APPENDIX G

Section 51

Outfall 008, February 24, 2008 Test America Analytical Laboratory Report

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project: Routine Outfall 008

Sampled: 02/24/08 Received: 02/25/08 Issued: 03/17/08 13:45

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and

is an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT:	amples were received intact, at 1°C, on ice and with chain of custody documentation.							
HOLDING TIMES:	All samples were analyzed within pre Sample Acceptance Policy unless oth	escribed holding times and/or in accordance with the Te erwise noted in the report.	stAmerica					
PRESERVATION:	mples requiring preservation were verified prior to sample analysis.							
QA/QC CRITERIA:	All analyses met method criteria, except as noted in the report with data qualifiers.							
COMMENTS:	Results that fall between the MDL an	d RL are 'J' flagged.						
SUBCONTRACTED:	Refer to the last page for specific sub	contract laboratory information included in this report.						
LABOR	ATORY ID	CLIENT ID	MATRIX					
IRB2401-01 Outfall 008								

Reviewed By:

Joseph Dock

TestAmerica Irvine Joseph Doak Project Manager

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: IRB2401

Sampled: 02/24/08 Received: 02/25/08

METALS MDL Reporting Sample Dilution Date Date Data Analyte Method Batch Limit Limit Result Factor Extracted Analyzed Qualifiers Sample ID: IRB2401-01 (Outfall 008 - Water) Reporting Units: ug/l 0.30 EPA 200.8 8B28067 0.20 2.0 02/28/08 02/29/08 J Antimony 1 Cadmium EPA 200.8 8B28067 0.11 1.0 ND 02/28/08 02/29/08 1 0.75 2.0 2.4 02/28/0802/29/08 Copper EPA 200.8 8B28067 1 EPA 200.8 8B28067 0.30 1.3 02/28/08 02/29/08 Lead 1.0 1 Selenium EPA 200.8 8B28067 0.30 2.0 ND 02/28/08 02/29/08 1 Thallium 8B28067 0.20 ND 02/29/08 EPA 200.8 1.0 1 02/28/08 Zinc EPA 200.8 8B28067 2.5 20 6.0 1 02/28/08 02/29/08 B, J

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 008

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB2401

Sampled: 02/24/08 Received: 02/25/08

DISSOLVED METALS MDL Reporting Sample Dilution Date Date Data Analyte Method Batch Limit Limit Result Factor Extracted Qualifiers Analyzed Sample ID: IRB2401-01 (Outfall 008 - Water) - cont. Reporting Units: ug/l 0.30 EPA 200.8-Diss 8B25123 0.20 2.0 02/25/08 02/26/08 J Antimony 1 Cadmium EPA 200.8-Diss 8B25123 0.11 1.0 ND 02/25/08 02/26/08 1 8B25123 2.0 02/25/08 Copper EPA 200.8-Diss 0.75 1.8 1 02/26/08 J EPA 200.8-Diss 8B25123 0.30 ND 02/25/08 02/26/08 Lead 1.0 1 Selenium EPA 200.8-Diss 8B25123 0.30 2.0 ND 02/25/08 02/26/08 1 Thallium 8B25123 ND EPA 200.8-Diss 0.20 1.0 1 02/25/08 02/26/08 Zinc EPA 200.8-Diss 8B25123 2.5 20 ND 1 02/25/08 02/26/08

TestAmerica Irvine

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

Arcadia, CA 91007

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 008

618 Michillinda Avenue, Suite 200 Attention: Bronwyn Kelly

Report Number: IRB2401

Sampled: 02/24/08 Received: 02/25/08

INORGANICS												
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers			
Sample ID: IRB2401-01 (Outfall 008 - W Reporting Units: mg/l	ater) - cont.											
Hexane Extractable Material (Oil &	EPA 1664A	8C04046	1.3	4.8	1.9	1	03/04/08	03/04/08	J			
Grease)												
Ammonia-N (Distilled)	EPA 350.2	8B26101	0.30	0.50	ND	1	02/26/08	02/26/08				
Chloride	EPA 300.0	8B25042	0.25	0.50	12	1	02/25/08	02/25/08				
Nitrate-N	EPA 300.0	8B25042	0.060	0.11	3.4	1	02/25/08	02/25/08				
Nitrite-N	EPA 300.0	8B25042	0.090	0.15	ND	1	02/25/08	02/25/08				
Nitrate/Nitrite-N	EPA 300.0	8B25042	0.15	0.26	3.4	1	02/25/08	02/25/08				
Sulfate	EPA 300.0	8B25042	0.20	0.50	15	1	02/25/08	02/25/08				
Total Dissolved Solids	SM2540C	8B27119	10	10	220	1	02/27/08	02/27/08				
Sample ID: IRB2401-01 (Outfall 008 - W	ater)											
Reporting Units: ug/l												
Perchlorate	EPA 314.0	8B28045	1.5	4.0	ND	1	02/28/08	02/29/08				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: IRB2401

Sampled: 02/24/08 Received: 02/25/08

Metals by EPA 200 Series Methods												
MDL Reporting Sample Dilution Date Date Date Date Date Date Date Date												
Sample ID: IRB2401-01 (Outfall 008 - Wa	ater) - cont.											
Reporting Units: ug/l												
Mercury, Dissolved	EPA 245.1	W8B0982	0.050	0.20	ND	1	02/26/08	02/27/08				
Mercury, Total	EPA 245.1	W8B0982	0.050	0.20	ND	1	02/26/08	02/27/08				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: IRB2401

Sampled: 02/24/08 Received: 02/25/08

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 008 (IRB2401-01) - Wate	r				
EPA 300.0	2	02/24/2008 11:30	02/25/2008 05:20	02/25/2008 07:00	02/25/2008 10:08
Filtration	1	02/24/2008 11:30	02/25/2008 05:20	02/25/2008 09:45	02/25/2008 10:11

TestAmerica Irvine

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Arcadia, CA 91007

618 Michillinda Avenue, Suite 200

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 008

Report Number: IRB2401

Sampled: 02/24/08 Received: 02/25/08

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B28067 Extracted: 02/28/08	<u>}_</u>										
Blank Analyzed: 02/28/2008 (8B28067-B	I K1)										
Antimony	ND	2.0	0.20	ug/l							
Cadmium	0.133	1.0	0.11	ug/l							J
Copper	ND	2.0	0.75	ug/l							0
Lead	ND	1.0	0.30	ug/l							
Selenium	ND	2.0	0.30	ug/l							
Thallium	ND	1.0	0.20	ug/l							
Zinc	6.39	20	2.5	ug/l							J
LCS Analyzed: 02/28/2008 (8B28067-BS	1)			-							
Antimony	77.9	2.0	0.20	ug/l	80.0		97	85-115			
Cadmium	76.7	1.0	0.11	ug/l	80.0		96	85-115			
Copper	79.3	2.0	0.75	ug/l	80.0		99	85-115			
Lead	79.9	1.0	0.30	ug/l	80.0		100	85-115			
Selenium	74.4	2.0	0.30	ug/l	80.0		93	85-115			
Thallium	75.5	1.0	0.20	ug/l	80.0		94	85-115			
Zinc	77.1	20	2.5	ug/l	80.0		96	85-115			
Matrix Spike Analyzed: 02/28/2008 (8B2	28067-MS1)				Sou	irce: IRB	2460-02				
Antimony	78.3	2.0	0.20	ug/l	80.0	ND	98	70-130			
Cadmium	74.6	1.0	0.11	ug/l	80.0	0.128	93	70-130			
Copper	76.4	2.0	0.75	ug/l	80.0	1.05	94	70-130			
Lead	77.7	1.0	0.30	ug/l	80.0	ND	97	70-130			
Selenium	71.5	2.0	0.30	ug/l	80.0	ND	89	70-130			
Thallium	73.2	1.0	0.20	ug/l	80.0	ND	92	70-130			
Zinc	74.0	20	2.5	ug/l	80.0	6.52	84	70-130			
Matrix Spike Analyzed: 02/28/2008 (8B2	28067-MS2)				Sou	irce: IRB	2402-01				
Antimony	77.4	2.0	0.20	ug/l	80.0	2.51	94	70-130			
Cadmium	75.9	1.0	0.11	ug/l	80.0	1.94	92	70-130			
Copper	78.5	2.0	0.75	ug/l	80.0	2.79	95	70-130			
Lead	79.1	1.0	0.30	ug/l	80.0	1.66	97	70-130			
Selenium	69.4	2.0	0.30	ug/l	80.0	ND	87	70-130			
Thallium	76.3	1.0	0.20	ug/l	80.0	ND	95	70-130			
Zinc	133	20	2.5	ug/l	80.0	65.8	84	70-130			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: IRB2401

Sampled: 02/24/08 Received: 02/25/08

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B28067 Extracted: 02/28/08	3										
	(0D200/7 MG	D1)			G	IDD/	160.02				
Matrix Spike Dup Analyzed: 02/28/2008	(8B28067-MS	DI)			Sou	rce: IRB2	2460-02				
Antimony	78.5	2.0	0.20	ug/l	80.0	ND	98	70-130	0	20	
Cadmium	76.2	1.0	0.11	ug/l	80.0	0.128	95	70-130	2	20	
Copper	78.4	2.0	0.75	ug/l	80.0	1.05	97	70-130	3	20	
Lead	78.3	1.0	0.30	ug/l	80.0	ND	98	70-130	1	20	
Selenium	72.4	2.0	0.30	ug/l	80.0	ND	91	70-130	1	20	
Thallium	76.6	1.0	0.20	ug/l	80.0	ND	96	70-130	5	20	
Zinc	75.2	20	2.5	ug/l	80.0	6.52	86	70-130	2	20	

TestAmerica Irvine

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Arcadia, CA 91007

618 Michillinda Avenue, Suite 200

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 008

Report Number: IRB2401

Sampled: 02/24/08 Received: 02/25/08

METHOD BLANK/QC DATA

DISSOLVED METALS

Particity 825123 Extracted: 02/25/088 (8825123-EUK) Antimony ND 2.0 0.20 ug1 Cadmium ND 2.0 0.75 ug1 Copper ND 2.0 0.75 ug1 Copper ND 2.0 0.75 ug1 Copper ND 2.0 0.75 ug1 Comport ND 2.0 0.30 ug1 Comport ND 2.0 0.20 ug1 Athinom ND 1.0 0.20 ug1 80.0 98 85-115 Cadmium 78.0 0.0 0.0 9.0 9.0 9.0 9.0 9.0 0.0 0.0 0.0 0.0	Analyte	Result	Reporting Limit	MDI	Unite	Spike Level	Source	%DFC	%REC	RPD	RPD Limit	Data Qualifiers
Blank Analyzed: 02/26/2008 (8B25123-BL K1) Antimony ND 2.0 0.20 ug/l Cadmium ND 1.0 0.11 ug/l Copper ND 2.0 0.75 ug/l Lead ND 1.0 0.30 ug/l Selenium ND 2.0 0.30 ug/l Thallium ND 1.0 0.20 ug/l Zine ND 2.0 0.20 ug/l 80.0 98 85-115 Copper 8.6 2.0 0.20 ug/l 80.0 99 85-115 Cadmium 78.9 1.0 0.11 ug/l 80.0 99 85-115 Copper 80.6 2.0 0.30 ug/l 80.0 104 85-115 Lead 83.1 1.0 0.30 ug/l 80.0 99 85-115 Selenium 78.7 2.0 0.30 ug/l 80.0 99 85-115 Zinc 80.6 20 2.5 ug/l 80.0 101	·		Linnt	MDL	Units	Level	Kesuit	/0KEC	Linnts	ΚID	Linnt	Quanners
Antimony ND 2.0 0.20 ug/l Cadmium ND 1.0 0.11 ug/l Copper ND 2.0 0.75 ug/l Lead ND 2.0 0.30 ug/l Selenium ND 2.0 0.30 ug/l Thallium ND 2.0 0.20 ug/l Zinc ND 2.0 2.5 ug/l CS Analyzed: 02/26/2008 (8B25123-BSI) Antimony 78.6 2.0 0.20 ug/l 80.0 98 85-115 Cadmium 78.6 2.0 0.20 ug/l 80.0 98 85-115 Cadmium 78.6 2.0 0.20 ug/l 80.0 101 85-115 Cadmium 78.6 2.0 0.30 ug/l 80.0 104 85-115 Cadmium 78.7 2.0 0.30 ug/l 80.0 98 85-115 Selenium 78.7 2.0 0.30 ug/l 80.0 101 85-115 Cadmium <td>Batch: 8B25123 Extracted: 02/25/08</td> <td>}</td> <td></td>	Batch: 8B25123 Extracted: 02/25/08	}										
Antimony ND 2.0 0.20 ug/l Cadmium ND 1.0 0.11 ug/l Copper ND 2.0 0.75 ug/l Lead ND 2.0 0.30 ug/l Selenium ND 2.0 0.30 ug/l Thallium ND 2.0 0.20 ug/l Zinc ND 2.0 2.5 ug/l CS Analyzed: 02/26/2008 (8B25123-BSI) Antimony 78.6 2.0 0.20 ug/l 80.0 98 85-115 Cadmium 78.6 2.0 0.20 ug/l 80.0 98 85-115 Cadmium 78.6 2.0 0.20 ug/l 80.0 101 85-115 Cadmium 78.6 2.0 0.30 ug/l 80.0 104 85-115 Cadmium 78.7 2.0 0.30 ug/l 80.0 98 85-115 Selenium 78.7 2.0 0.30 ug/l 80.0 101 85-115 Cadmium <td>Blank Analyzad, 02/26/2008 (8025122 D</td> <td>I I/1)</td> <td></td>	Blank Analyzad, 02/26/2008 (8025122 D	I I/1)										
Cadmium ND 1.0 0.11 ug/l Copper ND 2.0 0.75 ug/l Lead ND 1.0 0.30 ug/l Selenium ND 2.0 0.30 ug/l Thallium ND 2.0 0.30 ug/l Zine ND 1.0 0.20 ug/l Antimony 78.6 2.0 0.20 ug/l 80.0 98 85-115 Cadmium 78.9 1.0 0.11 ug/l 80.0 99 85-115 Copper 80.6 2.0 0.75 ug/l 80.0 99 85-115 Cadmium 78.9 1.0 0.11 ug/l 80.0 101 85-115 Selenium 78.7 2.0 0.30 ug/l 80.0 99 85-115 Thallium 79.4 1.0 0.20 ug/l 80.0 101 85-115 Zine 80.6 20 2.5 ug/l 80.0 ND 106 70-130 Zine 8	•	· · · · · · · · · · · · · · · · · · ·	2.0	0.20	wa/1							
Copper ND 2.0 0.75 ug/l Lead ND 1.0 0.30 ug/l Selenium ND 2.0 0.30 ug/l Thallium ND 1.0 0.20 ug/l Zinc ND 0.0 0.20 ug/l Lead ND 0.0 0.20 ug/l 80.0 98 85-115 Came ND 0.0 0.20 ug/l 80.0 99 85-115 Cadmium 78.6 2.0 0.75 ug/l 80.0 99 85-115 Cadmium 78.9 1.0 0.11 ug/l 80.0 99 85-115 Cadenium 78.7 2.0 0.30 ug/l 80.0 99 85-115 Selenium 79.4 0.0 0.20 ug/l 80.0 99 85-115 Zine 80.6 2.0 0.25 ug/l 80.0 99 85-115 Zine 80.6 2.0 0.20 ug/l 80.0 101 85-115 Z	5				U							
LadND1.00.30ug/lSeleniumND2.00.30ug/lThaltiumND1.00.20ug/lZincND2.02.5ug/lCCS Analyzed: 02/26/2008 (8B25123-BSU:Jatimony78.62.00.20ug/l80.09885-115Cadmium78.91.00.11ug/l80.09185-115Cadmium78.91.00.30ug/l80.010185-115Lead83.11.00.30ug/l80.010485-115Selenium78.72.00.30ug/l80.09885-115Selenium78.72.00.30ug/l80.09985-115Selenium78.72.00.30ug/l80.09985-115Comper80.62.00.25ug/l80.09985-115Selenium79.41.00.20ug/l80.010185-115Cinc80.62.00.25ug/l80.0ND9885-115Cinc80.62.00.20ug/l80.0ND9885-115Selenium79.41.00.20ug/l80.0ND9885-115Cinc1.010.11ug/l80.0ND9670-130Cadmium79.62.00.20ug/l80.0ND9670-130Cadmium <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					-							
Selenium ND 2.0 0.30 ug/l Thallium ND 1.0 0.20 ug/l Zine ND 20 2.5 ug/l Less ug/l 80.0 98 85-115 CAthmony 78.6 2.0 0.20 ug/l 80.0 99 85-115 Cadmium 78.9 1.0 0.11 ug/l 80.0 99 85-115 Copper 80.6 2.0 0.75 ug/l 80.0 101 85-115 Lead 83.1 1.0 0.30 ug/l 80.0 99 85-115 Selenium 78.7 2.0 0.30 ug/l 80.0 99 85-115 Idalium 79.4 1.0 0.20 ug/l 80.0 99 85-115 Station 70.4 0.0 0.20 ug/l 80.0 101 85-115 Gaine 70.4 0.0 2.0 ug/l 80.0 ND 96 70-130 Gaine 70.0 0.0 0.0												
ThalliumND1.00.200.21ZincND202.5ug/lLCS Analyzed: 02/26/2008 (8B25123-BS):Antimony78.62.00.20ug/l80.09885-115Cadmium78.91.00.11ug/l80.09985-115Copper80.62.00.75ug/l80.010485-115Lead83.11.00.30ug/l80.09885-115Selenium78.72.00.30ug/l80.09885-115Thallium79.41.00.20ug/l80.09985-115Zinc80.62.00.75ug/l80.09985-115Matmony84.62.00.20ug/l80.09985-115Cadmium77.01.00.20ug/l80.0ND9985-115Cadmium77.01.00.20ug/l80.0ND9985-115Cadmium77.01.00.20ug/l80.0ND9985-115Cadmium77.01.00.20ug/l80.0ND9985-115Cadmium77.01.00.11ug/l80.0ND9985-115Cadmium77.01.00.11ug/l80.0ND9670-130Cadmium77.01.00.11ug/l80.0ND9770-130Cadmium77.												
ZineND202.5ug/1LCS Analyzed: 02/26/2008 (8B25123-BS):Antimony78.62.00.20ug/180.09885-115Cadmium78.91.00.11ug/180.09985-115Copper80.62.00.75ug/180.010485-115Selenium78.72.00.30ug/180.09885-115Thallium79.41.00.20ug/180.09985-115Zine80.6202.5ug/180.09985-115Antimony84.62.00.20ug/180.09985-115Cadmium77.01.00.11ug/180.0ND10185-115Cadmium77.01.00.11ug/180.0ND9985-115Cadmium77.01.00.11ug/180.0ND9985-115Cadmium77.01.00.11ug/180.0ND9670-130Copper69.62.00.75ug/180.0ND9770-130Lead77.81.00.30ug/180.0ND9770-130Selenium97.02.00.30ug/180.0ND9770-130Selenium75.21.00.20ug/180.0ND9770-130Selenium72.51.00.20ug/180.0N					-							
Arimony78.62.00.20ug/l80.09885-115Cadmium78.91.00.11ug/l80.09985-115Copper80.62.00.75ug/l80.010185-115Lead83.11.00.30ug/l80.010485-115Selenium78.72.00.30ug/l80.09985-115Thallium79.41.00.20ug/l80.09985-115Zine80.6202.5ug/l80.010185-115Source: IRB2IU-UIAntimony84.62.00.20ug/l80.0ND10670-130Cadmium77.01.00.11ug/l80.0ND9770-130Copper69.62.00.75ug/l80.0ND9770-130Lead77.81.00.30ug/l80.0ND9770-130Copper69.62.00.75ug/l80.0ND9770-130Lead77.81.00.30ug/l80.00.91712070-130Selenium97.02.00.30ug/l80.00.91712070-130Lead77.81.00.20ug/l80.00.91712070-130Selenium75.21.00.20ug/l80.00.2309470-130Linium7												
Antimony78.62.00.20ug/l80.09885-115Cadmium78.91.00.11ug/l80.09985-115Copper80.62.00.75ug/l80.010185-115Lead83.11.00.30ug/l80.010485-115Selenium78.72.00.30ug/l80.09985-115Thallium79.41.00.20ug/l80.09985-115Zinc80.6202.5ug/l80.010185-115Adminony84.62.00.20ug/l80.0ND10670-130Cadmium77.01.00.11ug/l80.0ND9670-130Copper69.62.00.75ug/l80.0ND9770-130Lead77.81.00.30ug/l80.0ND9770-130Cipper69.62.00.75ug/l80.0ND9770-130Lead77.81.00.30ug/l80.0ND9770-130Selenium97.02.00.30ug/l80.00.91712070-130Selenium75.21.00.20ug/l80.0ND9470-130Thallium75.21.00.20ug/l80.0ND9470-130Cinc2.5ug/l80.0ND9470-13070-13	Ziic	ND	20	2.5	ug/1							
Cadmium78.91.00.11ug/l80.09985-115Copper80.62.00.75ug/l80.010185-115Lead83.11.00.30ug/l80.010485-115Selenium78.72.00.30ug/l80.09985-115Thallium79.41.00.20ug/l80.09985-115Zinc80.6202.5ug/l80.010185-115Matrix Spike Analyzed:02/26/2008 (8B25123-MS1)Source: IRB2107-01Antimony84.62.00.20ug/l80.0ND10670-130Cadmium77.01.00.11ug/l80.0ND9670-130Copper69.62.00.75ug/l80.0ND9770-130Lead77.81.00.30ug/l80.0ND9770-130Selenium97.02.00.30ug/l80.0ND9770-130Italium75.21.00.20ug/l80.00.2309470-130Thallium75.2202.5ug/l80.0ND91130Kinc2.52.5ug/l80.0ND9170-130	LCS Analyzed: 02/26/2008 (8B25123-BS	1)										
Copper80.62.00.75ug/l80.010185-115Lead83.11.00.30ug/l80.010485-115Selenium78.72.00.30ug/l80.09885-115Thallium79.41.00.20ug/l80.09985-115Zinc80.6202.5ug/l80.010185-115Matrix Spike Analyzed:02/26/2008 (BB25123-MS1)Source: IRB210-UTSource: IRB210-UTAntimony84.62.00.20ug/l80.0ND10670-130Cadmium77.01.00.11ug/l80.0ND9670-130Copper69.62.00.75ug/l80.0ND9770-130Selenium97.02.00.30ug/l80.00.91712070-130Selenium75.21.00.20ug/l80.00.2309470-130Thallium75.21.00.20ug/l80.0ND9170-130	Antimony	78.6	2.0	0.20	ug/l	80.0		98	85-115			
Lead83.11.00.30ug/l80.010485-115Selenium78.72.00.30ug/l80.09885-115Thallium79.41.00.20ug/l80.09985-115Zinc80.6202.5ug/l80.010185-115Source: IRB2107-01Matrix Spike Analyzed: 02/26/2008 (8B25123-MS1)Source: IRB2107-01Antimony84.62.00.20ug/l80.0ND10670-130Cadmium77.01.00.11ug/l80.0ND9670-130Copper69.62.00.75ug/l80.0ND9770-130Lead77.81.00.30ug/l80.0ND9770-130Selenium97.02.00.30ug/l80.00.91712070-130Thallium75.21.00.20ug/l80.0ND9170-130	Cadmium	78.9	1.0	0.11	ug/l	80.0		99	85-115			
Selenium78.72.00.30ug/l80.09885-115Thallium79.41.00.20ug/l80.09985-115Zine80.6202.5ug/l80.010185-115Matrix Spike Analyzed: 02/26/2008 (8B25123-MS1)Source: IRB210-01Antimony84.62.00.20ug/l80.0ND10670-130Cadmium77.01.00.11ug/l80.0ND9670-130Copper69.62.00.75ug/l80.0ND9770-130Lead77.81.00.30ug/l80.0ND9770-130Selenium97.02.00.30ug/l80.00.91712070-130Thallium75.21.00.20ug/l80.00.2309470-130Zine72.5202.5ug/l80.0ND9170-130	Copper	80.6	2.0	0.75	ug/l	80.0		101	85-115			
Thallium79.41.00.20ug/l80.09985-115Zinc80.6202.5ug/l80.010185-115Matrix Spike Analyzed: 02/26/2008 (8B25123-MS1)Source: IRB2107-01Antimony84.62.00.20ug/l80.0ND10670-130Cadmium77.01.00.11ug/l80.0ND9670-130Copper69.62.00.75ug/l80.0ND9770-130Lead77.81.00.30ug/l80.0ND9770-130Selenium97.02.00.30ug/l80.00.91712070-130Thallium75.21.00.20ug/l80.0ND9170-130Zinc72.5202.5ug/l80.0ND9170-130	Lead	83.1	1.0	0.30	ug/l	80.0		104	85-115			
Zinc80.6202.5ug/l80.010185-115Matrix Spike Analyzed: 02/26/2008 (8B25123-MS1)Source: IRB2107-01Antimony84.62.00.20ug/l80.0ND10670-130Cadmium77.01.00.11ug/l80.0ND9670-130Copper69.62.00.75ug/l80.01.178570-130Lead77.81.00.30ug/l80.0ND9770-130Selenium97.02.00.30ug/l80.00.91712070-130Thallium75.21.00.20ug/l80.0ND9470-130Zinc72.5202.5ug/l80.0ND9170-130	Selenium	78.7	2.0	0.30	ug/l	80.0		98	85-115			
Matrix Spike Analyzed: 02/26/2008 (8B25123-MS1)Source: IRB2107-01Antimony84.62.00.20ug/l80.0ND10670-130Cadmium77.01.00.11ug/l80.0ND9670-130Copper69.62.00.75ug/l80.01.178570-130Lead77.81.00.30ug/l80.0ND9770-130Selenium97.02.00.30ug/l80.00.91712070-130Thallium75.21.00.20ug/l80.0ND9170-130Zinc72.5202.5ug/l80.0ND9170-130	Thallium	79.4	1.0	0.20	ug/l	80.0		99	85-115			
Antimony84.62.00.20ug/l80.0ND10670-130Cadmium77.01.00.11ug/l80.0ND9670-130Copper69.62.00.75ug/l80.01.178570-130Lead77.81.00.30ug/l80.0ND9770-130Selenium97.02.00.30ug/l80.00.91712070-130Thallium75.21.00.20ug/l80.00.2309470-130Zinc72.5202.5ug/l80.0ND9170-130	Zinc	80.6	20	2.5	ug/l	80.0		101	85-115			
Cadmium77.01.00.11ug/l80.0ND9670-130Copper69.62.00.75ug/l80.01.178570-130Lead77.81.00.30ug/l80.0ND9770-130Selenium97.02.00.30ug/l80.00.91712070-130Thallium75.21.00.20ug/l80.00.2309470-130Zinc72.5202.5ug/l80.0ND9170-130	Matrix Spike Analyzed: 02/26/2008 (8B2	5123-MS1)				Sou	rce: IRB	2107-01				
Copper69.62.00.75ug/l80.01.178570-130Lead77.81.00.30ug/l80.0ND9770-130Selenium97.02.00.30ug/l80.00.91712070-130Thallium75.21.00.20ug/l80.00.2309470-130Zinc72.5202.5ug/l80.0ND9170-130	Antimony	84.6	2.0	0.20	ug/l	80.0	ND	106	70-130			
Lead77.81.00.30ug/l80.0ND9770-130Selenium97.02.00.30ug/l80.00.91712070-130Thallium75.21.00.20ug/l80.00.2309470-130Zinc72.5202.5ug/l80.0ND9170-130	Cadmium	77.0	1.0	0.11	ug/l	80.0	ND	96	70-130			
Selenium97.02.00.30ug/l80.00.91712070-130Thallium75.21.00.20ug/l80.00.2309470-130Zinc72.5202.5ug/l80.0ND9170-130	Copper	69.6	2.0	0.75	ug/l	80.0	1.17	85	70-130			
Thallium75.21.00.20ug/l80.00.2309470-130Zinc72.5202.5ug/l80.0ND9170-130	Lead	77.8	1.0	0.30	ug/l	80.0	ND	97	70-130			
Zinc 72.5 20 2.5 ug/l 80.0 ND 91 70-130	Selenium	97.0	2.0	0.30	ug/l	80.0	0.917	120	70-130			
	Thallium	75.2	1.0	0.20	ug/l	80.0	0.230	94	70-130			
Matrix Snike Dun Analyzed: 02/26/2008 (8R25123-MSD1) Source: IRR2107-01	Zinc	72.5	20	2.5	ug/l	80.0	ND	91	70-130			
Matrix Spike Dup Analyzed. 02/20/2000 (02/21/25-MSD1)	Matrix Spike Dup Analyzed: 02/26/2008	(8B25123-M	ISD1)			Sou	rce: IRB2	2107-01				
Antimony 89.1 2.0 0.20 ug/l 80.0 ND 111 70-130 5 20	Antimony	89.1	2.0	0.20	ug/l	80.0	ND	111	70-130	5	20	
Cadmium 82.5 1.0 0.11 ug/l 80.0 ND 103 70-130 7 20	Cadmium	82.5	1.0	0.11	ug/l	80.0	ND	103	70-130	7	20	
Copper 71.8 2.0 0.75 ug/l 80.0 1.17 88 70-130 3 20	Copper	71.8	2.0	0.75	ug/l	80.0	1.17	88	70-130	3	20	
Lead 79.1 1.0 0.30 ug/l 80.0 ND 99 70-130 2 20	Lead	79.1	1.0	0.30	ug/l	80.0	ND	99	70-130	2	20	
Selenium 101 2.0 0.30 ug/l 80.0 0.917 125 70-130 4 20	Selenium	101	2.0	0.30	ug/l	80.0	0.917	125	70-130	4	20	
Thallium 76.5 1.0 0.20 ug/l 80.0 0.230 95 70-130 2 20	Thallium	76.5	1.0	0.20	ug/l	80.0	0.230	95	70-130	2	20	
Zinc 75.6 20 2.5 ug/l 80.0 ND 95 70-130 4 20	Zinc	75.6	20	2.5	ug/l	80.0	ND	95	70-130	4	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: IRB2401

Sampled: 02/24/08 Received: 02/25/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
·		Linnt	MDL	Units	Levei	Kesuit	/orec	Linnts	ΝD	Linnt	Quanners
Batch: 8B25042 Extracted: 02/25/08	_										
Blank Analyzed: 02/25/2008 (8B25042-B	LK1)										
Chloride	ND	0.50	0.25	mg/l							
Nitrate-N	ND	0.11	0.060	mg/l							
Nitrite-N	ND	0.15	0.090	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Sulfate	ND	0.50	0.20	mg/l							
LCS Analyzed: 02/25/2008 (8B25042-BS	1)										
Chloride	5.09	0.50	0.25	mg/l	5.00		102	90-110			
Nitrate-N	1.09	0.11	0.060	mg/l	1.13		96	90-110			
Nitrite-N	1.49	0.15	0.090	mg/l	1.52		98	90-110			
Sulfate	9.95	0.50	0.20	mg/l	10.0		99	90-110			M-3
Matrix Spike Analyzed: 02/25/2008 (8B2	5042-MS1)				Sou	rce: IRB2	2399-01				
Chloride	20.2	0.50	0.25	mg/l	5.00	15.9	88	80-120			
Nitrate-N	1.61	0.11	0.060	mg/l	1.13	0.512	97	80-120			
Nitrite-N	1.74	0.15	0.090	mg/l	1.52	ND	115	80-120			
Matrix Spike Dup Analyzed: 02/25/2008	(8B25042-M	SD1)			Sou	rce: IRB2	2399-01				
Chloride	20.2	0.50	0.25	mg/l	5.00	15.9	87	80-120	0	20	
Nitrate-N	1.56	0.11	0.060	mg/l	1.13	0.512	93	80-120	3	20	
Nitrite-N	1.76	0.15	0.090	mg/l	1.52	ND	116	80-120	1	20	
Batch: 8B26101 Extracted: 02/26/08	<u></u>										

Blank Analyzed: 02/26/2008 (8B26101-BLK1)

Ammonia-N (Distilled)	ND	0.50	0.30	mg/l
-----------------------	----	------	------	------

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: IRB2401

Sampled: 02/24/08 Received: 02/25/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B26101 Extracted: 02/26/08	-										
LCS Analyzed: 02/26/2008 (8B26101-BS1	,										
Ammonia-N (Distilled)	10.1	0.50	0.30	mg/l	10.0		101	80-115			
Matrix Spike Analyzed: 02/26/2008 (8B2)	,	0.50	0.20	1		rce: IRB		70.100			
Ammonia-N (Distilled)	10.1	0.50	0.30	mg/l	10.0	ND	101	70-120			
Matrix Spike Dup Analyzed: 02/26/2008		-				rce: IRB					
Ammonia-N (Distilled)	10.1	0.50	0.30	mg/l	10.0	ND	101	70-120	0	15	
Batch: 8B27119 Extracted: 02/27/08	-										
Blank Analyzed: 02/27/2008 (8B27119-Bl	L K1)										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 02/27/2008 (8B27119-BS)	l)										
Total Dissolved Solids	980	10	10	mg/l	1000		98	90-110			
Duplicate Analyzed: 02/27/2008 (8B2711)	9-DUP1)				Sou	rce: IRB	2154-02				
Total Dissolved Solids	4760	10	10	mg/l		4760			0	10	
Batch: 8B28045 Extracted: 02/28/08	-										
Blank Analyzed: 02/28/2008 (8B28045-B)	L K1)										
Perchlorate	ND	4.0	1.5	ug/l							
LCS Analyzed: 02/28/2008 (8B28045-BS1	l)										
Perchlorate	54.9	4.0	1.5	ug/l	50.0		110	85-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: IRB2401

Sampled: 02/24/08 Received: 02/25/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B28045 Extracted: 02/28/08	<u>}</u>										
Matrix Spike Analyzed: 02/28/2008 (8B2	28045-MS1)				Sou	rce: IRB2	2453-07				
Perchlorate	61.1	4.0	1.5	ug/l	50.0	5.03	112	80-120			
Matrix Spike Dup Analyzed: 02/28/2008	(8B28045-M	SD1)			Sou	rce: IRB2	2453-07				
Perchlorate	60.6	4.0	1.5	ug/l	50.0	5.03	111	80-120	1	20	
Batch: 8C04046 Extracted: 03/04/08	<u>8</u>										
Blank Analyzed: 03/04/2008 (8C04046-B	BLK1)										
Hexane Extractable Material (Oil & Grease)	ND	5.0	1.4	mg/l							
LCS Analyzed: 03/04/2008 (8C04046-BS	51)										MNR1
Hexane Extractable Material (Oil & Grease)	18.1	5.0	1.4	mg/l	20.2		90	78-114			
LCS Dup Analyzed: 03/04/2008 (8C0404	6-BSD1)										
Hexane Extractable Material (Oil & Grease)	18.9	5.0	1.4	mg/l	20.2		94	78-114	4	11	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: IRB2401

Sampled: 02/24/08 Received: 02/25/08

METHOD BLANK/QC DATA

Metals by EPA 200 Series Methods

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
-		Linnt	MDL	Units	Level	Result	70KEU	Linnts	KF D	Linnt	Quanners
Batch: W8B0982 Extracted: 02/26/0	<u>8</u>										
Blank Analyzed: 02/27/2008 (W8B0982-J	BLK1)										
Mercury, Dissolved	ND	0.20	0.050	ug/l							
Mercury, Total	ND	0.20	0.050	ug/l							
LCS Analyzed: 02/27/2008 (W8B0982-B	S1)										
Mercury, Dissolved	0.920	0.20	0.050	ug/l	1.00		92	85-115			
Mercury, Total	0.920	0.20	0.050	ug/l	1.00		92	85-115			
Matrix Spike Analyzed: 02/27/2008 (W8	B0982-MS1)				Sou	rce: 8022	631-01				
Mercury, Dissolved	1.95	0.40	0.10	ug/l	2.00	ND	98	70-130			
Mercury, Total	1.95	0.40	0.10	ug/l	2.00	0.0950	93	70-130			
Matrix Spike Analyzed: 02/27/2008 (W8	B0982-MS2)				Sou	rce: 8022	633-01				
Mercury, Dissolved	1.91	0.40	0.10	ug/l	2.00	ND	96	70-130			
Mercury, Total	1.91	0.40	0.10	ug/l	2.00	ND	96	70-130			
Matrix Spike Dup Analyzed: 02/27/2008	(W8B0982-M	SD1)			Sou	rce: 8022	631-01				
Mercury, Dissolved	2.00	0.40	0.10	ug/l	2.00	ND	100	70-130	2	20	
Mercury, Total	2.00	0.40	0.10	ug/l	2.00	0.0950	95	70-130	2	20	
Matrix Spike Dup Analyzed: 02/27/2008	(W8B0982-M	SD2)			Sou	rce: 8022	633-01				
Mercury, Dissolved	1.93	0.40	0.10	ug/l	2.00	ND	96	70-130	1	20	
Mercury, Total	1.93	0.40	0.10	ug/l	2.00	ND	96	70-130	1	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: IRB2401

Sampled: 02/24/08 Received: 02/25/08

Complement

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
IRB2401-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	1.90	4.8	15
IRB2401-01	Antimony-200.8	Antimony	ug/l	0.30	2.0	6
IRB2401-01	Cadmium-200.8	Cadmium	ug/l	0.020	1.0	3.1
IRB2401-01	Chloride - 300.0	Chloride	mg/l	12	0.50	150
IRB2401-01	Copper-200.8	Copper	ug/l	2.43	2.0	14
IRB2401-01	Hg_w 245.1	Mercury, Total	ug/l	0.021	0.20	0.2
IRB2401-01	Lead-200.8	Lead	ug/l	1.26	1.0	5.2
IRB2401-01	Nitrate-N, 300.0	Nitrate-N	mg/l	3.35	0.11	8
IRB2401-01	Nitrite-N, 300.0	Nitrite-N	mg/l	0	0.15	1
IRB2401-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	3.36	0.26	8
IRB2401-01	Perchlorate 314.0-DEFAULT	Perchlorate	ug/l	0	4.0	6
IRB2401-01	Selenium-200.8	Selenium	ug/l	0.22	2.0	5
IRB2401-01	Sulfate-300.0	Sulfate	mg/l	15	0.50	300
IRB2401-01	TDS - SM 2540C	Total Dissolved Solids	mg/l	219	10	950
IRB2401-01	Thallium-200.8	Thallium	ug/l	0	1.0	2
IRB2401-01	Zinc-200.8	Zinc	ug/l	6.02	20	160

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: IRB2401

Sampled: 02/24/08 Received: 02/25/08

DATA QUALIFIERS AND DEFINITIONS

- **B** Analyte was detected in the associated Method Blank.
- J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
- **M-3** Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).
- MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
- ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
- **RPD** Relative Percent Difference

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 008

Report Number: IRB2401

Sampled: 02/24/08 Received: 02/25/08

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EPA 1664A	Water		
EPA 200.8-Diss	Water	Х	Х
EPA 200.8	Water	Х	Х
EPA 300.0	Water	Х	Х
EPA 314.0	Water	Х	Х
EPA 350.2	Water		Х
Filtration	Water	N/A	N/A
SM2540C	Water	Х	

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Eberline Services - SUB

2030 Wright Avenue - Richmond, CA 94804

- Analysis Performed: Gamma Spec Samples: IRB2401-01
- Analysis Performed: Gross Alpha Samples: IRB2401-01
- Analysis Performed: Gross Beta Samples: IRB2401-01
- Analysis Performed: Radium, Combined Samples: IRB2401-01
- Analysis Performed: Strontium 90 Samples: IRB2401-01
- Analysis Performed: Tritium Samples: IRB2401-01

Analysis Performed: Uranium, Combined Samples: IRB2401-01

TestAmerica Irvine

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing	Project ID:	Routine Outfall 008		
618 Michillinda Avenue, Suite 200			Sampled:	02/24/08
Arcadia, CA 91007 Attention: Bronwyn Kelly	Report Number:	IRB2401	Received:	02/25/08

Vista Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413 1104 Windfield Way - El Dorado Hills, CA 95762 Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IRB2401-01

Weck Laboratories, Inc

14859 E. Clark Avenue - City of Industry, CA 91745 Method Performed: EPA 245.1 Samples: IRB2401-01

TestAmerica Irvine

Version 12/20/07	
America	
est	

C (

of 1		ي يا						T				g		t lab								ຄ
IRB2401 Page 10		Field readings:	pH = 7, Y Time of readings =	Comments		01	M.C.	2125/08	57:60	-		Unfiltered and unpreserved analysis	Cutoticat if first and second rain event of the vear	Filter w/in 24hrs of receipt at lab				Turn around Time: (check) 24 Hours 5 Days	10 Days	Nomal	Sample Integrity: (check)	te # 12
N			al Dissolved Me Cu, Pb, Hg, Tl											×				Im arou Hours	48 Hours	72 Hours	act	년), '
	SED	M2 -	fuerre Lame										1					≓ ⊼ &	48	72	<u> </u>	3:4
H	ANALYSIS REQUIRED	0.0), Total ۲ 226 Radium ium	6(000), Sr-90 (90) 3.0 or 903.1) & 9.0), K-40, CS- (904.0), Uran 1.0 or 901.1) 1.0 or 901.1)	(306) 528 (300) (300) (300) (300) (300) (300)								×						zulus 14			0220)
	AN/		0.009)sdqlA sa uitinT ,(0.009)s														-	12	•		08	
	-	(-	2.035) N-sinom							×	×		┦				me:	Y	me:	:eu	25	
۲	· · · · · · · · · · · · · · · · · · ·		ate-N, Nitrite-N						×	^			┨				Date/Time:	Ç	Date/Time	Date/Time:	2	1
FO	And the second second	'N- ^z	chlorate SO₄, NO₃+NO₂					×					T					\mathcal{A}			٩	\sim
2		<u> </u>	8, Grease (166				×						I				Ţ				=	<i>J</i>
10 T		geners)	noo lls bns) OC	TCI Zn		×							┦			$\left \right $	_	ŝ			\sum_{α}	
CUSTODY FORM			Cd, Cu, Pb, H ₀	'qs >	××												$\sum_{k=1}^{\infty}$	K	2	Ň	T	1
OF		, Valley	- -	Bottle #	1 1 1 1 1	2A, 2B	3A, 3B	4A, 4B	5	9	7	8A 8B	ĥ	10			Received By	Ŋ	Received By	Received By	Clo	► }
CHAIN		Boeing-SSFL NFUES Routine Outfall 008 Stormwater at Happy Valley	nber: 6691 er: 6515	Preservative	HN03 HN03	None	HCI	None	None	H₂SO₄	None	None None	0.00	None				120-	1745	X	0220	
Ŭ	ct: cc:	ig-55 ine O	Phone Number (626) 568-6691 Fax Number (626) 568-6515	L			-	-	-	-		30.	T	-14-00			ue:	.0	me:		08	
2	Project	Boel Rout Storn	Phon (626) Fax 1 (626)	Sampling Date/Time							-12	1 <u>1</u> 2 - 1 2		2-2			Date/Time:	108	Ďate/Ti ∕	Defe/Time:	2/25/08	
12/20/0		oak oak	Kelly			2	2	2	-	-	-	~ ~]	-				13		λ	2	
a Version	SS:	ue, Suite 2 : Joseph D	Bronwyn Kelly	Container Type	1L Poly 1L Poly	1L Amber	1L Amber	500 ml Poly	500 ml Poly	500 ml Poly	500 ml Polv	2.5 Gal Cube 500 ml Amber	1 C I Dal	1L Poly				N			idae	Ģ
neric	he/Addre	cadia nda Aven v 91007 a Contact	inager:	Sample Matrix	3 3	3	3	M	3	3	3	3	۸ <i>۲</i>	3			By	Ker	Ř.		کک '	
Test America version 12/20/07	Client Name/Address	MWH-Arcadia 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Test America Contact: Joseph Doak	Project Manager: Bronw Sampler: メインみ、・a ・・・	Sample Description	Outfall 008 Outfall 008-	Outfall 008	Outfall 008	Outfall 008	Outfall 008	Outfall 008	Outfall 008	Outfall 008		Outfall 008			Relinguished By	Lai	Relinquished	Relinauished B	Rec	

ú

SUBCONTRACT ORDER

TestAmerica Irvine

IRB2401

8022632

SENDING LABORATORY:

TestAmerica Irvine 17461 Derian Avenue. Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297 Project Manager: Joseph Doak

RECEIVING LABORATORY:

Weck Laboratories, Inc-SUB 14859 E. Clark Avenue City of Industry, CA 91745 Phone :(626) 336-2139 Fax: (626) 336-2634 Project Location: California Receipt Temperature: <u>4.4</u>°C Ice: (7)

• 1	[1]	1	N	
•	Ľ.	/	11	

Analysis	Units	Due	Expires	Comments
Sample ID: IRB2401-01	Water		Sampled: 02/24/08 11:	30
Level 4 Data Package - V	Vetc N/A	03/05/08	03/23/08 11:30	
Mercury - 245.1, Diss -Ol	JT ug/l	03/05/08	03/23/08 11:30	
Mercury - 245.1-OUT	ug/l	03/05/08	03/23/08 11:30	Boeing, permit, J flags
Containers Supplied:				
125 mL Poly w/HNO3 (P)	250 mL Pol	y (Q)		

3 Date/Time Received By eased By me 109 1205 mer 0 **NPDES - 2020** 1 of 1 Date/Time Date/Time Received By Released By

Weck Laboratories, Inc.

Analytical Laboratory Services - Since 1964

14859 E. Clark Ave., Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634 info@wecklabs.com www.wecklabs.com

CERTIFICATE OF ANALYSIS

02/28/08 07:49 TestAmerica, Inc. - Irvine **Client: Report Date:** 02/26/08 12:05 17461 Derian Ave, Suite 100 **Received Date:** Irvine, CA 92614 **Turn Around:** 6 days Attention: Joseph Doak 8022632 Work Order #: Phone: (949) 261-1022 Fax: (949) 260-3297 **Client Project:** IRB2401

NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

Dear Joseph Doak :

Enclosed are the results of analyses for samples received 02/26/08 12:05 with the Chain of Custody document. The samples were received in good condition. The samples were received at 4.6 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Reviewed by: in

Kim G Tu

Project Manager

Report ID: 8022632 Project ID: IRB2401 Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Date Received: 02/26/08 12:05 Date Reported: 02/28/08 07:49

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Sampled by:	Sample Comments	Laboratory	Matrix	Date Sampled
IRB2401-01	Client		8022632-01	Water	02/24/08 11:30

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Date Received: 02/26/08 12:05 Date Reported: 02/28/08 07:49

IRB2401-01 8022632-01 (Water)

Report ID: 8022632

Project ID: IRB2401

Date Sampled: 02/24/08 11:30

Metals by EPA 200 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Analyst	Data Qualifiers
Mercury, Dissolved	ND	0.050	ug/l	0.20	1	EPA 245.1	W8B0982	02/26/08	02/27/08	jlp	
Mercury, Total	ND	0.050	ug/l	0.20	1	EPA 245.1	W8B0982	02/26/08	02/27/08	jlp	

Report ID: 8022632 Project ID: IRB2401 Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

 Date Received:
 02/26/08 12:05

 Date Reported:
 02/28/08 07:49

QUALITY CONTROL SECTION

 Date Received:
 02/26/08 12:05

 Date Reported:
 02/28/08 07:49

Metals by EPA 200 Series Methods - Quality Control

Report ID: 8022632

Project ID: IRB2401

							%REC			
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch W8B0982 - EPA 245.1										
Blank (W8B0982-BLK1)				Analyzed:	02/27/08					
Mercury, Dissolved	ND	0.20	ug/l							
Mercury, Total	ND	0.20	ug/l							
LCS (W8B0982-BS1)				Analyzed:	02/27/08					
Mercury, Dissolved	0.920	0.20	ug/l	1.00		92	85-115			
Mercury, Total	0.920	0.20	ug/l	1.00		92	85-115			
Matrix Spike (W8B0982-MS1)	So	Source: 8022631-01		Analyzed:	02/27/08					
Mercury, Dissolved	1.95	0.40	ug/l	2.00	ND	98	70-130			
Mercury, Total	1.95	0.40	ug/l	2.00	0.0950	93	70-130			
Matrix Spike (W8B0982-MS2)	So	urce: 8022633	-01	Analyzed:	02/27/08					
Mercury, Dissolved	1.91	0.40	ug/l	2.00	ND	96	70-130			
Mercury, Total	1.91	0.40	ug/l	2.00	ND	96	70-130			
Matrix Spike Dup (W8B0982-MSD1)	So	urce: 8022631	-01	Analyzed:	02/27/08					
Mercury, Dissolved	2.00	0.40	ug/l	2.00	ND	100	70-130	2	20	
Mercury, Total	2.00	0.40	ug/l	2.00	0.0950	95	70-130	2	20	
Matrix Spike Dup (W8B0982-MSD2)	So	urce: 8022633	-01	Analyzed:	02/27/08					
Mercury, Dissolved	1.93	0.40	ug/l	2.00	ND	96	70-130	0.9	20	
Mercury, Total	1.93	0.40	ug/l	2.00	ND	96	70-130	0.9	20	

Report ID: 8022632 Project ID: IRB2401 Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Date Received: 02/26/08 12:05 Date Reported: 02/28/08 07:49

Notes and Definitions

- ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- % Rec Percent Recovery
- Sub Subcontracted analysis, original report available upon request
- MDL Method Detection Limit
- MDA Minimum Detectable Activity

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

March 20, 2008

Mr. Joseph Doak Test America, Inc. 17461 Derian Avenue, Suite 100 Irvine, CA 92614

 Reference:
 Test America Project Nos.
 IRB1995, IRB2337, IRB2341, IRB2342, IRB2399 IRB2400, IRB2401, IRB2403

 Eberline Services NELAP Cert #01120CA
 Eberline Services Reports
 R802140-8609, R802169-8610, R802170-8611 R802171-8612, R802172-8613, R802173-8614

 R802174-8615, R802175-8616
 R802175-8616

Dear Mr. Doak:

Attached are data reports for eight water samples. The samples were received at Eberline Services on February 22, 26, 2008 under eight separate Test America subcontract orders. The samples were analyzed according to the accompanying Test America Subcontract Order Forms, the requested analyses were: gross alpha/gross beta (EPA 900.0), tritium (H-3, EPA906.0), Sr-90 (EPA905.0), Ra-226 (EPA903.1), Ra-228 (EPA 904.0), total uranium (ASTM D-5174), and gamma spectroscopy (EPA901.1, K-40 and Cs-137 only). The parenthetical G after a nuclide indicates that the result was obtained by gamma spectroscopy; a "U" in the results column indicates that the nuclide was not detected greater than the indicated minimum detectable activity (MDA). The samples were not filtered prior to analysis. The samples were analyzed in batches with common QC samples. Batch quality control samples consisted of LCS's, blank analyses, duplicate analyses, and matrix spike analyses (gross alpha/gross beta, H-3, Ra-226, Total-U only). All samples were batched with QC samples 8609-002, 003, 004, and 005 for all analyses. All QC sample results were within the limits defined in Eberline Services Quality Control Procedures Manual.

Please call me if you have any questions concerning this report.

Regards,

melesse Mamm

Melissa Mannion Senior Program Manager

MCM/njv

Enclosure: Reports

Analytical Services 2030 Wright Avenue P.O. Box 4040 Richmond, California 94804-0040 (510) 235-2633 Fax (510) 235-0438 Toll Free (800) 841-5487 www.eberlineservices.com NPDES - 2027

Eberline Services

ANALYSIS RESULTS

SDG	8615	Client	TA IRVINE	
Work Order	R802174-01	Contract	PROJECT# IRB2401	
Received Date	02/26/08	Matrix	WATER	

Client	Lab					
Sample ID	Sample ID	Collected Analyzed	Nuclide	<u>Results ± 20</u>	Units	MDA
IRB2401-01	8615-001	02/24/08 03/16/08	GrossAlpha	1.49 ± 0.80	pCi/L	1.0
		03/16/08	Gross Beta	2.80 ± 0.90	pCi/L	1.5
		03/10/08	Ra-228	-0.118 ± 0.16	pCi/L	0.48
		03/12/08	K-40 (G)	U	pCi/L	53
		03/12/08	Cs-137 (G)	U	pCi/L	1.9
		03/14/08	Н-З	-66.3 ± 85	pCi/L	150
		03/14/08	Ra-226	0.296 ± 0.49	pCi/L	0.84
		03/10/08	Sr-90	0.029 ± 0.40	pCi/L	0.95
		03/05/08	Total U	0.515 ± 0.059	pCi/L	0.023

Cer	stified by A
Rep	port Date 03/20/08
Pag	ge l
L	

Q	C	R	Ε	S	U	L	т	S
---	---	---	---	---	---	---	---	---

SDG <u>8615</u> Work Order <u>R802174-01</u> Received Date <u>02/26/08</u>				Client <u>TA IRVINE</u> Contract <u>PROJECT# IRB2401</u> Matrix <u>WATER</u>		
Lab mple ID	Nuclide	Results	<u>Units</u>	Amount Added	MDA	<u>Evaluation</u>
CS						
609-002	GrossAlpha	12.8 ± 0.90	pCi/Smpl	10.2	0.25	125% recovery
	Gross Beta	8.65 ± 0.36	pCi/Smpl	9.37	0.27	92% recovery
	Ra-228	9.55 ± 0.58	pCi/Smpl	8.63	0.79	111% recovery
	Co-60 (G)	216 ± 6.8	pCi/Smpl	223	3.1	97% recovery
	Cs-137 (G)	247 ± 6.5	pCi/Smpl	235	4.3	105% recovery
	Am-241 (G)	208 ± 15	pCi/Smpl	254	17	82% recovery
	H-3	222 ± 14	pCi/Smpl	239	15	93% recovery
	Ra-226	4.52 ± 0.24	pCi/Smpl	4.46	0.081	101% recovery
	Sr-90	10.4 ± 0.75	pCi/Smpl	9.38	0.30	111% recovery
	Total U	1.10 ± 0.13	pCi/Smpl	1.13	0.005	97% recovery
LANK						
609-003	GrossAlpha	0 ± 0.15	pCi/Smpl	NA	0.28	<mda< td=""></mda<>
	Gross Beta	-0.185 ± 0.27	pCi/Smpl	NA	0.44	<mda< td=""></mda<>
	Ra-228	-0.178 ± 0.26	pCi/Smpl	NA	0.76	<mda< td=""></mda<>
	K-40 (G)	U	pCi/Smpl	NA	140	<mda< td=""></mda<>
	Cs-137 (G)	U	pCi/Smpl	NA	5.3	<mda< td=""></mda<>
	H-3	-3.37 ± 8.5	pCi/Smpl	NA	14	<mda< td=""></mda<>
	Ra-226	-0.003 ± 0.035	pCi/Smpl	NA	0.071	<mda< td=""></mda<>
	Sr-90	-0.157 ± 0.21	pCi/Smpl	NA	0.57	<mda< td=""></mda<>
	Total U	0.00E 00 ± 2.0E-04	pCi/Smpl	NA	4.6E-04	<mda< td=""></mda<>

DUPLICATES	3			ORIGINALS			
							3σ
Sample ID Nuclide	<u>Results ± 20</u>	MDA	Sample ID	<u>Results ± 20</u>	MDA	RPD (Tot) <u>Eval</u>
8609-004 GrossAlpha	1.98 ± 1.7	2.4	8609-001	3.00 ± 2.0	2.8	41	164 satis.
Gross Beta	4.45 ± 1.4	2.0		2.91 ± 2.0	3.3	42	108 satis.
K-40 (G)	U	20		U	39	-	0 satis.
Cs-137 (G)	U	1.1		U	1.7	-	0 satis.
H-3	-43.9 ± 86	150		-40.9 ± 84	140	-	0 satis.
Ra-226	0.125 ± 0.40	0.74		-0.003 ± 0.41	0.79	-	0 satis.
Sr-90	0.093 ± 0.38	0.86		0.137 ± 0.49	1.1	-	0 satis.
Total U	1.19 ± 0.13	0.023		1.30 ± 0.15	0.023	9	31 satis.

Certified by h	
Report Date 03/20/08	
Page 2	

QC RESULTS

SDG	8615	Client	TA IRVINE
Work Order	<u>R802174-01</u>	Contract	PROJECT# IRB2401
Received Date	02/26/08	Matrix	WATER

SPIKED SAMPL	.Е		OR	IGINAL SAMPLE			
Sample ID Nuclide	<u>Results ± 20</u>	MDA	Sample ID	<u>Results ± 20</u>	MDA	Added	%Recv
8609-005 GrossAlpha	207 ± 11	2.6	8609-001	3.00 ± 2.0	2.8	164	124
Gross Beta	148 ± 4.0	2.4		2.91 ± 2.0	3.3	144	101
H-3	14800 ± 280	150		-40.9 ± 84	140	16000	93
Ra-226	113 ± 4.4	0.81		-0.003 ± 0.41	0.79	112	101
Total U	113 ± 14	2.3		1.30 ± 0.15	0.023	113	99

Certified by
Report Date 03/20/08
Page 3

٦

8615

SUBCONTRACT ORDER - PROJECT # IRB2401

SENDING LABORATORY:

TestAmerica Irvine 17461 Derian Avenue. Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297 Project Manager: Joseph Doak

RECEIVING LABORATORY:

٦

Eberline Services - SUB 2030 Wright Avenue Richmond, CA 94804 Phone :(510) 235-2633 Fax: (510) 235-0438

Project Location: California

Analysis	Expiration	Comments
Sample ID: IRB2401-01 W	/ater Sampled: 02/24/08 11:30	
Gamma Spec-O	02/23/09 11:30	Boeing, permit, J flags, K-40 and CS-137 only
Gross Alpha-O	08/22/08 11:30	Boeing, permit, J flags
Gross Beta-O	08/22/08 11:30	Boeing, permit, J flags
Level 4 Data Package - Out	03/23/08 11:30	
Radium, Combined-O	02/23/09 11:30	Boeing, permit, J flags
Strontium 90-O	02/23/09 11:30	Boeing, permit, J flags
Tritium-O	02/23/09 11:30	Boeing, permit, J flags
Uranium, Combined-O	02/23/09 11:30	Boeing, permit, J flags
Containers Supplied:		
2.5 gal Poly (IRB2401-01L)	
500 mL Amber (IRB2401-0)1M)	

	•	SAMPLE INTEGRI	TY:	
All containers intact: 🗖 Yes 📮 No	Sample labels/C0	OC agree: 🔲 Yes		eived On Ice:: 🗌 Yes 🔲 No
Custody Seals Present: Yes No	Samples Preserve	ed Properly: 🛛 Yes	□ No Samples Rec	eived at (temp):
A second	2125/08	1700	Fed-Ex	2(25/08 1700)
Released By	Date Time	Received B	Pex kelien	Date Time
Released By	Date Time	Received	у	Date $2/26/08$ Time $10:00$ Arc $2/26/08$ Page 1 of 1
				AR 2/26/08 Page 1 of 1
				NPDES - 2031

E E	ЗE	RL		E
-----	----	----	--	---

RICHMOND, CA LABORATORY

SAMPLE RECEIPT CHECKLIST

Client	t:1 <u>51</u>	AMERI	101	_ City <u>_IK_VI</u>	NE	State	e CA		
			10:00 COC N						
Conta	ainer I.D.	NoN/A	Requester	d TAT (Days	() <u>STAND</u> P.O. F	Received Yes	[] No[]		
					CTION				
1.			ping container i			Yes [🗸	No [] N/A	[]	
, 	Custoc	ly seals on ship	ping container d	dated & sign					
			ple containers i				No[] N/A		
	Custody seals on sample containers dated & si Packing material is:				ed?		No[] N/A		
	Packing material is: Number of samples in shipping container: Number of containers per sample:				1	Wet[]	Dry[] 1	// V	
	Numbe	er of samples in	shipping contai	ner:	Sample Mat	wate	=K	·····	
				X					
•		es are in correct			Yes [V]				
0.		vork agrees with			1			1	
0. 1.				1	Rad labels []				
2.	Sample	es are: In go	vod Condition (*	j Leakii	ng[] Broker]рН <u>6</u> Рг		Missing (
2. 3.		be any anomalie		reserved []	/]pHO_Pr	eservative			
4. 5.		.M. notified of a ted by	ny anomalies?		s[] No[2/26/08Tim				
	tomer ple No.	Beta/Gamma cpm	Ion Chamber mR/hr	Wipe	Customer Sample No.	Beta/Gamma cpm	lon Chamber mR/hr	wipe	
RB	2401	460						wpe	
								······································	
	1.07.070710-07-07-07-07-0-14-04-04-04-04-04-04-04-04-04-04-04-04-04				<u>r - 179 - 179 - 179 - 179 - 179 - 179 - 179 - 179 - 179 - 179 - 179 - 179 - 179 - 179 - 179 - 179 - 179 - 179 -</u>		5		
Char	nber Ser.	No			Calibration date	9			
	eter Ser. I	No							
		er Ser. No.		Access to the Advantage of	Calibration date		2007		

Form SCP-02, 07-30-07

"over 55 years of quality nuclear services"

March 14, 2008

Vista Project I.D.: 30303

Mr. Joseph Doak Test America-Irvine, CA 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Mr. Doak,

Enclosed are the results for the one aqueous sample received at Vista Analytical Laboratory on February 26, 2008 under your Project Name "IRB2401". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Vista's current certifications, and copies of the raw data (if requested).

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Marile Marine

Martha M. Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.

Section I: Sample Inventory Report Date Received: 2/26/2008

<u>Vista Lab. ID</u>

Client Sample ID

30303-001

IRB2401-01

SECTION II

Method Blank				EPA Method 1613	
Matrix: Ac	queous	QC Batch No.: 99997	Lab Sample: 0-MB001		
Sample Size:	1.00 L	Date Extracted: 9-Mar-08	Date Analyzed DB-5: 10-Mar-08	Date Analyzed DB-225: NA	
Analyte	Conc. (ug/L)	DL ^a EMPC ^b Qualifie	s Labeled Standard	%R LCL-UCL ^d Qualifiers	
2,3,7,8-TCDD	ND	0.000000937	<u>IS</u> 13C-2,3,7,8-TCDD	87.0 25 - 164	
1,2,3,7,8-PeCDD	ND	0.00000106	13C-1,2,3,7,8-PeCDD	77.8 25 - 181	
1,2,3,4,7,8-HxCDD) ND	0.00000142	13C-1,2,3,4,7,8-HxCDD	82.4 32 - 141	
1,2,3,6,7,8-HxCDE	D ND	0.00000142	13C-1,2,3,6,7,8-HxCDD	88.5 28 - 130	
1,2,3,7,8,9-HxCDD) ND	0.00000136	13C-1,2,3,4,6,7,8-HpCDD	81.0 23 - 140	
1,2,3,4,6,7,8-HpCE	DD ND	0.00000250	13C-OCDD	72.3 17 - 157	
OCDD	ND	0.00000890	13C-2,3,7,8-TCDF	85.2 24 - 169	
2,3,7,8-TCDF	ND	0.000000547	13C-1,2,3,7,8-PeCDF	73.1 24 - 185	
1,2,3,7,8-PeCDF ND		0.000000924	13C-2,3,4,7,8-PeCDF	73.2 21 - 178	
2,3,4,7,8-PeCDF ND		0.00000985	13C-1,2,3,4,7,8-HxCDF	82.4 26 - 152	
1,2,3,4,7,8-HxCDF ND		0.00000699	13C-1,2,3,6,7,8-HxCDF	94.2 26 - 123	
1,2,3,6,7,8-HxCDF ND		0.00000669	13C-2,3,4,6,7,8-HxCDF	89.8 28 - 136	
2,3,4,6,7,8-HxCDF ND		0.000000795	13C-1,2,3,7,8,9-HxCDF	83.4 29 - 147	
1,2,3,7,8,9-HxCDF	ND	0.00000107	13C-1,2,3,4,6,7,8-HpCDF	79.0 28 - 143	
1,2,3,4,6,7,8-HpCE	DF ND	0.000000964	13C-1,2,3,4,7,8,9-HpCDF	81.7 26 - 138	
1,2,3,4,7,8,9-HpCE		0.00000105	13C-OCDF	72.4 17 - 157	
OCDF	ND	0.00000275	<u>CRS</u> 37Cl-2,3,7,8-TCDD	113 35 - 197	
Totals			Footnotes		
Total TCDD	ND	0.00000937	a. Sample specific estimated detection limit.		
Total PeCDD	ND	0.00000167	b. Estimated maximum possible concentration.		
Total HxCDD	ND	0.00000235	c. Method detection limit.		
Total HpCDD	ND	0.00000320	d. Lower control limit - upper control limit.		
Total TCDF	ND	0.000000547			
Total PeCDF	ND	0.00000953			
Total HxCDF	ND	0.00000792			
Total HpCDF	ND	0.00000100			

Analyst: MAS

OPR Results					EP	A Method 1	613
Matrix: Aqueous Sample Size: 1.00 L		QC Batch No.: Date Extracted:	9997 9-Mar-08	Lab Sample:0-OPR001Date Analyzed DB-5:10-Mar-08	Date Analy	zed DB-225:	NA
Analyte	Spike Conc.	Conc. (ng/mL)	OPR Limits	Labeled Standard	%R	LCL-UCL	Qualifier
2,3,7,8-TCDD	10.0	10.5	6.7 - 15.8	<u>IS</u> 13C-2,3,7,8-TCDD	84.4	25 - 164	
1,2,3,7,8-PeCDD	50.0	50.9	35 - 71	13C-1,2,3,7,8-PeCDD	78.2	25 - 181	
1,2,3,4,7,8-HxCDD	50.0	49.8	35 - 82	13C-1,2,3,4,7,8-HxCDD	77.7	32 - 141	
1,2,3,6,7,8-HxCDD	50.0	50.3	38 - 67	13C-1,2,3,6,7,8-HxCDD	80.5	28 - 130	
1,2,3,7,8,9-HxCDD	50.0	50.3	32 - 81	13C-1,2,3,4,6,7,8-HpCDD	77.6	23 - 140	
1,2,3,4,6,7,8-HpCDD	50.0	51.0	35 - 70	13C-OCDD	67.4	17 - 157	
OCDD	100	102	78 - 144	13C-2,3,7,8-TCDF	82.6	24 - 169	
2,3,7,8-TCDF	10.0	9.70	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	72.2	24 - 185	
1,2,3,7,8-PeCDF	50.0	51.5	40 - 67	13C-2,3,4,7,8-PeCDF	73.8	21 - 178	
2,3,4,7,8-PeCDF	50.0	51.5	34 - 80	13C-1,2,3,4,7,8-HxCDF	78.8	26 - 152	
1,2,3,4,7,8-HxCDF	50.0	52.0	36 - 67	13C-1,2,3,6,7,8-HxCDF	82.8	26 - 123	
1,2,3,6,7,8-HxCDF	50.0	52.6	42 - 65	13C-2,3,4,6,7,8-HxCDF	78.7	28 - 136	
2,3,4,6,7,8-HxCDF	50.0	53.6	35 - 78	13C-1,2,3,7,8,9-HxCDF	78.2	29 - 147	
1,2,3,7,8,9-HxCDF	50.0	51.9	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	74.8	28 - 143	
1,2,3,4,6,7,8-HpCDF	50.0	52.4	41 - 61	13C-1,2,3,4,7,8,9-HpCDF	75.3	26 - 138	
1,2,3,4,7,8,9-HpCDF	50.0	52.1	39 - 69	13C-OCDF	67.4	17 - 157	
OCDF	100	103	63 - 170	<u>CRS</u> 37Cl-2,3,7,8-TCDD	107	35 - 197	

Analyst: MAS

Approved By: Martha M. Mai

Martha M. Maier 14-Mar-2008 10:51

Sample ID: IRB2	401-01								EPA N	Iethod 1613
Client DataName:Test JProject:IRB2Date Collected:24-FeTime Collected:1130			Sample Data Matrix: Sample Size:	Aqueous 1.02 L	Lab QC	Dratory Data Sample: Batch No.: Analyzed DB-5:	30303-001 9997 10-Mar-08	Date Re Date Ex Date An		26-Feb-08 9-Mar-08 NA
Analyte (Conc. (ug/L)	DL ^a	EMPC ^b	Qualifiers		Labeled Standa	rd	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ND	0.000000	879		<u>IS</u>	13C-2,3,7,8-TCD	D	80.6	25 - 164	
1,2,3,7,8-PeCDD	ND	0.000000	915			13C-1,2,3,7,8-Pe	CDD	83.5	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.000001	82			13С-1,2,3,4,7,8-Н	IxCDD	72.0	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.000001	73			13C-1,2,3,6,7,8-H	IxCDD	81.2	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.000001	70			13C-1,2,3,4,6,7,8	-HpCDD	82.2	23 - 140	
1,2,3,4,6,7,8-HpCDD	ND		0.000001	.92		13C-OCDD		66.2	17 - 157	
OCDD	0.0000131			J		13C-2,3,7,8-TCD	F	83.2	24 - 169	
2,3,7,8-TCDF	ND	0.000000	818			13C-1,2,3,7,8-Pe0	CDF	70.3	24 - 185	
1,2,3,7,8-PeCDF	ND	0.000000	696			13C-2,3,4,7,8-Pe0	CDF	80.2	21 - 178	
2,3,4,7,8-PeCDF	ND	0.000000	659			13С-1,2,3,4,7,8-Н	IxCDF	73.0	26 - 152	
1,2,3,4,7,8-HxCDF	ND	0.0000004	429			13C-1,2,3,6,7,8-H	IxCDF	80.9	26 - 123	
1,2,3,6,7,8-HxCDF	ND	0.000001	00			13C-2,3,4,6,7,8-H	IxCDF	77.4	28 - 136	
2,3,4,6,7,8-HxCDF	ND	0.0000004	497			13С-1,2,3,7,8,9-Н	IxCDF	76.9	29 - 147	
1,2,3,7,8,9-HxCDF	ND	0.000000	642			13C-1,2,3,4,6,7,8	-HpCDF	69.0	28 - 143	
1,2,3,4,6,7,8-HpCDF	ND	0.000001	40			13C-1,2,3,4,7,8,9	-HpCDF	80.4	26 - 138	
1,2,3,4,7,8,9-HpCDF	ND	0.000000	871			13C-OCDF		66.7	17 - 157	
OCDF	ND	0.000003	09		CRS	37Cl-2,3,7,8-TCL	DD	110	35 - 197	
Totals					Foo	tnotes				
Total TCDD	ND	0.000000	879		a. Sa	mple specific estimated	detection limit.			
Total PeCDD	ND	0.000002	02		b. Es	timated maximum possi	ble concentration.			
Total HxCDD	ND	0.000001	74		c. M	ethod detection limit.				
Total HpCDD	0.00000245		0.000004	38	d. Le	ower control limit - uppe	r control limit.			
Total TCDF	ND	0.000000	818							
Total PeCDF	ND	0.0000012	26							
Total HxCDF	ND	0.000001	14							
Total HpCDF	ND	0.0000014								

Analyst: MAS

APPENDIX

DATA QUALIFIERS & ABBREVIATIONS

B	This compound was also detected in the method blank.
D	Dilution
Ε	The amount detected is above the High Calibration Limit.
Р	The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.
Н	The signal-to-noise ratio is greater than 10:1.
Ι	Chemical Interference
J	The amount detected is below the Low Calibration Limit.
*	See Cover Letter
Conc.	Concentration
DL	Sample-specific estimated detection limit
MDL	The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.
EMPC	Estimated Maximum Possible Concentration
NA	Not applicable
RL	Reporting Limit – concentrations that correspond to low calibration point
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

30303 2.10

SUBCONTRACT ORDER - PROJECT # IRB2401

SENDING LABORATORY:

TestAmerica Irvine 17461 Derian Avenue. Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297 Project Manager: Joseph Doak

RECEIVING LABORATORY:

Vista Analytical Laboratory- SUB 1104 Windfield Way El Dorado Hills, CA 95762 Phone :(916) 673-1520 Fax: (916) 673-0106

Project Location: California

Standard TAT is req	uested unless specific d	ue date is requested. => Due Date: Initials:
Analysis	Expiration	Comments
Sample ID: IRB2401-01	Water Sampled:	02/24/08 11:30
1613-Dioxin-HR-Alta	03/02/08 11:30	J flags,17 congeners,no TEQ,ug/L,sub=Vista
EDD + Level 4	03/23/08 11:30	Excel EDD email to pm, Include Std logs for Lvl IV
Containers Supplied:		
1 L Amber (IRB2401-01	.C)	
1 L Amber (IRB2401-01	D)	

		SAMPLE	INTEGRITY	{:		
	_	Sample labels/COC agree: Samples Preserved Properly:		_ •	Received On Ice:: Received at (temp):	□ Yes □ No
Mayulta Released By	Julily Date	Time I	Hinac Received By	SBenedic _t	L 2/24/ Date	108 <u>1525</u> Time
Released By	Date	Time I	Received By		Date	Time Page 1 of 1
Project 30303						NPDES - 2042 Page 10 of 246

SAMPLE LOG-IN CHECKLIST

Å.	Vista Analytical Laboratory

Vista Project #:	30303)	<u> </u>		TAT	Sfan	dar	d
	Date/Time	······	Initials:		Location	" W	R-2	}
Samples Arrival:	2/26/08	0910) As	1B	Shelf/Ra			
	Date/Time		Initials:		Location	1: L	NR.	2
Logged In:	2/26/07	1525	UBD	B	Shelf/Ra	ck:	E -	2
Delivered By:	FedEx	JPS	Cal	DHL	1	and vered	Oti	ner
Preservation:	lce	Blu	e Ice	Dr	ry Ice		None	
Temp °C 2.	(Tim	ne: 🗷	924		Thermor	neter II	D: IR-	1
				•				
						YES	NO	NA
Adequate Sample	Volume Received	?						
Holding Time Acce	ptable?					N/	ľ	
Shipping Container	(s) Intact?					V		
Shipping Custody S	Seals Intact?	· · · · ·		j*37		V		
Shipping Documen	tation Present?	•	• .	· .	27 - S.	V,		
Airbill	Trk# 79	1927	799 8	720	0	V		Ň
Sample Container Intact?					/			
Sample Custody S	eals Intact?							V
Chain of Custody / Sample Documentation Present?						· · · ·		
COC Anomaly/Sample Acceptance Form completed?								
If Chlorinated or Dr	inking Water Sam	ples, Acce	eptable Pre	eservatio	n?			V
Na ₂ S ₂ O ₃ Preservat	ion Documented?)	COC	· . · .	Sample Container		None	

Vista

Client

Retain

Comments:

Shipping Container

Dispose

Return

APPENDIX G

Section 52

Outfall 009, January 5, 2008 MEC^X Data Validation Reports

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IRA0399

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Contract Task Order:	Boeing SSFL NPDES 1261.100D.00
Sample Delivery Group:	IRA0399
Project Manager:	B. Kelly
Matrix:	Soil
QC Level:	IV
No. of Samples:	1
No. of Reanalyses/Dilutions:	0
Laboratory:	TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 009	IRA0399-01	30125-001, 8010770-01, 8678- 001	Water	01/05/08 0830	200.8, 245.1, 900.0, 901.1, 903.1, 904.0, 905.0, 906.0, 1613, ASTM D-5174

II. Sample Management

No anomalies were observed regarding sample management. The sample in this SDG was received at TestAmerica-Irvine, Eberline, and Weck within the temperature limits of $4^{\circ}C \pm 2^{\circ}C$. The sample was received below the temperature limits at Vista; however, the sample was not noted to have been frozen. According to the case narrative for this SDG, the sample was received intact at all laboratories. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine, custody seals were not required. Custody seals were intact upon arrival at Eberline, Vista, and Weck. If necessary, the client ID was added to the sample result summary by the reviewer.

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
Ι	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
А	Not applicable.	ICP Serial Dilution %D were not within control limits.
Μ	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Ρ	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

4

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: March 1, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had no target compound detects above the EDL.

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Any EMPC value was qualified as an estimated nondetect, "UJ." Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHODS 200.8, 245.1—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: February 29, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.8 and 245.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding times, 6 months for metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.

- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP-MS metals and 85-115% for mercury.
- Blanks: There were no applicable detects in the method blanks or CCBs.
- Interference Check Samples: ICSA/B analyses were performed in association with the total metals analyses only. Recoveries were within the method-established control limits. Most analytes were reported in the 6020 ICSA solution; however, the reviewer was not able to ascertain if the detection was indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: Matrix spike analyses were performed on the sample in this SDG for the 6020 total metals only. All recoveries were within the laboratory-established control limits. Evaluation of mercury method accuracy was based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. The bracketing CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks Date Reviewed: March 3, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the *EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174,* and the *National Functional Guidelines for Inorganic Data Review* (2/94).

- Holding Times: The tritium sample was analyzed within 180 days of collection. Aliquots for gross alpha, gross beta, radium-226, radium-228, strontium-90, and gamma spectroscopy were prepared within the five-day analytical holding time for unpreserved samples. The aliquot for total uranium was prepared within five days of collection.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, nondetected gross alpha in the sample was qualified as an estimated nondetect, "UJ." The gross beta detector efficiency was greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. The tritium detector efficiency for the sample was at least 20% and was considered acceptable. The internal spike efficiency to default efficiency ratios was near 1, indicating that quenching did not occur.

The strontium chemical yield was at least 70% and was considered acceptable. The strontium continuing calibration results were within the laboratory control limits.

The radium-226 cell efficiencies were determined in September 2006. The radium-226 continuing calibration results were within the laboratory-established control limits. The radium-228 calibration utilized actinium-228 and was verified in February 2001. The radium-228 tracer, yttrium oxalate yields were greater than 70%.

The gamma spectroscopy geometry-specific, detector efficiencies were determined in September 1999 and February 2007. All analytes were determined at the maximum photopeak energy.

The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All calibration check standard recoveries were within 90-110% and were deemed acceptable.

• Blanks: There were no analytes detected in the method blank.

- Blank Spikes and Laboratory Control Samples: The gross alpha recovery was above the control limit at 129%; however, gross alpha was not detected in the samples. The remaining recoveries were within laboratory-established control limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. Reported nondetects are valid to the MDA.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

	Sample ID: IRA	IRA0399-01 Out-fall	11 009					EP	EPA Method 1613
	Data			Sample Data		Laboratory Data			
	Project: Tes	Test America-Irvine, CA		Matrix:	Aqueous	Lab Sample:	30125-001	Date Received:	8-Jan-08
	llected: llected:	5-Jan-08 0830		Sample Size:	0.982 L	QC Batch No.: Date Analyzed DB-5:	9886 19-Jan-08	Date Extracted: Date Analyzed DB-225	17-Jan-08 5: NA
	Analyte	Conc. (ug/L)	DL ^a	EMPC ^b	Qualifiers	Labeled Standard	ard	%R LCL-UCL ^d	L ^d Qualifiers
Y.	2,3,7,8-TCDD	QN	0.00000138	80		<u>IS</u> 13C-2,3,7,8-TCDD	D	73.6 25 - 164	
	1,2,3,7,8-PeCDD	ND	0.00000257	1		13C-1,2,3,7,8-PeCDD	CDD		
	1,2,3,4,7,8-HxCDD	ND	0.00000346	16		13C-1,2,3,4,7,8-HxCDD	HxCDD	58.5 32 - 141	
	1,2,3,6,7,8-HxCDD	ND	0.00000362	12		13C-1,2,3,6,7,8-HxCDD	HxCDD	57.6 28 - 130	
>			0.00000340	0		13C-1,2,3,4,6,7,8-HpCDD	8-HpCDD	58.6 23 - 140	_
anals	_				J	13C-OCDD		47.9 17 - 157	
	OCDD	0.000161				13C-2,3,7,8-TCDF	DF	69.3 24 - 169	
3	2,3,7,8-TCDF	QN	0.00000106	90		13C-1,2,3,7,8-PeCDF	CDF	58.8 24 - 185	
	1,2,3,7,8-PeCDF	QN	0.00000228	00		13C-2,3,4,7,8-PeCDF	SCDF	63.4 21 - 178	
	2,3,4,7,8-PeCDF	DN	0.00000221	1		13C-1,2,3,4,7,8-HxCDF	HxCDF	53.0 26 - 152	_
	1,2,3,4,7,8-HxCDF	QN	0.00000129	6		13C-1,2,3,6,7,8-HxCDF	HxCDF	54.9 26 - 123	
	1,2,3,6,7,8-HxCDF	DN	0.00000132	2		13C-2,3,4,6,7,8-HxCDF	HxCDF	56.7 28 - 136	
-	2,3,4,6,7,8-HxCDF	QN	0.00000135	5		13C-1,2,3,7,8,9-HxCDF	HxCDF	60.9 29 - 147	
>	1,2,3,7,8,9-HxCDF	DN	0.00000181	1		13C-1,2,3,4,6,7,8-HpCDF	8-HpCDF	58.8 28 - 143	
(SAL)	1,2,3,4,6,7,8-HpCDF	0.00000328			Ţ	13C-1,2,3,4,7,8,9-HpCDF	9-HpCDF	53.2 26 - 138	
33	1,2,3,4,7,8,9-HpCDF	DN	0.00000201	1				46.6 17 - 157	
Ĩ	OCDF	ND	0.0000189			CRS 37CI-2,3,7,8-TCDD	DD	100 35 - 197	
	Totals					Footnotes			
7	Total TCDD	QN	0.00000250	0		a. Sample specific estimated detection limit.	d detection limit.		
	Total PeCDD	QN	0.00000456	9		b. Estimated maximum possible concentration.	sible concentration.		
>	Total HxCDD	QN	0.00000349	6		c. Method detection limit.			
	Total HpCDD	0.0000396				d. Lower control limit - upper control limit.	per control limit.		
3	Total TCDF	QN	0.00000106	9					
57	Total PeCDF	ND	0.00000285	5					
may/Ch	Total HxCDF	QN		0.00000116	16				
Y	Total HpCDF	0.00000697							
	Analyst: MAS	0.100	1.1			Approved By:	Martha M. Maier	er 23-Jan-2008 09:37	:37

Level IV

Project 30125

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRA0399

Sampled: 01/05/08 Received: 01/05/08

			I	META	LS					
Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IR	A0399-01 (Outfall 00	9 - Water)								
Reporting	g Units: ug/l									
Antimony J	/DNQ	EPA 200.8	8A07054	0.20	2.0	1.0	1	01/07/08	01/08/08	J
Cadmium		EPA 200.8	8A07054	0.11	1.0	ND	1	01/07/08	01/08/08	
Copper		EPA 200.8	8A07054	0.75	2.0	5.8	1	01/07/08	01/07/08	
Lead		EPA 200.8	8A07054	0.30	1.0	2.3	1	01/07/08	01/07/08	
Thallium	0	EPA 200.8	8A07054	0.20	1.0	ND	1	01/07/08	01/07/08	

Project ID: Routine Outfall 009

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

> The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA0399 <Page 2 of 14>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: IRA0399

Sampled: 01/05/08 Received: 01/05/08

		DISSOI	LVED	METALS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA0399-01 (Outfall	009 - Water) - cont.								
Reporting Units: ug/l									
Antimony J/DNG	EPA 200.8-Diss	8A08129	0.20	2.0	0.92	1	01/08/08	01/08/08	J
Cadmium U	EPA 200.8-Diss	8A08129	0.11	1.0	ND	1	01/08/08	01/08/08	
Copper	EPA 200.8-Diss	8A08129	0.75	2.0	4.6	1	01/08/08	01/08/08	
Lead JONQ	EPA 200.8-Diss	8A08129	0.30	1.0	0.78	1	01/08/08	01/08/08	J
Thallium U	EPA 200.8-Diss	8A08129	0.20	1.0	ND	1	01/08/08	01/08/08	


LEVEL IU

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA0399 <Page 3 of 14>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: IRA0399

LEVEL IV

Sampled: 01/05/08 Received: 01/05/08

Metals by EPA 200 Series Methods

Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA0399-	01 (Outfall 009 - W	vater) - cont.								
Reporting Units:	ug/l									
Mercury, Dissolved	U	EPA 245.1	W8A0148	0.050	0.20	ND	1	01/08/08	01/09/08	
Mercury, Total	V	EPA 245.1	W8A0148	0.050	0.20	ND	1	01/08/08	01/09/08	

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA0399 <Page 5 of 14>

Eberline Services

ANALYSIS RESULTS

SDG <u>8678</u>	Client TA IRVINE	
Work Order <u>R801025-01</u>	Contract PROJECT# IRA0399	
Received Date 01/08/08	Matrix WATER	

Client	Lab						
Sample ID Out-fall 009	Sample ID	Collected	Analyzed	Nuclide	<u>Results ± 20</u>	Units	MDA
IRA0399-01	8678-001	01/05/08	01/24/08	GrossAlpha	0.641 ± 0.56	pCi/L	0.84 UJ/R
			01/24/08	Gross Beta	2.91 ± 0.66	pCi/L	0.95
			01/23/08	Ra-228	0.064 ± 0.15	pCi/L	0.40 U
			01/12/08	K-40 (G)	U	pCi/L	40 U
			01/12/08	Cs-137 (G)	σ	pCi/L	1.5 ()
			01/23/08	H-3	-38.2 ± 86	pCi/L	150 ()
			01/25/08	Ra-226	-0.035 ± 0.43	pCi/L	0.84 U
			01/28/08	Sr-90	-0.270 ± 0.40	pCi/L	1.1 U
			02/15/08	Total U	0.107 ± 0.015	pCi/L	0.021

LEVEL IV

Certified by 20 Report Date 02/19/08 Page 1

APPENDIX G

Section 53

Outfall 009, January 5, 2008 Test America Analytical Laboratory Report

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project: Routine Outfall 009

Sampled: 01/05/08 Received: 01/05/08 Issued: 02/25/08 10:07

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and

is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

This is a final report to include all subcontract data.

ADDITIONAL

INFORMATION:

LABORATORY ID IRA0399-01 CLIENT ID Outfall 009 MATRIX Water

Reviewed By:

Joseph Dock

TestAmerica Irvine Joseph Doak Project Manager

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: IRA0399

Sampled: 01/05/08 Received: 01/05/08

METALS MDL Reporting Sample Dilution Date Date Data Analyte Method Batch Limit Limit Result Factor Extracted Analyzed Qualifiers Sample ID: IRA0399-01 (Outfall 009 - Water) Reporting Units: ug/l 8A07054 0.20 01/07/08 EPA 200.8 2.0 1.0 01/08/08 J Antimony 1 Cadmium EPA 200.8 8A07054 0.11 1.0 ND 1 01/07/08 01/08/08 5.8 8A07054 0.75 2.0 01/07/08 01/07/08 Copper EPA 200.8 1 Lead EPA 200.8 8A07054 0.30 1.0 2.3 1 01/07/08 01/07/08 Thallium EPA 200.8 8A07054 0.20 1.0 ND 1 01/07/08 01/07/08

TestAmerica Irvine

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Arcadia, CA 91007

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009

618 Michillinda Avenue, Suite 200

Report Number: IRA0399

Sampled: 01/05/08 Received: 01/05/08

		DISSOI	LVED	METALS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA0399-01 (Outfall 009 -	Water) - cont.								
Reporting Units: ug/l									
Antimony	EPA 200.8-Diss	8A08129	0.20	2.0	0.92	1	01/08/08	01/08/08	J
Cadmium	EPA 200.8-Diss	8A08129	0.11	1.0	ND	1	01/08/08	01/08/08	
Copper	EPA 200.8-Diss	8A08129	0.75	2.0	4.6	1	01/08/08	01/08/08	
Lead	EPA 200.8-Diss	8A08129	0.30	1.0	0.78	1	01/08/08	01/08/08	J
Thallium	EPA 200.8-Diss	8A08129	0.20	1.0	ND	1	01/08/08	01/08/08	

TestAmerica Irvine

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Arcadia, CA 91007

618 Michillinda Avenue, Suite 200

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 009

Report Number: IRA0399

Sampled: 01/05/08 Received: 01/05/08

INORGANICS MDL Reporting Sample Dilution Date Date Data Analyte Method Batch Limit Limit Result Factor Extracted Analyzed Qualifiers Sample ID: IRA0399-01 (Outfall 009 - Water) - cont. Reporting Units: mg/l 8A07065 ND 01/07/08 Hexane Extractable Material (Oil & EPA 1664A 1.4 4.9 1 01/07/08 Grease) 0.25 EPA 300.0 8A06026 0.50 01/06/08 01/06/08 Chloride 7.8 1 Nitrate/Nitrite-N EPA 300.0 8A06026 0.15 0.26 2.5 1 01/06/08 01/06/08 EPA 300.0 8A06026 0.20 0.50 12 01/06/08 01/06/08 Sulfate 1 **Total Dissolved Solids** SM2540C 8A08083 10 120 1 01/08/08 01/08/08 10

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: IRA0399

Sampled: 01/05/08 Received: 01/05/08

	Me	tals by EP	A 200	Series Met	thods				
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA0399-01 (Outfall 009 - Wa	ater) - cont.								
Reporting Units: ug/l									
Mercury, Dissolved	EPA 245.1	W8A0148	0.050	0.20	ND	1	01/08/08	01/09/08	
Mercury, Total	EPA 245.1	W8A0148	0.050	0.20	ND	1	01/08/08	01/09/08	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: IRA0399

Sampled: 01/05/08 Received: 01/05/08

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 009 (IRA0399-01) - Water	r				
EPA 300.0	2	01/05/2008 08:30	01/05/2008 19:00	01/06/2008 07:00	01/06/2008 08:17

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: IRA0399

Sampled: 01/05/08 Received: 01/05/08

1

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A07054 Extracted: 01/07/08	<u> 8</u>										
Blank Analyzed: 01/07/2008-01/08/2008	(8A07054-BI	L K1)									
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Thallium	ND	1.0	0.20	ug/l							
LCS Analyzed: 01/07/2008-01/08/2008 (8	8A07054-BS1)									
Antimony	88.8	2.0	0.20	ug/l	80.0		111	85-115			
Cadmium	89.4	1.0	0.11	ug/l	80.0		112	85-115			
Copper	89.2	2.0	0.75	ug/l	80.0		112	85-115			
Lead	88.5	1.0	0.30	ug/l	80.0		111	85-115			
Thallium	86.1	1.0	0.20	ug/l	80.0		108	85-115			
Matrix Spike Analyzed: 01/07/2008-01/0	8/2008 (8A0	7054-MS1)			Sou	ırce: IRA	0401-01				
Antimony	89.1	2.0	0.20	ug/l	80.0	1.27	110	70-130			
Cadmium	84.7	1.0	0.11	ug/l	80.0	0.935	105	70-130			
Copper	83.7	2.0	0.75	ug/l	80.0	3.32	101	70-130			
Lead	83.6	1.0	0.30	ug/l	80.0	0.923	103	70-130			
Thallium	88.7	1.0	0.20	ug/l	80.0	ND	111	70-130			
Matrix Spike Analyzed: 01/07/2008-01/0	8/2008 (8A0)	7054-MS2)			Sou	irce: IRA	0399-01				
Antimony	85.0	2.0	0.20	ug/l	80.0	1.00	105	70-130			
Cadmium	85.6	1.0	0.11	ug/l	80.0	ND	107	70-130			
Copper	88.1	2.0	0.75	ug/l	80.0	5.80	103	70-130			
Lead	82.6	1.0	0.30	ug/l	80.0	2.27	100	70-130			
Thallium	86.9	1.0	0.20	ug/l	80.0	ND	109	70-130			
Matrix Spike Dup Analyzed: 01/07/2008	-01/08/2008 ((8A07054-MS	D1)		Sou	irce: IRA	0401-01				
Antimony	87.9	2.0	0.20	ug/l	80.0	1.27	108	70-130	1	20	
Cadmium	84.2	1.0	0.11	ug/l	80.0	0.935	104	70-130	1	20	
Copper	83.2	2.0	0.75	ug/l	80.0	3.32	100	70-130	1	20	
Lead	83.1	1.0	0.30	ug/l	80.0	0.923	103	70-130	1	20	
Thallium	88.4	1.0	0.20	ug/l	80.0	ND	110	70-130	0	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: IRA0399

Sampled: 01/05/08 Received: 01/05/08

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A08129 Extracted: 01/08/08											
	-										
Blank Analyzed: 01/08/2008 (8A08129-B	LK1)										
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Thallium	ND	1.0	0.20	ug/l							
LCS Analyzed: 01/08/2008 (8A08129-BS	l)										
Antimony	78.0	2.0	0.20	ug/l	80.0		98	85-115			
Cadmium	79.9	1.0	0.11	ug/l	80.0		100	85-115			
Copper	76.8	2.0	0.75	ug/l	80.0		96	85-115			
Lead	85.3	1.0	0.30	ug/l	80.0		107	85-115			
Thallium	86.4	1.0	0.20	ug/l	80.0		108	85-115			
Matrix Spike Analyzed: 01/08/2008 (8A0	8129-MS1)				Sou	rce: IRA	0393-01				
Antimony	79.2	2.0	0.20	ug/l	80.0	0.570	98	70-130			
Cadmium	76.6	1.0	0.11	ug/l	80.0	ND	96	70-130			
Copper	76.2	2.0	0.75	ug/l	80.0	2.23	92	70-130			
Lead	83.2	1.0	0.30	ug/l	80.0	ND	104	70-130			
Thallium	84.3	1.0	0.20	ug/l	80.0	ND	105	70-130			
Matrix Spike Dup Analyzed: 01/08/2008	(8A08129-M	SD1)			Sou	rce: IRA	0393-01				
Antimony	79.1	2.0	0.20	ug/l	80.0	0.570	98	70-130	0	20	
Cadmium	76.4	1.0	0.11	ug/l	80.0	ND	96	70-130	0	20	
Copper	76.0	2.0	0.75	ug/l	80.0	2.23	92	70-130	0	20	
Lead	82.9	1.0	0.30	ug/l	80.0	ND	104	70-130	0	20	
Thallium	83.6	1.0	0.20	ug/l	80.0	ND	104	70-130	1	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: IRA0399

Sampled: 01/05/08 Received: 01/05/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A06026 Extracted: 01/06/08	_										
Blank Analyzed: 01/06/2008 (8A06026-B	LK1)										
Chloride	ND	0.50	0.25	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Sulfate	0.320	0.50	0.20	mg/l							J
LCS Analyzed: 01/06/2008 (8A06026-BS)	1)										
Chloride	4.53	0.50	0.25	mg/l	5.00		91	90-110			
Sulfate	9.97	0.50	0.20	mg/l	10.0		100	90-110			
Matrix Spike Analyzed: 01/06/2008 (8A06026-MS1)					Sou						
Chloride	12.9	0.50	0.25	mg/l	5.00	7.84	101	80-120			
Sulfate	22.3	0.50	0.20	mg/l	10.0	12.0	103	80-120			
Matrix Spike Dup Analyzed: 01/06/2008	Matrix Spike Dup Analyzed: 01/06/2008 (8A06026-MSD1)				Source: IRA0399-01						
Chloride	12.6	0.50	0.25	mg/l	5.00	7.84	94	80-120	3	20	
Sulfate	21.6	0.50	0.20	mg/l	10.0	12.0	96	80-120	3	20	
Batch: 8A07065 Extracted: 01/07/08	_										
Blank Analyzed: 01/07/2008 (8A07065-B	LK1)										
Hexane Extractable Material (Oil &	ND	5.0	1.4	mg/l							
Grease)											
LCS Analyzed: 01/07/2008 (8A07065-BS	1)										MNR1
Hexane Extractable Material (Oil & Grease)	17.9	5.0	1.4	mg/l	20.2		89	78-114			
LCS Dup Analyzed: 01/07/2008 (8A07065-BSD1)											
Hexane Extractable Material (Oil & Grease)	18.6	5.0	1.4	mg/l	20.2		92	78-114	4	11	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: IRA0399

Sampled: 01/05/08 Received: 01/05/08

METHOD BLANK/QC DATA

INORGANICS

Analyte <u>Batch: 8A08083 Extracted: 01/08/08</u>	Result	Reporting Limit	MDL	Units	Spike Level	Source Result %REC	%REC 2 Limits	RPD	RPD Limit	Data Qualifiers
Blank Analyzed: 01/08/2008 (8A08083-B Total Dissolved Solids	LK1) ND	10	10	mg/l						
LCS Analyzed: 01/08/2008 (8A08083-BS	·	10	10	/1	1000	00	00.110			
Total Dissolved Solids Duplicate Analyzed: 01/08/2008 (8A0808)	992 3 DUP1)	10	10 mg/l 1000 99 90-110 Source: IRA0479-01							
Total Dissolved Solids	1930	10	10	mg/l	500	1940		0	10	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: IRA0399

Sampled: 01/05/08 Received: 01/05/08

METHOD BLANK/QC DATA

Metals by EPA 200 Series Methods

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: W8A0148 Extracted: 01/08/0	8										
Blank Analyzed: 01/09/2008 (W8A0148-	BLK1)										
Mercury, Dissolved	ND	0.20	0.050	ug/l							
Mercury, Total	ND	0.20	0.050	ug/l							
LCS Analyzed: 01/09/2008 (W8A0148-B	S1)										
Mercury, Dissolved	0.965	0.20	0.050	ug/l	1.00		96	85-115			
Mercury, Total	0.965	0.20	0.050	ug/l	1.00		96	85-115			
Matrix Spike Analyzed: 01/09/2008 (W8	8A0148-MS1)				Sou	rce: 7120	722-01				
Mercury, Dissolved	1.97	0.40	0.10	ug/l	2.00	ND	98	70-130			
Mercury, Total	1.97	0.40	0.10	ug/l	2.00	ND	98	70-130			
Matrix Spike Analyzed: 01/09/2008 (W8	/8A0148-MS2)				Source: 7120722-03						
Mercury, Dissolved	1.88	0.40	0.10	ug/l	2.00	ND	94	70-130			
Mercury, Total	1.88	0.40	0.10	ug/l	2.00	ND	94	70-130			
Matrix Spike Dup Analyzed: 01/09/2008	08 (W8A0148-MSD1)				Sou	rce: 7120	722-01				
Mercury, Dissolved	1.92	0.40	0.10	ug/l	2.00	ND	96	70-130	2	20	
Mercury, Total	1.92	0.40	0.10	ug/l	2.00	ND	96	70-130	2	20	
Matrix Spike Dup Analyzed: 01/09/2008 (W8A0148-MSD2)				Sou	rce: 7120	722-03					
Mercury, Dissolved	1.96	0.40	0.10	ug/l	2.00	ND	98	70-130	4	20	
Mercury, Total	1.96	0.40	0.10	ug/l	2.00	ND	98	70-130	4	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: IRA0399

Sampled: 01/05/08 Received: 01/05/08

DATA QUALIFIERS AND DEFINITIONS

- J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
- MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
- ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
- **RPD** Relative Percent Difference

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: IRA0399

Sampled: 01/05/08 Received: 01/05/08

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EDD + Level 4	Water		
EPA 1664A	Water		
EPA 200.8-Diss	Water	Х	Х
EPA 200.8	Water	Х	Х
EPA 300.0	Water	Х	Х
SM2540C	Water	Х	

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chrnic Samples: IRA0399-01

Eberline Services - SUB

2030 Wright Avenue - Richmond, CA 94804

Analysis Performed: Gamma Spec Samples: IRA0399-01

Analysis Performed: Gross Alpha Samples: IRA0399-01

Analysis Performed: Gross Beta Samples: IRA0399-01

Analysis Performed: Radium, Combined Samples: IRA0399-01

Analysis Performed: Strontium 90 Samples: IRA0399-01

Analysis Performed: Tritium Samples: IRA0399-01

Analysis Performed: Uranium, Combined Samples: IRA0399-01

TestAmerica Irvine

Joseph Doak Project Manager

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing	Project ID:	Routine Outfall 009		
618 Michillinda Avenue, Suite 200			Sampled:	01/05/08
Arcadia, CA 91007	Report Number:	IRA0399	Received:	01/05/08
Attention: Bronwyn Kelly				

Vista Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413 1104 Windfield Way - El Dorado Hills, CA 95762 Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IRA0399-01

Weck Laboratories, Inc

14859 E. Clark Avenue - City of Industry, CA 91745 Method Performed: EPA 245.1 Samples: IRA0399-01

TestAmerica Irvine

Joseph Doak Project Manager

est An		est America version 12/20/07	12/20/	07	エロン	ノフトリ			Ž	JSIODY FORM	2 X	- K-AC-1			and an owner of the second	Page 1 of 1
Client Name/Address:	e/Addre	SS		Project								ANALYSIS		REQUIRED	Ü	
MWH-Arcadia 618 Michillinda Ave Arcadia, CA 91007 Test America Conta	cadia da Aven 91007 Contact	MVH-Arcadia 618 Michillinda Avenue. Suite 200 Arcadia, CA 91007 Test America Contact: Joseph Doak	00 oak	Boeing- Routine Stormwé	Boeing-SSFL NPUES Routine Outfall 009 Stormwater at WS-13	О со Составля С-13	<u> </u>	۲, ۴				m (H-3) 5.0), Total 1.226 Radium ium				Field readings: \bigcirc Temp = $5/.26$
Project Manager: Sampler: איזאיא לאניריפיאי, ע	nager: m1AR1 ×, 2	Project Manager: Bronwyn Kelly Sampler: <i>ทาดเรเรคลไ</i> , ค . ซึ่งกายเริ่า, 2	Kelly	Phone Number (626) 568-6691 Fax Number (626) 568-6515	Number: 8-6691 nber: 8-6515			al Recoverable Cd, Cu, Pb, Hg	noo lls bnr;) ((ON+ [€] ON '⁺OS		ss Alpha(900.0), Tritiu a(900.0), Sr-90 (90: 5.0), Sr-90 (90: 3.0 در 903.1) & (1.604.0), Utan 9.0), K-40, CS-	1.0 or 901.1)	al Dissolved M Cu, Pb, Hg, Tl		ر مر of rea
Sample	Sample Matrix	Container Tvne	# of Cont.	Sampling Date/Time	Preservative		Bottle #	ʻqS			DI	528 (300) (300) (300) (300) (300) (300) (300)	06)	toT		Comments
	N	1L Poly	-		HNO3		1A	×								
+	N	1L Poly	-		HNO3		18	×								
all 009	3	1L Amber	2		None		2A, 2B		×							
Outfall 009	3	1L Amber	2		HCI		3A, 3B		×						_	
Outfall 009	M	500 ml Poly	~		None		4A, 4B			×						
Outfall 009	×	500 ml Poly	-		None		5				×					
Outfall 009	3	2.5 Gal Cube 500 ml Amber	₹~~ ₹~		None None		6A 6B					×				Unfiltered and unpreserved analysis
Outfall 009	3	1 Gal Poly	-	>	None		7						×		ō	Only test if second rain event of the year
Outfall 009	3	1L Poly	-	1-5-48	None		ω							×		Filter w/in 24hrs of receipt at tab
			_						++							50
Relinquished By		Bar	_	Date/Time:	, <u>5</u> , <u>7</u>		Receiption in the second		026	H H	- °	Di/DS Jog	- S		Turn aro 24 Hours	Turn around Time: (check) 24 Hours 5 Days
Relinguished By	1. 1	Jer		Date/Time		7 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Received By Aneryck	k (here	3	Date/Time? 1/5/b&	ime: 6& 19100			48 Hours	rs 10 Days
Ralined By	1 By			Date/Time	<i>a</i> r	<u>к</u>	Receive 6 By)			Date/Time:	ime:				

LABORATORY REPORT

Date: January 13, 2008

Client: TestAmerica, Irvine 17461 Derian Ave., Suite 100 Irvine, CA 92614 Attn: Joseph Doak "dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003
(805) 650-0546 FAX (805) 650-0756 CA DOHS ELAP Cert. No.: 1775

Laboratory No.:A-08010505Sample I.D.:IRA0399-01 (Outfall 009)

Sample Control: The sample was received by ATL within the recommended hold time, chilled (sample brought directly from field) and with the chain of custody record attached. Testing conducted on only one sample per client instruction (rain runoff sample).

Date Sampled:	01/05/08
Date Received:	01/05/08
Temp. Received:	8°C
Chlorine (TRC):	0.0 mg/1
Date Tested:	01/06/08 to 01/12/08

Sample Analysis: The following analyses were performed on your sample:

Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

Result Summary:

	NOEC	TUc
Ceriodaphnia Survival:	100%	1.0
Ceriodaphnia Reproduction:	100%	1.0

Quality Control:

Reviewed and approved by:

Joseph A Laboratory Director

This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the client to whom it is addressed. Any reproduction of this report or use of the Laboratory's name for advertising or publicity purpose without authorization is prohibite **hPDES - 2076**

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

Lab No.: A-08010505-001 Client/ID: Test America – Outfall 009

Date Tested: 01/06/08 to 01/12/08

TEST SUMMARY

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*. Age: < 24 hrs; all released within 8 hrs. Test vessel size: 30 ml. Number of test organisms per vessel: 1. Temperature: 25 +/- 1°C. Dilution water: Mod. hard reconstituted (MHRW). QA/QC Batch No.: RT-080106. Endpoints: Survival and Reproduction. Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 15 ml. Number of replicates: 10. Photoperiod: 16/8 hrs. light/dark cycle. Test duration: 6 days. Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Survival	Mean Number of Young Per Female
Control	100%	19.4
100% Sample	100%	25.8
* Sample not s	tatistically significantly le	ess than Control.

CHRONIC TOXICITY

Survival NOEC	100%
Survival TUc	1.0
Reproduction NOEC	100%
Reproduction TUc	1.0

QA/QC TEST ACCEPTABILITY

Parameter	Result
Control survival ≥80%	Pass (100% survival)
≥15 young per surviving control female	Pass (19.4 young)
≥60% surviving controls had 3 broods	Pass (80% with 3 broods)
PMSD <47% for reproduction; if >47% and no toxicity at IWC, the test must be repeated	Pass (PMSD = 15.5%)
Statistically significantly different concentrations relative difference >13%	Pass (no concentration significantly different)
Concentration response relationship acceptable	Pass (no significant response at concentration tested)

			Ceriod	aphnia Su	rvival and	d Reprodu	uction Te	st-Survi	val Day 6			
Start Date:	1/6/2008 1	3:00	Test ID:	80105050			Sample I	D:	Outfall 00)9		
End Date:	1/12/2008	13:00	Lab ID:	CAATL-A	quatic Tes	sting Labs	Sample 1	vpe:	EFF2-Inc	lustrial		
Sample Date:	1/5/2008 0	8:30		FWCH 4T	•	•			CD-Ceric	daphnia	dubia	
Comments:											445.4	
Conc-%	1	2.	3	4	5	6	7	8	9	10	4×1	

D-Control 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	Conc-%	1	Z .	3	4	5	6	7	8	9	10	
	D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
	100	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	

				Not			Fisher's	1-Tailed	Isot	onic
Conc-%	Mean	N-Mean	Resp	Resp	Total	Ν	Exact P	Critical	Mean	N-Mean
D-Control	1.0000	1.0000	0	10	10	10	and the second	****	1.0000	1.0000
100	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000

Hypothesis	Test (1-tail,	0.05)	NOEC	LOEC	ChV	TU			With Colorest Color	
Fisher's Exa	ict Test		100	>100		1			****	
Treatments	vs D-Control									
				Line	ar Interpo	lation (200 Re	samples)	and the second se	**************************************	
Point	%	SD	95%	CL	Skew	•	• •			
IC05	>100		<u></u>				T T T A T A T A T A T A T A T A T A T A			
IC10	>100									
IC15	>100						1.0			
IC20	>100						-			
IC25	>100						0.9 -			
IC40	>100						0.8 -			
IC50	>100						0.7			
						se	0.6 -			
						Response	0.5			
						dsa				
						Re	0.4			
							1		1	

0.3 0.2 0.1 0.0

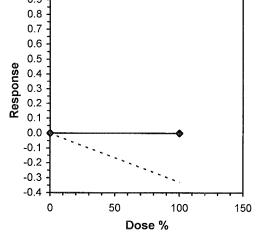
0

50

Dose %

100

Reviewed by NPDES - 2078


150

			Cerioda	iphnia Su	rvival and	l Reprodu	iction Tes	st-Reprod	luction			
Start Date:	1/6/2008 1	3:00	Test ID:	8010505c			Sample ID):	Outfall 009	9		
End Date:	1/12/2008	13:00	Lab ID:	CAATL-Ac	quatic Test	ting Labs \$	Sample Ty	/pe:	EFF2-Indu	ustrial		
Comple Dates	4 /E /0000 C	10.20	Drotocol			1 0 0 0	Test Spec		CD Corios	lonhain dubi	-	
Sample Date:	1/5/2008 0	10.30	PIOLOCOL			1-R-02-0	rest opec	ies.	CD-Cenoc	aphnia dubi	a	
Comments:	1/5/2008 0	0.30			п-сра-ог	1-R-02-0	rest spec	ies.	CD-Cenoc	aprina dubi	а	
	1/5/2008 0	2	3	4	<u></u> 5	<u> </u>	7	8	9	10	a	
Comments:	1	2 17.000	<u>3</u> 19.000	4 11.000	5 20.000		7 20.000	8 19.000	9 25.000		a 	

				Transform	n: Untran	sformed			1-Tailed		Isot	onic
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
D-Control	19.400	1.0000	19.400	11.000	25.000	21.350	10		an fan de fan		22.600	1.0000
100	25.800	1.3299	25.800	20.000	32.000	14.011	10	-3.681	1.734	3.015	22.600	1.0000

Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.05)	0.9804		0.905		-0.3361	-0.0896
F-Test indicates equal variances (p = 0.69)	1.31293		6.54109			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates no significant differences	3.01459	0.15539	204.8	15.1111	0.00171	1, 18
Treatments vs D-Control						,

			LII	near Interpolation (200 Resamples)	
Point	%	SD	95% CL	Skew		
IC05	>100				n an	
IC10	>100					
IC15	>100				1.0	
IC20	>100				0.9	
IC25	>100				0.8 -	
IC40	>100				0.7	
IC50	>100				0.6	

CERIODAPHNIA DUBIA CHRONIC BIOASSAY EPA METHOD 1002.0 Raw Data Sheet

Start Date: 01/06/2008

Lab No.: A-08010505

Client ID: TestAmerica - Outfall 009

		DA	Y 1	E	DAY 2		DAY 3 DAY 4			DAY 5		Г	DAY 6 [Y 7	
		0 hr	24hr	0 hr	24hr	0 h	ur 24	hr 0 hr	24hr	01	hr	24hr	0 hr	24hr	0 hr	24hr
Analyst In	nitials:	LA	12	h	-IA		\sim (hh	Th	17		h		h		
Time of Re	eadings:	4300	1400	1400	1300	13	WIZ	30 123	0/130	1/13	310	1300	1300	1300		
	DO	7-5	7.7	7.3	8.0	7-	2 7-	7 7.2	1-5	7-	8	8.0	28	8.0		anteres.
Control	pН	7-5	24	7-4	7-2	- 7-	3 2.	3 7.2	- 2.4	2		7.4	7.4	7-5		_
	Temp	24.2	25-1	255	25.6	1/24	2 24.	9 24.6	5 24.7	24		46	24,4	251	,	
	DO	98	6.9	9.7	7.6	4.	1 7.7	10.2	2.1	10-		r./	10.6	8.0		
100%	pН	20	72	7.0	7.3	17.2	·+	4123			3	24	2.2	24		
	Temp	25-2	25.0	240	251	24	4 24	6243				4.5	24-8	25,0		
	Additional Parameters							C	ontrol					00% Sam	nle	
	Con	ductivity (umohms)						3512					156	<u> Pro-</u>	
	Alk	alinity (mg	/l CaCO ₃)					1.6					<u>130</u> 30		
	Ha	rdness (mg/	/l CaCO ₃))					98					<u> </u>		
	Am	monia (mg	/I NH ₃ -N)					2.1				C	2-2		
							Source of	Neonates								
Repli	icate:			В		;	D	E	F		G H			I	<u> </u>	J
Brood	d ID:	3;	F	3G	10	5	1I	23	5 31		IH	1 -	20	10	2	Ţ
Sample		Day				Numbe	er of You	ng Produce	d			Tota	I Live	N. I.		
			A	В	С	D	E	F G	н	I	J		ung	No. Live Adults	14	alyst tials
	ļ	1	Ø	0	0	0	0	00	\mathcal{O}	Ø	\mathcal{O}		5	10		
		2	0	0	0	0	d	0 0	0	C	0	6	2	10		5
		3	3	2	0	9	<u></u>	23	0	3	0	[]		10		2
Control		4	12	0	3		3 4		2	0	2		8	10		5
		5	Ď	6	6	7 -	$Z \mid c$	26	7	9	8	6	4	10	1	1
		~	11 .~	Ca	1					· · · · ·	100		<u> </u>			
		6	13	9	10	0	10 1	2 11	10	13	13	10	,7	10		\underline{h}
		7						2						10		<u>h</u>
		7 Total	24	- 17	- 19			2 6 20		25	23	19		10		
4		7 Total 1		- 17		- 1 11 2 0		2 		- 25 0		19		10 10 10		6 - K - /
		7 Total	24	- 17	- 19 0			2 		25	- 23 0	19		10 10 10 10		
		7 Total 1 2	- 24 0	- 17	- 19			2 	- 19 0 0	- 25 0 0	23			10 10 10 10 10		
100%		7 Total 1 2 3	- 24 0 3	- 17 0 0 0	- 19 0 0 5			2 11 		- 25 0	- 23 0	19. () () () () () () () () () () () () ()		10 10 10 10		
100%		7 Total 1 2 3 4	- 27 0 03 9	- 17 0 0 0 4	- 19 0 0 5			2 6 20 2 C C C C C C C C C C C C C C	- 19 0 0	- 25 0 0	- 20 03 72			$\frac{10}{10}$		
100%		7 <u>Total</u> 1 2 3 4 5	- 24 0 0 3 9 16	- 17 0004 4	- 19 0 0 5 13	- 1 11 2 0 0 0 3 0 0 10		2 6 20 2 C C C C C C C C C C C C C C		- 25 0 0	- 23 0	19. () () () () () () () () () () () () ()		10 10 10 10 10		

Circled fourth brood not used in statistical analysis. 7^{th} day only used if <60% of the surviving control females have produced their third brood.

TestAmerica Irvine IRA0399 SENDING LABORATORY: RECEIVING LABORATORY: TestAmerica Irvine Aquatic Testing Laboratories.SUB 4350 Transport Street, Unit 107 Ventura, CA 32003 Phone: (949) 261-1022 Phone: (305) 650-0564 Fax: (949) 260-3287 Project Location: California Receipt Tempersture: Project Manager: Joseph Doak Project Location: California Receipt Tempersture: Analysis Units Due Esample ID: IRA0399-01 Water Sampled: 01/05/08 08:30 Biosesey-7 dy Chrnic N/A 01/16/08 01/06/08 20:30 Deno: Photo: Containers Supplied: 1 gal Poly (M) I Image: Imag	P. 1	NO. 677 P.	ORDER	VTICAL	EL MAR AN <u>al</u>	:15PM D8	JAN. 5.2008 7:
TestAmerica Irvine Aquatic Testing Laboratories-SUB 17461 Derian Avenue. Suite 100 4350 Transport Street, Unit 107 vrine, CA 92614 Ventura, CA 93003 Phone: (849) 261-1022 Phone: (805) 650-0756 arrige 100: RA0399-01 Fax: (849) 2655 Analysis Units Due Expires Comments ample ID: IRA0399-01 Water Bioassay-7 dy Chmic N/A 01/16/08 01/06/08 20:30 Containers Supplied: 1 gal Poly (M)							
7461 Derian Avenue. Suite 100 4350 Transport Street, Unit 107 vine, CA 92614 Ventura, CA 93003 Phone: (305) 650-0546 Fax: (305) 650-0756 inai(949) 261-1022 Phone: (305) 650-0756 inoject Manager: Joseph Doak Fax: (363) 650-0756 Venject Location: California Receipt Temperature: °C Inaijesis Units Due Expires Comments ample ID: IRA0398-01 Water Sampled: 01/05/08 08:30 ph=7.8, temp=51.50 Bioassay-7 dy Chmic N/A 01/16/08 01/06/08 20:30 Containers Supplied: 1 gal Poly (M)		ORY:		REC	an ya anawara	7. 	ENDING LABORATORY
vine, CA 92614 Ventura, CA 93003 hone: (949) 261-1022 Phone: (305) 650-0546 irax:: (949) 260-3297 Fax:: (805) 650-0756 project Manager: Joseph Doak Project Location: California Receipt Temperature:*Cto:/ unaliysis Units Due Expires Comments ample ID: IRA0398-01 Water Sampled: 01/05/08 08:30 ph=7.8, temp=51.50 Bioassay-7 dy Chmic N/A 01/16/08 01/06/08 20:30 Containers Supplied: 1 gal Poly (M)		ratories-SUB	atic Testing Labo	Aqu			estAmerica Irvine
thone: (949) 261-1022 Phone: (805) 650-0546 rax: (949) 260-3297 Fax: (805) 650-0756 roject Manager: Joseph Doak Project Location: California Receipt Temperature:*C		t, Unit 107	•			Suite 100	
Fax: (805) 650-0756 Project Manager: Joseph Doak Receipt Temperature: C Io: V/ Analysis Units Due Expires Comments ample ID: IRA0399-01 Water Sampled: 01/05/08 08:30 Ph=7.8, temp=51.50 Bioassay-7 dy Chrnic N/A 01/16/08 01/06/08 20:30 Cerio, EPA/821-R02-013, Aquatic testing Containers Supplied: 1 gal Poly (M)		40					
Project Manager. Joseph Doak Project Location: California Receipt Temperature: C To: V/							
Analysis Units Due Expires Comments ample ID: IRA0399-01 Water Sampled: 01/05/08 08:30 Ph=7.8, temp=51.50 Biogssay-7 dy Chmic N/A 01/16/08 01/06/08 20:30 Cerio, EPA/821-R02-013, Aquatic testing Containers Supplied: 1 gal Poly (M)	-)	ifornia	ect Location: Cali	Pro		n Doak	
image Sampled: 01/05/08 08:30 ph=7.8, temp=51.50 Bioassay-7 dy Chmic N/A 01/16/08 01/06/08 20:30 Cerio, EPA/821-R02-013, Aquatic testing Containers Supplied: 1 gal Poly (M) 1 1	Y)/ N	<u> </u>	ipt Temperature:	Rec			• •
ample ID: IRA0399-01 Waiter Sampled: 01/05/08 08:30 ph=7.8, temp=51.50 Biogssay-7 dy Chrnic N/A 01/16/08 01/06/08 20:30 Cerio, EPA/821-R02-013, Aquatic testing Containers Supplied: 1 gal Poly (M) - -		Comments		Expires	Due	Units	
Bioassay-7 dy Chmic N/A 01/16/08 01/06/08 20:30 Cerio, EPA/821-R02-013, Aquatic testing Containers Supplied: 1 gal Poly (M)		ph≔7.8, temp=51.50	_01/05/08_08:30	Sample		Water	
Containers Supplied: 1 gal Poly (M)	113, Sub to				01/16/08	N/A	Bioassay-7 dy Chmic
		Aquauc testing					
							1
							•
							, ,
							ŧ
							٠
							1
							1
				···· +			• • •
							:
In II AN INT		AT	1 1 1 . MA				
Ahmy MU 1-5-8	- 1700	-11/2 1-5-8	12hlly			Long	
eleased By Date/Time Regeived By Date/Time		Date/Time	ived By	Reg	ate/Time		eleased By

		D
Rele	ased	ву

.

Date/Time

Received By

Date/Time

Page 1 of 1

NPDES - 2082

Pare 1 of 1

REFERENCE TOXICANT DATA

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0 REFERENCE TOXICANT - NaCl

QA/QC Batch No.: RT-080106

Date Tested: 01/06/08 to 01/12/08

TEST SUMMARY

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*. Age: <24 hrs; all released within 8 hrs. Test vessel size: 30 ml. Number of test organisms per vessel: 1. Temperature: 25 +/- 1°C. Dilution water: Mod. hard reconstituted (MHRW). Reference Toxicant: Sodium chloride (NaCl). Endpoints: Survival and Reproduction. Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 20 ml. Number of replicates: 10. Photoperiod: 16/8 hrs. light/dark cycle. Test duration: 6 days. Statistics: ToxCalc computer program.

Sample Concentration	Percent Sur	vival	Mean Num Young Per	
Control	100%		20.5	
0.25 g/l	100%		19.5	
0.5 g/l	100%		19.5	
1.0 g/l	100%		14.0	*
2.0 g/l	80%		3.2	*
4.0 g/l	0%	*	0	**
* Statistically signifi ** Reproduction data from exclud	cantly less than concentrations ed from statistic	greater tl	an survival NC	el DEC are

RESULTS SUMMARY

CHRONIC TOXICITY

Survival LC50	2.5 g/l
Reproduction IC25	0.88 g/l

QA/QC TEST ACCEPTABILITY

Parameter	Result
Control survival ≥80%	Pass (100% Survival)
≥15 young per surviving control female	Pass (20.5 young)
$\geq 60\%$ surviving controls had 3 broods	Pass (90% with 3 broods)
PMSD <47% for reproduction	Pass (PMSD = 19.1%)
Stat. sig. diff. conc. relative difference $> 13\%$	Pass (Stat. sig. diff. conc. $= 31.7\%$)
Concentration response relationship acceptable	Pass (Response curve normal)

			Ceriod	aphnia Su	rvival and	Reprod	uction Tes	t-Surviv	al Day 6	eren og er tillhærde til en sen er en sen en sen er sen er en sen er e	
Start Date:	1/6/2008 1	13:00	Test ID:	RT-08010		Sample ID:			REF-Ref Toxicant		
End Date:	1/12/2008	13:00	Lab ID:	CAATL-Ad	quatic Tes	ting Labs	Sample Ty	/pe:		dium chloride	
Sample Date: Comments:	1/6/2008			FWCH-EF			Test Spec		CD-Cerioo	laphnia dubia	
Conc-gm/L	1	2	3	4	5	6	7	8	9	10	
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
0.25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
0.5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
2	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	
							-			0.0000	

0.0000

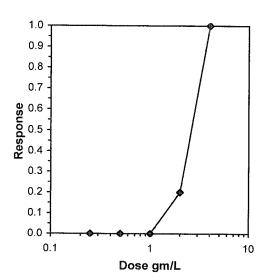
0.0000

0.0000

0.0000

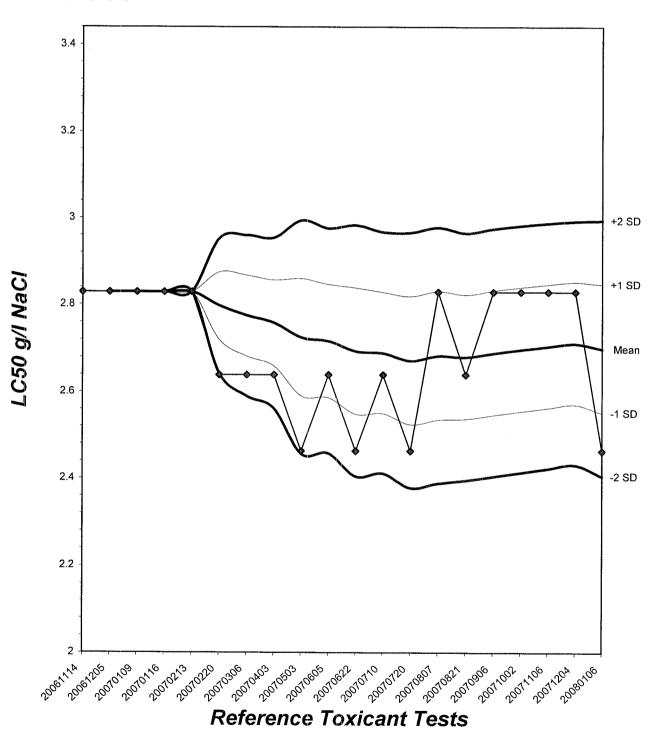
0.0000 0.0000 0.0000 0.0000

				Not			Fisher's	1-Tailed	Number	Total
Conc-gm/L	Mean	N-Mean	Resp	Resp	Total	Ν	Exact P	Critical	Resp	Number
D-Control	1.0000	1.0000	0	10	10	10			0	10
0.25	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
0.5	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
1	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0 0	10
2	0.8000	0.8000	2	8	10	10	0.2368	0.0500	2	10
4	0.0000	0.0000	10	0	10	10	2.2000	0.0000	10	10


Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU
Fisher's Exact Test	2	4	2.82843	
Treatments vs D-Control				
			Trimmed	Spearman-Karber

Trim Level	EC50	95%	CL
0.0%	2.4623	2.0663	2.9342
5.0%	2.5108	2.0545	3.0683
10.0%	2.5519	1.9976	3.2599
20.0%	2.5937	2.2616	2.9745
Auto-0.0%	2.4623	2.0663	2.9342

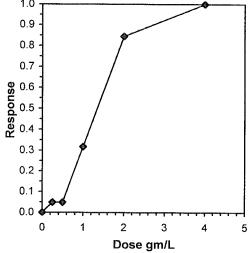
4


0.0000

0.0000

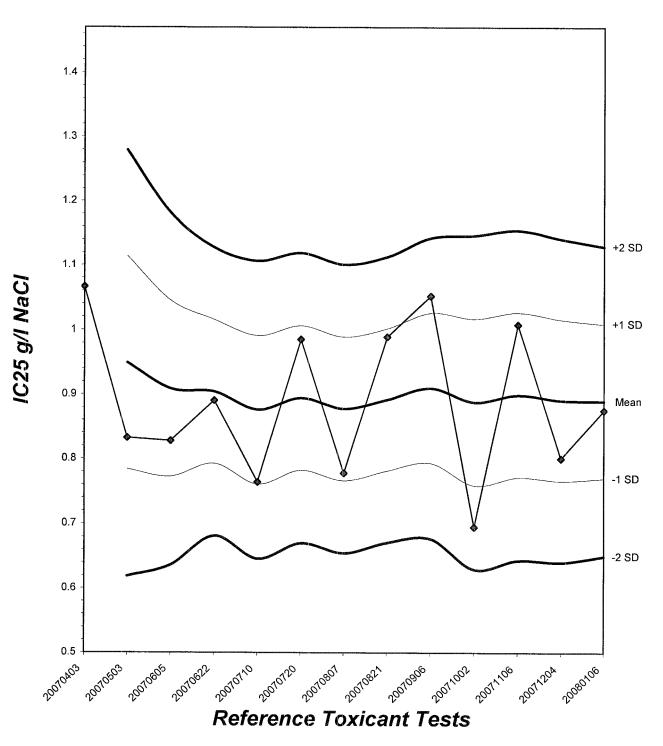
Ceriodaphnia dubia Chronic Survival Laboratory Control Chart

CV% = 5.46



Ceriodaphnia Survival and Reproduction Test-Reproduction													
Start Date:	1/6/2008 1	13:00	Test ID:	RT-08010			Sample ID		REF-Ref	Foxicant			
End Date:	1/12/2008	13:00	Lab ID:	CAATL-Ad	quatic Tes	ting Labs	Sample Ty	vpe:		dium chloride			
Sample Date: Comments:	1/6/2008			otocol: FWCH-EPA-821-R-02-013 Test Species: CD-Ceriodaphnia dubia						laphnia dubia			
Conc-gm/L	1	2	3	4	5	6	7	8	9	10			
D-Control	23.000	11.000	21.000	21.000	23.000	20.000	19.000	22.000	20.000	25.000			
0.25	12.000	24.000	19.000	22.000	9.000	20.000	21.000	21.000	22.000	25.000			
0.5	21.000	19.000	21.000	22.000	16.000	12.000	22.000	21.000	22.000	19.000			
1	19.000	9.000	9.000	19.000	14.000	10.000	16.000	17.000	19.000	8.000			
2	8.000	2.000	2.000	5.000	4.000	3.000	3.000	5.000	0.000	0.000			
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			

		_	Transform: Untransformed				Rank	1-Tailed	Isot	onic	
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Mean	N-Mean
D-Control	20.500	1.0000	20.500	11.000	25.000	18.432	10			20,500	1.0000
0.25	19.500	0.9512	19.500	9.000	25.000	26.177	10	102.00	76.00	19.500	0.9512
0.5	19.500	0.9512	19.500	12.000	22.000	16.617	10	94.50	76.00	19.500	0.9512
*1	14.000	0.6829	14.000	8.000	19.000	32.819	10	62.50	76.00	14.000	0.6829
*2	3.200	0.1561	3.200	0.000	8.000	76.263	10	55.00	76.00	3.200	0.1561
4	0.000	0.0000	0.000	0.000	0.000	0.000	10			0.000	0.0000


Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	n-normal dis	stribution	(p <= 0.05)		0.91281	0.947	-0.9793	0.67912
Bartlett's Test indicates equal van	riances (p =	: 0.25)	. ,		5.39	13.2767	0.0700	0.01012
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	an a			
Steel's Many-One Rank Test	0.5	1	0.70711					
Treatments vs D-Control								

				Linea	ar Interpolation	(200 Resamples)	
Point	gm/L	SD	95%	CL	Skew	,	
IC05	0.5023	0.1876	0.0809	0.6178	-0.0659		
IC10	0.5955	0.1768	0.1617	0.7497	-0.5184		
IC15	0.6886	0.1424	0.2426	0.9253	-0.5389	10	
IC20	0.7818	0.1259	0.4995	1.0352	0.2728		
IC25	0.8750	0.1224	0.6413	1.1094	0.3153	0.9 -	
IC40	1.1574	0.1139	0.9216	1.3331	-0.0890	0.8 -	₽ [™]
IC50	1.3472	0.0972	1.1197	1.4847	-0.4227	0.7	

CV% = 13.5

CERIODAPHNIA DUBIA CHRONIC BIOASSAY Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-080106

Start Date: 01/06/2008

~ •		Number of Young Produced				Total	No.	Analyst						
Sample	Day	Α	В	С	D	Е	F	G	н	I	J	Live Young	Live Adults	Initials
	1	Ø	\mathcal{O}	0	C	\bigcirc	0	\mathcal{C}	\mathcal{O}	\mathcal{O}	C	Ü	10	h
	2	0	\mathcal{O}	0	\mathcal{O}	\mathcal{O}	C	\mathcal{O}	C	0	\mathcal{C}	C	10	3
	3	0	\mathcal{O}	2	\mathcal{O}	C	0	3	C	3	0	8	10	2
	4	Ц	3	ð	4	3	2	Ø	Z	\mathcal{O}	λ	21	10	h
Control	5	9	8	7	7	6	7	6	2	6	7	70	10	N
	6	10	Ó	12	10	14	1	10	13	IT	15	106	10	
	7	-	-	1	· • · · ·	-				_	-			, same and a construction
	Total	23	11	21	21	23	20	19	22	20	25	205	10	h
	1	0	0	0	\mathcal{O}	\mathcal{O}	0	0	\mathcal{O}	\sim	\mathcal{C}	\mathcal{O}	10	
	2	0	0	0	\mathcal{O}	0	\mathcal{O}	0	\mathcal{O}	0	Ø	0	10	
	3		3	0	3	\mathcal{O}	2	$\cdot c$	\bigcirc	3	\mathcal{O}	()	IV	h
0.25 g/l	4	4	\mathcal{O}	2	\mathcal{O}	3	6	4	2	\mathcal{O}	3	24	10	h
0.25 g/i	5	8	$\overline{\mathcal{S}}$	7	5	6	\mathcal{O}	7	6	7	8	62	10	h
	6	0	B	(D	14	0	12	10	13	12	14	98	10	6
	7	******		~			(مەسىر.			^{Alter} Garges			-
	Total	12	24	19	22	9	20	21	21	22	25	195	10	X
	1	0	\mathcal{O}	0	\mathcal{O}	\mathcal{O}	\mathcal{O}	0	\mathcal{O}	0	\mathcal{O}	\bigcirc	10	h
	2	\mathcal{O}	\mathcal{O}	\mathcal{O}	\mathcal{O}	(O	\mathcal{O}	\bigcirc	\mathcal{O}	\mathcal{C}	\mathcal{O}	\mathcal{C}	10	h
	3	2	\mathcal{O}	2	O	0	\bigcirc	3	2	-0	\mathcal{O}	9	10	ĥ
0.5 g/l	4	0	3	O	3	4	3	\mathcal{O}	O	3	3	19	10	-In
0.5 g/1	5	9	6	2	2	\mathcal{O}	9	б	7	2	6	66	10	h
	6	10	10	12	12	12	0	١I	ÌZ	12	10	101	10	6
	7		1		-				-	Sector	9.5.	**************************************	1900-1900-1900-1900-1900-1900-1900-1900	-
	Total	21	19	21	22	16	12	22	21	22	19	195	10	A
Circled fourth 7 th day only us	brood not us sed if <60% o	ed in s of the s	tatisti surviv	cal an ing cc	alysis ontrol	s. femal	es ha	ve pro	duced	their	third b	rood.		

CERIODAPHNIA DUBIA CHRONIC BIOASSAY Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-080106

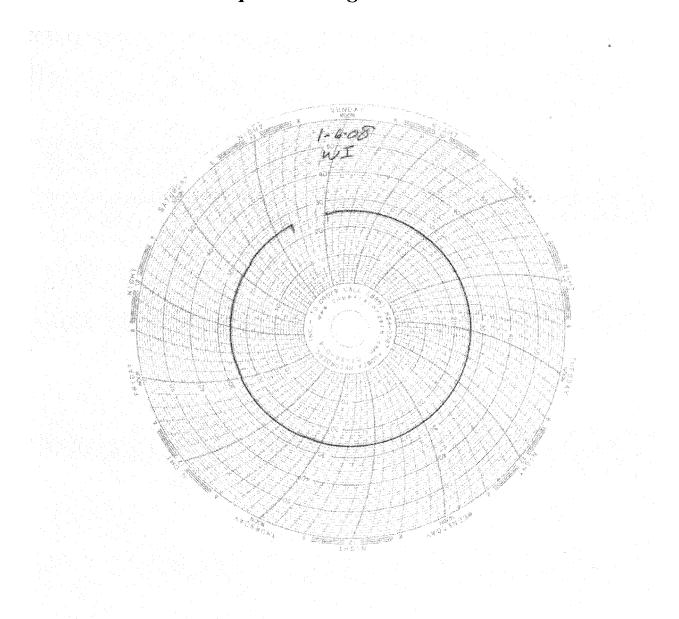
Start Date: 01/06/2008

a i						r of Y	oung	Produ	ced			Total	No.	Analyst
Sample	Day	Α	В	С	D	E	F	G	н	I	J	Live Young	Live Adults	Initials
	1	O	0	0	0	0	0	\mathcal{O}	0	\mathcal{O}	\mathcal{O}	0	10	h
	2	0	\mathcal{O}	0	0	Ø	0	∂	\mathcal{O}	\mathcal{O}	C	\mathcal{O}	10	6
	3	Ø	0	\mathcal{O}	0	0	3	0	O	2	\mathcal{O}	5	1V	
$1.0 \alpha/1$	4	3	2	Z	3	0	0	3	2	0	2	17	10	h
1.0 g/l	5	5	2	\geq	í(5	2	ک	Ч	7	e la	57	10	K
	6	1(\mathcal{O}	\mathcal{O}	12	9	0	8	11	10	0	61	10	P
	7	(((-	-	(-			<u> </u>
	Total	19	9	9	19	14	10	16	17	19	8	140	\mathcal{U}	
	1	0	Ø	\mathcal{O}	\circ	\mathcal{O}	\mathcal{O}	\hat{O}	O	\times	0	0	9	h
	2	Ő	\mathcal{O}	\mathcal{O}	\mathcal{O}	0	\mathcal{O}	0	Õ	1.000mgaga	0	0	9	6
	3	Ø	\mathcal{O}	0	\mathcal{O}	0	0	\mathcal{C}	C	1	\mathcal{O}	0	9	h
2.0.~/1	4	2	\mathcal{O}	R	3	\mathcal{O}	\mathcal{O}	0	2	_	O	9	9	1
2.0 g/l	5	3	0	\mathcal{O}	2	2	M	3	\mathcal{O}		\mathcal{O}	13	9	M
	6	3	2	$\cdot \mathcal{O}$	O	2	\mathcal{O}	\mathcal{O}	3	-	×	10	8	P
	7	_		-	S.communities	e	-	-14-6000,ea)		Canada and			~
	Total	Ê	2	2	5	4	3	3	5	\mathcal{O}	0	32	8	\sim
	1	\times	\mathbf{X}	\times	$ $ \times		\mathbf{X}	X	\times	\rangle	X	\mathcal{O}^{-}	Ø	A
	2	(agtorian.				-100-000-			- مەتقلىي	-		_)
	3				(_)			-	gant and a second	t	
4.0 /1	4	3 -2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2	gamme -		(-	(·	-		Antipersonal and a second		
4.0 g/l	5		(_	<u>منتنو</u>	~	(-	and the second second		ç anını	1	,
	6	(1				(~	-)	~~		_	
	7	-						_	- يورونيستوي	e	·	~		
	Total	\bigcirc	\mathcal{C}	\mathcal{C}	\mathcal{O}	\mathcal{C}	С	$^{\circ}$	0	0	0	\mathcal{O}	\bigcirc	R
Circled fourth 7 th day only us	brood not use sed if <60% o	ed in s f the s	tatisti surviv	cal an	alysis ontrol	s. femal	es hav	e prod	uced t	heir th	nird br	ood.	-	

CERIODAPHNIA DUBIA CHRONIC BIOASSAY Reference Toxicant - NaCl Water Chemistries Raw Data Sheet

QA/QC No.: RT-080106

Start Date: 01/06/2008


		DA	.Y 1	DA	Y 2	DA	AY 3	D	AY 4	DA	Y 5	DA	AY 6	DA	Y 7
		Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
Analyst I	nitials:	n	h	K	1-	1	ib	T	12-	2	h	1	-A	- and the state of	
Time of R	eadings:	130	1330	1330	13W	Ba	1 1230	127 C	300	1300	1300	130	pa	-	
	DO	7.6	7,2	2.4	7.7	7.4	7.6	7.4	7.5	8,2	7.8	7.9	7.7		_
Control	pН	7.6	7.4	7.4	7.3	7.3	7.2	7.2	7.7	7.5	2-6	7-9	7.6		-
	Temp	24.3	25.1	25,4	24.8	24.1	24.9	244	251	24.4	25.0	24:6	25-1		
	DO	7.5	7-3	7.5	7.5	7-5	7.7	7-3	2.4	8.2	3.8	7.9	7.7		-
0.25 g/l	pН	75	7.3	7.4	7.4	7.1	7.2	7.3	7.4	24	7-5	7.6	77	_	(
	Temp	244	252	243	249	242	24.5	24.7	250	24.4	25-1	24,6	25-1		
	DO	74	7.2	7.4	7-6	7.01	7.5	7.4	2.6	8.5	7-6	8.0	75		(
0.5 g/l	pН	5.5	7.3	7.4	7.4	7-4	7.2	7.3	75	7.6	3-5	7.7	2-7	,	. (
	Temp	243	25.1	253	24.9	24,1	252	246	24.9	24.4	249	24.4	249		<u> </u>
	DO	7.5	7.2	26).)	7.3	7.8	24	7.4	D.J	75	7-7	7-7		(
1.0 g/l	рН	7.5	7.3	7-0	· 7.5	2-4	7.2	7-3	7.5	70	7-6	7.4	7-6	/	(
	Temp	244	25,2	25-1	247	24.2	25.2	24.6	3 25.0	24.4	249	24.6	250		(
	DO	7.4	24	7.6	7.5	24	78	22	7.6	8.2	2.6	26	7.7		<u> </u>
2.0 g/l	pН	7.5	7.4	7-6	7.6	2.4	23	72	7.6	25	7-6	29	7-6		
L	Temp	245	25-1	250	246	24.2	253	24.8	25.2	24-4	2458	24.6	25.1		<u> </u>
	DO	7-5	7.8	Carage and a second	Suite.	National State	- and the second		Charles and a second se		nugaran.			ę	
4.0 g/l	pН	7,6	7.8	Water	aggenere.		Tanana	passino.		Tassanone.				~	/
<u> </u>	Temp	243	24,6	- Sizangara-	100000000	.atros-	31000	and the second second				-	granner.		,
	Di	ssolved	Oxyge	n (DO)	reading	s are ir	n mg/l (O ₂ ; Tem	perature	e (Temp)) readin	gs are i	n ⁰C.		
	Additional	Paramet	ers				Contr	rol				High Co	oncentrat	ion	
					Day		Day 3	~	Day 5		Day 1		Day 3		ay 5
	Conducti				350		342	8	305	6	400	3	/ .	32	210
	Alkalinity (66		65		63		25		06	6	
	Hardness (mg/I CaC	U ₃)		99		<u>9)</u>	Joonata	98		8		1)	9	ð
Ren	licate:]	A	В	С		D	leonates E	F		G	Н	I		J
	od ID:		1,B	<u> </u>	3		-6	1A		I		н 21/	36	, , , , , ,	, }-Gn

Laboratory Temperature Chart

QA/QC Batch No: RT-080106 Date Tested: 01/06/08 to 01/12/08 Acceptable Range: 25+/- 1°C

February 20, 2008

Mr. Joseph Doak Test America, Inc. 17461 Derian Avenue, Suite 100 Irvine, CA 92614

Reference: Test America Project Nos. IRA0393, IRA0398, IRA0399, IRA0400, IRA0906 Eberline Services NELAP Cert #01120CA Eberline Services Reports R801023-8676, R801024-8677, R801025-8678 R801029-8679, R801048-8680

Dear Mr. Doak:

Enclosed are results from the analyses of five water samples. Four of the samples were received at Eberline Services on January 8, and one on January 12, 2008. The samples were analyzed according to the accompanying Test America Subcontract Order Forms, the requested analyses were: gross alpha/gross beta (EPA 900.0), tritium (H-3, EPA906.0), Sr-90 (EPA905.0), Ra-226 (EPA903.1), Ra-228 (EPA 904.0), total uranium (ASTM D-5174), and gamma spectroscopy (EPA901.1, K-40 and Cs-137). Batch quality control samples consisted of LCS's, blank analyses, duplicate analyses, and matrix spike analyses (gross alpha/gross beta, H-3, Ra-226, Total-U only). All QC sample results were within the limits defined in Eberline Services Quality Control Procedures Manual.

Please call me if you have any questions concerning this report.

Regards,

Melissa Manmu

Melissa Mannion Senior Program Manager

MCM/njv

Enclosure: Reports/CoC's Invoices

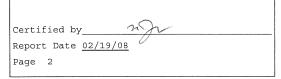
> Analytical Services 2030 Wright Avenue P.O. Box 4040 Richmond, California 94804-0040 (510) 235-2633 Fax (510) 235-0438 Toll Free (800) 841-5487 www.eberlineservices.com NPDES - 2093

Eberline Services

ANALYSIS RESULTS

SDG	8678	Client	TA IRVINE
Work Order	<u>R801025-01</u>	Contract	PROJECT# IRA0399
Received Date	01/08/08	Matrix	WATER

Client <u>Sample ID</u>	Lab Sample ID	Collected Analyzed	Nuclide	<u>Results ± 20</u>	Units	MDA
IRA0399-01	8678-001	01/05/08 01/24/08	GrossAlpha	0.641 ± 0.56	pCi/L	0.84
		01/24/08	Gross Beta	2.91 ± 0.66	pCi/L	0.95
		01/23/08	Ra-228	0.064 ± 0.15	pCi/L	0.40
		01/12/08	K-40 (G)	U	pCi/L	40
		01/12/08	Cs-137 (G)	U	pCi/L	1.5
		01/23/08	Н-3	-38.2 ± 86	pCi/L	150
		01/25/08	Ra-226	-0.035 ± 0.43	pCi/L	0.84
		01/28/08	Sr-90	-0.270 ± 0.40	pCi/L	1.1
		02/15/08	Total U	0.107 <u>+</u> 0.015	pCi/L	0.021


Certified by	26 Jul
Report Date <u>02/19/08</u>	V
Page 1	

QC RE	ទនប	LTS
-------	-----	-----

	SDG <u>8678</u> Order <u>R80103</u> d Date <u>01/08</u> ,				TA IRVINE PROJECT# IR WATER	A0399
Lab						
ample ID	Nuclide	Results	<u>Units</u>	Amount Added	MDA	Evaluation
LCS						
8676-002	GrossAlpha	13.0 ± 0.93	pCi/Smpl	10.1	0.43	129% recovery
	Gross Beta	9.21 ± 0.38	pCi/Smpl	9.41	0.29	98% recovery
	Ra-228	7.16 ± 0.54	pCi/Smpl	7.97	0.85	90% recovery
	Co-60 (G)	220 ± 17	pCi/Smpl	228	11	96% recovery
	Cs-137 (G)	256 ± 14	pCi/Smpl	236	9.8	108% recovery
	H-3	189 ± 14	pCi/Smpl	203	15	93% recovery
	Ra-226	4.87 ± 0.23	pCi/Smpl	4.46	0.083	109% recovery
	Sr-90	8.90 ± 0.73	pCi/Smpl	9.40	0.33	95% recovery
	Total U	1.05 ± 0.12	pCi/Smpl	1.13	0.004	93% recovery
BLANK						
8676-003	GrossAlpha	0.067 ± 0.16	pCi/Smpl	NA	0.27	<mda< td=""></mda<>
	Gross Beta	-0.079 ± 0.26	pCi/Smpl	NA	0.44	<mda< td=""></mda<>
	Ra-228	-0.491 ± 0.26	pCi/Smpl	NA	0.79	<mda< td=""></mda<>
	K-40 (G)	U	pCi/Smpl	NA	220	<mda< td=""></mda<>
	Cs-137 (G)	U	pCi/Smpl	NA	8.0	<mda< td=""></mda<>
	H-3	-1.49 ± 8.7	pCi/Smpl	NA	15	<mda< td=""></mda<>
	Ra-226	-0.012 ± 0.035	pCi/Smpl	NA	0.083	<mda< td=""></mda<>
	Sr-90	-0.030 ± 0.18	pCi/Smpl	NA	0.45	<mda< td=""></mda<>
	Total U	0.00E 00 ± 1.8E-04	pCi/Smpl	NA	4.2E-04	<mda< td=""></mda<>

DUPLICATE	S			ORIGINALS			
							3σ
Sample ID Nuclide	Results <u>+</u> 20	MDA	Sample ID	<u>Results ± 20</u>	MDA	RPD	(Tot) <u>Eval</u>
8676-004 GrossAlpha	-0.027 ± 1.1	1.9	8676-001	0.784 ± 2.0	2.8	-	0 satis.
Gross Beta	62.4 ± 2.4	2.4		62.4 ± 2.4	2.1	0	43 satis.
K-40 (G)	U	32		62.0 ± 8.4	5.3	64	108 satis.
Cs-137 (G)	U	1.1		U	0.54	-	0 satis.
H-3	-71.6 ± 86	150		-15.1 ± 88	150	-	0 satis.
Ra-226	~0.062 ± 0.36	0.71		0.081 ± 0.44	0.81	-	0 satis.
Sr-90	-0.067 ± 0.35	0.86		0.063 ± 0.44	1.0		0 satis.
Total U	2.58 ± 0.29	0.021		2.58 ± 0.29	0.021	0	31 satis.

SPIKED SAMPLE	ORIC	GINAL SAMPLE					
Sample ID <u>Nuclide</u>	<u>Results ± 20</u>	MDA	Sample ID	<u>Results ± 20</u>	MDA	<u>Added</u>	<u>%Recv</u>

Eberline Services

SDG <u>8678</u> Work Order <u>R8010</u> Received Date <u>01/08</u>	025-01	Client <u>TA IRVINE</u> Contract <u>PROJECT</u> # IRA0399 Matrix <u>WATER</u>						
3676-005 GrossAlpha	154 ± 8.1	2.8	8676-001	0.784 ±	2.0	2.8	115	133
Gross Beta	161 ± 3.3	1.5		62.4 ±	2.4	2.1	102	97
H - 3	15700 ± 510	260		-15.1 ±	88	150	16100	98
Ra-226	116 ± 4.3	0.75		0.081 ±	0.44	0.81	112	103
Total U	111 ± 14	2.1		2.58 ±	0.29	0.021	113	96

Certified by
Report Date 02/19/08
Page 3

8678

SENDING LABORATORY:	RECEIVING LABORATORY:	
TestAmerica Irvine	Eberline Services - SUB	
17461 Derian Avenue. Suite 100	2030 Wright Avenue	
Irvine, CA 92614	Richmond, CA 94804	
Phone: (949) 261-1022	Phone :(510) 235-2633	
Fax: (949) 260-3297	Fax: (510) 235-0438	
Project Manager: Joseph Doak	Project Location: California	
	Receipt Temperature: 4 ° °C	Ice: $(Y) / N$

Analysis	Units Due Expires Comments			
Sample ID: IRA0399-01	Water		Sampled: 01/05/08 08:30	ph=7.8, temp=51.50
Gamma Spec-O	mg/kg	01/16/08	01/04/09 08:30	Boeing, permit, J flags, K-40 and CS-137 only
Gross Alpha-O	pCi/L	01/16/08	07/03/08 08:30	Out to Eberline
Gross Beta-O	pCi/L	01/16/08	07/03/08 08:30	Out to eberline
Level 4 Data Package - Ou	it N/A	01/16/08	02/02/08 08:30	
Radium, Combined-O	pCi/L	01/16/08	01/04/09 08:30	Out to Eberline
Strontium 90-O	pCi/L	01/16/08	01/04/09 08:30	Out to Eberline
Tritium-O	pCi/L	01/16/08	01/04/09 08:30	Out to Eberline
Uranium, Combined-O	pCi/L	01/16/08	01/04/09 08:30	Out to Eberline
Containers Supplied:				
2.5 gal Poly (K)	500 mL Amb	per (L)		

1/7/08 1700 Feder Received By

17 1700 108 Date/Time 04 08 09: 30

Date/Time

Released By

Date/Time

Date/Time

Received By

Page 1 of 1

January 23, 2008

Vista Project I.D.: 30125

Mr. Joseph Doak Test America-Irvine, CA 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Mr. Doak,

Enclosed are the results for the one aqueous sample received at Vista Analytical Laboratory on January 08, 2008 under your Project Name "IRA0399". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Vista's current certifications, and copies of the raw data (if requested).

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Marthe Mare-

Martha M. Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.

Section I: Sample Inventory Report Date Received: 1/8/2008

<u>Vista Lab. ID</u>

Client Sample ID

30125-001

IRA0399-01

SECTION II

Method Blank				1			EPA Method 1613
Matrix: Ac	queous	QC Batch No.:	9886	Lab Sample:	0-MB001		
Sample Size:	1.00 L	Date Extracted:	17-Jan-08	Date Analyzed	DB-5: 19-Jan-08	Date Ar	nalyzed DB-225: NA
Analyte	Conc. (ug/L)	DL ^a EMP	C ^b Qualifiers	Labeled	Standard	%R	LCL-UCL ^d Qualifiers
2,3,7,8-TCDD	ND	0.00000111		<u>IS</u> 13C-2,3,7	7,8-TCDD	85.7	25 - 164
1,2,3,7,8-PeCDD	ND	0.00000171		13C-1,2,3	3,7,8-PeCDD	76.8	25 - 181
1,2,3,4,7,8-HxCDE) ND	0.00000174		13C-1,2,3	3,4,7,8-HxCDD	75.3	32 - 141
1,2,3,6,7,8-HxCDE) ND	0.00000184		13C-1,2,3	3,6,7,8-HxCDD	75.1	28 - 130
1,2,3,7,8,9-HxCDE) ND	0.00000172		13C-1,2,3	3,4,6,7,8-HpCDD	87.8	23 - 140
1,2,3,4,6,7,8-HpCI	DD ND	0.00000243		13C-OCI	DD	70.8	17 - 157
OCDD	ND	0.00000780		13C-2,3,7	7,8-TCDF	83.6	24 - 169
2,3,7,8-TCDF	ND	0.00000116		13C-1,2,3	3,7,8-PeCDF	72.8	24 - 185
1,2,3,7,8-PeCDF	ND	0.00000159		13C-2,3,4	4,7,8-PeCDF	75.3	21 - 178
2,3,4,7,8-PeCDF	ND	0.00000156		13C-1,2,3	3,4,7,8-HxCDF	72.9	26 - 152
1,2,3,4,7,8-HxCDF	ND	0.000000815		13C-1,2,3	3,6,7,8-HxCDF	73.2	26 - 123
1,2,3,6,7,8-HxCDF		0.00000832		13C-2,3,4	4,6,7,8-HxCDF	76.3	28 - 136
2,3,4,6,7,8-HxCDF		0.00000894		13C-1,2,3	3,7,8,9-HxCDF	79.4	29 - 147
1,2,3,7,8,9-HxCDF		0.00000120		13C-1,2,3	3,4,6,7,8-HpCDF	88.5	28 - 143
1,2,3,4,6,7,8-HpCI	DF ND	0.000000977		13C-1,2,3	3,4,7,8,9-HpCDF	86.1	26 - 138
1,2,3,4,7,8,9-HpCI	DF ND	0.00000133		13C-OCI)F	72.3	17 - 157
OCDF	ND	0.00000313		<u>CRS</u> 37Cl-2,3,	7,8-TCDD	105	35 - 197
Totals				Footnotes			
Total TCDD	ND	0.00000111		a. Sample specific es	stimated detection limit.		
Total PeCDD	ND	0.00000373		b. Estimated maxim	um possible concentration.		
Total HxCDD	ND	0.00000177		c. Method detection	limit.		
Total HpCDD	ND	0.00000314		d. Lower control lim	it - upper control limit.		
Total TCDF	ND	0.00000116					
Total PeCDF	ND	0.00000157					
Total HxCDF	ND	0.000000928					
Total HpCDF	ND	0.00000114					

Analyst: MAS

OPR Results					EP	A Method 1	1613
Matrix: Aqueous Sample Size: 1.00 L		QC Batch No.: Date Extracted:	9886 17-Jan-08	Lab Sample:0-OPR001Date Analyzed DB-5:19-Jan-08	Date Analy	zed DB-225:	NA
Analyte	Spike Conc.	Conc. (ng/mL)	OPR Limits	Labeled Standard	%R	LCL-UCL	Qualifier
2,3,7,8-TCDD	10.0	10.4	6.7 - 15.8	<u>IS</u> 13C-2,3,7,8-TCDD	76.2	25 - 164	
1,2,3,7,8-PeCDD	50.0	52.4	35 - 71	13C-1,2,3,7,8-PeCDD	68.3	25 - 181	
1,2,3,4,7,8-HxCDD	50.0	52.8	35 - 82	13C-1,2,3,4,7,8-HxCDD	66.2	32 - 141	
1,2,3,6,7,8-HxCDD	50.0	51.4	38 - 67	13C-1,2,3,6,7,8-HxCDD	66.8	28 - 130	
1,2,3,7,8,9-HxCDD	50.0	52.3	32 - 81	13C-1,2,3,4,6,7,8-HpCDD	87.2	23 - 140	
1,2,3,4,6,7,8-HpCDD	50.0	51.7	35 - 70	13C-OCDD	70.1	17 - 157	
OCDD	100	103	78 - 144	13C-2,3,7,8-TCDF	74.1	24 - 169	
2,3,7,8-TCDF	10.0	9.71	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	64.3	24 - 185	
1,2,3,7,8-PeCDF	50.0	50.9	40 - 67	13C-2,3,4,7,8-PeCDF	67.4	21 - 178	
2,3,4,7,8-PeCDF	50.0	51.2	34 - 80	13C-1,2,3,4,7,8-HxCDF	62.5	26 - 152	
1,2,3,4,7,8-HxCDF	50.0	51.5	36 - 67	13C-1,2,3,6,7,8-HxCDF	63.5	26 - 123	
1,2,3,6,7,8-HxCDF	50.0	52.2	42 - 65	13C-2,3,4,6,7,8-HxCDF	66.6	28 - 136	
2,3,4,6,7,8-HxCDF	50.0	52.3	35 - 78	13C-1,2,3,7,8,9-HxCDF	69.3	29 - 147	
1,2,3,7,8,9-HxCDF	50.0	51.7	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	76.7	28 - 143	
1,2,3,4,6,7,8-HpCDF	50.0	50.6	41 - 61	13C-1,2,3,4,7,8,9-HpCDF	85.4	26 - 138	
1,2,3,4,7,8,9-HpCDF	50.0	51.2	39 - 69	13C-OCDF	71.9	17 - 157	
OCDF	100	104	63 - 170	<u>CRS</u> 37Cl-2,3,7,8-TCDD	84.4	35 - 197	

Analyst: MAS

Approved By: Martha M. Maier 23-Jan-2008 09:37

Sample ID: IRA()399-01								EPA N	Aethod 1613
Client Data Name: Test Project: IRAC Date Collected: 5-Jan Time Collected: 0830			Sample Data Matrix: Sample Size:	Aqueous 0.982 L	Lab QC	oratory Data Sample: Batch No.: Analyzed DB-5:	30125-001 9886 19-Jan-08	Date Re Date Ex Date An		8-Jan-08 17-Jan-08 NA
Analyte	Conc. (ug/L)	DL ^a	EMPC ^b	Qualifiers		Labeled Standa	rd	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD	ND ND ND ND	0.000001: 0.000002: 0.0000034 0.0000034	57 46		<u>IS</u>	13C-2,3,7,8-TCD 13C-1,2,3,7,8-Pet 13C-1,2,3,4,7,8-F 13C-1,2,3,6,7,8-F	CDD IxCDD	73.6 65.1 58.5 57.6	25 - 164 25 - 181 32 - 141 28 - 130	
1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	ND 0.0000170 0.000161	0.0000034		J		13C-1,2,3,4,6,7,8 13C-0CDD 13C-2,3,7,8-TCD	F	58.6 47.9 69.3	23 - 140 17 - 157 24 - 169	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	ND ND ND	0.000001 0.0000022 0.0000022	28 21			13C-1,2,3,7,8-Pe0 13C-2,3,4,7,8-Pe0 13C-1,2,3,4,7,8-Pe0	CDF IxCDF	58.8 63.4 53.0	24 - 185 21 - 178 26 - 152	
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND	0.0000012 0.0000012 0.0000012	32 35			13C-1,2,3,6,7,8-H 13C-2,3,4,6,7,8-H 13C-1,2,3,7,8,9-H	IxCDF IxCDF	54.9 56.7 60.9	26 - 123 28 - 136 29 - 147	
1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	ND 0.00000328 ND ND	0.0000013 0.0000020 0.0000189	01	J	CRS	13C-1,2,3,4,6,7,8 13C-1,2,3,4,7,8,9 13C-OCDF 2 37Cl-2,3,7,8-TCE	-HpCDF	58.8 53.2 46.6 100	28 - 143 26 - 138 17 - 157 35 - 197	
Totals		0.000010	,			otnotes		100	55 177	
Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND ND 0.0000396	0.000002: 0.000004: 0.0000034	56 49		a. Sa b. E c. M	ample specific estimated stimated maximum possi ethod detection limit. ower control limit - uppe	ble concentration.			
Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND ND ND 0.00000697	0.0000010)116						

Analyst: MAS

APPENDIX

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank.
D	Dilution
Р	The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.
Н	The signal-to-noise ratio is greater than 10:1.
Ι	Chemical Interference
J	The amount detected is below the Lower Calibration Limit of the instrument.
*	See Cover Letter
Conc.	Concentration
DL	Sample-specific estimated detection limit
MDL	The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.
EMPC	Estimated Maximum Possible Concentration
NA	Not applicable
RL	Reporting Limit – concentrations that correspond to low calibration point
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

SUBCONTRACT ORDER

TestAmerica Irvine

			IRA0399	30125)		
SENDING LABORATORY:			RECEIVING LABOR	ATORY:	10		
TestAmerica Irvine			Vista Analytical Laboratory- SUB				
17461 Derian Avenue. Suite 100			1104 Windfield Way				
Irvine, CA 92614			El Dorado Hills, CA 95762				
Phone: (949) 261-1022			Phone :(916) 673-1520				
Fax: (949) 260-3297			Fax: (916) 673-0106				
Project Manager: Joseph Doak			Project Location: California				
			Receipt Temperature	°C	Ice: Y / N		
Analysis	Units	Due	Expires	Comments	i		
Sample ID: IRA0399-01	Water		Sampled: 01/05/08 08:30	ph=7.8, temp=	51.50		
1613-Dioxin-HR-Alta	ug/l	01/16/08	01/12/08 08:30	J flags,17 congeners,no TEQ,ug/L,sub=Vista			

Containers Supplied:

1 L Amber (C)

1 L Amber (D)

	17/08/	700 Fedth	1/2/08 1700
Released By	Date/Time	Received By	Date/Time 1/8/08 [33]

Released By

Date/Time

and nu Received By

1/8/08 Page 1 of 1 NPDES - 2107 Page 10 of 259 19 Date/Time

Project 30125

SAMPLE LOG-IN CHECKLIST

		SAMPLE LO	OG-IN CHE	CKLIS	т	V		O Laborato	
Vista Project #:	30125	5			TAT	-			
	Date/Time		Initials:	Initials:		Location: WR-2			
Samples Arrival:	1/8/08	0909	Uz			Shelf/Rack:NA			
	Date/Time	.0.11	Initials:		Location	$: \mathcal{W}$	R-2	5	
Logged In:	1/8/08	1244	BSI	CBSB		Shelf/Rack: <u>C-3</u>			
Delivered By:	FedEx	UPS	Cal	DHI		and vered	Oth	ner	
Preservation:	lce	В	lue Ice	D	ry Ice				
Temp °C (), 7	.7°C Time: 0924 Thermome					neter ID: IR-1			
						VEO			
Adequate Sample V	Volume Rece	ived?				YES	NO	NA	
Adequate Sample Volume Received?									
Holding Time Acceptable? Shipping Container(s) Intact?									
	Shipping Custody Seals Intact?								
Shipping Documen		t?							
Airbill		92626	674 240	69	÷	1			
Sample Container					· · ·	V			
Sample Custody S	eals Intact?							\mathcal{V}	
Chain of Custody /	Sample Docu	umentation P	resent?			\checkmark		·	
COC Anomaly/San	COC Anomaly/Sample Acceptance Form completed?								
If Chlorinated or Drinking Water Samples, Acceptable Preservation?									
Na ₂ S ₂ O ₃ Preservat			Sample Container		None				
Shipping Container	Vista	Client	Reta		turn	Disp	ose		

Comments:

SUBCONTRACT ORDER

TestAmerica Irvine

IRA0399

8010774

SENDING LABORATORY:

TestAmerica Irvine 17461 Derian Avenue. Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297 Project Manager: Joseph Doak

RECEIVING LABORATORY:

Weck Laboratories, Inc-SUB 14859 E. Clark Avenue City of Industry, CA 91745 Phone :(626) 336-2139 Fax: (626) 336-2634 Project Location: California Receipt Temperature: <u>3.i</u> °C

Ice:	(Y)/	ľ

Analysis	Units	Due	Expires	Comments
Sample ID: IRA0399-01	Water		Sampled: 01/05/08 08:30	ph=7.8, temp=51.50
Level 4 + EDD-OUT	N/A	01/16/08	02/02/08 08:30	Sub to Weck, transfer file EDD
Level 4 Data Package - Wec	N/A	01/16/08	02/02/08 08:30	Out to Weck
Mercury - 245.1, Diss -OUT	mg/l	01/16/08	02/02/08 08:30	Weck, Boeing, J flags
Mercury - 245.1-OUT	mg/l	01/16/08	02/02/08 08:30	Weck,Boeing, permit, J flags, if result>ND,call TA
Containers Supplied:				
125 mL Poly w/HNO3 12 (N)	25 mL Poly (O)		

0900 Released-By Date Released By

68 00 Date/Time Received By me 1716

Received By

17 % PMPDES - 2109 Date/Time Page 1 of 1

Weck Laboratories, Inc.

Analytical Laboratory Services - Since 1964

14859 E. Clark Ave., Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634 info@wecklabs.com www.wecklabs.com

CERTIFICATE OF ANALYSIS

Client:	TestAmerica, Inc Irvine	Report Date	e:	01/10/08 08:42
	17461 Derian Ave, Suite 100	Received Da	ate:	01/07/08 14:20
	Irvine, CA 92614	Turn Arou	nd:	7 days
	Attention: Joseph Doak	Work Order #: 8010	774	
	Phone: (949) 261-1022 Fax: (949) 260-3297	Client Project: IRA0)399	

NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

Dear Joseph Doak :

Enclosed are the results of analyses for samples received 01/07/08 14:20 with the Chain of Custody document. The samples were received in good condition. The samples were received at 3.1 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Reviewed by: in

Kim G Tu

Project Manager

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Date Received: 01/07/08 14:20 Date Reported: 01/10/08 08:42

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Sampled by:	Sample Comments	Laboratory	Matrix	Date Sampled
IRA0399-01	Client		8010774-01	Water	01/05/08 08:30

Report ID: 8010774

Project ID: IRA0399

Date Received: 01/07/08 14:20 Date Reported: 01/10/08 08:42

IRA0399-01	8010774-01 (Water)	
------------	--------------------	--

Report ID: 8010774

Project ID: IRA0399

Date Sampled: 01/05/08 08:30

Metals by EPA 200 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Dissolved	ND	0.050	ug/l	0.20	1	EPA 245.1	W8A0148	01/08/08	01/09/08 jlp	
Mercury, Total	ND	0.050	ug/l	0.20	1	EPA 245.1	W8A0148	01/08/08	01/09/08 jlp	

Report ID: 8010774 Project ID: IRA0399 Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Date Received: 01/07/08 14:20 Date Reported: 01/10/08 08:42

QUALITY CONTROL SECTION

Date Received: 01/07/08 14:20 Date Reported: 01/10/08 08:42

Metals by EPA 200 Series Methods - Quality Control

Report ID: 8010774

Project ID: IRA0399

							%REC			
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch W8A0148 - EPA 245.1										
Blank (W8A0148-BLK1)				Analyzed:	01/09/08					
Mercury, Dissolved	ND	0.20	ug/l							
Mercury, Total	ND	0.20	ug/l							
LCS (W8A0148-BS1)				Analyzed:	01/09/08					
Mercury, Dissolved	0.965	0.20	ug/l	1.00		96	85-115			
Mercury, Total	0.965	0.20	ug/l	1.00		96	85-115			
Matrix Spike (W8A0148-MS1)	S	ource: 7120722	-01	Analyzed:	01/09/08					
Mercury, Dissolved	1.97	0.40	ug/l	2.00	ND	98	70-130			
Mercury, Total	1.97	0.40	ug/l	2.00	ND	98	70-130			
Matrix Spike (W8A0148-MS2)	S	ource: 7120722	-03	Analyzed:	01/09/08					
Mercury, Dissolved	1.88	0.40	ug/l	2.00	ND	94	70-130			
Mercury, Total	1.88	0.40	ug/l	2.00	ND	94	70-130			
Matrix Spike Dup (W8A0148-MSD1)	S	ource: 7120722	-01	Analyzed:	01/09/08					
Mercury, Dissolved	1.92	0.40	ug/l	2.00	ND	96	70-130	2	20	
Mercury, Total	1.92	0.40	ug/l	2.00	ND	96	70-130	2	20	
Matrix Spike Dup (W8A0148-MSD2)	S	ource: 7120722	-03	Analyzed:	01/09/08					
Mercury, Dissolved	1.96	0.40	ug/l	2.00	ND	98	70-130	4	20	
Mercury, Total	1.96	0.40	ug/l	2.00	ND	98	70-130	4	20	

Report ID: 8010774 Project ID: IRA0399 Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Date Received: 01/07/08 14:20 Date Reported: 01/10/08 08:42

Notes and Definitions

- ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- % Rec Percent Recovery
- Sub Subcontracted analysis, original report available upon request
- MDL Method Detection Limit
- MDA Minimum Detectable Activity

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

APPENDIX G

Section 54

Outfall 009 – Northern Drainage-DTSC Requirement, January 5, 2008 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project: Northern Drainage-DTSC Requirement Surface Water Sampling Sampled: 01/05/08 Received: 01/05/08 Issued: 01/24/08 09:24

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID

IRA0408-01

CLIENT ID OUTFALL 009 MATRIX Water

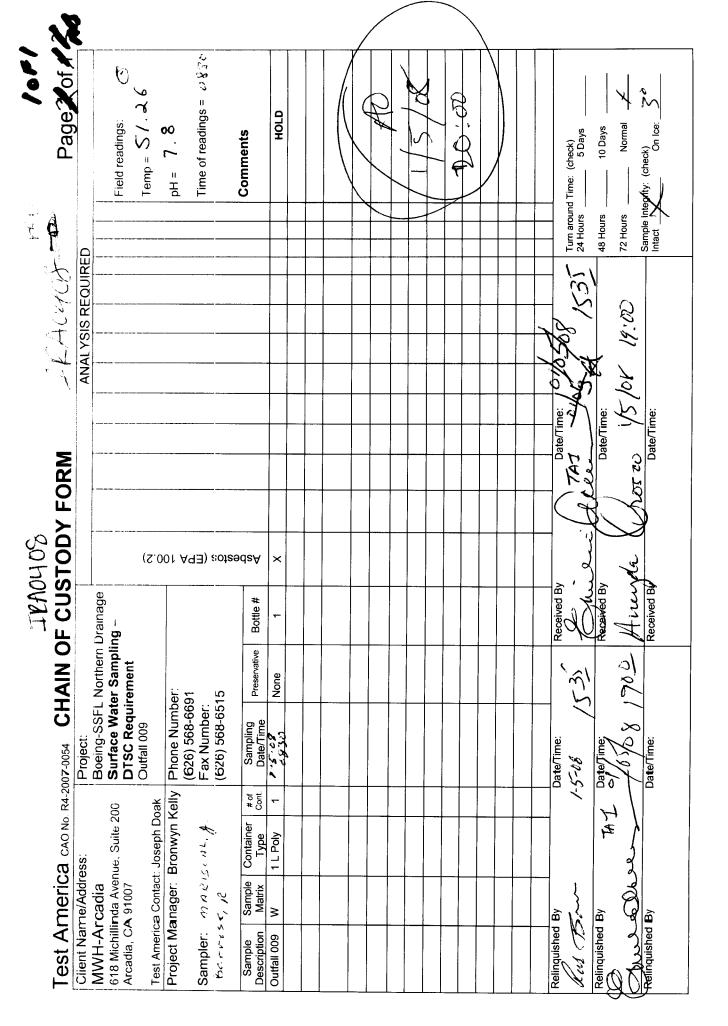
Reviewed By:

Joseph Dock

TestAmerica Irvine Joseph Doak Project Manager

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Northern Drainage-DTSC Requirement Surface Water Sampling Report Number: IRA0408

Sampled: 01/05/08 Received: 01/05/08


DATA QUALIFIERS AND DEFINITIONS

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

TestAmerica Irvine

Joseph Doak Project Manager

Joseph Doak

From: Sent: To: Cc: Subject:

EXT-Walker, Eric L [Eric.L.Walker2@boeing.com] Tuesday, January 08, 2008 4:12 PM Joseph Doak Bronwyn K Kelly; Blair, Lori N DTSC Sample From 1-5-08

Attachments:

DTSC COC Outfall 009.pdf

DTSC COC Outfall 009.pdf (134 ... Joe:

Please run the DTSC Requirement sample from Outfall 009 (Asbestos) that was placed on hold. I have attached the COC for your reference.

<<DISC COC Outfall 009.pdf>> Thanks

Eric Walker

Confidentiality Notice: The information contained in this message is intended only for the use of the addressee, and may be confidential and/or privileged. If the reader of this message is not the intended recipient, or the employee or agent responsible to deliver it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender immediately.

Log in Asbestos O

out to & Level 4

EMS

DATE:	January 14, 2008	Page 1 of 9
CLIENT:	TestAmerica, Irvine 17461 Derian Ave., Ste 100 Irvine, CA 92614	
ATTENTION:	Joseph Doak	
REFERENCE:	IRA0408	
REPORT NO:	118495	
DATE RECEIVED:	1/9/08 a t1515	
DATE ANALYZED:	1/14/08	
SUBJECT:	ANALYSIS OF WATER SAMPLE FOR ASBESTOS BY TEM	
ACCREDITED:	California Department of Health Services (ELAP-111	9)

The water was UV-ozone treated to remove any microbial contamination as prescribed by the method since the sample arrived after the 48-hour holding time.

The sample, date and time of collection, ozonation and filtration are as follows:

<u>Sample #</u>	<u>Date/Time of</u>	<u>Date/Time of</u>	Date/Time of
	<u>Collection</u>	<u>ozonation</u>	<u>Filtration</u>
IRA0408-01	1/5/08 0830	1/10/08 0700-1000	1/10/08 1030

The sample was analyzed for fibers >10 μ m in length to conform with the drinking water document, EPA 600 94 134, 100.2. This regulation calls for an MCL (maximum contaminant level) of 7 MFL and an analytical sensitivity level of 0.2 MFL.

No asbestos structures >10 μ m in length were detected. The analytical sensitivity of 0.2 MFL was not reached due to the turbidity.

The results of the analyses and the detection limits are summarized on the following pages.

Respectfully submitted,

EMS LABORATORIES, INC.

Grideall,

B. M. Kolk Laboratory Director

BMK/ah

NOTE: The results of the analysis are based upon the samples submitted to the laboratory. No representation is made regarding the sampling area other than that implied by the analytical results for the immediate vicinity of the samples analyzed as calculated from the data presented with those samples.

This report, from a NIST laboratory through NVLAP, must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

This report shall not be reproduced, except in full, without the written approval of EMS Laboratories, Inc.

Any deviation or exclusion from the test method is noted in this cover letter.

Unless otherwise noted in this cover letter, the samples were received properly packaged, clearly identified and intact.

ANALYSIS OF WATER BY TEM (EPA-600 R 94 134) EPA 100.2

Page 2 of 9

	1/14/2008						
			FILTER	MEDIA DATA			
Laboratory	Client	Туре	Diameter	Effective Area	No. of G.O.	Analyzed	Sample
I.D.	I.D.		mm	mm^2		Area, mm^2	Volume (ml)
118495-01	IRA0408-01	PC	47	1017	10	0.092	5
ļ			ļ				
L							

* FOR FIBERS > 10um ONLY

LAB NO:

CLIENT:

118495

TestAmerica Inc.-Irvine

INDIVIDUAL ANALYTICAL RESULTS

Laboratory	Client		o. of Asbe		Detection	CON		ION (MFL)
I.D.	I.D.	Str	Str >5um	Str >10um	Limit (MF/L)	Str	Str >5um	Str >10um
118495-01	IRA0408-01*	-	-	N.D.	2.2	N.D.	N.D.	N.D.
		ļ						
				·····				
		r						
							1	
								• • • • • • • • • • • • • • • • • • •

* FOR FIBERS > 10um ONLY

The analysis was carried out to the approved TEM method. This laboratory is in compliance with the quality specified by the method.

With

Authorized Signature

.

SUBCONTRACT ORDER

TestAmerica Irvine IRA0408

118495

SENDING LABOR	ATORY:		RECEIVING	LABORATORY:	
TestAmerica Irvin	e		EMS Labor	atories	
17461 Derian Ave	enue. Suite 100		117 W. Bel	levue Drive	
Irvine, CA 92614			Pasadena,	CA 91105	
Phone: (949) 261	-1022			6) 568-4065	
Fax: (949) 260-32			Fax: (626)	•	
Project Manager:	Joseph Doak			ation: California	
			Receipt Tem	perature:°C	Ice: Y / N
Analysis	Units	Due	Expires	Comme	nts

Sample ID: IRA0408-01	Water	Sampled: 01/05/08 08:30	
Asbestos-TEM (100.2 - DW)	Present/Not Pri01/16/08	01/07/08 08:30	Boeing, permit, J flags Out to EMS
Level 4 Data Package - Out	N/A 01/16/08	02/02/08 08:30	Boeing, permit, J flags
Containers Supplied:			
1 Liter Poly (A)			

TAN Date/Time Released By Ú'n Date/Time

Released By

Received By

Received By

Page 1 of 1

18

i-gn(/

Date/Time

108

NPDES - 2123

APPENDIX G

Section 55

Outfall 009, January 24, 2008 MEC^X Data Validation Reports

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IRA2352

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Contract Task Order:	Boeing SSFL NPDES 1261.100D.00
Sample Delivery Group:	IRA2352
Project Manager:	B. Kelly
Matrix:	Soil
QC Level:	IV
No. of Samples:	1
No. of Reanalyses/Dilutions:	0
Laboratory:	TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 009	IRA2352-01	30203-001, 8012538-01	Water	01/24/08 0830	200.8, 245.1, 900.0, 901.1, 903.0, 904.0, 905.0, 906.0, 1613, ASTM D-5174

II. Sample Management

No anomalies were observed regarding sample management. The sample in this SDG was received at TestAmerica-Irvine and Vista within the temperature limits of 4°C ±2°C. The sample was received above the temperature limit at Weck; however, mercury is not considered volatile. The sample was received above the temperature limit at Eberline; however, radiological samples are not required to be chilled. According to the case narrative for this SDG, the sample was received intact at all laboratories. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine, custody seals were not required. Custody seals were intact upon arrival at Eberline and Vista. No custody seals were present upon receipt at Weck. If necessary, the client ID was added to the sample result summary by the reviewer.

1

Qualifie	Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
А	Not applicable.	ICP Serial Dilution %D were not within control limits.
М	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Ρ	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: March 1, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had no target compound detects above the EDL.

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHODS 200.8, 245.1—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: March 4, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the *MEC^X* Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.8 and 245.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding times, 6 months for metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.
- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP-MS metals and 85-115% for mercury. The cadmium 0.2 ppb check standard was recovered

above the control limit at 139%; however, total cadmium was not detected in the sample. All remaining check standard recoveries were within the control limits of 70-130%

- Blanks: There were no applicable detects in the method blanks or CCBs.
- Interference Check Samples: ICSA/B analyses were performed in association with the total metals analyses only. Recoveries were within the method-established control limits. Most analytes were reported in the 6020 ICSA solution; however, the reviewer was not able to ascertain if the detection was indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Evaluation of method accuracy was based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. The bracketing CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

The reviewer noted that antimony was detected at a slightly higher concentration in the dissolved metals sample fraction. The difference between the antimony results is within the sensitivity limits of the analytical instrument and, therefore, the reviewer considered the two results to be equivalent.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks Date Reviewed: March 3, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the *EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174,* and the *National Functional Guidelines for Inorganic Data Review* (2/94).

- Holding Times: The tritium sample was analyzed within 180 days of collection. Aliquots for gross alpha, gross beta, radium-226, radium-228, strontium-90, and gamma spectroscopy were prepared within the five-day analytical holding time for unpreserved samples. The aliquot for total uranium was prepared within five days of collection.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, gross alpha detected in the sample was qualified as an estimated detect, "J." The gross beta detector efficiency was greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. The tritium detector efficiency for the sample was at least 20% and was considered acceptable. The internal spike efficiency to default efficiency ratios was near 1, indicating that quenching did not occur.

The strontium chemical yield was at least 70% and was considered acceptable. The strontium continuing calibration results were within the laboratory control limits.

The radium-226 cell efficiencies were determined in September 2006. The radium-226 continuing calibration results were within the laboratory-established control limits. The radium-228 calibration utilized actinium-228 and was verified in February 2001. The radium-228 tracer, yttrium oxalate yields were greater than 70%.

The gamma spectroscopy geometry-specific, detector efficiencies were determined in September 1999 and February 2007. All analytes were determined at the maximum photopeak energy.

The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: There were no analytes detected in the method blank.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.

- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. Reported nondetects are valid to the MDA.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

Data			Sample Data		Laboratory Data				
Name: Test Project: IRA. Date Collected: 24-J1 Time Collected: 0830	Test America-Irvine, CA IRA2352 24-Jan-08 0830		Matrix: Sample Size:	Aqueous 1.00 L	Lab Sample: 3(QC Batch No.: 99 Date Analyzed DB-5: 6-	30203-001 9917 6-Feb-08	Date Received: Date Extracted: Date Analyzed I	Date Received: Date Extracted: Date Analyzed DB-225:	26-Jan-08 31-Jan-08 NA
Analyte	Conc. (ug/L)	DL ^a	EMPC ^b	Qualifiers	Labeled Standard		%R]	LCL-UCL ^d	Oualifiers
2,3,7,8-TCDD	Ŋ	0.00000874	874. 64. 64. 64. 64.	 A state of the sta	15 13C-2,3,7,8-TCDD	語名的な言葉	70.1	25 - 164	の日本の
1,2,3,7,8-PeCDD	Ð	0.00000104	04		13C-1,2,3,7,8-PeCDD	0	64.4	25 - 181	o water of the local states
1,2,3,4,7,8-HxCDD	£	0.00000142	12		13C-1,2,3,4,7,8-HxCDD	DO	88.7	32 - 141	
1,2,3,6,7,8-HxCDD	R	0.00000147	47		13C-1,2,3,6,7,8-HxCDD	DD	87.5	28 - 130	
1,2,3,7,8,9-HxCDD	2	0.00000139	39		13C-1,2,3,4,6,7,8-HpCDD	CDD	89.2	23 - 140	
1,2,3,4,6,7,8-HpCDD	0.0000888	and the state of t		I	13C-OCDD		76.0	17 - 157	
ocod	0.0000852				13C-2,3,7,8-TCDF		102	24 - 169	
2,3,7,8-TCDF	R	0.000000664	564		13C-1,2,3,7,8-PeCDF	í.	78.9	24 - 185	And a second sec
1,2,3,7,8-PeCDF	Ð	0,00000160	50		13C-2,3,4,7,8-PeCDF	P	713	21 - 178	
2,3,4,7,8-PeCDF	Q	0.000001	17 :	the second state in second	13C-1,2,3,4,7,8-HxCDF	DF	87.8	26 - 152	
1,2,3,4,7,8-HxCDF	Ŕ	0.000000654	554		13C-1,2,3,6,7,8-HxCDF	DF	83.3	26-123	
1,2,3,6,7,8-HxCDF	Ŗ	0.000000709	604	Contract of Contract of Contract	13C-2,3,4,6,7,8-HxCDF	DF	82.6	28 - 136	
2,3,4,6,7,8-HxCDF	Q	0.000000800	800		13C-1,2,3,7,8,9-HxCDF	DF	84.5	29 - 147	
1,2,3,7,8,9-HxCDF	R	0.00000104	8	And the second se	13C-1,2,3,4,6,7,8-HpCDF	CDF	87.4	28 - 143	
1,2,3,4,6,7,8-HpCDF	R	0.00000260	50	A LINE STORE	13C-1,2,3,4,7,8,9-HpCDF	CDF	83.9	26-138	
1,2,3,4,7,8,9-HpCDF	Ð	0.00000115	15	and the second se	13C-OCDF		82.2	17 - 157	
OCDF	Ð	0.0000149			CRS 3701-2,3,7,8-TCDD		72.2	35 - 197	
Totals					Footnotes				
Total TCDD	AN N	0.00000176	76		a. Sample specific estimated detection limit.	sotion limit.			
Total PeCDD	ይ	0.00000297	14 N	「「「「「「「」」」とない。	b. Estimated maximum possible c	concentration.		States and	「「「「「「「」」」」」
Total HxCDD	Q	0.00000330	06	and the second se	c. Method detection limit.				
Total HpCDD	0.0000203			And	d. Lower control limit - upper control limit	ntrol limit.			
Total TCDF	Ð	0.00000066	564		Landar Land. The Prove of the Advance of the Advanc			and the second second second	A BASS OFFICE CALVES CHARACE
Total PeCDF	£	0.00000170	70						
Total HxCDF	R	0.00000192	32				and the state of the	And a lateral lateral lateral sector	and a submitted of a local state of the submitted of the
Total HoCDF	0.00000172	ないのであると				「「「「「「「「「「」」」	の一個になりいた	「日本」に発いた。「中国	ALL

Level II

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: IRA2352

Sampled: 01/24/08 Received: 01/24/08

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2352-01 (Outfall 009	- Water)								
Reporting Units: ug/l									
Antimony J/DNQ	EPA 200.8	8A25068	0.20	2.0	0.87	1	01/25/08	01/25/08	J
Cadmium U	EPA 200.8	8A25068	0.11	1.0	ND	1	01/25/08	01/25/08	
Copper	EPA 200.8	8A25068	0.75	2.0	4.6	1	01/25/08	01/25/08	
Lead	EPA 200.8	8A25068	0.30	1.0	1.3	1	01/25/08	01/25/08	
Thallium 🕖	EPA 200.8	8A25068	0.20	1.0	ND	1	01/25/08	01/25/08	

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

> The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA2352 <Page 2 of 15>

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Project ID: Routine Outfall 009

Report Number: IRA2352

Sampled: 01/24/08 Received: 01/24/08

DISSOLVED METALS

Data ualifiers
J
J

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA2352 <Page 3 of 15>

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 009

Report Number: IRA2352

Sampled: 01/24/08 Received: 01/24/08

Metals by EPA 200 Series Methods

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2352-01 (Outfall 009 - W	ater) - cont.								
Reporting Units: ug/l									
Mercury, Dissolved ()	EPA 245.1	W8A1053	0.050	0.20	ND	1	01/30/08	01/31/08	
Mercury, Total	EPA 245.1	W8A1053	0.050	0.20	ND	1	01/30/08	01/31/08	

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA2352 <Page 5 of 15>

Eberline Services

SDG <u>868</u> Work Order <u>R80</u> Received Date <u>01/</u>	.161-01					
lient	Lab					
mple ID	Sample ID	Collected Analyzed	Nuclide	Results ± 20	Units	MDA
Dutfall 009						
RA2352-01	8683-001	01/24/08 02/06/08	GrossAlpha	0.769 ± 0.39	pCi/L	0.40 J/R, Q
		02/06/08	Gross Beta	1.47 ± 0.55	pCi/L	0.84
		02/04/08	Ra-228	-0.021 ± 0.17	pCi/L	0.46 U
		01/31/08	K-40 (G)	υ	pCi/L	12
		01/31/08	Cs-137 (G)	υ	pCi/L	0.61
		02/15/08	H-3	-89.1 ± 92	pCi/L	160
		02/11/08	Ra-226	-0.059 ± 0.40	pCi/L	0.76
		02/07/08	Sr-90	0.195 ± 0.45	pCi/L	0.97
		02/19/08	Total U	0.108 ± 0.015	pCi/L	0.022
		LE	NEL	$l \lor$		pm 3

ANALYSIS RESULTS

Certified by K Report Date <u>02/22/08</u> Page 1