APPENDIX G

Section 49

Outfall 008, February 3, 2008 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Annual Outfall 008

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 02/03/08

Received: 02/03/08 Issued: 03/03/08 13:49

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID	CLIENT ID	MATRIX
IRB0151-01	Outfall 008	Water
IRB0151-02	Trip Blank	Water

Reviewed By:

TestAmerica Irvine

Joseph Dock

Attention: Bronwyn Kelly

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 008

618 Michillinda Avenue, Suite 200 Sampled: 02/03/08

Arcadia, CA 91007 Report Number: IRB0151 Received: 02/03/08

PURGEABLES BY GC/MS (EPA 624)

	1 0 11	02:1222		Donouting	ĺ	Dilution	Data	Data	Data
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Qualifiers
-		Dutti	Ziiiit	Limit	resure	1 uctor	Latructeu	maryzea	C
Sample ID: IRB0151-01 (Outfall 008 - Wat	er)								
Reporting Units: ug/l									
1,1,1-Trichloroethane	EPA 624	8B04007	0.30	0.50	ND	1	02/04/08	02/04/08	
1,1,2,2-Tetrachloroethane	EPA 624	8B04007	0.24	0.50	ND	1	02/04/08	02/04/08	
1,1,2-Trichloroethane	EPA 624	8B04007	0.30	0.50	ND	1	02/04/08	02/04/08	
1,1-Dichloroethane	EPA 624	8B04007	0.27	0.50	ND	1	02/04/08	02/04/08	
1,1-Dichloroethene	EPA 624	8B04007	0.42	0.50	ND	1	02/04/08	02/04/08	
1,2-Dichloroethane	EPA 624	8B04007	0.28	0.50	ND	1	02/04/08	02/04/08	
1,2-Dichlorobenzene	EPA 624	8B04007	0.32	0.50	ND	1	02/04/08	02/04/08	
1,2-Dichloropropane	EPA 624	8B04007	0.35	0.50	ND	1	02/04/08	02/04/08	
1,3-Dichlorobenzene	EPA 624	8B04007	0.35	0.50	ND	1	02/04/08	02/04/08	
1,4-Dichlorobenzene	EPA 624	8B04007	0.37	0.50	ND	1	02/04/08	02/04/08	
Benzene	EPA 624	8B04007	0.28	0.50	ND	1	02/04/08	02/04/08	
Bromodichloromethane	EPA 624	8B04007	0.30	0.50	ND	1	02/04/08	02/04/08	
Bromoform	EPA 624	8B04007	0.40	0.50	ND	1	02/04/08	02/04/08	
Bromomethane	EPA 624	8B04007	0.42	1.0	ND	1	02/04/08	02/04/08	
Carbon tetrachloride	EPA 624	8B04007	0.28	0.50	ND	1	02/04/08	02/04/08	
Chlorobenzene	EPA 624	8B04007	0.36	0.50	ND	1	02/04/08	02/04/08	
Chloroethane	EPA 624	8B04007	0.40	1.0	ND	1	02/04/08	02/04/08	
Chloroform	EPA 624	8B04007	0.33	0.50	ND	1	02/04/08	02/04/08	
Chloromethane	EPA 624	8B04007	0.40	0.50	ND	1	02/04/08	02/04/08	
cis-1,3-Dichloropropene	EPA 624	8B04007	0.22	0.50	ND	1	02/04/08	02/04/08	
Dibromochloromethane	EPA 624	8B04007	0.28	0.50	ND	1	02/04/08	02/04/08	
Ethylbenzene	EPA 624	8B04007	0.25	0.50	ND	1	02/04/08	02/04/08	
Methylene chloride	EPA 624	8B04007	0.95	1.0	ND	1	02/04/08	02/04/08	
Tetrachloroethene	EPA 624	8B04007	0.32	0.50	ND	1	02/04/08	02/04/08	
Toluene	EPA 624	8B04007	0.36	0.50	ND	1	02/04/08	02/04/08	
trans-1,2-Dichloroethene	EPA 624	8B04007	0.27	0.50	ND	1	02/04/08	02/04/08	
trans-1,3-Dichloropropene	EPA 624	8B04007	0.32	0.50	ND	1	02/04/08	02/04/08	
Trichloroethene	EPA 624	8B04007	0.26	0.50	ND	1	02/04/08	02/04/08	
Trichlorofluoromethane	EPA 624	8B04007	0.34	0.50	ND	1	02/04/08	02/04/08	
Trichlorotrifluoroethane (Freon 113)	EPA 624	8B04007	0.50	5.0	ND	1	02/04/08	02/04/08	
Vinyl chloride	EPA 624	8B04007	0.30	0.50	ND	1	02/04/08	02/04/08	
Xylenes, Total	EPA 624	8B04007	0.90	1.5	ND	1	02/04/08	02/04/08	
Surrogate: Dibromofluoromethane (80-120%)					114 %	-	,	,	
Surrogate: Toluene-d8 (80-120%)	,				103 %				
Surrogate: 4-Bromofluorobenzene (80-120%))				92 %				
S 5 Saile. 1 Di omojimoi obenizene (00-120/0	,				12 /0				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 008

618 Michillinda Avenue, Suite 200 Sampled: 02/03/08

Arcadia, CA 91007 Report Number: IRB0151 Received: 02/03/08
Attention: Bronwyn Kelly

PURGEABLES BY GC/MS (EPA 624)

	101	CEITEE		`	ĺ		_	_	.
	36.4.1	D / 1	MDL	Reporting		Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IRB0151-02 (Trip Blank - Wat	er)								
Reporting Units: ug/l	,								
1,1,1-Trichloroethane	EPA 624	8B04007	0.30	0.50	ND	1	02/04/08	02/04/08	
1,1,2,2-Tetrachloroethane	EPA 624	8B04007	0.24	0.50	ND	1	02/04/08	02/04/08	
1,1,2-Trichloroethane	EPA 624	8B04007	0.30	0.50	ND	1	02/04/08	02/04/08	
1,1-Dichloroethane	EPA 624	8B04007	0.27	0.50	ND	1	02/04/08	02/04/08	
1,1-Dichloroethene	EPA 624	8B04007	0.42	0.50	ND	1	02/04/08	02/04/08	
1,2-Dichloroethane	EPA 624	8B04007	0.28	0.50	ND	1	02/04/08	02/04/08	
1,2-Dichlorobenzene	EPA 624	8B04007	0.32	0.50	ND	1	02/04/08	02/04/08	
1,2-Dichloropropane	EPA 624	8B04007	0.35	0.50	ND	1	02/04/08	02/04/08	
1,3-Dichlorobenzene	EPA 624	8B04007	0.35	0.50	ND	1	02/04/08	02/04/08	
1,4-Dichlorobenzene	EPA 624	8B04007	0.37	0.50	ND	1	02/04/08	02/04/08	
Benzene	EPA 624	8B04007	0.28	0.50	ND	1	02/04/08	02/04/08	
Bromodichloromethane	EPA 624	8B04007	0.30	0.50	ND	1	02/04/08	02/04/08	
Bromoform	EPA 624	8B04007	0.40	0.50	ND	1	02/04/08	02/04/08	
Bromomethane	EPA 624	8B04007	0.42	1.0	ND	1	02/04/08	02/04/08	
Carbon tetrachloride	EPA 624	8B04007	0.28	0.50	ND	1	02/04/08	02/04/08	
Chlorobenzene	EPA 624	8B04007	0.36	0.50	ND	1	02/04/08	02/04/08	
Chloroethane	EPA 624	8B04007	0.40	1.0	ND	1	02/04/08	02/04/08	
Chloroform	EPA 624	8B04007	0.33	0.50	ND	1	02/04/08	02/04/08	
Chloromethane	EPA 624	8B04007	0.40	0.50	ND	1	02/04/08	02/04/08	
cis-1,3-Dichloropropene	EPA 624	8B04007	0.22	0.50	ND	1	02/04/08	02/04/08	
Dibromochloromethane	EPA 624	8B04007	0.28	0.50	ND	1	02/04/08	02/04/08	
Ethylbenzene	EPA 624	8B04007	0.25	0.50	ND	1	02/04/08	02/04/08	
Methylene chloride	EPA 624	8B04007	0.95	1.0	ND	1	02/04/08	02/04/08	
Tetrachloroethene	EPA 624	8B04007	0.32	0.50	ND	1	02/04/08	02/04/08	
Toluene	EPA 624	8B04007	0.36	0.50	ND	1	02/04/08	02/04/08	
trans-1,2-Dichloroethene	EPA 624	8B04007	0.27	0.50	ND	1	02/04/08	02/04/08	
trans-1,3-Dichloropropene	EPA 624	8B04007	0.32	0.50	ND	1	02/04/08	02/04/08	
Trichloroethene	EPA 624	8B04007	0.26	0.50	ND	1	02/04/08	02/04/08	
Trichlorofluoromethane	EPA 624	8B04007	0.34	0.50	ND	1	02/04/08	02/04/08	
Trichlorotrifluoroethane (Freon 113)	EPA 624	8B04007	0.50	5.0	ND	1	02/04/08	02/04/08	
Vinyl chloride	EPA 624	8B04007	0.30	0.50	ND	1	02/04/08	02/04/08	
Xylenes, Total	EPA 624	8B04007	0.90	1.5	ND	1	02/04/08	02/04/08	
Surrogate: Dibromofluoromethane (80-120%	6)				114 %				
Surrogate: Toluene-d8 (80-120%)					102 %				
C / A D // 1 /00 1300	1				02.0/				

Surrogate: 4-Bromofluorobenzene (80-120%)

92 %

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/03/08

MWH-Pasadena/Boeing

Surrogate: 4-Bromofluorobenzene (80-120%)

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IRB0151 Received: 02/03/08

Attention: Bronwyn Kelly

Project ID: Annual Outfall 008

PURGEABLES GC/MS (EPA 624) MDL Reporting Sample Dilution Date Date Date									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0151-01 (Outfall 008 - Water	r)								
Reporting Units: ug/l									
Acrolein	EPA 624	8B04007	4.0	5.0	ND	1	02/04/08	02/04/08	
Acrylonitrile	EPA 624	8B04007	0.70	2.0	ND	1	02/04/08	02/04/08	
2-Chloroethyl vinyl ether	EPA 624	8B04007	1.8	5.0	ND	1	02/04/08	02/04/08	
Surrogate: Dibromofluoromethane (80-120%)					114 %				
Surrogate: Toluene-d8 (80-120%)					103 %				
Surrogate: 4-Bromofluorobenzene (80-120%)					92 %				
Sample ID: IRB0151-02 (Trip Blank - Water	r)								
Reporting Units: ug/l									
Acrolein	EPA 624	8B04007	4.0	5.0	ND	1	02/04/08	02/04/08	
Acrylonitrile	EPA 624	8B04007	0.70	2.0	ND	1	02/04/08	02/04/08	
2-Chloroethyl vinyl ether	EPA 624	8B04007	1.8	5.0	ND	1	02/04/08	02/04/08	
Surrogate: Dibromofluoromethane (80-120%)					114 %				
Surrogate: Toluene-d8 (80-120%)					102 %				

92 %

Received: 02/03/08

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing Project ID: Annual Outfall 008

618 Michillinda Avenue, Suite 200 Sampled: 02/03/08

Report Number: IRB0151

Attention: Bronwyn Kelly

Arcadia, CA 91007

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0151-01 (Outfall 008 - Wa	ter)							·	
Reporting Units: ug/l	iter)								
Acenaphthene	EPA 625	8B04111	2.9	9.5	ND	0.952	02/04/08	02/07/08	
Acenaphthylene	EPA 625	8B04111	2.9	9.5	ND	0.952	02/04/08	02/07/08	
Aniline	EPA 625	8B04111	2.4	9.5	ND	0.952	02/04/08	02/07/08	
Anthracene	EPA 625	8B04111	1.9	9.5	ND	0.952	02/04/08	02/07/08	
Benzidine	EPA 625	8B04111	8.1	19	ND	0.952	02/04/08	02/07/08	L6
Benzoic acid	EPA 625	8B04111	9.5	19	ND	0.952	02/04/08	02/07/08	
Benzo(a)anthracene	EPA 625	8B04111	1.9	9.5	ND	0.952	02/04/08	02/07/08	
Benzo(b)fluoranthene	EPA 625	8B04111	1.9	9.5	ND	0.952	02/04/08	02/07/08	
Benzo(k)fluoranthene	EPA 625	8B04111	2.4	9.5	ND	0.952	02/04/08	02/07/08	
Benzo(g,h,i)perylene	EPA 625	8B04111	3.8	9.5	ND	0.952	02/04/08	02/07/08	
Benzo(a)pyrene	EPA 625	8B04111	1.9	9.5	ND	0.952	02/04/08	02/07/08	
Benzyl alcohol	EPA 625	8B04111	2.4	19	ND	0.952	02/04/08	02/07/08	
Bis(2-chloroethoxy)methane	EPA 625	8B04111	2.9	9.5	ND	0.952	02/04/08	02/07/08	
Bis(2-chloroethyl)ether	EPA 625	8B04111	2.9	9.5	ND	0.952	02/04/08	02/07/08	
Bis(2-chloroisopropyl)ether	EPA 625	8B04111	2.4	9.5	ND	0.952	02/04/08	02/07/08	
Bis(2-ethylhexyl)phthalate	EPA 625	8B04111	3.8	48	ND	0.952	02/04/08	02/07/08	
4-Bromophenyl phenyl ether	EPA 625	8B04111	2.9	9.5	ND	0.952	02/04/08	02/07/08	
Butyl benzyl phthalate	EPA 625	8B04111	3.8	19	ND	0.952	02/04/08	02/07/08	
4-Chloroaniline	EPA 625	8B04111	1.9	9.5	ND	0.952	02/04/08	02/07/08	
2-Chloronaphthalene	EPA 625	8B04111	2.9	9.5	ND	0.952	02/04/08	02/07/08	
4-Chloro-3-methylphenol	EPA 625	8B04111	2.4	19	ND	0.952	02/04/08	02/07/08	
2-Chlorophenol	EPA 625	8B04111	2.9	9.5	ND	0.952	02/04/08	02/07/08	
4-Chlorophenyl phenyl ether	EPA 625	8B04111	2.4	9.5	ND	0.952	02/04/08	02/07/08	
Chrysene	EPA 625	8B04111	2.4	9.5	ND	0.952	02/04/08	02/07/08	
Dibenz(a,h)anthracene	EPA 625	8B04111	2.9	19	ND	0.952	02/04/08	02/07/08	
Dibenzofuran	EPA 625	8B04111	3.8	9.5	ND	0.952	02/04/08	02/07/08	
Di-n-butyl phthalate	EPA 625	8B04111	2.9	19	ND	0.952	02/04/08	02/07/08	
1,3-Dichlorobenzene	EPA 625	8B04111	2.9	9.5	ND	0.952	02/04/08	02/07/08	
1,4-Dichlorobenzene	EPA 625	8B04111	2.4	9.5	ND	0.952	02/04/08	02/07/08	
1,2-Dichlorobenzene	EPA 625	8B04111	2.9	9.5	ND	0.952	02/04/08	02/07/08	
3,3-Dichlorobenzidine	EPA 625	8B04111	2.9	19	ND	0.952	02/04/08	02/07/08	
2,4-Dichlorophenol	EPA 625	8B04111	3.3	9.5	ND	0.952	02/04/08	02/07/08	
Diethyl phthalate	EPA 625	8B04111	3.3	9.5	ND	0.952	02/04/08	02/07/08	
2,4-Dimethylphenol	EPA 625	8B04111	3.3	19	ND	0.952	02/04/08	02/07/08	
Dimethyl phthalate	EPA 625	8B04111	1.9	9.5	ND	0.952	02/04/08	02/07/08	
4,6-Dinitro-2-methylphenol	EPA 625	8B04111	3.8	19	ND	0.952	02/04/08	02/07/08	
2,4-Dinitrophenol	EPA 625	8B04111	7.6	19	ND	0.952	02/04/08	02/07/08	
2,4-Dinitrotoluene	EPA 625	8B04111	3.3	9.5	ND	0.952	02/04/08	02/07/08	
2,6-Dinitrotoluene	EPA 625	8B04111	1.9	9.5	ND	0.952	02/04/08	02/07/08	
Di-n-octyl phthalate	EPA 625	8B04111	3.3	19	ND	0.952	02/04/08	02/07/08	
Fluoranthene	EPA 625	8B04111	2.9	9.5	ND	0.952	02/04/08	02/07/08	

TestAmerica Irvine

MWH-Pasadena/Boeing Project ID: Annual Outfall 008

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007
Report Number: IRB0151
Sampled: 02/03/08
Received: 02/03/08

Attention: Bronwyn Kelly

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

				_			_	_	5
	3.6.4.1	D / 1	MDL	Reporting	_	Dilution	Date	Date	Data Qualifiers
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IRB0151-01 (Outfall 008 - Water	er) - cont.								
Reporting Units: ug/l									
Fluorene	EPA 625	8B04111	2.9	9.5	ND	0.952	02/04/08	02/07/08	
Hexachlorobenzene	EPA 625	8B04111	2.9	9.5	ND	0.952	02/04/08	02/07/08	
Hexachlorobutadiene	EPA 625	8B04111	3.8	9.5	ND	0.952	02/04/08	02/07/08	
Hexachlorocyclopentadiene	EPA 625	8B04111	4.8	19	ND	0.952	02/04/08	02/07/08	
Hexachloroethane	EPA 625	8B04111	3.3	9.5	ND	0.952	02/04/08	02/07/08	
Indeno(1,2,3-cd)pyrene	EPA 625	8B04111	3.3	19	ND	0.952	02/04/08	02/07/08	
Isophorone	EPA 625	8B04111	2.4	9.5	ND	0.952	02/04/08	02/07/08	
2-Methylnaphthalene	EPA 625	8B04111	1.9	9.5	ND	0.952	02/04/08	02/07/08	
2-Methylphenol	EPA 625	8B04111	2.9	9.5	ND	0.952	02/04/08	02/07/08	
4-Methylphenol	EPA 625	8B04111	2.9	9.5	ND	0.952	02/04/08	02/07/08	
Naphthalene	EPA 625	8B04111	2.9	9.5	ND	0.952	02/04/08	02/07/08	
2-Nitroaniline	EPA 625	8B04111	1.9	19	ND	0.952	02/04/08	02/07/08	
3-Nitroaniline	EPA 625	8B04111	2.9	19	ND	0.952	02/04/08	02/07/08	
4-Nitroaniline	EPA 625	8B04111	3.8	19	ND	0.952	02/04/08	02/07/08	
Nitrobenzene	EPA 625	8B04111	2.4	19	ND	0.952	02/04/08	02/07/08	
2-Nitrophenol	EPA 625	8B04111	3.3	9.5	ND	0.952	02/04/08	02/07/08	
4-Nitrophenol	EPA 625	8B04111	5.2	19	ND	0.952	02/04/08	02/07/08	
N-Nitrosodiphenylamine	EPA 625	8B04111	1.9	9.5	ND	0.952	02/04/08	02/07/08	
N-Nitroso-di-n-propylamine	EPA 625	8B04111	3.3	9.5	ND	0.952	02/04/08	02/07/08	
Pentachlorophenol	EPA 625	8B04111	3.3	19	ND	0.952	02/04/08	02/07/08	
Phenanthrene	EPA 625	8B04111	3.3	9.5	ND	0.952	02/04/08	02/07/08	
Phenol	EPA 625	8B04111	1.9	9.5	ND	0.952	02/04/08	02/07/08	
Pyrene	EPA 625	8B04111	3.8	9.5	ND	0.952	02/04/08	02/07/08	
1,2,4-Trichlorobenzene	EPA 625	8B04111	2.4	9.5	ND	0.952	02/04/08	02/07/08	
2,4,5-Trichlorophenol	EPA 625	8B04111	2.9	19	ND	0.952	02/04/08	02/07/08	
2,4,6-Trichlorophenol	EPA 625	8B04111	4.3	19	ND	0.952	02/04/08	02/07/08	
1,2-Diphenylhydrazine/Azobenzene	EPA 625	8B04111	2.4	19	ND	0.952	02/04/08	02/07/08	
N-Nitrosodimethylamine	EPA 625	8B04111	2.4	19	ND	0.952	02/04/08	02/07/08	
Surrogate: 2-Fluorophenol (30-120%)					67 %				
Surrogate: Phenol-d6 (35-120%)					70 %				
Surrogate: 2,4,6-Tribromophenol (40-120%)					63 %				
Surrogate: Nitrobenzene-d5 (45-120%)					81 %				
Surrogate: 2-Fluorobiphenyl (50-120%)					84 %				
Surrogate: Terphenyl-d14 (50-125%)					99 %				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 008

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007
Report Number: IRB0151
Sampled: 02/03/08
Received: 02/03/08

Attention: Bronwyn Kelly

ORGANOCHLORINE PESTICIDES (EPA 608)

			MDL	Reporting	-	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IRB0151-01 (Outfall 008 - Wat	er) - cont.								
Reporting Units: ug/l									
Aldrin	EPA 608	8B05099	0.0014	0.0048	ND	0.952	02/05/08	02/06/08	
alpha-BHC	EPA 608	8B05099	0.0024	0.0048	ND	0.952	02/05/08	02/06/08	
beta-BHC	EPA 608	8B05099	0.0038	0.0095	ND	0.952	02/05/08	02/06/08	
delta-BHC	EPA 608	8B05099	0.0033	0.0048	ND	0.952	02/05/08	02/06/08	
gamma-BHC (Lindane)	EPA 608	8B05099	0.0029	0.0095	ND	0.952	02/05/08	02/06/08	
Chlordane	EPA 608	8B05099	0.029	0.095	ND	0.952	02/05/08	02/06/08	
4,4'-DDD	EPA 608	8B05099	0.0019	0.0048	ND	0.952	02/05/08	02/06/08	
4,4'-DDE	EPA 608	8B05099	0.0029	0.0048	ND	0.952	02/05/08	02/06/08	
4,4'-DDT	EPA 608	8B05099	0.0038	0.0095	ND	0.952	02/05/08	02/06/08	
Dieldrin	EPA 608	8B05099	0.0019	0.0048	ND	0.952	02/05/08	02/06/08	
Endosulfan I	EPA 608	8B05099	0.0019	0.0048	ND	0.952	02/05/08	02/06/08	
Endosulfan II	EPA 608	8B05099	0.0029	0.0048	ND	0.952	02/05/08	02/06/08	
Endosulfan sulfate	EPA 608	8B05099	0.0029	0.0095	ND	0.952	02/05/08	02/06/08	
Endrin	EPA 608	8B05099	0.0019	0.0048	ND	0.952	02/05/08	02/06/08	
Endrin aldehyde	EPA 608	8B05099	0.0019	0.0095	ND	0.952	02/05/08	02/06/08	
Endrin ketone	EPA 608	8B05099	0.0029	0.0095	ND	0.952	02/05/08	02/06/08	
Heptachlor	EPA 608	8B05099	0.0029	0.0095	ND	0.952	02/05/08	02/06/08	
Heptachlor epoxide	EPA 608	8B05099	0.0024	0.0048	ND	0.952	02/05/08	02/06/08	
Methoxychlor	EPA 608	8B05099	0.0033	0.0048	ND	0.952	02/05/08	02/06/08	
Toxaphene	EPA 608	8B05099	0.067	0.095	ND	0.952	02/05/08	02/06/08	
Surrogate: Decachlorobiphenyl (45-120%)					77 %				
Surrogate: Tetrachloro-m-xylene (35-115%)					66 %				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Sampled: 02/03/08 Arcadia, CA 91007 Report Number: IRB0151 Received: 02/03/08

Attention: Bronwyn Kelly

TOTAL PCBS (EPA 608)

Project ID: Annual Outfall 008

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0151-01 (Outfall 008 - Water	er) - cont.								
Reporting Units: ug/l									
Aroclor 1016	EPA 608	8B05099	0.43	0.48	ND	0.952	02/05/08	02/06/08	
Aroclor 1221	EPA 608	8B05099	0.24	0.48	ND	0.952	02/05/08	02/06/08	
Aroclor 1232	EPA 608	8B05099	0.24	0.48	ND	0.952	02/05/08	02/06/08	
Aroclor 1242	EPA 608	8B05099	0.24	0.48	ND	0.952	02/05/08	02/06/08	
Aroclor 1248	EPA 608	8B05099	0.24	0.48	ND	0.952	02/05/08	02/06/08	
Aroclor 1254	EPA 608	8B05099	0.24	0.48	ND	0.952	02/05/08	02/06/08	
Aroclor 1260	EPA 608	8B05099	0.29	0.48	ND	0.952	02/05/08	02/06/08	
Surrogate: Decachlorobiphenyl (45-120%)					89 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 008

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: IRB0151

Sampled: 02/03/08
Received: 02/03/08

Arcadia, CA 91007 Report No Attention: Bronwyn Kelly

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0151-01 (Outfall 008 - V	Vater) - cont.								
Reporting Units: mg/l									
Hardness (as CaCO3)	[CALC]	[CALC]	N/A	0.33	140	1	02/04/08	02/04/08	
Boron	EPA 200.7	8B04079	0.020	0.050	0.079	1	02/04/08	02/04/08	
Calcium	EPA 200.7	8B04079	0.050	0.10	42	1	02/04/08	02/04/08	
Iron	EPA 200.7	8B04079	0.015	0.040	3.6	1	02/04/08	02/04/08	
Magnesium	EPA 200.7	8B04079	0.012	0.020	7.8	1	02/04/08	02/04/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 008

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: IRB0151

Sampled: 02/03/08
Received: 02/03/08

Attention: Bronwyn Kelly

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0151-01 (Outfall 00	8 - Water) - cont.								
Reporting Units: ug/l									
Aluminum	EPA 200.7	8B04079	40	50	3100	1	02/04/08	02/04/08	
Antimony	EPA 200.8	8B04080	0.20	2.0	0.38	1	02/04/08	02/05/08	J
Arsenic	EPA 200.7	8B04079	7.0	10	ND	1	02/04/08	02/04/08	
Beryllium	EPA 200.7	8B04079	0.90	2.0	ND	1	02/04/08	02/04/08	
Cadmium	EPA 200.8	8B04080	0.11	1.0	ND	1	02/04/08	02/04/08	
Chromium	EPA 200.7	8B04079	2.0	5.0	4.4	1	02/04/08	02/04/08	J
Copper	EPA 200.8	8B04080	0.75	2.0	3.8	1	02/04/08	02/04/08	
Lead	EPA 200.8	8B04080	0.30	1.0	4.5	1	02/04/08	02/04/08	
Nickel	EPA 200.7	8B04079	2.0	10	4.3	1	02/04/08	02/04/08	J
Selenium	EPA 200.7	8B04079	8.0	10	ND	1	02/04/08	02/04/08	
Silver	EPA 200.7	8B04079	6.0	10	ND	1	02/04/08	02/04/08	
Thallium	EPA 200.7	8B04079	7.0	10	ND	1	02/04/08	02/04/08	
Vanadium	EPA 200.7	8B04079	3.0	10	7.4	1	02/04/08	02/04/08	J
Zinc	EPA 200.7	8B04079	6.0	20	15	1	02/04/08	02/04/08	J

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Sampled: 02/03/08 Arcadia, CA 91007 Report Number: IRB0151 Received: 02/03/08

Attention: Bronwyn Kelly

DISSOLVED METALS

Project ID: Annual Outfall 008

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0151-01 (Outfall 008 - '	Water) - cont.								
Reporting Units: mg/l									
Boron	EPA 200.7-Diss	8B05111	0.020	0.050	0.082	1	02/05/08	02/06/08	
Calcium	EPA 200.7-Diss	8B05111	0.050	0.10	42	1	02/05/08	02/06/08	
Iron	EPA 200.7-Diss	8B05111	0.015	0.040	0.031	1	02/05/08	02/06/08	J
Magnesium	EPA 200.7-Diss	8B05111	0.012	0.020	6.8	1	02/05/08	02/06/08	
Hardness (as CaCO3)	SM2340B	8B05111	1.0	1.0	130	1	02/05/08	02/06/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 008

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007
Report Number: IRB0151
Sampled: 02/03/08
Received: 02/03/08

Attention: Bronwyn Kelly

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0151-01 (Outfall 0	08 - Water) - cont.								
Reporting Units: ug/l									
Aluminum	EPA 200.7-Diss	8B05111	40	50	ND	1	02/05/08	02/06/08	
Antimony	EPA 200.8-Diss	8B04144	0.20	2.0	0.23	1	02/04/08	02/05/08	J
Arsenic	EPA 200.7-Diss	8B05111	7.0	10	ND	1	02/05/08	02/06/08	
Beryllium	EPA 200.7-Diss	8B05111	0.90	2.0	ND	1	02/05/08	02/06/08	
Cadmium	EPA 200.8-Diss	8B04144	0.11	1.0	ND	1	02/04/08	02/05/08	
Chromium	EPA 200.7-Diss	8B05111	2.0	5.0	ND	1	02/05/08	02/06/08	
Copper	EPA 200.8-Diss	8B04144	0.75	2.0	1.6	1	02/04/08	02/05/08	J
Lead	EPA 200.8-Diss	8B04144	0.30	1.0	ND	1	02/04/08	02/05/08	
Nickel	EPA 200.7-Diss	8B05111	2.0	10	ND	1	02/05/08	02/06/08	
Selenium	EPA 200.7-Diss	8B05111	8.0	10	ND	1	02/05/08	02/06/08	
Silver	EPA 200.7-Diss	8B05111	6.0	10	ND	1	02/05/08	02/06/08	
Thallium	EPA 200.7-Diss	8B05111	7.0	10	ND	1	02/05/08	02/06/08	
Vanadium	EPA 200.7-Diss	8B05111	3.0	10	ND	1	02/05/08	02/06/08	
Zine	EPA 200.7-Diss	8B05111	6.0	20	ND	1	02/05/08	02/06/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/03/08

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IRB0151 Received: 02/03/08

Attention: Bronwyn Kelly

INORGANICS

Project ID: Annual Outfall 008

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0151-01 (Outfall 008 - V	Vater) - cont.								
Reporting Units: mg/l									
Hexane Extractable Material (Oil &	EPA 1664A	8B12074	1.3	4.8	1.7	1	02/12/08	02/12/08	J
Grease)									
Ammonia-N (Distilled)	EPA 350.2	8B07098	0.30	0.50	ND	1	02/07/08	02/08/08	
Chloride	EPA 300.0	8B04043	0.25	0.50	16	1	02/04/08	02/04/08	
Fluoride	EPA 300.0	8B04043	0.15	0.50	0.24	1	02/04/08	02/04/08	J
Nitrate-N	EPA 300.0	8B04043	0.12	0.22	7.7	2	02/04/08	02/04/08	
Nitrite-N	EPA 300.0	8B04043	0.090	0.15	ND	1	02/04/08	02/04/08	
Nitrate/Nitrite-N	EPA 300.0	8B04043	0.30	0.52	7.7	2	02/04/08	02/04/08	
Sulfate	EPA 300.0	8B04043	0.20	0.50	19	1	02/04/08	02/04/08	
Total Dissolved Solids	SM2540C	8B07122	10	10	240	1	02/07/08	02/07/08	
Total Suspended Solids	EPA 160.2	8B04128	10	10	60	1	02/04/08	02/04/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 008

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: IRB0151

Sampled: 02/03/08
Received: 02/03/08

Attention: Bronwyn Kelly

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0151-01 (Outfall 008 - Wa	nter) - cont.								
Reporting Units: ug/l									
Total Cyanide	EPA 335.2	8B04112	2.2	5.0	ND	1	02/04/08	02/04/08	
Perchlorate	EPA 314.0	8B12073	1.5	4.0	ND	1	02/12/08	02/12/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 008

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007
Report Number: IRB0151
Sampled: 02/03/08
Received: 02/03/08

Attention: Bronwyn Kelly

ORGANIC COMPOUNDS BY GC/MS (EPA 525.2)

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IRB0151-01 (Outfall 008 - Wat	ter) - cont.								P, pH
Reporting Units: ug/l									
Chlorpyrifos	EPA 525.2	C8B0516	0.10	1.0	ND	0.99	02/05/08	02/07/08	
Diazinon	EPA 525.2	C8B0516	0.24	0.25	ND	0.99	02/05/08	02/07/08	
Surrogate: 1,3-Dimethyl-2-nitrobenzene (70	-130%)				92 %				
Surrogate: Triphenylphosphate (70-130%)					117 %				
Surrogate: Perylene-d12 (70-130%)					92 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/03/08

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IRB0151 Received: 02/03/08

Attention: Bronwyn Kelly

Metals by EPA 200 Series Methods

Project ID: Annual Outfall 008

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0151-01 (Outfall 008 - Wa	ter) - cont.								
Reporting Units: ug/l									
Mercury, Dissolved	EPA 245.1	W8B0171	0.050	0.20	ND	1	02/06/08	02/07/08	
Mercury, Total	EPA 245.1	W8B0171	0.050	0.20	ND	1	02/06/08	02/07/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IRB0151

Attention: Bronwyn Kelly

Sampled: 02/03/08 port Number: IRB0151 Received: 02/03/08

Necested. 02/03/00

SHORT HOLD TIME DETAIL REPORT

Project ID: Annual Outfall 008

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 008 (IRB0151-01) - Water	r				
EPA 300.0	2	02/03/2008 10:15	02/03/2008 18:25	02/04/2008 05:00	02/04/2008 09:47
Nitrite-N				02/04/2008 05:00	02/04/2008 07:31
EPA 624	3	02/03/2008 10:15	02/03/2008 18:25	02/04/2008 00:00	02/04/2008 15:56
Sample ID: Trip Blank (IRB0151-02) - Water	r				
EPA 624	3	02/03/2008 10:15	02/03/2008 18:25	02/04/2008 00:00	02/04/2008 16:25

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 008

Sampled: 02/03/08

Report Number: IRB0151

Received: 02/03/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

	.	Reporting	MDI	***	Spike	Source	a/PEG	%REC	DDD	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04007 Extracted: 02/04/0	8										
Blank Analyzed: 02/04/2008 (8B04007-l	BLK1)										
1,1,1-Trichloroethane	ND	0.50	0.30	ug/l							
1,1,2,2-Tetrachloroethane	ND	0.50	0.24	ug/l							
1,1,2-Trichloroethane	ND	0.50	0.30	ug/l							
1,1-Dichloroethane	ND	0.50	0.27	ug/l							
1,1-Dichloroethene	ND	0.50	0.42	ug/l							
1,2-Dichloroethane	ND	0.50	0.28	ug/l							
1,2-Dichlorobenzene	ND	0.50	0.32	ug/l							
1,2-Dichloropropane	ND	0.50	0.35	ug/l							
1,3-Dichlorobenzene	ND	0.50	0.35	ug/l							
1,4-Dichlorobenzene	ND	0.50	0.37	ug/l							
Benzene	ND	0.50	0.28	ug/l							
Bromodichloromethane	ND	0.50	0.30	ug/l							
Bromoform	ND	0.50	0.40	ug/l							
Bromomethane	ND	1.0	0.42	ug/l							
Carbon tetrachloride	ND	0.50	0.28	ug/l							
Chlorobenzene	ND	0.50	0.36	ug/l							
Chloroethane	ND	1.0	0.40	ug/l							
Chloroform	ND	0.50	0.33	ug/l							
Chloromethane	ND	0.50	0.40	ug/l							
cis-1,3-Dichloropropene	ND	0.50	0.22	ug/l							
Dibromochloromethane	ND	0.50	0.28	ug/l							
Ethylbenzene	ND	0.50	0.25	ug/l							
Methylene chloride	ND	1.0	0.95	ug/l							
Tetrachloroethene	ND	0.50	0.32	ug/l							
Toluene	ND	0.50	0.36	ug/l							
trans-1,2-Dichloroethene	ND	0.50	0.27	ug/l							
trans-1,3-Dichloropropene	ND	0.50	0.32	ug/l							
Trichloroethene	ND	0.50	0.26	ug/l							
Trichlorofluoromethane	ND	0.50	0.34	ug/l							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	0.50	ug/l							
Vinyl chloride	ND	0.50	0.30	ug/l							
Xylenes, Total	ND	1.5	0.90	ug/l							
Surrogate: Dibromofluoromethane	27.7			ug/l	25.0		111	80-120			
Surrogate: Toluene-d8	25.2			ug/l	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	22.9			ug/l	25.0		91	80-120			
v				3							

TestAmerica Irvine

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 008

Report Number: IRB0151

Sampled: 02/03/08

Received: 02/03/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
·		Limit	MIDL	Onits	Level	Result	70KEC	Limits	KI D	Lillit	Qualifiers
Batch: 8B04007 Extracted: 02/04/08	_										
LCS Analyzed: 02/04/2008 (8B04007-BS	1)										
1,1,1-Trichloroethane	30.6	0.50	0.30	ug/l	25.0		122	65-135			
1,1,2,2-Tetrachloroethane	27.3	0.50	0.24	ug/l	25.0		109	55-130			
1,1,2-Trichloroethane	25.9	0.50	0.30	ug/l	25.0		103	70-125			
1,1-Dichloroethane	29.2	0.50	0.27	ug/l	25.0		117	70-125			
1,1-Dichloroethene	25.5	0.50	0.42	ug/l	25.0		102	70-125			
1,2-Dichloroethane	27.2	0.50	0.28	ug/l	25.0		109	60-140			
1,2-Dichlorobenzene	26.5	0.50	0.32	ug/l	25.0		106	75-120			
1,2-Dichloropropane	26.7	0.50	0.35	ug/l	25.0		107	70-125			
1,3-Dichlorobenzene	26.4	0.50	0.35	ug/l	25.0		106	75-120			
1,4-Dichlorobenzene	24.3	0.50	0.37	ug/l	25.0		97	75-120			
Benzene	25.9	0.50	0.28	ug/l	25.0		103	70-120			
Bromodichloromethane	29.9	0.50	0.30	ug/l	25.0		120	70-135			
Bromoform	22.2	0.50	0.40	ug/l	25.0		89	55-130			
Bromomethane	29.3	1.0	0.42	ug/l	25.0		117	65-140			
Carbon tetrachloride	29.8	0.50	0.28	ug/l	25.0		119	65-140			
Chlorobenzene	24.8	0.50	0.36	ug/l	25.0		99	75-120			
Chloroethane	30.1	1.0	0.40	ug/l	25.0		120	60-140			
Chloroform	30.2	0.50	0.33	ug/l	25.0		121	70-130			
Chloromethane	28.5	0.50	0.40	ug/l	25.0		114	50-140			
cis-1,3-Dichloropropene	24.0	0.50	0.22	ug/l	25.0		96	75-125			
Dibromochloromethane	25.6	0.50	0.28	ug/l	25.0		103	70-140			
Ethylbenzene	27.1	0.50	0.25	ug/l	25.0		108	75-125			
Methylene chloride	27.1	1.0	0.95	ug/l	25.0		108	55-130			
Tetrachloroethene	22.8	0.50	0.32	ug/l	25.0		91	70-125			
Toluene	26.1	0.50	0.36	ug/l	25.0		104	70-120			
trans-1,2-Dichloroethene	29.8	0.50	0.27	ug/l	25.0		119	70-125			
trans-1,3-Dichloropropene	24.1	0.50	0.32	ug/l	25.0		96	70-125			
Trichloroethene	24.6	0.50	0.26	ug/l	25.0		99	70-125			
Trichlorofluoromethane	34.8	0.50	0.34	ug/l	25.0		139	65-145			
Vinyl chloride	29.8	0.50	0.30	ug/l	25.0		119	55-135			
Xylenes, Total	78.7	1.5	0.90	ug/l	75.0		105	70-125			
Surrogate: Dibromofluoromethane	27.9			ug/l	25.0		112	80-120			
Surrogate: Toluene-d8	25.5			ug/l	25.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	26.0			ug/l	25.0		104	80-120			

TestAmerica Irvine

%REC

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 008

Report Number: IRB0151

Reporting

Sampled: 02/03/08

Received: 02/03/08

RPD

Data

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Spike

Source

		Keporting			Spike	Source		/OKEC		KI D	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04007 Extracted: 02/04	4/08										
Matrix Spike Analyzed: 02/04/2008 ((8B04007-MS1)				Sou	rce: IRB	0146-01				
1,1,1-Trichloroethane	29.1	0.50	0.30	ug/l	25.0	ND	117	65-140			
1,1,2,2-Tetrachloroethane	27.0	0.50	0.24	ug/l	25.0	ND	108	55-135			
1,1,2-Trichloroethane	24.6	0.50	0.30	ug/l	25.0	ND	98	65-130			
1,1-Dichloroethane	27.8	0.50	0.27	ug/l	25.0	ND	111	65-130			
1,1-Dichloroethene	24.9	0.50	0.42	ug/l	25.0	ND	100	60-130			
1,2-Dichloroethane	26.1	0.50	0.28	ug/l	25.0	ND	104	60-140			
1,2-Dichlorobenzene	25.7	0.50	0.32	ug/l	25.0	ND	103	75-125			
1,2-Dichloropropane	25.3	0.50	0.35	ug/l	25.0	ND	101	65-130			
1,3-Dichlorobenzene	25.8	0.50	0.35	ug/l	25.0	ND	103	75-125			
1,4-Dichlorobenzene	23.6	0.50	0.37	ug/l	25.0	ND	94	75-125			
Benzene	25.1	0.50	0.28	ug/l	25.0	ND	101	65-125			
Bromodichloromethane	28.8	0.50	0.30	ug/l	25.0	ND	115	70-135			
Bromoform	21.5	0.50	0.40	ug/l	25.0	ND	86	55-135			
Bromomethane	28.6	1.0	0.42	ug/l	25.0	ND	114	55-145			
Carbon tetrachloride	28.4	0.50	0.28	ug/l	25.0	ND	113	65-140			
Chlorobenzene	23.9	0.50	0.36	ug/l	25.0	ND	96	75-125			
Chloroethane	28.9	1.0	0.40	ug/l	25.0	ND	115	55-140			
Chloroform	28.9	0.50	0.33	ug/l	25.0	ND	116	65-135			
Chloromethane	28.8	0.50	0.40	ug/l	25.0	ND	115	45-145			
cis-1,3-Dichloropropene	22.8	0.50	0.22	ug/l	25.0	ND	91	70-130			
Dibromochloromethane	24.4	0.50	0.28	ug/l	25.0	ND	98	65-140			
Ethylbenzene	26.4	0.50	0.25	ug/l	25.0	ND	106	65-130			
Methylene chloride	26.1	1.0	0.95	ug/l	25.0	ND	104	50-135			
Tetrachloroethene	22.0	0.50	0.32	ug/l	25.0	ND	88	65-130			
Toluene	25.3	0.50	0.36	ug/l	25.0	ND	101	70-125			
trans-1,2-Dichloroethene	28.4	0.50	0.27	ug/l	25.0	ND	114	65-130			
trans-1,3-Dichloropropene	22.5	0.50	0.32	ug/l	25.0	ND	90	65-135			
Trichloroethene	23.9	0.50	0.26	ug/l	25.0	ND	96	65-125			
Trichlorofluoromethane	34.2	0.50	0.34	ug/l	25.0	ND	137	60-145			
Vinyl chloride	29.4	0.50	0.30	ug/l	25.0	ND	118	45-140			
Xylenes, Total	76.3	1.5	0.90	ug/l	75.0	ND	102	60-130			
Surrogate: Dibromofluoromethane	27.8			ug/l	25.0		111	80-120			
Surrogate: Toluene-d8	25.7			ug/l	25.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	25.7			ug/l	25.0		103	80-120			

TestAmerica Irvine

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 008

TD D 0.4.54

Report Number: IRB0151

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source	%REC	%REC	RPD	RPD Limit	Data Qualifiers
v		Lillit	MIDL	Units	Levei	Result	70KEC	Limits	KrD	Lillit	Quanners
Batch: 8B04007 Extracted: 02/04/0	<u>8</u>										
Matrix Snika Dun Analyzadı 02/04/2001) (ODAAAA N	ICD1)			Com	rce: IRB	0146 01				
Matrix Spike Dup Analyzed: 02/04/2008	`		0.20	/1				65.140	2	20	
1,1,1-Trichloroethane	28.6 29.1	0.50	0.30	ug/l	25.0	ND	114	65-140	2 7	20 30	
1,1,2,2-Tetrachloroethane		0.50	0.24	ug/l	25.0	ND	116	55-135			
1,1,2-Trichloroethane	26.1	0.50	0.30	ug/l	25.0	ND	104	65-130	6	25	
1,1-Dichloroethane	28.1	0.50	0.27	ug/l	25.0	ND	112	65-130	1	20	
1,1-Dichloroethene	25.1	0.50	0.42	ug/l	25.0	ND	100	60-130	1	20	
1,2-Dichloroethane	26.8	0.50	0.28	ug/l	25.0	ND	107	60-140	2	20	
1,2-Dichlorobenzene	25.8	0.50	0.32	ug/l	25.0	ND	103	75-125	1	20	
1,2-Dichloropropane	25.8	0.50	0.35	ug/l	25.0	ND	103	65-130	2	20	
1,3-Dichlorobenzene	25.4	0.50	0.35	ug/l	25.0	ND	101	75-125	2	20	
1,4-Dichlorobenzene	23.4	0.50	0.37	ug/l	25.0	ND	94	75-125	1	20	
Benzene	25.4	0.50	0.28	ug/l	25.0	ND	102	65-125	1	20	
Bromodichloromethane	29.0	0.50	0.30	ug/l	25.0	ND	116	70-135	1	20	
Bromoform	22.6	0.50	0.40	ug/l	25.0	ND	91	55-135	5	25	
Bromomethane	29.3	1.0	0.42	ug/l	25.0	ND	117	55-145	2	25	
Carbon tetrachloride	27.6	0.50	0.28	ug/l	25.0	ND	110	65-140	3	25	
Chlorobenzene	23.7	0.50	0.36	ug/l	25.0	ND	95	75-125	1	20	
Chloroethane	30.2	1.0	0.40	ug/l	25.0	ND	121	55-140	4	25	
Chloroform	28.8	0.50	0.33	ug/l	25.0	ND	115	65-135	0	20	
Chloromethane	30.9	0.50	0.40	ug/l	25.0	ND	124	45-145	7	25	
cis-1,3-Dichloropropene	23.2	0.50	0.22	ug/l	25.0	ND	93	70-130	2	20	
Dibromochloromethane	24.9	0.50	0.28	ug/l	25.0	ND	100	65-140	2	25	
Ethylbenzene	26.2	0.50	0.25	ug/l	25.0	ND	105	65-130	1	20	
Methylene chloride	27.0	1.0	0.95	ug/l	25.0	ND	108	50-135	3	20	
Tetrachloroethene	21.9	0.50	0.32	ug/l	25.0	ND	88	65-130	1	20	
Toluene	25.2	0.50	0.36	ug/l	25.0	ND	101	70-125	0	20	
trans-1,2-Dichloroethene	28.5	0.50	0.27	ug/l	25.0	ND	114	65-130	1	20	
trans-1,3-Dichloropropene	23.4	0.50	0.32	ug/l	25.0	ND	94	65-135	4	25	
Trichloroethene	24.1	0.50	0.26	ug/l	25.0	ND	96	65-125	1	20	
Trichlorofluoromethane	33.1	0.50	0.34	ug/l	25.0	ND	132	60-145	3	25	
Vinyl chloride	30.5	0.50	0.30	ug/l	25.0	ND	122	45-140	3	30	
Xylenes, Total	74.9	1.5	0.90	ug/l	75.0	ND	100	60-130	2	20	
Surrogate: Dibromofluoromethane	27.6			ug/l	25.0		110	80-120			
Surrogate: Toluene-d8	25.7			ug/l	25.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	25.5			ug/l	25.0		102	80-120			

TestAmerica Irvine

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 008

Sampled: 02/03/08

Report Number: IRB0151

Received: 02/03/08

METHOD BLANK/QC DATA

PURGEABLES-- GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Oualifiers
•		Limit	NIDE	Circs	Level	resure	, une	Ziiiits	I L	Ziiiii	Quantiers
Batch: 8B04007 Extracted: 02/04/08	<u>)</u>										
Blank Analyzed: 02/04/2008 (8B04007-B	LK1)										
Acrolein	ND	5.0	4.0	ug/l							
Acrylonitrile	ND	2.0	0.70	ug/l							
2-Chloroethyl vinyl ether	ND	5.0	1.8	ug/l							
Surrogate: Dibromofluoromethane	27.7			ug/l	25.0		111	80-120			
Surrogate: Toluene-d8	25.2			ug/l	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	22.9			ug/l	25.0		91	80-120			
LCS Analyzed: 02/04/2008 (8B04007-BS	1)										
2-Chloroethyl vinyl ether	29.5	5.0	1.8	ug/l	25.0		118	25-170			
Surrogate: Dibromofluoromethane	27.9			ug/l	25.0		112	80-120			
Surrogate: Toluene-d8	25.5			ug/l	25.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	26.0			ug/l	25.0		104	80-120			
Matrix Spike Analyzed: 02/04/2008 (8B0	4007-MS1)				Sou	rce: IRB	0146-01				
2-Chloroethyl vinyl ether	27.8	5.0	1.8	ug/l	25.0	ND	111	25-170			
Surrogate: Dibromofluoromethane	27.8			ug/l	25.0		111	80-120			
Surrogate: Toluene-d8	25.7			ug/l	25.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	25.7			ug/l	25.0		103	80-120			
Matrix Spike Dup Analyzed: 02/04/2008	(8B04007-M	ISD1)			Sou	rce: IRB	0146-01				
2-Chloroethyl vinyl ether	31.1	5.0	1.8	ug/l	25.0	ND	124	25-170	11	25	
Surrogate: Dibromofluoromethane	27.6			ug/l	25.0		110	80-120			
Surrogate: Toluene-d8	25.7			ug/l	25.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	25.5			ug/l	25.0		102	80-120			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 008

Sampled: 02/03/08

Report Number: IRB0151

Received: 02/03/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Reach			Reporting			Spike	Source		%REC		RPD	Data
Mank Analyzed: 92/07/2008 (8B04111-BLK I) Acenaphthene	Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Mank Analyzed: 92/07/2008 (8B04111-BLK I) Acenaphthene	Batch: 8B04111 Extracted: 02/04/0	8										
Acemaphthene ND 10 3.0 ug/l Acemaphthylene ND 10 3.0 ug/l Anthracene ND 10 2.5 ug/l Henzidine ND 20 ug/l Benzoic acid ND 20 10 ug/l Benzoic acid ND 10 2.0 ug/l Benzoic acid ND 10 2.0 ug/l Benzoic acid ND 10 2.0 ug/l Benzoic programmen ND 10 2.0 ug/l Benzoic programmen ND 10 2.5 ug/l Benzoic propry perse ND 10 4.0 ug/l Benzoic propry perse ND 10 2.0 ug/l Benzoic propry perse ND 10 3.0 ug/l BisiQ-chlorostoxymethane ND 10 3.0 ug/l BisiQ-chlorostoxymethane ND 10 3.0 ug/l BisiQ-ch												
Acenaphthylene ND 10 3.0 ug/I Aniline ND 10 2.5 ug/I Aniline ND 10 2.0 ug/I Benzidine ND 20 8.5 ug/I Benzot acid ND 20 ug/I Benzot philocranthene ND 10 2.0 ug/I Benzot philocranthene ND 10 2.0 ug/I Benzot physicher ND 10 2.5 ug/I Benzot physicher ND 10 2.0 ug/I Benzot physicher ND 10 2.0 ug/I Benzot physicher ND 10 3.0 ug/I Bist2-chlorocthylylcher ND 10 3.0 ug/I Bist2-chlorocthylylcher ND 10 2.5 ug/I Bist2-chlorocphylcher ND 10 2.5 ug/I Bist2-chlorocphylcher ND 10 2.0 ug/I 4-	Blank Analyzed: 02/07/2008 (8B04111-	BLK1)										
Aniline ND 10 2.5 ug/I Anthracene ND 10 2.0 ug/I Benzoiae ND 20 8.5 ug/I Benzoia acid ND 20 10 ug/I Benzo(b)fluoranthene ND 10 2.0 ug/I Benzo(b)fluoranthene ND 10 2.0 ug/I Benzo(g,h)perylene ND 10 2.5 ug/I Benzo(a)prene ND 10 2.0 ug/I Benzo(a)prene ND 10 2.0 ug/I Bersyl alcohol ND 20 ug/I Bis(2-chloroshoxy)methane ND 10 3.0 ug/I Bis(2-chloroshoxy)methane ND 10 3.0 ug/I Bis(2-chlorosphory)pether ND 10 3.0 ug/I Bis(2-chlorosphorylpether ND 10 3.0 ug/I 4-Bromophenyl phenyl cher ND 10 3.0 ug/I <t< td=""><td>Acenaphthene</td><td>ND</td><td>10</td><td>3.0</td><td>ug/l</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Acenaphthene	ND	10	3.0	ug/l							
Anthracene ND 10 2.0 ug/l Benzáline ND 20 8.5 ug/l Benzo(a) anthracene ND 10 2.0 ug/l Benzo(b)fluoranthene ND 10 2.0 ug/l Benzo(g)fluoranthene ND 10 2.5 ug/l Benzo(g)f, i)perylene ND 10 4.0 ug/l Benzo(a)pyrene ND 10 4.0 ug/l Benzo(a)pyrene ND 10 2.0 ug/l Benzo(a)pyrene ND 10 2.0 ug/l Benzo(a)pyrene ND 10 2.0 ug/l Benzo(a)pyrene ND 10 3.0 ug/l Benzo(a)pyrene ND 10 3.0 ug/l Bis(2-chrosethoxy)methane ND 10 3.0 ug/l Bis(2-chrosethoxy)methane ND 10 2.5 ug/l Bis(2-chrosethoxy)phthalate ND 10 2.0 ug/l	Acenaphthylene	ND	10	3.0	ug/l							
Benzoic acid	Aniline	ND	10	2.5	ug/l							
Benzoic acid ND 20	Anthracene	ND	10	2.0	ug/l							
Benzo(a)anthracene ND 10 2.0 ug/I Benzo(b)fluoranthene ND 10 2.0 ug/I Benzo(g,h.i)perylene ND 10 4.0 ug/I Benzo(a,b)iperylene ND 10 4.0 ug/I Benzo(a)pyrene ND 10 2.0 ug/I Bis(2-chlorethoxy)methane ND 10 3.0 ug/I Bis(2-chlorethyl)ether ND 10 3.0 ug/I Bis(2-chloroispropyl)ether ND 10 3.0 ug/I Bis(2-chloroispropyl)phthalate ND 50 4.0 ug/I 4-Bromophenyl phenyl ether ND 10 3.0 ug/I 4-Bromophenyl phthalate ND 20 4.0 ug/I 4-Chloroaphthalene ND 10 3.0 ug/I 2-Chlorophenyl phenol ND 20 2.5 ug/I 4-Chloroaphthalene ND 10 2.5 ug/I 4-Chlorophenyl phenyl ether <t< td=""><td>Benzidine</td><td>ND</td><td>20</td><td>8.5</td><td>ug/l</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Benzidine	ND	20	8.5	ug/l							
Benzo(b)fluoranthene ND 10 2.0 ug/l	Benzoic acid	ND	20	10	ug/l							
Benzo(k)fluoranthene ND 10 2.5 ug/I Benzo(g),h)perylene ND 10 4.0 ug/I Benzo(a)pyrene ND 10 2.0 ug/I Benzyl alcohol ND 20 2.5 ug/I Bis(2-chloroethoxy)methane ND 10 3.0 ug/I Bis(2-chloroethyl)ether ND 10 3.0 ug/I Bis(2-chloroethyl)ether ND 10 2.5 ug/I Bis(2-chlorostopropyl)ether ND 10 2.5 ug/I Bis(2-chlorostopropyl)ether ND 10 3.0 ug/I 4-Bromophenyl phenyl ether ND 10 3.0 ug/I 4-Bromophenyl phenyl ether ND 10 3.0 ug/I 4-Chloro-3-methylphenol ND 10 3.0 ug/I 4-Chlorophenyl phenyl ether ND 10 2.5 ug/I Chrysene ND 10 2.5 ug/I Dibenz(a, b)anthracene	Benzo(a)anthracene	ND	10	2.0	ug/l							
Benzo(g,h,i)perylene	Benzo(b)fluoranthene	ND	10	2.0	ug/l							
Benzo(a)pyrene ND	Benzo(k)fluoranthene	ND	10	2.5	ug/l							
Benzyl alcohol	Benzo(g,h,i)perylene	ND	10	4.0	ug/l							
Bis(2-chloroethoxy)methane ND 10 3.0 ug/l Bis(2-chloroethylether ND 10 3.0 ug/l Bis(2-chloroisopropyl)ether ND 10 2.5 ug/l Bis(2-chlynlexy)phthalate ND 50 4.0 ug/l 4-Bromophemyl phenyl ether ND 10 3.0 ug/l 4-Chloroanline ND 10 2.0 ug/l 4-Chloroanline ND 10 3.0 ug/l 4-Chloroanline ND 10 2.5 ug/l 4-Chloroanline ND 10 2.5 <t< td=""><td>Benzo(a)pyrene</td><td>ND</td><td>10</td><td>2.0</td><td>ug/l</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Benzo(a)pyrene	ND	10	2.0	ug/l							
Bis(2-chloroethylether ND 10 3.0 ug/l Bis(2-chloroisopropyl)ether ND 10 2.5 ug/l Bis(2-cthylhexyl)phthalate ND 50 4.0 ug/l 4-Bromophenyl phenyl ether ND 10 3.0 ug/l Buyl benzyl phthalate ND 20 4.0 ug/l 4-Chloroaniline ND 10 2.0 ug/l 4-Chloroaphrolal ND 10 3.0 ug/l 4-Chloro-3-methylphenol ND 20 2.5 ug/l 4-Chlorophenol ND 10 3.0 ug/l 4-Chlorophenyl phenyl ether ND 10 2.5 ug/l Chrysene ND 10 2.5 ug/l Dibenz(a,h)anthracene ND 20 3.0 ug/l Dibenz(a,h)athracene ND 10 4.0 ug/l Di-n-bulyl phthalate ND 20 3.0 ug/l 1,3-Dichlorobenzene ND	Benzyl alcohol	ND	20	2.5	ug/l							
Bis(2-chloroisopropyl)ether ND 10 2.5 ug/l Bis(2-ethylhexyl)phthalate ND 50 4.0 ug/l 4-Bromophenyl phenyl ether ND 10 3.0 ug/l Butyl benzyl phthalate ND 20 4.0 ug/l 4-Chloroanline ND 10 2.0 ug/l 4-Chloroaphthalene ND 10 3.0 ug/l 4-Chloro-3-methylphenol ND 20 2.5 ug/l 4-Chlorophenol ND 10 3.0 ug/l 4-Chlorophenyl phenyl ether ND 10 2.5 ug/l Chrysene ND 10 2.5 ug/l Dibenz(a,h)anthracene ND 10 2.5 ug/l Dibenz(a,h)anthracene ND 10 4.0 ug/l Dibenzofuran ND 10 4.0 ug/l Dibenzofuran ND 10 3.0 ug/l 1,4-Dichlorobenzene ND 10	Bis(2-chloroethoxy)methane	ND	10	3.0	ug/l							
Bis(2-ethylhexyl)phthalate	Bis(2-chloroethyl)ether	ND	10	3.0	ug/l							
4-Bromophenyl phenyl ether ND 10 3.0 ug/l Butyl benzyl phthalate ND 20 4.0 ug/l 4-Chloroanline ND 10 2.0 ug/l 2-Chloroaphthalene ND 10 3.0 ug/l 4-Chloro-3-methylphenol ND 20 2.5 ug/l 2-Chlorophenol ND 10 3.0 ug/l 4-Chlorophenyl phenyl ether ND 10 2.5 ug/l 4-Chlorophenyl phenyl ether ND 10 2.5 ug/l Chrysene ND 10 2.5 ug/l Dibenz(a,h)anthracene ND 20 3.0 ug/l Dibenz(a,h)anthracene ND 10 4.0 ug/l Dibenz(a,h)anthracene ND 10 4.0 ug/l Di-n-butyl phthalate ND 20 3.0 ug/l 1,3-Dichlorobenzene ND 10 3.0 ug/l 1,4-Dichlorobenzidine ND 20<	Bis(2-chloroisopropyl)ether	ND	10	2.5	ug/l							
Butyl benzyl phthalate ND 20 4.0 ug/l 4-Chloroaniline ND 10 2.0 ug/l 2-Chloroaphthalene ND 10 3.0 ug/l 4-Chloro-3-methylphenol ND 20 2.5 ug/l 2-Chlorophenol ND 10 3.0 ug/l 4-Chlorophenyl phenyl ether ND 10 2.5 ug/l Chrysene ND 10 2.5 ug/l Dibenz(a,h)anthracene ND 20 3.0 ug/l Dibenzofuran ND 10 4.0 ug/l Dibenzofuran ND 10 4.0 ug/l 1,3-Dichlorobenzene ND 10 3.0 ug/l 1,2-Dichlorobenzene ND 10 2.5 ug/l 1,2-Dichlorobenzene ND 10 3.0 ug/l 3,3-Dichlorobenzidine ND 20 3.0 ug/l 2,4-Dichlorophenol ND 10 3.5	Bis(2-ethylhexyl)phthalate	ND	50	4.0	ug/l							
4-Chloroaniline ND 10 2.0 ug/l 2-Chloronaphthalene ND 10 3.0 ug/l 4-Chloro-3-methylphenol ND 20 2.5 ug/l 2-Chlorophenol ND 10 3.0 ug/l 4-Chlorophenyl phenyl ether ND 10 2.5 ug/l Chrysene ND 10 2.5 ug/l Dibenz(a,h)anthracene ND 20 3.0 ug/l Dibenzofuran ND 10 4.0 ug/l Di-n-butyl phthalate ND 20 3.0 ug/l 1,3-Dichlorobenzene ND 10 3.0 ug/l 1,4-Dichlorobenzene ND 10 2.5 ug/l 3,3-Dichlorobenzidine ND 20 3.0 ug/l 2,4-Dichlorophenol ND 10 3.5 ug/l Diethyl phthalate ND 10 3.5 ug/l 2,4-Dimethyl phenol ND 20 3.5	4-Bromophenyl phenyl ether	ND	10	3.0	ug/l							
2-Chloronaphthalene ND 10 3.0 ug/l 4-Chloro-3-methylphenol ND 20 2.5 ug/l 2-Chlorophenol ND 10 3.0 ug/l 4-Chlorophenyl phenyl ether ND 10 2.5 ug/l Chrysene ND 10 2.5 ug/l Dibenz/(a,h)anthracene ND 20 3.0 ug/l Dibenzofuran ND 10 4.0 ug/l Di-n-butyl phthalate ND 20 3.0 ug/l 1,3-Dichlorobenzene ND 10 3.0 ug/l 1,4-Dichlorobenzene ND 10 2.5 ug/l 3,3-Dichlorobenzidine ND 10 3.5 ug/l 2,4-Dichlorophenol ND 10 3.5 ug/l Diethyl phthalate ND 10 3.5 ug/l 2,4-Dimethyl phenol ND 20 3.5 ug/l Dimethyl phthalate ND 10 2.0	Butyl benzyl phthalate	ND	20	4.0	ug/l							
4-Chloro-3-methylphenol ND 20 2.5 ug/l 2-Chlorophenol ND 10 3.0 ug/l 4-Chlorophenyl phenyl ether ND 10 2.5 ug/l Chrysene ND 10 2.5 ug/l Dibenz(a,h)anthracene ND 20 3.0 ug/l Dibenzofuran ND 10 4.0 ug/l Di-n-butyl phthalate ND 20 3.0 ug/l 1,3-Dichlorobenzene ND 10 3.0 ug/l 1,4-Dichlorobenzene ND 10 3.0 ug/l 1,2-Dichlorobenzene ND 10 3.0 ug/l 3,3-Dichlorobenzidine ND 20 3.0 ug/l 2,4-Dichlorophenol ND 10 3.5 ug/l Diethyl phthalate ND 10 3.5 ug/l 2,4-Dimethylphenol ND 20 3.5 ug/l Dimethyl phthalate ND 10 2.0 ug/l	4-Chloroaniline	ND	10	2.0	ug/l							
2-Chlorophenol ND 10 3.0 ug/l 4-Chlorophenyl phenyl ether ND 10 2.5 ug/l Chrysene ND 10 2.5 ug/l Dibenz(a,h)anthracene ND 20 3.0 ug/l Dibenzofuran ND 10 4.0 ug/l Di-n-butyl phthalate ND 20 3.0 ug/l 1,3-Dichlorobenzene ND 10 3.0 ug/l 1,4-Dichlorobenzene ND 10 3.0 ug/l 1,2-Dichlorobenzene ND 10 3.0 ug/l 3,3-Dichlorobenzidine ND 20 3.0 ug/l 2,4-Dichlorophenol ND 10 3.5 ug/l Diethyl phthalate ND 10 3.5 ug/l 2,4-Dimethylphenol ND 20 3.5 ug/l Dimethyl phthalate ND 10 2.0 ug/l	2-Chloronaphthalene	ND	10	3.0	ug/l							
4-Chlorophenyl phenyl ether ND 10 2.5 ug/l Chrysene ND 10 2.5 ug/l Dibenz(a,h)anthracene ND 20 3.0 ug/l Dibenzofuran ND 10 4.0 ug/l Di-n-butyl phthalate ND 20 3.0 ug/l 1,3-Dichlorobenzene ND 10 3.0 ug/l 1,4-Dichlorobenzene ND 10 3.0 ug/l 1,2-Dichlorobenzene ND 10 3.0 ug/l 3,3-Dichlorobenzidine ND 20 3.0 ug/l 2,4-Dichlorophenol ND 10 3.5 ug/l Diethyl phthalate ND 10 3.5 ug/l 2,4-Dimethylphenol ND 20 3.5 ug/l Dimethyl phthalate ND 10 2.0 ug/l	4-Chloro-3-methylphenol	ND	20	2.5	ug/l							
Chrysene ND 10 2.5 ug/l Dibenz(a,h)anthracene ND 20 3.0 ug/l Dibenzofuran ND 10 4.0 ug/l Di-n-butyl phthalate ND 20 3.0 ug/l 1,3-Dichlorobenzene ND 10 3.0 ug/l 1,4-Dichlorobenzene ND 10 3.0 ug/l 1,2-Dichlorobenzene ND 10 3.0 ug/l 3,3-Dichlorobenzidine ND 20 3.0 ug/l 2,4-Dichlorophenol ND 10 3.5 ug/l Diethyl phthalate ND 10 3.5 ug/l 2,4-Dimethylphenol ND 20 3.5 ug/l Dimethyl phthalate ND 10 2.0 ug/l	2-Chlorophenol	ND	10	3.0	ug/l							
Dibenz(a,h)anthracene ND 20 3.0 ug/l Dibenzofuran ND 10 4.0 ug/l Di-n-butyl phthalate ND 20 3.0 ug/l 1,3-Dichlorobenzene ND 10 3.0 ug/l 1,4-Dichlorobenzene ND 10 3.0 ug/l 1,2-Dichlorobenzene ND 10 3.0 ug/l 3,3-Dichlorobenzidine ND 20 3.0 ug/l 2,4-Dichlorophenol ND 10 3.5 ug/l Diethyl phthalate ND 10 3.5 ug/l 2,4-Dimethylphenol ND 20 3.5 ug/l Dimethyl phthalate ND 10 2.0 ug/l	4-Chlorophenyl phenyl ether	ND	10	2.5	ug/l							
Dibenzofuran ND 10 4.0 ug/l Di-n-butyl phthalate ND 20 3.0 ug/l 1,3-Dichlorobenzene ND 10 3.0 ug/l 1,4-Dichlorobenzene ND 10 3.0 ug/l 1,2-Dichlorobenzene ND 10 3.0 ug/l 3,3-Dichlorobenzidine ND 20 3.0 ug/l 2,4-Dichlorophenol ND 10 3.5 ug/l Diethyl phthalate ND 10 3.5 ug/l 2,4-Dimethylphenol ND 20 3.5 ug/l Dimethyl phthalate ND 10 2.0 ug/l	Chrysene	ND	10	2.5	ug/l							
Di-n-butyl phthalate ND 20 3.0 ug/l 1,3-Dichlorobenzene ND 10 3.0 ug/l 1,4-Dichlorobenzene ND 10 2.5 ug/l 1,2-Dichlorobenzene ND 10 3.0 ug/l 3,3-Dichlorobenzidine ND 20 3.0 ug/l 2,4-Dichlorophenol ND 10 3.5 ug/l Diethyl phthalate ND 10 3.5 ug/l 2,4-Dimethylphenol ND 20 3.5 ug/l Dimethyl phthalate ND 10 2.0 ug/l	Dibenz(a,h)anthracene	ND	20	3.0	ug/l							
1,3-Dichlorobenzene ND 10 3.0 ug/l 1,4-Dichlorobenzene ND 10 2.5 ug/l 1,2-Dichlorobenzene ND 10 3.0 ug/l 3,3-Dichlorobenzidine ND 20 3.0 ug/l 2,4-Dichlorophenol ND 10 3.5 ug/l Diethyl phthalate ND 10 3.5 ug/l 2,4-Dimethylphenol ND 20 3.5 ug/l Dimethyl phthalate ND 10 2.0 ug/l	Dibenzofuran	ND	10	4.0	ug/l							
1,4-Dichlorobenzene ND 10 2.5 ug/l 1,2-Dichlorobenzene ND 10 3.0 ug/l 3,3-Dichlorobenzidine ND 20 3.0 ug/l 2,4-Dichlorophenol ND 10 3.5 ug/l Diethyl phthalate ND 10 3.5 ug/l 2,4-Dimethylphenol ND 20 3.5 ug/l Dimethyl phthalate ND 10 2.0 ug/l	Di-n-butyl phthalate	ND	20	3.0	ug/l							
1,2-Dichlorobenzene ND 10 3.0 ug/l 3,3-Dichlorobenzidine ND 20 3.0 ug/l 2,4-Dichlorophenol ND 10 3.5 ug/l Diethyl phthalate ND 10 3.5 ug/l 2,4-Dimethylphenol ND 20 3.5 ug/l Dimethyl phthalate ND 10 2.0 ug/l	1,3-Dichlorobenzene	ND	10	3.0	ug/l							
3,3-Dichlorobenzidine ND 20 3.0 ug/l 2,4-Dichlorophenol ND 10 3.5 ug/l Diethyl phthalate ND 10 3.5 ug/l 2,4-Dimethylphenol ND 20 3.5 ug/l Dimethyl phthalate ND 10 2.0 ug/l	1,4-Dichlorobenzene	ND	10	2.5	ug/l							
2,4-Dichlorophenol ND 10 3.5 ug/l Diethyl phthalate ND 10 3.5 ug/l 2,4-Dimethylphenol ND 20 3.5 ug/l Dimethyl phthalate ND 10 2.0 ug/l	1,2-Dichlorobenzene	ND	10	3.0	ug/l							
Diethyl phthalate ND 10 3.5 ug/l 2,4-Dimethyl phthalate ND 20 3.5 ug/l Dimethyl phthalate ND 10 2.0 ug/l	3,3-Dichlorobenzidine	ND	20	3.0	ug/l							
2,4-Dimethylphenol ND 20 3.5 ug/l Dimethyl phthalate ND 10 2.0 ug/l	2,4-Dichlorophenol	ND	10	3.5	ug/l							
Dimethyl phthalate ND 10 2.0 ug/l				3.5	ug/l							
	2,4-Dimethylphenol		20	3.5	ug/l							
	Dimethyl phthalate	ND	10	2.0	ug/l							
	m											

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 008

Sampled: 02/03/08

Report Number: IRB0151

Received: 02/03/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04111 Extracted: 02/04/0	8										
Blank Analyzed: 02/07/2008 (8B04111-I	BLK1)										
4,6-Dinitro-2-methylphenol	ND	20	4.0	ug/l							
2,4-Dinitrophenol	ND	20	8.0	ug/l							
2,4-Dinitrotoluene	ND	10	3.5	ug/l							
2,6-Dinitrotoluene	ND	10	2.0	ug/l							
Di-n-octyl phthalate	ND	20	3.5	ug/l							
Fluoranthene	ND	10	3.0	ug/l							
Fluorene	ND	10	3.0	ug/l							
Hexachlorobenzene	ND	10	3.0	ug/l							
Hexachlorobutadiene	ND	10	4.0	ug/l							
Hexachlorocyclopentadiene	ND	20	5.0	ug/l							
Hexachloroethane	ND	10	3.5	ug/l							
Indeno(1,2,3-cd)pyrene	ND	20	3.5	ug/l							
Isophorone	ND	10	2.5	ug/l							
2-Methylnaphthalene	ND	10	2.0	ug/l							
2-Methylphenol	ND	10	3.0	ug/l							
4-Methylphenol	ND	10	3.0	ug/l							
Naphthalene	ND	10	3.0	ug/l							
2-Nitroaniline	ND	20	2.0	ug/l							
3-Nitroaniline	ND	20	3.0	ug/l							
4-Nitroaniline	ND	20	4.0	ug/l							
Nitrobenzene	ND	20	2.5	ug/l							
2-Nitrophenol	ND	10	3.5	ug/l							
4-Nitrophenol	ND	20	5.5	ug/l							
N-Nitrosodiphenylamine	ND	10	2.0	ug/l							
N-Nitroso-di-n-propylamine	ND	10	3.5	ug/l							
Pentachlorophenol	ND	20	3.5	ug/l							
Phenanthrene	ND	10	3.5	ug/l							
Phenol	ND	10	2.0	ug/l							
Pyrene	ND	10	4.0	ug/l							
1,2,4-Trichlorobenzene	ND	10	2.5	ug/l							
2,4,5-Trichlorophenol	ND	20	3.0	ug/l							
2,4,6-Trichlorophenol	ND	20	4.5	ug/l							
1,2-Diphenylhydrazine/Azobenzene	ND	20	2.5	ug/l							
N-Nitrosodimethylamine	ND	20	2.5	ug/l							
Surrogate: 2-Fluorophenol	159			ug/l	200		80	30-120			

TestAmerica Irvine

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 008

Report Number: IRB0151

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04111 Extracted: 02/04	/08										
Blank Analyzed: 02/07/2008 (8B04111	1-BLK1)										
Surrogate: Phenol-d6	166			ug/l	200		83	35-120			
Surrogate: 2,4,6-Tribromophenol	129			ug/l	200		64	40-120			
Surrogate: Nitrobenzene-d5	83.8			ug/l	100		84	45-120			
Surrogate: 2-Fluorobiphenyl	82.4			ug/l	100		82	50-120			
Surrogate: Terphenyl-d14	82.8			ug/l	100		83	50-125			
LCS Analyzed: 02/07/2008 (8B04111-	BS1)										
Acenaphthene	92.8	10	3.0	ug/l	100		93	60-120			
Acenaphthylene	97.0	10	3.0	ug/l	100		97	60-120			
Aniline	86.7	10	2.5	ug/l	100		87	35-120			
Anthracene	91.1	10	2.0	ug/l	100		91	65-120			
Benzidine	161	20	8.5	ug/l	100		161	30-160			L6
Benzoic acid	74.5	20	10	ug/l	100		74	25-120			
Benzo(a)anthracene	95.9	10	2.0	ug/l	100		96	65-120			
Benzo(b)fluoranthene	87.2	10	2.0	ug/l	100		87	55-125			
Benzo(k)fluoranthene	88.9	10	2.5	ug/l	100		89	50-125			
Benzo(g,h,i)perylene	83.0	10	4.0	ug/l	100		83	45-135			
Benzo(a)pyrene	91.9	10	2.0	ug/l	100		92	55-130			
Benzyl alcohol	99.9	20	2.5	ug/l	100		100	50-120			
Bis(2-chloroethoxy)methane	92.9	10	3.0	ug/l	100		93	55-120			
Bis(2-chloroethyl)ether	86.4	10	3.0	ug/l	100		86	50-120			
Bis(2-chloroisopropyl)ether	98.4	10	2.5	ug/l	100		98	45-120			
Bis(2-ethylhexyl)phthalate	99.9	50	4.0	ug/l	100		100	65-130			
4-Bromophenyl phenyl ether	86.0	10	3.0	ug/l	100		86	60-120			
Butyl benzyl phthalate	104	20	4.0	ug/l	100		104	55-130			
4-Chloroaniline	95.8	10	2.0	ug/l	100		96	55-120			
2-Chloronaphthalene	91.9	10	3.0	ug/l	100		92	60-120			
4-Chloro-3-methylphenol	97.9	20	2.5	ug/l	100		98	60-120			
2-Chlorophenol	86.3	10	3.0	ug/l	100		86	45-120			
4-Chlorophenyl phenyl ether	89.9	10	2.5	ug/l	100		90	65-120			
Chrysene	92.3	10	2.5	ug/l	100		92	65-120			
Dibenz(a,h)anthracene	84.8	20	3.0	ug/l	100		85	50-135			
Dibenzofuran	93.2	10	4.0	ug/l	100		93	65-120			
Di-n-butyl phthalate	85.8	20	3.0	ug/l	100		86	60-125			
1,3-Dichlorobenzene	74.9	10	3.0	ug/l	100		75	35-120			
1,4-Dichlorobenzene	79.8	10	2.5	ug/l	100		80	35-120			

TestAmerica Irvine

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 008

Report Number: IRB0151

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04111 Extracted: 02/04/0	18										
LCS Analyzed: 02/07/2008 (8B04111-B	S1)										
1,2-Dichlorobenzene	80.6	10	3.0	ug/l	100		81	40-120			
3,3-Dichlorobenzidine	84.1	20	3.0	ug/l	100		84	45-135			
2,4-Dichlorophenol	91.0	10	3.5	ug/l	100		91	55-120			
Diethyl phthalate	92.2	10	3.5	ug/l	100		92	55-120			
2,4-Dimethylphenol	80.5	20	3.5	ug/l	100		81	40-120			
Dimethyl phthalate	89.5	10	2.0	ug/l	100		90	30-120			
4,6-Dinitro-2-methylphenol	85.8	20	4.0	ug/l	100		86	45-120			
2,4-Dinitrophenol	94.2	20	8.0	ug/l	100		94	40-120			
2,4-Dinitrotoluene	101	10	3.5	ug/l	100		101	65-120			
2,6-Dinitrotoluene	98.1	10	2.0	ug/l	100		98	65-120			
Di-n-octyl phthalate	89.3	20	3.5	ug/l	100		89	65-135			
Fluoranthene	82.3	10	3.0	ug/l	100		82	60-120			
Fluorene	95.6	10	3.0	ug/l	100		96	65-120			
Hexachlorobenzene	80.7	10	3.0	ug/l	100		81	60-120			
Hexachlorobutadiene	76.8	10	4.0	ug/l	100		77	40-120			
Hexachlorocyclopentadiene	105	20	5.0	ug/l	100		105	25-120			
Hexachloroethane	76.5	10	3.5	ug/l	100		77	35-120			
Indeno(1,2,3-cd)pyrene	85.2	20	3.5	ug/l	100		85	45-135			
Isophorone	93.8	10	2.5	ug/l	100		94	50-120			
2-Methylnaphthalene	91.2	10	2.0	ug/l	100		91	55-120			
2-Methylphenol	90.9	10	3.0	ug/l	100		91	50-120			
4-Methylphenol	90.3	10	3.0	ug/l	100		90	50-120			
Naphthalene	87.4	10	3.0	ug/l	100		87	55-120			
2-Nitroaniline	105	20	2.0	ug/l	100		105	65-120			
3-Nitroaniline	97.2	20	3.0	ug/l	100		97	60-120			
4-Nitroaniline	99.5	20	4.0	ug/l	100		99	55-125			
Nitrobenzene	93.5	20	2.5	ug/l	100		94	55-120			
2-Nitrophenol	90.9	10	3.5	ug/l	100		91	50-120			
4-Nitrophenol	90.3	20	5.5	ug/l	100		90	45-120			
N-Nitrosodiphenylamine	94.4	10	2.0	ug/l	100		94	60-120			
N-Nitroso-di-n-propylamine	94.6	10	3.5	ug/l	100		95	45-120			
Pentachlorophenol	76.0	20	3.5	ug/l	100		76	50-120			
Phenanthrene	87.8	10	3.5	ug/l	100		88	65-120			
Phenol	84.3	10	2.0	ug/l	100		84	40-120			
Pyrene	112	10	4.0	ug/l	100		112	55-125			

TestAmerica Irvine

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 008

Troject ID. 7 militar Outlan 000

Report Number: IRB0151

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

A I d.	D14	Reporting Limit	MDI	TI	Spike	Source	0/DEC	%REC	DDD	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04111 Extracted: 02/04/0	8										
I GG 1	G4)										
LCS Analyzed: 02/07/2008 (8B04111-B											
1,2,4-Trichlorobenzene	82.1	10	2.5	ug/l	100		82	45-120			
2,4,5-Trichlorophenol	94.0	20	3.0	ug/l	100		94	55-120			
2,4,6-Trichlorophenol	91.5	20	4.5	ug/l	100		92	55-120			
1,2-Diphenylhydrazine/Azobenzene	97.8	20	2.5	ug/l	100		98	60-120			
N-Nitrosodimethylamine	98.9	20	2.5	ug/l	100		99	45-120			
Surrogate: 2-Fluorophenol	167			ug/l	200		83	30-120			
Surrogate: Phenol-d6	171			ug/l	200		86	35-120			
Surrogate: 2,4,6-Tribromophenol	153			ug/l	200		77	40-120			
Surrogate: Nitrobenzene-d5	89.0			ug/l	100		89	45-120			
Surrogate: 2-Fluorobiphenyl	87.6			ug/l	100		88	50-120			
Surrogate: Terphenyl-d14	100			ug/l	100		100	50-125			
Matrix Spike Analyzed: 02/07/2008 (8B	304111-MS1)				Sou	rce: IRA	3018-06				
Acenaphthene	93.7	48	14	ug/l	95.2	ND	98	60-120			
Acenaphthylene	40.8	48	14	ug/l	95.2	ND	43	60-120			M2, J
Aniline	53.5	48	12	ug/l	95.2	ND	56	35-120			
Anthracene	84.9	48	9.5	ug/l	95.2	ND	89	65-120			
Benzidine	ND	95	40	ug/l	95.2	ND		30-160			M2
Benzoic acid	107	95	48	ug/l	95.2	ND	112	25-125			
Benzo(a)anthracene	89.0	48	9.5	ug/l	95.2	ND	94	65-120			
Benzo(b)fluoranthene	83.0	48	9.5	ug/l	95.2	ND	87	55-125			
Benzo(k)fluoranthene	95.6	48	12	ug/l	95.2	ND	100	55-125			
Benzo(g,h,i)perylene	68.7	48	19	ug/l	95.2	ND	72	45-135			
Benzo(a)pyrene	90.1	48	9.5	ug/l	95.2	ND	95	55-130			
Benzyl alcohol	34.9	95	12	ug/l	95.2	ND	37	40-120			M2, J
Bis(2-chloroethoxy)methane	76.3	48	14	ug/l	95.2	ND	80	50-120			
Bis(2-chloroethyl)ether	106	48	14	ug/l	95.2	ND	112	50-120			
Bis(2-chloroisopropyl)ether	86.9	48	12	ug/l	95.2	ND	91	45-120			
Bis(2-ethylhexyl)phthalate	91.0	240	19	ug/l	95.2	ND	96	65-130			J
4-Bromophenyl phenyl ether	75.0	48	14	ug/l	95.2	ND	79	60-120			
Butyl benzyl phthalate	92.6	95	19	ug/l	95.2	ND	97	55-130			J
4-Chloroaniline	19.6	48	9.5	ug/l	95.2	ND	21	55-120			M2, J
2-Chloronaphthalene	83.3	48	14	ug/l	95.2	ND	87	60-120			
4-Chloro-3-methylphenol	84.0	95	12	ug/l	95.2	ND	88	60-120			J
2-Chlorophenol	77.2	48	14	ug/l	95.2	ND	81	45-120			
4-Chlorophenyl phenyl ether	92.5	48	12	ug/l	95.2	ND	97	65-120			
				-							

TestAmerica Irvine

%REC

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 008

Sampled: 02/03/08

Source

Report Number: IRB0151

Reporting

Received: 02/03/08

RPD

Data

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Spike

		Keporting			Spike	Source		OKEC		KI D	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04111 Extracted: 02	/04/08										
Matrix Spike Analyzed: 02/07/200	8 (8B04111-MS1)				Sou	rce: IRA	3018-06				
Chrysene	85.3	48	12	ug/l	95.2	ND	90	65-120			
Dibenz(a,h)anthracene	71.9	95	14	ug/l	95.2	ND	76	45-135			J
Dibenzofuran	89.2	48	19	ug/l	95.2	ND	94	65-120			
Di-n-butyl phthalate	80.5	95	14	ug/l	95.2	ND	84	60-125			J
1,3-Dichlorobenzene	71.9	48	14	ug/l	95.2	ND	76	35-120			
1,4-Dichlorobenzene	181	48	12	ug/l	95.2	ND	190	35-120			M1
1,2-Dichlorobenzene	139	48	14	ug/l	95.2	65.3	78	40-120			
3,3-Dichlorobenzidine	ND	95	14	ug/l	95.2	ND		45-135			M2
2,4-Dichlorophenol	81.7	48	17	ug/l	95.2	ND	86	55-120			
Diethyl phthalate	89.8	48	17	ug/l	95.2	ND	94	55-120			
2,4-Dimethylphenol	83.3	95	17	ug/l	95.2	ND	87	40-120			J
Dimethyl phthalate	93.8	48	9.5	ug/l	95.2	ND	98	30-120			
4,6-Dinitro-2-methylphenol	121	95	19	ug/l	95.2	ND	128	45-120			MI
2,4-Dinitrophenol	112	95	38	ug/l	95.2	ND	118	40-120			
2,4-Dinitrotoluene	81.5	48	17	ug/l	95.2	ND	86	65-120			
2,6-Dinitrotoluene	81.5	48	9.5	ug/l	95.2	ND	86	65-120			
Di-n-octyl phthalate	87.2	95	17	ug/l	95.2	ND	92	65-135			J
Fluoranthene	82.8	48	14	ug/l	95.2	ND	87	60-120			
Fluorene	93.2	48	14	ug/l	95.2	ND	98	65-120			
Hexachlorobenzene	70.5	48	14	ug/l	95.2	ND	74	60-120			
Hexachlorobutadiene	73.3	48	19	ug/l	95.2	ND	77	40-120			
Hexachlorocyclopentadiene	67.8	95	24	ug/l	95.2	ND	71	25-120			J
Hexachloroethane	68.9	48	17	ug/l	95.2	ND	72	35-120			
Indeno(1,2,3-cd)pyrene	71.6	95	17	ug/l	95.2	ND	75	40-135			J
Isophorone	49.0	48	12	ug/l	95.2	ND	52	50-120			
2-Methylnaphthalene	86.2	48	9.5	ug/l	95.2	ND	90	55-120			
2-Methylphenol	84.3	48	14	ug/l	95.2	ND	88	50-120			
4-Methylphenol	75.9	48	14	ug/l	95.2	ND	80	50-120			
Naphthalene	82.8	48	14	ug/l	95.2	ND	87	55-120			
2-Nitroaniline	91.7	95	9.5	ug/l	95.2	ND	96	65-120			J
3-Nitroaniline	27.3	95	14	ug/l	95.2	ND	29	60-120			M2, J
4-Nitroaniline	51.6	95	19	ug/l	95.2	ND	54	55-125			M2, J
Nitrobenzene	80.4	95	12	ug/l	95.2	ND	84	55-120			J
2-Nitrophenol	75.0	48	17	ug/l	95.2	ND	79	50-120			
4-Nitrophenol	110	95	26	ug/l	95.2	ND	115	45-120			

TestAmerica Irvine

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 008

Sampled: 02/03/08

Report Number: IRB0151

Received: 02/03/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source	%REC	%REC	RPD	RPD Limit	Data Oualifiers
•		Lillit	MIDL	Units	Levei	Result	70KEC	Lillits	KID	Lillit	Quanners
Batch: 8B04111 Extracted: 02/04/0	<u>8</u>										
Matrix Spike Analyzed: 02/07/2008 (8B	04111 MS1)				Son	ırce: IRA	3018 OC				
N-Nitrosodiphenylamine	78.2	48	9.5	a/l	95.2		82	60-120			
N-Nitroso-di-n-propylamine	ND	48	9.5 17	ug/l ug/l	95.2	ND ND	02	45-120			M2
Pentachlorophenol	81.0	95	17	ug/l ug/l	95.2	ND ND	85	50-120			J
Phenanthrene	84.2	48	17	ug/l ug/l	95.2	ND ND	88	65-120			J
Phenol	79.1	48	9.5	ug/l	95.2	ND ND	83	40-120			
Pyrene	100	48	19	ug/l	95.2	ND ND	105	55-125			
1,2,4-Trichlorobenzene	197	48	12	ug/l	95.2	130	71	45-120			
2,4,5-Trichlorophenol	88.3	95	14	ug/l	95.2	ND	93	55-120			J
2,4,6-Trichlorophenol	88.8	95	21	ug/l	95.2	ND ND	93	55-120			J
1,2-Diphenylhydrazine/Azobenzene	ND	95	12	ug/l	95.2	ND	75	60-120			<i>M</i> 2
N-Nitrosodimethylamine	ND	95	12	ug/l	95.2	ND ND		45-120			M2 M2
Surrogate: 2-Fluorophenol	148	75	12	ug/l ug/l	190	ND	77	30-120			1712
Surrogate: Phenol-d6	150			ug/l ug/l	190		78	35-120 35-120			
Surrogate: 2,4,6-Tribromophenol	147			ug/l	190		77	40-120			
Surrogate: Nitrobenzene-d5	74.0			ug/l	95.2		78	45-120			
Surrogate: 2-Fluorobiphenyl	80.5			ug/l	95.2		84	50-120			
Surrogate: Terphenyl-d14	92.3			ug/l	95.2		97	50-125			
				**8/*				00120			
Matrix Spike Dup Analyzed: 02/07/2008	`	,				rce: IRA	3018-06				
Acenaphthene	91.1	48	14	ug/l	95.2	ND	96	60-120	3	25	
Acenaphthylene	53.7	48	14	ug/l	95.2	ND	56	60-120	27	25	M2, R-3
Aniline	49.4	48	12	ug/l	95.2	ND	52	35-120	8	30	
Anthracene	82.0	48	9.5	ug/l	95.2	ND	86	65-120	3	25	
Benzidine	ND	95	40	ug/l	95.2	ND		30-160		35	M2
Benzoic acid	104	95	48	ug/l	95.2	ND	110	25-125	3	30	
Benzo(a)anthracene	83.4	48	9.5	ug/l	95.2	ND	88	65-120	7	20	
Benzo(b)fluoranthene	79.0	48	9.5	ug/l	95.2	ND	83	55-125	5	25	
Benzo(k)fluoranthene	87.0	48	12	ug/l	95.2	ND	91	55-125	9	30	
Benzo(g,h,i)perylene	65.9	48	19	ug/l	95.2	ND	69	45-135	4	30	
Benzo(a)pyrene	85.2	48	9.5	ug/l	95.2	ND	90	55-130	6	25	
Benzyl alcohol	36.6	95	12	ug/l	95.2	ND	38	40-120	5	30	M2, J
Bis(2-chloroethoxy)methane	70.4	48	14	ug/l	95.2	ND	74	50-120	8	25	
Bis(2-chloroethyl)ether	68.1	48	14	ug/l	95.2	ND	72	50-120	44	25	R
Bis(2-chloroisopropyl)ether	83.1	48	12	ug/l	95.2	ND	87	45-120	4	25	
Bis(2-ethylhexyl)phthalate	86.8	240	19	ug/l	95.2	ND	91	65-130	5	25	J
4-Bromophenyl phenyl ether	69.8	48	14	ug/l	95.2	ND	73	60-120	7	25	

TestAmerica Irvine

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 008

Sampled: 02/03/08

%REC

RPD

Data

Report Number: IRB0151 Received: 02/03/08

Source

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Spike

Reporting

Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04111 Extracted: 02	2/04/08										
Matrix Spike Dup Analyzed: 02/0	07/2008 (8B04111-M	ISD1)			Sou	rce: IRA	3018-06				
Butyl benzyl phthalate	90.5	95	19	ug/l	95.2	ND	95	55-130	2	25	J
4-Chloroaniline	39.1	48	9.5	ug/l	95.2	ND	41	55-120	66	25	M2, R-3, J
2-Chloronaphthalene	78.2	48	14	ug/l	95.2	ND	82	60-120	6	20	
4-Chloro-3-methylphenol	82.4	95	12	ug/l	95.2	ND	86	60-120	2	25	J
2-Chlorophenol	69.2	48	14	ug/l	95.2	ND	73	45-120	11	25	
4-Chlorophenyl phenyl ether	84.3	48	12	ug/l	95.2	ND	88	65-120	9	25	
Chrysene	83.3	48	12	ug/l	95.2	ND	87	65-120	2	25	
Dibenz(a,h)anthracene	69.2	95	14	ug/l	95.2	ND	73	45-135	4	30	J
Dibenzofuran	82.9	48	19	ug/l	95.2	ND	87	65-120	7	25	
Di-n-butyl phthalate	77.4	95	14	ug/l	95.2	ND	81	60-125	4	25	J
1,3-Dichlorobenzene	64.5	48	14	ug/l	95.2	ND	68	35-120	11	25	
1,4-Dichlorobenzene	168	48	12	ug/l	95.2	ND	177	35-120	7	25	M1
1,2-Dichlorobenzene	123	48	14	ug/l	95.2	65.3	61	40-120	12	25	
3,3-Dichlorobenzidine	ND	95	14	ug/l	95.2	ND		45-135		25	M2
2,4-Dichlorophenol	76.4	48	17	ug/l	95.2	ND	80	55-120	7	25	
Diethyl phthalate	85.0	48	17	ug/l	95.2	ND	89	55-120	6	30	
2,4-Dimethylphenol	75.8	95	17	ug/l	95.2	ND	80	40-120	9	25	J
Dimethyl phthalate	87.5	48	9.5	ug/l	95.2	ND	92	30-120	7	30	
4,6-Dinitro-2-methylphenol	112	95	19	ug/l	95.2	ND	118	45-120	8	25	
2,4-Dinitrophenol	91.4	95	38	ug/l	95.2	ND	96	40-120	20	25	J
2,4-Dinitrotoluene	69.1	48	17	ug/l	95.2	ND	73	65-120	16	25	
2,6-Dinitrotoluene	77.2	48	9.5	ug/l	95.2	ND	81	65-120	5	20	
Di-n-octyl phthalate	81.3	95	17	ug/l	95.2	ND	85	65-135	7	20	J
Fluoranthene	79.0	48	14	ug/l	95.2	ND	83	60-120	5	25	
Fluorene	88.1	48	14	ug/l	95.2	ND	92	65-120	6	25	
Hexachlorobenzene	69.5	48	14	ug/l	95.2	ND	73	60-120	1	25	
Hexachlorobutadiene	66.5	48	19	ug/l	95.2	ND	70	40-120	10	25	
Hexachlorocyclopentadiene	41.9	95	24	ug/l	95.2	ND	44	25-120	47	30	R, J
Hexachloroethane	58.5	48	17	ug/l	95.2	ND	61	35-120	16	25	
Indeno(1,2,3-cd)pyrene	67.4	95	17	ug/l	95.2	ND	71	40-135	6	30	J
Isophorone	50.0	48	12	ug/l	95.2	ND	52	50-120	2	25	
2-Methylnaphthalene	79.4	48	9.5	ug/l	95.2	ND	83	55-120	8	20	
2-Methylphenol	73.3	48	14	ug/l	95.2	ND	77	50-120	14	25	
4-Methylphenol	70.0	48	14	ug/l	95.2	ND	74	50-120	8	25	
Naphthalene	82.0	48	14	ug/l	95.2	ND	86	55-120	1	25	

TestAmerica Irvine

....

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 008

Report Number: IRB0151

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04111 Extracted: 02/04/0)8										
Matrix Spike Dup Analyzed: 02/07/200	8 (8B04111-M	(SD1)			Sou	rce: IRA	3018-06				
2-Nitroaniline	85.6	95	9.5	ug/l	95.2	ND	90	65-120	7	25	J
3-Nitroaniline	18.4	95	14	ug/l	95.2	ND	19	60-120	39	25	M2, R-3, J
4-Nitroaniline	31.6	95	19	ug/l	95.2	ND	33	55-125	48	25	M2, R-3, J
Nitrobenzene	80.5	95	12	ug/l	95.2	ND	84	55-120	0	25	J
2-Nitrophenol	72.8	48	17	ug/l	95.2	ND	76	50-120	3	25	
4-Nitrophenol	134	95	26	ug/l	95.2	ND	141	45-120	20	30	M1
N-Nitrosodiphenylamine	60.8	48	9.5	ug/l	95.2	ND	64	60-120	25	25	
N-Nitroso-di-n-propylamine	ND	48	17	ug/l	95.2	ND		45-120		25	M2
Pentachlorophenol	76.7	95	17	ug/l	95.2	ND	80	50-120	5	25	J
Phenanthrene	79.1	48	17	ug/l	95.2	ND	83	65-120	6	25	
Phenol	69.3	48	9.5	ug/l	95.2	ND	73	40-120	13	25	
Pyrene	96.9	48	19	ug/l	95.2	ND	102	55-125	3	25	
1,2,4-Trichlorobenzene	182	48	12	ug/l	95.2	130	55	45-120	8	20	
2,4,5-Trichlorophenol	75.5	95	14	ug/l	95.2	ND	79	55-120	16	30	J
2,4,6-Trichlorophenol	80.5	95	21	ug/l	95.2	ND	84	55-120	10	30	J
1,2-Diphenylhydrazine/Azobenzene	ND	95	12	ug/l	95.2	ND		60-120		25	M2
N-Nitrosodimethylamine	ND	95	12	ug/l	95.2	ND		45-120		25	M2
Surrogate: 2-Fluorophenol	138			ug/l	190		72	30-120			
Surrogate: Phenol-d6	132			ug/l	190		70	35-120			
Surrogate: 2,4,6-Tribromophenol	134			ug/l	190		70	40-120			
Surrogate: Nitrobenzene-d5	72.5			ug/l	95.2		76	45-120			
Surrogate: 2-Fluorobiphenyl	77.3			ug/l	95.2		81	50-120			
Surrogate: Terphenyl-d14	86.6			ug/l	95.2		91	50-125			

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 008

Sampled: 02/03/08 Received: 02/03/08

Report Number: IRB0151

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Oualifiers
·		Limit	WIDE	Onits	Level	resure	/UKLC	Limits	III D	Limit	Quantiers
Batch: 8B05099 Extracted: 02/05/0	<u>8</u>										
Blank Analyzed: 02/06/2008 (8B05099-1	BLK1)										
Aldrin	ND	0.0050	0.0015	ug/l							
alpha-BHC	ND	0.0050	0.0025	ug/l							
beta-BHC	ND	0.010	0.0040	ug/l							
delta-BHC	ND	0.0050	0.0035	ug/l							
gamma-BHC (Lindane)	ND	0.010	0.0030	ug/l							
Chlordane	ND	0.10	0.030	ug/l							
4,4'-DDD	ND	0.0050	0.0020	ug/l							
4,4'-DDE	ND	0.0050	0.0030	ug/l							
4,4'-DDT	ND	0.010	0.0040	ug/l							
Dieldrin	ND	0.0050	0.0020	ug/l							
Endosulfan I	ND	0.0050	0.0020	ug/l							
Endosulfan II	ND	0.0050	0.0030	ug/l							
Endosulfan sulfate	ND	0.010	0.0030	ug/l							
Endrin	ND	0.0050	0.0020	ug/l							
Endrin aldehyde	ND	0.010	0.0020	ug/l							
Endrin ketone	ND	0.010	0.0030	ug/l							
Heptachlor	ND	0.010	0.0030	ug/l							
Heptachlor epoxide	ND	0.0050	0.0025	ug/l							
Methoxychlor	ND	0.0050	0.0035	ug/l							
Toxaphene	ND	0.10	0.070	ug/l							
Surrogate: Decachlorobiphenyl	0.419			ug/l	0.500		84	45-120			
Surrogate: Tetrachloro-m-xylene	0.419			ug/l	0.500		84	35-115			
LCS Analyzed: 02/07/2008 (8B05099-B	S1)										MNR1
Aldrin	0.417	0.0050	0.0015	ug/l	0.500		83	40-115			
alpha-BHC	0.404	0.0050	0.0025	ug/l	0.500		81	45-115			
beta-BHC	0.419	0.010	0.0040	ug/l	0.500		84	55-115			
delta-BHC	0.453	0.0050	0.0035	ug/l	0.500		91	55-115			
gamma-BHC (Lindane)	0.433	0.010	0.0030	ug/l	0.500		87	45-115			
4,4'-DDD	0.496	0.0050	0.0020	ug/l	0.500		99	55-120			
4,4'-DDE	0.488	0.0050	0.0030	ug/l	0.500		98	50-120			
4,4'-DDT	0.491	0.010	0.0040	ug/l	0.500		98	55-120			
Dieldrin	0.455	0.0050	0.0020	ug/l	0.500		91	55-115			
Endosulfan I	0.464	0.0050	0.0020	ug/l	0.500		93	55-115			
Endosulfan II	0.439	0.0050	0.0030	ug/l	0.500		88	55-120			
Endosulfan sulfate	0.506	0.010	0.0030	ug/l	0.500		101	60-120			
TestAmerica Irvine				-							

TestAmerica Irvine

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 008

Sampled: 02/03/08

Report Number: IRB0151

Received: 02/03/08

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B05099 Extracted: 02/05/08	}										
	_										
LCS Analyzed: 02/07/2008 (8B05099-BS	1)										MNR1
Endrin	0.511	0.0050	0.0020	ug/l	0.500		102	55-115			
Endrin aldehyde	0.483	0.010	0.0020	ug/l	0.500		97	50-120			
Endrin ketone	0.520	0.010	0.0030	ug/l	0.500		104	55-120			
Heptachlor	0.406	0.010	0.0030	ug/l	0.500		81	45-115			
Heptachlor epoxide	0.442	0.0050	0.0025	ug/l	0.500		88	55-115			
Methoxychlor	0.508	0.0050	0.0035	ug/l	0.500		102	60-120			
Surrogate: Decachlorobiphenyl	0.436			ug/l	0.500		87	45-120			
Surrogate: Tetrachloro-m-xylene	0.414			ug/l	0.500		83	35-115			
LCS Dup Analyzed: 02/07/2008 (8B0509	9-BSD1)										
Aldrin	0.381	0.0050	0.0015	ug/l	0.500		76	40-115	9	30	
alpha-BHC	0.386	0.0050	0.0025	ug/l	0.500		77	45-115	5	30	
beta-BHC	0.398	0.010	0.0040	ug/l	0.500		80	55-115	5	30	
delta-BHC	0.409	0.0050	0.0035	ug/l	0.500		82	55-115	10	30	
gamma-BHC (Lindane)	0.408	0.010	0.0030	ug/l	0.500		82	45-115	6	30	
4,4'-DDD	0.455	0.0050	0.0020	ug/l	0.500		91	55-120	9	30	
4,4'-DDE	0.444	0.0050	0.0030	ug/l	0.500		89	50-120	9	30	
4,4'-DDT	0.451	0.010	0.0040	ug/l	0.500		90	55-120	9	30	
Dieldrin	0.421	0.0050	0.0020	ug/l	0.500		84	55-115	8	30	
Endosulfan I	0.430	0.0050	0.0020	ug/l	0.500		86	55-115	8	30	
Endosulfan II	0.406	0.0050	0.0030	ug/l	0.500		81	55-120	8	30	
Endosulfan sulfate	0.463	0.010	0.0030	ug/l	0.500		93	60-120	9	30	
Endrin	0.471	0.0050	0.0020	ug/l	0.500		94	55-115	8	30	
Endrin aldehyde	0.442	0.010	0.0020	ug/l	0.500		88	50-120	9	30	
Endrin ketone	0.477	0.010	0.0030	ug/l	0.500		95	55-120	8	30	
Heptachlor	0.373	0.010	0.0030	ug/l	0.500		75	45-115	8	30	
Heptachlor epoxide	0.410	0.0050	0.0025	ug/l	0.500		82	55-115	8	30	
Methoxychlor	0.458	0.0050	0.0035	ug/l	0.500		92	60-120	11	30	
Surrogate: Decachlorobiphenyl	0.403			ug/l	0.500		81	45-120			
Surrogate: Tetrachloro-m-xylene	0.382			ug/l	0.500		76	35-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 008

Sampled: 02/03/08

Report Number: IRB0151 Received: 02/03/08

METHOD BLANK/QC DATA

TOTAL PCBS (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B05099 Extracted: 02/05/08	<u> </u>										
Blank Analyzed: 02/06/2008 (8B05099-B	LK1)										
Aroclor 1016	ND	0.50	0.45	ug/l							
Aroclor 1221	ND	0.50	0.25	ug/l							
Aroclor 1232	ND	0.50	0.25	ug/l							
Aroclor 1242	ND	0.50	0.25	ug/l							
Aroclor 1248	ND	0.50	0.25	ug/l							
Aroclor 1254	ND	0.50	0.25	ug/l							
Aroclor 1260	ND	0.50	0.30	ug/l							
Surrogate: Decachlorobiphenyl	0.420			ug/l	0.500		84	45-120			
LCS Analyzed: 02/06/2008 (8B05099-BS	2)										MNR1
Aroclor 1016	3.28	0.50	0.45	ug/l	4.00		82	50-115			
Aroclor 1260	3.60	0.50	0.30	ug/l	4.00		90	60-120			
Surrogate: Decachlorobiphenyl	0.440			ug/l	0.500		88	45-120			
LCS Dup Analyzed: 02/06/2008 (8B0509	9-BSD2)										
Aroclor 1016	3.13	0.50	0.45	ug/l	4.00		78	50-115	5	30	
Aroclor 1260	3.56	0.50	0.30	ug/l	4.00		89	60-120	1	25	
Surrogate: Decachlorobiphenyl	0.435			ug/l	0.500		87	45-120			

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 008

Sampled: 02/03/08

Report Number: IRB0151

Received: 02/03/08

METHOD BLANK/QC DATA

METALS

Analyte Result Limit MDL Units Level Result %REC Limits RPD Limit	Qualifiers
Analyte Result Films Feel Result / WESC Emility Rt D Emilit	Q
Batch: 8B04079 Extracted: 02/04/08	
Blank Analyzed: 02/04/2008 (8B04079-BLK1)	
Aluminum ND 50 40 ug/l	
Arsenic ND 10 7.0 ug/l	
Beryllium ND 2.0 0.90 ug/l	
Boron ND 0.050 0.020 mg/l	
Calcium ND 0.10 0.050 mg/l	
Chromium ND 5.0 2.0 ug/l	
Iron ND 0.040 0.015 mg/l	
Magnesium ND 0.020 0.012 mg/l	
Nickel ND 10 2.0 ug/l	
Selenium ND 10 8.0 ug/l	
Silver ND 10 6.0 ug/l	
Thallium ND 10 7.0 ug/l	
Vanadium ND 10 3.0 ug/l	
Zinc ND 20 6.0 ug/l	
LCS Analyzed: 02/04/2008 (8B04079-BS1)	
Aluminum 524 50 40 ug/l 500 105 85-115	
Arsenic 504 10 7.0 ug/l 500 101 85-115	
Beryllium 510 2.0 0.90 ug/l 500 102 85-115	
Boron 0.514 0.050 0.020 mg/l 0.500 103 85-115	
Calcium 2.65 0.10 0.050 mg/l 2.50 106 85-115	
Chromium 517 5.0 2.0 ug/l 500 103 85-115	
Iron 0.529 0.040 0.015 mg/l 0.500 106 85-115	
Magnesium 2.63 0.020 0.012 mg/l 2.50 105 85-115	
Nickel 513 10 2.0 ug/l 500 103 85-115	
Selenium 492 10 8.0 ug/l 500 98 85-115	
Silver 262 10 6.0 ug/l 250 105 85-115	
Thallium 528 10 7.0 ug/l 500 106 85-115	
Vanadium 503 10 3.0 ug/l 500 101 85-115	
Zinc 507 20 6.0 ug/l 500 101 85-115	

TestAmerica Irvine

Sampled: 02/03/08

Received: 02/03/08

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 008

Report Number: IRB0151

METHOD BLANK/QC DATA

METALS

Batch: 8B04079 Extracted: 02/04/2008 (8B04079-MS1) Source: IRB0153-01 Aluminum 611 50 40 ug/l 500 94.8 103 70-130 Arsenic 496 10 7.0 ug/l 500 ND 99 70-130 Beryllium 503 2.0 0.90 ug/l 500 ND 101 70-130 Boron 0.503 0.050 0.020 mg/l 0.500 ND 101 70-130 Calcium 53.7 0.10 0.050 mg/l 2.50 52.8 38 70-130 MHA Chromium 502 5.0 2.0 ug/l 500 2.15 100 70-130			Reporting			Spike	Source		%REC		RPD	Data
Matrix Spike Analyzed: 02/04/2008 (8B04079-MS1) Source: IRB0153-01 Aluminum 611 50 40 ug/l 500 94.8 103 70-130 Arsenic 496 10 7.0 ug/l 500 ND 99 70-130 Beryllium 503 2.0 0.90 ug/l 500 ND 101 70-130 Boron 0.503 0.050 0.020 mg/l 0.500 ND 101 70-130 Calcium 53.7 0.10 0.050 mg/l 2.50 52.8 38 70-130 MHA Chromium 502 5.0 2.0 ug/l 500 2.15 100 70-130	Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Matrix Spike Analyzed: 02/04/2008 (8B04079-MS1) Source: IRB0153-01 Aluminum 611 50 40 ug/l 500 94.8 103 70-130 Arsenic 496 10 7.0 ug/l 500 ND 99 70-130 Beryllium 503 2.0 0.90 ug/l 500 ND 101 70-130 Boron 0.503 0.050 0.020 mg/l 0.500 ND 101 70-130 Calcium 53.7 0.10 0.050 mg/l 2.50 52.8 38 70-130 MHA Chromium 502 5.0 2.0 ug/l 500 2.15 100 70-130	Batch: 8B04079 Extracted: 02/04/08	3										
Aluminum 611 50 40 ug/l 500 94.8 103 70-130 Arsenic 496 10 7.0 ug/l 500 ND 99 70-130 Beryllium 503 2.0 0.90 ug/l 500 ND 101 70-130 Boron 0.503 0.050 0.020 mg/l 0.500 ND 101 70-130 Calcium 53.7 0.10 0.050 mg/l 2.50 52.8 38 70-130 MHA Chromium 502 5.0 2.0 ug/l 500 2.15 100 70-130												
Arsenic 496 10 7.0 ug/l 500 ND 99 70-130 Beryllium 503 2.0 0.90 ug/l 500 ND 101 70-130 Boron 0.503 0.050 0.020 mg/l 0.500 ND 101 70-130 Calcium 53.7 0.10 0.050 mg/l 2.50 52.8 38 70-130 MHA Chromium 502 5.0 2.0 ug/l 500 2.15 100 70-130	Matrix Spike Analyzed: 02/04/2008 (8B0	04079-MS1)				Sou	rce: IRB(0153-01				
Beryllium 503 2.0 0.90 ug/l 500 ND 101 70-130 Boron 0.503 0.050 0.020 mg/l 0.500 ND 101 70-130 Calcium 53.7 0.10 0.050 mg/l 2.50 52.8 38 70-130 MHA Chromium 502 5.0 2.0 ug/l 500 2.15 100 70-130	Aluminum	611	50	40	ug/l	500	94.8	103	70-130			
Boron 0.503 0.050 0.020 mg/l 0.500 ND 101 70-130 Calcium 53.7 0.10 0.050 mg/l 2.50 52.8 38 70-130 MHA Chromium 502 5.0 2.0 ug/l 500 2.15 100 70-130	Arsenic	496	10	7.0	ug/l	500	ND	99	70-130			
Calcium 53.7 0.10 0.050 mg/l 2.50 52.8 38 70-130 MHA Chromium 502 5.0 2.0 ug/l 500 2.15 100 70-130	Beryllium	503	2.0	0.90	ug/l	500	ND	101	70-130			
Chromium 502 5.0 2.0 ug/l 500 2.15 100 70-130	Boron	0.503	0.050	0.020	mg/l	0.500	ND	101	70-130			
·	Calcium	53.7	0.10	0.050	mg/l	2.50	52.8	38	70-130			MHA
Iron 0.590 0.040 0.015 mg/l 0.500 0.0952 99 70-130	Chromium	502	5.0	2.0	ug/l	500	2.15	100	70-130			
**************************************	Iron	0.590	0.040	0.015	mg/l	0.500	0.0952	99	70-130			
Magnesium 9.71 0.020 0.012 mg/l 2.50 7.62 84 70-130	Magnesium	9.71	0.020	0.012	mg/l	2.50	7.62	84	70-130			
Nickel 495 10 2.0 ug/l 500 ND 99 70-130	Nickel	495	10	2.0	ug/l	500	ND	99	70-130			
Selenium 470 10 8.0 ug/l 500 ND 94 70-130	Selenium	470	10	8.0	ug/l	500	ND	94	70-130			
Silver 256 10 6.0 ug/l 250 ND 103 70-130	Silver	256	10	6.0	ug/l	250	ND	103	70-130			
Thallium 515 10 7.0 ug/l 500 ND 103 70-130	Thallium	515	10	7.0	ug/l	500	ND	103	70-130			
Vanadium 487 10 3.0 ug/l 500 ND 97 70-130	Vanadium	487	10	3.0	ug/l	500	ND	97	70-130			
Zinc 496 20 6.0 ug/l 500 9.15 97 70-130	Zinc	496	20	6.0	ug/l	500	9.15	97	70-130			
Matrix Spike Analyzed: 02/04/2008 (8B04079-MS2) Source: IRB0155-01	Matrix Spike Analyzed: 02/04/2008 (8B0	04079-MS2)				Sou	rce: IRB(0155-01				
Aluminum 1190 50 40 ug/l 500 692 100 70-130	Aluminum	1190	50	40	ug/l	500	692	100	70-130			
Arsenic 509 10 7.0 ug/l 500 ND 102 70-130	Arsenic	509	10	7.0	ug/l	500	ND	102	70-130			
Beryllium 515 2.0 0.90 ug/l 500 ND 103 70-130	Beryllium	515	2.0	0.90	ug/l	500	ND	103	70-130			
Boron 0.503 0.050 0.020 mg/l 0.500 ND 101 70-130	Boron	0.503	0.050	0.020	mg/l	0.500	ND	101	70-130			
Calcium 8.02 0.10 0.050 mg/l 2.50 5.65 95 70-130	Calcium	8.02	0.10	0.050	mg/l	2.50	5.65	95	70-130			
Chromium 522 5.0 2.0 ug/l 500 ND 104 70-130	Chromium	522	5.0	2.0	ug/l	500	ND	104	70-130			
Iron 0.872 0.040 0.015 mg/l 0.500 0.382 98 70-130	Iron	0.872	0.040	0.015	mg/l	0.500	0.382	98	70-130			
Magnesium 3.33 0.020 0.012 mg/l 2.50 0.768 102 70-130	Magnesium	3.33	0.020	0.012	mg/l	2.50	0.768	102	70-130			
Nickel 515 10 2.0 ug/l 500 ND 103 70-130	Nickel	515	10	2.0	ug/l	500	ND	103	70-130			
Selenium 487 10 8.0 ug/l 500 ND 97 70-130	Selenium	487	10	8.0	ug/l	500	ND	97	70-130			
Silver 260 10 6.0 ug/l 250 ND 104 70-130	Silver	260	10	6.0	ug/l	250	ND	104	70-130			
Thallium 528 10 7.0 ug/l 500 ND 106 70-130	Thallium	528	10	7.0	ug/l	500	ND	106	70-130			
Vanadium 501 10 3.0 ug/l 500 ND 100 70-130	Vanadium	501	10	3.0	ug/l	500	ND	100	70-130			
Zinc 538 20 6.0 ug/l 500 32.2 101 70-130	Zinc	538	20	6.0	ug/l	500	32.2	101	70-130			

TestAmerica Irvine

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 008

- ... (IDD0151

Report Number: IRB0151

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04079 Extracted: 02/04/08	_										
Matrix Spike Dup Analyzed: 02/04/2008	(8B04079-MS	SD1)			Sou	rce: IRB(153-01				
Aluminum	600	50	40	ug/l	500	94.8	101	70-130	2	20	
Arsenic	506	10	7.0	ug/l	500	ND	101	70-130	2	20	
Beryllium	516	2.0	0.90	ug/l	500	ND	103	70-130	3	20	
Boron	0.499	0.050	0.020	mg/l	0.500	ND	100	70-130	1	20	
Calcium	53.2	0.10	0.050	mg/l	2.50	52.8	19	70-130	1	20	MHA
Chromium	512	5.0	2.0	ug/l	500	2.15	102	70-130	2	20	
Iron	0.596	0.040	0.015	mg/l	0.500	0.0952	100	70-130	1	20	
Magnesium	9.64	0.020	0.012	mg/l	2.50	7.62	81	70-130	1	20	
Nickel	507	10	2.0	ug/l	500	ND	101	70-130	2	20	
Selenium	491	10	8.0	ug/l	500	ND	98	70-130	4	20	
Silver	256	10	6.0	ug/l	250	ND	102	70-130	0	20	
Thallium	520	10	7.0	ug/l	500	ND	104	70-130	1	20	
Vanadium	497	10	3.0	ug/l	500	ND	99	70-130	2	20	
Zinc	513	20	6.0	ug/l	500	9.15	101	70-130	3	20	
Batch: 8B04080 Extracted: 02/04/08	_										
Blank Analyzed: 02/04/2008-02/05/2008 (ODAAAOA DI 1	Z1)									
-	ND		0.20	/1							
Antimony Cadmium	ND ND	2.0 1.0	0.20 0.11	ug/l							
	ND ND			ug/l							
Copper		2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
LCS Analyzed: 02/04/2008-02/05/2008 (8	,										
Antimony	84.2	2.0	0.20	ug/l	80.0		105	85-115			
Cadmium	83.7	1.0	0.11	ug/l	80.0		105	85-115			
Copper	83.0	2.0	0.75	ug/l	80.0		104	85-115			
Lead	83.3	1.0	0.30	ug/l	80.0		104	85-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 008

Sampled: 02/03/08

Report Number: IRB0151

Received: 02/03/08

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04080 Extracted: 02/04/08	<u> </u>										
Matrix Spike Analyzed: 02/04/2008-02/0	5/2008 (8B040	080-MS1)			Sou	rce: IRB(150-01				
Antimony	82.0	2.0	0.20	ug/l	80.0	0.423	102	70-130			
Cadmium	80.7	1.0	0.11	ug/l	80.0	0.208	101	70-130			
Copper	78.5	2.0	0.75	ug/l	80.0	1.69	96	70-130			
Lead	76.9	1.0	0.30	ug/l	80.0	0.512	96	70-130			
Matrix Spike Analyzed: 02/04/2008-02/0	5/2008 (8B040	080-MS2)			Sou	rce: IRB(152-01				
Antimony	80.5	2.0	0.20	ug/l	80.0	1.58	99	70-130			
Cadmium	79.1	1.0	0.11	ug/l	80.0	0.164	99	70-130			
Copper	82.5	2.0	0.75	ug/l	80.0	4.75	97	70-130			
Lead	84.1	1.0	0.30	ug/l	80.0	6.01	98	70-130			
Matrix Spike Dup Analyzed: 02/04/2008	-02/05/2008 (8	B04080-MS1	D1)		Sou	rce: IRB()150-01				
Antimony	83.6	2.0	0.20	ug/l	80.0	0.423	104	70-130	2	20	
Cadmium	81.2	1.0	0.11	ug/l	80.0	0.208	101	70-130	1	20	
Copper	79.1	2.0	0.75	ug/l	80.0	1.69	97	70-130	1	20	
Lead	78.6	1.0	0.30	ug/l	80.0	0.512	98	70-130	2	20	

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 008

Report Number: IRB0151

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 8B04144 Extracted: 02/04/08	-										
Blank Analyzed: 02/05/2008 (8B04144-Bl	LK1)										
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
LCS Analyzed: 02/05/2008 (8B04144-BS1	.)										
Antimony	84.8	2.0	0.20	ug/l	80.0		106	85-115			
Cadmium	82.9	1.0	0.11	ug/l	80.0		104	85-115			
Copper	80.0	2.0	0.75	ug/l	80.0		100	85-115			
Lead	80.0	1.0	0.30	ug/l	80.0		100	85-115			
Matrix Spike Analyzed: 02/05/2008 (8B0-	4144-MS1)				Sou	rce: IRB(0073-01				
Antimony	84.0	2.0	0.20	ug/l	80.0	0.305	105	70-130			
Cadmium	84.5	1.0	0.11	ug/l	80.0	0.221	105	70-130			
Copper	77.7	2.0	0.75	ug/l	80.0	1.70	95	70-130			
Lead	74.3	1.0	0.30	ug/l	80.0	ND	93	70-130			
Matrix Spike Dup Analyzed: 02/05/2008	(8B04144-M	SD1)			Sou	rce: IRB(0073-01				
Antimony	83.1	2.0	0.20	ug/l	80.0	0.305	103	70-130	1	20	
Cadmium	84.2	1.0	0.11	ug/l	80.0	0.221	105	70-130	0	20	
Copper	79.5	2.0	0.75	ug/l	80.0	1.70	97	70-130	2	20	
Lead	74.4	1.0	0.30	ug/l	80.0	ND	93	70-130	0	20	
Batch: 8B05111 Extracted: 02/05/08	-										

Blank Analyzed: 02/06/2008 (8B05111-BLK1)											
Aluminum	ND	50	40	ug/l							
Arsenic	ND	10	7.0	ug/l							
Beryllium	ND	2.0	0.90	ug/l							
Boron	ND	0.050	0.020	mg/l							
Calcium	ND	0.10	0.050	mg/l							
Chromium	ND	5.0	2.0	ug/l							
Iron	ND	0.040	0.015	mg/l							
Magnesium	ND	0.020	0.012	mg/l							
Nickel	ND	10	2.0	ug/l							
Selenium	ND	10	8.0	ug/l							
Hardness (as CaCO3)	ND	1.0	1.0	mg/l							

TestAmerica Irvine

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 008

Sampled: 02/03/08

Report Number: IRB0151 Received: 02/03/08

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source	%REC	%REC	RPD	RPD Limit	Data Qualifiers
·		Lillit	MDL	Units	Level	Result	70KEC	Limits	KID	Liiiit	Quanners
Batch: 8B05111 Extracted: 02/05/08	<u>-</u>										
Blank Analyzed: 02/06/2008 (8B05111-B	· ·										
Silver	ND	10	6.0	ug/l							
Thallium	ND	10	7.0	ug/l							
Vanadium	ND	10	3.0	ug/l							
Zinc	ND	20	6.0	ug/l							
LCS Analyzed: 02/06/2008 (8B05111-BS	1)										
Aluminum	563	50	40	ug/l	500		113	85-115			
Arsenic	525	10	7.0	ug/l	500		105	85-115			
Beryllium	519	2.0	0.90	ug/l	500		104	85-115			
Boron	0.520	0.050	0.020	mg/l	0.500		104	85-115			
Calcium	2.67	0.10	0.050	mg/l	2.50		107	85-115			
Chromium	512	5.0	2.0	ug/l	500		102	85-115			
Iron	0.526	0.040	0.015	mg/l	0.500		105	85-115			
Magnesium	2.60	0.020	0.012	mg/l	2.50		104	85-115			
Nickel	515	10	2.0	ug/l	500		103	85-115			
Selenium	491	10	8.0	ug/l	500		98	85-115			
Silver	256	10	6.0	ug/l	250		102	85-115			
Thallium	498	10	7.0	ug/l	500		100	85-115			
Vanadium	509	10	3.0	ug/l	500		102	85-115			
Zinc	509	20	6.0	ug/l	500		102	85-115			
Matrix Spike Analyzed: 02/06/2008 (8B0	5111-MS1)				Sou	rce: IRB	0073-01				
Aluminum	564	50	40	ug/l	500	62.5	100	70-130			
Arsenic	519	10	7.0	ug/l	500	ND	104	70-130			
Beryllium	513	2.0	0.90	ug/l	500	ND	103	70-130			
Boron	0.549	0.050	0.020	mg/l	0.500	0.0311	104	70-130			
Calcium	58.9	0.10	0.050	mg/l	2.50	55.2	147	70-130			MHA
Chromium	502	5.0	2.0	ug/l	500	ND	100	70-130			
Iron	0.554	0.040	0.015	mg/l	0.500	0.0302	105	70-130			
Magnesium	10.3	0.020	0.012	mg/l	2.50	7.52	112	70-130			
Nickel	514	10	2.0	ug/l	500	11.5	101	70-130			
Selenium	486	10	8.0	ug/l	500	ND	97	70-130			
Silver	257	10	6.0	ug/l	250	ND	103	70-130			
Thallium	490	10	7.0	ug/l	500	ND	98	70-130			
Vanadium	507	10	3.0	ug/l	500	ND	101	70-130			
Zinc	509	20	6.0	ug/l	500	11.6	99	70-130			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 008

Sampled: 02/03/08

Report Number: IRB0151

Received: 02/03/08

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Oualifiers
Batch: 8B05111 Extracted: 02/05/08	8_										
Matrix Spike Dup Analyzed: 02/06/2008	8 (8B05111-N	ISD1)			Sou	rce: IRB(0073-01				
Aluminum	587	50	40	ug/l	500	62.5	105	70-130	4	20	
Arsenic	541	10	7.0	ug/l	500	ND	108	70-130	4	20	
Beryllium	518	2.0	0.90	ug/l	500	ND	104	70-130	1	20	
Boron	0.554	0.050	0.020	mg/l	0.500	0.0311	105	70-130	1	20	
Calcium	58.4	0.10	0.050	mg/l	2.50	55.2	125	70-130	1	20	MHA
Chromium	517	5.0	2.0	ug/l	500	ND	103	70-130	3	20	
Iron	0.565	0.040	0.015	mg/l	0.500	0.0302	107	70-130	2	20	
Magnesium	10.3	0.020	0.012	mg/l	2.50	7.52	112	70-130	0	20	
Nickel	530	10	2.0	ug/l	500	11.5	104	70-130	3	20	
Selenium	503	10	8.0	ug/l	500	ND	101	70-130	3	20	
Silver	262	10	6.0	ug/l	250	ND	105	70-130	2	20	
Thallium	509	10	7.0	ug/l	500	ND	102	70-130	4	20	
Vanadium	518	10	3.0	ug/l	500	ND	104	70-130	2	20	
Zinc	528	20	6.0	ug/l	500	11.6	103	70-130	4	20	

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 008

Sampled: 02/03/08

Report Number: IRB0151 Received: 02/03/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source	%REC	%REC	RPD	RPD Limit	Data Qualifiers
·		Limit	MIDL	Units	Levei	Kesuit	/oKEC	Limits	KI D	Lillit	Quanners
Batch: 8B04043 Extracted: 02/04/08	<u>}</u>										
Blank Analyzed: 02/04/2008 (8B04043-B	LK1)										
Chloride	ND	0.50	0.25	mg/l							
Fluoride	ND	0.50	0.15	mg/l							
Nitrate-N	ND	0.11	0.060	mg/l							
Nitrite-N	ND	0.15	0.090	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Sulfate	ND	0.50	0.20	mg/l							
LCS Analyzed: 02/04/2008 (8B04043-BS	1)										
Chloride	5.33	0.50	0.25	mg/l	5.00		107	90-110			
Fluoride	5.14	0.50	0.15	mg/l	5.00		103	90-110			
Nitrate-N	1.19	0.11	0.060	mg/l	1.13		106	90-110			
Nitrite-N	1.65	0.15	0.090	mg/l	1.52		109	90-110			
Sulfate	10.6	0.50	0.20	mg/l	10.0		106	90-110			M-3
Matrix Spike Analyzed: 02/04/2008 (8B0)4043-MS1)				Sou	ırce: IRB	0146-01				
Chloride	27.0	0.50	0.25	mg/l	5.00	21.6	109	80-120			
Fluoride	5.30	0.50	0.15	mg/l	5.00	0.288	100	80-120			
Nitrate-N	3.59	0.11	0.060	mg/l	1.13	2.36	109	80-120			
Nitrite-N	1.77	0.15	0.090	mg/l	1.52	ND	116	80-120			
Matrix Spike Analyzed: 02/04/2008 (8B0)4043-MS2)				Sou	rce: IRB	0156-01				
Chloride	27.7	0.50	0.25	mg/l	5.00	22.9	96	80-120			
Fluoride	5.01	0.50	0.15	mg/l	5.00	0.306	94	80-120			
Nitrate-N	2.90	0.11	0.060	mg/l	1.13	1.73	103	80-120			
Nitrite-N	1.59	0.15	0.090	mg/l	1.52	ND	105	80-120			
Matrix Spike Dup Analyzed: 02/04/2008	(8B04043-M	ISD1)			Sou	rce: IRB	0146-01				
Chloride	27.2	0.50	0.25	mg/l	5.00	21.6	112	80-120	1	20	
Fluoride	5.46	0.50	0.15	mg/l	5.00	0.288	103	80-120	3	20	
Nitrate-N	3.64	0.11	0.060	mg/l	1.13	2.36	113	80-120	1	20	
Nitrite-N	1.81	0.15	0.090	mg/l	1.52	ND	119	80-120	2	20	

TestAmerica Irvine

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 008

Sampled: 02/03/08

Report Number: IRB0151

Received: 02/03/08

METHOD BLANK/QC DATA

INORGANICS

	D L	Reporting	MAN	T T •.	Spike	Source	A/DEG	%REC	DDD	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04112 Extracted: 02/04/08	_										
DI 1 4 1 1 1 02/04/2000 (0D04112 D)	F TZ4)										
Blank Analyzed: 02/04/2008 (8B04112-Bl	,	5.0	2.2	/1							
Total Cyanide	ND	5.0	2.2	ug/l							
LCS Analyzed: 02/04/2008 (8B04112-BS1	1)										
Total Cyanide	184	5.0	2.2	ug/l	200		92	90-110			
Matrix Spike Analyzed: 02/04/2008 (8B04	4112-MS1)				Sou	rce: IRA	3072-06				
Total Cyanide	189	5.0	2.2	ug/l	200	ND	94	70-115			
Matrix Spike Dup Analyzed: 02/04/2008	(8B04112-M	SD1)			Sou	rce: IRA	3072-06				
Total Cyanide	189	5.0	2.2	ug/l	200	ND	95	70-115	0	15	
Batch: 8B04128 Extracted: 02/04/08	-										
Blank Analyzed: 02/04/2008 (8B04128-Bl	LK1)										
Total Suspended Solids	ND	10	10	mg/l							
LCS Analyzed: 02/04/2008 (8B04128-BS1	1)										
Total Suspended Solids	971	10	10	mg/l	1000		97	85-115			
Duplicate Analyzed: 02/04/2008 (8B04128	8-DUP1)				Sou	rce: IRB(0070-02				
Total Suspended Solids	ND	10	10	mg/l		ND				10	
Batch: 8B07098 Extracted: 02/07/08	-										
Blank Analyzed: 02/08/2008 (8B07098-Bl	LK1)										
Ammonia-N (Distilled)	ND	0.50	0.30	mg/l							

TestAmerica Irvine

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 008

Sampled: 02/03/08

Report Number: IRB0151 Received: 02/03/08

METHOD BLANK/QC DATA

INORGANICS

Analysta	Result	Reporting Limit	MDL	Units	Spike Level	Source	%REC	%REC	RPD	RPD Limit	Data Oualifiers
Analyte		Limit	MIDL	Units	Levei	Resuit	70KEC	Limits	KrD	Limit	Quaimers
Batch: 8B07098 Extracted: 02/07/08	-										
LCS Analyzed: 02/08/2008 (8B07098-BS)	1)										
Ammonia-N (Distilled)	10.4	0.50	0.30	mg/l	10.0		104	80-115			
Matrix Spike Analyzed: 02/08/2008 (8B0)	7098-MS1)				Sou	rce: IRB	0146-01				
Ammonia-N (Distilled)	10.1	0.50	0.30	mg/l	10.0	ND	101	70-120			
Matrix Spike Dup Analyzed: 02/08/2008	(8B07098-M	SD1)			Sou	rce: IRB	0146-01				
Ammonia-N (Distilled)	9.80	0.50	0.30	mg/l	10.0	ND	98	70-120	3	15	
Batch: 8B07122 Extracted: 02/07/08	_										
Dloub Analyzad, 02/07/2009 (9D07122 D)	L IZ1)										
Blank Analyzed: 02/07/2008 (8B07122-B) Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 02/07/2008 (8B07122-BS)				0							
Total Dissolved Solids	990	10	10	mg/l	1000		99	90-110			
						rce: IRB(
Duplicate Analyzed: 02/07/2008 (8B0712) Total Dissolved Solids	2-DOP1) 296	10	10	mg/l	Sou	292	V140-V1		1	10	
						2,2					
Batch: 8B12073 Extracted: 02/12/08	_										
Blank Analyzed: 02/12/2008 (8B12073-B	LK1)										
Perchlorate	ND	4.0	1.5	ug/l							
LCS Analyzed: 02/12/2008 (8B12073-BS)	1)										
Perchlorate	55.4	4.0	1.5	ug/l	50.0		111	85-115			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 008

Sampled: 02/03/08

Report Number: IRB0151

Received: 02/03/08

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B12073 Extracted: 02/12	2/08										
Matrix Spike Analyzed: 02/12/2008 (8B12073-MS1)				Sou	rce: IRB(0150-01				
Perchlorate	50.5	4.0	1.5	ug/l	50.0	ND	101	80-120			
Matrix Spike Dup Analyzed: 02/12/2	008 (8B12073-M	ISD1)			Sou	rce: IRB(0150-01				
Perchlorate	50.8	4.0	1.5	ug/l	50.0	ND	102	80-120	1	20	
Batch: 8B12074 Extracted: 02/12	2/08										
Blank Analyzed: 02/12/2008 (8B1207	/4-BLK1)										
Hexane Extractable Material (Oil & Grease)	ND	5.0	1.4	mg/l							
LCS Analyzed: 02/12/2008 (8B12074	-BS1)										MNR1
Hexane Extractable Material (Oil & Grease)	20.0	5.0	1.4	mg/l	20.2		99	78-114			
LCS Dup Analyzed: 02/12/2008 (8B1	2074-BSD1)										
Hexane Extractable Material (Oil & Grease)	18.5	5.0	1.4	mg/l	20.2		92	78-114	8	11	

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 008

Sampled: 02/03/08

Report Number: IRB0151

Received: 02/03/08

METHOD BLANK/QC DATA

ORGANIC COMPOUNDS BY GC/MS (EPA 525.2)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: C8B0516 Extracted: 02/05/0	<u> 8</u>										
Blank Analyzed: 02/07/2008 (C8B0516-	-										
Chlorpyrifos	ND	1.0	0.10	ug/l							
Diazinon	ND	0.25	0.24	ug/l							
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.76			ug/l	5.00		95	70-130			
Surrogate: Triphenylphosphate	5.79			ug/l	5.00		116	70-130			
Surrogate: Perylene-d12	5.00			ug/l	5.00		100	70-130			
LCS Analyzed: 02/07/2008 (C8B0516-B	S1)										
Chlorpyrifos	5.48	1.0	0.10	ug/l	5.00		110	70-130			
Diazinon	3.82	0.25	0.24	ug/l	5.00		76	70-130			
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.66			ug/l	5.00		93	70-130			
Surrogate: Triphenylphosphate	5.66			ug/l	5.00		113	70-130			
Surrogate: Perylene-d12	4.87			ug/l	5.00		97	70-130			
LCS Dup Analyzed: 02/07/2008 (C8B05	16-BSD1)										
Chlorpyrifos	4.90	1.0	0.10	ug/l	5.00		98	70-130	11	10	R-7
Diazinon	3.82	0.25	0.24	ug/l	5.00		76	70-130	0	50	
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.50			ug/l	5.00		90	70-130			
Surrogate: Triphenylphosphate	5.52			ug/l	5.00		110	70-130			
Surrogate: Perylene-d12	4.79			ug/l	5.00		96	70-130			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 008

Sampled: 02/03/08

Report Number: IRB0151

Received: 02/03/08

METHOD BLANK/QC DATA

Metals by EPA 200 Series Methods

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: W8B0171 Extracted: 02/06/	08										
Blank Analyzed: 02/07/2008 (W8B0171	-BLK1)										
Mercury, Dissolved	ND	0.20	0.050	ug/l							
Mercury, Total	ND	0.20	0.050	ug/l							
LCS Analyzed: 02/07/2008 (W8B0171-I	BS1)										
Mercury, Dissolved	1.04	0.20	0.050	ug/l	1.00		104	85-115			
Mercury, Total	1.04	0.20	0.050	ug/l	1.00		104	85-115			
Matrix Spike Analyzed: 02/07/2008 (W	8B0171-MS1)				Sou	rce: 8020	543-01				
Mercury, Dissolved	1.02	0.20	0.050	ug/l	1.00	ND	102	70-130			
Mercury, Total	1.02	0.20	0.050	ug/l	1.00	ND	102	70-130			
Matrix Spike Analyzed: 02/07/2008 (W	8B0171-MS2)				Sou	rce: 8020	544-01				
Mercury, Dissolved	1.05	0.20	0.050	ug/l	1.00	ND	105	70-130			
Mercury, Total	1.05	0.20	0.050	ug/l	1.00	ND	105	70-130			
Matrix Spike Dup Analyzed: 02/07/200	8 (W8B0171-N	(ISD1)			Sou	rce: 8020	543-01				
Mercury, Dissolved	1.04	0.20	0.050	ug/l	1.00	ND	104	70-130	2	20	
Mercury, Total	1.04	0.20	0.050	ug/l	1.00	ND	104	70-130	2	20	
Matrix Spike Dup Analyzed: 02/07/200	8 (W8B0171-N	(ISD2)			Sou	rce: 8020	544-01				
Mercury, Dissolved	1.05	0.20	0.050	ug/l	1.00	ND	105	70-130	0	20	
Mercury, Total	1.05	0.20	0.050	ug/l	1.00	ND	105	70-130	0	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 008

618 Michillinda Avenue, Suite 200

Sampled: 02/03/08 Arcadia, CA 91007 Report Number: IRB0151 Received: 02/03/08

Attention: Bronwyn Kelly

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
IRB0151-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	1.71	4.8	15
IRB0151-01	Ammonia-N, Titr (350.2) w/dist	Ammonia-N (Distilled)	mg/l	0.28	0.50	10
IRB0151-01	Antimony-200.8	Antimony	ug/l	0.38	2.0	6
IRB0151-01	Boron-200.7	Boron	mg/l	0.079	0.050	1
IRB0151-01	Cadmium-200.8	Cadmium	ug/l	0.091	1.0	3.1
IRB0151-01	Chloride - 300.0	Chloride	mg/l	16	0.50	150
IRB0151-01	Copper-200.8	Copper	ug/l	3.81	2.0	14
IRB0151-01	Fluoride-300.0	Fluoride	mg/l	0.24	0.50	1.6
IRB0151-01	Hg_w 245.1	Mercury, Total	ug/l	0.040	0.20	0.2
IRB0151-01	Lead-200.8	Lead	ug/l	4.45	1.0	5.2
IRB0151-01	Nickel-200.7	Nickel	ug/l	4.27	10	100
IRB0151-01	Nitrate-N, 300.0	Nitrate-N	mg/l	7.71	0.22	8
IRB0151-01	Nitrite-N, 300.0	Nitrite-N	mg/l	0	0.15	1
IRB0151-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	7.71	0.52	8
IRB0151-01	Perchlorate 314.0-DEFAULT	Perchlorate	ug/l	0.46	4.0	6
IRB0151-01	Sulfate-300.0	Sulfate	mg/l	19	0.50	300
IRB0151-01	TDS - SM 2540C	Total Dissolved Solids	mg/l	240	10	950
IRB0151-01	Zinc-200.7	Zinc	ug/l	15	20	160

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 008

618 Michillinda Avenue, Suite 200 Sampled: 02/03/08

Arcadia, CA 91007 Report Number: IRB0151 Received: 02/03/08

Attention: Bronwyn Kelly

DATA QUALIFIERS AND DEFINITIONS

J	l	Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the
		Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
T	6	Der the EDA methods benziding is known to be subject to avidetive losses during solvent concentration

L6 Per the EPA methods, benzidine is known to be subject to oxidative losses during solvent concentration.

M1 The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
 M2 The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
 M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was

Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch variable based on accounts the manufacture of the Disab Smiles (LCS)

accepted based on acceptable recovery in the Blank Spike (LCS).

MHA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information. See Blank Spike (LCS).

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

The sample, as received, was not preserved in accordance to the referenced analytical method.

pH = 7

P

 $R \hspace{1cm} \hbox{The RPD exceeded the method control limit due to sample matrix effects. The individual analyte QA/QC recoveries, } \\$

however, were within acceptance limits.

R-3 The RPD exceeded the acceptance limit due to sample matrix effects.

R-7 LFB/LFBD RPD exceeded the acceptance limit. Recovery met acceptance criteria.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

ADDITIONAL COMMENTS

For 1,2-Diphenylhydrazine:

The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 008

Sampled: 02/03/08

Report Number: IRB0151

Received: 02/03/08

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
[CALC]	Water		
EPA 160.2	Water	X	X
EPA 1664A	Water		
EPA 200.7-Diss	Water	X	X
EPA 200.7	Water	X	X
EPA 200.8-Diss	Water	X	X
EPA 200.8	Water	X	X
EPA 300.0	Water	X	X
EPA 314.0	Water	X	X
EPA 335.2	Water	X	X
EPA 350.2	Water		X
EPA 608	Water	X	X
EPA 624	Water	X	X
EPA 625	Water	X	X
SM2340B	Water	X	X
SM2540C	Water	X	

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chrnic

Samples: IRB0151-01

Analysis Performed: Bioassay-Acute 96hr

Samples: IRB0151-01

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 008

618 Michillinda Avenue, Suite 200 Sampled: 02/03/08

Arcadia, CA 91007 Report Number: IRB0151 Received: 02/03/08
Attention: Bronwyn Kelly

Eberline Services

2030 Wright Avenue - Richmond, CA 94804 Analysis Performed: Gamma Spec

Samples: IRB0151-01

Analysis Performed: Gross Alpha

Samples: IRB0151-01

Analysis Performed: Gross Beta

Samples: IRB0151-01

Analysis Performed: Radium, Combined

Samples: IRB0151-01

Analysis Performed: Strontium 90

Samples: IRB0151-01

Analysis Performed: Tritium

Samples: IRB0151-01

Analysis Performed: Uranium, Combined

Samples: IRB0151-01

EMS Laboratories California Cert #1119

117 W. Bellevue Drive - Pasadena, CA 91105

Analysis Performed: Asbestos-TEM (100.2 - DW)

Samples: IRB0151-01

TestAmerica - Ontario, CA California Cert #1169, Arizona Cert #AZ0062, Nevada Cert #CA-242

1014 E. Cooley Drive, Suite AB - Colton, CA 92324

Method Performed: EPA 525.2

Samples: IRB0151-01

Vista Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762

Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IRB0151-01

Weck Laboratories, Inc

14859 E. Clark Avenue - City of Industry, CA 91745

Method Performed: EPA 245.1 Samples: IRB0151-01

TestAmerica Irvine

1280151

Page 1 of 2 unpreserved analysis Time of readings = Unfiltered and Comments Field readings: 33= dmeT Sample Integrity: (check)
Intact On Ice. 10 Days Turn around Time: (check)
24 Hours 5 Days Normal Acute and Chronic Toxicity × 34 + (625) \$COVS × 72 Hours 48 Hours or 901.1) (808(0)) K-40' C2-131 (801.0 ANAL YSIS REQUIRED muins1U (0.409) 8SS muibsA & (1.809 to 0.809) × Combined Radium 226 latoT ,(0.209) 09-12 ,(0.309) Beta(900.0), Tritium (H-3) Gross Alpha(900.0), Gross Chlorpyrifos, Diazinon + PP × Pesticides/PCBs TDS, TSS × (S.03E) M-sincmmA Date/Time: Date/Time Mitrate-N, Nitrite-N × CHAIN OF CUSTODY FORM Perchlorate Cl.' 20⁴' E' NO3+NO5-N Oil & Grease (1664-HDM) × TCDD (and all congeners) Hardness as CaCO₃ Fe, Al, Tl, Se, Zn, Ui + PP × × 2P' Cq' Cn' ЫР' Ha' B' ∧' Total Recoverable Metals: Received By Received By Received By 11A, 11B 7A, 7B 2A, 2B ₽ Stormwater at Happy Valley Bottle 9 8 8 8 ₹ 2 ဖ æ Ą, ¥, Boeing-SSFL NPDES Annual Outfall 008 (626) 568-6515 H₂SO₄ Phone Number None None None None None None (626) 568-6691 ő None None None 모 Fax Number: Sampling Date/Time 7-3-2 Project: Date/Time: - 3 .○ & Date/Time Fest America Version 12/20/07 # of Cont. Project Manager: Bronwyn Kelly 2 Test America Contact: Joseph Doak 618 Michillinda Avenue. Suite 200 Arcadia, CA 91007 Sampler: \$ 3,75,96.2 1 Gal Poly Container 2.5 Gal Poly 500 ML Amber 1L Amber 1L Amber 1L Amber 1L Amber Poly 1L Poly 500 ml Poly 500 ml Poly 500 ml Poly 500 ml Poly 7 Client Name/Address: Sample Matrix MWH-Arcadia 3 3 3 ⋛ ⋛ ⋛ > ⋛ ⋛ ⋛ ₹ 3 Relinquished By Relinquished Description Outfall 008 Outfall 008-Outfall 008 Sample Outfall 008 Onb

Page 2 of 2				ants				receipt at lab								s	× =	3257	
	IRED			Comments				Filter w/in 24hrs of receipt at lab								nd Time: (cl	urs 10 Days	Sample Integrity: (check) Intact On Ice:	
	ANALYSIS REQUIRED			····												Tum 24 Hc	48 Hours 72 Hours	$\top I$	
	ALYSIS			(S.001)	sotse	odsA					×					208		52,52	
	Ä			CΛΕ						×			×			<i>"</i>			
ZM SM				4) xylene	εO;	OsO			×			×			+	ime: 1368	ime:	ime:	
FOI		FI, Se	F , AI, T	olved Me g, B, V, F P, Hardn	ы '9а	,uO		×								Date/Time	Date/Time	Date/Time:	
DY				1	əbin	Cya	×		_	_		-				3		Ì	
JSTC		08 ley				Bottle #	12	13	14A, 14B, 14C	15A, 15B 15C	16	17A, 17B, 17C	18A, 18B, 18C			100 A	i.		
CHAIN OF CUSTODY FORM	_NPDES	ıal Outfall 0 ıt Happy Val		er: 91	15	Preservative	NaOH	None	НСІ	None	None	HCI	None			Received By	Received By	Received By	
CHAIL	Project: SSFL NPDES	Boeing -Annual Outfall 008 Stormwater at Happy Valley		Phone Number: (626) 568-6691 Fax Number:	(626) 568-6515	Sampling Date/Time					:					ime: 1605	ime:	V	
20/0			Y			# of Cornt.	-	-	8	ю	1	ю	ဧ			Date/Time:	Date/Time:	Date/Time:	
/ersion 12/2		Suite 200	oseph Doal	wyn Kelly		Container Type	500 ml Poly	1L Poly	VOAs	VOAs	1L Poly	VOAs	VOAs			3. e8			
rica	ddress	lia Avenue. 307	ontact: J	ler: Bror		Sample Matrix	3	*	>	Μ	W	8	M			0 }	000		
Test America Version 12/20/07	Client Name/Address	MWH-Arcadia 618 Michillinda Avenue. Suite 200 Arcadia, CA 91007	Test America Contact: Joseph Doak	Project Manager: Bronwyn Kelly	Sampler:	Sample Description	Outfall 008	Outfall 008	Outfall 008	Outfall 008	Outfall 008	Trip Blanks	Trip Blanks			Relinquished By	Relinquished By	Relinquished By	

LABORATORY REPORT

Date:

February 12, 2008

Client:

TestAmerica - Irvine

17461 Derian Ave., Suite 100

Irvine, CA 92614 Attn: Joseph Doak Aquatic Testing Laboratories

"dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003

(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.:

A-08020407-001

Sample ID.:

IRB0151-01 (Outfall 008)

Sample Control:

The sample was received by ATL within the recommended hold time, in a chilled state, and with the chain of custody record attached. Testing was conducted on only

one sample per client instruction.

Date Sampled:

02/03/08

Date Received:

02/04/08

Temp. Received:

 $4^{\circ}C$

Chlorine (TRC):

0.0 mg/l

Date Tested:

02/04/08 to 02/11/08

Sample Analysis:

The following analyses were performed on your sample:

Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0), *Ceriodaphnia dubia* Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

Result Summary:

Acute: Fathead Minnow:

 $\frac{\text{Survival}}{100\%} \qquad \frac{\text{TUa}}{0.0}$

Chronic:

NOEC

TUc

Ceriodaphnia Survival:

100 % 100 % 1.0 1.0

Quality Control:

Reviewed and approved by:

Ceriodaphnia Reproduction:

Joseph A. LeMay

Laboratory Director

FATHEAD MINNOW PERCENT SURVIVAL TEST EPA Method 2000.0

Lab No.: A-08020407-001

Client/ID: TestAmerica - IRB0151-01 (Outfall 008)

Start Date: 02/04/2008

TEST SUMMARY

Species: Pimephales promelas.

Age: (1-14) days. Regulations: NPDES.

Test solution volume: 250 ml. Feeding: prior to renewal at 48 hrs.

Number of replicates: 2.

Dilution water: Moderately hard reconstituted water.

Photoperiod: 16/8 hrs light/dark.

Source: In-laboratory Culture. Test type: Static-Renewal.

Test Protocol: EPA-821-R-02-012. Endpoints: Percent Survival at 96 hrs. Test chamber: 600 ml beakers.

Temperature: 20 +/- 1°C.

Number of fish per chamber: 10. QA/QC Batch No.: RT-080204.

TEST DATA

		°C	DO	nII.	# D	ead	Analyst & Time
		C	DO	рН	A	В	of Readings
INITIAL	Control	20-1	5.6	7-8	0	0	2
INITIAL	100%	19-6	10.4	7-0	0	O	1400
24 Hr	Control	19.3	7.8	2.5	0	Ü	L~ 1330
2+111	100%	19.2	7.8	7.4	_()	()	1330
48 Hr	Control	19.5	7.6	7.7	()	Ð	R
46 111	100%	19.5	7.5	7.7	<i>O</i>	0	1400
Renewal	Control	20.5	8.8	7.8	Ü	7)	22-
Kenewai	100%	19.4	11.4	7.1	0	()	1400
72 Hr	Control	19.3	8.0	2.4	0	0	R- 1200
/2 Hr	100%	19.5	8.0	7.4	0	0	1200
96 Hr	Control	195	8,2	7.3	Ô	0	L- 1300
90 Hr	100%	19.6	8.2	7.5	0	0	1300

Comments:

Sample as received: Chlorine: 0.0 mg/l; pH: 7-0; Conductivity: 265 umho; Temp: 4°C; DO: 6-1 mg/l; Alkalinity: 72 mg/l; Hardness: 36 mg/l; NH₃-N: 0-3 mg/l. Sample aerated moderately (approx. 500 ml/min) to raise or lower DO? Yes / No)

Control: Alkalinity: 64 mg/l; Hardness: 96 mg/l; Conductivity: 290 umho.

Test solution aerated (not to exceed 100 bubbles/min) to maintain DO >4.0 mg/l? Yes / No/ Sample used for renewal is the original sample kept at 0-6°C with minimal headspace.

Dissolved Oxygen (DO) readings in mg/l O₂.

RESULTS

Percent Survival In:	Control: _	100	_%	100% Sample: _	100 %	
----------------------	------------	-----	----	----------------	-------	--

CERIODAPHNIA SURVIVAL AND REPRODUCTION TEST

- Test and Results Summary
- Data Summary and Statistical Analyses
- Raw Test Data: Water Quality & Test Organism Measurements

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

Lab No.: A-08020407-001

Date Tested: 02/04/08 to 02/11/08

Client/ID: Test America - IRB0151-01 (Outfall 008)

TEST SUMMARY

Test type: Daily static-renewal.

Species: Ceriodaphnia dubia.

Age: < 24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 +/- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

QA/QC Batch No.: RT-080204.

Endpoints: Survival and Reproduction.

Source: In-laboratory culture.

Food: .1 ml YTC, algae per day.

Test solution volume: 15 ml. Number of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 7 days.

Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Survival	Mean Number of Young Per Female
Control	100%	25.1
100% Sample	100%	26.5

Sample not statistically significantly less than Control for either endpoint.

CHRONIC TOXICITY

Survival NOEC	100%
Survival TUc	1.0
Reproduction NOEC	100%
Reproduction TUc	1.0

QA/QC TEST ACCEPTABILITY

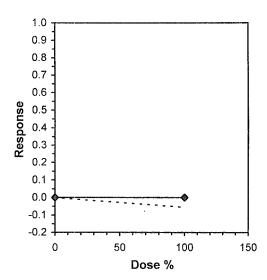
Parameter	Result
Control survival ≥80%	Pass (100% survival)
≥15 young per surviving control female	Pass (25.1 young)
≥60% surviving controls had 3 broods	Pass (100% with 3 broods)
PMSD <47% for reproduction; if >47% and no toxicity at IWC, the test must be repeated	Pass (PMSD = 4.9%)
Statistically significantly different concentrations relative difference > 13%	Pass (no concentration significantly different)
Concentration response relationship acceptable	Pass (no significant response at concentration tested)

Ceriodaphnia Survival and Reproduction Test-7 Day Survival												
Start Date:	2/4/2008 1	5:00	Test ID:					Sample ID:		Outfall 008		
End Date:	2/11/2008	14:00	Lab ID:	CAATL-Ac	uatic Test	ting Labs	Sample Ty	/pe:	EFF2-Indu	ıstrial		
Sample Date:	2/3/2008 1	10:15	Protocol:	FWCH-EP	A-821-R-0	02-013	Test Spec	ies:	CD-Cerioo	laphnia dubia		
Comments:												
Conc-%	1	2	3	4	5	6	7	8	9	10		
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
100	1 0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		

				Not			Fisher's 1-Tailed			Isotonic		
Conc-%	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Mean	N-Mean		
D-Control	1.0000	1.0000	0	10	10	10			1.0000	1.0000		
100	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000		

Hypothesis	Test (1-tail,	0.05)	NOEC	LOEC	ChV	TU					anna ann ann ann ann ann ann ann ann an
Fisher's Exa			100	>100		1					
Treatments v	vs D-Control							di mila vi izaka da			
						lation (20	0 Resampl	es)			
Point	<u></u> %	SD	95%	CL	Skew		227				
IC05	>100										
IC10	>100										
IC15	>100						1.0 —		COLUMN TO THE PERSON NAMED IN COLUMN		
IC20	>100						0.9				
IC25	>100						4				
IC40	>100						0.8				
IC50	>100						0.7				
							006				
							§ 0.0]				
							8 0.5 -				
							Response 0.0 - 0.0				
							0.3 -				
							0.2				
							0.1				
							0.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
							0	;	50	100	150

Dose %


Ceriodaphnia Survival and Reproduction Test-Reproduction													
Start Date:	2/4/2008 15:00 Test ID: 8020407c						3						
End Date:	2/11/2008	14:00	Lab ID:	CAATL-Ac	juatic Test	ting Labs	Sample Ty	/pe:	EFF2-Indu	ıstrial			
Sample Date:	2/3/2008 1	0:15	Protocol:	FWCH-EP	A-821-R-0	02-013	Test Spec	ies:	CD-Cerioo	laphnia dubia			
Comments:													
Conc-%	1	2	3	4	5	6	7	8	9	10			
D-Control	24 000	27.000	26,000	25.000	24.000	27.000	25.000	24.000	25.000	24.000			
D-Control	£ 1.000												

			Transform: Untransformed					1-Tailed			Isotonic		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean	
D-Control	25.100	1.0000	25.100	24.000	27.000	4.770	10				25.800	1.0000	
100	26.500	1.0558	26.500	24.000	30.000	7.171	10	-1.971	1.734	1.232	25.800	1.0000	

Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.05)	0.94475		0.905	*: *: *: *: * * * * * * * * * * * * * *	0.66687	-0.0446
F-Test indicates equal variances (p = 0.18)	2.51938		6.54109			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates no significant differences	1.23161	0.04907	9.8	2.52222	0.06428	1, 18
Treatments vs D. Control						

Treatments vs D-Control

			Lir	near Interpolation	(200 Resamples)
Point	%	SD	95% CL	Skew	
IC05	>100				
IC10	>100				
IC15	>100				1.0
IC20	>100				0.9
IC25	>100				0.8
IC40	>100				4
IC50	>100				0.7
				and alternative control of the contr	0.6 -

NPDES - 1939

CERIODAPHNIA DUBIA CHRONIC BIOASSAY EPA METHOD 1002.0 Raw Data Sheet

Lab No.: A-08020407-001

Client ID: TestAmerica - IRB0151-01 (Outfall 008) Start Date: 02/04/2008 DAY 2 DAY 3 DAY 4 DAY 5 DAY 6 DAY 7 DAY 1 0 hr 24lır 0 hr 24hr Analyst Initials: ロション 1900 1336 1401 Time of Readings: 8.6 2.5 pΗ Control Temp DO 100% pН 24. 244 Temp 100% Sample **Additional Parameters** Control 265 30 Conductivity (umohms) 72 Alkalinity (mg/l CaCO₃) 36 Hardness (mg/l CaCO₃) 20-Ammonia (mg/l NH₃-N) Source of Neonates D F G Н Replicate: В 5A 513 ST ر دو 6 C (12 Brood ID: Number of Young Produced Total Live No. Live Analyst Day Sample Young Adults Initials В C D J E Н I O O 00 1 0 Carl 0 C 0 0 0 Con 2 0 Zum 4 3 70 3 ic 0 10 4 Control 0 5 0 6 0 16 18 5 0 7 4 Total 0 12 2 5 3 30 8 4 100% 5 6 0 7 Total

Circled fourth brood not used in statistical analysis.

^{7&}lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

SUBCONTRACT ORDER

TestAmerica Irvine IRB0151

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Aquatic Testing Laboratories-SUB 4350 Transport Street, Unit 107

Ventura, CA 93003

Phone :(805) 650-0546

Fax: (805) 650-0756 Project Location: California

Receipt Temperature: U °C

Ice: $(\widehat{Y}) / N$

Analysis	Units	Due	Expires	Comments
Sample ID: IRB0151-01	Water		Sampled: 02/03/08 10:15	
Bioassay-7 dy Chrnic	N/A	02/13/08	02/04/08 22:15	Cerio, EPA/821-R02-013, Sub to AqTox
Bioassay-Acute 96hr	% Survival	02/13/08	02/04/08 22:15	Labs FH minnow, EPA/821-R02-012, Sub to
Level 4 Data Package - Ou	it N/A	02/13/08	03/02/08 10:15	AqTox Labs
Containers Supplied:				
1 gal Poly (S)	1 gal Poly (T)			

Released By

Date/Time

Received By May ATL

Date/Time

Date/Time

Page 1 of 1

NPDES - 1941

REFERENCE TOXICANT DATA

FATHEAD MINNOW ACUTE Method 2000.0 Reference Toxicant - SDS

QA/QC Batch No.: RT-080204

\TEST SUMMARY

Species: Pimephales promelas.

Age: 4 days old. Regulations: NPDES.

Test chamber volume: 250 ml. Feeding: Prior to renewal at 48 hrs.

Temperature: 20 +/- 1°C. Number of replicates: 2. Dilution water: MHSF. Source: In-lab culture.

Test type: Static-Renewal.

Test Protocol: EPA-821-R-02-012.

Endpoints: LC50 at 96 hrs.

Test chamber: 600 ml glass beakers.

Aeration: None.

Number of organisms per chamber: 10.

Photoperiod: 16/8 hrs light/dark.

TEST DATA

		INITIAL	,			24 Hr)			48 Hr		
Date/Time:	2 ~ 4	-8/	430	2-5	-08		/33	0	2-6-6	28		143	<u>()</u>
Analyst:		(h-				R				\sim	2		
-	°C DO pH			°C	DO		# Dead		°C	DO	11	# D	ead
		150	pri			рН	А	В		DO	pН	A	В
Control	19.8	8-4	7-4	19.1	7.9	7.5	,)	0	19,4	7.2	7.6	0	0
1.0 mg/l	19.9	8.4	7.5	19.1	7.8	7.4	2)	U	19,4	69	7.60	0	0
2.0 mg/l	14.5	8.5	7-5	19.0	7.6	2.4	Ű	0	19.4	6.6	7,5	1)	0
4.0 mg/l	200	8.5	7-5	19.0		7.4	U	1	19.4	6.7	7.5	2	0
8.0 mg/l	20.0	8.6	7-5	19.1	8.0	7.4	W	10	**************************************	Manufacture de la company de l	Alectroprotect of the con-	mingspoor to a	annumber of the second

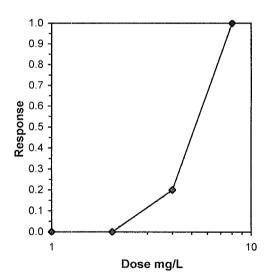
	R	RENEWA	L			72 Hr					96 Hr		
Date/Time:	2-6.	08	1430	2-7-	08		15	2srs	2-8-08 /300				1300
Analyst:		<u> </u>	v	2				Rn					
	°C DO pH			°C	DO pH		# Dead		°C	DO	n I I	# D	ead
		BO 1	pri		ВО	рН	А	В		DO	pН	А	В
Control	20.3	8.9	7.8	19.4	2.5	7.7	0	()	19.2	8.0	7.5	0	()
1.0 mg/l	20.3	89	7.8	19.3	25	7,6	0	0	19.2	8.0	7.5	0	0
2.0 mg/l	20.3	8.8	2.8	19.3	7.7	7.5	0	0	19.3	8.1	7.4	0	()
4.0 mg/l	20.3	8.8	7.8	19.3	7.6	7.5	0	()	19.3	8.2	7.4	0	j
8.0 mg/l	***********	Pognikk 4.	ngawasay seculu	Supplementary and a	Management -	-Unaccessor	- Milhopaya silir i	Manager	gateria in control of the	Mininfedera	magnetic field of the contract		Bankanan

Comments: Control: Alkalinity: 4 mg/l; Hardness: 94 mg/l; Conductivity: 289 umho. SDS: Alkalinity: 4 mg/l; Hardness: 47 mg/l; Conductivity: 390 umho.

Concentration-response relationship acceptable? (see attached computer analysis):

Yes (response curve normal)

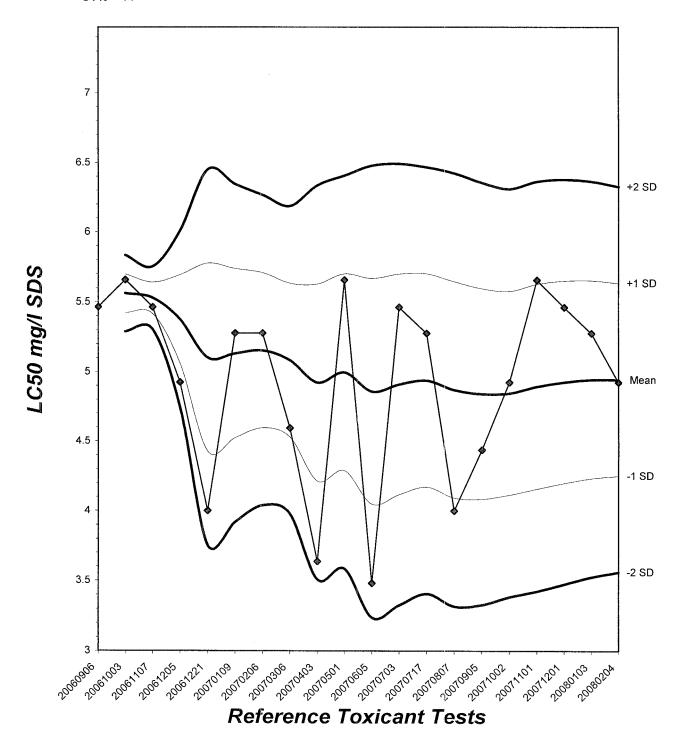
No (dose interrupted indicated or non-normal)


Acute Fish Test-96 Hr Survival											
Start Date:	2/4/2008	14:30	Test ID:	RT-080204	Sample ID:	REF-Ref Toxicant					
End Date:	2/8/2008	13:00	Lab ID:	CAATL-Aquatic Testing Labs	Sample Type:	SDS-Sodium dodecyl sulfate					
Sample Date:	2/4/2008		Protocol:	ACUTE-EPA-821-R-02-012	Test Species:	PP-Pimephales promelas					
Comments:					-						
Conc-mg/L	1	2									
D-Control	1.0000	1.0000									
1	1.0000	1.0000									
2	1.0000	1.0000									
4	0.8000	0.8000									
8	0.0000	0.0000									

	Transform: Arcsin Square Root							Number	Total
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Resp 1	Number
D-Control	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
1	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
2	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
4	0.8000	0.8000	1.1071	1.1071	1.1071	0.000	2	4	20
8	0.0000	0.0000	0.1588	0.1588	0.1588	0.000	2	20	20

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Normality of the data set cannot be confirmed				
Equality of variance cannot be confirmed				

Trimmed Spearman-Karber


Trim Level	EC50	95%	CL	
0.0%	4.9246	4.3503	5.5747	
5.0%	5.0215	4.3576	5.7866	
10.0%	5.1038	4.2923	6.0686	
20.0%	5.1874	4.7084	5.7150	
Auto-0.0%	4.9246	4.3503	5.5747	

Reviewed by:

Fathead Minnow Acute Laboratory Control Chart

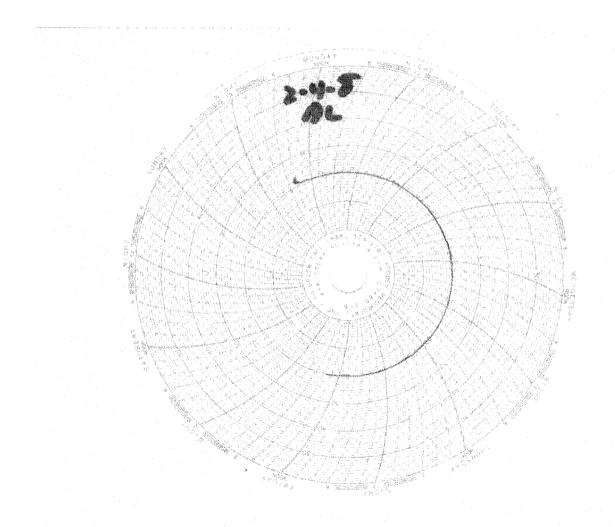
CV% = 14

TEST ORGANISM LOG

FATHEAD MINNOW - LARVAL (Pimephales promelas)

QA/QC BATCH NO.: RT-080204

SOURCE: In-Lab Culture									
DATE HATCHED: 01-21-08									
APPROXIMATE QUANTITY: 400									
GENERAL APPEARANCE:									
# MORTALITIES 48 HOURS PRIOR TO TO USE IN TESTING:									
DATE USED IN LAB: $\frac{2}{4}$									
AVERAGE FISH WEIGHT: 000 gm									
TEST LOADING LIMITS: 0.65 gm/liter 200 ml test solution volume = 0.013 gm mean fish weight limit 250 ml test solution volume = 0.016 gm mean fish weight limit ACCLIMATION WATER QUALITY:									
Temp.: <u>198</u> °C pH: <u>7-4</u>	Ammonia: / C of mg/LNH -N								
DO: 5 f mg/l Alkalinity: 6 f mg/l	Hardness: G / mg/l								
READINGS RECORDED BY:	DATE: 2-4-8								



Laboratory Temperature Chart

QA/QC Batch No: RT-080202

Date Tested: 02/02/08 to 02/06/08

Acceptable Range: 20+/- 1°C

CERIODAPHNIA SURVIVAL AND REPRODUCTION TEST

- Test and Results Summary
- Data Summary and Statistical Analyses
- Raw Test Data: Water Quality & Test Organism Measurements

CERIODAPHNIA CHRONIC BIOASSAY

EPA METHOD 1002.0 REFERENCE TOXICANT - NaCl

QA/QC Batch No.: RT-080204

Date Tested: 02/04/08 to 02/11/08

TEST SUMMARY

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*.

Age: <24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 +/- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

Reference Toxicant: Sodium chloride (NaCl).

Endpoints: Survival and Reproduction.

Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 20 ml. Number of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 7 days.

Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Survi	ival	Mean Number of Young Per Female				
Control	100%		25.3				
0.25 g/l	100%		26.4				
0.5 g/l	100%		26.5				
1.0 g/l	100%		18.5	*			
2.0 g/l	90%		7.2	*			
4.0 g/l	0%	*	0	**			

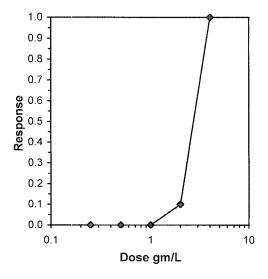
^{*} Statistically significantly less than control at P = 0.05 level

CHRONIC TOXICITY

Survival LC50	2.6 g/l
Reproduction IC25	0.93 g/l

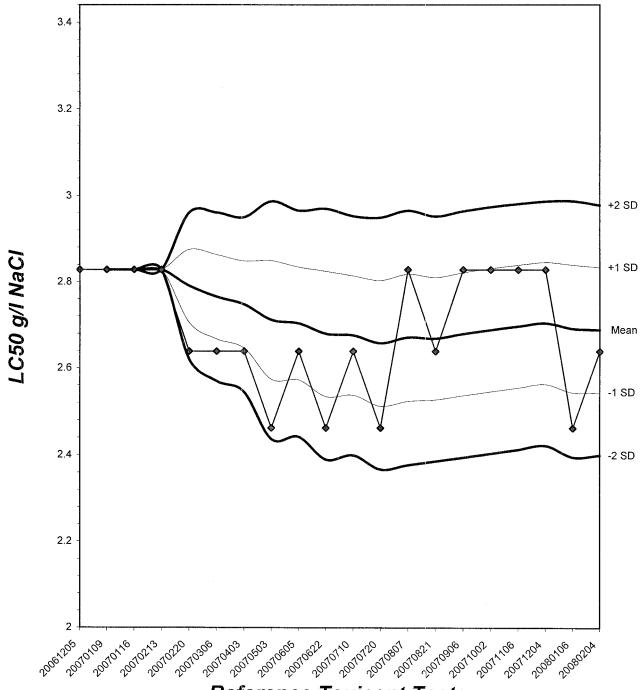
QA/QC TEST ACCEPTABILITY

Parameter	Result					
Control survival ≥80%	Pass (100% Survival)					
≥15 young per surviving control female	Pass (25.3 young)					
≥60% surviving controls had 3 broods	Pass (100% with 3 broods)					
PMSD <47% for reproduction	Pass (PMSD = 9.9%)					
Stat. sig. diff. conc. relative difference >13%	Pass (Stat. sig. diff. conc. = 26.9%)					
Concentration response relationship acceptable	Pass (Response curve normal)					


^{**} Reproduction data from concentrations greater than survival NOEC are excluded from statistical analysis.

Ceriodaphnia Survival and Reproduction Test-7 Day Survival										
Start Date:	2/4/2008 1	5:00	Test ID:	RT-08020	4c		Sample ID	:	REF-Ref T	oxicant
End Date:	2/11/2008	14:00	Lab ID:	CAATL-Ac	uatic Tes	ting Labs	Sample Ty	/pe:	NACL-Soc	lium chloride
Sample Date:	2/4/2008		Protocol:	FWCH-EF	A-821-R-0	02-013	Test Speci	ies:	CD-Cerioo	laphnia dubia
Comments:										
Conc-gm/L	1	2	3	4	5	6	7	8	9	10
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0.25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0.5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000
4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

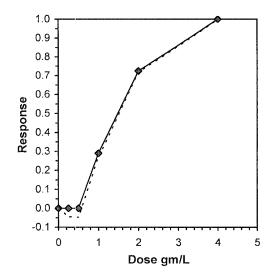
				Not			Fisher's	1-Tailed	Number	Total
Conc-gm/L	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Resp	Number
D-Control	1.0000	1.0000	0	10	10	10			0	10
0.25	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
0.5	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
1	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
2	0.9000	0.9000	1	9	10	10	0.5000	0.0500	1	10
4	0.0000	0.0000	10	0	10	10			10	10


Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU							_
Fisher's Exact Test	2	4	2.82843			 	 	 		,	
Treatments vs D-Control											

Trim Level	EC50	95%	CL	Trimmed Spearman-Karber
0.0%	2.6390	2.3138	3.0099	
5.0%	2.6984	2.2899	3.1798	
10.0%	2.7216	2.5094	2.9517	1.0 —
20.0%	2.7216	2.5094	2.9517	0.9
Auto-0.0%	2.6390	2.3138	3.0099	0.9

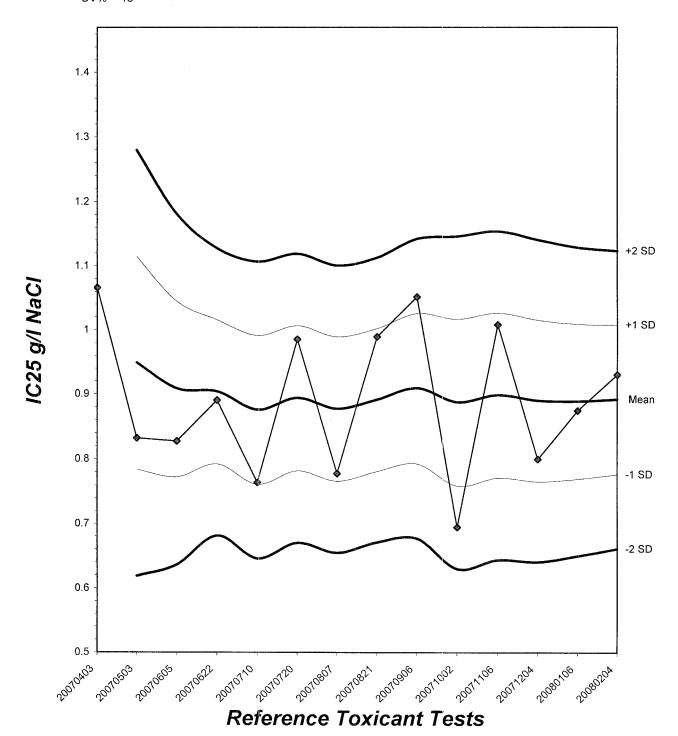
Ceriodaphnia Chronic Survival Laboratory Control Chart

CV% = 5.38


			Ceriod	aphnia Su	rvival and	Reprodu	iction Tes	t-Repro	duction	
Start Date:	2/4/2008 1	5:00	Test ID:	RT-08020	4c		Sample ID	:	REF-Ref 7	oxicant
End Date:	2/11/2008	14:00	Lab ID:	CAATL-Ac	uatic Tes	ting Labs	Sample Ty	/pe:	NACL-Soc	lium chloride
Sample Date:	2/4/2008		Protocol:	FWCH-EF	A-821-R-	02-013	Test Spec	ies:	CD-Cerioo	laphnia dubia
Comments:							4		Managara and American	
Conc-gm/L	1	2	3	4	5	6	7	8	9	10
D-Control	24.000	22.000	25.000	29.000	25.000	25.000	24.000	26.000	27.000	26.000
0.25	25.000	26.000	29.000	27.000	26.000	25.000	27.000	27.000	25.000	27.000
0.5	25.000	27.000	26.000	30.000	25.000	27.000	27.000	28.000	26.000	24.000
1	19.000	22.000	24.000	17.000	14.000	18.000	20.000	18.000	16.000	17.000
2	12.000	8.000	4.000	4.000	3.000	2.000	6.000	12.000	11.000	10.000
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

		·-····		Transforn	n: Untran	sformed		Rank	1-Tailed	Isoto	onic
Conc-gm/L	Mean	N-Mean -	Mean	Min	Max	CV%	N	Sum	Critical	Mean	N-Mean
D-Control	25.300	1.0000	25.300	22.000	29.000	7.465	10			26.067	1.0000
0.25	26.400	1.0435	26.400	25.000	29.000	4.791	10	126.00	76.00	26.067	1.0000
0.5	26.500	1.0474	26.500	24.000	30.000	6.475	10	124.50	76.00	26.067	1.0000
*1	18.500	0.7312	18.500	14.000	24.000	15.759	10	57.50	76.00	18.500	0.7097
*2	7.200	0.2846	7.200	2.000	12.000	53.911	10	55.00	76.00	7.200	0.2762
4	0.000	0.0000	0.000	0.000	0.000	0.000	10			0.000	0.0000

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribu	ution (p >	0.05)		0.96604	0.947	0.25066	0.00896
Bartlett's Test indicates unequal	variances (_l	p = 9.42E	-03)		13.4148	13.2767		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	1	0.70711				~		
Treatments vs D-Control								


Linear Interpolation (200 Resample

Point	gm/L	SD	95%	CL	Skew
IC05	0.5861	0.0133	0.5527	0.6099	-0.7096
IC10	0.6722	0.0221	0.6345	0.7198	0.3536
IC15	0.7584	0.0319	0.7090	0.8296	0.5420
IC20	0.8445	0.0421	0.7795	0.9395	0.5923
IC25	0.9306	0.0516	0.8512	1.0476	0.5147
IC40	1.2531	0.0676	1.1276	1.3772	-0.0019
IC50	1.4838	0.0691	1.3665	1.6234	0.2328

Ceriodaphnia Chronic Reproduction Laboratory Control Chart

CV% = 13

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-080204

Start Date: 02/04/2008

				Nu	mbei	r of Y	oung	Prod	uced			Total	No.	Amalyat
Sample	Day	A	В	C	D	E	F	G	н	1[J	Live Young	Live Adults	Analyst Initials
	1	Ü	0	0	0	0	O	Ø	C	Ò	0	\dot{c}	10	2
	2	0	0	C	C	C	Com	O	Ċ	C	0		10	1
	3	4	3	3	ej	4	3	3	Ĺ	3	3	34	10	1
Control	4	0	7	6	0	0	0	0	C	C	0	13	10	2
Control	5	6	17	0	10	6	5	>	6	9	フ	48	10	h
	6	14	0	0	15	0	0	0	16	0	0	45	10	1
	7	(16)	(15)	16	0	15	17	14	0	کا	16	93	10	n
	Total	24	22	25	29	25	25	24	26	27	26	253	10	2
	1	0		\mathcal{C}'	0	\mathcal{C}	0	C	0	رے	C	0	w	2
	2	0	0	0	0	0	\mathcal{C}	0	\mathcal{C}	C	Ö	\mathcal{C}	10	n
	3	3	3	Ч	5	3	3	3	5	3	3	35	10	1
0.25 g/l	4	0	2	8	0	0	0	0	0	0	0	15	10	1
0.23 g/1	5	6	0	17	ID	8	6	\supset	>	8	2	76	10	
	6	0	16	0	12	15	16	17	0	0	0	76	10	
	7	16	(19)	(16)	(B)		0	0	15	14	17	62	10	
	Total	25	26	29	27	26	25	27	27	25	27	264	10	1
	1	0	0	0	0	0	C	C)	0	C	C	C	10	2
	2	0	0	0	_C	C	0	\mathcal{O}	C)	C)	C	0	10	2
	3	3	Ц	N	5	3	Ч	4	25	3	3	37	10	2
0.5 ~/1	4	0	8	0	0	0	0	0	0	0	\bigcirc	δ	10	2
0.5 g/l	5	6	15	7	8	7	6	2	8	6	>	79	10	p
	6	16	0	0	17	0	0	Ò	15	0	0	12748	10	19
	7	(13)	17	16	(12)	15	17	16	(B)	15	14	93	10	h
Name - April -	Total	25	27]	26	30	25	27	27	28	26	24	265	10	2

Circled fourth brood not used in statistical analysis.

^{7&}lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-080204

Start Date: 02/04/2008

				Nu	ımbe	r of Y	oung l	Produ	ced			Total	No.	Analyst
Sample	Day	A	В	C	D	E	F	G	н	I	J	Live Young	Live Adults	Initials
	1	0	0	0	0	0	0	0	\mathcal{C}	O	0	0	10	n
	2	0	0	0	0	0	C	0	C	0	0	0	10	1
	3	2	3	2	2	~2_	Z	3	3	3	2	25	10	2
1.0 - /1	4	0	0	6	0	4	5	0	\circ	0	0	15	10	2
1.0 g/l	5	Ś	6	16	5	0	0	4	کِ	٧		50	10	In
	6	12	13	0	10	0	1	13	10	0	0	69	10	0
	7	(I)	(12)	(10)	(9)	8	0	0	0	9	9	26	10	
	Total	19	22	24	17	14	18	20	18	16	17	185	10	4
	1	0	0	0	0	0	0	0	C	0	C	0	10	2
	2	0	0	0	0	0	0	Ô	C	C	\circ	C	10	1
	3	0	2	2	0	0	0	2	3	3	Z	14	10	h
2.0 /	4	3	0	0	2	. 3	2	0	0	C	0	60	10	2
2.0 g/l	5	0	3	2	C	Ċ	0	2	4	Ŋ	4	18	10	9
	6	5	_3	U	0	X	0	0	5	0	0	13	9	1
	7	4	(9)	0	2	e-messensio	0	2	(3)	5	4	17	9	1
	Total	12	8	4	ч	3	2	6	IZ	11	10	72	9	
	1	×	X	X	/	X	X	<i>></i> <	×	\rightarrow	X	0	$\dot{\mathcal{O}}$	2
	2		-completena t	gytikten.	an Constitution or	estation.	يعسمي	. all Philosophia	gg:Prisorius.	g00070a	Gatemorità	CARP COMPANY	gerratura	
	3			Querran.	(Glassian)		Billianner		CHROSTON	فيد التناوي	Continues	~	glocklessmanner	p-recovering.
4.0 /	4		tyram-	Quant-	Management	,	outstand.	parameter.	Pelitopopus	moment	wavi	position	A CONTRACTOR OF THE PERSON NAMED IN COLUMN NAM	at 100 completes
4.0 g/l	5	,,,,,	tini miggina	turena.		,			generalas,	/Augustanited	world	Q4m _m	Garante Activity and	SANOOHAN
	6	Sapromano	Continue	90000	-		Aurichiton	\$1950C	2 60 GW40-00-0	diltura	, manage		Park continued	description.
	7	turning	Specialists drawn	Carrie		- Olympian.	gPritterspay.	-	· ·	Vennaus.		Sings part 100 frame.	General annual production of the second	grading the same
	Total	ے	0	0		0	0	C	0	0	0	\Box	0	2

Circled fourth brood not used in statistical analysis.

^{7&}lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

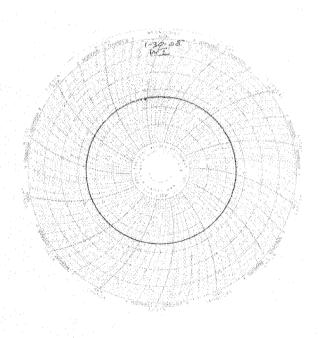
Reference Toxicant - NaCl Water Chemistries Raw Data Sheet

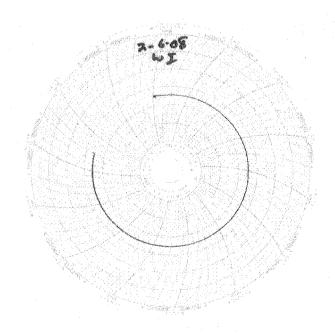
QA/QC No.: RT-080204

Brood ID:

Start Date: 02/04/2008

	o 101 oc											Start	Date: (J2/ U 1 / 2	.008
		D.	AY 1	D/	AY 2	D/	AY 3	D	AY 4	DA	Y 5	DA	AY 6	DA	AY 7
	****	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
Analyst	Initials:	1	Br	2-	Rn	2	for	R	kn	R	Å	R-	2	2	An
Time of R	eadings:	1500	1600	1600	1600	1100	1600	1600	1500	1500	1400	1900	(3.8)	137C	1400
	DO	2-7	8.3	7.8	8.4	7.3	8.2	8.3	8.0	8.1	8.0	7.8	80	シフ	8-1
Control	pН	24	8.0	7.5	7.8	7.7	2.7	26	7.7	2.5	7.9	7.5	7.8	7.5	2.9
	Temp	244	24.5	24.9	24.4	25,2	24.7	25.6	24.4	25,2	25.0	25.3	246	250	243
	DO	7.7	8.3	2.9	8.4	7.3	8.3	8.3	8.1)	8.1	8,0	7.8	80	7.8	8.3
0.25 g/l	pН	7-5	8.0	2.6	28	7.7	2.8	2.6	2.7	2.5	7.9	2.5	2-9	7.5	24
	Temp	245	24.5	24.9	24.3	25.3	24.7	25.0	24.4	25,2	25.0	25:4	24.)	25.0	24.2
	DO	7:7	8.4	7.9	8,3	7.3	8,3	8,3	8.1	8.1	8.0	7.8	7.5	7.8	8-4
0.5 g/l	рН	7-6	8.0	7.1	7.9	2.7	2.8	2.7	2.7	2.5	810	7.5	7.4	2-6	2.9
	Temp	246	24.5	24.8	24.3	25.3	24.7	25.7	24.5	25.3	25.0	25.4	246	25.0	24.5
	DO	7-8	8.4	29	83	2.3	82	8.3	8.1	8./	81	2.8	80	7.9	84
1.0 g/l	pН	70	8.1	2.7	2.9	7.7	2.8	2.7	2.7	2.5	8.0	7.5	79	7-6	80
***************************************	Temp	24.6	24.5	24.7	24.3	25.4	24.8	25.7	1245	25.3	25.1	25.5	24.8	751	240
	DO	7-8	8.4	7.9	8.2	2.3	8.2	8.3	8.2	8.0	8.1	7.8	80	28	8.4
2.0 g/l	рН	22	8.1	2.7	7.9	7.7	7.8	7.7	2.7	7.5	8.0	7.5	80	7.5	7.5
	Temp	24.0	24.5	24.6	24.4	25.6	24.8	25,5	124.5	25.4	25-1	25.6	247	25.1	24.7
	DO	79	8.3	e_agramative.	The Book is a	Marien.	elgangen der sent and a co	3620°°	Lagrania (Micros)	NEW SERVICE	gamente of the second	Manager 100 -	į	(Difference)	-38ra ₀₀ ,
4.0 g/l	рН	77	8.1	•	B ggggdglAFA++	Phadesir+	The state of the s	2000Alan (u.	, ingunitation to	orethings.	daggerous	> Metabologo	,	400mm	"magnisina».
	Temp	250	24.5	date.	Behänden -	Platomic**	,2000,000,000		Secretary		. ALANSAT	Mangalana .	hijaggari	- Charles	game.
	Dis	ssolved	l Oxyge	en (DO)	reading	s are in	mg/1 (O ₂ ; Tem	perature	(Temp)	reading	gs are in	ı°C.		
	Additional l	Parama	tore				Contr	ol				High Co	ncentrati	ion	
						y 1 Day 3		3	Day 5		Day 1	I	Day 3	D	ay 5
	Conducti	vity (μS)		30			0	285	6	120	3370		33	210
	Alkalinity (68		6.4		64	69		65		62	5
	Hardness (r	ng/l CaC	O ₃)		98		90		95		9	6	38_	9	7
	Source of Neonates														
Rep	licate:		A	В	C		D	Е	F		;	Н	I		J




Laboratory Temperature Chart

QA/QC Batch No: RT-080204

Date Tested: 02/04/08 to 02/11/08

Acceptable Range: 25+/- 1°C

DATE:

February 7, 2008

Page 1 of 9

CLIENT:

TestAmerica, Irvine

17461 Derian Ave., Ste 100

Irvine, CA 92614

ATTENTION:

Joseph Doak

REFERENCE:

IRA0151

REPORT NO:

118967

DATE RECEIVED:

2/4/08 at 0845

DATE ANALYZED:

2/7/08

SUBJECT:

ANALYSIS OF WATER SAMPLE FOR ASBESTOS BY TEM

ACCREDITED:

California Department of Health Services (ELAP-1119)

The sample(s), date and time of collection, and filtration are as follows:

<u>Sample</u>

Date/Time of

Date/Time of

Collection

Filtration

IRB0151-01

2/3/08 1015

2/4/08 0934

The sample was analyzed for fibers >10 μ m in length to conform with the drinking water document, EPA 600 R 94 134, 100.2. This regulation calls for an MCL (maximum contaminant level) of 7 MFL and an analytical sensitivity level of 0.2 MFL.

No asbestos structures >10 μ m in length were detected. The analytical sensitivity of 0.2 MFL was not reached due to the turbidity

The results of the analysis and the detection limit are summarized on the following pages.

Respectfully submitted,

EMS LABORATORIES, INC.

B. M. Kolk

Laboratory Director

BMK/ah

NOTE: The results of the analysis are based upon the samples submitted to the laboratory. No representation is made regarding the sampling area other than that implied by the analytical results for the immediate vicinity of the samples analyzed as calculated from the data presented with those samples.

This report, from a NIST laboratory through NVLAP, must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

This report shall not be reproduced, except in full, without the written approval of EMS Laboratories, Inc.

Any deviation or exclusion from the test method is noted in this cover letter.

Unless otherwise noted in this cover letter, the samples were received properly packaged, clearly identified and intact.

ANALYSIS OF WATER BY TEM (EPA-600 R 94 134) EPA 100.2

LAB NO:

118967

CLIENT: Test America

Page 2 of 9

	2/7/2008						
			FILTER	MEDIA DATA			
Laboratory I.D.	Client I.D.	Туре	Diameter mm	Effective Area mm^2	No. of G.O.	Analyzed Area, mm^2	Sample Volume (ml)
118967-01	IRB-0151-01*	PC	47	1017	10	0.092	5
			<u> </u>				
<u> </u>			 				
							· · · · · · ·
			<u> </u>				

^{*} FOR FIBERS > 10um ONLY

INDIVIDUAL ANALYTICAL RESULTS

Laboratory		N ₁	o. of Asbe	stos	Detection	CONCENTRATION (MFL)				
I.D.	I.D.	Str	Str >5um	Str >10um	Limit (MF/L)	Str		Str >10um		
118967-01	IRB-0151-01*	-	-	N.D.	2.2	-	-	N.D.		
				-						
		ļ								
		ļ					ļ			
							1			

^{*} FOR FIBERS > 10um ONLY

The analysis was carried out to the approved TEM method. This laboratory is in compliance with the quality specified by the method.

SUBCONTRACT ORDER

TestAmerica Irvine IRB0151

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

EMS Laboratories 117 W. Bellevue Drive Pasadena, CA 91105 Phone :(626) 568-4065

Fax: (626) 796-5282

Project Location: California

Receipt Temperature:

°C

Ice: Y / N

Analysis	Units	Due	Expires	Comments
Sample ID: IRB0151-01	Water		Sampled: 02/03/08 10:15	
Asbestos-TEM (100.2 - DW)) Present/Not	Pr ₁ 02/13/08	02/05/08 10:15	Boeing, permit, J flags, Out to EMS
Level 4 Data Package	N/A	02/13/08	03/02/08 10:15	a semig, permit, o hago, out to Livio
Containers Supplied: 1 Liter Poly (AC)				

Released By

Released By

Date/Time

Date/Time/

Received By

Received By

Date/Time

Page 1 of

NPDES - 1960

February 23, 2008

Vista Project I.D.: 30235

Mr. Joseph Doak Test America-Irvine, CA 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Mr. Doak,

Enclosed are the results for the one aqueous sample received at Vista Analytical Laboratory on February 05, 2008 under your Project Name "IRB0151". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Vista's current certifications, and copies of the raw data (if requested).

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha M. Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.

Section I: Sample Inventory Report Date Received: 2/5/2008

<u>Vista Lab. ID</u> <u>Client Sample ID</u>

30235-001 IRB0151-01

NPDES - 1962 Page 2 of 279

SECTION II

Project 30235 NPDES - 1963
Page 3 of 279

Method Blank						EPA Method 1613
	queous 1.00 L	QC Batch N Date Extract		Lab Sample: 0-MB001		oto Analyzad DD 225. NA
Sample Size:	1.00 L	Date Extract	ed: 15-Feb-08	Date Analyzed DB-5: 19-Feb-08	8 D	ate Analyzed DB-225: NA
Analyte	Conc. (ug/L)	DL ^a EMPO	C ^b MDL ^c Qualifiers	Labeled Standard	%R	LCL-UCL ^d Qualifiers
2,3,7,8-TCDD	ND	0.0000007	0.0000005	<u>IS</u> 13C-2,3,7,8-TCDD	82.9	25 - 164
1,2,3,7,8-PeCDD	ND	0.0000006	0.0000008	13C-1,2,3,7,8-PeCDD	75.4	25 - 181
1,2,3,4,7,8-HxCDI	O ND	0.0000016	0.0000010	13C-1,2,3,4,7,8-HxCDD	81.7	32 - 141
1,2,3,6,7,8-HxCDI) ND	0.0000017	0.0000009	13C-1,2,3,6,7,8-HxCDD	83.0	28 - 130
1,2,3,7,8,9-HxCDI) ND	0.0000016	0.0000008	13C-1,2,3,4,6,7,8-HpCDD	85.6	23 - 140
1,2,3,4,6,7,8-HpCI	DD ND	0.0000051	0.0000011	13C-OCDD	73.4	17 - 157
OCDD	0.00000899		0.0000018 J	13C-2,3,7,8-TCDF	88.8	24 - 169
2,3,7,8-TCDF	ND	0.0000006	0.0000004	13C-1,2,3,7,8-PeCDF	74.4	24 - 185
1,2,3,7,8-PeCDF	ND	0.0000007	0.0000008	13C-2,3,4,7,8-PeCDF	77.1	21 - 178
2,3,4,7,8-PeCDF	ND	0.0000007	0.0000007	13C-1,2,3,4,7,8-HxCDF	75.8	26 - 152
1,2,3,4,7,8-HxCDF	F ND	0.0000009	0.000006	13C-1,2,3,6,7,8-HxCDF	77.6	26 - 123
1,2,3,6,7,8-HxCDF	F ND	0.0000009	0.0000008	13C-2,3,4,6,7,8-HxCDF	78.0	28 - 136
2,3,4,6,7,8-HxCDF	F ND	0.0000010	0.0000009	13C-1,2,3,7,8,9-HxCDF	81.9	29 - 147
1,2,3,7,8,9-HxCDF	F ND	0.0000013	0.0000013	13C-1,2,3,4,6,7,8-HpCDF	75.7	28 - 143
1,2,3,4,6,7,8-HpCI	OF ND	0.0000033	0.000006	13C-1,2,3,4,7,8,9-HpCDF	82.1	26 - 138
1,2,3,4,7,8,9-HpCI	OF ND	0.0000020	0.0000005	13C-OCDF	76.2	17 - 157
OCDF	ND	0.0000059	0.0000042	<u>CRS</u> 37Cl-2,3,7,8-TCDD	85.1	35 - 197
Totals				Footnotes		
Total TCDD	ND	0.0000007		a. Sample specific estimated detection limit.		
Total PeCDD	ND	0.0000012		b. Estimated maximum possible concentration	on.	
Total HxCDD	ND	0.0000016		c. Method detection limit.		
Total HpCDD	ND	0.0000051		d. Lower control limit - upper control limit.		
Total TCDF	ND	0.0000006				
Total PeCDF	ND	0.0000007				
Total HxCDF	ND	0.0000010				
Total HpCDF	ND	0.0000033				

Analyst: Approved By: William J. Luksemburg 22-Feb-2008 15:49

OPR Results					EPA	Method 1	1613
Matrix: Aqueo Sample Size: 1.00 I		QC Batch No.: Date Extracted:	9953 15-Feb-08	Lab Sample: 0-OPR001 Date Analyzed DB-5: 18-Feb-08	Date Analyze	ed DB-225:	NA
Analyte	Spike Conc.	Conc. (ng/mL)	OPR Limits	Labeled Standard	%R	LCL-UCL	Qualifier
2,3,7,8-TCDD	10.0	9.20	6.7 - 15.8	<u>IS</u> 13C-2,3,7,8-TCDD	85.8	25 - 164	
1,2,3,7,8-PeCDD	50.0	46.7	35 - 71	13C-1,2,3,7,8-PeCDD	77.1	25 - 181	
1,2,3,4,7,8-HxCDD	50.0	47.0	35 - 82	13C-1,2,3,4,7,8-HxCDD	82.8	32 - 141	
1,2,3,6,7,8-HxCDD	50.0	47.2	38 - 67	13C-1,2,3,6,7,8-HxCDD	84.0	28 - 130	
1,2,3,7,8,9-HxCDD	50.0	47.7	32 - 81	13C-1,2,3,4,6,7,8-HpCDD	88.0	23 - 140	
1,2,3,4,6,7,8-HpCDD	50.0	46.1	35 - 70	13C-OCDD	78.1	17 - 157	
OCDD	100	94.4	78 - 144	13C-2,3,7,8-TCDF	90.2	24 - 169	
2,3,7,8-TCDF	10.0	8.71	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	76.3	24 - 185	
1,2,3,7,8-PeCDF	50.0	45.3	40 - 67	13C-2,3,4,7,8-PeCDF	79.4	21 - 178	
2,3,4,7,8-PeCDF	50.0	45.1	34 - 80	13C-1,2,3,4,7,8-HxCDF	78.9	26 - 152	
1,2,3,4,7,8-HxCDF	50.0	46.8	36 - 67	13C-1,2,3,6,7,8-HxCDF	80.4	26 - 123	
1,2,3,6,7,8-HxCDF	50.0	46.8	42 - 65	13C-2,3,4,6,7,8-HxCDF	79.1	28 - 136	
2,3,4,6,7,8-HxCDF	50.0	47.3	35 - 78	13C-1,2,3,7,8,9-HxCDF	84.1	29 - 147	
1,2,3,7,8,9-HxCDF	50.0	46.1	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	78.2	28 - 143	
1,2,3,4,6,7,8-HpCDF	50.0	46.8	41 - 61	13C-1,2,3,4,7,8,9-HpCDF	85.9	26 - 138	
1,2,3,4,7,8,9-HpCDF	50.0	46.7	39 - 69	13C-OCDF	82.2	17 - 157	
OCDF	100	93.5	63 - 170	<u>CRS</u> 37Cl-2,3,7,8-TCDD	88.4	35 - 197	

Analyst: MAS William J. Luksemburg 22-Feb-2008 15:49

Sample ID:	IRB0151-01							EPA N	Method 1613
Client Data			Sample Data		Laboratory Data				
Name:	Test America-I	rvine, CA	Matrix:	Aqueous	Lab Sample:	30235-001		Date Received:	5-Feb-08
Project: Date Collected:	IRB0151 3-Feb-08		Sample Size:	0.983 L	QC Batch No.:	9953		Date Extracted:	15-Feb-08
Time Collected:	1015			0.700 2	Date Analyzed DB-5:	19-Feb-08		Date Analyzed DB-225:	NA
Analyte	Conc. (ug	/L) DL ^a EMPC ^b	MDL ^c	Qualifiers	Labeled Standa	rd	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ND	0.0000008	0.0000005		<u>IS</u> 13C-2,3,7,8-TC	DD	79.0	25 - 164	
1,2,3,7,8-PeCDI	O ND	0.0000006	0.0000008		13C-1,2,3,7,8-P	eCDD	73.0	25 - 181	
1,2,3,4,7,8-HxC	DD ND	0.0000012	0.0000010		13C-1,2,3,4,7,8-	HxCDD	73.3	32 - 141	
1,2,3,6,7,8-HxC	DD ND	0.0000013	0.0000009		13C-1,2,3,6,7,8-	HxCDD	72.4	28 - 130	
1,2,3,7,8,9-HxC	DD ND	0.0000012	0.0000008		13C-1,2,3,4,6,7,	8-HpCDD	77.3	23 - 140	
1,2,3,4,6,7,8-Hp	CDD 0.0000	0521	0.0000011	J	13C-OCDD		68.3	17 - 157	
OCDD	0.0000	356	0.0000018	J,B	13C-2,3,7,8-TC	DF	83.9	24 - 169	
2,3,7,8-TCDF	ND	0.0000006	0.0000004		13C-1,2,3,7,8-Pe	eCDF	72.4	24 - 185	
1,2,3,7,8-PeCDF	F ND	0.0000008	0.0000008		13C-2,3,4,7,8-Pe	eCDF	71.9	21 - 178	
2,3,4,7,8-PeCDF		0.0000008	0.0000007		13C-1,2,3,4,7,8-	HxCDF	68.1	26 - 152	
1,2,3,4,7,8-HxC	DF ND	0.0000007	0.0000006		13C-1,2,3,6,7,8-	HxCDF	68.3	26 - 123	
1,2,3,6,7,8-HxC	DF ND	0.0000008	0.0000008		13C-2,3,4,6,7,8-	HxCDF	69.1	28 - 136	
2,3,4,6,7,8-HxC	DF ND	0.0000008	0.0000009		13C-1,2,3,7,8,9-	HxCDF	73.8	29 - 147	
1,2,3,7,8,9-HxC	DF ND	0.0000011	0.0000013		13C-1,2,3,4,6,7,	8-HpCDF	70.4	28 - 143	
1,2,3,4,6,7,8-Hp	CDF ND	0.0000027	0.0000006		13C-1,2,3,4,7,8,	9-HpCDF	73.5	26 - 138	
1,2,3,4,7,8,9-Hp		0.0000012	0.0000005		13C-OCDF		70.8	17 - 157	
OCDF	0.0000	0235	0.0000042	J	<u>CRS</u> 37Cl-2,3,7,8-TC	DD	88.2	35 - 197	
Totals					Footnotes				
Total TCDD	ND	0.0000008			a. Sample specific estimated	detection limit.			
Total PeCDD	ND	0.0000012			b. Estimated maximum possi	ble concentration	n.		
Total HxCDD	ND	0.0000021			c. Method detection limit.				
Total HpCDD	0.0000				d. Lower control limit - uppe	r control limit.			
Total TCDF	ND	0.0000006							
Total PeCDF	ND	0.00000	0						
Total HxCDF	ND	0.0000008							
Total HpCDF	ND	0.0000028							

Analyst: MAS William J. Luksemburg 22-Feb-2008 15:49

Project 30235

Project 30235

NPDES - 1966
Page 6 of 279

APPENDIX

Project 30235 NPDES - 1967
Page 7 of 279

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D Dilution

E The amount detected is above the High Calibration Limit.

P The amount reported is the maximum possible concentration due to possible

chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.

I Chemical Interference

J The amount detected is below the Low Calibration Limit.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated detection limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit – concentrations that correspond to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

SUBCONTRACT ORDER

TestAmerica Irvine IRB0151

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614 Phone: (949) 261-1022

Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Vista Analytical Laboratory-SUB

1104 Windfield Way

El Dorado Hills, CA 95762

Phone: (916) 673-1520

Fax: (916) 673-0106

Project Location: California

Receipt Temperature:

°C

Ice: Y / N

Analysis	Units	Due	Expires	Comments
Sample ID: IRB0151-01	Water		Sampled: 02/03/08 10:15	
1613-Dioxin-HR-Alta	ug/l	02/13/08	02/10/08 10:15	J flags,17 congeners,no TEQ,ug/L,sub=Vista
Level 4 + EDD-OUT	N/A	02/13/08	03/02/08 10:15	Excel EDD email to pm,Include Std logs for LvI IV
Containers Supplied:				
1 L Amber (C)	1 L Amber (D)			

Released By

Date/Time

Date/Time

£/4/08 1700

Date/Time

Page 1 of 1

NPDES - 1970 Page 10 of 279

Released By Project 30235

SAMPLE LOG-IN CHECKLIST

							Analytical	Laborato
Vista Project #:	20230	<u> </u>		· · · · · · · · · · · · · · · · · · ·	TAT	Stano	larc	1
	Date/Time		Initials:		Location	: WR	<u>, - 2</u>	**
Samples Arrival:	2/5/08	0929	BX	BSB		Shelf/Rack: N/A		
	Date/Time		Initials:	Initials:		1: L	UR-2	
Logged In:	2/4/8	1057	Ba	Shelf/Rad				
Delivered By:	FedEx	UPS	Cal	DHL	Ha	and vered	Oth	ner
Preservation:	Ice) B	Blue Ice	lue Ice Dry Ice			None	
Temp °C /.4	or _	Time: (M953 Thermometer ID: IR-					1
			SANTO CONSULTANTO MARCONO CONTRACTO DE CONTR					
						YES	NO	NA
Adequate Sample '	Volume Rece	ived?		•				
Holding Time Acce	ptable?					V		
Shipping Container	r(s) Intact?					V	/	
Shipping Custody S	Seals Intact?			1.7		V		
Shipping Documen	itation Preser	nt?			±*			
Airbill	Trk#	7926 4	1257	8964	f			
Sample Container	Intact?			:		V		

Sample Custody Seals Intact? Chain of Custody / Sample Documentation Present? COC Anomaly/Sample Acceptance Form completed? If Chlorinated or Drinking Water Samples, Acceptable Preservation? Sample None/

Client

Na₂S₂O₃ Preservation Documented? COC

Vista

Container Return Retain

Dispose

Comments:

Shipping Container

SUBCONTRACT ORDER

TestAmerica Irvine IRB0151

8020455

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue, Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Weck Laboratories, Inc.

14859 E. Clark Avenue

City of Industry, CA 91745

Phone: (626) 336-2139

Fax: (626) 336-2634

Project Location: California

Receipt Temperature:

 $^{\circ}C$

Ice: Y / N

Analysis	Units	Due Expires		Comments
Sample ID: IRB0151-01	Water		Sampled: 02/03/08 10:	15
Level 4 Data Package - We	ec N/A	02/13/08	03/02/08 10:15	
Mercury - 245.1, Diss -OUT	mg/l	02/13/08	03/02/08 10:15	Boeing, permit, J flags, OUT to Weck
Mercury - 245.1-OUT	mg/l	02/13/08	03/02/08 10:15	Boeing, permit, J flags, OUT to Weck
Containers Supplied:				
11110	125 mL Poly	/ w/HNO3		

Diss. Mercury is Filtered and pres.

Released Byz

Released By

Received By

Received By

Weck Laboratories, Inc.

Analytical Laboratory Services - Since 1964

14859 E. Clark Ave., Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634 info@wecklabs.com www.wecklabs.com

CERTIFICATE OF ANALYSIS

TestAmerica, Inc. - Irvine **Client:**

Report Date:

02/11/08 16:23

17461 Derian Ave, Suite 100

Received Date:

02/04/08 13:45

Irvine, CA 92614

Turn Around:

Normal

Attention: Joseph Doak

Fax: (949) 260-3297

Work Order #:

8020455

Phone: (949) 261-1022

Client Project:

IRB0151

NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

Dear Joseph Doak:

Enclosed are the results of analyses for samples received 02/04/08 13:45 with the Chain of Custody document. The samples were received in good condition. The samples were received at 1.9 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Reviewed by:

Kim G Tu

Project Manager

Page 1 of 6

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8020455 Project ID: IRB0151 Date Received: 02/04/08 13:45 Date Reported: 02/11/08 16:23

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Sampled by:	Sample Comments	Laboratory	Matrix	Date Sampled
IRB0151-01	Client		8020455-01	Water	02/03/08 10:15

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8020455 Project ID: IRB0151 Date Received: 02/04/08 13:45 Date Reported: 02/11/08 16:23

IRB0151-01 8020455-01 (Water)

Date Sampled: 02/03/08 10:15

Metals by EPA 200 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed		Data Qualifiers
Mercury, Dissolved	ND	0.050	ug/l	0.20	1	EPA 245.1	W8B0171	02/06/08	02/07/08	jlp	
Mercury, Total	ND	0.050	ug/l	0.20	1	EPA 245.1	W8B0171	02/06/08	02/07/08	jlp	

Week Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8020455 Project ID: IRB0151 Date Received: 02/04/08 13:45 Date Reported: 02/11/08 16:23

QUALITY CONTROL SECTION

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8020455 Project ID: IRB0151 Date Received: 02/04/08 13:45 Date Reported: 02/11/08 16:23

Metals by EPA 200 Series Methods - Quality Control

%REC

	Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch W8B0171 - EPA 245.1										
Blank (W8B0171-BLK1)				Analyzed:	02/07/08					
Mercury, Dissolved	ND	0.20	ug/l							
Mercury, Total	ND	0.20	ug/l							
LCS (W8B0171-BS1)		Ar		Analyzed:	02/07/08					
Mercury, Dissolved	1.04	0.20	ug/l	1.00		104	85-115			
Mercury, Total	1.04	0.20	ug/l	1.00		104	85-115			
Matrix Spike (W8B0171-MS1)	So	Source: 8020543-01		Analyzed:	02/07/08					
Mercury, Dissolved	1.02	0.20	ug/l	1.00	ND	102	70-130			
Mercury, Total	1.02	0.20	ug/l	1.00	ND	102	70-130			
Matrix Spike (W8B0171-MS2)	So	ource: 8020544	-01	Analyzed: 02/07/08						
Mercury, Dissolved	1.05	0.20	ug/l	1.00	ND	105	70-130			
Mercury, Total	1.05	0.20	ug/l	1.00	ND	105	70-130			
Matrix Spike Dup (W8B0171-MSD1)	So	ource: 8020543	-01	Analyzed:	02/07/08					
Mercury, Dissolved	1.04	0.20	ug/l	1.00	ND	104	70-130	2	20	
Mercury, Total	1.04	0.20	ug/l	1.00	ND	104	70-130	2	20	
Matrix Spike Dup (W8B0171-MSD2)	So	ource: 8020544	-01	Analyzed:	02/07/08					
Mercury, Dissolved	1.05	0.20	ug/l	1.00	ND	105	70-130	0	20	
Mercury, Total	1.05	0.20	ug/l	1.00	ND	105	70-130	0	20	

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8020455 Project ID: IRB0151

Date Received: 02/04/08 13:45 Date Reported: 02/11/08 16:23

Notes and Definitions

ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

% Rec Percent Recovery

Sub Subcontracted analysis, original report available upon request

MDL Method Detection Limit

MDA Minimum Detectable Activity

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

March 10, 2008

Mr. Joseph Doak Test America, Inc. 17461 Derian Avenue, Suite 100 Irvine, CA 92614

Reference: Test America Project Nos.

IRB0073, IRB0146, IRB0147, IRB0148, IRB0149,

IRB0150, IRB0151, IRB0152, IRB0153, IRB0154

IRB0156, IRB0480, IRB0751

Eberline Services NELAP Cert #01120CA

Eberline Services Reports R802024-

R802024-8693, R802040-8694, R802041-8695, R802042-8696, R802043-8697, R802044-8698 R802045-8699, R802046-8600, R802047-8601 R802048-8602, R802049-8603, R802054-8604

R802084-8608

Dear Mr. Doak:

Attached are data reports for thirteen water samples. Eleven of the samples were received at Eberline Services on February 5, one on February 7, and one on February 9, 2008. The samples were analyzed according to the accompanying Test America Subcontract Order Forms, the requested analyses were: gross alpha/gross beta (EPA 900.0), tritium (H-3, EPA906.0), Sr-90 (EPA905.0), Ra-226 (EPA903.1), Ra-228 (EPA 904.0), total uranium (ASTM D-5174), and gamma spectroscopy (EPA901.1, K-40 and Cs-137 only). The parenthetical G after a nuclide indicates that the result was obtained by gamma spectroscopy; a "U" in the results column indicates that the nuclide was not detected greater than the indicated minimum detectable activity (MDA). The samples were not filtered prior to analysis. The samples were analyzed in batches with common QC samples. Batch quality control samples consisted of LCS's, blank analyses, duplicate analyses, and matrix spike analyses (gross alpha/gross beta, H-3, Ra-226, Total-U only). All samples were batched with QC samples 8693-002, 003, 004, and 005 for all analyses. All QC sample results were within the limits defined in Eberline Services Quality Control Procedures Manual.

Please call me if you have any questions concerning this report.

Regards,

Melissa Mannion

Senior Program Manager

Melisso Mamm

MCM/njv

Enclosure: Report on CD

Eberline Services

ANALYSIS RESULTS

 SDG
 8699
 Client
 TA IRVINE

 Work Order
 R802045-01
 Contract
 PROJECT# IRB0151

 Received Date
 02/05/08
 Matrix
 WATER

Lab Sample ID	Collected Analyzed	Nuclide	Results ± 2σ	<u>Units</u>	MDA
8699-001	02/03/08 02/27/08	GrossAlpha	0.789 ± 0.64	pCi/L	0.89
	02/27/08	Gross Beta	3.36 ± 0.69	pCi/L	0.98
	02/27/08	Ra-228	0.563 ± 0.23	pCi/L	0.56
	02/25/08	K-40 (G)	U	pCi/L	28
	02/25/08	Cs-137 (G)	Ū	pCi/L	1.2
	02/29/08	H-3	-51.1 ± 87	pCi/L	150
	. 03/03/08	Ra-226	-0.059 <u>+</u> 0.34	pCi/L	0.73
	02/18/08	Sr-90	0.214 ± 0.25	pCi/L	0.46
	02/26/08	Total U	0.682 ± 0.075	pCi/L	0.022
	Sample ID	Sample ID Collected Analyzed 8699-001 02/03/08 02/27/08	Sample ID Collected Analyzed Nuclide 8699-001 02/03/08 02/27/08 GrossAlpha 02/27/08 Gross Beta 02/27/08 Ra-228 02/25/08 K-40 (G) 02/25/08 Cs-137 (G) 02/29/08 H-3 03/03/08 Ra-226 02/18/08 Sr-90	Sample ID Collected Analyzed Nuclide Results ± 20 8699-001 02/03/08 02/27/08 GrossAlpha 0.789 ± 0.64 02/27/08 Gross Beta 3.36 ± 0.69 02/27/08 Ra-228 0.563 ± 0.23 02/25/08 K-40 (G) U 02/25/08 Cs-137 (G) U 02/29/08 H-3 -51.1 ± 87 03/03/08 Ra-226 -0.059 ± 0.34 02/18/08 Sr-90 0.214 ± 0.25	Sample ID Collected Analyzed Nuclide Results ± 2σ Units 8699-001 02/03/08 02/27/08 GrossAlpha 0.789 ± 0.64 pCi/L 02/27/08 Gross Beta 3.36 ± 0.69 pCi/L 02/27/08 Ra-228 0.563 ± 0.23 pCi/L 02/25/08 K-40 (G) U pCi/L 02/25/08 Cs-137 (G) U pCi/L 02/29/08 H-3 -51.1 ± 87 pCi/L 03/03/08 Ra-226 -0.059 ± 0.34 pCi/L 02/18/08 Sr-90 0.214 ± 0.25 pCi/L

Certified by 70 Report Date 03/11/08
Page 1

Eberline Services

QC RESULTS

SDG <u>8699</u>

Client TA IRVINE

Work Order <u>R802045-01</u>

Contract PR0JECT# IRB0151

Received Date 02/05/08

Matrix WATER

Lab <u>Sample ID</u>	Nuclide	<u>Results</u>	<u>Units</u>	Amount Added	<u>MDA</u>	Evaluation
LCS						
8693-002	GrossAlpha	10.6 ± 0.82	pCi/Smpl	10.2	0.31	104% recovery
	Gross Beta	9.07 ± 0.36	pCi/Smpl	9.38	0.28	97% recovery
	Ra-228	8.40 ± 0.59	pCi/Smpl	8.66	0.88	97% recovery
	Co-60 (G)	214 ± 14	pCi/Smpl	224	9.1	96% recovery
	Cs-137 (G)	240 ± 12	pCi/Smpl	236	9.2	102% recovery
	Am-241 (G)	255 ± 26	pCi/Smpl	254	31	100% recovery
	H-3	222 ± 12	pCi/Smpl	239	13	93% recovery
	Ra-226	5.35 ± 0.24	pCi/Smpl	5.02	0.076	107% recovery
	Sr-90	10.7 ± 0.80	pCi/Smpl	9.39	0.37	114% recovery
	Total U	1.12 ± 0.13	pCi/Smpl	1.13	0.004	99% recovery
BLANK						
8693-003	GrossAlpha	-0.103 ± 0.17	pCi/Smpl	NA	0.34	<mda< td=""></mda<>
	Gross Beta	-0.111 ± 0.15	pCi/Smpl	NA	0.27	<mda< td=""></mda<>
	Ra-228	0.239 ± 0.48	pCi/Smpl	NA	0.68	<mda< td=""></mda<>
	K-40 (G)	U	pCi/Smpl	NA	110	<mda< td=""></mda<>
	Cs-137 (G)	U	pCi/Smpl	NA	5.4	<mda< td=""></mda<>
	H-3	-1.64 ± 8.3	pCi/Smpl	NA	15	<mda< td=""></mda<>
	Ra-226	0.016 ± 0.034	pCi/Smpl	NA	0.062	<mda< td=""></mda<>
	Sr-90	0.099 ± 0.15	pCi/Smpl	NA	0.27	<mda< td=""></mda<>
	Total U	0.00E 00 ± 1.9E-04	pCi/Smpl	NA	4.5E-04	<mda< td=""></mda<>

DUPL	CATES		_			ORIGINA	LS				
										Зσ	
Sample ID Nuclide	<u>Re</u>	sults	± 2σ	MDA	Sample ID	Result	s <u>+</u> 20	<u>MDA</u>	RPD .	(Tot)	<u>Eval</u>
8693-004 GrossA	Lpha 1	.03 ±	1.0	1.5	8693-001	0.763	± 0.99	1.3	-	0	satis.
Gross I	Beta 1	5.0 ±	1.2	1.6		14.2	± 0.93	0.97	5	46	satis.
Ra-228	0.	099 ±	0.18	0.48		0.295	± 0.19	0.49	-	0	satis.
K-40	(G) 2	4.8 ±	7.8	4.9		24.0	± 11	8.2	3	86	satis.
Cs-137	(G)	U		0.53		U		0.86	-	0	satis.
H-3	- 6	.31 ±	84	150		7.12	± 78	130	-	0	satis.
Ra-226	0.	583 ±	0.52	0.81		0.426	± 0.44	0.70	-	0	satis.
Sr-90	-0.	021 ±	0.29	0.71		0.026	± 0.31	0.72	-	0	satis.
Total T	J 0.	611 ±	0.067	0.022		0.578	± 0.064	0.022	6	30	satis.

Certified by____

Report Date <u>03/11/08</u>

Page 2

Eberline Services

QC RESULTS

 SDG
 8699
 Client
 TA IRVINE

 Work Order
 R802045-01
 Contract
 PROJECT# IRB0151

 Received Date
 02/05/08
 Matrix
 WATER

SPIKED SAMPLE			ORIGINAL SAMPLE					
Sample ID Nuc	clide R	esults ± 2σ	MDA	Sample ID	Results ± 20	<u>MDA</u>	Added	%Recv
8693-005 Gro	ossAlpha	95.8 ± 5.5	1.4	8693-001	0.763 ± 0.99	1.3	71.2	133
Gro	oss Beta	77.9 ± 2.0	1.5		14.2 ± 0.93	0.97	62.5	102
H-3	3 1	5500 ± 300	150		7.12 ± 78	130	16000	97
Ra-	- 226	120 ± 4.8	0.69		0.426 ± 0.44	0.70	112	107
Tot	al U	109 ± 13	2.2		0.578 ± 0.064	0.022	113	96

SUBCONTRACT ORDER

TestAmerica Irvine IRB0151

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Eberline Services 2030 Wright Avenue Richmond, CA 94804 Phone: (510) 235-2633 Fax: (510) 235-0438

Project Location: California Receipt Temperature: 4,0 °C

Ice:	$\left(\mathbf{Y} \right)$	/	N
and the same of th		-	SHOT YEAR O

Analysis	Units	Due	Expires	Comments
Sample ID: IRB0151-01	Water		Sampled: 02/03/08 10:15	
EDD + Level 4	N/A	02/13/08	03/02/08 10:15	
Gamma Spec-O	mg/kg	02/13/08	02/02/09 10:15	Out to Eberline, k-40 and cs-137 only
Gross Alpha-O	pCi/L	02/13/08	08/01/08 10:15	Out to Eberline, Boeing
Gross Beta-O	pCi/L	02/13/08	08/01/08 10:15	Out to Eberline, Boeing
Radium, Combined-O	pCi/L	02/13/08	02/02/09 10:15	Out to Eberline, Boeing
Strontium 90-O	pCi/L	02/13/08	02/02/09 10:15	Out to Eberline, Boeing
Tritium-O	pCi/L	02/13/08	02/02/09 10:15	Out to Eberline, Boeing
Uranium, Combined-O	pCi/L	02/13/08	02/02/09 10:15	Out to Eberline, Boeing
Containers Supplied:				Ç
2.5 gal Poly (O)	500 mL Amb	er (P)		

Released By

Date/Time

Released By

108

Date/Time

Page 1 of 1 NPDES - 1983

RICHMOND, CA LABORATORY

SAMPLE RECEIPT CHECKLIST

Cire	nt: TEST AMETICA SITY_		State
Date	Entime received 7/3 / CoC No	1162012 1	
Con	tainer No 16 CHEST Requested TAT (I	=. Davs==.c	Received Yes Na - 11
		SPECTION	
4	Sustody seals or, snipping container intact?		ABS X NCC 2 N/T
_	Custody seats or shipping container dated 0:	sianec'î	180 X NO I WA
No.	Dustody seals or sample container; intact?		e: NC 3 N/2 X
-	Sustooy seals on sample containers dated & s	Sianedi	485 MC I M/- X
Ē	^e acking material is		W V
ė	Number di sambles in shipping container	Samois Ma	TELL THE STATE OF
-	Number of containers per sample	in salin	· ·
£	Samples are in correct container	res 🗸	
Ē	^c 'aperwork agrees with samples?	Yes X	
1[Samples have Tabe Hazard Habels		(I DESCRIPTION OF THE PROPERTY
	Samples are in good condition \$\frac{1}{2} \text{Es}	Cau labets	- Abbrodriate sample lab — !! X
ar et Allena	Damples are Preserved Not prosessed	avillô PLOKEI	r Container Missirmy '
12	Describe any anomalies	- X, DF	reservative
. *	Mos C. M.		
	Was F M: notified of any anomalies? Inspected by	1 es / /o &	Date for 45
1E Cus	Was F Millinotified of any anomalies function of any and any anomalies function of any any anomalies function of any anomalies function of any any anomalies function of any any anomalies function of any any anomalies function of any anomalies function of any any anomalies funct	Sustamer	Date Date Details amma for One Price
18 Gus Sam	Inspected by Us	Sustamer	
18 Gus Sam	Inspected by Da Da Stomer Beta/Samma for Charities Die No open mR/m: Vvide	Sustamer	astavamus for oue tube.
18 Sus Sam	Inspected by Da Da Stomer Beta/Samma for Charities Die No open mR/m: Vvide	Sustamer	astavamus for oue tube.
18 Sus Sam	Inspected by Dastomer Beta/Samma for Chamber bie No. Com mR/m: Write 0157-1 466	Sustamer	astavamus for oue tube.
18 Sus Sam	Inspected by Dastomer Beta/Samma for Chamber bie No. Com mR/m: Write 0157-1 466	Sustamer	astavamus for oue tube.
18 Gus Sam	Inspected by Dastomer Beta/Samma for Chamber bie No. Com mR/m: Write 0157-1 466	Sustamer	astavamus for oue tube.
18 Gus Sam	Inspected by Dastomer Beta/Samma for Chamber bie No. Com mR/m: Write 0157-1 466	Sustamer	astavamus for oue tube.
18 Sus Sam	Inspected by Dastomer Beta/Samma for Chamber bie No. Com mR/m: Write 0157-1 466	Sustamer	astavamus for oue tube.
18 Sus Sam	Inspected by Dastomer Beta/Samma for Chamber bie No. Com mR/m: Write 0157-1 466	Sustamer	astavamus for oue tube.
18 Sus Sam	Inspected by Dastomer Beta/Samma for Chamber bie No. Com mR/m: Write 0157-1 466	Sustamer	astavamus for oue tube.
18 Gus Sam	Inspected by Dastomer Beta/Samma for Chamber bie No. Com mR/m: Write 0157-1 466	Sustamer	astavamus for oue tube.
18 Gus Sam	Inspected by Dastomer Beta/Samma for Chamber bie No. Com mR/m: Write 0157-1 466	Sustamer	astavamus for oue tube.
18 Sam 1913 (Inspected by The Starting Stomer Seta/Samma for Charting Stomer Metro: Write O S -	Sample NC	Setargamma ion One imperiore.
Sam 1730	Inspected by The Stamper Beta/Samma for Chamber With With DISTALL AGE.	Sample NC Sample NC	Setargamma for Ough Europe.
Cus Sam 1913 (Inspected by The Starting Stomer Seta/Samma for Charting Stomer Metro: Write O S -	Calibration date	Setargamma for Ough Europe.

over 55 vears of quality nuclear service:

APPENDIX G

Section 50

Outfall 008, February 24, 2008

MECX Data Validation Reports

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IRB2401

Prepared by

MEC^x, LLC 12269 East Vassar Drive Aurora, CO 80014 DATA VALIDATION REPORT Project: SSFL NPDES SDG: IRB2401

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: IRB2401 Project Manager: B. Kelly

Matrix: Water

QC Level: IV No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 008	IRB2401-01	30303-01, 8022632-01, 8615- 001	Water	02/24/08 1045	200.8, 245.1, 900.0, 901.1, 903.0, 904.0, 905.0, 906.0, ASTM D-5174

II. Sample Management

No anomalies were observed regarding sample management. The samples were received at TestAmerica-Irvine below the temperature limit; however, the samples were not noted to be damaged or frozen. Eberline did not provide temperature information; however, radiological samples are not required to be chilled. The samples were received at Vista within the temperature limits. According to the case narrative for this SDG, the samples were received intact at all laboratories. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine and Eberline custody seals were not required. If necessary, the client ID was added to the sample result summary by the reviewer.

1 Revision 1

DATA VALIDATION REPORT SSFL NPDES SDG: SSFL NPDES SDG: IRB2401

Data Qualifier Reference Table

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
* , *	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: April 13, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{x} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - OC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had no target compound detects above the EDL.

 Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Any EMPC value was qualified as an estimated nondetect, "UJ." Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHODS 200.8, 245.1—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: April 11, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.8 and 245.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding times, 6 months for metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤0.1 amu and ≤0.9 amu at 10% peak height.
- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP-MS

metals and 85-115% for mercury. All CRI/CRA and check standard recoveries were within the control limits of 70-130%.

- Blanks: Zinc and cadmium were detected in the total metals method blank at 6.39 and 0.133 µg/L, respectively; therefore, the detect for total zinc was qualified as an estimated nondetect, "UJ." Cadmium was not detected in the sample. There were no other applicable detects in the method blanks or CCBs.
- Interference Check Samples: ICSA/B analyses were performed in association with the total ICP-MS analyses only. Recoveries were within the method-established control limits. Most analytes were reported in the ICSA solution; however, the reviewer was not able to ascertain if the detections were indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this. Method accuracy was evaluated based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. The bracketing CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks Date Reviewed: April 2, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The tritium sample was analyzed within 180 days of collection. Aliquots
 for gross alpha and gross beta were prepared within the five-day analytical holding time
 for unpreserved samples. Aliquots for radium-226, radium-228, strontium-90, total
 uranium, and gamma spectroscopy were prepared beyond the five-day holding time for
 unpreserved samples; therefore, results for these analytes were qualified as estimated,
 "J," for detects and, "UJ," for nondetects.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, gross alpha detected in the sample was qualified as an estimated detect, "J." The gross beta detector efficiency was greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. The tritium detector efficiency for the sample was marginally less than 20%; therefore, nondetected tritium was qualified as an estimated nondetect, "UJ." The strontium chemical yield was at least 70% and was considered acceptable. The strontium and radium-226 continuing calibration results were within the laboratory control limits. The radium-228 tracer, yttrium oxalate, yields were greater than 70%. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: There were no analytes detected in the method blanks.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG.

Sample Result Verification: An EPA Level IV review was performed for the sample in this
data package. The sample results and MDAs reported on the sample result form were
verified against the raw data and no calculation or transcription errors were noted.
Reported nondetects are valid to the MDA.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

Client Data			Sample Data		Laboratory Data				
	Test America-Irvine, CA IRB2401	·	Matrix: Sample Size:	Aqueous	Lab Sample: OC Batch No.:	30303-001	Date Received: Date Extracted:	eived: acted:	26-Feb-08
Date Collected: 24-Feb-08 Time Collected: 1130	.p-08				Date Analyzed DB-5:	10-Mar-08	Date Anal	Date Analyzed DB-225:	NA
Analyte	Conc. (ug/L)	DL a	EMPCb	Qualifiers	Labeled Standard	dard	%R	rcr-ncr _q	Oualifiers
2,3,7,8-TCDD	ON	0.000000879	379		IS 13C-2,3,7,8-TCDD	COC	9.08	25 - 164	
1,2,3,7,8-PeCDD	2	0.000000915	915		13C-1,2,3,7,8-PeCDD	PeCDD	83.5	25 - 181	
1,2,3,4,7,8-HxCDD	2	0.00000182	82		13C-1,2,3,4,7,8-HxCDD	3-HxCDD	72.0	32 - 141	
1,2,3,6,7,8-HxCDD	QN QN	0.0000017	73		13C-1,2,3,6,7,8-HxCDD	3-HxCDD	81.2	28 - 130	
1,2,3,7,8,9-HxCDD	2	0.0000017	70	がなると	13C-1,2,3,4,6,7,8-HpCDD	7,8-нрСDD	82.2	23 - 140	
1,2,3,4,6,7,8-HpCDD	S		0.00000192	192	13C-OCDD		66.2	17-157	
0000	0,0000131			•	13C-2,3,7,8-TCDF	DF.	83.2	24 - 169	
2,3,7,8-TCDF	2	0.000000818	818		13C-1,2,3,7,8-PeCDF	PeCDF	70.3	24 - 185	700 00000000000000000000000000000000000
1,2,3,7,8-PeCDF	2	0.000000696	968		13C-2,3,4,7,8-PeCDF	PeCDF	80.2	21 - 178	
2,3,4,7,8-PeCDF	2	0.000000659	559	The State of the S	13C-1,2,3,4,7,8	8-HxCDF	73.0	26 - 152	
1,2,3,4,7,8-HxCDF	£	0.000000429	129		13C-1,2,3,6,7,8-HxCDF	8-HxCDF	80.9	26-123	
1,2,3,6,7,8-HxCDF	Q	0.00000100	00		13C-2,3,4,6,7,8-HxCDF	8-HxCDF	77.4	28 - 136	The second second second second second
2,3,4,6,7,8-HxCDF	2	0.000000497	497		13C-1,2,3,7,8,9-HxCDF	9-HxCDF	6.97	29 - 147	
1,2,3,7,8,9-HxCDF	Ð	0.000000642	642	The second second	13C-1,2,3,4,6,7,8-HpCDF	7,8-HpCDF	0.69	28 - 143	
1,2,3,4,6,7,8-HpCDF	Ą	0.00000140	40		13C-1,2,3,4,7,8,9-HpCDF	8,9-HpCDF	80.4	26-138	
1,2,3,4,7,8,9-HpCDF			871		13C-OCDF		2.99	17 - 157	
OCDF	Ŋ	0.00000309	60		CRS 37CI-2,3,7,8-TCDD	CDD	110	35 - 197	
Totals					Footnotes				
Total TCDD	ND	0.000000879	879		a. Sample specific estimated detection limit	sted detection limit.		2 - 75 (5) (5) (5) (5) (5)	S. COMPANY AND STREET SALES
Total PeCDD	8	0.00000202	07		b. Estimated maximum possible concentration.	ossible concentration.			
Total HxCDD	ND	0.00000174	74		c. Method detection limit.			Service Contract	Booking all the district and so the .
Total HpCDD	0.00000245	70	0.000000438	438	d. Lower control limit - upper control limit	apper control limit.	Parent Berry		We call seed to the
Total TCDF	R	0.000000818	818	The state of the s	A CONTRACTOR AND A STATE OF THE PARTY OF THE		1110000	A COLUMN TO A COLU	the state of the s
Total PeCDF	Q	0.00000126	56						
Total HxCDF	ND	0.00000114	14		The state of the s			Contraction National Property	
Total HoCDF	2	0.0000014	40						

NPDES - 1996

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 008

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Report Number: IRB2401

Sampled: 02/24/08

Received: 02/25/08

Attention: Bronwyn Kelly

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2401-01 (Outfall 008	3 - Water)								
Reporting Units: ug/l									
Antimony JIDNG	EPA 200.8	8B28067	0.20	2.0	0.30	1	02/28/08	02/29/08	J
Cadmium U	EPA 200.8	8B28067	0.11	1.0	ND	1	02/28/08	02/29/08	
Copper	EPA 200.8	8B28067	0.75	2.0	2.4	1	02/28/08	02/29/08	
Lead	EPA 200.8	8B28067	0.30	1.0	1.3	1	02/28/08	02/29/08	
Selenium U	EPA 200.8	8B28067	0.30	2.0	ND	1	02/28/08	02/29/08	
Thallium U	EPA 200.8	8B28067	0.20	1.0	ND	1	02/28/08	02/29/08	
Zinc W/R	EPA 200.8	8B28067	2.5	20	6.0	1	02/28/08	02/29/08	B, J

LEVEL IV

Joseph Doak Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 008

Sampled: 02/24/08

Attention: Bronwyn Kelly

Report Number: IRB2401

Received: 02/25/08

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Oualifiers
		Daten	Limit	Limit	Result	ractor	Extracted	Analyzeu	Qualifiers
Sample ID: IRB2401-01 (Outfall 008 - V	Water) - cont.								
Reporting Units: ug/l									
Antimony J/DNQ	EPA 200.8-Diss	8B25123	0.20	2.0	0.30	1	02/25/08	02/26/08	J
Cadmium U	EPA 200.8-Diss	8B25123	0.11	1.0	ND	1	02/25/08	02/26/08	
Copper J/DNQ	EPA 200.8-Diss	8B25123	0.75	2.0	1.8	1	02/25/08	02/26/08	J
Lead U	EPA 200.8-Diss	8B25123	0.30	1.0	ND	1	02/25/08	02/26/08	
Selenium	EPA 200.8-Diss	8B25123	0.30	2.0	ND	1	02/25/08	02/26/08	
Thallium	EPA 200.8-Diss	8B25123	0.20	1.0	ND	1	02/25/08	02/26/08	
Zinc	EPA 200.8-Diss	8B25123	2.5	20	ND	1	02/25/08	02/26/08	

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 008

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Report Number: IRB2401

Sampled: 02/24/08

Received: 02/25/08

Metals by EPA 200 Series Methods

Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IRB2401-01 (Outfall 008 - Water) - cont.											
Reporting Units: 1	ıg/l										
Mercury, Dissolved	U	EPA 245.1	W8B0982	0.050	0.20	ND	1	02/26/08	02/27/08		
Mercury, Total	U	EPA 245.1	W8B0982	0.050	0.20	ND	1	02/26/08	02/27/08		

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

Eberline Services

ANALYSIS RESULTS

SDG	8615	Client	TA IRVINE
Work Order	R802174-01	Contract	PROJECT# IRB2401
Received Date	02/26/08	Matrix	WATER

Client	Lab					
Sample ID	Sample ID	Collected Analyzed	Nuclide	Results ± 20	Units	MDA
IRB2401-01	8615-001	02/24/08 03/16/08	GrossAlpha	1.49 ± 0.80	pCi/L	1.0 J/AR
		03/16/08	Gross Beta	2.80 ± 0.90	pCi/L	1.5
		03/10/08	Ra-228	-0.118 ± 0.16	pCi/L	0.48 DJ/H
		03/12/08	K-40 (G)	Ω	pCi/L	53
		03/12/08	Cs-137 (G)	υ	pCi/L	1.9
		03/14/08	H-3	-66.3 ± 85	pCi/L	150 UJ/R
		03/14/08	Ra-226	0.296 ± 0.49	pCi/L	0.84 UT/H
		03/10/08	Sr-90	0.029 ± 0.40	pCi/L	0.95 ∜
		03/05/08	Total U	0.515 ± 0.059	pCi/L	0.023 JH

LEVEL IV

Certified by Report Date 03/20/08
Page 1