APPENDIX G

Section 1

Outfall 001, January 25, 2008

MECX Data Validation Reports

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IRA2506

Prepared by

MEC^x, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: IRA2506 Project Manager: B. Kelly

Matrix: Soil QC Level: IV

No. of Samples: 2
No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 001	IRA2506-01	8691-001 30212-001 8012805-01	Water	01/25/08 1345	120.1, 160.2, 160.5, 180.1, 200.8, 245.1, 624, 625, 900.0, 901.1, 903.0, 904.0, 905.0, 906.0, 1613, ASTM D-5174
Trip Blank	IRA2506-02	N/A	Water	N/A	624

II. Sample Management

No anomalies were observed regarding sample management. The sample in this SDG was received at TestAmerica-Irvine within the temperature limits of 4°C ±2°C. The sample was received below the temperature limit at Vista; however, the sample was not noted to have been frozen. The sample was received above the temperature limit at Eberline; however, radiological samples are not required to be chilled. The sample was received above the temperature limit at Weck; however, mercury is not considered volatile. According to the case narrative for this SDG, the sample was received intact at all laboratories. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine, custody seals were not required. Custody seals were intact upon arrival at Eberline and Vista. Custody seals were not present on the cooler received at Weck. If necessary, the client ID was added to the sample result summary by the reviewer.

Data Qualifier Reference Table

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
* , *	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: March 9, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: Total HpCDD was detected in the method blank above the EDL. The result in the sample was qualified as estimated, "J," as a portion of the reported total HpCDD was

considered to be method blank contamination. The method blank had no other target compound detects above the EDL.

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Any EMPC value was qualified as an estimated nondetect, "UJ." Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHODS 200.8, 245.1—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: March 10, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.8 and 245.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding times, 6 months for metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.

• Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP-MS metals and 85-115% for mercury. The mercury MDL check standard was recovered at 66%; therefore, nondetected mercury in the sample was qualified as estimated, "UJ." The remaining CRI recoveries were within 70-130%.

- Blanks: There were no applicable detects in the method blanks or CCBs.
- Interference Check Samples: ICSA/B analyses were performed in association with the
 metals analyses. Recoveries were within the method-established control limits. Most
 analytes were reported in the ICSA solutions; however, the reviewer was not able to
 ascertain if the detection was indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Evaluation of method accuracy was based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. The bracketing CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - o Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: March 5, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The tritium sample was analyzed within 180 days of collection. Aliquots
 for gross alpha and, gross beta were prepared within the five-day analytical holding time
 for unpreserved samples. The aliquots for radium-226, radium-228, strontium-90,
 gamma spectroscopy, and total uranium were prepared beyond the five-day holding time
 for unpreserved samples; therefore, these results were qualified as estimated, "J," for
 detects and, "UJ," for nondetects.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, gross alpha detected in the sample was qualified as an estimated detect, "J." The gross beta detector efficiency was greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. The tritium detector efficiency for the sample was at least 20% and was considered acceptable. The internal spike efficiency to default efficiency ratios was near 1, indicating that quenching did not occur.

The strontium chemical yield was at least 70% and was considered acceptable. The strontium continuing calibration results were within the laboratory control limits.

The radium-226 cell efficiencies were determined in September 2006. The radium-226 continuing calibration results were within the laboratory-established control limits. The radium-228 calibration utilized actinium-228 and was verified in February 2001. The radium-228 tracer, yttrium oxalate yields were greater than 70%.

The gamma spectroscopy geometry-specific, detector efficiencies were determined in September 1999 and February 2007. All analytes were determined at the maximum photopeak energy.

The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All calibration check standard recoveries were within 90-110% and were deemed acceptable.

Blanks: There were no analytes detected in the method blank.

DATA VALIDATION REPORT SSFL NPDES
SSFL NPDES
SDG: IRA2506

 Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.

- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this
 data package. The sample results and MDAs reported on the sample result form were
 verified against the raw data and no calculation or transcription errors were noted.
 Reported nondetects are valid to the MDA.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

D. EPA METHOD 625—Semivolatile Organic Compounds (SVOCs)

Reviewed By: L. Calvin

Date Reviewed: March 9, 2008

The sample listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Semivolatile Organics (DVP-3, Rev. 0), EPA Method 8270C, and the National Functional Guidelines for Organic Data Review (2/94).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted within seven days of collection and analyzed within 40 days of extraction.
- GC/MS Tuning: The DFTPP tunes met the method abundance criteria. Samples were analyzed within 12 hours of the DFTPP injection time.
- Calibration: Calibration criteria were met. Initial calibration average RRFs were ≥0.05 and %RSDs ≤35%. Continuing calibration RRFs were ≥0.05 and %Ds ≤20%.
- Blanks: The method blank had no target compound detects above the MDL.

DATA VALIDATION REPORT SSFL NPDES
SSFL NPDES
SDG: IRA2506

 Blank Spikes and Laboratory Control Samples: Recoveries and RPDs were within laboratory-established QC limits.

- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample of this SDG. Evaluation of method accuracy and precision was based on LSC/LSCD results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The internal standard area counts and retention times were within the control limits established by the continuing calibration standards:
 -50%/+100% for internal standard areas and ±30 seconds for retention times.
- Compound Identification: Compound identification was verified. The laboratory analyzed
 for five semivolatile compounds by EPA Method 625. Review of the sample
 chromatogram, retention times, and spectra indicated no problems with target compound
 identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any results reported between the MDL and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review of the raw data indicated no problems with system performance.

E. EPA METHOD 624—Volatile Organic Compounds (VOCs)

Reviewed By: L. Calvin

Date Reviewed: March 9, 2008

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Volatile Organics (DVP-2, Rev. 0), EPA Method 8260B, and the National Functional Guidelines for Organic Data Review (2/94).

- Holding Times: Analytical holding times were met. The preserved water samples were analyzed within 14 days of collection.
- GC/MS Tuning: The BFB tunes met the method abundance criteria. Samples were analyzed within 12 hours of the BFB injection time.
- Calibration: Calibration criteria were met. For applicable target compounds, initial calibration average RRFs were ≥0.05 and %RSDs ≤35%. Continuing calibration RRFs were ≥0.05 and %Ds ≤20%.
- Blanks: The method blank had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on site sample Outfall 001. Recoveries and RPDs were within laboratory-established QC limits.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Trip Blanks: Sample Trip Blank was the trip blank associated with site sample
 Outfall 001. The trip blank had no target compound detects above the MDL.
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The internal standard area counts and retention times were within the control limits established by the continuing calibration standards:
 -50%/+100% for internal standard areas and ±30 seconds for retention times.

 Compound Identification: Compound identification was verified. The laboratory analyzed for 15 volatile target compounds by EPA Method 624. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.

- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Any results reported between the MDL and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review of the raw data indicated no problems with system performance.

F. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks

Date Reviewed: March 7, 2008

The sample listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Methods 120.1, 160.2, 160.5, 180.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: Analytical holding times, 24 hours for conductivity, 48 hours for settleable solids and turbidity, and seven days for TSS, were met.
- Calibratione: The conductivity and turbidity check standard recoveries were acceptable.
 The balance calibration logs were acceptable. Calibration is not applicable to settleable solids.
- Blanks: Turbidity was detected in the method blank but not at a concentration sufficient to qualify the site samples. Method blanks and CCBs had no other detects.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits. The LCS is not applicable to settleable solids or turbidity.
- Laboratory Duplicates: No laboratory duplicate analyses were performed for the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. For the applicable methods, method accuracy was evaluated based on the LCS results.

DATA VALIDATION REPORT SSFL NPDES
SDG: IRA2506

• Sample Result Verification: Review is not applicable at a Level V validation. Nondetects are valid to the reporting limit.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

Approved By: William J. Luksemburg 08-Feb-2008 12:18

Analyst: MAS

Client Data			Sample Data		Laboratory Data			
	Test America-Irvine, CA		Matrix:	Aqueous	Lab Sample:	30212-001	Date Received:	29-Jan-08
Project: IR Date Collected: 25 Time Collected: 13	IRAZ506 25-Jan-08 1345		Sample Size:	1.01 L	QC Batch No.: Date Analyzed DB-5:	9921 7-Feb-08	Date Extracted: Date Analyzed DB-225:	
Analyte	Conc. (ug/L)	DL a	EMPC ^b	Qualifiers	Labeled Standard	lard	%R LCL-UCLd	d Oualifiers
2,3,7,8-TCDD	ND NO.	0.00000100	0.		IS 13C-2,3,7,8-TCDD	DD	77.5 25 - 164	
1,2,3,7,8-PeCDD	ND	0.00000107	7		13C-1,2,3,7,8-PeCDD	cCDD	64.4 25 - 181	
1,2,3,4,7,8-HxCDD	N	0.00000276	6		13C-1,2,3,4,7,8-HxCDD	HxCDD	69.5 32-141	
1,2,3,6,7,8-HxCDD	A	0.00000279	9		13C-1,2,3,6,7,8-HxCDD	-HxCDD	73.2 28-130	
1,2,3,7,8,9-HxCDD	N	0.00000266	6		13C-1,2,3,4,6,7,8-HpCDD	8-HpCDD	75.1 23 - 140	
1,2,3,4,6,7,8-HpCDD	D 0.0000239			J	13C-OCDD		63.6 17 - 157	
OCDD	0.000225				13C-2,3,7,8-TCDF	DF	83.8 24-169	
2,3,7,8-TCDF	N	0.000000699	99		13C-1,2,3,7,8-PeCDF	eCDF	71.0 24-185	
1,2,3,7,8-PeCDF	J	0.00000104	4		13C-2,3,4,7,8-PeCDF	eCDF	61.0 21-178	
2,3,4,7,8-PeCDF	AD	0.00000114	44		13C-1,2,3,4,7,8-HxCDF	HxCDF	80.5 26-152	
1,2,3,4,7,8-HxCDF	A .	0.000000923	23		13C-1,2,3,6,7,8-HxCDF	HxCDF	68.6 26-123	
1,2,3,6,7,8-HxCDF	ND	0.00000128			13C-2,3,4,6,7,8-	7,8-HxCDF	65.1 28-136	
2,3,4,6,7,8-HxCDF	N	0.000000730	30		13C-1,2,3,7,8,9-HxCDF	-HxCDF	69.9 29-147	
1,2,3,7,8,9-HxCDF	A	0.000000917	17		13C-1,2,3,4,6,7,8-HpCDF	8-HpCDF	63.6 28-143	
1,2,3,4,6,7,8-HpCDF	FND		0.00000460	160	13C-1,2,3,4,7,8,9-HpCDF	9-HpCDF	69.1 26-138	
1,2,3,4,7,8,9-HpCDF	F ND	0.00000131	_		13C-OCDF		65.8 17-157	
OCDF	0.0000146			J	CRS 37Cl-2,3,7,8-TCDD	DD	.79.8 .35-197	
Totals					Footnotes			
Total TCDD Total PeCDD	₹	0.000000100	3 0		 a. Sample specific estimated detection limit. b. Estimated maximum possible concentration. 	ssible concentration.		
Total HxCDD	0.00000153				c. Method detection limit.			
Total HpCDD	0.0000499			.В.	d. Lower control limit - up	- upper control limit.		
Total TCDF	N	0.000000699	99					
Total PeCDF	3	•	0.000000726	0726				
Total HxCDF	0.00000182		0.00000351	351	A			
Total HaCDE	0.0000101	77.	0.0000147	47				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 001

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Report Number: IRA2506

Sampled: 01/25/08

Received: 01/25/08

Attention: Bronwyn Kelly

METALS

		I	META	LS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2506-01 (OUTFALL 001 Reporting Units: mg/l	- Water) - cont.								
Iron	EPA 200.7	8A26028	0.015	0.040	5.7	1	01/26/08	01/28/08	
Sample ID: IRA2506-01 (OUTFALL 001	- Water)								
Reporting Units: ug/l									
Cadmium J/DNQ	EPA 200.8	8A26027	0.11	1.0	0.12	1	01/26/08	01/26/08	J
Copper	EPA 200.8	8A26027	0.75	2.0	4.8	1	01/26/08	01/26/08	
Lead	EPA 200.8	8A26027	0.30	1.0	3.4	1	01/26/08	01/26/08	
Manganese	EPA 200.7	8A26028	7.0	20	71	1	01/26/08	01/28/08	
Selenium U	EPA 200.8	8A26027	0.30	2.0	ND	1	01/26/08	01/26/08	
Zinc	EPA 200.7	8A26028	6.0	20	28	1	01/26/08	01/28/08	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Arcadia, CA 91007

Project ID: Routine Outfall 001

618 Michillinda Avenue, Suite 200

Report Number: IRA2506

Sampled: 01/25/08

Received: 01/25/08

Attention: Bronwyn Kelly

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2506-01 (OUTFALL 00	1 - Water) - cont.								
Reporting Units: mg/l									
Iron	EPA 200.7-Diss	8A25155	0.015	0.040	0.26	1	01/25/08	01/26/08	
Sample ID: IRA2506-01 (OUTFALL 00	1 - Water)								
Reporting Units: ug/l									
Cadmium U	EPA 200.8-Diss	8A25156	0.11	1.0	ND	1	01/25/08	01/26/08	
Copper	EPA 200.8-Diss	8A25156	0.75	2.0	2.2	1	01/25/08	01/26/08	
Lead U	EPA 200.8-Diss	8A25156	0.30	1.0	ND	1	01/25/08	01/26/08	
Manganese J/DNQ	EPA 200.7-Diss	8A25155	7.0	20	8.2	1	01/25/08	01/26/08	J
Selenium Ú	EPA 200.8-Diss	8A25156	0.30	2.0	ND	1	01/25/08	01/26/08	
Zinc	EPA 200.7-Diss	8A25155	6.0	20	ND	1	01/25/08	01/26/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Report Number: IRA2506

Sampled: 01/25/08

Received: 01/25/08

Metals by EPA 200 Series Methods

Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2506	-01 (OUTFALL 00	1 - Water) - cont.								
Reporting Units:	ug/i									
Mercury, Dissolved	UJ (KTT	EPA 245.1	W8A1034	0.050	0.20	ND	1	01/29/08	01/30/08	
Mercury, Total	V	EPA 245.1	W8A1034	0.050	0.20	ND	1	01/29/08	01/30/08	

LEVEL IV

TestAmerica Irvine

Eberline Services

ANALYSIS RESULTS

Client		Lab					
Sample ID		Sample ID	Collected Analyzed	Nuclide	Results ± 2σ	Units	MDA
Outfall	100						
IRA2506-01	1	8691-001	01/25/08 02/16/08	GrossAlpha	3.13 ± 0.82	pCi/L	0.81 J/R
			02/16/08	Gross Beta	3.00 ± 0.62	pCi/L	0.90
			02/20/08	Ra-228	0.265 ± 0.18	pCi/L	0.47 UJ/H
			02/15/08	K-40 (G)	U	pCi/L	51
			02/15/08	Cs-137 (G)	σ	pCi/L	1.6
			02/21/08	H-3	-101 ± 90	pCi/L	160
			02/20/08	Ra-226	0.320 ± 0.49	pCi/L	0.83 UJ/H
			02/14/08	Sr-90	-0.002 ± 0.31	pCi/L	0.74
			02/19/08	Total U	0.210 ± 0.025	pCi/L	0.022 J/H

EVEL IV

Certified by YOU Report Date 02/27/08
Page 1

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Report Number: IRA2506

Sampled: 01/25/08 Received: 01/25/08

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2506-01 (O	UTFALL 001	- Water)								
Reporting Units: ug/l										
Bis(2-ethylhexyl)phthalate	N	EPA 625	8A29057	1.6	4.8	ND	0.962	01/29/08	01/31/08	
2,4-Dinitrotoluene	1	EPA 625	8A29057	0.19	8.7	ND	0.962	01/29/08	01/31/08	
N-Nitrosodimethylamine		EPA 625	8A29057	0.096	7.7	ND	0.962	01/29/08	01/31/08	
Pentachlorophenol		EPA 625	8A29057	0.096	7.7	ND	0.962	01/29/08	01/31/08	
2,4,6-Trichlorophenol	1	EPA 625	8A29057	0.096	5.8	ND	0.962	01/29/08	D. Jan. St. Barrelle	
Surrogate: 2-Fluorophenol (30-120%)		0.127051	0.000	5.6	67%	0.902	01/29/08	01/31/08	
Surrogate: Phenol-d6 (35-12						72 %				
Surrogate: 2,4,6-Tribromoph		6)				3.44.6				
Surrogate: Nitrobenzene-d5		9				108%				
Surrogate: 2-Fluorobiphenyl						82 %				
						82 %				
Surrogate: Terphenyl-d14 (5)	0-125%)					99%				

Leve IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA2506 <Page 3 of 35>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Report Number: IRA2506

Sampled: 01/25/08 Received: 01/25/08

PURGEABLES BY GC/MS (EPA 624)

Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2506-01	(OUTFALL	01 Water)			13030			Datracted	rinaryzea	Quantities
Reporting Units: ug/		noi - water)								
Benzene	11	EPA 624	8A30025	0.28	20	NID	4	01/20/00	01/20/00	
Carbon tetrachloride	n	EPA 624	8A30025	0.28	2.0	ND	1	01/30/08	01/30/08	
Chloroform		EPA 624	8A30025	0.28	5.0	ND	1	01/30/08	01/30/08	
1,1-Dichloroethane		EPA 624	8A30025	0.33	2.0	ND	1	01/30/08	01/30/08	
1,2-Dichloroethane		EPA 624	8A30025	0.27	2.0	ND	1	01/30/08	01/30/08	
1,1-Dichloroethene		EPA 624	8A30025	0.42	2.0	ND	1	01/30/08	01/30/08	
Ethylbenzene		EPA 624	8A30025		3.0	ND	1	01/30/08	01/30/08	
Tetrachloroethene		EPA 624		0.25	2.0	ND	1	01/30/08	01/30/08	
Toluene		EPA 624	8A30025	0.32	2.0	ND	1	01/30/08	01/30/08	
1,1,1-Trichloroethane		EPA 624	8A30025	0.36	2.0	ND	1	01/30/08	01/30/08	
1,1,2-Trichloroethane			8A30025	0.30	2.0	ND	1	01/30/08	01/30/08	
Trichloroethene		EPA 624	8A30025	0.30	2.0	ND	1	01/30/08	01/30/08	
Trichlorofluoromethane	1	EPA 624	8A30025	0.26	5.0	ND	1	01/30/08	01/30/08	
Vinyl chloride	1	EPA 624	8A30025	0.34	5.0	ND	1	01/30/08	01/30/08	
Xylenes, Total	1	EPA 624	8A30025	0.30	5.0	ND	1	01/30/08	01/30/08	
	wath as a 100	EPA 624	8A30025	0.90	4.0	ND	1	01/30/08	01/30/08	
Surrogate: Dibromofluoro		[20%]				110%				
Surrogate: Toluene-d8 (80		2004				101%				
Surrogate: 4-Bromofluoro	obenzene (80-1	20%)				90 %				
Sample ID: IRA2506-02 Reporting Units: ug/		K - Water)								
Benzene	U.	EPA 624	8A31036	0.28	2.0	ND	1	01/31/08	01/31/08	
Carbon tetrachloride	1	EPA 624	8A31036	0.28	5.0	ND	1	01/31/08	01/31/08	
Chloroform		EPA 624	8A31036	0.33	2.0	ND	1	01/31/08	01/31/08	
1,1-Dichloroethane	1	EPA 624	8A31036	0.27	2.0	ND	1	01/31/08	01/31/08	
1,2-Dichloroethane		EPA 624	8A31036	0.28	2.0	ND	1	01/31/08	01/31/08	
1,1-Dichloroethene		EPA 624	8A31036	0.42	3.0	ND	1	01/31/08	01/31/08	
Ethylleanoss		EPA 624			2.0	ND	1	01/31/08	01/31/08	
Ethylbenzene			8A31U36	0.23				CHISTING	01/01/00	
Tetrachloroethene			8A31036 8A31036	0.25						
- Philippin 7 1, 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2)		EPA 624	8A31036	0.32	2.0	ND	1	01/31/08	01/31/08	
Tetrachloroethene Toluene		EPA 624 EPA 624	8A31036 8A31036	0.32 0.36	2.0 2.0	ND ND	1	01/31/08 01/31/08	01/31/08 01/31/08	
Tetrachloroethene		EPA 624 EPA 624 EPA 624	8A31036 8A31036 8A31036	0.32 0.36 0.30	2.0 2.0 2.0	ND ND ND	1 1 1	01/31/08 01/31/08 01/31/08	01/31/08 01/31/08 01/31/08	
Tetrachloroethene Toluene 1,1,1-Trichloroethane		EPA 624 EPA 624 EPA 624	8A31036 8A31036 8A31036 8A31036	0.32 0.36 0.30 0.30	2.0 2.0 2.0 2.0	ND ND ND ND	1	01/31/08 01/31/08 01/31/08 01/31/08	01/31/08 01/31/08 01/31/08 01/31/08	
Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane		EPA 624 EPA 624 EPA 624 EPA 624 EPA 624	8A31036 8A31036 8A31036 8A31036 8A31036	0.32 0.36 0.30 0.30 0.26	2.0 2.0 2.0 2.0 5.0	ND ND ND ND	1 1 1	01/31/08 01/31/08 01/31/08 01/31/08 01/31/08	01/31/08 01/31/08 01/31/08 01/31/08 01/31/08	
Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane		EPA 624 EPA 624 EPA 624 EPA 624 EPA 624	8A31036 8A31036 8A31036 8A31036 8A31036	0.32 0.36 0.30 0.30 0.26 0.34	2.0 2.0 2.0 2.0 5.0 5.0	ND ND ND ND ND	1 1 1	01/31/08 01/31/08 01/31/08 01/31/08 01/31/08 01/31/08	01/31/08 01/31/08 01/31/08 01/31/08 01/31/08 01/31/08	
Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane Vinyl chloride		EPA 624 EPA 624 EPA 624 EPA 624 EPA 624 EPA 624	8A31036 8A31036 8A31036 8A31036 8A31036 8A31036	0.32 0.36 0.30 0.30 0.26 0.34 0.30	2.0 2.0 2.0 2.0 5.0 5.0	ND ND ND ND ND ND	1 1 1	01/31/08 01/31/08 01/31/08 01/31/08 01/31/08 01/31/08 01/31/08	01/31/08 01/31/08 01/31/08 01/31/08 01/31/08 01/31/08 01/31/08	
Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane Vinyl chloride Xylenes, Total	wmethane (80-1	EPA 624 EPA 624 EPA 624 EPA 624 EPA 624 EPA 624 EPA 624 EPA 624	8A31036 8A31036 8A31036 8A31036 8A31036	0.32 0.36 0.30 0.30 0.26 0.34	2.0 2.0 2.0 2.0 5.0 5.0	ND ND ND ND ND ND ND	1 1 1	01/31/08 01/31/08 01/31/08 01/31/08 01/31/08 01/31/08	01/31/08 01/31/08 01/31/08 01/31/08 01/31/08 01/31/08	
Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane		EPA 624 EPA 624 EPA 624 EPA 624 EPA 624 EPA 624 EPA 624 EPA 624	8A31036 8A31036 8A31036 8A31036 8A31036 8A31036	0.32 0.36 0.30 0.30 0.26 0.34 0.30	2.0 2.0 2.0 2.0 5.0 5.0	ND ND ND ND ND ND	1 1 1	01/31/08 01/31/08 01/31/08 01/31/08 01/31/08 01/31/08 01/31/08	01/31/08 01/31/08 01/31/08 01/31/08 01/31/08 01/31/08 01/31/08	

TestAmerica Irvine

Joseph Doak Project Manager LwelI

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA2506 <Page 2 of 35>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Project ID: Routine Outfall 001

Sampled: 01/25/08

Arcadia, CA 91007

Report Number: IRA2506

Received: 01/25/08

INORGANICS

Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2506-01 (OUTFAL	L 001 - Water) - cont.								
Reporting Units: mg/l										
Hexane Extractable Material (Oil & 🗡	EPA 1664A	8B04061	1.4	4.9	ND	1	02/04/08	02/04/08	
Grease)	1									
Ammonia-N (Distilled)	1	EPA 350.2	8A29110	0.30	0.50	ND	1	01/29/08	01/29/08	
Biochemical Oxygen Dem	and	EPA 405.1	8A25151	0.59	2.0	1.9	1	01/25/08	01/30/08	J
Chloride		EPA 300.0	8A25053	0.25	0.50	11	1	01/25/08	01/25/08	
Nitrate-N	- 1	EPA 300.0	8A25053	0.060	0.11	3.8	1	01/25/08	01/25/08	
Nitrite-N		EPA 300.0	8A25053	0.090	0.15	ND	1	01/25/08	01/25/08	
Nitrate/Nitrite-N	- 1	EPA 300.0	8A25053	0.15	0.26	3.8	1	01/25/08	01/25/08	
Sulfate		EPA 300.0	8A25053	0.20	0.50	22	1	01/25/08	01/25/08	
Surfactants (MBAS)		SM5540-C	8A25148	0.044	0.10	ND	1	01/25/08	01/25/08	
Total Dissolved Solids	1	SM2540C	8A31077	10	10	170	1	01/31/08	01/31/08	
Total Suspended Solids		EPA 160.2	8A30131	10	10	57	1	01/30/08	01/30/08	

*Analysis not validated

LEVEC IV

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Report Number: IRA2506

Sampled: 01/25/08

Received: 01/25/08

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2506-01 (OUTFALL 0	01 - Water) - cont.								
Reporting Units: ml/l/hr									
Total Settleable Solids	EPA 160.5	8A26035	0.10	0.10	0.10	1	01/26/08	01/26/08	

LEVEL IV

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Report Number: IRA2506

Sampled: 01/25/08

Received: 01/25/08

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor		Date Analyzed	Data Qualifiers
Sample ID: IRA2506-01 (OUTFALL 00)	l - Water) - cont.								
Reporting Units: NTU Turbidity	EPA 180.1	8A26036	0.040	1.0	18	1	01/26/08	01/26/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Report Number: IRA2506

Sampled: 01/25/08

Received: 01/25/08

INORGANICS

Method	Batch	MDL Limit	Reporting Limit	Sample Result			Date Analyzed	Data Qualifiers
- Water) - cont.								
EPA 120.1	8A31072	1.0	1.0	190	1	01/31/08	01/31/08	
	l - Water) - cont.	l - Water) - cont.	Method Batch Limit 1 - Water) - cont.	Method Batch Limit Limit - Water) - cont.	Method Batch Limit Limit Result 1 - Water) - cont.	Method Batch Limit Limit Result Factor 1 - Water) - cont.	Method Batch Limit Limit Result Factor Extracted	Method Batch Limit Limit Result Factor Extracted Analyzed 1 - Water) - cont.

TestAmerica Irvine

APPENDIX G

Section 2

Outfall 001, January 25, 2008 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Routine Outfall 001

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 01/25/08 Received: 01/25/08

Issued: 02/28/08 11:51

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at 2°C, on ice and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica

Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis.

QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: Results that fall between the MDL and RL are 'J' flagged.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: This is a final report to include all subcontract data.

LABORATORY IDCLIENT IDMATRIXIRA2506-01OUTFALL 001WaterIRA2506-02TRIP BLANKWater

Reviewed By:

TestAmerica Irvine

Joseph Dock

Sampled: 01/25/08

Received: 01/25/08

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

Project ID: Routine Outfall 001

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IRA2506

Attention: Bronwyn Kelly

PURGEABLES BY GC/MS (EPA 624)

	1010	GLIDEL		`	Í			.	D (
Analysta	Mathad	Datah	MDL	Reporting		Dilution	Date Extracted	Date	Data Qualifiers
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IRA2506-01 (OUTFALL 001 -	Water)								
Reporting Units: ug/l									
Benzene	EPA 624	8A30025	0.28	2.0	ND	1	01/30/08	01/30/08	
Carbon tetrachloride	EPA 624	8A30025	0.28	5.0	ND	1	01/30/08	01/30/08	
Chloroform	EPA 624	8A30025	0.33	2.0	ND	1	01/30/08	01/30/08	
1,1-Dichloroethane	EPA 624	8A30025	0.27	2.0	ND	1	01/30/08	01/30/08	
1,2-Dichloroethane	EPA 624	8A30025	0.28	2.0	ND	1	01/30/08	01/30/08	
1,1-Dichloroethene	EPA 624	8A30025	0.42	3.0	ND	1	01/30/08	01/30/08	
Ethylbenzene	EPA 624	8A30025	0.25	2.0	ND	1	01/30/08	01/30/08	
Tetrachloroethene	EPA 624	8A30025	0.32	2.0	ND	1	01/30/08	01/30/08	
Toluene	EPA 624	8A30025	0.36	2.0	ND	1	01/30/08	01/30/08	
1,1,1-Trichloroethane	EPA 624	8A30025	0.30	2.0	ND	1	01/30/08	01/30/08	
1,1,2-Trichloroethane	EPA 624	8A30025	0.30	2.0	ND	1	01/30/08	01/30/08	
Trichloroethene	EPA 624	8A30025	0.26	5.0	ND	1	01/30/08	01/30/08	
Trichlorofluoromethane	EPA 624	8A30025	0.34	5.0	ND	1	01/30/08	01/30/08	
Vinyl chloride	EPA 624	8A30025	0.30	5.0	ND	1	01/30/08	01/30/08	
Xylenes, Total	EPA 624	8A30025	0.90	4.0	ND	1	01/30/08	01/30/08	
Surrogate: Dibromofluoromethane (80-1209	%)				110 %				
Surrogate: Toluene-d8 (80-120%)					101 %				
Surrogate: 4-Bromofluorobenzene (80-120%	6)				90 %				
Sample ID: IRA2506-02 (TRIP BLANK -	Water)								
Reporting Units: ug/l	vv acci j								
Benzene	EPA 624	8A31036	0.28	2.0	ND	1	01/31/08	01/31/08	
Carbon tetrachloride	EPA 624	8A31036	0.28	5.0	ND	1	01/31/08	01/31/08	
Chloroform	EPA 624	8A31036	0.33	2.0	ND	1	01/31/08	01/31/08	
1,1-Dichloroethane	EPA 624	8A31036	0.27	2.0	ND	1	01/31/08	01/31/08	
1,2-Dichloroethane	EPA 624	8A31036	0.28	2.0	ND	1	01/31/08	01/31/08	
1,1-Dichloroethene	EPA 624	8A31036	0.42	3.0	ND	1	01/31/08	01/31/08	
Ethylbenzene	EPA 624	8A31036	0.25	2.0	ND	1	01/31/08	01/31/08	
Tetrachloroethene	EPA 624	8A31036	0.32	2.0	ND	1	01/31/08	01/31/08	
Toluene	EPA 624	8A31036	0.36	2.0	ND	1	01/31/08	01/31/08	
1,1,1-Trichloroethane	EPA 624	8A31036	0.30	2.0	ND	1	01/31/08	01/31/08	
1,1,2-Trichloroethane	EPA 624	8A31036	0.30	2.0	ND	1	01/31/08	01/31/08	
Trichloroethene	EPA 624	8A31036	0.26	5.0	ND	1	01/31/08	01/31/08	
Trichlorofluoromethane	EPA 624	8A31036	0.34	5.0	ND	1	01/31/08	01/31/08	
Vinyl chloride	EPA 624	8A31036	0.30	5.0	ND	1	01/31/08	01/31/08	
Xylenes, Total	EPA 624	8A31036	0.90	4.0	ND	1	01/31/08	01/31/08	
Surrogate: Dibromofluoromethane (80-1209					107 %				
	,								
-	6)								
Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120%)	6)				101 % 91 %				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 001

618 Michillinda Avenue, Suite 200 Sampled: 01/25/08

Arcadia, CA 91007 Report Number: IRA2506 Received: 01/25/08

Attention: Bronwyn Kelly

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IRA2506-01 (OUTFALL 001 - Water)										
Reporting Units: ug/l										
Bis(2-ethylhexyl)phthalate	EPA 625	8A29057	1.6	4.8	ND	0.962	01/29/08	01/31/08		
2,4-Dinitrotoluene	EPA 625	8A29057	0.19	8.7	ND	0.962	01/29/08	01/31/08		
N-Nitrosodimethylamine	EPA 625	8A29057	0.096	7.7	ND	0.962	01/29/08	01/31/08		
Pentachlorophenol	EPA 625	8A29057	0.096	7.7	ND	0.962	01/29/08	01/31/08		
2,4,6-Trichlorophenol	EPA 625	8A29057	0.096	5.8	ND	0.962	01/29/08	01/31/08		
Surrogate: 2-Fluorophenol (30-120%)					67 %					
Surrogate: Phenol-d6 (35-120%)					72 %					
Surrogate: 2,4,6-Tribromophenol (40-120%)					108 %					
Surrogate: Nitrobenzene-d5 (45-120%)					82 %					
Surrogate: 2-Fluorobiphenyl (50-120%)					82 %					
Surrogate: Terphenyl-d14 (50-125%)					99 %					

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 01/25/08

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IRA2506 Received: 01/25/08

Attention: Bronwyn Kelly

ORGANOCHLORINE PESTICIDES (EPA 608)

Project ID: Routine Outfall 001

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IRA2506-01 (OUTFALL 001 - V	Water) - cont.								
Reporting Units: ug/l									
alpha-BHC	EPA 608	8A29059	0.0024	0.0094	ND	0.943	01/29/08	01/29/08	
Surrogate: Decachlorobiphenyl (45-120%)					79 %				
Surrogate: Tetrachloro-m-xylene (35-115%)					67 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 001

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200

Sampled: 01/25/08 Arcadia, CA 91007 Report Number: IRA2506 Received: 01/25/08

Attention: Bronwyn Kelly

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2506-01 (OUTFALL 00 Reporting Units: mg/l	1 - Water) - cont.								
Iron	EPA 200.7	8A26028	0.015	0.040	5.7	1	01/26/08	01/28/08	
Sample ID: IRA2506-01 (OUTFALL 00	1 - Water)								
Reporting Units: ug/l									
Cadmium	EPA 200.8	8A26027	0.11	1.0	0.12	1	01/26/08	01/26/08	J
Copper	EPA 200.8	8A26027	0.75	2.0	4.8	1	01/26/08	01/26/08	
Lead	EPA 200.8	8A26027	0.30	1.0	3.4	1	01/26/08	01/26/08	
Manganese	EPA 200.7	8A26028	7.0	20	71	1	01/26/08	01/28/08	
Selenium	EPA 200.8	8A26027	0.30	2.0	ND	1	01/26/08	01/26/08	
Zinc	EPA 200.7	8A26028	6.0	20	28	1	01/26/08	01/28/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 01/25/08

MWH-Pasadena/Boeing Project ID: Routine Outfall 001

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IRA2506 Received: 01/25/08

Attention: Bronwyn Kelly

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IRA2506-01 (OUTFALL 001 - Water) - cont.										
Reporting Units: mg/l										
Iron	EPA 200.7-Diss	8A25155	0.015	0.040	0.26	1	01/25/08	01/26/08		
Sample ID: IRA2506-01 (OUTFALL 00	11 - Water)									
Reporting Units: ug/l										
Cadmium	EPA 200.8-Diss	8A25156	0.11	1.0	ND	1	01/25/08	01/26/08		
Copper	EPA 200.8-Diss	8A25156	0.75	2.0	2.2	1	01/25/08	01/26/08		
Lead	EPA 200.8-Diss	8A25156	0.30	1.0	ND	1	01/25/08	01/26/08		
Manganese	EPA 200.7-Diss	8A25155	7.0	20	8.2	1	01/25/08	01/26/08	J	
Selenium	EPA 200.8-Diss	8A25156	0.30	2.0	ND	1	01/25/08	01/26/08		
Zinc	EPA 200.7-Diss	8A25155	6.0	20	ND	1	01/25/08	01/26/08		

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 001

618 Michillinda Avenue, Suite 200 Sampled: 01/25/08

Arcadia, CA 91007 Report Number: IRA2506 Received: 01/25/08 Attention: Bronwyn Kelly

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2506-01 (OUTFALL (001 - Water) - cont.								
Reporting Units: mg/l									
Hexane Extractable Material (Oil &	EPA 1664A	8B04061	1.4	4.9	ND	1	02/04/08	02/04/08	
Grease)									
Ammonia-N (Distilled)	EPA 350.2	8A29110	0.30	0.50	ND	1	01/29/08	01/29/08	
Biochemical Oxygen Demand	EPA 405.1	8A25151	0.59	2.0	1.9	1	01/25/08	01/30/08	J
Chloride	EPA 300.0	8A25053	0.25	0.50	11	1	01/25/08	01/25/08	
Nitrate-N	EPA 300.0	8A25053	0.060	0.11	3.8	1	01/25/08	01/25/08	
Nitrite-N	EPA 300.0	8A25053	0.090	0.15	ND	1	01/25/08	01/25/08	
Nitrate/Nitrite-N	EPA 300.0	8A25053	0.15	0.26	3.8	1	01/25/08	01/25/08	
Sulfate	EPA 300.0	8A25053	0.20	0.50	22	1	01/25/08	01/25/08	
Surfactants (MBAS)	SM5540-C	8A25148	0.044	0.10	ND	1	01/25/08	01/25/08	
Total Dissolved Solids	SM2540C	8A31077	10	10	170	1	01/31/08	01/31/08	
Total Suspended Solids	EPA 160.2	8A30131	10	10	57	1	01/30/08	01/30/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 001

Sampled: 01/25/08

Report Number: IRA2506

Received: 01/25/08

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2506-01 (OUTFALL 001 -	Water) - cont.								
Reporting Units: ml/l/hr Total Settleable Solids	EPA 160.5	8A26035	0.10	0.10	0.10	1	01/26/08	01/26/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Sampled: 01/25/08

Report Number: IRA2506 Received: 01/25/08

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor		Date Analyzed	Data Qualifiers
Sample ID: IRA2506-01 (OUTFALL 001 - Reporting Units: NTU	Water) - cont.								
Turbidity	EPA 180.1	8A26036	0.040	1.0	18	1	01/26/08	01/26/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 01/25/08

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IRA2506 Received: 01/25/08

Attention: Bronwyn Kelly

INORGANICS

Project ID: Routine Outfall 001

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2506-01 (OUTFALL 001 -	Water) - cont.								
Reporting Units: ug/l Total Cyanide	EPA 335.2	8A28126	2.2	5.0	ND	1	01/28/08	01/28/08	
Perchlorate	EPA 314.0	8A28071	1.5	4.0	ND	1	01/28/08	01/28/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001

Sampled: 01/25/08

Report Number: IRA2506

Received: 01/25/08

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2506-01 (OUTFALL 001 -	Water) - cont.								
Reporting Units: umhos/cm Specific Conductance	EPA 120.1	8A31072	1.0	1.0	190	1	01/31/08	01/31/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 001

618 Michillinda Avenue, Suite 200

Sampled: 01/25/08 Report Number: IRA2506 Received: 01/25/08

Attention: Bronwyn Kelly

Arcadia, CA 91007

Metals by EPA 200 Series Methods

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2506-01 (OUTFALL 001 -	Water) - cont.								
Reporting Units: ug/l									
Mercury, Dissolved	EPA 245.1	W8A1034	0.050	0.20	ND	1	01/29/08	01/30/08	
Mercury, Total	EPA 245.1	W8A1034	0.050	0.20	ND	1	01/29/08	01/30/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 001

618 Michillinda Avenue, Suite 200 Sampled: 01/25/08

Arcadia, CA 91007 Report Number: IRA2506 Received: 01/25/08

Attention: Bronwyn Kelly

SHORT HOLD TIME DETAIL REPORT

Sample ID: OUTFALL 001 (IRA2506-01)	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: OUTFALL out (IKA2500-01)	- water				
EPA 160.5	2	01/25/2008 13:45	01/25/2008 18:20	01/26/2008 13:00	01/26/2008 13:00
EPA 180.1	2	01/25/2008 13:45	01/25/2008 18:20	01/26/2008 16:00	01/26/2008 16:00
EPA 300.0	2	01/25/2008 13:45	01/25/2008 18:20	01/25/2008 20:00	01/25/2008 21:56
EPA 405.1	2	01/25/2008 13:45	01/25/2008 18:20	01/25/2008 20:58	01/30/2008 15:00
SM5540-C	2	01/25/2008 13:45	01/25/2008 18:20	01/25/2008 20:08	01/25/2008 22:33

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 001

Sampled: 01/25/08

Report Number: IRA2506 Received: 01/25/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•		2		C 11105	20,01	1105411	,,,,,,	23111105		2311114	Q
Batch: 8A30025 Extracted: 01/30/08	<u>) </u>										
Blank Analyzed: 01/30/2008 (8A30025-B	BLK1)										
Benzene	ND	2.0	0.28	ug/l							
Carbon tetrachloride	ND	5.0	0.28	ug/l							
Chloroform	ND	2.0	0.33	ug/l							
1,1-Dichloroethane	ND	2.0	0.27	ug/l							
1,2-Dichloroethane	ND	2.0	0.28	ug/l							
1,1-Dichloroethene	ND	3.0	0.42	ug/l							
Ethylbenzene	ND	2.0	0.25	ug/l							
Tetrachloroethene	ND	2.0	0.32	ug/l							
Toluene	ND	2.0	0.36	ug/l							
1,1,1-Trichloroethane	ND	2.0	0.30	ug/l							
1,1,2-Trichloroethane	ND	2.0	0.30	ug/l							
Trichloroethene	ND	5.0	0.26	ug/l							
Trichlorofluoromethane	ND	5.0	0.34	ug/l							
Vinyl chloride	ND	5.0	0.30	ug/l							
Xylenes, Total	ND	4.0	0.90	ug/l							
Surrogate: Dibromofluoromethane	26.2			ug/l	25.0		105	80-120			
Surrogate: Toluene-d8	25.2			ug/l	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	22.5			ug/l	25.0		90	80-120			
LCS Analyzed: 01/30/2008 (8A30025-BS	1)										
Benzene	24.9	2.0	0.28	ug/l	25.0		99	70-120			
Carbon tetrachloride	26.1	5.0	0.28	ug/l	25.0		104	65-140			
Chloroform	27.8	2.0	0.33	ug/l	25.0		111	70-130			
1,1-Dichloroethane	27.4	2.0	0.27	ug/l	25.0		110	70-125			
1,2-Dichloroethane	24.9	2.0	0.28	ug/l	25.0		99	60-140			
1,1-Dichloroethene	24.0	3.0	0.42	ug/l	25.0		96	70-125			
Ethylbenzene	25.7	2.0	0.25	ug/l	25.0		103	75-125			
Tetrachloroethene	21.7	2.0	0.32	ug/l	25.0		87	70-125			
Toluene	24.8	2.0	0.36	ug/l	25.0		99	70-120			
1,1,1-Trichloroethane	27.4	2.0	0.30	ug/l	25.0		110	65-135			
1,1,2-Trichloroethane	25.0	2.0	0.30	ug/l	25.0		100	70-125			
Trichloroethene	23.7	5.0	0.26	ug/l	25.0		95	70-125			
Trichlorofluoromethane	29.4	5.0	0.34	ug/l	25.0		117	65-145			
Vinyl chloride	25.4	5.0	0.30	ug/l	25.0		102	55-135			
Xylenes, Total	74.1	4.0	0.90	ug/l	75.0		99	70-125			
Surrogate: Dibromofluoromethane	27.5			ug/l	25.0		110	80-120			
TD 44 . T .											

TestAmerica Irvine

Joseph Doak Project Manager

%REC

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Report Number: IRA2506

Reporting

Sampled: 01/25/08

RPD

Data

Received: 01/25/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Spike

Source

		Keporting			Spike	Source		70KEC		KI D	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8A30025 Extracted: 01/30/	08										
LCS Analyzed: 01/30/2008 (8A30025-F	*			_							
Surrogate: Toluene-d8	25.6			ug/l	25.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	25.1			ug/l	25.0		100	80-120			
Matrix Spike Analyzed: 01/30/2008 (8/	A30025-MS1)				Sou	rce: IRA	2506-01				
Benzene	27.6	2.0	0.28	ug/l	25.0	ND	110	65-125			
Carbon tetrachloride	29.2	5.0	0.28	ug/l	25.0	ND	117	65-140			
Chloroform	31.2	2.0	0.33	ug/l	25.0	ND	125	65-135			
1,1-Dichloroethane	30.4	2.0	0.27	ug/l	25.0	ND	122	65-130			
1,2-Dichloroethane	27.6	2.0	0.28	ug/l	25.0	ND	111	60-140			
1,1-Dichloroethene	26.7	3.0	0.42	ug/l	25.0	ND	107	60-130			
Ethylbenzene	28.4	2.0	0.25	ug/l	25.0	ND	114	65-130			
Tetrachloroethene	24.1	2.0	0.32	ug/l	25.0	ND	96	65-130			
Toluene	27.2	2.0	0.36	ug/l	25.0	ND	109	70-125			
1,1,1-Trichloroethane	30.8	2.0	0.30	ug/l	25.0	ND	123	65-140			
1,1,2-Trichloroethane	28.2	2.0	0.30	ug/l	25.0	ND	113	65-130			
Trichloroethene	25.9	5.0	0.26	ug/l	25.0	ND	104	65-125			
Trichlorofluoromethane	33.5	5.0	0.34	ug/l	25.0	ND	134	60-145			
Vinyl chloride	28.2	5.0	0.30	ug/l	25.0	ND	113	45-140			
Xylenes, Total	80.2	4.0	0.90	ug/l	75.0	ND	107	60-130			
Surrogate: Dibromofluoromethane	26.9			ug/l	25.0		108	80-120			
Surrogate: Toluene-d8	25.2			ug/l	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	24.7			ug/l	25.0		99	80-120			
Matrix Spike Dup Analyzed: 01/30/200	08 (8A30025-M	ISD1)			Sou	rce: IRA	2506-01				
Benzene	27.4	2.0	0.28	ug/l	25.0	ND	110	65-125	1	20	
Carbon tetrachloride	28.3	5.0	0.28	ug/l	25.0	ND	113	65-140	3	25	
Chloroform	30.5	2.0	0.33	ug/l	25.0	ND	122	65-135	2	20	
1,1-Dichloroethane	30.0	2.0	0.27	ug/l	25.0	ND	120	65-130	1	20	
1,2-Dichloroethane	26.8	2.0	0.28	ug/l	25.0	ND	107	60-140	3	20	
1,1-Dichloroethene	26.6	3.0	0.42	ug/l	25.0	ND	106	60-130	1	20	
Ethylbenzene	27.8	2.0	0.25	ug/l	25.0	ND	111	65-130	2	20	
Tetrachloroethene	23.9	2.0	0.32	ug/l	25.0	ND	96	65-130	1	20	
Toluene	27.0	2.0	0.36	ug/l	25.0	ND	108	70-125	1	20	
1,1,1-Trichloroethane	29.8	2.0	0.30	ug/l	25.0	ND	119	65-140	3	20	
1,1,2-Trichloroethane	28.0	2.0	0.30	ug/l	25.0	ND	112	65-130	1	25	
Trichloroethene	26.0	5.0	0.26	ug/l	25.0	ND	104	65-125	0	20	

TestAmerica Irvine

Joseph Doak Project Manager

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

t ID: Routine Outlan 001

Report Number: IRA2506

Sampled: 01/25/08 Received: 01/25/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8A30025 Extracted: 01/30/0	08										
Matrix Spike Dup Analyzed: 01/30/200	08 (8A30025-M	ISD1)			Sou	rce: IRA	2506-01				
Trichlorofluoromethane	31.9	5.0	0.34	ug/l	25.0	ND	128	60-145	5	25	
Vinyl chloride	28.9	5.0	0.30	ug/l	25.0	ND	116	45-140	2	30	
Xylenes, Total	78.8	4.0	0.90	ug/l	75.0	ND	105	60-130	2	20	
Surrogate: Dibromofluoromethane	27.0			ug/l	25.0		108	80-120			
Surrogate: Toluene-d8	25.5			ug/l	25.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	24.5			ug/l	25.0		98	80-120			
Batch: 8A31036 Extracted: 01/31/	<u> </u>										
Blank Analyzed: 01/31/2008 (8A31036-	·BLK1)										
Benzene	ND	2.0	0.28	ug/l							
Carbon tetrachloride	ND	5.0	0.28	ug/l							
Chloroform	ND	2.0	0.33	ug/l							
1,1-Dichloroethane	ND	2.0	0.27	ug/l							
1,2-Dichloroethane	ND	2.0	0.28	ug/l							
1,1-Dichloroethene	ND	3.0	0.42	ug/l							
Ethylbenzene	ND	2.0	0.25	ug/l							
Tetrachloroethene	ND	2.0	0.32	ug/l							
Toluene	ND	2.0	0.36	ug/l							
1,1,1-Trichloroethane	ND	2.0	0.30	ug/l							
1,1,2-Trichloroethane	ND	2.0	0.30	ug/l							
Trichloroethene	ND	5.0	0.26	ug/l							
Trichlorofluoromethane	ND	5.0	0.34	ug/l							
Vinyl chloride	ND	5.0	0.30	ug/l							
Xylenes, Total	ND	4.0	0.90	ug/l							
Surrogate: Dibromofluoromethane	26.8			ug/l	25.0		107	80-120			
Surrogate: Toluene-d8	25.4			ug/l	25.0		102	80-120			

TestAmerica Irvine

Surrogate: 4-Bromofluorobenzene

22.6

Joseph Doak Project Manager 25.0

ug/l

80-120

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Troject ID. Routine Outlan 00

Report Number: IRA2506

Sampled: 01/25/08 Received: 01/25/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•		Limit	WIDE	Cints	Level	Result	/ore	Limits	KI D	Limit	Quanners
Batch: 8A31036 Extracted: 01/31/08	<u>8</u>										
LCS Analyzed: 01/31/2008 (8A31036-BS	S1)										
Benzene	26.5	2.0	0.28	ug/l	25.0		106	70-120			
Carbon tetrachloride	27.6	5.0	0.28	ug/l	25.0		110	65-140			
Chloroform	29.6	2.0	0.33	ug/l	25.0		118	70-130			
1,1-Dichloroethane	29.0	2.0	0.27	ug/l	25.0		116	70-125			
1,2-Dichloroethane	26.2	2.0	0.28	ug/l	25.0		105	60-140			
1,1-Dichloroethene	26.0	3.0	0.42	ug/l	25.0		104	70-125			
Ethylbenzene	26.8	2.0	0.25	ug/l	25.0		107	75-125			
Tetrachloroethene	22.6	2.0	0.32	ug/l	25.0		90	70-125			
Toluene	26.2	2.0	0.36	ug/l	25.0		105	70-120			
1,1,1-Trichloroethane	29.2	2.0	0.30	ug/l	25.0		117	65-135			
1,1,2-Trichloroethane	25.7	2.0	0.30	ug/l	25.0		103	70-125			
Trichloroethene	25.0	5.0	0.26	ug/l	25.0		100	70-125			
Trichlorofluoromethane	32.5	5.0	0.34	ug/l	25.0		130	65-145			
Vinyl chloride	28.6	5.0	0.30	ug/l	25.0		114	55-135			
Xylenes, Total	77.5	4.0	0.90	ug/l	75.0		103	70-125			
Surrogate: Dibromofluoromethane	27.8			ug/l	25.0		111	80-120			
Surrogate: Toluene-d8	25.7			ug/l	25.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	24.9			ug/l	25.0		99	80-120			
Matrix Spike Analyzed: 01/31/2008 (8A	31036-MS1)				Sou	rce: IRA	2513-02				
Benzene	26.8	2.0	0.28	ug/l	25.0	ND	107	65-125			
Carbon tetrachloride	28.2	5.0	0.28	ug/l	25.0	ND	113	65-140			
Chloroform	31.1	2.0	0.33	ug/l	25.0	0.740	122	65-135			
1,1-Dichloroethane	29.8	2.0	0.27	ug/l	25.0	ND	119	65-130			
1,2-Dichloroethane	26.2	2.0	0.28	ug/l	25.0	ND	105	60-140			
1,1-Dichloroethene	26.4	3.0	0.42	ug/l	25.0	ND	106	60-130			
Ethylbenzene	27.8	2.0	0.25	ug/l	25.0	ND	111	65-130			
Tetrachloroethene	23.5	2.0	0.32	ug/l	25.0	ND	94	65-130			
Toluene	26.6	2.0	0.36	ug/l	25.0	ND	106	70-125			
1,1,1-Trichloroethane	29.9	2.0	0.30	ug/l	25.0	ND	120	65-140			
1,1,2-Trichloroethane	26.4	2.0	0.30	ug/l	25.0	ND	105	65-130			
Trichloroethene	25.2	5.0	0.26	ug/l	25.0	ND	101	65-125			
Trichlorofluoromethane	33.5	5.0	0.34	ug/l	25.0	ND	134	60-145			
Vinyl chloride	29.4	5.0	0.30	ug/l	25.0	ND	118	45-140			
Xylenes, Total	79.8	4.0	0.90	ug/l	75.0	ND	106	60-130			
Surrogate: Dibromofluoromethane	27.4			ug/l	25.0		109	80-120			

TestAmerica Irvine

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

•

Report Number: IRA2506

Sampled: 01/25/08 Received: 01/25/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A31036 Extracted: 01/31/08	<u>.</u> _										
Matrix Spike Analyzed: 01/31/2008 (8A3	1036-MS1)				Sou	rce: IRA	2513-02				
Surrogate: Toluene-d8	25.2			ug/l	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	24.8			ug/l	25.0		99	80-120			
Matrix Spike Dup Analyzed: 01/31/2008	(8A31036-M	SD1)			Sou	rce: IRA	2513-02				
Benzene	27.6	2.0	0.28	ug/l	25.0	ND	110	65-125	3	20	
Carbon tetrachloride	29.0	5.0	0.28	ug/l	25.0	ND	116	65-140	3	25	
Chloroform	30.9	2.0	0.33	ug/l	25.0	0.740	121	65-135	1	20	
1,1-Dichloroethane	30.2	2.0	0.27	ug/l	25.0	ND	121	65-130	1	20	
1,2-Dichloroethane	26.7	2.0	0.28	ug/l	25.0	ND	107	60-140	2	20	
1,1-Dichloroethene	27.1	3.0	0.42	ug/l	25.0	ND	109	60-130	3	20	
Ethylbenzene	28.2	2.0	0.25	ug/l	25.0	ND	113	65-130	1	20	
Tetrachloroethene	24.0	2.0	0.32	ug/l	25.0	ND	96	65-130	2	20	
Toluene	27.4	2.0	0.36	ug/l	25.0	ND	110	70-125	3	20	
1,1,1-Trichloroethane	30.1	2.0	0.30	ug/l	25.0	ND	120	65-140	1	20	
1,1,2-Trichloroethane	26.7	2.0	0.30	ug/l	25.0	ND	107	65-130	1	25	
Trichloroethene	26.0	5.0	0.26	ug/l	25.0	ND	104	65-125	3	20	
Trichlorofluoromethane	33.7	5.0	0.34	ug/l	25.0	ND	135	60-145	1	25	
Vinyl chloride	30.6	5.0	0.30	ug/l	25.0	ND	122	45-140	4	30	
Xylenes, Total	81.5	4.0	0.90	ug/l	75.0	ND	109	60-130	2	20	
Surrogate: Dibromofluoromethane	26.8			ug/l	25.0		107	80-120			
Surrogate: Toluene-d8	25.6			ug/l	25.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	24.3			ug/l	25.0		97	80-120			

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 001

-

Report Number: IRA2506

Sampled: 01/25/08 Received: 01/25/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 8A29057 Extracted: 01/29/0	R										
Butter 01125007 Extructed 01725700	<u> </u>										
Blank Analyzed: 01/31/2008 (8A29057-F	BLK1)										
Bis(2-ethylhexyl)phthalate	ND	5.0	1.7	ug/l							
2,4-Dinitrotoluene	ND	9.0	0.20	ug/l							
N-Nitrosodimethylamine	ND	8.0	0.10	ug/l							
Pentachlorophenol	ND	8.0	0.10	ug/l							
2,4,6-Trichlorophenol	ND	6.0	0.10	ug/l							
Surrogate: 2-Fluorophenol	14.9			ug/l	20.0		75	30-120			
Surrogate: Phenol-d6	16.3			ug/l	20.0		81	35-120			
Surrogate: 2,4,6-Tribromophenol	18.4			ug/l	20.0		92	40-120			
Surrogate: Nitrobenzene-d5	8.42			ug/l	10.0		84	45-120			
Surrogate: 2-Fluorobiphenyl	8.88			ug/l	10.0		89	50-120			
Surrogate: Terphenyl-d14	10.6			ug/l	10.0		106	50-125			
LCS Analyzed: 01/31/2008 (8A29057-BS	61)										MNR1
Bis(2-ethylhexyl)phthalate	11.3	5.0	1.7	ug/l	10.0		113	65-130			
2,4-Dinitrotoluene	11.2	9.0	0.20	ug/l	10.0		112	65-120			
N-Nitrosodimethylamine	8.42	8.0	0.10	ug/l	10.0		84	45-120			
Pentachlorophenol	8.90	8.0	0.10	ug/l	10.0		89	50-120			
2,4,6-Trichlorophenol	8.46	6.0	0.10	ug/l	10.0		85	55-120			
Surrogate: 2-Fluorophenol	15.6			ug/l	20.0		78	30-120			
Surrogate: Phenol-d6	17.1			ug/l	20.0		86	35-120			
Surrogate: 2,4,6-Tribromophenol	21.2			ug/l	20.0		106	40-120			
Surrogate: Nitrobenzene-d5	8.44			ug/l	10.0		84	45-120			
Surrogate: 2-Fluorobiphenyl	8.82			ug/l	10.0		88	50-120			
Surrogate: Terphenyl-d14	9.24			ug/l	10.0		92	50-125			
LCS Dup Analyzed: 01/31/2008 (8A2905	57-BSD1)										
Bis(2-ethylhexyl)phthalate	11.3	5.0	1.7	ug/l	10.0		113	65-130	1	20	
2,4-Dinitrotoluene	10.2	9.0	0.20	ug/l	10.0		102	65-120	9	20	
N-Nitrosodimethylamine	7.74	8.0	0.10	ug/l	10.0		77	45-120	8	20	J
Pentachlorophenol	8.24	8.0	0.10	ug/l	10.0		82	50-120	8	25	
2,4,6-Trichlorophenol	8.06	6.0	0.10	ug/l	10.0		81	55-120	5	30	
Surrogate: 2-Fluorophenol	14.4			ug/l	20.0		72	30-120			
Surrogate: Phenol-d6	16.3			ug/l	20.0		82	35-120			
Surrogate: 2,4,6-Tribromophenol	19.6			ug/l	20.0		98	40-120			
Surrogate: Nitrobenzene-d5	7.74			ug/l	10.0		77	45-120			
Surrogate: 2-Fluorobiphenyl	7.68			ug/l	10.0		77	50-120			

TestAmerica Irvine

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Sampled: 01/25/08

Report Number: IRA2506

Received: 01/25/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

		Reporting			Spike	Source	%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result %REC	Limits	RPD	Limit	Qualifiers
Batch: 8A29057 Extracted: 01/29/0	8									

LCS Dup Analyzed: 01/31/2008 (8A29057-BSD1)

Surrogate: Terphenyl-d14 8.94 10.0 50-125 ug/l

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Sampled: 01/25/08

Report Number: IRA2506

Received: 01/25/08

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A29059 Extracted: 01/29/08	<u> </u>										
Blank Analyzed: 01/29/2008 (8A29059-B	LK1)										
alpha-BHC	ND	0.010	0.0025	ug/l							
Surrogate: Decachlorobiphenyl	0.417			ug/l	0.500		83	45-120			
Surrogate: Tetrachloro-m-xylene	0.376			ug/l	0.500		75	35-115			
LCS Analyzed: 01/29/2008 (8A29059-BS	1)										MNR1
alpha-BHC	0.450	0.010	0.0025	ug/l	0.500		90	45-115			
Surrogate: Decachlorobiphenyl	0.459			ug/l	0.500		92	45-120			
Surrogate: Tetrachloro-m-xylene	0.392			ug/l	0.500		78	35-115			
LCS Dup Analyzed: 01/29/2008 (8A2905	9-BSD1)										
alpha-BHC	0.341	0.010	0.0025	ug/l	0.500		68	45-115	28	30	
Surrogate: Decachlorobiphenyl	0.338			ug/l	0.500		68	45-120			
Surrogate: Tetrachloro-m-xylene	0.302			ug/l	0.500		60	35-115			

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

a

Sampled: 01/25/08

Report Number: IRA2506

Received: 01/25/08

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A26027 Extracted: 01/26/08											
	_										
Blank Analyzed: 01/26/2008 (8A26027-B	LK1)										
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Selenium	ND	2.0	0.30	ug/l							
LCS Analyzed: 01/26/2008 (8A26027-BS	1)										
Cadmium	85.7	1.0	0.11	ug/l	80.0		107	85-115			
Copper	86.0	2.0	0.75	ug/l	80.0		108	85-115			
Lead	90.0	1.0	0.30	ug/l	80.0		112	85-115			
Selenium	86.9	2.0	0.30	ug/l	80.0		109	85-115			
Matrix Spike Analyzed: 01/26/2008 (8A2	6027-MS1)				Sou	rce: IRA	2496-01				
Cadmium	80.7	1.0	0.11	ug/l	80.0	0.182	101	70-130			
Copper	89.3	2.0	0.75	ug/l	80.0	8.44	101	70-130			
Lead	93.9	1.0	0.30	ug/l	80.0	7.12	108	70-130			
Selenium	79.5	2.0	0.30	ug/l	80.0	ND	99	70-130			
Matrix Spike Dup Analyzed: 01/26/2008	(8A26027-M	SD1)			Sou	rce: IRA	2496-01				
Cadmium	79.0	1.0	0.11	ug/l	80.0	0.182	98	70-130	2	20	
Copper	88.0	2.0	0.75	ug/l	80.0	8.44	99	70-130	1	20	
Lead	91.7	1.0	0.30	ug/l	80.0	7.12	106	70-130	2	20	
Selenium	75.9	2.0	0.30	ug/l	80.0	ND	95	70-130	5	20	
Batch: 8A26028 Extracted: 01/26/08	_										
Blank Analyzed: 01/28/2008 (8A26028-B	LK1)										
Iron	ND	0.040	0.015	mg/l							
Manganese	ND	20	7.0	ug/l							

TestAmerica Irvine

Joseph Doak Project Manager

Zinc

ND

20

6.0

ug/l

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Sampled: 01/25/08

Report Number: IRA2506

Received: 01/25/08

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A26028 Extracted: 01/26/08	_										
LCS Analyzed: 01/28/2008 (8A26028-BS)	1)										
Iron	0.521	0.040	0.015	mg/l	0.500		104	85-115			
Manganese	507	20	7.0	ug/l	500		101	85-115			
Zinc	500	20	6.0	ug/l	500		100	85-115			
Matrix Spike Analyzed: 01/28/2008 (8A2	6028-MS1)				Sou	rce: IRA2	2498-01				
Iron	0.722	0.040	0.015	mg/l	0.500	0.156	113	70-130			
Manganese	505	20	7.0	ug/l	500	ND	101	70-130			
Zinc	702	20	6.0	ug/l	500	216	97	70-130			
Matrix Spike Dup Analyzed: 01/28/2008	(8A26028-MS	SD1)			Sou	rce: IRA2	2498-01				
Iron	0.732	0.040	0.015	mg/l	0.500	0.156	115	70-130	1	20	
Manganese	511	20	7.0	ug/l	500	ND	102	70-130	1	20	
Zinc	717	20	6.0	ug/l	500	216	100	70-130	2	20	

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Sampled: 01/25/08

Report Number: IRA2506 Received: 01/25/08

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A25155 Extracted: 01/25/08											
Division of 120 to 2 inches of 120, 00	=										
Blank Analyzed: 01/26/2008 (8A25155-Bl	LK1)										
Iron	ND	0.040	0.015	mg/l							
Manganese	ND	20	7.0	ug/l							
Zinc	ND	20	6.0	ug/l							
LCS Analyzed: 01/26/2008 (8A25155-BS)	1)										
Iron	1.02	0.040	0.015	mg/l	1.00		102	85-115			
Manganese	1010	20	7.0	ug/l	1000		101	85-115			
Zinc	1000	20	6.0	ug/l	1000		100	85-115			
Matrix Spike Analyzed: 01/26/2008 (8A2	5155-MS1)				Sou	rce: IRA	2496-01				
Iron	1.14	0.040	0.015	mg/l	1.00	0.104	104	70-130			
Manganese	1030	20	7.0	ug/l	1000	ND	103	70-130			
Zinc	1020	20	6.0	ug/l	1000	ND	102	70-130			
Matrix Spike Dup Analyzed: 01/26/2008	(8A25155-M	SD1)			Sou	rce: IRA	2496-01				
Iron	1.11	0.040	0.015	mg/l	1.00	0.104	101	70-130	3	20	
Manganese	1000	20	7.0	ug/l	1000	ND	100	70-130	3	20	
Zinc	985	20	6.0	ug/l	1000	ND	99	70-130	3	20	
Batch: 8A25156 Extracted: 01/25/08	_										
Blank Analyzed: 01/26/2008 (8A25156-Bl	LK1)										
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Selenium	ND	2.0	0.30	ug/l							

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

rioject ID. Routine Outlan 001

Report Number: IRA2506

Sampled: 01/25/08 Received: 01/25/08

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A25156 Extracted: 01/25/08	=										
LCS Analyzed: 01/26/2008 (8A25156-BS	1)										
Cadmium	80.4	1.0	0.11	ug/l	80.0		101	85-115			
Copper	80.8	2.0	0.75	ug/l	80.0		101	85-115			
Lead	84.6	1.0	0.30	ug/l	80.0		106	85-115			
Selenium	84.8	2.0	0.30	ug/l	80.0		106	85-115			
Matrix Spike Analyzed: 01/26/2008 (8A2	5156-MS1)				Sou	rce: IRA	2497-01				
Cadmium	83.4	1.0	0.11	ug/l	80.0	ND	104	70-130			
Copper	85.3	2.0	0.75	ug/l	80.0	2.94	103	70-130			
Lead	84.7	1.0	0.30	ug/l	80.0	0.920	105	70-130			
Selenium	91.8	2.0	0.30	ug/l	80.0	ND	115	70-130			
Matrix Spike Dup Analyzed: 01/26/2008	(8A25156-M	SD1)			Sou	rce: IRA	2497-01				
Cadmium	83.4	1.0	0.11	ug/l	80.0	ND	104	70-130	0	20	
Copper	83.7	2.0	0.75	ug/l	80.0	2.94	101	70-130	2	20	
Lead	86.0	1.0	0.30	ug/l	80.0	0.920	106	70-130	2	20	
Selenium	90.0	2.0	0.30	ug/l	80.0	ND	112	70-130	2	20	

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Sampled: 01/25/08

Report Number: IRA2506 Received: 01/25/08

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8A25053 Extracted: 01/25/08											
<u> </u>	_										
Blank Analyzed: 01/25/2008 (8A25053-B	LK1)										
Chloride	ND	0.50	0.25	mg/l							
Nitrate-N	ND	0.11	0.060	mg/l							
Nitrite-N	ND	0.15	0.090	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Sulfate	ND	0.50	0.20	mg/l							
LCS Analyzed: 01/25/2008 (8A25053-BS)	1)										
Chloride	4.93	0.50	0.25	mg/l	5.00		99	90-110			
Nitrate-N	1.18	0.11	0.060	mg/l	1.13		105	90-110			
Nitrite-N	1.53	0.15	0.090	mg/l	1.52		101	90-110			
Sulfate	10.2	0.50	0.20	mg/l	10.0		102	90-110			
Matrix Spike Analyzed: 01/25/2008 (8A2	5053-MS1)				Sou	rce: IRA	2375-01				
Chloride	9.73	0.50	0.25	mg/l	5.00	4.99	95	80-120			
Nitrate-N	4.04	0.11	0.060	mg/l	1.13	2.87	104	80-120			
Nitrite-N	1.53	0.15	0.090	mg/l	1.52	ND	100	80-120			
Sulfate	25.6	0.50	0.20	mg/l	10.0	15.9	96	80-120			
Matrix Spike Analyzed: 01/25/2008 (8A2	5053-MS2)				Sou	rce: IRA	2478-01				
Chloride	12.3	0.50	0.25	mg/l	5.00	7.60	95	80-120			
Nitrate-N	3.39	0.11	0.060	mg/l	1.13	2.15	110	80-120			
Nitrite-N	1.58	0.15	0.090	mg/l	1.52	ND	104	80-120			
Sulfate	19.9	0.50	0.20	mg/l	10.0	9.44	104	80-120			
Matrix Spike Dup Analyzed: 01/25/2008	(8A25053-MS	SD1)			Sou	rce: IRA	2375-01				
Chloride	9.76	0.50	0.25	mg/l	5.00	4.99	95	80-120	0	20	
Nitrate-N	4.05	0.11	0.060	mg/l	1.13	2.87	104	80-120	0	20	
Nitrite-N	1.53	0.15	0.090	mg/l	1.52	ND	100	80-120	0	20	
Sulfate	25.7	0.50	0.20	mg/l	10.0	15.9	98	80-120	1	20	

TestAmerica Irvine

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Sampled: 01/25/08

Report Number: IRA2506

Received: 01/25/08

METHOD BLANK/QC DATA

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A25148 Extracted: 01/25/08		Zimit	WIDE	Cints	Бетег	resure	/UILLE	Ziiiit	I L	Limit	Quantities
Datch. 6A25146 Extracted. 01/25/06	_										
Blank Analyzed: 01/25/2008 (8A25148-B	LK1)										
Surfactants (MBAS)	ND	0.10	0.044	mg/l							
LCS Analyzed: 01/25/2008 (8A25148-BS)	1)										
Surfactants (MBAS)	0.274	0.10	0.044	mg/l	0.250		109	90-110			
Matrix Spike Analyzed: 01/25/2008 (8A2	5148-MS1)				Sou	rce: IRA	2507-01				
Surfactants (MBAS)	0.283	0.10	0.044	mg/l	0.250	ND	113	50-125			
Matrix Spike Dup Analyzed: 01/25/2008	(8A25148-M	SD1)			Sou	rce: IRA	2507-01				
Surfactants (MBAS)	0.276	0.10	0.044	mg/l	0.250	ND	111	50-125	3	20	
Batch: 8A25151 Extracted: 01/25/08	_										
Blank Analyzed: 01/30/2008 (8A25151-B	LK1)										
Biochemical Oxygen Demand	ND	2.0	0.59	mg/l							
LCS Analyzed: 01/30/2008 (8A25151-BS	1)										
Biochemical Oxygen Demand	196	100	30	mg/l	198		99	85-115			
LCS Dup Analyzed: 01/30/2008 (8A2515	1-BSD1)										
Biochemical Oxygen Demand	198	100	30	mg/l	198		100	85-115	2	20	
Batch: 8A26036 Extracted: 01/26/08	<u>-</u> .										
Blank Analyzed: 01/26/2008 (8A26036-B.	LK1)										
Turbidity	0.0900	1.0	0.040	NTU							J

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Tioject ID. Routine Outlan 001

Report Number: IRA2506

Sampled: 01/25/08 Received: 01/25/08

METHOD BLANK/QC DATA

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8A26036 Extracted: 01/26/08	_										
D. W	(DUD4)					TD 14					
Duplicate Analyzed: 01/26/2008 (8A2603	,	1.0	0.040	NITTI	Sou	rce: IRA2	2525-03		2	20	
Turbidity	1.82	1.0	0.040	NTU		1.88			3	20	
Batch: 8A28071 Extracted: 01/28/08	_										
Blank Analyzed: 01/28/2008 (8A28071-B	LK1)										
Perchlorate	ND	4.0	1.5	ug/l							
LCS Analyzed: 01/28/2008 (8A28071-BS	1)										
Perchlorate	54.0	4.0	1.5	ug/l	50.0		108	85-115			
Matrix Spike Analyzed: 01/28/2008 (8A2	8071-MS1)				Sou	rce: IRA2	2506-01				
Perchlorate	55.4	4.0	1.5	ug/l	50.0	ND	111	80-120			
Matrix Spike Dup Analyzed: 01/28/2008	(8A28071-MS	SD1)			Sou	rce: IRA2	2506-01				
Perchlorate	55.2	4.0	1.5	ug/l	50.0	ND	110	80-120	0	20	
Batch: 8A28126 Extracted: 01/28/08	_										
DI I I I I I I I I I I I I I I I I I I	T TZ4)										
Blank Analyzed: 01/28/2008 (8A28126-B)	LKI) ND	5.0	2.2	u ~ /1							
Total Cyanide	ND	3.0	2.2	ug/l							
LCS Analyzed: 01/28/2008 (8A28126-BS)	,										
Total Cyanide	197	5.0	2.2	ug/l	200		99	90-110			
Matrix Spike Analyzed: 01/28/2008 (8A2	8126-MS1)				Sou	rce: IRA2	2156-01				
Total Cyanide	203	5.0	2.2	ug/l	200	ND	101	70-115			

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Sampled: 01/25/08

Report Number: IRA2506 Received: 01/25/08

METHOD BLANK/QC DATA

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8A28126 Extracted: 01/28/08	_										
Matrix Spike Dup Analyzed: 01/28/2008	(8A28126-MSI	D1)			Sou	rce: IRA2	2156-01				
Total Cyanide	199	5.0	2.2	ug/l	200	ND	99	70-115	2	15	
Batch: 8A29110 Extracted: 01/29/08	_										
Blank Analyzed: 01/29/2008 (8A29110-Bl	LK1)										
Ammonia-N (Distilled)	ND	0.50	0.30	mg/l							
LCS Analyzed: 01/29/2008 (8A29110-BS)	1)										
Ammonia-N (Distilled)	10.1	0.50	0.30	mg/l	10.0		101	80-115			
Matrix Spike Analyzed: 01/29/2008 (8A2	9110-MS1)				Sou	rce: IRA2	2355-01				
Ammonia-N (Distilled)	10.4	0.50	0.30	mg/l	10.0	ND	104	70-120			
Matrix Spike Dup Analyzed: 01/29/2008	(8A29110-MSI	D1)			Sou	rce: IRA2	2355-01				
Ammonia-N (Distilled)	10.6	0.50	0.30	mg/l	10.0	ND	106	70-120	3	15	
Batch: 8A30131 Extracted: 01/30/08	_										
Blank Analyzed: 01/30/2008 (8A30131-Bl	LK1)										
Total Suspended Solids	ND	10	10	mg/l							
LCS Analyzed: 01/30/2008 (8A30131-BS)	1)										
Total Suspended Solids	953	10	10	mg/l	1000		95	85-115			
Duplicate Analyzed: 01/30/2008 (8A3013	1-DUP1)				Sou	rce: IRA2	2772-01				
Total Suspended Solids	3120	10	10	mg/l		3060			2	10	

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Sampled: 01/25/08

Report Number: IRA2506

Received: 01/25/08

METHOD BLANK/QC DATA

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8A31072 Extracted: 01/31/08	<u>}</u>										
Duplicate Analyzed: 01/31/2008 (8A3107	'2-DUP1)				Sou	rce: IRA	2944-01				
Specific Conductance	128	1.0	1.0	umhos/cm		128			0	5	
Batch: 8A31077 Extracted: 01/31/08	<u> </u>										
Blank Analyzed: 01/31/2008 (8A31077-B	LK1)										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 01/31/2008 (8A31077-BS	1)										
Total Dissolved Solids	1000	10	10	mg/l	1000		100	90-110			
Duplicate Analyzed: 01/31/2008 (8A3107	7-DUP1)				Sou	rce: IRA	2619-03				
Total Dissolved Solids	ND	10	10	mg/l		ND				10	
Batch: 8B04061 Extracted: 02/04/08	<u> </u>										
Blank Analyzed: 02/04/2008 (8B04061-B	LK1)										
Hexane Extractable Material (Oil &	1.40	5.0	1.4	mg/l							J
Grease)				Č							
LCS Analyzed: 02/04/2008 (8B04061-BS	1)										MNR1
Hexane Extractable Material (Oil & Grease)	19.5	5.0	1.4	mg/l	20.2		97	78-114			
LCS Dup Analyzed: 02/04/2008 (8B0406	1-BSD1)										
Hexane Extractable Material (Oil & Grease)	18.2	5.0	1.4	mg/l	20.2		90	78-114	7	11	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 001

Sampled: 01/25/08

Report Number: IRA2506

Received: 01/25/08

METHOD BLANK/QC DATA

Metals by EPA 200 Series Methods

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: W8A1034 Extracted: 01/29/0	<u> 18</u>										
Blank Analyzed: 01/30/2008 (W8A1034-	RLK1)										
•	,	0.20	0.050	Л							
Mercury, Dissolved	ND	0.20	0.050	ug/l							
Mercury, Total	ND	0.20	0.050	ug/l							
LCS Analyzed: 01/30/2008 (W8A1034-B	S1)										
Mercury, Dissolved	0.986	0.20	0.050	ug/l	1.00		99	85-115			
Mercury, Total	0.986	0.20	0.050	ug/l	1.00		99	85-115			
Matrix Spike Analyzed: 01/30/2008 (W8	A1034-MS1)				Sou	rce: 8012	803-01				
Mercury, Dissolved	2.06	0.40	0.10	ug/l	2.00	ND	103	70-130			
Mercury, Total	2.06	0.40	0.10	ug/l	2.00	ND	103	70-130			
Matrix Spike Dup Analyzed: 01/30/2008	(W8A1034-M	SD1)			Sou	rce: 8012	803-01				
Mercury, Dissolved	2.02	0.40	0.10	ug/l	2.00	ND	101	70-130	2	20	
Mercury, Total	2.02	0.40	0.10	ug/l	2.00	ND	101	70-130	2	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 001

618 Michillinda Avenue, Suite 200 Sampled: 01/25/08 Arcadia, CA 91007 Report Number: IRA2506 Received: 01/25/08

Attention: Bronwyn Kelly

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
IRA2506-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	0.78	4.9	10
IRA2506-01	608-Pest Boeing 001/002 Q (LL)	alpha-BHC	ug/l	0	0.0094	0.01
IRA2506-01	625-Boeing 001/002 Q-LL	2,4,6-Trichlorophenol	ug/l	0	5.8	6.5
IRA2506-01	625-Boeing 001/002 Q-LL	2,4-Dinitrotoluene	ug/l	0	8.7	9.1
IRA2506-01	625-Boeing 001/002 Q-LL	Bis(2-ethylhexyl)phthalate	ug/l	0.77	4.8	4
IRA2506-01	625-Boeing 001/002 Q-LL	N-Nitrosodimethylamine	ug/l	0	7.7	8.1
IRA2506-01	625-Boeing 001/002 Q-LL	Pentachlorophenol	ug/l	0	7.7	8.2
IRA2506-01	Ammonia-N, Titr (350.2) w/dist	Ammonia-N (Distilled)	mg/l	0.28	0.50	2
IRA2506-01	BOD	Biochemical Oxygen Demand	mg/l	1.91	2.0	20
IRA2506-01	Cadmium-200.8	Cadmium	ug/l	0.12	1.0	2
IRA2506-01	Chloride - 300.0	Chloride	mg/l	11	0.50	150
IRA2506-01	Copper-200.8	Copper	ug/l	4.84	2.0	7.1
IRA2506-01	Cyanide-335.2 5ppb	Total Cyanide	ug/l	0	5.0	5
IRA2506-01	Hg_w 245.1	Mercury, Total	ug/l	0.0070	0.20	0.2
IRA2506-01	Iron-200.7	Iron	mg/l	5.70	0.040	0.3
IRA2506-01	Lead-200.8	Lead	ug/l	3.41	1.0	2.6
IRA2506-01	Manganese-200.7	Manganese	ug/l	71	20	50
IRA2506-01	MBAS - SM5540-C	Surfactants (MBAS)	mg/l	0.030	0.10	0.5
IRA2506-01	Nitrate-N, 300.0	Nitrate-N	mg/l	3.84	0.11	8
IRA2506-01	Nitrite-N, 300.0	Nitrite-N	mg/l	0	0.15	1
IRA2506-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	3.84	0.26	8
IRA2506-01	Perchlorate 314.0-DEFAULT	Perchlorate	ug/l	0	4.0	6
IRA2506-01	Selenium-200.8	Selenium	ug/l	0.22	2.0	4.1
IRA2506-01	Settleable Solids	Total Settleable Solids	ml/l/hr	0.100	0.10	0.1
IRA2506-01	Sulfate-300.0	Sulfate	mg/l	22	0.50	300
IRA2506-01	TDS - SM 2540C	Total Dissolved Solids	mg/l	172	10	950
IRA2506-01	TSS - EPA 160.2	Total Suspended Solids	mg/l	57	10	15
IRA2506-01	Zinc-200.7	Zinc	ug/l	28	20	54

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit

TestAmerica Irvine

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 001

618 Michillinda Avenue, Suite 200

Sampled: 01/25/08

Arcadia, CA 91007 Report Number: IRA2506 Received: 01/25/08

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

DATA QUALIFIERS AND DEFINITIONS

Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the

Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 001

Sampled: 01/25/08 Received: 01/25/08

Report Number: IRA2506

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EPA 120.1	Water	X	X
EPA 160.2	Water	X	X
EPA 160.5	Water	X	X
EPA 1664A	Water		
EPA 180.1	Water	X	X
EPA 200.7-Diss	Water	X	X
EPA 200.7	Water	X	X
EPA 200.8-Diss	Water	X	X
EPA 200.8	Water	X	X
EPA 300.0	Water	X	X
EPA 314.0	Water	X	X
EPA 335.2	Water	X	X
EPA 350.2	Water		X
EPA 405.1	Water	X	X
EPA 608	Water	X	X
EPA 624	Water	X	X
EPA 625	Water	X	X
SM2540C	Water	X	
SM5540-C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chrnic

Samples: IRA2506-01

TestAmerica Irvine

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 001

618 Michillinda Avenue, Suite 200 Sampled: 01/25/08

Arcadia, CA 91007 Report Number: IRA2506 Received: 01/25/08
Attention: Bronwyn Kelly

Eberline Services - SUB

2030 Wright Avenue - Richmond, CA 94804 Analysis Performed: Gamma Spec

Samples: IRA2506-01

Analysis Performed: Gross Alpha

Samples: IRA2506-01

Analysis Performed: Gross Beta

Samples: IRA2506-01

Analysis Performed: Radium, Combined

Samples: IRA2506-01

Analysis Performed: Strontium 90

Samples: IRA2506-01

Analysis Performed: Tritium Samples: IRA2506-01

Analysis Performed: Uranium, Combined

Samples: IRA2506-01

Vista Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762

Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IRA2506-01

Weck Laboratories, Inc

14859 E. Clark Avenue - City of Industry, CA 91745

Method Performed: EPA 245.1 Samples: IRA2506-01

TestAmerica Irvine

JRA2904

Test America version 12/20/07	a Version 12	3/20/0		CHAIN OF	JHILLY OF TORM	TOD ,	Ш́ У	OR	Σ			11	R 428	01	e R	Page 1 of 2
Client Name/Address:	SS6.		Project			,,			-		ANALY		SREQ	UIRED	GE OF	
MWH-Arcadia	no Suite 200		Boeing-SSFL NPDES Routine Outfall 001	NPDES		ʻu	-	(· · · · · · · · · · · · · · · · · · ·						əue	Field readings:
Arcadia, CA 91007)				:elętelN M .n∑ ,	leuers)	·erable 				, (trotolue alate 625)	Temp = ₹8°
Test America Contact: Joseph Doak	t. Joseph Doa	ä¥				, ə ç	бu						(S.		ιμι	
Project Manager	Bronwyn Kelly	elly	Phone Number (626) 568-6691	er: 91		CQ, S	olids all co		egree	ABM) DN+ _E (مر	itrit e -l SG*T	(320 (320	(809)	SAOC (SAOC	bH = (.7
Sampler Werscal	. A. A.		Fax Number:	L.	_	,gH					eter				әγιλι	Time of readings = //: 45
Barres 2, R			(979) 288-9310 (979)	<u>c</u>		'Ad'					ojyo.		uow onpu		1 9 -S)	Commonte
Sample Sample Description	Container Type	# of Cont.	Sampling Date/Time	Preservative	Bottle #	Cu'					ьЧ				si8	
Outfall 001 W	1L Poly	-	50-52-1	HNO3	1A	×							·			24 TAT; Mn and Fe exceeded 2/28/06 and 4/15/06, resp.
Outfall 001 W	1L Poly	-		HNO³	18	×										24 TAT
Outfall 001 W	1L Poly	-		None	2		×					$\mid - \mid$				
Outfall 001 W	1L Amber	7		None	3A, 3B		×									
Outfall 001 W	1L Amber	2	and tengune	HCI	4A, 4B			×								
Outfall 001 W	500 ml Poly	1		NaOH	2			×								
Outfall 001 W	1L Poly	1		None	9				×							
Outfall 001 W	500 ml Poly	2		None	7A, 7B					×						
Outfall 001 W	500 ml Poly	2		None	8A, 8B						×					24 TAT
Outfall 001 W	500 ml Poly	-		None	б							×	-			24 TAT
Outfall 001 W	500 ml Poly	2		None	10A, 10B							- 1	×			
Outfall 001 W	500 ml Poly	-		H ₂ SO ₄	11								×			
Outfall 001 W	1L Amber	2	->	None	12A, 12B							\dashv	-	×		
Outfall 001 W	1L Amber	2	54:1180-52-1	//:ws None	13A, 13B								\dashv		×	
Relinquished By			Date/Time:		Received By		ŀ	1	Date.	Date/Time:	5		j		Turn around Time: (check)	e: (check)
Car Bur		7	1-25:05	0/51		7	こし	1	\	25	b	\	2/1/		ours	5 Days
Belinquished By			Date/Time:	0	Received By				Date	Date/Time:				48 H	48 Hours	10 Days
A Con	722	<i>(''</i>	9/20/2	ر در										72 H	72 Hours	Normal
Relinquished By			Date/Time:		Received By				Date (Date/Time:	i	<u> </u>	8.10	ſ	t the integral.	Intact On Ice: C.
					4	1				-				-		5

Page 2 of 2			of a contract of the contract	STILLE		Unfiltered and unpreserved analysis	Only test if second rain event of the year	Filter w/in 24hrs of receipt at lab; Mn and Fe exceeded 2/28/06 and 4/15/06, resp.				😇	10 Days	72 Hours Normal Sample Integrity: (check) On Ice: (+ (+ (-)) + (-)	,
1 1 1 1	XECOINE COIN											Turn around Time: 24 Hours	C 48 Hours	72 Hours Sample Inte	
	Metals Cu, ANAL, Fe							×				125/03	751		18/20
-ORM	0 106) ZE1-S muine	4.0), Ura (C. Toxic	8 (90, 8.0), 901.1 roriio	OL (×					Date/Time:	7.1	Date/Time:	Date/Time: $(1) \mathcal{E}/\mathcal{R}$
CUSTODY FORM	seonD, (0.0 (8-H) mui lstoT, (0.30	1nT ,(0.0 Sr-90 (9 bd Radiu	1A aac 009)si (0.6), anidm	DID BB (90)	×	×			×			1	a constant		
					14A, 14B, 14C, 14D, 14E	15A 15B	16	17	18A, 18B, 18C			Received By		Received By	Received By
CHAIN OF	Project: Boeing-SSFL NPDES Routine Outfall 001	Number: 38-6691	nber: 38-6515	Preservative	ᄗ	None None	None	None	ᅙ			┨.	(75/2	68	à
/07	Project: Boeing- Routine		Fax Number (626) 568-6515	Sampling Date/Time				\$0:52-1 \$0:11				Date/Time:	1-12-03	Date/Time:	Date/Time:
Test America version 12/20/07	Client Name/Address: MVVH-Arcadia 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Test America Contact: Joseph Doak	Project Manager: Bronwyn Kelly	* O *	Container # of Type Cont.		2.5 Gat Cube 1 500 ml Amber 1	1 Gal	1L Poly 1	VOAs 3					The state of the s	
nerica	ne/Addres cadia nda Avenu \ 91007	anager. B	Marisi.	Sample		3	3	3	3			d By	Bon		ed By
Fest Ar	Client Name/Address: MWH-Arcadia 618 Michillinda Avenue. Arcadia. CA 91007	Project M	Sampler: Mars Scall	Sample	Outfall 001	Outfall 001	Outfall 001	Outfall 001	Trip Blanks			Relinquished By	July		Refinquished By

A

LABORATORY REPORT

Date:

February 3, 2008

Client:

TestAmerica - Irvine

17461 Derian Ave., Suite 100

Irvine, CA 92614 Attn: Joseph Doak Aquatic Testing Laboratories

"dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003

(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.:

A-08012608-001

Sample ID.:

IRA2506-01 (Outfall 001)

Sample Control:

The sample was received by ATL within the recommended hold time, in a chilled state, and with the chain of custody record attached. Testing was conducted on only

one sample per client instruction.

Date Sampled:

01/25/08

Date Received:

01/26/08

Temp. Received:

 $6^{\circ}\mathrm{C}$

Chlorine (TRC):

0.0 mg/l

Date Tested:

01/26/08 to 02/02/08

Sample Analysis:

The following analyses were performed on your sample:

Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

Result Summary:

Chronic:

NOEC

TUc

Ceriodaphnia Survival: Ceriodaphnia Reproduction: 100 % 100 % 1.0 1.0

Quality Control:

Reviewed and approved by:

Joseph A. LeMa

Laboratory Director

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

Lab No.: A-08012608-001

Client/ID: Test America - Outfall 001

Date Tested: 01/26/08 to 02/02/08

TEST SUMMARY

Test type: Daily static-renewal.

Species: Ceriodaphnia dubia.

Age: < 24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 + /- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

QA/QC Batch No.: RT-080106.

Endpoints: Survival and Reproduction.

Source: In-laboratory culture.

Food: .1 ml YTC, algae per day.

Test solution volume: 15 ml. Number of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 7 days.

Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Survival	Mean Number of Young Per Female
Control	100%	24.8
100% Sample	100%	30.6

Sample not statistically significantly less than Control for either endpoint.

CHRONIC TOXICITY

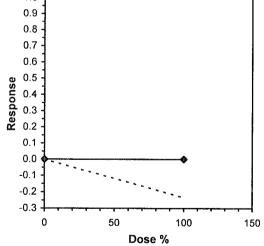
Survival NOEC	100%
Survival TUc	1.0
Reproduction NOEC	100%
Reproduction TUc	1.0

QA/QC TEST ACCEPTABILITY

Parameter	Result
Control survival ≥80%	Pass (100% survival)
≥15 young per surviving control female	Pass (24.8 young)
≥60% surviving controls had 3 broods	Pass (100% with 3 broods)
PMSD <47% for reproduction; if >47% and no toxicity at IWC, the test must be repeated	Pass (PMSD = 8.8%)
Statistically significantly different concentrations relative difference > 13%	Pass (no concentration significantly different)
Concentration response relationship acceptable	Pass (no significant response at concentration tested)

			Cerio	odaphnia Su	irvival and	Reprod	uction Test-7	7 Day Sur	vival		
Start Date:	1/26/2008 1	5:30	Test ID:	8012608			Sample ID:		OUTFALL C	01	
End Date:	2/2/2008 14	:30	Lab ID:	CAATL-Aqu	atic Testing	g Labs	Sample Typ	e:	EFF2-Indus	trial	
Sample Date:	1/25/2008 1	3:45	Protocol:	EPA-821-R-	02-013		Test Specie	s:	CD-Cerioda	phnia dubia	
Comments:										•	
Conc-%	1	2	3	4	5	6	7	8	9	10	, 1
D-Contro	l 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
100	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	

				Not		-	Fisher's	1-Tailed	Isot	onic
Conc-%	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Mean	N-Mean
D-Control	1.0000	1.0000	0	10	10	10			1.0000	1.0000
100	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000


Hypothesis	Test (1-tail, 0.0)5)	NOEC	LOEC	ChV	TU	(CONTRACTOR OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OW			
Fisher's Exa	ct Test		100	>100		1				
Treatments v	s D-Control									
				Lin	ear Interp	olation (20	00 Resamples)			
Point	%	SD	95%	6 CL	Skew					
IC05	>100									***************************************
IC10	>100									
IC15	>100						1.0 T			
IC20	>100						0.9			
IC25	>100						4			
IC40	>100						0.8 -			
IC50	>100						0.7			
				-		•				
							9 0.6 -			
							Response 0.6 - 0.5 - 0.4			
							SS -			
							~ 0.4]			
							0.3 -			
							۱ ،			
							0.2			
							0.1 -			
							0.0			
							0.0 💝 🗸 🗥 🕶	50	100	150
							Ü		se %	100
								บง	5C /0	

			Ceri	odaphnia Si	urvival and	Reprod	uction Test-	Reprodu	ction	
Start Date:	1/26/2008 1	5:30	Test ID:	8012608			Sample ID:		OUTFALL O	001
End Date:	2/2/2008 14	:30	Lab ID:	CAATL-Aqu	atic Testin	g Labs	Sample Typ	e:	EFF2-Indus	trial
Sample Date:	1/25/2008 1	3:45	Protocol:	EPA-821-R-	-02-013	-	Test Specie	es:	CD-Cerioda	phnia dubia
Comments:							•			•
Conc-%	1	2	3	4	5	6	7	8	9	10
D-Contro	1 26.000	22.000	24.000	26.000	24.000	25.000	26.000	27.000	26.000	22.000
100	35.000	28.000	30.000	31.000	28.000	33.000	31.000	33.000	23.000	34.000

		_		Transform	n: Untrans	formed			1-Tailed		Isoto	onic
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
D-Control	24.800	1.0000	24.800	22.000	27.000	7.061	10				27.700	1.0000
100	30.600	1.2339	30.600	23.000	35.000	11.651	10	-4.617	1.734	2.178	27.700	1.0000

Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.05)	0.930817	· · · · · · · · · · · · · · · · · · ·	0.905		-1.00017	1.838477
F-Test indicates equal variances (p = 0.05)	4.144928		6.541086			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates no significant differences	2.17815	0.087829	168.2	7.888889	2.1E-04	1, 18
Treatments vs D-Control						.,

Linear Interpolation (200 Resamples)								
%	SD	95% CL	Skew	• •				
>100		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
>100								
>100				1.0				
>100				0.9 =				
>100				4				
>100				4				
>100				4				
***************************************			7 W W - 2		1			
				დ _ე 0.5 -ქ	ŀ			
				ĕ 0.4 -	ł			
				∞ 0.3]]			
	>100 >100 >100 >100 >100 >100 >100	>100 >100 >100 >100 >100 >100 >100	% SD 95% CL >100 >100 >100 >100 >100 >100 >100 >10	% SD 95% CL Skew >100 >100 >100 >100 >100 >100 >100 >10	% SD 95% CL Skew >100 >100 >100 >100 >100 >100 >100 >1			

CERIODAPHNIA DUBIA CHRONIC BIOASSAY **EPA METHOD 1002.0 Raw Data Sheet**

Lab No.: A-08012608-001

Client ID: TestAmerica - IRA2506-01 (Outfall 001) Start Date: 01/26/2008

CHUILID. 1	estameri	<u></u>	A2506-01 (Outrail 001)								7				Start Date: 01/26/2008			
		DA	Y 1	- -			DAY 3		DA	AY 4	ļ	DAY 5		DA	Y 6	D	AY 7	
		0 hr	24hr	_ _	0 hr	24hr	0 hr	1 2	24hr	0 hr	24hr	0 hr		24hr	0 hr	24hr	0 hr	24hr
Analyst Ir	nitials:	<u>گ~~</u>	2	4	9	<u></u>	1	*		<u> La</u>	La	R	<u>- /-</u>	<u></u>	La-	Rom	<u> </u>	<u> </u>
Time of Re	eadings:	1530	147	1	1430	15a	150	1/2	500	<u>/SW</u>	1500	1572	2 /4	6W	1600	1500	1500	1400
	DO	8.0	7-8		2.7	8-1	7~	$2 \mid 7$	7.7	8.9	8.2	8.1	1	7.9	8.2	28	8.0	8.2
Control	pН	7.8	2.6	. ا	2,4	7-6	2.8	8	0	8.0	7.9	7.8	12	9	2.7	2.8	7.6	7.6
	Temp	25.4	247	2	151	244	25	02	24.6	24.6	248	24.0	02	14.5	25.1	24.7	25.0	243
	DO	10.8	7.7	7 6	78	8.2	92	1	.8	10.4	8.5	10.0) 8	. /	9.6	8.3	11.5	8.5
100%	pН	7.2	7.3	7	. U	7.2	7-1	1 2.	, 2	6.9	7.2	10.9	1	2. /	6.8	7.1	6.7	7.2
	Temp	24.6	245	2	4.8	242	24.	72	4.8	25.0	245	25.	1 2	4.4	24.7	24.8	24.9	24.4
	Ad	lditional l	Parame	ters						Cor	itrol	11102.11				100% San	nple	
	Cor	nductivity	(umoh	ns)						24	<i>'O</i>			***************************************	·	172		
	All	kalinity (n	ng/l CaC	CO ₃)						40	2					26		
	На	ardness (m	g/l CaC	O ₃)					Webs was have	98					(68		
	Ammonia (mg/l NH ₃ -N)							20.2 0.4										
	Source of Neonates																	
Repl	licate:		Α	<u> </u>	В	С		D	_	Е	F		G		Н	I		J
Broo	od ID:		31		EI	l G	2	<u>H</u> .	<u>2 </u>	<u> 73</u>	J	3 /	46		C5	64	<i>f</i>	<u> 75 </u>
Sample	.	Day						er of Young Produced						Total Live No. Live		Analyst		
		<i></i>		A	В	С	D	E	F	G	Н	I	J	Y	oung	Adults		(nitials
		1		0	0	0	0	0	0	0	\mathcal{C}	0		4	<u></u>	10		1
	<u> </u>	2		0	0	0		0	0	10	0			1	2	16	_	<u></u>
		3		0	0	0	0	0	3	1-1	0	e [0	╢──	<u>/</u>	10		<u>/-</u>
Control	-	4		4	3	5	3	8	0	10	25	0	4	1 2		10		00
		<u>5</u>		4	12	10	7	0	15	0	9		<u>O</u>	7	72 :/	10	_	
		7		5	0	 	0	12	0	14	13	0 13 1	0		76	10		
		Total		26	22			24	25	126	27		22		4.8	10		1
		1			0	()	0			10		0	C	7[10		0
	-	2			0	0	0	<u>-</u>	0	0	C	0	$\frac{c}{c}$		2	10		
	3			5	5	0	3	4	3	5	C	0	5	3	0	10		1
1000/		4		0	0	Ч	0	0	0	0	3	4	0	II	(10		1
100%	5 6			12	9	10	12	9	14	10	12	9	14		1	10		1
			_ _	8	14	10	16	15	0	16	18	10	<u>د ۶</u>	13	38	10		2
		7		<u>0</u>	0			0	16	(15)	U	0	<u>)</u>		16	10	_	
		Total		5	3-6	30	31	28	33	15	33	23	34	12	90	10		1

Circled fourth brood not used in statistical analysis.

7th day only used if <60% of the surviving control females have produced their third brood.

SUBCONTRACT ORDER

TestAmerica Irvine

IRA2506

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Aquatic Testing Laboratories-SUB 4350 Transport Street, Unit 107

Ventura, CA 93003

Phone: (805) 650-0546

Fax: (805) 650-0756

Project Location: California

Receipt Temperature:

Analysis	Units	Due	Expires	Comments		
Sample ID: IRA2506-01	Water		Sampled: 01/25/08 13:45	ph=7.4, temp=48		
Bioassay-7 dy Chrnic	N/A	02/05/08	01/27/08 01:45	Cerio, EPA/821-R02-013, Sub to Aquatic testing		
Level 4 Data Package	N/A	02/05/08	02/22/08 13:45	Include Std logs		
Containers Supplied: 1 gal Poly (AD)						

Released By

Page 1 of 1

NPDES - 70

REFERENCE TOXICANT DATA

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

REFERENCE TOXICANT - NaCl

QA/QC Batch No.: RT-080106

Date Tested: 01/06/08 to 01/12/08

TEST SUMMARY

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*.

Age: <24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 + /- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

Reference Toxicant: Sodium chloride (NaCl).

Endpoints: Survival and Reproduction.

Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 20 ml. Number of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 6 days.

Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Surv	ival	Mean Number of Young Per Female			
Control	100%		20.5			
0.25 g/l	100%		19.5			
0.5 g/l	100%		19.5			
1.0 g/l	100%		14.0	*		
2.0 g/l	80%		3.2	*		
4.0 g/l	0%	*	0	**		

^{*} Statistically significantly less than control at P = 0.05 level

** Reproduction data from concentrations greater than survival NOEC are

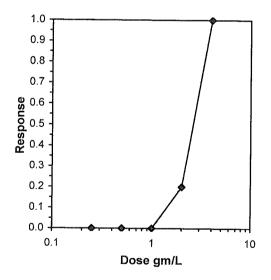
excluded from statistical analysis.

CHRONIC TOXICITY

Survival LC50	2.5 g/l
Reproduction IC25	0.88 g/l

QA/QC TEST ACCEPTABILITY

Parameter	Result					
Control survival ≥80%	Pass (100% Survival)					
≥15 young per surviving control female	Pass (20.5 young)					
≥60% surviving controls had 3 broods	Pass (90% with 3 broods)					
PMSD <47% for reproduction	Pass (PMSD = 19.1%)					
Stat. sig. diff. conc. relative difference > 13%	Pass (Stat. sig. diff. conc. = 31.7%)					
Concentration response relationship acceptable	Pass (Response curve normal)					


	Ceriodaphnia Survival and Reproduction Test-Survival Day 6													
Start Date:	1/6/2008 1	3:00		RT-08010			Sample ID		REF-Ref	oxicant				
End Date:	1/12/2008	13:00	Lab ID:	CAATL-Ad	quatic Tes	ting Labs	Sample Ty	/ne·						
Sample Date: Comments:	1/6/2008		Protocol:	ab ID: CAATL-Aquatic Testing Labs Sample Type: NACL-Sodium chloride cotocol: FWCH-EPA-821-R-02-013 Test Species: CD-Ceriodaphnia dubia										
Conc-gm/L	1	2	3	4	5	6	7	8	9	10				
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000				
0.25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		1.0000				
0.5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		1.0000				
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000				
2	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000				
4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000				

Conc-gm/L	Mean	N-Mean	Resp	Not Resp	Total	N	Fisher's Exact P		Number Resp	Total Number
D-Control	1.0000	1.0000	0	10	10	10			ПСОР	10
0.25	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
0.5	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
1	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	
2	0.8000	0.8000	2	8	10	10	0.2368	0.0500	0	10
4	0.0000	0.0000	10	Ö	10	10	0.2300	0.0000	10	10 10

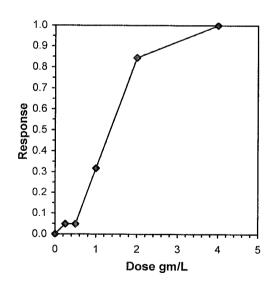
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	
Fisher's Exact Test	2	4	2.82843		
Treatments vs D-Control					

Trimmed Spearman-Karber

Trim Level	EC50	95%	CL	
0.0%	2.4623	2.0663	2.9342	
5.0%	2.5108	2.0545	3.0683	
10.0%	2.5519	1.9976	3.2599	
20.0%	2.5937	2.2616	2.9745	
Auto-0.0%	2.4623	2.0663	2.9342	

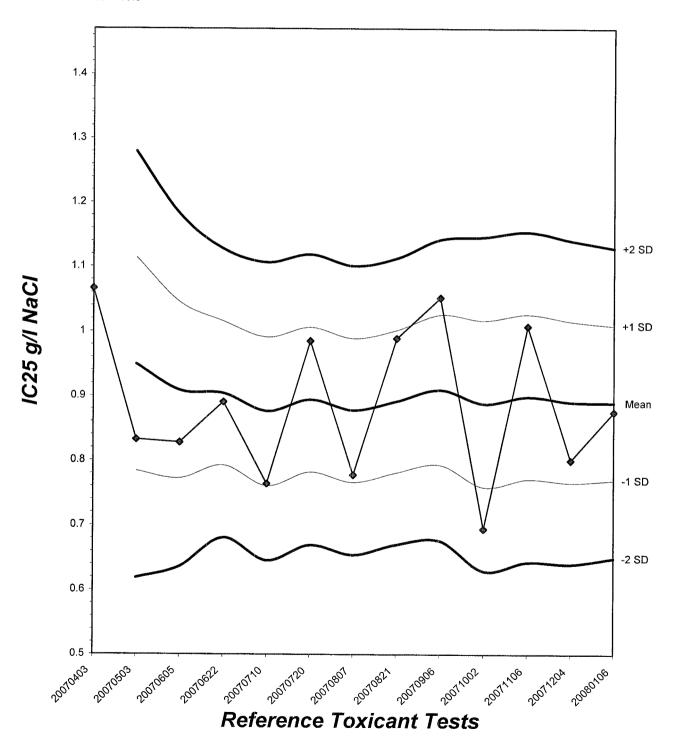
Ceriodaphnia dubia Chronic Survival Laboratory Control Chart

CV% = 5.463.4 3.2 +2 SD LC50 g/l NaCl +1 SD 2.8 Mean 2.6 -1 SD 2.4 -2 SD 2.2 2010220 2010403 2017204 201020 1002


Reference Toxicant Tests

		Ceriodaphnia Survival and Reproduction Test-Reproduction													
Start Date:	1/6/2008 1	13:00		RT-08010			Sample ID		REF-Ref Toxicant						
End Date:	1/12/2008	13:00	Lab ID:	CAATL-A	quatic Tes	ting Labs	Sample Ty	/pe:		dium chloride					
Sample Date:	1/6/2008			FWCH-EF			Test Spec		CD-Cerio	daphnia dubia					
Comments:					e en en en		and the first								
Conc-gm/L	1	2	3	4	5	6	: 7	8	9	10					
D-Control	23.000	11.000	21.000	21.000	23.000	20.000	19.000	22.000	20.000	25.000					
0.25	12.000	24.000	19.000	22.000	9.000	20.000	21.000	21.000	22.000	25.000					
0.5	21.000	19.000	21.000	22.000	16.000	12.000	22.000	21.000	22.000	19.000					
1	19.000	9.000	9.000	19.000	14.000	10.000	16.000	17.000	19.000	8.000					
2	8.000	2.000	2.000	5.000	4.000	3.000	3.000	5.000	0.000	0.000					
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000					

		_		Transforr	n: Untran	sformed		Rank	1-Tailed	Isotonic		
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Mean	N-Mean	
D-Control	20.500	1.0000	20.500	11.000	25.000	18.432	10	······		20.500	1.0000	
0.25	19.500	0.9512	19.500	9.000	25.000	26.177	10	102.00	76.00	19.500	0.9512	
0.5	19.500	0.9512	19.500	12.000	22.000	16.617	10	94.50	76.00	19.500	0.9512	
*1	14.000	0.6829	14.000	8.000	19.000	32.819	10	62.50	76.00	14.000	0.6829	
*2	3.200	0.1561	3.200	0.000	8.000	76.263	10	55.00	76.00	3.200	0.1561	
4	0.000	0.0000	0.000	0.000	0.000	0.000	10			0.000	0.0000	


Auxiliary Tests			3		Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	n-normal di	stribution	$(p \le 0.05)$		0.91281	0.947	-0.9793	0.67912
Bartlett's Test indicates equal var	riances (p =	= 0.25)			5.39	13.2767		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU		** <u>***********************************</u>		
Steel's Many-One Rank Test	0.5	1	0.70711			W	With the same	
Treatments vs D-Control								

				Linea	ar Interpolati	on (200 Resamples)
Point	gm/L	SD	95%	CL	Skew	• ,
IC05	0.5023	0.1876	0.0809	0.6178	-0.0659	
IC10	0.5955	0.1768	0.1617	0.7497	-0.5184	
IC15	0.6886	0.1424	0.2426	0.9253	-0.5389	1.0 -
IC20	0.7818	0.1259	0.4995	1.0352	0.2728	1
IC25	0.8750	0.1224	0.6413	1.1094	0.3153	0.9
IC40	1.1574	0.1139	0.9216	1.3331	-0.0890	0.8
IC50	1.3472	0.0972	1.1197	1.4847	-0.4227	0.7

Ceriodaphnia dubia Chronic Reproduction Laboratory Control Chart

CV% = 13.5

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-080106

Start Date: 01/06/2008

				Nu	ımbeı	r of Y	oung	Prod	uced			Total	No.	Analyst
Sample	Day	A	В	С	D	E	F	G	Н	1	J	Live Young	Live Adults	Initials
	1	0	0	0	U	0	0	\circ	0	\circ	C	ಲ	10	2
	2	0	0	0	\circ	0	0	0	0	0		C	10	2
:	3	0	0	2	0	0	0	3	C	3	0	8	10	2
	4	4	3	0	4	3	2	0	2	0	3	21	10	In
Control	5	9	8	フ	7	6	フ	6	2	6	7	70	10	M
	6	10	Ø	12	10	14	15	10	13	11	15	106	10	
	7	_				_		-paren		<u></u>				And Control of the Co
	Total	23	M	21	21	73	20	19	22	20	25	205	10	h
	1	0	0	0	0	0	0	0	0	\Diamond	0	0	10	
	2	0	0	0	0	0	0	0	0	0	0	0	10	
	3	0	3	0	_3	0	2	0	0	3	0	(1	10	In
0.25 ~/1	4	Ч	\mathcal{O}	L	0	3	6	4	٦	0	3	24	10	6
0.25 g/l	5	8	8	フ	5	6	0	フ	6	7	8	62	10	6
	6	0	B	(Õ	14	0	12	10	13	12	14		10	
	7	.		-				. Cycles	appendix.	particular.	,,			
	Total	12	24	19	22	9	20	ZI	2[ZZ	25	195	10	
	1	0	0	0	0	0	\mathcal{O}	0	0	0	0	0	10	h
	2	0	0	0	0	0	0	0	0	C	0	2	10	h
	3	2	0	2	0	0	0	3	~	-0	0	a	10	6
0.5 /1	4	0	3	0	3	4	3	C	0	3	3	19	10	1/1
0.5 g/l	5	9	6	7	7	0	9	8	7	フ	6	66	10	6
	6	10	10	12	12	12	0	11	12	12	10	101	10	6
	7	-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-paintenance		- politica		-	8-4	**************************************		
	Total	71	19	21	22	16	12	22	21	22	19	195	10	1

Circled fourth brood not used in statistical analysis.

^{7&}lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-080106

Start Date: 01/06/2008

			<u> </u>	Nu	ımbe	r of Y	oung	Produ	ced			Total	No.	Analyst
Sample	Day	A	В	С	D	E	F	G	н	I	J	Live Young	Live Adults	Initials
	1	0	0	0	0	0	0	0	0	0	0	0	10	M
	2	0	0	0	0	0	0	0	0	0	C	0	10	6
	3	0	0	0	0	0	3	0	0	2	0		10	
1.0 g/l	4	3	2	2	3	0	0	3	2	0	2	17	10	h
1.0 g/1	5	5	2	>	ار	5	7	کے	Ч	7	بي	57	10	
	6	1(0	0	12	9	0	8	11	10	0	61	j D	
	7	-		-	_	in parts.		-		· Creamer)		A Comment	
	Total	19	9	9	19	14	10	16	17	19	8	140	10	
	1	0	O	\circ	\circ	\mathcal{O}	0	0	0	X	0	0	9	h
	2	Ô	0	0	0	0	0	0	0	COMMUNICAL	0	0	9	6
	3	O	0	0	0	0	0	0	0	/	\mathcal{O}	0	9	1
2.0 ~/1	4	2	0	a	J.	0	0	0	2		0	9	a	
2.0 g/l	5	3	0	0	2	2	W	3	0	-	0	13	a	
	6	3	2	. 0	0	2	C	0	3	orana.	×	10	8	
	7		-			•	*Mindistre.	_{ag} galliteers	,	- Charles	Commen		7	
	Total	8	2	2	5	4	3	3	5	0	0	32	8	
	1	\times	X	X	\times	X,	\langle	\rightarrow	×	\langle	入	0	0	n
	2	_	ggelekten.		4,000	- Continues (No. of)		. حسمبرن				-		
	3		described.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							4	egitaria.	V-management.	
4.0 ~/1	4	-	gallering.)		_	C-Parameters.	Quinner.	-	,			A CONTRACTOR OF THE PARTY OF TH
4.0 g/l	5	•			The State of the S				Quantum.	ONAMA	,—		proc.	,
	6		çani-					epitta.	Service.)	gillinama _{na.}		هنده المستوالي	
	7		Collections to	203500-		ر و مستوالي	,		g-MOVEMENT	e			desperatures .	
	Total	0	0	0	\bigcirc	0	C	\circ	0	0	0	0	0	2

Circled fourth brood not used in statistical analysis. 7th day only used if <60% of the surviving control females have produced their third brood.

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Water Chemistries Raw Data Sheet

QA/QC No.: RT-080106

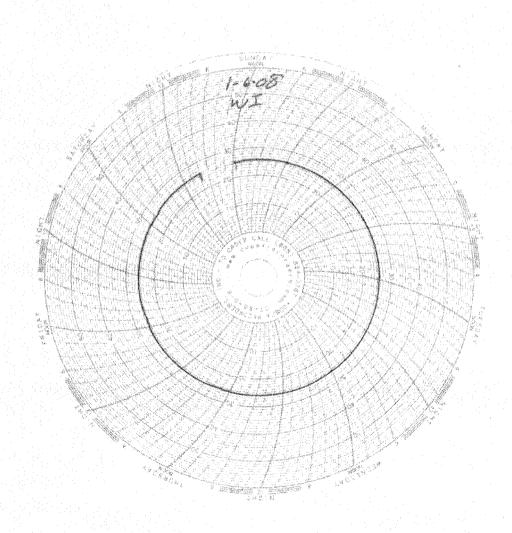
Start Date: 01/06/2008

		DA	Y 1	DA	Y 2	DA	Y 3	DA	Y 4	DA	Y 5	DA	Y 6	DA	Y 7
		Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
Analyst I	nitials:	n	1/	N	4	1	1/-	1	9_	1	2	1	1	and and a second se	
Time of Re	eadings:	(30)	1330	1330	1300	130	1230	1270	1300	1300	1300	1300	1200	,	
	DO	7-6	7,2	2.4	7.7	24	76	7.4	7.5	8,2	7-8	7.9	フン		
Control	pН	76	7.4	7-4	7.3	7.3	7. Z	プシ	7-7	7.5	7-6	7-9	7.6		
	Temp	24.3	25-1	25.4	24.8	24.1	24.5	249	25-1	24.4	25.0	24:6	25-1		***************************************
	DO	7.5	7-3	7.5	7.5	7-5	7.7	7-3	7.4	8,2	2.8	7-9	7.7	ungamanan.	_
0.25 g/l	рН	78	7.3	2-4	74	7.4	7.2	7.3	7.4	20	7-5	76	77	granten strang,	_
	Temp	244	252	253	249	242	245	24.7	250	24.4	25-1	24.6	29-1		
	DO	24	22	7.4	7-6	7.11	7.5	7-4	26	8.5	7-6	8.0	78	njaninament	_
0.5 g/l	рН	5.5	7.3	24	7.4	7-4	7.2	23	75	7.6	5-5	7-7	7-7		
	Temp	24.3	251	35.3	249	24.1	25.2	246	24.9	244	249	24.4	249		
	DO	7.5	22	76).)	7.3	7.8	24	7-4	8,U	75	7-7	7-7		
1.0 g/l	pН	7.5	7.3	7-0	7-5	7-4	7.2	7-3	7.5	70	>- l	7.9	7-6	/	
	Temp	244	25.2	25-1	24.7	24.2	25.2	24.6	25.0	24.4	249	24.6	250	was pandidoles o	
	DO	24	74	7.6	7.5	74	28	22	7.6	8.2	7-6	26	7.7	**************************************	
2.0 g/l	pН	7.5	7-4	7-6	7.6	7.4	23	22	7.6	75	7-6	7.9	7-6.		
	Temp	245	25-1	24.0	246	24.2	253	24.8	25.2	24-4	248	24.6	25.1		
	DO	7-5	7-8	See interpretable 4	prose,	Language.	with the second	a/ securitions.	Name and the same		73 444 4.	- Company	- interest of the second	(manager)	(Selection)
4.0 g/l	pН	7,6	7-8	Villeage-	400mm		-	quisien.	population description in the second	Series.	-	and the second		****	<u></u>
	Temp	24.3	246	Name	- CHICAGO	-Nam-	2007		_	**************************************		abrier.	enam.	- January	promise frances.

Dissolved Oxygen (DO) readings are in mg/l O2; Temperature (Temp) readings are in °C.

		Control		High Concentration				
Additional Parameters	Day 1	Day 3	Day 5	Day 1	Day 3	Day 5		
Conductivity (μS)	350	348	305	6400	3100	3210		
Alkalinity (mg/l CaCO ₃)	66	65	63	65	66	64		
Hardness (mg/l CaCO ₃)	98	97	98	98	9)	98		

				Source of	Neonates					
Replicate:	A	В	С	D	Е	F	G	Н	I	J
Brood ID:	23	18	30	2-6	2A	30	38	2K	36	761



Laboratory Temperature Chart

QA/QC Batch No: RT-080106

Date Tested: 01/06/08 to 01/12/08

Acceptable Range: 25+/- 1°C

February 27 2008

Mr. Joseph Doak Test America, Inc. 17461 Derian Avenue, Suite 100 Irvine, CA 92614

Reference: Eberline Services NELAP Cert #01120CA

Test America Project Nos. IRA2496, IRA2497, IRA2499, IRA2500

IRA2506, IRA2565

Eberline Services Reports R801170-8687, R801171-8688, R801172-8689

R801173-8690, R801174-8691, R801175-8692

Dear Mr. Doak:

Enclosed are results from the analyses of six water samples received on January 29, 2008. The samples were analyzed according to the accompanying Test America Subcontract Order Forms, the requested analyses were: gross alpha/gross beta (EPA 900.0), tritium (H-3, EPA906.0), Sr-90 (EPA905.0), Ra-226 (EPA903.1), Ra-228 (EPA 904.0), total uranium (ASTM D-5174), and gamma spectroscopy (EPA901.1, K-40 and Cs-137 only). The parenthetical G after a nuclide indicates that the result was obtained by gamma spectroscopy; a "U" in the results column indicates that the nuclide was not detected greater than the indicated minimum detectable activity (MDA). The samples were not filtered prior to analysis. The samples were analyzed in batches with common QC samples. All samples were batched with QC samples 8687-002, 003, 004, and 005, except for total uranium analysis; the QC samples for total-U analysis are 8682-002, 003, 004, and 005. Batch quality control samples consisted of LCS's, blank analyses, duplicate analyses, and matrix spike analyses (gross alpha/gross beta, H-3, Ra-226, Total-U only). All QC sample results were within the limits defined in Eberline Services Quality Control Procedures Manual.

Please call me if you have any questions concerning this report.

Regards,

Melissa Mannion

Senior Program Manager

Melino Mann

MCM/njv

Enclosure: Reports/CoC's

Analytical Services 2030 Wright Avenue P.O. Box 4040 Richmond, California 94804-0040 (510) 235-2633 Fax (510) 235-0438 Toll Free (800) 841-5487 www.ebeyjpaggyiggs.com

Eberline Services

ANALYSIS RESULTS

 SDG
 8691
 Client
 TA IRVINE

 Work Order
 R801174-01
 Contract
 PROJECT# IRA2506

 Received Date
 01/29/08
 Matrix
 WATER

Client Sample ID	Lab Sample ID	Collected Analyze	<u>d Nuclide</u>	Results ± 2σ	<u>Units</u>	MDA
IRA2506-01	8691-001	01/25/08 02/16/	8 GrossAlpha	3.13 ± 0.82	pCi/L	0.81
		02/16/	8 Gross Beta	3.00 ± 0.62	pCi/L	0.90
		02/20/	8 Ra-228	0.265 ± 0.18	pCi/L	0.47
		02/15/	8 K-40 (G)	U	pCi/L	51
		02/15/	8 Cs-137 (G)	U	pCi/L	1.6
		02/21/	8 H-3	-101 ± 90	pCi/L	160
		02/20/	8 Ra-226	0.320 ± 0.49	pCi/L	0.83
		02/14/	8 Sr-90	-0.002 ± 0.31	pCi/L	0.74
		02/19/	8 Total U	0.210 ± 0.025	pCi/L	0.022

Certified by

Report Date 02/27/08

Page 1

Eberline Services

QC RESULTS

SDG <u>8691</u>

Client <u>TA IRVINE</u>

Work Order <u>R801174-01</u>
Received Date <u>01/29/08</u>

Contract PROJECT# IRA2506

Matrix WATER

Lab						
Sample ID	Nuclide	Results	<u>Units</u>	Amount Added	MDA	<u>Evaluation</u>
LCS						
8682-002	GrossAlpha	10.6 ± 0.84	pCi/Smpl	10.1	0.29	105% recovery
	Gross Beta	9.49 ± 0.38	pCi/Smpl	9.39	0.29	101% recovery
	Ra-228	8.69 ± 0.54	pCi/Smpl	8.73	0.75	100% recovery
	Co-60 (G)	223 ± 11	pCi/Smpl	226	7.0	99% recovery
	Cs-137 (G)	253 ± 11	pCi/Smpl	236	8.1	107% recovery
	Am-241 (G)	215 ± 37	pCi/Smpl	252	47	85% recovery
	H-3	228 ± 14	pCi/Smpl	240	16	95% recovery
	Ra-226	5.92 ± 0.2	7 pCi/Smpl	5.58	0.085	106% recovery
	Sr-90	9.45 ± 0.73	g pCi/Smpl	9.40	0.32	101% recovery
	Total U	1.06 ± 0.1	2 pCi/Smpl	1.13	0.004	94% recovery
BLANK						
8682-003	GrossAlpha	0.006 ± 0.1	3 pCi/Smpl	NA	0.25	<mda< td=""></mda<>
	Gross Beta	-0.090 ± 0.2	7 pCi/Smpl	NA	0.44	<mda< td=""></mda<>
	Ra-228	-0.089 ± 0.3	3 pCi/Smpl	AN	0.78	<mda< td=""></mda<>
	K-40 (G)	Ū	pCi/Smpl	NА	190	<mda< td=""></mda<>
	Cs-137 (G)	Ū	pCi/Smpl	NA	7.4	<mda< td=""></mda<>
	H-3	-4.88 ± 9.0	pCi/Smpl	NA	15	<mda< td=""></mda<>
	Ra-226	-0.014 ± 0.0	26 pCi/Smpl	NA	0.071	<mda< td=""></mda<>
	Sr-90	0.078 ± 0.2	4 pCi/Smpl	NA	0.54	<mda< td=""></mda<>
	Total U	0.00E 00 ± 1.9	E 04 pCi/Smpl	AN	4.4E-04	<mda< td=""></mda<>
LCS						
8687-002	GrossAlpha	13.1 ± 0.9	2 pCi/Smpl	11.2	0.23	117% recovery
	Gross Beta	11.4 ± 0.4	6 pCi/Smpl	11.3	0.44	101% recovery
	Ra-228	10.3 ± 0.6	2 pCi/Smpl	9.87	0.85	104% recovery
	Co-60 (G)	504 ± 11	pCi/Smpl	525	6.4	96% recovery
	Cs-137 (G)	586 ± 10	pCi/Smpl	566	6.9	104% recovery
	Am-241 (G)	602 ± 20	pCi/Smpl	610	23	99% recovery
	H-3	250 ± 15	pCi/Smpl	263	16	95% recovery
	Ra-226	5.35 ± 0.2	5 pCi/Smpl	5.58	0.082	96% recovery
	Sr-90	10.7 ± 0.7	9 pCi/Smpl	10.3	0.34	104% recovery
BLANK						
8687-003	GrossAlpha	0.023 ± 0.1	.4 pCi/Smpl	NA	0.25	<mda< td=""></mda<>
	Gross Beta	-0.044 ± 0.1	.5 pCi/Smpl	NA	0.26	<mda< td=""></mda<>
	Ra-228	-0.313 ± 0.3	9 pCi/Smpl	NA	1.1	<mda< td=""></mda<>

Certified by Report Date 02/27/08
Page 2

Eberline Services

SDG <u>8691</u>			Clie	nt <u>TA IRVINE</u>	
Work Order R8011	74-01		Contra	ct <u>PR0JECT# I</u>	RA2506
Received Date 01/29	9/08		Matr	ix <u>WATER</u>	
				0.5	
K-40 (G)	Ŭ	pCi/Smpl	NA	26	<mda< td=""></mda<>
Cs-137 (G)	U	pCi/Smpl	NA	2.2	<mda< td=""></mda<>
H-3	-7.14 ± 9.0	pCi/Smpl	NA	16	<mda< td=""></mda<>
Ra-226	-0.013 ± 0.036	pCi/Smpl	AN	0.081	<mda< td=""></mda<>
gr_90	0.036 + 0.20	nCi/Smpl	NA	0.45	<mda< td=""></mda<>

	DUPLICATES				ORIGINALS			
								3 σ
Sample ID	Nuclide	Results ± 20	MDA	Sample ID	Results $+ 2\sigma$	<u>MDA</u>	RPD	(Tot) Eval
8682-004	GrossAlpha	3.13 ± 2.1	2.2	8682-001	2.52 ± 2.0	2.4	22	160 satis.
	Gross Beta	42.1 ± 2.3	2.1		42.3 ± 2.4	2.4	0	44 satis.
	Ra-228	0.070 ± 0.15	0.42		0.145 ± 0.17	0.44	-	0 satis.
	K-40 (G)	42.6 ± 18	9.6		36.0 ± 19	13	17	102 satis.
	Cs-137 (G)	Ū	0.92		Ū	1.1	-	0 satis.
	H-3	-73.7 ± 92	160		-62.4 ± 94	160	-	0 satis.
	Ra-226	0.111 ± 0.44	0.80		-0.149 ± 0.46	0.96	-	0 satis.
	Sr-90	-0.108 ± 0.44	1.1		0.032 ± 0.30	0.58	-	0 satis.
	Total U	2.88 ± 0.32	0.022		2.75 ± 0.30	0.022	5	30 satis.
8687-004	GrossAlpha	2.52 ± 1.2	1.5	8687-001	2.21 ± 1.1	1.4	13	112 satis.
	Gross Beta	4.02 ± 1.0	1.5		4.33 ± 1.0	1.5	7	66 satis.
	Ra-228	0.123 ± 0.17	0.47		0.159 ± 0.19	0.49	-	0 satis.
	K-40 (G)	U	35		Ū	12	-	0 satis.
	Cs-137 (G)	U	1.5		Ū	0.53	-	0 satis.
	H-3	-114 ± 91	160		-77.4 ± 91	160		0 satis.
	Ra-226	-0.221 ± 0.37	0.81		0.047 ± 0.45	0.83	-	0 satis.
	Sr-90	-0.019 ± 0.24	0.58		0.076 ± 0.32	0.68	-	0 satis.

	SPIKED SAMPLE			OR	IGINAL SAMPLE			
Sample ID	Nuclide	Results ± 2σ	MDA	Sample ID	Results $\pm 2\sigma$	MDA	Added	%Recv
8682-005	GrossAlpha	225 ± 12	2.5	8682-001	2.52 ± 2.0	2.4	163	136
	Gross Beta	192 ± 4.5	2.4		42.3 ± 2.4	2.4	145	103
	H-3	15800 ± 310	160		-62.4 ± 94	160	16000	99
	Ra-226	124 ± 4.7	0.94		-0.149 ± 0.46	0.96	112	111
	Total U	120 ± 15	2.2		2.75 ± 0.30	0.022	113	104
8687-005	GrossAlpha	153 ± 7.3	1.3	8687-001	2.21 ± 1.1	1.4	114	132
	Gross Beta	107 ± 2.7	1.3		4.33 ± 1.0	1.5	103	100
	H-3	14900 ± 300	160		-77.4 ± 91	160	16000	94
	Ra-226	134 ± 4.9	0.85		0.047 ± 0.45	0.83	123	109

Certified by Report Date 02/27/08
Page 3

SUBCONTRACT ORDER

TestAmerica Irvine IRA2506

8691

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Eberline Services - SUB 2030 Wright Avenue Richmond, CA 94804 Phone :(510) 235-2633 Fax: (510) 235-0438

Project Location: California

Receipt Temperature: 6 °

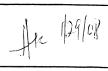
(Y)

Analysis	Units	Due	Expires	Comments
Sample ID: IRA2506-01	Water		Sampled: 01/25/08 13:45	ph=7.4, temp=48
Gamma Spec-O	mg/kg	02/05/08	01/24/09 13:45	K-40 and CS-137 only
Gross Alpha-O	pCi/L	02/05/08	07/23/08 13:45	Out to Eberline
Gross Beta-O	pCi/L	02/05/08	07/23/08 13:45	Out to Eberline
Level 4 + EDD-OUT	N/A	02/05/08	02/22/08 13:45	Excel EDD email to pm,Include Std logs for Lvl IV
Radium, Combined-O	pCi/L	02/05/08	01/24/09 13:45	Out to Eberline
Strontium 90-O	pCi/L	02/05/08	01/24/09 13:45	Out to Eberline
Tritium-O	pCi/L	02/05/08	01/24/09 13:45	Out to Eberline
Uranium, Combined-O	pCi/L	02/05/08	01/24/09 13:45	pCui, Out to Eberline
Containers Supplied:				
2.5 gal Poly (AC)	500 mL Amb	per (G)		

Released By

Date/Time

Date/Time


NPDES - 85

Page 1 of 1

EBERLIZE EBERLIZE

RICHMOND, CA LABORATORY

SAMPLE RECEIPT CHECKLIST

Stient: TEST AWENCA Sity_	INVINE STATE CA
Date: Time received 01/24/04 10:15 COS No 1124	+ 2506
Container 2 No LE CHEST Requested TAT (Days	P.C Received Yes [N 🔾 []
INSPE	CTION
Custody seals on shidding container intact?	HES X NC D N/A
2 Custody seals or, shipping container dated & signs	edf rec X No.) D N/A
Sustoom seals or sample containers intact?	res ¹ Nc 1 3 N/2 X
2 Sustooy seals on sample containers dated 2 signs	edî res No 3 N/4 🔀
E Pracking material is	. We; Dr. ★ 1
Number of samples in shipping container	Sample Matri: W
Number of containers, per sample	70r set 0o0
§ Samples are in correct container	ires (🖈 No)
Paperwork agrees with samples?	res 🕢 [No []
	Rad labels Appropriate sample lab € 15 ×
11. Samples are In good condition 🗡 Leakii	ng Broken Container Missamg
12 Samples are Preserved Not preserved	(; pr Preservative
13 Describe any anomalies	
14 Was FIM notified of any anomalies Tild Ye	
15 Inspected by Date	0 29 08 TIME 10 20
Sustomer Beta/Samma for Chamber Sample No. com mB/n: Vvide	Customer Beta/Gamma Ior. Chairmpe: Sample No. Bon: mFt./ mr. wipe
J. J	Sample No Spr met / mr wide
[142506-1 260	
	:
on Champer Sor, Nic	Collegation date
on Champer Ser - No.	Calibration date
Alpha Meter Ser No	Calibration date 09 MAY 07
11T	Sansitation date

Form SCP-02 07-30-07

over 55 years of quality nuclear service: "

February 08, 2008

Vista Project I.D.: 30212

Mr. Joseph Doak Test America-Irvine, CA 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Mr. Doak,

Enclosed are the results for the one aqueous sample received at Vista Analytical Laboratory on January 29, 2008 under your Project Name "IRA2506". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Vista's current certifications, and copies of the raw data (if requested).

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha M. Maier Laboratory Director

Martle Marc

A CONTRACTOR

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.

Section I: Sample Inventory Report Date Received: 1/29/2008

<u>Vista Lab. ID</u> <u>Client Sample ID</u>

30212-001 IRA2506-01

Project 30212 NPDES - 88
Page 2 of 315

SECTION II

Project 30212 NPDES - 89
Page 3 of 315

Method Blank	K					.				EPA Method 16	13
Matrix:	Aqueous		QC Batch No.:	9	921	Lab	Sample:	0-MB001			
Sample Size:	1.00 L		Date Extracted:	2	-Feb-08	Date	Analyzed DB-5:	6-Feb-08	Date An	alyzed DB-225: NA	
Analyte	Conc.	(ug/L)	DL ^a	EMPC b	Qualifiers		Labeled Standa	rd	%R	LCL-UCL ^d Qualifier	rs
2,3,7,8-TCDD		ND	0.00000165		<u> </u>	IS	13C-2,3,7,8-TCI	DD .	73.6	25 - 164	
1,2,3,7,8-PeCD	D	ND	0.00000120				13C-1,2,3,7,8-Pe		76.1	25 - 181	
1,2,3,4,7,8-HxC		ND	0.00000316				13C-1,2,3,4,7,8-		74.4	32 - 141	
1,2,3,6,7,8-HxC		ND	0.00000300				13C-1,2,3,6,7,8-		73.5	28 - 130	
1,2,3,7,8,9-HxC		ND	0.00000295				13C-1,2,3,4,6,7,8		77.2	23 - 140	
1,2,3,4,6,7,8-Hp		ND	0.00000197				13C-OCDD	1	65.9	17 - 157	
OCDD		ND	0.00000682				13C-2,3,7,8-TCI	OF	72.7	24 - 169	
2,3,7,8-TCDF		ND	0.000000988				13C-1,2,3,7,8-Pe		80.3	24 - 185	
1,2,3,7,8-PeCD	F	ND	0.00000123				13C-2,3,4,7,8-Pe		66.6	21 - 178	
2,3,4,7,8-PeCD		ND	0.00000151				13C-1,2,3,4,7,8-		95.5	26 - 152	
1,2,3,4,7,8-HxC		ND	0.000000596				13C-1,2,3,6,7,8-		77.3	26 - 123	
1,2,3,6,7,8-HxC		ND	0.000000816				13C-2,3,4,6,7,8-	HxCDF	67.6	28 - 136	
2,3,4,6,7,8-HxC		ND	0.000000976				13C-1,2,3,7,8,9-		76.1	29 - 147	
1,2,3,7,8,9-HxC		ND	0.00000111				13C-1,2,3,4,6,7,8	8-HpCDF	72.0	28 - 143	
1,2,3,4,6,7,8-Hp		ND	0.00000146				13C-1,2,3,4,7,8,9	9-HpCDF	75.2	26 - 138	
1,2,3,4,7,8,9-Hp		ND	0.00000154				13C-OCDF	•	71.7	17 - 157	
OCDF		ND	0.00000455			CRS	37Cl-2,3,7,8-TC	DD	77.0	35 - 197	
Totals						Foot	enotes				
Total TCDD		ND	0.00000165			a. San	nple specific estimated	detection limit.			
Total PeCDD		ND	0.00000209			b. Est	imated maximum possil	ole concentration.			
Total HxCDD		ND	0.00000304			c. Me	thod detection limit.				
Total HpCDD		0.00000138				d. Lov	wer control limit - upper	control limit.			
Total TCDF		ND	0.000000988								
Total PeCDF		ND	0.00000136								
Total HxCDF		ND	0.000000843								
Total HpCDF		ND	0.00000150								

Analyst: MAS William J. Luksemburg 08-Feb-2008 12:18

OPR Results					EP A	A Method 1	1613
Matrix: Aqueous Sample Size: 1.00 L	QC Bate	J, 21	Lab Sample: Date Analyzed DB-5:	0-OPR001 6-Feb-08	Date Analyz	zed DB-225:	NA
Analyte	Spike Conc. Conc.	(ng/mL) OPR Limits	Labeled Standard	I	%R	LCL-UCL	Qualifier
2,3,7,8-TCDD	10.0 11	.2 6.7 - 15.8	<u>IS</u> 13C-2,3,7,8-TCDI)	77.8	25 - 164	
1,2,3,7,8-PeCDD	50.0 55	.0 35 - 71	13C-1,2,3,7,8-PeC	CDD	74.8	25 - 181	
1,2,3,4,7,8-HxCDD	50.0 54	.7 35 - 82	13C-1,2,3,4,7,8-H	xCDD	74.8	32 - 141	
1,2,3,6,7,8-HxCDD	50.0 54	.1 38 - 67	13C-1,2,3,6,7,8-H	xCDD	75.4	28 - 130	
1,2,3,7,8,9-HxCDD	50.0 54	.8 32 - 81	13C-1,2,3,4,6,7,8-	HpCDD	80.9	23 - 140	
1,2,3,4,6,7,8-HpCDD	50.0 54	.0 35 - 70	13C-OCDD		71.4	17 - 157	
OCDD	100 11	3 78 - 144	13C-2,3,7,8-TCDI	3	77.3	24 - 169	
2,3,7,8-TCDF	10.0 10	7.5 - 15.8	13C-1,2,3,7,8-PeC	DF	73.3	24 - 185	
1,2,3,7,8-PeCDF	50.0 55	.0 40 - 67	13C-2,3,4,7,8-PeC	DF	66.3	21 - 178	
2,3,4,7,8-PeCDF	50.0 55	.4 34 - 80	13C-1,2,3,4,7,8-H	xCDF	90.2	26 - 152	
1,2,3,4,7,8-HxCDF	50.0 54	.4 36 - 67	13C-1,2,3,6,7,8-H	xCDF	73.1	26 - 123	
1,2,3,6,7,8-HxCDF	50.0 56	6.0 42 - 65	13C-2,3,4,6,7,8-H	xCDF	69.8	28 - 136	
2,3,4,6,7,8-HxCDF	50.0 56	35 - 78	13C-1,2,3,7,8,9-H	xCDF	74.7	29 - 147	
1,2,3,7,8,9-HxCDF	50.0 55	.4 39 - 65	13C-1,2,3,4,6,7,8-	HpCDF	71.2	28 - 143	
1,2,3,4,6,7,8-HpCDF	50.0 55	.5 41 - 61	13C-1,2,3,4,7,8,9-	HpCDF	77.2	26 - 138	
1,2,3,4,7,8,9-HpCDF	50.0 55	.7 39 - 69	13C-OCDF		72.9	17 - 157	
OCDF	100 10	63 - 170	<u>CRS</u> 37Cl-2,3,7,8-TCD	D	86.5	35 - 197	

Analyst: MAS William J. Luksemburg 08-Feb-2008 12:18

Sample ID: IRA	2506-01								EPA I	Method 1613
Client Data			Sample Data		Lab	oratory Data				
	t America-Irvine, CA		Matrix:	Aqueous	Lab	Sample:	30212-001	Date Re	ceived:	29-Jan-08
3	.2506 Jan-08		Sample Size:	1.01 L	QC	Batch No.:	9921	Date Ex	tracted:	2-Feb-08
Time Collected: 1345					Date	Analyzed DB-5:	7-Feb-08	Date An	alyzed DB-225:	NA
Analyte	Conc. (ug/L)	DL a	EMPC ^b	Qualifiers		Labeled Standa	ırd	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ND	0.0000010	0		<u>IS</u>	13C-2,3,7,8-TCD	DD	77.5	25 - 164	
1,2,3,7,8-PeCDD	ND	0.0000010	7			13C-1,2,3,7,8-Pe	CDD	64.4	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.0000027	6			13C-1,2,3,4,7,8-H	HxCDD	69.5	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.0000027	9			13C-1,2,3,6,7,8-H	HxCDD	73.2	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.0000026	6			13C-1,2,3,4,6,7,8	-HpCDD	75.1	23 - 140	
1,2,3,4,6,7,8-HpCDD	0.0000239			J		13C-OCDD		63.6	17 - 157	
OCDD	0.000225					13C-2,3,7,8-TCD	F	83.8	24 - 169	
2,3,7,8-TCDF	ND	0.0000006	99			13C-1,2,3,7,8-Pe	CDF	71.0	24 - 185	
1,2,3,7,8-PeCDF	ND	0.0000010	4			13C-2,3,4,7,8-Pe	CDF	61.0	21 - 178	
2,3,4,7,8-PeCDF	ND	0.0000011	4			13C-1,2,3,4,7,8-H	HxCDF	80.5	26 - 152	
1,2,3,4,7,8-HxCDF	ND	0.0000009	23			13C-1,2,3,6,7,8-H	HxCDF	68.6	26 - 123	
1,2,3,6,7,8-HxCDF	ND	0.0000012	8			13C-2,3,4,6,7,8-H	HxCDF	65.1	28 - 136	
2,3,4,6,7,8-HxCDF	ND	0.0000007	30			13C-1,2,3,7,8,9-H	HxCDF	69.9	29 - 147	
1,2,3,7,8,9-HxCDF	ND	0.0000009	17			13C-1,2,3,4,6,7,8	-HpCDF	63.6	28 - 143	
1,2,3,4,6,7,8-HpCDF	ND		0.000004	60		13C-1,2,3,4,7,8,9	-HpCDF	69.1	26 - 138	
1,2,3,4,7,8,9-HpCDF	ND	0.0000013	1			13C-OCDF		65.8	17 - 157	
OCDF	0.0000146			J	CRS	37Cl-2,3,7,8-TCI	OD	79.8	35 - 197	
Totals					Foo	otnotes				
Total TCDD	ND	0.0000010	0		a. Sa	imple specific estimated	detection limit.			
Total PeCDD	ND	0.0000021	3		b. Es	stimated maximum poss	ible concentration.			
Total HxCDD	0.00000153				c. M	ethod detection limit.				
Total HpCDD	0.0000499			В	d. Le	ower control limit - uppe	er control limit.			
Total TCDF	ND	0.0000006	99							
Total PeCDF	ND		0.000000	726						
Total HxCDF	0.00000182		0.000003	51						
Total HpCDF	0.0000101		0.000014	7						

Analyst: MAS William J. Luksemburg 08-Feb-2008 12:18

Project 30212 NPDES - 92
Page 6 of 315

APPENDIX

Project 30212 NPDES - 93
Page 7 of 315

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D Dilution

E The amount detected is above the High Calibration Limit.

P The amount reported is the maximum possible concentration due to possible

chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.

I Chemical Interference

J The amount detected is below the Low Calibration Limit.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated detection limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit – concentrations that correspond to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

SUBCONTRACT ORDER

TestAmerica Irvine

IRA2506

30212

1.8°C

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Vista Analytical Laboratory- SUB

1104 Windfield Way

El Dorado Hills, CA 95762

Phone :(916) 673-1520

Fax: (916) 673-0106

Project Location: California

Receipt Temperature: °C

Ice: Y / N

Analysis	Units	Due	Expires	Comments
Sample ID: IRA2506-01	Water		Sampled: 01/25/08 13:45	ph=7.4, temp=48
1613-Dioxin-HR-Alta	ug/l	02/05/08	02/01/08 13:45	J flags,17 congeners,no TEQ,ug/L,sub=Vista
Level 4 Data Package - Out	N/A	02/05/08	02/22/08 13:45	Boeing
Containers Supplied:				
1 L Amber (Y)	L Amber (Z)			

Date/Time

Received By

Date/Time

Page 1 of 1

Project 30212

Released By

NPDES - 96 Page 10 of 315

SAMPLE LOG-IN CHECKLIST

10	100-			•			^			
Vista Project #:)010				TAT_	113F	ecit	<u>1</u> ed		
	Date/Time		Initials:		Locatio	on: 110R-2				
Samples Arrival:	1/29/08	5 USU	USB Sh			Shelf/Rack: N/A				
	Date/Time		Initials:		Location: WR-2					
Logged In:	1/04/0	1511	121	BSB		(N &			
	1/29/08	1011	72			Shelf/Rack: C 2				
Delivered By:	FedEx	UPS	Cal	DHL		land ivered	()thor			
Preservation:	tce) в	lue Ice	Di	y Ice	·	None			
Temp °C /, 🖇	66	Time: (3911		Thermo	meter i	D: IR-	1		
•						VEC	NO	NIA		
Adamusta Caranta	Valuras Dassi					YES	NO	NA		
Adequate Sample	·	vea?			•	V				
Holding Time Acce						-	1 .			
Shipping Container	(s) Intact?					1				
Shipping Custody S	Seals Intact?					V	<u> </u>			
Shipping Documen	tation Presen					V				
Airbill	Trk#	1404 3	4539	195	0	V				
Sample Container	Intact?	=====				√				
Sample Custody S	eals Intact?	_								
Chain of Custody /	Sample Docu	mentation P	resent?			V	/	/		
COC Anomaly/San	nple Acceptan	ce Form con	npleted?				/			
If Chlorinated or Dr	inking Water	Samples, Ac	ceptable Pre	eservatio	n?	:				
Na ₂ S ₂ O ₃ Preservat			COC		Sample Containe	(None			
Shipping Container		Vista	Client	Reta		eturn	Disp	ose		

Comments:

SUBCONTRACT ORDER

TestAmerica Irvine IRA2506

8012805

°C

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Weck Laboratories, Inc-SUB

14859 E. Clark Avenue

City of Industry, CA 91745

Phone :(626) 336-2139

Fax: (626) 336-2634

Project Location: California

Receipt Temperature:

Ice: Y / N

Analysis Units Due **Expires** Comments Sample ID: IRA2506-01 Water ph=7.4, temp=48 Sampled: 01/25/08 13:45 Level 4 Data Package - Wec N/A 02/05/08 02/22/08 13:45 Boeing, permit, J flags Mercury - 245.1, Diss -OUT mg/l 01/28/08 02/22/08 13:45 Out to Weck Level 4 Boeing, permit, J Mercury - 245.1-OUT mg/l 01/28/08 02/22/08 13:45 Out to Weck Level 4 Boeing, permit, J flags Containers Supplied: 125 mL Poly w/HNO3 125 mL Poly (AF) (AE)

Tun Man 01/28/8 070/2

Date/Time G

Beceived By)

Date/Time

0 | 2 c | 00

Received By Dat

Weck Laboratories, Inc.

Analytical Laboratory Services - Since 1964

14859 E. Clark Ave., Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634 info@wecklabs.com www.wecklabs.com

CERTIFICATE OF ANALYSIS

TestAmerica, Inc. - Irvine **Client:**

Report Date:

01/30/08 12:54

17461 Derian Ave, Suite 100

Received Date:

01/28/08 08:45

Irvine, CA 92614

Turn Around:

Attention: Joseph Doak

Fax: (949) 260-3297

Work Order #:

8012805

1 day

Phone: (949) 261-1022

Client Project:

IRA2506

NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

Dear Joseph Doak:

Enclosed are the results of analyses for samples received 01/28/08 08:45 with the Chain of Custody document. The samples were received in good condition. The samples were received at 7.9 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Reviewed by:

Kim G Tu

Project Manager

Page 1 of 6

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8012805 Project ID: IRA2506 Date Received: 01/28/08 08:45 Date Reported: 01/30/08 12:54

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Sampled by:	Sample Comments	Laboratory	Matrix	Date Sampled
IRA2506-01	Client		8012805-01	Water	01/25/08 13:45

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8012805 Project ID: IRA2506 Date Received: 01/28/08 08:45 Date Reported: 01/30/08 12:54

IRA2506-01 8012805-01 (Water)

Date Sampled: 01/25/08 13:45

Metals by EPA 200 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed		Data Qualifiers
Mercury, Dissolved	ND	0.050	ug/l	0.20	1	EPA 245.1	W8A1034	01/29/08	01/30/08	jlp	
Mercury, Total	ND	0.050	ug/l	0.20	1	EPA 245.1	W8A1034	01/29/08	01/30/08	jlp	

Week Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8012805 Project ID: IRA2506 Date Received: 01/28/08 08:45 Date Reported: 01/30/08 12:54

QUALITY CONTROL SECTION

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8012805 Project ID: IRA2506 Date Received: 01/28/08 08:45 Date Reported: 01/30/08 12:54

Metals by EPA 200 Series Methods - Quality Control

%REC

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch W8A1034 - EPA 245.1										
Blank (W8A1034-BLK1)					Analyzed: 01/30/08					
Mercury, Dissolved	ND	0.20	ug/l							
Mercury, Total	ND	0.20	ug/l							
LCS (W8A1034-BS1)					Analyzed: 01/30/08					
Mercury, Dissolved	0.986	0.20	ug/l	1.00		99	85-115			
Mercury, Total	0.986	0.20	ug/l	1.00		99	85-115			
Matrix Spike (W8A1034-MS1)	Sou	Source: 8012803-01		Analyzed:						
Mercury, Dissolved	2.06	0.40	ug/l	2.00	ND	103	70-130			
Mercury, Total	2.06	0.40	ug/l	2.00	ND	103	70-130			
Matrix Spike Dup (W8A1034-MSD1)	Sou	Source: 8012803-01		Analyzed:	01/30/08					
Mercury, Dissolved	2.02	0.40	ug/l	2.00	ND	101	70-130	2	20	
Mercury, Total	2.02	0.40	ug/l	2.00	ND	101	70-130	2	20	

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8012805 Project ID: IRA2506

Date Received: 01/28/08 08:45 Date Reported: 01/30/08 12:54

Notes and Definitions

ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

% Rec Percent Recovery

Sub Subcontracted analysis, original report available upon request

MDL Method Detection Limit

MDA Minimum Detectable Activity

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.