APPENDIX G

Section 31

Outfall 005, February 1, 2008 Test America Analytical Laboratory Report

Americo

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Project: Annual Outfall 005

Sampled: 02/01/08 Received: 02/01/08 Revised: 04/04/08 12:30

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, I page, is included and

is an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT:	Samples were received intact, at 3°	C, on ice and with chain of custody documentation	on.					
HOLDING TIMES:	Not all holding times were met. Re method specified holding time requ	sults were qualified where the sample analysis d irements.	id not occur within					
PRESERVATION:	Samples requiring preservation wer sample container did not meet the n	e verified prior to sample analysis. Results were nethod preservation requirements.	e qualified where the					
QA/QC CRITERIA:	All analyses met method criteria, ex	ccept as noted in the report with data qualifiers.						
	Diazinon. The IS must be within 50 and could not properly pull the sam	Internal Standard recovery for sample IRB0073-01 was outside of method limits for Chlorpyrifos and Diazinon. The IS must be within 50% of the daily calibration verification. The extraction tower had a cloand could not properly pull the sample through the solid phase extraction disk causing the low internal standard recoveries. Sample reanalyzed outside of hold time for Diazinon.						
COMMENTS:	Results that fall between the MDL a	and RL are 'J' flagged.						
SUBCONTRACTED:	Refer to the last page for specific su	bcontract laboratory information included in this	s report.					
ADDITIONAL INFORMATION:	This is a Revised Report to correct Limits and Method Detection Limit	dilution factor for Chlorpyrifos and Diazinon fro s have been adjusted accordingly.	m 4 to 2. Reprting					
LABOI	RATORY ID	CLIENT ID	MATRIX					
IRI	B0073-01	Outfall 005 W						

Trip Blanks

Reviewed By:

Joseph Dock

IRB0073-02

TestAmerica Irvine Joseph Doak Project Manager

Water

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

CORRECTIVE ACTION REPORT

Department: GCMS-Volatiles Method: EPA 525.2 QC Batch: C8B1302 Date: 04/03/2008 Matrix: Water

Identification and Definition of Problem:

The data for sample CRB0030-01RE1 was reported with a total dilution factor of 4 when the actual total dilution factor was only 2. The sample had Not Detected (ND) results for the analytes reported, but the Method Detection Limit (MDL) and the Reporting Limit (RL) were twice as high as they should have been.

Determination of the Cause of the Problem:

Based on matrix interference from a previous extraction of the sample, the analyst re-extracted the sample at an initial volume of 500 mL instead of the default 1000 mL, resulting in a dilution factor of 2. This was documented on the Sample Preparation Track Sheet, and the initial volume of 500 mL was entered into the Bench Sheet. When the analyst posted the analysis data into the Laboratory Information Management System (LIMS), he entered a dilution factor of 2 in the Data Entry Table. The LIMS had already calculated the dilution factor based on the reduced initial volume that was entered on the Bench Sheet, and the dilution factor of 2 that the analyst entered in the Data Entry Table resulted in a total dilution factor of 4. The only indication of this total dilution factor in the Data Entry Table is the fact that the MDL, RL, and sample results (if any) are multiplied by it. Neither the analyst nor the second level reviewer detected the fact that the total dilution factor was to high.

Corrective Action Taken:

The correct procedures for reporting dilution factors have been reviewed with the analyst. Dilutions performed by reducing the initial sample volume are accounted for by entering the reduced initial volume on the Bench Sheet, and the dilution factor in the Data Entry Table is only used for dilutions performed on the sample extracts. The correct procedures for performing second level reviews of data inlcuding dilutions have been reviewed with the second level data reviewer. The dilution factor in the data entry table was corrected and the report reissued with the correct MDL and RL. The sample is still ND for the analytes reported.

Quality Assurance Approval:

Jacob Staley

TestAmerica Irvine

Joseph Doak Project Manager Date: 04/04/2008 10:03 AM

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 005

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

PURGEABLES BY GC/MS (EPA 624) MDL Reporting Sample Dilution Date Data Date Method Limit **Oualifiers** Analyte Batch Limit Result Factor Extracted Analyzed Sample ID: IRB0073-01 (Outfall 005 - Water) **Reporting Units: ug/l** EPA 624 8B05038 0.30 0.50 ND 02/05/08 02/06/08 1,1,1-Trichloroethane 1 8B05038 0.24 0.50 ND 02/05/08 02/06/08 1,1,2,2-Tetrachloroethane EPA 624 1 ND 1,1,2-Trichloroethane EPA 624 8B05038 0.30 0.50 1 02/05/08 02/06/08 ND 1,1-Dichloroethane EPA 624 8B05038 0.27 0.50 1 02/05/08 02/06/08 8B05038 ND 02/05/08 02/06/08 1,1-Dichloroethene EPA 624 0.42 0.50 1 1.2-Dichloroethane EPA 624 8B05038 0.28 0.50 ND 1 02/05/08 02/06/08 1,2-Dichlorobenzene EPA 624 8B05038 0.32 0.50 ND 1 02/05/08 02/06/08 8B05038 0.35 0.50 ND 1 02/05/08 02/06/08 1,2-Dichloropropane EPA 624 1,3-Dichlorobenzene EPA 624 8B05038 0.35 0.50 ND 1 02/05/08 02/06/08 1,4-Dichlorobenzene EPA 624 8B05038 0.37 0.50 ND 1 02/05/08 02/06/08 8B05038 0.28 0.50 ND 1 02/05/08 02/06/08 Benzene EPA 624 8B05038 0.30 ND 02/05/08 02/06/08 Bromodichloromethane EPA 624 0.50 1 0.40 ND 02/05/08 02/06/08 Bromoform EPA 624 8B05038 1.0 1 ND Bromomethane EPA 624 8B05038 0.42 1.0 1 02/05/08 02/06/08 Carbon tetrachloride EPA 624 8B05038 0.28 0.50 ND 1 02/05/08 02/06/08 0.50 ND 1 Chlorobenzene EPA 624 8B05038 0.36 02/05/08 02/06/08 Chloroethane EPA 624 8B05038 0.401.0 ND 1 02/05/08 02/06/08 Chloroform EPA 624 8B05038 0.33 0.50 ND 1 02/05/08 02/06/08 8B05038 0.40 0.50 ND 02/05/08 02/06/08 Chloromethane EPA 624 1 cis-1,3-Dichloropropene EPA 624 8B05038 0.22 0.50 ND 1 02/05/08 02/06/08 0.28 ND 02/05/08 Dibromochloromethane EPA 624 8B05038 0.50 1 02/06/08 Ethylbenzene EPA 624 8B05038 0.25 0.50 ND 1 02/05/08 02/06/08 8B05038 0.95 ND 1 02/05/08 02/06/08 Methylene chloride EPA 624 2.0 0.32 ND 02/05/08 02/06/08 Tetrachloroethene EPA 624 8B05038 0.50 1 Toluene EPA 624 8B05038 0.36 0.50 ND 1 02/05/08 02/06/08 ND trans-1,2-Dichloroethene EPA 624 8B05038 0.27 0.50 1 02/05/08 02/06/08 trans-1,3-Dichloropropene ND 1 02/05/08 02/06/08 EPA 624 8B05038 0.32 0.50 Trichloroethene EPA 624 8B05038 0.26 0.50 ND 1 02/05/08 02/06/08 Trichlorofluoromethane EPA 624 8B05038 0.34 0.50 ND 1 02/05/08 02/06/08 Trichlorotrifluoroethane (Freon 113) EPA 624 8B05038 0.50 5.0 ND 1 02/05/08 02/06/08 Vinyl chloride EPA 624 8B05038 0.30 0.50 ND 1 02/05/08 02/06/08 0.90 8B05038 ND 02/05/08 Xylenes, Total EPA 624 1.5 1 02/06/08 Surrogate: Dibromofluoromethane (80-120%) 93% Surrogate: Toluene-d8 (80-120%) 102 %

TestAmerica Irvine

Surrogate: 4-Bromofluorobenzene (80-120%)

Joseph Doak Project Manager 84 %

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 005

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

PURGEABLES BY GC/MS (EPA 624) MDL Reporting Sample Dilution Date Data Date Method Limit **Oualifiers** Analyte Batch Limit Result Factor Extracted Analyzed Sample ID: IRB0073-02 (Trip Blanks - Water) **Reporting Units: ug/l** 8B02014 0.30 0.50 ND 02/02/08 02/02/08 1,1,1-Trichloroethane EPA 624 1 8B02014 0.24 0.50 ND 02/02/08 02/02/08 1,1,2,2-Tetrachloroethane EPA 624 1 ND 1,1,2-Trichloroethane EPA 624 8B02014 0.30 0.50 1 02/02/08 02/02/08 ND 1,1-Dichloroethane EPA 624 8B02014 0.27 0.50 1 02/02/08 02/02/08 8B02014 ND 02/02/08 02/02/08 1,1-Dichloroethene EPA 624 0.42 0.50 1 1.2-Dichloroethane EPA 624 8B02014 0.28 0.50 ND 1 02/02/08 02/02/08 1,2-Dichlorobenzene EPA 624 8B02014 0.32 0.50 ND 1 02/02/08 02/02/08 8B02014 0.35 0.50 ND 1 02/02/08 02/02/08 1,2-Dichloropropane EPA 624 1,3-Dichlorobenzene EPA 624 8B02014 0.35 0.50 ND 1 02/02/08 02/02/08 1,4-Dichlorobenzene EPA 624 8B02014 0.37 0.50 ND 1 02/02/08 02/02/08 8B02014 0.28 0.50 ND 1 02/02/08 02/02/08 Benzene EPA 624 0.30 8B02014 ND 02/02/08 02/02/08 Bromodichloromethane EPA 624 0.50 1 8B02014 0.40 ND 02/02/08 02/02/08 Bromoform EPA 624 0.50 1 ND Bromomethane EPA 624 8B02014 0.42 1.0 1 02/02/08 02/02/08 Carbon tetrachloride EPA 624 8B02014 0.28 0.50 ND 1 02/02/08 02/02/08 0.50 ND 1 Chlorobenzene EPA 624 8B02014 0.36 02/02/08 02/02/08 Chloroethane EPA 624 8B02014 0.401.0 ND 1 02/02/08 02/02/08 Chloroform EPA 624 8B02014 0.33 0.50 ND 1 02/02/08 02/02/08 8B02014 0.40 0.50 ND 02/02/08 02/02/08 Chloromethane EPA 624 1 cis-1,3-Dichloropropene EPA 624 8B02014 0.22 0.50 ND 1 02/02/08 02/02/08 0.28 ND 02/02/08 Dibromochloromethane EPA 624 8B02014 0.50 1 02/02/08 Ethylbenzene 8B02014 0.25 0.50 ND 1 02/02/08 02/02/08 EPA 624 Methylene chloride 8B02014 0.95 ND 1 02/02/08 02/02/08 EPA 624 2.0 8B02014 0.32 ND 02/02/08 Tetrachloroethene EPA 624 0.50 1 02/02/08 Toluene EPA 624 8B02014 0.36 0.50 ND 1 02/02/08 02/02/08 ND trans-1,2-Dichloroethene EPA 624 8B02014 0.27 0.50 1 02/02/08 02/02/08 trans-1,3-Dichloropropene 8B02014 ND 1 EPA 624 0.32 0.50 02/02/08 02/02/08 Trichloroethene EPA 624 8B02014 0.26 0.50 ND 1 02/02/08 02/02/08 Trichlorofluoromethane EPA 624 8B02014 0.34 0.50 ND 1 02/02/08 02/02/08 Trichlorotrifluoroethane (Freon 113) EPA 624 8B02014 0.50 5.0 ND 1 02/02/08 02/02/08 Vinyl chloride EPA 624 8B02014 0.30 0.50 ND 1 02/02/08 02/02/08 8B02014 0.90 ND 02/02/08 02/02/08 Xylenes, Total EPA 624 1.5 1 Surrogate: Dibromofluoromethane (80-120%) 86 % Surrogate: Toluene-d8 (80-120%) 94 %

TestAmerica Irvine

Surrogate: 4-Bromofluorobenzene (80-120%)

Joseph Doak Project Manager 83 %

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

PURGEABLES-- GC/MS (EPA 624) MDL Reporting Sample Dilution Date Date Data Qualifiers Method Batch Limit Limit Result Factor Extracted Analyte Analyzed Sample ID: IRB0073-01 (Outfall 005 - Water) Reporting Units: ug/l 8B02014 EPA 624 4.0 5.0 ND 02/02/08 02/02/08 Acrolein 1 Acrylonitrile EPA 624 8B02014 0.70 2.0 ND 02/02/08 02/02/08 1 8B02014 5.0 ND 02/02/08 02/02/08 2-Chloroethyl vinyl ether EPA 624 1.8 1 Surrogate: Dibromofluoromethane (80-120%) 87% Surrogate: Toluene-d8 (80-120%) 94 % Surrogate: 4-Bromofluorobenzene (80-120%) 84 % Sample ID: IRB0073-02 (Trip Blanks - Water) P, pH Reporting Units: ug/l 02/02/08 P9 Acrolein EPA 624 8B02014 4.0 5.0 ND 1 02/02/08 Acrylonitrile EPA 624 8B02014 0.70 2.0 ND 02/02/08 02/02/08 1 2-Chloroethyl vinyl ether EPA 624 8B02014 1.8 5.0 ND 1 02/02/08 02/02/08 P9 86 % Surrogate: Dibromofluoromethane (80-120%) Surrogate: Toluene-d8 (80-120%) 94 % Surrogate: 4-Bromofluorobenzene (80-120%) 83 %

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 005

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)										
			MDL	Reporting	-	Dilution	Date	Date	Data	
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers	
Sample ID: IRB0073-01 (Outfall 005	- Water)									
Reporting Units: ug/l										
Acenaphthene	EPA 625	8B04111	2.9	9.6	ND	0.957	02/04/08	02/07/08		
Acenaphthylene	EPA 625	8B04111	2.9	9.6	ND	0.957	02/04/08	02/07/08		
Aniline	EPA 625	8B04111	2.4	9.6	ND	0.957	02/04/08	02/07/08		
Anthracene	EPA 625	8B04111	1.9	9.6	ND	0.957	02/04/08	02/07/08		
Benzidine	EPA 625	8B04111	8.1	19	ND	0.957	02/04/08	02/07/08	L6	
Benzoic acid	EPA 625	8B04111	9.6	19	ND	0.957	02/04/08	02/07/08		
Benzo(a)anthracene	EPA 625	8B04111	1.9	9.6	ND	0.957	02/04/08	02/07/08		
Benzo(b)fluoranthene	EPA 625	8B04111	1.9	9.6	ND	0.957	02/04/08	02/07/08		
Benzo(k)fluoranthene	EPA 625	8B04111	2.4	9.6	ND	0.957	02/04/08	02/07/08		
Benzo(g,h,i)perylene	EPA 625	8B04111	3.8	9.6	ND	0.957	02/04/08	02/07/08		
Benzo(a)pyrene	EPA 625	8B04111	1.9	9.6	ND	0.957	02/04/08	02/07/08		
Benzyl alcohol	EPA 625	8B04111	2.4	19	ND	0.957	02/04/08	02/07/08		
Bis(2-chloroethoxy)methane	EPA 625	8B04111	2.9	9.6	ND	0.957	02/04/08	02/07/08		
Bis(2-chloroethyl)ether	EPA 625	8B04111	2.9	9.6	ND	0.957	02/04/08	02/07/08		
Bis(2-chloroisopropyl)ether	EPA 625	8B04111	2.4	9.6	ND	0.957	02/04/08	02/07/08		
Bis(2-ethylhexyl)phthalate	EPA 625	8B04111	3.8	48	ND	0.957	02/04/08	02/07/08		
4-Bromophenyl phenyl ether	EPA 625	8B04111	2.9	9.6	ND	0.957	02/04/08	02/07/08		
Butyl benzyl phthalate	EPA 625	8B04111	3.8	19	ND	0.957	02/04/08	02/07/08		
4-Chloroaniline	EPA 625	8B04111	1.9	9.6	ND	0.957	02/04/08	02/07/08		
2-Chloronaphthalene	EPA 625	8B04111	2.9	9.6	ND	0.957	02/04/08	02/07/08		
4-Chloro-3-methylphenol	EPA 625	8B04111	2.4	19	ND	0.957	02/04/08	02/07/08		
2-Chlorophenol	EPA 625	8B04111	2.9	9.6	ND	0.957	02/04/08	02/07/08		
4-Chlorophenyl phenyl ether	EPA 625	8B04111	2.4	9.6	ND	0.957	02/04/08	02/07/08		
Chrysene	EPA 625	8B04111	2.4	9.6	ND	0.957	02/04/08	02/07/08		
Dibenz(a,h)anthracene	EPA 625	8B04111	2.9	19	ND	0.957	02/04/08	02/07/08		
Dibenzofuran	EPA 625	8B04111	3.8	9.6	ND	0.957	02/04/08	02/07/08		
Di-n-butyl phthalate	EPA 625	8B04111	2.9	19	ND	0.957	02/04/08	02/07/08		
1,3-Dichlorobenzene	EPA 625	8B04111	2.9	9.6	ND	0.957	02/04/08	02/07/08		
1,4-Dichlorobenzene	EPA 625	8B04111	2.4	9.6	ND	0.957	02/04/08	02/07/08		
1,2-Dichlorobenzene	EPA 625	8B04111	2.9	9.6	ND	0.957	02/04/08	02/07/08		
3,3-Dichlorobenzidine	EPA 625	8B04111	2.9	19	ND	0.957	02/04/08	02/07/08		
2,4-Dichlorophenol	EPA 625	8B04111	3.3	9.6	ND	0.957	02/04/08	02/07/08		
Diethyl phthalate	EPA 625	8B04111	3.3	9.6	ND	0.957	02/04/08	02/07/08		
2,4-Dimethylphenol	EPA 625	8B04111	3.3	19	ND	0.957	02/04/08	02/07/08		
Dimethyl phthalate	EPA 625	8B04111	1.9	9.6	ND	0.957	02/04/08	02/07/08		
4,6-Dinitro-2-methylphenol	EPA 625	8B04111	3.8	19	ND	0.957	02/04/08	02/07/08		
2,4-Dinitrophenol	EPA 625	8B04111	7.7	19	ND	0.957	02/04/08	02/07/08		
2,4-Dinitrotoluene	EPA 625	8B04111	3.3	9.6	ND	0.957	02/04/08	02/07/08		
2,6-Dinitrotoluene	EPA 625	8B04111	1.9	9.6	ND	0.957	02/04/08	02/07/08		
Di-n-octyl phthalate	EPA 625	8B04111	3.3	19	ND	0.957	02/04/08	02/07/08		
Fluoranthene	EPA 625	8B04111	2.9	9.6	ND	0.957	02/04/08	02/07/08		
1 Inorumentene	L1 /1 020	000111	2.)	2.0		0.757	02/04/00	52/07/00		

TestAmerica Irvine

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 005

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)											
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: IRB0073-01 (Outfall 005 - Wate	er) - cont.										
Reporting Units: ug/l											
Fluorene	EPA 625	8B04111	2.9	9.6	ND	0.957	02/04/08	02/07/08			
Hexachlorobenzene	EPA 625	8B04111	2.9	9.6	ND	0.957	02/04/08	02/07/08			
Hexachlorobutadiene	EPA 625	8B04111	3.8	9.6	ND	0.957	02/04/08	02/07/08			
Hexachlorocyclopentadiene	EPA 625	8B04111	4.8	19	ND	0.957	02/04/08	02/07/08			
Hexachloroethane	EPA 625	8B04111	3.3	9.6	ND	0.957	02/04/08	02/07/08			
Indeno(1,2,3-cd)pyrene	EPA 625	8B04111	3.3	19	ND	0.957	02/04/08	02/07/08			
Isophorone	EPA 625	8B04111	2.4	9.6	ND	0.957	02/04/08	02/07/08			
2-Methylnaphthalene	EPA 625	8B04111	1.9	9.6	ND	0.957	02/04/08	02/07/08			
2-Methylphenol	EPA 625	8B04111	2.9	9.6	ND	0.957	02/04/08	02/07/08			
4-Methylphenol	EPA 625	8B04111	2.9	9.6	ND	0.957	02/04/08	02/07/08			
Naphthalene	EPA 625	8B04111	2.9	9.6	ND	0.957	02/04/08	02/07/08			
2-Nitroaniline	EPA 625	8B04111	1.9	19	ND	0.957	02/04/08	02/07/08			
3-Nitroaniline	EPA 625	8B04111	2.9	19	ND	0.957	02/04/08	02/07/08			
4-Nitroaniline	EPA 625	8B04111	3.8	19	ND	0.957	02/04/08	02/07/08			
Nitrobenzene	EPA 625	8B04111	2.4	19	ND	0.957	02/04/08	02/07/08			
2-Nitrophenol	EPA 625	8B04111	3.3	9.6	ND	0.957	02/04/08	02/07/08			
4-Nitrophenol	EPA 625	8B04111	5.3	19	ND	0.957	02/04/08	02/07/08			
N-Nitrosodiphenylamine	EPA 625	8B04111	1.9	9.6	ND	0.957	02/04/08	02/07/08			
N-Nitroso-di-n-propylamine	EPA 625	8B04111	3.3	9.6	ND	0.957	02/04/08	02/07/08			
Pentachlorophenol	EPA 625	8B04111	3.3	19	ND	0.957	02/04/08	02/07/08			
Phenanthrene	EPA 625	8B04111	3.3	9.6	ND	0.957	02/04/08	02/07/08			
Phenol	EPA 625	8B04111	1.9	9.6	ND	0.957	02/04/08	02/07/08			
Pyrene	EPA 625	8B04111	3.8	9.6	ND	0.957	02/04/08	02/07/08			
1,2,4-Trichlorobenzene	EPA 625	8B04111	2.4	9.6	ND	0.957	02/04/08	02/07/08			
2,4,5-Trichlorophenol	EPA 625	8B04111	2.9	19	ND	0.957	02/04/08	02/07/08			
2,4,6-Trichlorophenol	EPA 625	8B04111	4.3	19	ND	0.957	02/04/08	02/07/08			
1,2-Diphenylhydrazine/Azobenzene	EPA 625	8B04111	2.4	19	ND	0.957	02/04/08	02/07/08			
N-Nitrosodimethylamine	EPA 625	8B04111	2.4	19	ND	0.957	02/04/08	02/07/08			
Surrogate: 2-Fluorophenol (30-120%)					75 %						
Surrogate: Phenol-d6 (35-120%)					80 %						
Surrogate: 2,4,6-Tribromophenol (40-120%)					65 %						
Surrogate: Nitrobenzene-d5 (45-120%)					81 %						
Surrogate: 2-Fluorobiphenyl (50-120%)					89 %						
Surrogate: Terphenyl-d14 (50-125%)					96 %						

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 005

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0073-01 (Outfall 005 - Wate	er) - cont.								
Reporting Units: ug/l		0004054		0 00 1 -					
Aldrin	EPA 608	8B04071	0.0014	0.0047	ND	0.943	02/04/08	02/05/08	
alpha-BHC	EPA 608	8B04071	0.0024	0.0047	ND	0.943	02/04/08	02/05/08	
beta-BHC	EPA 608	8B04071	0.0038	0.0094	ND	0.943	02/04/08	02/05/08	
delta-BHC	EPA 608	8B04071	0.0033	0.0047	ND	0.943	02/04/08	02/05/08	
gamma-BHC (Lindane)	EPA 608	8B04071	0.0028	0.0094	ND	0.943	02/04/08	02/05/08	
Chlordane	EPA 608	8B04071	0.028	0.094	ND	0.943	02/04/08	02/05/08	
4,4'-DDD	EPA 608	8B04071	0.0019	0.0047	ND	0.943	02/04/08	02/05/08	
4,4'-DDE	EPA 608	8B04071	0.0028	0.0047	ND	0.943	02/04/08	02/05/08	
4,4'-DDT	EPA 608	8B04071	0.0038	0.0094	ND	0.943	02/04/08	02/05/08	
Dieldrin	EPA 608	8B04071	0.0019	0.0047	ND	0.943	02/04/08	02/05/08	
Endosulfan I	EPA 608	8B04071	0.0019	0.0047	ND	0.943	02/04/08	02/05/08	
Endosulfan II	EPA 608	8B04071	0.0028	0.0047	ND	0.943	02/04/08	02/05/08	
Endosulfan sulfate	EPA 608	8B04071	0.0028	0.0094	ND	0.943	02/04/08	02/05/08	
Endrin	EPA 608	8B04071	0.0019	0.0047	ND	0.943	02/04/08	02/05/08	
Endrin aldehyde	EPA 608	8B04071	0.0019	0.0094	ND	0.943	02/04/08	02/05/08	
Endrin ketone	EPA 608	8B04071	0.0028	0.0094	ND	0.943	02/04/08	02/05/08	
Heptachlor	EPA 608	8B04071	0.0028	0.0094	ND	0.943	02/04/08	02/05/08	
Heptachlor epoxide	EPA 608	8B04071	0.0024	0.0047	ND	0.943	02/04/08	02/05/08	
Methoxychlor	EPA 608	8B04071	0.0033	0.0047	ND	0.943	02/04/08	02/05/08	
Toxaphene	EPA 608	8B04071	0.066	0.094	ND	0.943	02/04/08	02/05/08	
Surrogate: Decachlorobiphenyl (45-120%)					78 %				
Surrogate: Tetrachloro-m-xylene (35-115%)					65 %				

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 005

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

TOTAL PCBS (EPA 608) MDL Reporting Sample Dilution Date Date Data Qualifiers Method Batch Limit Limit Result Factor Extracted Analyte Analyzed Sample ID: IRB0073-01 (Outfall 005 - Water) - cont. Reporting Units: ug/l 0.47 EPA 608 8B04071 0.42 ND 0.943 02/04/08 02/05/08 Aroclor 1016 Aroclor 1221 EPA 608 8B04071 0.24 0.47 ND 0.943 02/04/08 02/05/08 ND 02/05/08 Aroclor 1232 EPA 608 8B04071 0.24 0.47 0.943 02/04/08 02/04/08 Aroclor 1242 8B04071 ND 0.943 02/05/08 EPA 608 0.24 0.47 Aroclor 1248 8B04071 0.24 0.47 ND 0.943 02/04/08 02/05/08 EPA 608 Aroclor 1254 EPA 608 8B04071 0.24 0.47 ND 0.943 02/04/08 02/05/08 Aroclor 1260 EPA 608 8B04071 0.28 0.47 ND 0.943 02/04/08 02/05/08 Surrogate: Decachlorobiphenyl (45-120%) 86 %

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METALS MDL Reporting Sample Dilution Date Date Data Analyte Method Batch Limit Limit Result Factor Extracted Analyzed Qualifiers Sample ID: IRB0073-01 (Outfall 005 - Water) - cont. Reporting Units: mg/l 0.33 02/05/08 Hardness as CaCO3 SM2340B [CALC] N/A 170 02/05/08 1 Boron EPA 200.7 8B05087 0.020 0.050 0.034 1 02/05/08 02/05/08 J Calcium EPA 200.7 0.050 54 02/05/08 8B05087 0.10 1 02/05/08 EPA 200.7 8B05087 0.015 0.040 3.4 02/05/08 02/05/08 Iron 1 EPA 200.7 8B05087 0.012 0.020 8.1 1 02/05/08 02/05/08 Magnesium

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 005

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METALS											
			MDL	Reporting	Sample	Dilution	Date	Date	Data		
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers		
Sample ID: IRB0073-01 (Outfall 005 - Wa	ter) - cont.										
Reporting Units: ug/l											
Aluminum	EPA 200.7	8B05087	40	50	3800	1	02/05/08	02/05/08			
Antimony	EPA 200.8	8B05090	0.20	2.0	0.43	1	02/05/08	02/05/08	J		
Arsenic	EPA 200.7	8B05087	7.0	10	ND	1	02/05/08	02/05/08			
Beryllium	EPA 200.7	8B05087	0.90	2.0	ND	1	02/05/08	02/05/08			
Cadmium	EPA 200.8	8B05090	0.11	1.0	0.48	1	02/05/08	02/05/08	J		
Chromium	EPA 200.7	8B05087	2.0	5.0	4.2	1	02/05/08	02/05/08	J		
Copper	EPA 200.8	8B05090	0.75	2.0	3.8	1	02/05/08	02/05/08			
Lead	EPA 200.8	8B05090	0.30	1.0	1.4	1	02/05/08	02/05/08			
Nickel	EPA 200.7	8B05087	2.0	10	15	1	02/05/08	02/05/08			
Selenium	EPA 200.7	8B05087	8.0	10	ND	1	02/05/08	02/05/08			
Silver	EPA 200.7	8B05087	6.0	10	ND	1	02/05/08	02/05/08			
Thallium	EPA 200.8	8B05090	0.20	1.0	ND	1	02/05/08	02/05/08			
Vanadium	EPA 200.7	8B05087	3.0	10	7.2	1	02/05/08	02/05/08	J		
Zinc	EPA 200.7	8B05087	6.0	20	25	1	02/05/08	02/05/08			

TestAmerica Irvine

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Arcadia, CA 91007

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 005

618 Michillinda Avenue, Suite 200

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

DISSOLVED METALS											
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: IRB0073-01 (Outfall 005 - Reporting Units: mg/l	Water) - cont.										
Hardness as CaCO3	SM2340B-Diss	[CALC]	N/A	0.33	170	1	02/05/08	02/06/08			
Boron	EPA 200.7-Diss	8B05111	0.020	0.050	0.031	1	02/05/08	02/06/08	J		
Calcium	EPA 200.7-Diss	8B05111	0.050	0.10	55	1	02/05/08	02/06/08	MHA		
Iron	EPA 200.7-Diss	8B05111	0.015	0.040	0.030	1	02/05/08	02/06/08	J		
Magnesium	EPA 200.7-Diss	8B05111	0.012	0.020	7.5	1	02/05/08	02/06/08			

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 005

DISSOLVED METALS

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

MDL Reporting Sample Dilution Date Date Data Qualifiers Method Limit Result Factor Extracted Analyte Batch Limit Analyzed Sample ID: IRB0073-01 (Outfall 005 - Water) - cont. Reporting Units: ug/l EPA 200.7-Diss 8B05111 40 50 62 02/05/08 02/06/08 Aluminum 1 EPA 200.8-Diss 8B04144 0.20 2.0 0.30 02/04/08 02/05/08 J Antimony 1 7.0 ND EPA 200.7-Diss 8B05111 10 02/05/08 02/06/08 Arsenic 1 0.90 ND Beryllium EPA 200.7-Diss 8B05111 2.0 1 02/05/08 02/06/08 Cadmium 8B04144 0.22 02/04/08 02/05/08 EPA 200.8-Diss 0.11 1.0 1 J Chromium EPA 200.7-Diss 8B05111 2.0 5.0 ND 1 02/05/08 02/06/08 Copper EPA 200.8-Diss 8B04144 0.75 2.0 1.7 1 02/04/08 02/05/08 J EPA 200.8-Diss 8B04144 0.30 ND 1 02/04/08 02/05/08 Lead 1.0 Nickel EPA 200.7-Diss 8B05111 2.0 10 12 1 02/05/08 02/06/08 Selenium EPA 200.7-Diss 8B05111 8.0 10 ND 1 02/05/08 02/06/08 Silver EPA 200.7-Diss 8B05111 6.0 10 ND 1 02/05/08 02/06/08 02/05/08 8B04144 Thallium EPA 200.8-Diss 0.20 ND 02/04/08 1.0 1 Vanadium EPA 200.7-Diss 8B05111 3.0 10 ND 02/05/08 02/06/08 1 J Zinc 1 02/05/08 EPA 200.7-Diss 8B05111 6.0 20 12 02/06/08

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 005

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

INORGANICS											
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: IRB0073-01 (Outfall 005 - 1	Water) - cont.										
Reporting Units: mg/l											
Hexane Extractable Material (Oil &	EPA 1664A	8B11060	1.3	4.8	2.2	1	02/11/08	02/11/08	J		
Grease)											
Chloride	EPA 300.0	8B01050	0.25	0.50	13	1	02/01/08	02/01/08			
Fluoride	EPA 300.0	8B01050	0.15	0.50	0.27	1	02/01/08	02/01/08	J		
Nitrate/Nitrite-N	EPA 300.0	8B01050	0.15	0.26	0.17	1	02/01/08	02/01/08	J		
Sulfate	EPA 300.0	8B01050	4.0	10	140	20	02/01/08	02/01/08	M-3		
Total Dissolved Solids	SM2540C	8B07122	10	10	310	1	02/07/08	02/07/08			
Total Suspended Solids	EPA 160.2	8B04128	10	10	55	1	02/04/08	02/04/08			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

INORGANICS										
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IRB0073-01 (Outfall 005 - V	Vater) - cont.									
Reporting Units: ug/l										
Total Cyanide	EPA 335.2	8B04112	2.2	5.0	ND	1	02/04/08	02/04/08		
Perchlorate	EPA 314.0	8B11053	1.5	4.0	ND	1	02/11/08	02/11/08		

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

ORGANIC COMPOUNDS BY GC/MS (EPA 525.2)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0073-01 (Outfall 005 - Wa	ater) - cont.								N1, P, pHa
Reporting Units: ug/l									
Chlorpyrifos	EPA 525.2	C8B0516	0.10	1.0	ND	1	02/05/08	02/07/08	
Diazinon	EPA 525.2	C8B0516	0.24	0.25	ND	1	02/05/08	02/07/08	
Surrogate: 1,3-Dimethyl-2-nitrobenzene (7	0-130%)				97 %				
Surrogate: Triphenylphosphate (70-130%)					112 %				
Surrogate: Perylene-d12 (70-130%)					97 %				

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

93 %

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

ORGANIC COMPOUNDS BY GC/MS (EPA 525.2) MDL Reporting Sample Dilution Date Date Data Analyte Method Batch Limit Limit Result Factor Extracted Analyzed Qualifiers Sample ID: IRB0073-01RE1 (Outfall 005 - Water) - cont. Reporting Units: ug/l 02/05/08 Chlorpyrifos EPA 525.2 C8B1302 0.21 2.0 ND 2 02/14/08 Diazinon EPA 525.2 C8B1302 0.48 0.50 ND 2 02/05/08 02/14/08 H2 112 % Surrogate: 1,3-Dimethyl-2-nitrobenzene (70-130%) Surrogate: Triphenylphosphate (70-130%) 111 %

Surrogate: Perylene-d12 (70-130%)

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

Metals by EPA 200 Series Methods										
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IRB0073-01 (Outfall 005 - Wa	nter) - cont.									
Reporting Units: ug/l										
Mercury, Dissolved	EPA 245.1	W8B0147	0.050	0.20	ND	1	02/05/08	02/07/08		
Mercury, Total	EPA 245.1	W8B0147	0.050	0.20	ND	1	02/05/08	02/07/08		

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 005 (IRB0073-01) - Wate	r				
EPA 300.0	2	02/01/2008 08:30	02/01/2008 18:30	02/01/2008 19:00	02/01/2008 20:13
EPA 624	3	02/01/2008 08:30	02/01/2008 18:30	02/02/2008 00:00	02/02/2008 15:50
Sample ID: Trip Blanks (IRB0073-02) - Wat	er				
EPA 624	3	02/01/2008 08:30	02/01/2008 18:30	02/02/2008 00:00	02/02/2008 15:21

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

A 17	D L	Reporting	MDI	TT •4	Spike	Source	A/DEC	%REC	DDD	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B02014 Extracted: 02/02/08	<u>8</u>										
	T T74										
Blank Analyzed: 02/02/2008 (8B02014-E											
1,1,1-Trichloroethane	ND	0.50	0.30	ug/l							
1,1,2,2-Tetrachloroethane	ND	0.50	0.24	ug/l							
1,1,2-Trichloroethane	ND	0.50	0.30	ug/l							
1,1-Dichloroethane	ND	0.50	0.27	ug/l							
1,1-Dichloroethene	ND	0.50	0.42	ug/l							
1,2-Dichloroethane	ND	0.50	0.28	ug/l							
1,2-Dichlorobenzene	ND	0.50	0.32	ug/l							
1,2-Dichloropropane	ND	0.50	0.35	ug/l							
1,3-Dichlorobenzene	ND	0.50	0.35	ug/l							
1,4-Dichlorobenzene	ND	0.50	0.37	ug/l							
Benzene	ND	0.50	0.28	ug/l							
Bromodichloromethane	ND	0.50	0.30	ug/l							
Bromoform	ND	0.50	0.40	ug/l							
Bromomethane	ND	1.0	0.42	ug/l							
Carbon tetrachloride	ND	0.50	0.28	ug/l							
Chlorobenzene	ND	0.50	0.36	ug/l							
Chloroethane	ND	1.0	0.40	ug/l							
Chloroform	ND	0.50	0.33	ug/l							
Chloromethane	ND	0.50	0.40	ug/l							
cis-1,3-Dichloropropene	ND	0.50	0.22	ug/l							
Dibromochloromethane	ND	0.50	0.28	ug/l							
Ethylbenzene	ND	0.50	0.25	ug/l							
Methylene chloride	ND	2.0	0.95	ug/l							
Tetrachloroethene	ND	0.50	0.32	ug/l							
Toluene	ND	0.50	0.36	ug/l							
trans-1,2-Dichloroethene	ND	0.50	0.27	ug/l							
trans-1,3-Dichloropropene	ND	0.50	0.32	ug/l							
Trichloroethene	ND	0.50	0.26	ug/l							
Trichlorofluoromethane	ND	0.50	0.34	ug/l							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	0.50	ug/l							
Vinyl chloride	ND	0.50	0.30	ug/l							
Xylenes, Total	ND	1.5	0.90	ug/l							
Surrogate: Dibromofluoromethane	20.5			ug/l	25.0		82	80-120			
Surrogate: Toluene-d8	23.8			ug/l	25.0		95	80-120			
Surrogate: 4-Bromofluorobenzene	20.6			ug/l	25.0		83	80-120			
- ·				5							

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B02014 Extracted: 02/02/08	8										-
Butth. OB02011 Extracted. 02/02/0	0										
LCS Analyzed: 02/02/2008 (8B02014-BS	51)										
1,1,1-Trichloroethane	25.2	0.50	0.30	ug/l	25.0		101	65-135			
1,1,2,2-Tetrachloroethane	24.9	0.50	0.24	ug/l	25.0		100	55-130			
1,1,2-Trichloroethane	24.0	0.50	0.30	ug/l	25.0		96	70-125			
1,1-Dichloroethane	23.0	0.50	0.27	ug/l	25.0		92	70-125			
1,1-Dichloroethene	22.3	0.50	0.42	ug/l	25.0		89	70-125			
1,2-Dichloroethane	23.0	0.50	0.28	ug/l	25.0		92	60-140			
1,2-Dichlorobenzene	26.9	0.50	0.32	ug/l	25.0		108	75-120			
1,2-Dichloropropane	24.3	0.50	0.35	ug/l	25.0		97	70-125			
1,3-Dichlorobenzene	26.8	0.50	0.35	ug/l	25.0		107	75-120			
1,4-Dichlorobenzene	24.7	0.50	0.37	ug/l	25.0		99	75-120			
Benzene	25.2	0.50	0.28	ug/l	25.0		101	70-120			
Bromodichloromethane	26.4	0.50	0.30	ug/l	25.0		106	70-135			
Bromoform	22.1	0.50	0.40	ug/l	25.0		88	55-130			
Bromomethane	32.7	1.0	0.42	ug/l	25.0		131	65-140			
Carbon tetrachloride	26.9	0.50	0.28	ug/l	25.0		108	65-140			
Chlorobenzene	25.1	0.50	0.36	ug/l	25.0		100	75-120			
Chloroethane	24.8	1.0	0.40	ug/l	25.0		99	60-140			
Chloroform	23.7	0.50	0.33	ug/l	25.0		95	70-130			
Chloromethane	20.3	0.50	0.40	ug/l	25.0		81	50-140			
cis-1,3-Dichloropropene	24.5	0.50	0.22	ug/l	25.0		98	75-125			
Dibromochloromethane	25.0	0.50	0.28	ug/l	25.0		100	70-140			
Ethylbenzene	26.4	0.50	0.25	ug/l	25.0		106	75-125			
Methylene chloride	22.2	2.0	0.95	ug/l	25.0		89	55-130			
Tetrachloroethene	25.3	0.50	0.32	ug/l	25.0		101	70-125			
Toluene	24.5	0.50	0.36	ug/l	25.0		98	70-120			
trans-1,2-Dichloroethene	25.4	0.50	0.27	ug/l	25.0		102	70-125			
trans-1,3-Dichloropropene	22.4	0.50	0.32	ug/l	25.0		90	70-125			
Trichloroethene	25.4	0.50	0.26	ug/l	25.0		101	70-125			
Trichlorofluoromethane	26.9	0.50	0.34	ug/l	25.0		107	65-145			
Vinyl chloride	22.6	0.50	0.30	ug/l	25.0		90	55-135			
Xylenes, Total	76.0	1.5	0.90	ug/l	75.0		101	70-125			
Surrogate: Dibromofluoromethane	21.2			ug/l	25.0		85	80-120			
Surrogate: Toluene-d8	23.8			ug/l	25.0		95	80-120			
Surrogate: 4-Bromofluorobenzene	21.3			ug/l	25.0		85	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B02014 Extracted: 02/02/08	}										
Matrix Spike Analyzed: 02/02/2008 (8B0	2014-MS1)				Sou	rce: IRA	2902-06				
1,1,1-Trichloroethane	24.3	0.50	0.30	ug/l	25.0	ND	97	65-140			
1,1,2,2-Tetrachloroethane	24.6	0.50	0.24	ug/l	25.0	ND	98	55-135			
1,1,2-Trichloroethane	24.0	0.50	0.30	ug/l	25.0	ND	96	65-130			
1,1-Dichloroethane	23.0	0.50	0.27	ug/l	25.0	0.490	90	65-130			
1,1-Dichloroethene	24.4	0.50	0.42	ug/l	25.0	1.78	90	60-130			
1,2-Dichloroethane	23.1	0.50	0.28	ug/l	25.0	ND	92	60-140			
1,2-Dichlorobenzene	25.1	0.50	0.32	ug/l	25.0	ND	100	75-125			
1,2-Dichloropropane	23.8	0.50	0.35	ug/l	25.0	ND	95	65-130			
1,3-Dichlorobenzene	25.4	0.50	0.35	ug/l	25.0	ND	102	75-125			
1,4-Dichlorobenzene	23.3	0.50	0.37	ug/l	25.0	ND	93	75-125			
Benzene	26.1	0.50	0.28	ug/l	25.0	1.60	98	65-125			
Bromodichloromethane	25.6	0.50	0.30	ug/l	25.0	ND	102	70-135			
Bromoform	21.3	0.50	0.40	ug/l	25.0	ND	85	55-135			
Bromomethane	22.1	1.0	0.42	ug/l	25.0	ND	88	55-145			
Carbon tetrachloride	26.0	0.50	0.28	ug/l	25.0	ND	104	65-140			
Chlorobenzene	23.9	0.50	0.36	ug/l	25.0	ND	95	75-125			
Chloroethane	15.8	1.0	0.40	ug/l	25.0	ND	63	55-140			
Chloroform	23.0	0.50	0.33	ug/l	25.0	ND	92	65-135			
Chloromethane	17.1	0.50	0.40	ug/l	25.0	ND	69	45-145			
cis-1,3-Dichloropropene	23.7	0.50	0.22	ug/l	25.0	ND	95	70-130			
Dibromochloromethane	23.8	0.50	0.28	ug/l	25.0	ND	95	65-140			
Ethylbenzene	25.4	0.50	0.25	ug/l	25.0	0.450	100	65-130			
Methylene chloride	21.5	2.0	0.95	ug/l	25.0	ND	86	50-135			
Tetrachloroethene	32.4	0.50	0.32	ug/l	25.0	6.19	105	65-130			
Toluene	23.0	0.50	0.36	ug/l	25.0	ND	92	70-125			
trans-1,2-Dichloroethene	24.7	0.50	0.27	ug/l	25.0	ND	99	65-130			
trans-1,3-Dichloropropene	21.8	0.50	0.32	ug/l	25.0	ND	87	65-135			
Trichloroethene	27.2	0.50	0.26	ug/l	25.0	2.20	100	65-125			
Trichlorofluoromethane	25.9	0.50	0.34	ug/l	25.0	ND	104	60-145			
Vinyl chloride	20.2	0.50	0.30	ug/l	25.0	ND	81	45-140			
Xylenes, Total	71.6	1.5	0.90	ug/l	75.0	ND	95	60-130			
Surrogate: Dibromofluoromethane	21.3			ug/l	25.0		85	80-120			
Surrogate: Toluene-d8	24.0			ug/l	25.0		96	80-120			
Surrogate: 4-Bromofluorobenzene	21.3			ug/l	25.0		85	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

A 17	DK	Reporting	MDI	T T •4	Spike	Source	A/ DEC	%REC	DDD	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B02014 Extracted: 02/02/08	<u>}_</u>										
					_						
Matrix Spike Dup Analyzed: 02/02/2008		· · · · · · · · · · · · · · · · · · ·				rce: IRA					
1,1,1-Trichloroethane	23.7	0.50	0.30	ug/l	25.0	ND	95	65-140	2	20	
1,1,2,2-Tetrachloroethane	24.1	0.50	0.24	ug/l	25.0	ND	96	55-135	2	30	
1,1,2-Trichloroethane	23.0	0.50	0.30	ug/l	25.0	ND	92	65-130	4	25	
1,1-Dichloroethane	22.5	0.50	0.27	ug/l	25.0	0.490	88	65-130	3	20	
1,1-Dichloroethene	23.3	0.50	0.42	ug/l	25.0	1.78	86	60-130	5	20	
1,2-Dichloroethane	22.5	0.50	0.28	ug/l	25.0	ND	90	60-140	3	20	
1,2-Dichlorobenzene	24.8	0.50	0.32	ug/l	25.0	ND	99	75-125	1	20	
1,2-Dichloropropane	22.9	0.50	0.35	ug/l	25.0	ND	92	65-130	4	20	
1,3-Dichlorobenzene	24.8	0.50	0.35	ug/l	25.0	ND	99	75-125	3	20	
1,4-Dichlorobenzene	22.7	0.50	0.37	ug/l	25.0	ND	91	75-125	3	20	
Benzene	24.8	0.50	0.28	ug/l	25.0	1.60	93	65-125	5	20	
Bromodichloromethane	25.0	0.50	0.30	ug/l	25.0	ND	100	70-135	3	20	
Bromoform	21.4	0.50	0.40	ug/l	25.0	ND	86	55-135	1	25	
Bromomethane	29.4	1.0	0.42	ug/l	25.0	ND	118	55-145	28	25	R
Carbon tetrachloride	25.3	0.50	0.28	ug/l	25.0	ND	101	65-140	3	25	
Chlorobenzene	23.6	0.50	0.36	ug/l	25.0	ND	95	75-125	1	20	
Chloroethane	23.2	1.0	0.40	ug/l	25.0	ND	93	55-140	38	25	R
Chloroform	22.6	0.50	0.33	ug/l	25.0	ND	90	65-135	2	20	
Chloromethane	18.4	0.50	0.40	ug/l	25.0	ND	74	45-145	7	25	
cis-1,3-Dichloropropene	22.5	0.50	0.22	ug/l	25.0	ND	90	70-130	5	20	
Dibromochloromethane	24.2	0.50	0.28	ug/l	25.0	ND	97	65-140	2	25	
Ethylbenzene	25.0	0.50	0.25	ug/l	25.0	0.450	98	65-130	1	20	
Methylene chloride	21.2	2.0	0.95	ug/l	25.0	ND	85	50-135	2	20	
Tetrachloroethene	31.3	0.50	0.32	ug/l	25.0	6.19	100	65-130	3	20	
Toluene	22.4	0.50	0.36	ug/l	25.0	ND	89	70-125	3	20	
trans-1,2-Dichloroethene	24.1	0.50	0.27	ug/l	25.0	ND	96	65-130	2	20	
trans-1,3-Dichloropropene	21.1	0.50	0.32	ug/l	25.0	ND	84	65-135	3	25	
Trichloroethene	26.1	0.50	0.26	ug/l	25.0	2.20	96	65-125	4	20	
Trichlorofluoromethane	25.1	0.50	0.34	ug/l	25.0	ND	100	60-145	3	25	
Vinyl chloride	21.1	0.50	0.30	ug/l	25.0	ND	85	45-140	4	30	
Xylenes, Total	70.4	1.5	0.90	ug/l	75.0	ND	94	60-130	2	20	
Surrogate: Dibromofluoromethane	21.4			ug/l	25.0		85	80-120			
Surrogate: Toluene-d8	23.8			ug/l	25.0		95	80-120			
Surrogate: 4-Bromofluorobenzene	21.5			ug/l	25.0		86	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
-		Linit	MDL	emis	Level	Regult	/under	Linnes	ΜD	Linu	Quanners
Batch: 8B05038 Extracted: 02/05/08	<u>8</u>										
Blank Analyzed: 02/05/2008 (8B05038-F	BLK1)										
1,1,1-Trichloroethane	ND	0.50	0.30	ug/l							
1,1,2,2-Tetrachloroethane	ND	0.50	0.24	ug/l							
1,1,2-Trichloroethane	ND	0.50	0.30	ug/l							
1,1-Dichloroethane	ND	0.50	0.27	ug/l							
1,1-Dichloroethene	ND	0.50	0.42	ug/l							
1,2-Dichloroethane	ND	0.50	0.28	ug/l							
1,2-Dichlorobenzene	ND	0.50	0.32	ug/l							
1,2-Dichloropropane	ND	0.50	0.35	ug/l							
1,3-Dichlorobenzene	ND	0.50	0.35	ug/l							
1,4-Dichlorobenzene	ND	0.50	0.37	ug/l							
Benzene	ND	0.50	0.28	ug/l							
Bromodichloromethane	ND	0.50	0.30	ug/l							
Bromoform	ND	1.0	0.40	ug/l							
Bromomethane	ND	1.0	0.42	ug/l							
Carbon tetrachloride	ND	0.50	0.28	ug/l							
Chlorobenzene	ND	0.50	0.36	ug/l							
Chloroethane	ND	1.0	0.40	ug/l							
Chloroform	ND	0.50	0.33	ug/l							
Chloromethane	ND	0.50	0.40	ug/l							
cis-1,3-Dichloropropene	ND	0.50	0.22	ug/l							
Dibromochloromethane	ND	0.50	0.28	ug/l							
Ethylbenzene	ND	0.50	0.25	ug/l							
Methylene chloride	1.18	2.0	0.95	ug/l							J
Tetrachloroethene	ND	0.50	0.32	ug/l							
Toluene	ND	0.50	0.36	ug/l							
trans-1,2-Dichloroethene	ND	0.50	0.27	ug/l							
trans-1,3-Dichloropropene	ND	0.50	0.32	ug/l							
Trichloroethene	ND	0.50	0.26	ug/l							
Trichlorofluoromethane	ND	0.50	0.34	ug/l							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	0.50	ug/l							
Vinyl chloride	ND	0.50	0.30	ug/l							
Xylenes, Total	ND	1.5	0.90	ug/l							
Surrogate: Dibromofluoromethane	24.2			ug/l	25.0		97	80-120			
Surrogate: Toluene-d8	25.7			ug/l	25.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	21.5			ug/l	25.0		86	80-120			
				-							

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
·		Linit	MDL	Onits	Level	Result	JUREC	Linits	KI D	Linnt	Quanners
Batch: 8B05038 Extracted: 02/05/08	<u>8</u>										
LCS Analyzed: 02/05/2008 (8B05038-BS	31)										
1,1,1-Trichloroethane	23.3	0.50	0.30	ug/l	25.0		93	65-135			
1,1,2,2-Tetrachloroethane	26.1	0.50	0.30	ug/l	25.0		104	55-130			
1,1,2-Trichloroethane	25.0	0.50	0.24	ug/l	25.0 25.0		104	70-125			
1,1-Dichloroethane	23.4	0.50	0.27	ug/l	25.0		94	70-125			
1,1-Dichloroethene	20.6	0.50	0.42	ug/l	25.0		83	70-125			
1,2-Dichloroethane	25.0	0.50	0.42	ug/l	25.0		100	60-140			
1,2-Dichlorobenzene	25.9	0.50	0.20	ug/l	25.0		100	75-120			
1,2-Dichloropropane	25.1	0.50	0.32	ug/l	25.0		104	70-125			
1,3-Dichlorobenzene	26.1	0.50	0.35	ug/l	25.0		101	75-120			
1,4-Dichlorobenzene	23.7	0.50	0.35	ug/l	25.0		95	75-120			
Benzene	23.6	0.50	0.28	ug/l	25.0		95	70-120			
Bromodichloromethane	25.8	0.50	0.20	ug/l	25.0		103	70-120			
Bromoform	23.0	1.0	0.40	ug/l	25.0		92	55-130			
Bromomethane	23.0	1.0	0.40	ug/l	25.0		100	65-140			
Carbon tetrachloride	23.7	0.50	0.42	ug/l	25.0		95	65-140			
Chlorobenzene	25.8	0.50	0.26	ug/l	25.0		103	75-120			
Chloroethane	25.5	1.0	0.40	ug/l	25.0		103	60-140			
Chloroform	24.4	0.50	0.33	ug/l	25.0		97	70-130			
Chloromethane	25.0	0.50	0.33	ug/l	25.0		100	50-140			
cis-1,3-Dichloropropene	25.8	0.50	0.22	ug/l	25.0		100	75-125			
Dibromochloromethane	27.5	0.50	0.22	ug/l	25.0		110	70-140			
Ethylbenzene	24.7	0.50	0.25	ug/l	25.0		99	75-125			
Methylene chloride	23.2	2.0	0.25	ug/l	25.0		93	55-130			
Tetrachloroethene	23.7	0.50	0.32	ug/l	25.0		95	70-125			
Toluene	24.3	0.50	0.36	ug/l	25.0		97	70-120			
trans-1,2-Dichloroethene	25.3	0.50	0.27	ug/l	25.0		101	70-125			
trans-1,3-Dichloropropene	26.6	0.50	0.32	ug/l	25.0		107	70-125			
Trichloroethene	24.4	0.50	0.26	ug/l	25.0		97	70-125			
Trichlorofluoromethane	27.0	0.50	0.34	ug/l	25.0		108	65-145			
Vinyl chloride	24.1	0.50	0.30	ug/l	25.0		97	55-135			
Xylenes, Total	77.3	1.5	0.90	ug/l	75.0		103	70-125			
Surrogate: Dibromofluoromethane	25.2	1.0	0.20	ug/l	25.0		105	80-120			
Surrogate: Toluene-d8	25.6			ug/l	25.0 25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	25.5			ug/l	25.0 25.0		103	80-120			
Sur Sque. I Di omoji uoi obenzene	20.0			"5"	20.0		102	00 120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyta Dasult	Reporting Limit	MDI	Un:ta	Spike	Source	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Analyte Result	Limit	MDL	Units	Level	Result	70KEU	Limits	KPD	Limit	Quanners
Batch: 8B05038 Extracted: 02/05/08										
				G	ID (
Matrix Spike Analyzed: 02/05/2008 (8B05038-MS	<i>,</i>		_		rce: IRA					
1,1,1-Trichloroethane 22.0	0.50	0.30	ug/l	25.0	ND	88	65-140			
1,1,2,2-Tetrachloroethane 24.3	0.50	0.24	ug/l	25.0	ND	97	55-135			
1,1,2-Trichloroethane 24.2	0.50	0.30	ug/l	25.0	ND	97	65-130			
1,1-Dichloroethane 22.4	0.50	0.27	ug/l	25.0	ND	89	65-130			
1,1-Dichloroethene 19.5	0.50	0.42	ug/l	25.0	ND	78	60-130			
1,2-Dichloroethane 24.0	0.50	0.28	ug/l	25.0	ND	96	60-140			
1,2-Dichlorobenzene 24.8	0.50	0.32	ug/l	25.0	ND	99	75-125			
1,2-Dichloropropane 24.2	0.50	0.35	ug/l	25.0	ND	97	65-130			
1,3-Dichlorobenzene 24.7	0.50	0.35	ug/l	25.0	ND	99	75-125			
1,4-Dichlorobenzene 22.4	0.50	0.37	ug/l	25.0	ND	89	75-125			
Benzene 22.6	0.50	0.28	ug/l	25.0	ND	90	65-125			
Bromodichloromethane 24.3	0.50	0.30	ug/l	25.0	ND	97	70-135			
Bromoform 21.3	1.0	0.40	ug/l	25.0	ND	85	55-135			
Bromomethane 24.3	1.0	0.42	ug/l	25.0	ND	97	55-145			
Carbon tetrachloride 22.6	0.50	0.28	ug/l	25.0	ND	91	65-140			
Chlorobenzene 24.0	0.50	0.36	ug/l	25.0	ND	96	75-125			
Chloroethane 24.8	1.0	0.40	ug/l	25.0	ND	99	55-140			
Chloroform 23.4	0.50	0.33	ug/l	25.0	ND	94	65-135			
Chloromethane 24.6	0.50	0.40	ug/l	25.0	ND	98	45-145			
cis-1,3-Dichloropropene 25.0	0.50	0.22	ug/l	25.0	ND	100	70-130			
Dibromochloromethane 25.5	0.50	0.28	ug/l	25.0	ND	102	65-140			
Ethylbenzene 23.2	0.50	0.25	ug/l	25.0	ND	93	65-130			
Methylene chloride 21.2	2.0	0.95	ug/l	25.0	ND	85	50-135			
Tetrachloroethene 22.3	0.50	0.32	ug/l	25.0	ND	89	65-130			
Toluene 23.4	0.50	0.36	ug/l	25.0	ND	93	70-125			
trans-1,2-Dichloroethene 24.3	0.50	0.27	ug/l	25.0	ND	97	65-130			
trans-1,3-Dichloropropene 25.8	0.50	0.32	ug/l	25.0	ND	103	65-135			
Trichloroethene 23.4	0.50	0.26	ug/l	25.0	ND	94	65-125			
Trichlorofluoromethane 26.7	0.50	0.34	ug/l	25.0	ND	107	60-145			
Vinyl chloride 23.6	0.50	0.30	ug/l	25.0	ND	94	45-140			
Xylenes, Total 71.4	1.5	0.90	ug/l	75.0	ND	95	60-130			
Surrogate: Dibromofluoromethane 24.8			ug/l	25.0		99	80-120			
Surrogate: Toluene-d8 25.9			ug/l	25.0		104	80-120			
Surrogate: 4-Bromofluorobenzene 24.8			ug/l	25.0		99	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyta	Degult	Reporting Limit	MDI	Un:ta	Spike Level	Source	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Analyte	Result	Limit	MDL	Units	Level	Result	70KEU	Limits	KPD	Limit	Quanners
Batch: 8B05038 Extracted: 02/05/08	<u>}</u>										
	(0D05020)				C	ID 4					
Matrix Spike Dup Analyzed: 02/05/2008						rce: IRA				• •	
1,1,1-Trichloroethane	22.7	0.50	0.30	ug/l	25.0	ND	91	65-140	3	20	
1,1,2,2-Tetrachloroethane	22.3	0.50	0.24	ug/l	25.0	ND	89	55-135	9	30	
1,1,2-Trichloroethane	22.8	0.50	0.30	ug/l	25.0	ND	91	65-130	6	25	
1,1-Dichloroethane	22.6	0.50	0.27	ug/l	25.0	ND	90	65-130	1	20	
1,1-Dichloroethene	20.2	0.50	0.42	ug/l	25.0	ND	81	60-130	3	20	
1,2-Dichloroethane	23.0	0.50	0.28	ug/l	25.0	ND	92	60-140	4	20	
1,2-Dichlorobenzene	24.8	0.50	0.32	ug/l	25.0	ND	99	75-125	0	20	
1,2-Dichloropropane	24.3	0.50	0.35	ug/l	25.0	ND	97	65-130	0	20	
1,3-Dichlorobenzene	25.5	0.50	0.35	ug/l	25.0	ND	102	75-125	3	20	
1,4-Dichlorobenzene	22.8	0.50	0.37	ug/l	25.0	ND	91	75-125	2	20	
Benzene	22.7	0.50	0.28	ug/l	25.0	ND	91	65-125	1	20	
Bromodichloromethane	24.1	0.50	0.30	ug/l	25.0	ND	97	70-135	1	20	
Bromoform	20.0	1.0	0.40	ug/l	25.0	ND	80	55-135	6	25	
Bromomethane	25.7	1.0	0.42	ug/l	25.0	ND	103	55-145	5	25	
Carbon tetrachloride	22.9	0.50	0.28	ug/l	25.0	ND	92	65-140	1	25	
Chlorobenzene	24.1	0.50	0.36	ug/l	25.0	ND	96	75-125	1	20	
Chloroethane	25.3	1.0	0.40	ug/l	25.0	ND	101	55-140	2	25	
Chloroform	23.5	0.50	0.33	ug/l	25.0	ND	94	65-135	0	20	
Chloromethane	25.6	0.50	0.40	ug/l	25.0	ND	102	45-145	4	25	
cis-1,3-Dichloropropene	24.5	0.50	0.22	ug/l	25.0	ND	98	70-130	2	20	
Dibromochloromethane	24.7	0.50	0.28	ug/l	25.0	ND	99	65-140	3	25	
Ethylbenzene	23.6	0.50	0.25	ug/l	25.0	ND	94	65-130	2	20	
Methylene chloride	21.5	2.0	0.95	ug/l	25.0	ND	86	50-135	1	20	
Tetrachloroethene	22.6	0.50	0.32	ug/l	25.0	ND	91	65-130	2	20	
Toluene	23.3	0.50	0.36	ug/l	25.0	ND	93	70-125	0	20	
trans-1,2-Dichloroethene	24.6	0.50	0.27	ug/l	25.0	ND	98	65-130	1	20	
trans-1,3-Dichloropropene	24.4	0.50	0.32	ug/l	25.0	ND	98	65-135	5	25	
Trichloroethene	23.5	0.50	0.26	ug/l	25.0	ND	94	65-125	1	20	
Trichlorofluoromethane	27.1	0.50	0.34	ug/l	25.0	ND	108	60-145	1	25	
Vinyl chloride	24.3	0.50	0.30	ug/l	25.0	ND	97	45-140	3	30	
Xylenes, Total	72.4	1.5	0.90	ug/l	75.0	ND	97	60-130	1	20	
Surrogate: Dibromofluoromethane	24.8			ug/l	25.0		99	80-120			
Surrogate: Toluene-d8	25.8			ug/l	25.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	24.3			ug/l	25.0		97	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

PURGEABLES-- GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B02014 Extracted: 02/02/08	_										
Blank Analyzed: 02/02/2008 (8B02014-B	LK1)										
Acrolein	ND	5.0	4.0	ug/l							
Acrylonitrile	ND	2.0	0.70	ug/l							
2-Chloroethyl vinyl ether	ND	5.0	1.8	ug/l							
Surrogate: Dibromofluoromethane	20.5			ug/l	25.0		82	80-120			
Surrogate: Toluene-d8	23.8			ug/l	25.0		95	80-120			
Surrogate: 4-Bromofluorobenzene	20.6			ug/l	25.0		83	80-120			
LCS Analyzed: 02/02/2008 (8B02014-BS	1)										
2-Chloroethyl vinyl ether	23.5	5.0	1.8	ug/l	25.0		94	25-170			
Surrogate: Dibromofluoromethane	21.2			ug/l	25.0		85	80-120			
Surrogate: Toluene-d8	23.8			ug/l	25.0		95	80-120			
Surrogate: 4-Bromofluorobenzene	21.3			ug/l	25.0		85	80-120			
Matrix Spike Analyzed: 02/02/2008 (8B0	2014-MS1)				Sou	rce: IRA	2902-06				
2-Chloroethyl vinyl ether	ND	5.0	1.8	ug/l	25.0	ND		25-170			M13
Surrogate: Dibromofluoromethane	21.3			ug/l	25.0		85	80-120			
Surrogate: Toluene-d8	24.0			ug/l	25.0		96	80-120			
Surrogate: 4-Bromofluorobenzene	21.3			ug/l	25.0		85	80-120			
Matrix Spike Dup Analyzed: 02/02/2008	(8B02014-M	SD1)			Sou	rce: IRA	2902-06				
2-Chloroethyl vinyl ether	ND	5.0	1.8	ug/l	25.0	ND		25-170		25	M13
Surrogate: Dibromofluoromethane	21.4			ug/l	25.0		85	80-120			
Surrogate: Toluene-d8	23.8			ug/l	25.0		95	80-120			
Surrogate: 4-Bromofluorobenzene	21.5			ug/l	25.0		86	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
				0 1110	2000	1000000	, und e		iu p		Zummers
Batch: 8B04111 Extracted: 02/04/08	<u>o</u>										
Blank Analyzed: 02/07/2008 (8B04111-F	BLK1)										
Acenaphthene	ND	10	3.0	ug/l							
Acenaphthylene	ND	10	3.0	ug/l							
Aniline	ND	10	2.5	ug/l							
Anthracene	ND	10	2.0	ug/l							
Benzidine	ND	20	8.5	ug/l							
Benzoic acid	ND	20	10	ug/l							
Benzo(a)anthracene	ND	10	2.0	ug/l							
Benzo(b)fluoranthene	ND	10	2.0	ug/l							
Benzo(k)fluoranthene	ND	10	2.5	ug/l							
Benzo(g,h,i)perylene	ND	10	4.0	ug/l							
Benzo(a)pyrene	ND	10	2.0	ug/l							
Benzyl alcohol	ND	20	2.5	ug/l							
Bis(2-chloroethoxy)methane	ND	10	3.0	ug/l							
Bis(2-chloroethyl)ether	ND	10	3.0	ug/l							
Bis(2-chloroisopropyl)ether	ND	10	2.5	ug/l							
Bis(2-ethylhexyl)phthalate	ND	50	4.0	ug/l							
4-Bromophenyl phenyl ether	ND	10	3.0	ug/l							
Butyl benzyl phthalate	ND	20	4.0	ug/l							
4-Chloroaniline	ND	10	2.0	ug/l							
2-Chloronaphthalene	ND	10	3.0	ug/l							
4-Chloro-3-methylphenol	ND	20	2.5	ug/l							
2-Chlorophenol	ND	10	3.0	ug/l							
4-Chlorophenyl phenyl ether	ND	10	2.5	ug/l							
Chrysene	ND	10	2.5	ug/l							
Dibenz(a,h)anthracene	ND	20	3.0	ug/l							
Dibenzofuran	ND	10	4.0	ug/l							
Di-n-butyl phthalate	ND	20	3.0	ug/l							
1,3-Dichlorobenzene	ND	10	3.0	ug/l							
1,4-Dichlorobenzene	ND	10	2.5	ug/l							
1,2-Dichlorobenzene	ND	10	3.0	ug/l							
3,3-Dichlorobenzidine	ND	20	3.0	ug/l							
2,4-Dichlorophenol	ND	10	3.5	ug/l							
Diethyl phthalate	ND	10	3.5	ug/l							
2,4-Dimethylphenol	ND	20	3.5	ug/l							
Dimethyl phthalate	ND	10	2.0	ug/l							

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04111 Extracted: 02/04/08	2										-
Daten. 0004111 Extracted. 02/04/00	<u> </u>										
Blank Analyzed: 02/07/2008 (8B04111-B	LK1)										
4,6-Dinitro-2-methylphenol	ND	20	4.0	ug/l							
2,4-Dinitrophenol	ND	20	8.0	ug/l							
2,4-Dinitrotoluene	ND	10	3.5	ug/l							
2,6-Dinitrotoluene	ND	10	2.0	ug/l							
Di-n-octyl phthalate	ND	20	3.5	ug/l							
Fluoranthene	ND	10	3.0	ug/l							
Fluorene	ND	10	3.0	ug/l							
Hexachlorobenzene	ND	10	3.0	ug/l							
Hexachlorobutadiene	ND	10	4.0	ug/l							
Hexachlorocyclopentadiene	ND	20	5.0	ug/l							
Hexachloroethane	ND	10	3.5	ug/l							
Indeno(1,2,3-cd)pyrene	ND	20	3.5	ug/l							
Isophorone	ND	10	2.5	ug/l							
2-Methylnaphthalene	ND	10	2.0	ug/l							
2-Methylphenol	ND	10	3.0	ug/l							
4-Methylphenol	ND	10	3.0	ug/l							
Naphthalene	ND	10	3.0	ug/l							
2-Nitroaniline	ND	20	2.0	ug/l							
3-Nitroaniline	ND	20	3.0	ug/l							
4-Nitroaniline	ND	20	4.0	ug/l							
Nitrobenzene	ND	20	2.5	ug/l							
2-Nitrophenol	ND	10	3.5	ug/l							
4-Nitrophenol	ND	20	5.5	ug/l							
N-Nitrosodiphenylamine	ND	10	2.0	ug/l							
N-Nitroso-di-n-propylamine	ND	10	3.5	ug/l							
Pentachlorophenol	ND	20	3.5	ug/l							
Phenanthrene	ND	10	3.5	ug/l							
Phenol	ND	10	2.0	ug/l							
Pyrene	ND	10	4.0	ug/l							
1,2,4-Trichlorobenzene	ND	10	2.5	ug/l							
2,4,5-Trichlorophenol	ND	20	3.0	ug/l							
2,4,6-Trichlorophenol	ND	20	4.5	ug/l							
1,2-Diphenylhydrazine/Azobenzene	ND	20	2.5	ug/l							
N-Nitrosodimethylamine	ND	20	2.5	ug/l							
Surrogate: 2-Fluorophenol	159			ug/l	200		80	30-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
·	Result	Linnt	MIDL	Onits	Level	Result	JUREC	Linits	KI D	Linit	Quanners
Batch: 8B04111 Extracted: 02/04/08											
Blank Analyzed: 02/07/2008 (8B04111-BL	K1)										
Surrogate: Phenol-d6	166			ug/l	200		83	35-120			
Surrogate: 2,4,6-Tribromophenol	129			ug/l	200		64	40-120			
Surrogate: Nitrobenzene-d5	83.8			ug/l	100		84	45-120			
Surrogate: 2-Fluorobiphenyl	82.4			ug/l	100		82	43 120 50-120			
Surrogate: Terphenyl-d14	82.8			ug/l	100		83	50-125			
Surrogue. Terphenyi u14	02.0			45/1	100		05	50 125			
LCS Analyzed: 02/07/2008 (8B04111-BS1))										
Acenaphthene	92.8	10	3.0	ug/l	100		93	60-120			
Acenaphthylene	97.0	10	3.0	ug/l	100		97	60-120			
Aniline	86.7	10	2.5	ug/l	100		87	35-120			
Anthracene	91.1	10	2.0	ug/l	100		91	65-120			
Benzidine	161	20	8.5	ug/l	100		161	30-160			<i>L6</i>
Benzoic acid	74.5	20	10	ug/l	100		74	25-120			
Benzo(a)anthracene	95.9	10	2.0	ug/l	100		96	65-120			
Benzo(b)fluoranthene	87.2	10	2.0	ug/l	100		87	55-125			
Benzo(k)fluoranthene	88.9	10	2.5	ug/l	100		89	50-125			
Benzo(g,h,i)perylene	83.0	10	4.0	ug/l	100		83	45-135			
Benzo(a)pyrene	91.9	10	2.0	ug/l	100		92	55-130			
Benzyl alcohol	99.9	20	2.5	ug/l	100		100	50-120			
Bis(2-chloroethoxy)methane	92.9	10	3.0	ug/l	100		93	55-120			
Bis(2-chloroethyl)ether	86.4	10	3.0	ug/l	100		86	50-120			
Bis(2-chloroisopropyl)ether	98.4	10	2.5	ug/l	100		98	45-120			
Bis(2-ethylhexyl)phthalate	99.9	50	4.0	ug/l	100		100	65-130			
4-Bromophenyl phenyl ether	86.0	10	3.0	ug/l	100		86	60-120			
Butyl benzyl phthalate	104	20	4.0	ug/l	100		104	55-130			
4-Chloroaniline	95.8	10	2.0	ug/l	100		96	55-120			
2-Chloronaphthalene	91.9	10	3.0	ug/l	100		92	60-120			
4-Chloro-3-methylphenol	97.9	20	2.5	ug/l	100		98	60-120			
2-Chlorophenol	86.3	10	3.0	ug/l	100		86	45-120			
4-Chlorophenyl phenyl ether	89.9	10	2.5	ug/l	100		90	65-120			
Chrysene	92.3	10	2.5	ug/l	100		92	65-120			
Dibenz(a,h)anthracene	84.8	20	3.0	ug/l	100		85	50-135			
Dibenzofuran	93.2	10	4.0	ug/l	100		93	65-120			
Di-n-butyl phthalate	85.8	20	3.0	ug/l	100		86	60-125			
1,3-Dichlorobenzene	74.9	10	3.0	ug/l	100		75	35-120			
1,4-Dichlorobenzene	79.8	10	2.5	ug/l	100		80	35-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Bach: 8094111 Extracted: 02/04/08 1/2 Dichlorobenzene 80.6 0 3.0 ugl 100 81 40-12 3.3 Dichlorobenzene 81.1 20 3.0 ugl 100 84 45-135 3.4 Dichlorobenzene 91.0 10 3.5 ugl 100 81 40-120 Dichly Iphthalate 92.2 10 3.5 ugl 100 81 40-120 Abenichylphenol 85.5 10 2.0 ugl 100 86 45-120 4-Dimitro-2-methylphenol 85.8 2.0 4.0 ugl 100 94 40-120 4-Dimitro-2-methylphenol 94.2 2.0 8.0 ugl 100 95 52.0 2-A-Dimitrobuene 94.1 10 2.0 ugl 100 86 52.10 2-A-Dimitrobuene 94.1 10 3.0 ugl 100 86 52.10 2-A-Dimitrobuene 95.4 10 3.0 ugl 100 87 52.10 2-A-Dimitrobuene 95.6 10 <	Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
1.2-Dichlorobenzelmi 80.6 10 3.0 ug1 100 81 40-120 3.3-Dichlorobenzidine 84.1 20 3.0 ug1 100 84 45.135 2.4-Dichlorobenzidine 91.0 10 3.5 ug1 100 91 55.120 2.4-Dinchlylphhalate 92.2 10 3.5 ug1 100 91 40-120 2.4-Dinchlylphenol 80.5 20 3.5 ug1 100 94 40-120 2.4-Dinitrobluene 85.8 20 4.0 ug1 100 86 45.120 2.4-Dinitrobluene 94.2 20 8.0 ug1 100 94 40-120 2.4-Dinitrobluene 101 10 3.5 ug1 100 86 65-120 Din-ocyl phthalate 83.3 20 3.0 ug1 100 81 60-120 Fluoranthene 82.3 10 3.0 ug1 100 77 40-120 Hexachlorobenzzne 86.7 10 3.0 ug1 100 81	Batch: 8B04111 Extracted: 02/04/08											
1.2-Dichlorobenzelni 80.6 10 3.0 ug/l 100 81 40-120 3.3-Dichlorobenzidine 84.1 20 3.0 ug/l 100 84 45.135 2.4-Dichlorobenzidine 91.0 10 3.5 ug/l 100 91 55.120 2.4-Dinchlylphhalate 92.2 10 3.5 ug/l 100 90 30.120 4.6-Dinitor-Denthylphenol 80.5 20 3.5 ug/l 100 94 40-120 2.4-Dinitrobluene 85.8 20 4.0 ug/l 100 86 45.120 2.4-Dinitrobluene 101 10 3.5 ug/l 100 80 65.120 2.4-Dinitrobluene 98.1 10 2.0 ug/l 100 82 65.135 Fluoranthene 82.3 10 3.0 ug/l 100 81 60.120 Hexachlorobenzenc 86.7 10 3.0 ug/l 100 74 40.120 Lecandurobenzenc 85.8 20 5.0 ug/l 100		_										
3.3-Dichlorobenzidine84.1203.0ug/l1008445-1352.4-Dinchlorophenol9.00.03.5ug/l1009.055-120Dichlyl phhalate9.2103.5ug/l1008.140-120Dinethyl phhalate85.5102.0ug/l1009.030-1204.6-Dinitro-2-methylphenol85.82.04.0ug/l1009.440-1202.4-Dinitrophenol94.22.08.0ug/l1009.440-1202.4-Dinitrobluene94.1102.0ug/l1009.665-1202.4-Dinitrobluene98.1102.0ug/l1008.665-120Din-octyl phhalate82.3103.0ug/l1008.665-120Fluorantene85.6103.0ug/l1007.665-120Fluorantene7.6103.0ug/l1007.740-120Hexachlorobtadiene7.6103.5ug/l1007.735-120Hexachlorobtadiene7.6103.0ug/l1009.655-120Ideno(1,2,2)erdprene83.2103.0ug/l1009.655-120Hexachlorobtadiene7.6103.0ug/l1009.655-120Ideno(1,2,2)erdprene9.3103.0ug/l1009.655-120Abyhlynholhene9.2103.0<	•	·										
2.4-Dichlorophenol 91.0 10 3.5 ug/l 100 91 55-120 Diethyl phthalate 92.2 10 3.5 ug/l 100 92 55-120 2.4-Dimethyl phthalate 89.5 10 2.0 ug/l 100 81 40-120 Dimethyl phthalate 89.5 10 2.0 ug/l 100 94 45-120 2.4-Dinitrophenol 85.8 20 4.0 ug/l 100 94 40-120 2.4-Dinitroblene 94.1 10 3.5 ug/l 100 94 65-120 2.4-Dinitroblene 98.1 10 2.0 ug/l 100 82 65-135 Fluorantene 82.3 10 3.0 ug/l 100 81 60-120 Hexachlorobenzene 95.6 10 3.0 ug/l 100 73 85-120 Hexachlorobenzene 80.7 10 3.0 ug/l 100 73 45-120 Ideno(1,2,3-ed)pyrene 85.2 20 3.5 ug/l 100 74<					ug/l							
Diethyl phulate92.2103.5ug/l1009255-1202,4.Dinethyl phualate80.5203.5ug/l1008140-120Dimethyl phualate89.5102.0ug/l1009030-1204.6.Dintro-2-methyl phualate85.8204.0ug/l1009440-1202,4-Dinitroblene194.2208.0ug/l1009440-1202,4-Dinitroblene98.1102.0ug/l1008965-130Di-n-octyl phthalate89.3103.0ug/l1008260-120Fluorantene95.6103.0ug/l1008160-120Fluorantene80.7103.0ug/l1008160-120Hexachlorobenzene80.7103.0ug/l1008160-120Hexachlorobenzene76.8103.5ug/l1007740-120Hexachlorobenzene76.5103.5ug/l1007735-120Indeno(1,2,3-cd)pyrene85.2203.5ug/l1009450-1202-Methylphenol90.9103.0ug/l1009150-1202-Methylphenol90.3103.0ug/l1009150-1202-Methylphenol90.3103.0ug/l1009150-1202-Methylphenol90.3103.0ug/l100 <td>3,3-Dichlorobenzidine</td> <td></td> <td></td> <td></td> <td>ug/l</td> <td></td> <td></td> <td>84</td> <td>45-135</td> <td></td> <td></td> <td></td>	3,3-Dichlorobenzidine				ug/l			84	45-135			
2.4-Dimethylphenol80.5203.5ug/l1008140-120Dimethylphthalae89.5102.0ug/l1009030-1204.6-Dimitro-2-methylphenol85.8204.0ug/l1008645-1202.4-Dimitrophenol94.2208.0ug/l1009865-1202.4-Dimitrobluene101103.5ug/l1008965-1202.6-Dimitrobluene89.3203.5ug/l1008965-120Fluoramhene82.3103.0ug/l1008160-120Fluoramhene85.6103.0ug/l1008160-120Hexachlorobenzene80.7103.0ug/l1007740-120Hexachlorobyclopentadine76.8103.0ug/l1007740-120Hexachlorobyclopentadine76.5103.5ug/l1007735-120Hexachlorobyclopentadine93.8102.5ug/l1009450-120Hexachlorobyclopentadine90.9103.0ug/l1009450-120Hexachlorobyclopentadine91.8102.0ug/l1009450-120Hexachlorobyclopentadine92.9103.0ug/l1009450-120Hexachlorobyclopentadine93.8103.0ug/l1009450-120Hexachlorobyclopentadine	· •		10		ug/l	100						
Dimethyl phthalate89.5102.0ug/l1009030-1204.6-Dinitro-2-methylphenol85.8204.0ug/l1008645-1202.4-Dinitrophenol94.2208.0ug/l1009440-1202.4-Dinitrotoluene101103.5ug/l1009865-1202.6-Dinitrotoluene89.3203.5ug/l1008965-135Fluoranthene82.3103.0ug/l1008260-120Hexachlorobenzene87.6103.0ug/l1008160-120Hexachlorobenzene76.8104.0ug/l1007740-120Hexachlorobenzene85.2205.0ug/l1007745-135Iophonon76.5103.5ug/l1007735-120Indeno(1,2,3-dy)prene85.2203.5ug/l1009155-1202-Methylphenol90.3103.0ug/l1009155-1202-Methylphenol90.3103.0ug/l1009155-1202-Nitrophenol97.2203.0ug/l1009155-1202-Nitrophenol97.2203.0ug/l1009760-1202-Nitrophenol95.5204.0ug/l1009755-1202-Nitrophenol95.5203.0ug/l100975	Diethyl phthalate		10		-	100						
4,6-Diniro-2-methylphenol85.8204.0ug/l1008645-1202,4-Dinirotoluene101103.5ug/l1009440-1202,4-Dinirotoluene101103.5ug/l10010165-1202,6-Dinirotoluene98.1102.0ug/l1008965-135Fluoranthene82.3103.0ug/l1008160-120Fluoranthene85.6103.0ug/l1008160-120Hexachlorobenzene80.7103.0ug/l1007740-120Hexachlorobetadiene76.8104.0ug/l1007735-120Hexachlorobethane76.5103.5ug/l1007735-120Indeno(1,2,3-cd)pyrene85.2203.5ug/l1009450-1202-Methylphenol90.9103.0ug/l1009155-1202-Methylphenol90.9103.0ug/l1009155-1202-Methylphenol90.9103.0ug/l1009155-1202-Methylphenol90.9103.0ug/l1009155-1202-Nitroaniline97.22.03.0ug/l1009760-1203-Nitroaniline95.52.04.0ug/l1009755-1202-Nitrophenol9.03.52.5ug/l10094	2,4-Dimethylphenol		20	3.5	ug/l	100		81	40-120			
2.4-Dinitrophenol94.2208.0ug/l1009440-1202.4-Dinitrotoluene101103.5ug/l10010165-1202.6-Dinitrotoluene98.1102.0ug/l1008865-120Di-n-octyl phthalate89.3203.5ug/l1008260-120Fluoranthene82.3103.0ug/l1008160-120Hexachlorobenzene80.7103.0ug/l1007740-120Hexachlorobetadiene76.8104.0ug/l1007735-120Hexachlorobetadiene76.5103.5ug/l1007735-120Hexachlorobetadiene93.8102.5ug/l1007735-120Hexachlorobetadiene91.2102.5ug/l1009155-1202-Methylnaphthalene91.2102.0ug/l1009155-1202-Methylphenol90.3103.0ug/l1009155-1202-Methylphenol90.3103.0ug/l1009155-1202-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline99.5204.0ug/l1009760-1202-Nitroaniline93.5202.5ug/l1009760-1202-Nitroaniline93.52.02.5ug/l100 <t< td=""><td>Dimethyl phthalate</td><td>89.5</td><td>10</td><td>2.0</td><td>ug/l</td><td>100</td><td></td><td>90</td><td>30-120</td><td></td><td></td><td></td></t<>	Dimethyl phthalate	89.5	10	2.0	ug/l	100		90	30-120			
2,4-Dinirotoluene101103.5ug/l10010165-1202,6-Dinirotoluene98.1102.0ug/l1009865-135Fluoranthene82.3103.0ug/l1008260-120Fluorene95.6103.0ug/l1008160-120Hexachlorobenzene80.7103.0ug/l1007740-120Hexachlorobutadiene76.8103.5ug/l1007740-120Hexachlorocthane76.5103.5ug/l1007735-120Inden(1,2,3-cd)pyrene85.2203.5ug/l1009450-1202-Methylphenol90.3102.5ug/l1009155-1202-Methylphenol90.3103.0ug/l1009155-1202-Methylphenol90.3103.0ug/l1009155-1202-Mitroanline91.2103.0ug/l1009155-1202-Mitroanline90.3103.0ug/l1009155-1202-Mitroanline95.52.02.0ug/l1009760-1203-Nitroantine97.22.03.0ug/l1009765-1202-Nitroanline95.52.02.0ug/l1009765-1203-Nitroantine95.52.02.5ug/l1009765-120 <t< td=""><td></td><td>85.8</td><td>20</td><td>4.0</td><td>ug/l</td><td>100</td><td></td><td>86</td><td>45-120</td><td></td><td></td><td></td></t<>		85.8	20	4.0	ug/l	100		86	45-120			
2,6-Dinitrotoluene98.1102.0ug/l1009865-120Di-n-octyl phthalate89.3203.5ug/l1008965-135Fluoranthene82.3103.0ug/l1008260-120Fluorene95.6103.0ug/l1008160-120Hexachlorobutadiene80.7103.0ug/l1007740-120Hexachlorocytlopentadiene105205.0ug/l1007735-120Hexachlorocytlopentadiene76.5103.5ug/l1007735-120Indeno(1,2,3-cd)pyrene85.2203.5ug/l1009450-1202-Methylnphthalene91.2102.5ug/l1009450-1202-Methylphenol90.9103.0ug/l1009150-120Ampthalene87.4103.0ug/l1009150-1202-Nitroaniline97.2203.0ug/l1008755-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline9.5204.0ug/l1009755-1202-Nitroaniline9.5202.5ug/l1009755-1202-Nitroaniline9.52.02.5ug/l1009455-1202-Nitroaniline9.9103.5ug/l10094 <t< td=""><td>2,4-Dinitrophenol</td><td>94.2</td><td>20</td><td>8.0</td><td>ug/l</td><td>100</td><td></td><td>94</td><td>40-120</td><td></td><td></td><td></td></t<>	2,4-Dinitrophenol	94.2	20	8.0	ug/l	100		94	40-120			
Di-n-octyl phthalate89.3203.5ug/l1008965-135Fluoranthene82.3103.0ug/l1008260-120Fluorene95.6103.0ug/l1009665-130Hexachlorobenzene80.7103.0ug/l1008160-120Hexachlorobutadine76.8104.0ug/l1007740-120Hexachlorocyclopentadiene105205.0ug/l1007735-120Hexachlorocyclopentadiene76.5103.5ug/l1009450-120Indeno(1,2,3-cd)pyrene85.2203.5ug/l1009450-1202-Methylphenol90.9103.0ug/l1009155-1202-Methylphenol90.3103.0ug/l1009050-120Nirrobenzene95.5204.0ug/l1009155-1202-Mitroniline90.3103.0ug/l1009155-1202-Nitroaniline95.5204.0ug/l1009765-1203-Nitroaniline95.5204.0ug/l1009755-1202-Nitroaniline95.5204.0ug/l1009755-1202-Nitroaniline95.5204.0ug/l1009765-1202-Nitroaniline95.5204.0ug/l10097	2,4-Dinitrotoluene	101	10	3.5	ug/l	100		101	65-120			
Fluoranthene82.3103.0ug/l1008260-120Fluorene95.6103.0ug/l1009665-120Hexachlorobenzene80.7103.0ug/l1008160-120Hexachlorobutadiene76.8104.0ug/l1007740-120Hexachlorocyclopentadiene105205.0ug/l1007735-120Hexachlorocthane76.5103.5ug/l1008545-135Isophorone93.8102.5ug/l1009155-1202-Methylaphthalene91.2102.0ug/l1009150-1202-Methylaphtnol90.3103.0ug/l1009150-120A-Methylphenol90.3103.0ug/l1009755-1202-Nitroaniline97.2203.0ug/l1009755-1203-Nitroaniline97.5204.0ug/l1009755-1204-Nitrophenol99.5204.0ug/l1009755-1202-Nitroaniline97.5202.5ug/l1009755-1204-Nitrophenol99.5204.0ug/l1009755-1202-Nitroaniline99.5204.0ug/l1009755-1204-Nitrophenol99.9103.5ug/l1009455-120<	2,6-Dinitrotoluene	98.1	10	2.0	ug/l	100		98	65-120			
Fluorene95.6103.0ug/l1009665-120Hexachlorobenzene80.7103.0ug/l1008160-120Hexachlorobutadiene76.8104.0ug/l1007740-120Hexachlorocyclopentadiene105205.0ug/l10010525-120Hexachlorocyclopentadiene76.5103.5ug/l1007735-120Indeno(1,2,3-cd)pyrene85.2203.5ug/l1009450-1202-Methylnaphthalene91.2102.5ug/l1009155-1202-Methylphenol90.9103.0ug/l1009150-120A-Methylphenol90.3103.0ug/l1009050-1202-Nitroaniline97.2203.0ug/l1009050-1203-Nitroaniline99.5204.0ug/l1009760-1204-Nitroaniline99.5204.0ug/l1009755-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009755-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l100945	Di-n-octyl phthalate	89.3	20	3.5	ug/l	100		89	65-135			
Hexachlorobenzene80.7103.0ug/l1008160-120Hexachlorobutadiene76.8104.0ug/l1007740-120Hexachlorocyclopentadiene105205.0ug/l1007735-120Hexachlorothane76.5103.5ug/l1008545-135Iophorone93.8102.5ug/l1009450-1202-Methylnaphthalene91.2102.0ug/l1009155-1202-Methylphenol90.9103.0ug/l1009150-1204-Methylphenol90.3103.0ug/l1009050-1202-Nitroaniline77.2203.0ug/l1009765-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline93.5202.5ug/l1009955-125Nitrobenzene93.5202.5ug/l1009955-1202-Nitrophenol90.9103.5ug/l1009955-1203-Nitroaniline99.5204.0ug/l1009955-1202-Nitrophenol90.9103.5ug/l1009155-1204-Nitrophenol90.9103.5ug/l1009155-120101051010101010101010<	Fluoranthene	82.3	10	3.0	ug/l	100		82	60-120			
Hexachlorobutadiene76.8104.0ug/l1007740-120Hexachlorocyclopentadiene105205.0ug/l10010525-120Hexachloroethane76.5103.5ug/l1007735-120Indeno(1,2,3-od)pyrene85.2203.5ug/l1008545-135Isophorone93.8102.5ug/l1009450-1202-Methylpaphthalene91.2102.0ug/l1009155-1202-Methylphenol90.3103.0ug/l1009050-1204-Methylphenol90.3103.0ug/l1008755-1202-Nitroaniline77.2203.0ug/l1009760-1204-Nitroaniline95.5204.0ug/l1009760-1204-Nitrobenzene93.5202.5ug/l1009455-1202-Nitrobenzene93.5202.5ug/l1009760-1204-Nitrobenzene93.5202.5ug/l1009455-1202-Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009455-1204-Nitrophenol90.9103.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009455-120<	Fluorene	95.6	10	3.0	ug/l	100		96	65-120			
Hexachlorocyclopentadiene105205.0ug/l10010525-120Hexachlorocthane76.5103.5ug/l1007735-120Indeno(1,2,3-cd)pyrene85.2203.5ug/l1008545-135Isophorone93.8102.5ug/l1009450-1202-Methylnaphthalene91.2102.0ug/l1009155-1202-Methylphenol90.9103.0ug/l1009150-1204-Methylphenol90.3103.0ug/l1009050-1202-Nitroaniline105202.0ug/l1008755-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline93.5202.5ug/l1009955-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009760-1204-Nitroaniline99.5204.0ug/l1009955-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009455-1204-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.9103.5ug/l1009150-120 <t< td=""><td>Hexachlorobenzene</td><td>80.7</td><td>10</td><td>3.0</td><td>ug/l</td><td>100</td><td></td><td>81</td><td>60-120</td><td></td><td></td><td></td></t<>	Hexachlorobenzene	80.7	10	3.0	ug/l	100		81	60-120			
Hexachlorothane76.5103.5ug/l1007735-120Indeno(1,2,3-cd)pyrene85.2203.5ug/l1008545-135Isophorone93.8102.5ug/l1009450-1202-Methylnaphthalene91.2102.0ug/l1009155-1202-Methylphenol90.9103.0ug/l1009150-1204-Methylphenol90.3103.0ug/l1009050-1202-Nitroaniline105202.0ug/l1008755-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline93.5202.5ug/l1009455-1202-Nitrobenzene93.5202.5ug/l1009455-1204-Nitrophenol90.9103.5ug/l1009455-1204-Nitrophenol90.9103.5ug/l1009455-1204-Nitrophenol90.9103.5ug/l1009455-1204-Nitrophenol90.9103.5ug/l1009455-1204-Nitrophenol90.9103.5ug/l1009455-1204-Nitrophenol90.9103.5ug/l1009455-1204-Nitrophenol90.9103.5ug/l1009455-1204-Nit	Hexachlorobutadiene	76.8	10	4.0	ug/l	100		77	40-120			
Indeno(1,2,3-cd)pyrene85.2203.5ug/l1008545-135Isophorone93.8102.5ug/l1009450-1202-Methylnaphthalene91.2102.0ug/l1009155-1202-Methylphenol90.9103.0ug/l1009050-1204-Methylphenol90.3103.0ug/l1009050-120Naphthalene87.4103.0ug/l1008755-1202-Nitroaniline105202.0ug/l1009760-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline99.5204.0ug/l1009955-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009955-1251010565-1201009955-12510010565-1202-Nitrobenzene93.5202.5ug/l1009955-1251090.9103.5ug/l1009150-1202-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009045-120	Hexachlorocyclopentadiene	105	20	5.0	ug/l	100		105	25-120			
Isophorone93.8102.5ug/l1009450-1202-Methylnaphthalene91.2102.0ug/l1009155-1202-Methylphenol90.9103.0ug/l1009150-1204-Methylphenol90.3103.0ug/l1009050-120Naphthalene87.4103.0ug/l1008755-1202-Nitroaniline105202.0ug/l10010565-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009760-1204-Nitrophenol90.3205.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009455-1202-Nitrophenol90.3205.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009045-120	Hexachloroethane	76.5	10	3.5	ug/l	100		77	35-120			
2-Methylnaphthalene91.2102.0ug/l1009155-1202-Methylphenol90.9103.0ug/l1009150-1204-Methylphenol90.3103.0ug/l1009050-120Naphthalene87.4103.0ug/l1008755-1202-Nitroaniline105202.0ug/l10010565-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline99.5204.0ug/l1009955-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009455-1204-Nitrophenol90.3205.5ug/l1009150-120	Indeno(1,2,3-cd)pyrene	85.2	20	3.5	ug/l	100		85	45-135			
2-Methylphenol90.9103.0ug/l1009150-1204-Methylphenol90.3103.0ug/l1009050-120Naphthalene87.4103.0ug/l1008755-1202-Nitroaniline105202.0ug/l10010565-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline99.5204.0ug/l1009955-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009455-120	Isophorone	93.8	10	2.5	ug/l	100		94	50-120			
4-Methylphenol90.3103.0ug/l1009050-120Naphthalene87.4103.0ug/l1008755-1202-Nitroaniline105202.0ug/l10010565-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline99.5204.0ug/l1009955-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009045-120	2-Methylnaphthalene	91.2	10	2.0	ug/l	100		91	55-120			
Naphthalene87.4103.0ug/l1008755-1202-Nitroaniline105202.0ug/l10010565-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline99.5204.0ug/l1009955-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009045-120	2-Methylphenol	90.9	10	3.0	ug/l	100		91	50-120			
2-Nitroaniline105202.0ug/l10010565-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline99.5204.0ug/l1009955-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009045-120	4-Methylphenol	90.3	10	3.0	ug/l	100		90	50-120			
3-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline99.5204.0ug/l1009955-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009045-120	Naphthalene	87.4	10	3.0	ug/l	100		87	55-120			
4-Nitroaniline99.5204.0ug/l1009955-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009045-120	2-Nitroaniline	105	20	2.0	ug/l	100		105	65-120			
Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009045-120	3-Nitroaniline	97.2	20	3.0	ug/l	100		97	60-120			
2-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009045-120	4-Nitroaniline	99.5	20	4.0	ug/l	100		99	55-125			
4-Nitrophenol 90.3 20 5.5 ug/l 100 90 45-120	Nitrobenzene	93.5	20	2.5	ug/l	100		94	55-120			
	2-Nitrophenol	90.9	10	3.5	ug/l	100		91	50-120			
	4-Nitrophenol	90.3	20	5.5	ug/l	100		90	45-120			
N-Nitrosodiphenylamine 94.4 10 2.0 ug/l 100 94 60-120	N-Nitrosodiphenylamine	94.4	10	2.0	ug/l	100		94	60-120			
N-Nitroso-di-n-propylamine 94.6 10 3.5 ug/l 100 95 45-120		94.6	10	3.5		100		95	45-120			
Pentachlorophenol 76.0 20 3.5 ug/l 100 76 50-120		76.0	20	3.5	-	100		76	50-120			
Phenanthrene 87.8 10 3.5 ug/l 100 88 65-120	*	87.8	10	3.5	-	100		88	65-120			
Phenol 84.3 10 2.0 ug/l 100 84 40-120	Phenol	84.3	10	2.0	-	100		84	40-120			
Pyrene 112 10 4.0 ug/l 100 112 55-125	Pyrene	112	10	4.0	ug/l	100		112	55-125			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
•		Linnt	MDL	emis	Level	ixesuit	JURLE	Linnts	NI D	Linit	Quanners
Batch: 8B04111 Extracted: 02/04/08	<u>s</u>										
LCS Analyzed: 02/07/2008 (8B04111-BS	51)										
1,2,4-Trichlorobenzene	82.1	10	2.5	ug/l	100		82	45-120			
2,4,5-Trichlorophenol	94.0	20	3.0	ug/l	100		94	55-120			
2,4,6-Trichlorophenol	91.5	20	4.5	ug/l	100		92	55-120			
1,2-Diphenylhydrazine/Azobenzene	97.8	20	2.5	ug/l	100		98	60-120			
N-Nitrosodimethylamine	98.9	20	2.5	ug/l	100		99	45-120			
Surrogate: 2-Fluorophenol	167			ug/l	200		83	30-120			
Surrogate: Phenol-d6	171			ug/l	200		86	35-120			
Surrogate: 2,4,6-Tribromophenol	153			ug/l	200		77	40-120			
Surrogate: Nitrobenzene-d5	89.0			ug/l	100		89	45-120			
Surrogate: 2-Fluorobiphenyl	87.6			ug/l	100		88	50-120			
Surrogate: Terphenyl-d14	100			ug/l	100		100	50-125			
Matrix Spike Analyzed: 02/07/2008 (8B04111-MS1) Source: IRA3018-06											
Acenaphthene	93.7	48	14	ug/l	95.2	ND	98	60-120			
Acenaphthylene	40.8	48	14	ug/l	95.2	ND	43	60-120			M2, J
Aniline	53.5	48	12	ug/l	95.2	ND	56	35-120			, -
Anthracene	84.9	48	9.5	ug/l	95.2	ND	89	65-120			
Benzidine	ND	95	40	ug/l	95.2	ND		30-160			М2
Benzoic acid	107	95	48	ug/l	95.2	ND	112	25-125			
Benzo(a)anthracene	89.0	48	9.5	ug/l	95.2	ND	94	65-120			
Benzo(b)fluoranthene	83.0	48	9.5	ug/l	95.2	ND	87	55-125			
Benzo(k)fluoranthene	95.6	48	12	ug/l	95.2	ND	100	55-125			
Benzo(g,h,i)perylene	68.7	48	19	ug/l	95.2	ND	72	45-135			
Benzo(a)pyrene	90.1	48	9.5	ug/l	95.2	ND	95	55-130			
Benzyl alcohol	34.9	95	12	ug/l	95.2	ND	37	40-120			M2, J
Bis(2-chloroethoxy)methane	76.3	48	14	ug/l	95.2	ND	80	50-120			
Bis(2-chloroethyl)ether	106	48	14	ug/l	95.2	ND	112	50-120			
Bis(2-chloroisopropyl)ether	86.9	48	12	ug/l	95.2	ND	91	45-120			
Bis(2-ethylhexyl)phthalate	91.0	240	19	ug/l	95.2	ND	96	65-130			J
4-Bromophenyl phenyl ether	75.0	48	14	ug/l	95.2	ND	79	60-120			
Butyl benzyl phthalate	92.6	95	19	ug/l	95.2	ND	97	55-130			J
4-Chloroaniline	19.6	48	9.5	ug/l	95.2	ND	21	55-120			M2, J
2-Chloronaphthalene	83.3	48	14	ug/l	95.2	ND	87	60-120			
4-Chloro-3-methylphenol	84.0	95	12	ug/l	95.2	ND	88	60-120			J
2-Chlorophenol	77.2	48	14	ug/l	95.2	ND	81	45-120			
4-Chlorophenyl phenyl ether	92.5	48	12	ug/l	95.2	ND	97	65-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source	%REC	%REC	RPD	RPD Limit	Data Oualifiers
U C		Linnt	MDL	Units	Level	Kesuit	/0KEC	Linnts	ΚID	Linnt	Quaimers
Batch: 8B04111 Extracted: 02/04/08	8										
Matrix Spike Analyzed: 02/07/2008 (8B)				Sou	rce: IRA	3018-06					
Chrysene	85.3	48	12	ug/l	95.2	ND	90	65-120			
Dibenz(a,h)anthracene	71.9	95	14	ug/l	95.2	ND	76	45-135			J
Dibenzofuran	89.2	48	19	ug/l	95.2	ND	94	65-120			
Di-n-butyl phthalate	80.5	95	14	ug/l	95.2	ND	84	60-125			J
1,3-Dichlorobenzene	71.9	48	14	ug/l	95.2	ND	76	35-120			
1,4-Dichlorobenzene	181	48	12	ug/l	95.2	ND	190	35-120			<i>M1</i>
1,2-Dichlorobenzene	139	48	14	ug/l	95.2	65.3	78	40-120			
3,3-Dichlorobenzidine	ND	95	14	ug/l	95.2	ND		45-135			M2
2,4-Dichlorophenol	81.7	48	17	ug/l	95.2	ND	86	55-120			
Diethyl phthalate	89.8	48	17	ug/l	95.2	ND	94	55-120			
2,4-Dimethylphenol	83.3	95	17	ug/l	95.2	ND	87	40-120			J
Dimethyl phthalate	93.8	48	9.5	ug/l	95.2	ND	98	30-120			
4,6-Dinitro-2-methylphenol	121	95	19	ug/l	95.2	ND	128	45-120			<i>M1</i>
2,4-Dinitrophenol	112	95	38	ug/l	95.2	ND	118	40-120			
2,4-Dinitrotoluene	81.5	48	17	ug/l	95.2	ND	86	65-120			
2,6-Dinitrotoluene	81.5	48	9.5	ug/l	95.2	ND	86	65-120			
Di-n-octyl phthalate	87.2	95	17	ug/l	95.2	ND	92	65-135			J
Fluoranthene	82.8	48	14	ug/l	95.2	ND	87	60-120			
Fluorene	93.2	48	14	ug/l	95.2	ND	98	65-120			
Hexachlorobenzene	70.5	48	14	ug/l	95.2	ND	74	60-120			
Hexachlorobutadiene	73.3	48	19	ug/l	95.2	ND	77	40-120			
Hexachlorocyclopentadiene	67.8	95	24	ug/l	95.2	ND	71	25-120			J
Hexachloroethane	68.9	48	17	ug/l	95.2	ND	72	35-120			
Indeno(1,2,3-cd)pyrene	71.6	95	17	ug/l	95.2	ND	75	40-135			J
Isophorone	49.0	48	12	ug/l	95.2	ND	52	50-120			
2-Methylnaphthalene	86.2	48	9.5	ug/l	95.2	ND	90	55-120			
2-Methylphenol	84.3	48	14	ug/l	95.2	ND	88	50-120			
4-Methylphenol	75.9	48	14	ug/l	95.2	ND	80	50-120			
Naphthalene	82.8	48	14	ug/l	95.2	ND	87	55-120			
2-Nitroaniline	91.7	95	9.5	ug/l	95.2	ND	96	65-120			J
3-Nitroaniline	27.3	95	14	ug/l	95.2	ND	29	60-120			M2, J
4-Nitroaniline	51.6	95	19	ug/l	95.2	ND	54	55-125			M2, J
Nitrobenzene	80.4	95	12	ug/l	95.2	ND	84	55-120			J
2-Nitrophenol	75.0	48	17	ug/l	95.2	ND	79	50-120			
4-Nitrophenol	110	95	26	ug/l	95.2	ND	115	45-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers			
·				emu	Lever	itesuit	, und e	Linits	IN D	Linit	Quanners			
Batch: 8B04111 Extracted: 02/04/08	<u>s</u>													
Matrix Spike Analyzed: 02/07/2008 (8B04111-MS1)					Source: IRA3018-06									
N-Nitrosodiphenylamine	78.2	48	9.5	ug/l	95.2	ND	82	60-120						
N-Nitroso-di-n-propylamine	ND	48	17	ug/l	95.2	ND		45-120			M2			
Pentachlorophenol	81.0	95	17	ug/l	95.2	ND	85	50-120			J			
Phenanthrene	84.2	48	17	ug/l	95.2	ND	88	65-120						
Phenol	79.1	48	9.5	ug/l	95.2	ND	83	40-120						
Pyrene	100	48	19	ug/l	95.2	ND	105	55-125						
1,2,4-Trichlorobenzene	197	48	12	ug/l	95.2	130	71	45-120						
2,4,5-Trichlorophenol	88.3	95	14	ug/l	95.2	ND	93	55-120			J			
2,4,6-Trichlorophenol	88.8	95	21	ug/l	95.2	ND	93	55-120			J			
1,2-Diphenylhydrazine/Azobenzene	ND	95	12	ug/l	95.2	ND		60-120			M2			
N-Nitrosodimethylamine	ND	95	12	ug/l	95.2	ND		45-120			M2			
Surrogate: 2-Fluorophenol	148			ug/l	190		77	30-120						
Surrogate: Phenol-d6	150			ug/l	190		78	35-120						
Surrogate: 2,4,6-Tribromophenol	147			ug/l	190		77	40-120						
Surrogate: Nitrobenzene-d5	74.0			ug/l	95.2		78	45-120						
Surrogate: 2-Fluorobiphenyl	80.5			ug/l	95.2		84	50-120						
Surrogate: Terphenyl-d14	92.3			ug/l	95.2		97	50-125						
Matrix Spike Dup Analyzed: 02/07/2008	e Dup Analyzed: 02/07/2008 (8B04111-MSD1)					Source: IRA3018-06								
Acenaphthene	91.1	48	14	ug/l	95.2	ND	96	60-120	3	25				
Acenaphthylene	53.7	48	14	ug/l	95.2	ND	56	60-120	27	25	M2, R-3			
Aniline	49.4	48	12	ug/l	95.2	ND	52	35-120	8	30				
Anthracene	82.0	48	9.5	ug/l	95.2	ND	86	65-120	3	25				
Benzidine	ND	95	40	ug/l	95.2	ND		30-160		35	M2			
Benzoic acid	104	95	48	ug/l	95.2	ND	110	25-125	3	30				
Benzo(a)anthracene	83.4	48	9.5	ug/l	95.2	ND	88	65-120	7	20				
Benzo(b)fluoranthene	79.0	48	9.5	ug/l	95.2	ND	83	55-125	5	25				
Benzo(k)fluoranthene	87.0	48	12	ug/l	95.2	ND	91	55-125	9	30				
Benzo(g,h,i)perylene	65.9	48	19	ug/l	95.2	ND	69	45-135	4	30				
Benzo(a)pyrene	85.2	48	9.5	ug/l	95.2	ND	90	55-130	6	25				
Benzyl alcohol	36.6	95	12	ug/l	95.2	ND	38	40-120	5	30	M2, J			
Bis(2-chloroethoxy)methane	70.4	48	14	ug/l	95.2	ND	74	50-120	8	25				
Bis(2-chloroethyl)ether	68.1	48	14	ug/l	95.2	ND	72	50-120	44	25	R			
Bis(2-chloroisopropyl)ether	83.1	48	12	ug/l	95.2	ND	87	45-120	4	25				
Bis(2-ethylhexyl)phthalate	86.8	240	19	ug/l	95.2	ND	91	65-130	5	25	J			
4-Bromophenyl phenyl ether	69.8	48	14	ug/l	95.2	ND	73	60-120	7	25				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
·				cints	2000	1000000	,01120	2	111 2		Quanto 5
Batch: 8B04111 Extracted: 02/04/08	<u> </u>										
Matrix Spike Dup Analyzed: 02/07/2008	(8B04111-N	ISD1)			Sou	rce: IRA3	3018-06				
Butyl benzyl phthalate	90.5	95	19	ug/l	95.2	ND	95	55-130	2	25	J
4-Chloroaniline	39.1	48	9.5	ug/l	95.2	ND	41	55-120	66	25	M2, R-3, J
2-Chloronaphthalene	78.2	48	14	ug/l	95.2	ND	82	60-120	6	20	
4-Chloro-3-methylphenol	82.4	95	12	ug/l	95.2	ND	86	60-120	2	25	J
2-Chlorophenol	69.2	48	14	ug/l	95.2	ND	73	45-120	11	25	
4-Chlorophenyl phenyl ether	84.3	48	12	ug/l	95.2	ND	88	65-120	9	25	
Chrysene	83.3	48	12	ug/l	95.2	ND	87	65-120	2	25	
Dibenz(a,h)anthracene	69.2	95	14	ug/l	95.2	ND	73	45-135	4	30	J
Dibenzofuran	82.9	48	19	ug/l	95.2	ND	87	65-120	7	25	
Di-n-butyl phthalate	77.4	95	14	ug/l	95.2	ND	81	60-125	4	25	J
1,3-Dichlorobenzene	64.5	48	14	ug/l	95.2	ND	68	35-120	11	25	
1,4-Dichlorobenzene	168	48	12	ug/l	95.2	ND	177	35-120	7	25	<i>M1</i>
1,2-Dichlorobenzene	123	48	14	ug/l	95.2	65.3	61	40-120	12	25	
3,3-Dichlorobenzidine	ND	95	14	ug/l	95.2	ND		45-135		25	M2
2,4-Dichlorophenol	76.4	48	17	ug/l	95.2	ND	80	55-120	7	25	
Diethyl phthalate	85.0	48	17	ug/l	95.2	ND	89	55-120	6	30	
2,4-Dimethylphenol	75.8	95	17	ug/l	95.2	ND	80	40-120	9	25	J
Dimethyl phthalate	87.5	48	9.5	ug/l	95.2	ND	92	30-120	7	30	
4,6-Dinitro-2-methylphenol	112	95	19	ug/l	95.2	ND	118	45-120	8	25	
2,4-Dinitrophenol	91.4	95	38	ug/l	95.2	ND	96	40-120	20	25	J
2,4-Dinitrotoluene	69.1	48	17	ug/l	95.2	ND	73	65-120	16	25	
2,6-Dinitrotoluene	77.2	48	9.5	ug/l	95.2	ND	81	65-120	5	20	
Di-n-octyl phthalate	81.3	95	17	ug/l	95.2	ND	85	65-135	7	20	J
Fluoranthene	79.0	48	14	ug/l	95.2	ND	83	60-120	5	25	
Fluorene	88.1	48	14	ug/l	95.2	ND	92	65-120	6	25	
Hexachlorobenzene	69.5	48	14	ug/l	95.2	ND	73	60-120	1	25	
Hexachlorobutadiene	66.5	48	19	ug/l	95.2	ND	70	40-120	10	25	
Hexachlorocyclopentadiene	41.9	95	24	ug/l	95.2	ND	44	25-120	47	30	<i>R</i> , <i>J</i>
Hexachloroethane	58.5	48	17	ug/l	95.2	ND	61	35-120	16	25	
Indeno(1,2,3-cd)pyrene	67.4	95	17	ug/l	95.2	ND	71	40-135	6	30	J
Isophorone	50.0	48	12	ug/l	95.2	ND	52	50-120	2	25	
2-Methylnaphthalene	79.4	48	9.5	ug/l	95.2	ND	83	55-120	8	20	
2-Methylphenol	73.3	48	14	ug/l	95.2	ND	77	50-120	14	25	
4-Methylphenol	70.0	48	14	ug/l	95.2	ND	74	50-120	8	25	
Naphthalene	82.0	48	14	ug/l	95.2	ND	86	55-120	1	25	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

	-	Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04111 Extracted: 02/04/0	8										
	0 (0D0 4111 N	(CD1)			C	ID A 2	010 07				
Matrix Spike Dup Analyzed: 02/07/200		,				rce: IRA			_		
2-Nitroaniline	85.6	95	9.5	ug/l	95.2	ND	90	65-120	7	25	J
3-Nitroaniline	18.4	95	14	ug/l	95.2	ND	19	60-120	39	25	M2, R-3, J
4-Nitroaniline	31.6	95	19	ug/l	95.2	ND	33	55-125	48	25	M2, R-3, J
Nitrobenzene	80.5	95	12	ug/l	95.2	ND	84	55-120	0	25	J
2-Nitrophenol	72.8	48	17	ug/l	95.2	ND	76	50-120	3	25	
4-Nitrophenol	134	95	26	ug/l	95.2	ND	141	45-120	20	30	M1
N-Nitrosodiphenylamine	60.8	48	9.5	ug/l	95.2	ND	64	60-120	25	25	
N-Nitroso-di-n-propylamine	ND	48	17	ug/l	95.2	ND		45-120		25	M2
Pentachlorophenol	76.7	95	17	ug/l	95.2	ND	80	50-120	5	25	J
Phenanthrene	79.1	48	17	ug/l	95.2	ND	83	65-120	6	25	
Phenol	69.3	48	9.5	ug/l	95.2	ND	73	40-120	13	25	
Pyrene	96.9	48	19	ug/l	95.2	ND	102	55-125	3	25	
1,2,4-Trichlorobenzene	182	48	12	ug/l	95.2	130	55	45-120	8	20	
2,4,5-Trichlorophenol	75.5	95	14	ug/l	95.2	ND	79	55-120	16	30	J
2,4,6-Trichlorophenol	80.5	95	21	ug/l	95.2	ND	84	55-120	10	30	J
1,2-Diphenylhydrazine/Azobenzene	ND	95	12	ug/l	95.2	ND		60-120		25	M2
N-Nitrosodimethylamine	ND	95	12	ug/l	95.2	ND		45-120		25	М2
Surrogate: 2-Fluorophenol	138			ug/l	190		72	30-120			
Surrogate: Phenol-d6	132			ug/l	190		70	35-120			
Surrogate: 2,4,6-Tribromophenol	134			ug/l	190		70	40-120			
Surrogate: Nitrobenzene-d5	72.5			ug/l	95.2		76	45-120			
Surrogate: 2-Fluorobiphenyl	77.3			ug/l	95.2		81	50-120			
Surrogate: Terphenyl-d14	86.6			ug/l	95.2		91	50-125			
~ 1 ×				0							

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDI	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
e e		Linnt	WIDL	Units	Level	Kesun	/0KEC	Linnts	KI D	Linnt	Quaimers
Batch: 8B04071 Extracted: 02/04/08	<u>}</u>										
Plank Analyzad. 02/06/2009 (900/071 B	PI IZ1)										
Blank Analyzed: 02/06/2008 (8B04071-B	,	0.0050	0.0015	л							
Aldrin	ND	0.0050	0.0015	ug/l							
alpha-BHC	ND	0.0050	0.0025	ug/l							
beta-BHC	ND	0.010	0.0040	ug/l							
delta-BHC	ND	0.0050	0.0035	ug/l							
gamma-BHC (Lindane)	ND	0.010	0.0030	ug/l							
Chlordane	ND	0.10	0.030	ug/l							
4,4'-DDD	ND	0.0050	0.0020	ug/l							
4,4'-DDE	ND	0.0050	0.0030	ug/l							
4,4'-DDT	ND	0.010	0.0040	ug/l							
Dieldrin	ND	0.0050	0.0020	ug/l							
Endosulfan I	ND	0.0050	0.0020	ug/l							
Endosulfan II	ND	0.0050	0.0030	ug/l							
Endosulfan sulfate	ND	0.010	0.0030	ug/l							
Endrin	ND	0.0050	0.0020	ug/l							
Endrin aldehyde	ND	0.010	0.0020	ug/l							
Endrin ketone	ND	0.010	0.0030	ug/l							
Heptachlor	ND	0.010	0.0030	ug/l							
Heptachlor epoxide	ND	0.0050	0.0025	ug/l							
Methoxychlor	ND	0.0050	0.0035	ug/l							
Toxaphene	ND	0.10	0.070	ug/l							
Surrogate: Decachlorobiphenyl	0.473			ug/l	0.500		95	45-120			
Surrogate: Tetrachloro-m-xylene	0.447			ug/l	0.500		89	35-115			
LCS Analyzed: 02/05/2008 (8B04071-BS	(1)										MNR1
Aldrin	0.437	0.0050	0.0015	ug/l	0.500		87	40-115			
alpha-BHC	0.482	0.0050	0.0015	ug/l	0.500		87 96	45-115			
beta-BHC	0.482		0.0023	-	0.500		90 95	43-113 55-115			
delta-BHC	0.473	0.010		ug/l							
		0.0050	0.0035	ug/l	0.500		98 07	55-115			
gamma-BHC (Lindane)	0.485	0.010	0.0030	ug/l	0.500		97 02	45-115			
4,4'-DDD	0.490	0.0050	0.0020	ug/l	0.500		98	55-120			
4,4'-DDE	0.451	0.0050	0.0030	ug/l	0.500		90	50-120			
4,4'-DDT	0.494	0.010	0.0040	ug/l	0.500		99	55-120			
Dieldrin	0.472	0.0050	0.0020	ug/l	0.500		94	55-115			
Endosulfan I	0.440	0.0050	0.0020	ug/l	0.500		88	55-115			
Endosulfan II	0.476	0.0050	0.0030	ug/l	0.500		95	55-120			
Endosulfan sulfate	0.476	0.010	0.0030	ug/l	0.500		95	60-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04071 Extracted: 02/04/08	_										
LCS Analyzed: 02/05/2008 (8B04071-BS	n										MNR1
Endrin	0.482	0.0050	0.0020	ug/l	0.500		96	55-115			
Endrin aldehyde	0.449	0.010	0.0020	ug/l	0.500		90	50-120			
Endrin ketone	0.471	0.010	0.0030	ug/l	0.500		94	55-120			
Heptachlor	0.468	0.010	0.0030	ug/l	0.500		94	45-115			
Heptachlor epoxide	0.453	0.0050	0.0025	ug/l	0.500		91	55-115			
Methoxychlor	0.474	0.0050	0.0035	ug/l	0.500		95	60-120			
Surrogate: Decachlorobiphenyl	0.464			ug/l	0.500		93	45-120			
Surrogate: Tetrachloro-m-xylene	0.433			ug/l	0.500		87	35-115			
LCS Dup Analyzed: 02/05/2008 (8B0407	1-BSD1)										
Aldrin	0.433	0.0050	0.0015	ug/l	0.500		87	40-115	1	30	
alpha-BHC	0.474	0.0050	0.0025	ug/l	0.500		95	45-115	2	30	
beta-BHC	0.466	0.010	0.0040	ug/l	0.500		93	55-115	2	30	
delta-BHC	0.480	0.0050	0.0035	ug/l	0.500		96	55-115	2	30	
gamma-BHC (Lindane)	0.476	0.010	0.0030	ug/l	0.500		95	45-115	2	30	
4,4'-DDD	0.481	0.0050	0.0020	ug/l	0.500		96	55-120	2	30	
4,4'-DDE	0.450	0.0050	0.0030	ug/l	0.500		90	50-120	0	30	
4,4'-DDT	0.483	0.010	0.0040	ug/l	0.500		97	55-120	2	30	
Dieldrin	0.463	0.0050	0.0020	ug/l	0.500		93	55-115	2	30	
Endosulfan I	0.439	0.0050	0.0020	ug/l	0.500		88	55-115	0	30	
Endosulfan II	0.466	0.0050	0.0030	ug/l	0.500		93	55-120	2	30	
Endosulfan sulfate	0.466	0.010	0.0030	ug/l	0.500		93	60-120	2	30	
Endrin	0.471	0.0050	0.0020	ug/l	0.500		94	55-115	2	30	
Endrin aldehyde	0.441	0.010	0.0020	ug/l	0.500		88	50-120	2	30	
Endrin ketone	0.460	0.010	0.0030	ug/l	0.500		92	55-120	2	30	
Heptachlor	0.461	0.010	0.0030	ug/l	0.500		92	45-115	2	30	
Heptachlor epoxide	0.444	0.0050	0.0025	ug/l	0.500		89	55-115	2	30	
Methoxychlor	0.464	0.0050	0.0035	ug/l	0.500		93	60-120	2	30	
Surrogate: Decachlorobiphenyl	0.453			ug/l	0.500		91	45-120			
Surrogate: Tetrachloro-m-xylene	0.430			ug/l	0.500		86	35-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

TOTAL PCBS (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Bosult	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Analyte	Kesuit	Linnt	MDL	Units	Level	Kesuit	/0KEC	Linns	KI D	Linnt	Quanners
Batch: 8B04071 Extracted: 02/04/08	<u>}</u>										
Blank Analyzed: 02/05/2008 (8B04071-B	LK1)										
Aroclor 1016	ND	0.50	0.45	ug/l							
Aroclor 1221	ND	0.50	0.25	ug/l							
Aroclor 1232	ND	0.50	0.25	ug/l							
Aroclor 1242	ND	0.50	0.25	ug/l							
Aroclor 1248	ND	0.50	0.25	ug/l							
Aroclor 1254	ND	0.50	0.25	ug/l							
Aroclor 1260	ND	0.50	0.30	ug/l							
Surrogate: Decachlorobiphenyl	0.484			ug/l	0.500		97	45-120			
LCS Analyzed: 02/05/2008 (8B04071-BS	2)										MNR1
Aroclor 1016	3.71	0.50	0.45	ug/l	4.00		93	50-115			
Aroclor 1260	3.92	0.50	0.30	ug/l	4.00		98	60-120			
Surrogate: Decachlorobiphenyl	0.462			ug/l	0.500		92	45-120			
LCS Dup Analyzed: 02/05/2008 (8B0407	1-BSD2)										
Aroclor 1016	3.60	0.50	0.45	ug/l	4.00		90	50-115	3	30	
Aroclor 1260	3.98	0.50	0.30	ug/l	4.00		100	60-120	2	25	
Surrogate: Decachlorobiphenyl	0.489			ug/l	0.500		98	45-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B05087 Extracted: 02/05/08				e mus	20101	11004110	, viii Le			2	Z
Baten, OB05007 Extracted, 02/05/00	-										
Blank Analyzed: 02/05/2008 (8B05087-B	LK1)										
Aluminum	ND	50	40	ug/l							
Arsenic	ND	10	7.0	ug/l							
Beryllium	ND	2.0	0.90	ug/l							
Boron	ND	0.050	0.020	mg/l							
Calcium	ND	0.10	0.050	mg/l							
Chromium	ND	5.0	2.0	ug/l							
Iron	ND	0.040	0.015	mg/l							
Magnesium	ND	0.020	0.012	mg/l							
Nickel	ND	10	2.0	ug/l							
Selenium	ND	10	8.0	ug/l							
Silver	ND	10	6.0	ug/l							
Vanadium	ND	10	3.0	ug/l							
Zinc	ND	20	6.0	ug/l							
LCS Analyzed: 02/05/2008 (8B05087-BS	1)										
Aluminum	479	50	40	ug/l	500		96	85-115			
Arsenic	492	10	7.0	ug/l	500		98	85-115			
Beryllium	496	2.0	0.90	ug/l	500		99	85-115			
Boron	0.491	0.050	0.020	mg/l	0.500		98	85-115			
Calcium	2.56	0.10	0.050	mg/l	2.50		102	85-115			
Chromium	500	5.0	2.0	ug/l	500		100	85-115			
Iron	0.496	0.040	0.015	mg/l	0.500		99	85-115			
Magnesium	2.56	0.020	0.012	mg/l	2.50		102	85-115			
Nickel	508	10	2.0	ug/l	500		102	85-115			
Selenium	477	10	8.0	ug/l	500		95	85-115			
Silver	245	10	6.0	ug/l	250		98	85-115			
Vanadium	487	10	3.0	ug/l	500		97	85-115			
Zinc	488	20	6.0	ug/l	500		98	85-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
		Linnt	MDL	Units	Level	Result	JUNEC	Linnts	ΝD	Linnt	Quaimers
Batch: 8B05087 Extracted: 02/05/08											
Matrix Spike Analyzed: 02/05/2008 (8B0	5087-MS1)				Sou	rce: IRB()207-01				
Aluminum	726	50	40	ug/l	500	235	98	70-130			
Arsenic	497	10	7.0	ug/l	500	ND	99	70-130			
Beryllium	502	2.0	0.90	ug/l	500	ND	100	70-130			
Boron	0.521	0.050	0.020	mg/l	0.500	0.0219	100	70-130			
Calcium	108	0.10	0.050	mg/l	2.50	106	68	70-130			MHA
Chromium	946	5.0	2.0	ug/l	500	454	98	70-130			
Iron	0.556	0.040	0.015	mg/l	0.500	0.0657	98	70-130			
Magnesium	2.55	0.020	0.012	mg/l	2.50	0.0560	100	70-130			
Nickel	500	10	2.0	ug/l	500	3.02	99	70-130			
Selenium	488	10	8.0	ug/l	500	9.86	96	70-130			
Silver	257	10	6.0	ug/l	250	ND	103	70-130			
Vanadium	517	10	3.0	ug/l	500	23.5	99	70-130			
Zinc	491	20	6.0	ug/l	500	ND	98	70-130			
Matrix Spike Dup Analyzed: 02/05/2008	(8B05087-MS	SD1)			Sou	rce: IRB(207-01				
Aluminum	721	50	40	ug/l	500	235	97	70-130	1	20	
Arsenic	496	10	7.0	ug/l	500	ND	99	70-130	0	20	
Beryllium	492	2.0	0.90	ug/l	500	ND	98	70-130	2	20	
Boron	0.513	0.050	0.020	mg/l	0.500	0.0219	98	70-130	2	20	
Calcium	109	0.10	0.050	mg/l	2.50	106	121	70-130	1	20	MHA
Chromium	944	5.0	2.0	ug/l	500	454	98	70-130	0	20	
Iron	0.547	0.040	0.015	mg/l	0.500	0.0657	96	70-130	2	20	
Magnesium	2.50	0.020	0.012	mg/l	2.50	0.0560	98	70-130	2	20	
Nickel	496	10	2.0	ug/l	500	3.02	99	70-130	1	20	
Selenium	488	10	8.0	ug/l	500	9.86	96	70-130	0	20	
Silver	251	10	6.0	ug/l	250	ND	101	70-130	2	20	
Vanadium	506	10	3.0	ug/l	500	23.5	97	70-130	2	20	
Zinc	482	20	6.0	ug/l	500	ND	96	70-130	2	20	

TestAmerica Irvine

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Arcadia, CA 91007

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

618 Michillinda Avenue, Suite 200

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B05090 Extracted: 02/05/08	<u>}_</u>										
Blank Analyzed: 02/05/2008 (8B05090-B	LK1)										
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Thallium	ND	1.0	0.20	ug/l							
LCS Analyzed: 02/05/2008 (8B05090-BS	1)										
Antimony	84.1	2.0	0.20	ug/l	80.0		105	85-115			
Cadmium	84.6	1.0	0.11	ug/l	80.0		106	85-115			
Copper	86.8	2.0	0.75	ug/l	80.0		109	85-115			
Lead	83.6	1.0	0.30	ug/l	80.0		104	85-115			
Thallium	84.6	1.0	0.20	ug/l	80.0		106	85-115			
Matrix Spike Analyzed: 02/05/2008 (8B0	5090-MS1)				Sou	rce: IRB	0119-01				
Antimony	89.8	2.0	0.20	ug/l	80.0	0.417	112	70-130			
Cadmium	83.3	1.0	0.11	ug/l	80.0	ND	104	70-130			
Copper	76.4	2.0	0.75	ug/l	80.0	1.92	93	70-130			
Lead	72.1	1.0	0.30	ug/l	80.0	ND	90	70-130			
Thallium	74.3	1.0	0.20	ug/l	80.0	ND	93	70-130			
Matrix Spike Analyzed: 02/05/2008 (8B0	5090-MS2)				Sou	irce: IRB	0120-04				
Antimony	87.6	2.0	0.20	ug/l	80.0	ND	110	70-130			
Cadmium	82.5	1.0	0.11	ug/l	80.0	ND	103	70-130			
Copper	78.0	2.0	0.75	ug/l	80.0	1.34	96	70-130			
Lead	73.0	1.0	0.30	ug/l	80.0	ND	91	70-130			
Thallium	75.2	1.0	0.20	ug/l	80.0	ND	94	70-130			
Matrix Spike Dup Analyzed: 02/05/2008	(8B05090-M	ISD1)			Sou	irce: IRB	0119-01				
Antimony	88.9	2.0	0.20	ug/l	80.0	0.417	111	70-130	1	20	
Cadmium	85.7	1.0	0.11	ug/l	80.0	ND	107	70-130	3	20	
Copper	78.2	2.0	0.75	ug/l	80.0	1.92	95	70-130	2	20	
Lead	73.8	1.0	0.30	ug/l	80.0	ND	92	70-130	2	20	
Thallium	75.1	1.0	0.20	ug/l	80.0	ND	94	70-130	1	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04144 Extracted: 02/04/08											C C
Datch. 0D04144 Extracted. 02/04/00	-										
Blank Analyzed: 02/05/2008 (8B04144-B	LK1)										
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Thallium	ND	1.0	0.20	ug/l							
LCS Analyzed: 02/05/2008 (8B04144-BS)	1)										
Antimony	84.8	2.0	0.20	ug/l	80.0		106	85-115			
Cadmium	82.9	1.0	0.11	ug/l	80.0		104	85-115			
Copper	80.0	2.0	0.75	ug/l	80.0		100	85-115			
Lead	80.0	1.0	0.30	ug/l	80.0		100	85-115			
Thallium	82.5	1.0	0.20	ug/l	80.0		103	85-115			
Matrix Spike Analyzed: 02/05/2008 (8B0	4144-MS1)				Sou	rce: IRB	0073-01				
Antimony	84.0	2.0	0.20	ug/l	80.0	0.305	105	70-130			
Cadmium	84.5	1.0	0.11	ug/l	80.0	0.221	105	70-130			
Copper	77.7	2.0	0.75	ug/l	80.0	1.70	95	70-130			
Lead	74.3	1.0	0.30	ug/l	80.0	ND	93	70-130			
Thallium	76.6	1.0	0.20	ug/l	80.0	ND	96	70-130			
Matrix Spike Dup Analyzed: 02/05/2008	(8B04144-M	(SD1)			Sou	rce: IRB	0073-01				
Antimony	83.1	2.0	0.20	ug/l	80.0	0.305	103	70-130	1	20	
Cadmium	84.2	1.0	0.11	ug/l	80.0	0.221	105	70-130	0	20	
Copper	79.5	2.0	0.75	ug/l	80.0	1.70	97	70-130	2	20	
Lead	74.4	1.0	0.30	ug/l	80.0	ND	93	70-130	0	20	
Thallium	76.2	1.0	0.20	ug/l	80.0	ND	95	70-130	0	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

DISSOLVED METALS

	D	Reporting	MDI	.	Spike	Source	AVDEC	%REC	DDD	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B05111 Extracted: 02/05/08	8										
Blank Analyzed: 02/06/2008 (8B05111-E	<i>,</i>										
Aluminum	ND	50	40	ug/l							
Arsenic	ND	10	7.0	ug/l							
Beryllium	ND	2.0	0.90	ug/l							
Boron	ND	0.050	0.020	mg/l							
Calcium	ND	0.10	0.050	mg/l							
Chromium	ND	5.0	2.0	ug/l							
Iron	ND	0.040	0.015	mg/l							
Magnesium	ND	0.020	0.012	mg/l							
Nickel	ND	10	2.0	ug/l							
Selenium	ND	10	8.0	ug/l							
Silver	ND	10	6.0	ug/l							
Vanadium	ND	10	3.0	ug/l							
Zinc	ND	20	6.0	ug/l							
LCS Analyzed: 02/06/2008 (8B05111-BS	51)										
Aluminum	563	50	40	ug/l	500		113	85-115			
Arsenic	525	10	7.0	ug/l	500		105	85-115			
Beryllium	519	2.0	0.90	ug/l	500		104	85-115			
Boron	0.520	0.050	0.020	mg/l	0.500		104	85-115			
Calcium	2.67	0.10	0.050	mg/l	2.50		107	85-115			
Chromium	512	5.0	2.0	ug/l	500		102	85-115			
Iron	0.526	0.040	0.015	mg/l	0.500		105	85-115			
Magnesium	2.60	0.020	0.012	mg/l	2.50		104	85-115			
Nickel	515	10	2.0	ug/l	500		103	85-115			
Selenium	491	10	8.0	ug/l	500		98	85-115			
Silver	256	10	6.0	ug/l	250		102	85-115			
Vanadium	509	10	3.0	ug/l	500		102	85-115			
Zinc	509	20	6.0	ug/l	500		102	85-115			
				C							

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B05111 Extracted: 02/05/08	_										
Matrix Spike Analyzed: 02/06/2008 (8B0	5111-MS1)				Sou	rce: IRB	0073-01				
Aluminum	564	50	40	ug/l	500	62.5	100	70-130			
Arsenic	519	10	7.0	ug/l	500	ND	104	70-130			
Beryllium	513	2.0	0.90	ug/l	500	ND	103	70-130			
Boron	0.549	0.050	0.020	mg/l	0.500	0.0311	104	70-130			
Calcium	58.9	0.10	0.050	mg/l	2.50	55.2	147	70-130			MHA
Chromium	502	5.0	2.0	ug/l	500	ND	100	70-130			
Iron	0.554	0.040	0.015	mg/l	0.500	0.0302	105	70-130			
Magnesium	10.3	0.020	0.012	mg/l	2.50	7.52	112	70-130			
Nickel	514	10	2.0	ug/l	500	11.5	101	70-130			
Selenium	486	10	8.0	ug/l	500	ND	97	70-130			
Silver	257	10	6.0	ug/l	250	ND	103	70-130			
Vanadium	507	10	3.0	ug/l	500	ND	101	70-130			
Zinc	509	20	6.0	ug/l	500	11.6	99	70-130			
Matrix Spike Dup Analyzed: 02/06/2008	(8B05111-M	SD1)			Sou	rce: IRB	0073-01				
Aluminum	587	50	40	ug/l	500	62.5	105	70-130	4	20	
Arsenic	541	10	7.0	ug/l	500	ND	108	70-130	4	20	
Beryllium	518	2.0	0.90	ug/l	500	ND	104	70-130	1	20	
Boron	0.554	0.050	0.020	mg/l	0.500	0.0311	105	70-130	1	20	
Calcium	58.4	0.10	0.050	mg/l	2.50	55.2	125	70-130	1	20	MHA
Chromium	517	5.0	2.0	ug/l	500	ND	103	70-130	3	20	
Iron	0.565	0.040	0.015	mg/l	0.500	0.0302	107	70-130	2	20	
Magnesium	10.3	0.020	0.012	mg/l	2.50	7.52	112	70-130	0	20	
Nickel	530	10	2.0	ug/l	500	11.5	104	70-130	3	20	
Selenium	503	10	8.0	ug/l	500	ND	101	70-130	3	20	
Silver	262	10	6.0	ug/l	250	ND	105	70-130	2	20	
Vanadium	518	10	3.0	ug/l	500	ND	104	70-130	2	20	
Zinc	528	20	6.0	ug/l	500	11.6	103	70-130	4	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B01050 Extracted: 02/01/08	-										
Blank Analyzed: 02/01/2008 (8B01050-B	LK1)										
Chloride	ND	0.50	0.25	mg/l							
Fluoride	ND	0.50	0.15	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Sulfate	ND	0.50	0.20	mg/l							
LCS Analyzed: 02/01/2008 (8B01050-BS	l)										
Chloride	4.80	0.50	0.25	mg/l	5.00		96	90-110			M-3
Fluoride	4.77	0.50	0.15	mg/l	5.00		95	90-110			
Sulfate	10.1	0.50	0.20	mg/l	10.0		101	90-110			<i>M-3</i>
Matrix Spike Analyzed: 02/01/2008 (8B0	1050-MS1)				Sou	rce: IRB	0073-01				
Chloride	17.4	0.50	0.25	mg/l	5.00	13.1	87	80-120			
Fluoride	4.94	0.50	0.15	mg/l	5.00	0.266	94	80-120			
Matrix Spike Analyzed: 02/02/2008 (8B0	1050-MS2)				Sou	rce: IRB	0112-05				
Fluoride	5.56	0.50	0.15	mg/l	5.00	0.955	92	80-120			
Matrix Spike Dup Analyzed: 02/01/2008	(8B01050-MS	SD1)			Sou	rce: IRB	0073-01				
Chloride	17.3	0.50	0.25	mg/l	5.00	13.1	84	80-120	1	20	
Fluoride	4.92	0.50	0.15	mg/l	5.00	0.266	93	80-120	1	20	
Batch: 8B04112 Extracted: 02/04/08	_										
	. 171)										
Blank Analyzed: 02/04/2008 (8B04112-B	,	5.0	2.2	/1							
Total Cyanide	ND	5.0	2.2	ug/l							
LCS Analyzed: 02/04/2008 (8B04112-BS	1)										
Total Cyanide	184	5.0	2.2	ug/l	200		92	90-110			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04112 Extracted: 02/04/08	-										
Matrix Spike Analyzed: 02/04/2008 (8B0	4112-MS1)				Sou	rce: IRA	3072-06				
Total Cyanide	189	5.0	2.2	ug/l	200	ND	94	70-115			
Matrix Spike Dup Analyzed: 02/04/2008	(8B04112-MS	D1)			Sou	rce: IRA	3072-06				
Total Cyanide	189	5.0	2.2	ug/l	200	ND	95	70-115	0	15	
Batch: 8B04128 Extracted: 02/04/08	-										
Blank Analyzed: 02/04/2008 (8B04128-B	LK1)										
Total Suspended Solids	ND	10	10	mg/l							
LCS Analyzed: 02/04/2008 (8B04128-BS	1)										
Total Suspended Solids	971	10	10	mg/l	1000		97	85-115			
Duplicate Analyzed: 02/04/2008 (8B0412	8-DUP1)				Sou	rce: IRB	0070-02				
Total Suspended Solids	ND	10	10	mg/l		ND				10	
Batch: 8B07122 Extracted: 02/07/08	-										
Blank Analyzed: 02/07/2008 (8B07122-B	LK1)										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 02/07/2008 (8B07122-BS	1)										
Total Dissolved Solids	990	10	10	mg/l	1000		99	90-110			
Duplicate Analyzed: 02/07/2008 (8B0712	2-DUP1)				Sou	rce: IRB	0146-01				
Total Dissolved Solids	296	10	10	mg/l		292			1	10	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B11053 Extracted: 02/11/08	<u> </u>										
Blank Analyzed: 02/11/2008 (8B11053-B	LK1)										
Perchlorate	ND	4.0	1.5	ug/l							
LCS Analyzed: 02/11/2008 (8B11053-BS	1)										
Perchlorate	49.4	4.0	1.5	ug/l	50.0		99	85-115			
Matrix Spike Analyzed: 02/11/2008 (8B1	1053-MS1)				Sou	rce: IRA	2969-01				
Perchlorate	78.8	4.0	1.5	ug/l	50.0	28.1	101	80-120			
Matrix Spike Dup Analyzed: 02/11/2008	(8B11053-MS	SD1)			Sou	rce: IRA	2969-01				
Perchlorate	79.7	4.0	1.5	ug/l	50.0	28.1	103	80-120	1	20	
Batch: 8B11060 Extracted: 02/11/08	<u>.</u>										
Blank Analyzed: 02/11/2008 (8B11060-B	LK1)										
Hexane Extractable Material (Oil & Grease)	ND	5.0	1.4	mg/l							
LCS Analyzed: 02/11/2008 (8B11060-BS	1)										MNR1
Hexane Extractable Material (Oil & Grease)	21.1	5.0	1.4	mg/l	20.2		104	78-114			
LCS Dup Analyzed: 02/11/2008 (8B1106	0-BSD1)										
Hexane Extractable Material (Oil & Grease)	21.4	5.0	1.4	mg/l	20.2		106	78-114	1	11	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

ORGANIC COMPOUNDS BY GC/MS (EPA 525.2)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•		Linnt	MDL	Units	Levei	Result	/0REC	Linits	ΠD	Linit	Quanners
Batch: C8B0516 Extracted: 02/05/0	<u>8</u>										
Blank Analyzed: 02/07/2008 (C8B0516-I	BLK1)										
Chlorpyrifos	ND	1.0	0.10	ug/l							
Diazinon	ND	0.25	0.24	ug/l							
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.76			ug/l	5.00		95	70-130			
Surrogate: Triphenylphosphate	5.79			ug/l	5.00		116	70-130			
Surrogate: Perylene-d12	5.00			ug/l	5.00		100	70-130			
LCS Analyzed: 02/07/2008 (C8B0516-BS	51)										
Chlorpyrifos	5.48	1.0	0.10	ug/l	5.00		110	70-130			
Diazinon	3.82	0.25	0.24	ug/l	5.00		76	70-130			
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.66			ug/l	5.00		93	70-130			
Surrogate: Triphenylphosphate	5.66			ug/l	5.00		113	70-130			
Surrogate: Perylene-d12	4.87			ug/l	5.00		97	70-130			
LCS Dup Analyzed: 02/07/2008 (C8B05)	16-BSD1)										
Chlorpyrifos	4.90	1.0	0.10	ug/l	5.00		98	70-130	11	10	R-7
Diazinon	3.82	0.25	0.24	ug/l	5.00		76	70-130	0	50	
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.50			ug/l	5.00		90	70-130			
Surrogate: Triphenylphosphate	5.52			ug/l	5.00		110	70-130			
Surrogate: Perylene-d12	4.79			ug/l	5.00		96	70-130			
Batch: C8B1302 Extracted: 02/13/0	<u>8</u>										
Blank Analyzed: 02/13/2008 (C8B1302-I	BLK1)										
Chlorpyrifos	ND	1.0	0.10	ug/l							
Diazinon	ND	0.25	0.24	ug/l							
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.65			ug/l	5.00		93	70-130			
Surrogate: Triphenylphosphate	5.62			ug/l	5.00		112	70-130			
Surrogate: Perylene-d12	5.02			ug/l	5.00		100	70-130			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

ORGANIC COMPOUNDS BY GC/MS (EPA 525.2)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: C8B1302 Extracted: 02/13/0	8										
LCS Analyzed: 02/13/2008 (C8B1302-B	S1)										
Chlorpyrifos	5.29	1.0	0.10	ug/l	5.00		106	70-130			
Diazinon	4.70	0.25	0.24	ug/l	5.00		94	70-130			
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.54			ug/l	5.00		91	70-130			
Surrogate: Triphenylphosphate	5.57			ug/l	5.00		111	70-130			
Surrogate: Perylene-d12	5.15			ug/l	5.00		103	70-130			
LCS Dup Analyzed: 02/13/2008 (C8B13	02-BSD1)										
Chlorpyrifos	5.10	1.0	0.10	ug/l	5.00		102	70-130	4	10	
Diazinon	3.88	0.25	0.24	ug/l	5.00		78	70-130	19	50	
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.82			ug/l	5.00		96	70-130			
Surrogate: Triphenylphosphate	5.42			ug/l	5.00		108	70-130			
Surrogate: Perylene-d12	5.08			ug/l	5.00		102	70-130			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

METHOD BLANK/QC DATA

Metals by EPA 200 Series Methods

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: W8B0147 Extracted: 02/05/0	8										
Blank Analyzed: 02/07/2008 (W8B0147-	,										
Mercury, Dissolved	ND	0.20	0.050	ug/l							
Mercury, Total	ND	0.20	0.050	ug/l							
LCS Analyzed: 02/07/2008 (W8B0147-B	S1)										
Mercury, Dissolved	1.04	0.20	0.050	ug/l	1.00		104	85-115			
Mercury, Total	1.04	0.20	0.050	ug/l	1.00		104	85-115			
Matrix Spike Analyzed: 02/07/2008 (W8	B0147-MS1)				Sou	rce: 8020	444-01				
Mercury, Dissolved	1.04	0.20	0.050	ug/l	1.00	ND	104	70-130			
Mercury, Total	1.04	0.20	0.050	ug/l	1.00	ND	104	70-130			
Matrix Spike Analyzed: 02/07/2008 (W8	B0147-MS2)				Sou	rce: 8020	445-01				
Mercury, Dissolved	1.04	0.20	0.050	ug/l	1.00	ND	104	70-130			
Mercury, Total	1.04	0.20	0.050	ug/l	1.00	ND	104	70-130			
Matrix Spike Dup Analyzed: 02/07/2008	(W8B0147-M	SD1)			Sou	rce: 8020	444-01				
Mercury, Dissolved	1.05	0.20	0.050	ug/l	1.00	ND	105	70-130	1	20	
Mercury, Total	1.05	0.20	0.050	ug/l	1.00	ND	105	70-130	1	20	
Matrix Spike Dup Analyzed: 02/07/2008	(W8B0147-M	SD2)			Sou	rce: 8020	445-01				
Mercury, Dissolved	1.06	0.20	0.050	ug/l	1.00	ND	106	70-130	2	20	
Mercury, Total	1.06	0.20	0.050	ug/l	1.00	ND	106	70-130	2	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
IRB0073-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	2.19	4.8	15
IRB0073-01	Antimony-200.8	Antimony	ug/l	0.43	2.0	6
IRB0073-01	Boron-200.7	Boron	mg/l	0.034	0.050	1
IRB0073-01	Cadmium-200.8	Cadmium	ug/l	0.48	1.0	4
IRB0073-01	Chloride - 300.0	Chloride	mg/l	13	0.50	150
IRB0073-01	Copper-200.8	Copper	ug/l	3.82	2.0	14
IRB0073-01	Fluoride-300.0	Fluoride	mg/l	0.27	0.50	1.6
IRB0073-01	Hg_w 245.1	Mercury, Total	ug/l	0.034	0.20	0.2
IRB0073-01	Lead-200.8	Lead	ug/l	1.39	1.0	5.2
IRB0073-01	Nickel-200.7	Nickel	ug/l	15	10	10
IRB0073-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	0.17	0.26	10
IRB0073-01	Perchlorate 314.0-DEFAULT	Perchlorate	ug/l	0	4.0	6
IRB0073-01	Sulfate-300.0	Sulfate	mg/l	140	10	250
IRB0073-01	TDS - SM 2540C	Total Dissolved Solids	mg/l	307	10	850
IRB0073-01	Thallium-200.8	Thallium	ug/l	0.034	1.0	2

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
		Compliance Check				

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compnance
<u>LabNumber</u>	Analysis	Analyte	Units	Result	MRL	Limit

Compliance

Compliance

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

DATA QUALIFIERS AND DEFINITIONS

H2	Initial analysis within holding time. Reanalysis for the required dilution was past holding time.
J	Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.
L6	Per the EPA methods, benzidine is known to be subject to oxidative losses during solvent concentration.
M1	The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
M13	The sample spiked had a pH of less than 2. 2-Chloroethylvinylether degrades under acidic conditions.
M2	The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
M-3	Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).
MHA	Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information. See Blank Spike (LCS).
MNR1	There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate.
N1	See case narrative.
Р	The sample, as received, was not preserved in accordance to the referenced analytical method.
P9	This analyte has been shown to degrade upon preservation with HCl and cannot accurately be quantitated.
pН	pH = <2
рНа	pH = 7
R	The RPD exceeded the method control limit due to sample matrix effects. The individual analyte QA/QC recoveries, however, were within acceptance limits.
R-3	The RPD exceeded the acceptance limit due to sample matrix effects.
R-7	LFB/LFBD RPD exceeded the acceptance limit. Recovery met acceptance criteria.
ND	Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
RPD	Relative Percent Difference

ADDITIONAL COMMENTS

For 1,2-Diphenylhydrazine:

The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EPA 160.2	Water	Х	Х
EPA 1664A	Water		
EPA 200.7-Diss	Water	Х	Х
EPA 200.7	Water	Х	Х
EPA 200.8-Diss	Water	Х	Х
EPA 200.8	Water	Х	Х
EPA 300.0	Water	Х	Х
EPA 314.0	Water	Х	Х
EPA 335.2	Water	Х	Х
EPA 608	Water	Х	Х
EPA 624	Water	Х	Х
EPA 625	Water	Х	Х
SM2340B-Diss	Water		
SM2340B	Water	Х	Х
SM2540C	Water	Х	

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chrnic Samples: IRB0073-01

Analysis Performed: Bioassay-Acute 96hr Samples: IRB0073-01

TestAmerica Irvine

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 005

Report Number: IRB0073

Sampled: 02/01/08 Received: 02/01/08

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Eberline Services - SUB

2030 Wright Avenue - Richmond, CA 94804

Analysis Performed: Gamma Spec Samples: IRB0073-01

- Analysis Performed: Gross Alpha Samples: IRB0073-01
- Analysis Performed: Gross Beta Samples: IRB0073-01
- Analysis Performed: Radium, Combined Samples: IRB0073-01
- Analysis Performed: Strontium 90 Samples: IRB0073-01
- Analysis Performed: Tritium Samples: IRB0073-01
- Analysis Performed: Uranium, Combined Samples: IRB0073-01

TestAmerica - Ontario, CA California Cert #1169, Arizona Cert #AZ0062, Nevada Cert #CA-242

1014 E. Cooley Drive, Suite AB - Colton, CA 92324 Method Performed: EPA 525.2 Samples: IRB0073-01, IRB0073-01RE1

Vista Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413 1104 Windfield Way - El Dorado Hills, CA 95762 Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IRB0073-01

Weck Laboratories, Inc. California Cert #1132 14859 E. Clark Avenue - City of Industry, CA 91745 Method Performed: EPA 245.1 Samples: IRB0073-01

TestAmerica Irvine

BB	Annual Outfall 005 Stormwater at FSDF-1 Phone Number: (626) 568-6691 Fax Number: (626) 568-6691 Fax Number: (626) 568-655 15 Sampling Preservative Bo Date/Time Preservative Bo Date/Time Preservative Bo Date/Time Preservative Bo Annone 2A None 2A Anone None 5A A None None 8A A None None 8A 10A None None 10A 10A
Total Recoverable Total Recoverable Sb, Cd, Cu, Db, Hc Sb, Cd, Cu, Pb, Hc Sb, Cd, Cu, Pb, Hc Hardness as Ca C Cir, So, NO ₃ +NO ₃ X X Your State Your State <td< td=""><td>Mone None None None None None None None N</td></td<>	Mone None None None None None None None N
Total Total Total X X X X	Preservative HNO ₃ HNO ₃ HNO ₆ None None None None None None None
	HNUO3 HNO3 None None None None None None
	HNO ₃ HCI HCI HCI HCI None None None None None None
9A 9B 10A, 10B 11A, 11B 12	
10A, 10B 11A, 11B 12	
11A, 11BV	
2 7	
	NaOH
5 ک	None
14A, 14B, Y	HCI
	る-/-0 ^{15A} None 15A
2 in 1797	350
Réceived By Date/Time:	~
Kara / Unitor 2-1-08	,
n Moura	1830

LABORATORY REPORT

Date: February 8, 2008

Client: TestAmerica – Irvine 17461 Derian Ave., Suite 100 Irvine, CA 92614 Attn: Joseph Doak "dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003 (805) 650-0546 FAX (805) 650-0756 *CA DOHS ELAP Cert. No.: 1775*

- Laboratory No.:
 A-08020107-001

 Sample ID.:
 IRB0073-01 (Outfall 005)
- **Sample Control:** The sample was received by ATL within the recommended hold time, in a chilled state, and with the chain of custody record attached. Testing was conducted on only one sample per client instruction.

Date Sampled:	02/01/08
Date Received:	02/01/08
Temp. Received:	5°C
Chlorine (TRC):	0.0 mg/1
Date Tested:	02/01/08 to 02/08/08

Sample Analysis: The following analyses were performed on your sample:

Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0), *Ceriodaphnia dubia* Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

Result Summary:

Acute:	Survival	TUa
Fathead Minnow:	100%	0.0
Chronic:	NOEC	TUc
Ceriodaphnia Survival:	100%	1.0
Ceriodaphnia Reproduction:	100%	1.0

Quality Control:

Reviewed and approved by:

Joseph A. LeMay Laboratory Director

This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the client to whom it is addressed. Any reproduction of this report or use of the Laboratory's name for advertising or publicity purpose without authorization is prohibited **NPDES - 1302**

FATHEAD MINNOW PERCENT SURVIVAL TEST EPA Method 2000.0

Lab No.: A-08020107-001 Client/ID: TestAmerica - Outfall 005

Start Date: 02/01/2008

TEST SUMMARY

TEST DATA

Species: *Pimephales promelas*. Age: <u>/3</u> (1-14) days. Regulations: NPDES. Test solution volume: 250 ml. Feeding: prior to renewal at 48 hrs. Number of replicates: 2. Dilution water: Moderately hard reconstituted water. Photoperiod: 16/8 hrs light/dark. Source: In-laboratory Culture. Test type: Static-Renewal. Test Protocol: EPA-821-R-02-012. Endpoints: Percent Survival at 96 hrs. Test chamber: 600 ml beakers. Temperature: 20 +/- 1°C. Number of fish per chamber: 10. QA/QC Batch No.: RT-080103.

		L L	LSI DATA	Ι			
		°C	DO		# I	Dead	Analyst & Time
			DO	рН	А	В	of Readings
INITIAL	Control	20.2	8.8	8.0	0	0	A- 1300
	100%	19.7	10.9	6.6	0	0	1300
24 Hr	Control	19.6	8.0	7.3	O	0	ß~
24 M	100%	19.6	7.8	2.1	\overline{O}	\Box	1200
48 Hr	Control	20.1	6. 3	7.3	0	6	2
48 Hr	100%	20.1	6.6	7.2	U	0	1300
Descent	Control	20.4	7.9	7.6	\mathcal{O}	0	2
Renewal	100%	20.05	8.9	6.8	O	Ø	1300
70 11-	Control	19-5	7-3	7-4	Ũ	0	0
72 Hr	100%	19.6	7.6	7.4	C	U	iga
06 11-	Control	19.3	7.3	7.6	\mathcal{O}	0	1300
96 Hr	100%	19.2	23	7.3	\mathcal{O}	0	BOD
DO: <u>//),27</u> Sample ae Control: Alkal	eived: Chlorine: 0.0 mg/l; Alkalinity: <u>4</u> rated moderately (aj inity: <u>68</u> mg/l; Ha	2 mg/l; Ha pprox. 500 n rdness: <u>9 /</u>	rdness: <u>/ 7</u> nl/min) to r mg/l; Cor	/mg/l; NH aise or lowe	l ₃ -N: <u>//</u> er DO? Y	∑_mg/l. ∕es / №o mho.	

Test solution aerated (not to exceed 100 bubbles/min) to maintain DO > 4.0 mg/l? Yes / Nb. Sample used for renewal is the original sample kept at 0-6°C with minimal headspace.

Dissolved Oxygen (DO) readings in mg/l O₂.

RESULTS

Percent Survival In:

Control: 100

% 100

100% Sample: <u>/00</u>%

CERIODAPHNIA SURVIVAL AND REPRODUCTION TEST

- Test and Results Summary
- Data Summary and Statistical Analyses
- Raw Test Data: Water Quality & Test Organism Measurements

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

Lab No.: A-08020107-001 Client/ID: Test America – IRB0073-01 (Outfall 005)

Date Tested: 02/01/08 to 02/08/08

TEST SUMMARY

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*. Age: < 24 hrs; all released within 8 hrs. Test vessel size: 30 ml. Number of test organisms per vessel: 1. Temperature: 25 +/- 1°C. Dilution water: Mod. hard reconstituted (MHRW). QA/QC Batch No.: RT-080106. Endpoints: Survival and Reproduction. Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 15 ml. Number of replicates: 10. Photoperiod: 16/8 hrs. light/dark cycle. Test duration: 7 days. Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Survival	Mean Number of Young Per Female
Control	100%	26.2
100% Sample	100%	30.6
Sample not statistically	significantly less than Co	ontrol for either endpoint.

CHRONIC TOXICITY

Survival NOEC	100%
Survival TUc	1.0
Reproduction NOEC	100%
Reproduction TUc	1.0

QA/QC TEST ACCEPTABILITY

Parameter	Result
Control survival ≥80%	Pass (100% survival)
≥15 young per surviving control female	Pass (26.2 young)
≥60% surviving controls had 3 broods	Pass (100% with 3 broods)
PMSD $<47\%$ for reproduction; if $>47\%$ and no toxicity at IWC, the test must be repeated	Pass (PMSD = 7.2%)
Statistically significantly different concentrations relative difference > 13%	Pass (no concentration significantly different)
Concentration response relationship acceptable	Pass (no significant response at concentration tested)

			Ceriod	aphnia Sur	vival and	Reprodu	iction Tes	t-7 Day	Survival		
Start Date:	2/1/2008	14:00	Test ID:	8020107			Sample ID	•	Outfall 00	5	
End Date:	2/8/2009	14:00	Lab ID:	CAATL-Ag	uatic Tes	ting Labs	Sample Ty	pe:	EFF2-Indu	ustrial	
Sample Date:	2/1/2008	08:30	Protocol:	FWCH 4T	H-EPA-82	1-R-02-0	Test Speci	es:	CD-Cerioo	daphnia dubia	
Comments:							•			•	
Conc-%	1	2	3	4	5	6	7	8	9	10	
D O i i	1 0 0 0 0	1 0 0 0 0	1								

_	COIL-70	1		<u> </u>	4	5	o	1	0	9	10	
	D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
	100	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	

						Fisher's	1-Tailed	Isotonic		
Conc-%	Mean	N-Mean	Resp	Resp	Total	Ν	Exact P	Critical	Mean	N-Mean
D-Control	1.0000	1.0000	0	10	10	10			1.0000	1.0000
100	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000

Hypothesis	Test (1-tail,	0.05)	NOEC	LOEC	ChV	TU			
Fisher's Exa	act Test		100	>100	·····	1		•••••••••••••••••••••••••••••••••••••••	
Treatments	vs D-Control								
				Line	ar Interpo	lation (200 Res	samples)		
Point	%	SD	95%	CL	Skew				
IC05	>100							1994 - Andrew State (1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 -	
IC10	>100								
IC15	>100					1	1.0		
IC20	>100								
IC25	>100					Ĺ	0.9 -		
IC40	>100					C	0.8 -		
IC50	>100					c	0.7 -		
			·······	4ny	*******				
						Response	0.6 -		
							0.5		
						dsa			
						n 20	0.4 -		
]		

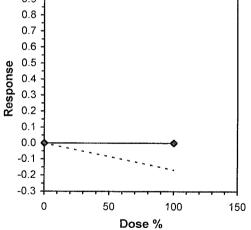
0.3 -0.2 -0.1 -0.0 <

0

100

50

Dose %


150

			Cerioda	iphnia Su	rvival and	l Reprodu	iction Tes	st-Reprod	luction			
Start Date:	2/1/2008 1	4:00	Test ID:	8020107		ę	Sample ID	:	Outfall 005	5	******	
End Date:	2/8/2009 1	4:00	Lab ID:	CAATL-Ac	quatic Tes	ting Labs \$	Sample Ty	/pe:	EFF2-Indu	ustrial		
Comple Dates	0/4/0000 0			DID: CAATL-Aquatic Testing Labs Sample Type: EFF2-Industrial Ditocol: FWCH 4TH-EPA-821-R-02-0 Test Species: CD-Ceriodaphnia dubia								
Sample Date:	Z/1/2008 L	18:30	Protocol:		H-EPA-82	1-K-02-0	rest opec	les:	CD-Cerioc	aphnia dubia	1	
Comments:	2/1/2008 (18:30	Protocol:	FVUCH 41	п-сра-од	1-R-02-0	rest opec	les:	CD-Ceriod	aprinia dubia	Ì	
•	1	2	3	4	5 5	6	7	8	9	10	.	
Comments:	1	28.000	3 29.000				7 20.000	8 26.000		•	.	

				Transform: Untransformed					1-Tailed	and and a state of the state of	Isot	onic
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
D-Control	26.200	1.0000	26.200	20.000	29.000	10.765	10				28.400	1.0000
100	30.600	1.1679	30.600	27.000	33.000	6.572	10	-4.017	1.734	1.900	28.400	1.0000

Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.05)	0.91288		0.905		-0.8834	0.79946
F-Test indicates equal variances (p = 0.33)	1.96703		6.54109			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates no significant differences	1.89957	0.0725	96.8	6	8.1E-04	1, 18
Treatments vs D-Control						,

			Lir	near Interpolation	n (200 Resamples)
Point	%	SD	95% CL	Skew	
IC05	>100				
IC10	>100				
IC15	>100				1.0
IC20	>100				0.9
IC25	>100				0.8
1C40	>100				
IC50	>100				0.7 -
		the second s			

CERIODAPHNIA DUBIA CHRONIC BIOASSAY EPA METHOD 1002.0 Raw Data Sheet

Start Date: 02/01/2008

Lab No.: A-08020107-001

Client ID: TestAmerica - Outfall 005

													Stalt	Date. 02		<u>vo</u>
Analyst Initials \mathcal{L}_{max} \mathcal{L}_{m			DA	Y 1	D	AY 2	-	DAY 3	D.	AY 4	DA	Y 5	D.	AY 6	D	AY 7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					0 hr	24hr	0 hr	24hr		24hr	0 hr	24hr	0 hr	24hr	0 hr	24hr
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Analyst I	nitials:	1mm	Âm	h	In	A	-1p		Rm	Ru	h	in	hm	R	
$\begin{array}{cccc} \mbox{Control} & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Time of Re	adings:	1400	1500	<u> /SOO</u>	14W	7		160	1530	1530	1600	1400	1570	190	14W
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		DO	8.0	8.9	8.1	84	7-0	7.2	28	<u> </u>	7.8	8.3	7.3	8.4	813	8-4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Control	pН	7.6	7.7	2.6	7.7	17.1	027	75	7.9	7.5	7.8	2.2	2.6	2.6	7.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	Temp	25.0	24.5	25.4	24.4	241	1.46	240	24.3	24.9	24.2	250	24.4	25.6	243
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		DO	10.9	8.7	11.0	8.6	10.8	83	10.6	8.3	11.5	8.1	11.0	8.4	11.5	9.3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	100%	pН	lale		6.3	7.4	le-fe	17.4	6.6	2.5	10	7.4	2.0	7.3	6.8	7.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Temp	24.10	24.4	24.3	244	24.5	5 24.1	24.5	24.2	24-4	24.2	24.3	24.9	24.3	24-5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Ad	lditional F	Paramete	rs				Co	ntrol	· · · · · · · · · · · · · · · · · · ·			100% Sam	ple	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Co	nductivity	(umohms	5)	and the second			2	75	- Pakana			380		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		All	kalinity (m	ig/I CaCC	D ₃)				la	8						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Ha	urdness (m	g/l CaCO	3)			1971 Mart via anna an	9)/	*****			171		9-11
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		An	nmonia (m	1g/l NH ₃ -1	N)				<	2.2				0.5		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						<u></u>	S	Source of Ne	onates							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							<u> </u>			F		and the second se		I		J
Sample Day A B C D E F G H I J Young Adults Initials 1 0 $()$ <td>Broc</td> <td>od ID:</td> <td></td> <td><u>[/ </u></td> <td><u>B3</u></td> <td>$\Box C$</td> <td></td> <td>E1</td> <td><u> </u></td> <td> F </td> <td>G.</td> <td>3</td> <td><u>H3</u></td> <td>II/</td> <td><u> </u></td> <td><u>72</u></td>	Broc	od ID:		<u>[/ </u>	<u>B3</u>	$\Box C$		E1	<u> </u>	F	G.	3	<u>H3</u>	II/	<u> </u>	<u>72</u>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sample		Day			7 7	Numbe		Produced	<u>т</u> т						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						C				н				Adults		nitials
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						$ \mathcal{O} $										6
$\begin{array}{c} \text{Control} & \begin{array}{c} 4 & \begin{array}{c} c & S & \downarrow & S & \downarrow & (J & O & O & J & \downarrow & 2S & 10 & (L & J & J & J & J & J & J & J & J & J & $						19			10	1				10		4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					$\frac{2}{2}$	U.	$\frac{\partial}{\partial t}$		12	$\left \right\rangle$				<u> </u>		1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Control		5		10	0		7 9	15	5				-12		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			6	IL	113	12	15	016	0	ŏ	01	517	Ď	10	, i	F
$10\% \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$			7	6	20	13	0	140	10	15	141	2 7	5	10		$\hat{\mathbb{Z}}$
$1 \bigcirc $			Total	28	6 28	29-	2817	25/29	20	26	24 2	52	62	IV		1V
$100\% \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1			0	0	c c	0			2 C	>	IV		6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2			C	0	00	C	0	CC	c	z	10		5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3		<u> </u>	$+ \mathbf{\nabla} + \mathbf{F}$	~	03	4	3		21	9	10		N
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100%					<u>+</u> +-		50		0			8	10		4
7 0 0 15 0 0 0 0 16 16 47 10 M				And a second sec									1	10		
Total 33273133373031292933 306 10 1						+	21	<u> 115</u>	16					10	- ,	h
		11	/		$\gamma \cup$	$ 1\rangle$		$\cup \cup$	$ \mathcal{O} $	$ \cup $	1611	61 1	イフ	10	1 1	W.
			Tatal		7 ~~~		9.515	3 2 2 2	101			~~				77

Circled fourth brood not used in statistical analysis. 7^{th} day only used if <60% of the surviving control females have produced their third brood.

FEB. 1.2008	5:53PM DEL	MAR ANA S	LYTICAL SUBCONTRACT ORDER TestAmerica Irvine IRB0073	NO. 864 P. 1
SENDING LABORATO	<u> </u>		RECEIVING LA	BORATORY
TestAmerica Irvine 17461 Derian Avenue Irvine, CA 92614 Phone: (949) 261-102 Fax: (949) 260-3297 Project Manager: Jose	2			650-0546 50-0756 on: California
Analysis	Units	Due	Expires	Comments
Sample ID: IRB0073-01	Water		Sampled: 02/01/08	
Bioassay-7 dy Chmic	N/A	02/12/08	02/02/08 20:30	Cerio, EPA/821-R02-013, Sub to AqTox
Bioassay-Acute 96hr Containers Supplied:	% Survival	02/12/08	02/02/08 20:30	Labs FH minnow, EPA/821-R02-012, Sub to AqTox Labs
1 gal Poly (W)	1 gal Poly (X)			

Released By

21108 Date/Time

Released By

Received By

<u>z-1-8</u>1107) Date/Time

Date/Time

Page 1 of 1

Date/Time

12/20/07
Version .
America
Test ,

CHAIN OF CUSTODY FORM

STIC.	Test America Version 12/20/07	12/20/	07	CHAIN	CHAIN OF CL	USTODY FORM		Ö	M N					õ	Page 1 of 1
ő	Client Name/Address:		Project: Booing		ļ							ANAL YSIS REQUIRED			>
2 H	MWTT-AUCAUIA 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Test America Contact: Joseph Doak	200 oak	Annua Stormw	Annual Outfall 005 Stormwater at FSDF-1	o <u>7</u>	Ο ³ '' Β' Λ'	(Mah-	-И, F,), Gross n (H-3) 226 226 Radium ۳um		· ▲ HL '∧	Field readings: Temp = 8 15 46
□ 2 <	Project Manager: Bronwyn Kelly Sampler: RBgルルシンの 火 ちゅいまくひ	Kelly	Phone Numb (626) 568-66 Fax Number (626) 568-65	Phone Number: (626) 568-6691 Fax Number: (626) 568-6515		il Recoverable Cd, Cu, Pb, Hg Iness as Ca Co) (and all cong 4001) esease (:µlorate SO4, NO₃+NO₂	SST ,	s (624), xylene 5s A+A+2CVE	icides/PCBs , pyrifos, Diazin	 (9) noo, butter (900.0), Tritium (900.0), Sr-90 (905 (0), Sr-90 (905 (100.0), Sr-90 (905 (100.0), Uranit (0), K-40, CS-1 (0), K-40, CS-1 	e and Chronic Cs (625) + PP	s CO ³ Cr, bp, Hg, B, Dissolved Me Dissolved We	$PH = \mathcal{L}$ Time of readings =
Sample Matrix W	Container Type 11 Polv	▲ of Cont.	Sampling Date/Time	g Preservative	Bottle #	, dS , IT Hard	8 I!O	Berd CI',			Pest	Gros Beta (906 (903 (908 (903	huoA	Fe, 4	Comments
	1L Poly		1 20	NNO3	19 19 19	< ×						\		-	
	1L Amber	2		None	2A, 2B	5	×								
	1L Amber	2		HCI	3A, 3B		×			·.					
	500 ml Poly	8		None	4A, 4B			×							
	500 ml Poly	2		None	5A, 5B V				×		•				
	VOAs	e		HCI	6A, 6B, 6C					×					
	VOAs	e		None	7A, 7B, 7 7C					×					
	1L Amber	2		None	8A, 8B						×				
	2.5 Gal Cube 500 ml Amber	~~ ***		None None	98 9B						· · · · ·	X			Unfiltered and unpreserved analysis
	1L Amber	7		None	10A, 10BL				in Press		ļ	27	×		
	1 Gal Poly	2		None	11A, 11BV								Þ		
	500ml Poly)-		NaOH	12 5									×	
	1L Poly	~		None	13				a da ta					×	Filter w/in 24hrs of receipt at lab
	VOAs	ю	Ð	HCI	14A, 14B, V 14C					×					
	s	e	02:20	Done Done	15A, 15B, 15C					×					
	80-1-0		Date/Time	0955	Received By) جنگ	Ter S	, A	Date/Time:		5	5560	Turn aro	Turn around Time: (check) 24 Hours 5 Dave	leck) 5 Dave
	2 TAT	Ó	Date/Tim e; 2/ <i>61 / ®</i> 1	00/1/00	Received By				Date/Time	ne:			48 Hours		10 Days
			Date/Time:	- -	Received By	By Le	2HAN	đ Q	Date/Time:	le:	7	0011 00	72 Hours		Normal
					- -								Sample Intact	Sample Integrity: (check) Intact On Ice:	ck) On Ice:
ĺ.															

NPDES - 1310

REFERENCE TOXICANT DATA

FATHEAD MINNOW ACUTE Method 2000.0 Reference Toxicant - SDS

QA/QC Batch No.: RT-080103

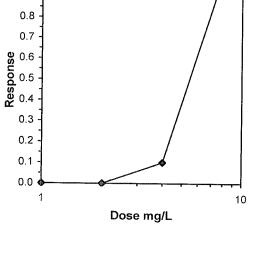
Species: *Pimephales promel*as. Age: //___days old. Regulations: NPDES. Test chamber volume: 250 ml. Feeding: Prior to renewal at 48 hrs. Temperature: 20 +/- 1°C. Number of replicates: 2. Dilution water: MHSF.

TEST SUMMARY

Source: In-lab culture. Test type: Static-Renewal. Test Protocol: EPA-821-R-02-012. Endpoints: LC50 at 96 hrs. Test chamber: 600 ml glass beakers. Aeration: None. Number of organisms per chamber: 10. Photoperiod: 16/8 hrs light/dark.

TEST DATA

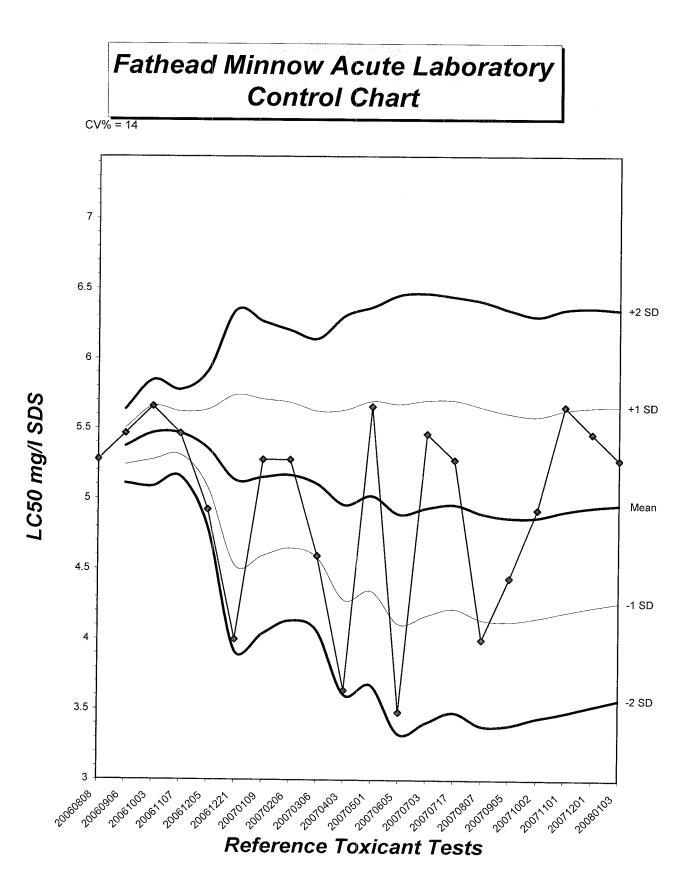
		INITIAI				24 Hr		*****			48 Hr		
Date/Time:	1-3-0	8	1400	1-4-	08-		1200		1-5-0	8		200	
Analyst:		$\underline{~}$	<u></u>			R	مر م				h-		
	°C	DO	pН	°C	DO	pН	# I	Dead	°C	DO	pН	# D	ead
							A	В			1	A	В
Control	20.3	8.8	7.9	19.9	6.8	7.5	\Box	0	19.9	7.6	7.4	0	o
1.0 mg/l	20.3	8.8	29	199	6.8	7.4	0	0	19.9	7.4	7.4	\mathcal{O}	\sim
2.0 mg/l	20.3	8.9	7.9	19.9	7.0	7.3	\Box	\circ	20.0	2.5	7.3	0	\overline{D}
4.0 mg/l	20.3	8.9	7.8	19.9	6.9	7.3	0	0	20.1	7.3	7.3	0	0
8.0 mg/l	20.3	9.0	2.8	19.9	5.7	7.2	ÎU.	10	and the state of t		Bergano.		
	R	ENEWA	۱L			72 Hr					96 Hr		
Date/Time:	1-5-0	18	1200	1-1	6-08	1	330	2	[-7	-08	()	13:0	-15
Analyst:		<u>Kn</u>	n-			m					A	NTPERSONAL REPORT	
	°C	DO	pН	°C	DO	рН	# E	Dead	°C	DO	pН	# D	ead
							A	В			F	A	В
Control	20.4	9.0	7.7	20,0	2-1	8.0	0	0	19.9	6-4	7.6	\mathcal{O}	0
1.0 mg/l	20.4	9.0	7.7	20.0	6.9	80	0	0	20,0	4.6	7.6	0	\mathcal{O}
2.0 mg/l	20.4	9.1	7.7	20.0	7.1	7.4	0	U	19.9	6.8	7.5	\mathcal{O}	0
4.0 mg/l	20.4	9.1	7.7	200	7.3	7-9	1	0	19.8	6.2	7.0	0	
8.0 mg/l		illinger + **	hereine.	• • • • • • •		- Lange of the first of	AND CARLING ST	and the second sec	Wigggrundelte	and the second se	Man factor of		Australian and a
Comments:	Contro SDS:	ol: Alkal Alkal	inity: inity:(<u>62</u> mg	g/l; Har g/l; Har	dness: dness:	<u> </u>	ng/l; Co ng/l; Co	onductivity onductivity	1:_29 1:_28	⊘ umho ∑umho).).	
Concentr	ation-re	Ye	s (respoi	nse curve	e norma				analysis):	مي. ا			


				Acute Fish Test-	96 Hr Survival	
Start Date: End Date: Sample Date: Comments:	1/3/2008 1/7/2008 1/3/2008	13:45	Lab ID:	RT-080103f CAATL-Aquatic Testing L ACUTE-EPA-821-R-02-01		REF-Ref Toxicant SDS-Sodium dodecyl sulfate PP-Pimephales promelas
Conc-mg/L	1	2		and a standard and a Standard a standard a st		
D-Control	1.0000	1.0000				
1	1.0000	1.0000				
2	1.0000	1.0000				
4	0.9000	0.9000				
8	0.0000	0.0000				

		_	Tra	ansform:	Arcsin Sc	uare Root		Number	Total
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Resp	Number
D-Control	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	<u> </u>	20
1	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	Ĵ	20
2	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	ů Ú	20
4	0.9000	0.9000	1.2490	1.2490	1.2490	0.000	2	2	20
8	0.0000	0.0000	0.1588	0.1588	0.1588	0.000	2	20	20

Auxiliary Tests Normality of the data set cannot be confirmed Equality of variance cannot be confirmed

				Trimmed Spearman-Karber	
Trim Level	EC50	95% CL	Ľ_	•	
0.0%	5.2780	4.8093 5	5.7924	ч (ланан тариу салан на раду чисти на раду на поста дуу дология котору чута со со на 4 у у сала со со со со со	
5.0%	5.3968	4.8053 6	6.0611		
10.0%	5.4432	5.1395 5	5.7648	1.0	
20.0%	5.4432	5.1395 5	5.7648		7
Auto-0.0%	5.2780	4.8093 5	5.7924	0.9 -	
			n ka ka manana manana manana, ka manana manana manja - gananan	0.8	
				0.7 -	
				0.00	/


Statistic

Critical

Skew

Kurt

NPDES - 1314

TEST ORGANISM LOG

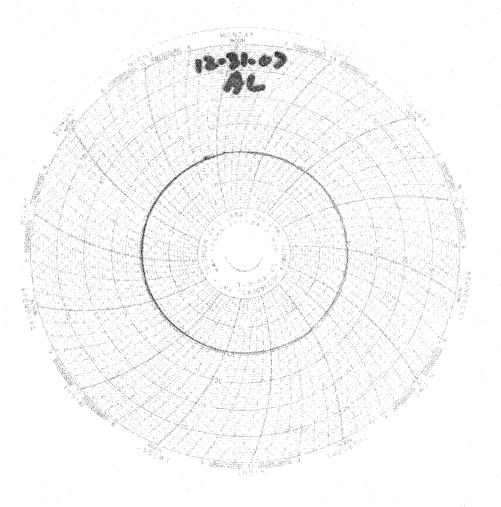
FATHEAD MINNOW - LARVAL (Pimephales promelas)

QA/QC BATCH NO.: RT-080103
SOURCE: In-Lab Culture
DATE HATCHED: 7-73-07
APPROXIMATE QUANTITY: 400
GENERAL APPEARANCE:
MORTALITIES 48 HOURS PRIOR TO TO USE IN TESTING:
DATE USED IN LAB: $1/3/c^{\delta}$
AVERAGE FISH WEIGHT: gm

TEST LOADING LIMITS: 0.65 gm/liter

200 ml test solution volume = 0.013 gm mean fish weight limit 250 ml test solution volume = 0.016 gm mean fish weight limit

ACCLIMATION WATER QUALITY:


Temp.: <u>20,³</u> ℃	рН: <u>~</u> А	mmonia: <u>Co./</u> mg/l NH ₃ -N
DO: 85 mg/l	Alkalinity: <u>6</u> ² mg/l	Hardness: <u>9</u> mg/l

READINGS RECORDED BY:	Jth	DATE:	1-4-08

Laboratory Temperature Chart

QA/QC Batch No: RT-080103 Date Tested: 01/03/08 to 01/07/08 Acceptable Range: 20+/- 1°C

CERIODAPHNIA SURVIVAL AND REPRODUCTION TEST

- Test and Results Summary
- Data Summary and Statistical Analyses
- Raw Test Data: Water Quality & Test Organism Measurements

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0 REFERENCE TOXICANT - NaCl

and the second second second

QA/QC Batch No.: RT-080106

Date Tested: 01/06/08 to 01/12/08

TEST SUMMARY

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*. Age: <24 hrs; all released within 8 hrs. Test vessel size: 30 ml. Number of test organisms per vessel: 1. Temperature: 25 +/- 1°C. Dilution water: Mod. hard reconstituted (MHRW). Reference Toxicant: Sodium chloride (NaCl).

Endpoints: Survival and Reproduction. Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 20 ml. Number of replicates: 10. Photoperiod: 16/8 hrs. light/dark cycle. Test duration: 6 days. Statistics: ToxCalc computer program.

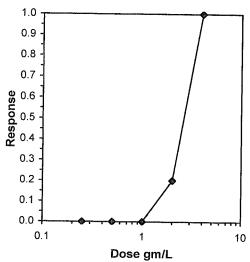
Sample Concentration	Percent Sur	vival	Mean Num Young Per I	
Control	100%		20.5	
0.25 g/l	100%		19.5	
0.5 g/l	100%		19.5	
1.0 g/l	100%		14.0	*
2.0 g/l	80%		3.2	*
4.0 g/l	0%	*	0	**
* Statistically signifi ** Reproduction data from exclud	cantly less than concentrations ed from statistic	greater th	an survival NO	l EC are

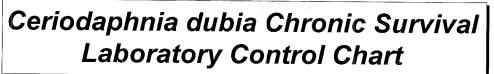
RESULTS SUMMARY

CHRONIC TOXICITY

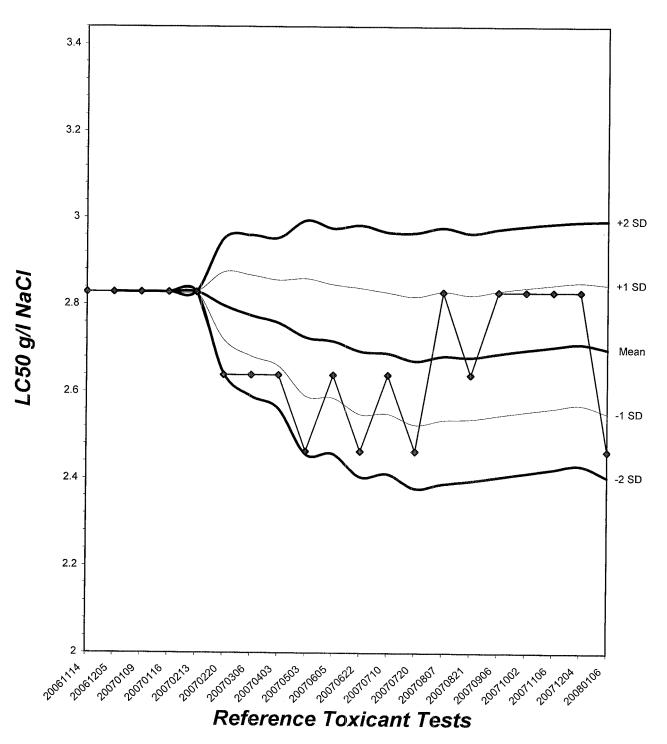
Survival LC50	2.5 g/l
Reproduction IC25	0.88 g/l

QA/QC TEST ACCEPTABILITY

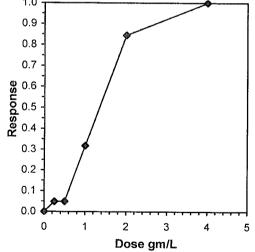

Parameter	Result
Control survival ≥80%	Pass (100% Survival)
≥15 young per surviving control female	Pass (20.5 young)
≥60% surviving controls had 3 broods	Pass (90% with 3 broods)
PMSD <47% for reproduction	Pass (PMSD = 19.1%)
Stat. sig. diff. conc. relative difference > 13%	Pass (Stat. sig. diff. conc. $= 31.7\%$)
Concentration response relationship acceptable	Pass (Response curve normal)

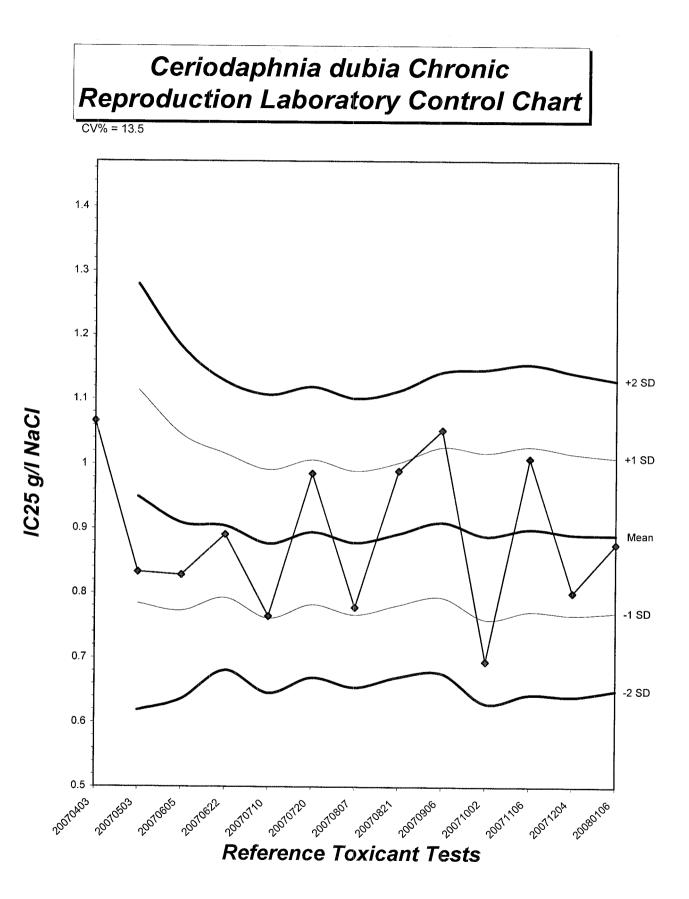

			Cerioda	aphnia Su	rvival and	Reprod	uction Tes	st-Surviv	al Day 6	and a state of the	
Start Date: End Date: Sample Date: Comments:	1/6/2008 ⁻ 1/12/2008 1/6/2008		Test ID: Lab ID:	RT-08010	6c quatic Tes	ting Labs	Sample ID Sample Ty Test Spec): ype:	REF-Ref NACL-Soc CD-Cerioc		
Conc-gm/L	1	2	3	4	5	6	7	8	9	10	
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
0.25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		1.0000	
0.5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		1.0000	
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		1.0000	
2	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	
4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

.				Not			Fisher's	1-Tailed	Number	Total
Conc-gm/L	Mean	N-Mean	Resp	Resp	Total	Ν	Exact P	Critical	Resp	Number
D-Control	1.0000	1.0000	0	10	10	10			0	10
0.25	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	
0.5	1.0000	1.0000	Ō	10	10	10	1.0000	0.0500	0	10
1	1.0000	1.0000	Õ	10	10				0	10
2	0.8000		0	0		10	1.0000	0.0500	0	10
4	0.0000	0.0000	2	8	10	10	0.2368	0.0500	2	10
4	0.0000	0.0000	10	0	10	10			10	10


Hypothesis Te	est (1-tail,	0.05)	NOEC	LOEC	ChV	ТU	
Fisher's Exact	Test		2	4	2.82843		
Treatments vs	D-Control				2.02010		
					Trimmed	Spearman-Karber	
Trim Level	EC50	95%	CL				
0.0%	2.4623	2.0663	2.9342				
5.0%	2.5108	2.0545	3.0683				
10.0%	2 5510	1 0070	0.0500				

	5.070	2.0100	2.0040	3.0683	
	10.0%	2.5519	1.9976	3.2599	
	20.0%	2.5937	2.2616	2.9745	
Aut	to-0.0%	2.4623	2.0663	2.9342	
					-




	Ceriodaphnia Survival and Reproduction Test-Reproduction											
Start Date:	1/6/2008 1	13:00	Test ID:	RT-08010			Sample ID			REF-Ref Toxicant		
End Date:	1/12/2008	13:00	Lab ID:	CAATL-Ac	uatic Tes	ting Labs	Sample Ty	vpe:	NACL-Sodium chloride			
Sample Date: Comments:	1/6/2008			FWCH-EF			Test Spec		CD-Cerioo	D-Ceriodaphnia dubia		
Conc-gm/L	1	2	3	4	5	6	7	8	9	10		
D-Control	23.000	11.000	21.000	21.000	23.000	20.000	19.000	22.000	20.000	25.000		
0.25	12.000	24.000	19.000	22.000	9.000	20.000	21.000	21.000	22.000	25.000		
0.5	21.000	19.000	21.000	22.000	16.000	12.000	22.000	21.000	22.000	19.000		
1	19.000	9.000	9.000	19.000	14.000	10.000	16.000	17.000	19.000	8.000		
2	8.000	2.000	2.000	5.000	4.000	3.000	3.000	5.000	0.000	0.000		
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		

				Transform	n: Untran	sformed	Rank	1-Tailed	Isot	onic	
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Mean	N-Mean
D-Control	20.500	1.0000	20.500	11.000	25.000	18.432	10			20,500	1.0000
0.25	19.500	0.9512	19.500	9.000	25.000	26.177	10	102.00	76.00	19,500	0.9512
0.5	19.500	0.9512	19.500	12.000	22.000	16.617	10	94.50	76.00	19.500	0.9512
*1	14.000	0.6829	14.000	8.000	19.000	32.819	10	62.50	76.00	14.000	0.6829
*2	3.200	0.1561	3.200	0.000	8.000	76.263	10	55.00	76.00	3.200	0.1561
4	0.000	0.0000	0.000	0.000	0.000	0.000	10	50.00	. 0.00	0.000	0.0000

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor			(p <= 0.05)		0.91281	0.947		0.67912
Bartlett's Test indicates equal var	riances (p =	: 0.25)			5.39	13.2767		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	0.5	1	0.70711					
Treatments vs D-Control								

				Linea	ar Interpolation	on (200 Resamples)	
Point	gm/L	SD	95%		Skew	,	
IC05	0.5023	0.1876	0.0809	0.6178	-0.0659	and a second	
IC10	0.5955	0.1768	0.1617	0.7497	-0.5184		
IC15	0.6886	0.1424	0.2426	0.9253	-0.5389	1.0	A-
IC20	0.7818	0.1259	0.4995	1.0352	0.2728		
IC25	0.8750	0.1224	0.6413	1.1094	0.3153	0.9 -	
IC40	1.1574	0.1139	0.9216	1.3331	-0.0890	0.8 -	₽ [−]
IC50	1.3472	0.0972	1.1197	1.4847	-0.4227	-	
<u> </u>			Andreas and a state of the second state of the			0.7 -	
						മഹരി	

NPDES - 1322

CERIODAPHNIA DUBIA CHRONIC BIOASSAY Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-080106

Start Date: 01/06/2008

al	A 0 0 1 1 1 0 - 23 0	B 000 7 8 0 -	C 002 02 7 12	D C C C C C C 4 7	E 0 0 3	F 0 0 0 2	03	H C C	і 0 3	J	Live Young	Live Adults	Analyst Initials
al	0 0 4 9 10 - 23	00380-	0207	0 0 4 7	00	С 0	03	1	0				h
al	0 4 9 10 - 23	U 3 8 0 -	207	47	03	C	3	$\frac{c}{c}$		C	C	10	\cap
al	4 9 10 - 23	380-	07	47	3	<u> </u>		C	~		and the supervised of the supe		
al	9 10 - 23	8	2	7	1	2			L	\mathcal{O}	8	10	n
al	10 - 23	0	7 12	2	1		\mathcal{O}	2	\mathcal{O}	λ	21	10	h
al	23	. العلمي ال	12		6	7	6	2	6	7	70	10	M
	23			10	14	15	10	13	11	15	106	10	
		11		×	-			-	_	-			
	O	1 11	21	ઝ	23	20	19	22	20	<i>75</i>	205	10	h
	- <u> </u>	0	0	\mathcal{O}	0	0	\mathcal{O}	\mathcal{O}	0	c	\mathcal{O}	10	F
	0	0	\mathcal{O}	\mathcal{O}	\mathcal{O}	\mathcal{O}	\mathcal{O}	\mathcal{O}	0	O	0	10	
	$ _{\mathcal{O}}$	3	0	3	\mathcal{O}	2	·O	\sim	3	\mathcal{O}	(1	1D	In
	Ц	\mathcal{O}	2	\mathcal{O}	3	6	Ц	Z	\mathcal{O}	3	24	10	h
	8	$\overline{\mathcal{S}}$	7	5	6	\mathcal{O}	7	6	7	8	62	10	6
	0	B	(Õ	14	0	12	10	13	12	14	98	10	
	-	_	_				-	,					
al	12	24	19	22	9	20	21	2Ĭ	22	25	195	10	
	0	\mathcal{O}	\mathcal{O}	O	\mathcal{O}	\mathcal{O}	0	\mathcal{O}	0	0	\bigcirc	10	h
·····	\mathcal{O}	\mathcal{O}	\mathcal{O}	\mathcal{O}	\mathcal{O}	\mathcal{O}	\bigcirc	\mathcal{O}	\mathcal{C}	\mathcal{O}	\mathcal{C}	10	h
	2	\mathcal{O}	2	\mathcal{O}	0	\subset	3	2	-0	\mathcal{O}	9	10	6
	0	3	O	3	Ý	3	C	O	3	3	19	10	In
	9	6	7	7	0	9	8	7	2	6	66	10	h
	10	10	12	12	12	0	11	12	12	10	01	10	6
	_	~		-200mm	unation .				~				
	21	19	21	22	16	12	22	21	22	19	195	10	A
		9 10 - 21 t used in st	$\begin{array}{c c} 9 & 6 \\ 10 & 10 \\ - & - \\ \hline 21 & 19 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} 9 & 6 & 7 & 7 \\ \hline 10 & 10 & 12 & 12 \\ \hline - & - & - & - \\ \hline 21 & 19 & 21 & z2 \\ \hline t used in statistical analysis$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	967709877666610 10101212120111212100110 					

CERIODAPHNIA DUBIA CHRONIC BIOASSAY Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-080106

Start Date: 01/06/2008

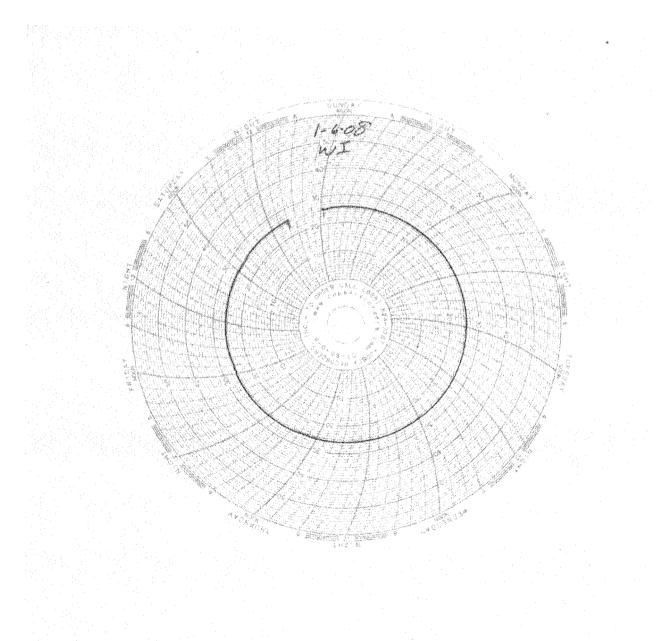
Q. 1	D			Nı	umbe	r of Y	oung	Produ	iced			Total	No.	Analyst
Sample	Day	Α	В	C	D	Е	F	G	н	Ι	J	Live Young	Live Adults	Initials
	1	Ø	0	0	∂	0	0	\mathcal{O}	0	\mathcal{O}	\bigcirc	C	10	h
	2	0	Ø	0	0	0	0	\mathcal{O}	C	\circ	c	0	10	6
	3	Ø	0	\mathcal{O}	0	0	3	0	O	Z	\mathcal{O}	5	10	h
$1.0 \alpha/1$	4	3	2	2	3	0	0	3	2	0	2	17	10	h
1.0 g/l	5	5	2	>	ú	5	2	5	Ч	7	G	57	10	V
	6	1(\mathcal{O}	0	12	9	0	8	11	10	0	61	10	P
	7	(Į	Caspan-	(ër 👝			-	مىيىن ،) (~~~	-
	Total	19	9	9	19	14	10	16	17	19	8	140	$ \mathcal{O} $	
	1	0	Ċ	\mathcal{O}	\circ	\mathcal{O}	\mathcal{O}	\mathcal{O}	C	X	Õ	0	9	h
	2	0	\mathcal{O}	\mathcal{O}	0	\mathcal{O}	0	0	0	.patrana,	0	0	9	0
	3	\mathcal{O}	0	0	\mathcal{O}	0	0	\mathcal{O}	C	/	\mathcal{O}	0	9	1
2.0 ~/1	4	2	\odot	R	3	\mathcal{O}	\mathcal{O}	0	2	_	0	9	9	-
2.0 g/l	5	3	\mathcal{O}	\mathcal{O}	2	2	N	3	\mathcal{O}	~	\mathcal{O}	13	9.	- (h
	6	3	2	• 0°	0	2	C	Ò	3	~	×	10	8	P
	7	<u> </u>	New Original Contraction	-	-	·			~	- puppersurve	C			
	Total	B	2	2	5	4	3	3	5	0	0	32	$\frac{10}{10}$ $\frac{10}{9}$ $\frac{9}{9}$ $\frac{9}{9}$ $\frac{9}{9}$ $\frac{9}{9}$	M
	1	X	\times	\times	X	\mathbf{X}	X	\times	×	\succ	$\left \right $	\mathcal{O}	0	R
	2		_	_		- Constantion	ميسي			-				~
	3	_	daaraan ka	_	\sim	-		~			1			
4.0 - /1	4	·	-				-	2.00000-00-			~	Reproduction of the second	,	
4.0 g/l	5	-	<u> </u>				_		erana.		~	C	p	
	6	-	_		· •	_		e ^{rin} e.	_	~	_			
	7	_			-		_		,	e				
	Total	C	C	c	$\overline{\bigcirc}$	0	C	C	0	0	2	0	0	6
Circled fourth 7 th day only us	brood not use ed if <60% of	d in st f the s	atistic urvivi	cal ana ng co	alysis ntrol	female	es have	e prod	uced th	neir th	ird bro	ood.		

Aquatic Testing Laboratories Ň

CERIODAPHNIA DUBIA CHRONIC BIOASSAY Reference Toxicant - NaCl Water Chemistries Raw Data Sheet

QA/QC No.: RT-080106

Start Date: 01/06/2008


India Final India Final <t< th=""><th></th><th></th><th>DA</th><th>.Y 1</th><th>DA</th><th>Y 2</th><th>DA</th><th>Y 3</th><th>DA</th><th>Y 4</th><th>DA</th><th>Y 5</th><th>DA</th><th>Y 6</th><th>DA</th><th>Y 7</th></t<>			DA	.Y 1	DA	Y 2	DA	Y 3	DA	Y 4	DA	Y 5	DA	Y 6	DA	Y 7
Analysi Initials γ/2			Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
DO 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.2 7.4 7.2 7.5 7.	Analyst I	nitials:	n	1	K	4	1-	p		2~	C	2	A	- A		بمسبى
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Time of R	eadings:	130	1330	1330	13W	Ba	1230	1270	1300	13a	1300	130	pa	-	<u> </u>
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		DO	7.6	7,2	2.4	7.7	7.4	7.6	7.4	25	82	7.8	7.9	7.7		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Control	pН	7.6	24	7.4	23	7.3	7.2	7.2	7.7	7.5	2-6	7.9	7.6	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Temp	24.3	25-1	25,4	24.8	241	24,9	249	25.1	24.4	24.0	24:6	25-1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		DO	7.5	7-3	7.5	7.5	7-5	7.7	7-3	2.4	8.2	5.8	29	7.7	a chianterene	(
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.25 g/l	pН	75	7.3	7.4	7.4	7.0	7.2	7.3	7.4	24	7-5	7.6	1		(
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Temp		252	253	249	242	24.5	24.7	250	24.4	25-1	24,6	25-1	<u> </u>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		DO	24	7.2	24	7-6	7.01	7.5	7.4	7.6	8.5	2-6	8.0	78	4.000 march	~
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.5 g/l	pН	7.5	7.3	7.4	7.4	7-4	7.2	7.3	75	7.6	3-5	2.2	7.7		
$\begin{array}{c c c c c c c c } \hline PH & 7.5 & 7.4 & 7.5 & 7.4 & 7.2 & 7.3 & 7.5 & 7.6 & 5.4 & 7.4 & 7.4 & 7.4 & - & - & - & - & - & - & - & - & - & $		Temp	243	251	25.3	249	24.1	~	246	24.9	24.4	24.9	24.4	-249		/
$\begin{array}{c c c c c c c c } \hline PH & 7.5 & 7.4 & 7.5 & 7.4 & 7.2 & 7.3 & 7.5 & 7.6 & 5.4 & 7.4 & 7.4 & 7.4 & - & - & - & - & - & - & - & - & - & $		DO	7.5	22	26).)	7.3	7.8	24	7-4	D,J	75	7.7	7-7		-
$ \begin{array}{ c c c c c c } \hline DO & 7.4 & 7.4 & 7.6 & 7.5 & 7.4 & 7.8 & 7.2 & 7.6 & 8.2 & 7.6 & 7.6 & 7.2 & 7.6 \\ \hline PH & 7.5 & 7.4 & 7.6 & 7.6 & 7.4 & 7.3 & 7.2 & 7.6 & 7.5 & 7.6 & 7.$	1.0 g/l	pН	7.5		ש-ר	7.5	2.4		7-3	7-5	10	7-6	7.4	7-6	<u> </u>	(
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Temp	244	25,2	25-1	247	24.2	25.2	24.6	25.U	24.4	249	24.6	25.0		/
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		DO	7.4	2.4	7.6	7.5	24	28	22	7.6	8.2	2.6	26	7.2		~
$\begin{array}{ c c c c c c c c } \hline DO & 7.5 & 7.6 & - & - & - & - & - & - & - & - & - & $	2.0 g/l	pH	7.5	2.4		7.6	7.4	<u> </u>			75	7-6	29	7-6		(
4.0 g/l pH 7. Ø 7. Ø -	 	Temp	245		24.0	246	24.2	253	24.8	25.2	24-4	24.8	24.6	25/		<u> </u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		DO	7-5	1	(Approximation)	adantata.	Nai22200-	Jacobson	e annound	Conservation -			~			~
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4.0 g/l		1	4	*##ggare	distantion.		auren.			7000040a,				-	1
ControlHigh ConcentrationAdditional ParametersDay 1Day 3Day 3Day 5Day 1Day 3Day 5Day 1Day 1Day 3Day 3Day 5Day 5Day 1Day 3Day 5Conductivity (μ S)350348305640031003210Alkalinity ($mg/1$ CaCO ₃)666563656664Hardness ($mg/1$ CaCO ₃)989798989898Source of NeonatesReplicate:ABCDEFGHIJ		Temp	243	24.6	*/200000 prov.		-Manni-	-358457	and the second sec	\frown				failer		20000.
Additional Parameters Day 1 Day 3 Day 5 Day 1 Day 3 Day 3 Day 5 Conductivity (μS) 350 348 305 6400 3107 3210 Alkalinity (mg/LCaCO ₃) 66 65 663 65 666 64 Hardness (mg/LCaCO ₃) 98 97 98 97 98 98 97 98 98 97 98 98 97 98 98 97 98 98 97 98 98 97 98 98 97 98 98 97 98 98 97 98 98 97 98 98 97 98 98 97 98 98 97 98 98 97 98 98 97 98 98 97 98 98 97 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 <		Di	ssolved	Oxyge	n (DO)	reading	gs are in	mg/1 (O₂; Temp	erature	(Temp)) readin	gs are ii	n °C.		
Day 1 Day 3 Day 5 Day 1 Day 3 Day 5 Day 5 <t< td=""><td></td><td>Additional</td><td>Paramet</td><td>ers</td><td></td><td></td><td></td><td>Contr</td><td>ol</td><td></td><td></td><td></td><td>High Co</td><td>oncentrat</td><td>ion</td><td></td></t<>		Additional	Paramet	ers				Contr	ol				High Co	oncentrat	ion	
Alkalinity (mg/l CaCO3) 66 65 63 65 66 64 Hardness (mg/l CaCO3) 98 97 98 98 97 98 98 97 98 98 97 98 98 97 98 98 97 98 98 97 98 98 97 98 98 97 98 98 97 98 98 97 98			11 - 14 D				/		7	Day 5	_	Day 1		Day 3	1	
Hardness (mg/l CaCO3) 9 F						******	<u>x</u>		6	400	~	~	· .			
Source of Neonates Replicate: A B C D E F G H J						X				a statement		<u>, 5</u>		······		
Replicate: A B C D E F G H I J	[Hardness (mg/l CaC	O ₃)		- 77				40		8		<u>, </u>	17	8
	Dom	licate:		<u>, T</u>	q							~	17	T .	<u> </u>	
					<u> </u>	3(- 1	1	E ZA				н 21/	1		

Laboratory Temperature Chart

QA/QC Batch No: RT-080106 Date Tested: 01/06/08 to 01/12/08 Acceptable Range: 25+/- 1°C

March 10, 2008

Mr. Joseph Doak Test America, Inc. 17461 Derian Avenue, Suite 100 Irvine, CA 92614

Reference:	Test America Project Nos.	IRB0073, IRB0146, IRB0147, IRB0148, IRB0149, IRB0150, IRB0151, IRB0152, IRB0153, IRB0154 IRB0156, IRB0480, IRB0751					
	Eberline Services NELAP Ce	, , ,					
	Eberline Services Reports	R802024-8693, R802040-8694, R802041-8695,					
	_	R802042-8696, R802043-8697, R802044-8698					
		R802045-8699, R802046-8600, R802047-8601					
		R802048-8602, R802049-8603, R802054-8604					
		R802084-8608					

Dear Mr. Doak:

Attached are data reports for thirteen water samples. Eleven of the samples were received at Eberline Services on February 5, one on February 7, and one on February 9, 2008. The samples were analyzed according to the accompanying Test America Subcontract Order Forms, the requested analyses were: gross alpha/gross beta (EPA 900.0), tritium (H-3, EPA906.0), Sr-90 (EPA905.0), Ra-226 (EPA903.1), Ra-228 (EPA 904.0), total uranium (ASTM D-5174), and gamma spectroscopy (EPA901.1, K-40 and Cs-137 only). The parenthetical G after a nuclide indicates that the result was obtained by gamma spectroscopy; a "U" in the results column indicates that the nuclide was not detected greater than the indicated minimum detectable activity (MDA). The samples were not filtered prior to analysis. The samples were analyzed in batches with common QC samples. Batch quality control samples consisted of LCS's, blank analyses, duplicate analyses, and matrix spike analyses (gross alpha/gross beta, H-3, Ra-226, Total-U only). All samples were within the limits defined in Eberline Services Quality Control Procedures Manual.

Please call me if you have any questions concerning this report.

Regards,

Melisso Mamon

Melissa Mannion Senior Program Manager

MCM/njv

Enclosure: Report on CD

Analytical Services 2030 Wright Avenue P.O. Box 4040 Richmond, California 94804-0040 (510) 235-2633 Fax (510) 235-0438 Toll Free (800) 841-5487 www.eherlineservices.com **MPDES - 1327**

Eberline Services

ANALYSIS RESULTS

SDG <u>8</u>	693 Client	TA IRVINE
Work Order <u>R</u>	802024-01 Contract	PROJECT# IRB0073
Received Date <u>O</u>	2/05/08 Matrix 1	WATER

Client Sample ID	Lab <u>Sample ID</u>	Collected Analyzed	Nuclide	<u>Results ± 2σ</u>	Units	MDA
IRB0073-01	8693-001	02/01/08 02/27/08	GrossAlpha	0.763 ± 0.99	pCi/L	1.3
		02/27/08	Gross Beta	14.2 ± 0.93	pCi/L	0.97
		02/27/08	Ra-228	0.295 ± 0.19	pCi/L	0.49
		02/23/08	K-40 (G)	24.0 + 11	pCi/L	8.2
		02/23/08	Cs-137 (G)	U	pCi/L	0.86
		02/28/08	H-3	7.12 ± 78	pCi/L	130
		03/03/08	Ra-226	0.426 ± 0.44	pCi/L	0.70
		02/18/08	Sr-90	0.026 ± 0.31	pCi/L	0.72
		02/26/08	Total U	0.578 ± 0.064	pCi/L	0.022

Certified by	
Report Date <u>03/11/08</u>	
Page 1	
	L

-

Eberline Services

QC RESULT	С	С	R	Ε	S	U	L	Т	S	
-----------	---	---	---	---	---	---	---	---	---	--

	SDG <u>8693</u> Order <u>R80202</u> 1 Date <u>02/05/</u>			Client <u>TA IRVINE</u> Contract <u>PR0JECT# IRB0073</u> Matrix <u>WATER</u>				
Lab mple ID	Nuclide	<u>Results</u>	<u>Units</u>	Amount Added	MDA	Evaluation		
<u>CS</u> 693-002	GrossAlpha	10.6 ± 0.82	pCi/Smpl	10.2	0.31	104% recovery		
	Gross Beta	9.07 ± 0.36	pCi/Smpl	9.38	0.28	97% recovery		
	Ra-228	8.40 ± 0.59	pCi/Smpl	8.66	0.88	97% recovery		
	Co-60 (G)	- 214 ± 14	pCi/Smpl	224	9.1	96% recovery		
	Cs-137 (G)	$^{-}$ 240 ± 12	pCi/Smpl	236	9.2	102% recovery		
	Am-241 (G)	255 ± 26	pCi/Smpl	254	31	100% recovery		
	H-3	222 ± 12	pCi/Smpl	239	13	93% recovery		
	Ra-226	5.35 ± 0.24	pCi/Smpl	5.02	0.076	107% recovery		
	Sr-90	10.7 ± 0.80	pCi/Smpl	9.39	0.37	114% recovery		
	Total U	1.12 ± 0.13	pCi/Smpl	1.13	0.004	99% recovery		
LANK								
693-003	GrossAlpha	-0.103 ± 0.17	pCi/Smpl	NA	0.34	<mda< td=""></mda<>		
	Gross Beta	-0.111 ± 0.15	pCi/Smpl	NA	0.27	<mda< td=""></mda<>		
	Ra-228	0.239 ± 0.48	pCi/Smpl	NA	0.68	<mda< td=""></mda<>		
	K-40 (G)	U	pCi/Smpl	NA	110	<mda< td=""></mda<>		
	Cs-137 (G)	υ	pCi/Smpl	NA	5.4	<mda< td=""></mda<>		
	Н-З	-1.64 ± 8.3	pCi/Smpl	NA	15	<mda< td=""></mda<>		
	Ra-226	0.016 ± 0.034	pCi/Smpl	NA	0.062	<mda< td=""></mda<>		
	Sr-90	0.099 ± 0.15	pCi/Smpl	NA	0.27	<mda< td=""></mda<>		
	Total U	0.00E 00 ± 1.9E 04	pCi/Smpl	NA	4.5E-04	<mda< td=""></mda<>		
	DUPLICATES		_	ORIGINAL	'S			

	DUPLICATES				(ORIGINALS	3				
										Зσ	
Sample ID	Nuclide	<u>Results ±</u>	2σ	MDA	Sample ID	Results	<u>± 2σ</u>	MDA	<u>rpd</u>	(Tot)	Eval
8693-004	GrossAlpha	1.03 ± 1	0	1.5	8693-001	0.763 ±	0.99	1.3	-	0	satis.
	Gross Beta	15.0 ± 1	.2	1.6		14.2 ±	0.93	0.97	5	46	satis.
	Ra-228	0.099 ± 0	.18	0.48		0.295 \pm	0.19	0.49	-	0	satis.
	K-40 (G)	24.8 ± 7	7.8	4.9		24.0 ±	11	8.2	3	86	satis.
	Cs-137 (G)	U		0.53		U		0.86	-	0	satis.
	H-3	-6.31 ± 8	34	150		7.12 ±	78	130	-	0	satis.
	Ra-226	0.583 ± 0	.52	0.81		0.426 ±	0.44	0.70	-	0	satis.
	Sr-90	-0.021 ± 0	.29	0.71		0.026 ±	0.31	0.72	~	0	satis.
	Total U	0.611 ± 0	0.067	0.022		0.578 <u>+</u>	0.064	0.022	6	30	satis.

Certified by M	
Report Date 03/11/08	
Page 2	

Eberline Services

SDG <u>8693</u> Work Order <u>R802024-01</u> Received Date <u>02/05/08</u>	Client <u>TA IRVINE</u> Contract <u>PR0JECT# IRB0073</u> Matrix <u>WATER</u>
SPIKED SAMPLE	ORIGINAL SAMPLE

QC RESULTS

Sample ID	Nuclide	Results	<u>± 2σ</u>	MDA
8693-005	GrossAlpha	95.8 ±	5.5	1.4
	Gross Beta	77.9 ±	2.0	1.5
	H-3	15500 ±	300	150
	Ra-226	120 ±	4.8	0.69
	Total U	109 ±	13	2.2

Sample ID	Results ± 20	MDA	Added	<u>%Recv</u>
8693-001	0.763 ± 0.99	1.3	71.2	133
	14.2 ± 0.93	0.97	62.5	102
	7.12 ± 78	130	16000	97
	0.426 ± 0.44	0.70	112	107
	0.578 ± 0.064	0.022	113	96

Certified by
Report Date 03/11/08
Page 3

SUBCONTRACT ORDER

TestAmerica Irvine

IRB0073

SENDING LABORATORY:

TestAmerica Irvine 17461 Derian Avenue. Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297 Project Manager: Joseph Doak

RECEIVING LABORATORY:

Eberline Services 2030 Wright Avenue Richmond, CA 94804 Phone :(510) 235-2633 Fax: (510) 235-0438 Project Location: California Receipt Temperature: <u>4</u>. $\hat{\upsilon}$ °C

Ice: (Y)/N

Analysis	Units	Due	Expires	Comments
Sample ID: IRB0073-01	Water		Sampled: 02/01/08 08:30	
EDD + Level 4	N/A	02/12/08	02/29/08 08:30	
Gamma Spec-O	mg/kg	02/12/08	01/31/09 08:30	Out to Eberline, k-40 and cs-137 only
Gross Alpha-O	pCi/L	02/12/08	07/30/08 08:30	Out to Eberline, Boeing
Gross Beta-O	pCi/L	02/12/08	07/30/08 08:30	Out to Eberline, Boeing
Radium, Combined-O	pCi/L	02/12/08	01/31/09 08:30	Out to Eberline, Boeing
Strontium 90-0	pCi/L	02/12/08	01/31/09 08:30	Out to Eberline, Boeing
Tritium-O	pCi/L	02/12/08	01/31/09 08:30	Out to Eberline, Boeing
Uranium, Combined-O	pCi/L	02/12/08	01/31/09 08:30	Out to Eberline, Boeing
Containers Supplied:				
2.5 gal Poly (S)	500 mL Aml	ber (T)		

Released By

2/4/08 (7:00) Date/Time

Fede Received By

Received By

98 1780 Pate/Time bγ vC

09:20 NPDES-al331 of 1 Date/Time

Released By

Date/Time

~	RICHMOND, CA LABORATORY
<u> </u>	
Cirent	TEST AMERICA SITU INVINE STATE CA
Date	TIME RECEIVED DY 08 09:3000 NC [RB0073
Conta	ainer II No 14 465T Requested TAT (Davs) FLO Received Mestilling Nicold
-	Custoov seals on shipping container intact? Yes X No. 2 N/- X Custoov seals on shipping container dated & signed? Yes X No. 2 N/- X
~	Custoov seals or sample containers intact?
-	Custody seals on sample containers dated 2 signed? We we we $\mathbb{D}_{\mathbb{C}}$ N/- \mathbf{V}
ан 17 1.	Placking material is
-	Number d'isamples in shipping container Sample Miztri: W
ε	Number di containerti per sample (Crisee Coll
c c	Samples are in correct container (es) No
10	Paperwork adrees with samples? res/A No.
	Samples have Tabel in Hazaro labels . Fiad labels in Appropriate sample labels is \checkmark . Samples are in good condition $ imes$ leaking . Broken Container . Miss (Eq. (
-	camples are Preserved No: preserved X ; pm Preservative
1 mar.	
	Describe any anomalies
	Describe any anomalies
14	Describe any anomalies
12	Describe any anomalies
12 15 	Describe any anomalies Was r Millinotified of any anomalies $res \frac{1}{2} \sqrt{25} \sqrt{8} \frac{No}{2}$ Date $\frac{1}{2} \sqrt{25} \sqrt{45}$ inspected by $\frac{1}{2} \sqrt{25} \sqrt{25} \sqrt{8} \frac{1}{2} \sqrt{25} \sqrt$
12 15 Same	Uescribe any anomalies Was P M: notified of any anomalies? Inspected by Uate
12 15 Same	Uescribe any anomalies Was F M: notified of any anomalies? Inspected by Uate
12 15 Same	Uescribe any anomalies Was P M: notified of any anomalies? Inspected by Uate
12 15 Same	Uescribe any anomalies Was P M: notified of any anomalies? Inspected by Uate
12 15 Cust Same	Uescribe any anomalies Was P M: notified of any anomalies? Inspected by Uate
12 15 Same	Uescribe any anomalies Was P M: notified of any anomalies? Inspected by Uate
12 15 Same	Uescribe any anomalies Was P M: notified of any anomalies? Inspected by Uate
12 15 Cust Same	Uescribe any anomalies Was P M: notified of any anomalies? Inspected by Uate
12 15 Same	Uescribe any anomalies Was P M: notified of any anomalies? Inspected by Uate
12 15 Cust Same	Uescribe any anomalies Was P M: notified of any anomalies? Inspected by Uate
12 15 Cust Same	Uescribe any anomalies Was P M: notified of any anomalies? Inspected by Uate
12 15 Cust Same	Uescribe any anomalies Was P M: notified of any anomalies? Inspected by Uate
12 Lust Same / PCB	Describe any anomalies Was F. M. notified of any anomalies' inspected by Date bits/Samma for Charlor Date bits/Samma for Charlor Due No. Date for Charlor Due No. Date for Charlor Due No. Sample No. Som mEllor No. Date for Charlor No.
n Cham	Describe any anomalies Was F M: notified of any anomalies' Inspected by Date briefs for the time for the t
12 15 Same //2/S	Describe any anomalies Was F. M. notifies of any anomalies: rest 1/25 /25 /25 mme Date Inspected by Date 0/25 /25 /25 mme 0/24 /25 mme nomer Describe any anomalies: Date 0/25 /25 /25 mme 0/24 /25 mme nomer Describe any anomalies: Date 0/25 /25 /25 /25 mme 0/24 /25 /25 /25 /25 /25 /25 /25 /25 /25 /25

NPDES - 1332

February 23, 2008

Vista Project I.D.: 30229

Mr. Joseph Doak Test America-Irvine, CA 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Mr. Doak,

Enclosed are the results for the one aqueous sample received at Vista Analytical Laboratory on February 05, 2008 under your Project Name "IRB0073". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Vista's current certifications, and copies of the raw data (if requested).

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Marine Marc

Martha M. Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.

Section I: Sample Inventory Report Date Received: 2/5/2008

<u>Vista Lab. ID</u>

Client Sample ID

30229-001

IRB0073-01

SECTION II

Method Blan	ık									EPA Method 1613
Matrix:	Aqueous		QC Batch No.:	99	953	Lab	Sample:	0-MB001		
Sample Size:	1.00 L		Date Extracted	: 15	5-Feb-08	Date	Analyzed DB-5:	19-Feb-08	Date An	alyzed DB-225: NA
Analyte	Conc. (ug/L)	DL ^a	EMPC ^b	Qualifiers		Labeled Standa	rd	%R	LCL-UCL ^d Qualifiers
2,3,7,8-TCDD		ND	0.000000705			IS	13C-2,3,7,8-TCI	DD	82.9	25 - 164
1,2,3,7,8-PeCE	DD	ND	0.000000681				13C-1,2,3,7,8-Pe	eCDD	75.4	25 - 181
1,2,3,4,7,8-Hx	CDD	ND	0.00000165				13C-1,2,3,4,7,8-	HxCDD	81.7	32 - 141
1,2,3,6,7,8-Hx		ND	0.00000174				13C-1,2,3,6,7,8-	HxCDD	83.0	28 - 130
1,2,3,7,8,9-Hx		ND	0.00000162				13C-1,2,3,4,6,7,5	8-HpCDD	85.6	23 - 140
1,2,3,4,6,7,8-H		ND	0.00000511				13C-OCDD	-	73.4	17 - 157
OCDD	-	0.00000899			J		13C-2,3,7,8-TCI	DF	88.8	24 - 169
2,3,7,8-TCDF		ND	0.000000647				13C-1,2,3,7,8-Pe	eCDF	74.4	24 - 185
1,2,3,7,8-PeCE	OF	ND	0.000000731				13C-2,3,4,7,8-Pe	eCDF	77.1	21 - 178
2,3,4,7,8-PeCE		ND	0.000000752				13C-1,2,3,4,7,8-	HxCDF	75.8	26 - 152
1,2,3,4,7,8-Hx		ND	0.000000943				13C-1,2,3,6,7,8-	HxCDF	77.6	26 - 123
1,2,3,6,7,8-Hx	CDF	ND	0.000000974				13C-2,3,4,6,7,8-	HxCDF	78.0	28 - 136
2,3,4,6,7,8-Hx		ND	0.00000105				13C-1,2,3,7,8,9-	HxCDF	81.9	29 - 147
1,2,3,7,8,9-Hx	CDF	ND	0.00000136				13C-1,2,3,4,6,7,	8-HpCDF	75.7	28 - 143
1,2,3,4,6,7,8-H		ND	0.00000333				13C-1,2,3,4,7,8,9	9-HpCDF	82.1	26 - 138
1,2,3,4,7,8,9-H	-	ND	0.00000202				13C-OCDF		76.2	17 - 157
OCDF	-	ND	0.00000591			CRS	37Cl-2,3,7,8-TC	DD	85.1	35 - 197
Totals						Foot	notes			
Total TCDD		ND	0.000000705			a. San	ple specific estimated	detection limit.		
Total PeCDD		ND	0.00000122			b. Est	mated maximum possi	ble concentration.		
Total HxCDD		ND	0.00000167			c. Me	hod detection limit.			
Total HpCDD		ND	0.00000511			d. Lov	ver control limit - upper	r control limit.		
Total TCDF		ND	0.000000647							
Total PeCDF		ND	0.000000742							
Total HxCDF		ND	0.00000107							
Total HpCDF		ND	0.00000335							

Analyst: MAS

OPR Results					EP	A Method 1	.613
Matrix: Aqueous Sample Size: 1.00 L		QC Batch No.: Date Extracted:	9953 15-Feb-08	Lab Sample:0-OPR001Date Analyzed DB-5:18-Feb-08	Date Analy	zed DB-225:	NA
Analyte	Spike Conc.	Conc. (ng/mL)	OPR Limits	Labeled Standard	%R	LCL-UCL	Qualifier
2,3,7,8-TCDD	10.0	9.20	6.7 - 15.8	<u>IS</u> 13C-2,3,7,8-TCDD	85.8	25 - 164	
1,2,3,7,8-PeCDD	50.0	46.7	35 - 71	13C-1,2,3,7,8-PeCDD	77.1	25 - 181	
1,2,3,4,7,8-HxCDD	50.0	47.0	35 - 82	13C-1,2,3,4,7,8-HxCDD	82.8	32 - 141	
1,2,3,6,7,8-HxCDD	50.0	47.2	38 - 67	13C-1,2,3,6,7,8-HxCDD	84.0	28 - 130	
1,2,3,7,8,9-HxCDD	50.0	47.7	32 - 81	13C-1,2,3,4,6,7,8-HpCDD	88.0	23 - 140	
1,2,3,4,6,7,8-HpCDD	50.0	46.1	35 - 70	13C-OCDD	78.1	17 - 157	
OCDD	100	94.4	78 - 144	13C-2,3,7,8-TCDF	90.2	24 - 169	
2,3,7,8-TCDF	10.0	8.71	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	76.3	24 - 185	
1,2,3,7,8-PeCDF	50.0	45.3	40 - 67	13C-2,3,4,7,8-PeCDF	79.4	21 - 178	
2,3,4,7,8-PeCDF	50.0	45.1	34 - 80	13C-1,2,3,4,7,8-HxCDF	78.9	26 - 152	
1,2,3,4,7,8-HxCDF	50.0	46.8	36 - 67	13C-1,2,3,6,7,8-HxCDF	80.4	26 - 123	
1,2,3,6,7,8-HxCDF	50.0	46.8	42 - 65	13C-2,3,4,6,7,8-HxCDF	79.1	28 - 136	
2,3,4,6,7,8-HxCDF	50.0	47.3	35 - 78	13C-1,2,3,7,8,9-HxCDF	84.1	29 - 147	
1,2,3,7,8,9-HxCDF	50.0	46.1	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	78.2	28 - 143	
1,2,3,4,6,7,8-HpCDF	50.0	46.8	41 - 61	13C-1,2,3,4,7,8,9-HpCDF	85.9	26 - 138	
1,2,3,4,7,8,9-HpCDF	50.0	46.7	39 - 69	13C-OCDF	82.2	17 - 157	
OCDF	100	93.5	63 - 170	<u>CRS</u> 37Cl-2,3,7,8-TCDD	88.4	35 - 197	

Analyst: MAS

Approved By: William J. Luksemburg 22-Feb-2008 15:49

Sample ID: IRB0	073-01								EPA N	Aethod 1613
Client Data Name: Test J Project: IRB0 Date Collected: 1-Fet Time Collected: 0830			Sample Data Matrix: Sample Size:	Aqueous 0.997 L	Lab QC 1	<mark>oratory Data</mark> Sample: Batch No.: Analyzed DB-5:	30229-001 9953 19-Feb-08	Date Re Date Ex Date An		5-Feb-08 15-Feb-08 NA
Analyte (Conc. (ug/L)	DL ^a	EMPC ^b	Qualifiers		Labeled Standa	rd	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD	ND ND ND	0.0000006 0.0000007 0.0000017 0.0000015	255 22 88		<u>IS</u>	13C-2,3,7,8-TCD 13C-1,2,3,7,8-PeC 13C-1,2,3,4,7,8-H 13C-1,2,3,6,7,8-H	CDD IxCDD IxCDD	87.9 78.3 81.4 80.6	25 - 164 25 - 181 32 - 141 28 - 130	
1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	ND 0.0000101 0.000165	0.0000015		J B		13C-1,2,3,4,6,7,8- 13C-OCDD 13C-2,3,7,8-TCDJ	F	88.2 82.3 90.2	23 - 140 17 - 157 24 - 169	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	ND ND ND	0.0000005 0.0000008 0.0000008	512 523			13C-1,2,3,7,8-PeC 13C-2,3,4,7,8-PeC 13C-1,2,3,4,7,8-H	CDF IxCDF	77.9 76.9 80.0	24 - 185 21 - 178 26 - 152	
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND	0.0000008 0.0000009 0.0000010	02			13C-1,2,3,6,7,8-H 13C-2,3,4,6,7,8-H 13C-1,2,3,7,8,9-H	IxCDF	79.0 76.8 82.7	26 - 123 28 - 136 29 - 147	
1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	ND 0.00000156 ND	0.0000012		J		13C-1,2,3,4,6,7,8- 13C-1,2,3,4,7,8,9- 13C-OCDF	-HpCDF	77.0 83.9 83.2	28 - 143 26 - 138 17 - 157	
OCDF Totals	0.00000310			J		37Cl-2,3,7,8-TCD	DD	88.1	35 - 197	
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF	ND ND ND 0.0000217 ND ND	0.0000006 0.0000018 0.0000033 0.0000005 0.0000008	9 8 65		a. Sa b. Es c. M	thotes mple specific estimated timated maximum possi ethod detection limit. ower control limit - uppe	ble concentration.			
Total HxCDF Total HpCDF	ND 0.00000391		0.000000)859						

Analyst: MAS

APPENDIX

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank.
D	Dilution
Ε	The amount detected is above the High Calibration Limit.
Р	The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.
Н	The signal-to-noise ratio is greater than 10:1.
Ι	Chemical Interference
J	The amount detected is below the Low Calibration Limit.
*	See Cover Letter
Conc.	Concentration
DL	Sample-specific estimated detection limit
MDL	The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.
EMPC	Estimated Maximum Possible Concentration
NA	Not applicable
RL	Reporting Limit – concentrations that correspond to low calibration point
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

SUBCONTRACT ORDER

TestAmerica Irvine

	IRB0073 30229	
SENDING LABORATORY:	RECEIVING LABORATORY: 2.2°C	
TestAmerica Irvine	Vista Analytical Laboratory- SUB	
17461 Derian Avenue. Suite 100	1104 Windfield Way	
Irvine, CA 92614	El Dorado Hills, CA 95762	
Phone: (949) 261-1022	Phone :(916) 673-1520	
Fax: (949) 260-3297	Fax: (916) 673-0106	
Project Manager: Joseph Doak	Project Location: California	
	Receipt Temperature:°C Ice: Y / N	

Analysis	Units	Due	Expires	Comments
Sample ID: IRB0073-01	Water		Sampled: 02/01/08 08:30	
1613-Dioxin-HR-Alta	ug/l	02/12/08	02/08/08 08:30	J flags,17 congeners,no
Level 4 + EDD-OUT	N/A	02/12/08	02/29/08 08:30	TEQ,ug/L,sub=Vista Excel EDD email to pm,Include Std logs for LvI IV
Containers Supplied:			· · · · ·	
1 L Amber (C)	1 L Amber (D)			

٢ Released By

<u>60:71</u> Date/Time

Date/Time

Received By Received

<u>188</u> 00 Date/Time 1.5.03 097.4

÷

NPDES^P-1992¹ of 1 Page 10 of 280 Date/Time

Released By Project 30229

SAMPLE LOG-IN CHECKLIST

	SAMPLE LOG-IN CHECKLIST								
Vista Project #:	3022	19				Stan	-		
	Date/Time		Initials:	Location	n: (J)(-	2-2	,		
Samples Arrival:	2/5/08	0929	BU	BID		Shelf/Rack: NA Location: WR-3			
	Date/Time		Initials:		Location	1: N	R-2		
Logged In:	2/4/08	0857	2 4/2	B	Shelf/Ra	ck:_/2	ck:_ <u>B4</u>		
Delivered By:	FedEx	UPS	Cal	DHL		and vered	Ot	her	
Preservation:	lce	ЭВ	llue Ice	Dr	y ice		None		
Temp °C Z.	2	Time: (2940		Thermor	neter II	r ID: IR-1		
						4			
						YES	NO	NA	
Adequate Sample		eived?				X	1	+	
Holding Time Acce	ptable?						<u> </u>	<u> </u>	
Shipping Containe	r(s) Intact?				·	K /			
Shipping Custody	Seals Intact?		· · ·	· · ·		X			
Shipping Documer	ntation Preser	nt?			·	V	1		
Airbill	Trk # 7	938 66	29 22	71	•	M			
Sample Container	Intact?					X			
Sample Custody S	eals Intact?		-	`````	· · · ·			X	
Chain of Custody /	Sample Doc	umentation P	résent?	· ·	·	X			
COC Anomaly/Sar	nple Accepta	nce Form cor	npleted?				\checkmark		
If Chlorinated or D	rinking Water	Samples, Ac	ceptable Pre	eservatio	n?			V	
$Na_2S_2O_3$ Preservat	tion Documer	nted?	COC		Sample Container			e	
Shipping Containe	r	Vista	Client	Reta		eturn	Dis	pose	
Comments:	· · · · · · · · · · · · · · · · · · ·		Y		C		L		

5

SUBCONTRACT ORDER

TestAmerica Irvine IRB0073

8020449

SENDING LABORATORY:

TestAmerica Irvine 17461 Derian Avenue. Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297 Project Manager: Joseph Doak

RECEIVING LABORATORY:

Weck Laboratories, Inc 14859 E. Clark Avenue City of Industry, CA 91745 Phone :(626) 336-2139 Fax: (626) 336-2634 Project Location: California Receipt Temperature: _____°C Ice: Y / N

Analysis	Units	Due	Expires	Comments
Sample ID: IRB0073-01	Water		Sampled: 02/01/08 0	8:30
Level 4 Data Package - We	c N/A	02/12/08	02/29/08 08:30	
Mercury - 245.1, Diss -OUT	- mg/l	02/12/08	02/29/08 08:30	OUT to Weck, Boeing, permit, J flags
Mercury - 245.1-OUT	mg/l	02/12/08	02/29/08 08:30	OUT to Weck, Boeing, permit, J flags
Containers Supplied:				
	125 mL Pol (AB)	y w/HNO3		

\bigcirc		= 5 1/	1	
CHR &	-2/4/08/005	BALlee	Le.	24/08 1805
Released By	Date/Time	Received By	10	Date/Timey /
BS Lee	a 2/4/08 1245		17	OZ ONPOES 344
Released By	Date/Time	Received By	V >	Date/Time Page 1 of 1

ſ

,

Weck Laboratories, Inc.

Analytical Laboratory Services - Since 1964

14859 E. Clark Ave., Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634 info@weeklabs.com www.weeklabs.com

CERTIFICATE OF ANALYSIS

02/11/08 16:21 TestAmerica, Inc. - Irvine **Client: Report Date:** 02/04/08 13:45 17461 Derian Ave, Suite 100 **Received Date:** Irvine, CA 92614 **Turn Around:** Normal Attention: Joseph Doak 8020449 Work Order #: Phone: (949) 261-1022 Fax: (949) 260-3297 **Client Project:** IRB0073

NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

Dear Joseph Doak :

Enclosed are the results of analyses for samples received 02/04/08 13:45 with the Chain of Custody document. The samples were received in good condition. The samples were received at 1.9 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Reviewed by: in

Kim G Tu

Project Manager

Week Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Date Received: 02/04/08 13:45 Date Reported: 02/11/08 16:21

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Sampled by:	Sample Comments	Laboratory	Matrix	Date Sampled
IRB0073-01	Client		8020449-01	Water	02/01/08 08:30

Report ID: 8020449

Project ID: IRB0073

02/01/08 08:30

Date Received: 02/04/08 13:45 Date Reported: 02/11/08 16:21

Date Sampled:

IRB0073-01	8020449-01 (Water)
------------	--------------------

Report ID: 8020449

Project ID: IRB0073

Metals by EPA 200 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Dissolved Mercury, Total	ND ND	0.050 0.050	ug/l ug/l	0.20 0.20	1	EPA 245.1 EPA 245.1	W8B0147 W8B0147	02/05/08 02/05/08	02/07/08 jlp 02/07/08 jlp	

Report ID: 8020449 Project ID: IRB0073 Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Date Received: 02/04/08 13:45 Date Reported: 02/11/08 16:21

QUALITY CONTROL SECTION

Date Received: 02/04/08 13:45 Date Reported: 02/11/08 16:21

Metals by EPA 200 Series Methods - Quality Control

Report ID: 8020449

Project ID: IRB0073

						%REC					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers	
Batch W8B0147 - EPA 245.1											
Blank (W8B0147-BLK1)				Analyzed:	02/07/08						
Mercury, Dissolved	ND	0.20	ug/l								
Mercury, Total	ND	0.20	ug/l								
LCS (W8B0147-BS1)				Analyzed:	02/07/08						
Mercury, Dissolved	1.04	0.20	ug/l	1.00		104	85-115				
Mercury, Total	1.04	0.20	ug/l	1.00		104	85-115				
Matrix Spike (W8B0147-MS1)	So	Source: 8020444-01		Analyzed: 02/07/08							
Mercury, Dissolved	1.04	0.20	ug/l	1.00	ND	104	70-130				
Mercury, Total	1.04	0.20	ug/l	1.00	ND	104	70-130				
Matrix Spike (W8B0147-MS2)	So	urce: 8020445	-01	Analyzed: 02/07/08							
Mercury, Dissolved	1.04	0.20	ug/l	1.00	ND	104	70-130				
Mercury, Total	1.04	0.20	ug/l	1.00	ND	104	70-130				
Matrix Spike Dup (W8B0147-MSD1)	So	urce: 8020444	-01	Analyzed:	02/07/08						
Mercury, Dissolved	1.05	0.20	ug/l	1.00	ND	105	70-130	1	20		
Mercury, Total	1.05	0.20	ug/l	1.00	ND	105	70-130	1	20		
Matrix Spike Dup (W8B0147-MSD2)	So	urce: 8020445	-01	Analyzed: 02/07/08							
Mercury, Dissolved	1.06	0.20	ug/l	1.00	ND	106	70-130	2	20		
Mercury, Total	1.06	0.20	ug/l	1.00	ND	106	70-130	2	20		

Report ID: 8020449 Project ID: IRB0073 Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Date Received: 02/04/08 13:45 Date Reported: 02/11/08 16:21

Notes and Definitions

- ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- % Rec Percent Recovery
- Sub Subcontracted analysis, original report available upon request
- MDL Method Detection Limit
- MDA Minimum Detectable Activity

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

APPENDIX G

Section 32

Outfall 006, January 5, 2008 MEC^X Data Validation Reports

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IRA0398

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Contract Task Order: Samolo Delivery Group:	Boeing SSFL NPDES 1261.100D.00 IRA0398
Sample Delivery Group: Project Manager:	B. Kelly
Matrix:	Soil
QC Level:	IV
No. of Samples:	1
No. of Reanalyses/Dilutions:	1
Laboratory:	TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 006	IRA0398-01	30121-001, 801069-01, 8677- 001	Water	01/05/08 1045	200.8, 245.1, 300.0, 900.0, 901.1, 903.1, 904.0, 905.0, 906.0, 1613, ASTM D-5174
Outfall 006RE	IRA0398-01RE	N/A	Water	01/05/08 1045	300.0

II. Sample Management

No anomalies were observed regarding sample management. The sample in this SDG was received at TestAmerica-Irvine, Eberline, and Weck within the temperature limits of $4^{\circ}C \pm 2^{\circ}C$. The sample was received below the temperature limits at Vista; however, the sample was not noted to have been frozen. According to the case narrative for this SDG, the sample was received intact at all laboratories. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine, custody seals were not required. Custody seals were intact upon arrival at Eberline, Vista, and Weck. If necessary, the client ID was added to the sample result summary by the reviewer.

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
A	Not applicable.	ICP Serial Dilution %D were not within control limits.
М	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Ρ	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: February 29, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had no target compound detects above the EDL.

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Any EMPC value was qualified as an estimated nondetect, "UJ." Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHODS 200.8, 245.1—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: February 29, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.8 and 245.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding times, 6 months for metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.

- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP-MS metals and 85-115% for mercury.
- Blanks: There were no applicable detects in the method blanks or CCBs.
- Interference Check Samples: ICSA/B analyses were performed in association with the dissolved metals analyses only. Recoveries were within the method-established control limits. Most analytes were reported in the 6020 ICSA solution; however, the reviewer was not able to ascertain if the detection was indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample in this SDG. Evaluation of method accuracy was based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. The bracketing CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks Date Reviewed: March 3, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the *EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174,* and the *National Functional Guidelines for Inorganic Data Review* (2/94).

- Holding Times: The tritium sample was analyzed within 180 days of collection. Aliquots for gross alpha, gross beta, radium-226, radium-228, strontium-90, and gamma spectroscopy were prepared within the five-day analytical holding time for unpreserved samples. The aliquot for total uranium was prepared within five days of collection.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, nondetected gross alpha in the sample was qualified as an estimated nondetect, "UJ." The gross beta detector efficiency was greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. The tritium detector efficiency for the sample was at least 20% and was considered acceptable. The internal spike efficiency to default efficiency ratios was near 1, indicating that quenching did not occur.

The strontium chemical yield was at least 70% and was considered acceptable. The strontium continuing calibration results were within the laboratory control limits.

The radium-226 cell efficiencies were determined in September 2006. The radium-226 continuing calibration results were within the laboratory-established control limits. The radium-228 calibration utilized actinium-228 and was verified in February 2001. The radium-228 tracer, yttrium oxalate yields were greater than 70%.

The gamma spectroscopy geometry-specific, detector efficiencies were determined in September 1999 and February 2007. All analytes were determined at the maximum photopeak energy.

The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All calibration check standard recoveries were within 90-110% and were deemed acceptable.

• Blanks: There were no analytes detected in the method blank.

- Blank Spikes and Laboratory Control Samples: The gross alpha recovery was above the control limit at 129%; however, gross alpha was not detected in the samples. The remaining recoveries were within laboratory-established control limits.
- Laboratory Duplicates: A laboratory duplicate analysis was performed on the sample in this SDG for radium-228. The RPD was within the laboratory-established control limits.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. Reported nondetects are valid to the MDA.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

D. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks Date Reviewed: March 3, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Method 300.0 and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The sample was originally analyzed within the 48-hour holding time for nitrate/nitrite. The sample was subsequently reanalyzed outside of holding time. Nitrate/nitrite reported in the reanalysis was qualified as estimated, "J."
- Calibration: Calibration criteria were met. Initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110%.
- Blanks: There were no applicable detects in the method blanks or CCBs.
- Blank Spikes and Laboratory Control Samples: A nitrate/nitrite LCS recovery was not listed by the laboratory, but during the review of the raw data, the reviewer noted an

acceptable recovery. An LCS was also analyzed with the reanalysis and the reviewer noted an acceptable nitrate/nitrite recovery.

- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed. Method accuracy was evaluated based on LCS results.
- Sample Result Verification: The sample results were verified against the raw data. No transcription or calculation errors were noted. After the original analysis, the laboratory determined that the original analysis was performed on a sample aliquot that had been preserved with nitric acid. The laboratory subsequently reanalyzed the sample from an unpreserved aliquot. The review rejected, "R," the original nitrate/nitrite result in favor of the reanalysis result.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

9	Client Data				Sample Data		Laboratory Data				
ZADE	Name: Tes Project: IRA Date Collected: 5-Ji Time Collected: 104	Test Ameri IRA0398 5-Jan-08 1045	Test America-Irvine, CA IRA0398 5-Jan-08 1045		Matrix: Sample Size:	Aqueous 0.991 L	Lab Sample: QC Batch No.: Date Analyzed DB-5:	30121-001 9886 19-Jan-08	Date Received: Date Extracted: Date Analyzed I	Date Received: Date Extracted: Date Analyzed DB-225:	8-Jan-08 17-Jan-08 NA
4	Analyte	Conc.	(ng/L)	DL ^a	EMPC ^b	Qualifiers	Labeled Standard	dard	%R	LCL-UCL ^d	Qualifiers
a	2,3,7,8-TCDD	Ð		0.00000105	05	Salar Salar Salar	IS 13C-2,3,7,8-TCDD	CDD	80.8	25 - 164	Carl and a second
	1,2,3,7,8-PeCDD	Ð		0.00000452	152		13C-1,2,3,7,8-PeCDD	PeCDD	75.1	25 - 181	
-	1,2,3,4,7,8-HxCDD	£		0.00000245	45		13C-1,2,3,4,7,8-HxCDD	8-HxCDD	73.4	32 - 141	
	,2,3,6,7,8-HxCDD	Ð		0.00000253	53		13C-1,2,3,6,7,8-HxCDD	8-HxCDD	71.1	28 - 130	
-	,2,3,7,8,9-HxCDD	Ð		0.00000239	39	「「「「「「「」」」」	13C-1,2,3,4,6,7,8-HpCDD	7,8-HpCDD	83.4	23 - 140	
-	,2,3,4,6,7,8-HpCDD			0.00000627	27		13C-0CDD		69.69	17 - 157	
0	ocod		0:0000273				13C-2,3,7,8-TCDF	CDF	812	24 - 169	
2	2,3,7,8-TCDF	ġ		0.000000833	1833		13C-1,2,3,7,8-PeCDF	PeCDF	70.2	24 - 185	
2	1,2,3,7,8-PeCDF	g		0.00000169	69	「「なののない」	13C-2,3,4,7,8-PeCDF	PeCDF	72.8	21 - 178	
2	2,3,4,7,8-PeCDF	Ð		0.00000156	56		13C-1,2,3,4,7,8-HxCDF	8-HxCDF	70.7	26 - 152	and the second
-	1,2,3,4,7,8-HxCDF	£		0.000000631	631		13C-1,2,3,6,7,8-HxCDF	8-HxCDF	71.4	26-123	
-	,2,3,6,7,8-HxCDF	Q		0.000000635	1635		13C-2,3,4,6,7,8-HxCDF	8-HxCDF	72.6	28 - 136	Annual and Annual
3	2,3,4,6,7,8-HxCDF	Ð	「日本」というないです。	0.000000687	1687	ないのない。	13C-1,2,3,7,8,9-HxCDF	9-HxCDF	0.67	29 - 147	
-	1,2,3,7,8,9-HxCDF	ą		0.000000930	930		13C-1,2,3,4,6,7,8-HpCDF	7,8-HpCDF	83.2	28 - 143	
	1,2,3,4,6,7,8-HpCDF	g		0.00000131	31		13C-1,2,3,4,7,8,9-HpCDF	8,9-HpCDF	76.5	26 - 138	
-0	,2,3,4,7,8,9-HpCDF	£		0.00000189	89	The second of the second	13C-0CDF	and the second	69.2	17-157	and the second se
U	OCDF	Ø	a ser succession	0.00000323	23		CRS 37CI-2,3,7,8-TCDD	CDD	90.9	35 - 197.	
Ľ	Totals						Footnotes				
H	Total TCDD	QN		0.00000105	05	and the second se	a. Sample specific estimated detection limit.	ited detection limit.			
H	Total PeCDD	2		0.00000146	46		b. Estimated maximum possible concentration.	ossible concentration.	ないの語		
H	Total HxCDD	g		0.00000245	45		c. Method detection limit.	tt.	and the second second second	A statement of the second s	and the second
L E	Total HpCDD	£			0.00000307	307	d. Lower control limit - upper control limi	upper control limit.			
F	Total TCDF	2	and a second	0.000000833	833	Children and second conversion	and the second	And	and the state of t	Billine - The Line of the Allow	Ser Differi
H	Total PeCDF	e		0.00000162	62				同時の		
F	Total HxCDF	Ø	The second second second second second	0.000000717	1717			COLUMN AND AND AND AND AND AND AND AND AND AN	Contract South States		A LOSS OF CARGONIA
H	Total HpCDF	Ð		0.00000156	56				日本の国生		

•

Page 6 of 995

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 006

Report Number: IRA0398

Sampled: 01/05/08 Received: 01/05/08

		I	МЕТА	LS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA0398-01 (Outfall 006 - W	ater)								
Reporting Units: ug/l									
Antimony J/DNQ	EPA 200.8	8A07054	0.20	2.0	0.37	1	01/07/08	01/08/08	J
Cadmium /	EPA 200.8	8A07054	0.11	1.0	0.14	1	01/07/08	01/08/08	J
Copper	EPA 200.8	8A07054	0.75	2.0	1.9	1	01/07/08	01/08/08	J
Lead V	EPA 200.8	8A07054	0.30	1.0	0.70	1	01/07/08	01/08/08	J
Thallium U	EPA 200.8	8A07054	0.20	1.0	ND	1	01/07/08	01/08/08	

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA0398 <Page 3 of 15>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 006

Report Number: IRA0398

Sampled: 01/05/08 Received: 01/05/08

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA0398-01 (Outfall 006	- Water) - cont.								
Reporting Units: ug/l									
Antimony J/DNQ	EPA 200.8-Diss	8A08129	0.20	2.0	0.35	1	01/08/08	01/08/08	J
Cadmium	EPA 200.8-Diss	8A08129	0.11	1.0	ND	1	01/08/08	01/08/08	
Copper	EPA 200.8-Diss	8A08129	0.75	2.0	ND	1	01/08/08	01/08/08	
Lead	EPA 200.8-Diss	8A08129	0.30	1.0	ND	1	01/08/08	01/08/08	
Thallium 🗸	EPA 200.8-Diss	8A08129	0.20	1.0	ND	1	01/08/08	01/08/08	

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

> The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA0398 <Page 4 of 15>

LEVEL IV

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 006

Report Number: IRA0398

Sampled: 01/05/08 Received: 01/05/08

Metals by EPA 200 Series Methods

MDL Reporting Limit Limit	Sample Dilution Result Factor	Date Extracted	Date Data Analyzed Qualifiers								
Sample ID: IRA0398-01 (Outfall 006 - Water) - cont.											
0.050 0.20	ND 1	01/08/08	01/09/08								
0.050 0.20	ND 1	01/08/08	01/09/08								
]	Limit Limit	Limit Limit Result Factor	Limit Limit Result Factor Extracted	Limit Limit Result Factor Extracted Analyzed Qualifiers 0.050 0.20 ND 1 01/08/08 01/09/08							

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA0398 <Page 6 of 15>

Eberline Services

SDG <u>8677</u> Work Order <u>R801</u> Received Date <u>01/0</u>	1024-01			Contract	TA IRVINE PROJECT# IRA039 WATER	3	
Client	Lab						
Sample ID	Sample ID	Collected P	Analyzed	Nuclide	Results ± 20	Units	MDA
Outfall 006							
IRA0398-01	8677-001	01/05/08 0	01/21/08	GrossAlpha	-0.498 ± 1.4	pCi/L	2.4 UJ/R
		0	01/21/08	Gross Beta	9.99 ± 1.2	pCi/L	1.6
		(01/23/08	Ra-228	0.018 ± 0.21	pCi/L	0.44 U
		(01/12/08	K-40 (G)	22.0 ± 12	pCi/L	9.4 JKE
		(01/12/08	Cs-137 (G)	υ	pCi/L	0.89 U
		(01/23/08	H-3	-63.3 ± 86	pCi/L	150 U
		(01/25/08	Ra-226	0.077 ± 0.38	pCi/L	0.76 U
		(01/28/08	Sr-90	-0.087 ± 0.41	pCi/L	0.96 U
		(02/15/08	Total U	0.301 ± 0.035	pCi/L	0.021

ANALYSIS RESULTS

PM 3/3/08

LEVEL IV

n Certified by____ Report Date 02/19/08 Page 1

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 006

Report Number: IRA0398

EVEL IV

Sampled: 01/05/08 Received: 01/05/08

INORGANICS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA0398-01 (Outfall 006 - Reporting Units: mg/l	Water) - cont.								
Hexane Extractable Material (Oil & 🐇 Grease)	EPA 1664A	8A07065	1.3	4.8	ND	1	01/07/08	01/07/08	
Chloride 🔸	EPA 300.0	8A06026	5.0	10	110	20	01/06/08	01/06/08	
Nitrate/Nitrite-N R/P	EPA 300.0	8A06026	15	26	420	100	01/06/08	01/06/08	A-01
Sulfate ⊀	EPA 300.0	8A06026	4.0	10	21	20	01/06/08	01/06/08	
Total Dissolved Solids $ imes$	SM2540C	8A08083	10	10	370	1	01/08/08	01/08/08	
Sample ID: IRA0398-01RE1 (Outfall 0 Reporting Units: mg/l	06 - Water)								
Nitrate/Nitrite-N J/H	EPA 300.0	8B18046	0.15	0.26	1.2	1	01/18/08	02/18/08	н
* Analysis not va	lidated								

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA0398 <Page 5 of 15>