APPENDIX G

Section 23

Outfall 004 - BMP Effectiveness, January 23-24, 2008 Test America Analytical Laboratory Report

THE LEADER IN ENVIRONMENTAL TESTING

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project: BMP Effectiveness Monitoring Program

Sampled: 01/23/08-01/24/08 Received: 01/26/08 Issued: 02/06/08 17:32

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and

is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

LABORATORY ID	CLIENT ID	MATRIX
IRA2560-01	004 EFF-1	Water
IRA2560-02	004 EFF-2	Water
IRA2560-03	004 EFF-3	Water
IRA2560-04	004 EFF-4	Water
IRA2560-05	004 EFF-5	Water
IRA2560-06	004 EFF-6	Water
IRA2560-07	004 EFF-7	Water
IRA2560-08	004 EFF-8	Water
IRA2560-09	004 EFF-9	Water
IRA2560-10	004 EFF-10	Water
IRA2560-11	004 EFF-11	Water
IRA2560-12	004 EFF-12	Water
IRA2560-13	004 EFF-13	Water
IRA2560-14	004 EFF-14	Water
IRA2560-15	004 EFF-15	Water
IRA2560-16	004 EFF-16	Water
IRA2560-17	004 EFF-17	Water
IRA2560-18	004 EFF-18	Water
IRA2560-19	004 EFF-19	Water
IRA2560-20	004 EFF-20	Water
IRA2560-21	004 EFF-21	Water
IRA2560-22	004 EFF-22	Water
IRA2560-23	004 EFF-23	Water

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: IRA2560

Sampled: 01/23/08-01/24/08 Received: 01/26/08

LABORATORY ID IRA2560-24 CLIENT ID 004 EFF-24 MATRIX Water

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Reviewed By:

Joseph Dock

TestAmerica Irvine Joseph Doak Project Manager

IRA2560 <*Page 2 of 10*> NPDES - 1028

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: IRA2560

Sampled: 01/23/08-01/24/08 Received: 01/26/08

		INC	ORGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2560-01 (004 EFF-1 - Wa	nter)				Sample	ed: 01/23/0	08		
Reporting Units: g/cc Density	Displacement	8B01112	N/A	NA	1.0	1	02/01/08	02/01/08	
Sample ID: IRA2560-02 (004 EFF-2 - Wa	nter)				Sample	ed: 01/23/0	08		
Reporting Units: g/cc Density	Displacement	8B01112	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2560-03 (004 EFF-3 - Wa	nter)				Sample	ed: 01/23/0	08		
Reporting Units: g/cc Density	Displacement	8B01112	N/A	NA	1.0	1	02/01/08	02/01/08	
Sample ID: IRA2560-04 (004 EFF-4 - Wa Reporting Units: g/cc	iter)				Sample	ed: 01/23/0	08		
Density	Displacement	8B01112	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2560-05 (004 EFF-5 - Wa Reporting Units: g/cc	iter)				Sample	ed: 01/23/0	08		
Density	Displacement	8B01112	N/A	NA	1.0	1	02/01/08	02/01/08	
Sample ID: IRA2560-06 (004 EFF-6 - Wa Reporting Units: g/cc	iter)				Sample	ed: 01/23/0	08		
Density	Displacement	8B01112	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2560-07 (004 EFF-7 - Wa Reporting Units: g/cc	iter)				Sample	ed: 01/23/0	08		
Density	Displacement	8B01112	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2560-08 (004 EFF-8 - Wa Reporting Units: g/cc	nter)				Sample	ed: 01/23/0	08		
Density	Displacement	8B01112	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2560-09 (004 EFF-9 - Wa Reporting Units: g/cc	nter)				Sample	ed: 01/23/0	08		
Density	Displacement	8B01112	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2560-10 (004 EFF-10 - W Reporting Units: g/cc	vater)				Sample	ed: 01/24/0	08		
Density	Displacement	8B01112	N/A	NA	0.99	1	02/01/08	02/01/08	

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: IRA2560

Sampled: 01/23/08-01/24/08 Received: 01/26/08

		INC	ORGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2560-11 (004 EFF-11 - W	vater)				Sample	ed: 01/24/0	08		
Reporting Units: g/cc Density	Displacement	8B01112	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2560-12 (004 EFF-12 - W	Vater)				Sample	ed: 01/24/0	08		
Reporting Units: g/cc Density	Displacement	8B01112	N/A	NA	1.0	1	02/01/08	02/01/08	
Sample ID: IRA2560-13 (004 EFF-13 - W	Vater)				Sample	ed: 01/24/0	08		
Reporting Units: g/cc Density	Displacement	8B01112	N/A	NA	1.0	1	02/01/08	02/01/08	
Sample ID: IRA2560-14 (004 EFF-14 - W	Vater)				Sample	ed: 01/24/0	08		
Reporting Units: g/cc Density	Displacement	8B01112	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2560-15 (004 EFF-15 - W	vater)				Sample	ed: 01/24/0	08		
Reporting Units: g/cc Density	Displacement	8B01112	N/A	NA	1.0	1	02/01/08	02/01/08	
- Sample ID: IRA2560-16 (004 EFF-16 - W	•				Sample	ed: 01/24/0	08		
Reporting Units: g/cc Density	Displacement	8B01112	N/A	NA	1.0	1	02/01/08	02/01/08	
Sample ID: IRA2560-17 (004 EFF-17 - W	1					ed: 01/24/0			
Reporting Units: g/cc Density	Displacement	8B01112	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2560-18 (004 EFF-18 - W	•	0001112	1,171	142 1		ed: 01/24/0		02/01/00	
Reporting Units: g/cc		9D01112	N/A	NA	1.0			02/01/08	
Density Sample ID: IRA2560-19 (004 EFF-19 - W	Displacement	8B01113	N/A	NA		1 	02/01/08	02/01/08	
Reporting Units: g/cc					-	ed: 01/24/0			
Density	Displacement	8B01113	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2560-20 (004 EFF-20 - W Reporting Units: g/cc	vater)				Sample	ed: 01/24/0	08		
Density	Displacement	8B01113	N/A	NA	0.99	1	02/01/08	02/01/08	

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: IRA2560

Sampled: 01/23/08-01/24/08 Received: 01/26/08

		INC	ORGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2560-21 (004 EFF-21 - W	Vater)				Sample	ed: 01/24/0	08		
Reporting Units: g/cc Density	Displacement	8B01113	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2560-22 (004 EFF-22 - W	Vater)				Sample	ed: 01/24/0	08		
Reporting Units: g/cc Density	Displacement	8B01113	N/A	NA	1.0	1	02/01/08	02/01/08	
Sample ID: IRA2560-23 (004 EFF-23 - W	Vater)				Sample	ed: 01/24/0	08		
Reporting Units: g/cc Density	Displacement	8B01113	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2560-24 (004 EFF-24 - W	Vater)				Sample	ed: 01/24/0	08		
Reporting Units: g/cc Density	Displacement	8B01113	N/A	NA	0.99	1	02/01/08	02/01/08	
Sample ID: IRA2560-01 (004 EFF-1 - Wa	ater)				Sample	ed: 01/23/0	08		
Reporting Units: mg/l Sediment	ASTM D3977	8B04100	10	10	21	1	02/04/08	02/04/08	
Sample ID: IRA2560-02 (004 EFF-2 - Wa	ater)				Sample	ed: 01/23/0	08		
Reporting Units: mg/l Sediment	ASTM D3977	8B04100	10	10	18	1	02/04/08	02/04/08	
Sample ID: IRA2560-03 (004 EFF-3 - Wa	ater)				Sample	ed: 01/23/	08		
Reporting Units: mg/l Sediment	ASTM D3977	8B04100	10	10	16	1	02/04/08	02/04/08	
Sample ID: IRA2560-04 (004 EFF-4 - Wa	ater)				Sample	ed: 01/23/0	08		
Reporting Units: mg/l Sediment	ASTM D3977	8B04100	10	10	15	1	02/04/08	02/04/08	
Sample ID: IRA2560-05 (004 EFF-5 - Wa	ater)				Sample	ed: 01/23/0	08		
Reporting Units: mg/l Sediment	ASTM D3977	8B04100	10	10	15	1	02/04/08	02/04/08	
Sample ID: IRA2560-06 (004 EFF-6 - Wa	ater)				Sample	ed: 01/23/0	08		
Reporting Units: mg/l Sediment	ASTM D3977	8B04100	10	10	12	1	02/04/08	02/04/08	

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: IRA2560

Sampled: 01/23/08-01/24/08 Received: 01/26/08

		INC	ORGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2560-07 (004 EFF-7 - Wa	ater)				Sample	ed: 01/23/0	08		
Reporting Units: mg/l Sediment	ASTM D3977	8B04100	10	10	11	1	02/04/08	02/04/08	
Sample ID: IRA2560-08 (004 EFF-8 - Wa	ater)				Sample	ed: 01/23/0	08		
Reporting Units: mg/l Sediment	ASTM D3977	8B04100	10	10	14	1	02/04/08	02/04/08	
Sample ID: IRA2560-09 (004 EFF-9 - Wa	ater)				Sample	ed: 01/23/0	08		
Reporting Units: mg/l Sediment	ASTM D3977	8B04100	10	10	12	1	02/04/08	02/04/08	
Sample ID: IRA2560-10 (004 EFF-10 - W	Vater)				Sample	ed: 01/24/0	08		
Reporting Units: mg/l Sediment	ASTM D3977	8B04100	10	10	12	1	02/04/08	02/04/08	
Sample ID: IRA2560-11 (004 EFF-11 - W	Vater)				Sample	ed: 01/24/0	08		
Reporting Units: mg/l Sediment	ASTM D3977	8B04100	10	10	15	1	02/04/08	02/04/08	
Sample ID: IRA2560-12 (004 EFF-12 - W	Vater)				Sample	ed: 01/24/0	08		
Reporting Units: mg/l Sediment	ASTM D3977	8B04100	10	10	11	1	02/04/08	02/04/08	
Sample ID: IRA2560-13 (004 EFF-13 - W	Vater)				Sample	ed: 01/24/0	08		
Reporting Units: mg/l Sediment	ASTM D3977	8B04100	10	10	13	1	02/04/08	02/04/08	
Sample ID: IRA2560-14 (004 EFF-14 - W					Sample	ed: 01/24/0			
Reporting Units: mg/l Sediment	ASTM D3977	8B04100	10	10	10	1	02/04/08	02/04/08	
Sample ID: IRA2560-15 (004 EFF-15 - W		8004100	10	10		¹ ed: 01/24/0		02/04/08	
Reporting Units: mg/l		0504400	10		-				
Sediment	ASTM D3977	8B04100	10	10	10	1	02/04/08	02/04/08	
Sample ID: IRA2560-16 (004 EFF-16 - W Reporting Units: mg/l	Vater)				Sample	ed: 01/24/0	08		
Sediment	ASTM D3977	8B04100	10	10	12	1	02/04/08	02/04/08	

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: IRA2560

Sampled: 01/23/08-01/24/08 Received: 01/26/08

		INC	ORGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2560-17 (004 EFF-17 - W	ater)				Sample	d: 01/24/0)8		
Reporting Units: mg/l Sediment	ASTM D3977	8B04100	10	10	ND	1	02/04/08	02/04/08	
Sample ID: IRA2560-18 (004 EFF-18 - W Reporting Units: mg/l	vater)				Sample	d: 01/24/0)8		
Sediment	ASTM D3977	8B04102	10	10	17	1	02/04/08	02/04/08	
Sample ID: IRA2560-19 (004 EFF-19 - W	ater)				Sample	d: 01/24/0)8		
Reporting Units: mg/l Sediment	ASTM D3977	8B04102	10	10	10	1	02/04/08	02/04/08	
Sample ID: IRA2560-20 (004 EFF-20 - W	vater)				Sample	d: 01/24/0)8		
Reporting Units: mg/l Sediment	ASTM D3977	8B04102	10	10	10	1	02/04/08	02/04/08	
Sample ID: IRA2560-21 (004 EFF-21 - W	/ater)				Sample	d: 01/24/0)8		
Reporting Units: mg/l Sediment	ASTM D3977	8B04102	10	10	11	1	02/04/08	02/04/08	
Sample ID: IRA2560-22 (004 EFF-22 - W	/ater)				Sample	d: 01/24/0)8		
Reporting Units: mg/l Sediment	ASTM D3977	8B04102	10	10	12	1	02/04/08	02/04/08	
Sample ID: IRA2560-23 (004 EFF-23 - W	ater)				Sample	d: 01/24/0)8		
Reporting Units: mg/l Sediment	ASTM D3977	8B04102	10	10	ND	1	02/04/08	02/04/08	
Sample ID: IRA2560-24 (004 EFF-24 - W	ater)				Sample	d: 01/24/0)8		
Reporting Units: mg/l Sediment	ASTM D3977	8B04102	10	10	15	1	02/04/08	02/04/08	

TestAmerica Irvine

Joseph Doak Project Manager

IRA2560 <*Page 7 of 10*> NPDES - 1033

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: IRA2560

Sampled: 01/23/08-01/24/08 Received: 01/26/08

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METHOD BLANK/QC DATA

INORGANICS

Analyte <u>Batch: 8B01112 Extracted: 02/01/08</u>	Result	Reporting Limit	MDL	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Duplicate Analyzed: 02/01/2008 (8B0111 Density Batch: 8B01113 Extracted: 02/01/08	0.996	NA	N/A	g/cc	Sou	arce: IRA2560-01 0.997		0	20	
Duplicate Analyzed: 02/01/2008 (8B0111 Density	3-DUP1) 0.987	NA	N/A	g/cc	Sou	orce: IRA2561-01		0	20	

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: IRA2560

Sampled: 01/23/08-01/24/08 Received: 01/26/08

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

DATA QUALIFIERS AND DEFINITIONS

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness Monitoring Program Report Number: IRA2560

Sampled: 01/23/08-01/24/08 Received: 01/26/08

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
ASTM D3977	Water		
Displacement	Water		

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

TestAmerica Irvine

				CHAIN OF		TOD	CUSTODY FORM	V H V T		Page 1 of 1
I GSI AIIIG		/ersion 12/20/07	-		BMD				NALYSIS REQUIRED	Ð
Client Name/Address:	ddress:			Project. Boeing Bim r Effortivenses Monitaring	J DIME Monitoring		-			
MWH-Arcadia	lia			Effectiveness						Field readings.
618 Michillinda Avenue, Suite 200	Avenue	Suite 200		гидин						
Arcadia, CA 91007	700						LS∀			
Test America Contact: Joseph Doak	ontact: Jo	oseph Doak					'OS			pH = 2 A
Project Manager: Bronwyn Kelly	ter: Bro	nwyn Kelly		Phone Number	; · _		SS)			Time of readings = A 14
с П	A MANUCA	4		(626) 568-6691			uoi			
Sampler: K 1511 24 614	50 24	¢ 05		Fax Number: (626) 568-6515	10		tentrat centrat bend₀b			Comments
Sample	Sample Matrix	Container Tvpe	# of Cont.	Sampling Date/Time	Preservative	Bottle #	uog			
	N	500 mL Poly	-		None	-	×			
004 EFF-2	3	500 mL Poly	-		None	20	 × >		-	
004 EFF-3	M	500 mL Poly	-		None	~ ~	< >			
004 EFF-4	N :	500 mL Poly		1/23/08-1849	None	4 m	< ×			
004 EFF-5	N				None	9	×			
004 EFF-6	M				None	7	×		-	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	500 mL Polv			None	8	×			
004 EFF-0	: >	500 mL Poly	-	1/23/08-2349	None	6	×			
004 EFF-10	3	500 mL Poly	-	1/24/08-0049	None	10	× >			
004 EFF-11	×	500 mL Poly	۰	1/24/08-0149	None	5	××			
004 EFF-12	3	500 mL Poly	-	1/24/08-0249	None	219	× >			
004 EFF-13	N	500 mL Poly	-	1/24/08-0349	None	13	< >			
004 EFF-14	3	500 mL Poly		1/24/08-0449	None	17 -4	< ×			
004 EFF-15	3	500 mL Poly		1/24/08-0549	None	2 4	< ×			
004 EFF-16	8	500 mL Poly	- .	1/24/08-0649	None	17	< ×			
004 EFF-17	≥	500 mL Poly	-	1/24/08-0/49	None	18	< ×			
004 EFF-18	3	500 mL Poly	- -	1/24/00-0049	None	19	< ×			
004 EFF-19	8	500 mL Poly	-   -	1/24/00-0343	None	20	×			
004 EFF-20	N 3	500 mL Poly	-   -	1/24/08-1149	None	21	×			
004 EFF-21	~ ~	500 mL Polv		1/24/08-1249	None	22	×			
004 EFF-22	\$ 3	500 mL Polv	-	1/24/08-1349	None	23	×			
004 EFF-24	: 3	500 mL Poly	+	1/24/08-1449	None	75		Dotof Time:		
Relinquished By	<b>`</b> .	30.92.	Date/Ti	Date/Time:	Received av	$\sum$	$\bigcirc$		SH21 SUJ-	Turn around Time: (check) 24 Hours 5 Days
In Br	5	(			Ą	d		Deterimer - C.G		48 Hours 10 Days
Relinquished By	L.		Date/Time:		Received By			Date/ Hille.		
X			1-1	USCI 80-0)				Data (Time:		Sample Integrity: (check)
Relinquished By	××		Date/Time:	me:	Received By			Date/ IIme:		Intact On Ice:
					9/2	Ŕ	Ă	126	08 1530	7.49.6
						)`		M	60. 06	
								-	000/ 20	

### **APPENDIX G**

### Section 24

Outfall 004, February 3, 2008 MEC^X Data Validation Reports



## DATA VALIDATION REPORT

### Boeing SSFL NPDES

### SAMPLE DELIVERY GROUP: IRB0149

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

#### I. INTRODUCTION

Task Order Title: Contract Task Order:	Boeing SSFL NPDES 1261.100D.00
Sample Delivery Group:	IRB0149
Project Manager:	B. Kelly
Matrix:	Water
QC Level:	IV
No. of Samples:	1
No. of Reanalyses/Dilutions:	0
Laboratory:	TestAmerica-Irvine

#### Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 004	IRB0149-01	30227-001, 8020458-01, CRA0035-01, 8697-001	Water	02/03/08 1345	160.2, 200.7, 200.8, 245.1, 525.2, 900.0, 901.1, 903.0, 904.0, 905.0, 906.0, 1613, ASTM D-5174

#### II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at TestAmerica-Irvine above the temperature limits; however, the samples had insufficient time to cool. The samples were received at Eberline, TestAmerica-Colton, and Vista within the temperature limits of  $4^{\circ}C \pm 2^{\circ}C$ . The samples were received marginally below the temperature limit at Vista and Weck; however, the samples were not noted to be damaged or frozen. According to the case narrative for this SDG, the sample was received intact at all laboratories. The FedEx courier did not relinquish custody of the sample to Eberline. The remaining COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine and Weck, custody seals were not required. Custody seals were intact upon arrival at Eberline and Vista. If necessary, the client ID was added to the sample result summary by the reviewer.

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

#### Data Qualifier Reference Table

Qualifier	Organics	Inorganics
н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
Ι	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
А	Not applicable.	ICP Serial Dilution %D were not within control limits.
Μ	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

### **Qualification Code Reference Table**

#### **Qualification Code Reference Table Cont.**

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Ρ	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found

#### III. Method Analyses

#### A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: E. Wessling Date Reviewed: April 4, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{\times}$  Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
  - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
  - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
  - Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
  - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: OCDD was reported in the method blank at 0.00000899µ/L. The detect for OCDD in the sample was less than five times the concentration reported in the method blank; therefore, the OCDD detect was qualified as an estimated nondetect, "UJ," and raised to

the reporting limit in sample Outfall 004. The method blank had no other target compound detects above the EDL.

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the estimated detection limit (EDL).

#### B. EPA METHODS 200.7, 200.8, 245.1—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: March 26, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{X}$  Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.7, 200.8, and 245.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding times, 6 months for metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤0.1 amu and ≤0.9 amu at 10% peak height, except for cerium associated with the dissolved metals fraction. The cerium mass calibration marginally exceeded the control limit; therefore, antimony, lead,

and thallium were qualified as estimated in the dissolved metals fraction, "J," for detects and, "UJ," for nondetects.

- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP-MS metals and 85-115% for mercury. All CRI/CRA and check standard recoveries were within the control limits of 70-130%.
- Blanks: Selenium was reported in the method blank associated with the total metals fraction at -8.4 μg/L; therefore, nondetected selenium in the total metals fraction was qualified as an estimated nondetect, "UJ." There were no other applicable detects in the method blanks or CCBs.
- Interference Check Samples: ICSA/B analyses were performed in association with all analyses except total antimony. Recoveries were within the method-established control limits. Most analytes were reported in the ICSA solutions. No 6010 analytes required qualification as the concentrations of the interferents were not significant. For the 6020 analytes, the reviewer was not able to ascertain if the detections were indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Evaluation of method accuracy was based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. The bracketing CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

The reviewer noted that antimony and boron were detected at slightly higher concentrations in the dissolved metals sample fraction and that mercury was detected slightly above the MDL in the dissolved metals fraction but was not detected in the total metals fraction. In all cases, the difference between the total and dissolved results was

within the sensitivity limits of the analytical instrument and, therefore, the reviewer considered the total and dissolved results to be equivalent.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.

#### C. EPA METHOD 525.2 — Pesticides

Reviewed By: P. Meeks Date Reviewed: March 27, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{X}$  Data Validation Procedure for Organochlorine Pesticides by GC (DVP-4, Rev. 0), EPA Method 525.2, and the National Functional Guidelines for Organic Data Review (02/94).

- Holding Times: Extraction and analytical holding times were met. The water sample pH was not adjusted within 24 hours; therefore, nondetected diazinon was qualified as an estimated nondetect, "UJ." The sample was analyzed within 30 days of extraction.
- GC/MS Tuning: The DFTPP tunes met the method abundance criteria. The sample was analyzed within 12 hours of the DFTPP injection time.
- Calibration: Calibration criteria were met. For both target compounds, initial calibration average RRFs were ≥0.05 and %RSDs ≤30%. Continuing calibration RRFs were ≥0.05 and applicable target compound responses were within the method QC limits of 70-130%.
- Blanks: The method blank had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries and RPDs were within laboratory-established QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample from this SDG. Evaluation of method accuracy and precision was based on the LCS/LCSD results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC

data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The internal standard area counts and retention times were within the method control limits established by the continuing calibration standards of ±30%.
- Compound Identification: Compound identification was verified. The laboratory analyzed for chlorpyrifos and diazinon by Method 525.2. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Reported nondetects are valid to the reporting limit.
- System Performance: Review of the raw data indicated no problems with system performance.

### D. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks Date Reviewed: March 28, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the *EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174,* and the *National Functional Guidelines for Inorganic Data Review* (2/94).

- Holding Times: The tritium sample was analyzed within 180 days of collection. Aliquots for gross alpha and gross beta, were prepared within the five-day analytical holding time for unpreserved samples. Aliquots for radium-226, radium-228, strontium-90, total uranium, and gamma spectroscopy were prepared beyond the five-day holding time for unpreserved samples; therefore, results for these analytes were qualified as estimated, "J," for detects and, "UJ," for nondetects.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, gross alpha detected in the sample was qualified as an estimated detect, "J." The gross beta detector efficiency was greater than 20%.

9

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. The tritium detector efficiency for the sample was at least 20% and was considered acceptable. The strontium chemical yield was at least 70% and was considered acceptable. The strontium continuing calibration results were within the laboratory control limits. The radium-226 continuing calibration results were within the laboratory-established control limits. The radium-228 tracer, yttrium oxalate, yields were greater than 70%. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: There were no analytes detected in the method blanks.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. Reported nondetects are valid to the MDA.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.

#### E. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks Date Reviewed: March 28, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{X}$  Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Method 160.2, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding time, seven days for TSS, was met.
- Calibration: The balance calibration logs were acceptable.
- Blanks: The method blank had no detect.
- Blank Spikes and Laboratory Control Samples: The recovery was within the laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed for the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: Not applicable to this method.
- Sample Result Verification: Review is not applicable at a Level V validation. Nondetects are valid to the reporting limit.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.

Sample Data           Matrix:         A           Matrix:         A           Matrix:         A           Sample Size:         0.           0.00000503         0.00000886           0.000000586         0.00000282           0.00000161         0.00000282           0.00000161         0.00000161	L	Laboratory Data Lab Sample: 30227-001 QC Batch No.: 9953 Date Analyzed DB-5: 19-Feb-08 Labeled Standard		Date Received:	5-Feb-08
anrix: umple Size: CMPC ^b	ers	DB-5: ed Standard		Received:	5-Feb-08
mple Size:	ers	DB-5: ed Standard	Data	Cutton attack.	
CMPCb		Labeled Standard		Date Analyzed DB-225:	15-Feb-08 NA
0503 0886 1167 282 1161 1161 1121 0953			%R	LCL-UCL ^d	Oualifiers
0886 1167 282 1161 1161 121 0953	- e	IS 13C-2,3,7,8-TCDD	86.6	6 25 - 164	
167 282 161 151 0953	ب م	13C-1,2,3,7,8-PeCDD	76.0	0 25 - 181	
282 161 121 0953	e	13C-1,2,3,4,7,8-HxCDD	81.1	1 32 - 141	
161 121 0953	<u>ب</u> و	13C-1,2,3,6,7,8-HxCDD	81.1	1 28-130	
121 0953	c	13C-1,2,3,4,6,7,8-HpCDD	86.0	0 23-140	
121 0953	q	13C-OCDD	77.4	4 17 - 157	
121 0953	n	13C-2,3,7,8-TCDF	90.4	4 24-169	
0953		13C-1,2,3,7,8-PeCDF	75.8	8 24 - 185	
		13C-2,3,4,7,8-PeCDF	77.3	3 21-178	
0.00000976		13C-1,2,3,4,7,8-HxCDF	77.2	2 26 - 152	
0.00000590		13C-1,2,3,6,7,8-HxCDF	9.77	9 26-123	
0.00000589		13C-2,3,4,6,7,8-HxCDF	77.3	3 28-136	
0.00000666		13C-1,2,3,7,8,9-HxCDF	82.7	7 29-147	
0.00000855		13C-1,2,3,4,6,7,8-HpCDF	76.8	8 28-143	
	J	13C-1,2,3,4,7,8,9-HpCDF	81.8	8 26-138	
0.00000155		13C-OCDF	80.	8 17-157	
	J	CRS 37CI-2,3,7,8-TCDD	89.	7 35 - 197	
		Footnotes			
0503		a. Sample specific estimated detection li	mit.		
139		b. Estimated maximum possible concent	ration.		
		c. Method detection limit.			
		d. Lower control limit - upper control lii	nit.		
121					
964	1				
A. S.	1	Approved By: William	J. Luksembur	g 22-Feb-2008 15:48	: 15:48
	0.00000155 0.000000503 0.00000139 0.00000121 0.00000964		J I3C-OCDF I3C-OCDF Footnotes Footnotes a. Sample specific estimated d b. Estimated maximum possib c. Method detection limit. d. Lower control limit - upper	J CRS 37C1-2,3,7,8-TCD Footnotes a. Sample specific estimated d b. Estimated maximum possib c. Method detection limit. d. Lower control limit - upper	J I3C-OCDF 80.8 13C-OCDF 89.7 <b>Res</b> 37CI-2,3,7,8-TCDD 89.7 <b>Rootnotes</b> a. Sample specific estimated detection limit. b. Estimated maximum possible concentration. c. Method detection limit. d. Lower control limit - upper control limit. d. Lower control limit - upper control limit.

I

Page 6 of 2839

Project 30227



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

**METALS** MDL Sample Dilution Date Data Reporting Date Qualifiers Method Factor Extracted Analyzed Analyte Batch Limit Limit Result Sample ID: IRB0149-01 (Outfall 004 - Water) - cont. Reporting Units: mg/l Hardness (as CaCO3) [CALC] [CALC] N/A 0.33 41 1 02/04/08 02/04/08 Boron J/DNQ EPA 200.7 8B04079 0.020 0.050 0.021 1 02/04/08 02/04/08 Ja Calcium EPA 200.7 8B04079 0.050 0.10 11 1 02/04/08 02/04/08 Iron EPA 200.7 8B04079 0.015 0.040 1.7 1 02/04/08 02/04/08 Magnesium EPA 200.7 8B04079 0.012 0.020 2.9 1 02/04/08 02/04/08

Project ID: Annual Outfall 004

EVEL IV

**TestAmerica** Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRB0149 <Page 9 of 50>

#### THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0149

Project ID: Annual Outfall 004

Sampled: 02/03/08 Received: 02/03/08

		I	META	LS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0149-01 (Outfall 004 - V	Vater) - cont.								
Reporting Units: ug/l									
Aluminum	EPA 200.7	8B04079	40	50	2700	1	02/04/08	02/04/08	
Antimony J/DNQ	EPA 200.8	8B04080	0.20	2.0	0.72	1	02/04/08	02/05/08	Ja
Arsenic U	EPA 200.7	8B04079	7.0	10	ND	1	02/04/08	02/04/08	
Beryllium	EPA 200.7	8B04079	0.90	2.0	ND	1	02/04/08	02/04/08	
Cadmium 🗸	EPA 200.8	8B04080	0.11	1.0	ND	1	02/04/08	02/04/08	
Chromium J/DNQ	EPA 200.7	8B04079	2.0	5.0	2.7	1	02/04/08	02/04/08	Ja
Copper	EPA 200.8	8B04080	0.75	2.0	2.9	1	02/04/08	02/04/08	
Lead	EPA 200.8	8B04080	0.30	1.0	1.4	1	02/04/08	02/04/08	
Nickel U	EPA 200.7	8B04079	2.0	10	ND	1	02/04/08	02/04/08	
Selenium UT/B	EPA 200.7	8B04079	8.0	10	ND	1	02/04/08	02/04/08	
Silver U	EPA 200.7	8B04079	6.0	10	ND	1	02/04/08	02/04/08	
Thallium	EPA 200.8	8B04080	0.20	1.0	ND	1	02/04/08	02/04/08	
Vanadium J/DNQ	EPA 200.7	8B04079	3.0	10	4.5	1	02/04/08	02/04/08	Ja
Zinc V	EPA 200.7	8B04079	6.0	20	6.2	1	02/04/08	02/04/08	Ja



**TestAmerica** Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRB0149 <Page 10 of 50>

#### THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

#### **DISSOLVED METALS**

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0149-01 (Outfall	004 - Water) - cont.								
Reporting Units: mg/l									
Boron J/DNQ	EPA 200.7-Diss	8B05111	0.020	0.050	0.022	1	02/05/08	02/06/08	Ja
Calcium	EPA 200.7-Diss	8B05111	0.050	0.10	11	1	02/05/08	02/06/08	
Iron	EPA 200.7-Diss	8B05111	0.015	0.040	0.11	1	02/05/08	02/06/08	
Magnesium	EPA 200.7-Diss	8B05111	0.012	0.020	2.4	1	02/05/08	02/06/08	
Hardness (as CaCO3)	SM2340B	8B05111	1.0	1.0	38	1	02/05/08	02/06/08	



**TestAmerica** Irvine

Joseph Doak Project Manager

> The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRB0149 <Page 11 of 50>

#### THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

#### **DISSOLVED METALS**

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0149-01 (Outfall 004	- Water) - cont.								
Reporting Units: ug/l									
Aluminum	EPA 200.7-Diss	8B05111	40	50	160	1	02/05/08	02/06/08	
Antimony J/DNQ, KITT	EPA 200.8-Diss	8B04144	0.20	2.0	0.75	1	02/04/08	02/05/08	Ja
Arsenic U	EPA 200.7-Diss	8B05111	7.0	10	ND	1	02/05/08	02/06/08	
Beryllium	EPA 200.7-Diss	8B05111	0.90	2.0	ND	1	02/05/08	02/06/08	
Cadmium	EPA 200.8-Diss	8B04144	0.11	1.0	ND	1	02/04/08	02/05/08	
Chromium 🗸	EPA 200.7-Diss	8B05111	2.0	5.0	ND	1	02/05/08	02/06/08	
Copper J/DNQ	EPA 200.8-Diss	8B04144	0.75	2.0	1.6	1	02/04/08	02/05/08	Ja
Lead UT ATT	EPA 200.8-Diss	8B04144	0.30	1.0	ND	1	02/04/08	02/05/08	
Nickel U	EPA 200.7-Diss	8B05111	2.0	10	ND	1	02/05/08	02/06/08	
Selenium	EPA 200.7-Diss	8B05111	8.0	10	ND	1	02/05/08	02/06/08	
Silver V	EPA 200.7-Diss	8B05111	6.0	10	ND	1	02/05/08	02/06/08	
Thallium UJ/XIII	EPA 200.8-Diss	8B04144	0.20	1.0	ND	1	02/04/08	02/05/08	
Vanadium J/DNQ	EPA 200.7-Diss	8B05111	3.0	10	3.1	1	02/05/08	02/06/08	Ja
Zinc U	EPA 200.7-Diss	8B05111	6.0	20	ND	1	02/05/08	02/06/08	

LEVEL IV

**TestAmerica** Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRB0149 <Page 12 of 50>

# TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 004 MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Report Number: IRB0149 Arcadia, CA 91007 Attention: Bronwyn Kelly

Sampled: 02/03/08 Received: 02/03/08

#### Metals by EPA 200 Series Methods

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0149-01 (Outfall 004 -	Water) - cont.								
Reporting Units: ug/l									
Mercury, Dissolved U	EPA 245.1	W8B0171	0.050	0.20	ND	1	02/06/08	02/07/08	
Mercury, Total J/DNQ	EPA 245.1	W8B0171	0.050	0.20	0.068	1	02/06/08	02/07/08	J

LEVEL IV

#### **TestAmerica** Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRB0149 <Page 16 of 50>



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

#### ORGANIC COMPOUNDS BY GC/MS (EPA 525.2)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0149-01 (Outfall 004 - V	Vater) - cont.								P, pH
Reporting Units: ug/l									
Chlorpyrifos U	EPA 525.2	C8B0516	0.10	1.0	ND	0.99	02/05/08	02/07/08	
Diazinon UJ/H	EPA 525.2	C8B0516	0.24	0.25	ND	0.99	02/05/08	02/07/08	
Surrogate: 1,3-Dimethyl-2-nitrobenzene (	70-130%)				92 %				
Surrogate: Triphenylphosphate (70-130%	)				115 %				
Surrogate: Perylene-d12 (70-130%)					97 %				

LEVEL IV

**TestAmerica** Irvine

Joseph Doak Project Manager

IRB0149 <Page 15 of 50>

#### Eberline Services

ANALYSIS RESULTS

SDG Work Order Received Date				Contract	TA IRVINE PROJECT# IRB0149 WATER	,	
					- * C		
Client	Lab		9 T				
ample ID	Sample ID	Collected	Analyzed	Nuclide	Results ± 20	Units	MDA
outfall 00							
IRB0149-01	8697-001	02/03/08	02/27/08	GrossAlpha	1.63 ± 0.68	pCi/L	0.61 J/R
			02/27/08	Gross Beta	12.7 ± 0.85	pCi/L	0.84
	. /	· · · ·	02/27/08	Ra-228	0.084 ± 0.19	pCi/L	0.51 UJ/H
	· · · · · ·		02/25/08	K-40 (G)	υ	pCi/L	25
			02/25/08	Cs-137 (G)	U	pCi/L	0.95
· · · · ·			02/28/08		15.8 ± 84	pCi/L	150 Ú
							0.61 NJ/H
· · · ·			03/03/08		1.05 ± 0.53	pCi/L	
್ ನಿಲ್ಲೇ ಸ್ಥಿತಿ	10 A A A A A A A A A A A A A A A A A A A		02/18/08	Sr-90	$-0.060 \pm 0.32$	pCi/L	0.77 05/4
· · · ·	·		02/26/08	Total U	$0.374 \pm 0.042$	pCi/L	0.022 J/H
		· · · ·			EVE	I. IV	Pm 3/28/0
			· · · ·			<u> </u>	

Certified by 2	
Report Date 03/11/08	
Page 1	

THE LEADER IN ENVIRONMENTAL TESTING

LEVEL IV

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

		INC	ORGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0149-01 (Outfall 004 -	Water) - cont.								
Reporting Units: mg/l									
Hexane Extractable Material (Oil & 🕌	EPA 1664A	8B12074	1.3	4.8	2.1	1	02/12/08	02/12/08	Ja
Grease)									
Chloride	EPA 300.0	8B04043	0.25	0.50	8.0	1	02/04/08	02/04/08	
Fluoride	EPA 300.0	8B04043	0.15	0.50	0.24	1	02/04/08	02/04/08	Ja
Nitrate/Nitrite-N	EPA 300.0	8B04043	0.15	0.26	0.59	1	02/04/08	02/04/08	
Sulfate	EPA 300.0	8B04043	0.20	0.50	9.5	1	02/04/08	02/04/08	
Total Dissolved Solids	SM2540C	8B07122	10	10	130	1	02/07/08	02/07/08	
Total Suspended Solids	EPA 160.2	8B04128	10	10	31	1	02/04/08	02/04/08	
* Analysis not	validated								

**TestAmerica** Irvine

Joseph Doak Project Manager

IRB0149 <Page 13 of 50>

### **APPENDIX G**

### Section 25

Outfall 004, February 3, 2008 Test America Analytical Laboratory Report

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

### LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project: Annual Outfall 004

Sampled: 02/03/08 Received: 02/03/08 Issued: 03/03/08 11:40

#### NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and

is an integral part of this report.

This entire report was reviewed and approved for release.

#### SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

LABORATORY ID

IRB0149-01 IRB0149-02 **CLIENT ID** Outfall 004 Trip Blanks MATRIX Water Water

Reviewed By:

Joseph Dock

**TestAmerica Irvine** Joseph Doak Project Manager

# TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 004

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

#### PURGEABLES BY GC/MS (EPA 624) MDL Reporting Sample Dilution Date Data Date Method Limit **Oualifiers** Analyte Batch Limit Result Factor Extracted Analyzed Sample ID: IRB0149-01 (Outfall 004 - Water) **Reporting Units: ug/l** EPA 624 8B04007 0.30 0.50 ND 02/04/08 02/04/08 1,1,1-Trichloroethane 1 8B04007 0.24 0.50 ND 02/04/08 02/04/08 1,1,2,2-Tetrachloroethane EPA 624 1 ND 1,1,2-Trichloroethane EPA 624 8B04007 0.30 0.50 1 02/04/08 02/04/08 ND 1,1-Dichloroethane EPA 624 8B04007 0.27 0.50 1 02/04/08 02/04/08 8B04007 ND 02/04/08 02/04/08 1,1-Dichloroethene EPA 624 0.42 0.50 1 1.2-Dichloroethane EPA 624 8B04007 0.28 0.50 ND 1 02/04/08 02/04/08 1,2-Dichlorobenzene EPA 624 8B04007 0.32 0.50 ND 1 02/04/08 02/04/08 8B04007 0.35 0.50 ND 1 02/04/08 02/04/08 1,2-Dichloropropane EPA 624 1,3-Dichlorobenzene EPA 624 8B04007 0.35 0.50 ND 1 02/04/08 02/04/08 1,4-Dichlorobenzene EPA 624 8B04007 0.37 0.50 ND 1 02/04/08 02/04/08 8B04007 0.28 0.50 ND 1 02/04/08 02/04/08 Benzene EPA 624 0.30 8B04007 0.50 ND 02/04/08 02/04/08 Bromodichloromethane EPA 624 1 8B04007 0.40 ND 02/04/08 02/04/08 Bromoform EPA 624 0.50 1 ND Bromomethane EPA 624 8B04007 0.42 1.0 1 02/04/08 02/04/08 Carbon tetrachloride EPA 624 8B04007 0.28 0.50 ND 1 02/04/08 02/04/08 8B04007 0.50 ND 1 Chlorobenzene EPA 624 0.36 02/04/08 02/04/08 Chloroethane EPA 624 8B04007 0.401.0 ND 1 02/04/08 02/04/08 Chloroform EPA 624 8B04007 0.33 0.50 ND 1 02/04/08 02/04/08 8B04007 0.40 0.50 ND 02/04/08 02/04/08 Chloromethane EPA 624 1 cis-1,3-Dichloropropene EPA 624 8B04007 0.22 0.50 ND 1 02/04/08 02/04/08 0.28 ND Dibromochloromethane EPA 624 8B04007 0.50 1 02/04/08 02/04/08 Ethylbenzene 8B04007 0.25 0.50 ND 1 02/04/08 02/04/08 EPA 624 Methylene chloride 8B04007 0.95 ND 1 02/04/08 02/04/08 EPA 624 1.0 8B04007 0.32 ND 02/04/08 Tetrachloroethene EPA 624 0.50 1 02/04/08 Toluene EPA 624 8B04007 0.36 0.50 ND 1 02/04/08 02/04/08 ND trans-1,2-Dichloroethene EPA 624 8B04007 0.27 0.50 1 02/04/08 02/04/08 trans-1,3-Dichloropropene 8B04007 ND 1 02/04/08 02/04/08 EPA 624 0.32 0.50 Trichloroethene EPA 624 8B04007 0.26 0.50 ND 1 02/04/08 02/04/08 Trichlorofluoromethane EPA 624 8B04007 0.34 0.50 ND 1 02/04/08 02/04/08 Trichlorotrifluoroethane (Freon 113) EPA 624 8B04007 0.50 5.0 ND 1 02/04/08 02/04/08 Vinyl chloride EPA 624 8B04007 0.30 0.50 ND 1 02/04/08 02/04/08 0.90 8B04007 ND 02/04/08 02/04/08 Xylenes, Total EPA 624 1.5 1 Surrogate: Dibromofluoromethane (80-120%) 112 % Surrogate: Toluene-d8 (80-120%) 101 % 93 %

#### **TestAmerica** Irvine

Surrogate: 4-Bromofluorobenzene (80-120%)

# TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 004

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

#### PURGEABLES BY GC/MS (EPA 624) MDL Reporting Sample Dilution Date Data Date Method Limit **Oualifiers** Analyte Batch Limit Result Factor Extracted Analyzed Sample ID: IRB0149-02 (Trip Blanks - Water) **Reporting Units: ug/l** 8B04007 0.30 0.50 ND 02/04/08 02/04/08 1,1,1-Trichloroethane EPA 624 1 8B04007 0.24 0.50 ND 02/04/08 02/04/08 1,1,2,2-Tetrachloroethane EPA 624 1 ND 1,1,2-Trichloroethane EPA 624 8B04007 0.30 0.50 1 02/04/08 02/04/08 ND 1,1-Dichloroethane EPA 624 8B04007 0.27 0.50 1 02/04/08 02/04/08 8B04007 ND 02/04/08 02/04/08 1,1-Dichloroethene EPA 624 0.42 0.50 1 1.2-Dichloroethane EPA 624 8B04007 0.28 0.50 ND 1 02/04/08 02/04/08 1,2-Dichlorobenzene EPA 624 8B04007 0.32 0.50 ND 1 02/04/08 02/04/08 8B04007 0.35 0.50 ND 1 02/04/08 02/04/08 1,2-Dichloropropane EPA 624 1,3-Dichlorobenzene EPA 624 8B04007 0.35 0.50 ND 1 02/04/08 02/04/08 1,4-Dichlorobenzene EPA 624 8B04007 0.37 0.50 ND 1 02/04/08 02/04/08 8B04007 0.28 0.50 ND 1 02/04/08 02/04/08 Benzene EPA 624 0.30 8B04007 0.50 ND 02/04/08 02/04/08 Bromodichloromethane EPA 624 1 8B04007 0.40 ND 02/04/08 02/04/08 Bromoform EPA 624 0.50 1 ND Bromomethane EPA 624 8B04007 0.42 1.0 1 02/04/08 02/04/08 Carbon tetrachloride EPA 624 8B04007 0.28 0.50 ND 1 02/04/08 02/04/08 8B04007 0.50 ND 1 Chlorobenzene EPA 624 0.36 02/04/08 02/04/08 Chloroethane EPA 624 8B04007 0.401.0 ND 1 02/04/08 02/04/08 Chloroform EPA 624 8B04007 0.33 0.50 ND 1 02/04/08 02/04/08 8B04007 0.40 0.50 ND 02/04/08 02/04/08 Chloromethane EPA 624 1 cis-1,3-Dichloropropene EPA 624 8B04007 0.22 0.50 ND 1 02/04/08 02/04/08 0.28 ND Dibromochloromethane EPA 624 8B04007 0.50 1 02/04/08 02/04/08 Ethylbenzene 8B04007 0.25 0.50 ND 1 02/04/08 02/04/08 EPA 624 Methylene chloride 8B04007 0.95 ND 1 02/04/08 02/04/08 EPA 624 1.0 8B04007 0.32 ND 02/04/08 Tetrachloroethene EPA 624 0.50 1 02/04/08 Toluene EPA 624 8B04007 0.36 0.50 ND 1 02/04/08 02/04/08 ND trans-1,2-Dichloroethene EPA 624 8B04007 0.27 0.50 1 02/04/08 02/04/08 trans-1,3-Dichloropropene 8B04007 ND 1 02/04/08 02/04/08 EPA 624 0.32 0.50 Trichloroethene EPA 624 8B04007 0.26 0.50 ND 1 02/04/08 02/04/08 Trichlorofluoromethane EPA 624 8B04007 0.34 0.50 ND 1 02/04/08 02/04/08 Trichlorotrifluoroethane (Freon 113) EPA 624 8B04007 0.50 5.0 ND 1 02/04/08 02/04/08 Vinyl chloride EPA 624 8B04007 0.30 0.50 ND 1 02/04/08 02/04/08 0.90 8B04007 ND 02/04/08 02/04/08 Xylenes, Total EPA 624 1.5 1 Surrogate: Dibromofluoromethane (80-120%) 111 % Surrogate: Toluene-d8 (80-120%) 101 % 90 %

#### **TestAmerica** Irvine

Surrogate: 4-Bromofluorobenzene (80-120%)

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

#### PURGEABLES-- GC/MS (EPA 624) MDL Reporting Sample Dilution Date Date Data Qualifiers Method Batch Limit Limit Result Factor Extracted Analyte Analyzed Sample ID: IRB0149-01 (Outfall 004 - Water) Reporting Units: ug/l EPA 624 8B04007 4.0 5.0 ND 02/04/08 02/04/08 Acrolein 1 Acrylonitrile EPA 624 8B04007 0.70 2.0 ND 02/04/08 02/04/08 1 8B04007 5.0 ND 02/04/08 02/04/08 2-Chloroethyl vinyl ether EPA 624 1.8 1 Surrogate: Dibromofluoromethane (80-120%) 112 % Surrogate: Toluene-d8 (80-120%) 101 % 93% Surrogate: 4-Bromofluorobenzene (80-120%) Sample ID: IRB0149-02 (Trip Blanks - Water) Reporting Units: ug/l 8B04007 Acrolein EPA 624 4.0 5.0 ND 1 02/04/08 02/04/08 Acrylonitrile EPA 624 8B04007 0.70 2.0 ND 02/04/08 02/04/08 1 2-Chloroethyl vinyl ether EPA 624 8B04007 1.8 5.0 ND 1 02/04/08 02/04/08 Surrogate: Dibromofluoromethane (80-120%) 111% Surrogate: Toluene-d8 (80-120%) 101 % Surrogate: 4-Bromofluorobenzene (80-120%) 90 %

#### **TestAmerica** Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 004

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

Analyte         Method         Barch         Limit         Limit         Result         Factor         Extreet         Analyze         Qualifiers           Sample LD: RRB0149-01 (Outfall 004 - Water) Heprofig Unit: ug1         Extreet         Extre									D (	
Sample ID: IR80149-01 (Outfall 004 - Water)           Beparing Units: ag8           Accanaphihylene         EPA 625         8B04111         3.0         9.9         ND         0.99         020408         020708           Accanaphihylene         EPA 625         8B04111         2.5         9.9         ND         0.99         020408         020708           Antifnacene         EPA 625         8B04111         2.0         9.9         ND         0.99         020408         020708           Benzicianci         EPA 625         8B04111         2.0         9.9         ND         0.99         020408         020708         L6           Benzicianci         EPA 625         8B04111         2.0         9.9         ND         0.99         020408         020708         L6           Benzo(a)phuoranthene         EPA 625         8B04111         2.0         9.9         ND         0.99         020408         020708           Benzo(a)phyloranthene         EPA 625         8B04111         2.0         9.9         ND         0.99         024408         020708           Benzo(a)phyloranthene         EPA 625         8B04111         2.0         9.9         ND         0.99         024408	A 1 4	Mathad	Datab	MDL	Reporting			Date	Date	Data Qualifians
Leparating Units: unit         EPA code         Secure of the secure of t	Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzeu	Quaimers
Acenaphthen         EPA 625         8B04111         3.0         9.9         ND         0.99         02.04/08         02.07/08           Acenaphthylene         EPA 625         8B04111         3.0         9.9         ND         0.99         02.04/08         02.07/08           Anline         EPA 625         8B04111         2.5         9.9         ND         0.99         02.04/08         02.07/08         I           Benzidine         EPA 625         8B04111         2.0         9.9         ND         0.99         02.04/08         02.07/08         I         6           Benzolic acid         EPA 625         8B04111         2.0         9.9         ND         0.99         02.04/08         02.07/08         E           Benzolic hilocranthene         EPA 625         8B04111         2.0         9.9         ND         0.99         02.04/08         02.07/08           Benzolic hilocranthene         EPA 625         8B04111         2.0         9.9         ND         0.99         02.04/08         02.07/08           Benzolic hilocranthene         EPA 625         8B04111         2.0         9.9         ND         0.99         02.04/08         02.07/08           Benzolipperiole         EPA 625 <th>Sample ID: IRB0149-01 (Outfall 004 - W</th> <th>/ater)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Sample ID: IRB0149-01 (Outfall 004 - W	/ater)								
AcenagibityleneFPA 62581041113.09.9ND0.9902.04/0802.07/08AnlinaeEPA 6258B041112.09.9ND0.9902.04/0802.07/08BenzacianceEPA 6258B041112.09.9ND0.9902.04/0802.07/08BenzacianciaEPA 6258B041112.09.9ND0.9902.04/0802.07/08BenzaciajanthraceneEPA 6258B041112.09.9ND0.9902.04/0802.07/08BenzaciajanthraceneEPA 6258B041112.09.9ND0.9902.04/0802.07/08BenzaciajhiporantheneEPA 6258B041112.09.9ND0.9902.04/0802.07/08BenzaciajhiporyleneEPA 6258B041112.09.9ND0.9902.04/0802.07/08BenzaciajhiporyleneEPA 6258B041113.09.9ND0.9902.04/0802.07/08BenzaciajhiporyleneEPA 6258B041113.09.9ND0.9902.04/0802.07/08Bisi2-chioroethoxylmethaneEPA 6258B041113.09.9ND0.9902.04/0802.07/08Bisi2-chioroethylphthalateEPA 6258B041113.09.9ND0.9902.04/0802.07/08Bisi2-chioroethylphthalateEPA 6258B041113.09.9ND0.9902.04/0802.07/08ChioronaphthaleneEPA 6258B041113.09.9 </th <th>Reporting Units: ug/l</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Reporting Units: ug/l									
AnilineEPA 62581041112.59.9ND0.9902.04/0802.07/08AnthraceneEPA 62581041118.42.0ND0.9902.04/0802.07/08L6Benzolia aidEPA 62581041119.92.0ND0.9902.04/0802.07/08L6Benzolia aidEPA 62581041112.09.9ND0.9902.04/0802.07/08L6Benzoli anthraceneEPA 62581041112.09.9ND0.9902.04/0802.07/08L7Benzoli JhuoantheneEPA 62581041112.09.9ND0.9902.04/0802.07/08L7Benzoli JhuoantheneEPA 62581041112.09.9ND0.9902.04/0802.07/08L7Benzoli JaporeneEPA 62581041113.09.9ND0.9902.04/0802.07/08L7Benzoli JaporeneEPA 62581041113.09.9ND0.9902.04/0802.07/08L7Bisi2-chloroethyletherEPA 62581041113.09.9ND0.9902.04/0802.07/08L7Bisi2-chloroethylpetherEPA 62581041113.09.9ND0.9902.04/0802.07/08L7Bisi2-chloroethylpetherEPA 62581041113.09.9ND0.9902.04/0802.07/08L7ChloroabrylpetherEPA 62581041113.09.9ND0.9902.04/0802.07	Acenaphthene	EPA 625	8B04111	3.0	9.9	ND	0.99	02/04/08	02/07/08	
AndraceneEPA 6258B041112.09.9ND0.9902/04/0802/07/08L6Benzoic acidEPA 6258B041112.09.9ND0.9902/04/0802/07/08Benzoic acidEPA 6258B041112.09.9ND0.9902/04/0802/07/08Benzoic acid/anthraceneEPA 6258B041112.09.9ND0.9902/04/0802/07/08Benzoic bi/norantheneEPA 6258B041112.09.9ND0.9902/04/0802/07/08Benzoic bi/norantheneEPA 6258B041112.09.9ND0.9902/04/0802/07/08Benzoic bi/norethoxy)methaneEPA 6258B041112.09.9ND0.9902/04/0802/07/08Benzoic bi/norethy)methaneEPA 6258B041113.09.9ND0.9902/04/0802/07/08Bis2-chloroethy)methaneEPA 6258B041113.09.9ND0.9902/04/0802/07/08Bis2-chloroethy)pichterEPA 6258B041113.09.9ND0.9902/04/0802/07/08Bis2-chlorosethypiphthalateEPA 6258B041113.09.9ND0.9902/04/0802/07/084-Bromophenyl phenyl etherEPA 6258B041113.09.9ND0.9902/04/0802/07/082-ChlorosphthaleneEPA 6258B041113.09.9ND0.9902/04/0802/07/082-ChlorosphthaleneEPA 625	Acenaphthylene	EPA 625	8B04111	3.0	9.9	ND	0.99	02/04/08	02/07/08	
Benzidine         EPA 625         8B04111         8.4         20         ND         0.99         0204/08         02/07/08         L6           Benzoi acid         EPA 625         8B04111         9.9         ND         0.99         0204/08         02/07/08           Benzoi (a)Infracence         EPA 625         8B04111         2.0         9.9         ND         0.99         02/04/08         02/07/08           Benzoi (A)Informathenc         EPA 625         8B04111         2.0         9.9         ND         0.99         02/04/08         02/07/08           Benzoi (A)Iperylenc         EPA 625         8B04111         2.0         9.9         ND         0.99         02/04/08         02/07/08           Benzoi (A)Iperylenc         EPA 625         8B04111         3.0         9.9         ND         0.99         02/04/08         02/07/08           Bisi (2-chlorosthy)jether         EPA 625         8B04111         3.0         9.9         ND         0.99         02/04/08         02/07/08           Bisi (2-chlorosthy)jether         EPA 625         8B04111         3.0         9.9         ND         0.99         02/04/08         02/07/08           Bisi (2-chlorosthy)jether         EPA 625         8B04111	Aniline	EPA 625	8B04111	2.5	9.9	ND	0.99	02/04/08	02/07/08	
Benzoic acidEPA 6258B041119.920ND0.9902/04/0802/07/08Benzo(h)troarntheneEPA 6258B041112.09.9ND0.9902/04/0802/07/08Benzo(k)troarntheneEPA 6258B041112.09.9ND0.9902/04/0802/07/08Benzo(k)troarntheneEPA 6258B041112.09.9ND0.9902/04/0802/07/08Benzo(k)typreneEPA 6258B041112.09.9ND0.9902/04/0802/07/08Benzo(k)typreneEPA 6258B041113.09.9ND0.9902/04/0802/07/08Bis(2-chloroethy)getherEPA 6258B041113.09.9ND0.9902/04/0802/07/08Bis(2-chloroethy)getherEPA 6258B041113.09.9ND0.9902/04/0802/07/08Bis(2-chloroethy)ghethafateEPA 6258B041113.09.9ND0.9902/04/0802/07/08Bis(2-chloroathy)pethilatateEPA 6258B041113.09.9ND0.9902/04/0802/07/08Buyl benzyl phthalateEPA 6258B041113.09.9ND0.9902/04/0802/07/08ChloroathylhenolEPA 6258B041113.09.9ND0.9902/04/0802/07/08ChloroathylhenolEPA 6258B041113.09.9ND0.9902/04/0802/07/08ChloroathylhenolEPA 6258B041113.0 </td <td>Anthracene</td> <td>EPA 625</td> <td>8B04111</td> <td>2.0</td> <td>9.9</td> <td>ND</td> <td>0.99</td> <td>02/04/08</td> <td>02/07/08</td> <td></td>	Anthracene	EPA 625	8B04111	2.0	9.9	ND	0.99	02/04/08	02/07/08	
Benzo(a)anthraceneEPA 6258B041112.09.9ND0.9902/04/0802/07/08Benzo(k)huorantheneEPA 6258B041112.59.9ND0.9902/04/0802/07/08Benzo(k)huorantheneEPA 6258B041112.09.9ND0.9902/04/0802/07/08Benzo(k)huorantheneEPA 6258B041112.09.9ND0.9902/04/0802/07/08Benzo(k)huorantheneEPA 6258B041112.09.9ND0.9902/04/0802/07/08Benzo(k)huorantheneEPA 6258B041113.09.9ND0.9902/04/0802/07/08Bis(2-chloroethy)etherEPA 6258B041113.09.9ND0.9902/04/0802/07/08Bis(2-chlorosprop/)etherEPA 6258B041113.09.9ND0.9902/04/0802/07/08Bis(2-chlorosprop/)etherEPA 6258B041113.09.9ND0.9902/04/0802/07/08Bis(2-chlorosprop/)etherEPA 6258B041113.09.9ND0.9902/04/0802/07/08Butyl benzyl phthalateEPA 6258B041113.09.9ND0.9902/04/0802/07/08C/LorosphathaleneEPA 6258B041113.09.9ND0.9902/04/0802/07/082-ChlorosphylphenolEPA 6258B041113.09.9ND0.9902/04/0802/07/082-ChlorosphylphenolEPA 6258B041	Benzidine	EPA 625	8B04111	8.4	20	ND	0.99	02/04/08	02/07/08	L6
Benzo(b)fluoranthene         EPA 625         8B04111         2.0         9.9         ND         0.99         02/04/08         02/07/08           Benzo(c)(fluoranthene         EPA 625         8B04111         2.5         9.9         ND         0.99         02/04/08         02/07/08           Benzo(c)(fluoranthene         EPA 625         8B04111         2.0         9.9         ND         0.99         02/04/08         02/07/08           Benzo(c)(fluoranthene         EPA 625         8B04111         3.0         9.9         ND         0.99         02/04/08         02/07/08           Benzo(ch)(ry)(rethane         EPA 625         8B04111         3.0         9.9         ND         0.99         02/04/08         02/07/08           Bis(2-chloroisopropyl)(rher         EPA 625         8B04111         3.0         9.9         ND         0.99         02/04/08         02/07/08           Bis(2-chloroisopropyl)(rher         EPA 625         8B04111         3.0         9.9         ND         0.99         02/04/08         02/07/08           4-Chloroalnifine         EPA 625         8B04111         3.0         9.9         ND         0.99         02/04/08         02/07/08           2-Chlorophenol         EPA 625         8B04111<	Benzoic acid	EPA 625	8B04111	9.9	20	ND	0.99	02/04/08	02/07/08	
Benzo(k)fluoranthene         EPA 625         8B04111         2.5         9.9         ND         0.99         02/04/08         02/07/08           Benzo(s)k,fiperylene         EPA 625         8B04111         2.0         9.9         ND         0.99         02/04/08         02/07/08           Benzo(s)kyprene         EPA 625         8B04111         2.0         9.9         ND         0.99         02/04/08         02/07/08           Bis(2-chloroethoxy)methane         EPA 625         8B04111         3.0         9.9         ND         0.99         02/04/08         02/07/08           Bis(2-chloroethy)ether         EPA 625         8B04111         3.0         9.9         ND         0.99         02/04/08         02/07/08           Bis(2-chloroethy)ether         EPA 625         8B04111         3.0         9.9         ND         0.99         02/04/08         02/07/08           4-Bromophenyl phenyl phenyl ther         EPA 625         8B04111         3.0         9.9         ND         0.99         02/04/08         02/07/08           4-Chloroaniline         EPA 625         8B04111         2.0         9.9         ND         0.99         02/04/08         02/07/08           4-Chloroaniline         EPA 625         8B04111 </td <td>Benzo(a)anthracene</td> <td>EPA 625</td> <td>8B04111</td> <td>2.0</td> <td>9.9</td> <td>ND</td> <td>0.99</td> <td>02/04/08</td> <td>02/07/08</td> <td></td>	Benzo(a)anthracene	EPA 625	8B04111	2.0	9.9	ND	0.99	02/04/08	02/07/08	
Benzo(g,h.)perylene         EPA 625         8B04111         4.0         9.9         ND         0.99         0.204/08         0.207/08           Benzya (a)pyrene         EPA 625         8B04111         2.5         20         ND         0.99         0.204/08         0.207/08           Bis(2-chloroethoxy)methane         EPA 625         8B04111         3.0         9.9         ND         0.99         0.204/08         0.207/08           Bis(2-chloroethoxy)methane         EPA 625         8B04111         3.0         9.9         ND         0.99         0.204/08         0.207/08           Bis(2-chlorosphyphether         EPA 625         8B04111         2.5         9.9         ND         0.99         0.204/08         0.207/08           Bis(2-chlorosphyphether         EPA 625         8B04111         2.0         9.9         ND         0.99         0.204/08         0.207/08           4-Chlorosanithe         EPA 625         8B04111         2.0         9.9         ND         0.99         0.204/08         0.207/08           2-Chlorosphthalene         EPA 625         8B04111         2.0         9.9         ND         0.99         0.204/08         0.207/08           2-Chlorosphenol         EPA 625         8B04111	Benzo(b)fluoranthene	EPA 625	8B04111	2.0	9.9	ND	0.99	02/04/08	02/07/08	
Benzo(a)pyreneEPA 6258B041112.09.9ND0.9902/04/0802/07/08Benzy al coholEPA 6258B041113.09.9ND0.9902/04/0802/07/08Bis(2-chloroethxy)methaneEPA 6258B041113.09.9ND0.9902/04/0802/07/08Bis(2-chloroisoproy)letherEPA 6258B041113.09.9ND0.9902/04/0802/07/08Bis(2-chloroisoproy)letherEPA 6258B041114.050ND0.9902/04/0802/07/08Haromophenyl phenyl etherEPA 6258B041114.02.0ND0.9902/04/0802/07/08A-Bromophenyl phenyl etherEPA 6258B041113.09.9ND0.9902/04/0802/07/082-ChloronaphthaleneEPA 6258B041112.09.9ND0.9902/04/0802/07/082-ChloronaphthaleneEPA 6258B041113.09.9ND0.9902/04/0802/07/082-ChloronaphthaleneEPA 6258B041112.52.0ND0.9902/04/0802/07/082-ChloronaphthaleneEPA 6258B041113.09.9ND0.9902/04/0802/07/082-ChloronaphthaleneEPA 6258B041113.09.9ND0.9902/04/0802/07/082-ChloronaphthaleneEPA 6258B041113.02.9ND0.9902/04/0802/07/082-ChloronaphthaleneEPA 6258	Benzo(k)fluoranthene	EPA 625	8B04111	2.5	9.9	ND	0.99	02/04/08	02/07/08	
Benzyl alcoholEPA 6258B041112.520ND0.9902/04/0802/07/08Bis(2-chloroethoxy)petharEPA 6258B041113.09.9ND0.9902/04/0802/07/08Bis(2-chloroethoxy)petherEPA 6258B041112.09.9ND0.9902/04/0802/07/08Bis(2-chloroethy)petherEPA 6258B041114.050ND0.9902/04/0802/07/08Bis(2-chloroethy)petherEPA 6258B041114.050ND0.9902/04/0802/07/084-Bromophenyl phenyl etherEPA 6258B041113.09.9ND0.9902/04/0802/07/084-ChloroanlineEPA 6258B041113.09.9ND0.9902/04/0802/07/082-ChlorophenolEPA 6258B041112.09.9ND0.9902/04/0802/07/082-ChlorophenolEPA 6258B041113.09.9ND0.9902/04/0802/07/082-ChlorophenolEPA 6258B041112.59.9ND0.9902/04/0802/07/082-ChlorophenolEPA 6258B041113.02.0ND0.9902/04/0802/07/08ChryseneEPA 6258B041113.02.0ND0.9902/04/0802/07/08Dibenz(a,h)antraceneEPA 6258B041113.02.0ND0.9902/04/0802/07/081,3-DichlorobenzeneEPA 6258B041113.09.9 <td< td=""><td>Benzo(g,h,i)perylene</td><td>EPA 625</td><td>8B04111</td><td>4.0</td><td>9.9</td><td>ND</td><td>0.99</td><td>02/04/08</td><td>02/07/08</td><td></td></td<>	Benzo(g,h,i)perylene	EPA 625	8B04111	4.0	9.9	ND	0.99	02/04/08	02/07/08	
Bis(2-chloroethoxy)methane         EPA 625         8B04111         3.0         9.9         ND         0.99         02/04/08         02/07/08           Bis(2-chlorosthy)lether         EPA 625         8B04111         3.0         9.9         ND         0.99         02/04/08         02/07/08           Bis(2-chlorosiopropy)lether         EPA 625         8B04111         3.0         9.9         ND         0.99         02/04/08         02/07/08           4-Bromophenyl phenyl ether         EPA 625         8B04111         3.0         9.9         ND         0.99         02/04/08         02/07/08           4-Chloroaniline         EPA 625         8B04111         3.0         9.9         ND         0.99         02/04/08         02/07/08           2-Chloronaphthalene         EPA 625         8B04111         3.0         9.9         ND         0.99         02/04/08         02/07/08           2-Chlorophenol         EPA 625         8B04111         2.5         2.0         ND         0.99         02/04/08         02/07/08           2-Chlorophenol         EPA 625         8B04111         2.5         9.9         ND         0.99         02/04/08         02/07/08           2-Chlorophenol         EPA 625         8B04111	Benzo(a)pyrene	EPA 625	8B04111	2.0	9.9	ND	0.99	02/04/08	02/07/08	
Bis(2-chloroethyl)ether         EPA 625         8B04111         3.0         9.9         ND         0.99         02/04/08         02/07/08           Bis(2-chloroisoproyl)ether         EPA 625         8B04111         2.5         9.9         ND         0.99         02/04/08         02/07/08           Bis(2-ethylnexyl)phthalate         EPA 625         8B04111         4.0         50         ND         0.99         02/04/08         02/07/08           4-Bromophenyl phenyl ether         EPA 625         8B04111         4.0         20         ND         0.99         02/04/08         02/07/08           4-Chloroaniline         EPA 625         8B04111         2.0         9.9         ND         0.99         02/04/08         02/07/08           4-Chloroanpthalene         EPA 625         8B04111         3.0         9.9         ND         0.99         02/04/08         02/07/08           2-Chlorophenol         EPA 625         8B04111         3.0         9.9         ND         0.99         02/04/08         02/07/08           2-Chlorophenol         EPA 625         8B04111         3.0         2.0         ND         0.99         02/04/08         02/07/08           2-Chlorophenol         EPA 625         8B04111         <	Benzyl alcohol	EPA 625	8B04111	2.5	20	ND	0.99	02/04/08	02/07/08	
Bis(2-chloroisopropyl)etherEPA 6258B041112.59.9ND0.9902/04/0802/07/08Bis(2-ethylhexyl)phthalateEPA 6258B041113.09.9ND0.9902/04/0802/07/084-Bromophenyl phenyl etherEPA 6258B041113.09.9ND0.9902/04/0802/07/084-ChloroanilineEPA 6258B041112.09.9ND0.9902/04/0802/07/082-ChloronaphthaleneEPA 6258B041113.09.9ND0.9902/04/0802/07/082-ChlorophenolEPA 6258B041112.52.0ND0.9902/04/0802/07/082-ChlorophenolEPA 6258B041113.09.9ND0.9902/04/0802/07/084-Chloroshenyl phenyl etherEPA 6258B041112.59.9ND0.9902/04/0802/07/084-ChlorophenolEPA 6258B041113.02.0ND0.9902/04/0802/07/08ChryseneEPA 6258B041113.02.0ND0.9902/04/0802/07/08Dibenz(a,h)anthraceneEPA 6258B041113.02.0ND0.9902/04/0802/07/081,3-DichlorobenzeneEPA 6258B041113.02.0ND0.9902/04/0802/07/081,3-DichlorobenzeneEPA 6258B041113.09.9ND0.9902/04/0802/07/081,4-DichlorobenzeneEPA 6258B041113.0 </td <td>Bis(2-chloroethoxy)methane</td> <td>EPA 625</td> <td>8B04111</td> <td>3.0</td> <td>9.9</td> <td>ND</td> <td>0.99</td> <td>02/04/08</td> <td>02/07/08</td> <td></td>	Bis(2-chloroethoxy)methane	EPA 625	8B04111	3.0	9.9	ND	0.99	02/04/08	02/07/08	
Bis(2-ethylhexyl)phthalate         EPA 625         8B04111         4.0         50         ND         0.99         02/04/08         02/07/08           4-Bromophenyl phenyl ether         EPA 625         8B04111         3.0         9.9         ND         0.99         02/04/08         02/07/08           Butyl benzyl phthalate         EPA 625         8B04111         2.0         9.9         ND         0.99         02/04/08         02/07/08           4-Chloroanphthalene         EPA 625         8B04111         2.0         9.9         ND         0.99         02/04/08         02/07/08           4-Chloroa-s-methylphenol         EPA 625         8B04111         3.0         9.9         ND         0.99         02/04/08         02/07/08           4-Chlorophenyl phenyl ether         EPA 625         8B04111         2.5         9.9         ND         0.99         02/04/08         02/07/08           Chrosphenyl phenyl ether         EPA 625         8B04111         3.0         2.0         ND         0.99         02/04/08         02/07/08           Dibenz(a,h)anthracene         EPA 625         8B04111         3.0         2.0         ND         0.99         02/04/08         02/07/08           Ja-Dichlorobenzene         EPA 625	Bis(2-chloroethyl)ether	EPA 625	8B04111	3.0	9.9	ND	0.99	02/04/08	02/07/08	
4-Bromophenyl phenyl etherEPA 6258B041113.09.9ND0.9902/04/0802/07/08Butyl benzyl phthalateEPA 6258B041112.0ND0.9902/04/0802/07/084-ChloroanilineEPA 6258B041112.09.9ND0.9902/04/0802/07/082-ChloroaphthaleneEPA 6258B041113.09.9ND0.9902/04/0802/07/084-Chloro-3-methylphenolEPA 6258B041112.520ND0.9902/04/0802/07/084-Chloro-3-methylphenolEPA 6258B041112.59.9ND0.9902/04/0802/07/084-Chlorophenyl phenyl etherEPA 6258B041112.59.9ND0.9902/04/0802/07/08ChryseneEPA 6258B041113.02.0ND0.9902/04/0802/07/08Dibenz/a,h)anthraceneEPA 6258B041113.02.0ND0.9902/04/0802/07/08DibenzofuranEPA 6258B041113.02.0ND0.9902/04/0802/07/081,3-DichlorobenzeneEPA 6258B041113.09.9ND0.9902/04/0802/07/081,3-DichlorobenzeneEPA 6258B041113.09.9ND0.9902/04/0802/07/081,3-DichlorobenzeneEPA 6258B041113.09.9ND0.9902/04/0802/07/081,2-DichlorobenzeneEPA 6258B041113.09.9	Bis(2-chloroisopropyl)ether	EPA 625	8B04111	2.5	9.9	ND	0.99	02/04/08	02/07/08	
Butyl benzyl phthalateEPA 6258B041114.020ND0.9902/04/0802/07/084-ChloronaphthaleneEPA 6258B041113.09.9ND0.9902/04/0802/07/082-ChloronaphthaleneEPA 6258B041113.09.9ND0.9902/04/0802/07/084-Chloro-3-methylphenolEPA 6258B041112.520ND0.9902/04/0802/07/082-ChlorophenolEPA 6258B041113.09.9ND0.9902/04/0802/07/084-Chlorophenyl phenyl etherEPA 6258B041112.59.9ND0.9902/04/0802/07/08ChryseneEPA 6258B041113.02.0ND0.9902/04/0802/07/08Dibenz/(a,h)anthraceneEPA 6258B041113.02.0ND0.9902/04/0802/07/08Dibenz/(arh)EPA 6258B041113.02.0ND0.9902/04/0802/07/08J-brichlorobenzeneEPA 6258B041113.09.9ND0.9902/04/0802/07/081,3-DichlorobenzeneEPA 6258B041113.09.9ND0.9902/04/0802/07/081,2-DichlorobenzeneEPA 6258B041113.09.9ND0.9902/04/0802/07/082,4-DinethylphenolEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-DinethylphenolEPA 6258B041113.59.9 </td <td>Bis(2-ethylhexyl)phthalate</td> <td>EPA 625</td> <td>8B04111</td> <td>4.0</td> <td>50</td> <td>ND</td> <td>0.99</td> <td>02/04/08</td> <td>02/07/08</td> <td></td>	Bis(2-ethylhexyl)phthalate	EPA 625	8B04111	4.0	50	ND	0.99	02/04/08	02/07/08	
4-ChloroanilineEPA 6258B041112.09.9ND0.9902/04/0802/07/082-ChloronaphthaleneEPA 6258B041113.09.9ND0.9902/04/0802/07/084-Chloro-3-methylphenolEPA 6258B041112.52.0ND0.9902/04/0802/07/082-ChlorophenolEPA 6258B041112.59.9ND0.9902/04/0802/07/084-Chlorophenyl phenyl etherEPA 6258B041112.59.9ND0.9902/04/0802/07/08ChryseneEPA 6258B041113.020ND0.9902/04/0802/07/08Dibenz(a,h)anthraceneEPA 6258B041113.020ND0.9902/04/0802/07/08Dibenz(a,h)anthraceneEPA 6258B041113.020ND0.9902/04/0802/07/08Ja-DichlorobenzeneEPA 6258B041113.020ND0.9902/04/0802/07/08J,3-DichlorobenzeneEPA 6258B041113.020ND0.9902/04/0802/07/08J,4-DichlorobenzeneEPA 6258B041113.09.9ND0.9902/04/0802/07/08J,2-DichlorobenzeneEPA 6258B041113.02.0ND0.9902/04/0802/07/08J,2-DichlorobenzidineEPA 6258B041113.59.9ND0.9902/04/0802/07/08J,2-DichlorophenolEPA 6258B041113.59.9<	4-Bromophenyl phenyl ether	EPA 625	8B04111	3.0	9.9	ND	0.99	02/04/08	02/07/08	
2-ChloronaphthaleneEPA 6258B041113.09.9ND0.9902/04/0802/07/084-Chloro-3-methylphenolEPA 6258B041112.520ND0.9902/04/0802/07/082-ChlorophenolEPA 6258B041112.59.9ND0.9902/04/0802/07/084-Chlorophenyl phenyl etherEPA 6258B041112.59.9ND0.9902/04/0802/07/08ChryseneEPA 6258B041112.59.9ND0.9902/04/0802/07/08Dibenz(a,h)anthraceneEPA 6258B041113.020ND0.9902/04/0802/07/08DibenzfuranEPA 6258B041113.020ND0.9902/04/0802/07/081,3-DichlorobenzeneEPA 6258B041113.020ND0.9902/04/0802/07/081,4-DichlorobenzeneEPA 6258B041113.09.9ND0.9902/04/0802/07/081,2-DichlorobenzeneEPA 6258B041113.09.9ND0.9902/04/0802/07/083,3-DichlorobenzeneEPA 6258B041113.09.9ND0.9902/04/0802/07/082,4-DichlorophenolEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-DichlorophenolEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-DichlorophenolEPA 6258B041113.59.9	Butyl benzyl phthalate	EPA 625	8B04111	4.0	20	ND	0.99	02/04/08	02/07/08	
4-Chloro-3-methylphenolEPA 6258B041112.520ND0.9902/04/0802/07/082-ChlorophenolEPA 6258B041113.09.9ND0.9902/04/0802/07/084-Chlorophenyl phenyl etherEPA 6258B041112.59.9ND0.9902/04/0802/07/08ChryseneEPA 6258B041112.59.9ND0.9902/04/0802/07/08Dibenz(a,h)anthraceneEPA 6258B041113.020ND0.9902/04/0802/07/08DibenzofuranEPA 6258B041113.020ND0.9902/04/0802/07/08Di-n-butyl phthalateEPA 6258B041113.020ND0.9902/04/0802/07/081,3-DichlorobenzeneEPA 6258B041113.09.9ND0.9902/04/0802/07/081,2-DichlorobenzeneEPA 6258B041113.09.9ND0.9902/04/0802/07/083,3-DichlorobenzidineEPA 6258B041113.09.9ND0.9902/04/0802/07/082,4-DichlorophenolEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-DichlorophenolEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-DichlorophenolEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-Dinitro-2-methylphenolEPA 6258B041113.59	4-Chloroaniline	EPA 625	8B04111	2.0	9.9	ND	0.99	02/04/08	02/07/08	
2-ChlorophenolEPA 6258B041113.09.9ND0.9902/04/0802/07/084-Chlorophenyl phenyl etherEPA 6258B041112.59.9ND0.9902/04/0802/07/08ChryseneEPA 6258B041112.59.9ND0.9902/04/0802/07/08Dibenz(a,h)anthraceneEPA 6258B041113.020ND0.9902/04/0802/07/08DibenzofuranEPA 6258B041113.020ND0.9902/04/0802/07/08Di-n-butyl phthalateEPA 6258B041113.020ND0.9902/04/0802/07/081,3-DichlorobenzeneEPA 6258B041113.09.9ND0.9902/04/0802/07/081,2-DichlorobenzeneEPA 6258B041113.09.9ND0.9902/04/0802/07/081,2-DichlorobenzeneEPA 6258B041113.09.9ND0.9902/04/0802/07/083,3-DichlorobenzeneEPA 6258B041113.02.0ND0.9902/04/0802/07/082,4-DichlorophenolEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-Dimethyl phthalateEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-Dimethyl phthalateEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-DimitrophenolEPA 6258B041113.59.9 <td>2-Chloronaphthalene</td> <td>EPA 625</td> <td>8B04111</td> <td>3.0</td> <td>9.9</td> <td>ND</td> <td>0.99</td> <td>02/04/08</td> <td>02/07/08</td> <td></td>	2-Chloronaphthalene	EPA 625	8B04111	3.0	9.9	ND	0.99	02/04/08	02/07/08	
4-Chlorophenyl phenyl etherEPA 6258B041112.59.9ND0.9902/04/0802/07/08ChryseneEPA 6258B041112.59.9ND0.9902/04/0802/07/08Dibenz(a,h)anthraceneEPA 6258B041113.020ND0.9902/04/0802/07/08DibenzofuranEPA 6258B041114.09.9ND0.9902/04/0802/07/08Di-n-butyl phthalateEPA 6258B041113.020ND0.9902/04/0802/07/081,3-DichlorobenzeneEPA 6258B041113.09.9ND0.9902/04/0802/07/081,4-DichlorobenzeneEPA 6258B041113.09.9ND0.9902/04/0802/07/081,2-DichlorobenzeneEPA 6258B041113.09.9ND0.9902/04/0802/07/083,3-DichlorobenzidineEPA 6258B041113.020ND0.9902/04/0802/07/082,4-DichlorophenolEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-DimethylphenolEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-Dimitro-2-methylphenolEPA 6258B041113.52.0ND0.9902/04/0802/07/082,4-Dinitro-2-methylphenolEPA 6258B041113.52.0ND0.9902/04/0802/07/082,4-Dinitro-2-methylphenolEPA 6258B04111	4-Chloro-3-methylphenol	EPA 625	8B04111	2.5	20	ND	0.99	02/04/08	02/07/08	
ChryseneEPA 6258B041112.59.9ND0.9902/04/0802/07/08Dibenz(a,h)anthraceneEPA 6258B041113.020ND0.9902/04/0802/07/08DibenzofuranEPA 6258B041114.09.9ND0.9902/04/0802/07/08Di-n-butyl phthalateEPA 6258B041113.020ND0.9902/04/0802/07/081,3-DichlorobenzeneEPA 6258B041113.09.9ND0.9902/04/0802/07/081,4-DichlorobenzeneEPA 6258B041112.59.9ND0.9902/04/0802/07/081,2-DichlorobenzeneEPA 6258B041113.09.9ND0.9902/04/0802/07/083,3-DichlorobenzidineEPA 6258B041113.020ND0.9902/04/0802/07/082,4-DichlorobenzidineEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-DichlorobenzidineEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-DimethylphenolEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-Dimitro-2-methylphenolEPA 6258B041113.52.0ND0.9902/04/0802/07/082,4-Dinitro-2-methylphenolEPA 6258B041114.02.0ND0.9902/04/0802/07/082,4-Dinitro-2-methylphenolEPA 6258B04111 <td< td=""><td>2-Chlorophenol</td><td>EPA 625</td><td>8B04111</td><td>3.0</td><td>9.9</td><td>ND</td><td>0.99</td><td>02/04/08</td><td>02/07/08</td><td></td></td<>	2-Chlorophenol	EPA 625	8B04111	3.0	9.9	ND	0.99	02/04/08	02/07/08	
Diberz(a,h)anthraceneEPA 6258B041113.020ND0.9902/04/0802/07/08DibenzofuranEPA 6258B041114.09.9ND0.9902/04/0802/07/08Di-n-butyl phthalateEPA 6258B041113.020ND0.9902/04/0802/07/081,3-DichlorobenzeneEPA 6258B041113.09.9ND0.9902/04/0802/07/081,4-DichlorobenzeneEPA 6258B041112.59.9ND0.9902/04/0802/07/081,2-DichlorobenzeneEPA 6258B041113.09.9ND0.9902/04/0802/07/083,3-DichlorobenzidineEPA 6258B041113.020ND0.9902/04/0802/07/082,4-DichlorophenolEPA 6258B041113.59.9ND0.9902/04/0802/07/08Diethyl phthalateEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-DimethylphenolEPA 6258B041113.52.0ND0.9902/04/0802/07/082,4-DimitrophenolEPA 6258B041113.52.0ND0.9902/04/0802/07/084,6-Dinitro-2-methylphenolEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-DinitrophenolEPA 6258B041117.920ND0.9902/04/0802/07/082,4-DinitrotolueneEPA 6258B041113.59.9	4-Chlorophenyl phenyl ether	EPA 625	8B04111	2.5	9.9	ND	0.99	02/04/08	02/07/08	
DibenzofuranEPA 6258B041114.09.9ND0.9902/04/0802/07/08Di-n-butyl phthalateEPA 6258B041113.020ND0.9902/04/0802/07/081,3-DichlorobenzeneEPA 6258B041113.09.9ND0.9902/04/0802/07/081,4-DichlorobenzeneEPA 6258B041112.59.9ND0.9902/04/0802/07/081,2-DichlorobenzeneEPA 6258B041113.09.9ND0.9902/04/0802/07/083,3-DichlorobenzidineEPA 6258B041113.020ND0.9902/04/0802/07/082,4-DichlorophenolEPA 6258B041113.59.9ND0.9902/04/0802/07/08Diethyl phthalateEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-DimethylphenolEPA 6258B041113.520ND0.9902/04/0802/07/082,4-Dimitro-2-methylphenolEPA 6258B041113.520ND0.9902/04/0802/07/084,6-Dinitro-2-methylphenolEPA 6258B041117.920ND0.9902/04/0802/07/082,4-DinitrophenolEPA 6258B041117.920ND0.9902/04/0802/07/082,4-DinitrophenolEPA 6258B041117.920ND0.9902/04/0802/07/082,4-DinitrophenolEPA 6258B041117.920	Chrysene	EPA 625	8B04111	2.5	9.9	ND	0.99	02/04/08	02/07/08	
Di-n-butyl phthalateEPA 6258B041113.020ND0.9902/04/0802/07/081,3-DichlorobenzeneEPA 6258B041113.09.9ND0.9902/04/0802/07/081,4-DichlorobenzeneEPA 6258B041112.59.9ND0.9902/04/0802/07/081,2-DichlorobenzeneEPA 6258B041113.09.9ND0.9902/04/0802/07/083,3-DichlorobenzidineEPA 6258B041113.02.0ND0.9902/04/0802/07/082,4-DichlorophenolEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-DichlorophenolEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-Dinethyl phthalateEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-Dinethyl phthalateEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-Dinitro-2-methyl phenolEPA 6258B041113.52.0ND0.9902/04/0802/07/084,6-Dinitro-2-methyl phenolEPA 6258B041117.92.0ND0.9902/04/0802/07/082,4-DinitrophenolEPA 6258B041117.92.0ND0.9902/04/0802/07/082,4-DinitrotolueneEPA 6258B041117.92.0ND0.9902/04/0802/07/082,4-DinitrotolueneEPA 6258B041	Dibenz(a,h)anthracene	EPA 625	8B04111	3.0	20	ND	0.99	02/04/08	02/07/08	
1,3-DichorobenzeneEPA 6258B041113.09.9ND0.9902/04/0802/07/081,4-DichlorobenzeneEPA 6258B041112.59.9ND0.9902/04/0802/07/081,2-DichlorobenzeneEPA 6258B041113.09.9ND0.9902/04/0802/07/083,3-DichlorobenzidineEPA 6258B041113.020ND0.9902/04/0802/07/082,4-DichlorophenolEPA 6258B041113.59.9ND0.9902/04/0802/07/08Diethyl phthalateEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-DimethylphenolEPA 6258B041113.59.9ND0.9902/04/0802/07/08Dimethyl phthalateEPA 6258B041113.520ND0.9902/04/0802/07/08Jimethyl phthalateEPA 6258B041112.09.9ND0.9902/04/0802/07/08Jimethyl phthalateEPA 6258B041112.09.9ND0.9902/04/0802/07/084,6-Dinitro-2-methylphenolEPA 6258B041117.920ND0.9902/04/0802/07/082,4-DinitrotolueneEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-DinitrotolueneEPA 6258B041112.09.9ND0.9902/04/0802/07/082,4-DinitrotolueneEPA 6258B041113.5	Dibenzofuran	EPA 625	8B04111	4.0	9.9	ND	0.99	02/04/08	02/07/08	
1,4-DichlorobenzeneEPA 6258B041112.59.9ND0.9902/04/0802/07/081,2-DichlorobenzeneEPA 6258B041113.09.9ND0.9902/04/0802/07/083,3-DichlorobenzidineEPA 6258B041113.020ND0.9902/04/0802/07/082,4-DichlorophenolEPA 6258B041113.59.9ND0.9902/04/0802/07/08Diethyl phthalateEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-DimethylphenolEPA 6258B041113.520ND0.9902/04/0802/07/08Dimethyl phthalateEPA 6258B041113.520ND0.9902/04/0802/07/084,6-Dinitro-2-methylphenolEPA 6258B041112.09.9ND0.9902/04/0802/07/082,4-DinitrophenolEPA 6258B041117.920ND0.9902/04/0802/07/082,4-DinitrophenolEPA 6258B041117.920ND0.9902/04/0802/07/082,4-DinitrophenolEPA 6258B041117.920ND0.9902/04/0802/07/082,4-DinitrotolueneEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-DinitrotolueneEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-DinitrotolueneEPA 6258B041113.59.9 <td>Di-n-butyl phthalate</td> <td>EPA 625</td> <td>8B04111</td> <td>3.0</td> <td>20</td> <td>ND</td> <td>0.99</td> <td>02/04/08</td> <td>02/07/08</td> <td></td>	Di-n-butyl phthalate	EPA 625	8B04111	3.0	20	ND	0.99	02/04/08	02/07/08	
1,2-DichlorobenzeneEPA 6258B041113.09.9ND0.9902/04/0802/07/083,3-DichlorobenzidineEPA 6258B041113.020ND0.9902/04/0802/07/082,4-DichlorophenolEPA 6258B041113.59.9ND0.9902/04/0802/07/08Diethyl phthalateEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-DimethylphenolEPA 6258B041113.520ND0.9902/04/0802/07/08Dimethyl phthalateEPA 6258B041113.520ND0.9902/04/0802/07/080Dimethyl phthalateEPA 6258B041113.520ND0.9902/04/0802/07/084,6-Dinitro-2-methylphenolEPA 6258B041114.020ND0.9902/04/0802/07/082,4-DinitrophenolEPA 6258B041117.920ND0.9902/04/0802/07/082,4-DinitrotolueneEPA 6258B041117.920ND0.9902/04/0802/07/082,4-DinitrotolueneEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-DinitrotolueneEPA 6258B041113.59.9ND0.9902/04/0802/07/082,6-DinitrotolueneEPA 6258B041113.520ND0.9902/04/0802/07/082,6-DinitrotolueneEPA 6258B041113.5<	1,3-Dichlorobenzene	EPA 625	8B04111	3.0	9.9	ND	0.99	02/04/08	02/07/08	
3,3-DichlorobenzidineEPA 6258B041113.020ND0.9902/04/0802/07/082,4-DichlorophenolEPA 6258B041113.59.9ND0.9902/04/0802/07/08Diethyl phthalateEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-DimethylphenolEPA 6258B041113.520ND0.9902/04/0802/07/08Dimethyl phthalateEPA 6258B041113.520ND0.9902/04/0802/07/08Dimethyl phthalateEPA 6258B041112.09.9ND0.9902/04/0802/07/084,6-Dinitro-2-methylphenolEPA 6258B041114.020ND0.9902/04/0802/07/082,4-DinitrophenolEPA 6258B041117.920ND0.9902/04/0802/07/082,4-DinitrotolueneEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-DinitrotolueneEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-DinitrotolueneEPA 6258B041113.59.9ND0.9902/04/0802/07/082,6-DinitrotolueneEPA 6258B041113.52.0ND0.9902/04/0802/07/08Di-n-octyl phthalateEPA 6258B041113.52.0ND0.9902/04/0802/07/08	1,4-Dichlorobenzene	EPA 625	8B04111	2.5	9.9	ND	0.99	02/04/08	02/07/08	
2,4-DichlorophenolEPA 6258B041113.59.9ND0.9902/04/0802/07/08Diethyl phthalateEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-Dimethyl phenolEPA 6258B041113.520ND0.9902/04/0802/07/08Dimethyl phthalateEPA 6258B041112.09.9ND0.9902/04/0802/07/084,6-Dinitro-2-methyl phenolEPA 6258B041114.020ND0.9902/04/0802/07/082,4-DinitrophenolEPA 6258B041117.920ND0.9902/04/0802/07/082,4-DinitrotolueneEPA 6258B041117.920ND0.9902/04/0802/07/082,6-DinitrotolueneEPA 6258B041113.59.9ND0.9902/04/0802/07/082,6-DinitrotolueneEPA 6258B041112.09.9ND0.9902/04/0802/07/08Di-n-octyl phthalateEPA 6258B041113.520ND0.9902/04/0802/07/08	1,2-Dichlorobenzene	EPA 625	8B04111	3.0	9.9	ND	0.99	02/04/08	02/07/08	
Diethyl phthalateEPA 6258B041113.59.9ND0.9902/04/0802/07/082,4-DimethylphenolEPA 6258B041113.520ND0.9902/04/0802/07/08Dimethyl phthalateEPA 6258B041112.09.9ND0.9902/04/0802/07/084,6-Dinitro-2-methylphenolEPA 6258B041114.020ND0.9902/04/0802/07/082,4-DinitrophenolEPA 6258B041117.920ND0.9902/04/0802/07/082,4-DinitrotolueneEPA 6258B041113.59.9ND0.9902/04/0802/07/082,6-DinitrotolueneEPA 6258B041112.09.9ND0.9902/04/0802/07/082,6-DinitrotolueneEPA 6258B041112.09.9ND0.9902/04/0802/07/08Di-n-octyl phthalateEPA 6258B041113.520ND0.9902/04/0802/07/08	3,3-Dichlorobenzidine	EPA 625	8B04111	3.0	20	ND	0.99	02/04/08	02/07/08	
2,4-DimethylphenolEPA 6258B041113.520ND0.9902/04/0802/07/08Dimethyl phthalateEPA 6258B041112.09.9ND0.9902/04/0802/07/084,6-Dinitro-2-methylphenolEPA 6258B041114.020ND0.9902/04/0802/07/082,4-DinitrophenolEPA 6258B041117.920ND0.9902/04/0802/07/082,4-DinitrotolueneEPA 6258B041113.59.9ND0.9902/04/0802/07/082,6-DinitrotolueneEPA 6258B041112.09.9ND0.9902/04/0802/07/08Di-n-octyl phthalateEPA 6258B041113.520ND0.9902/04/0802/07/08	2,4-Dichlorophenol	EPA 625	8B04111	3.5	9.9	ND	0.99	02/04/08	02/07/08	
Dimethyl phhalateEPA 6258B041112.09.9ND0.9902/04/0802/07/084,6-Dinitro-2-methylphenolEPA 6258B041114.020ND0.9902/04/0802/07/082,4-DinitrophenolEPA 6258B041117.920ND0.9902/04/0802/07/082,4-DinitrotolueneEPA 6258B041113.59.9ND0.9902/04/0802/07/082,6-DinitrotolueneEPA 6258B041112.09.9ND0.9902/04/0802/07/08Di-n-octyl phthalateEPA 6258B041113.520ND0.9902/04/0802/07/08	Diethyl phthalate	EPA 625	8B04111	3.5	9.9	ND	0.99	02/04/08	02/07/08	
4,6-Dinitro-2-methylphenolEPA 6258B041114.020ND0.9902/04/0802/07/082,4-DinitrophenolEPA 6258B041117.920ND0.9902/04/0802/07/082,4-DinitrotolueneEPA 6258B041113.59.9ND0.9902/04/0802/07/082,6-DinitrotolueneEPA 6258B041112.09.9ND0.9902/04/0802/07/08Di-n-octyl phthalateEPA 6258B041113.520ND0.9902/04/0802/07/08	2,4-Dimethylphenol	EPA 625	8B04111	3.5	20	ND	0.99	02/04/08	02/07/08	
2,4-DinitrophenolEPA 6258B041117.920ND0.9902/04/0802/07/082,4-DinitrotolueneEPA 6258B041113.59.9ND0.9902/04/0802/07/082,6-DinitrotolueneEPA 6258B041112.09.9ND0.9902/04/0802/07/08Di-n-octyl phthalateEPA 6258B041113.520ND0.9902/04/0802/07/08	Dimethyl phthalate	EPA 625	8B04111	2.0	9.9	ND	0.99	02/04/08	02/07/08	
2,4-DinitrotolueneEPA 6258B041113.59.9ND0.9902/04/0802/07/082,6-DinitrotolueneEPA 6258B041112.09.9ND0.9902/04/0802/07/08Di-n-octyl phthalateEPA 6258B041113.520ND0.9902/04/0802/07/08	4,6-Dinitro-2-methylphenol	EPA 625	8B04111	4.0	20	ND	0.99	02/04/08	02/07/08	
2,6-DinitrotolueneEPA 6258B041112.09.9ND0.9902/04/0802/07/08Di-n-octyl phthalateEPA 6258B041113.520ND0.9902/04/0802/07/08	2,4-Dinitrophenol	EPA 625	8B04111	7.9	20	ND	0.99	02/04/08	02/07/08	
Di-n-octyl phthalate         EPA 625         8B04111         3.5         20         ND         0.99         02/04/08         02/07/08	2,4-Dinitrotoluene	EPA 625	8B04111	3.5	9.9	ND	0.99	02/04/08	02/07/08	
	2,6-Dinitrotoluene	EPA 625	8B04111	2.0	9.9	ND	0.99	02/04/08	02/07/08	
Fluoranthene EPA 625 8B04111 3.0 9.9 ND 0.99 02/04/08 02/07/08	Di-n-octyl phthalate	EPA 625	8B04111	3.5	20	ND	0.99	02/04/08	02/07/08	
	Fluoranthene	EPA 625	8B04111	3.0	9.9	ND	0.99	02/04/08	02/07/08	

#### **TestAmerica** Irvine

# TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 004

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

	ACID & BASE/NEUTRALS BY GC/MS (EPA 025)										
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: IRB0149-01 (Outfall 004 - Wat	er) – cont										
Reporting Units: ug/l	ci) - cont.										
Fluorene	EPA 625	8B04111	3.0	9.9	ND	0.99	02/04/08	02/07/08			
Hexachlorobenzene	EPA 625	8B04111	3.0	9.9	ND	0.99	02/04/08	02/07/08			
Hexachlorobutadiene	EPA 625	8B04111	4.0	9.9	ND	0.99	02/04/08	02/07/08			
Hexachlorocyclopentadiene	EPA 625	8B04111	5.0	20	ND	0.99	02/04/08	02/07/08			
Hexachloroethane	EPA 625	8B04111	3.5	9.9	ND	0.99	02/04/08	02/07/08			
Indeno(1,2,3-cd)pyrene	EPA 625	8B04111	3.5	20	ND	0.99	02/04/08	02/07/08			
Isophorone	EPA 625	8B04111	2.5	9.9	ND	0.99	02/04/08	02/07/08			
2-Methylnaphthalene	EPA 625	8B04111	2.0	9.9	ND	0.99	02/04/08	02/07/08			
2-Methylphenol	EPA 625	8B04111	3.0	9.9	ND	0.99	02/04/08	02/07/08			
4-Methylphenol	EPA 625	8B04111	3.0	9.9	ND	0.99	02/04/08	02/07/08			
Naphthalene	EPA 625	8B04111	3.0	9.9	ND	0.99	02/04/08	02/07/08			
2-Nitroaniline	EPA 625	8B04111	2.0	20	ND	0.99	02/04/08	02/07/08			
3-Nitroaniline	EPA 625	8B04111	3.0	20	ND	0.99	02/04/08	02/07/08			
4-Nitroaniline	EPA 625	8B04111	4.0	20	ND	0.99	02/04/08	02/07/08			
Nitrobenzene	EPA 625	8B04111	2.5	20	ND	0.99	02/04/08	02/07/08			
2-Nitrophenol	EPA 625	8B04111	3.5	9.9	ND	0.99	02/04/08	02/07/08			
4-Nitrophenol	EPA 625	8B04111	5.4	20	ND	0.99	02/04/08	02/07/08			
N-Nitrosodiphenylamine	EPA 625	8B04111	2.0	9.9	ND	0.99	02/04/08	02/07/08			
N-Nitroso-di-n-propylamine	EPA 625	8B04111	3.5	9.9	ND	0.99	02/04/08	02/07/08			
Pentachlorophenol	EPA 625	8B04111	3.5	20	ND	0.99	02/04/08	02/07/08			
Phenanthrene	EPA 625	8B04111	3.5	9.9	ND	0.99	02/04/08	02/07/08			
Phenol	EPA 625	8B04111	2.0	9.9	ND	0.99	02/04/08	02/07/08			
Pyrene	EPA 625	8B04111	4.0	9.9	ND	0.99	02/04/08	02/07/08			
1,2,4-Trichlorobenzene	EPA 625	8B04111	2.5	9.9	ND	0.99	02/04/08	02/07/08			
2,4,5-Trichlorophenol	EPA 625	8B04111	3.0	20	ND	0.99	02/04/08	02/07/08			
2,4,6-Trichlorophenol	EPA 625	8B04111	4.5	20	ND	0.99	02/04/08	02/07/08			
1,2-Diphenylhydrazine/Azobenzene	EPA 625	8B04111	2.5	20	ND	0.99	02/04/08	02/07/08			
N-Nitrosodimethylamine	EPA 625	8B04111	2.5	20	ND	0.99	02/04/08	02/07/08			
Surrogate: 2-Fluorophenol (30-120%)					70~%						
Surrogate: Phenol-d6 (35-120%)					74 %						
Surrogate: 2,4,6-Tribromophenol (40-120%)					65 %						
Surrogate: Nitrobenzene-d5 (45-120%)					78 %						
Surrogate: 2-Fluorobiphenyl (50-120%)					84 %						
Surrogate: Terphenyl-d14 (50-125%)					92 %						

### ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

### **TestAmerica** Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 004

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

# **ORGANOCHLORINE PESTICIDES (EPA 608)**

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0149-01 (Outfall 004 - Wate Reporting Units: ug/l	er) - cont.								
Aldrin	EPA 608	8B05099	0.0014	0.0048	ND	0.952	02/05/08	02/06/08	
alpha-BHC	EPA 608	8B05099	0.0011	0.0048	ND	0.952	02/05/08	02/06/08	
beta-BHC	EPA 608	8B05099	0.0038	0.0095	ND	0.952	02/05/08	02/06/08	
delta-BHC	EPA 608	8B05099	0.0033	0.0048	ND	0.952	02/05/08	02/06/08	
gamma-BHC (Lindane)	EPA 608	8B05099	0.0029	0.0095	ND	0.952	02/05/08	02/06/08	
Chlordane	EPA 608	8B05099	0.029	0.095	ND	0.952	02/05/08	02/06/08	
4,4'-DDD	EPA 608	8B05099	0.0019	0.0048	ND	0.952	02/05/08	02/06/08	
4,4'-DDE	EPA 608	8B05099	0.0029	0.0048	ND	0.952	02/05/08	02/06/08	
4,4'-DDT	EPA 608	8B05099	0.0038	0.0095	ND	0.952	02/05/08	02/06/08	
Dieldrin	EPA 608	8B05099	0.0019	0.0048	ND	0.952	02/05/08	02/06/08	
Endosulfan I	EPA 608	8B05099	0.0019	0.0048	ND	0.952	02/05/08	02/06/08	
Endosulfan II	EPA 608	8B05099	0.0029	0.0048	ND	0.952	02/05/08	02/06/08	
Endosulfan sulfate	EPA 608	8B05099	0.0029	0.0095	ND	0.952	02/05/08	02/06/08	
Endrin	EPA 608	8B05099	0.0019	0.0048	ND	0.952	02/05/08	02/06/08	
Endrin aldehyde	EPA 608	8B05099	0.0019	0.0095	ND	0.952	02/05/08	02/06/08	
Endrin ketone	EPA 608	8B05099	0.0029	0.0095	ND	0.952	02/05/08	02/06/08	
Heptachlor	EPA 608	8B05099	0.0029	0.0095	ND	0.952	02/05/08	02/06/08	
Heptachlor epoxide	EPA 608	8B05099	0.0024	0.0048	ND	0.952	02/05/08	02/06/08	
Methoxychlor	EPA 608	8B05099	0.0033	0.0048	ND	0.952	02/05/08	02/06/08	
Toxaphene	EPA 608	8B05099	0.067	0.095	ND	0.952	02/05/08	02/06/08	
Surrogate: Decachlorobiphenyl (45-120%)					81 %				
Surrogate: Tetrachloro-m-xylene (35-115%)					75 %				

**TestAmerica** Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 004

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

TOTAL PCBS (EPA 608)												
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers			
Sample ID: IRB0149-01 (Outfall 004 - Wat	er) - cont.											
Reporting Units: ug/l												
Aroclor 1016	EPA 608	8B05099	0.43	0.48	ND	0.952	02/05/08	02/06/08				
Aroclor 1221	EPA 608	8B05099	0.24	0.48	ND	0.952	02/05/08	02/06/08				
Aroclor 1232	EPA 608	8B05099	0.24	0.48	ND	0.952	02/05/08	02/06/08				
Aroclor 1242	EPA 608	8B05099	0.24	0.48	ND	0.952	02/05/08	02/06/08				
Aroclor 1248	EPA 608	8B05099	0.24	0.48	ND	0.952	02/05/08	02/06/08				
Aroclor 1254	EPA 608	8B05099	0.24	0.48	ND	0.952	02/05/08	02/06/08				
Aroclor 1260	EPA 608	8B05099	0.29	0.48	ND	0.952	02/05/08	02/06/08				
Surrogate: Decachlorobiphenyl (45-120%)					93 %							

**TestAmerica** Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

**METALS** MDL Reporting Sample Dilution Date Date Data Analyte Method Batch Limit Limit Result Factor Extracted Analyzed Qualifiers Sample ID: IRB0149-01 (Outfall 004 - Water) - cont. Reporting Units: mg/l 0.33 02/04/08 Hardness (as CaCO3) [CALC] [CALC] N/A 41 02/04/08 1 Boron EPA 200.7 8B04079 0.020 0.050 0.021 1 02/04/08 02/04/08 Ja Calcium EPA 200.7 8B04079 0.050 02/04/08 0.10 11 1 02/04/08 EPA 200.7 8B04079 0.015 0.040 1.7 02/04/08 02/04/08 Iron 1 EPA 200.7 8B04079 0.012 0.020 2.9 1 02/04/08 02/04/08 Magnesium

**TestAmerica** Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 004

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

METALS											
			MDL	Reporting	Sample	Dilution	Date	Date	Data		
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers		
Sample ID: IRB0149-01 (Outfall 004 - Wa	ter) - cont.										
Reporting Units: ug/l											
Aluminum	EPA 200.7	8B04079	40	50	2700	1	02/04/08	02/04/08			
Antimony	EPA 200.8	8B04080	0.20	2.0	0.72	1	02/04/08	02/05/08	Ja		
Arsenic	EPA 200.7	8B04079	7.0	10	ND	1	02/04/08	02/04/08			
Beryllium	EPA 200.7	8B04079	0.90	2.0	ND	1	02/04/08	02/04/08			
Cadmium	EPA 200.8	8B04080	0.11	1.0	ND	1	02/04/08	02/04/08			
Chromium	EPA 200.7	8B04079	2.0	5.0	2.7	1	02/04/08	02/04/08	Ja		
Copper	EPA 200.8	8B04080	0.75	2.0	2.9	1	02/04/08	02/04/08			
Lead	EPA 200.8	8B04080	0.30	1.0	1.4	1	02/04/08	02/04/08			
Nickel	EPA 200.7	8B04079	2.0	10	ND	1	02/04/08	02/04/08			
Selenium	EPA 200.7	8B04079	8.0	10	ND	1	02/04/08	02/04/08			
Silver	EPA 200.7	8B04079	6.0	10	ND	1	02/04/08	02/04/08			
Thallium	EPA 200.8	8B04080	0.20	1.0	ND	1	02/04/08	02/04/08			
Vanadium	EPA 200.7	8B04079	3.0	10	4.5	1	02/04/08	02/04/08	Ja		
Zinc	EPA 200.7	8B04079	6.0	20	6.2	1	02/04/08	02/04/08	Ja		

**TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 004

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

DISSOLVED METALS											
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: IRB0149-01 (Outfall 004 - V	Vater) - cont.										
Reporting Units: mg/l											
Boron	EPA 200.7-Diss	8B05111	0.020	0.050	0.022	1	02/05/08	02/06/08	Ja		
Calcium	EPA 200.7-Diss	8B05111	0.050	0.10	11	1	02/05/08	02/06/08			
Iron	EPA 200.7-Diss	8B05111	0.015	0.040	0.11	1	02/05/08	02/06/08			
Magnesium	EPA 200.7-Diss	8B05111	0.012	0.020	2.4	1	02/05/08	02/06/08			
Hardness (as CaCO3)	SM2340B	8B05111	1.0	1.0	38	1	02/05/08	02/06/08			

**TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 004

**DISSOLVED METALS** 

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

MDL Reporting Sample Dilution Date Date Data Qualifiers Method Batch Limit Result Factor Extracted Analyte Limit Analyzed Sample ID: IRB0149-01 (Outfall 004 - Water) - cont. Reporting Units: ug/l EPA 200.7-Diss 8B05111 40 50 160 02/05/08 02/06/08 Aluminum 1 EPA 200.8-Diss 8B04144 0.20 2.0 0.75 02/04/08 02/05/08 Antimony 1 Ja 7.0 ND EPA 200.7-Diss 8B05111 10 02/05/08 02/06/08 Arsenic 1 0.90 ND Beryllium EPA 200.7-Diss 8B05111 2.0 1 02/05/08 02/06/08 Cadmium 8B04144 ND 02/04/08 02/05/08 EPA 200.8-Diss 0.11 1.0 1 Chromium EPA 200.7-Diss 8B05111 2.0 5.0 ND 1 02/05/08 02/06/08 Copper EPA 200.8-Diss 8B04144 0.75 2.0 1.6 1 02/04/08 02/05/08 Ja EPA 200.8-Diss 8B04144 0.30 ND 1 02/04/08 02/05/08 Lead 1.0 Nickel EPA 200.7-Diss 8B05111 2.0 10 ND 1 02/05/08 02/06/08 Selenium EPA 200.7-Diss 8B05111 8.0 10 ND 1 02/05/08 02/06/08 Silver EPA 200.7-Diss 8B05111 6.0 10 ND 1 02/05/08 02/06/08 8B04144 Thallium EPA 200.8-Diss 0.20 ND 02/04/08 02/05/08 1.0 1 Vanadium EPA 200.7-Diss 8B05111 3.0 10 3.1 02/05/08 02/06/08 1 Ja Zinc ND 1 02/05/08 EPA 200.7-Diss 8B05111 6.0 20 02/06/08

**TestAmerica** Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 004

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

INORGANICS												
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers			
Sample ID: IRB0149-01 (Outfall 004 - V	Water) - cont.											
<b>Reporting Units: mg/l</b>												
Hexane Extractable Material (Oil &	EPA 1664A	8B12074	1.3	4.8	2.1	1	02/12/08	02/12/08	Ja			
Grease)												
Chloride	EPA 300.0	8B04043	0.25	0.50	8.0	1	02/04/08	02/04/08				
Fluoride	EPA 300.0	8B04043	0.15	0.50	0.24	1	02/04/08	02/04/08	Ja			
Nitrate/Nitrite-N	EPA 300.0	8B04043	0.15	0.26	0.59	1	02/04/08	02/04/08				
Sulfate	EPA 300.0	8B04043	0.20	0.50	9.5	1	02/04/08	02/04/08				
Total Dissolved Solids	SM2540C	8B07122	10	10	130	1	02/07/08	02/07/08				
<b>Total Suspended Solids</b>	EPA 160.2	8B04128	10	10	31	1	02/04/08	02/04/08				

**TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

INORGANICS												
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers			
Sample ID: IRB0149-01 (Outfall 004 - V	Water) - cont.											
Reporting Units: ug/l												
Total Cyanide	EPA 335.2	8B04112	2.2	5.0	ND	1	02/04/08	02/04/08				
Perchlorate	EPA 314.0	8B12073	0.65	4.0	ND	1	02/12/08	02/13/08				

**TestAmerica** Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

# **ORGANIC COMPOUNDS BY GC/MS (EPA 525.2)**

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0149-01 (Outfall 004 - V	Water) - cont.								P, pH
Reporting Units: ug/l									
Chlorpyrifos	EPA 525.2	C8B0516	0.10	1.0	ND	0.99	02/05/08	02/07/08	
Diazinon	EPA 525.2	C8B0516	0.24	0.25	ND	0.99	02/05/08	02/07/08	
Surrogate: 1,3-Dimethyl-2-nitrobenzene	(70-130%)				92 %				
Surrogate: Triphenylphosphate (70-130%	6)				115 %				
Surrogate: Perylene-d12 (70-130%)					97 %				

**TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

Metals by EPA 200 Series Methods												
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers			
Sample ID: IRB0149-01 (Outfall 004 -	Water) - cont.											
Reporting Units: ug/l												
Mercury, Dissolved	EPA 245.1	W8B0171	0.050	0.20	ND	1	02/06/08	02/07/08				
Mercury, Total	EPA 245.1	W8B0171	0.050	0.20	0.068	1	02/06/08	02/07/08	J			

**TestAmerica** Irvine

Joseph Doak Project Manager

*IRB0149* <*Page 16 of 50*> NPDES - 1076



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

### SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 004 (IRB0149-01) - Wate	r				
EPA 300.0	2	02/03/2008 13:45	02/03/2008 18:25	02/04/2008 05:00	02/04/2008 07:44
EPA 624	3	02/03/2008 13:45	02/03/2008 18:25	02/04/2008 00:00	02/04/2008 13:53
Sample ID: Trip Blanks (IRB0149-02) - Wat	er				
EPA 624	3	02/03/2008 13:45	02/03/2008 18:25	02/04/2008 00:00	02/04/2008 14:22

**TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

# PURGEABLES BY GC/MS (EPA 624)

A I 4 -	D14	Reporting Limit	MDI	<b>T</b>	Spike	Source	0/DEC	%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04007 Extracted: 02/04/08	8										
	T T74										
Blank Analyzed: 02/04/2008 (8B04007-E	,										
1,1,1-Trichloroethane	ND	0.50	0.30	ug/l							
1,1,2,2-Tetrachloroethane	ND	0.50	0.24	ug/l							
1,1,2-Trichloroethane	ND	0.50	0.30	ug/l							
1,1-Dichloroethane	ND	0.50	0.27	ug/l							
1,1-Dichloroethene	ND	0.50	0.42	ug/l							
1,2-Dichloroethane	ND	0.50	0.28	ug/l							
1,2-Dichlorobenzene	ND	0.50	0.32	ug/l							
1,2-Dichloropropane	ND	0.50	0.35	ug/l							
1,3-Dichlorobenzene	ND	0.50	0.35	ug/l							
1,4-Dichlorobenzene	ND	0.50	0.37	ug/l							
Benzene	ND	0.50	0.28	ug/l							
Bromodichloromethane	ND	0.50	0.30	ug/l							
Bromoform	ND	0.50	0.40	ug/l							
Bromomethane	ND	1.0	0.42	ug/l							
Carbon tetrachloride	ND	0.50	0.28	ug/l							
Chlorobenzene	ND	0.50	0.36	ug/l							
Chloroethane	ND	1.0	0.40	ug/l							
Chloroform	ND	0.50	0.33	ug/l							
Chloromethane	ND	0.50	0.40	ug/l							
cis-1,3-Dichloropropene	ND	0.50	0.22	ug/l							
Dibromochloromethane	ND	0.50	0.28	ug/l							
Ethylbenzene	ND	0.50	0.25	ug/l							
Methylene chloride	ND	1.0	0.95	ug/l							
Tetrachloroethene	ND	0.50	0.32	ug/l							
Toluene	ND	0.50	0.36	ug/l							
trans-1,2-Dichloroethene	ND	0.50	0.27	ug/l							
trans-1,3-Dichloropropene	ND	0.50	0.32	ug/l							
Trichloroethene	ND	0.50	0.26	ug/l							
Trichlorofluoromethane	ND	0.50	0.34	ug/l							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	0.50	ug/l							
Vinyl chloride	ND	0.50	0.30	ug/l							
Xylenes, Total	ND	1.5	0.90	ug/l							
Surrogate: Dibromofluoromethane	27.7			ug/l	25.0		111	80-120			
Surrogate: Toluene-d8	25.2			ug/l	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	22.9			ug/l	25.0		91	80-120			
	••										

#### **TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

### **METHOD BLANK/QC DATA**

# PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04007 Extracted: 02/04/08	R										
Battal OD01007 Extracted. 02/01/00	<u>.</u>										
LCS Analyzed: 02/04/2008 (8B04007-BS	51)										
1,1,1-Trichloroethane	30.6	0.50	0.30	ug/l	25.0		122	65-135			
1,1,2,2-Tetrachloroethane	27.3	0.50	0.24	ug/l	25.0		109	55-130			
1,1,2-Trichloroethane	25.9	0.50	0.30	ug/l	25.0		103	70-125			
1,1-Dichloroethane	29.2	0.50	0.27	ug/l	25.0		117	70-125			
1,1-Dichloroethene	25.5	0.50	0.42	ug/l	25.0		102	70-125			
1,2-Dichloroethane	27.2	0.50	0.28	ug/l	25.0		109	60-140			
1,2-Dichlorobenzene	26.5	0.50	0.32	ug/l	25.0		106	75-120			
1,2-Dichloropropane	26.7	0.50	0.35	ug/l	25.0		107	70-125			
1,3-Dichlorobenzene	26.4	0.50	0.35	ug/l	25.0		106	75-120			
1,4-Dichlorobenzene	24.3	0.50	0.37	ug/l	25.0		97	75-120			
Benzene	25.9	0.50	0.28	ug/l	25.0		103	70-120			
Bromodichloromethane	29.9	0.50	0.30	ug/l	25.0		120	70-135			
Bromoform	22.2	0.50	0.40	ug/l	25.0		89	55-130			
Bromomethane	29.3	1.0	0.42	ug/l	25.0		117	65-140			
Carbon tetrachloride	29.8	0.50	0.28	ug/l	25.0		119	65-140			
Chlorobenzene	24.8	0.50	0.36	ug/l	25.0		99	75-120			
Chloroethane	30.1	1.0	0.40	ug/l	25.0		120	60-140			
Chloroform	30.2	0.50	0.33	ug/l	25.0		121	70-130			
Chloromethane	28.5	0.50	0.40	ug/l	25.0		114	50-140			
cis-1,3-Dichloropropene	24.0	0.50	0.22	ug/l	25.0		96	75-125			
Dibromochloromethane	25.6	0.50	0.28	ug/l	25.0		103	70-140			
Ethylbenzene	27.1	0.50	0.25	ug/l	25.0		108	75-125			
Methylene chloride	27.1	1.0	0.95	ug/l	25.0		108	55-130			
Tetrachloroethene	22.8	0.50	0.32	ug/l	25.0		91	70-125			
Toluene	26.1	0.50	0.36	ug/l	25.0		104	70-120			
trans-1,2-Dichloroethene	29.8	0.50	0.27	ug/l	25.0		119	70-125			
trans-1,3-Dichloropropene	24.1	0.50	0.32	ug/l	25.0		96	70-125			
Trichloroethene	24.6	0.50	0.26	ug/l	25.0		99	70-125			
Trichlorofluoromethane	34.8	0.50	0.34	ug/l	25.0		139	65-145			
Vinyl chloride	29.8	0.50	0.30	ug/l	25.0		119	55-135			
Xylenes, Total	78.7	1.5	0.90	ug/l	75.0		105	70-125			
Surrogate: Dibromofluoromethane	27.9			ug/l	25.0		112	80-120			
Surrogate: Toluene-d8	25.5			ug/l	25.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	26.0			ug/l	25.0		104	80-120			

#### **TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

# PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
e e e e e e e e e e e e e e e e e e e		Linit	MDL	Omto	Level	ixesuit	JURLE	Linits	NI D	Linnt	Quanners
Batch: 8B04007 Extracted: 02/04/08	<u> </u>										
Matrix Spike Analyzed: 02/04/2008 (880	4007-MS1)				Sou	rce: IRB	0146-01				
1,1,1-Trichloroethane	29.1	0.50	0.30	ug/l	25.0	ND	117	65-140			
1,1,2,2-Tetrachloroethane	27.0	0.50	0.24	ug/l	25.0	ND	108	55-135			
1,1,2-Trichloroethane	24.6	0.50	0.30	ug/l	25.0	ND	98	65-130			
1,1-Dichloroethane	27.8	0.50	0.27	ug/l	25.0	ND	111	65-130			
1,1-Dichloroethene	24.9	0.50	0.42	ug/l	25.0	ND	100	60-130			
1,2-Dichloroethane	26.1	0.50	0.28	ug/l	25.0	ND	104	60-140			
1,2-Dichlorobenzene	25.7	0.50	0.32	ug/l	25.0	ND	103	75-125			
1,2-Dichloropropane	25.3	0.50	0.35	ug/l	25.0	ND	101	65-130			
1,3-Dichlorobenzene	25.8	0.50	0.35	ug/l	25.0	ND	103	75-125			
1,4-Dichlorobenzene	23.6	0.50	0.37	ug/l	25.0	ND	94	75-125			
Benzene	25.1	0.50	0.28	ug/l	25.0	ND	101	65-125			
Bromodichloromethane	28.8	0.50	0.30	ug/l	25.0	ND	115	70-135			
Bromoform	21.5	0.50	0.40	ug/l	25.0	ND	86	55-135			
Bromomethane	28.6	1.0	0.42	ug/l	25.0	ND	114	55-145			
Carbon tetrachloride	28.4	0.50	0.28	ug/l	25.0	ND	113	65-140			
Chlorobenzene	23.9	0.50	0.36	ug/l	25.0	ND	96	75-125			
Chloroethane	28.9	1.0	0.40	ug/l	25.0	ND	115	55-140			
Chloroform	28.9	0.50	0.33	ug/l	25.0	ND	116	65-135			
Chloromethane	28.8	0.50	0.40	ug/l	25.0	ND	115	45-145			
cis-1,3-Dichloropropene	22.8	0.50	0.22	ug/l	25.0	ND	91	70-130			
Dibromochloromethane	24.4	0.50	0.28	ug/l	25.0	ND	98	65-140			
Ethylbenzene	26.4	0.50	0.25	ug/l	25.0	ND	106	65-130			
Methylene chloride	26.1	1.0	0.95	ug/l	25.0	ND	104	50-135			
Tetrachloroethene	22.0	0.50	0.32	ug/l	25.0	ND	88	65-130			
Toluene	25.3	0.50	0.36	ug/l	25.0	ND	101	70-125			
trans-1,2-Dichloroethene	28.4	0.50	0.27	ug/l	25.0	ND	114	65-130			
trans-1,3-Dichloropropene	22.5	0.50	0.32	ug/l	25.0	ND	90	65-135			
Trichloroethene	23.9	0.50	0.26	ug/l	25.0	ND	96	65-125			
Trichlorofluoromethane	34.2	0.50	0.34	ug/l	25.0	ND	137	60-145			
Vinyl chloride	29.4	0.50	0.30	ug/l	25.0	ND	118	45-140			
Xylenes, Total	76.3	1.5	0.90	ug/l	75.0	ND	102	60-130			
Surrogate: Dibromofluoromethane	27.8			ug/l	25.0		111	80-120			
Surrogate: Toluene-d8	25.7			ug/l	25.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	25.7			ug/l	25.0		103	80-120			

#### **TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

# PURGEABLES BY GC/MS (EPA 624)

A	Dl4	Reporting	MDI	TT <b>*</b> 4	Spike	Source	0/ DEC	%REC	חחח	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04007 Extracted: 02/04/0	8										
Matrix Spike Dup Analyzed: 02/04/200		,				rce: IRB					
1,1,1-Trichloroethane	28.6	0.50	0.30	ug/l	25.0	ND	114	65-140	2	20	
1,1,2,2-Tetrachloroethane	29.1	0.50	0.24	ug/l	25.0	ND	116	55-135	7	30	
1,1,2-Trichloroethane	26.1	0.50	0.30	ug/l	25.0	ND	104	65-130	6	25	
1,1-Dichloroethane	28.1	0.50	0.27	ug/l	25.0	ND	112	65-130	1	20	
1,1-Dichloroethene	25.1	0.50	0.42	ug/l	25.0	ND	100	60-130	1	20	
1,2-Dichloroethane	26.8	0.50	0.28	ug/l	25.0	ND	107	60-140	2	20	
1,2-Dichlorobenzene	25.8	0.50	0.32	ug/l	25.0	ND	103	75-125	1	20	
1,2-Dichloropropane	25.8	0.50	0.35	ug/l	25.0	ND	103	65-130	2	20	
1,3-Dichlorobenzene	25.4	0.50	0.35	ug/l	25.0	ND	101	75-125	2	20	
1,4-Dichlorobenzene	23.4	0.50	0.37	ug/l	25.0	ND	94	75-125	1	20	
Benzene	25.4	0.50	0.28	ug/l	25.0	ND	102	65-125	1	20	
Bromodichloromethane	29.0	0.50	0.30	ug/l	25.0	ND	116	70-135	1	20	
Bromoform	22.6	0.50	0.40	ug/l	25.0	ND	91	55-135	5	25	
Bromomethane	29.3	1.0	0.42	ug/l	25.0	ND	117	55-145	2	25	
Carbon tetrachloride	27.6	0.50	0.28	ug/l	25.0	ND	110	65-140	3	25	
Chlorobenzene	23.7	0.50	0.36	ug/l	25.0	ND	95	75-125	1	20	
Chloroethane	30.2	1.0	0.40	ug/l	25.0	ND	121	55-140	4	25	
Chloroform	28.8	0.50	0.33	ug/l	25.0	ND	115	65-135	0	20	
Chloromethane	30.9	0.50	0.40	ug/l	25.0	ND	124	45-145	7	25	
cis-1,3-Dichloropropene	23.2	0.50	0.22	ug/l	25.0	ND	93	70-130	2	20	
Dibromochloromethane	24.9	0.50	0.28	ug/l	25.0	ND	100	65-140	2	25	
Ethylbenzene	26.2	0.50	0.25	ug/l	25.0	ND	105	65-130	1	20	
Methylene chloride	27.0	1.0	0.95	ug/l	25.0	ND	108	50-135	3	20	
Tetrachloroethene	21.9	0.50	0.32	ug/l	25.0	ND	88	65-130	1	20	
Toluene	25.2	0.50	0.36	ug/l	25.0	ND	101	70-125	0	20	
trans-1,2-Dichloroethene	28.5	0.50	0.27	ug/l	25.0	ND	114	65-130	1	20	
trans-1,3-Dichloropropene	23.4	0.50	0.32	ug/l	25.0	ND	94	65-135	4	25	
Trichloroethene	24.1	0.50	0.26	ug/l	25.0	ND	96	65-125	1	20	
Trichlorofluoromethane	33.1	0.50	0.34	ug/l	25.0	ND	132	60-145	3	25	
Vinyl chloride	30.5	0.50	0.30	ug/l	25.0	ND	122	45-140	3	30	
Xylenes, Total	74.9	1.5	0.90	ug/l	75.0	ND	100	60-130	2	20	
Surrogate: Dibromofluoromethane	27.6			ug/l	25.0		110	80-120			
Surrogate: Toluene-d8	25.7			ug/l	25.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	25.5			ug/l	25.0		102	80-120			
0					. • •		~ -				

#### **TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

# METHOD BLANK/QC DATA

#### PURGEABLES-- GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04007 Extracted: 02/04/08	_										
Diarda Anglera J. 02/04/2000 (0D04007 D)	<b>1121</b> )										
Blank Analyzed: 02/04/2008 (8B04007-B)	,			-							
Acrolein	ND	5.0	4.0	ug/l							
Acrylonitrile	ND	2.0	0.70	ug/l							
2-Chloroethyl vinyl ether	ND	5.0	1.8	ug/l							
Surrogate: Dibromofluoromethane	27.7			ug/l	25.0		111	80-120			
Surrogate: Toluene-d8	25.2			ug/l	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	22.9			ug/l	25.0		91	80-120			
LCS Analyzed: 02/04/2008 (8B04007-BS1	l)										
2-Chloroethyl vinyl ether	29.5	5.0	1.8	ug/l	25.0		118	25-170			
Surrogate: Dibromofluoromethane	27.9			ug/l	25.0		112	80-120			
Surrogate: Toluene-d8	25.5			ug/l	25.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	26.0			ug/l	25.0		104	80-120			
Matrix Spike Analyzed: 02/04/2008 (8B0-	4007-MS1)				Sou	rce: IRB(	)146-01				
2-Chloroethyl vinyl ether	27.8	5.0	1.8	ug/l	25.0	ND	111	25-170			
Surrogate: Dibromofluoromethane	27.8			ug/l	25.0		111	80-120			
Surrogate: Toluene-d8	25.7			ug/l	25.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	25.7			ug/l	25.0		103	80-120			
Matrix Spike Dup Analyzed: 02/04/2008	(8B04007-M	SD1)			Sou	rce: IRB(	)146-01				
2-Chloroethyl vinyl ether	31.1	5.0	1.8	ug/l	25.0	ND	124	25-170	11	25	
Surrogate: Dibromofluoromethane	27.6			ug/l	25.0		110	80-120			
Surrogate: Toluene-d8	25.7			ug/l	25.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	25.5			ug/l	25.0		102	80-120			

**TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

#### **METHOD BLANK/QC DATA**

# ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

A	D14	Reporting Limit	MDI	<b>U</b>	Spike Level	Source		%REC	DDD	RPD Limit	Data Qualifiers
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Quanners
Batch: 8B04111 Extracted: 02/04/08	8										
Blank Analyzed: 02/07/2008 (8B04111-E											
Acenaphthene	ND	10	3.0	ug/l							
Acenaphthylene	ND	10	3.0	ug/l							
Aniline	ND	10	2.5	ug/l							
Anthracene	ND	10	2.0	ug/l							
Benzidine	ND	20	8.5	ug/l							
Benzoic acid	ND	20	10	ug/l							
Benzo(a)anthracene	ND	10	2.0	ug/l							
Benzo(b)fluoranthene	ND	10	2.0	ug/l							
Benzo(k)fluoranthene	ND	10	2.5	ug/l							
Benzo(g,h,i)perylene	ND	10	4.0	ug/l							
Benzo(a)pyrene	ND	10	2.0	ug/l							
Benzyl alcohol	ND	20	2.5	ug/l							
Bis(2-chloroethoxy)methane	ND	10	3.0	ug/l							
Bis(2-chloroethyl)ether	ND	10	3.0	ug/l							
Bis(2-chloroisopropyl)ether	ND	10	2.5	ug/l							
Bis(2-ethylhexyl)phthalate	ND	50	4.0	ug/l							
4-Bromophenyl phenyl ether	ND	10	3.0	ug/l							
Butyl benzyl phthalate	ND	20	4.0	ug/l							
4-Chloroaniline	ND	10	2.0	ug/l							
2-Chloronaphthalene	ND	10	3.0	ug/l							
4-Chloro-3-methylphenol	ND	20	2.5	ug/l							
2-Chlorophenol	ND	10	3.0	ug/l							
4-Chlorophenyl phenyl ether	ND	10	2.5	ug/l							
Chrysene	ND	10	2.5	ug/l							
Dibenz(a,h)anthracene	ND	20	3.0	ug/l							
Dibenzofuran	ND	10	4.0	ug/l							
Di-n-butyl phthalate	ND	20	3.0	ug/l							
1,3-Dichlorobenzene	ND	10	3.0	ug/l							
1,4-Dichlorobenzene	ND	10	2.5	ug/l							
1,2-Dichlorobenzene	ND	10	3.0	ug/l							
3,3-Dichlorobenzidine	ND	20	3.0	ug/l							
2,4-Dichlorophenol	ND	10	3.5	ug/l							
Diethyl phthalate	ND	10	3.5	ug/l							
2,4-Dimethylphenol	ND	20	3.5	ug/l							
Dimethyl phthalate	ND	10	2.0	ug/l							
				-							

#### **TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

#### **METHOD BLANK/QC DATA**

# ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
-		Linn	MDL	Units	Level	Kesuit	/orec	Linnts	KI D	Linnt	Quanners
Batch: 8B04111 Extracted: 02/04/08	<u>}</u>										
Blank Analyzad, 02/07/2009 (9D0/111 B	01 IZ1)										
Blank Analyzed: 02/07/2008 (8B04111-B		20	4.0	(1							
4,6-Dinitro-2-methylphenol	ND	20	4.0	ug/l							
2,4-Dinitrophenol	ND	20	8.0	ug/l							
2,4-Dinitrotoluene	ND	10	3.5	ug/l							
2,6-Dinitrotoluene	ND	10	2.0	ug/l							
Di-n-octyl phthalate	ND	20	3.5	ug/l							
Fluoranthene	ND	10	3.0	ug/l							
Fluorene	ND	10	3.0	ug/l							
Hexachlorobenzene	ND	10	3.0	ug/l							
Hexachlorobutadiene	ND	10	4.0	ug/l							
Hexachlorocyclopentadiene	ND	20	5.0	ug/l							
Hexachloroethane	ND	10	3.5	ug/l							
Indeno(1,2,3-cd)pyrene	ND	20	3.5	ug/l							
Isophorone	ND	10	2.5	ug/l							
2-Methylnaphthalene	ND	10	2.0	ug/l							
2-Methylphenol	ND	10	3.0	ug/l							
4-Methylphenol	ND	10	3.0	ug/l							
Naphthalene	ND	10	3.0	ug/l							
2-Nitroaniline	ND	20	2.0	ug/l							
3-Nitroaniline	ND	20	3.0	ug/l							
4-Nitroaniline	ND	20	4.0	ug/l							
Nitrobenzene	ND	20	2.5	ug/l							
2-Nitrophenol	ND	10	3.5	ug/l							
4-Nitrophenol	ND	20	5.5	ug/l							
N-Nitrosodiphenylamine	ND	10	2.0	ug/l							
N-Nitroso-di-n-propylamine	ND	10	3.5	ug/l							
Pentachlorophenol	ND	20	3.5	ug/l							
Phenanthrene	ND	10	3.5	ug/l							
Phenol	ND	10	2.0	ug/l							
Pyrene	ND	10	4.0	ug/l							
1,2,4-Trichlorobenzene	ND	10	2.5	ug/l							
2,4,5-Trichlorophenol	ND	20	3.0	ug/l							
2,4,6-Trichlorophenol	ND	20	4.5	ug/l							
1,2-Diphenylhydrazine/Azobenzene	ND	20 20	2.5	ug/l							
N-Nitrosodimethylamine	ND	20 20	2.5	ug/l							
Surrogate: 2-Fluorophenol	ND 159	20	2.3	ug/l	200		80	30-120			
Surroguie. 2-1 iuorophenoi	139			ug/i	200		00	30-120			

#### **TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

# ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
·		2		emits	20,01	1105411	, und e	2			Zummers
Batch: 8B04111 Extracted: 02/04/08	8										
Blank Analyzed: 02/07/2008 (8B04111-E	BLK1)										
Surrogate: Phenol-d6	166			ug/l	200		83	35-120			
Surrogate: 2,4,6-Tribromophenol	129			ug/l	200		64	40-120			
Surrogate: Nitrobenzene-d5	83.8			ug/l	100		84	45-120			
Surrogate: 2-Fluorobiphenyl	82.4			ug/l	100		82	50-120			
Surrogate: Terphenyl-d14	82.8			ug/l	100		83	50-125			
	11)			0							
LCS Analyzed: 02/07/2008 (8B04111-BS		10	2.0	л	100		02	(0.120			
Acenaphthene	92.8	10	3.0	ug/l	100		93 07	60-120			
Acenaphthylene	97.0	10	3.0	ug/l	100		97	60-120			
Aniline	86.7	10	2.5	ug/l	100		87	35-120			
Anthracene	91.1	10	2.0	ug/l	100		91	65-120			
Benzidine	161	20	8.5	ug/l	100		161	30-160			<i>L6</i>
Benzoic acid	74.5	20	10	ug/l	100		74	25-120			
Benzo(a)anthracene	95.9	10	2.0	ug/l	100		96	65-120			
Benzo(b)fluoranthene	87.2	10	2.0	ug/l	100		87	55-125			
Benzo(k)fluoranthene	88.9	10	2.5	ug/l	100		89	50-125			
Benzo(g,h,i)perylene	83.0	10	4.0	ug/l	100		83	45-135			
Benzo(a)pyrene	91.9	10	2.0	ug/l	100		92	55-130			
Benzyl alcohol	99.9	20	2.5	ug/l	100		100	50-120			
Bis(2-chloroethoxy)methane	92.9	10	3.0	ug/l	100		93	55-120			
Bis(2-chloroethyl)ether	86.4	10	3.0	ug/l	100		86	50-120			
Bis(2-chloroisopropyl)ether	98.4	10	2.5	ug/l	100		98	45-120			
Bis(2-ethylhexyl)phthalate	99.9	50	4.0	ug/l	100		100	65-130			
4-Bromophenyl phenyl ether	86.0	10	3.0	ug/l	100		86	60-120			
Butyl benzyl phthalate	104	20	4.0	ug/l	100		104	55-130			
4-Chloroaniline	95.8	10	2.0	ug/l	100		96	55-120			
2-Chloronaphthalene	91.9	10	3.0	ug/l	100		92	60-120			
4-Chloro-3-methylphenol	97.9	20	2.5	ug/l	100		98	60-120			
2-Chlorophenol	86.3	10	3.0	ug/l	100		86	45-120			
4-Chlorophenyl phenyl ether	89.9	10	2.5	ug/l	100		90	65-120			
Chrysene	92.3	10	2.5	ug/l	100		92	65-120			
Dibenz(a,h)anthracene	84.8	20	3.0	ug/l	100		85	50-135			
Dibenzofuran	93.2	10	4.0	ug/l	100		93	65-120			
Di-n-butyl phthalate	85.8	20	3.0	ug/l	100		86	60-125			
1,3-Dichlorobenzene	74.9	10	3.0	ug/l	100		75	35-120			
1,4-Dichlorobenzene	79.8	10	2.5	ug/l	100		80	35-120			

#### **TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

### **METHOD BLANK/QC DATA**

# ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Bach: 8094111 Extracted: 02/04/08         1/2 Dichlorobenzene       80.6       0       3.0       ugl       100       81       40-12         3.3 Dichlorobenzene       81.1       20       3.0       ugl       100       84       45-135         3.4 Dichlorobenzene       91.0       10       3.5       ugl       100       81       40-120         Dichly Iphthalate       92.2       10       3.5       ugl       100       81       40-120         Abenichylphenol       85.5       10       2.0       ugl       100       86       45-120         4-Dimitro-2-methylphenol       85.8       2.0       4.0       ugl       100       94       40-120         4-Dimitro-2-methylphenol       94.2       2.0       8.0       ugl       100       95       52.0         2-A-Dimitrobuene       94.1       10       2.0       ugl       100       86       52.10         2-A-Dimitrobuene       94.1       10       3.0       ugl       100       86       52.10         2-A-Dimitrobuene       95.4       10       3.0       ugl       100       87       52.10         2-A-Dimitrobuene       95.6       10       <	Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
1.2-Dichlorobenzelmi       80.6       10       3.0       ug1       100       81       40-120         3.3-Dichlorobenzidine       84.1       20       3.0       ug1       100       84       45.135         2.4-Dichlorobenzidine       91.0       10       3.5       ug1       100       91       55.120         2.4-Dinchlylphhalate       92.2       10       3.5       ug1       100       91       40-120         2.4-Dinchlylphenol       80.5       20       3.5       ug1       100       94       40-120         2.4-Dinitrobluene       85.8       20       4.0       ug1       100       86       45.120         2.4-Dinitrobluene       94.2       20       8.0       ug1       100       94       40-120         2.4-Dinitrobluene       101       10       3.5       ug1       100       86       65-120         Din-ocyl phthalate       83.3       20       3.0       ug1       100       81       60-120         Fluoranthene       82.3       10       3.0       ug1       100       77       40-120         Hexachlorobenzzne       86.7       10       3.0       ug1       100       81	Batch: 8B04111 Extracted: 02/04/08											
1.2-Dichlorobenzelni       80.6       10       3.0       ug/l       100       81       40-120         3.3-Dichlorobenzidine       84.1       20       3.0       ug/l       100       84       45.135         2.4-Dichlorobenzidine       91.0       10       3.5       ug/l       100       91       55.120         2.4-Dinchlylphhalate       92.2       10       3.5       ug/l       100       90       30.120         4.6-Dinitor-Denthylphenol       80.5       20       3.5       ug/l       100       94       40-120         2.4-Dinitrobluene       85.8       20       4.0       ug/l       100       86       45.120         2.4-Dinitrobluene       101       10       3.5       ug/l       100       80       65.120         2.4-Dinitrobluene       98.1       10       2.0       ug/l       100       82       65.135         Fluoranthene       82.3       10       3.0       ug/l       100       81       60.120         Hexachlorobenzenc       86.7       10       3.0       ug/l       100       74       40.120         Lecandurobenzenc       85.8       20       5.0       ug/l       100		_										
3.3-Dichlorobenzidine84.1203.0ug/l1008445-1352.4-Dinchlorophenol9.00.03.5ug/l1009.055-120Dichlyl phhalate9.2103.5ug/l1008.140-120Dinethyl phhalate85.5102.0ug/l1009.030-1204.6-Dinitro-2-methylphenol85.82.04.0ug/l1009.440-1202.4-Dinitrophenol94.22.08.0ug/l1009.440-1202.4-Dinitrobluene94.1102.0ug/l1009.665-1202.4-Dinitrobluene98.1102.0ug/l1008.665-120Din-octyl phhalate82.3103.0ug/l1008.665-120Fluorantene85.6103.0ug/l1007.665-120Fluorantene7.6103.0ug/l1007.740-120Hexachlorobtadiene7.6103.5ug/l1007.735-120Hexachlorobtadiene7.6103.0ug/l1009.655-120Ideno(1,2,2)erdprene83.2103.0ug/l1009.655-120Hexachlorobtadiene7.6103.0ug/l1009.655-120Ideno(1,2,2)erdprene9.3103.0ug/l1009.655-120Abyhlynholhene9.2103.0<	•	·										
2.4-Dichlorophenol       91.0       10       3.5       ug/l       100       91       55-120         Diethyl phthalate       92.2       10       3.5       ug/l       100       92       55-120         2.4-Dimethyl phthalate       89.5       10       2.0       ug/l       100       81       40-120         Dimethyl phthalate       89.5       10       2.0       ug/l       100       94       45-120         2.4-Dinitrophenol       85.8       20       4.0       ug/l       100       94       40-120         2.4-Dinitroblene       94.1       10       3.5       ug/l       100       94       65-120         2.4-Dinitroblene       98.1       10       2.0       ug/l       100       82       65-135         Fluorantene       82.3       10       3.0       ug/l       100       81       60-120         Hexachlorobenzene       95.6       10       3.0       ug/l       100       73       85-120         Hexachlorobenzene       80.7       10       3.0       ug/l       100       73       45-120         Ideno(1,2,3-ed)pyrene       85.2       20       3.5       ug/l       100       74<					ug/l							
Diethyl phulate92.2103.5ug/l1009255-1202,4.Dinethyl phualate80.5203.5ug/l1008140-120Dimethyl phualate89.5102.0ug/l1009030-1204.6.Dintro-2-methyl phualate85.8204.0ug/l1009440-1202,4-Dinitroblene194.2208.0ug/l1009440-1202,4-Dinitroblene98.1102.0ug/l1008965-130Di-n-octyl phthalate89.3103.0ug/l1008260-120Fluorantene95.6103.0ug/l1008160-120Fluorantene80.7103.0ug/l1008160-120Hexachlorobenzene80.7103.0ug/l1008160-120Hexachlorobenzene76.8103.5ug/l1007740-120Hexachlorobenzene76.5103.5ug/l1007735-120Indeno(1,2,3-cd)pyrene85.2203.5ug/l1009450-1202-Methylphenol90.9103.0ug/l1009150-1202-Methylphenol90.3103.0ug/l1009150-1202-Methylphenol90.3103.0ug/l1009150-1202-Methylphenol90.3103.0ug/l100 <td>3,3-Dichlorobenzidine</td> <td></td> <td></td> <td></td> <td>ug/l</td> <td></td> <td></td> <td>84</td> <td>45-135</td> <td></td> <td></td> <td></td>	3,3-Dichlorobenzidine				ug/l			84	45-135			
2.4-Dimethylphenol80.5203.5ug/l1008140-120Dimethylphthalae89.5102.0ug/l1009030-1204.6-Dimitro-2-methylphenol85.8204.0ug/l1008645-1202.4-Dimitrophenol94.2208.0ug/l1009865-1202.4-Dimitrobluene101103.5ug/l1008965-1202.6-Dimitrobluene89.3203.5ug/l1008965-120Fluoramhene82.3103.0ug/l1008160-120Fluoramhene85.6103.0ug/l1008160-120Hexachlorobenzene80.7103.0ug/l1007740-120Hexachlorobenzene76.8103.0ug/l1007735-120Hexachlorobenzene93.8102.5ug/l1007735-120Hexachlorobenzene93.8102.5ug/l1009450-120Hexachlorobenzene93.8102.5ug/l1009450-120Hexachlorobenzene93.8103.0ug/l1009450-120Amethylphenol90.3103.0ug/l1009755-120Amethylphenol90.3103.0ug/l1009765-120Amethylphenol93.52.00.0ug/l10097 <td>· •</td> <td></td> <td>10</td> <td></td> <td>ug/l</td> <td>100</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	· •		10		ug/l	100						
Dimethyl phthalate89.5102.0ug/l1009030-1204.6-Dinitro-2-methylphenol85.8204.0ug/l1008645-1202.4-Dinitrophenol94.2208.0ug/l1009440-1202.4-Dinitrotoluene101103.5ug/l1009865-1202.6-Dinitrotoluene89.3203.5ug/l1008965-135Fluoranthene82.3103.0ug/l1008260-120Hexachlorobenzene87.6103.0ug/l1008160-120Hexachlorobenzene76.8104.0ug/l1007740-120Hexachlorobenzene76.5103.5ug/l1007735-120Indeno(1,2,3-cd)prene85.2203.5ug/l1009155-1202-Methylphenol90.3102.0ug/l1009155-1202-Methylphenol90.3103.0ug/l1009155-1202-Methylphenol90.3103.0ug/l1009155-1202-Nitrophenol97.22.03.0ug/l1009155-1202-Nitrophenol95.5204.0ug/l1009760-1202-Nitrophenol95.52.03.0ug/l1009765-1202-Methylphenol95.52.02.0ug/l10097	Diethyl phthalate		10		-	100						
4,6-Diniro-2-methylphenol85.8204.0ug/l1008645-1202,4-Dinirotoluene101103.5ug/l1009440-1202,4-Dinirotoluene101103.5ug/l10010165-1202,6-Dinirotoluene98.1102.0ug/l1008965-135Fluoranthene82.3103.0ug/l1008160-120Fluoranthene85.6103.0ug/l1008160-120Hexachlorobenzene80.7103.0ug/l1007740-120Hexachlorobetadiene76.8104.0ug/l1007735-120Hexachlorobethane76.5103.5ug/l1007735-120Indeno(1,2,3-cd)pyrene85.2203.5ug/l1009450-1202-Methylphenol90.9103.0ug/l1009155-1202-Methylphenol90.9103.0ug/l1009155-1202-Methylphenol90.9103.0ug/l1009155-1202-Methylphenol90.9103.0ug/l1009155-1202-Nitroaniline97.22.03.0ug/l1009760-1203-Nitroaniline95.52.04.0ug/l1009755-1202-Nitrophenol9.03.52.5ug/l10094	2,4-Dimethylphenol		20	3.5	ug/l	100		81	40-120			
2.4-Dinitrophenol94.2208.0ug/l1009440-1202.4-Dinitrotoluene101103.5ug/l10010165-1202.6-Dinitrotoluene98.1102.0ug/l1008865-120Di-n-octyl phthalate89.3203.5ug/l1008260-120Fluoranthene82.3103.0ug/l1008160-120Hexachlorobenzene80.7103.0ug/l1007740-120Hexachlorobetadiene76.8104.0ug/l1007735-120Hexachlorobetadiene76.5103.5ug/l1007735-120Hexachlorobetadiene93.8102.5ug/l1007735-120Hexachlorobetadiene91.2102.5ug/l1009155-1202-Methylnaphthalene91.2102.0ug/l1009155-1202-Methylphenol90.3103.0ug/l1009155-1202-Methylphenol90.3103.0ug/l1009155-1202-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline99.5204.0ug/l1009760-1202-Nitroaniline93.5202.5ug/l1009760-1202-Nitroaniline93.52.02.5ug/l100 <t< td=""><td>Dimethyl phthalate</td><td>89.5</td><td>10</td><td>2.0</td><td>ug/l</td><td>100</td><td></td><td>90</td><td>30-120</td><td></td><td></td><td></td></t<>	Dimethyl phthalate	89.5	10	2.0	ug/l	100		90	30-120			
2,4-Dinirotoluene101103.5ug/l10010165-1202,6-Dinirotoluene98.1102.0ug/l1009865-135Fluoranthene82.3103.0ug/l1008260-120Fluorene95.6103.0ug/l1008160-120Hexachlorobenzene80.7103.0ug/l1007740-120Hexachlorobutadiene76.8103.5ug/l1007740-120Hexachlorocthane76.5103.5ug/l1007735-120Inden(1,2,3-cd)pyrene85.2203.5ug/l1008545-135Isophrone93.8102.5ug/l1009155-1202-Methylphenol90.9103.0ug/l1009155-1202-Methylphenol90.3103.0ug/l1009155-1202-Mitroanline91.2103.0ug/l1009155-1202-Mitroanline90.3103.0ug/l1008755-1202-Nitroanline97.2203.0ug/l1009760-1203-Nitroanline97.2203.0ug/l1009755-1202-Nitroanline95.5202.5ug/l1009755-1202-Nitroanline97.2203.0ug/l1009755-1202-N		85.8	20	4.0	ug/l	100		86	45-120			
2,6-Dinitrotoluene98.1102.0ug/l1009865-120Di-n-octyl phthalate89.3203.5ug/l1008965-135Fluoranthene82.3103.0ug/l1008260-120Fluorene95.6103.0ug/l1008160-120Hexachlorobutadiene80.7103.0ug/l1007740-120Hexachlorocytlopentadiene105205.0ug/l1007735-120Hexachlorocytlopentadiene76.5103.5ug/l1007735-120Indeno(1,2,3-cd)pyrene85.2203.5ug/l1009450-1202-Methylnphthalene91.2102.5ug/l1009450-1202-Methylphenol90.9103.0ug/l1009150-120Ampthalene87.4103.0ug/l1009150-1202-Nitroaniline97.2203.0ug/l1008755-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline9.5204.0ug/l1009755-1202-Nitroaniline9.5202.5ug/l1009755-1202-Nitroaniline9.5202.5ug/l1009455-1202-Nitroaniline9.9103.5ug/l10094 <td< td=""><td>2,4-Dinitrophenol</td><td>94.2</td><td>20</td><td>8.0</td><td>ug/l</td><td>100</td><td></td><td>94</td><td>40-120</td><td></td><td></td><td></td></td<>	2,4-Dinitrophenol	94.2	20	8.0	ug/l	100		94	40-120			
Di-n-octyl phthalate89.3203.5ug/l1008965-135Fluoranthene82.3103.0ug/l1008260-120Fluorene95.6103.0ug/l1009665-130Hexachlorobenzene80.7103.0ug/l1008160-120Hexachlorobutadine76.8104.0ug/l1007740-120Hexachlorocyclopentadiene105205.0ug/l1007735-120Hexachlorocyclopentadiene76.5103.5ug/l1009450-120Indeno(1,2,3-cd)pyrene85.2203.5ug/l1009450-1202-Methylphenol90.9103.0ug/l1009155-1202-Methylphenol90.3103.0ug/l1009050-120Nirrobenzene95.5204.0ug/l1009155-1202-Mitroniline90.3103.0ug/l1009155-1202-Nitroaniline95.5204.0ug/l1009765-1203-Nitroaniline95.5204.0ug/l1009755-1202-Nitroaniline95.5204.0ug/l1009755-1202-Nitroaniline95.5204.0ug/l1009765-1202-Nitroaniline95.5204.0ug/l10097	2,4-Dinitrotoluene	101	10	3.5	ug/l	100		101	65-120			
Fluoranthene82.3103.0ug/l1008260-120Fluorene95.6103.0ug/l1009665-120Hexachlorobenzene80.7103.0ug/l1008160-120Hexachlorobutadiene76.8104.0ug/l1007740-120Hexachlorocyclopentadiene105205.0ug/l1007735-120Hexachlorocthane76.5103.5ug/l1008545-135Isophorone93.8102.5ug/l1009155-1202-Methylaphthalene91.2102.0ug/l1009150-1202-Methylaphtnol90.3103.0ug/l1009150-120A-Methylphenol90.3103.0ug/l1009755-1202-Nitroaniline97.2203.0ug/l1009755-1203-Nitroaniline97.5204.0ug/l1009755-1204-Nitrophenol99.5204.0ug/l1009755-1202-Nitroaniline97.5202.5ug/l1009755-1204-Nitrophenol99.5204.0ug/l1009755-1202-Nitroaniline99.5204.0ug/l1009755-1204-Nitrophenol99.9103.5ug/l1009455-120<	2,6-Dinitrotoluene	98.1	10	2.0	ug/l	100		98	65-120			
Fluorene95.6103.0ug/l1009665-120Hexachlorobenzene80.7103.0ug/l1008160-120Hexachlorobutadiene76.8104.0ug/l1007740-120Hexachlorocyclopentadiene105205.0ug/l10010525-120Hexachlorocyclopentadiene76.5103.5ug/l1007735-120Indeno(1,2,3-cd)pyrene85.2203.5ug/l1009450-1202-Methylnaphthalene91.2102.5ug/l1009155-1202-Methylphenol90.9103.0ug/l1009150-120A-Methylphenol90.3103.0ug/l1009050-1202-Nitroaniline97.2203.0ug/l1009050-1203-Nitroaniline99.5204.0ug/l1009760-1204-Nitroaniline99.5204.0ug/l1009755-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009755-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l100945	Di-n-octyl phthalate	89.3	20	3.5	ug/l	100		89	65-135			
Hexachlorobenzene80.7103.0ug/l1008160-120Hexachlorobutadiene76.8104.0ug/l1007740-120Hexachlorocyclopentadiene105205.0ug/l1007735-120Hexachlorothane76.5103.5ug/l1008545-135Iophorone93.8102.5ug/l1009450-1202-Methylnaphthalene91.2102.0ug/l1009155-1202-Methylphenol90.9103.0ug/l1009150-1204-Methylphenol90.3103.0ug/l1009050-1202-Nitroaniline77.2203.0ug/l1009765-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline93.5202.5ug/l1009955-125Nitrobenzene93.5202.5ug/l1009955-1202-Nitrophenol90.9103.5ug/l1009955-1203-Nitroaniline99.5204.0ug/l1009955-1202-Nitrophenol90.9103.5ug/l1009155-1204-Nitrophenol90.9103.5ug/l1009155-120101051010101010101010<	Fluoranthene	82.3	10	3.0	ug/l	100		82	60-120			
Hexachlorobutadiene76.8104.0ug/l1007740-120Hexachlorocyclopentadiene105205.0ug/l10010525-120Hexachloroethane76.5103.5ug/l1007735-120Indeno(1,2,3-od)pyrene85.2203.5ug/l1008545-135Isophorone93.8102.5ug/l1009450-1202-Methylpaphthalene91.2102.0ug/l1009155-1202-Methylphenol90.3103.0ug/l1009050-1204-Methylphenol90.3103.0ug/l1008755-1202-Nitroaniline77.2203.0ug/l1009760-1204-Nitroaniline95.5204.0ug/l1009760-1204-Nitrobenzene93.5202.5ug/l1009455-1202-Nitrobenzene93.5202.5ug/l1009760-1204-Nitrobenzene93.5202.5ug/l1009455-1202-Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009455-1204-Nitrophenol90.9103.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009455-120<	Fluorene	95.6	10	3.0	ug/l	100		96	65-120			
Hexachlorocyclopentadiene105205.0ug/l10010525-120Hexachlorocthane76.5103.5ug/l1007735-120Indeno(1,2,3-cd)pyrene85.2203.5ug/l1008545-135Isophorone93.8102.5ug/l1009450-1202-Methylnaphthalene91.2102.0ug/l1009155-1202-Methylphenol90.9103.0ug/l1009150-1204-Methylphenol90.3103.0ug/l1009050-1202-Nitroaniline105202.0ug/l1008755-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline93.5202.5ug/l1009955-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009760-1204-Nitroaniline99.5204.0ug/l1009955-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009455-1204-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.9103.5ug/l1009150-120 <t< td=""><td>Hexachlorobenzene</td><td>80.7</td><td>10</td><td>3.0</td><td>ug/l</td><td>100</td><td></td><td>81</td><td>60-120</td><td></td><td></td><td></td></t<>	Hexachlorobenzene	80.7	10	3.0	ug/l	100		81	60-120			
Hexachlorothane76.5103.5ug/l1007735-120Indeno(1,2,3-cd)pyrene85.2203.5ug/l1008545-135Isophorone93.8102.5ug/l1009450-1202-Methylnaphthalene91.2102.0ug/l1009155-1202-Methylphenol90.9103.0ug/l1009150-1204-Methylphenol90.3103.0ug/l1009050-1202-Nitroaniline105202.0ug/l1008755-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline93.5202.5ug/l1009455-1202-Nitrobenzene93.5202.5ug/l1009455-1204-Nitrophenol90.9103.5ug/l1009455-1204-Nitrophenol90.9103.5ug/l1009455-1204-Nitrophenol90.9103.5ug/l1009455-1204-Nitrophenol90.9103.5ug/l1009455-1204-Nitrophenol90.9103.5ug/l1009455-1204-Nitrophenol90.9103.5ug/l1009455-1204-Nitrophenol90.9103.5ug/l1009455-1204-Nit	Hexachlorobutadiene	76.8	10	4.0	ug/l	100		77	40-120			
Indeno(1,2,3-cd)pyrene85.2203.5ug/l1008545-135Isophorone93.8102.5ug/l1009450-1202-Methylnaphthalene91.2102.0ug/l1009155-1202-Methylphenol90.9103.0ug/l1009050-1204-Methylphenol90.3103.0ug/l1009050-120Naphthalene87.4103.0ug/l1008755-1202-Nitroaniline105202.0ug/l1009760-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline99.5204.0ug/l1009955-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009955-1251010565-1201009955-12510010565-1202-Nitrobenzene93.5202.5ug/l1009955-1251090.9103.5ug/l1009150-1202-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009045-120	Hexachlorocyclopentadiene	105	20	5.0	ug/l	100		105	25-120			
Isophorone93.8102.5ug/l1009450-1202-Methylnaphthalene91.2102.0ug/l1009155-1202-Methylphenol90.9103.0ug/l1009150-1204-Methylphenol90.3103.0ug/l1009050-120Naphthalene87.4103.0ug/l1008755-1202-Nitroaniline105202.0ug/l10010565-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009760-1204-Nitrophenol90.3205.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009455-1202-Nitrophenol90.3205.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009045-120	Hexachloroethane	76.5	10	3.5	ug/l	100		77	35-120			
2-Methylnaphthalene91.2102.0ug/l1009155-1202-Methylphenol90.9103.0ug/l1009150-1204-Methylphenol90.3103.0ug/l1009050-120Naphthalene87.4103.0ug/l1008755-1202-Nitroaniline105202.0ug/l10010565-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline99.5204.0ug/l1009955-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009455-1204-Nitrophenol90.3205.5ug/l1009150-120	Indeno(1,2,3-cd)pyrene	85.2	20	3.5	ug/l	100		85	45-135			
2-Methylphenol90.9103.0ug/l1009150-1204-Methylphenol90.3103.0ug/l1009050-120Naphthalene87.4103.0ug/l1008755-1202-Nitroaniline105202.0ug/l10010565-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline99.5204.0ug/l1009955-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009455-120	Isophorone	93.8	10	2.5	ug/l	100		94	50-120			
4-Methylphenol90.3103.0ug/l1009050-120Naphthalene87.4103.0ug/l1008755-1202-Nitroaniline105202.0ug/l10010565-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline99.5204.0ug/l1009955-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009045-120	2-Methylnaphthalene	91.2	10	2.0	ug/l	100		91	55-120			
Naphthalene87.4103.0ug/l1008755-1202-Nitroaniline105202.0ug/l10010565-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline99.5204.0ug/l1009955-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009045-120	2-Methylphenol	90.9	10	3.0	ug/l	100		91	50-120			
2-Nitroaniline105202.0ug/l10010565-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline99.5204.0ug/l1009955-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009045-120	4-Methylphenol	90.3	10	3.0	ug/l	100		90	50-120			
3-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline99.5204.0ug/l1009955-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009045-120	Naphthalene	87.4	10	3.0	ug/l	100		87	55-120			
4-Nitroaniline99.5204.0ug/l1009955-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009045-120	2-Nitroaniline	105	20	2.0	ug/l	100		105	65-120			
Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009045-120	3-Nitroaniline	97.2	20	3.0	ug/l	100		97	60-120			
2-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009045-120	4-Nitroaniline	99.5	20	4.0	ug/l	100		99	55-125			
4-Nitrophenol 90.3 20 5.5 ug/l 100 90 45-120	Nitrobenzene	93.5	20	2.5	ug/l	100		94	55-120			
	2-Nitrophenol	90.9	10	3.5	ug/l	100		91	50-120			
	4-Nitrophenol	90.3	20	5.5	ug/l	100		90	45-120			
N-Nitrosodiphenylamine 94.4 10 2.0 ug/l 100 94 60-120	N-Nitrosodiphenylamine	94.4	10	2.0	ug/l	100		94	60-120			
N-Nitroso-di-n-propylamine 94.6 10 3.5 ug/l 100 95 45-120		94.6	10	3.5		100		95	45-120			
Pentachlorophenol 76.0 20 3.5 ug/l 100 76 50-120		76.0	20	3.5	-	100		76	50-120			
Phenanthrene 87.8 10 3.5 ug/l 100 88 65-120	*	87.8	10	3.5	-	100		88	65-120			
Phenol 84.3 10 2.0 ug/l 100 84 40-120	Phenol	84.3	10	2.0	-	100		84	40-120			
Pyrene 112 10 4.0 ug/l 100 112 55-125	Pyrene	112	10	4.0	ug/l	100		112	55-125			

#### **TestAmerica Irvine**



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

#### **METHOD BLANK/QC DATA**

# ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

A	D14	Reporting	MDI	<b>T</b>	Spike	Source	0/ DEC	%REC	DDD	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04111 Extracted: 02/04/08	8										
	14.										
LCS Analyzed: 02/07/2008 (8B04111-BS	,										
1,2,4-Trichlorobenzene	82.1	10	2.5	ug/l	100		82	45-120			
2,4,5-Trichlorophenol	94.0	20	3.0	ug/l	100		94	55-120			
2,4,6-Trichlorophenol	91.5	20	4.5	ug/l	100		92	55-120			
1,2-Diphenylhydrazine/Azobenzene	97.8	20	2.5	ug/l	100		98	60-120			
N-Nitrosodimethylamine	98.9	20	2.5	ug/l	100		99	45-120			
Surrogate: 2-Fluorophenol	167			ug/l	200		83	30-120			
Surrogate: Phenol-d6	171			ug/l	200		86	35-120			
Surrogate: 2,4,6-Tribromophenol	153			ug/l	200		77	40-120			
Surrogate: Nitrobenzene-d5	89.0			ug/l	100		89	45-120			
Surrogate: 2-Fluorobiphenyl	87.6			ug/l	100		88	50-120			
Surrogate: Terphenyl-d14	100			ug/l	100		100	50-125			
Matrix Spike Analyzed: 02/07/2008 (8B)	04111-MS1)				Sou	rce: IRA	3018-06				
Acenaphthene	93.7	48	14	ug/l	95.2	ND	98	60-120			
Acenaphthylene	40.8	48	14	ug/l	95.2	ND	43	60-120			M2, Ja
Aniline	53.5	48	12	ug/l	95.2	ND	56	35-120			
Anthracene	84.9	48	9.5	ug/l	95.2	ND	89	65-120			
Benzidine	ND	95	40	ug/l	95.2	ND		30-160			M2
Benzoic acid	107	95	48	ug/l	95.2	ND	112	25-125			
Benzo(a)anthracene	89.0	48	9.5	ug/l	95.2	ND	94	65-120			
Benzo(b)fluoranthene	83.0	48	9.5	ug/l	95.2	ND	87	55-125			
Benzo(k)fluoranthene	95.6	48	12	ug/l	95.2	ND	100	55-125			
Benzo(g,h,i)perylene	68.7	48	19	ug/l	95.2	ND	72	45-135			
Benzo(a)pyrene	90.1	48	9.5	ug/l	95.2	ND	95	55-130			
Benzyl alcohol	34.9	95	12	ug/l	95.2	ND	37	40-120			M2, Ja
Bis(2-chloroethoxy)methane	76.3	48	14	ug/l	95.2	ND	80	50-120			,
Bis(2-chloroethyl)ether	106	48	14	ug/l	95.2	ND	112	50-120			
Bis(2-chloroisopropyl)ether	86.9	48	12	ug/l	95.2	ND	91	45-120			
Bis(2-ethylhexyl)phthalate	91.0	240	19	ug/l	95.2	ND	96	65-130			Ja
4-Bromophenyl phenyl ether	75.0	48	14	ug/l	95.2	ND	79	60-120			• •
Butyl benzyl phthalate	92.6	95	19	ug/l	95.2	ND	97	55-130			Ja
4-Chloroaniline	19.6	48	9.5	ug/l	95.2 95.2	ND	21	55-120			M2, Ja
2-Chloronaphthalene	83.3	48	14	ug/l	95.2 95.2	ND	87	60-120			1112, 04
4-Chloro-3-methylphenol	84.0	48 95	14	ug/l	95.2	ND ND	88	60-120 60-120			Ja
2-Chlorophenol	77.2	48	12	ug/l	95.2 95.2	ND ND	81	45-120			54
4-Chlorophenyl phenyl ether	92.5	48	14	ug/l	95.2 95.2	ND	97	43-120 65-120			
Chlorophenyi phenyi chlei	74.3	70	12	ug/1	73.4	мD	71	05-120			

#### **TestAmerica** Irvine

Joseph Doak Project Manager

*IRB0149* <*Page 27 of 50*> NPDES - 1087



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

# ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04111 Extracted: 02/04/0							,				<b>X</b>
Batch: 0B04111 Extracted: 02/04/0	<u>o</u>										
Matrix Spike Analyzed: 02/07/2008 (8B	04111-MS1)				Sou	rce: IRA	3018-06				
Chrysene	85.3	48	12	ug/l	95.2	ND	90	65-120			
Dibenz(a,h)anthracene	71.9	95	14	ug/l	95.2	ND	76	45-135			Ja
Dibenzofuran	89.2	48	19	ug/l	95.2	ND	94	65-120			
Di-n-butyl phthalate	80.5	95	14	ug/l	95.2	ND	84	60-125			Ja
1,3-Dichlorobenzene	71.9	48	14	ug/l	95.2	ND	76	35-120			
1,4-Dichlorobenzene	181	48	12	ug/l	95.2	ND	190	35-120			<i>M1</i>
1,2-Dichlorobenzene	139	48	14	ug/l	95.2	65.3	78	40-120			
3,3-Dichlorobenzidine	ND	95	14	ug/l	95.2	ND		45-135			M2
2,4-Dichlorophenol	81.7	48	17	ug/l	95.2	ND	86	55-120			
Diethyl phthalate	89.8	48	17	ug/l	95.2	ND	94	55-120			
2,4-Dimethylphenol	83.3	95	17	ug/l	95.2	ND	87	40-120			Ja
Dimethyl phthalate	93.8	48	9.5	ug/l	95.2	ND	98	30-120			
4,6-Dinitro-2-methylphenol	121	95	19	ug/l	95.2	ND	128	45-120			<i>M1</i>
2,4-Dinitrophenol	112	95	38	ug/l	95.2	ND	118	40-120			
2,4-Dinitrotoluene	81.5	48	17	ug/l	95.2	ND	86	65-120			
2,6-Dinitrotoluene	81.5	48	9.5	ug/l	95.2	ND	86	65-120			
Di-n-octyl phthalate	87.2	95	17	ug/l	95.2	ND	92	65-135			Ja
Fluoranthene	82.8	48	14	ug/l	95.2	ND	87	60-120			
Fluorene	93.2	48	14	ug/l	95.2	ND	98	65-120			
Hexachlorobenzene	70.5	48	14	ug/l	95.2	ND	74	60-120			
Hexachlorobutadiene	73.3	48	19	ug/l	95.2	ND	77	40-120			
Hexachlorocyclopentadiene	67.8	95	24	ug/l	95.2	ND	71	25-120			Ja
Hexachloroethane	68.9	48	17	ug/l	95.2	ND	72	35-120			
Indeno(1,2,3-cd)pyrene	71.6	95	17	ug/l	95.2	ND	75	40-135			Ja
Isophorone	49.0	48	12	ug/l	95.2	ND	52	50-120			
2-Methylnaphthalene	86.2	48	9.5	ug/l	95.2	ND	90	55-120			
2-Methylphenol	84.3	48	14	ug/l	95.2	ND	88	50-120			
4-Methylphenol	75.9	48	14	ug/l	95.2	ND	80	50-120			
Naphthalene	82.8	48	14	ug/l	95.2	ND	87	55-120			
2-Nitroaniline	91.7	95	9.5	ug/l	95.2	ND	96	65-120			Ja
3-Nitroaniline	27.3	95	14	ug/l	95.2	ND	29	60-120			M2, Ja
4-Nitroaniline	51.6	95	19	ug/l	95.2	ND	54	55-125			M2, Ja
Nitrobenzene	80.4	95	12	ug/l	95.2	ND	84	55-120			Ja
2-Nitrophenol	75.0	48	17	ug/l	95.2	ND	79	50-120			
4-Nitrophenol	110	95	26	ug/l	95.2	ND	115	45-120			

#### **TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

# ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

ReportingSpikeSource%RECAnalyteResultLimitMDLUnitsLevelResult%RECLimitsRPD	RPD Data Limit Qualifiers
Batch: 8B04111 Extracted: 02/04/08	_
Matrix Spike Analyzed: 02/07/2008 (8B04111-MS1)Source: IRA3018-06	
N-Nitrosodiphenylamine 78.2 48 9.5 ug/l 95.2 ND 82 60-120	
N-Nitroso-di-n-propylamine ND 48 17 ug/l 95.2 ND 45-120	M2
Pentachlorophenol 81.0 95 17 ug/l 95.2 ND 85 50-120	Ja
Phenanthrene         84.2         48         17         ug/l         95.2         ND         88         65-120	
Phenol 79.1 48 9.5 ug/l 95.2 ND 83 40-120	
Pyrene 100 48 19 ug/l 95.2 ND 105 55-125	
1,2,4-Trichlorobenzene 197 48 12 ug/l 95.2 130 71 45-120	
2,4,5-Trichlorophenol 88.3 95 14 ug/l 95.2 ND 93 55-120	Ja
2,4,6-Trichlorophenol 88.8 95 21 ug/l 95.2 ND 93 55-120	Ja
1,2-Diphenylhydrazine/Azobenzene ND 95 12 ug/l 95.2 ND 60-120	M2
N-Nitrosodimethylamine ND 95 12 ug/l 95.2 ND 45-120	M2
Surrogate: 2-Fluorophenol 148 ug/l 190 77 30-120	
Surrogate: Phenol-d6 150 ug/l 190 78 35-120	
Surrogate: 2,4,6-Tribromophenol 147 ug/l 190 77 40-120	
Surrogate: Nitrobenzene-d5 74.0 ug/l 95.2 78 45-120	
Surrogate: 2-Fluorobiphenyl 80.5 ug/l 95.2 84 50-120	
Surrogate: Terphenyl-d14         92.3         ug/l         95.2         97         50-125	
Matrix Spike Dup Analyzed: 02/07/2008 (8B04111-MSD1) Source: IRA3018-06	
Acenaphthene 91.1 48 14 ug/l 95.2 ND 96 60-120 3	25
Acenaphthylene 53.7 48 14 ug/l 95.2 ND 56 60-120 27	25 M2, R-3
Aniline 49.4 48 12 ug/l 95.2 ND 52 35-120 8	30
Anthracene 82.0 48 9.5 ug/l 95.2 ND 86 65-120 3	25
Benzidine ND 95 40 ug/l 95.2 ND 30-160	35 M2
Benzoic acid 104 95 48 ug/l 95.2 ND 110 25-125 3	30
Benzo(a)anthracene 83.4 48 9.5 ug/l 95.2 ND 88 65-120 7	20
Benzo(b)fluoranthene 79.0 48 9.5 ug/l 95.2 ND 83 55-125 5	25
Benzo(k)fluoranthene 87.0 48 12 ug/l 95.2 ND 91 55-125 9	30
Benzo(g,h,i)perylene 65.9 48 19 ug/l 95.2 ND 69 45-135 4	30
Benzo(a)pyrene 85.2 48 9.5 ug/l 95.2 ND 90 55-130 6	25
Benzyl alcohol 36.6 95 12 ug/l 95.2 ND 38 40-120 5	30 M2, Ja
Bis(2-chloroethoxy)methane 70.4 48 14 ug/l 95.2 ND 74 50-120 8	25
Bis(2-chloroethyl)ether 68.1 48 14 ug/l 95.2 ND 72 50-120 44	25 R
Bis(2-chloroisopropyl)ether 83.1 48 12 ug/l 95.2 ND 87 45-120 4	25
Bis(2-ethylhexyl)phthalate 86.8 240 19 ug/l 95.2 ND 91 65-130 5	25 Ja
4-Bromophenyl ether 69.8 48 14 ug/l 95.2 ND 73 60-120 7	25

**TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

# ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
·		Linnt	MDL	Units	Level	Kesuit	/0KEC	Linits	ΚID	Linnt	Quanners
Batch: 8B04111 Extracted: 02/04/0	<u>8</u>										
Matrix Spiles Dup Analyzade 02/07/200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(CD1)			Sau	waan ID A	2010 07				
Matrix Spike Dup Analyzed: 02/07/2008	90.5	1 <b>5DT)</b> 95	10	/I		rce: IRA		55 120	2	25	Ja
Butyl benzyl phthalate 4-Chloroaniline	90.5 39.1	95 48	19	ug/l	95.2 05.2	ND	95 41	55-130		25 25	Ja M2, R-3, Ja
	78.2	48 48	9.5	ug/l	95.2 05.2	ND	41	55-120 60-120	66	25 20	M2, K-3, Ja
2-Chloronaphthalene	82.4	48 95	14 12	ug/l	95.2 95.2	ND	82 86	60-120 60-120	6 2	20 25	I.
4-Chloro-3-methylphenol	82.4 69.2	95 48	12	ug/l		ND			11		Ja
2-Chlorophenol		48 48	14	ug/l	95.2 05.2	ND	73	45-120	9	25 25	
4-Chlorophenyl phenyl ether	84.3			ug/l	95.2	ND	88	65-120		25	
Chrysene	83.3	48	12	ug/l	95.2	ND	87	65-120	2	25	Y
Dibenz(a,h)anthracene	69.2	95	14	ug/l	95.2	ND	73	45-135	4	30	Ja
Dibenzofuran	82.9	48	19	ug/l	95.2	ND	87	65-120	7	25	Y
Di-n-butyl phthalate	77.4	95	14	ug/l	95.2	ND	81	60-125	4	25	Ja
1,3-Dichlorobenzene	64.5	48	14	ug/l	95.2	ND	68	35-120	11	25	
1,4-Dichlorobenzene	168	48	12	ug/l	95.2	ND	177	35-120	7	25	M1
1,2-Dichlorobenzene	123	48	14	ug/l	95.2	65.3	61	40-120	12	25	
3,3-Dichlorobenzidine	ND	95	14	ug/l	95.2	ND		45-135		25	M2
2,4-Dichlorophenol	76.4	48	17	ug/l	95.2	ND	80	55-120	7	25	
Diethyl phthalate	85.0	48	17	ug/l	95.2	ND	89	55-120	6	30	
2,4-Dimethylphenol	75.8	95	17	ug/l	95.2	ND	80	40-120	9	25	Ja
Dimethyl phthalate	87.5	48	9.5	ug/l	95.2	ND	92	30-120	7	30	
4,6-Dinitro-2-methylphenol	112	95	19	ug/l	95.2	ND	118	45-120	8	25	
2,4-Dinitrophenol	91.4	95	38	ug/l	95.2	ND	96	40-120	20	25	Ja
2,4-Dinitrotoluene	69.1	48	17	ug/l	95.2	ND	73	65-120	16	25	
2,6-Dinitrotoluene	77.2	48	9.5	ug/l	95.2	ND	81	65-120	5	20	
Di-n-octyl phthalate	81.3	95	17	ug/l	95.2	ND	85	65-135	7	20	Ja
Fluoranthene	79.0	48	14	ug/l	95.2	ND	83	60-120	5	25	
Fluorene	88.1	48	14	ug/l	95.2	ND	92	65-120	6	25	
Hexachlorobenzene	69.5	48	14	ug/l	95.2	ND	73	60-120	1	25	
Hexachlorobutadiene	66.5	48	19	ug/l	95.2	ND	70	40-120	10	25	
Hexachlorocyclopentadiene	41.9	95	24	ug/l	95.2	ND	44	25-120	47	30	R, Ja
Hexachloroethane	58.5	48	17	ug/l	95.2	ND	61	35-120	16	25	
Indeno(1,2,3-cd)pyrene	67.4	95	17	ug/l	95.2	ND	71	40-135	6	30	Ja
Isophorone	50.0	48	12	ug/l	95.2	ND	52	50-120	2	25	
2-Methylnaphthalene	79.4	48	9.5	ug/l	95.2	ND	83	55-120	8	20	
2-Methylphenol	73.3	48	14	ug/l	95.2	ND	77	50-120	14	25	
4-Methylphenol	70.0	48	14	ug/l	95.2	ND	74	50-120	8	25	
Naphthalene	82.0	48	14	ug/l	95.2	ND	86	55-120	1	25	
				-							

#### **TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

# ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Oualifiers
Batch: 8B04111 Extracted: 02/04/08							,				<b>X</b>
Datth. 0D0+111 Extracted. 02/04/00	<u>,</u>										
Matrix Spike Dup Analyzed: 02/07/2008	(8B04111-M	ISD1)			Sou	rce: IRA	3018-06				
2-Nitroaniline	85.6	95	9.5	ug/l	95.2	ND	90	65-120	7	25	Ja
3-Nitroaniline	18.4	95	14	ug/l	95.2	ND	19	60-120	39	25	M2, R-3, Ja
4-Nitroaniline	31.6	95	19	ug/l	95.2	ND	33	55-125	48	25	M2, R-3, Ja
Nitrobenzene	80.5	95	12	ug/l	95.2	ND	84	55-120	0	25	Ja
2-Nitrophenol	72.8	48	17	ug/l	95.2	ND	76	50-120	3	25	
4-Nitrophenol	134	95	26	ug/l	95.2	ND	141	45-120	20	30	<i>M1</i>
N-Nitrosodiphenylamine	60.8	48	9.5	ug/l	95.2	ND	64	60-120	25	25	
N-Nitroso-di-n-propylamine	ND	48	17	ug/l	95.2	ND		45-120		25	M2
Pentachlorophenol	76.7	95	17	ug/l	95.2	ND	80	50-120	5	25	Ja
Phenanthrene	79.1	48	17	ug/l	95.2	ND	83	65-120	6	25	
Phenol	69.3	48	9.5	ug/l	95.2	ND	73	40-120	13	25	
Pyrene	96.9	48	19	ug/l	95.2	ND	102	55-125	3	25	
1,2,4-Trichlorobenzene	182	48	12	ug/l	95.2	130	55	45-120	8	20	
2,4,5-Trichlorophenol	75.5	95	14	ug/l	95.2	ND	79	55-120	16	30	Ja
2,4,6-Trichlorophenol	80.5	95	21	ug/l	95.2	ND	84	55-120	10	30	Ja
1,2-Diphenylhydrazine/Azobenzene	ND	95	12	ug/l	95.2	ND		60-120		25	M2
N-Nitrosodimethylamine	ND	95	12	ug/l	95.2	ND		45-120		25	M2
Surrogate: 2-Fluorophenol	138			ug/l	190		72	30-120			
Surrogate: Phenol-d6	132			ug/l	190		70	35-120			
Surrogate: 2,4,6-Tribromophenol	134			ug/l	190		70	40-120			
Surrogate: Nitrobenzene-d5	72.5			ug/l	95.2		76	45-120			
Surrogate: 2-Fluorobiphenyl	77.3			ug/l	95.2		81	50-120			
Surrogate: Terphenyl-d14	86.6			ug/l	95.2		91	50-125			

**TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

# **ORGANOCHLORINE PESTICIDES (EPA 608)**

	D L	Reporting	MDI		Spike	Source	A/DEC	%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B05099 Extracted: 02/05/08	}										
Blank Analyzed: 02/06/2008 (8B05099-BLK1)											
Aldrin	ND	0.0050	0.0015	ug/l							
alpha-BHC	ND	0.0050	0.0015	ug/l							
beta-BHC	ND	0.0030	0.0023	ug/l							
delta-BHC	ND	0.0050	0.0035	ug/l							
gamma-BHC (Lindane)	ND	0.010	0.0030	ug/l							
Chlordane	ND	0.10	0.030	ug/l							
4,4'-DDD	ND	0.0050	0.0020	ug/l							
4,4'-DDE	ND	0.0050	0.0020	ug/l							
4,4'-DDT	ND	0.010	0.0040	ug/l							
Dieldrin	ND	0.0050	0.0020	ug/l							
Endosulfan I	ND	0.0050	0.0020	ug/l							
Endosulfan II	ND	0.0050	0.0020	ug/l							
Endosulfan sulfate	ND	0.010	0.0030	ug/l							
Endrin	ND	0.0050	0.0020	ug/l							
Endrin aldehyde	ND	0.010	0.0020	ug/l							
Endrin ketone	ND	0.010	0.0020	ug/l							
Heptachlor	ND	0.010	0.0030	ug/l							
Heptachlor epoxide	ND	0.0050	0.0025	ug/l							
Methoxychlor	ND	0.0050	0.0035	ug/l							
Toxaphene	ND	0.10	0.070	ug/l							
Surrogate: Decachlorobiphenyl	0.419	0.10	0.070	ug/l	0.500		84	45-120			
Surrogate: Tetrachloro-m-xylene	0.419			ug/l	0.500		84	35-115			
surrogute. Tell uchloro in xytene	0.417			45/1	0.500		04	55 115			
LCS Analyzed: 02/07/2008 (8B05099-BS	,										MNR1
Aldrin	0.417	0.0050	0.0015	ug/l	0.500		83	40-115			
alpha-BHC	0.404	0.0050	0.0025	ug/l	0.500		81	45-115			
beta-BHC	0.419	0.010	0.0040	ug/l	0.500		84	55-115			
delta-BHC	0.453	0.0050	0.0035	ug/l	0.500		91	55-115			
gamma-BHC (Lindane)	0.433	0.010	0.0030	ug/l	0.500		87	45-115			
4,4'-DDD	0.496	0.0050	0.0020	ug/l	0.500		99	55-120			
4,4'-DDE	0.488	0.0050	0.0030	ug/l	0.500		98	50-120			
4,4'-DDT	0.491	0.010	0.0040	ug/l	0.500		98	55-120			
Dieldrin	0.455	0.0050	0.0020	ug/l	0.500		91	55-115			
Endosulfan I	0.464	0.0050	0.0020	ug/l	0.500		93	55-115			
Endosulfan II	0.439	0.0050	0.0030	ug/l	0.500		88	55-120			
Endosulfan sulfate	0.506	0.010	0.0030	ug/l	0.500		101	60-120			

#### **TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

# **ORGANOCHLORINE PESTICIDES (EPA 608)**

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B05099 Extracted: 02/05/08	-										
LCS Analyzed: 02/07/2008 (8B05099-BS	1)										MNR1
Endrin	0.511	0.0050	0.0020	ug/l	0.500		102	55-115			
Endrin aldehyde	0.483	0.010	0.0020	ug/l	0.500		97	50-120			
Endrin ketone	0.520	0.010	0.0030	ug/l	0.500		104	55-120			
Heptachlor	0.406	0.010	0.0030	ug/l	0.500		81	45-115			
Heptachlor epoxide	0.442	0.0050	0.0025	ug/l	0.500		88	55-115			
Methoxychlor	0.508	0.0050	0.0035	ug/l	0.500		102	60-120			
Surrogate: Decachlorobiphenyl	0.436			ug/l	0.500		87	45-120			
Surrogate: Tetrachloro-m-xylene	0.414			ug/l	0.500		83	35-115			
LCS Dup Analyzed: 02/07/2008 (8B0509)	9-BSD1)										
Aldrin	0.381	0.0050	0.0015	ug/l	0.500		76	40-115	9	30	
alpha-BHC	0.386	0.0050	0.0025	ug/l	0.500		77	45-115	5	30	
beta-BHC	0.398	0.010	0.0040	ug/l	0.500		80	55-115	5	30	
delta-BHC	0.409	0.0050	0.0035	ug/l	0.500		82	55-115	10	30	
gamma-BHC (Lindane)	0.408	0.010	0.0030	ug/l	0.500		82	45-115	6	30	
4,4'-DDD	0.455	0.0050	0.0020	ug/l	0.500		91	55-120	9	30	
4,4'-DDE	0.444	0.0050	0.0030	ug/l	0.500		89	50-120	9	30	
4,4'-DDT	0.451	0.010	0.0040	ug/l	0.500		90	55-120	9	30	
Dieldrin	0.421	0.0050	0.0020	ug/l	0.500		84	55-115	8	30	
Endosulfan I	0.430	0.0050	0.0020	ug/l	0.500		86	55-115	8	30	
Endosulfan II	0.406	0.0050	0.0030	ug/l	0.500		81	55-120	8	30	
Endosulfan sulfate	0.463	0.010	0.0030	ug/l	0.500		93	60-120	9	30	
Endrin	0.471	0.0050	0.0020	ug/l	0.500		94	55-115	8	30	
Endrin aldehyde	0.442	0.010	0.0020	ug/l	0.500		88	50-120	9	30	
Endrin ketone	0.477	0.010	0.0030	ug/l	0.500		95	55-120	8	30	
Heptachlor	0.373	0.010	0.0030	ug/l	0.500		75	45-115	8	30	
Heptachlor epoxide	0.410	0.0050	0.0025	ug/l	0.500		82	55-115	8	30	
Methoxychlor	0.458	0.0050	0.0035	ug/l	0.500		92	60-120	11	30	
Surrogate: Decachlorobiphenyl	0.403			ug/l	0.500		81	45-120			
Surrogate: Tetrachloro-m-xylene	0.382			ug/l	0.500		76	35-115			

#### **TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

### METHOD BLANK/QC DATA

# **TOTAL PCBS (EPA 608)**

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B05099 Extracted: 02/05/08	3										-
Blank Analyzed: 02/06/2008 (8B05099-E	SLK1)										
Aroclor 1016	ND	0.50	0.45	ug/l							
Aroclor 1221	ND	0.50	0.25	ug/l							
Aroclor 1232	ND	0.50	0.25	ug/l							
Aroclor 1242	ND	0.50	0.25	ug/l							
Aroclor 1248	ND	0.50	0.25	ug/l							
Aroclor 1254	ND	0.50	0.25	ug/l							
Aroclor 1260	ND	0.50	0.30	ug/l							
Surrogate: Decachlorobiphenyl	0.420			ug/l	0.500		84	45-120			
LCS Analyzed: 02/06/2008 (8B05099-BS	52)										MNR1
Aroclor 1016	3.28	0.50	0.45	ug/l	4.00		82	50-115			
Aroclor 1260	3.60	0.50	0.30	ug/l	4.00		90	60-120			
Surrogate: Decachlorobiphenyl	0.440			ug/l	0.500		88	45-120			
LCS Dup Analyzed: 02/06/2008 (8B0509	9-BSD2)										
Aroclor 1016	3.13	0.50	0.45	ug/l	4.00		78	50-115	5	30	
Aroclor 1260	3.56	0.50	0.30	ug/l	4.00		89	60-120	1	25	
Surrogate: Decachlorobiphenyl	0.435			ug/l	0.500		87	45-120			

**TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

# METHOD BLANK/QC DATA

#### **METALS**

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04079 Extracted: 02/04/08											
Blank Analyzed: 02/04/2008 (8B04079-B	LK1)										
Aluminum	ND	50	40	ug/l							
Arsenic	ND	10	7.0	ug/l							
Beryllium	ND	2.0	0.90	ug/l							
Boron	ND	0.050	0.020	mg/l							
Calcium	ND	0.10	0.050	mg/l							
Chromium	ND	5.0	2.0	ug/l							
Iron	ND	0.040	0.015	mg/l							
Magnesium	ND	0.020	0.012	mg/l							
Nickel	ND	10	2.0	ug/l							
Selenium	ND	10	8.0	ug/l							
Silver	ND	10	6.0	ug/l							
Vanadium	ND	10	3.0	ug/l							
Zinc	ND	20	6.0	ug/l							
LCS Analyzed: 02/04/2008 (8B04079-BS	1)										
Aluminum	524	50	40	ug/l	500		105	85-115			
Arsenic	504	10	7.0	ug/l	500		101	85-115			
Beryllium	510	2.0	0.90	ug/l	500		102	85-115			
Boron	0.514	0.050	0.020	mg/l	0.500		103	85-115			
Calcium	2.65	0.10	0.050	mg/l	2.50		106	85-115			
Chromium	517	5.0	2.0	ug/l	500		103	85-115			
Iron	0.529	0.040	0.015	mg/l	0.500		106	85-115			
Magnesium	2.63	0.020	0.012	mg/l	2.50		105	85-115			
Nickel	513	10	2.0	ug/l	500		103	85-115			
Selenium	492	10	8.0	ug/l	500		98	85-115			
Silver	262	10	6.0	ug/l	250		105	85-115			
Vanadium	503	10	3.0	ug/l	500		101	85-115			
Zinc	507	20	6.0	ug/l	500		101	85-115			

#### **TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

### **METHOD BLANK/QC DATA**

### METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04079 Extracted: 02/04/08	_										
					_						
Matrix Spike Analyzed: 02/04/2008 (8B0	,					rce: IRB					
Aluminum	611	50	40	ug/l	500	94.8	103	70-130			
Arsenic	496	10	7.0	ug/l	500	ND	99	70-130			
Beryllium	503	2.0	0.90	ug/l	500	ND	101	70-130			
Boron	0.503	0.050	0.020	mg/l	0.500	ND	101	70-130			
Calcium	53.7	0.10	0.050	mg/l	2.50	52.8	38	70-130			MHA
Chromium	502	5.0	2.0	ug/l	500	2.15	100	70-130			
Iron	0.590	0.040	0.015	mg/l	0.500	0.0952	99	70-130			
Magnesium	9.71	0.020	0.012	mg/l	2.50	7.62	84	70-130			
Nickel	495	10	2.0	ug/l	500	ND	99	70-130			
Selenium	470	10	8.0	ug/l	500	ND	94	70-130			
Silver	256	10	6.0	ug/l	250	ND	103	70-130			
Vanadium	487	10	3.0	ug/l	500	ND	97	70-130			
Zinc	496	20	6.0	ug/l	500	9.15	97	70-130			
Matrix Spike Analyzed: 02/04/2008 (8B0	4079-MS2)				Sou	rce: IRB(	)155-01				
Aluminum	1190	50	40	ug/l	500	692	100	70-130			
Arsenic	509	10	7.0	ug/l	500	ND	102	70-130			
Beryllium	515	2.0	0.90	ug/l	500	ND	103	70-130			
Boron	0.503	0.050	0.020	mg/l	0.500	ND	101	70-130			
Calcium	8.02	0.10	0.050	mg/l	2.50	5.65	95	70-130			
Chromium	522	5.0	2.0	ug/l	500	ND	104	70-130			
Iron	0.872	0.040	0.015	mg/l	0.500	0.382	98	70-130			
Magnesium	3.33	0.020	0.012	mg/l	2.50	0.768	102	70-130			
Nickel	515	10	2.0	ug/l	500	ND	103	70-130			
Selenium	487	10	8.0	ug/l	500	ND	97	70-130			
Silver	260	10	6.0	ug/l	250	ND	104	70-130			
Vanadium	501	10	3.0	ug/l	500	ND	100	70-130			
Zinc	538	20	6.0	ug/l	500	32.2	101	70-130			

#### **TestAmerica** Irvine



MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Arcadia, CA 91007

618 Michillinda Avenue, Suite 200

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

.

#### **METHOD BLANK/QC DATA**

### METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04079 Extracted: 02/04/08	<u> </u>										
		G	IDD								
Matrix Spike Dup Analyzed: 02/04/2008						rce: IRB					
Aluminum	600	50	40	ug/l	500	94.8	101	70-130	2	20	
Arsenic	506	10	7.0	ug/l	500	ND	101	70-130	2	20	
Beryllium	516	2.0	0.90	ug/l	500	ND	103	70-130	3	20	
Boron	0.499	0.050	0.020	mg/l	0.500	ND	100	70-130	1	20	
Calcium	53.2	0.10	0.050	mg/l	2.50	52.8	19	70-130	1	20	MHA
Chromium	512	5.0	2.0	ug/l	500	2.15	102	70-130	2	20	
Iron	0.596	0.040	0.015	mg/l	0.500	0.0952	100	70-130	1	20	
Magnesium	9.64	0.020	0.012	mg/l	2.50	7.62	81	70-130	1	20	
Nickel	507	10	2.0	ug/l	500	ND	101	70-130	2	20	
Selenium	491	10	8.0	ug/l	500	ND	98	70-130	4	20	
Silver	256	10	6.0	ug/l	250	ND	102	70-130	0	20	
Vanadium	497	10	3.0	ug/l	500	ND	99	70-130	2	20	
Zinc	513	20	6.0	ug/l	500	9.15	101	70-130	3	20	
Batch: 8B04080 Extracted: 02/04/08											
Blank Analyzed: 02/04/2008-02/05/2008											
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Thallium	ND	1.0	0.20	ug/l							
LCS Analyzed: 02/04/2008-02/05/2008 (8	B04080-BS1)	1									
Antimony	84.2	2.0	0.20	ug/l	80.0		105	85-115			
Cadmium	83.7	1.0	0.11	ug/l	80.0		105	85-115			
Copper	83.0	2.0	0.75	ug/l	80.0		104	85-115			
Lead	83.3	1.0	0.30	ug/l	80.0		104	85-115			
Thallium	83.4	1.0	0.20	ug/l	80.0		104	85-115			

### **TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

# METHOD BLANK/QC DATA

# METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04080 Extracted: 02/04/08	_										
					C	IDD	.150.01				
Matrix Spike Analyzed: 02/04/2008-02/05						rce: IRB					
Antimony	82.0	2.0	0.20	ug/l	80.0	0.423	102	70-130			
Cadmium	80.7	1.0	0.11	ug/l	80.0	0.208	101	70-130			
Copper	78.5	2.0	0.75	ug/l	80.0	1.69	96	70-130			
Lead	76.9	1.0	0.30	ug/l	80.0	0.512	96	70-130			
Thallium	79.0	1.0	0.20	ug/l	80.0	ND	99	70-130			
Matrix Spike Analyzed: 02/04/2008-02/05	5/2008 (8B040	)80-MS2)			Sou	rce: IRB	0152-01				
Antimony	80.5	2.0	0.20	ug/l	80.0	1.58	99	70-130			
Cadmium	79.1	1.0	0.11	ug/l	80.0	0.164	99	70-130			
Copper	82.5	2.0	0.75	ug/l	80.0	4.75	97	70-130			
Lead	84.1	1.0	0.30	ug/l	80.0	6.01	98	70-130			
Thallium	80.7	1.0	0.20	ug/l	80.0	ND	101	70-130			
Matrix Spike Dup Analyzed: 02/04/2008-	02/05/2008 (8	3B04080-MS	D1)		Sou	rce: IRB	0150-01				
Antimony	83.6	2.0	0.20	ug/l	80.0	0.423	104	70-130	2	20	
Cadmium	81.2	1.0	0.11	ug/l	80.0	0.208	101	70-130	1	20	
Copper	79.1	2.0	0.75	ug/l	80.0	1.69	97	70-130	1	20	
Lead	78.6	1.0	0.30	ug/l	80.0	0.512	98	70-130	2	20	
Thallium	80.1	1.0	0.20	ug/l	80.0	ND	100	70-130	1	20	

**TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

# **DISSOLVED METALS**

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04144 Extracted: 02/04/08	_										
Diamly Amakurad, 02/05/2009 (9D04144 D)	[ <b>1</b> 21)										
Blank Analyzed: 02/05/2008 (8B04144-B)	,	2.0	0.20	л							
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Thallium	ND	1.0	0.20	ug/l							
LCS Analyzed: 02/05/2008 (8B04144-BS)	l)										
Antimony	84.8	2.0	0.20	ug/l	80.0		106	85-115			
Cadmium	82.9	1.0	0.11	ug/l	80.0		104	85-115			
Copper	80.0	2.0	0.75	ug/l	80.0		100	85-115			
Lead	80.0	1.0	0.30	ug/l	80.0		100	85-115			
Thallium	82.5	1.0	0.20	ug/l	80.0		103	85-115			
Matrix Spike Analyzed: 02/05/2008 (8B0	4144-MS1)				Sou	rce: IRB	0073-01				
Antimony	84.0	2.0	0.20	ug/l	80.0	0.305	105	70-130			
Cadmium	84.5	1.0	0.11	ug/l	80.0	0.221	105	70-130			
Copper	77.7	2.0	0.75	ug/l	80.0	1.70	95	70-130			
Lead	74.3	1.0	0.30	ug/l	80.0	ND	93	70-130			
Thallium	76.6	1.0	0.20	ug/l	80.0	ND	96	70-130			
Matrix Spike Dup Analyzed: 02/05/2008	(8B04144-M	SD1)			Sou	rce: IRB	0073-01				
Antimony	83.1	2.0	0.20	ug/l	80.0	0.305	103	70-130	1	20	
Cadmium	84.2	1.0	0.11	ug/l	80.0	0.221	105	70-130	0	20	
Copper	79.5	2.0	0.75	ug/l	80.0	1.70	97	70-130	2	20	
Lead	74.4	1.0	0.30	ug/l	80.0	ND	93	70-130	0	20	
Thallium	76.2	1.0	0.20	ug/l	80.0	ND	95	70-130	0	20	
	/0.2	1.0	0.20	ч <u>Б</u> / 1	00.0		,,,	/0 150	v	20	

**TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

# METHOD BLANK/QC DATA

# **DISSOLVED METALS**

Analyta	Result	Reporting Limit	MDL	Units	Spike Level	Source	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Analyte		Limit	MDL	Units	Level	Result	70KEU	Limits	KPD	Limit	Quanners
Batch: 8B05111 Extracted: 02/05/08	<u>}</u>										
Blank Analyzed: 02/06/2008 (8B05111-B	LK1)										
Aluminum	ND	50	40	ug/l							
Arsenic	ND	10	7.0	ug/l							
Beryllium	ND	2.0	0.90	ug/l							
Boron	ND	0.050	0.020	mg/l							
Calcium	ND	0.10	0.050	mg/l							
Chromium	ND	5.0	2.0	ug/l							
Iron	ND	0.040	0.015	mg/l							
Magnesium	ND	0.020	0.012	mg/l							
Nickel	ND	10	2.0	ug/l							
Selenium	ND	10	8.0	ug/l							
Hardness (as CaCO3)	ND	1.0	1.0	mg/l							
Silver	ND	10	6.0	ug/l							
Vanadium	ND	10	3.0	ug/l							
Zinc	ND	20	6.0	ug/l							
LCS Analyzed: 02/06/2008 (8B05111-BS	1)										
Aluminum	563	50	40	ug/l	500		113	85-115			
Arsenic	525	10	7.0	ug/l	500		105	85-115			
Beryllium	519	2.0	0.90	ug/l	500		104	85-115			
Boron	0.520	0.050	0.020	mg/l	0.500		104	85-115			
Calcium	2.67	0.10	0.050	mg/l	2.50		107	85-115			
Chromium	512	5.0	2.0	ug/l	500		102	85-115			
Iron	0.526	0.040	0.015	mg/l	0.500		105	85-115			
Magnesium	2.60	0.020	0.012	mg/l	2.50		104	85-115			
Nickel	515	10	2.0	ug/l	500		103	85-115			
Selenium	491	10	8.0	ug/l	500		98	85-115			
Silver	256	10	6.0	ug/l	250		102	85-115			
Vanadium	509	10	3.0	ug/l	500		102	85-115			
Zinc	509	20	6.0	ug/l	500		102	85-115			

# **TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

# **METHOD BLANK/QC DATA**

# **DISSOLVED METALS**

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B05111 Extracted: 02/05/08	_										
Matrix Spike Analyzed: 02/06/2008 (8B0	5111-MS1)				Sou	rce: IRB	0073-01				
Aluminum	564	50	40	ug/l	500	62.5	100	70-130			
Arsenic	519	10	7.0	ug/l	500	ND	104	70-130			
Beryllium	513	2.0	0.90	ug/l	500	ND	103	70-130			
Boron	0.549	0.050	0.020	mg/l	0.500	0.0311	104	70-130			
Calcium	58.9	0.10	0.050	mg/l	2.50	55.2	147	70-130			MHA
Chromium	502	5.0	2.0	ug/l	500	ND	100	70-130			
Iron	0.554	0.040	0.015	mg/l	0.500	0.0302	105	70-130			
Magnesium	10.3	0.020	0.012	mg/l	2.50	7.52	112	70-130			
Nickel	514	10	2.0	ug/l	500	11.5	101	70-130			
Selenium	486	10	8.0	ug/l	500	ND	97	70-130			
Silver	257	10	6.0	ug/l	250	ND	103	70-130			
Vanadium	507	10	3.0	ug/l	500	ND	101	70-130			
Zinc	509	20	6.0	ug/l	500	11.6	99	70-130			
Matrix Spike Dup Analyzed: 02/06/2008	(8B05111-M	SD1)			Sou	rce: IRB	0073-01				
Aluminum	587	50	40	ug/l	500	62.5	105	70-130	4	20	
Arsenic	541	10	7.0	ug/l	500	ND	108	70-130	4	20	
Beryllium	518	2.0	0.90	ug/l	500	ND	104	70-130	1	20	
Boron	0.554	0.050	0.020	mg/l	0.500	0.0311	105	70-130	1	20	
Calcium	58.4	0.10	0.050	mg/l	2.50	55.2	125	70-130	1	20	MHA
Chromium	517	5.0	2.0	ug/l	500	ND	103	70-130	3	20	
Iron	0.565	0.040	0.015	mg/l	0.500	0.0302	107	70-130	2	20	
Magnesium	10.3	0.020	0.012	mg/l	2.50	7.52	112	70-130	0	20	
Nickel	530	10	2.0	ug/l	500	11.5	104	70-130	3	20	
Selenium	503	10	8.0	ug/l	500	ND	101	70-130	3	20	
Silver	262	10	6.0	ug/l	250	ND	105	70-130	2	20	
Vanadium	518	10	3.0	ug/l	500	ND	104	70-130	2	20	
Zinc	528	20	6.0	ug/l	500	11.6	103	70-130	4	20	

# **TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

# METHOD BLANK/QC DATA

# **INORGANICS**

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04043 Extracted: 02/04/08	_										
	T TZ1)										
Blank Analyzed: 02/04/2008 (8B04043-B)	,	0.50	0.05	4							
Chloride	ND	0.50	0.25	mg/l							
Fluoride	ND	0.50	0.15	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Sulfate	ND	0.50	0.20	mg/l							
LCS Analyzed: 02/04/2008 (8B04043-BS)	1)										
Chloride	5.33	0.50	0.25	mg/l	5.00		107	90-110			
Fluoride	5.14	0.50	0.15	mg/l	5.00		103	90-110			
Sulfate	10.6	0.50	0.20	mg/l	10.0		106	90-110			<i>M-3</i>
Matrix Spike Analyzed: 02/04/2008 (8B0	4043-MS1)				Sou	rce: IRB	)146-01				
Chloride	27.0	0.50	0.25	mg/l	5.00	21.6	109	80-120			
Fluoride	5.30	0.50	0.15	mg/l	5.00	0.288	100	80-120			
Matrix Spike Analyzed: 02/04/2008 (8B0	4043-MS2)				Sou	rce: IRB	)156-01				
Chloride	27.7	0.50	0.25	mg/l	5.00	22.9	96	80-120			
Fluoride	5.01	0.50	0.15	mg/l	5.00	0.306	94	80-120			
Matrix Spike Dup Analyzed: 02/04/2008	(8B04043-M	SD1)			Sou	rce: IRB	)146-01				
Chloride	27.2	0.50	0.25	mg/l	5.00	21.6	112	80-120	1	20	
Fluoride	5.46	0.50	0.15	mg/l	5.00	0.288	103	80-120	3	20	
Batch: 8B04112 Extracted: 02/04/08	_										
	_										
Blank Analyzed: 02/04/2008 (8B04112-B	LK1)										
Total Cyanide	ND	5.0	2.2	ug/l							

**TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

# METHOD BLANK/QC DATA

# **INORGANICS**

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04112 Extracted: 02/04/08	-										
LCS Analyzed: 02/04/2008 (8B04112-BS1	,										
Total Cyanide	184	5.0	2.2	ug/l	200		92	90-110			
Matrix Spike Analyzed: 02/04/2008 (8B04	4112-MS1)				Sou	rce: IRA	3072-06				
Total Cyanide	189	5.0	2.2	ug/l	200	ND	94	70-115			
Matrix Spike Dup Analyzed: 02/04/2008	(8B04112-M	SD1)			Sou	rce: IRA	3072-06				
Total Cyanide	189	5.0	2.2	ug/l	200	ND	95	70-115	0	15	
Batch: 8B04128 Extracted: 02/04/08	-										
Blank Analyzed: 02/04/2008 (8B04128-Bl	L <b>K1</b> )										
Total Suspended Solids	ND	10	10	mg/l							
LCS Analyzed: 02/04/2008 (8B04128-BS1	l)										
Total Suspended Solids	971	10	10	mg/l	1000		97	85-115			
Duplicate Analyzed: 02/04/2008 (8B04128	8-DUP1)				Sou	rce: IRB	0070-02				
Total Suspended Solids	ND	10	10	mg/l		ND				10	
Batch: 8B07122 Extracted: 02/07/08	-										
Blank Analyzed: 02/07/2008 (8B07122-Bl	L <b>K1</b> )										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 02/07/2008 (8B07122-BS1	<i>,</i>										
Total Dissolved Solids	990	10	10	mg/l	1000		99	90-110			

**TestAmerica** Irvine



MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

# METHOD BLANK/QC DATA

# **INORGANICS**

Analyte <u>Batch: 8B07122 Extracted: 02/07/08</u>	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Duplicate Analyzed: 02/07/2008 (8B0712	2-DUP1)				Sou	rce: IRB(	)146-01				
Total Dissolved Solids	296	10	10	mg/l		292			1	10	
Batch: 8B12073 Extracted: 02/12/08	_										
Blank Analyzed: 02/12/2008 (8B12073-B	L <b>K</b> 1)										
Perchlorate	ND	1.0	0.65	ug/l							
LCS Analyzed: 02/12/2008 (8B12073-BS	D										
Perchlorate	55.4	1.0	0.65	ug/l	50.0		111	85-115			
Matrix Spike Analyzed: 02/12/2008 (8B1	2073-MS1)				Sou	rce: IRB(	)150-01				
Perchlorate	50.5	1.0	0.65	ug/l	50.0	ND	101	80-120			
Matrix Spike Dup Analyzed: 02/12/2008	(8B12073-MS	D1)			Sou	rce: IRB(	)150-01				
Perchlorate	50.8	1.0	0.65	ug/l	50.0	ND	102	80-120	1	20	
Batch: 8B12074 Extracted: 02/12/08	_										
Blank Analyzed: 02/12/2008 (8B12074-B	LK1)										
Hexane Extractable Material (Oil &	ND	5.0	1.4	mg/l							
Grease)	D.										MOID 1
LCS Analyzed: 02/12/2008 (8B12074-BS)	20.0	5.0	1.4	mg/l	20.2		99	78-114			MNR1
Hexane Extractable Material (Oil & Grease)	20.0	3.0	1.4	mg/1	20.2		99	/8-114			
LCS Dup Analyzed: 02/12/2008 (8B12074	4-BSD1)										
Hexane Extractable Material (Oil & Grease)	18.5	5.0	1.4	mg/l	20.2		92	78-114	8	11	

# **TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

# ORGANIC COMPOUNDS BY GC/MS (EPA 525.2)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: C8B0516 Extracted: 02/05/0	8										
Blank Analyzed: 02/07/2008 (C8B0516-	BLK1)										
Chlorpyrifos	ND	1.0	0.10	ug/l							
Diazinon	ND	0.25	0.24	ug/l							
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.76			ug/l	5.00		95	70-130			
Surrogate: Triphenylphosphate	5.79			ug/l	5.00		116	70-130			
Surrogate: Perylene-d12	5.00			ug/l	5.00		100	70-130			
LCS Analyzed: 02/07/2008 (C8B0516-B	S1)										
Chlorpyrifos	5.48	1.0	0.10	ug/l	5.00		110	70-130			
Diazinon	3.82	0.25	0.24	ug/l	5.00		76	70-130			
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.66			ug/l	5.00		93	70-130			
Surrogate: Triphenylphosphate	5.66			ug/l	5.00		113	70-130			
Surrogate: Perylene-d12	4.87			ug/l	5.00		97	70-130			
LCS Dup Analyzed: 02/07/2008 (C8B05	16-BSD1)										
Chlorpyrifos	4.90	1.0	0.10	ug/l	5.00		98	70-130	11	10	R-7
Diazinon	3.82	0.25	0.24	ug/l	5.00		76	70-130	0	50	
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.50			ug/l	5.00		90	70-130			
Surrogate: Triphenylphosphate	5.52			ug/l	5.00		110	70-130			
Surrogate: Perylene-d12	4.79			ug/l	5.00		96	70-130			

**TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

# **METHOD BLANK/QC DATA**

# Metals by EPA 200 Series Methods

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: W8B0171 Extracted: 02/06/0	8										
Blank Analyzed: 02/07/2008 (W8B0171-	BLK1)										
Mercury, Dissolved	ND	0.20	0.050	ug/l							
Mercury, Total	ND	0.20	0.050	ug/l							
LCS Analyzed: 02/07/2008 (W8B0171-B	S1)										
Mercury, Dissolved	1.04	0.20	0.050	ug/l	1.00		104	85-115			
Mercury, Total	1.04	0.20	0.050	ug/l	1.00		104	85-115			
Matrix Spike Analyzed: 02/07/2008 (W8	B0171-MS1)				Sou	rce: 8020	543-01				
Mercury, Dissolved	1.02	0.20	0.050	ug/l	1.00	ND	102	70-130			
Mercury, Total	1.02	0.20	0.050	ug/l	1.00	ND	102	70-130			
Matrix Spike Analyzed: 02/07/2008 (W8	B0171-MS2)				Sou	rce: 8020	544-01				
Mercury, Dissolved	1.05	0.20	0.050	ug/l	1.00	ND	105	70-130			
Mercury, Total	1.05	0.20	0.050	ug/l	1.00	ND	105	70-130			
Matrix Spike Dup Analyzed: 02/07/2008	(W8B0171-M	SD1)			Sou	rce: 8020	543-01				
Mercury, Dissolved	1.04	0.20	0.050	ug/l	1.00	ND	104	70-130	2	20	
Mercury, Total	1.04	0.20	0.050	ug/l	1.00	ND	104	70-130	2	20	
Matrix Spike Dup Analyzed: 02/07/2008	(W8B0171-M	SD2)			Sou	rce: 8020	544-01				
Mercury, Dissolved	1.05	0.20	0.050	ug/l	1.00	ND	105	70-130	0	20	
Mercury, Total	1.05	0.20	0.050	ug/l	1.00	ND	105	70-130	0	20	

**TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

# **Compliance Check**

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
IRB0149-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	2.10	4.8	15
IRB0149-01	Antimony-200.8	Antimony	ug/l	0.72	2.0	6
IRB0149-01	Boron-200.7	Boron	mg/l	0.021	0.050	1
IRB0149-01	Cadmium-200.8	Cadmium	ug/l	0.070	1.0	4
IRB0149-01	Chloride - 300.0	Chloride	mg/l	8.00	0.50	150
IRB0149-01	Copper-200.8	Copper	ug/l	2.91	2.0	14
IRB0149-01	Fluoride-300.0	Fluoride	mg/l	0.24	0.50	1.6
IRB0149-01	Hg_w 245.1	Mercury, Total	ug/l	0.068	0.20	0.2
IRB0149-01	Lead-200.8	Lead	ug/l	1.42	1.0	5.2
IRB0149-01	Nickel-200.7	Nickel	ug/l	1.42	10	100
IRB0149-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	0.59	0.26	10
IRB0149-01	Perchlorate 314.0 (1ppb_IC6)	Perchlorate	ug/l	0	4.0	6
IRB0149-01	Sulfate-300.0	Sulfate	mg/l	9.45	0.50	250
IRB0149-01	TDS - SM 2540C	Total Dissolved Solids	mg/l	128	10	850
IRB0149-01	Thallium-200.8	Thallium	ug/l	0.037	1.0	2

# **Compliance Check**

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit

1.

0

# <u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

J

Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

# **DATA QUALIFIERS AND DEFINITIONS**

Ja Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability. L6 Per the EPA methods, benzidine is known to be subject to oxidative losses during solvent concentration. **M1** The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS). **M2** The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS). M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS). MHA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information. See Blank Spike (LCS). MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate. Р The sample, as received, was not preserved in accordance to the referenced analytical method. pH = 7pН R The RPD exceeded the method control limit due to sample matrix effects. The individual analyte QA/QC recoveries, however, were within acceptance limits. The RPD exceeded the acceptance limit due to sample matrix effects. R-3 **R-7** LFB/LFBD RPD exceeded the acceptance limit. Recovery met acceptance criteria.

Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

- ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
- **RPD** Relative Percent Difference

# **ADDITIONAL COMMENTS**

## For 1,2-Diphenylhydrazine:

The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

**Certification Summary** 

# **TestAmerica** Irvine

Method	Matrix	Nelac	California
[CALC]	Water		
EPA 160.2	Water	Х	Х
EPA 1664A	Water		
EPA 200.7-Diss	Water	Х	Х
EPA 200.7	Water	Х	Х
EPA 200.8-Diss	Water	Х	Х
EPA 200.8	Water	Х	Х
EPA 300.0	Water	Х	Х
EPA 314.0	Water	Х	Х
EPA 335.2	Water	Х	Х
EPA 608	Water	Х	Х
EPA 624	Water	Х	Х
EPA 625	Water	Х	Х
SM2340B	Water	Х	Х
SM2540C	Water	Х	

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

# **Subcontracted Laboratories**

# Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-Acute 96hr Samples: IRB0149-01

# **TestAmerica** Irvine

# <u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 004

Report Number: IRB0149

Sampled: 02/03/08 Received: 02/03/08

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

# **Eberline Services**

2030 Wright Avenue - Richmond, CA 94804

Analysis Performed: Gamma Spec Samples: IRB0149-01

- Analysis Performed: Gross Alpha Samples: IRB0149-01
- Analysis Performed: Gross Beta Samples: IRB0149-01
- Analysis Performed: Radium, Combined Samples: IRB0149-01
- Analysis Performed: Strontium 90 Samples: IRB0149-01
- Analysis Performed: Tritium Samples: IRB0149-01
- Analysis Performed: Uranium, Combined Samples: IRB0149-01

TestAmerica - Ontario, CA California Cert #1169, Arizona Cert #AZ0062, Nevada Cert #CA-242

1014 E. Cooley Drive, Suite AB - Colton, CA 92324

Method Performed: EPA 525.2 Samples: IRB0149-01

Vista Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413 1104 Windfield Way - El Dorado Hills, CA 95762 Analysis Performed: 1613-Dioxin-HR-Alta Samples: IRB0149-01

# Weck Laboratories, Inc

14859 E. Clark Avenue - City of Industry, CA 91745 Method Performed: EPA 245.1 Samples: IRB0149-01

# **TestAmerica** Irvine

12/20/0
Version
ica
ē
An
est
⊢

# CHAIN OF CLISTODY FORM

F. P. W. C. Page 1 of 1		· ·	Toxicity Held readings V, TI, Temp = 0.55	₩e B, B,	'бн рәл	203 /! + loss ;0ss	anide tal Di I, Cu Al, ^A	Ac VJ Cy Cd Cd AC										Unfiltered and unpreserved analysis	×	×		X receipt at lab			Turn around Time: (check) 24 Hours5 Days	48 Hours 10 Davs		rtegrity: (che
	ANALYSIS REQUIRED	١E	muibeЯ mu 751	L-S int 90( 0.( 0.( 0.( 0.( 0.( 0.( 0.( 0.( 0.( 0	CBs (900 (900 (900 (900 (900 (10 (10 (10 (10 (10) (10) (10) (10) (	es/P rifos 5r-90 8r-90 8d F 8d 7 8d 7 8d 7 94.0) K-4 8d 7 8d 7 8d 7 8d 7 8d 7 8d 7 8d 7 8d 7	sticida lorpyi ta(90), ta(90), ta(00), 0.0.0, 8 (90) 8 (90) 8 (90) 8 (90) 8 (90) 8 (90) 8 (90)	(6) (6) (70 (6) (6) (6) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7									×	×							21368 1405			125 (8125
٨			dd + sa			( <b>†</b> 29)	ST , S	ΟΛ ΟΛ						×	×	×							×	×	Date/Time:	Date/Time:		Date/Time:
CUSTODY FORM			-HEW) Ieuers)	99 6uc 00 00 10	Pb, F , 4 P , Ca all cc	ON ' esea pue se se !N 'I 'n)	), b⊃ Fe, A rdnes s9nb1	CI. ⁴ 0!! 1C H9! 2P ⁴	×	×	×	×	×												MERCHAM.	1 By		
		·•						Bottle #	1A	1B	2A, 2B	3A, 3B	4A, 4B	5A, 5B	6A, 6B, 6C	7A, 7B, 7C	8A, 8B	98 98	10A, 10B	11A, 11B	12	13	14A, 14B, 14C	15A, 15B, 15C	Received	N N		Received By
CHAIN OF		Boeing-SSFL NPDES	Annual Outfall 004 Stormwater at SRE-1		imber: -6691	ber:	-6515	Preservative	HNO ₃	HNO3	None	HCI	None	None	HCI	None	None	None None	None	None	NaOH	None	Ю	None	Sos		ZES/	
20	Project:	Boeing-S	Annual O Stormwat	ī	(626) 568-6691	Fax Number:	(626) 568-6515	Sampling Date/Times													D.	×.			Date/Time:	Date/Time:	HEEK .	Date/Time:
12/20/0			00 oak	=	Kelly			# of Cont.	-	-	7	2	8	7	m	<i>с</i>	2		~	2	-	-	3	6	00		1	
<b>a</b> Version 1	SS:		nue, Suite 2 :: Joseph Do		Bronwyn I	<b>ノ・</b> フ ゼ ハ・・ シ		Container	1L Poly	1L Poly	1L Amber	1L Amber	500 ml Polv	500 ml Polv	VOAs	VOAs	1L Amber	2.5 Gal Cube 500 ml Amber	1L Amber	1 Gal Poly	500ml Poly	1L Poly	VOAs	VOAs	2-2		ert	
eric	∋/Addr€	adia	da Aver 91007 Contact		ager:			Sample	W	3	3	3	3	3	3	N	3	3	3	3	N	Ν	3	3	A A		100	I By
Test America version 12/20/07	Client Name/Address:	MWH-Arcadia	618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Test America Contact: Joseph Doak		Project Manager: Bronwyn Kelly	Sampler:			Outfall 004	1.	all 004		Outfall 004	Outfall 004	Outfall 004	Outfall 004	Outfall 004	Outfall 004	Outfall 004	Outfall 004	Outfall 004	Outfall 004	Trip Blanks	Trip Blanks	Relinquished By	Relinquished By	HAY	Relinquished By

# LABORATORY REPORT



Date: February 9, 2008

**Client:** Test America - Irvine 17461 Derian Ave., Suite 100 Irvine, CA 92614 Attn: Joseph Doak

"dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003 (805) 650-0546 FAX (805) 650-0756 CA DOHS ELAP Cert. No.: 1775

- Laboratory No.: A-08020405-001 Sample ID.: IRB0149-01 (Outfall 004)
- **Sample Control:** The sample was received by ATL in a chilled state, within the recommended hold time and with the chain of custody record attached.

Date Sampled:	02/03/08
Date Received:	02/04/08
Temp. Received:	4°C
Chlorine (TRC):	0.0 mg/l
Date Tested:	02/04/08 to 02/08/08

**Sample Analysis:** The following analyses were performed on your sample:

Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0).

Attached are the test data generated from the analysis of your sample.

**Result Summary:** 

Sample ID. IRB0149-01 Results 100% Survival (TUa = 0.0)

**Quality Control:** 

Reviewed and approved by:

Joseph A. LeMay

Laboratory Director

# FATHEAD MINNOW PERCENT SURVIVAL TEST EPA Method 2000.0



# Lab No.: A-08020405-001 Client/ID: TestAmerica - IRB0149-01 (Outfall 004)

# Start Date: 02/04/2008

# TEST SUMMARY

TEST DATA

Species: Pimephales promelas. Age:  $(\mathcal{U}_{1-14})$  days. Regulations: NPDES. Test solution volume: 250 ml. Feeding: prior to renewal at 48 hrs. Number of replicates: 2. Dilution water: Moderately hard reconstituted water. Photoperiod: 16/8 hrs light/dark.

Source: In-laboratory Culture. Test type: Static-Renewal. Test Protocol: EPA-821-R-02-012. Endpoints: Percent Survival at 96 hrs. Test chamber: 600 ml beakers. Temperature: 20 +/- 1°C. Number of fish per chamber: 10. QA/QC Batch No.: RT-080204.

		L .	LOI DAIP	<b>L</b>			
		°C	DO	pН	# D	Dead	Analyst & Time
		C		рп	А	В	of Readings
INITIAL	Control	20-1	8.6	7-8	0	0	2
INITIAL	100%	19-4	10.0	7.2	0	0	1402
24 Hr	Control	19.3	7.8	2.5	0	0	A
24 m	100%	19.2	8.0	7.4	$\mathcal{O}$	0	1330
48 Hr	Control	19.5	7.6	2.7	0	10	Jan
40.111	100%	19.4	7.5	7.5	$\partial$	$\partial$	1400
Renewal	Control	20.5	8.8	7.8	$\overline{O}$	0	je-
Kellewal	100%	19.2	11.9	7.3	0	0	1400
72 Hr	Control	19.3	8.0	7.4	0	0	h
72 III	100%	19.5	8.1	24	0	0	h 1200
96 Hr	Control	19.5	8.2	7.3	0	$\mathcal{O}$	h
90 111	100%	19.7	8.1	7.4	0	Õ	1300
DO: <u>{</u>	rived: Chlorine: 0.0 mg/l; Alkalinity: <u>4</u>	<u>~_</u> mg/l; Ha	rdness: 🗤 🏻	mg/l; NH	3-N: 0-2	2mg/l	р: 4°С;

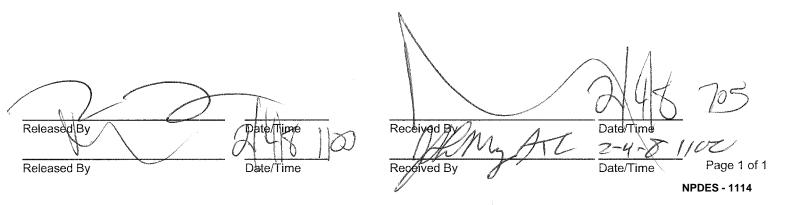
DO: <u>[0-0</u> mg/l; Alkalinity: <u>4</u> mg/l; Hardness: <u>4</u> mg/l; NH₃-N: <u>0-2</u> mg/l. Sample aerated moderately (approx. 500 ml/min) to raise or lower DO? Yes / No. Control: Alkalinity: <u>6</u> [mg/l; Hardness: <u>4</u> [mg/l; Conductivity: <u>240</u> umho. Test solution aerated (not to exceed 100 bubbles/min) to maintain DO >4.0 mg/l? Yes / No. Sample used for renewal is the original sample kept at 0-6°C with minimal headspace. Dissolved Oxygen (DO) readings in mg/l O₂.

RESULTS

Percent Survival In:

Control: 100 %

100% Sample: <u>/00</u>%


# SUBCONTRACT ORDER

TestAmerica Irvine

IRB0149

SENDING LABORATORY:	RECEIVING LABORATORY:
TestAmerica Irvine	Aquatic Testing Laboratories-SUB
17461 Derian Avenue. Suite 100	4350 Transport Street, Unit 107
Irvine, CA 92614	Ventura, CA 93003
Phone: (949) 261-1022	Phone :(805) 650-0546
Fax: (949) 260-3297	Fax: (805) 650-0756
Project Manager: Joseph Doak	Project Location: California
	Receipt Temperature: $M \ C$ Ice: $Y / N$

Analysis	Units	Due	Expires	Comments
Sample ID: IRB0149-01	Water		Sampled: 02/03/08 13:45	
Bioassay-Acute 96hr	% Survival	02/13/08	02/05/08 01:45	FH minnow, EPA/821-R02-012, Sub to AgTox Labs
Level 4 Data Package - Out	t N/A	02/13/08	03/02/08 13:45	
Containers Supplied: 1 gal Poly (W)	1 gal Poly (X)			





# REFERENCE TOXICANT DATA

# FATHEAD MINNOW ACUTE Method 2000.0 Reference Toxicant - SDS



# QA/QC Batch No.: RT-080204

Species: *Pimephales promel*as. Age: <u>14</u> days old. Regulations: NPDES. Test chamber volume: 250 ml. Feeding: Prior to renewal at 48 hrs. Temperature: 20 +/- 1°C. Number of replicates: 2. Dilution water: MHSF.

# **\TEST SUMMARY**

Source: In-lab culture. Test type: Static-Renewal. Test Protocol: EPA-821-R-02-012. Endpoints: LC50 at 96 hrs. Test chamber: 600 ml glass beakers. Aeration: None. Number of organisms per chamber: 10. Photoperiod: 16/8 hrs light/dark.

TEST DATA

		INITIAL	,			24 Hr			48 Hr				48 Hr				
Date/Time:	2-4	-8/	430	2-5	-08		133	0	2-6-0	08		143	$\sim$				
Analyst:		h				R					2						
	°C	DO	pН	°C	DO	pН	# D	ead	°C	DO	pН	# E	Dead				
						P**	A	В		50	P**	А	В				
Control	19.8	8.4	7-4	19.1	7.9	7.5	$\cup$	0	19,4	7.2	7.6	0	0				
1.0 mg/l	19.9	8.4	7.5	19.1	7.8	7.4		0	19,4	69	7.6	0	0				
2.0 mg/l	16.5	8.5	7.5	19.0	2.6	2.4	õ	0	19.4	6.6	7.5	$\mathcal{D}$	0				
4.0 mg/l	200	8.5	7-5	19.0	8.0	7.4	0	1	19.4	6.7	7.5	2	0				
8.0 mg/l	20.0	8.6	7-5	19.1	8.0	7.4	10	10	้ ซึมสตรรรษต่อน-าา -	Entración (d.).	With spectra and a	Waggelater					
	R	ENEWA	L	72 Hr					96 Hr								
Date/Time:	2-6.	05	1430	2-7-1	08		16	lov	2-8	-08			1300				
Analyst:		Â.	y-		1	2			- An-								
	°C	DO	pН	°C	DO	pН	# D	ead	°C	DO	pН	# E	Dead				
							A	В				A	В				
Control	20.3	8.9	7.8	19.4	2.5	7.7	$\cup$	0	19.2	8.0	7.5	0	$\Box$				
1.0 mg/l	20.3	8.9	2.8	19.3	7.5	7.6	0	0	19.2	8.0	7.5	0	0				
2.0 mg/l	20:3	8.8	7.8	19.3	7.7	7.5	$\square$	0	19.3	8.1	7.4	0	$\square$				
4.0 mg/l	20.3	8.8	7.8	19.3	7.6	2.5	0	$\Box$	19.3	8.2	7.4	0	1				
8.0 mg/l	bethyleting .	AMAZON ⁽²⁾	-10 ¹⁰ 201-12	Charge and a second	*Materia e	-Section of the Party of the Pa	Margaret	Allenov		hamaana,	angunati in lang ya	, ,	Rangemen				
Comments:	Contro SDS:																
Concenti	SDS: Alkalinity: <u>_6</u> <u>4</u> mg/l; Hardness: <u>_6</u> <u>7</u> mg/l; Conductivity: <u>7</u> <u>6</u> umho. oncentration-response relationship acceptable? (see attached computer analysis): (Yes (response curve normal) No (dose interrupted indicated or non-normal)																

			Acute Fish Test-96	6 Hr Survival	
Start Date:	2/4/2008 14:30	Test ID:	RT-080204	Sample ID:	REF-Ref Toxicant
End Date:	2/8/2008 13:00	Lab ID:	CAATL-Aquatic Testing Lab	s Sample Type:	SDS-Sodium dodecyl sulfate
Sample Date:	2/4/2008	Protocol:	ACUTE-EPA-821-R-02-012	Test Species:	PP-Pimephales promelas
Comments:					

Conc-mg/L	1	2	
D-Control	1.0000	1.0000	
1	1.0000	1.0000	
2	1.0000	1.0000	
4	0.8000	0.8000	
8	0.0000	0.0000	

			Tra	ansform:	Arcsin Sc	uare Roof		Number	Total
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Resp	Number
D-Control	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
1	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
2	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
4	0.8000	0.8000	1.1071	1.1071	1.1071	0.000	2	4	20
8	0.0000	0.0000	0.1588	0.1588	0.1588	0.000	2	20	20

Statistic

0.3 0.2 0.1 0.0

1

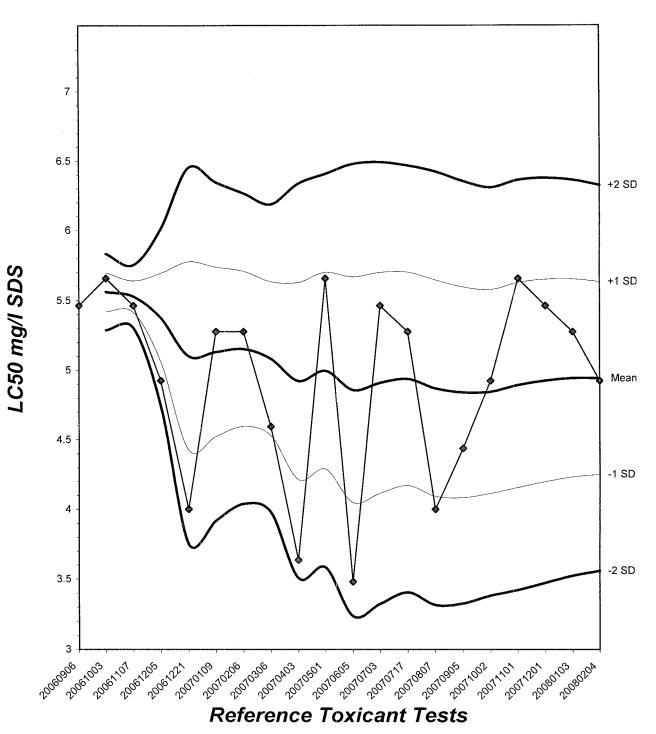
Critical

Dose mg/L

Skew

Kurt

Auxiliary Tests Normality of the data set cannot be confirmed Equality of variance cannot be confirmed


				Trimmed Spearman-Karber	
Trim Level	EC50	95%	CL	-	
0.0%	4.9246	4.3503	5.5747		
5.0%	5.0215	4.3576	5.7866		
10.0%	5.1038	4.2923	6.0686	1.0 <del></del>	••••••••••••••••••••••••••••••••••••••
20.0%	5.1874	4.7084	5.7150	0.9 -	/
Auto-0.0%	4.9246	4.3503	5.5747	·	/
				0.8 -	
				0.7	
				<b>8</b> 0.6	
				9.0.6 0.5 9 0.4	



10

# Fathead Minnow Acute Laboratory Control Chart

CV% = 14



# **TEST ORGANISM LOG**



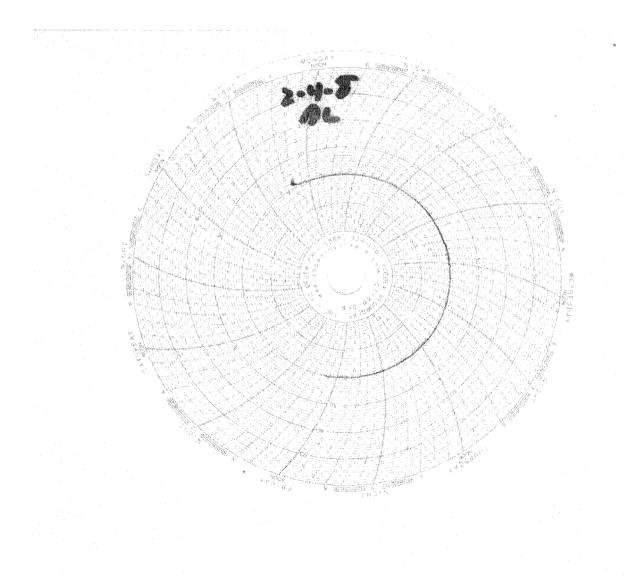
# FATHEAD MINNOW - LARVAL (Pimephales promelas)

QA/QC BATCH NO.: RT-080204
SOURCE: In-Lab Culture
DATE HATCHED: 01-21-08
APPROXIMATE QUANTITY: 400
GENERAL APPEARANCE:
# MORTALITIES 48 HOURS PRIOR TO TO USE IN TESTING:
DATE USED IN LAB: $2/4/08$
AVERAGE FISH WEIGHT: 0.000 gm

# TEST LOADING LIMITS: 0.65 gm/liter

200 ml test solution volume = 0.013 gm mean fish weight limit 250 ml test solution volume = 0.016 gm mean fish weight limit

# **ACCLIMATION WATER QUALITY:**


Temp.: <u>198</u> °C	pH: <u>74</u> Amn	nonia: <u>/ / /</u> mg/l NH ₃ -N
DO: $\underline{\mathcal{T}}, \underline{\mathcal{T}}$ mg/l	Alkalinity: <u>6</u> mg/l	Hardness: <u>96</u> mg/l

<b>READINGS RECORDED BY:</b>	Mony	DATE:	2-4-8



# Laboratory Temperature Chart

# *QA/QC Batch No: RT-080202 Date Tested: 02/02/08 to 02/06/08 Acceptable Range: 20+/- 1°C*





February 23, 2008

Vista Project I.D.: 30227

Mr. Joseph Doak Test America-Irvine, CA 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Mr. Doak,

Enclosed are the results for the one aqueous sample received at Vista Analytical Laboratory on February 05, 2008 under your Project Name "IRB0149". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Vista's current certifications, and copies of the raw data (if requested).

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Wantho Marc-

Martha M. Maier Laboratory Director



Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.



Page 1 of 283

# Section I: Sample Inventory Report Date Received: 2/5/2008

<u>Vista Lab. ID</u>

Client Sample ID

30227-001

IRB0149-01

**SECTION II** 

Method Blan	ık									EPA Method 1613
Matrix:	Aqueous		QC Batch No.:	99	953	Lab	Sample:	0-MB001		
Sample Size:	1.00 L		Date Extracted	: 15	5-Feb-08	Date	Analyzed DB-5:	19-Feb-08	Date An	alyzed DB-225: NA
Analyte	Conc. (	ug/L)	DL ^a	EMPC ^b	Qualifiers		Labeled Standa	rd	%R	LCL-UCL ^d Qualifiers
2,3,7,8-TCDD		ND	0.000000705			IS	13C-2,3,7,8-TCI	DD	82.9	25 - 164
1,2,3,7,8-PeCE	DD	ND	0.000000681				13C-1,2,3,7,8-Pe	eCDD	75.4	25 - 181
1,2,3,4,7,8-Hx	CDD	ND	0.00000165				13C-1,2,3,4,7,8-	HxCDD	81.7	32 - 141
1,2,3,6,7,8-Hx		ND	0.00000174				13C-1,2,3,6,7,8-	HxCDD	83.0	28 - 130
1,2,3,7,8,9-Hx		ND	0.00000162				13C-1,2,3,4,6,7,	8-HpCDD	85.6	23 - 140
1,2,3,4,6,7,8-H		ND	0.00000511				13C-OCDD	-	73.4	17 - 157
OCDD	-	0.00000899			J		13C-2,3,7,8-TCI	DF	88.8	24 - 169
2,3,7,8-TCDF		ND	0.000000647				13C-1,2,3,7,8-Pe	eCDF	74.4	24 - 185
1,2,3,7,8-PeCE	OF	ND	0.000000731				13C-2,3,4,7,8-Pe	eCDF	77.1	21 - 178
2,3,4,7,8-PeCE		ND	0.000000752				13C-1,2,3,4,7,8-	HxCDF	75.8	26 - 152
1,2,3,4,7,8-Hx		ND	0.000000943				13C-1,2,3,6,7,8-	HxCDF	77.6	26 - 123
1,2,3,6,7,8-Hx	CDF	ND	0.000000974				13C-2,3,4,6,7,8-	HxCDF	78.0	28 - 136
2,3,4,6,7,8-Hx		ND	0.00000105				13C-1,2,3,7,8,9-	HxCDF	81.9	29 - 147
1,2,3,7,8,9-Hx	CDF	ND	0.00000136				13C-1,2,3,4,6,7,	8-HpCDF	75.7	28 - 143
1,2,3,4,6,7,8-H		ND	0.00000333				13C-1,2,3,4,7,8,9	9-HpCDF	82.1	26 - 138
1,2,3,4,7,8,9-H	-	ND	0.00000202				13C-OCDF		76.2	17 - 157
OCDF	-	ND	0.00000591			CRS	37Cl-2,3,7,8-TC	DD	85.1	35 - 197
Totals						Foot	notes			
Total TCDD		ND	0.000000705			a. San	ple specific estimated	detection limit.		
Total PeCDD		ND	0.00000122			b. Est	mated maximum possi	ble concentration.		
Total HxCDD		ND	0.00000167			c. Me	hod detection limit.			
Total HpCDD		ND	0.00000511			d. Lov	ver control limit - upper	r control limit.		
Total TCDF		ND	0.000000647							
Total PeCDF		ND	0.000000742							
Total HxCDF		ND	0.00000107							
Total HpCDF		ND	0.00000335							

Analyst: MAS

OPR Results					EP	A Method 1	.613
Matrix: Aqueous Sample Size: 1.00 L		QC Batch No.: Date Extracted:	9953 15-Feb-08	Lab Sample:0-OPR001Date Analyzed DB-5:18-Feb-08	Date Analy	zed DB-225:	NA
Analyte	Spike Conc.	Conc. (ng/mL)	<b>OPR</b> Limits	Labeled Standard	%R	LCL-UCL	Qualifier
2,3,7,8-TCDD	10.0	9.20	6.7 - 15.8	<u>IS</u> 13C-2,3,7,8-TCDD	85.8	25 - 164	
1,2,3,7,8-PeCDD	50.0	46.7	35 - 71	13C-1,2,3,7,8-PeCDD	77.1	25 - 181	
1,2,3,4,7,8-HxCDD	50.0	47.0	35 - 82	13C-1,2,3,4,7,8-HxCDD	82.8	32 - 141	
1,2,3,6,7,8-HxCDD	50.0	47.2	38 - 67	13C-1,2,3,6,7,8-HxCDD	84.0	28 - 130	
1,2,3,7,8,9-HxCDD	50.0	47.7	32 - 81	13C-1,2,3,4,6,7,8-HpCDD	88.0	23 - 140	
1,2,3,4,6,7,8-HpCDD	50.0	46.1	35 - 70	13C-OCDD	78.1	17 - 157	
OCDD	100	94.4	78 - 144	13C-2,3,7,8-TCDF	90.2	24 - 169	
2,3,7,8-TCDF	10.0	8.71	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	76.3	24 - 185	
1,2,3,7,8-PeCDF	50.0	45.3	40 - 67	13C-2,3,4,7,8-PeCDF	79.4	21 - 178	
2,3,4,7,8-PeCDF	50.0	45.1	34 - 80	13C-1,2,3,4,7,8-HxCDF	78.9	26 - 152	
1,2,3,4,7,8-HxCDF	50.0	46.8	36 - 67	13C-1,2,3,6,7,8-HxCDF	80.4	26 - 123	
1,2,3,6,7,8-HxCDF	50.0	46.8	42 - 65	13C-2,3,4,6,7,8-HxCDF	79.1	28 - 136	
2,3,4,6,7,8-HxCDF	50.0	47.3	35 - 78	13C-1,2,3,7,8,9-HxCDF	84.1	29 - 147	
1,2,3,7,8,9-HxCDF	50.0	46.1	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	78.2	28 - 143	
1,2,3,4,6,7,8-HpCDF	50.0	46.8	41 - 61	13C-1,2,3,4,7,8,9-HpCDF	85.9	26 - 138	
1,2,3,4,7,8,9-HpCDF	50.0	46.7	39 - 69	13C-OCDF	82.2	17 - 157	
OCDF	100	93.5	63 - 170	<u>CRS</u> 37Cl-2,3,7,8-TCDD	88.4	35 - 197	

Analyst: MAS

Approved By: William J. Luksemburg 22-Feb-2008 15:48

Sample ID: IRB0	149-01								EPA N	Aethod 1613
Client Data         Name:       Test A         Project:       IRB0         Date Collected:       3-Fet         Time Collected:       1345			Sample Data Matrix: Sample Size:	Aqueous 0.976 L	Lab QC	<mark>oratory Data</mark> Sample: Batch No.: Analyzed DB-5:	30227-001 9953 19-Feb-08	Date Re Date Ex Date An		5-Feb-08 15-Feb-08 NA
	Conc. (ug/L)	DL ^a	EMPC ^b	Qualifiers		Labeled Standa		%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ND	0.000000	503		<u>IS</u>	13C-2,3,7,8-TCD	D	86.6	25 - 164	
1,2,3,7,8-PeCDD	ND	0.000000	886			13C-1,2,3,7,8-Pe0	CDD	76.0	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.000001	67			13С-1,2,3,4,7,8-Н	IxCDD	81.1	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.000002	82			13C-1,2,3,6,7,8-H	IxCDD	81.1	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.000001	61			13C-1,2,3,4,6,7,8	-HpCDD	86.0	23 - 140	
1,2,3,4,6,7,8-HpCDD	0.0000230			J		13C-OCDD		77.4	17 - 157	
OCDD	0.000379			В		13C-2,3,7,8-TCD	F	90.4	24 - 169	
2,3,7,8-TCDF	ND	0.000001	21			13C-1,2,3,7,8-Pe0	CDF	75.8	24 - 185	
1,2,3,7,8-PeCDF	ND	0.000000	953			13C-2,3,4,7,8-Pe	CDF	77.3	21 - 178	
2,3,4,7,8-PeCDF	ND	0.000000	976			13С-1,2,3,4,7,8-Н	IxCDF	77.2	26 - 152	
1,2,3,4,7,8-HxCDF	ND	0.000000	590			13С-1,2,3,6,7,8-Н	IxCDF	77.9	26 - 123	
1,2,3,6,7,8-HxCDF	ND	0.000000	589			13С-2,3,4,6,7,8-Н	IxCDF	77.3	28 - 136	
2,3,4,6,7,8-HxCDF	ND	0.000000	666			13С-1,2,3,7,8,9-Н	IxCDF	82.7	29 - 147	
1,2,3,7,8,9-HxCDF	ND	0.000000	855			13C-1,2,3,4,6,7,8	-HpCDF	76.8	28 - 143	
1,2,3,4,6,7,8-HpCDF	0.00000377			J		13C-1,2,3,4,7,8,9	-HpCDF	81.8	26 - 138	
1,2,3,4,7,8,9-HpCDF	ND	0.000001	55			13C-OCDF		80.8	17 - 157	
OCDF	0.0000103			J	CRS	37Cl-2,3,7,8-TCL	DD	89.7	35 - 197	
Totals					Foo	otnotes				
Total TCDD	ND	0.000000	503		a. Sa	mple specific estimated	detection limit.			
Total PeCDD	ND	0.000001	39		b. Es	timated maximum possi	ble concentration.			
Total HxCDD	0.00000302				c. M	ethod detection limit.				
Total HpCDD	0.0000443				d. Le	ower control limit - uppe	r control limit.			
Total TCDF	ND	0.000001	21							
Total PeCDF	ND	0.000000	964							
Total HxCDF	0.00000185									
Total HpCDF	0.0000138									

Analyst: MAS

APPENDIX

# **DATA QUALIFIERS & ABBREVIATIONS**

В	This compound was also detected in the method blank.
D	Dilution
Ε	The amount detected is above the High Calibration Limit.
Р	The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.
Н	The signal-to-noise ratio is greater than 10:1.
Ι	Chemical Interference
J	The amount detected is below the Low Calibration Limit.
*	See Cover Letter
Conc.	Concentration
DL	Sample-specific estimated detection limit
MDL	The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.
EMPC	Estimated Maximum Possible Concentration
NA	Not applicable
RL	<b>Reporting Limit – concentrations that correspond to low calibration point</b>
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

# **CERTIFICATIONS**

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

# SUBCONTRACT ORDER

**TestAmerica Irvine** 

I	R	B	0	1	49
---	---	---	---	---	----

30227

# SENDING LABORATORY:

**TestAmerica** Irvine 17461 Derian Avenue. Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297 Project Manager: Joseph Doak

# **RECEIVING LABORATORY:**

Vista Analytical Laboratory-SUB 1104 Windfield Way El Dorado Hills, CA 95762 Phone :(916) 673-1520 Fax: (916) 673-0106 Project Location: California Receipt Temperature: °C

Ice: Y / N

1.6°C

Analysis	Units	Due	Expires	Comments
Sample ID: IRB0149-01	Water		Sampled: 02/03/08 13:45	
1613-Dioxin-HR-Alta	ug/l	02/13/08	02/10/08 13:45	J flags,17 congeners,no
Level 4 + EDD-OUT	N/A	02/13/08	03/02/08 13:45	TEQ,ug/L,sub=Vista Excel EDD email to pm,Include Std logs for Lvl IV
Containers Supplied:				
1 L Amber (C)	1 L Amber (D)			

08 1700 Released By Date/Time

Date/Time

1700 Rec ate/Time

Page 1 of 1 Date/Time NPDES - 1130 Page 10 of 283

Project 30227

Released By

# SAMPLE LOG-IN CHECKLIST



	Date/Time		Initials:		Locat	ion: $W$	2-2
Samples Arrival:	2/5/08	0929	130	B	Shelf/	Rack:	NA
	Date/Time		Initials:		Locat	ion: W	1R-2
Logged In:	2/4/08	084	1 Ad	B	Shelf/	Rack:	B4
Delivered By:	FedEx	UPS	Cal	DHL	C	Hand Delivered	Other
Preservation:	lce	2 E	Blue Ice	Dr	y Ice		None
Temp °C /.	6°C T	ime:	0956	J.,	Thern	nometer l	<b>D</b> ; IR-1

				YES	NO	NA
Adequate Sample Volume Recei	ved?				ł	
Holding Time Acceptable?						-
Shipping Container(s) Intact?			· · ·			
Shipping Custody Seals Intact?				-		
Shipping Documentation Presen	:?			-		
Airbill Trk # 7	9979	597311	8			
Sample Container Intact?	J.		· ·			
Sample Custody Seals Intact?						
Chain of Custody / Sample Docu	mentation P	resent?	· · ·	V		• • • •
COC Anomaly/Sample Acceptar	ice Form cor	npleted?			$\checkmark$	
If Chlorinated or Drinking Water	Samples, Ac	ceptable Preser	vation?			~
Na ₂ S ₂ O ₃ Preservation Document		coc	Sample Container	(	None	
Shipping Container	Vista	Client	Retain Retain	eturn	Disp	ose
Comments:				and the second		

SUBCONTRACT ORDER

TestAmerica Irvine IRB0149 8020458

# SENDING LABORATORY:

TestAmerica Irvine 17461 Derian Avenue. Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297 Project Manager: Joseph Doak

# RECEIVING LABORATORY:

Weck Laboratories, Inc 14859 E. Clark Avenue City of Industry, CA 91745 Phone :(626) 336-2139 Fax: (626) 336-2634 Project Location: California Receipt Temperature:_____°C Ice: Y / N

Analysis	Units	Due	Expires	Comments
Sample ID: IRB0149-01	Water		Sampled: <b>02/03/08</b> *	13:45
Level 4 Data Package - Wec	N/A	02/13/08	03/02/08 13:45	Provide Element transfer file
Mercury - 245.1, Diss -OUT	mg/l	02/13/08	03/02/08 13:45	Boeing, J flags, sub to Weck
Mercury - 245.1-OUT	mg/l	02/13/08	03/02/08 13:45	Boeing, J flags, sub to Weck
	25 mL Poly AB)	y w/HNO3		· · · · · · · · · · · · · · · · · · ·

Released By Released By Date/Time

loor. 00 Received By 62 of 1 Received By Date/Timé



# Weck Laboratories, Inc.

Analytical Laboratory Services - Since 1964

14859 E. Clark Ave., Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634 info@weeklabs.com www.weeklabs.com

# **CERTIFICATE OF ANALYSIS**

02/11/08 16:22 TestAmerica, Inc. - Irvine **Client: Report Date:** 02/04/08 13:45 17461 Derian Ave, Suite 100 **Received Date:** Irvine, CA 92614 **Turn Around:** Normal Attention: Joseph Doak 8020458 Work Order #: Phone: (949) 261-1022 Fax: (949) 260-3297 **Client Project:** IRB0149

# NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

Dear Joseph Doak :

Enclosed are the results of analyses for samples received 02/04/08 13:45 with the Chain of Custody document. The samples were received in good condition. The samples were received at 1.9 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Reviewed by: in

Kim G Tu

Project Manager







Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Date Received: 02/04/08 13:45 Date Reported: 02/11/08 16:22

### ANALYTICAL REPORT FOR SAMPLES

Sample ID	Sampled by:	Sample Comments	Laboratory	Matrix	Date Sampled
IRB0149-01	Client		8020458-01	Water	02/03/08 13:45

Report ID: 8020458

Project ID: IRB0149



Date Sampled:

02/03/08 13:45

Date Received: 02/04/08 13:45 Date Reported: 02/11/08 16:22

IRB0149-01	8020458-01 (Water)	
------------	--------------------	--

Report ID: 8020458

Project ID: IRB0149

### Metals by EPA 200 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed		Data Qualifiers
Mercury, Dissolved	ND	0.050	ug/l	0.20	1	EPA 245.1	W8B0171	02/06/08	02/07/08	jlp	
Mercury, Total	0.068	0.050	ug/l	0.20	1	EPA 245.1	W8B0171	02/06/08	02/07/08	jlp	J



Report ID: 8020458 Project ID: IRB0149 Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Date Received: 02/04/08 13:45 Date Reported: 02/11/08 16:22

# QUALITY CONTROL SECTION



Date Received: 02/04/08 13:45 Date Reported: 02/11/08 16:22

### Metals by EPA 200 Series Methods - Quality Control

Report ID: 8020458

Project ID: IRB0149

							%REC			
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch W8B0171 - EPA 245.1										
Blank (W8B0171-BLK1)				Analyzed:	02/07/08					
Mercury, Dissolved	ND	0.20	ug/l							
Mercury, Total	ND	0.20	ug/l							
LCS (W8B0171-BS1)				Analyzed:	02/07/08					
Mercury, Dissolved	1.04	0.20	ug/l	1.00		104	85-115			
Mercury, Total	1.04	0.20	ug/l	1.00		104	85-115			
Matrix Spike (W8B0171-MS1)	So	urce: 8020543	-01	Analyzed:	02/07/08					
Mercury, Dissolved	1.02	0.20	ug/l	1.00	ND	102	70-130			
Mercury, Total	1.02	0.20	ug/l	1.00	ND	102	70-130			
Matrix Spike (W8B0171-MS2)	So	urce: 8020544	-01	Analyzed:	02/07/08					
Mercury, Dissolved	1.05	0.20	ug/l	1.00	ND	105	70-130			
Mercury, Total	1.05	0.20	ug/l	1.00	ND	105	70-130			
Matrix Spike Dup (W8B0171-MSD1)	So	urce: 8020543	-01	Analyzed:	02/07/08					
Mercury, Dissolved	1.04	0.20	ug/l	1.00	ND	104	70-130	2	20	
Mercury, Total	1.04	0.20	ug/l	1.00	ND	104	70-130	2	20	
Matrix Spike Dup (W8B0171-MSD2)	So	urce: 8020544	-01	Analyzed:	02/07/08					
Mercury, Dissolved	1.05	0.20	ug/l	1.00	ND	105	70-130	0	20	
Mercury, Total	1.05	0.20	ug/l	1.00	ND	105	70-130	0	20	



Report ID: 8020458 Project ID: IRB0149 Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Date Received: 02/04/08 13:45 Date Reported: 02/11/08 16:22

### **Notes and Definitions**

- J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
- ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- % Rec Percent Recovery
- Sub Subcontracted analysis, original report available upon request
- MDL Method Detection Limit
- MDA Minimum Detectable Activity

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.



March 10, 2008

Mr. Joseph Doak Test America, Inc. 17461 Derian Avenue, Suite 100 Irvine, CA 92614

Reference:	Test America Project Nos.	IRB0073, IRB0146, IRB0147, IRB0148, IRB0149, IRB0150, IRB0151, IRB0152, IRB0153, IRB0154 IRB0156, IRB0480, IRB0751
	Eberline Services NELAP Ce	ert #01120CA
	Eberline Services Reports	R802024-8693, R802040-8694, R802041-8695,
		R802042-8696, R802043-8697, R802044-8698
		R802045-8699, R802046-8600, R802047-8601
		R802048-8602, R802049-8603, R802054-8604
		R802084-8608

Dear Mr. Doak:

Attached are data reports for thirteen water samples. Eleven of the samples were received at Eberline Services on February 5, one on February 7, and one on February 9, 2008. The samples were analyzed according to the accompanying Test America Subcontract Order Forms, the requested analyses were: gross alpha/gross beta (EPA 900.0), tritium (H-3, EPA906.0), Sr-90 (EPA905.0), Ra-226 (EPA903.1), Ra-228 (EPA 904.0), total uranium (ASTM D-5174), and gamma spectroscopy (EPA901.1, K-40 and Cs-137 only). The parenthetical G after a nuclide indicates that the result was obtained by gamma spectroscopy; a "U" in the results column indicates that the nuclide was not detected greater than the indicated minimum detectable activity (MDA). The samples were not filtered prior to analysis. The samples were analyzed in batches with common QC samples. Batch quality control samples consisted of LCS's, blank analyses, duplicate analyses, and matrix spike analyses (gross alpha/gross beta, H-3, Ra-226, Total-U only). All samples were within the limits defined in Eberline Services Quality Control Procedures Manual.

Please call me if you have any questions concerning this report.

Regards,

Melissa Mamm

Melissa Mannion Senior Program Manager

MCM/njv

Enclosure: Report on CD

Analytical Services 2030 Wright Avenue P.O. Box 4040 Richmond, California 94804-0040 (510) 235-2633 Fax (510) 235-0438 Toll Free (800) 841-5487 www.eherlineservices.com

ANAL	Y	SI	S	RΕ	S	U	L	$\mathbf{T}$	S
------	---	----	---	----	---	---	---	--------------	---

SDG	8697	Client	TA IRVINE
Work Order	<u>R802043-01</u>	Contract	PROJECT# IRB0149
Received Date	02/05/08	Matrix	WATER

Client	Lab						
Sample ID	Sample ID	Collected A	nalyzed	Nuclide	Results ± 20	Units	MDA
IRB0149-01	8697-001	02/03/08 0	2/27/08	GrossAlpha	1.63 ± 0.68	pCi/L	0.61
		0	2/27/08	Gross Beta	12.7 ± 0.85	pCi/L	0.84
		0	2/27/08	Ra-228	0.084 ± 0.19	pCi/L	0.51
		0	02/25/08	K-40 (G)	U	pCi/L	25
		0	2/25/08	Cs-137 (G)	U	pCi/L	0.95
		Q	2/28/08	H-3	15.8 <u>+</u> 84	pCi/L	150
		C	03/03/08	Ra-226	1.05 ± 0.53	pCi/L	0.61
		C	02/18/08	Sr-90 -	0.060 ± 0.32	pCi/L	0.77
		C	02/26/08	Total U	0.374 ± 0.042	pCi/L	0.022

Certified by 20	
Report Date <u>03/11/08</u>	
Page 1	

QC RESULTS

	SDG <u>8697</u> Order <u>R8020</u> d Date 02/05		- -			TA IRVINE PROJECT# IR WATER	B0149
			,	·			
Lab							
nple ID	Nuclide	Resul	ts	Units	Amount Added	MDA	Evaluation
					<u>Internet indered</u>		
s							
93-002	GrossAlpha	10.6 ±	0.82	pCi/Smpl	10.2	0.31	104% recovery
	Gross Beta	9.07 ±	0.36	pCi/Smpl	9.38	0.28	97% recovery
	Ra-228	8.40 ±	0.59	pCi/Smpl	8.66	0.88	97% recovery
	Co-60 (G)	214 ±	14	pCi/Smpl	224	9.1	96% recovery
	Cs-137 (G)	240 ±	12	pCi/Smpl	236	9.2	102% recovery
	Am-241 (G)	255 ±	26	pCi/Smpl	254	31	100% recovery
	H-3	222 ±	12	pCi/Smpl	239	13	93% recovery
	Ra-226	5.35 ±	0.24	pCi/Smpl	5.02	0.076	107% recovery
	Sr-90	10.7 ±	0.80	pCi/Smpl	9.39	0.37	114% recovery
	Total U	1.12 ±	0.13	pCi/Smpl	1.13	0.004	99% recovery
LANK							
593-003	GrossAlpha	-0.103 ±	0.17	pCi/Smpl	NA	0.34	<mda< td=""></mda<>
	Gross Beta	-0.111 ±	0.15	pCi/Smpl	NA	0.27	<mda< td=""></mda<>
	Ra-228	0.239 ±	0.48	pCi/Smpl	NA	0.68	<mda< td=""></mda<>
	K-40 (G)	U		pCi/Smpl	NA	110	<mda< td=""></mda<>
	Cs-137 (G)	U		pCi/Smpl	NA	5.4	<mda< td=""></mda<>
	H-3	-1.64 ±	8.3	pCi/Smpl	NA	15	<mda< td=""></mda<>
	Ra-226	0.016 ±	0.034	pCi/Smpl	NA	0.062	<mda< td=""></mda<>
	Sr-90	0.099 <u>+</u>	0.15	pCi/Smpl	NA	0.27	<mda< td=""></mda<>
	Total U	0.00E 00 ±	1.9E-04	pCi/Smpl	NA	4.5E-04	<mda< td=""></mda<>
	DUPLICATES				ORIGINAL	S	
				-			Зσ

	DOIDICALLO				OKIGINADS	terror to		
							3	σ
Sample ID	Nuclide	<u>Results ± 2σ</u>	MDA	Sample ID	<u>Results ± 2σ</u>	MDA	RPD (To	t) <u>Eval</u>
8693-004	GrossAlpha	1.03 ± 1.0	1.5	8693-001	0.763 ± 0.99	1.3	-	0 satis.
	Gross Beta	$15.0 \pm 1.2$	1.6		14.2 ± 0.93	0.97	5	46 satis.
	Ra-228	0.099 ± 0.18	0.48		0.295 ± 0.19	0.49	-	0 satis.
	K-40 (G)	24.8 ± 7.8	4.9		24.0 ± 11	8.2	3	86 satis.
	Cs-137 (G)	U	0.53		U	0.86	-	0 satis.
	H-3	-6.31 ± 84	150		7.12 ± 78	130	-	0 satis.
	Ra-226	0.583 ± 0.52	0.81		0.426 ± 0.44	0.70	-	0 satis.
	Sr-90	-0.021 ± 0.29	0.71		0.026 ± 0.31	0.72	-	0 satis.
	Total U	0.611 ± 0.067	0.022		0.578 ± 0.064	0.022	6	30 satis.

Certified by
Report Date 03/11/08
Page 2

### QC RESULTS

SDG <u>8697</u> Work Order <u>R8020</u> Received Date <u>02/05</u>				Client <u>TA IRV</u> Contract <u>PROJEC</u> Matrix <u>WATER</u>		49	
SPIKED SAMPI	-E		OR1	GINAL SAMPLE			
Sample ID Nuclide	<u>Results ± 20</u>	MDA	Sample ID	<u>Results ± 2σ</u>	MDA	Added	%Recv
8693-005 GrossAlpha	95.8 ± 5.5	1.4	8693-001	0.763 ± 0.99	1.3	71.2	133
Gross Beta	77.9 ± 2.0	1.5		14.2 ± 0.93	0.97	62.5	102

H-3 15500 ± 300 150

Ra-226 Total U

120 ± 4.8 0.69

109 ± 13 2.2

7.12 ± 78 130 16000 97

0.426 ± 0.44 0.70 112 107

0.578 ± 0.064 0.022 113 96

Certified by
Report Date 03/11/08
Page 3

#### SUBCONTRACT ORDER

**TestAmerica** Irvine

**IRB0149** 

### SENDING LABORATORY:

**TestAmerica** Irvine 17461 Derian Avenue. Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297 Project Manager: Joseph Doak

### **RECEIVING LABORATORY:**

**Eberline Services** 2030 Wright Avenue Richmond, CA 94804 Phone :(510) 235-2633 Fax: (510) 235-0438 Project Location: California Receipt Temperature: 4.0°C

Ν Ice:

Analysis	Units	Due	Expires	Comments
Sample ID: IRB0149-01	Water		Sampled: 02/03/08 13:45	
EDD + Level 4	N/A	02/13/08	03/02/08 13:45	
Gamma Spec-O	mg/kg	02/13/08	02/02/09 13:45	Out to Eberline, k-40 and cs-137 only
Gross Alpha-O	pCi/L	02/13/08	08/01/08 13:45	Out to Eberline, Boeing
Gross Beta-O	pCi/L	02/13/08	08/01/08 13:45	Out to Eberline, Boeing
Radium, Combined-O	pCi/L	02/13/08	02/02/09 13:45	Out to Eberline, Boeing
Strontium 90-O	pCi/L	02/13/08	02/02/09 13:45	Out to Eberline, Boeing
Tritium-O	pCi/L	02/13/08	02/02/09 13:45	Out to Eberline, Boeing
Uranium, Combined-O	pCi/L	02/13/08	02/02/09 13:45	Out to Eberline, Boeing
Containers Supplied:				
2.5 gal Poly (S)	500 mL Amt	per (T)		

Ì 'vX 700 Released By

Date/Time

S, Received By Date/Time 61 05 09: υÝ Received By Date/Time

Released By

Date/Time

**NPDES - 1143** 

00

30

Page 1 of 1

	RLINE			LABORAT	ORY	Į	fr 2/5
Chent: 7	EST ANER	4 CA	City	IRVINE	Stat	e CA	
Date:Time rec	ervec 02/05/0	4CA 08 09: 3200 N	c[[ ²	B0149			
ContainerD	No / CE Cette	ST Requested	TAT (Davs.	F.C. F	Receiver Yes		
			INSPEC				
· Custo	ov seals on shill	oping container ir			Met V	Ne - N/-	
2 Custo	ov seals or shit	oping container a	ateo ( signed		/	NC _ N/-	
		ndie containert in			res M	NC _ N/-	×.
- Custo	ov seals on san	ndie containers d	atec à signed		- <u>e</u> :		
	ng material is		1		\vve		$\sim$
, Ivumo	er of samples in	shipping contair	ier	Sample Mar			
- Ivumo	er of containert.	per sample	$\mathcal{V}_{-}$	für see Doc			
	es are in correc			res Y			
^c ^c 'aper	work agrees wit	n samples?		res 🔨	No		
10 Sampi	es nave Tap	Hazard i	abelo F;	ad labels	Appropriate sar	mble lab 👄 😰 🗸	
Sampi	ec are in o	000 conamorit	сеакіло	Broker	Container	Missimo	
~ Jampi	ed are Dreser	vec Notor	eservec X;	DH 2r	eservative		
13 Descri	b∈ any anoma⊪	ec	/				
	M: notifies o; ted by	anv anomaires" MM	res. Date 17	05 0 8 Tim	Date	> >	
Customer Sample No	Beta/Samma com	fint Chamber mezni	Vvir∋≃	Sustomer Sample Nc	deta-Jamma	ion Cha moe	
B0149-1	<60			Sample NC	CDF:		WID-
					· · · · · · · · · · · · · · · · · · ·		
	an a						
Champer Ser	NE			<b>C</b> .			
na Meter Ser in							
/Gamma Mete		100482		Calibration date		A	
	21 DE: NC	1-10-		Calibration date	OPPLAY	0 /	

Form SCP-C2	17 07-30-01

over 55 vears of quality nuclear service;

## APPENDIX G

## Section 26

Outfall 004 - BMP Effectiveness, February 5, 2008 Test America Analytical Laboratory Report

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

### LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project: Boeing BMP Effectiveness Monitoring Program

Sampled: 02/05/08 Received: 02/05/08 Issued: 02/14/08 15:08

### NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and

is an integral part of this report.

This entire report was reviewed and approved for release.

### SAMPLE CROSS REFERENCE

LABORATORY ID IRB0422-01 OO4 EFF-1

MATRIX

Water

Reviewed By:

Joseph Dock

**TestAmerica Irvine** Joseph Doak Project Manager



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Boeing BMP Effectiveness Monitoring Program

Report Number: IRB0422

Sampled: 02/05/08 Received: 02/05/08

		INC	DRGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0422-01 (004 EFF-1 - Wa Reporting Units: g/cc	ater)								
Density	Displacement	8B11085	N/A	NA	1.0	1	02/11/08	02/11/08	
Sample ID: IRB0422-01 (004 EFF-1 - W Reporting Units: mg/l	ater)								
Sediment	ASTM D3977	8B14087	10	10	32	1	02/14/08	02/14/08	

**TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Boeing BMP Effectiveness Monitoring Program

Report Number: IRB0422

Sampled: 02/05/08 Received: 02/05/08

METHOD BLANK/QC DATA

### **INORGANICS**

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result %RE(	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B11085 Extracted: 02/11/0	<u>8</u>									
Duplicate Analyzed: 02/11/2008 (8B110	,	NIA	NT/ 4	l.	Sou	rce: IRA3091-01		0	20	
Density	0.999	NA	N/A	g/cc		1.00		0	20	

**TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Boeing BMP Effectiveness Monitoring Program

Report Number: IRB0422

Sampled: 02/05/08 Received: 02/05/08

### DATA QUALIFIERS AND DEFINITIONS

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

**RPD** Relative Percent Difference

**TestAmerica** Irvine



17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Boeing BMP Effectiveness Monitoring Program

Report Number: IRB0422

Sampled: 02/05/08 Received: 02/05/08

### **Certification Summary**

### TestAmerica Irvine

Method	Matrix	Nelac	California
ASTM D3977	Water		
Displacement	Water		

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

**TestAmerica** Irvine

Page 1 of 1	eld readirigs.			Time of readings NA	Comments		(PRAB																				Turn around Time: (check) 24 Hours 5 Days	48 Hours 10 Days	1	Intact $\overrightarrow{C}$ On Ice: $\overrightarrow{S}$	
L 1 < 1 5 U - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2																											N R			1855	
FORM				(2661	-226	D36										×		<b>y</b> )								Date Time:	ATT	Date/Time:	Date/Time	DISI US	2
	-MT8			aed Se tretion	นอวเ	Cor		* ×				7 × X	< ×	-		_	-	+ <del>-</del>			18 × ×			-	× ×	-	/			John K	
Snc.	Monitoring		er:			Preservative Bc	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	Nene	Redeived By	$\geq$	Received By	Docoirod Bu	T olling l	
CHAIN OF C	Effectiveness Monitoring Program		Phone Number:	(626)		Sampling Date/Time	25108 11.30																						and a	15	
2000 A 11 A 11 A 11 A 11						# of Cont.	-			-	-	<del>،</del>	- +		-	-				-			-	-		Date/Time:	ch.	Date/Time		Date/Inne	
ersion 12/20/07	Suite 200	seph Doak	nwyn Kelly	ar 0.		Container Type	500 mL Poly	500 mL Holy	500 mL Polv	500 mL Poly	500 mL Poly	500 mL Poly	500 mL Poly	500 mL Poly	500 mL Poly	500 mL Poly	500 mL Poly	500 mL Poly	500 mL Poly	500 mL Poly	500 mL Poly	500 mL Polv	500 mL Poly	500 mL Poly	500 mL Poly	500 mL Poly	-2/5/2-	8	Z	-	
rica v	duress. <b>lia</b> Avenue, 1	ontact: Jo	ler: Brol	46156	20,020	Sample Matrix	3	* *	~ ^	M	M	N	> >	. ^	W	Ν	>	<u> </u>	* >	>	> 3	\$ \$	>	N	8	>	N	Ĵ /	$\rangle$		
Test America Version 12/20/07	Cilent Natrie/Address. MWH-Arcadia 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007	Test America Contact: Joseph Doak	Project Man ager: Bronwyn Kelly	Sampler 1994 LAAL	Farres	Sample Description	004 EFF-1	004 EFF 2	004 EFF-3	004 EFF-5	004 EFF-6	004 EFF-7	004 EFF-8 -	004 EFF-10	004 EFF-11	004 EFF-12	004 EFF-13	004 EFF-14 004 EEE 45	004 EFF-16	004 EFF-17	004 EFF-18	004 EFF-19 004 EFF-20	004 EFF-21	004 EFF-22	004 EFF-23	004 EFF-24 Relinguished Bv		Relinquished By		Kelinquished By	

/

## APPENDIX G

## Section 27

Outfall 004, February 24, 2008 MEC^X Data Validation Reports



## DATA VALIDATION REPORT

## Boeing SSFL NPDES

## SAMPLE DELIVERY GROUP: IRB2400

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

### I. INTRODUCTION

Task Order Title: Contract Task Order:	Boeing SSFL NPDES 1261.100D.00
Sample Delivery Group:	IRB2400
Project Manager:	B. Kelly
Matrix:	Water
QC Level:	IV
No. of Samples:	1
No. of Reanalyses/Dilutions:	0
Laboratory:	TestAmerica-Irvine

### Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 004	IRB2400-01	30302-001, 8022631-01, 8614- 001	Water	02/24/08 1045	200.8, 245.1, 900.0, 901.1, 903.0, 904.0, 905.0, 906.0, 1613, ASTM D-5174, SM2340-B

### II. Sample Management

No anomalies were observed regarding sample management. The samples were received at Weck and Vista within the temperature limits of  $4^{\circ}C \pm 2^{\circ}C$ . The samples were received at TestAmerica-Irvine below the temperature limit; however, the samples were not noted to be damaged or frozen. Eberline did not provide temperature information; however, radiological samples are not required to be chilled. According to the case narrative for this SDG, the samples were received intact at all laboratories. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine, Eberline, and Weck, custody seals were not required. Custody seals were intact upon arrival at Vista. If necessary, the client ID was added to the sample result summary by the reviewer.

Qualifie	Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

### Data Qualifier Reference Table

Qualifier	Organics	Inorganics
н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
Ι	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
А	Not applicable.	ICP Serial Dilution %D were not within control limits.
Μ	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

### **Qualification Code Reference Table**

### **Qualification Code Reference Table Cont.**

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Ρ	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found

### III. Method Analyses

### A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: April 7, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{\times}$  Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
  - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
  - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
  - Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
  - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had no target compound detects above the EDL.

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the estimated detection limit (EDL).

### B. EPA METHODS 200.8, 245.1—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: April 1, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the  $MEC^{X}$  Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.8 and 245.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding times, 6 months for metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤0.1 amu and ≤0.9 amu at 10% peak height.
- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP-MS

metals and 85-115% for mercury. All CRI/CRA and check standard recoveries were within the control limits of 70-130%.

- Blanks: There were no applicable detects in the method blanks or CCBs.
- Interference Check Samples: ICSA/B analyses were performed in association with the total ICP-MS analyses only. Recoveries were within the method-established control limits. Most analytes were reported in the ICSA solution; however. the reviewer was not able to ascertain if the detections were indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the sample in this SDG for the total metals fraction. The recoveries and RPDs were within the laboratory-established control limits. Mercury method accuracy was evaluated based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. The bracketing CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.

### C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks Date Reviewed: April 2, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the *EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174,* and the *National Functional Guidelines for Inorganic Data Review* (2/94).

- Holding Times: The tritium sample was analyzed within 180 days of collection. Aliquots for gross alpha and gross beta were prepared within the five-day analytical holding time for unpreserved samples. Aliquots for radium-226, radium-228, strontium-90, total uranium, and gamma spectroscopy were prepared beyond the five-day holding time for unpreserved samples; therefore, results for these analytes were qualified as estimated, "J," for detects and, "UJ," for nondetects.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, gross alpha detected in the sample was qualified as an estimated detect, "J." The gross beta detector efficiency was greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. The tritium detector efficiency for the sample was marginally less than 20%; therefore, nondetected tritium was qualified as an estimated nondetect, "UJ." The strontium chemical yield was at least 70% and was considered acceptable. The strontium and radium-226 continuing calibration results were within the laboratory control limits. The radium-228 tracer, yttrium oxalate, yields were greater than 70%. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: There were no analytes detected in the method blanks.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG.

- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. Reported nondetects are valid to the MDA.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
  - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
  - Field Duplicates: There were no field duplicate samples identified for this SDG.

Client Data			Sample Data		Laboratory Data			
Name: Project: Date Collected: Time Collected:	Test America-Irvine, CA IRB2400 24-Feb-08 1045		Matrix: Sample Size:	Aqueous 1.02 L	Lab Sample: QC Batch No.: Date Analyzed DB-5:	30302-001 9997 10-Mar-08	Date Received: Date Extracted: Date Analyzed DB-225:	26-Feb-08 9-Mar-08 NA
Analyte	Conc. (ug/L)	DL ⁸	EMPC ^b	Qualifiers	Labeled Standard	lard	%R LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	en.	0.000000593	3		18 13C-2,3,7,8-TCDD	DD	76.8 25 - 164	
1,2,3,7,8-PeCDD	Q	0.00000104			13C-1,2,3,7,8-PeCDD	eCDD	71.8 25-181	
1,2,3,4,7,8-HxCDD	ON ON	0.00000334			13C-1,2,3,4,7,8-HxCDD	HxCDD	67.7 32 - 141	
1,2,3,6,7,8-HxCDD		0.00000337		And the second	13C-1,2,3,6,7,8-HxCDD	HxCDD	76.2 28 - 130	
1,2,3,7,8,9-HxCDD	Q Q	0.00000322			13C-1,2,3,4,6,7,8-HpCDD	8-HpCDD	72.2 23 - 140	
1,2,3,4,6,7,8-HpCDD	CDD 0.0000326				13C-OCDD		66.4 17 - 157	
OCDD	0.000536				13C-2,3,7,8-TCDF	DF	120 24-169	
2,3,7,8-TCDF	Ð	0.00000108	~	100 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111 - 111	13C-1,2,3,7,8-PeCDF	eCDF	100 24-185	and the second second second
1,2,3,7,8-PeCDF	<b>D</b>	0.00000112			13C-2,3,4,7,8-PeCDF	eCDF	100 21-178	
2,3,4,7,8-PeCDF	Ð	0.00000116	5	and the second second	13C-1,2,3,4,7,8-HxCDF	-HxCDF	67.2 26 - 152	
1,2,3,4,7,8-HxCDF	OF ND	0.000000726			13C-1,2,3,6,7,8-HxCDF	HXCDF	82.0 26-123	
1,2,3,6,7,8-HxCDF	Ð	0.000000717	1	The second s	13C-2,3,4,6,7,8-HxCDF	HXCDF	73.2 28 - 136	<ul> <li>The second s</li></ul>
2,3,4,6,7,8-HxCDF	DE ND	0.000000844	4		13C-1,2,3,7,8,9-HxCDF	HXCDF	72.4 29 - 147	and the second
1,2,3,7,8,9-HxCDF	DF ND	0.00000108	~	and an and a short-	13C-1,2,3,4,6,7,8-HpCDF	8-HpCDF	67.9 28 - 143	and the second second second
フ/DNQ 1,2,3,4,6,7,8-HpCDF	CDF 0.0000409		のないのないのです。	J	13C-1,2,3,4,7,8,9-HpCDF	9-HpCDF	68.2 26 138	問題に対応通
1,2,3,4,7,8,9-HpCDF		0.00000148	~	A State of the second se		·	66.1 17-157	and the second se
Jong OCDF	0.0000127			- <b>1</b>	CRS 37CI-2,3,7,8-TCDD	DD	113 35 - 197	国際に行った
Totals					Footnotes			
Total TCDD	Q	0.00000112		and the second se	a. Sample specific estimated detection limit	ed detection limit.		and a second second second
Total PeCDD	Ð	0.00000217	7		b. Estimated maximum possible concentration.	ssible concentration.		
Total HxCDD	R	0.00000559	(	and the second se	c. Method detection limit.	- The state of the	<ul> <li>A state of the sta</li></ul>	•
Total HpCDD	0.0000651				d. Lower control limit - upper control limit.	per control limit.		
		1.001	8	- 10% of the state of the state of the	and the state of the property and the state of		a vez e a grande e a substantin a	
W Total PeCDF	Ø	0.00000114					「「「「「「「「」」」」	
Total HxCDF	0.00000240							

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB2400

Sampled: 02/24/08 Received: 02/25/08

**METALS** MDL Reporting Sample Dilution Date Date Data Method Qualifiers Analyte Batch Limit Limit Result Factor Extracted Analyzed Sample ID: IRB2400-01 (Outfall 004 - Water) Reporting Units: ug/l 0.20 0.68 03/04/08 03/04/08 EPA 200.8 8C04064 2.0 1 Antimony J/DNQ Ja 03/04/08 Cadmium U EPA 200.8 8C04064 0.11 1.0 ND 1 03/04/08 Copper EPA 200.8 8C04064 0.75 2.0 2.3 1 03/04/08 03/04/08 Lead 8C04064 0.30 1.0 1.0 1 03/04/08 03/04/08 EPA 200.8 Thallium 8C04064 0.20 1.0 ND 1 03/04/08 03/04/08 ()EPA 200.8

Project ID: Routine Outfall 004

EVEL IV

**TestAmerica** Irvine

Joseph Doak Project Manager

> The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRB2400 <Page 2 of 15>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 004

Report Number: IRB2400

Sampled: 02/24/08 Received: 02/25/08

#### **DISSOLVED METALS**

Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID:	IRB2400-01 (Outfall 004	- Water) - cont.								
Repor	ting Units: ug/l									
Antimony	JONG	EPA 200.8-Diss	8B25123	0.20	2.0	0.58	1	02/25/08	02/26/08	Ja
Cadmium	U	EPA 200.8-Diss	8B25123	0.11	1.0	ND	1	02/25/08	02/26/08	
Copper	1	EPA 200.8-Diss	8B25123	0.75	2.0	ND	1	02/25/08	02/26/08	
Lead		EPA 200.8-Diss	8B25123	0.30	1.0	ND	1	02/25/08	02/26/08	
Thallium	$\checkmark$	EPA 200.8-Diss	8B25123	0.20	1.0	ND	1	02/25/08	02/26/08	

LEVEL IV

**TestAmerica** Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRB2400 <Page 3 of 15>

THE LEADER IN ENVIRONMENTAL TESTING

LEVEL IV

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/BoeingProject ID:Routine Outfall 004618 Michillinda Avenue, Suite 200Sampled:02/24/08Arcadia, CA 91007Report Number:IRB2400Received:02/25/08Attention:Bronwyn KellyControl of the second s

### Metals by EPA 200 Series Methods

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB2400-01 (Outfall 004 - V	Vater) - cont.								
Reporting Units: ug/l									
Mercury, Dissolved	EPA 245.1	W8B0982	0.050	0.20	ND	1	02/26/08	02/27/08	
Mercury, Total	EPA 245.1	W8B0982	0.050	0.20	0.095	1	02/26/08	02/27/08	J

**TestAmerica** Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRB2400 <Page 5 of 15>

SDG <u>8614</u> Work Order <u>R8021</u> Received Date <u>02/26</u>			Contract	TA IRVINE PROJECT# IRB2400 WATER	0	-	
lient	Lab						
mple ID Out-Call 004	Sample ID	Collected	Analyzed	Nuclide	Results ± 20	Units	MDA
RB2400-01	8614-001	02/24/08	03/16/08	GrossAlpha	1.22 ± 0.69	pCi/L	0.94 3/6
			03/16/08	Gross Beta	0.262 ± 0.53	pCi/L	0.91 Ú
			03/10/08	Ra-228	0.138 ± 0.16	pCi/L	0.43 UJ/
			03/12/08	K-40 (G)	σ	pCi/L	36
			03/12/08	Cs-137 (G)	υ	pCi/L	1.4 V
			03/14/08	H-3	-41.9 ± 86	pCi/L	150 UJ/
			03/14/08	Ra-226	1.44 ± 0.63	pCi/L	0.75 J/t
			03/10/08	Sr-90	-0.251 ± 0.32	pCi/L	0.91 UJ/
			03/05/08	Total U	0.297 ± 0.035	pCi/L	0.023 J/

### ANALYSIS RESULTS

LEVEL IV

ng Certified by_ Report Date 03/20/08 Page 1