20 +/- 1°C.

Number of fish per chamber: 10. QA/QC Batch No.: RT-080204.

TEST DATA

		°C	DO	рН	# D	Pead B	Analyst & Time of Readings
D. H.T. A. Y.	Control	20-1	8-6	7.8	0	0	2_
INITIAL	100%	199	10.6	7.4	0	0	1400
24 11	Control	19.3	7.8	2.5	1)	0	
24 Hr	100%	19.2	8.1	7.1	0		1330
40.11	Control	19.5	7.10	7.7	()	z)	, L
48 Hr	100%	19.10	2.3	A. 7.2	. 0	7)	1400
D I	Control	20.5	8.8	2.8	0	7)	2-1400
Renewal	100%	19,5	11.1	7,3	0	<i>(</i>)	1400
72.11	Control	19.3	8.0	7.4	U	0	/200 1200
72 Hr	100%	19.5	7.8	7.3	0	0	1200
0.6.11	Control	19.5	8.2	7.3	0	0	~~
96 Hr	100%	19.7	8.2	7.2	0	0	1300

Comments:

Sample as received: Chlorine: 0.0 mg/l; pH: 7-4; Conductivity: 119 umho; Temp: 4°C; DO: 10.7 mg/l; Alkalinity: 25 mg/l; Hardness: 50 mg/l; NH₃-N: 0.3 mg/l.

Sample aerated moderately (approx. 500 ml/min) to raise or lower DO? Yes / No

Control: Alkalinity: 64 mg/l; Hardness: 96 mg/l; Conductivity: 290 umho.

Test solution aerated (not to exceed 100 bubbles/min) to maintain DO >4.0 mg/l? Yes /(No.) Sample used for renewal is the original sample kept at 0-6°C with minimal headspace.

Dissolved Oxygen (DO) readings in mg/l O₂.

RESULTS

Percent Survival In: Control: 100 % 100% Sample: 100°%

SUBCONTRACT ORDER

TestAmerica Irvine IRB0152

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Analysis

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

Units

Due

RECEIVING LABORATORY:

Aquatic Testing Laboratories-SUB 4350 Transport Street, Unit 107

Ventura, CA 93003 Phone: (805) 650-0546 Fax: (805) 650-0756

Project Location: California

Receipt Temperature:

Comments

Sample ID: IRB0152-01	Water		Sampled: 02/03/08 10:00	
Bioassay-Acute 96hr	% Survival	02/13/08	02/04/08 22:00	FH minnow, EPA/821-R02-012, Sub to AgTox Labs
Level 4 Data Package - Ou	ut N/A	02/13/08	03/02/08 10:00	AQTOX Labs
Containers Supplied:				
1 gal Poly (W)	1 gal Poly (X)			

Expires

Released By

Released By

Received By

Date/Time

Page 1 of 1

NPDES - 2275

REFERENCE TOXICANT DATA

FATHEAD MINNOW ACUTE **Method 2000.0** Reference Toxicant - SDS

QA/QC Batch No.: RT-080204

\TEST SUMMARY

Species: Pimephales promelas.

Age: 4 days old. Regulations: NPDES.

Test chamber volume: 250 ml. Feeding: Prior to renewal at 48 hrs.

Temperature: 20 +/- 1°C. Number of replicates: 2. Dilution water: MHSF.

Source: In-lab culture. Test type: Static-Renewal.

Test Protocol: EPA-821-R-02-012.

Endpoints: LC50 at 96 hrs.

Test chamber: 600 ml glass beakers.

Aeration: None.

Number of organisms per chamber: 10.

Photoperiod: 16/8 hrs light/dark.

TEST DATA

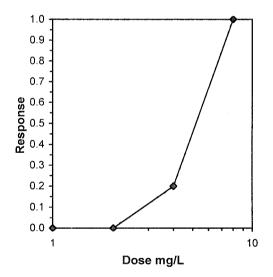
		INITIAL	J			24 Hr					48 Hr		
Date/Time:	2-4	8-8	1430	2-5	-08		133	0	2-6-6	2-6-08 1430			
Analyst:		<u>h</u>				L.			R				
	°C	DÖ	pН	°C	DO	pН	# D	# Dead		DO		# D	ead
			pii			pm	A	В	°C	DO	рН	A	В
Control	19.8	8-4	7-4	19.1	7.9	2.5	\mathcal{L}	0	19,4	7.2	7.6	0	0
1.0 mg/l	19.9	8.4	7.5	19.1	7.8	7.4		0	19,4	69	26	0	0
2.0 mg/l	19.5	8.5	7-5	19.0	2.6	2.4	Ü	0	19.4	6.6	75	<i>/</i>)	0
4.0 mg/l	200	8.5	7-5	19.0		24	0	1	19.4	6.7	7.5	2	0
8.0 mg/l	20.0	8.6	7-5	19.1	8.0	7.4	10	10	1 Wagenhadole o s -	agast service 111	Фольторого на гос	MESON	s the control of the

	RENEWAL			72 Hr				96 Hr					
Date/Time:	2-6	08	1430	2-7-	2-7-08 1200				2-8	-08	1300		
Analyst:		人之	•		2-			L.					
	°C	DO	рН	°C	DO	рН	# D	# Dead		DO	-11	# D	ead
			pri		DO	pri	A	В	°C	DO	pН	A	В
Control	20.3	8.07	7.8	19.4	2.5	7.7	0	()	19.2	8.0	7.5	0	()
1.0 mg/l	20.3	8.9	7.8	19.3	7.5	7.6	0	0	19.2	8.0	7.5	0	0
2.0 mg/l	20.3	8.8	7.8	19.3	7.7	7.5	0	0	19.3	8.1	7.4	0	()
4.0 mg/l	20.3	8.8	2.8	19.3	7.6	7.5	Ü	()	19.3	8.2	7.4	0	7
8.0 mg/l	Software (propriet	BAGGISTO A	regulations are all the	**************************************	********	All Region Assessment A	Monator del	**************************************	ga William (1994), s. c.	Managapy s	Magnetic Scotton		emandigari, e

Comments: Control: Alkalinity: 4 mg/l; Hardness: 94 mg/l; Conductivity: 789 umho. SDS: Alkalinity: 4 mg/l; Hardness: 47 mg/l; Conductivity: 790 umho.

Concentration-response relationship acceptable? (see attached computer analysis):

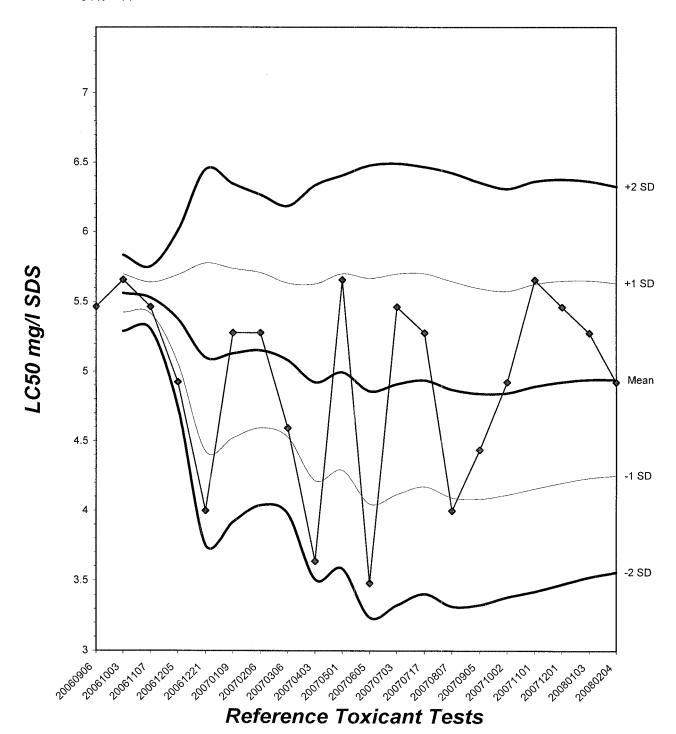
Yes (response curve normal)


No (dose interrupted indicated or non-normal)

Acute Fish Test-96 Hr Survival												
Start Date:	2/4/2008	14:30	Test ID:	RT-080204	Sample ID:	REF-Ref Toxicant						
End Date:	2/8/2008	13:00	Lab ID:	CAATL-Aquatic Testing Labs	Sample Type:	SDS-Sodium dodecyl sulfate						
Sample Date:	2/4/2008		Protocol:	ACUTE-EPA-821-R-02-012	Test Species:	PP-Pimephales promelas						
Comments:												
Conc-mg/L	1	2										
D-Control	1.0000	1.0000										
1	1.0000	1.0000										
2	1.0000	1.0000										
4	0.8000	0.8000										
8	0.0000	0.0000										

,			Tra	ansform:	Arcsin Sc	uare Root		Number	Total
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Resp	Number
D-Control	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
1	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
2	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
4	0.8000	0.8000	1.1071	1.1071	1.1071	0.000	2	4	20
8	0.0000	0.0000	0.1588	0.1588	0.1588	0.000	2	20	20

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Normality of the data set cannot be confirmed				
Equality of variance cannot be confirmed				


Equanty of varie	anoo oann	01 20 00111	n i i i o u	
				Trimmed Spearman-Karber
Trim Level	EC50	95%	CL	
0.0%	4.9246	4.3503	5.5747	
5.0%	5.0215	4.3576	5.7866	
10.0%	5.1038	4.2923	6.0686	1.0 —
20.0%	5.1874	4.7084	5.7150	4
Auto-0.0%	4.9246	4.3503	5.5747	0.9

Reviewed by:

Fathead Minnow Acute Laboratory Control Chart

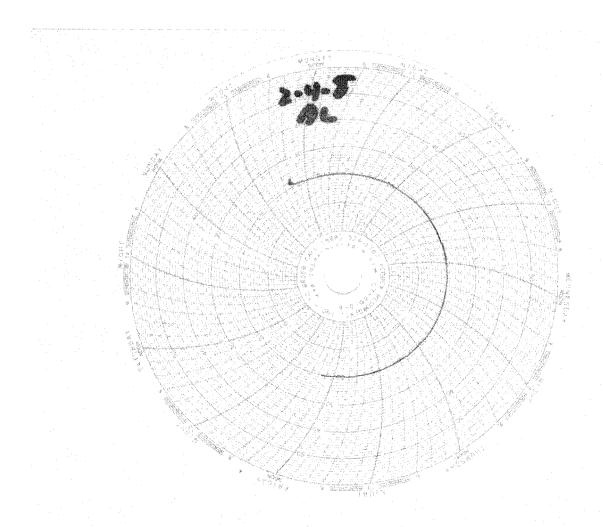
CV% = 14

TEST ORGANISM LOG

FATHEAD MINNOW - LARVAL (Pimephales promelas)

QA/QC BATCH NO.: RT-080204

SOURCE: In-Lab Culture		
DATE HATCHED: OL- Z (- O	8_	
APPROXIMATE QUANTITY:		
GENERAL APPEARANCE:	ood	
# MORTALITIES 48 HOURS PRI TO USE IN TESTING:		
DATE USED IN LAB: $\frac{2}{2}$	4108	
AVERAGE FISH WEIGHT:	gm	
TEST LOADING LIMITS: 0.65 gr	m/liter	
	= 0.013 gm mean fish weight= 0.016 gm mean fish weight	
ACCLIMATION WATER QUALIT	ГΥ:	
Temp.: <u>/4,8</u> °C	pH: 7-4 An	nmonia: <u>/ O o l</u> mg/l NH ₃ -N
DO: Sef mg/l	Alkalinity: 6 mg/l	Hardness: <u>96</u> mg/l
	01/10	
READINGS RECORDED BY: _	Mother	DATE: 2-4-8



Laboratory Temperature Chart

QA/QC Batch No: RT-080202

Date Tested: 02/02/08 to 02/06/08

Acceptable Range: 20+/- 1°C

DATE:

February 7, 2008

Page 1 of 9

CLIENT:

TestAmerica, Irvine

17461 Derian Ave., Ste 100

Irvine, CA 92614

ATTENTION:

Joseph Doak

REFERENCE:

IRB0152

REPORT NO:

118968

DATE RECEIVED:

2/4/08 at 0845

DATE ANALYZED:

2/7/08

SUBJECT:

ANALYSIS OF WATER SAMPLE FOR ASBESTOS BY TEM

ACCREDITED:

California Department of Health Services (ELAP-1119)

The sample(s), date and time of collection, and filtration are as follows:

Sample

Date/Time of

Date/Time of

<u>Collection</u>

Filtration

IRB0152-01

2/3/08 1000

2/4/08 0937

The sample was analyzed for fibers >10 μ m in length to conform with the drinking water document, EPA 600 R 94 134, 100.2. This regulation calls for an MCL (maximum contaminant level) of 7 MFL and an analytical sensitivity level of 0.2 MFL.

No asbestos structures >10 μ m in length were detected. The analytical sensitivity of 0.2 MFL was not reached due to the turbidity

The results of the analysis and the detection limit are summarized on the following pages.

Respectfully submitted,

EMS LABORATORIES, INC.

B. M. Kolk

Laboratory Director

BMK/ah

NOTE: The results of the analysis are based upon the samples submitted to the laboratory. No representation is made regarding the sampling area other than that implied by the analytical results for the immediate vicinity of the samples analyzed as calculated from the data presented with those samples.

This report, from a NIST laboratory through NVLAP, must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

This report shall not be reproduced, except in full, without the written approval of EMS Laboratories, Inc.

Any deviation or exclusion from the test method is noted in this cover letter.

Unless otherwise noted in this cover letter, the samples were received properly packaged, clearly identified and intact.

ANALYSIS OF WATER BY TEM (EPA-600 R 94 134) EPA 100.2

LAB NO: CLIENT:

118968

Test America

2/7/2008

Page 2 of

				MEDIA DATA			
Laboratory	Client	Type	Diameter	Effective Area	No. of G.O.	Analyzed	Sample
I.D.	1.D.		mm	mm^2		Area, mm^2	Volume (ml)
118968-01	IRB-0152-01*	PC	47	1017	10	0.092	5

	-						

^{*} FOR FIBERS > 10um ONLY

INDIVIDUAL ANALYTICAL RESULTS

Laboratory	Client	N	o. of Asbe	stos	Detection	CON	CENTRAT	ION (MFL)
I.D.	I.D.	Str	Str >5um	Str >10um	Limit (MF/L)	Str	Str >5um	Str >10um
118968-01	IRB-0152-01*	-	-	N.D.	2.2			N.D.

^{*} FOR FIBERS > 10um ONLY

The analysis was carried out to the approved TEM method. This laboratory is in compliance with the quality specified by the method.

Authorized Signature

SUBCONTRACT ORDER

TestAmerica Irvine IRB0152

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

EMS Laboratories 117 W. Bellevue Drive Pasadena, CA 91105 Phone :(626) 568-4065 Fax: (626) 796-5282

Project Location: California

Receipt Temperature:

 $^{\circ}C$

Ice: Y / N

Analysis Units Due **Expires** Comments Sample ID: IRB0152-01 Water Sampled: 02/03/08 10:00 Asbestos-TEM (100.2 - DW) Present/Not Prr02/13/08 02/05/08 10:00 Boeing, permit, J flags, Out to EMS Level 4 Data Package N/A 02/13/08 03/02/08 10:00 Containers Supplied: 1 Liter Poly (AC)

Refeased By

Released By

Date/Time

21412 999

Received By

Received By

Date/Time

2-9-05 Date/Time

Page 1 of 1

NPDES - 2284

February 25, 2008

Vista Project I.D.: 30236

Mr. Joseph Doak Test America-Irvine, CA 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Mr. Doak,

Enclosed are the results for the one aqueous sample received at Vista Analytical Laboratory on February 05, 2008 under your Project Name "IRB0152". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Vista's current certifications, and copies of the raw data (if requested).

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha M. Maier Laboratory Director

Marthe Moier

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.

Section I: Sample Inventory Report Date Received: 2/5/2008

<u>Vista Lab. ID</u> <u>Client Sample ID</u>

30236-001 IRB0152-01

NPDES - 2286 Page 2 of 285

SECTION II

Project 30236 NPDES - 2287
Page 3 of 285

Method Blan	k					ı.				EPA Method 1613
Matrix:	Aqueous		QC Batch No.:	9	953	Lab	Sample:	0-MB001		
Sample Size:	1.00 L		Date Extracted	. 1	5-Feb-08	Date	Analyzed DB-5:	19-Feb-08	Date An	alyzed DB-225: NA
Sample Size.	1.00 L		Dute Extracted	. 1	3-1 00-00	Date	Anaryzed DB-5.	17-1 00-00	Date An	aryzed DB-223. TVA
Analyte	Conc.	(ug/L)	DL a	EMPC b	Qualifiers		Labeled Standa	rd	%R	LCL-UCL ^d Qualifiers
2,3,7,8-TCDD		ND	0.000000705			<u>IS</u>	13C-2,3,7,8-TCI)D	82.9	25 - 164
1,2,3,7,8-PeCD	DD	ND	0.000000681				13C-1,2,3,7,8-Pe	CDD .	75.4	25 - 181
1,2,3,4,7,8-Hx	CDD	ND	0.00000165				13C-1,2,3,4,7,8-	HxCDD	81.7	32 - 141
1,2,3,6,7,8-Hx	CDD	ND	0.00000174				13C-1,2,3,6,7,8-	HxCDD	83.0	28 - 130
1,2,3,7,8,9-Hx	CDD	ND	0.00000162				13C-1,2,3,4,6,7,	3-HpCDD	85.6	23 - 140
1,2,3,4,6,7,8-H	pCDD	ND	0.00000511				13C-OCDD		73.4	17 - 157
OCDD		0.00000899			J		13C-2,3,7,8-TCI)F	88.8	24 - 169
2,3,7,8-TCDF		ND	0.000000647				13C-1,2,3,7,8-Pe	CDF	74.4	24 - 185
1,2,3,7,8-PeCD)F	ND	0.000000731				13C-2,3,4,7,8-Pe	CDF	77.1	21 - 178
2,3,4,7,8-PeCD	D F	ND	0.000000752				13C-1,2,3,4,7,8-	HxCDF	75.8	26 - 152
1,2,3,4,7,8-Hx	CDF	ND	0.000000943				13C-1,2,3,6,7,8-	HxCDF	77.6	26 - 123
1,2,3,6,7,8-Hx	CDF	ND	0.000000974				13C-2,3,4,6,7,8-	HxCDF	78.0	28 - 136
2,3,4,6,7,8-Hx	CDF	ND	0.00000105				13C-1,2,3,7,8,9-	HxCDF	81.9	29 - 147
1,2,3,7,8,9-Hx	CDF	ND	0.00000136				13C-1,2,3,4,6,7,	8-HpCDF	75.7	28 - 143
1,2,3,4,6,7,8-H	pCDF	ND	0.00000333				13C-1,2,3,4,7,8,9	9-HpCDF	82.1	26 - 138
1,2,3,4,7,8,9-H	pCDF	ND	0.00000202				13C-OCDF		76.2	17 - 157
OCDF		ND	0.00000591			CRS	37Cl-2,3,7,8-TC	DD	85.1	35 - 197
Totals						Foot	tnotes			
Total TCDD		ND	0.000000705			a. Sar	nple specific estimated	detection limit.		
Total PeCDD		ND	0.00000122			b. Est	imated maximum possil	ole concentration.		
Total HxCDD		ND	0.00000167			c. Me	thod detection limit.			
Total HpCDD		ND	0.00000511			d. Lo	wer control limit - upper	control limit.		
Total TCDF		ND	0.000000647							
Total PeCDF		ND	0.000000742							
Total HxCDF		ND	0.00000107							
Total HpCDF		ND	0.00000335							

Analyst: MAS William J. Luksemburg 22-Feb-2008 15:50

OPR Results						EP	A Method 1	1613
Matrix: Sample Size:	Aqueous 1.00 L		QC Batch No.: Date Extracted:	9953 15-Feb-08	Lab Sample: 0-OPR001 Date Analyzed DB-5: 18-Feb-08	Date Analy	zed DB-225:	NA
Analyte		Spike Conc.	Conc. (ng/mL)	OPR Limits	Labeled Standard	%R	LCL-UCL	Qualifier
2,3,7,8-TCDD		10.0	9.20	6.7 - 15.8	<u>IS</u> 13C-2,3,7,8-TCDD	85.8	25 - 164	
1,2,3,7,8-PeCI	DD	50.0	46.7	35 - 71	13C-1,2,3,7,8-PeCDD	77.1	25 - 181	
1,2,3,4,7,8-Hx	CDD	50.0	47.0	35 - 82	13C-1,2,3,4,7,8-HxCDD	82.8	32 - 141	
1,2,3,6,7,8-Hx	CDD	50.0	47.2	38 - 67	13C-1,2,3,6,7,8-HxCDD	84.0	28 - 130	
1,2,3,7,8,9-Hx	CDD	50.0	47.7	32 - 81	13C-1,2,3,4,6,7,8-HpCDD	88.0	23 - 140	
1,2,3,4,6,7,8-H	IpCDD	50.0	46.1	35 - 70	13C-OCDD	78.1	17 - 157	
OCDD		100	94.4	78 - 144	13C-2,3,7,8-TCDF	90.2	24 - 169	
2,3,7,8-TCDF		10.0	8.71	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	76.3	24 - 185	
1,2,3,7,8-PeCI	DF	50.0	45.3	40 - 67	13C-2,3,4,7,8-PeCDF	79.4	21 - 178	
2,3,4,7,8-PeCI	DF	50.0	45.1	34 - 80	13C-1,2,3,4,7,8-HxCDF	78.9	26 - 152	
1,2,3,4,7,8-Hx	CDF	50.0	46.8	36 - 67	13C-1,2,3,6,7,8-HxCDF	80.4	26 - 123	
1,2,3,6,7,8-Hx	CDF	50.0	46.8	42 - 65	13C-2,3,4,6,7,8-HxCDF	79.1	28 - 136	
2,3,4,6,7,8-Hx	CDF	50.0	47.3	35 - 78	13C-1,2,3,7,8,9-HxCDF	84.1	29 - 147	
1,2,3,7,8,9-Hx	CDF	50.0	46.1	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	78.2	28 - 143	
1,2,3,4,6,7,8-H	IpCDF	50.0	46.8	41 - 61	13C-1,2,3,4,7,8,9-HpCDF	85.9	26 - 138	
1,2,3,4,7,8,9-H	IpCDF	50.0	46.7	39 - 69	13C-OCDF	82.2	17 - 157	
OCDF		100	93.5	63 - 170	<u>CRS</u> 37Cl-2,3,7,8-TCDD	88.4	35 - 197	

Analyst: MAS William J. Luksemburg 22-Feb-2008 15:50

Sample ID: IRB()152-01								EPA N	Aethod 1613
	America-Irvine, CA		Sample Data Matrix:	Aqueous		oratory Data Sample:	30236-001	Date Re	ceived:	5-Feb-08
Project: IRB0 Date Collected: 3-Fe Time Collected: 1000	b-08		Sample Size:	1.00 L	_	Batch No.: Analyzed DB-5:	9953 19-Feb-08	Date Ex Date An	tracted: alyzed DB-225:	15-Feb-08 NA
Analyte	Conc. (ug/L)	DL a	EMPC ^b	Qualifiers		Labeled Standa	ard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ND	0.000000	451		<u>IS</u>	13C-2,3,7,8-TCD	DD	87.8	25 - 164	
1,2,3,7,8-PeCDD	ND	0.000000	700			13C-1,2,3,7,8-Pe	CDD	77.7	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.000001	42			13C-1,2,3,4,7,8-I	HxCDD	80.4	32 - 141	
1,2,3,6,7,8-HxCDD	0.00000184			J		13C-1,2,3,6,7,8-I	HxCDD	81.9	28 - 130	
1,2,3,7,8,9-HxCDD	0.00000142			J		13C-1,2,3,4,6,7,8	3-HpCDD	86.3	23 - 140	
1,2,3,4,6,7,8-HpCDD	0.0000332					13C-OCDD		79.7	17 - 157	
OCDD	0.000259			В		13C-2,3,7,8-TCD)F	88.5	24 - 169	
2,3,7,8-TCDF	ND	0.000000	609			13C-1,2,3,7,8-Pe	CDF	77.4	24 - 185	
1,2,3,7,8-PeCDF	ND	0.000000	842			13C-2,3,4,7,8-Pe	CDF	76.3	21 - 178	
2,3,4,7,8-PeCDF	ND	0.000000	840			13C-1,2,3,4,7,8-I	HxCDF	79.7	26 - 152	
1,2,3,4,7,8-HxCDF	ND	0.000000	720			13C-1,2,3,6,7,8-I	HxCDF	77.8	26 - 123	
1,2,3,6,7,8-HxCDF	ND	0.000001	41			13C-2,3,4,6,7,8-I	HxCDF	75.9	28 - 136	
2,3,4,6,7,8-HxCDF	ND	0.000000	773			13C-1,2,3,7,8,9-I	HxCDF	80.8	29 - 147	
1,2,3,7,8,9-HxCDF	ND	0.000000	994			13C-1,2,3,4,6,7,8	3-HpCDF	75.7	28 - 143	
1,2,3,4,6,7,8-HpCDF	0.00000562			J		13C-1,2,3,4,7,8,9	-HpCDF	79.6	26 - 138	
1,2,3,4,7,8,9-HpCDF	ND	0.000001	19			13C-OCDF		80.9	17 - 157	
OCDF	0.0000141			J	CRS	37Cl-2,3,7,8-TCl	DD	88.4	35 - 197	
Totals					Foo	otnotes				
Total TCDD	ND	0.000000	895		a. Sa	mple specific estimated	detection limit.			
Total PeCDD	ND	0.000001	20		b. Es	timated maximum poss	ible concentration.			
Total HxCDD	0.0000103				c. M	ethod detection limit.				
Total HpCDD	0.0000823				d. Lo	ower control limit - upp	er control limit.			
Total TCDF	ND	0.000000	609							
Total PeCDF	0.00000107									
Total HxCDF	0.00000499									
Total HpCDF	0.0000158									

Analyst: MAS William J. Luksemburg 22-Feb-2008 15:50

Project 30236

Project 30236

NPDES - 2290
Page 6 of 285

APPENDIX

Project 30236 NPDES - 2291
Page 7 of 285

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D Dilution

E The amount detected is above the High Calibration Limit.

P The amount reported is the maximum possible concentration due to possible

chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.

I Chemical Interference

J The amount detected is below the Low Calibration Limit.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated detection limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit – concentrations that correspond to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

SUBCONTRACT ORDER

TestAmerica Irvine

IRB0152

30236

°C

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Vista Analytical Laboratory- SUB

1104 Windfield Way

El Dorado Hills, CA 95762

Phone :(916) 673-1520 Fax: (916) 673-0106

Project Location: California

Receipt Temperature:

Ice: Y / N

Analysis	Units	Due	Expires	Comments
Sample ID: IRB0152-01	Water		Sampled: 02/03/08 10:00	
1613-Dioxin-HR-Alta	ug/l	02/13/08	02/10/08 10:00	J flags,17 congeners,no TEQ,ug/L,sub=Vista
Level 4 + EDD-OUT	N/A	02/13/08	03/02/08 10:00	Excel EDD email to pm,Include Std logs for LvI IV
Containers Supplied:				
1 L Amber (C)	1 L Amber (D)			

Released By

Date/Time

Date/Time

Project 30236

Received By

Received B

2/4/08 1700

Date/Ilme

/Time Page 1 of 1

NPDES - 2294 Page 10 of 285

SAMPLE LOG-IN CHECKLIST

Vista Project #:	302	36_			TAT_C	Han	dard
	Date/Time	_	Initials:		Location	: W	e-2
Samples Arrival:	2/5/08	0929	Y3	113	Shelf/Ra	ck:	1/4
	Date/Time		Initials:		Location	: U	R-2
Logged In:	2/6/08	1204	Sto		Shelf/Ra	ck: 1	33
Delivered By:	FedEx	UPS	Cal	DHL	l l	and vered	Other
Preservation:	Ice		Blue Ice	Dr	y Ice		None
Temp °C /.4	or J	Time:	0993		Thermon	neter I	D: IR-1

F 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					YEŞ	NO	NA			
Adequate Sample Volume Recei	ved?				V					
Holding Time Acceptable?					V					
Shipping Container(s) Intact?		V	1							
Shipping Custody Seals Intact?										
Shipping Documentation Presen	:- t?			1	1					
Airbill Trk#	7926 4	2578	964		V					
Sample Container Intact?				· · · · · · · · · · · · · · · · · · ·	V					
Sample Custody Seals Intact?										
Chain of Custody / Sample Docu	mentation P	resent?								
COC Anomaly/Sample Acceptar	ice Form cor	npleted?				/				
If Chlorinated or Drinking Water	Samples, Ac	ceptable Prese	ervation?				V			
Na ₂ S ₂ O ₃ Preservation Document	ed?	coc	l l	iple ainer		None				
Shipping Container	Vista	Client	Retain	Æe	turn	Disp	ose			
Comments:				-	- A		···			

SUBCONTRACT ORDER

TestAmerica Irvine IRB0152

8020454

°C

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Weck Laboratories, Inc.

14859 E. Clark Avenue

City of Industry, CA 91745

Phone: (626) 336-2139

Fax: (626) 336-2634

Project Location: California

Receipt Temperature:

Ice: Y / N

Analysis Units Due **Expires** Comments Sample ID: IRB0152-01 Water Sampled: 02/03/08 10:00 Level 4 Data Package - Wec N/A 02/13/08 03/02/08 10:00 Provide Element transfer file Mercury - 245.1, Diss -OUT mg/l 02/13/08 03/02/08 10:00 Boeing, J flags, sub to Weck Mercury - 245.1-OUT mg/l 02/13/08 03/02/08 10:00 Boeing, J flags, sub to Weck Containers Supplied: 125 mL Poly (AA) 125 mL Poly w/HNO3

Diss. Mercury is Filtered and pres.

Released By

50 / Jeen

Date/Time

Receiv

Received By

Received By

7-0:

14/08 /000 Date/Time

02/04/08 13: 4

Date/Time NPDESpage6

Weck Laboratories, Inc.

Analytical Laboratory Services - Since 1964

14859 E. Clark Ave., Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634 info@wecklabs.com www.wecklabs.com

CERTIFICATE OF ANALYSIS

TestAmerica, Inc. - Irvine **Client:**

Report Date:

02/11/08 16:19

17461 Derian Ave, Suite 100

Received Date:

02/04/08 13:45

Irvine, CA 92614

Turn Around:

Normal

Attention: Joseph Doak

Fax: (949) 260-3297

Work Order #:

8020454

Phone: (949) 261-1022

Client Project:

IRB0152

NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

Dear Joseph Doak:

Enclosed are the results of analyses for samples received 02/04/08 13:45 with the Chain of Custody document. The samples were received in good condition. The samples were received at 1.9 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Reviewed by:

Kim G Tu

Project Manager

Page 1 of 6

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8020454 Project ID: IRB0152 Date Received: 02/04/08 13:45 Date Reported: 02/11/08 16:19

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Sampled by:	Sample Comments	Laboratory	Matrix	Date Sampled
IRB0152-01	Client		8020454-01	Water	02/03/08 10:00

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8020454 Project ID: IRB0152 Date Received: 02/04/08 13:45 Date Reported: 02/11/08 16:19

IRB0152-01 8020454-01 (Water)

Date Sampled: 02/03/08 10:00

Metals by EPA 200 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed		Data Qualifiers
Mercury, Dissolved	ND	0.050	ug/l	0.20	1	EPA 245.1	W8B0147	02/05/08	02/07/08	jlp	
Mercury, Total	ND	0.050	ug/l	0.20	1	EPA 245.1	W8B0147	02/05/08	02/07/08	jlp	

Week Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8020454 Project ID: IRB0152 Date Received: 02/04/08 13:45 Date Reported: 02/11/08 16:19

QUALITY CONTROL SECTION

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8020454 Project ID: IRB0152 Date Received: 02/04/08 13:45 Date Reported: 02/11/08 16:19

Metals by EPA 200 Series Methods - Quality Control

%REC

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch W8B0147 - EPA 245.1										
Blank (W8B0147-BLK1)				Analyzed:	02/07/08					
Mercury, Dissolved	ND	0.20	ug/l							
Mercury, Total	ND	0.20	ug/l							
LCS (W8B0147-BS1)				Analyzed:	02/07/08					
Mercury, Dissolved	1.04	0.20	ug/l	1.00		104	85-115			
Mercury, Total	1.04	0.20	ug/l	1.00		104	85-115			
Matrix Spike (W8B0147-MS1)	Se	ource: 8020444	-01	Analyzed:	02/07/08					
Mercury, Dissolved	1.04	0.20	ug/l	1.00	ND	104	70-130			
Mercury, Total	1.04	0.20	ug/l	1.00	ND	104	70-130			
Matrix Spike (W8B0147-MS2)	Se	ource: 8020445	-01	Analyzed: 02/07/08						
Mercury, Dissolved	1.04	0.20	ug/l	1.00	ND	104	70-130			
Mercury, Total	1.04	0.20	ug/l	1.00	ND	104	70-130			
Matrix Spike Dup (W8B0147-MSD1)	Se	ource: 8020444	-01	Analyzed:	02/07/08					
Mercury, Dissolved	1.05	0.20	ug/l	1.00	ND	105	70-130	1	20	
Mercury, Total	1.05	0.20	ug/l	1.00	ND	105	70-130	1	20	
Matrix Spike Dup (W8B0147-MSD2)	Se	ource: 8020445	-01	Analyzed:	02/07/08					
Mercury, Dissolved	1.06	0.20	ug/l	1.00	ND	106	70-130	2	20	
Mercury, Total	1.06	0.20	ug/l	1.00	ND	106	70-130	2	20	

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614

Report ID: 8020454 Project ID: IRB0152

Date Received: 02/04/08 13:45 Date Reported: 02/11/08 16:19

Notes and Definitions

ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)

Sample results reported on a dry weight basis dry

Relative Percent Difference RPD

Percent Recovery % Rec

Sub Subcontracted analysis, original report available upon request

MDL Method Detection Limit

MDA Minimum Detectable Activity

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

March 10, 2008

Mr. Joseph Doak Test America, Inc. 17461 Derian Avenue, Suite 100 Irvine, CA 92614

Reference: Test America Project Nos.

IRB0073, IRB0146, IRB0147, IRB0148, IRB0149,

IRB0150, IRB0151, IRB0152, IRB0153, IRB0154

IRB0156, IRB0480, IRB0751

Eberline Services NELAP Cert #01120CA

Eberline Services Reports R802024-8693, R802040-8694, R802041-8695,

R802042-8696, R802043-8697, R802044-8698 R802045-8699, R802046-8600, R802047-8601 R802048-8602, R802049-8603, R802054-8604

R802084-8608

Dear Mr. Doak:

Attached are data reports for thirteen water samples. Eleven of the samples were received at Eberline Services on February 5, one on February 7, and one on February 9, 2008. The samples were analyzed according to the accompanying Test America Subcontract Order Forms, the requested analyses were: gross alpha/gross beta (EPA 900.0), tritium (H-3, EPA906.0), Sr-90 (EPA905.0), Ra-226 (EPA903.1), Ra-228 (EPA 904.0), total uranium (ASTM D-5174), and gamma spectroscopy (EPA901.1, K-40 and Cs-137 only). The parenthetical G after a nuclide indicates that the result was obtained by gamma spectroscopy; a "U" in the results column indicates that the nuclide was not detected greater than the indicated minimum detectable activity (MDA). The samples were not filtered prior to analysis. The samples were analyzed in batches with common QC samples. Batch quality control samples consisted of LCS's, blank analyses, duplicate analyses, and matrix spike analyses (gross alpha/gross beta, H-3, Ra-226, Total-U only). All samples were batched with QC samples 8693-002, 003, 004, and 005 for all analyses. All QC sample results were within the limits defined in Eberline Services Quality Control Procedures Manual.

Please call me if you have any questions concerning this report.

Regards,

Melissa Mannion

Senior Program Manager

Melisso Mamm

MCM/njv

Enclosure: Report on CD

Eberline Services

ANALYSIS RESULTS

 SDG
 8600
 Client
 TA IRVINE

 Work Order
 R802046-01
 Contract
 PROJECT# IRB0152

 Received Date
 02/03/08
 Matrix
 WATER

Client	Lab						
Sample ID	Sample ID	Collected	Analyzed	Nuclide	Results ± 20	<u>Units</u>	MDA
IRB0152-01	8600-001	02/03/08	02/26/08	GrossAlpha	0.697 ± 0.44	pCi/L	0.60
			02/26/08	Gross Beta	2.09 ± 0.86	pCi/L	1.4
			02/27/08	Ra-228	-0.128 ± 0.18	pCi/L	0.53
			02/25/08	K-40 (G)	U	pCi/L	5.6
			02/25/08	Cs-137 (G)	U	pCi/L	0.60
			02/29/08	H-3	-65.8 ± 87	pCi/L	150
			03/04/08	Ra-226	2.01 ± 0.64	pCi/L	0.70
			02/18/08	Sr-90	0.287 ± 0.37	pCi/L	0.75
			02/26/08	Total U	0.205 ± 0.025	pCi/L	0.022

Certified by 70 Report Date 03/11/08
Page 1

Eberline Services

QC RESULTS

SDG <u>8600</u>

Client <u>TA IRVINE</u>

Work Order <u>R802046-01</u>
Received Date <u>02/03/08</u>

Contract PR0JECT# IRB0152

Matrix <u>WATER</u>

Lab						
Sample ID	Nuclide	Results	<u>Units</u>	Amount Added	<u>MDA</u>	Evaluation
LCS						
8693-002	GrossAlpha	10.6 ± 0.82	pCi/Smpl	10.2	0.31	104% recovery
	Gross Beta	9.07 ± 0.36	pCi/Smpl	9.38	0.28	97% recovery
	Ra-228	8.40 ± 0.59	pCi/Smpl	8.66	0.88	97% recovery
	Co-60 (G)	214 ± 14	pCi/Smpl	224	9.1	96% recovery
	Cs-137 (G)	240 ± 12	pCi/Smpl	236	9.2	102% recovery
	Am-241 (G)	255 ± 26	pCi/Smpl	254	31	100% recovery
	H-3	222 ± 12	pCi/Smpl	239	13	93% recovery
	Ra-226	5.35 ± 0.24	pCi/Smpl	5.02	0.076	107% recovery
	Sr-90	10.7 ± 0.80	pCi/Smpl	9.39	0.37	114% recovery
	Total U	1.12 ± 0.13	pCi/Smpl	1.13	0.004	99% recovery
BLANK						
8693-003	GrossAlpha	-0.103 ± 0.17	pCi/Smpl	NA	0.34	<mda< td=""></mda<>
	Gross Beta	-0.111 ± 0.15	pCi/Smpl	NA	0.27	<mda< td=""></mda<>
	Ra-228	0.239 ± 0.48	pCi/Smpl	NA	0.68	<mda< td=""></mda<>
	K-40 (G)	Ū	pCi/Smpl	NA	110	<mda< td=""></mda<>
	Cs-137 (G)	Ū	pCi/Smpl	NA	5.4	<mda< td=""></mda<>
	H-3	-1.64 ± 8.3	pCi/Smpl	NA	15	<mda< td=""></mda<>
	Ra-226	0.016 ± 0.034	pCi/Smpl	NA	0.062	<mda< td=""></mda<>
	Sr-90	0.099 ± 0.15	pCi/Smpl	NA	0.27	<mda< td=""></mda<>
	Total U	0.00E 00 <u>1</u> 1.9E-04	pCi/Smpl	NA	4.5E-04	<mda< td=""></mda<>

DUPLICATE	ES			ORIGINALS			
							3 σ
Sample ID Nuclide	Results $\pm 2\sigma$	<u>MDA</u>	Sample ID	Results $\pm 2\sigma$	MDA	RPD (1	<u>fot) Eval</u>
8693-004 GrossAlpha	1.03 ± 1.0	1.5	8693-001	0.763 ± 0.99	1.3	-	0 satis.
Gross Beta	15.0 ± 1.2	1.6		14.2 ± 0.93	0.97	5	46 satis.
Ra-228	0.099 ± 0.18	0.48		0.295 ± 0.19	0.49	-	0 satis.
K-40 (G)	24.8 ± 7.8	4.9		24.0 ± 11	8.2	3	86 satis.
Cs-137 (G)	Ŭ	0.53		U	0.86		0 satis.
H-3	-6.31 ± 84	150		7.12 ± 78	130	-	0 satis.
Ra-226	0.583 ± 0.52	0.81		0.426 ± 0.44	0.70	-	0 satis.
Sr-90	-0.021 ± 0.29	0.71		0.026 ± 0.31	0.72	-	0 satis.
Total U	0.611 ± 0.067	0.022		0.578 ± 0.064	0.022	6	30 satis.

Certified by n

Report Date <u>03/11/08</u>

Page 2

Eberline Services

QC RESULTS

SDG 8600

Client TA IRVINE

Work Order <u>R802046-01</u>

Received Date 02/03/08

Contract PR0JECT# IRB0152

Matrix <u>WATER</u>

SPIKED SAMPLE			ORIGINAL SAMPLE					
Sample ID	Nuclide	Results ± 2σ	MDA	Sample ID	Results ± 2σ	MDA	<u>Added</u>	%Recv
8693-005	GrossAlpha	95.8 ± 5.5	1.4	8693-001	0.763 ± 0.99	1.3	71.2	133
	Gross Beta	77.9 ± 2.0	1.5		14.2 ± 0.93	0.97	62.5	102
	H-3	15500 ± 300	150		7.12 ± 78	130	16000	97
	Ra-226	120 ± 4.8	0.69		0.426 ± 0.44	0.70	112	107
	Total U	109 ± 13	2.2		0.578 ± 0.064	0.022	113	96

Certified by Report Date 03/11/08
Page 3

SUBCONTRACT ORDER

TestAmerica Irvine IRB0152

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue, Suite 100

Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Eberline Services 2030 Wright Avenue Richmond, CA 94804 Phone:(510) 235-2633 Fax: (510) 235-0438

Project Location: California

Receipt Temperature:

Analysis Units Due **Expires** Comments Sample ID: IRB0152-01 Water Sampled: 02/03/08 10:00 EDD + Level 4 N/A 02/13/08 03/02/08 10:00 Gamma Spec-O mg/kg 02/13/08 02/02/09 10:00 Out to Eberline, k-40 and cs-137 only Gross Alpha-O pCi/L 02/13/08 08/01/08 10:00 Out to Eberline, Boeing Gross Beta-O pCi/L 02/13/08 08/01/08 10:00 Out to Eberline, Boeing Radium, Combined-O pCi/L 02/13/08 02/02/09 10:00 Out to Eberline, Boeing Strontium 90-0 pCi/L 02/13/08 02/02/09 10:00 Out to Eberline, Boeing Out to Eberline, Boeing Tritium-O pCi/L 02/13/08 02/02/09 10:00 02/13/08 02/02/09 10:00 Out to Eberline, Boeing Uranium, Combined-O pCi/L Containers Supplied: 2.5 gal Poly (S) 500 mL Amber (T)

Date/Time Released By Released By Date/Time

Date/Time

Page 1 of 1

N

RICHMOND, CA LABORATORY

SAMPLE RECEIPT CHECKLIST

Je) Jos	

Chent	TEST AMET	L1CA	City	MUNE	State	CA	
Date:Ti	Ime received 07/65/03	8 04: 3000 NO	IPBO!	52			
Contail	ner No JE GHE	TT Requested	TAT (Davs.	P.C Re	cervec Yes	N ₀	·
			INSPECTIO				
	Custoov seals on snip	pino container int	act"		vet 🗡	NC. 3 N/-	
-	Dustoom seals or snip	bing container da	ies C signedî		· =: X	No _ No	
-	Dustoon seals or sam					NC _ 14/-	
_	Oustoov seals on sam	ibie containers da	tec à signed"		* Q £	MC M/-	X
	Fracking material is				II \∧∧∈.	Dr√X	
-	Number of containers	anipping contains		Samoré Matri			
£	Samples are in correct						
ز	Eraperwork agrees with			es y .			
1[Samples have Tab			aners 4		nnie iarie. W	
	Samples are in go						
1_	Jampies are Preser						
13	Describe any anomaii						
14	Was F Mill notified of a	anv anomalies			Jate		
1 1	inspected by	Thy	Date 07/0:	ZOS TIME	10:	45	
Custo	omer Beta/Gamma te No com	ior Charline:		Lustomer		ion Sha moe:	
	52-1 <60	111 -: ///:	Vvio÷ S	amble Nc	opn.	mR/m	WID:
Thou	3 2 1 1						
				·			
on Chami	per Ser No		Sai	ipration date			
upna Met							
				ibration date_			
seta/Gam	ima Meter Ser No	100482			09 MAY	07	*****

Form SCF-01 07-30-01

over 55 years of quality nuclear services: