APPENDIX G

Section 17

Outfall 003, February 3, 2008 Test America Analytical Laboratory Report

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project: Annual Outfall 003

Sampled: 02/03/08 Received: 02/03/08 Issued: 03/07/08 10:54

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and

is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION:

This is a revised report to calculate QC results for Pesticides utilizing the same Low Level calibration curve as the sample.

LABORATORY ID	CLIENT ID	MATRIX
IRB0148-01	Outfall 003	Water
IRB0148-02	Trip Blanks	Water

Reviewed By:

Joseph Dock

TestAmerica Irvine Joseph Doak Project Manager

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 003

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

PURGEABLES BY GC/MS (EPA 624)									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0148-01 (Outfall 003 - Wate	er)								
Reporting Units: ug/l	- /								
1,1,1-Trichloroethane	EPA 624	8B04007	0.30	0.50	ND	1	02/04/08	02/04/08	
1,1,2,2-Tetrachloroethane	EPA 624	8B04007	0.24	0.50	ND	1	02/04/08	02/04/08	
1,1,2-Trichloroethane	EPA 624	8B04007	0.30	0.50	ND	1	02/04/08	02/04/08	
1,1-Dichloroethane	EPA 624	8B04007	0.27	0.50	ND	1	02/04/08	02/04/08	
1,1-Dichloroethene	EPA 624	8B04007	0.42	0.50	ND	1	02/04/08	02/04/08	
1,2-Dichloroethane	EPA 624	8B04007	0.28	0.50	ND	1	02/04/08	02/04/08	
1,2-Dichlorobenzene	EPA 624	8B04007	0.32	0.50	ND	1	02/04/08	02/04/08	
1,2-Dichloropropane	EPA 624	8B04007	0.35	0.50	ND	1	02/04/08	02/04/08	
1,3-Dichlorobenzene	EPA 624	8B04007	0.35	0.50	ND	1	02/04/08	02/04/08	
1,4-Dichlorobenzene	EPA 624	8B04007	0.37	0.50	ND	1	02/04/08	02/04/08	
Benzene	EPA 624	8B04007	0.28	0.50	ND	1	02/04/08	02/04/08	
Bromodichloromethane	EPA 624	8B04007	0.30	0.50	ND	1	02/04/08	02/04/08	
Bromoform	EPA 624	8B04007	0.40	0.50	ND	1	02/04/08	02/04/08	
Bromomethane	EPA 624	8B04007	0.42	1.0	ND	1	02/04/08	02/04/08	
Carbon tetrachloride	EPA 624	8B04007	0.28	0.50	ND	1	02/04/08	02/04/08	
Chlorobenzene	EPA 624	8B04007	0.36	0.50	ND	1	02/04/08	02/04/08	
Chloroethane	EPA 624	8B04007	0.40	1.0	ND	1	02/04/08	02/04/08	
Chloroform	EPA 624	8B04007	0.33	0.50	ND	1	02/04/08	02/04/08	
Chloromethane	EPA 624	8B04007	0.40	0.50	ND	1	02/04/08	02/04/08	
cis-1,3-Dichloropropene	EPA 624	8B04007	0.22	0.50	ND	1	02/04/08	02/04/08	
Dibromochloromethane	EPA 624	8B04007	0.28	0.50	ND	1	02/04/08	02/04/08	
Ethylbenzene	EPA 624	8B04007	0.25	0.50	ND	1	02/04/08	02/04/08	
Methylene chloride	EPA 624	8B04007	0.95	1.0	1.6	1	02/04/08	02/04/08	
Tetrachloroethene	EPA 624	8B04007	0.32	0.50	ND	1	02/04/08	02/04/08	
Toluene	EPA 624	8B04007	0.36	0.50	ND	1	02/04/08	02/04/08	
trans-1,2-Dichloroethene	EPA 624	8B04007	0.27	0.50	ND	1	02/04/08	02/04/08	
trans-1,3-Dichloropropene	EPA 624	8B04007	0.32	0.50	ND	1	02/04/08	02/04/08	
Trichloroethene	EPA 624	8B04007	0.26	0.50	ND	1	02/04/08	02/04/08	
Trichlorofluoromethane	EPA 624	8B04007	0.34	0.50	ND	1	02/04/08	02/04/08	
Trichlorotrifluoroethane (Freon 113)	EPA 624	8B04007	0.50	5.0	ND	1	02/04/08	02/04/08	
Vinyl chloride	EPA 624	8B04007	0.30	0.50	ND	1	02/04/08	02/04/08	
Xylenes, Total	EPA 624	8B04007	0.90	1.5	ND	1	02/04/08	02/04/08	
Surrogate: Dibromofluoromethane (80-120%	<i>)</i>				113 %				
Surrogate: Toluene-d8 (80-120%)					102 %				
Surrogate: 4-Bromofluorobenzene (80-120%))				93 %				

TestAmerica Irvine

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 003

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

PURGEABLES BY GC/MS (EPA 624)									
		D (1	MDL	Reporting	Sample	Dilution	Date	Date	Data Oualifiers
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Quaimers
Sample ID: IRB0148-02 (Trip Blanks - Wa	ter)								
Reporting Units: ug/l									
1,1,1-Trichloroethane	EPA 624	8B04007	0.30	0.50	ND	1	02/04/08	02/04/08	
1,1,2,2-Tetrachloroethane	EPA 624	8B04007	0.24	0.50	ND	1	02/04/08	02/04/08	
1,1,2-Trichloroethane	EPA 624	8B04007	0.30	0.50	ND	1	02/04/08	02/04/08	
1,1-Dichloroethane	EPA 624	8B04007	0.27	0.50	ND	1	02/04/08	02/04/08	
1,1-Dichloroethene	EPA 624	8B04007	0.42	0.50	ND	1	02/04/08	02/04/08	
1,2-Dichloroethane	EPA 624	8B04007	0.28	0.50	ND	1	02/04/08	02/04/08	
1,2-Dichlorobenzene	EPA 624	8B04007	0.32	0.50	ND	1	02/04/08	02/04/08	
1,2-Dichloropropane	EPA 624	8B04007	0.35	0.50	ND	1	02/04/08	02/04/08	
1,3-Dichlorobenzene	EPA 624	8B04007	0.35	0.50	ND	1	02/04/08	02/04/08	
1,4-Dichlorobenzene	EPA 624	8B04007	0.37	0.50	ND	1	02/04/08	02/04/08	
Benzene	EPA 624	8B04007	0.28	0.50	ND	1	02/04/08	02/04/08	
Bromodichloromethane	EPA 624	8B04007	0.30	0.50	ND	1	02/04/08	02/04/08	
Bromoform	EPA 624	8B04007	0.40	0.50	ND	1	02/04/08	02/04/08	
Bromomethane	EPA 624	8B04007	0.42	1.0	ND	1	02/04/08	02/04/08	
Carbon tetrachloride	EPA 624	8B04007	0.28	0.50	ND	1	02/04/08	02/04/08	
Chlorobenzene	EPA 624	8B04007	0.36	0.50	ND	1	02/04/08	02/04/08	
Chloroethane	EPA 624	8B04007	0.40	1.0	ND	1	02/04/08	02/04/08	
Chloroform	EPA 624	8B04007	0.33	0.50	ND	1	02/04/08	02/04/08	
Chloromethane	EPA 624	8B04007	0.40	0.50	ND	1	02/04/08	02/04/08	
cis-1,3-Dichloropropene	EPA 624	8B04007	0.22	0.50	ND	1	02/04/08	02/04/08	
Dibromochloromethane	EPA 624	8B04007	0.28	0.50	ND	1	02/04/08	02/04/08	
Ethylbenzene	EPA 624	8B04007	0.25	0.50	ND	1	02/04/08	02/04/08	
Methylene chloride	EPA 624	8B04007	0.95	1.0	1.2	1	02/04/08	02/04/08	
Tetrachloroethene	EPA 624	8B04007	0.32	0.50	ND	1	02/04/08	02/04/08	
Toluene	EPA 624	8B04007	0.36	0.50	ND	1	02/04/08	02/04/08	
trans-1,2-Dichloroethene	EPA 624	8B04007	0.27	0.50	ND	1	02/04/08	02/04/08	
trans-1,3-Dichloropropene	EPA 624	8B04007	0.32	0.50	ND	1	02/04/08	02/04/08	
Trichloroethene	EPA 624	8B04007	0.26	0.50	ND	1	02/04/08	02/04/08	
Trichlorofluoromethane	EPA 624	8B04007	0.34	0.50	ND	1	02/04/08	02/04/08	
Trichlorotrifluoroethane (Freon 113)	EPA 624	8B04007	0.50	5.0	ND	1	02/04/08	02/04/08	
Vinyl chloride	EPA 624	8B04007	0.30	0.50	ND	1	02/04/08	02/04/08	
Xylenes, Total	EPA 624	8B04007	0.90	1.5	ND	1	02/04/08	02/04/08	
Surrogate: Dibromofluoromethane (80-120%					111 %				
Surrogate: Toluene-d8 (80-120%)	-				102 %				
Surrogate: 4-Bromofluorobenzene (80-120%))				94 %				

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

PURGEABLES-- GC/MS (EPA 624) MDL Reporting Sample Dilution Date Date Data Qualifiers Method Batch Limit Limit Result Factor Extracted Analyte Analyzed Sample ID: IRB0148-01 (Outfall 003 - Water) Reporting Units: ug/l EPA 624 8B04007 4.0 5.0 ND 02/04/08 02/04/08 Acrolein 1 Acrylonitrile EPA 624 8B04007 0.70 2.0 ND 02/04/08 02/04/08 1 8B04007 5.0 ND 02/04/08 02/04/08 2-Chloroethyl vinyl ether EPA 624 1.8 1 Surrogate: Dibromofluoromethane (80-120%) 113 % Surrogate: Toluene-d8 (80-120%) 102 % 93% Surrogate: 4-Bromofluorobenzene (80-120%) Sample ID: IRB0148-02 (Trip Blanks - Water) Reporting Units: ug/l 8B04007 Acrolein EPA 624 4.0 5.0 ND 1 02/04/08 02/04/08 Acrylonitrile EPA 624 8B04007 0.70 2.0 ND 02/04/08 02/04/08 1 2-Chloroethyl vinyl ether EPA 624 8B04007 1.8 5.0 ND 1 02/04/08 02/04/08 Surrogate: Dibromofluoromethane (80-120%) 111% Surrogate: Toluene-d8 (80-120%) 102 % Surrogate: 4-Bromofluorobenzene (80-120%) 94 %

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 003

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)										
			MDL	Reporting	-	Dilution	Date	Date	Data	
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers	
Sample ID: IRB0148-01 (Outfall 00	3 - Water)									
Reporting Units: ug/l										
Acenaphthene	EPA 625	8B04111	2.9	9.6	ND	0.962	02/04/08	02/07/08		
Acenaphthylene	EPA 625	8B04111	2.9	9.6	ND	0.962	02/04/08	02/07/08		
Aniline	EPA 625	8B04111	2.4	9.6	ND	0.962	02/04/08	02/07/08		
Anthracene	EPA 625	8B04111	1.9	9.6	ND	0.962	02/04/08	02/07/08		
Benzidine	EPA 625	8B04111	8.2	19	ND	0.962	02/04/08	02/07/08	L6	
Benzoic acid	EPA 625	8B04111	9.6	19	ND	0.962	02/04/08	02/07/08		
Benzo(a)anthracene	EPA 625	8B04111	1.9	9.6	ND	0.962	02/04/08	02/07/08		
Benzo(b)fluoranthene	EPA 625	8B04111	1.9	9.6	ND	0.962	02/04/08	02/07/08		
Benzo(k)fluoranthene	EPA 625	8B04111	2.4	9.6	ND	0.962	02/04/08	02/07/08		
Benzo(g,h,i)perylene	EPA 625	8B04111	3.8	9.6	ND	0.962	02/04/08	02/07/08		
Benzo(a)pyrene	EPA 625	8B04111	1.9	9.6	ND	0.962	02/04/08	02/07/08		
Benzyl alcohol	EPA 625	8B04111	2.4	19	ND	0.962	02/04/08	02/07/08		
Bis(2-chloroethoxy)methane	EPA 625	8B04111	2.9	9.6	ND	0.962	02/04/08	02/07/08		
Bis(2-chloroethyl)ether	EPA 625	8B04111	2.9	9.6	ND	0.962	02/04/08	02/07/08		
Bis(2-chloroisopropyl)ether	EPA 625	8B04111	2.4	9.6	ND	0.962	02/04/08	02/07/08		
Bis(2-ethylhexyl)phthalate	EPA 625	8B04111	3.8	48	ND	0.962	02/04/08	02/07/08		
4-Bromophenyl phenyl ether	EPA 625	8B04111	2.9	9.6	ND	0.962	02/04/08	02/07/08		
Butyl benzyl phthalate	EPA 625	8B04111	3.8	19	ND	0.962	02/04/08	02/07/08		
4-Chloroaniline	EPA 625	8B04111	1.9	9.6	ND	0.962	02/04/08	02/07/08		
2-Chloronaphthalene	EPA 625	8B04111	2.9	9.6	ND	0.962	02/04/08	02/07/08		
4-Chloro-3-methylphenol	EPA 625	8B04111	2.4	19	ND	0.962	02/04/08	02/07/08		
2-Chlorophenol	EPA 625	8B04111	2.9	9.6	ND	0.962	02/04/08	02/07/08		
4-Chlorophenyl phenyl ether	EPA 625	8B04111	2.4	9.6	ND	0.962	02/04/08	02/07/08		
Chrysene	EPA 625	8B04111	2.4	9.6	ND	0.962	02/04/08	02/07/08		
Dibenz(a,h)anthracene	EPA 625	8B04111	2.9	19	ND	0.962	02/04/08	02/07/08		
Dibenzofuran	EPA 625	8B04111	3.8	9.6	ND	0.962	02/04/08	02/07/08		
Di-n-butyl phthalate	EPA 625	8B04111	2.9	19	ND	0.962	02/04/08	02/07/08		
1,3-Dichlorobenzene	EPA 625	8B04111	2.9	9.6	ND	0.962	02/04/08	02/07/08		
1,4-Dichlorobenzene	EPA 625	8B04111	2.4	9.6	ND	0.962	02/04/08	02/07/08		
1,2-Dichlorobenzene	EPA 625	8B04111	2.9	9.6	ND	0.962	02/04/08	02/07/08		
3,3-Dichlorobenzidine	EPA 625	8B04111	2.9	19	ND	0.962	02/04/08	02/07/08		
2,4-Dichlorophenol	EPA 625	8B04111	3.4	9.6	ND	0.962	02/04/08	02/07/08		
Diethyl phthalate	EPA 625	8B04111	3.4	9.6	ND	0.962	02/04/08	02/07/08		
2,4-Dimethylphenol	EPA 625	8B04111	3.4	19	ND	0.962	02/04/08	02/07/08		
Dimethyl phthalate	EPA 625	8B04111	1.9	9.6	ND	0.962	02/04/08	02/07/08		
4,6-Dinitro-2-methylphenol	EPA 625	8B04111	3.8	19	ND	0.962	02/04/08	02/07/08		
2,4-Dinitrophenol	EPA 625	8B04111	7.7	19	ND	0.962	02/04/08	02/07/08		
2,4-Dinitrotoluene	EPA 625	8B04111	3.4	9.6	ND	0.962	02/04/08	02/07/08		
2,6-Dinitrotoluene	EPA 625	8B04111	1.9	9.6	ND	0.962	02/04/08	02/07/08		
Di-n-octyl phthalate	EPA 625	8B04111	3.4	19	ND	0.962	02/04/08	02/07/08		
Fluoranthene	EPA 625	8B04111	2.9	9.6	ND	0.962	02/04/08	02/07/08		
1 morunnione	1111025	0007111	2.)	2.0		0.702	02/04/00	52/07/00		

TestAmerica Irvine

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 003

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)										
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IRB0148-01 (Outfall 003 - Wate	er) - cont.									
Reporting Units: ug/l										
Fluorene	EPA 625	8B04111	2.9	9.6	ND	0.962	02/04/08	02/07/08		
Hexachlorobenzene	EPA 625	8B04111	2.9	9.6	ND	0.962	02/04/08	02/07/08		
Hexachlorobutadiene	EPA 625	8B04111	3.8	9.6	ND	0.962	02/04/08	02/07/08		
Hexachlorocyclopentadiene	EPA 625	8B04111	4.8	19	ND	0.962	02/04/08	02/07/08		
Hexachloroethane	EPA 625	8B04111	3.4	9.6	ND	0.962	02/04/08	02/07/08		
Indeno(1,2,3-cd)pyrene	EPA 625	8B04111	3.4	19	ND	0.962	02/04/08	02/07/08		
Isophorone	EPA 625	8B04111	2.4	9.6	ND	0.962	02/04/08	02/07/08		
2-Methylnaphthalene	EPA 625	8B04111	1.9	9.6	ND	0.962	02/04/08	02/07/08		
2-Methylphenol	EPA 625	8B04111	2.9	9.6	ND	0.962	02/04/08	02/07/08		
4-Methylphenol	EPA 625	8B04111	2.9	9.6	ND	0.962	02/04/08	02/07/08		
Naphthalene	EPA 625	8B04111	2.9	9.6	ND	0.962	02/04/08	02/07/08		
2-Nitroaniline	EPA 625	8B04111	1.9	19	ND	0.962	02/04/08	02/07/08		
3-Nitroaniline	EPA 625	8B04111	2.9	19	ND	0.962	02/04/08	02/07/08		
4-Nitroaniline	EPA 625	8B04111	3.8	19	ND	0.962	02/04/08	02/07/08		
Nitrobenzene	EPA 625	8B04111	2.4	19	ND	0.962	02/04/08	02/07/08		
2-Nitrophenol	EPA 625	8B04111	3.4	9.6	ND	0.962	02/04/08	02/07/08		
4-Nitrophenol	EPA 625	8B04111	5.3	19	ND	0.962	02/04/08	02/07/08		
N-Nitrosodiphenylamine	EPA 625	8B04111	1.9	9.6	ND	0.962	02/04/08	02/07/08		
N-Nitroso-di-n-propylamine	EPA 625	8B04111	3.4	9.6	ND	0.962	02/04/08	02/07/08		
Pentachlorophenol	EPA 625	8B04111	3.4	19	ND	0.962	02/04/08	02/07/08		
Phenanthrene	EPA 625	8B04111	3.4	9.6	ND	0.962	02/04/08	02/07/08		
Phenol	EPA 625	8B04111	1.9	9.6	ND	0.962	02/04/08	02/07/08		
Pyrene	EPA 625	8B04111	3.8	9.6	ND	0.962	02/04/08	02/07/08		
1,2,4-Trichlorobenzene	EPA 625	8B04111	2.4	9.6	ND	0.962	02/04/08	02/07/08		
2,4,5-Trichlorophenol	EPA 625	8B04111	2.9	19	ND	0.962	02/04/08	02/07/08		
2,4,6-Trichlorophenol	EPA 625	8B04111	4.3	19	ND	0.962	02/04/08	02/07/08		
1,2-Diphenylhydrazine/Azobenzene	EPA 625	8B04111	2.4	19	ND	0.962	02/04/08	02/07/08		
N-Nitrosodimethylamine	EPA 625	8B04111	2.4	19	ND	0.962	02/04/08	02/07/08		
Surrogate: 2-Fluorophenol (30-120%)					54 %					
Surrogate: Phenol-d6 (35-120%)					58 %					
Surrogate: 2,4,6-Tribromophenol (40-120%)					59 %					
Surrogate: Nitrobenzene-d5 (45-120%)					63 %					
Surrogate: 2-Fluorobiphenyl (50-120%)					73 %					
Surrogate: Terphenyl-d14 (50-125%)					95 %					

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 003

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0148-01 (Outfall 003 - Wate	er) - cont.								
Reporting Units: ug/l		0004071	0.0014	0.0047	ND	0.042	00101100	00/05/00	
Aldrin	EPA 608	8B04071	0.0014	0.0047	ND	0.943	02/04/08	02/05/08	
alpha-BHC	EPA 608	8B04071	0.0024	0.0047	ND	0.943	02/04/08	02/05/08	
beta-BHC	EPA 608	8B04071	0.0038	0.0094	ND	0.943	02/04/08	02/05/08	
delta-BHC	EPA 608	8B04071	0.0033	0.0047	ND	0.943	02/04/08	02/05/08	
gamma-BHC (Lindane)	EPA 608	8B04071	0.0028	0.0094	ND	0.943	02/04/08	02/05/08	
Chlordane	EPA 608	8B04071	0.028	0.094	ND	0.943	02/04/08	02/05/08	
4,4'-DDD	EPA 608	8B04071	0.0019	0.0047	ND	0.943	02/04/08	02/05/08	
4,4'-DDE	EPA 608	8B04071	0.0028	0.0047	ND	0.943	02/04/08	02/05/08	
4,4'-DDT	EPA 608	8B04071	0.0038	0.0094	ND	0.943	02/04/08	02/05/08	
Dieldrin	EPA 608	8B04071	0.0019	0.0047	ND	0.943	02/04/08	02/05/08	
Endosulfan I	EPA 608	8B04071	0.0019	0.0047	ND	0.943	02/04/08	02/05/08	
Endosulfan II	EPA 608	8B04071	0.0028	0.0047	ND	0.943	02/04/08	02/05/08	
Endosulfan sulfate	EPA 608	8B04071	0.0028	0.0094	ND	0.943	02/04/08	02/05/08	
Endrin	EPA 608	8B04071	0.0019	0.0047	ND	0.943	02/04/08	02/05/08	
Endrin aldehyde	EPA 608	8B04071	0.0019	0.0094	ND	0.943	02/04/08	02/05/08	
Endrin ketone	EPA 608	8B04071	0.0028	0.0094	ND	0.943	02/04/08	02/05/08	
Heptachlor	EPA 608	8B04071	0.0028	0.0094	ND	0.943	02/04/08	02/05/08	
Heptachlor epoxide	EPA 608	8B04071	0.0024	0.0047	ND	0.943	02/04/08	02/05/08	
Methoxychlor	EPA 608	8B04071	0.0033	0.0047	ND	0.943	02/04/08	02/05/08	
Toxaphene	EPA 608	8B04071	0.066	0.094	ND	0.943	02/04/08	02/05/08	
Surrogate: Decachlorobiphenyl (45-120%)					75 %				
Surrogate: Tetrachloro-m-xylene (35-115%)					70 %				

TestAmerica Irvine

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Arcadia, CA 91007

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 003

618 Michillinda Avenue, Suite 200

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

TOTAL PCBS (EPA 608)										
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IRB0148-01 (Outfall 003 - Wat	ter) - cont.									
Reporting Units: ug/l										
Aroclor 1016	EPA 608	8B04071	0.42	0.47	ND	0.943	02/04/08	02/06/08		
Aroclor 1221	EPA 608	8B04071	0.24	0.47	ND	0.943	02/04/08	02/06/08		
Aroclor 1232	EPA 608	8B04071	0.24	0.47	ND	0.943	02/04/08	02/06/08		
Aroclor 1242	EPA 608	8B04071	0.24	0.47	ND	0.943	02/04/08	02/06/08		
Aroclor 1248	EPA 608	8B04071	0.24	0.47	ND	0.943	02/04/08	02/06/08		
Aroclor 1254	EPA 608	8B04071	0.24	0.47	ND	0.943	02/04/08	02/06/08		
Aroclor 1260	EPA 608	8B04071	0.28	0.47	ND	0.943	02/04/08	02/06/08		
Surrogate: Decachlorobiphenyl (45-120%)					87 %					

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

METALS MDL Reporting Sample Dilution Date Date Data Analyte Method Batch Limit Limit Result Factor Extracted Analyzed Qualifiers Sample ID: IRB0148-01 (Outfall 003 - Water) - cont. Reporting Units: mg/l 0.33 02/04/08 Hardness as CaCO3 SM2340B [CALC] N/A 160 02/04/08 1 Boron EPA 200.7 8B04079 0.020 0.050 0.12 1 02/04/08 02/04/08 Calcium EPA 200.7 8B04079 0.050 44 02/04/08 0.10 1 02/04/08 02/04/08 EPA 200.7 8B04079 0.015 0.040 0.081 02/04/08 Iron 1 EPA 200.7 8B04079 0.012 0.020 12 1 02/04/08 02/04/08 Magnesium

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 003

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

METALS										
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IRB0148-01 (Outfall 003 - Wa		Dutch	Linit		ittsuit	Tuctor	Latiueteu	1 muly 20u	L	
Reporting Units: ug/l										
Aluminum	EPA 200.7	8B04079	40	50	61	1	02/04/08	02/04/08		
Antimony	EPA 200.8	8B04080	0.20	2.0	0.42	1	02/04/08	02/05/08	J	
Arsenic	EPA 200.7	8B04079	7.0	10	ND	1	02/04/08	02/04/08		
Beryllium	EPA 200.7	8B04079	0.90	2.0	ND	1	02/04/08	02/04/08		
Cadmium	EPA 200.8	8B04080	0.11	1.0	0.19	1	02/04/08	02/04/08	J	
Chromium	EPA 200.7	8B04079	2.0	5.0	2.2	1	02/04/08	02/04/08	J	
Copper	EPA 200.8	8B04080	0.75	2.0	3.4	1	02/04/08	02/04/08		
Lead	EPA 200.8	8B04080	0.30	1.0	ND	1	02/04/08	02/04/08		
Nickel	EPA 200.7	8B04079	2.0	10	2.3	1	02/04/08	02/04/08	J	
Selenium	EPA 200.7	8B04079	8.0	10	ND	1	02/04/08	02/04/08		
Silver	EPA 200.7	8B04079	6.0	10	ND	1	02/04/08	02/04/08		
Thallium	EPA 200.8	8B04080	0.20	1.0	ND	1	02/04/08	02/04/08		
Vanadium	EPA 200.7	8B04079	3.0	10	ND	1	02/04/08	02/04/08		
Zinc	EPA 200.7	8B04079	6.0	20	14	1	02/04/08	02/04/08	J	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 003

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

DISSOLVED METALS										
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IRB0148-01 (Outfall 003 - Reporting Units: mg/l	Water) - cont.									
Boron	EPA 200.7-Diss	8B05111	0.020	0.050	0.11	1	02/05/08	02/06/08		
Calcium	EPA 200.7-Diss	8B05111	0.050	0.10	44	1	02/05/08	02/06/08		
Iron	EPA 200.7-Diss	8B05111	0.015	0.040	0.026	1	02/05/08	02/06/08	J	
Magnesium	EPA 200.7-Diss	8B05111	0.012	0.020	12	1	02/05/08	02/06/08		
Hardness (as CaCO3)	SM2340B	8B05111	1.0	1.0	160	1	02/05/08	02/06/08		

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 003

DISSOLVED METALS

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

MDL Reporting Sample Dilution Date Date Data Qualifiers Method Batch Limit Result Factor Extracted Analyte Limit Analyzed Sample ID: IRB0148-01 (Outfall 003 - Water) - cont. Reporting Units: ug/l EPA 200.7-Diss 8B05111 40 50 ND 02/05/08 02/06/08 Aluminum 1 Antimony EPA 200.8-Diss 8B04144 0.20 2.0 0.33 02/04/08 02/05/08 J 1 7.0 ND EPA 200.7-Diss 8B05111 10 02/05/08 02/06/08 Arsenic 1 0.90 ND Beryllium EPA 200.7-Diss 8B05111 2.0 1 02/05/08 02/06/08 Cadmium 8B04144 ND 02/04/08 02/05/08 EPA 200.8-Diss 0.11 1.0 1 Chromium EPA 200.7-Diss 8B05111 2.0 5.0 ND 1 02/05/08 02/06/08 Copper EPA 200.8-Diss 8B04144 0.75 2.0 2.5 1 02/04/08 02/05/08 EPA 200.8-Diss 8B04144 0.30 ND 1 02/04/08 02/05/08 Lead 1.0 Nickel EPA 200.7-Diss 8B05111 2.0 10 2.4 1 02/05/08 02/06/08 J Selenium EPA 200.7-Diss 8B05111 8.0 10 ND 1 02/05/08 02/06/08 Silver EPA 200.7-Diss 8B05111 6.0 10 ND 1 02/05/08 02/06/08 8B04144 02/05/08 Thallium EPA 200.8-Diss 0.20 ND 02/04/08 1.0 1 Vanadium EPA 200.7-Diss 8B05111 3.0 10 3.3 02/05/08 02/06/08 1 J Zinc 1 02/05/08 J EPA 200.7-Diss 8B05111 6.0 20 11 02/06/08

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 003

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

INORGANICS										
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IRB0148-01 (Outfall 003 - V	Water) - cont.									
Reporting Units: mg/l										
Hexane Extractable Material (Oil &	EPA 1664A	8B12074	1.3	4.8	1.7	1	02/12/08	02/12/08	J	
Grease)										
Chloride	EPA 300.0	8B04043	0.25	0.50	17	1	02/04/08	02/04/08		
Fluoride	EPA 300.0	8B04043	0.15	0.50	0.36	1	02/04/08	02/04/08	J	
Nitrate/Nitrite-N	EPA 300.0	8B04043	0.15	0.26	1.8	1	02/04/08	02/04/08		
Sulfate	EPA 300.0	8B04043	0.20	0.50	38	1	02/04/08	02/04/08		
Total Dissolved Solids	SM2540C	8B07122	10	10	280	1	02/07/08	02/07/08		
Total Suspended Solids	EPA 160.2	8B04128	10	10	ND	1	02/04/08	02/04/08		

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

INORGANICS										
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers	
Sample ID: IRB0148-01 (Outfall 003 - V	Vater) - cont.									
Reporting Units: ug/l										
Total Cyanide	EPA 335.2	8B04112	2.2	5.0	ND	1	02/04/08	02/04/08		
Perchlorate	EPA 314.0	8B12073	1.5	4.0	ND	1	02/12/08	02/13/08		

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

ORGANIC COMPOUNDS BY GC/MS (EPA 525.2)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0148-01 (Outfall 003 -	Water) - cont.								P, pH
Reporting Units: ug/l									
Chlorpyrifos	EPA 525.2	C8B0516	0.10	1.0	ND	1.01	02/05/08	02/07/08	
Diazinon	EPA 525.2	C8B0516	0.24	0.25	ND	1.01	02/05/08	02/07/08	
Surrogate: 1,3-Dimethyl-2-nitrobenzene	e (70-130%)				90 %				
Surrogate: Triphenylphosphate (70-130	%)				107 %				
Surrogate: Perylene-d12 (70-130%)					88 %				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

Metals by EPA 200 Series Methods												
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers			
Sample ID: IRB0148-01 (Outfall 003 - Wa	ater) - cont.											
Reporting Units: ug/l												
Mercury, Dissolved	EPA 245.1	W8B0171	0.050	0.20	ND	1	02/06/08	02/07/08				
Mercury, Total	EPA 245.1	W8B0171	0.050	0.20	ND	1	02/06/08	02/07/08				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 003 (IRB0148-01) - Wate	r				
EPA 300.0	2	02/03/2008 14:45	02/03/2008 18:25	02/04/2008 05:00	02/04/2008 06:48
EPA 624	3	02/03/2008 14:45	02/03/2008 18:25	02/04/2008 00:00	02/04/2008 12:55
Sample ID: Trip Blanks (IRB0148-02) - Wat	er				
EPA 624	3	02/03/2008 14:45	02/03/2008 18:25	02/04/2008 00:00	02/04/2008 13:24

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyta	Docult	Reporting Limit	MDL	Unita	Spike Level	Source	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Analyte	Result	Limit	MDL	Units	Level	Result	70KEU	Limits	KrD	Limit	Quaimers
Batch: 8B04007 Extracted: 02/04/08	<u>8</u>										
Blank Analyzed: 02/04/2008 (8B04007-E	RLK1)										
1,1,1-Trichloroethane	ND	0.50	0.30	ug/l							
1,1,2,2-Tetrachloroethane	ND	0.50	0.30	ug/l							
1,1,2-Trichloroethane	ND	0.50	0.24	ug/l							
1,1-Dichloroethane	ND	0.50	0.30	ug/l							
1,1-Dichloroethene	ND	0.50	0.27	ug/l							
1,2-Dichloroethane	ND	0.50	0.42	ug/l							
1,2-Dichlorobenzene	ND	0.50	0.28	ug/l							
1,2-Dichloropropane	ND	0.50	0.32	ug/l							
1,3-Dichlorobenzene	ND	0.50	0.35	ug/l							
1,4-Dichlorobenzene	ND	0.50	0.35	ug/l							
Benzene	ND	0.50	0.28	ug/l							
Bromodichloromethane	ND	0.50	0.28	ug/l							
Bromoform	ND	0.50	0.30	ug/l							
Bromomethane	ND	1.0	0.40	ug/l							
Carbon tetrachloride	ND	0.50	0.42	ug/l							
Chlorobenzene	ND	0.50	0.28	ug/l							
Chloroethane	ND	1.0	0.30	ug/l							
Chloroform	ND	0.50									
Chloromethane	ND		0.33 0.40	ug/l							
	ND	0.50 0.50	0.40	ug/l							
cis-1,3-Dichloropropene Dibromochloromethane	ND		0.22	ug/l							
	ND ND	0.50	0.28	ug/l							
Ethylbenzene		0.50	0.25	ug/l							
Methylene chloride Tetrachloroethene	ND ND	1.0	0.95	ug/l							
Toluene	ND	0.50 0.50		ug/l							
			0.36	ug/l							
trans-1,2-Dichloroethene	ND	0.50	0.27	ug/l							
trans-1,3-Dichloropropene Trichloroethene	ND	0.50	0.32	ug/l							
	ND	0.50	0.26	ug/l							
Trichlorofluoromethane	ND	0.50	0.34	ug/l							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	0.50	ug/l							
Vinyl chloride	ND	0.50	0.30	ug/l							
Xylenes, Total	ND	1.5	0.90	ug/l	25.0		111	00 120			
Surrogate: Dibromofluoromethane	27.7			ug/l	25.0 25.0		111	80-120			
Surrogate: Toluene-d8	25.2			ug/l	25.0 25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	22.9			ug/l	25.0		91	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
·		Linit	MDL	Units	Levei	Result	/orec	Linits	KI D	Linnt	Quaimers
Batch: 8B04007 Extracted: 02/04/08	8										
LCS Analyzed: 02/04/2008 (8B04007-BS	(1)										
1,1,1-Trichloroethane	30.6	0.50	0.30	ug/l	25.0		122	65-135			
1,1,2,2-Tetrachloroethane	27.3	0.50	0.30	ug/l	25.0		122	55-135			
1,1,2,2-Trichloroethane	27.3	0.50	0.24	ug/l	25.0		109	70-125			
1,1-Dichloroethane	29.2	0.50	0.30	ug/l	25.0		103	70-125			
1,1-Dichloroethene	25.5	0.50	0.27	ug/l	25.0		102	70-125			
1,2-Dichloroethane	23.3	0.50	0.42	ug/l	25.0		102	60-140			
1,2-Dichlorobenzene	26.5	0.50	0.28	ug/l	25.0		109	75-120			
1,2-Dichloropropane	26.7	0.50	0.32	ug/l	25.0		100	70-125			
1,3-Dichlorobenzene	26.4	0.50	0.35	ug/l	25.0		107	75-120			
1,4-Dichlorobenzene	24.3	0.50	0.35	ug/l	25.0		97	75-120			
Benzene	24.5	0.50	0.28	ug/l	25.0		103	70-120			
Bromodichloromethane	29.9	0.50	0.28	ug/l	25.0 25.0		103	70-120			
Bromoform	29.9	0.50	0.30	ug/l	25.0		89	55-130			
Bromomethane	22.2	1.0	0.40	ug/l	25.0		117	65-140			
Carbon tetrachloride	29.3	0.50	0.42	ug/l	25.0		117	65-140			
Chlorobenzene	29.8	0.50	0.28	ug/l	25.0		99	75-120			
Chloroethane	30.1	1.0	0.30	ug/l	25.0		120	60-140			
Chloroform	30.1	0.50	0.40	ug/l	25.0		120	70-130			
Chloromethane	28.5	0.50	0.33	ug/l	25.0		121	50-140			
cis-1,3-Dichloropropene	28.3	0.50	0.40	ug/l	25.0		96	75-125			
Dibromochloromethane	24.0 25.6	0.50	0.22	ug/l	25.0		103	70-140			
Ethylbenzene	23.0	0.50	0.28	ug/l	25.0		103	75-125			
Methylene chloride	27.1	1.0	0.25	ug/l	25.0		108	75-125 55-130			
Tetrachloroethene	27.1	0.50	0.93	ug/l	25.0		91	70-125			
Toluene	22.8	0.50	0.32	ug/l	25.0		104	70-123			
trans-1,2-Dichloroethene	29.8	0.50	0.30	ug/l	25.0		119	70-120			
trans-1,3-Dichloropropene	29.8	0.50	0.27	ug/l	25.0		96	70-125			
Trichloroethene	24.1	0.50	0.32	ug/l	25.0		90 99	70-125			
Trichlorofluoromethane	34.8	0.50	0.20	ug/l	25.0		139	65-145			
Vinyl chloride	29.8	0.50	0.34	ug/l	25.0		119	55-135			
Xylenes, Total	78.7	1.5	0.90	ug/l	23.0 75.0		105	70-125			
Surrogate: Dibromofluoromethane	27.9	1.5	0.90	-	25.0		103	70-123 80-120			
Surrogate: Toluene-d8	27.9			ug/l	25.0 25.0		102	80-120 80-120			
Surrogate: 101uene-a8 Surrogate: 4-Bromofluorobenzene	23.3 26.0			ug/l	25.0 25.0		102 104	80-120 80-120			
surrogaie: 4-Dromojiuorobenzene	20.0			ug/l	25.0		104	00-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04007 Extracted: 02/04/08	8										
Matrix Spike Analyzed: 02/04/2008 (8B0	4007-MS1)				Sou	rce: IRB	0146-01				
1,1,1-Trichloroethane	29.1	0.50	0.30	ug/l	25.0	ND	117	65-140			
1,1,2,2-Tetrachloroethane	27.0	0.50	0.24	ug/l	25.0	ND	108	55-135			
1,1,2-Trichloroethane	24.6	0.50	0.30	ug/l	25.0	ND	98	65-130			
1,1-Dichloroethane	27.8	0.50	0.27	ug/l	25.0	ND	111	65-130			
1,1-Dichloroethene	24.9	0.50	0.42	ug/l	25.0	ND	100	60-130			
1,2-Dichloroethane	26.1	0.50	0.28	ug/l	25.0	ND	104	60-140			
1,2-Dichlorobenzene	25.7	0.50	0.32	ug/l	25.0	ND	103	75-125			
1,2-Dichloropropane	25.3	0.50	0.35	ug/l	25.0	ND	101	65-130			
1,3-Dichlorobenzene	25.8	0.50	0.35	ug/l	25.0	ND	103	75-125			
1,4-Dichlorobenzene	23.6	0.50	0.37	ug/l	25.0	ND	94	75-125			
Benzene	25.1	0.50	0.28	ug/l	25.0	ND	101	65-125			
Bromodichloromethane	28.8	0.50	0.30	ug/l	25.0	ND	115	70-135			
Bromoform	21.5	0.50	0.40	ug/l	25.0	ND	86	55-135			
Bromomethane	28.6	1.0	0.42	ug/l	25.0	ND	114	55-145			
Carbon tetrachloride	28.4	0.50	0.28	ug/l	25.0	ND	113	65-140			
Chlorobenzene	23.9	0.50	0.36	ug/l	25.0	ND	96	75-125			
Chloroethane	28.9	1.0	0.40	ug/l	25.0	ND	115	55-140			
Chloroform	28.9	0.50	0.33	ug/l	25.0	ND	116	65-135			
Chloromethane	28.8	0.50	0.40	ug/l	25.0	ND	115	45-145			
cis-1,3-Dichloropropene	22.8	0.50	0.22	ug/l	25.0	ND	91	70-130			
Dibromochloromethane	24.4	0.50	0.28	ug/l	25.0	ND	98	65-140			
Ethylbenzene	26.4	0.50	0.25	ug/l	25.0	ND	106	65-130			
Methylene chloride	26.1	1.0	0.95	ug/l	25.0	ND	104	50-135			
Tetrachloroethene	22.0	0.50	0.32	ug/l	25.0	ND	88	65-130			
Toluene	25.3	0.50	0.36	ug/l	25.0	ND	101	70-125			
trans-1,2-Dichloroethene	28.4	0.50	0.27	ug/l	25.0	ND	114	65-130			
trans-1,3-Dichloropropene	22.5	0.50	0.32	ug/l	25.0	ND	90	65-135			
Trichloroethene	23.9	0.50	0.26	ug/l	25.0	ND	96	65-125			
Trichlorofluoromethane	34.2	0.50	0.34	ug/l	25.0	ND	137	60-145			
Vinyl chloride	29.4	0.50	0.30	ug/l	25.0	ND	118	45-140			
Xylenes, Total	76.3	1.5	0.90	ug/l	75.0	ND	102	60-130			
Surrogate: Dibromofluoromethane	27.8			ug/l	25.0		111	80-120			
Surrogate: Toluene-d8	25.7			ug/l	25.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	25.7			ug/l	25.0		103	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

A 1.	DK	Reporting	MDI	TT •4	Spike	Source	A/ DEC	%REC	DBD	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04007 Extracted: 02/04/08	<u>}_</u>										
Matrix Spike Dup Analyzed: 02/04/2008						rce: IRB					
1,1,1-Trichloroethane	28.6	0.50	0.30	ug/l	25.0	ND	114	65-140	2	20	
1,1,2,2-Tetrachloroethane	29.1	0.50	0.24	ug/l	25.0	ND	116	55-135	7	30	
1,1,2-Trichloroethane	26.1	0.50	0.30	ug/l	25.0	ND	104	65-130	6	25	
1,1-Dichloroethane	28.1	0.50	0.27	ug/l	25.0	ND	112	65-130	1	20	
1,1-Dichloroethene	25.1	0.50	0.42	ug/l	25.0	ND	100	60-130	1	20	
1,2-Dichloroethane	26.8	0.50	0.28	ug/l	25.0	ND	107	60-140	2	20	
1,2-Dichlorobenzene	25.8	0.50	0.32	ug/l	25.0	ND	103	75-125	1	20	
1,2-Dichloropropane	25.8	0.50	0.35	ug/l	25.0	ND	103	65-130	2	20	
1,3-Dichlorobenzene	25.4	0.50	0.35	ug/l	25.0	ND	101	75-125	2	20	
1,4-Dichlorobenzene	23.4	0.50	0.37	ug/l	25.0	ND	94	75-125	1	20	
Benzene	25.4	0.50	0.28	ug/l	25.0	ND	102	65-125	1	20	
Bromodichloromethane	29.0	0.50	0.30	ug/l	25.0	ND	116	70-135	1	20	
Bromoform	22.6	0.50	0.40	ug/l	25.0	ND	91	55-135	5	25	
Bromomethane	29.3	1.0	0.42	ug/l	25.0	ND	117	55-145	2	25	
Carbon tetrachloride	27.6	0.50	0.28	ug/l	25.0	ND	110	65-140	3	25	
Chlorobenzene	23.7	0.50	0.36	ug/l	25.0	ND	95	75-125	1	20	
Chloroethane	30.2	1.0	0.40	ug/l	25.0	ND	121	55-140	4	25	
Chloroform	28.8	0.50	0.33	ug/l	25.0	ND	115	65-135	0	20	
Chloromethane	30.9	0.50	0.40	ug/l	25.0	ND	124	45-145	7	25	
cis-1,3-Dichloropropene	23.2	0.50	0.22	ug/l	25.0	ND	93	70-130	2	20	
Dibromochloromethane	24.9	0.50	0.28	ug/l	25.0	ND	100	65-140	2	25	
Ethylbenzene	26.2	0.50	0.25	ug/l	25.0	ND	105	65-130	1	20	
Methylene chloride	27.0	1.0	0.95	ug/l	25.0	ND	108	50-135	3	20	
Tetrachloroethene	21.9	0.50	0.32	ug/l	25.0	ND	88	65-130	1	20	
Toluene	25.2	0.50	0.36	ug/l	25.0	ND	101	70-125	0	20	
trans-1,2-Dichloroethene	28.5	0.50	0.27	ug/l	25.0	ND	114	65-130	1	20	
trans-1,3-Dichloropropene	23.4	0.50	0.32	ug/l	25.0	ND	94	65-135	4	25	
Trichloroethene	24.1	0.50	0.26	ug/l	25.0	ND	96	65-125	1	20	
Trichlorofluoromethane	33.1	0.50	0.34	ug/l	25.0	ND	132	60-145	3	25	
Vinyl chloride	30.5	0.50	0.30	ug/l	25.0	ND	122	45-140	3	30	
Xylenes, Total	74.9	1.5	0.90	ug/l	75.0	ND	100	60-130	2	20	
Surrogate: Dibromofluoromethane	27.6			ug/l	25.0		110	80-120			
Surrogate: Toluene-d8	25.7			ug/l	25.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	25.5			ug/l	25.0		102	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

PURGEABLES-- GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04007 Extracted: 02/04/08	_										
Diarda Anglera J. 02/04/2000 (0D04007 D)	1121)										
Blank Analyzed: 02/04/2008 (8B04007-B)	,			-							
Acrolein	ND	5.0	4.0	ug/l							
Acrylonitrile	ND	2.0	0.70	ug/l							
2-Chloroethyl vinyl ether	ND	5.0	1.8	ug/l							
Surrogate: Dibromofluoromethane	27.7			ug/l	25.0		111	80-120			
Surrogate: Toluene-d8	25.2			ug/l	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	22.9			ug/l	25.0		91	80-120			
LCS Analyzed: 02/04/2008 (8B04007-BS1	l)										
2-Chloroethyl vinyl ether	29.5	5.0	1.8	ug/l	25.0		118	25-170			
Surrogate: Dibromofluoromethane	27.9			ug/l	25.0		112	80-120			
Surrogate: Toluene-d8	25.5			ug/l	25.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	26.0			ug/l	25.0		104	80-120			
Matrix Spike Analyzed: 02/04/2008 (8B0-	4007-MS1)				Sou	rce: IRB()146-01				
2-Chloroethyl vinyl ether	27.8	5.0	1.8	ug/l	25.0	ND	111	25-170			
Surrogate: Dibromofluoromethane	27.8			ug/l	25.0		111	80-120			
Surrogate: Toluene-d8	25.7			ug/l	25.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	25.7			ug/l	25.0		103	80-120			
Matrix Spike Dup Analyzed: 02/04/2008	(8B04007-M	SD1)			Sou	rce: IRB()146-01				
2-Chloroethyl vinyl ether	31.1	5.0	1.8	ug/l	25.0	ND	124	25-170	11	25	
Surrogate: Dibromofluoromethane	27.6			ug/l	25.0		110	80-120			
Surrogate: Toluene-d8	25.7			ug/l	25.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	25.5			ug/l	25.0		102	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source	%REC	%REC	RPD	RPD Limit	Data Qualifiers
·		Linnt	MIDL	Units	Level	Kesuit	/0REC	Linnts	ΚID	Limit	Quanners
Batch: 8B04111 Extracted: 02/04/08	<u>8</u>										
Blank Analyzed: 02/07/2008 (8B04111-B	DI 121)										
•	,	10	2.0	/1							
Acenaphthene	ND	10	3.0	ug/l							
Acenaphthylene	ND	10	3.0	ug/l							
Aniline	ND	10	2.5	ug/l							
Anthracene	ND	10	2.0	ug/l							
Benzidine	ND	20	8.5	ug/l							
Benzoic acid	ND	20	10	ug/l							
Benzo(a)anthracene	ND	10	2.0	ug/l							
Benzo(b)fluoranthene	ND	10	2.0	ug/l							
Benzo(k)fluoranthene	ND	10	2.5	ug/l							
Benzo(g,h,i)perylene	ND	10	4.0	ug/l							
Benzo(a)pyrene	ND	10	2.0	ug/l							
Benzyl alcohol	ND	20	2.5	ug/l							
Bis(2-chloroethoxy)methane	ND	10	3.0	ug/l							
Bis(2-chloroethyl)ether	ND	10	3.0	ug/l							
Bis(2-chloroisopropyl)ether	ND	10	2.5	ug/l							
Bis(2-ethylhexyl)phthalate	ND	50	4.0	ug/l							
4-Bromophenyl phenyl ether	ND	10	3.0	ug/l							
Butyl benzyl phthalate	ND	20	4.0	ug/l							
4-Chloroaniline	ND	10	2.0	ug/l							
2-Chloronaphthalene	ND	10	3.0	ug/l							
4-Chloro-3-methylphenol	ND	20	2.5	ug/l							
2-Chlorophenol	ND	10	3.0	ug/l							
4-Chlorophenyl phenyl ether	ND	10	2.5	ug/l							
Chrysene	ND	10	2.5	ug/l							
Dibenz(a,h)anthracene	ND	20	3.0	ug/l							
Dibenzofuran	ND	10	4.0	ug/l							
Di-n-butyl phthalate	ND	20	3.0	ug/l							
1,3-Dichlorobenzene	ND	10	3.0	ug/l							
1,4-Dichlorobenzene	ND	10	2.5	ug/l							
1,2-Dichlorobenzene	ND	10	3.0	ug/l							
3,3-Dichlorobenzidine	ND	20	3.0	ug/l							
2,4-Dichlorophenol	ND	10	3.5	ug/l							
Diethyl phthalate	ND	10	3.5	ug/l							
2,4-Dimethylphenol	ND	20	3.5	ug/l							
Dimethyl phthalate	ND	10	2.0	ug/l							
J T			. •								

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

A 1.	D L	Reporting	MDI	TT •4	Spike	Source	A/ DEC	%REC	DDD	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04111 Extracted: 02/04/08	3										
Blank Analyzed: 02/07/2008 (8B04111-B											
4,6-Dinitro-2-methylphenol	ND	20	4.0	ug/l							
2,4-Dinitrophenol	ND	20	8.0	ug/l							
2,4-Dinitrotoluene	ND	10	3.5	ug/l							
2,6-Dinitrotoluene	ND	10	2.0	ug/l							
Di-n-octyl phthalate	ND	20	3.5	ug/l							
Fluoranthene	ND	10	3.0	ug/l							
Fluorene	ND	10	3.0	ug/l							
Hexachlorobenzene	ND	10	3.0	ug/l							
Hexachlorobutadiene	ND	10	4.0	ug/l							
Hexachlorocyclopentadiene	ND	20	5.0	ug/l							
Hexachloroethane	ND	10	3.5	ug/l							
Indeno(1,2,3-cd)pyrene	ND	20	3.5	ug/l							
Isophorone	ND	10	2.5	ug/l							
2-Methylnaphthalene	ND	10	2.0	ug/l							
2-Methylphenol	ND	10	3.0	ug/l							
4-Methylphenol	ND	10	3.0	ug/l							
Naphthalene	ND	10	3.0	ug/l							
2-Nitroaniline	ND	20	2.0	ug/l							
3-Nitroaniline	ND	20	3.0	ug/l							
4-Nitroaniline	ND	20	4.0	ug/l							
Nitrobenzene	ND	20	2.5	ug/l							
2-Nitrophenol	ND	10	3.5	ug/l							
4-Nitrophenol	ND	20	5.5	ug/l							
N-Nitrosodiphenylamine	ND	10	2.0	ug/l							
N-Nitroso-di-n-propylamine	ND	10	3.5	ug/l							
Pentachlorophenol	ND	20	3.5	ug/l							
Phenanthrene	ND	10	3.5	ug/l							
Phenol	ND	10	2.0	ug/l							
Pyrene	ND	10	4.0	ug/l							
1,2,4-Trichlorobenzene	ND	10	2.5	ug/l							
2,4,5-Trichlorophenol	ND	20	3.0	ug/l							
2,4,6-Trichlorophenol	ND	20	4.5	ug/l							
1,2-Diphenylhydrazine/Azobenzene	ND	20	2.5	ug/l							
N-Nitrosodimethylamine	ND	20	2.5	ug/l							
Surrogate: 2-Fluorophenol	159	_ •		ug/l	200		80	30-120			
	/						20				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
•							,				X
Batch: 8B04111 Extracted: 02/04/08	<u>s</u>										
Blank Analyzed: 02/07/2008 (8B04111-B	BLK1)										
Surrogate: Phenol-d6	166			ug/l	200		83	35-120			
Surrogate: 2,4,6-Tribromophenol	129			ug/l	200		64	40-120			
Surrogate: Nitrobenzene-d5	83.8			ug/l	100		84	45-120			
Surrogate: 2-Fluorobiphenyl	82.4			ug/l	100		82	50-120			
Surrogate: Terphenyl-d14	82.8			ug/l	100		83	50-125			
LCS Analyzed: 02/07/2008 (8B04111-BS	51)										
Acenaphthene	92.8	10	3.0	ug/l	100		93	60-120			
Acenaphthylene	97.0	10	3.0	ug/l	100		97	60-120			
Aniline	86.7	10	2.5	ug/l	100		87	35-120			
Anthracene	91.1	10	2.0	ug/l	100		91	65-120			
Benzidine	161	20	8.5	ug/l	100		161	30-160			<i>L6</i>
Benzoic acid	74.5	20	10	ug/l	100		74	25-120			
Benzo(a)anthracene	95.9	10	2.0	ug/l	100		96	65-120			
Benzo(b)fluoranthene	87.2	10	2.0	ug/l	100		87	55-125			
Benzo(k)fluoranthene	88.9	10	2.5	ug/l	100		89	50-125			
Benzo(g,h,i)perylene	83.0	10	4.0	ug/l	100		83	45-135			
Benzo(a)pyrene	91.9	10	2.0	ug/l	100		92	55-130			
Benzyl alcohol	99.9	20	2.5	ug/l	100		100	50-120			
Bis(2-chloroethoxy)methane	92.9	10	3.0	ug/l	100		93	55-120			
Bis(2-chloroethyl)ether	86.4	10	3.0	ug/l	100		86	50-120			
Bis(2-chloroisopropyl)ether	98.4	10	2.5	ug/l	100		98	45-120			
Bis(2-ethylhexyl)phthalate	99.9	50	4.0	ug/l	100		100	65-130			
4-Bromophenyl phenyl ether	86.0	10	3.0	ug/l	100		86	60-120			
Butyl benzyl phthalate	104	20	4.0	ug/l	100		104	55-130			
4-Chloroaniline	95.8	10	2.0	ug/l	100		96	55-120			
2-Chloronaphthalene	91.9	10	3.0	ug/l	100		92	60-120			
4-Chloro-3-methylphenol	97.9	20	2.5	ug/l	100		98	60-120			
2-Chlorophenol	86.3	10	3.0	ug/l	100		86	45-120			
4-Chlorophenyl phenyl ether	89.9	10	2.5	ug/l	100		90	65-120			
Chrysene	92.3	10	2.5	ug/l	100		92	65-120			
Dibenz(a,h)anthracene	84.8	20	3.0	ug/l	100		85	50-135			
Dibenzofuran	93.2	10	4.0	ug/l	100		93	65-120			
Di-n-butyl phthalate	85.8	20	3.0	ug/l	100		86	60-125			
1,3-Dichlorobenzene	74.9	10	3.0	ug/l	100		75	35-120			
1,4-Dichlorobenzene	79.8	10	2.5	ug/l	100		80	35-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Bach: 8094111 Extracted: 02/04/08 1/2 Dichlorobenzene 80.6 0 3.0 ugl 100 81 40-12 3.3 Dichlorobenzene 81.1 20 3.0 ugl 100 84 45-135 3.4 Dichlorobenzene 91.0 10 3.5 ugl 100 81 40-120 Dichly Iphthalate 92.2 10 3.5 ugl 100 81 40-120 Abenichylphenol 85.5 10 2.0 ugl 100 86 45-120 4-Dimitro-2-methylphenol 85.8 2.0 4.0 ugl 100 94 40-120 4-Dimitro-2-methylphenol 94.2 2.0 8.0 ugl 100 95 52.0 2-A-Dimitrobuene 94.1 10 2.0 ugl 100 86 52.10 2-A-Dimitrobuene 94.1 10 3.0 ugl 100 86 52.10 2-A-Dimitrobuene 95.4 10 3.0 ugl 100 87 52.10 2-A-Dimitrobuene 95.6 10 <	Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
1.2-Dichlorobenzelmi 80.6 10 3.0 ug1 100 81 40-120 3.3-Dichlorobenzidine 84.1 20 3.0 ug1 100 84 45.135 2.4-Dichlorobenzidine 91.0 10 3.5 ug1 100 91 55.120 2.4-Dinchlylphhalate 92.2 10 3.5 ug1 100 91 40-120 2.4-Dinchlylphenol 80.5 20 3.5 ug1 100 94 40-120 2.4-Dinitrobluene 85.8 20 4.0 ug1 100 86 45.120 2.4-Dinitrobluene 94.2 20 8.0 ug1 100 94 40-120 2.4-Dinitrobluene 101 10 3.5 ug1 100 86 65-120 Din-ocyl phthalate 83.3 20 3.0 ug1 100 81 60-120 Fluoranthene 82.3 10 3.0 ug1 100 77 40-120 Hexachlorobenzzne 86.7 10 3.0 ug1 100 81	Batch: 8B04111 Extracted: 02/04/08											
1.2-Dichlorobenzelni 80.6 10 3.0 ug/l 100 81 40-120 3.3-Dichlorobenzidine 84.1 20 3.0 ug/l 100 84 45.135 2.4-Dichlorobenzidine 91.0 10 3.5 ug/l 100 91 55.120 2.4-Dinchlylphhalate 92.2 10 3.5 ug/l 100 90 30.120 4.6-Dinitor-Denthylphenol 80.5 20 3.5 ug/l 100 94 40-120 2.4-Dinitrobluene 85.8 20 4.0 ug/l 100 86 45.120 2.4-Dinitrobluene 101 10 3.5 ug/l 100 80 65.120 2.4-Dinitrobluene 98.1 10 2.0 ug/l 100 82 65.135 Fluoranthene 82.3 10 3.0 ug/l 100 81 60.120 Hexachlorobenzenc 86.7 10 3.0 ug/l 100 74 40.120 Lecandurobenzenc 85.8 20 5.0 ug/l 100		_										
3.3-Dichlorobenzidine84.1203.0ug/l1008445-1352.4-Dinchlorophenol9.00.03.5ug/l1009.055-120Dichlyl phhalate9.2103.5ug/l1008.140-120Dinethyl phhalate85.5102.0ug/l1009.030-1204.6-Dinitro-2-methylphenol85.82.04.0ug/l1009.440-1202.4-Dinitrophenol94.22.08.0ug/l1009.440-1202.4-Dinitrobluene94.1102.0ug/l1009.665-1202.4-Dinitrobluene98.1102.0ug/l1008.665-120Din-octyl phhalate82.3103.0ug/l1008.665-120Fluorantene85.6103.0ug/l1007.665-120Fluorantene7.6103.0ug/l1007.740-120Hexachlorobtadiene7.6103.5ug/l1007.735-120Hexachlorobtadiene7.6103.0ug/l1009.655-120Ideno(1,2,2)erdprene83.2103.0ug/l1009.655-120Hexachlorobtadiene7.6103.0ug/l1009.655-120Ideno(1,2,2)erdprene9.3103.0ug/l1009.655-120Abyhlynholhene9.2103.0<	•	·										
2.4-Dichlorophenol 91.0 10 3.5 ug/l 100 91 55-120 Diethyl phthalate 92.2 10 3.5 ug/l 100 92 55-120 2.4-Dimethyl phthalate 89.5 10 2.0 ug/l 100 81 40-120 Dimethyl phthalate 89.5 10 2.0 ug/l 100 94 45-120 2.4-Dinitrophenol 85.8 20 4.0 ug/l 100 94 40-120 2.4-Dinitroblene 94.1 10 3.5 ug/l 100 94 65-120 2.4-Dinitroblene 98.1 10 2.0 ug/l 100 82 65-135 Fluorantene 82.3 10 3.0 ug/l 100 81 60-120 Hexachlorobenzene 95.6 10 3.0 ug/l 100 73 85-120 Hexachlorobenzene 80.7 10 3.0 ug/l 100 73 45-120 Ideno(1,2,3-ed)pyrene 85.2 20 3.5 ug/l 100 74<					ug/l							
Diethyl phulate92.2103.5ug/l1009255-1202,4.Dinethyl phualate80.5203.5ug/l1008140-120Dimethyl phualate89.5102.0ug/l1009030-1204.6.Dintro-2-methyl phualate85.8204.0ug/l1009440-1202,4-Dinitroblene194.2208.0ug/l1009440-1202,4-Dinitroblene98.1102.0ug/l1008965-130Di-n-octyl phthalate89.3103.0ug/l1008260-120Fluorantene95.6103.0ug/l1008160-120Fluorantene80.7103.0ug/l1008160-120Hexachlorobenzene80.7103.0ug/l1008160-120Hexachlorobenzene76.8103.5ug/l1007740-120Hexachlorobenzene76.5103.5ug/l1007735-120Indeno(1,2,3-cd)pyrene85.2203.5ug/l1009450-1202-Methylphenol90.9103.0ug/l1009150-1202-Methylphenol90.3103.0ug/l1009150-1202-Methylphenol90.3103.0ug/l1009150-1202-Methylphenol90.3103.0ug/l100 <td>3,3-Dichlorobenzidine</td> <td></td> <td></td> <td></td> <td>ug/l</td> <td></td> <td></td> <td>84</td> <td>45-135</td> <td></td> <td></td> <td></td>	3,3-Dichlorobenzidine				ug/l			84	45-135			
2.4-Dimethylphenol80.5203.5ug/l1008140-120Dimethylphthalae89.5102.0ug/l1009030-1204.6-Dimitro-2-methylphenol85.8204.0ug/l1008645-1202.4-Dimitrophenol94.2208.0ug/l1009865-1202.4-Dimitrobluene101103.5ug/l1008965-1202.6-Dimitrobluene89.3203.5ug/l1008965-120Fluoramhene82.3103.0ug/l1008160-120Fluoramhene85.6103.0ug/l1008160-120Hexachlorobenzene80.7103.0ug/l1007740-120Hexachlorobyclopentadine76.8103.0ug/l1007740-120Hexachlorobyclopentadine76.5103.5ug/l1007735-120Hexachlorobyclopentadine93.8102.5ug/l1009450-120Hexachlorobyclopentadine90.9103.0ug/l1009450-120Hexachlorobyclopentadine91.8102.0ug/l1009450-120Hexachlorobyclopentadine92.9103.0ug/l1009450-120Hexachlorobyclopentadine93.8103.0ug/l1009450-120Hexachlorobyclopentadine	· •		10		ug/l	100						
Dimethyl phthalate89.5102.0ug/l1009030-1204.6-Dinitro-2-methylphenol85.8204.0ug/l1008645-1202.4-Dinitrophenol94.2208.0ug/l1009440-1202.4-Dinitrotoluene101103.5ug/l1009865-1202.6-Dinitrotoluene89.3203.5ug/l1008965-135Fluoranthene82.3103.0ug/l1008260-120Hexachlorobenzene87.6103.0ug/l1008160-120Hexachlorobenzene76.8104.0ug/l1007740-120Hexachlorobenzene85.2205.0ug/l1007745-135Iophonon76.5103.5ug/l1007735-120Indeno(1,2,3-dy)prene85.2203.5ug/l1009155-1202-Methylphenol90.3103.0ug/l1009155-1202-Methylphenol90.3103.0ug/l1009155-1202-Nitrophenol97.2203.0ug/l1009155-1202-Nitrophenol97.2203.0ug/l1009760-1202-Nitrophenol95.5204.0ug/l1009755-1202-Nitrophenol95.5203.0ug/l100975	Diethyl phthalate		10		-	100						
4,6-Diniro-2-methylphenol85.8204.0ug/l1008645-1202,4-Dinirotoluene101103.5ug/l1009440-1202,4-Dinirotoluene101103.5ug/l10010165-1202,6-Dinirotoluene98.1102.0ug/l1008965-135Fluoranthene82.3103.0ug/l1008160-120Fluoranthene85.6103.0ug/l1008160-120Hexachlorobenzene80.7103.0ug/l1007740-120Hexachlorobetadiene76.8104.0ug/l1007735-120Hexachlorobethane76.5103.5ug/l1007735-120Indeno(1,2,3-cd)pyrene85.2203.5ug/l1009450-1202-Methylphenol90.9103.0ug/l1009155-1202-Methylphenol90.9103.0ug/l1009155-1202-Methylphenol90.9103.0ug/l1009155-1202-Methylphenol90.9103.0ug/l1009155-1202-Nitroaniline97.22.03.0ug/l1009760-1203-Nitroaniline95.52.04.0ug/l1009755-1202-Nitrophenol9.03.52.5ug/l10094	2,4-Dimethylphenol		20	3.5	ug/l	100		81	40-120			
2.4-Dinitrophenol94.2208.0ug/l1009440-1202.4-Dinitrotoluene101103.5ug/l10010165-1202.6-Dinitrotoluene98.1102.0ug/l1008865-120Di-n-octyl phthalate89.3203.5ug/l1008260-120Fluoranthene82.3103.0ug/l1008160-120Hexachlorobenzene80.7103.0ug/l1007740-120Hexachlorobetadiene76.8104.0ug/l1007735-120Hexachlorobetadiene76.5103.5ug/l1007735-120Hexachlorobetadiene93.8102.5ug/l1007735-120Hexachlorobetadiene91.2102.5ug/l1009155-1202-Methylnaphthalene91.2102.0ug/l1009155-1202-Methylphenol90.3103.0ug/l1009155-1202-Methylphenol90.3103.0ug/l1009155-1202-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline99.5204.0ug/l1009760-1202-Nitroaniline93.5202.5ug/l1009760-1202-Nitroaniline93.52.02.5ug/l100 <t< td=""><td>Dimethyl phthalate</td><td>89.5</td><td>10</td><td>2.0</td><td>ug/l</td><td>100</td><td></td><td>90</td><td>30-120</td><td></td><td></td><td></td></t<>	Dimethyl phthalate	89.5	10	2.0	ug/l	100		90	30-120			
2,4-Dinirotoluene101103.5ug/l10010165-1202,6-Dinirotoluene98.1102.0ug/l1009865-135Fluoranthene82.3103.0ug/l1008260-120Fluorene95.6103.0ug/l1008160-120Hexachlorobenzene80.7103.0ug/l1007740-120Hexachlorobutadiene76.8103.5ug/l1007740-120Hexachlorocthane76.5103.5ug/l1007735-120Inden(1,2,3-cd)pyrene85.2203.5ug/l1009450-1202-Methylphenol90.3102.5ug/l1009155-1202-Methylphenol90.3103.0ug/l1009155-1202-Methylphenol90.3103.0ug/l1009155-1202-Mitroanline91.2103.0ug/l1009155-1202-Mitroanline90.3103.0ug/l1009155-1202-Mitroanline95.52.02.0ug/l1009760-1203-Nitroantine97.22.03.0ug/l1009765-1202-Nitroanline95.52.02.0ug/l1009765-1203-Nitroantine95.52.02.5ug/l1009765-120 <t< td=""><td></td><td>85.8</td><td>20</td><td>4.0</td><td>ug/l</td><td>100</td><td></td><td>86</td><td>45-120</td><td></td><td></td><td></td></t<>		85.8	20	4.0	ug/l	100		86	45-120			
2,6-Dinitrotoluene98.1102.0ug/l1009865-120Di-n-octyl phthalate89.3203.5ug/l1008965-135Fluoranthene82.3103.0ug/l1008260-120Fluorene95.6103.0ug/l1008160-120Hexachlorobutadiene80.7103.0ug/l1007740-120Hexachlorocytlopentadiene105205.0ug/l1007735-120Hexachlorocytlopentadiene76.5103.5ug/l1007735-120Indeno(1,2,3-cd)pyrene85.2203.5ug/l1009450-1202-Methylnphthalene91.2102.5ug/l1009450-1202-Methylphenol90.9103.0ug/l1009150-120Ampthalene87.4103.0ug/l1009150-1202-Nitroaniline97.2203.0ug/l1008755-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline9.5204.0ug/l1009755-1202-Nitroaniline9.5202.5ug/l1009755-1202-Nitroaniline9.52.02.5ug/l1009455-1202-Nitroaniline9.9103.5ug/l10094 <t< td=""><td>2,4-Dinitrophenol</td><td>94.2</td><td>20</td><td>8.0</td><td>ug/l</td><td>100</td><td></td><td>94</td><td>40-120</td><td></td><td></td><td></td></t<>	2,4-Dinitrophenol	94.2	20	8.0	ug/l	100		94	40-120			
Di-n-octyl phthalate89.3203.5ug/l1008965-135Fluoranthene82.3103.0ug/l1008260-120Fluorene95.6103.0ug/l1009665-130Hexachlorobenzene80.7103.0ug/l1008160-120Hexachlorobutadine76.8104.0ug/l1007740-120Hexachlorocyclopentadiene105205.0ug/l1007735-120Hexachlorocyclopentadiene76.5103.5ug/l1009450-120Indeno(1,2,3-cd)pyrene85.2203.5ug/l1009450-1202-Methylphenol90.9103.0ug/l1009155-1202-Methylphenol90.3103.0ug/l1009050-120Nirrobenzene95.5204.0ug/l1009155-1202-Mitroniline90.3103.0ug/l1009155-1202-Nitroaniline95.5204.0ug/l1009765-1203-Nitroaniline95.5204.0ug/l1009755-1202-Nitroaniline95.5204.0ug/l1009755-1202-Nitroaniline95.5204.0ug/l1009765-1202-Nitroaniline95.5204.0ug/l10097	2,4-Dinitrotoluene	101	10	3.5	ug/l	100		101	65-120			
Fluoranthene82.3103.0ug/l1008260-120Fluorene95.6103.0ug/l1009665-120Hexachlorobenzene80.7103.0ug/l1008160-120Hexachlorobutadiene76.8104.0ug/l1007740-120Hexachlorocyclopentadiene105205.0ug/l1007735-120Hexachlorocthane76.5103.5ug/l1008545-135Isophorone93.8102.5ug/l1009155-1202-Methylaphthalene91.2102.0ug/l1009150-1202-Methylaphtnol90.3103.0ug/l1009150-120A-Methylphenol90.3103.0ug/l1009755-1202-Nitroaniline97.2203.0ug/l1009755-1203-Nitroaniline97.5204.0ug/l1009755-1204-Nitrophenol99.5204.0ug/l1009755-1202-Nitroaniline97.5202.5ug/l1009755-1204-Nitrophenol99.5204.0ug/l1009755-1202-Nitroaniline99.5204.0ug/l1009755-1204-Nitrophenol99.9103.5ug/l1009455-120<	2,6-Dinitrotoluene	98.1	10	2.0	ug/l	100		98	65-120			
Fluorene95.6103.0ug/l1009665-120Hexachlorobenzene80.7103.0ug/l1008160-120Hexachlorobutadiene76.8104.0ug/l1007740-120Hexachlorocyclopentadiene105205.0ug/l10010525-120Hexachlorocyclopentadiene76.5103.5ug/l1007735-120Indeno(1,2,3-cd)pyrene85.2203.5ug/l1009450-1202-Methylnaphthalene91.2102.5ug/l1009155-1202-Methylphenol90.9103.0ug/l1009150-120A-Methylphenol90.3103.0ug/l1009050-1202-Nitroaniline97.2203.0ug/l1009050-1203-Nitroaniline99.5204.0ug/l1009760-1204-Nitroaniline99.5204.0ug/l1009755-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009755-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l100945	Di-n-octyl phthalate	89.3	20	3.5	ug/l	100		89	65-135			
Hexachlorobenzene80.7103.0ug/l1008160-120Hexachlorobutadiene76.8104.0ug/l1007740-120Hexachlorocyclopentadiene105205.0ug/l1007735-120Hexachlorothane76.5103.5ug/l1008545-135Iophorone93.8102.5ug/l1009450-1202-Methylnaphthalene91.2102.0ug/l1009155-1202-Methylphenol90.9103.0ug/l1009150-1204-Methylphenol90.3103.0ug/l1009050-1202-Nitroaniline77.2203.0ug/l1009765-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline93.5202.5ug/l1009955-125Nitrobenzene93.5202.5ug/l1009955-1202-Nitrophenol90.9103.5ug/l1009955-1203-Nitroaniline99.5204.0ug/l1009955-1202-Nitrophenol90.9103.5ug/l1009155-1204-Nitrophenol90.9103.5ug/l1009155-120101051010101010101010<	Fluoranthene	82.3	10	3.0	ug/l	100		82	60-120			
Hexachlorobutadiene76.8104.0ug/l1007740-120Hexachlorocyclopentadiene105205.0ug/l10010525-120Hexachloroethane76.5103.5ug/l1007735-120Indeno(1,2,3-od)pyrene85.2203.5ug/l1008545-135Isophorone93.8102.5ug/l1009450-1202-Methylpaphthalene91.2102.0ug/l1009155-1202-Methylphenol90.3103.0ug/l1009050-1204-Methylphenol90.3103.0ug/l1008755-1202-Nitroaniline77.2203.0ug/l1009760-1204-Nitroaniline95.5204.0ug/l1009760-1204-Nitrobenzene93.5202.5ug/l1009455-1202-Nitrobenzene93.5202.5ug/l1009760-1204-Nitrobenzene93.5202.5ug/l1009455-1202-Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009455-1204-Nitrophenol90.9103.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009455-120<	Fluorene	95.6	10	3.0	ug/l	100		96	65-120			
Hexachlorocyclopentadiene105205.0ug/l10010525-120Hexachlorocthane76.5103.5ug/l1007735-120Indeno(1,2,3-cd)pyrene85.2203.5ug/l1008545-135Isophorone93.8102.5ug/l1009450-1202-Methylnaphthalene91.2102.0ug/l1009155-1202-Methylphenol90.9103.0ug/l1009150-1204-Methylphenol90.3103.0ug/l1009050-1202-Nitroaniline105202.0ug/l1008755-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline93.5202.5ug/l1009955-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009760-1204-Nitroaniline99.5204.0ug/l1009955-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009455-1204-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.9103.5ug/l1009150-120 <t< td=""><td>Hexachlorobenzene</td><td>80.7</td><td>10</td><td>3.0</td><td>ug/l</td><td>100</td><td></td><td>81</td><td>60-120</td><td></td><td></td><td></td></t<>	Hexachlorobenzene	80.7	10	3.0	ug/l	100		81	60-120			
Hexachlorothane76.5103.5ug/l1007735-120Indeno(1,2,3-cd)pyrene85.2203.5ug/l1008545-135Isophorone93.8102.5ug/l1009450-1202-Methylnaphthalene91.2102.0ug/l1009155-1202-Methylphenol90.9103.0ug/l1009150-1204-Methylphenol90.3103.0ug/l1009050-1202-Nitroaniline105202.0ug/l1008755-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline93.5202.5ug/l1009455-1202-Nitrobenzene93.5202.5ug/l1009455-1204-Nitrophenol90.9103.5ug/l1009455-1204-Nitrophenol90.9103.5ug/l1009455-1204-Nitrophenol90.9103.5ug/l1009455-1204-Nitrophenol90.9103.5ug/l1009455-1204-Nitrophenol90.9103.5ug/l1009455-1204-Nitrophenol90.9103.5ug/l1009455-1204-Nitrophenol90.9103.5ug/l1009455-1204-Nit	Hexachlorobutadiene	76.8	10	4.0	ug/l	100		77	40-120			
Indeno(1,2,3-cd)pyrene85.2203.5ug/l1008545-135Isophorone93.8102.5ug/l1009450-1202-Methylnaphthalene91.2102.0ug/l1009155-1202-Methylphenol90.9103.0ug/l1009050-1204-Methylphenol90.3103.0ug/l1009050-120Naphthalene87.4103.0ug/l1008755-1202-Nitroaniline105202.0ug/l1009760-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline99.5204.0ug/l1009955-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009955-1251010565-1201009955-12510010565-1202-Nitrobenzene93.5202.5ug/l1009955-1251090.9103.5ug/l1009150-1202-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009045-120	Hexachlorocyclopentadiene	105	20	5.0	ug/l	100		105	25-120			
Isophorone93.8102.5ug/l1009450-1202-Methylnaphthalene91.2102.0ug/l1009155-1202-Methylphenol90.9103.0ug/l1009150-1204-Methylphenol90.3103.0ug/l1009050-120Naphthalene87.4103.0ug/l1008755-1202-Nitroaniline105202.0ug/l10010565-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009760-1204-Nitrophenol90.3205.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009455-1202-Nitrophenol90.3205.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009045-120	Hexachloroethane	76.5	10	3.5	ug/l	100		77	35-120			
2-Methylnaphthalene91.2102.0ug/l1009155-1202-Methylphenol90.9103.0ug/l1009150-1204-Methylphenol90.3103.0ug/l1009050-120Naphthalene87.4103.0ug/l1008755-1202-Nitroaniline105202.0ug/l10010565-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline99.5204.0ug/l1009955-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009455-1204-Nitrophenol90.3205.5ug/l1009150-120	Indeno(1,2,3-cd)pyrene	85.2	20	3.5	ug/l	100		85	45-135			
2-Methylphenol90.9103.0ug/l1009150-1204-Methylphenol90.3103.0ug/l1009050-120Naphthalene87.4103.0ug/l1008755-1202-Nitroaniline105202.0ug/l10010565-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline99.5204.0ug/l1009955-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009455-120	Isophorone	93.8	10	2.5	ug/l	100		94	50-120			
4-Methylphenol90.3103.0ug/l1009050-120Naphthalene87.4103.0ug/l1008755-1202-Nitroaniline105202.0ug/l10010565-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline99.5204.0ug/l1009955-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009045-120	2-Methylnaphthalene	91.2	10	2.0	ug/l	100		91	55-120			
Naphthalene87.4103.0ug/l1008755-1202-Nitroaniline105202.0ug/l10010565-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline99.5204.0ug/l1009955-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009045-120	2-Methylphenol	90.9	10	3.0	ug/l	100		91	50-120			
2-Nitroaniline105202.0ug/l10010565-1203-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline99.5204.0ug/l1009955-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009045-120	4-Methylphenol	90.3	10	3.0	ug/l	100		90	50-120			
3-Nitroaniline97.2203.0ug/l1009760-1204-Nitroaniline99.5204.0ug/l1009955-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009045-120	Naphthalene	87.4	10	3.0	ug/l	100		87	55-120			
4-Nitroaniline99.5204.0ug/l1009955-125Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009045-120	2-Nitroaniline	105	20	2.0	ug/l	100		105	65-120			
Nitrobenzene93.5202.5ug/l1009455-1202-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009045-120	3-Nitroaniline	97.2	20	3.0	ug/l	100		97	60-120			
2-Nitrophenol90.9103.5ug/l1009150-1204-Nitrophenol90.3205.5ug/l1009045-120	4-Nitroaniline	99.5	20	4.0	ug/l	100		99	55-125			
4-Nitrophenol 90.3 20 5.5 ug/l 100 90 45-120	Nitrobenzene	93.5	20	2.5	ug/l	100		94	55-120			
	2-Nitrophenol	90.9	10	3.5	ug/l	100		91	50-120			
	4-Nitrophenol	90.3	20	5.5	ug/l	100		90	45-120			
N-Nitrosodiphenylamine 94.4 10 2.0 ug/l 100 94 60-120	N-Nitrosodiphenylamine	94.4	10	2.0	ug/l	100		94	60-120			
N-Nitroso-di-n-propylamine 94.6 10 3.5 ug/l 100 95 45-120		94.6	10	3.5		100		95	45-120			
Pentachlorophenol 76.0 20 3.5 ug/l 100 76 50-120		76.0	20	3.5	-	100		76	50-120			
Phenanthrene 87.8 10 3.5 ug/l 100 88 65-120	*	87.8	10	3.5	-	100		88	65-120			
Phenol 84.3 10 2.0 ug/l 100 84 40-120	Phenol	84.3	10	2.0	-	100		84	40-120			
Pyrene 112 10 4.0 ug/l 100 112 55-125	Pyrene	112	10	4.0	ug/l	100		112	55-125			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04111 Extracted: 02/04/0	8										
Daten. 0004111 Extracted. 02/04/0	<u> </u>										
LCS Analyzed: 02/07/2008 (8B04111-BS	51)										
1,2,4-Trichlorobenzene	82.1	10	2.5	ug/l	100		82	45-120			
2,4,5-Trichlorophenol	94.0	20	3.0	ug/l	100		94	55-120			
2,4,6-Trichlorophenol	91.5	20	4.5	ug/l	100		92	55-120			
1,2-Diphenylhydrazine/Azobenzene	97.8	20	2.5	ug/l	100		98	60-120			
N-Nitrosodimethylamine	98.9	20	2.5	ug/l	100		99	45-120			
Surrogate: 2-Fluorophenol	167			ug/l	200		83	30-120			
Surrogate: Phenol-d6	171			ug/l	200		86	35-120			
Surrogate: 2,4,6-Tribromophenol	153			ug/l	200		77	40-120			
Surrogate: Nitrobenzene-d5	89.0			ug/l	100		89	45-120			
Surrogate: 2-Fluorobiphenyl	87.6			ug/l	100		88	50-120			
Surrogate: Terphenyl-d14	100			ug/l	100		100	50-125			
Matrix Spike Analyzed: 02/07/2008 (8B	04111-MS1)				Sou	rce: IRA	3018-06				
Acenaphthene	93.7	48	14	ug/l	95.2	ND	98	60-120			
Acenaphthylene	40.8	48	14	ug/l	95.2	ND	43	60-120			M2, J
Aniline	53.5	48	12	ug/l	95.2	ND	56	35-120			
Anthracene	84.9	48	9.5	ug/l	95.2	ND	89	65-120			
Benzidine	ND	95	40	ug/l	95.2	ND		30-160			M2
Benzoic acid	107	95	48	ug/l	95.2	ND	112	25-125			
Benzo(a)anthracene	89.0	48	9.5	ug/l	95.2	ND	94	65-120			
Benzo(b)fluoranthene	83.0	48	9.5	ug/l	95.2	ND	87	55-125			
Benzo(k)fluoranthene	95.6	48	12	ug/l	95.2	ND	100	55-125			
Benzo(g,h,i)perylene	68.7	48	19	ug/l	95.2	ND	72	45-135			
Benzo(a)pyrene	90.1	48	9.5	ug/l	95.2	ND	95	55-130			
Benzyl alcohol	34.9	95	12	ug/l	95.2	ND	37	40-120			M2, J
Bis(2-chloroethoxy)methane	76.3	48	14	ug/l	95.2	ND	80	50-120			
Bis(2-chloroethyl)ether	106	48	14	ug/l	95.2	ND	112	50-120			
Bis(2-chloroisopropyl)ether	86.9	48	12	ug/l	95.2	ND	91	45-120			
Bis(2-ethylhexyl)phthalate	91.0	240	19	ug/l	95.2	ND	96	65-130			J
4-Bromophenyl phenyl ether	75.0	48	14	ug/l	95.2	ND	79	60-120			
Butyl benzyl phthalate	92.6	95	19	ug/l	95.2	ND	97	55-130			J
4-Chloroaniline	19.6	48	9.5	ug/l	95.2	ND	21	55-120			M2, J
2-Chloronaphthalene	83.3	48	14	ug/l	95.2	ND	87	60-120			
4-Chloro-3-methylphenol	84.0	95	12	ug/l	95.2	ND	88	60-120			J
2-Chlorophenol	77.2	48	14	ug/l	95.2	ND	81	45-120			
4-Chlorophenyl phenyl ether	92.5	48	12	ug/l	95.2	ND	97	65-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
U C		Linit	MDL	emus	Lever	itesuit	, und e	Linits	IN D	Linit	Quanners
Batch: 8B04111 Extracted: 02/04/08	8										
Matrix Spike Analyzed: 02/07/2008 (8B)	04111-MS1)				Sou	rce: IRA	3018-06				
Chrysene	85.3	48	12	ug/l	95.2	ND	90	65-120			
Dibenz(a,h)anthracene	71.9	95	14	ug/l	95.2	ND	76	45-135			J
Dibenzofuran	89.2	48	19	ug/l	95.2	ND	94	65-120			
Di-n-butyl phthalate	80.5	95	14	ug/l	95.2	ND	84	60-125			J
1,3-Dichlorobenzene	71.9	48	14	ug/l	95.2	ND	76	35-120			
1,4-Dichlorobenzene	181	48	12	ug/l	95.2	ND	190	35-120			<i>M1</i>
1,2-Dichlorobenzene	139	48	14	ug/l	95.2	65.3	78	40-120			
3,3-Dichlorobenzidine	ND	95	14	ug/l	95.2	ND		45-135			M2
2,4-Dichlorophenol	81.7	48	17	ug/l	95.2	ND	86	55-120			
Diethyl phthalate	89.8	48	17	ug/l	95.2	ND	94	55-120			
2,4-Dimethylphenol	83.3	95	17	ug/l	95.2	ND	87	40-120			J
Dimethyl phthalate	93.8	48	9.5	ug/l	95.2	ND	98	30-120			
4,6-Dinitro-2-methylphenol	121	95	19	ug/l	95.2	ND	128	45-120			<i>M1</i>
2,4-Dinitrophenol	112	95	38	ug/l	95.2	ND	118	40-120			
2,4-Dinitrotoluene	81.5	48	17	ug/l	95.2	ND	86	65-120			
2,6-Dinitrotoluene	81.5	48	9.5	ug/l	95.2	ND	86	65-120			
Di-n-octyl phthalate	87.2	95	17	ug/l	95.2	ND	92	65-135			J
Fluoranthene	82.8	48	14	ug/l	95.2	ND	87	60-120			
Fluorene	93.2	48	14	ug/l	95.2	ND	98	65-120			
Hexachlorobenzene	70.5	48	14	ug/l	95.2	ND	74	60-120			
Hexachlorobutadiene	73.3	48	19	ug/l	95.2	ND	77	40-120			
Hexachlorocyclopentadiene	67.8	95	24	ug/l	95.2	ND	71	25-120			J
Hexachloroethane	68.9	48	17	ug/l	95.2	ND	72	35-120			
Indeno(1,2,3-cd)pyrene	71.6	95	17	ug/l	95.2	ND	75	40-135			J
Isophorone	49.0	48	12	ug/l	95.2	ND	52	50-120			
2-Methylnaphthalene	86.2	48	9.5	ug/l	95.2	ND	90	55-120			
2-Methylphenol	84.3	48	14	ug/l	95.2	ND	88	50-120			
4-Methylphenol	75.9	48	14	ug/l	95.2	ND	80	50-120			
Naphthalene	82.8	48	14	ug/l	95.2	ND	87	55-120			
2-Nitroaniline	91.7	95	9.5	ug/l	95.2	ND	96	65-120			J
3-Nitroaniline	27.3	95	14	ug/l	95.2	ND	29	60-120			M2, J
4-Nitroaniline	51.6	95	19	ug/l	95.2	ND	54	55-125			M2, J
Nitrobenzene	80.4	95	12	ug/l	95.2	ND	84	55-120			J
2-Nitrophenol	75.0	48	17	ug/l	95.2	ND	79	50-120			
4-Nitrophenol	110	95	26	ug/l	95.2	ND	115	45-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04111 Extracted: 02/04/08											
Matrix Spike Analyzed: 02/07/2008 (8B041)	11-MS1)				Sou	rce: IRA	3018-06				
N-Nitrosodiphenylamine	78.2	48	9.5	ug/l	95.2	ND	82	60-120			
N-Nitroso-di-n-propylamine	ND	48	17	ug/l	95.2	ND		45-120			M2
Pentachlorophenol	81.0	95	17	ug/l	95.2	ND	85	50-120			J
Phenanthrene	84.2	48	17	ug/l	95.2	ND	88	65-120			
Phenol	79.1	48	9.5	ug/l	95.2	ND	83	40-120			
Pyrene	100	48	19	ug/l	95.2	ND	105	55-125			
1,2,4-Trichlorobenzene	197	48	12	ug/l	95.2	130	71	45-120			
2,4,5-Trichlorophenol	88.3	95	14	ug/l	95.2	ND	93	55-120			J
2,4,6-Trichlorophenol	88.8	95	21	ug/l	95.2	ND	93	55-120			J
1,2-Diphenylhydrazine/Azobenzene	ND	95	12	ug/l	95.2	ND		60-120			M2
N-Nitrosodimethylamine	ND	95	12	ug/l	95.2	ND		45-120			M2
Surrogate: 2-Fluorophenol	148			ug/l	190		77	30-120			
Surrogate: Phenol-d6	150			ug/l	190		78	35-120			
Surrogate: 2,4,6-Tribromophenol	147			ug/l	190		77	40-120			
Surrogate: Nitrobenzene-d5	74.0			ug/l	95.2		78	45-120			
Surrogate: 2-Fluorobiphenyl	80.5			ug/l	95.2		84	50-120			
Surrogate: Terphenyl-d14	92.3			ug/l	95.2		97	50-125			
Matrix Spike Dup Analyzed: 02/07/2008 (81	B04111-MS	SD1)			Sou	rce: IRA:	3018-06				
Acenaphthene	91.1	48	14	ug/l	95.2	ND	96	60-120	3	25	
Acenaphthylene	53.7	48	14	ug/l	95.2	ND	56	60-120	27	25	M2, R-3
Aniline	49.4	48	12	ug/l	95.2	ND	52	35-120	8	30	
Anthracene	82.0	48	9.5	ug/l	95.2	ND	86	65-120	3	25	
Benzidine	ND	95	40	ug/l	95.2	ND		30-160		35	M2
Benzoic acid	104	95	48	ug/l	95.2	ND	110	25-125	3	30	
Benzo(a)anthracene	83.4	48	9.5	ug/l	95.2	ND	88	65-120	7	20	
Benzo(b)fluoranthene	79.0	48	9.5	ug/l	95.2	ND	83	55-125	5	25	
Benzo(k)fluoranthene	87.0	48	12	ug/l	95.2	ND	91	55-125	9	30	
Benzo(g,h,i)perylene	65.9	48	19	ug/l	95.2	ND	69	45-135	4	30	
Benzo(a)pyrene	85.2	48	9.5	ug/l	95.2	ND	90	55-130	6	25	
Benzyl alcohol	36.6	95	12	ug/l	95.2	ND	38	40-120	5	30	M2, J
Bis(2-chloroethoxy)methane	70.4	48	14	ug/l	95.2	ND	74	50-120	8	25	
Bis(2-chloroethyl)ether	68.1	48	14	ug/l	95.2	ND	72	50-120	44	25	R
	83.1	48	12	ug/l	95.2	ND	87	45-120	4	25	
	86.8	240	19	ug/l	95.2	ND	91	65-130	5	25	J
	69.8	48	14	ug/l	95.2	ND	73	60-120	7	25	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
·				cints	20,01	1000000	,01120	2	111 2		Quanto s
Batch: 8B04111 Extracted: 02/04/08	<u> </u>										
Matrix Spike Dup Analyzed: 02/07/2008	Source: IRA3018-06										
Butyl benzyl phthalate	90.5	95	19	ug/l	95.2	ND	95	55-130	2	25	J
4-Chloroaniline	39.1	48	9.5	ug/l	95.2	ND	41	55-120	66	25	M2, R-3, J
2-Chloronaphthalene	78.2	48	14	ug/l	95.2	ND	82	60-120	6	20	
4-Chloro-3-methylphenol	82.4	95	12	ug/l	95.2	ND	86	60-120	2	25	J
2-Chlorophenol	69.2	48	14	ug/l	95.2	ND	73	45-120	11	25	
4-Chlorophenyl phenyl ether	84.3	48	12	ug/l	95.2	ND	88	65-120	9	25	
Chrysene	83.3	48	12	ug/l	95.2	ND	87	65-120	2	25	
Dibenz(a,h)anthracene	69.2	95	14	ug/l	95.2	ND	73	45-135	4	30	J
Dibenzofuran	82.9	48	19	ug/l	95.2	ND	87	65-120	7	25	
Di-n-butyl phthalate	77.4	95	14	ug/l	95.2	ND	81	60-125	4	25	J
1,3-Dichlorobenzene	64.5	48	14	ug/l	95.2	ND	68	35-120	11	25	
1,4-Dichlorobenzene	168	48	12	ug/l	95.2	ND	177	35-120	7	25	<i>M1</i>
1,2-Dichlorobenzene	123	48	14	ug/l	95.2	65.3	61	40-120	12	25	
3,3-Dichlorobenzidine	ND	95	14	ug/l	95.2	ND		45-135		25	M2
2,4-Dichlorophenol	76.4	48	17	ug/l	95.2	ND	80	55-120	7	25	
Diethyl phthalate	85.0	48	17	ug/l	95.2	ND	89	55-120	6	30	
2,4-Dimethylphenol	75.8	95	17	ug/l	95.2	ND	80	40-120	9	25	J
Dimethyl phthalate	87.5	48	9.5	ug/l	95.2	ND	92	30-120	7	30	
4,6-Dinitro-2-methylphenol	112	95	19	ug/l	95.2	ND	118	45-120	8	25	
2,4-Dinitrophenol	91.4	95	38	ug/l	95.2	ND	96	40-120	20	25	J
2,4-Dinitrotoluene	69.1	48	17	ug/l	95.2	ND	73	65-120	16	25	
2,6-Dinitrotoluene	77.2	48	9.5	ug/l	95.2	ND	81	65-120	5	20	
Di-n-octyl phthalate	81.3	95	17	ug/l	95.2	ND	85	65-135	7	20	J
Fluoranthene	79.0	48	14	ug/l	95.2	ND	83	60-120	5	25	
Fluorene	88.1	48	14	ug/l	95.2	ND	92	65-120	6	25	
Hexachlorobenzene	69.5	48	14	ug/l	95.2	ND	73	60-120	1	25	
Hexachlorobutadiene	66.5	48	19	ug/l	95.2	ND	70	40-120	10	25	
Hexachlorocyclopentadiene	41.9	95	24	ug/l	95.2	ND	44	25-120	47	30	<i>R, J</i>
Hexachloroethane	58.5	48	17	ug/l	95.2	ND	61	35-120	16	25	
Indeno(1,2,3-cd)pyrene	67.4	95	17	ug/l	95.2	ND	71	40-135	6	30	J
Isophorone	50.0	48	12	ug/l	95.2	ND	52	50-120	2	25	
2-Methylnaphthalene	79.4	48	9.5	ug/l	95.2	ND	83	55-120	8	20	
2-Methylphenol	73.3	48	14	ug/l	95.2	ND	77	50-120	14	25	
4-Methylphenol	70.0	48	14	ug/l	95.2	ND	74	50-120	8	25	
Naphthalene	82.0	48	14	ug/l	95.2	ND	86	55-120	1	25	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
		Linn		emis	Lever	itesuit	, und e	Linits	IN D	Linny	Qualifiers
Batch: 8B04111 Extracted: 02/04/08	<u>i</u>										
Matrix Spike Dup Analyzed: 02/07/2008	(8B04111-N	ISD1)			Sou	rce: IRA	3018-06				
2-Nitroaniline	85.6	95	9.5	ug/l	95.2	ND	90	65-120	7	25	J
3-Nitroaniline	18.4	95	14	ug/l	95.2	ND	19	60-120	39	25	M2, R-3, J
4-Nitroaniline	31.6	95	19	ug/l	95.2	ND	33	55-125	48	25	M2, R-3, J
Nitrobenzene	80.5	95	12	ug/l	95.2	ND	84	55-120	0	25	J
2-Nitrophenol	72.8	48	17	ug/l	95.2	ND	76	50-120	3	25	
4-Nitrophenol	134	95	26	ug/l	95.2	ND	141	45-120	20	30	MI
N-Nitrosodiphenylamine	60.8	48	9.5	ug/l	95.2	ND	64	60-120	25	25	
N-Nitroso-di-n-propylamine	ND	48	17	ug/l	95.2	ND		45-120		25	M2
Pentachlorophenol	76.7	95	17	ug/l	95.2	ND	80	50-120	5	25	J
Phenanthrene	79.1	48	17	ug/l	95.2	ND	83	65-120	6	25	
Phenol	69.3	48	9.5	ug/l	95.2	ND	73	40-120	13	25	
Pyrene	96.9	48	19	ug/l	95.2	ND	102	55-125	3	25	
1,2,4-Trichlorobenzene	182	48	12	ug/l	95.2	130	55	45-120	8	20	
2,4,5-Trichlorophenol	75.5	95	14	ug/l	95.2	ND	79	55-120	16	30	J
2,4,6-Trichlorophenol	80.5	95	21	ug/l	95.2	ND	84	55-120	10	30	J
1,2-Diphenylhydrazine/Azobenzene	ND	95	12	ug/l	95.2	ND		60-120		25	M2
N-Nitrosodimethylamine	ND	95	12	ug/l	95.2	ND		45-120		25	M2
Surrogate: 2-Fluorophenol	138			ug/l	190		72	30-120			
Surrogate: Phenol-d6	132			ug/l	190		70	35-120			
Surrogate: 2,4,6-Tribromophenol	134			ug/l	190		70	40-120			
Surrogate: Nitrobenzene-d5	72.5			ug/l	95.2		76	45-120			
Surrogate: 2-Fluorobiphenyl	77.3			ug/l	95.2		81	50-120			
Surrogate: Terphenyl-d14	86.6			ug/l	95.2		91	50-125			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
·		Linnt	MDL	Units	Levei	Result	/OREC	Linits	КID	Linnt	Quanners
Batch: 8B04071 Extracted: 02/04/08	<u>}</u>										
Blank Analyzed: 02/06/2008 (8B04071-B	LK1)										
Aldrin	ND	0.0050	0.0015	ug/l							
alpha-BHC	ND	0.0050	0.0025	ug/l							
beta-BHC	ND	0.010	0.0040	ug/l							
delta-BHC	ND	0.0050	0.0035	ug/l							
gamma-BHC (Lindane)	ND	0.010	0.0030	ug/l							
Chlordane	ND	0.10	0.030	ug/l							
4,4'-DDD	ND	0.0050	0.0020	ug/l							
4,4'-DDE	ND	0.0050	0.0030	ug/l							
4,4'-DDT	ND	0.010	0.0040	ug/l							
Dieldrin	ND	0.0050	0.0020	ug/l							
Endosulfan I	ND	0.0050	0.0020	ug/l							
Endosulfan II	ND	0.0050	0.0030	ug/l							
Endosulfan sulfate	ND	0.010	0.0030	ug/l							
Endrin	ND	0.0050	0.0020	ug/l							
Endrin aldehyde	ND	0.010	0.0020	ug/l							
Endrin ketone	ND	0.010	0.0030	ug/l							
Heptachlor	ND	0.010	0.0030	ug/l							
Heptachlor epoxide	ND	0.0050	0.0025	ug/l							
Methoxychlor	ND	0.0050	0.0035	ug/l							
Toxaphene	ND	0.10	0.070	ug/l							
Surrogate: Decachlorobiphenyl	0.473	0.10	0.070	ug/l	0.500		95	45-120			
Surrogate: Tetrachloro-m-xylene	0.447			ug/l	0.500		89	35-115			
LCS Analyzed: 02/05/2008 (8B04071-BS	,										MNR1
Aldrin	0.437	0.0050	0.0015	ug/l	0.500		87	40-115			
alpha-BHC	0.482	0.0050	0.0025	ug/l	0.500		96	45-115			
beta-BHC	0.475	0.010	0.0040	ug/l	0.500		95	55-115			
delta-BHC	0.490	0.0050	0.0035	ug/l	0.500		98	55-115			
gamma-BHC (Lindane)	0.485	0.010	0.0030	ug/l	0.500		97	45-115			
4,4'-DDD	0.490	0.0050	0.0020	ug/l	0.500		98	55-120			
4,4'-DDE	0.451	0.0050	0.0030	ug/l	0.500		90	50-120			
4,4'-DDT	0.494	0.010	0.0040	ug/l	0.500		99	55-120			
Dieldrin	0.472	0.0050	0.0020	ug/l	0.500		94	55-115			
Endosulfan I	0.440	0.0050	0.0020	ug/l	0.500		88	55-115			
Endosulfan II	0.476	0.0050	0.0030	ug/l	0.500		95	55-120			
Endosulfan sulfate	0.476	0.010	0.0030	ug/l	0.500		95	60-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04071 Extracted: 02/04/08				cints	20101	11054110	, und e		111 2		Z
Datch. 0D040/11 Extracted. 02/04/00	<u> </u>										
LCS Analyzed: 02/05/2008 (8B04071-BS	1)										MNR1
Endrin	0.482	0.0050	0.0020	ug/l	0.500		96	55-115			
Endrin aldehyde	0.449	0.010	0.0020	ug/l	0.500		90	50-120			
Endrin ketone	0.471	0.010	0.0030	ug/l	0.500		94	55-120			
Heptachlor	0.468	0.010	0.0030	ug/l	0.500		94	45-115			
Heptachlor epoxide	0.453	0.0050	0.0025	ug/l	0.500		91	55-115			
Methoxychlor	0.474	0.0050	0.0035	ug/l	0.500		95	60-120			
Surrogate: Decachlorobiphenyl	0.464			ug/l	0.500		93	45-120			
Surrogate: Tetrachloro-m-xylene	0.433			ug/l	0.500		87	35-115			
LCS Dup Analyzed: 02/05/2008 (8B0407	1-BSD1)										
Aldrin	0.433	0.0050	0.0015	ug/l	0.500		87	40-115	1	30	
alpha-BHC	0.474	0.0050	0.0025	ug/l	0.500		95	45-115	2	30	
beta-BHC	0.466	0.010	0.0040	ug/l	0.500		93	55-115	2	30	
delta-BHC	0.480	0.0050	0.0035	ug/l	0.500		96	55-115	2	30	
gamma-BHC (Lindane)	0.476	0.010	0.0030	ug/l	0.500		95	45-115	2	30	
4,4'-DDD	0.481	0.0050	0.0020	ug/l	0.500		96	55-120	2	30	
4,4'-DDE	0.450	0.0050	0.0030	ug/l	0.500		90	50-120	0	30	
4,4'-DDT	0.483	0.010	0.0040	ug/l	0.500		97	55-120	2	30	
Dieldrin	0.463	0.0050	0.0020	ug/l	0.500		93	55-115	2	30	
Endosulfan I	0.439	0.0050	0.0020	ug/l	0.500		88	55-115	0	30	
Endosulfan II	0.466	0.0050	0.0030	ug/l	0.500		93	55-120	2	30	
Endosulfan sulfate	0.466	0.010	0.0030	ug/l	0.500		93	60-120	2	30	
Endrin	0.471	0.0050	0.0020	ug/l	0.500		94	55-115	2	30	
Endrin aldehyde	0.441	0.010	0.0020	ug/l	0.500		88	50-120	2	30	
Endrin ketone	0.460	0.010	0.0030	ug/l	0.500		92	55-120	2	30	
Heptachlor	0.461	0.010	0.0030	ug/l	0.500		92	45-115	2	30	
Heptachlor epoxide	0.444	0.0050	0.0025	ug/l	0.500		89	55-115	2	30	
Methoxychlor	0.464	0.0050	0.0035	ug/l	0.500		93	60-120	2	30	
Surrogate: Decachlorobiphenyl	0.453			ug/l	0.500		91	45-120			
Surrogate: Tetrachloro-m-xylene	0.430			ug/l	0.500		86	35-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

TOTAL PCBS (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Bosult	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Analyte	Kesult	Linnt	MDL	Units	Level	Kesuit	/0KEC	Linns	KI D	Linnt	Quanners
Batch: 8B04071 Extracted: 02/04/08	<u>}</u>										
Blank Analyzed: 02/05/2008 (8B04071-B	SLK1)										
Aroclor 1016	ND	0.50	0.45	ug/l							
Aroclor 1221	ND	0.50	0.25	ug/l							
Aroclor 1232	ND	0.50	0.25	ug/l							
Aroclor 1242	ND	0.50	0.25	ug/l							
Aroclor 1248	ND	0.50	0.25	ug/l							
Aroclor 1254	ND	0.50	0.25	ug/l							
Aroclor 1260	ND	0.50	0.30	ug/l							
Surrogate: Decachlorobiphenyl	0.484			ug/l	0.500		97	45-120			
LCS Analyzed: 02/05/2008 (8B04071-BS	2)										MNR1
Aroclor 1016	3.71	0.50	0.45	ug/l	4.00		93	50-115			
Aroclor 1260	3.92	0.50	0.30	ug/l	4.00		98	60-120			
Surrogate: Decachlorobiphenyl	0.462			ug/l	0.500		92	45-120			
LCS Dup Analyzed: 02/05/2008 (8B0407	(1-BSD2)										
Aroclor 1016	3.60	0.50	0.45	ug/l	4.00		90	50-115	3	30	
Aroclor 1260	3.98	0.50	0.30	ug/l	4.00		100	60-120	2	25	
Surrogate: Decachlorobiphenyl	0.489			ug/l	0.500		98	45-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04079 Extracted: 02/04/08											
Blank Analyzed: 02/04/2008 (8B04079-B	LK1)										
Aluminum	ND	50	40	ug/l							
Arsenic	ND	10	7.0	ug/l							
Beryllium	ND	2.0	0.90	ug/l							
Boron	ND	0.050	0.020	mg/l							
Calcium	ND	0.10	0.050	mg/l							
Chromium	ND	5.0	2.0	ug/l							
Iron	ND	0.040	0.015	mg/l							
Magnesium	ND	0.020	0.012	mg/l							
Nickel	ND	10	2.0	ug/l							
Selenium	ND	10	8.0	ug/l							
Silver	ND	10	6.0	ug/l							
Vanadium	ND	10	3.0	ug/l							
Zinc	ND	20	6.0	ug/l							
LCS Analyzed: 02/04/2008 (8B04079-BS	1)										
Aluminum	524	50	40	ug/l	500		105	85-115			
Arsenic	504	10	7.0	ug/l	500		101	85-115			
Beryllium	510	2.0	0.90	ug/l	500		102	85-115			
Boron	0.514	0.050	0.020	mg/l	0.500		103	85-115			
Calcium	2.65	0.10	0.050	mg/l	2.50		106	85-115			
Chromium	517	5.0	2.0	ug/l	500		103	85-115			
Iron	0.529	0.040	0.015	mg/l	0.500		106	85-115			
Magnesium	2.63	0.020	0.012	mg/l	2.50		105	85-115			
Nickel	513	10	2.0	ug/l	500		103	85-115			
Selenium	492	10	8.0	ug/l	500		98	85-115			
Silver	262	10	6.0	ug/l	250		105	85-115			
Vanadium	503	10	3.0	ug/l	500		101	85-115			
Zinc	507	20	6.0	ug/l	500		101	85-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04079 Extracted: 02/04/08											
	-										
Matrix Spike Analyzed: 02/04/2008 (8B0	4079-MS1)				Sou	rce: IRB)153-01				
Aluminum	611	50	40	ug/l	500	94.8	103	70-130			
Arsenic	496	10	7.0	ug/l	500	ND	99	70-130			
Beryllium	503	2.0	0.90	ug/l	500	ND	101	70-130			
Boron	0.503	0.050	0.020	mg/l	0.500	ND	101	70-130			
Calcium	53.7	0.10	0.050	mg/l	2.50	52.8	38	70-130			MHA
Chromium	502	5.0	2.0	ug/l	500	2.15	100	70-130			
Iron	0.590	0.040	0.015	mg/l	0.500	0.0952	99	70-130			
Magnesium	9.71	0.020	0.012	mg/l	2.50	7.62	84	70-130			
Nickel	495	10	2.0	ug/l	500	ND	99	70-130			
Selenium	470	10	8.0	ug/l	500	ND	94	70-130			
Silver	256	10	6.0	ug/l	250	ND	103	70-130			
Vanadium	487	10	3.0	ug/l	500	ND	97	70-130			
Zinc	496	20	6.0	ug/l	500	9.15	97	70-130			
Matrix Spike Analyzed: 02/04/2008 (8B0	4079-MS2)				Sou	rce: IRB)155-01				
Aluminum	1190	50	40	ug/l	500	692	100	70-130			
Arsenic	509	10	7.0	ug/l	500	ND	102	70-130			
Beryllium	515	2.0	0.90	ug/l	500	ND	103	70-130			
Boron	0.503	0.050	0.020	mg/l	0.500	ND	101	70-130			
Calcium	8.02	0.10	0.050	mg/l	2.50	5.65	95	70-130			
Chromium	522	5.0	2.0	ug/l	500	ND	104	70-130			
Iron	0.872	0.040	0.015	mg/l	0.500	0.382	98	70-130			
Magnesium	3.33	0.020	0.012	mg/l	2.50	0.768	102	70-130			
Nickel	515	10	2.0	ug/l	500	ND	103	70-130			
Selenium	487	10	8.0	ug/l	500	ND	97	70-130			
Silver	260	10	6.0	ug/l	250	ND	104	70-130			
Vanadium	501	10	3.0	ug/l	500	ND	100	70-130			
Zinc	538	20	6.0	ug/l	500	32.2	101	70-130			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
·											
Batch: 8B04079 Extracted: 02/04/08	-										
Matrix Spike Dup Analyzed: 02/04/2008	(8B04079-MS	SD1)			Sou	rce: IRB)153-01				
Aluminum	600	50	40	ug/l	500	94.8	101	70-130	2	20	
Arsenic	506	10	7.0	ug/l	500	ND	101	70-130	2	20	
Beryllium	516	2.0	0.90	ug/l	500	ND	103	70-130	3	20	
Boron	0.499	0.050	0.020	mg/l	0.500	ND	100	70-130	1	20	
Calcium	53.2	0.10	0.050	mg/l	2.50	52.8	19	70-130	1	20	MHA
Chromium	512	5.0	2.0	ug/l	500	2.15	102	70-130	2	20	
Iron	0.596	0.040	0.015	mg/l	0.500	0.0952	100	70-130	1	20	
Magnesium	9.64	0.020	0.012	mg/l	2.50	7.62	81	70-130	1	20	
Nickel	507	10	2.0	ug/l	500	ND	101	70-130	2	20	
Selenium	491	10	8.0	ug/l	500	ND	98	70-130	4	20	
Silver	256	10	6.0	ug/l	250	ND	102	70-130	0	20	
Vanadium	497	10	3.0	ug/l	500	ND	99	70-130	2	20	
Zinc	513	20	6.0	ug/l	500	9.15	101	70-130	3	20	
Batch: 8B04080 Extracted: 02/04/08											
	_										
Blank Analyzed: 02/04/2008-02/05/2008 ((8B04080-BL)	K1)									
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Thallium	ND	1.0	0.20	ug/l							
LCS Analyzed: 02/04/2008-02/05/2008 (8	B04080-BS1)										
Antimony	84.2	2.0	0.20	ug/l	80.0		105	85-115			
Cadmium	83.7	1.0	0.11	ug/l	80.0		105	85-115			
Copper	83.0	2.0	0.75	ug/l	80.0		104	85-115			
Lead	83.3	1.0	0.30	ug/l	80.0		104	85-115			
Thallium	83.4	1.0	0.20	ug/l	80.0		104	85-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8B04080 Extracted: 02/04/08	_										
					~						
Matrix Spike Analyzed: 02/04/2008-02/0						rce: IRB					
Antimony	82.0	2.0	0.20	ug/l	80.0	0.423	102	70-130			
Cadmium	80.7	1.0	0.11	ug/l	80.0	0.208	101	70-130			
Copper	78.5	2.0	0.75	ug/l	80.0	1.69	96	70-130			
Lead	76.9	1.0	0.30	ug/l	80.0	0.512	96	70-130			
Thallium	79.0	1.0	0.20	ug/l	80.0	ND	99	70-130			
Matrix Spike Analyzed: 02/04/2008-02/0	5/2008 (8B040	080-MS2)			Sou	rce: IRB	0152-01				
Antimony	80.5	2.0	0.20	ug/l	80.0	1.58	99	70-130			
Cadmium	79.1	1.0	0.11	ug/l	80.0	0.164	99	70-130			
Copper	82.5	2.0	0.75	ug/l	80.0	4.75	97	70-130			
Lead	84.1	1.0	0.30	ug/l	80.0	6.01	98	70-130			
Thallium	80.7	1.0	0.20	ug/l	80.0	ND	101	70-130			
Matrix Spike Dup Analyzed: 02/04/2008	-02/05/2008 (8	3B04080-MS	D1)		Sou	rce: IRB	0150-01				
Antimony	83.6	2.0	0.20	ug/l	80.0	0.423	104	70-130	2	20	
Cadmium	81.2	1.0	0.11	ug/l	80.0	0.208	101	70-130	1	20	
Copper	79.1	2.0	0.75	ug/l	80.0	1.69	97	70-130	1	20	
Lead	78.6	1.0	0.30	ug/l	80.0	0.512	98	70-130	2	20	
Thallium	80.1	1.0	0.20	ug/l	80.0	ND	100	70-130	1	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04144 Extracted: 02/04/08											-
Daten. 0004144 Extracted. 02/04/00	-										
Blank Analyzed: 02/05/2008 (8B04144-B	LK1)										
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Thallium	ND	1.0	0.20	ug/l							
LCS Analyzed: 02/05/2008 (8B04144-BS)	l)										
Antimony	84.8	2.0	0.20	ug/l	80.0		106	85-115			
Cadmium	82.9	1.0	0.11	ug/l	80.0		104	85-115			
Copper	80.0	2.0	0.75	ug/l	80.0		100	85-115			
Lead	80.0	1.0	0.30	ug/l	80.0		100	85-115			
Thallium	82.5	1.0	0.20	ug/l	80.0		103	85-115			
Matrix Spike Analyzed: 02/05/2008 (8B0	4144-MS1)				Sou	rce: IRB	0073-01				
Antimony	84.0	2.0	0.20	ug/l	80.0	0.305	105	70-130			
Cadmium	84.5	1.0	0.11	ug/l	80.0	0.221	105	70-130			
Copper	77.7	2.0	0.75	ug/l	80.0	1.70	95	70-130			
Lead	74.3	1.0	0.30	ug/l	80.0	ND	93	70-130			
Thallium	76.6	1.0	0.20	ug/l	80.0	ND	96	70-130			
Matrix Spike Dup Analyzed: 02/05/2008	(8B04144-M	SD1)			Sou	rce: IRB	0073-01				
Antimony	83.1	2.0	0.20	ug/l	80.0	0.305	103	70-130	1	20	
Cadmium	84.2	1.0	0.11	ug/l	80.0	0.221	105	70-130	0	20	
Copper	79.5	2.0	0.75	ug/l	80.0	1.70	97	70-130	2	20	
Lead	74.4	1.0	0.30	ug/l	80.0	ND	93	70-130	0	20	
Thallium	76.2	1.0	0.20	ug/l	80.0	ND	95	70-130	0	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B05111 Extracted: 02/05/08											-
Blank Analyzed: 02/06/2008 (8B05111-B	LK1)										
Aluminum	ND	50	40	ug/l							
Arsenic	ND	10	7.0	ug/l							
Beryllium	ND	2.0	0.90	ug/l							
Boron	ND	0.050	0.020	mg/l							
Calcium	ND	0.10	0.050	mg/l							
Chromium	ND	5.0	2.0	ug/l							
Iron	ND	0.040	0.015	mg/l							
Magnesium	ND	0.020	0.012	mg/l							
Nickel	ND	10	2.0	ug/l							
Selenium	ND	10	8.0	ug/l							
Hardness (as CaCO3)	ND	1.0	1.0	mg/l							
Silver	ND	10	6.0	ug/l							
Vanadium	ND	10	3.0	ug/l							
Zinc	ND	20	6.0	ug/l							
LCS Analyzed: 02/06/2008 (8B05111-BS	1)										
Aluminum	563	50	40	ug/l	500		113	85-115			
Arsenic	525	10	7.0	ug/l	500		105	85-115			
Beryllium	519	2.0	0.90	ug/l	500		104	85-115			
Boron	0.520	0.050	0.020	mg/l	0.500		104	85-115			
Calcium	2.67	0.10	0.050	mg/l	2.50		107	85-115			
Chromium	512	5.0	2.0	ug/l	500		102	85-115			
Iron	0.526	0.040	0.015	mg/l	0.500		105	85-115			
Magnesium	2.60	0.020	0.012	mg/l	2.50		104	85-115			
Nickel	515	10	2.0	ug/l	500		103	85-115			
Selenium	491	10	8.0	ug/l	500		98	85-115			
Silver	256	10	6.0	ug/l	250		102	85-115			
Vanadium	509	10	3.0	ug/l	500		102	85-115			
Zinc	509	20	6.0	ug/l	500		102	85-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B05111 Extracted: 02/05/08	_										
					0	IDD	053 01				
Matrix Spike Analyzed: 02/06/2008 (8B0						rce: IRB(
Aluminum	564	50	40	ug/l	500	62.5	100	70-130			
Arsenic	519	10	7.0	ug/l	500	ND	104	70-130			
Beryllium	513	2.0	0.90	ug/l	500	ND	103	70-130			
Boron	0.549	0.050	0.020	mg/l	0.500	0.0311	104	70-130			
Calcium	58.9	0.10	0.050	mg/l	2.50	55.2	147	70-130			MHA
Chromium	502	5.0	2.0	ug/l	500	ND	100	70-130			
Iron	0.554	0.040	0.015	mg/l	0.500	0.0302	105	70-130			
Magnesium	10.3	0.020	0.012	mg/l	2.50	7.52	112	70-130			
Nickel	514	10	2.0	ug/l	500	11.5	101	70-130			
Selenium	486	10	8.0	ug/l	500	ND	97	70-130			
Silver	257	10	6.0	ug/l	250	ND	103	70-130			
Vanadium	507	10	3.0	ug/l	500	ND	101	70-130			
Zinc	509	20	6.0	ug/l	500	11.6	99	70-130			
Matrix Spike Dup Analyzed: 02/06/2008	(8B05111-M	SD1)			Sou	rce: IRB(073-01				
Aluminum	587	50	40	ug/l	500	62.5	105	70-130	4	20	
Arsenic	541	10	7.0	ug/l	500	ND	108	70-130	4	20	
Beryllium	518	2.0	0.90	ug/l	500	ND	104	70-130	1	20	
Boron	0.554	0.050	0.020	mg/l	0.500	0.0311	105	70-130	1	20	
Calcium	58.4	0.10	0.050	mg/l	2.50	55.2	125	70-130	1	20	MHA
Chromium	517	5.0	2.0	ug/l	500	ND	103	70-130	3	20	
Iron	0.565	0.040	0.015	mg/l	0.500	0.0302	107	70-130	2	20	
Magnesium	10.3	0.020	0.012	mg/l	2.50	7.52	112	70-130	0	20	
Nickel	530	10	2.0	ug/l	500	11.5	104	70-130	3	20	
Selenium	503	10	8.0	ug/l	500	ND	101	70-130	3	20	
Silver	262	10	6.0	ug/l	250	ND	105	70-130	2	20	
Vanadium	518	10	3.0	ug/l	500	ND	104	70-130	2	20	
Zinc	528	20	6.0	ug/l	500	11.6	103	70-130	4	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04043 Extracted: 02/04/08	_										
Blank Analyzed: 02/04/2008 (8B04043-B	,										
Chloride	ND	0.50	0.25	mg/l							
Fluoride	ND	0.50	0.15	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Sulfate	ND	0.50	0.20	mg/l							
LCS Analyzed: 02/04/2008 (8B04043-BS	l)										
Chloride	5.33	0.50	0.25	mg/l	5.00		107	90-110			
Fluoride	5.14	0.50	0.15	mg/l	5.00		103	90-110			
Sulfate	10.6	0.50	0.20	mg/l	10.0		106	90-110			M-3
Matrix Spike Analyzed: 02/04/2008 (8B0	4043-MS1)				Sou	rce: IRB	0146-01				
Chloride	27.0	0.50	0.25	mg/l	5.00	21.6	109	80-120			
Fluoride	5.30	0.50	0.15	mg/l	5.00	0.288	100	80-120			
Matrix Spike Analyzed: 02/04/2008 (8B0	4043-MS2)				Sou	rce: IRB	0156-01				
Chloride	27.7	0.50	0.25	mg/l	5.00	22.9	96	80-120			
Fluoride	5.01	0.50	0.15	mg/l	5.00	0.306	94	80-120			
Matrix Spike Dup Analyzed: 02/04/2008	(8B04043-M	SD1)			Sou	rce: IRB	0146-01				
Chloride	27.2	0.50	0.25	mg/l	5.00	21.6	112	80-120	1	20	
Fluoride	5.46	0.50	0.15	mg/l	5.00	0.288	103	80-120	3	20	
Batch: 8B04112 Extracted: 02/04/08	_										
Blank Analyzed: 02/04/2008 (8B04112-B											
Total Cyanide	ND	5.0	2.2	ug/l							

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8B04112 Extracted: 02/04/08	-										
LCS Analyzed: 02/04/2008 (8B04112-BS1 Total Cyanide	1) 184	5.0	2.2	ug/l	200		92	90-110			
Matrix Spike Analyzed: 02/04/2008 (8B04	4112-MS1)				Sou	rce: IRA	3072-06				
Total Cyanide	189	5.0	2.2	ug/l	200	ND	94	70-115			
Matrix Spike Dup Analyzed: 02/04/2008	(8B04112-MS	SD1)			Sou	rce: IRA	3072-06				
Total Cyanide	189	5.0	2.2	ug/l	200	ND	95	70-115	0	15	
Batch: 8B04128 Extracted: 02/04/08	-										
Blank Analyzed: 02/04/2008 (8B04128-Bl	L K1)										
Total Suspended Solids	ND	10	10	mg/l							
LCS Analyzed: 02/04/2008 (8B04128-BS1	l)										
Total Suspended Solids	971	10	10	mg/l	1000		97	85-115			
Duplicate Analyzed: 02/04/2008 (8B0412	8-DUP1)				Sou	rce: IRB	0070-02				
Total Suspended Solids	ND	10	10	mg/l		ND				10	
Batch: 8B07122 Extracted: 02/07/08	-										
Blank Analyzed: 02/07/2008 (8B07122-Bl	L K1)										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 02/07/2008 (8B07122-BS1	l)										
Total Dissolved Solids	990	10	10	mg/l	1000		99	90-110			

TestAmerica Irvine

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Attention: Bronwyn Kelly

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

INORGANICS

Analyte <u>Batch: 8B07122 Extracted: 02/07/08</u>	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Duplicate Analyzed: 02/07/2008 (8B0712	,				Sou	rce: IRB(0146-01				
Total Dissolved Solids Batch: 8B12073 Extracted: 02/12/08	296	10	10	mg/l		292			1	10	
Blank Analyzed: 02/12/2008 (8B12073-B	_										
Perchlorate	ND	4.0	1.5	ug/l							
LCS Analyzed: 02/12/2008 (8B12073-BS) Perchlorate	l) 55.4	4.0	1.5	ug/l	50.0		111	85-115			
Matrix Spike Analyzed: 02/12/2008 (8B1 Perchlorate	2073-MS1) 50.5	4.0	1.5	ug/l	Sou 50.0	rce: IRB(ND	0150-01 101	80-120			
Matrix Spike Dup Analyzed: 02/12/2008	(8B12073-MS 50.8	· ·	1.5	/ 1	Sou 50.0	rce: IRB		80.120	1	20	
Perchlorate Batch: 8B12074 Extracted: 02/12/08		4.0	1.5	ug/l	50.0	ND	102	80-120	1	20	
Blank Analyzed: 02/12/2008 (8B12074-B	-										
Hexane Extractable Material (Oil & Grease)	ND	5.0	1.4	mg/l							
LCS Analyzed: 02/12/2008 (8B12074-BS	l)										MNR1
Hexane Extractable Material (Oil & Grease)	20.0	5.0	1.4	mg/l	20.2		99	78-114			
LCS Dup Analyzed: 02/12/2008 (8B12074	4-BSD1)										
Hexane Extractable Material (Oil & Grease)	18.5	5.0	1.4	mg/l	20.2		92	78-114	8	11	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

ORGANIC COMPOUNDS BY GC/MS (EPA 525.2)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: C8B0516 Extracted: 02/05/0	8										
Blank Analyzed: 02/07/2008 (C8B0516-	BLK1)										
Chlorpyrifos	ND	1.0	0.10	ug/l							
Diazinon	ND	0.25	0.24	ug/l							
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.76			ug/l	5.00		95	70-130			
Surrogate: Triphenylphosphate	5.79			ug/l	5.00		116	70-130			
Surrogate: Perylene-d12	5.00			ug/l	5.00		100	70-130			
LCS Analyzed: 02/07/2008 (C8B0516-B	S1)										
Chlorpyrifos	5.48	1.0	0.10	ug/l	5.00		110	70-130			
Diazinon	3.82	0.25	0.24	ug/l	5.00		76	70-130			
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.66			ug/l	5.00		93	70-130			
Surrogate: Triphenylphosphate	5.66			ug/l	5.00		113	70-130			
Surrogate: Perylene-d12	4.87			ug/l	5.00		97	70-130			
LCS Dup Analyzed: 02/07/2008 (C8B05	16-BSD1)										
Chlorpyrifos	4.90	1.0	0.10	ug/l	5.00		98	70-130	11	10	R-7
Diazinon	3.82	0.25	0.24	ug/l	5.00		76	70-130	0	50	
Surrogate: 1,3-Dimethyl-2-nitrobenzene	4.50			ug/l	5.00		90	70-130			
Surrogate: Triphenylphosphate	5.52			ug/l	5.00		110	70-130			
Surrogate: Perylene-d12	4.79			ug/l	5.00		96	70-130			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

METHOD BLANK/QC DATA

Metals by EPA 200 Series Methods

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: W8B0171 Extracted: 02/06/0	8										
Blank Analyzed: 02/07/2008 (W8B0171-	,										
Mercury, Dissolved	ND	0.20	0.050	ug/l							
Mercury, Total	ND	0.20	0.050	ug/l							
LCS Analyzed: 02/07/2008 (W8B0171-B	S1)										
Mercury, Dissolved	1.04	0.20	0.050	ug/l	1.00		104	85-115			
Mercury, Total	1.04	0.20	0.050	ug/l	1.00		104	85-115			
Matrix Spike Analyzed: 02/07/2008 (W8	B0171-MS1)				Sou	rce: 8020	543-01				
Mercury, Dissolved	1.02	0.20	0.050	ug/l	1.00	ND	102	70-130			
Mercury, Total	1.02	0.20	0.050	ug/l	1.00	ND	102	70-130			
Matrix Spike Analyzed: 02/07/2008 (W8	B0171-MS2)				Sou	rce: 8020	544-01				
Mercury, Dissolved	1.05	0.20	0.050	ug/l	1.00	ND	105	70-130			
Mercury, Total	1.05	0.20	0.050	ug/l	1.00	ND	105	70-130			
Matrix Spike Dup Analyzed: 02/07/2008	(W8B0171-M	SD1)			Sou	rce: 8020	543-01				
Mercury, Dissolved	1.04	0.20	0.050	ug/l	1.00	ND	104	70-130	2	20	
Mercury, Total	1.04	0.20	0.050	ug/l	1.00	ND	104	70-130	2	20	
Matrix Spike Dup Analyzed: 02/07/2008	(W8B0171-M	SD2)			Sou	rce: 8020	544-01				
Mercury, Dissolved	1.05	0.20	0.050	ug/l	1.00	ND	105	70-130	0	20	
Mercury, Total	1.05	0.20	0.050	ug/l	1.00	ND	105	70-130	0	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
IRB0148-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	1.71	4.8	15
IRB0148-01	Antimony-200.8	Antimony	ug/l	0.42	2.0	6
IRB0148-01	Boron-200.7	Boron	mg/l	0.12	0.050	1
IRB0148-01	Cadmium-200.8	Cadmium	ug/l	0.19	1.0	4
IRB0148-01	Chloride - 300.0	Chloride	mg/l	17	0.50	150
IRB0148-01	Copper-200.8	Copper	ug/l	3.37	2.0	14
IRB0148-01	Fluoride-300.0	Fluoride	mg/l	0.36	0.50	1.6
IRB0148-01	Hg_w 245.1	Mercury, Total	ug/l	0.023	0.20	0.2
IRB0148-01	Lead-200.8	Lead	ug/l	0.12	1.0	5.2
IRB0148-01	Nickel-200.7	Nickel	ug/l	2.33	10	100
IRB0148-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	1.76	0.26	10
IRB0148-01	Perchlorate 314.0-DEFAULT	Perchlorate	ug/l	0	4.0	6
IRB0148-01	Sulfate-300.0	Sulfate	mg/l	38	0.50	250
IRB0148-01	TDS - SM 2540C	Total Dissolved Solids	mg/l	284	10	850
IRB0148-01	Thallium-200.8	Thallium	ug/l	0.029	1.0	2

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit

1.

0

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

DATA QUALIFIERS AND DEFINITIONS

- J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability. L6 Per the EPA methods, benzidine is known to be subject to oxidative losses during solvent concentration. **M1** The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS). M2 The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS). M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS). MHA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information. See Blank Spike (LCS). MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike Duplicate. Р The sample, as received, was not preserved in accordance to the referenced analytical method. pН pH = 7R The RPD exceeded the method control limit due to sample matrix effects. The individual analyte QA/QC recoveries, however, were within acceptance limits. R-3 The RPD exceeded the acceptance limit due to sample matrix effects. **R-7** LFB/LFBD RPD exceeded the acceptance limit. Recovery met acceptance criteria.
- ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
- **RPD** Relative Percent Difference

ADDITIONAL COMMENTS

For 1,2-Diphenylhydrazine:

The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EPA 160.2	Water	Х	Х
EPA 1664A	Water		
EPA 200.7-Diss	Water	Х	Х
EPA 200.7	Water	Х	Х
EPA 200.8-Diss	Water	Х	Х
EPA 200.8	Water	Х	Х
EPA 300.0	Water	Х	Х
EPA 314.0	Water	Х	Х
EPA 335.2	Water	Х	Х
EPA 608	Water	Х	Х
EPA 624	Water	Х	Х
EPA 625	Water	Х	Х
SM2340B	Water	Х	Х
SM2540C	Water	Х	

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chrnic Samples: IRB0148-01

Analysis Performed: Bioassay-Acute 96hr Samples: IRB0148-01

TestAmerica Irvine

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08 Received: 02/03/08

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Eberline Services

2030 Wright Avenue - Richmond, CA 94804

Analysis Performed: Gamma Spec Samples: IRB0148-01

- Analysis Performed: Gross Alpha Samples: IRB0148-01
- Analysis Performed: Gross Beta Samples: IRB0148-01
- Analysis Performed: Radium, Combined Samples: IRB0148-01
- Analysis Performed: Strontium 90 Samples: IRB0148-01
- Analysis Performed: Tritium Samples: IRB0148-01
- Analysis Performed: Uranium, Combined Samples: IRB0148-01

TestAmerica - Ontario, CA California Cert #1169, Arizona Cert #AZ0062, Nevada Cert #CA-242

1014 E. Cooley Drive, Suite AB - Colton, CA 92324

Method Performed: EPA 525.2 Samples: IRB0148-01

Vista Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413 1104 Windfield Way - El Dorado Hills, CA 95762 Analysis Performed: 1613-Dioxin-HR-Alta Samples: IRB0148-01

Weck Laboratories, Inc

14859 E. Clark Avenue - City of Industry, CA 91745 Method Performed: EPA 245.1 Samples: IRB0148-01

TestAmerica Irvine

Addres Avenu 007 007 ger: B ger: B mple	Suite 200 ieph Doa wyn Ke ✔ ·	<u>ר</u> ח	Project:											
WH-Arcadia 8 Michillinda Avenue, S cadia, CA 91007 sist America Contact. Josi oject Manager: Bron oject Manager: Bron ampler: Magescry Sample Con escription Matrix T trfall 003 W 1L F	àuite 200 eph Doa nwyn Ke ✔ ∱ ·		Do ind CC	Project: Doging SSEL NEDES	d					4	ANALYSIS REQUIRED			-
cadia, CA 91007 st America Contact. Jos oject Manager: Bron ampler: MARASCA Sample Sample Con sscription Matrix T trtall 003 W 11. F	eph Doa 1wyn Ke & 🖌 ·		Innual O	Annual Outfall 003					Ъ	ЪЪ	ss }) (fal		qS	Field readings
oject Manager: Bron ampler: Krykerscry Sample Sample Con sscription Matrix T titall 003 W 1LF	wyn Ke	~	stormwate	Stormwater at RMHF			⁵⁻ N' E t-HEN		: d + \$ə	+ uou)), Gro m (H-3 5.0), T ז 226 מלוט Madiu		: Toxic etals: 3 7, TI 7, TI 9rdnes	Temp = <i>50</i> .9 ^c
mpler: Mr. e.s.c.	K J.		Phone Number	mber: 6601		ов, Но Са С Са С	- 991)			, s8C	0.000 1uitinT 70 (909) 70 (909) 70 (909) 70 (1.80 70 (1.80 70 (1.80) 70 (1.80) 70 (1.80)	44 + (ed Me	h = 8.1
Sample Sample Con sample Sample Con scription Matrix T ffall 003 W 11L F	ì	<u>сц</u> 2	Fax Number:	000 - er: 8515		ss ss /I' /I' Cn' F	əseə.	rate	: ,(4 28)q\sə	, К-40 51 903 81-903 90.0), 90.0), 90.0), 90.000 90.00 90.00 90.000 90.000 900 9	10 Ju (625)	H + IN H '9d Nossi	⊖ C Time of readings =
Sample Matrix			070) 000-	0		.que ;/ 'ə_ 'P)	8 C	S⊥'S SIUD		bioite	4 220 ()(9))5: ()(0,0) ()(0,0) ()(0,0) ()(0,0) ()(0,0)	\$00	bine ID Is: UD , UD , I , IA) 80
3	Container #	# of Cont.	Sampling Date/Time	Preservative	Bottle #	,d2 I,IT IsH	I!O	Per		Pes	(30) 555 (30) (30) (30) (30) (30) (30) (30) (30)	٨S	C4 C4 Fei	α Comments
	- vlo	- 8	-	HNO ₃	1A	×								
3	1L Poly	-		HNO3	18	×		-						
ali 003 W	1L Amber	2		None	2A, 2B	×								
Outfall 003 W 1L A	1L Amber	2		Ę	3A, 3B		×							
Outfall 003 W 500 ml	Ē,	5		None	4A, 4B			×						
Outfall 003 W 500 ml	IE 、	5		None	5A, 5B			×						
Outfall 003 W VOAs	As	e		ЧĊ	6A, 6B, 6C				×					
Outfall 003 W VOAs	As	т г		None	7A, 7B, 7C					×				
Outfall 003 W 1L A	1L Amber	2		None	8A, 8B					×				
Outfall 003 W 2.5 G	2.5 Gal Cube 500 ml Amber			None None	98 98						×			Unfiltered and unpreserved analysis
Outfall 003 W 1L A	1L Amber	2		None	10A, 10B							×		
Outfall 003 W 1 G	1 Gal Poly	~		None	11A, 11B								×	
Outfall 003 W 500ml Poly		-	<u>ک</u>	NaOH	12								×	
Outfall 003 W 1L F	1L Poly	4	20-03-08	None	13								×	Filter w/in 24hrs of receipt at lab
Trip Blanks W VOAs	As	т		Ę	14A, 14B, 14C				×					
Trip Blanks W VOAs	As	e e		None	15A, 15B, 15C					×				
Relinquished By	0	Date/	Date/Time: 3-<i>o</i>&	1605	Received By	a o o	3	Date/Time	Time: \$05		1605	Tur 24 F	Turn around Time: (check) 24 Hours 5 Days	(check) 5 Days
Relinquished By	ر د	a d	Date/Time:	1825	Received By	A C		Date/Ťime	Time:			481	48 Hours	10 Days
Relinquished By			ate/Time:		Received By			Date/Time			18:25	72 H San	72 Hours Normal Sample Integrity (check)	- Normal A

LABORATORY REPORT

Date: February 12, 2008

Client: TestAmerica – Irvine 17461 Derian Ave., Suite 100 Irvine, CA 92614 Attn: Joseph Doak "dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003
(805) 650-0546 FAX (805) 650-0756 CA DOHS ELAP Cert. No.: 1775

- Laboratory No.:
 A-08020404-001

 Sample ID.:
 IRB0148-01 (Outfall 003)
- **Sample Control:** The sample was received by ATL within the recommended hold time, in a chilled state, and with the chain of custody record attached. Testing was conducted on only one sample per client instruction.

Date Sampled:	02/03/08
Date Received:	02/04/08
Temp. Received:	4°C
Chlorine (TRC):	0.0 mg/1
Date Tested:	02/04/08 to 02/11/08

Sample Analysis: The following analyses were performed on your sample:

Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0), *Ceriodaphnia dubia* Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

Result Summary:

Acute:	Survival	TUa
Fathead Minnow:	100%	0.0
Chronic:	NOEC	TUc
Ceriodaphnia Survival:	100%	1.0
Ceriodaphnia Reproduction:	100%	1.0

Quality Control:

Reviewed and approved by:

Joseph A. L

Laboratory Director

FATHEAD MINNOW PERCENT SURVIVAL TEST EPA Method 2000.0

Start Date: 02/04/2008

TEST SUMMARY

TEST DATA

Species: *Pimephales promelas*. Age: <u>Ju</u> (1-14) days. Regulations: NPDES. Test solution volume: 250 ml. Feeding: prior to renewal at 48 hrs. Number of replicates: 2. Dilution water: Moderately hard reconstituted water. Photoperiod: 16/8 hrs light/dark.

Source: In-laboratory Culture. Test type: Static-Renewal. Test Protocol: EPA-821-R-02-012. Endpoints: Percent Survival at 96 hrs. Test chamber: 600 ml beakers. Temperature: 20 +/- 1°C. Number of fish per chamber: 10. QA/QC Batch No.: RT-080204.

			ESI DATA	L		a	
		°C	DO	pН	# D	Dead	Analyst & Time
[pm	А	В	of Readings
INITIAL	Control	20,1	8.6	7.5	0	0	6
	100%	19.4	9.9	7.6	C	0	inve
24 Hr	Control	19.3	2.8	2.5	\circ	\sim	La
24 ПІ	100%	19.3	8.0	7.7	0	0	1330
48 Hr	Control	19.5	7.6	7.7	0	\sim	12-
48 Hr	100%	19.5	7.3	7.9	\mathcal{O}	_/}	1400
Renewal	Control	20.5	8.8	2.8	()	Ũ	pr
Kellewal	100%	19.6	11.1	2.10	Õ	0	1400
72 Hr	Control	19.3	8.0	2.4	\mathcal{O}	0	2º
/2 Hr	100%	19.5	8.2	7.7	0	0	1200
96 Hr	Control	19.5	8.2	2.3	0	ρ	1200 R- 1300
96 Hr	100%	19.7	8.2	7.7	0	0	1300
DO: <u>4-9</u> Sample ae Control: Alkal Test solution a Sample used fo	Fived: Chlorine: 0.0 mg/l; Alkalinity: <u>11</u> rated moderately (ap inity: <u>6</u> <u>4</u> mg/l; Ha erated (not to excee or renewal is the orig gen (DO) readings i	7 mg/l; Ha pprox. 500 n urdness: <u>44</u> d 100 bubbl ginal sample	rdness: <u>17</u> nl/min) to r <u>/</u> mg/l; Cor es/min) to r	2 mg/l; NH aise or lowe ductivity: <u>1</u> naintain DC	$_{3}$ -N: $_{0}$ er DO? Y $_{2}$ $_{0}$	<u>}</u> mg/l. (es / <u>No</u> nho. g/l? Yes	2

RESULTS

Percent Survival In:

Control: /C

100 % 100

100% Sample: ____/00 %

CERIODAPHNIA SURVIVAL AND REPRODUCTION TEST

- Test and Results Summary
- Data Summary and Statistical Analyses
- Raw Test Data: Water Quality & Test Organism Measurements

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

Lab No.: A-08020404-001 Client/ID: Test America – IRB0148-01 (Outfall 003) Date Tested: 02/04/08 to 02/11/08

TEST SUMMARY

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*. Age: < 24 hrs; all released within 8 hrs. Test vessel size: 30 ml. Number of test organisms per vessel: 1. Temperature: 25 +/- 1°C. Dilution water: Mod. hard reconstituted (MHRW). QA/QC Batch No.: RT-080204. Endpoints: Survival and Reproduction. Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 15 ml. Number of replicates: 10. Photoperiod: 16/8 hrs. light/dark cycle. Test duration: 7 days. Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Survival	Mean Number of Young Per Female
Control	100%	24.5
100% Sample	100%	25.5
Sample not statistically	significantly less than Co	ontrol for either endpoint.

CHRONIC TOXICITY

Survival NOEC	100%
Survival TUc	1.0
Reproduction NOEC	100%
Reproduction TUc	1.0

QA/QC TEST ACCEPTABILITY

Parameter	Result
Control survival ≥80%	Pass (100% survival)
≥15 young per surviving control female	Pass (24.5 young)
≥60% surviving controls had 3 broods	Pass (100% with 3 broods)
PMSD $<47\%$ for reproduction; if $>47\%$ and no toxicity at IWC, the test must be repeated	Pass (PMSD = 4.5%)
Statistically significantly different concentrations relative difference > 13%	Pass (no concentration significantly different)
Concentration response relationship acceptable	Pass (no significant response at concentration tested)

			Cerioda	aphnia Sui	rvival and	Reprod	uction Tes	t-7 Day	Survival			
Start Date:	2/4/2008 1	15:00	Test ID:	8020404c		****	Sample ID	:	Outfall 00	3		
End Date:	2/11/2008	14:00	Lab ID:	CAATL-Ad	uatic Test	ting Labs	Sample Ty	/pe:	EFF2-Indu	ustrial		
Sample Date:	2/3/2008 1	14:45	Protocol:	FWCH-EP	A-821-R-0	02-013	Test Spec	ies:	CD-Cerio	daphnia du	ubia	
Comments:										•		
Conc-%	1	2	3	4	5	6	7	8	9	10		÷
<u> </u>	1 0000	4 0000	1 0000	1 0 0 0 0	4 0 0 0 0	4 0000	1 0 0 0 0	1				

 Conc-%	1		<u>ა</u>	4	5	6	1	8	9	10	
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
100	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	

				Not			Fisher's	1-Tailed	lsot	onic
Conc-%	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Mean	N-Mean
D-Control	1.0000	1.0000	0	10	10	10			1.0000	1.0000
100	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000

Hypothesis	Test (1-tail,	0.05)	NOEC	LOEC	ChV	TU		
Fisher's Exa	ct Test		100	>100	*****	1		
Treatments	vs D-Control							
				Line	ar Interpo	lation (200 Resa	amples)	
Point	%	SD	95%	CL	Skew			
IC05	>100							
IC10	>100							
IC15	>100					1.	.0	 -
IC20	>100					0		
IC25	>100					0.	9	
IC40	>100					0.	.8 -	
IC50	>100					0.	7	
							-	
						9 0.0	.6 -	
						5 0	5	
						.0 .0 .0 .0 .0		
						a 0.4	.4 -	

0.3 0.2 0.1

0

50

Dose %

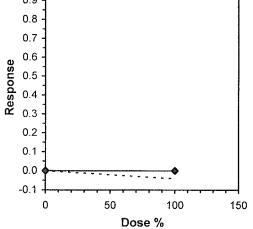
100

Reviewed b NPDES - 830

150

			Ceriod	aphnia Su	rvival and	Reprod	uction Tes	st-Repro	duction		
Start Date:	2/4/2008 1	5:00	Test ID:	8020404c			Sample ID);	Outfall 003		
End Date:	2/11/2008	14:00	Lab ID:	CAATL-Ad	juatic Tes	ting Labs	Sample Ty	/pe:	ustrial		
Sample Date:	2/3/2008 1	4:45	Protocol:	FWCH-EP	A-821-R-0	02-013	Test Spec	ies:	CD-Cerioo	laphnia dubia	
Comments:											
Conc-%	1	2	3	4	5	6	7	8	9	10	
D-Control	25.000	25.000	22.000	24.000	26.000	26.000	27.000	25.000	24.000	21.000	

25.000


25.000 26.000 26.000

25.000 24.000 26.000

				Transform	n: Untrans	sformed		1-Tailed			Isotonic		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean	
D-Control	24.500	1.0000	24.500	21.000	27.000	7.514	10				25.000	1.0000	
100	25,500	1.0408	25.500	24.000	27.000	3.333	10	-1.560	1.734	1 1 1 2	25 000	1 0000	

Auxiliary Tests	Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.05)	0.91796		0.905		-0.7747	1.20881
F-Test indicates equal variances (p = 0.03)	4.69231		6.54109			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates no significant differences	1.11185	0.04538	5	2.05556	0.13626	1, 18
Treatments vs D-Control						

				•	(200 Resamples)	
Point	%	SD	95% CL	Skew		
IC05	>100				ar ber Kandan annan en annan annan annan annan annan annan agus agus ga fagair a chuar ann an annan annan annan	
IC10	>100					
IC15	>100				1.0	
IC20	>100				0.9	
IC25	>100				0.9	
IC40	>100				0.8 -	
IC50	>100				0.7	

Reviewed by: NPDES - 831

100 27.000

25.000

26.000

CERIODAPHNIA DUBIA CHRONIC BIOASSAY EPA METHOD 1002.0 Raw Data Sheet

Lab No.: A-08020404-001

Client ID: TestAmerica - IRB0148-01 (Outfall 003) Start Date: 02/04/2008																	
		DAY 1		DA	Y 2	r	DAY 3	DA	Y 4	DAY	5	DA	AY 6	DAY 7			
		0 hr 24	4hr	0 hr	24hr	0 hr	24hr	0 hr	24hr	0 hr	24hr	0 hr	24hr	0 hr 24hr			
Analyst II	nitials:	PR		R_	hn	Par	- La	K~	La	R	in	2-	h	ath			
Time of Re	adings:	1500 16	ω /	600	1600	160	1/00	1600	1500	1520	1400	1400	1330	130 1400			
	DO	7-8 8	3	2.8	8,4	2.3	8.3	83	8.4	8.1	7.9	2.8	7.9	7-4 80			
Control	pН	7-4 7:	2	2.5	2.9	7.7	7.8	2.6	2.5	25	7.3	7.5	24	75 7.9			
	Temp	249 24	2	24.9	24.7	25.	3 24.9	25.6	25.0	25.2	25.2	25:3	245	245 242			
	DO	9.28.	21	10.4	8.5	10.4	1 8.3	10.9	8.4	11.6	9,9	11.0	9.8	10.9 8-1			
100%	pН	7.4 2.	91	7.4	8.0	7.6	80	7.3	7.8	7.3	7.3	7.4	7.3	24 8.0			
	Temp	24-4 24	16	24.6	24.7	24.6	124.9	25.0	24.8	24.7	25.0	24.6	250	250 24.2			
	Ad	Iditional Para	meters					Сог	itrol				100% Sam	ple			
	Co	nductivity (umo				30	21		_		316						
	Al				- le	8				117							
	Ha				9	<u> </u>				170							
	Ammonia (mg/l NH ₃ -N)							40.1					0-3				
	Source of Neonates																
Rep	licate:	A		В	С		D	E	F	G		H	1	J			
Broo	od ID:	34	L	36	. 3	ρ	3E	<u>35</u>	L (/	7 40		Ч <u>F</u>	46	41-1			
Sample		Day				Numbe	r of Young	Produced		·····		tal Live	No. Live				
		Day	A	B	C	D	E F	G	н	I J	(ا	loung	Adults	Initials			
		1	0	0	\mathcal{O}	\mathcal{O}	00	$^{\prime}$	0	c c	2	\sim	_(0	6			
		2	\mathcal{O}	\mathcal{O}	$ \mathcal{O} $	00	20	c	\mathcal{O}	O C		\sim	_0	12			
		3	4	Ż	2	3	33 07	3	3	3 4	<u> </u>	3[10	- Ch			
Control		4	6	6	0				0	$\frac{0}{7}$		20	$\frac{ U }{ V }$	1 The			
		6	15	0		14	$\frac{6}{0}$	17	6	00		,/ 16	10	R			
		7	12	1.6	12		17 16	tis	16	14 12		87	10	2			
		Total	25	25			26 2			24 2		245	10	2			
		1	\mathcal{O}	0	\cup	\mathcal{O}	00	C	\bigcirc	OC.		\sim	10	m			
		2	0	0	\mathcal{O}	0	00	0	0	c c	2 0		10	1			
		3	4	3	2	3	22	. 2	2	33	>	26	(0				
100%		4	6	2	2	8	67	12	6	67		۶7	10	n			
10070		5	0	a	$ \underline{\mathcal{Q}} $		00	0	0		0 3		10	1 m			
		6	2	0	44	O	$\mathcal{O} \mid \mathcal{O}$	0	$ \mathcal{O} $	00		321	10	h			
	Ļ	7	20	115	(16)	141	617	16				15	10				
		Total	127	35	26	<u>25 2</u>	24/26	225	25	26 2	62	55	10				

Circled fourth brood not used in statistical analysis. 7^{th} day only used if <60% of the surviving control females have produced their third brood.

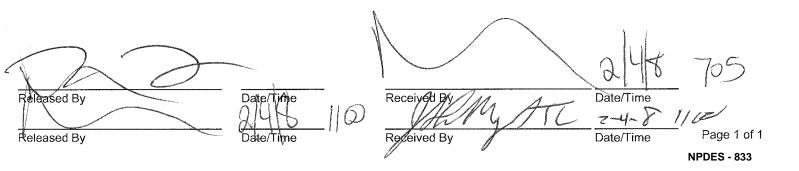
1

SUBCONTRACT ORDER

TestAmerica Irvine

IRB0148

SENDING	LABORATORY:


TestAmerica Irvine 17461 Derian Avenue. Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297 Project Manager: Joseph Doak

RECEIVING LABORATORY:

Aquatic Testing Laboratories-SUB 4350 Transport Street, Unit 107 Ventura, CA 93003 Phone :(805) 650-0546 Fax: (805) 650-0756 Project Location: California Receipt Temperature: ______°C ____ Ice:

Ice: (Y) / N

Analysis	Units	Due	Expires	Comments
Sample ID: IRB0148-01	Water		Sampled: 02/03/08 14:45	
Bioassay-7 dy Chrnic	N/A	02/13/08	02/05/08 02:45	Cerio, EPA/821-R02-013, Sub to AqTox Labs
Bioassay-Acute 96hr	% Survival	02/13/08	02/05/08 02:45	FH minnow, EPA/821-R02-012, Sub to AgTox Labs
Level 4 Data Package - Ou	it N/A	02/13/08	03/02/08 14:45	Aq Tox Labs
Containers Supplied:				
1 gal Poly (W)	1 gal Poly (X)			

REFERENCE TOXICANT DATA

FATHEAD MINNOW ACUTE Method 2000.0 Reference Toxicant - SDS

QA/QC Batch No.: RT-080204

Species: *Pimephales promelas*. Age: $\underline{(4)}$ days old. Regulations: NPDES. Test chamber volume: 250 ml. Feeding: Prior to renewal at 48 hrs. Temperature: 20 +/- 1°C. Number of replicates: 2. Dilution water: MHSF.

\TEST SUMMARY

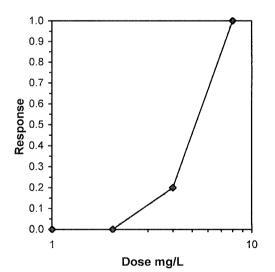
Source: In-lab culture. Test type: Static-Renewal. Test Protocol: EPA-821-R-02-012. Endpoints: LC50 at 96 hrs. Test chamber: 600 ml glass beakers. Aeration: None. Number of organisms per chamber: 10. Photoperiod: 16/8 hrs light/dark.

TEST DATA

		INITIAL	2			24 Hr					48 Hr		
Date/Time:	2-4	-8	1430	2-5	-08		133	0	2-6-0	28		143	\sim
Analyst:		h				R					:0 ,		
	°C	DO	pН	°C	DO	pН	# D	Dead	°C	DO	рН	# C	Dead
							A	В			r	A	В
Control	19.8	8.4	7.4	19.1	7.9	2.5	\Box	0	19.4	7.2	7.6	0	0
1.0 mg/l	14.9	8.4	7.5	19.1	7.8	7.4)	0	19,4	69	7.6	\mathcal{O}	0
2.0 mg/l	19.9	8.5	7.5	19.0	2.6	2.4	Ō	0	19.4	6.6	7.5	\mathcal{D}	0
4.0 mg/l	200	8.5	7-5	19.0	8.0	7.4	0	1	19.4	6.7	7.5	2	0
8.0 mg/l	20.0	8.6	7-5	19.1	8.0	7.4	10	10	⁴ бъдзела/оз н	BRURNIN	Internatively as two	1969 planter	Managenetics or the
	R	ENEWA	L			72 Hr			96 Hr				
Date/Time:	2-6.	c Śr	1430	2-7-0	08		12	200	2-8	-08			1300
Analyst:		L.		<u>h</u>							R		
	°C	DO	pН	°C	DO	pН	# D	Dead	°C	DO	рН	# C	Dead
			··				A	В				A	В
Control	20.3	8.9	7.8	19.4	2.5	2.7	\cup	-0	19.2	8.0	7.5	0	$\square \square$
1.0 mg/l	20.3	8.9	2.8	19.3	2.5	7.6	0	Ũ	19.2	8.0	7.5	0	Ũ
2.0 mg/l	20.3	8.8	7.8	19.3	7.7	7.5	\mathcal{O}	0	19.3	8.1	7.4	0	\bigcirc
4.0 mg/l	20.3	8.8	7.8	19.3	7.6	7.5	0	\bigcirc	19.3	8.2	7.4	0	1
8.0 mg/l	30000.00x ;	Management	- 10 46040.0, 1949 ⁴⁴¹	Singapage and an	· William · ·		Gillinguy	Manya - L	gablidoonni v	Aaventeere	anggananan (arren -	*	and a log designed as a second
Comments:	Comments: Control: Alkalinity: 64 mg/l; Hardness: 96 mg/l; Conductivity: 789 umho. SDS: Alkalinity: 64 mg/l; Hardness: 97 mg/l; Conductivity: 790 umho.												
Concentration-response relationship acceptable? (see attached computer analysis): Yes (response curve normal) No (dose interrupted indicated or non-normal)													

				Acute Fish Test-96	Hr Survival	
Start Date:	2/4/2008	14:30	Test ID:	RT-080204	Sample ID:	REF-Ref Toxicant
End Date:	2/8/2008	13:00	Lab ID:	CAATL-Aquatic Testing Labs	Sample Type:	SDS-Sodium dodecyl sulfate
Sample Date:	2/4/2008		Protocol:	ACUTE-EPA-821-R-02-012	Test Species:	PP-Pimephales promelas
Comments:						
Conc-mg/L	1	2			17.1	
D-Control	1.0000	1.0000				
1	1.0000	1.0000				
2	1.0000	1.0000				
4	0.8000	0.8000				

4	0.8000	0.8000
8	0.0000	0.0000

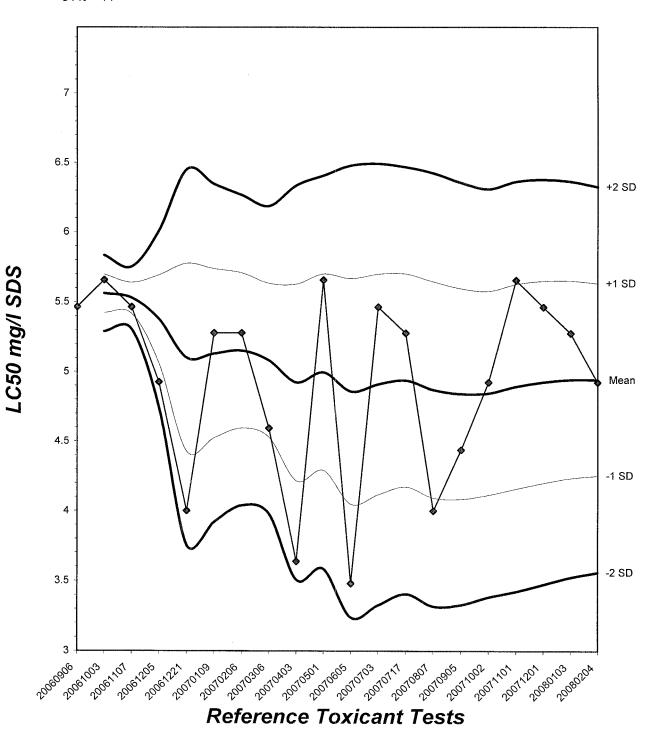

			Tra	ansform:	Arcsin Sc	uare Root	Number	Total	
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Resp	Number
D-Control	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
1	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
2	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
4	0.8000	0.8000	1.1071	1.1071	1.1071	0.000	2	4	20
8	0.0000	0.0000	0.1588	0.1588	0.1588	0.000	2	20	20

Statistic

Auxiliary Tests

Normality of the data set cannot be confirmed Equality of variance cannot be confirmed

				Trimmed Spearman-Karber
Trim Level	EC50	95%	CL	-
0.0%	4.9246	4.3503	5.5747	
5.0%	5.0215	4.3576	5.7866	
10.0%	5.1038	4.2923	6.0686	1.0 —
20.0%	5.1874	4.7084	5.7150	- 0.9 -
Auto-0.0%	4.9246	4.3503	5.5747	0.9 -


Critical

Skew

Kurt

Fathead Minnow Acute Laboratory Control Chart

CV% = 14

TEST ORGANISM LOG

FATHEAD MINNOW - LARVAL (Pimephales promelas)

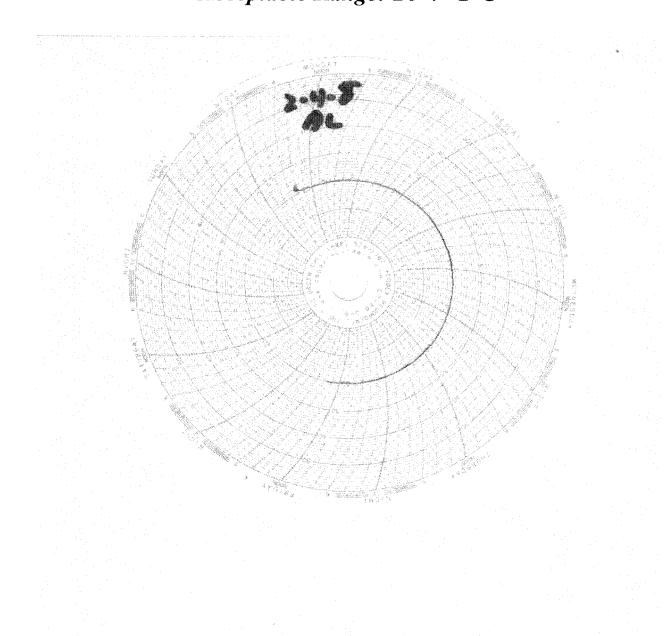
QA/QC BATCH NO.: RT-080204
SOURCE: In-Lab Culture
DATE HATCHED: 01-21-08
APPROXIMATE QUANTITY:
GENERAL APPEARANCE:
MORTALITIES 48 HOURS PRIOR TO TO USE IN TESTING:
DATE USED IN LAB: $2/4/08$
AVERAGE FISH WEIGHT: 0.000 gm

TEST LOADING LIMITS: 0.65 gm/liter

200 ml test solution volume = 0.013 gm mean fish weight limit 250 ml test solution volume = 0.016 gm mean fish weight limit

ACCLIMATION WATER QUALITY:

Temp.: <u>19.8</u> ℃	pH: <u>7-9</u> Amn	nonia: <u>/Ocl</u> mg/l NH ₃ -N
DO: \mathcal{T}, \mathcal{L} mg/l	Alkalinity: <u>6</u> _ mg/l	Hardness: <u>96</u> mg/l


READINGS RECORDED BY: _

MMy DATE: 2-4-8

Laboratory Temperature Chart

QA/QC Batch No: RT-080202 Date Tested: 02/02/08 to 02/06/08 Acceptable Range: 20+/- 1°C

CERIODAPHNIA SURVIVAL AND REPRODUCTION TEST

- Test and Results Summary
- Data Summary and Statistical Analyses
- Raw Test Data: Water Quality & Test Organism Measurements

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0 REFERENCE TOXICANT - NaCl

QA/QC Batch No.: RT-080204

Date Tested: 02/04/08 to 02/11/08

TEST SUMMARY

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*. Age: <24 hrs; all released within 8 hrs. Test vessel size: 30 ml. Number of test organisms per vessel: 1. Temperature: 25 +/- 1°C. Dilution water: Mod. hard reconstituted (MHRW). Reference Toxicant: Sodium chloride (NaCl). Endpoints: Survival and Reproduction. Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 20 ml. Number of replicates: 10. Photoperiod: 16/8 hrs. light/dark cycle. Test duration: 7 days. Statistics: ToxCalc computer program.

Sample Concentration	Percent Surv	ival	Mean Number of Young Per Female							
Control	100%		25.3							
0.25 g/l	100%		26.4							
0.5 g/l	100%		26.5							
1.0 g/l	100%		18.5	*						
2.0 g/l	90%		7.2	*						
4.0 g/l	0%	*	0	**						
** Reproduction data from	* Statistically significantly less than control at P = 0.05 level ** Reproduction data from concentrations greater than survival NOEC are excluded from statistical analysis.									

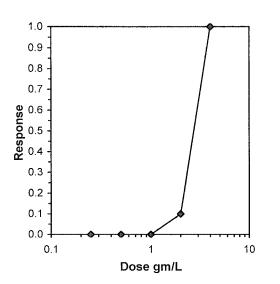
RESULTS SUMMARY

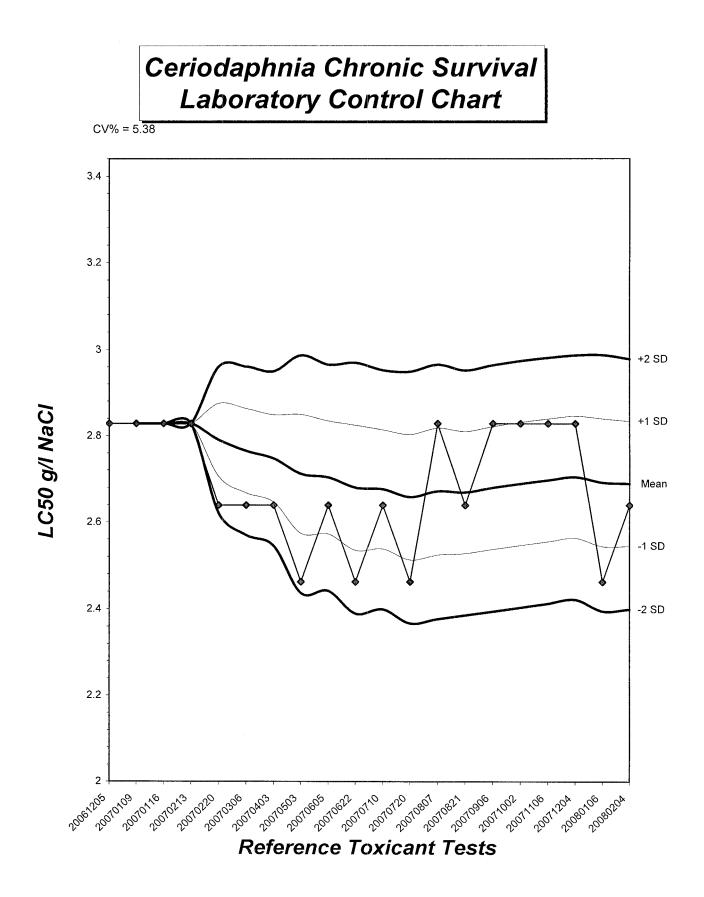
CHRONIC TOXICITY

Survival LC50	2.6 g/l
Reproduction IC25	0.93 g/l

QA/QC TEST ACCEPTABILITY

Parameter	Result			
Control survival ≥80%	Pass (100% Survival)			
≥15 young per surviving control female	Pass (25.3 young)			
≥60% surviving controls had 3 broods	Pass (100% with 3 broods)			
PMSD <47% for reproduction	Pass (PMSD = 9.9%)			
Stat. sig. diff. conc. relative difference >13%	Pass (Stat. sig. diff. conc. $= 26.9\%$)			
Concentration response relationship acceptable	Pass (Response curve normal)			


	Ceriodaphnia Survival and Reproduction Test-7 Day Survival										
Start Date:	2/4/2008 1	5:00	Test ID:	RT-080204	4c		Sample ID):	REF-Ref T	oxicant	
End Date:	2/11/2008	14:00	Lab ID:	CAATL-Ac	luatic Tes	ting Labs	Sample Ty	/pe:	NACL-Soc	lium chloride	
Sample Date:	2/4/2008		Protocol:	FWCH-EP	A-821-R-0	02-013	Test Spec	ies:	CD-Ceriod	laphnia dubia	
Comments:											
Conc-gm/L	1	2	3	4	5	6	7	8	9	10	
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
0.25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
0.5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
2	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	


,				Not			Fisher's	1-Tailed	Number	Total
Conc-gm/L	Mean	N-Mean	Resp	Resp	Total	Ν	Exact P	Critical	Resp	Number
D-Control	1.0000	1.0000	0	10	10	10			0	10
0.25	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
0.5	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
1	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
2	0.9000	0.9000	1	9	10	10	0.5000	0.0500	1	10
4	0.0000	0.0000	10	0	10	10			10	10

Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	
Fisher's Exact Test	2	4	2.82843		
Treatments vs D-Control					

Trimmed Spearman-Karber

Trim Level	EC50	95%	CL	
0.0%	2.6390	2.3138	3.0099	
5.0%	2.6984	2.2899	3.1798	
10.0%	2.7216	2.5094	2.9517	
20.0%	2.7216	2.5094	2.9517	
Auto-0.0%	2.6390	2.3138	3.0099	

NPDES - 843

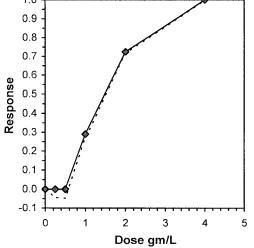
	Ceriodaphnia Survival and Reproduction Test-Reproduction											
Start Date:	2/4/2008 1	5:00	Test ID:	RT-080204	4c		Sample ID):	REF-Ref 7	oxicant		
End Date:	2/11/2008	14:00	Lab ID:	CAATL-Ac	uatic Tes	ting Labs	Sample Ty	/pe:	NACL-Soc	lium chloride		
Sample Date:	2/4/2008		Protocol:	FWCH-EP	A-821-R-0	02-013	Test Spec	ies:	CD-Cerioo	laphnia dubia		
Comments:												
Conc-gm/L	1	2	3	4	5	6	7	8	9	10		
D-Control	24.000	22.000	25.000	29.000	25.000	25.000	24.000	26.000	27.000	26.000		
0.25	25.000	26.000	29.000	27.000	26.000	25.000	27.000	27.000	25.000	27.000		
0.5	25.000	27.000	26.000	30.000	25.000	27.000	27.000	28.000	26.000	24.000		
1	19.000	22.000	24.000	17.000	14.000	18.000	20.000	18.000	16.000	17.000		
2	12.000	8.000	4.000	4.000	3.000	2.000	6.000	12.000	11.000	10.000		

0.000

0.000

0.000

0.000


0.000

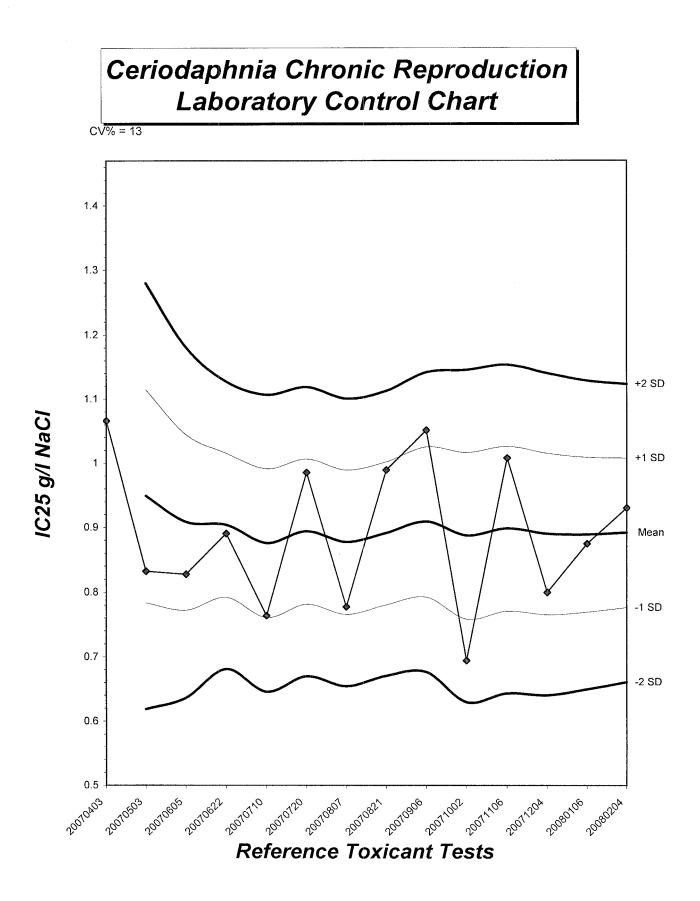
0.000

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Transform: Untransformed					1-Tailed	Isot	onic
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Mean	N-Mean
D-Control	25.300	1.0000	25.300	22.000	29.000	7.465	10			26.067	1.0000
0.25	26.400	1.0435	26.400	25.000	29.000	4.791	10	126.00	76.00	26.067	1.0000
0.5	26.500	1.0474	26.500	24.000	30.000	6.475	10	124.50	76.00	26.067	1.0000
*1	18.500	0.7312	18.500	14.000	24.000	15.759	10	57.50	76.00	18.500	0.7097
*2	7.200	0.2846	7.200	2.000	12.000	53.911	10	55.00	76.00	7.200	0.2762
4	0.000	0.0000	0.000	0.000	0.000	0.000	10			0.000	0.0000

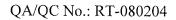
Auxiliary Tests			Statistic		Critical	Skew	Kurt	
Shapiro-Wilk's Test indicates nor	ution (p >	0.05)		0.96604	0.947	0.25066	0.00896	
Bartlett's Test indicates unequal variances (p = 9.42E-03)					13.4148	13.2767		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	0.5	1	0.70711				~	
Treatments vs D-Control								

Point	gm/L	SD	95%	CL	Skew		
IC05	0.5861	0.0133	0.5527	0.6099	-0.7096		
IC10	0.6722	0.0221	0.6345	0.7198	0.3536		
IC15	0.7584	0.0319	0.7090	0.8296	0.5420	1.0	@
IC20	0.8445	0.0421	0.7795	0.9395	0.5923	0.9 -	
IC25	0.9306	0.0516	0.8512	1.0476	0.5147	-	
IC40	1.2531	0.0676	1.1276	1.3772	-0.0019	0.8 -	
IC50	1.4838	0.0691	1.3665	1.6234	0.2328	0.7 -	per .
						0 .6 -	

Reviewed by


4

0.000


0.000

0.000

0.000

CERIODAPHNIA DUBIA CHRONIC BIOASSAY Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

Start Date: 02/04/2008

Sl-	D			Nu	mbe	r of Y	oung	Prod	uced			Total	No.	Analyst
Sample	Day	Α	В	C	D	E	F	G	н	Ι	J	Live Young	Live Adults	Initials
	1	U	C	0	0	0	c	Ø	or	\mathcal{O}	\mathcal{O}	C	10	2
	2	C	0	C	C	C	c	C	Ċ	C	C	\mathcal{O}	10	n
	3	4	3	3	<i>ej</i>	4	3	3	ĹJ	3	3	34	10	n
Control	4	0	7	6	0	\mathcal{O}	\mathcal{O}	0	\mathcal{O}	\mathcal{O}	0	13	10	a
Control	5	6	12	\mathcal{O}	10	6	5	>	6	9	7	48	10	k
	6	14	0	0	15	0	0	0	16	\mathcal{O}	0	45	10	h
	7	(16)	(15)	16	\mathcal{O}	15	17	14	\mathcal{O}	15	16	93	10	M
	Total	24	22	25	29	25	25	24	26	27	26	253	JU	2
	1	0	C	\mathcal{O}	0	\mathcal{O}	0	\mathcal{O}	\mathcal{O}	C	\mathcal{O}	0	w	2
	2	0	O	\mathcal{O}	0	C	\mathcal{O}	\mathcal{O}	C	0	\mathcal{O}	C	10	K
	3	3	3	Ч	5	3	3	3	5	3	3	35	10	K
0.25 g/l	4	0	2	8	\mathcal{O}	0	\mathcal{O}	0	0	\mathcal{O}	0	15	10	~
0.23 6/1	5	6	\mathcal{O}	17	1D	8	6	\geq	\geq	8	2	76	10	A
	6	\mathcal{O}	16	0	12	15	16	17	0	0	\mathcal{O}	76	10	K
	7	16	Ð	16)	Ē)	10	\mathcal{O}	$\hat{\mathcal{O}}$	15	14	17	62	10	T
	Total	25	26	29	27	26	25	27	27	25	27	264	10	1_
	1	\mathcal{O}	\mathcal{O}	\mathcal{O}	\mathcal{O}	\mathcal{O}	C	C	0	\mathcal{O}	\mathcal{O}	\sim	10	R
	2	0	0	\mathcal{O}	\mathcal{C}	\mathcal{O}	\mathcal{O}	\mathcal{C}	\mathcal{O}	\mathcal{O}	\mathcal{C}	\mathcal{O}	10	n
	3	3	Ч	3	5	3	Ц	4	5	3	3	37	10	n
0.5 g/l	4	0	8	\mathcal{O}	\mathcal{O}	\mathcal{O}	\mathcal{O}	0	\mathcal{O}	Ô	\mathcal{O}	8	10	2
0.5 g/l	5	6	15	2	8	2	6	2	8	S	>	79	10	p
	6	16	0	0	17	0	0	Ò	15	0	Õ	+2748	IV	1p
	7	B	\overline{D}	16		15	17	16	(B)	15	14	93	10	h
	Total	25	27	26	30	25	27	27	28	26	24	265	10	2
Circled fourth brood not used in statistical analysis. 7^{th} day only used if <60% of the surviving control females have produced their third brood.										their t				

CERIODAPHNIA DUBIA CHRONIC BIOASSAY Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-080204

Start Date: 02/04/2008

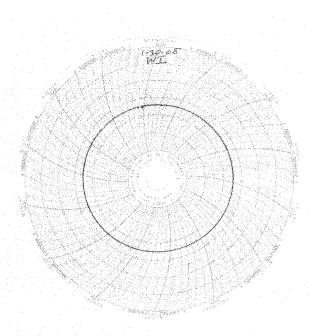
				Nu	ımbe	r of Y	oung l	Produ	ced			Total	No.	Analyst
Sample	Day	Α	В	С	D	E	F	G	Н	I	J	Live Young	Live Adults	Initials
	1	0	\mathcal{O}	0	0	Ø	O	O	\sim	Ċ	\mathcal{O}	0	10	M
	2	0	\mathcal{O}	\mathcal{O}	0	0	C	0	C	0	\mathcal{O}	C	10	R
1.0 \alpha/l	3	2	M	2	2	2	N	Μ	3	Μ	3	ZS	10	2
	4	0	\mathcal{O}	6	\circ	4	5	0	C	0	0	15	10	2
1.0 g/l	5	5	6	16	5	0	0	4	5	Ц	5	50	10	h
	6	12	13	\mathcal{O}	10	0	h	13	10	\mathcal{O}	\mathcal{O}	69	10	1
	7	B	6	(10)	Q	8	D	0	O	9	9	26	10	
	Total	19	22	24	17	14	18	20	18	16	17	185	10	2
	1	0	0	0	0	0	\mathcal{O}	\mathcal{O}	\mathcal{O}	\mathcal{C}	\mathcal{C}	0	10	Z
	2	0	0	0	0	C	\mathcal{O}	c	C	c	C	C	10	2
	3	0	2	2	0	0	0	2	3	3	Z	14	10	h
0.0.4	4	3	0	0	2	3	3	0	C/	C	0	10	10	2
2.0 g/l	5	0	3	2	C	C	0	2	ч	3	4	18	10	
	6	5	3	\mathcal{O}	0	X	0	0	5	\mathcal{O}	0	13	9	V
	7	4	D	\mathcal{O}	2	e-manuality	0	2	3	5	ч	17	9	M
	Total	12	8	4	4	3	2	6	12	1 }	10	72	9	
	1	X	X	X	\times	X	\times	\times	X	\times	X	0	$\mathbf{\hat{o}}$	A
	2		gantoura		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	gadatione-			and the second sec	Contract.			gatitages.	
	3			•	alesser.	telinepus.	gram (2017).e		Gannar-		6000-1 ₀₄		grading and a second	g-monthly
	4	guyinica-	9 10 10 Total	Same.	Banantie		and the second		Péhlikpani	Sections	revenzán	<i>(</i>	af of the installant of the second	at the state of th
4.0 g/l	5		6	instances.			gantina.	نىي <u>ى</u>		aganitis)	-11	gov	ganson internation	and designed
	6		·bonstaaroon	Green	-		attanting,	مەرىپى	ortensionen	98899 <u>22</u> 9	1	en and and a second		
	7		5010/070-0944-1	-			<i>Onecone</i>		Name-	White Long			Öhnniskapperaan	Gröffingergene
	Total	\bigcirc	0	\bigcirc	0	0	0	0	Ø	\circ	\bigcirc	\sim	\mathcal{O}	$\overline{\langle}$
	h brood not use sed if <60% c						les hav	e proc	luced t	heir tl	nird bi	rood.		(

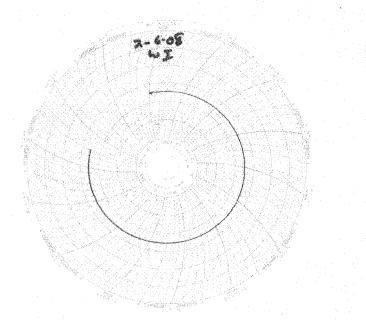
CERIODAPHNIA DUBIA CHRONIC BIOASSAY Reference Toxicant - NaCl Water Chemistries Raw Data Sheet

QA/QC No.: RT-080204

Start Date: 02/04/2008

		DA	AY 1	DA	XY 2	DA	Y 3	DA	Y 4	DA	XY 5	DA	AY 6	D/	AY 7
		Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
Analyst I	nitials:	F	ßm	2m	hn	R	h	B	hn	R	R	Rm	2	N	M
Time of R	eadings:	1400	1600	1600	1600	1600	1600	1600	1520	1500	1400	1900	133	1376	1400
	DO	27	8.3	2.8	8.4	7.3	8.2	8.3	8.0	8.1	8.0	7.8	80	27	8-1
Control	pН	24	8.0	7.5	7.8	7.7	2.7	2.6	7.7	2.5	7.9	7.5	7.8	7.5	2.9
	Temp	244	24.5	24.9	24.4	25.2	24.7	25.6	24.4	25.2	25.0	25.3	24.6	250	243
	DO	7.7	8.3	7.9	8.4	7.3	8.3	8.3	8.0	8.1	8.0	2.8	80	7.8	
0.25 g/l	pН	7.5	8.0	7.6	28	7.7	2.8	2.1.	2.7	2.5	2.9	25	2-4	7.5	26
	Temp	245	24.5	24.9	24.3	25.3	24.7	25.6	24.4	25.2		25:4	24.7	250	242
	DO	7.7	8.4	7.9	8.3	1.3	8.3	8.3	8.1	8.1	8.0	7.8	7.4	7.8	8.4
0.5 g/l	pН	2-6	8.0	7.1	7.9	7.7	2.8	2.7	2.7	2.5	8.0	7.5	7.4	26	7.9
	Temp	246	24.5	24.8	24.3	25.3	24.7	25.7	24.5	25.3	25.0	25.4	246	25.0	24.5
	DO	7-8	8.4	2.9	8.3	2.3	82	8.3	8.1	8.1	81	2.8	80	2.9	8.4
1.0 g/l	pН	70	8.1	2.7	2.9	2.7	2.8	2.7	7.7	2.5	8.0	7.5	7.9	7.6	80
	Temp	24.6	<u>24.5</u>	24.7	24.3	25.4	24.8	25.7	245	25.3	25.1	25.5	24.8	251	242
	DO	7-8	8.4	7.9	8.2	2.3	8.2	8.3	8.2	8.0	8.1	7.8	80	2.8	8.4
2.0 g/l	pН	7.7	8.1	27	7.9	7.7	7.8	7.7	2.7	7.5	8.0	7.5	80	7.5	7.5
	Temp	242	24.5	24.6	24.4	<u>25.6</u>	24.8	<u>25. 5</u>	24.5	25.4	<u>25-1</u>	25.6	24.7	25.1	247
	DO	79	8.3	.go.2004).	. C. Allander C.	Naciona,	- Adapted States of States	aughterris.	مستمريتين	<u>`</u>	A Contraction of the second se	Salara (C. J. Star - 11)	44	(Philipper,	-
4.0 g/l	pH	77	8.1	Ngnara.c	Belokyana.	Handakker	BURNESS C.	Manager of the second s		davarden.	despress.	And an and a second	~	Georgemen	
		250			Silvertor -	reation.	and the second	Salara (in the second s		561993 20 54"	g4,60%99-	Starsform -	kanger-	-turner aller a	
	Dis	solved	Oxyge	n (DO)	reading	s are in		D ₂ ; Temp	erature	(Temp)	reading	gs are in	°C.		
A	Additional Parameters						Contr	1				High Co			
Conductivity (µS)				Day 1		Day 3	Т	Day 5		Day 1		Day 3	1	ay_5	
Alkalinity (mg/l CaCO ₃)				301 290			1	285		120	and a	3370		3210	
Hardness (mg/l CaCO ₃)				68 64 96 96			,	95		69		<u>65</u> 98		5	
							rce of N	eonates	<u> </u>				0	9	
Repli	icate:		A	В	С		D	E	F	6	i	Н	I		J
Broo	d ID:		A	IB	1C	- 1	E	IF	IH	2	B	2E	20	7 2	3


NPDES - 848



Laboratory Temperature Chart

QA/QC Batch No: RT-080204 Date Tested: 02/04/08 to 02/11/08 Acceptable Range: 25+/- 1°C

February 23, 2008

Vista Project I.D.: 30226

Mr. Joseph Doak Test America-Irvine, CA 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Mr. Doak,

Enclosed are the results for the one aqueous sample received at Vista Analytical Laboratory on February 05, 2008 under your Project Name "IRB0148". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Vista's current certifications, and copies of the raw data (if requested).

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Marque Mare

Martha M. Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.

Section I: Sample Inventory Report Date Received: 2/5/2008

<u>Vista Lab. ID</u>

Client Sample ID

30226-001

IRB0148-01

SECTION II

Method Blan	lk									EPA Method 1613
Matrix:	Aqueous		QC Batch No.:	99	953	Lab	Sample:	0-MB001		
Sample Size:	1.00 L		Date Extracted	: 15	-Feb-08	Date	Analyzed DB-5:	19-Feb-08	Date An	alyzed DB-225: NA
Analyte	Conc. (ug/L)	DL ^a	EMPC ^b	Qualifiers		Labeled Standa	rd	%R	LCL-UCL ^d Qualifiers
2,3,7,8-TCDD		ND	0.000000705			IS	13C-2,3,7,8-TCI	DD	82.9	25 - 164
1,2,3,7,8-PeCD	DD	ND	0.000000681				13C-1,2,3,7,8-Pe	CDD	75.4	25 - 181
1,2,3,4,7,8-Hx0	CDD	ND	0.00000165				13C-1,2,3,4,7,8-1	HxCDD	81.7	32 - 141
1,2,3,6,7,8-Hx0	CDD	ND	0.00000174				13C-1,2,3,6,7,8-	HxCDD	83.0	28 - 130
1,2,3,7,8,9-Hx	CDD	ND	0.00000162				13C-1,2,3,4,6,7,8	8-HpCDD	85.6	23 - 140
1,2,3,4,6,7,8-H	IpCDD	ND	0.00000511				13C-OCDD		73.4	17 - 157
OCDD	-	0.00000899	l i i i i i i i i i i i i i i i i i i i		J		13C-2,3,7,8-TCI	DF	88.8	24 - 169
2,3,7,8-TCDF		ND	0.000000647				13C-1,2,3,7,8-Pe	CDF	74.4	24 - 185
1,2,3,7,8-PeCE	DF	ND	0.000000731				13C-2,3,4,7,8-Pe	CDF	77.1	21 - 178
2,3,4,7,8-PeCD	DF	ND	0.000000752				13C-1,2,3,4,7,8-1	HxCDF	75.8	26 - 152
1,2,3,4,7,8-Hx		ND	0.000000943				13C-1,2,3,6,7,8-	HxCDF	77.6	26 - 123
1,2,3,6,7,8-Hx	CDF	ND	0.000000974				13C-2,3,4,6,7,8-	HxCDF	78.0	28 - 136
2,3,4,6,7,8-Hx0		ND	0.00000105				13C-1,2,3,7,8,9-	HxCDF	81.9	29 - 147
1,2,3,7,8,9-Hx		ND	0.00000136				13C-1,2,3,4,6,7,8	8-HpCDF	75.7	28 - 143
1,2,3,4,6,7,8-H	IpCDF	ND	0.00000333				13C-1,2,3,4,7,8,9	9-HpCDF	82.1	26 - 138
1,2,3,4,7,8,9-H	IpCDF	ND	0.00000202				13C-OCDF		76.2	17 - 157
OCDF	-	ND	0.00000591			CRS	37Cl-2,3,7,8-TC	DD	85.1	35 - 197
Totals						Foot	notes			
Total TCDD		ND	0.000000705			a. San	ple specific estimated	detection limit.		
Total PeCDD		ND	0.00000122			b. Est	mated maximum possil	ole concentration.		
Total HxCDD		ND	0.00000167			c. Me	hod detection limit.			
Total HpCDD		ND	0.00000511			d. Lov	ver control limit - upper	control limit.		
Total TCDF		ND	0.000000647							
Total PeCDF		ND	0.000000742							
Total HxCDF		ND	0.00000107							
Total HpCDF		ND	0.00000335							

Analyst: MAS

OPR Results					EP	A Method 1	.613
Matrix: Aqueous Sample Size: 1.00 L		QC Batch No.: Date Extracted:	9953 15-Feb-08	Lab Sample:0-OPR001Date Analyzed DB-5:18-Feb-08	Date Analy	zed DB-225:	NA
Analyte	Spike Conc.	Conc. (ng/mL)	OPR Limits	Labeled Standard	%R	LCL-UCL	Qualifier
2,3,7,8-TCDD	10.0	9.20	6.7 - 15.8	<u>IS</u> 13C-2,3,7,8-TCDD	85.8	25 - 164	
1,2,3,7,8-PeCDD	50.0	46.7	35 - 71	13C-1,2,3,7,8-PeCDD	77.1	25 - 181	
1,2,3,4,7,8-HxCDD	50.0	47.0	35 - 82	13C-1,2,3,4,7,8-HxCDD	82.8	32 - 141	
1,2,3,6,7,8-HxCDD	50.0	47.2	38 - 67	13C-1,2,3,6,7,8-HxCDD	84.0	28 - 130	
1,2,3,7,8,9-HxCDD	50.0	47.7	32 - 81	13C-1,2,3,4,6,7,8-HpCDD	88.0	23 - 140	
1,2,3,4,6,7,8-HpCDD	50.0	46.1	35 - 70	13C-OCDD	78.1	17 - 157	
OCDD	100	94.4	78 - 144	13C-2,3,7,8-TCDF	90.2	24 - 169	
2,3,7,8-TCDF	10.0	8.71	7.5 - 15.8	13C-1,2,3,7,8-PeCDF	76.3	24 - 185	
1,2,3,7,8-PeCDF	50.0	45.3	40 - 67	13C-2,3,4,7,8-PeCDF	79.4	21 - 178	
2,3,4,7,8-PeCDF	50.0	45.1	34 - 80	13C-1,2,3,4,7,8-HxCDF	78.9	26 - 152	
1,2,3,4,7,8-HxCDF	50.0	46.8	36 - 67	13C-1,2,3,6,7,8-HxCDF	80.4	26 - 123	
1,2,3,6,7,8-HxCDF	50.0	46.8	42 - 65	13C-2,3,4,6,7,8-HxCDF	79.1	28 - 136	
2,3,4,6,7,8-HxCDF	50.0	47.3	35 - 78	13C-1,2,3,7,8,9-HxCDF	84.1	29 - 147	
1,2,3,7,8,9-HxCDF	50.0	46.1	39 - 65	13C-1,2,3,4,6,7,8-HpCDF	78.2	28 - 143	
1,2,3,4,6,7,8-HpCDF	50.0	46.8	41 - 61	13C-1,2,3,4,7,8,9-HpCDF	85.9	26 - 138	
1,2,3,4,7,8,9-HpCDF	50.0	46.7	39 - 69	13C-OCDF	82.2	17 - 157	
OCDF	100	93.5	63 - 170	<u>CRS</u> 37Cl-2,3,7,8-TCDD	88.4	35 - 197	

Analyst: MAS

Approved By: William J. Luksemburg 22-Feb-2008 15:48

Sample ID: IRB0	148-01								EPA N	Aethod 1613
Client DataName:Test AProject:IRB0Date Collected:3-FebTime Collected:1445			Sample Data Matrix: Sample Size:	Aqueous 1.00 L	Lab QC 1	oratory Data Sample: Batch No.: Analyzed DB-5:	30226-001 9953 19-Feb-08	Date Re Date Ex Date An		5-Feb-08 15-Feb-08 NA
Analyte C	Conc. (ug/L)	DL ^a	EMPC ^b	Qualifiers		Labeled Standa	rd	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ND	0.000000	433		<u>IS</u>	13C-2,3,7,8-TCD	D	87.4	25 - 164	
1,2,3,7,8-PeCDD	ND	0.000000	534			13C-1,2,3,7,8-PeC	CDD	78.0	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.000001	10			13С-1,2,3,4,7,8-Н	IxCDD	82.4	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.000001	12			13С-1,2,3,6,7,8-Н	IxCDD	82.0	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.000001	06			13C-1,2,3,4,6,7,8-	-HpCDD	85.6	23 - 140	
1,2,3,4,6,7,8-HpCDD	0.00000442			J		13C-OCDD		73.8	17 - 157	
OCDD	0.0000240			J,B		13C-2,3,7,8-TCD	F	92.7	24 - 169	
2,3,7,8-TCDF	ND	0.000000	522			13C-1,2,3,7,8-PeC	CDF	76.0	24 - 185	
1,2,3,7,8-PeCDF	ND	0.000000	731			13C-2,3,4,7,8-PeC	CDF	78.7	21 - 178	
2,3,4,7,8-PeCDF	ND	0.000000	723			13С-1,2,3,4,7,8-Н	IxCDF	77.3	26 - 152	
1,2,3,4,7,8-HxCDF	ND	0.000000	471			13С-1,2,3,6,7,8-Н	IxCDF	77.5	26 - 123	
1,2,3,6,7,8-HxCDF	ND	0.000000	493			13С-2,3,4,6,7,8-Н	IxCDF	77.4	28 - 136	
2,3,4,6,7,8-HxCDF	ND	0.000000	533			13С-1,2,3,7,8,9-Н	IxCDF	81.2	29 - 147	
1,2,3,7,8,9-HxCDF	ND	0.000000	703			13C-1,2,3,4,6,7,8-	HpCDF	76.0	28 - 143	
1,2,3,4,6,7,8-HpCDF	ND	0.000001	21			13C-1,2,3,4,7,8,9-	-HpCDF	80.5	26 - 138	
1,2,3,4,7,8,9-HpCDF	ND	0.000001	07			13C-OCDF		77.6	17 - 157	
OCDF	ND	0.000003	87		CRS	37Cl-2,3,7,8-TCD	D	87.2	35 - 197	
Totals					Foo	otnotes				
Total TCDD	ND	0.000000	433		a. Sa	mple specific estimated	detection limit.			
Total PeCDD	ND	0.000001	30		b. Es	timated maximum possi	ble concentration.			
Total HxCDD	ND	0.000001	63		c. M	ethod detection limit.				
Total HpCDD	0.00000781				d. Lo	ower control limit - uppe	r control limit.			
Total TCDF	ND	0.000000	522							
Total PeCDF	ND	0.000000								
Total HxCDF	ND	0.000000								
Total HpCDF	ND	0.000002								

Analyst: MAS

APPENDIX

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank.
D	Dilution
Ε	The amount detected is above the High Calibration Limit.
Р	The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.
Н	The signal-to-noise ratio is greater than 10:1.
Ι	Chemical Interference
J	The amount detected is below the Low Calibration Limit.
*	See Cover Letter
Conc.	Concentration
DL	Sample-specific estimated detection limit
MDL	The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.
EMPC	Estimated Maximum Possible Concentration
NA	Not applicable
RL	Reporting Limit – concentrations that correspond to low calibration point
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

SUBCONTRACT ORDER

TestAmerica Irvine

SENDING LABORATORY:

TestAmerica Irvine 17461 Derian Avenue. Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297 Project Manager: Joseph Doak

RECEIVING LABORATORY: Vista Analytical Laboratory- SUB

1.60 1104 Windfield Way El Dorado Hills, CA 95762 Phone :(916) 673-1520 Fax: (916) 673-0106 Project Location: California Receipt Temperature: °C

Ice: Y / N

Analysis	Units	Due	Expires	Comments
Sample ID: IRB0148-01	Water		Sampled: 02/03/08 14:45	
1613-Dioxin-HR-Alta	ug/l	02/13/08	02/10/08 14:45	J flags,17 congeners,no
Level 4 + EDD-OUT	N/A	02/13/08	03/02/08 14:45	TEQ,ug/L,sub=Vista Excel EDD email to pm,Include Std logs for Lvl IV
Containers Supplied:				
1 L Amber (C)	1 L Amber (D)			

08 17:00 Ľ 7:00 Date/Time Released By Recei Released By Received By Page 1 of 1 Date/Time Date/Time NPDES - 859 Page 10 of 275

Project 30226

SAMPLE LOG-IN CHECKLIST

	Vista Analytical Laboratory
т_	Standard

Vista Project #:	302	26			TAT	Standard			
	Date/Time		Initials:		Location	:WK-2			
Samples Arrival:	2/5/08	0929	Bo	B	Shelf/Rad				
	Date/Time		Initials:	۸	Location	: WR-2			
Logged In:	2/4/08	2/4/08 0836		UBDB		Shelf/Rack: B4			
Delivered By:	FedEx	UPS	Cal	DHL	Ha Deliv	()thor			
Preservation:	lce	2 Е	llue Ice	Dr	y Ice	None			
Temp °C /.	6°C .	Time:	0956		Thermon	neter ID: IR-1			

			a sa sanga sa sa	YES	NO	NA
Adequate Sample Volume Recei	ved?					
Holding Time Acceptable?				N		
Shipping Container(s) Intact?			· · · ·			
Shipping Custody Seals Intact?		· .				
Shipping Documentation Presen	t?					
Airbill Trk # 7	9979	597311	8			
Sample Container Intact?					1.	• /
Sample Custody Seals Intact?			_			·V
Chain of Custody / Sample Docu	mentation P	resent?				•
COC Anomaly/Sample Acceptar	ice Form cor	npleted?		÷ .	\checkmark	
If Chlorinated or Drinking Water	Samples, Ac	ceptable Prese	ervation?			
Na ₂ S ₂ O ₃ Preservation Document	ed?	COC	Samp Contair		None	,)
Shipping Container	Vista	Client	Retain	Return	Disp	ose
Comments:				And the second designed and th		

SUBCONTRACT ORDER

TestAmerica Irvine IRB0148

8020459

SENDING LABORATORY:

TestAmerica Irvine 17461 Derian Avenue. Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297 Project Manager: Joseph Doak

RECEIVING LABORATORY:

Weck Laboratories, Inc 14859 E. Clark Avenue City of Industry, CA 91745 Phone :(626) 336-2139 Fax: (626) 336-2634 Project Location: California Receipt Temperature:_____°C Ice: Y / N

Analysis	Units	Due	Expires	Comments
ample ID: IRB0148-01	Water		Sampled: 02/03/08 14:45	
Level 4 Data Package - Weo	N/A	02/13/08	03/02/08 14:45	Provide Element transfer file
Mercury - 245.1, Diss -OUT	mg/l	02/13/08	03/02/08 14:45	Boeing, J flags, sub to Weck
Mercury - 245.1-OUT	mg/l	02/13/08	03/02/08 14:45	Boeing, J flags, sub to Weck
	25 mL Poly w AB)	/HNO3		

$\overline{\mathcal{A}}$	74408 1000	BSK com	<u>- 74/08/1000</u>
Released By	Date/Time	Received By	Dáte/Time
BD Acen Released By	/ <u>///////////////////////////////</u>	Received By	Date/Time NPDESpage 1 of 1

Weck Laboratories, Inc.

Analytical Laboratory Services - Since 1964

14859 E. Clark Ave., Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634 info@weeklabs.com www.weeklabs.com

CERTIFICATE OF ANALYSIS

02/11/08 16:22 TestAmerica, Inc. - Irvine **Client: Report Date:** 02/04/08 13:45 17461 Derian Ave, Suite 100 **Received Date:** Irvine, CA 92614 **Turn Around:** Normal Attention: Joseph Doak 8020459 Work Order #: Phone: (949) 261-1022 Fax: (949) 260-3297 **Client Project:** IRB0148

NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

Dear Joseph Doak :

Enclosed are the results of analyses for samples received 02/04/08 13:45 with the Chain of Custody document. The samples were received in good condition. The samples were received at 1.9 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Reviewed by: in

Kim G Tu

Project Manager

Week Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Date Received: 02/04/08 13:45 Date Reported: 02/11/08 16:22

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Sampled by:	Sample Comments	Laboratory	Matrix	Date Sampled
IRB0148-01	Client		8020459-01	Water	02/03/08 14:45

Report ID: 8020459

Project ID: IRB0148

Date Received: 02/04/08 13:45 Date Reported: 02/11/08 16:22

IRB0148-01	8020459-01 (Water	;)
------------	-------------------	----

Report ID: 8020459

Project ID: IRB0148

Date Sampled: 02/03/08 14:45

Metals by EPA 200 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Dissolved	ND	0.050	ug/l	0.20	1	EPA 245.1	W8B0171	02/06/08	02/07/08 jlp	
Mercury, Total	ND	0.050	ug/l	0.20	1	EPA 245.1	W8B0171	02/06/08	02/07/08 jlp	

Report ID: 8020459 Project ID: IRB0148 Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Date Received: 02/04/08 13:45 Date Reported: 02/11/08 16:22

QUALITY CONTROL SECTION

Date Received: 02/04/08 13:45 Date Reported: 02/11/08 16:22

Metals by EPA 200 Series Methods - Quality Control

Report ID: 8020459

Project ID: IRB0148

				%REC						
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch W8B0171 - EPA 245.1										
Blank (W8B0171-BLK1)				Analyzed:	02/07/08					
Mercury, Dissolved	ND	0.20	ug/l							
Mercury, Total	ND	0.20	ug/l							
LCS (W8B0171-BS1)				Analyzed:	02/07/08					
Mercury, Dissolved	1.04	0.20	ug/l	1.00		104	85-115			
Mercury, Total	1.04	0.20	ug/l	1.00		104	85-115			
Matrix Spike (W8B0171-MS1)	Se	ource: 8020543	-01	Analyzed: 02/07/08						
Mercury, Dissolved	1.02	0.20	ug/l	1.00	ND	102	70-130			
Mercury, Total	1.02	0.20	ug/l	1.00	ND	102	70-130			
Matrix Spike (W8B0171-MS2)	Se	ource: 8020544	-01	Analyzed:	Analyzed: 02/07/08					
Mercury, Dissolved	1.05	0.20	ug/l	1.00	ND	105	70-130			
Mercury, Total	1.05	0.20	ug/l	1.00	ND	105	70-130			
Matrix Spike Dup (W8B0171-MSD1)	Se	ource: 8020543	-01	Analyzed:	02/07/08					
Mercury, Dissolved	1.04	0.20	ug/l	1.00	ND	104	70-130	2	20	
Mercury, Total	1.04	0.20	ug/l	1.00	ND	104	70-130	2	20	
Matrix Spike Dup (W8B0171-MSD2)	Se	ource: 8020544	-01	Analyzed:	02/07/08					
Mercury, Dissolved	1.05	0.20	ug/l	1.00	ND	105	70-130	0	20	
Mercury, Total	1.05	0.20	ug/l	1.00	ND	105	70-130	0	20	

Report ID: 8020459 Project ID: IRB0148 Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Date Received: 02/04/08 13:45 Date Reported: 02/11/08 16:22

Notes and Definitions

- ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- % Rec Percent Recovery
- Sub Subcontracted analysis, original report available upon request
- MDL Method Detection Limit
- MDA Minimum Detectable Activity

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

March 10, 2008

Mr. Joseph Doak Test America, Inc. 17461 Derian Avenue, Suite 100 Irvine, CA 92614

Reference:	Test America Project Nos.	IRB0073, IRB0146, IRB0147, IRB0148, IRB0149, IRB0150, IRB0151, IRB0152, IRB0153, IRB0154 IRB0156, IRB0480, IRB0751
	Eberline Services NELAP Ce	ert #01120CA
	Eberline Services Reports	R802024-8693, R802040-8694, R802041-8695,
	-	R802042-8696, R802043-8697, R802044-8698
		R802045-8699, R802046-8600, R802047-8601
		R802048-8602, R802049-8603, R802054-8604
		R802084-8608

Dear Mr. Doak:

Attached are data reports for thirteen water samples. Eleven of the samples were received at Eberline Services on February 5, one on February 7, and one on February 9, 2008. The samples were analyzed according to the accompanying Test America Subcontract Order Forms, the requested analyses were: gross alpha/gross beta (EPA 900.0), tritium (H-3, EPA906.0), Sr-90 (EPA905.0), Ra-226 (EPA903.1), Ra-228 (EPA 904.0), total uranium (ASTM D-5174), and gamma spectroscopy (EPA901.1, K-40 and Cs-137 only). The parenthetical G after a nuclide indicates that the result was obtained by gamma spectroscopy; a "U" in the results column indicates that the nuclide was not detected greater than the indicated minimum detectable activity (MDA). The samples were not filtered prior to analysis. The samples were analyzed in batches with common QC samples. Batch quality control samples consisted of LCS's, blank analyses, duplicate analyses, and matrix spike analyses (gross alpha/gross beta, H-3, Ra-226, Total-U only). All samples were within the limits defined in Eberline Services Quality Control Procedures Manual.

Please call me if you have any questions concerning this report.

Regards,

Melissa Mamm

Melissa Mannion Senior Program Manager

MCM/njv Enclosure: Report on CD

> Analytical Services 2030 Wright Avenue P.O. Box 4040 Richmond, California 94804-0040 (510) 235-2633 Fax (510) 235-0438 Toll Free (800) 841-5487 www.ehrbiteseraces.com

Eberline Services

SDG	8696	Client	TA IRVINE
Work Order	<u>R802042-01</u>	Contract	PR0JECT# IRB0148
Received Date	02/05/08	Matrix	WATER

ANALYSIS RESULTS

Client <u>Sample ID</u>	Lab Sample ID	Collected Analyzed	Nuclide	<u>Results ± 20</u>	<u>Units</u>	MDA
IRB0148-01	8696-001	02/03/08 02/27/08	GrossAlpha	0.628 ± 0.82	pCi/L	1.2
		02/27/08	Gross Beta	6.13 ± 1.0	pCi/L	1.4
		02/27/08	Ra-228	1.36 ± 0.92	pCi/L	0.64
		02/23/08	K 40 (G)	U	pCi/L	54
		02/23/08	Cs-137 (G)	U	pCi/L	2.0
		02/28/08	H - 3	31.6 ± 84	pCi/L	150
		03/03/08	Ra-226	0.807 ± 0.54	pCi/L	0.74
		02/18/08	Sr-90	1.50 ± 0.50	pCi/L	0.66
		02/26/08	Total U	1.26 ± 0.14	pCi/L	0.022

Certified by	_
Report Date 03/11/08	
Page 1	

Г

Eberline Services

QC RESULTS

Work Order <u>R802042-01</u> Received Date <u>02/05/08</u>					Contract <u>PROJECT# IRB0148</u> Matrix <u>WATER</u>			
ab								
ole ID	Nuclide	Res	ults	Units	Amount Added	MDA	Evaluation	
S								
93-002	GrossAlpha	10.6	± 0.82	pCi/Smpl	10.2	0.31	104% recovery	
	Gross Beta	9.07	± 0.36	pCi/Smpl	9.38	0.28	97% recovery	
	Ra-228	8.40	± 0.59	pCi/Smpl	8.66	0.88	97% recovery	
	Co-60 (G)	214	± 14	pCi/Smpl	224	9.1	96% recovery	
	Cs-137 (G)	240	± 12	pCi/Smpl	236	9.2	102% recovery	
	Am-241 (G)	255	± 26	pCi/Smpl	254	31	100% recovery	
	H - 3	222	± 12	pCi/Smpl	239	13	93% recovery	
	Ra-226	5.35	± 0.24	pCi/Smpl	5.02	0.076	107% recovery	
	Sr-90	10.7	± 0.80	pCi/Smpl	9.39	0.37	114% recovery	
	Total U	1.12	± 0.13	pCi/Smpl	1.13	0.004	99% recovery	
LANK								
693-003	GrossAlpha	-0.103	± 0.17	pCi/Smpl	NA	0.34	<mda< td=""></mda<>	
	Gross Beta	-0.111	± 0.15	pCi/Smpl	NA	0.27	<mda< td=""></mda<>	
	Ra-228	0.239	± 0.48	pCi/Smpl	NA	0.68	<mda< td=""></mda<>	
	K-40 (G)	U		pCi/Smpl	NA	110	<mda< td=""></mda<>	
	Cs-137 (G)	U		pCi/Smpl	NA	5.4	<mda< td=""></mda<>	
	H-3	-1.64	± 8.3	pCi/Smpl	NA	15	<mda< td=""></mda<>	
	Ra-226	0.016	± 0.034	pCi/Smpl	NA	0.062	<mda< td=""></mda<>	
	Sr-90	0.099	± 0.15	pCi/Smpl	NA	0.27	<mda< td=""></mda<>	
	Total U	0.00E 00	± 1.9E-04	pCi/Smpl	NA	4.5E-04	<mda< td=""></mda<>	
. <u></u>	DUPLICATES			_	ORIGINALS	3		
							3σ	

										Зσ	
Sample ID	Nuclide	Results	<u>± 2σ</u>	MDA	Sample ID	Results	<u>± 2σ</u>	MDA	RPD	(Tot)	Eval
8693-004	GrossAlpha	1.03 ±	1.0	1.5	8693-001	0.763 ±	0.99	1.3	-	0	satis.
	Gross Beta	15.0 ±	1.2	1.6		14.2 ±	0.93	0.97	5	46	satis.
	Ra-228	0.099 ±	0.18	0.48		$0.295 \pm$	0.19	0.49	-	0	satis.
	K-40 (G)	24.8 ±	7.8	4.9		24.0 ±	11	8.2	3	86	satis.
	Cs-137 (G)	U		0.53		U		0.86	-	0	satis.
	H-3	-6.31 ±	84	150		7.12 ±	78	130	-	0	satis.
	Ra-226	0.583 ±	0.52	0.81		0.426 ±	0.44	0.70	-	0	satis.
	Sr-90	-0.021 ±	0.29	0.71		0.026 ±	0.31	0.72	-	0	satis.
	Total U	0.611 <u>+</u>	0.067	0.022		0.578 ±	0.064	0.022	6	30	satis.

Certified by My
Report Date 03/11/08
Page 2

Eberline Services

QC RESULTS

SDG	8696	Client	TA IRVINE
Work Order	<u>R802042-01</u>	Contract	PR0JECT# IRB0148
Received Date	02/05/08	Matrix	WATER

	SPIKED SAMPLE			ORI	GINAL SAMPLE			
Sample ID	Nuclide	<u>Results ± 20</u>	MDA	Sample ID	<u>Results ± 20</u>	MDA	Added	<u>%Recv</u>
8693-005	GrossAlpha	95.8 ± 5.5	1.4	8693-001	0.763 ± 0.99	1.3	71.2	133
	Gross Beta	77.9 ± 2.0	1.5		14.2 ± 0.93	0.97	62.5	102
	H-3	15500 ± 300	150		7.12 ± 78	130	16000	97
	Ra-226	120 ± 4.8	0.69		0.426 ± 0.44	0.70	112	107
	Total U	109 ± 13	2.2		0.578 ± 0.064	0.022	113	96

Certified by 202
Report Date 03/11/08
Page 3

SUBCONTRACT ORDER

TestAmerica Irvine

IRB0148

SENDING LABORATORY:

TestAmerica Irvine 17461 Derian Avenue. Suite 100 Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297 Project Manager: Joseph Doak

RECEIVING LABORATORY:

Eberline Services 2030 Wright Avenue Richmond, CA 94804 Phone :(510) 235-2633 Fax: (510) 235-0438 Project Location: California Receipt Temperature: 4.0 °C

Ice: Ν

Analysis	Units	Due	Expires	Comments
Sample ID: IRB0148-01	Water		Sampled: 02/03/08 14:	45
EDD + Level 4	N/A	02/13/08	03/02/08 14:45	
Gamma Spec-O	mg/kg	02/13/08	02/02/09 14:45	Out to Eberline, k-40 and cs-137 only
Gross Alpha-O	pCi/L	02/13/08	08/01/08 14:45	Out to Eberline, Boeing
Gross Beta-O	pCi/L	02/13/08	08/01/08 14:45	Out to Eberline, Boeing
Radium, Combined-O	pCi/L	02/13/08	02/02/09 14:45	Out to Eberline, Boeing
Strontium 90-0	pCi/L	02/13/08	02/02/09 14:45	Out to Eberline, Boeing
Tritium-O	pCi/L	02/13/08	02/02/09 14:45	Out to Eberline, Boeing
Uranium, Combined-O	pCi/L	02/13/08	02/02/09 14:45	Out to Eberline, Boeing
Containers Supplied:				
2.5 gal Poly (S)	500 mL Amt	per (T)		

00

Released By

Date/Time

2/4 1200 -001 Received By Date/Time m 07/05/08 109 Page 1 of 1 Received By Date/Time

Released By

Date/Time

NPDES - 872

<u> </u>	EBERLINE	SAMPLE RECEIP	CABORAT		All 2/5/P
Citer	TEST KMENIC	Á City	PUINE	Sta	TE CA
Date	Time received 07/05/08	89-200 NO 11	LB0148		
Cont	ainer I No le chest	Requested TAT (Davs			N
		INSPE			
	Custoov seals on shippi	_		ver l	
-		ng container dateo Li sione	c'î		NO 2 N/2
-	Custoon seals on sampl			=-7	NC THU
		e containers datec à signe	d	- C 1	$\frac{NC}{NC} = \frac{N}{N} + \frac{1}{K}$
-	Placking material is	· k		NALC:	
÷	Number of samples in sr	nipping container	Sample Math	$\left(1\right)^{1}$	Line X
-	Number of containers be	er sample	iChisee Coc	00	
8	Samples are in correct o	ontainer	. e: Y		
Ĺ.	^{cl} aperwork agrees with s	ampies	res 🔨		
1C	Samples nave Tabe [Hazard labels	Radiadels –	nnionilate sa	
	Samples are in goo	о солатногХ цеактл	o Stoken	Loniainer	
				eennanne	10112341 10
2 / 	camples are Preserve	NO: preservec 🗙		servauv-	-
	Samples are Preserve Describe any anomalies	NO: Dreservec X	, pr Pres	servaliv e	
14	Camples are Preserve Describe any anomalies Was P M notified of any	anomalies"	, D∺⊃res	servaliv=	
12 15	Uescribe any anomalies	anomalies ¹ Cate D	, DH Pres γ/ος [ο ξTime	Date	
12 15 Sam	Vas P M notifieo of any Inspected by tomer Beta/Samme i be No com	anomalies Date D	\mathcal{D}	Date	
15 Cus Sam	Vas P M. notifieo of any Inspected by		\mathcal{D}		
12 Sam 743 D	Vas P M notifieo of any Inspected by tomer Beta/Samme i be No com		p = Tree		

Form SCP-61 07-30-61

over 55 vears of lovality nuclear canvicar

APPENDIX G

Section 18

Outfall 003 – BMP Effectiveness, February 5, 2008 Test America Analytical Laboratory Report

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project: Boeing BMP Effectiveness Monitoring Program

Sampled: 02/05/08 Received: 02/05/08 Issued: 02/14/08 15:04

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and

is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

LABORATORY ID IRB0420-01 OO3 EFF-1

MATRIX

Water

Reviewed By:

Joseph Dock

TestAmerica Irvine Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Boeing BMP Effectiveness Monitoring Program

Report Number: IRB0420

Sampled: 02/05/08 Received: 02/05/08

		INC	DRGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0420-01 (003 EFF-1 - Wa	ater)								
Reporting Units: g/cc	Digula com out	8B11085	N/A	NA	1.0	1	02/11/08	02/11/08	
Density	Displacement	8D11085	IN/A	NA	1.0	1	02/11/08	02/11/08	
Sample ID: IRB0420-01 (003 EFF-1 - Wa	ater)								
Reporting Units: mg/l									
Sediment	ASTM D3977	8B14087	10	10	ND	1	02/14/08	02/14/08	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Boeing BMP Effectiveness Monitoring Program

Report Number: IRB0420

Sampled: 02/05/08 Received: 02/05/08

METHOD BLANK/QC DATA

INORGANICS

Limit	MDL	Units	Level	Result %RE	C Limits	RPD	Limit	Qualifiers
NA	N1/A	<i>a</i> /22	Sou			0	20	
	NA			Sou	Source: IRA3091-01	Source: IRA3091-01	Source: IRA3091-01	Source: IRA3091-01

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Boeing BMP Effectiveness Monitoring Program

Report Number: IRB0420

Sampled: 02/05/08 Received: 02/05/08

DATA QUALIFIERS AND DEFINITIONS

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Boeing BMP Effectiveness Monitoring Program

Report Number: IRB0420

Sampled: 02/05/08 Received: 02/05/08

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
ASTM D3977	Water		
Displacement	Water		

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

TestAmerica Irvine

MWH-Arcadia 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Test America Contact: Joseph Dos Project Manager: Bronwyn Ke Sampler: <i>MARXXXX</i> , h Sampler: <i>MARXXXX</i> , h Sampler: <i>MARXXXX</i> , h Sample Contain Description Matrix Type 003 EFF-1 W 500 mL P 003 EFF-5 W 500 mL P 003 EFF-6 W 500 mL P 003 EFF-6 W 500 mL P	Client Name/Address: MWH-Arcadia 618 Michitlinda Avenue. 3 Arcadia, CA 91007 Test America Contact: Jo Project Manager: Broi Sampler: <i>MALLES</i> Sampler: <i>MALLES</i> Sampler: <i>MALLES</i> Sampler: <i>MALLES</i> Sample Sample Description Matrix 003 EFF-1 W 003 EFF-5 W 003 EFF-5 W				Project: Boeing BMP Fregram Phone Number: 626) 568-6691 eax Number: 626) 568-6515 Sampling Date/Time Date/Time None None None None		<pre>Substant Sequence Sediment Concentration (SSC, ASTM- D3977-1997)</pre>				ANALYSIS REC		eading of read	Somments
003 EFF-/ 003 EFF-8 003 EFF-9 003 EFF-10 003 EFF-12 003 EFF-14 003 EFF-14 003 EFF-15 003 EFF-16 003 EFF-17 003 EFF-17 003 EFF-17	× × × × × × × × × × ×	500 mL Poly 500 mL Poly			None None None None None None None None	- 8 8 9 8 4 10 8 4 11 12 11 10 8 10 10 10 10 10 10 10 10 10 10 10 10 10	<							
003 EFF-19 003 EFF-20 003 EFF-21 003 EFF-22 003 EFF-24 Relinquished By	<u>333333</u>	500 mL Poly 500 mL Poly 500 mL Poly 500 mL Poly 500 mL Poly 500 mL Poly Dat	Land Contraction C	iii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	None None None None None Received B	19 21 23 23 24 23 24	$\times \times \times \times \times \times$		C		Ĩ	Tum 24F	Turn around Time: (check)	aks
Relinquished By Relinquished By		10 V	Date/Time:	ie: BR	Received By Received By	l line a	Maria 1	Date/Time: Date/Time: 7/5/(C		1856		48 + 72 + 72 + 100 - 100	48 Hours 10 Days 72 Hours Normal Sample Integrity: (check) Intact On Ice:	10 Days Normal K On Ice:

APPENDIX G

Section 19

Outfall 004, January 5, 2008 MECX Data Validation Reports

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IRA0393

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Boeing SSFL NPDES 1261.100D.00
IRA0393
B. Kelly
Soil
IV
1
0
TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 004	IRA0393-01	30120-001, 8010798-01, 8676- 001	Water	01/05/08 1125	200.8, 245.1, 900.0, 901.1, 903.1, 905.0, 906.0, 1613, ASTM D-5174

II. Sample Management

No anomalies were observed regarding sample management. The sample in this SDG was received at TestAmerica-Irvine, Eberline, and Weck within the temperature limits of $4^{\circ}C \pm 2^{\circ}C$. The sample was received below the temperature limits at Vista; however, the sample was not noted to have been frozen. According to the case narrative for this SDG, the sample was received intact at all laboratories. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine, custody seals were not required. Custody seals were intact upon arrival at Eberline, Vista, and Weck. If necessary, the client ID was added to the sample result summary by the reviewer.

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
A	Not applicable.	ICP Serial Dilution %D were not within control limits.
Μ	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Ρ	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: February 29, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had no target compound detects above the EDL.

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHODS 200.8, 245.1—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: February 29, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.8 and 245.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding times, 6 months for metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.
- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP-MS metals and 85-115% for mercury.

- Blanks: There were no applicable detects in the method blanks or CCBs.
- Interference Check Samples: ICSA/B analyses were performed in association with the total metals analyses only. Recoveries were within the method-established control limits. Most analytes were reported in the 6020 ICSA solution; however, the reviewer was not able to ascertain if the detection was indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the sample in this SDG for the 6020 dissolved metals only. All recoveries and RPDs were within the laboratory-established control limits. Evaluation of mercury method accuracy was based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. The bracketing CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks Date Reviewed: March 3, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the *EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174,* and the *National Functional Guidelines for Inorganic Data Review* (2/94).

- Holding Times: The tritium sample was analyzed within 180 days of collection. Aliquots for gross alpha, gross beta, radium-226, radium-228, strontium-90, and gamma spectroscopy were prepared within the five-day analytical holding time for unpreserved samples. The aliquot for total uranium was prepared within five days of collection.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, nondetected gross alpha in the sample was qualified as an estimated nondetect, "UJ." The gross beta detector efficiency was greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. The tritium detector efficiency for the sample was at least 20% and was considered acceptable. The internal spike efficiency to default efficiency ratios was near 1, indicating that quenching did not occur.

The strontium chemical yield was at least 70% and was considered acceptable. The strontium continuing calibration results were within the laboratory control limits.

The radium-226 cell efficiencies were determined in September 2006. The radium-226 continuing calibration results were within the laboratory-established control limits. The radium-228 calibration utilized actinium-228 and was verified in February 2001. The radium-228 tracer, yttrium oxalate yields were greater than 70%.

The gamma spectroscopy geometry-specific, detector efficiencies were determined in September 1999 and February 2007. All analytes were determined at the maximum photopeak energy.

The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All calibration check standard recoveries were within 90-110% and were deemed acceptable.

• Blanks: There were no analytes detected in the method blank.

- Blank Spikes and Laboratory Control Samples: The gross alpha recovery was above the control limit at 129%; however, gross alpha was not detected in the samples. The remaining recoveries were within laboratory-established control limits.
- Laboratory Duplicates: Laboratory duplicate analyses were performed on the sample in this SDG for gross alpha, gross beta, tritium, strontium-90, radium-226, total uranium, and the gamma spectroscopy analytes. Potassium-40 was not detected in the duplicate sample; therefore, potassium-40 detected in the sample was qualified as an estimated detect, "J." The remaining RPDs were within the laboratory-established control limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed for the sample in this SDG on gross alpha, gross beta, tritium, radium-226, and total uranium. Gross alpha was recovered above the control limit; however, gross alpha was not detected in the site sample. The remaining recoveries were within the laboratory-established control limits.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. Reported nondetects are valid to the MDA.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

9

Client Data		Sa	Sample Data		Laboratory Data				
	Test America-Irvine, CA	W	Matrix:	Aqueous	Lab Sample: 30	30120-001	Date Received:		8-Jan-08
Project: Incave Date Collected: 5-Jar Time Collected: 1125	5-Jan-08 1125	Sa	Sample Size:	1.00 L	QC Batch No.: 98 Date Analyzed DB-5: 15	9886 19-Jan-08	Date Extracted: Date Analyzed DB-225:	DB-225:	17-Jan-08 NA
Analyte	Conc. (ug/L)	DL ^a E	EMPC ^b	Qualifiers	Labeled Standard		%R LCL	rcr-ucr ^d	Qualifiers
2,3,7,8-TCDD	ND	0.00000104			<u>IS</u> 13C-2,3,7,8-TCDD		78.8 25	25-164	
1,2,3,7,8-PeCDD	£	0.00000201			13C-1,2,3,7,8-PeCDD	0	72.0 25	25 - 181	
1,2,3,4,7,8-HxCDD	Ð	0.00000184			13C-1,2,3,4,7,8-HxCDD	6	69.8 32	32 - 141	
1,2,3,6,7,8-HxCDD	Ð	0.00000363		A CONTRACTOR OF	13C-1,2,3,6,7,8-HxCDE	ß	68.1 28	28 - 130	
1,2,3,7,8,9-HxCDD	Ð	0.00000177			13C-1,2,3,4,6,7,8-HpCDD	CDD	81.1 23	23 - 140	
1,2,3,4,6,7,8-HpCDD	0.0000562				13C-OCDD		66.9 17	17 - 157	
осрр	0.000908				13C-2,3,7,8-TCDF		75.1 24	24 - 169	
2,3,7,8-TCDF	Ð	0.00000123			13C-1,2,3,7,8-PeCDF		66.2 24	24 - 185	in the second second
1,2,3,7,8-PeCDF	Ð	0.00000181			13C-2,3,4,7,8-PeCDF		69.5 21	21-178	
2,3,4,7,8-PeCDF	Ð	0.00000176	and the second		13C-1,2,3,4,7,8-HxCDF	DF	65.8 26	26 - 152	and an and an and
1,2,3,4,7,8-HxCDF	Ð	0.00000108			13C-1,2,3,6,7,8-HxCDF	DP	67.2 26	26 - 123	
1,2,3,6,7,8-HxCDF	Ð	0.00000117	and the second	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	13C-2,3,4,6,7,8-HxCDF	DF	68.9 28	28 - 136	1. 2. 0. 1 - 1 - 1 - 1 - 1
2,3,4,6,7,8-HxCDF	R	0.00000122			13C-1,2,3,7,8,9-HxCDF	DF	74.3 29	29-147	
1,2,3,7,8,9-HxCDF	Ð	0.00000163	and the second		13C-1,2,3,4,6,7,8-HpCDF	CDF	78.7 28	28 - 143	
1,2,3,4,6,7,8-HpCDF	0.00000763				13C-1,2,3,4,7,8,9-HpCDF	CDF	77.3 26	26-138	
1,2,3,4,7,8,9-HpCDF	R	0.00000180	Contraction of the second	A DATE OF STREET, SALE AND	13C-0CDF	and the second	65.8 17	17-157	and the second se
OCDF	0.0000227	ないので、「ない」のないで			CRS 37CJ-2,3,7,8-TCDD	「「「「「「「「」」」	86.8 35	35 - 197	
Totals					Footnotes				
Total TCDD	Ð	0.00000156			a. Sample specific estimated detection limit.	ction limit.		Constraints of Constraints of Constraints	 Management in Aller and the second sec
Total PeCDD	R S	0.00000348			b. Estimated maximum possible concentration.	concentration.			
Total HxCDD	0.00000205		0.00000484	84	c. Method detection limit.	and the states with the second	and the second second second second		641 (D.M. 1969) (St. 41, 68)
Total HpCDD	0.000105				d. Lower control limit - upper control limit.	atrol limit.			
A AND A MARK	ND UN	0.00000123	A State of the second se			and the share of the state of the	a a manager and a second s	1 100 1 100 100 100 100 100 100 100 100	en (1. 1. 1990) and an of the
Total PeCDF	£	0.00000321							
Total HxCDF	0.00000395	Under and the state of the sta	0.00000546	46				and the second second	And the second second second
Total HpCDF	0.0000326	「おいたない」の変換し			「「「「「「「「「」」」			「「「「「「「「」」」	

۱

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly

Report Number: IRA0393

Sampled: 01/05/08 Received: 01/05/08

METALS

Project ID: Routine Outfall 004

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA0393-01 (Outfall	004 - Water)								
Reporting Units: ug/l									
Antimony J / DNQ	EPA 200.8	8A07054	0.20	2.0	0.60	1	01/07/08	01/08/08	Ja
Cadmium U	EPA 200.8	8A07054	0.11	1.0	ND	1	01/07/08	01/08/08	
Copper	EPA 200.8	8A07054	0.75	2.0	3.6	1	01/07/08	01/08/08	
Lead	EPA 200.8	8A07054	0.30	1.0	1.2	1	01/07/08	01/08/08	
Thallium ()	EPA 200.8	8A07054	0.20	1.0	ND	1	01/07/08	01/08/08	

LEVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA0393 <Page 2 of 14>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 004

Report Number: IRA0393

Sampled: 01/05/08 Received: 01/05/08

DISSOLVED METALS

Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
- Water) - cont.								
EPA 200.8-Diss	8A08129	0.20	2.0	0.57	1	01/08/08	01/08/08	Ja
EPA 200.8-Diss	8A08129	0.11	1.0	ND	1	01/08/08	01/08/08	
EPA 200.8-Diss	8A08129	0.75	2.0	2.2	1	01/08/08	01/08/08	
EPA 200.8-Diss	8A08129	0.30	1.0	ND	1	01/08/08	01/08/08	
EPA 200.8-Diss	8A08129	0.20	1.0	ND	1	01/08/08	01/08/08	
	- Water) - cont. EPA 200.8-Diss EPA 200.8-Diss EPA 200.8-Diss EPA 200.8-Diss	- Water) - cont. EPA 200.8-Diss 8A08129 EPA 200.8-Diss 8A08129 EPA 200.8-Diss 8A08129 EPA 200.8-Diss 8A08129	Method Batch Limit - Water) - cont. EPA 200.8-Diss 8A08129 0.20 EPA 200.8-Diss 8A08129 0.11 EPA 200.8-Diss 8A08129 0.75 EPA 200.8-Diss 8A08129 0.30	Method Batch Limit Limit - Water) - cont. EPA 200.8-Diss 8A08129 0.20 2.0 EPA 200.8-Diss 8A08129 0.11 1.0 EPA 200.8-Diss 8A08129 0.75 2.0 EPA 200.8-Diss 8A08129 0.75 2.0 EPA 200.8-Diss 8A08129 0.30 1.0	Method Batch Limit Limit Result - Water) - cont. EPA 200.8-Diss 8A08129 0.20 2.0 0.57 EPA 200.8-Diss 8A08129 0.11 1.0 ND EPA 200.8-Diss 8A08129 0.75 2.0 2.2 EPA 200.8-Diss 8A08129 0.75 2.0 2.2 EPA 200.8-Diss 8A08129 0.30 1.0 ND	Method Batch Limit Limit Result Factor - Water) - cont. EPA 200.8-Diss 8A08129 0.20 2.0 0.57 1 EPA 200.8-Diss 8A08129 0.11 1.0 ND 1 EPA 200.8-Diss 8A08129 0.75 2.0 2.2 1 EPA 200.8-Diss 8A08129 0.30 1.0 ND 1	Method Batch Limit Limit Result Factor Extracted - Water) - cont. - - - - - 0.20 2.0 0.57 1 01/08/08 EPA 200.8-Diss 8A08129 0.11 1.0 ND 1 01/08/08 EPA 200.8-Diss 8A08129 0.75 2.0 2.2 1 01/08/08 EPA 200.8-Diss 8A08129 0.30 1.0 ND 1 01/08/08	Method Batch Limit Limit Result Factor Extracted Analyzed - Water) - cont. - - - - - 0.20 2.0 0.57 1 01/08/08

EVEL IV

TestAmerica Irvine

Joseph Doak Project Manager

> The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA0393 <Page 3 of 14>

THE LEADER IN ENVIRONMENTAL TESTING

LEVEL IV

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Routine Outfall 004

Report Number: IRA0393

Sampled: 01/05/08 Received: 01/05/08

Metals by EPA 200 Series Methods

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA0393-01 (Outfall 004	- Water) - cont.								
Reporting Units: ug/l Mercury, Dissolved	EPA 245.1	W8A0148	0.050	0.20	0.054	1	01/08/08	01/09/08	J
Mercury, Total	EPA 245.1	W8A0148	0.050	0.20	0.092	1	01/08/08	01/09/08	J

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRA0393 <Page 5 of 14>

Eberline Services

Work Order <u>R801023-01</u> Received Date <u>01/08/08</u>			Contract	TA IRVINE PROJECT# IRA039 WATER	3	
lient	Lab					
nple ID	Sample ID	Collected Analyzed	Nuclide	Results ± 20	Units	MDA
Dutfall 004						2.8 UJ
RA0393-01	8676-001	01/05/08 01/21/08	GrossAlpha	0.784 ± 2.0	pCi/L	2.8 00
		01/21/08	Gross Beta	62.4 ± 2.4	pCi/L	2.1
		01/23/08	Ra-228	0.135 ± 0.17	pCi/L	0.44 U
		02/01/08	K-40 (G)	62.0 ± 8.4	pCi/L	5.3 J
		02/01/08	Cs-137 (G)	υ	pCi/L	0.54 ()
		01/23/08	H-3	-15.1 ± 88	pCi/L	150 U
		01/25/08	Ra-226	0.081 ± 0.44	pCi/L	0.81 ()
		01/28/08	Sr-90	0.063 ± 0.44	pCi/L	1.0 ()
			Total U	2.58 ± 0.29	pCi/L	0.021

ANALYSIS RESULTS

LEVEL IV

Certified by 7777 Report Date 02/19/08 Page 1