APPENDIX G

Section 13

Outfall 003, January 25, 2008

MECX Data Validation Reports

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IRA2500

Prepared by

MEC^x, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00 Sample Delivery Group: IRA2500

Project Manager: B. Kelly

Matrix: Soil QC Level: IV

No. of Samples: 1

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 003	IRA2500-01	30210-001	Water	01/25/08 0825	245.1, 200.8, 900.0, 901.1, 903.1, 904.0, 905.0, 906.0, 1613, ASTM D-5174

II. Sample Management

No anomalies were observed regarding sample management. The sample in this SDG was received at TestAmerica-Irvine and Eberline within the temperature limits of 4°C ±2°C. The sample was received below the temperature limit at Vista; however, the sample was not noted to have been frozen. The sample was received above the temperature limit at Weck; however, mercury is not considered volatile. According to the case narrative for this SDG, the sample was received intact at all laboratories. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine, custody seals were not required. Custody seals were intact upon arrival at Eberline and Vista. Custody seals were not present upon receipt at Weck. If necessary, the client ID was added to the sample result summary by the reviewer.

Data Qualifier Reference Table

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
E	Not applicable.	Duplicates showed poor agreement.
1	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: March 1, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: Total HpCDD was detected in the method blank above the EDL. The result in the sample was qualified as estimated, "J," as a portion of the reported total HpCDD was

DATA VALIDATION REPORT SSFL NPDES
SSFL NPDES
SDG: IRA2500

considered to be method blank contamination. The method blank had no other target compound detects above the EDL.

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHODS 200.8, 245.1—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: March 7, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.8, 245.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding times, 6 months for metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.

DATA VALIDATION REPORT SSFL NPDES
SSFL NPDES
SDG: IRA2500

• Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP-MS metals and 85-115% for mercury.

- Blanks: There were no applicable detects in the method blanks or CCBs.
- Interference Check Samples: ICSA/B analyses were performed in association with the
 metals analyses. Recoveries were within the method-established control limits. Most
 analytes were reported in the ICSA solution; however, the reviewer was not able to
 ascertain if the detection was indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample in this SDG. Evaluation of method accuracy was based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. The bracketing CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: March 5, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (2/94).

Holding Times: The tritium sample was analyzed within 180 days of collection. Aliquots
for gross alpha and, gross beta were prepared within the five-day analytical holding time
for unpreserved samples. The aliquots for radium-226, radium-228, strontium-90,
gamma spectroscopy, and total uranium were prepared beyond the five-day holding time
for unpreserved samples; therefore, these results were qualified as estimated, "J," for
detects and, "UJ," for nondetects.

 Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, gross alpha detected in the sample was qualified as an estimated detect, "J." The gross beta detector efficiency was greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. The tritium detector efficiency for the sample was at least 20% and was considered acceptable. The internal spike efficiency to default efficiency ratios was near 1, indicating that quenching did not occur.

The strontium chemical yield was at least 70% and was considered acceptable. The strontium continuing calibration results were within the laboratory control limits.

The radium-226 cell efficiencies were determined in September 2006. The radium-226 continuing calibration results were within the laboratory-established control limits. The radium-228 calibration utilized actinium-228 and was verified in February 2001. The radium-228 tracer, yttrium oxalate yields were greater than 70%.

The gamma spectroscopy geometry-specific, detector efficiencies were determined in September 1999 and February 2007. All analytes were determined at the maximum photopeak energy.

The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All calibration check standard recoveries were within 90-110% and were deemed acceptable.

Blanks: There were no analytes detected in the method blank.

DATA VALIDATION REPORT SSFL NPDES
SDG: IRA2500

 Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.

- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this
 data package. The sample results and MDAs reported on the sample result form were
 verified against the raw data and no calculation or transcription errors were noted.
 Reported nondetects are valid to the MDA.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - o Field Duplicates: There were no field duplicate samples identified for this SDG.

Name: Test Ame			Sample Data		Laboratory Data				
	Test America-Irvine, CA		Matrix:	Aqueous	Lab Sample:	30210-001	Date Received:	sived:	29-Jan-08
llected: llected:	90-u		Sample Size:	1.00 L	QC Batch No.: Date Analyzed DB-5:	9921 7-Feb-08	Date Extracted: Date Analyzed I	Date Extracted: Date Analyzed DB-225:	2-Feb-08 NA
Analyte C	Conc. (ug/L)	DL a	EMPCb	Qualifiers	Labeled Standard	lard	%R 1	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ę	0.00000105			IS 13C-2,3,7,8-TCDD	QΩ	79.6	25-164	
1,2,3,7,8-PeCDD	Q	0.000000764	49.		13C-1,2,3,7,8-PeCDD	еСDD	69.2	25 - 181	
1,2,3,4,7,8-HxCDD	£	0.00000190	0		13C-1,2,3,4,7,8-HxCDD	-нхсрр	6.19	32 - 141	
1,2,3,6,7,8-HxCDD	2	0.00000191	1		13C-1,2,3,6,7,8-HxCDD	-HxCDD	70.3	28 - 130	
1,2,3,7,8,9-HxCDD	9	0.00000183	33		13C-1,2,3,4,6,7,8-HpCDD	,8-нрСDD	71.6	23 - 140	
1,2,3,4,6,7,8-HpCDD	0.00000816	Maria Cara Cara Cara Cara Cara Cara Cara	Transmission of the furniture	1	13C-0CDD		57.7	17 - 157	
OCDD	0.0000552				13C-2,3,7,8-TCDF	DF	79.1	24 - 169	
2,3,7,8-TCDF	2	0.000000724	724		13C-1,2,3,7,8-PeCDF	eCDF	76.0	24 - 185	
1,2,3,7,8-PeCDF	2	0.000000757	157		13C-2,3,4,7,8-PeCDF	eCDF	64.4	21 - 178	
2,3,4,7,8-PeCDF	2	0.0000000932	132		13C-1,2,3,4,7,8-HxCDF	-HxCDF	72.1	26-152	
1,2,3,4,7,8-HxCDF	2	0.000000686	986	から 大きな 大きな 日本の	13C-1,2,3,6,7,8-HxCDF	-HxCDF	66.1	26-123	
1,2,3,6,7,8-HxCDF	NO ON	0.0000000784	784		13C-2,3,4,6,7,8-HxCDF	-HxCDF	613	28 - 136	
2,3,4,6,7,8-HxCDF	2	0.000000968	890		13C-1,2,3,7,8,9-HxCDF	-HxCDF	65.8	29 - 147	
1,2,3,7,8,9-HxCDF	2	0.00000120	00	20 miles - 10 miles -	13C-1,2,3,4,6,7,8-HpCDF	,8-HpCDF	60.1	28 - 143	The state of the s
1,2,3,4,6,7,8-HpCDF	2	0.00000174	4		13C-1,2,3,4,7,8,9-HpCDF	,9-нрсрг	653	26-138	
1,2,3,4,7,8,9-HpCDF	2	0.00000179	62		13C-OCDF		62.2	17-157	
OCDF	NO NO	0.0000101			CRS 37CI-2,3,7,8-TCDD	CDD	88.4	35 - 197	
Totals					Footnotes				
Total TCDD	ND	0.00000105	15		a. Sample specific estimated detection limit.	ed detection limit.			
Total PeCDD	Q	0.00000231			b. Estimated maximum possible concentration.	ssible concentration.			
Total HxCDD	2	0.00000273	3		c. Method detection limit.				
Total HpCDD	0.0000173			В	d. Lower control limit - upper control limi	per control limit.			
Total TCDF	2	0.000000724	724						
Total PeCDF	£	0.000000836	36						
Total HxCDF	2	0.0000000890	068	The state of the s					
Total HpCDF	W	0.00000243	13	2					

NPDES - 680

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 003

Report Number: IRA2500

Sampled: 01/25/08

Received: 01/25/08

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2500-01 (Outfall 003 - V	Vater)								
Reporting Units: ug/l									
Antimony J/DN9	EPA 200.8	8A28076	0.20	2.0	0.26	1	01/28/08	01/28/08	J
Cadmium 🖖	EPA 200.8	8A28076	0.11	1.0	0.19	1	01/28/08	01/28/08	J
Copper	EPA 200.8	8A28076	0.75	2.0	3.3	1	01/28/08	01/28/08	
Lead J/DNQ	EPA 200.8	8A28076	0.30	1.0	0.44	1	01/28/08	01/28/08	J
Thallium U	EPA 200.8	8A28076	0.20	1.0	ND	1	01/28/08	01/28/08	

LEVEL IV

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Routine Outfall 003

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Report Number: IRA2500

Sampled: 01/25/08

Received: 01/25/08

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2500-01 (Outfall 003	- Water) - cont.								
Reporting Units: ug/l									
Antimony J/DNQ	EPA 200.8-Diss	8A25156	0.20	2.0	0.26	1	01/25/08	01/26/08	J
Cadmium Ψ	EPA 200.8-Diss	8A25156	0.11	1.0	0.16	1	01/25/08	01/26/08	J
Copper	EPA 200.8-Diss	8A25156	0.75	2.0	2.8	1	01/25/08	01/26/08	
Lead Q	EPA 200.8-Diss	8A25156	0.30	1.0	ND	1	01/25/08	01/26/08	
Thallium V	EPA 200.8-Diss	8A25156	0.20	1.0	ND	1	01/25/08	01/28/08	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Routine Outfall 003

Report Number: IRA2500

Sampled: 01/25/08

Received: 01/25/08

Metals by EPA 200 Series Methods

Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2500	-01 (Outfall 003	3 - Water) - cont.								
Reporting Units:	ug/l									
Mercury, Dissolved	U	EPA 245.1	W8A1076	0.050	0.20	ND	1	01/30/08	01/31/08	
Mercury, Total	₩	EPA 245.1	W8A1076	0.050	0.20	ND	1	01/30/08	01/31/08	

LEVEL IV

TestAmerica Irvine

Eberline Services

ANALYSIS RESULTS

Client	Lab					
Sample ID	Sample ID	Collected Analyzed	Nuclide	Results $+ 2\sigma$	Units	MDA
Outfall 003					. 11 1	-1-
IRA2500-01	8690-001	01/25/08 02/16/08	GrossAlpha	1.34 ± 0.61	pCi/L	0.60 J/R
		02/16/08	Gross Beta	4.34 ± 0.66	pCi/L	0.91
		02/20/08	Ra-228	0.449 ± 0.20	pCi/L	0.48 UJ/H
		02/15/08	K-40 (G)	U	pCi/L	21
		02/15/08	Cs-137 (G)	σ	pCi/L	0.81
		02/21/08	H-3	-60.6 ± 92	pCi/L	160 U
		02/20/08	Ra-226	0.001 ± 0.47	pCi/L	0.90 UJ/H
		02/14/08	Sr-90	0.269 ± 0.28	pCi/L	0.55
		02/19/08	Total U	0.380 ± 0.043	pCi/L	0.022 J/H

LEVEL IV

Certified by 70

Report Date 02/27/08

Page 1

APPENDIX G

Section 14

Outfall 003, January 25, 2008 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Routine Outfall 003

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly

Sampled: 01/25/08 Received: 01/25/08

Issued: 02/28/08 09:50

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: This is a final report to include all subcontract data.

LABORATORY ID CLIENT ID MATRIX
IRA2500-01 Outfall 003 Water

Reviewed By:

TestAmerica Irvine

Joseph Dock

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 003

618 Michillinda Avenue, Suite 200 Sampled: 01/25/08

Arcadia, CA 91007 Report Number: IRA2500 Received: 01/25/08 Attention: Bronwyn Kelly

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2500-01 (Outfall 003	- Water)								
Reporting Units: ug/l									
Antimony	EPA 200.8	8A28076	0.20	2.0	0.26	1	01/28/08	01/28/08	J
Cadmium	EPA 200.8	8A28076	0.11	1.0	0.19	1	01/28/08	01/28/08	J
Copper	EPA 200.8	8A28076	0.75	2.0	3.3	1	01/28/08	01/28/08	
Lead	EPA 200.8	8A28076	0.30	1.0	0.44	1	01/28/08	01/28/08	J
Thallium	EPA 200.8	8A28076	0.20	1.0	ND	1	01/28/08	01/28/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 01/25/08

Project ID: Routine Outfall 003

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: IRA2500 Received: 01/25/08

Attention: Bronwyn Kelly

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2500-01 (Outfall 003	- Water) - cont.								
Reporting Units: ug/l									
Antimony	EPA 200.8-Diss	8A25156	0.20	2.0	0.26	1	01/25/08	01/26/08	J
Cadmium	EPA 200.8-Diss	8A25156	0.11	1.0	0.16	1	01/25/08	01/26/08	J
Copper	EPA 200.8-Diss	8A25156	0.75	2.0	2.8	1	01/25/08	01/26/08	
Lead	EPA 200.8-Diss	8A25156	0.30	1.0	ND	1	01/25/08	01/26/08	
Thallium	EPA 200.8-Diss	8A25156	0.20	1.0	ND	1	01/25/08	01/28/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 003

618 Michillinda Avenue, Suite 200 Sampled: 01/25/08

Arcadia, CA 91007 Report Number: IRA2500 Received: 01/25/08
Attention: Bronwyn Kelly

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2500-01 (Outfall 003 -	Water) - cont.								
Reporting Units: mg/l									
Hexane Extractable Material (Oil &	EPA 1664A	8B04061	1.3	4.8	ND	1	02/04/08	02/04/08	
Grease)									
Chloride	EPA 300.0	8A25053	0.25	0.50	9.4	1	01/25/08	01/25/08	
Nitrate/Nitrite-N	EPA 300.0	8A25053	0.15	0.26	2.4	1	01/25/08	01/25/08	
Sulfate	EPA 300.0	8A25053	0.20	0.50	18	1	01/25/08	01/25/08	
Total Dissolved Solids	SM2540C	8A31077	10	10	170	1	01/31/08	01/31/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 003

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: IRA2500

Sampled: 01/25/08
Received: 01/25/08

Attention: Bronwyn Kelly

Metals by EPA 200 Series Methods

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRA2500-01 (Outfall 003 - Wa	ter) - cont.								
Reporting Units: ug/l									
Mercury, Dissolved	EPA 245.1	W8A1076	0.050	0.20	ND	1	01/30/08	01/31/08	
Mercury, Total	EPA 245.1	W8A1076	0.050	0.20	ND	1	01/30/08	01/31/08	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 003

Sampled: 01/25/08

Report Number: IRA2500

Received: 01/25/08

SHORT HOLD TIME DETAIL REPORT

	Hold Time	Date/Time	Date/Time	Date/Time	Date/Time
	(in days)	Sampled	Received	Extracted	Analyzed
Sample ID: Outfall 003 (IRA2500-01) - Water	er				
EPA 300.0	2	01/25/2008 08:25	01/25/2008 18:20	01/25/2008 19:00	01/25/2008 20:00

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 003

roject ID. Routine Outlan 003

Report Number: IRA2500

Sampled: 01/25/08 Received: 01/25/08

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8A28076 Extracted: 01/28/08	3										
-											
Blank Analyzed: 01/28/2008 (8A28076-B	LK1)										
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Thallium	ND	1.0	0.20	ug/l							
LCS Analyzed: 01/28/2008 (8A28076-BS	1)										
Antimony	83.1	2.0	0.20	ug/l	80.0		104	85-115			
Cadmium	82.2	1.0	0.11	ug/l	80.0		103	85-115			
Copper	83.7	2.0	0.75	ug/l	80.0		105	85-115			
Lead	82.0	1.0	0.30	ug/l	80.0		102	85-115			
Thallium	81.4	1.0	0.20	ug/l	80.0		102	85-115			
Matrix Spike Analyzed: 01/28/2008 (8A2	28076-MS1)				Sou	rce: IRA	2324-01				
Antimony	83.5	2.0	0.20	ug/l	80.0	ND	104	70-130			
Cadmium	81.0	1.0	0.11	ug/l	80.0	ND	101	70-130			
Copper	85.4	2.0	0.75	ug/l	80.0	2.97	103	70-130			
Lead	81.3	1.0	0.30	ug/l	80.0	0.484	101	70-130			
Thallium	83.7	1.0	0.20	ug/l	80.0	ND	105	70-130			
Matrix Spike Analyzed: 01/28/2008 (8A2	28076-MS2)				Sou	rce: IRA	2432-04				
Antimony	87.0	2.0	0.20	ug/l	80.0	ND	109	70-130			
Cadmium	78.5	1.0	0.11	ug/l	80.0	ND	98	70-130			
Copper	80.3	2.0	0.75	ug/l	80.0	1.94	98	70-130			
Lead	80.4	1.0	0.30	ug/l	80.0	0.376	100	70-130			
Thallium	81.2	1.0	0.20	ug/l	80.0	ND	102	70-130			
Matrix Spike Dup Analyzed: 01/28/2008	(8A28076-M	SD1)			Sou	rce: IRA	2324-01				
Antimony	83.3	2.0	0.20	ug/l	80.0	ND	104	70-130	0	20	
Cadmium	80.8	1.0	0.11	ug/l	80.0	ND	101	70-130	0	20	
Copper	84.6	2.0	0.75	ug/l	80.0	2.97	102	70-130	1	20	
Lead	81.9	1.0	0.30	ug/l	80.0	0.484	102	70-130	1	20	
Thallium	83.5	1.0	0.20	ug/l	80.0	ND	104	70-130	0	20	

TestAmerica Irvine

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 003

Sampled: 01/25/08

Report Number: IRA2500 Received: 01/25/08

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A25156 Extracted: 01/25/08	_										
DI I I I I I I I I I I I I I I I I I I	0 / 2515 (D I I	(24)									
Blank Analyzed: 01/26/2008-01/28/2008 (,									
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0	0.11	ug/l							
Copper	ND	2.0	0.75	ug/l							
Lead	ND	1.0	0.30	ug/l							
Thallium	ND	1.0	0.20	ug/l							
LCS Analyzed: 01/26/2008-01/28/2008 (8	A25156-BS1)										
Antimony	80.7	2.0	0.20	ug/l	80.0		101	85-115			
Cadmium	80.4	1.0	0.11	ug/l	80.0		101	85-115			
Copper	80.8	2.0	0.75	ug/l	80.0		101	85-115			
Lead	84.6	1.0	0.30	ug/l	80.0		106	85-115			
Thallium	77.6	1.0	0.20	ug/l	80.0		97	85-115			
Matrix Spike Analyzed: 01/26/2008-01/28	3/2008 (8A251	.56-MS1)			Sou	rce: IRA	2497-01				
Antimony	85.0	2.0	0.20	ug/l	80.0	0.221	106	70-130			
Cadmium	83.4	1.0	0.11	ug/l	80.0	ND	104	70-130			
Copper	85.3	2.0	0.75	ug/l	80.0	2.94	103	70-130			
Lead	84.7	1.0	0.30	ug/l	80.0	0.920	105	70-130			
Thallium	76.5	1.0	0.20	ug/l	80.0	ND	96	70-130			
Matrix Spike Dup Analyzed: 01/26/2008-	01/28/2008 (8	A25156-MS	D1)		Sou	rce: IRA	2497-01				
Antimony	83.0	2.0	0.20	ug/l	80.0	0.221	103	70-130	2	20	
Cadmium	83.4	1.0	0.11	ug/l	80.0	ND	104	70-130	0	20	
Copper	83.7	2.0	0.75	ug/l	80.0	2.94	101	70-130	2	20	
Lead	86.0	1.0	0.30	ug/l	80.0	0.920	106	70-130	2	20	
Thallium	77.3	1.0	0.20	ug/l	80.0	ND	97	70-130	1	20	

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 003

Sampled: 01/25/08

Report Number: IRA2500

Received: 01/25/08

METHOD BLANK/QC DATA

INORGANICS

A 1.4	D 1/	Reporting	MDI	T1 ·4	Spike	Source	0/ DEC	%REC	DDD	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 8A25053 Extracted: 01/25/08	-										
Blank Analyzed: 01/25/2008 (8A25053-Bl	LK1)										
Chloride	ND	0.50	0.25	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Sulfate	ND	0.50	0.20	mg/l							
LCS Analyzed: 01/25/2008 (8A25053-BS1	1)										
Chloride	4.93	0.50	0.25	mg/l	5.00		99	90-110			
Sulfate	10.2	0.50	0.20	mg/l	10.0		102	90-110			
Matrix Spike Analyzed: 01/25/2008 (8A2	5053-MS1)				Sou	rce: IRA	2375-01				
Chloride	9.73	0.50	0.25	mg/l	5.00	4.99	95	80-120			
Sulfate	25.6	0.50	0.20	mg/l	10.0	15.9	96	80-120			
Matrix Spike Analyzed: 01/25/2008 (8A2	5053-MS2)				Sou	rce: IRA	2478-01				
Chloride	12.3	0.50	0.25	mg/l	5.00	7.60	95	80-120			
Sulfate	19.9	0.50	0.20	mg/l	10.0	9.44	104	80-120			
Matrix Spike Dup Analyzed: 01/25/2008	(8A25053-M	SD1)			Sou	rce: IRA	2375-01				
Chloride	9.76	0.50	0.25	mg/l	5.00	4.99	95	80-120	0	20	
Sulfate	25.7	0.50	0.20	mg/l	10.0	15.9	98	80-120	1	20	
Batch: 8A31077 Extracted: 01/31/08	-										
Blank Analyzed: 01/31/2008 (8A31077-Bl	LK1)										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 01/31/2008 (8A31077-BS1	1)										
Total Dissolved Solids	1000	10	10	mg/l	1000		100	90-110			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 003

Sampled: 01/25/08

Report Number: IRA2500

Received: 01/25/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A31077 Extracted: 01/31/08	<u> </u>										
Duplicate Analyzed: 01/31/2008 (8A3107 Total Dissolved Solids	7-DUP1) ND	10	10	mg/l	Sour	rce: IRA2	2619-03			10	
Batch: 8B04061 Extracted: 02/04/08	_										
Blank Analyzed: 02/04/2008 (8B04061-B	LK1)										
Hexane Extractable Material (Oil & Grease)	1.40	5.0	1.4	mg/l							J
LCS Analyzed: 02/04/2008 (8B04061-BS	1)										MNR1
Hexane Extractable Material (Oil & Grease)	19.5	5.0	1.4	mg/l	20.2		97	78-114			
LCS Dup Analyzed: 02/04/2008 (8B0406	1-BSD1)										
Hexane Extractable Material (Oil & Grease)	18.2	5.0	1.4	mg/l	20.2		90	78-114	7	11	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 003

Sampled: 01/25/08

Report Number: IRA2500

Received: 01/25/08

METHOD BLANK/QC DATA

Metals by EPA 200 Series Methods

	_	Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: W8A1076 Extracted: 01/30/0	<u> </u>										
Blank Analyzed: 01/31/2008 (W8A1076-	BLK1)										
Mercury, Dissolved	ND	0.20	0.050	ug/l							
Mercury, Total	ND	0.20	0.050	ug/l							
LCS Analyzed: 01/31/2008 (W8A1076-B	SS1)										
Mercury, Dissolved	0.913	0.20	0.050	ug/l	1.00		91	85-115			
Mercury, Total	0.913	0.20	0.050	ug/l	1.00		91	85-115			
Matrix Spike Analyzed: 01/31/2008 (W8	A1076-MS1)				Sou	rce: 8012	935-01				
Mercury, Dissolved	0.971	0.20	0.050	ug/l	1.00	0.0450	93	70-130			
Mercury, Total	0.971	0.20	0.050	ug/l	1.00	0.0450	93	70-130			
Matrix Spike Analyzed: 01/31/2008 (W8	3A1076-MS2)				Sou	rce: 8012	939-01				
Mercury, Dissolved	2.01	0.20	0.050	ug/l	1.00	1.18	83	70-130			
Mercury, Total	2.01	0.20	0.050	ug/l	1.00	1.18	83	70-130			
Matrix Spike Dup Analyzed: 01/31/2008	(W8A1076-M	SD1)			Sou	rce: 8012	935-01				
Mercury, Dissolved	0.957	0.20	0.050	ug/l	1.00	0.0450	91	70-130	1	20	
Mercury, Total	0.957	0.20	0.050	ug/l	1.00	0.0450	91	70-130	1	20	
Matrix Spike Dup Analyzed: 01/31/2008	(W8A1076-M	SD2)			Sou	rce: 8012	939-01				
Mercury, Dissolved	1.99	0.20	0.050	ug/l	1.00	1.18	81	70-130	1	20	
Mercury, Total	1.99	0.20	0.050	ug/l	1.00	1.18	81	70-130	1	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297 THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

Project ID: Routine Outfall 003

618 Michillinda Avenue, Suite 200

Sampled: 01/25/08 Arcadia, CA 91007 Report Number: IRA2500 Received: 01/25/08

Attention: Bronwyn Kelly

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
IRA2500-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	0.67	4.8	15
IRA2500-01	Antimony-200.8	Antimony	ug/l	0.26	2.0	6
IRA2500-01	Cadmium-200.8	Cadmium	ug/l	0.19	1.0	4
IRA2500-01	Chloride - 300.0	Chloride	mg/l	9.42	0.50	150
IRA2500-01	Copper-200.8	Copper	ug/l	3.26	2.0	14
IRA2500-01	Hg_w 245.1	Mercury, Total	ug/l	0.033	0.20	0.13
IRA2500-01	Lead-200.8	Lead	ug/l	0.44	1.0	5.2
IRA2500-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	2.39	0.26	10
IRA2500-01	Sulfate-300.0	Sulfate	mg/l	18	0.50	250
IRA2500-01	TDS - SM 2540C	Total Dissolved Solids	mg/l	167	10	850
IRA2500-01	Thallium-200.8	Thallium	ug/l	0.0024	1.0	2

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Routine Outfall 003

618 Michillinda Avenue, Suite 200 Sampled: 01/25/08

Arcadia, CA 91007 Report Number: IRA2500 Received: 01/25/08
Attention: Bronwyn Kelly

DATA QUALIFIERS AND DEFINITIONS

Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the

Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

MWH-Pasadena/Boeing

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Routine Outfall 003

Sampled: 01/25/08

Received: 01/25/08

Report Number: IRA2500

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	Californi
EPA 1664A	Water		
EPA 200.8-Diss	Water	X	X
EPA 200.8	Water	X	X
EPA 300.0	Water	X	X
SM2540C	Water	X	

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chrnic

Samples: IRA2500-01

Eberline Services - SUB

2030 Wright Avenue - Richmond, CA 94804

Analysis Performed: Gamma Spec

Samples: IRA2500-01

Analysis Performed: Gross Alpha

Samples: IRA2500-01

Analysis Performed: Gross Beta

Samples: IRA2500-01

Analysis Performed: Radium, Combined

Samples: IRA2500-01

Strontium 90 Analysis Performed:

Samples: IRA2500-01

Analysis Performed: Tritium Samples: IRA2500-01

Analysis Performed: Uranium, Combined

Samples: IRA2500-01

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Routine Outfall 003

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: IRA2500

Sampled: 01/25/08
Received: 01/25/08

Attention: Bronwyn Kelly

Vista Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762 Analysis Performed: 1613-Dioxin-HR-Alta

Samples: IRA2500-01

Weck Laboratories, Inc

14859 E. Clark Avenue - City of Industry, CA 91745

Method Performed: EPA 245.1 Samples: IRA2500-01

Only test if second rain event of the year Unfiltered and unpreserved analysis Filter w/in 24hrs of receipt at lab Page 1 of Time of readings = \$ 25 10 Days Normal Sample Integrity: (check) Intact On loe: Turn around Time: (check) Field readings: 72 Hours 48 Hours ANALYSIS, REQUIRED Cd, Cu, Pb, Hg, Ti × Total Dissolved Metals: Sb, × Chronic Toxicity (1,109 no 0,109) (<mark>608:0</mark>)' K-40' CS-131 muins1U ,(0.409) 822 mulbeA & (1.509 to 0.509) × Combined Radium 226 (0.806), Sr-90 (905.0), Tetal 3c/5C/) Beta(900.0), Tritium (H-3) Date/Time: Date/Time: Gross Alpha(900.0), Gross CHAIN OF CUSTODY FORM × **LDS** CL¹ 2O⁵ NO³+NO⁵-N Oil & Grease (1664-HEM) TCDD (and all congeners) × Total Recoverable Metals: Sb, Cd, Cu, Pb, Hg, Tl Received By Received By 2A, 2B 3A, 3B Bottle # 4 9 6A 6B ω Boeing-SSFL NPDES Stormwater at RMHF Routine Outfall 003 Preservative (626) 568-6515 None None None Pho ne Number (626) 568-6691 Ů H N O N H None None None S N H ᄗ Fax Number: Sampling Date/Time Date/Time: 1-25-08 Project Test America version 12/20/07 Project Manager Bronwyn Kelly # of Cont. Test America Contact: Joseph Doak 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 2.5 Gal Cube 500 ml Amber 1 Gal Poly Container 1L Amber 1L Amber 1L Poly 1L Poly 1L Poly 500 ml Poly 500 ml Poly Sampler: Makiscat. Client Name/Address Relinquished By Sample MWH-Arcadia ≥ **fuished By** Outfall 003 | W ≥ 3 ≥ ≥ ≥ Relinguished By Outfall 003 Description Outfall 003 Outfall 003-Outfall 003 Outfall 003 Outfall 003 Outfall 003 Outfall 003 Sample

IRA 2500

LABORATORY REPORT

Date:

February 3, 2008

Client:

TestAmerica - Irvine

17461 Derian Ave., Suite 100

Irvine, CA 92614 Attn: Joseph Doak Aquatic Testing Laboratories

"dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003

(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.:

A-08012607-001

Sample ID.:

IRA2500-01 (Outfall 003)

Sample Control:

The sample was received by ATL within the recommended hold time, in a chilled

state, and with the chain of custody record attached. Testing was conducted on only

one sample per client instruction.

Date Sampled:

01/25/08

Date Received:

01/26/08

Temp. Received:

6°C

Chlorine (TRC):

 $0.0 \, \text{mg/l}$

Date Tested:

01/26/08 to 02/02/08

Sample Analysis:

The following analyses were performed on your sample:

Ceriodaphnia dubia Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

Result Summary:

Chronic:

NOEC

TUc

Ceriodaphnia Survival:

100%

1.0

Ceriodaphnia Reproduction:

100%

1.0

Quality Control:

Reviewed and approved by:

Laboratory Director

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

Lab No.: A-08012607-001

Client/ID: Test America - Outfall 003

Date Tested: 01/26/08 to 02/02/08

TEST SUMMARY

Test type: Daily static-renewal.

Species: Ceriodaphnia dubia.

Age: < 24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 +/- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

QA/QC Batch No.: RT-080106.

Endpoints: Survival and Reproduction.

Source: In-laboratory culture.

Food: .1 ml YTC, algae per day. Test solution volume: 15 ml.

Number of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 7 days.

Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Survival	Mean Number of Young Per Female
Control	100%	24.8
100% Sample	100%	29.6
Sample not statistically	significantly less than Co	ontrol for either endpoint.

CHRONIC TOXICITY

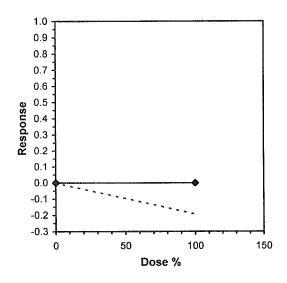
Survival NOEC	100%
Survival TUc	1.0
Reproduction NOEC	100%
Reproduction TUc	1.0

QA/QC TEST ACCEPTABILITY

Parameter	Result
Control survival ≥80%	Pass (100% survival)
≥15 young per surviving control female	Pass (24.8 young)
≥60% surviving controls had 3 broods	Pass (100% with 3 broods)
PMSD <47% for reproduction; if >47% and no toxicity at IWC, the test must be repeated	Pass (PMSD = 7.4%)
Statistically significantly different concentrations relative difference > 13%	Pass (no concentration significantly different)
Concentration response relationship acceptable	Pass (no significant response at concentration tested)

Ceriodaphnia Survival and Reproduction Test-7 Day Survival											
Start Date:	ate: 1/26/2008 15:30		Test ID:	8012607			Sample ID:		OUTFALL 003		
End Date:	2/2/2008 14:30		Lab ID:	CAATL-Aquatic Testing Labs			Sample Type:		EFF2-Industrial		
Sample Date:	1/25/2008 0	8:25	Protocol:	EPA-821-R-	-02-013		Test Specie	s:	CD-Cerioda	phnia dubia	
Comments:											
Conc-%	1	2	3	4	5	6	7	8	9	10	
D-Contro	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
100	1.0000	1.0000	1 0000	1.0000	1.0000	1.0000	1 0000	1.0000	1 0000	1.0000	

			4	Not			Fisher's 1-Tailed			Isotonic		
Conc-%	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Mean	N-Mean		
D-Control	1.0000	1.0000	0	10	10	10		····	1.0000	1.0000		
100	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000		


Hypothesis Test (1-tail, 0.05)			NOEC	LOEC	ChV	TU				
Fisher's Exact Test			100	>100		1				
Treatments v	s D-Control							1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		
						olation (20	00 Resamples)			
Point	%	SD	95%	6 CL	Skew					
IC05	>100									
IC10	>100									
C15	>100						1.0	CONTROL OF THE PROPERTY OF THE		
C20	>100						0.9			
C25	>100						4			
C40	>100						0.8 -			
IC50	>100					_	0.7			
						-	J			
							9 0.6			
							9 0.6 - 0.5 - 0.4 -			
							is .			
							αž ^{0.4}]			
							0.3 -			
							0.2			
							0.2]			
							0.1 -			
							0.0			
							0.0 0	50	100	150
							ŭ		ie %	
								DOS	FG 70	

	A STATE OF THE STA		Ceri	odaphnia St	urvival and	Reprod	uction Test-	Reproduc	tion	
Start Date: End Date: Sample Date: Comments:	1/26/2008 1 2/2/2008 14 1/25/2008 0	:30	Test ID: Lab ID: Protocol:	8012607 CAATL-Aqu EPA-821-R-		g Labs	Sample ID: Sample Typ Test Specie	e:	OUTFALL 0 EFF2-Indus CD-Cerioda	
Conc-%	1	2	3	4	5	6	7	8	9	10
D-Control	26.000	22.000	24.000	26.000	24.000	25.000	26.000	27.000	26.000	22.000
100	28.000	31.000	28.000	27.000	35.000	27.000	29.000	34.000	29.000	28.000

		*		Transforn	n: Untrans	formed			1-Tailed		Isoto	onic
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
D-Control	24.800	1.0000	24.800	22.000	27.000	7.061	10				27.200	1.0000
100	29.600	1.1935	29.600	27.000	35.000	9.582	10	-4.554	1.734	1.828	27.200	1.0000

Auxiliary Tests	Statistic	3-1	Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.05)	0.916354		0.905		0.824122	0.36145
F-Test indicates equal variances (p = 0.17)	2.623188		6.541086			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates no significant differences	1.827863	0.073704	115.2	5.555556	2.5E-04	1, 18
Treatments vs D-Control						

Linear Interpolation (200 Resamples) Skew Point SD 95% CL >100 IC05 IC10 >100 >100 IC15 IC20 >100 IC25 >100 IC40 >100 IC50 >100

CERIODAPHNIA DUBIA CHRONIC BIOASSAY EPA METHOD 1002.0 Raw Data Sheet

Lab No.: A-08012607-001

Client ID: TestAmerica - IRA2500-01 (Outfall 003) Start Date: 01/26/2008 DAY I DAY 2 DAY 3 DAY 4 DAY 5 DAY 6 DAY 7 0 hr 24hr 24hr Analyst Initials: Time of Readings: 1500 1570 1500 430 DO 8.2 pΗ 8.0 Control Temp 246 24.3 DO 100% pΗ Temp Additional Parameters Control 100% Sample Conductivity (umohms) 290 Alkalinity (mg/l CaCO₃) Hardness (mg/l CaCO₃) Ammonia (mg/l NH3-N) (0,2 Source of Neonates Replicate: В G Н Brood ID: 42 G4 Zš Number of Young Produced Total Live Sample No. Live Analyst Day Young \mathbf{A} В \mathbf{C} E G Adults Initials H J 1 Carrie 2 C 0 0 3 0 11 10 4 0 28 10 Control 5 82 IU 12 10 6 0 15 51 0 0 7 12 13 16 10 22 24 26 24 25 Total 2フ 22 26 26 248 C 1 C O 2 0 0 10 3 22 5 4 100% 5 10 Z 10 6 10 7 10 Total 10 96

Circled fourth brood not used in statistical analysis.

⁷th day only used if <60% of the surviving control females have produced their third brood.

SUBCONTRACT ORDER

TestAmerica Irvine IRA2500

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Aquatic Testing Laboratories-SUB 4350 Transport Street, Unit 107

°C

Ventura, CA 93003

Phone :(805) 650-0546 Fax: (805) 650-0756

Project Location: California

Receipt Temperature:

ce: (Y) 1

Analysis	Units	Due	Expires	Comments
Sample ID: IRA2500-01	Water		Sampled: 01/25/08 08:25	pH=7.6, temp=47.7
Bioassay-7 dy Chrnic	N/A	02/05/08	01/26/08 20:25	Cerio, EPA/821-R02-013, Sub to Aquatic testing
Level 4 + EDD-OUT	N/A	02/05/08	02/22/08 08:25	**LEVEL IV QC, ACCESS 7 EDD**
Containers Supplied: 1 gal Poly (L)				

Released By

Released By

Date/Time

| 26/08 | 1449

| Released By

Date/Time

Received By Date/Time

Received By Date

ate/Time Page 1 of 1

NPDES - 707

REFERENCE TOXICANT DATA

CERIODAPHNIA CHRONIC BIOASSAY

EPA METHOD 1002.0 REFERENCE TOXICANT - NaCl

QA/QC Batch No.: RT-080106

Date Tested: 01/06/08 to 01/12/08

TEST SUMMARY

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*.

Age: <24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 +/- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

Reference Toxicant: Sodium chloride (NaCl).

Endpoints: Survival and Reproduction.

Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 20 ml.

Number of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 6 days.

Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Surv	ival	Mean Numb Young Per F	
Control	100%		20.5	
0.25 g/l	100%		19.5	
0.5 g/l	100%		19.5	
1.0 g/l	100%		14.0	*
2.0 g/l	80%		3.2	*
4.0 g/l	0%	*	0	**

^{*} Statistically significantly less than control at P = 0.05 level

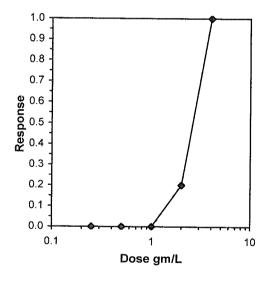
** Reproduction data from concentrations greater than survival NOEC are

excluded from statistical analysis.

CHRONIC TOXICITY

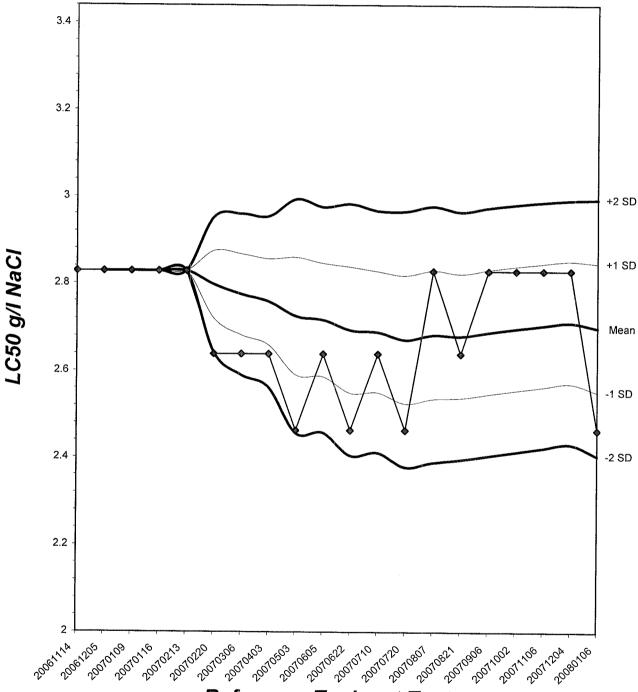
Survival LC50	2.5 g/l
Reproduction IC25	0.88 g/l

QA/QC TEST ACCEPTABILITY


Parameter	Result
Control survival ≥80%	Pass (100% Survival)
≥15 young per surviving control female	Pass (20.5 young)
≥60% surviving controls had 3 broods	Pass (90% with 3 broods)
PMSD <47% for reproduction	Pass (PMSD = 19.1%)
Stat. sig. diff. conc. relative difference > 13%	Pass (Stat. sig. diff. conc. = 31.7%)
Concentration response relationship acceptable	Pass (Response curve normal)

	·		Cerioda	aphnia Su	rvival and	Reprodu	uction Tes	t-Surviv	al Day 6	William William Washington	
Start Date:	1/6/2008 1	3:00					Sample ID		REF-Ref Toxicant		
End Date:	1/12/2008 13:00 Lab		Lab ID:	CAATL-Ac	uatic Tes					dium chloride	
Sample Date: Comments:	1/6/2008			FWCH-EF		02-013	Test Spec	•		laphnia dubia	
Conc-gm/L	1	2	3	4	5	6	7	8	9	10	
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
0.25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
0.5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
2	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	
4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

_				Not			Fisher's	1-Tailed	Number	Total
Conc-gm/L	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Resp	Number
D-Control	1.0000	1.0000	0	10	10	10	***************************************		0	10
0.25	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
0.5	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
1	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
2	0.8000	0.8000	2	8	10	10	0.2368	0.0500	2	10
4	0.0000	0.0000	10	Ō	10	10	0.2000	0.0300	10	10


Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	· · · · · · · · · · · · · · · · · · ·
Fisher's Exact Test	2	4	2.82843		
Treatments vs D-Control					

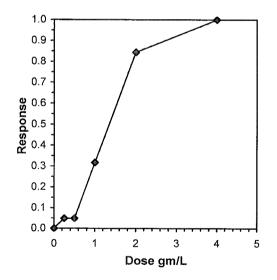
			, , , , , , , , , , , , , , , , , , ,	Trimmed Spearman-Karber
Trim Level	EC50	95%	CL	
0.0%	2.4623	2.0663	2.9342	
5.0%	2.5108	2.0545	3.0683	
10.0%	2.5519	1.9976	3.2599	1.0
20.0%	2.5937	2.2616	2.9745	1
Auto-0.0%	2.4623	2.0663	2.9342	0.9

Ceriodaphnia dubia Chronic Survival Laboratory Control Chart

CV% = 5.46

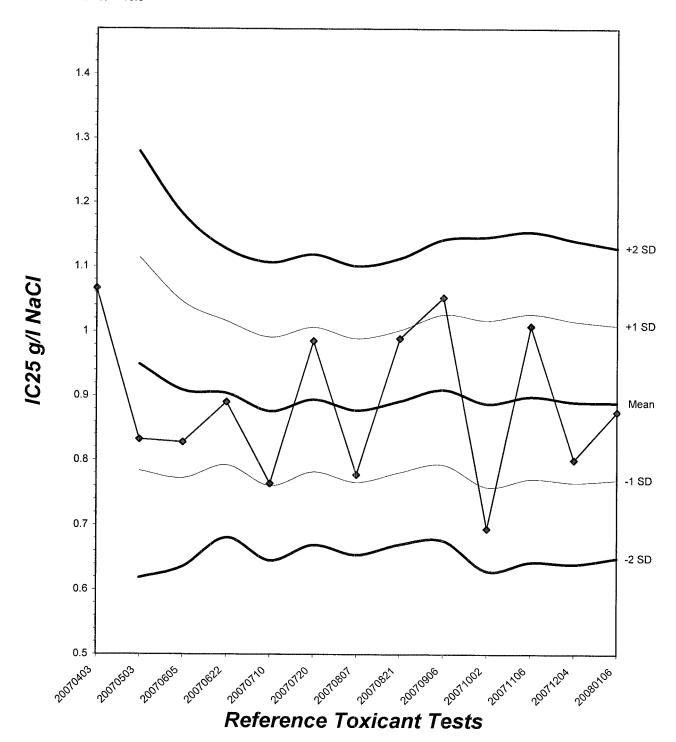
Reference Toxicant Tests

			Ceriod	aphnia Su	rvival and	Reprodu	uction Tes	st-Repro	duction	
Start Date:	1/6/2008 1	3:00	Test ID:	D: RT-080106c			Sample ID):	REF-Ref Toxicant	
End Date:	1/12/2008 13:00 La		Lab ID:	CAATL-Ad	quatic Tes	ting Labs	Sample Ty	/pe:	NACL-Soc	dium chloride
Sample Date:	1/6/2008		Protocol:	FWCH-EF	A-821-R-	02-013	Test Spec	ies:	CD-Cerioo	laphnia dubia
Comments:						and the second				-
Conc-gm/L	1	2	3	4	5	6	7	8	9	10
D-Control	23.000	11.000	21.000	21.000	23.000	20.000	19.000	22.000	20.000	25.000
0.25	12.000	24.000	19.000	22.000	9.000	20.000	21.000	21.000	22.000	25.000
0.5	21.000	19.000	21.000	22.000	16.000	12.000	22.000	21.000	22.000	19.000
1	19.000	9.000	9.000	19.000	14.000	10.000	16.000	17.000	19.000	8.000
2	8.000	2.000	2.000	5.000	4.000	3.000	3.000	5.000	0.000	0.000
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000


				Transform: Untransformed					1-Tailed	Isote	onic
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Mean	N-Mean
D-Control	20.500	1.0000	20.500	11.000	25.000	18.432	10			20.500	1.0000
0.25	19.500	0.9512	19.500	9.000	25.000	26.177	10	102.00	76.00	19.500	0.9512
0.5	19.500	0.9512	19.500	12.000	22.000	16.617	10	94.50	76.00	19.500	0.9512
*1	14.000	0.6829	14.000	8.000	19.000	32.819	10	62.50	76.00	14.000	0.6829
*2	3.200	0.1561	3.200	0.000	8.000	76.263	10	55.00	76.00	3.200	0.1561
4	0.000	0.0000	0.000	0.000	0.000	0.000	10			0.000	0.0000

Auxiliary Tests					Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates nor	n-normal dis	stribution	$(p \le 0.05)$	****	0.91281	0.947	-0.9793	0.67912
Bartlett's Test indicates equal va-	riances (p =	0.25)			5.39	13.2767		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU		**************************************		Pitched traces
Steel's Many-One Rank Test	0.5	1	0.70711					
Tue atom and a rea D. O and and								

Treatments vs D-Control


Linear	Interpo	lation ((200	Resam	ples)
--------	---------	----------	------	-------	-------

Point	gm/L	SD	95%	CL	Skew
IC05	0.5023	0.1876	0.0809	0.6178	-0.0659
IC10	0.5955	0.1768	0.1617	0.7497	-0.5184
IC15	0.6886	0.1424	0.2426	0.9253	-0.5389
IC20	0.7818	0.1259	0.4995	1.0352	0.2728
IC25	0.8750	0.1224	0.6413	1.1094	0.3153
IC40	1.1574	0.1139	0.9216	1.3331	-0.0890
IC50	1.3472	0.0972	1.1197	1.4847	-0.4227

Ceriodaphnia dubia Chronic Reproduction Laboratory Control Chart

CV% = 13.5

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-080106

Start Date: 01/06/2008

				Nu	ımbei	r of Y	oung	Produ	uced			Total	No.	Analyst
Sample	Day	A	В	C	D	E	F	G	Н	I	J	Live Young	Live Adults	Initials
	1	0	0	0	U	\mathcal{O}	0	\bigcirc	0	0	0	O	10	2
	2	0	0	0	0	0	C	0	0	0	\bigcirc		10	2
	3	0	0	2	0	0	0	3	\mathcal{C}	3	0	8	10	2
C 1	4	4	3	0	4	3	2	0	2	\mathcal{O}	3	21	10	In
Control	5	9	8	フ	7	6	フ	6	7	6	7	70	10	
	6	10	0	12	10	14	11	10	13	11	کا	106	10	
	7		_{gal} ante,	-			(Seepart)	-	esterma,	chestamen.			444	
	Total	23	M	21	H	73	20	19	22	20	25	205	10	h
	1	0	0	0	0	0	0	0	0	\sim	c	0	10	
	2	0	0	0	0	0	0	0	0	0	0	0	10	
	3	0	3	0	3	0	2_	\cdot	0	ろ	0	(1	10	In
0.25 //	4	Ч	0	2	0	3	6	4	2	0	3	24	10	h
0.25 g/l	5	8	8	フ	5	6	0	7	6	7	3	62	10	h
	6	0	B	10	14	0	12	10	13	12	14	98	10	1
	7			gendlero.			(حسون	. ggilliddin.				-,0000000000000000000000000000000000000	
	Total	12	24	19	22	9	20	21	21	.25	25	195	10	
	1	0	0	0	0	0	\mathcal{O}	0	0	0	0	0	10	A
	2	0	0	0	0	0	0	\bigcirc	0	0	<u></u>	0	10	h
	3	2	0	2	0	0	\bigcirc	3	ک	-0	0	9	10	6
0.5 ~/1	4	0	3	0	3	4	3	\subset	0	3	3	19	10	m
0.5 g/l	5	9	6	7	7	0	9	8	7	?	6	66	10	
	6	10	10	12	12	12	0	١١	ĪZ	12	10	101	10	6
	7		~				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			<u>~</u>	2.0	-	-	4
	Total	21	19	21	22	16	12	22	21	22	19	195	10	1

Circled fourth brood not used in statistical analysis.

^{7&}lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-080106

Start Date: 01/06/2008

				Ni	ımbe	r of Y	oung	Produ	ıced			Total	No.	Analyst
Sample	Day	A	В	С	D	E	F	G	Н	I	J	Live Young	Live Adults	Initials
	1	0	0	0	0	0	0	0	0	0	0	0	10	M
	2	0	0	0	0	0	0	0	0	0	C	0	10	h
	3	0	0	0	0	0	3	0	0	2	0	_5	10	
1.0 g/l	4	3	2	2	3	0	0	3	2	0	2	17	10	h
1.0 g/1	5	5	2	>	4	5	7		4	7	تعکی	57	10	1
	6	1(0	0	12	9	0	8	11	10	0	61	10	
	7	-			_	÷	-parent	gapama,					**	
	Total	19	9	9	19	14	10	16	17	19	8	140	10	
	1	0	0	\sim	0	0	C	0	0	X	0	0	9	h
	2	0	0	0	0	0	0	0	0		0	0	9	
	3	O	0	0	0	0	0	\mathcal{O}	0	/	0	0	g	
2.0 -//	4	S	0	又	3	0	0	0	2	parame.	0	9	9	
2.0 g/l	5	3	Ù	0	2	2	N	3	0	***************************************	0	13	9	
	6	3	2	· 0	0	2	\mathcal{O}	0	3	,	X	10	8	0
	7					Carrence.	The same		_		t-	-	***************************************	A THE PARTY OF THE
	Total	8	2	2	5	4	3	3	5	0	0	32	8	w
	1	\times	\times	X	\times	X	\nearrow	\times	X	\setminus	入	0	0	n
	2							al restriction,	*******	_g wa.	_			
	3		ajementa.	_{de} state English		_		-	***************************************		dame.		Programmes.	
4.0 ~/1	4	,	and a	4-200-020-VA)				Sparrings.		,	Against March 1	gran.	
4.0 g/l	5		e	***************************************	-				Oleman,	ou _{mann} ,	quilliangus,	E-Agreement and spirits a	-	,
	6		-		· •	-	_{per} uma.		Special Control of the Control of th	(g/200-acc.	Allegan and Allega	4	
	7						- II-II-	, marie	quillan	· Comment			Quintermander,	
	Total	\bigcirc	C	\mathcal{C}	\bigcirc	0	c	\circ	0	0	0	0	\sim	1

Circled fourth brood not used in statistical analysis.

^{7&}lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Water Chemistries Raw Data Sheet

QA/QC No.: RT-080106

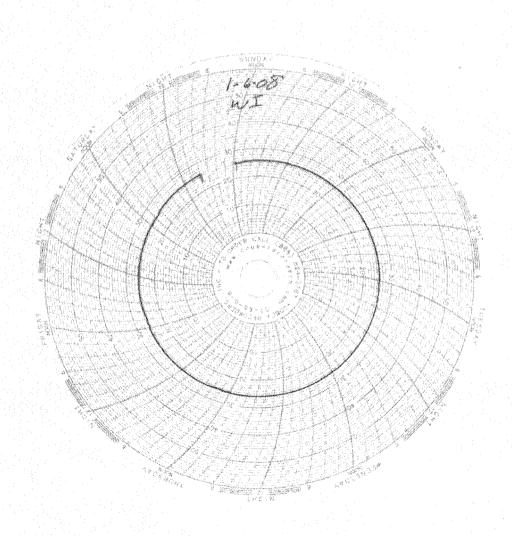
Start Date: 01/06/2008

	_														
		DA	Y 1	DA	Y 2	DA	Y 3	DA	Y 4	DA	Y 5	DA	Y 6	DA	Y 7
		Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
Analyst I	nitials:	n		1	1 pour		1	1	9~	1	2		the	a and a second	,,
Time of R	eadings:	(30)	1330	1330	1300	130	1230	1270	1300	1300	1300	1300	Da	· Salestinas	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	DO	7-6	7.2	24	7.7	7.4	7.6	24	75	8,2	7-8	7.9	フン		
Control	рН	76	24	7.4	2.3	7.3	7.2	フン	7-7	7.5	7-6	7-9	7.6		_
	Temp	243	25-1	254	24.8	241	24.9	249	25-1	244	24.0	24:6	25-1		
	DO	7.5	7-3	7.5	7.5	7-5	7-7	7-3	7.4	8,2	2.8	7.9	7.7	de qualitation on .)
0.25 g/l	pН	78	7.3	2-4	74	7.4	7.2	7.3	7.4	26	7-5	76	7.7		(
	Temp	244	252	253	249	242	24.5	24.7	250	24.4	25-1	24.6	25-1		
	DO	7.4	22	7.4	7-6	7.01	7.5	7-4	7.6	8-5	7-6	8.0	78	and the state of t)
0.5 g/l	рН	7.5	73	74	7.4	7-4	7.2	7.3	75	7.6	3-5	7.7	クーフ	-	_
	Temp	243	251	35.3	24.9	24.1	25.2	246	24.5	24.4	249	24.4	249		
	DO	7.5	22	26).)	7.3	78	24	7.4	8, d	75	7-7	フーフ		
1.0 g/l	рН	2.5	7.3	7-10	7.5	7.4	7.2	7-3	75	70	>-i	7.4	7-6	1	
	Temp	244	25.2	25-1	247	24.2	25.2	24.6	25.0	24.4	249	24.6	250		
	DO	7.4	74	7.6	7.5	74	28	22	7.6	8.2	7-6	26	グン	Marie Control of the	1
2.0 g/l	рН	7.5	7.4	7-6	7.6	7.4	2.3	22	7.6	7.5	7-6	29	7.6.		
	Temp	jus	25-1	24-0	246	24.2	253	24.8	25.2	24-4	248	24.6	25/		
	DO	7-5	7.8	Carperna primario	piam _{koje}	Magazine	James	e de la constitución de la const	Same and the same of the same	,gapens	ri taquanda.	e e e e e e e e e e e e e e e e e e e	-philiophica.	1	COLUMN TO SERVICE SERV
4.0 g/l	pН	7,6	7.8	Water-		Comments of the Comments of th	-	gazania.	and the second s	The particularity and	gardening.	-gaglosseries -		-	1
	Temp	243	24.6	*********	401040000	Aleman,	Sept.	: Desirent to the second		*COMPLETE		, porter	gridening		(magazini,
	Di	ssolved	l Oyyge	n (DO)	reading	s are in	mg/1 (O.: Temr	erature	(Temn	readin	os are in	· °C		

Dissolved Oxygen (DO) readings are in mg/l O₂; Temperature (Temp) readings are in °C.

		Control		Н	igh Concentratio	n
Additional Parameters	Day 1	Day 3	Day 5	Day 1	Day 3	Day 5
Conductivity (μS)	350	348	305	6400	3/00	3210
Alkalinity (mg/l CaCO ₃)	66	65	63	65	66	64
Hardness (mg/l CaCO ₃)	98	97	98	98	9)	98

				Source of						
Replicate:	A	В	С	D	E	F	G	Н	I	J
Brood ID:	23	ĵβ	30	2-6	2A	30	38	2k	36	7-61



Laboratory Temperature Chart

QA/QC Batch No: **RT-080106**

Date Tested: 01/06/08 to 01/12/08

Acceptable Range: 25+/- 1°C

February 27 2008

Mr. Joseph Doak Test America, Inc. 17461 Derian Avenue, Suite 100 Irvine, CA 92614

Reference: Eberline Services NELAP Cert #01120CA

Test America Project Nos. IRA2496, IRA2497, IRA2499, IRA2500

IRA2506, IRA2565

Eberline Services Reports R801170-8687, R801171-8688, R801172-8689

R801173-8690, R801174-8691, R801175-8692

Dear Mr. Doak:

Enclosed are results from the analyses of six water samples received on January 29, 2008. The samples were analyzed according to the accompanying Test America Subcontract Order Forms, the requested analyses were: gross alpha/gross beta (EPA 900.0), tritium (H-3, EPA906.0), Sr-90 (EPA905.0), Ra-226 (EPA903.1), Ra-228 (EPA 904.0), total uranium (ASTM D-5174), and gamma spectroscopy (EPA901.1, K-40 and Cs-137 only). The parenthetical G after a nuclide indicates that the result was obtained by gamma spectroscopy; a "U" in the results column indicates that the nuclide was not detected greater than the indicated minimum detectable activity (MDA). The samples were not filtered prior to analysis. The samples were analyzed in batches with common QC samples. All samples were batched with QC samples 8687-002, 003, 004, and 005, except for total uranium analysis; the QC samples for total-U analysis are 8682-002, 003, 004, and 005. Batch quality control samples consisted of LCS's, blank analyses, duplicate analyses, and matrix spike analyses (gross alpha/gross beta, H-3, Ra-226, Total-U only). All QC sample results were within the limits defined in Eberline Services Quality Control Procedures Manual.

Please call me if you have any questions concerning this report.

Regards,

Melissa Mannion

Senior Program Manager

Meliona Mann

MCM/njv

Enclosure: Reports/CoC's

Analytical Services
2030 Wright Avenue
P.O. Box 4040
Richmond, California 94804-0040
(510) 235-2633 Fax (510) 235-0438
Toll Free (800) 841-5487
www.ebgrijgeservjas.com

Eberline Services

ANALYSIS RESULTS

 SDG
 8690
 Client
 TA IRVINE

 Work Order
 R801173-01
 Contract
 PROJECT# IRA2500

 Received Date
 01/29/08
 Matrix
 WATER

Client Sample ID	Lab Sample ID	Collected	<u>Analyzed</u>	Nuclide	Results ± 2σ	Units	MDA
IRA2500-01	8690-001	01/25/08	02/16/08	GrossAlpha	1.34 ± 0.61	pCi/L	0.60
			02/16/08	Gross Beta	4.34 ± 0.66	pCi/L	0.91
			02/20/08	Ra-228	0.449 ± 0.20	pCi/L	0.48
			02/15/08	K-40 (G)	U	pCi/L	21
			02/15/08	Cs-137 (G)	U	pCi/L	0.81
			02/21/08	H-3	-60.6 ± 92	pCi/L	160
			02/20/08	Ra-226	0.001 ± 0.47	pCi/L	0.90
			02/14/08	Sr-90	0.269 ± 0.28	pCi/L	0.55
			02/19/08	Total U	0.380 ± 0.043	pCi/L	0.022

Certified by NO Report Date 02/27/08
Page 1

Eberline Services

QC RESULTS

SDG 8690

Client TA IRVINE

Work Order <u>R801173-01</u>

Received Date 01/29/08

Contract PROJECT# IRA2500

Matrix <u>WATER</u>

Lab						
Sample ID	Nuclide	Results	<u>Units</u>	Amount Added	MDA	Evaluation
LCS						
8682-002	GrossAlpha	10.6 ± 0.84	pCi/Smpl	10.1	0.29	105% recovery
	Gross Beta	9.49 ± 0.38	pCi/Smpl	9.39	0.29	101% recovery
	Ra-228	8.69 ± 0.54	pCi/Smpl	8.73	0.75	100% recovery
	Co-60 (G)	223 ± 11	pCi/Smpl	226	7.0	99% recovery
	Cs-137 (G)	253 ± 11	pCi/Smpl	236	8.1	107% recovery
	Am-241 (G)	215 ± 37	pCi/Smpl	252	47	85% recovery
	H-3	228 ± 14	pCi/Smpl	240	16	95% recovery
	Ra-226	5.92 ± 0.27	pCi/Smpl	5.58	0.085	106% recovery
	Sr-90	9.45 ± 0.73	pCi/Smpl	9.40	0.32	101% recovery
	Total U	1.06 ± 0.12	pCi/Smpl	1.13	0.004	94% recovery
BLANK						
8682-003	GrossAlpha	0.006 ± 0.13	pCi/Smpl	NA	0.25	<mda< td=""></mda<>
	Gross Beta	-0.090 ± 0.27	pCi/Smpl	NA	0.44	<mda< td=""></mda<>
	Ra-228	-0.089 ± 0.33	pCi/Smpl	NA	0.78	<mda< td=""></mda<>
	K-40 (G)	U	pCi/Smpl	NA	190	<mda< td=""></mda<>
	Cs-137 (G)	U	pCi/Smpl	NA	7.4	<mda< td=""></mda<>
	H-3	-4.88 ± 9.0	pCi/Smpl	NA	15	<mda< td=""></mda<>
	Ra-226	-0.014 ± 0.026	pCi/Smpl	NA	0.071	<mda< td=""></mda<>
	Sr-90	0.078 ± 0.24	pCi/Smpl	NA	0.54	<mda< td=""></mda<>
	Total U	0.00E 00 ± 1.9E-04	pCi/Smpl	NA	4.4E-04	<mda< td=""></mda<>
LCS						
8687-002	GrossAlpha	13.1 ± 0.92	pCi/Smpl	11.2	0.23	117% recovery
	Gross Beta	11.4 ± 0.46	pCi/Smpl	11.3	0.44	101% recovery
	Ra-228	10.3 ± 0.62	pCi/Smpl	9.87	0.85	104% recovery
	Co-60 (G)	504 ± 11	pCi/Smpl	525	6.4	96% recovery
	Cs-137 (G)	586 ± 10	pCi/Smpl	566	6.9	104% recovery
	Am-241 (G)	602 ± 20	pCi/Smpl	610	23	99% recovery
	H-3	250 ± 15	pCi/Smpl	263	16	95% recovery
	Ra-226	5.35 ± 0.25	pCi/Smpl	5.58	0.082	96% recovery
	Sr-90	10.7 ± 0.79	pCi/Smpl	10.3	0.34	104% recovery
		_	_			
BLANK						
8687-003	GrossAlpha	0.023 ± 0.14	pCi/Smpl	NA	0.25	<mda< td=""></mda<>
555. 555	Gross Beta		pCi/Smpl	NA	0.26	<mda< td=""></mda<>
	Ra-228	-0.313 ± 0.39	pCi/Smpl	NA	1.1	<mda< td=""></mda<>
		= -				

Eberline Services

SDG <u>8690</u> Work Order <u>R801173</u> Received Date <u>01/29/0</u>			Contrac	nt <u>TA IRVINE</u> ct <u>PROJECT# I</u> ix <u>WATER</u>	RA2500	
K-40 (G)	U	pCi/Smpl	NA	26	<mda< td=""><td></td></mda<>	
Cs-137 (G)	Ŭ	pCi/Smpl	NA	2.2	<mda< td=""><td></td></mda<>	
H-3	-7.14 ± 9.0	pCi/Smpl	NA	16	<mda< td=""><td></td></mda<>	
Ra-226	-0.013 ± 0.036	pCi/Smpl	NA	0.081	<mda< td=""><td></td></mda<>	
Sr-90	0.036 ± 0.20	pCi/Smpl	NA	0.45	<mda< td=""><td></td></mda<>	

All the second s	DUPLICATES		_			ORIGINALS				
									3 σ	
Sample ID	Nuclide	Results	± 2σ	<u>MDA</u>	Sample ID	Results $\pm 2\sigma$	<u>MDA</u>	RPD	(Tot) Eva	<u>11</u>
8682-004	GrossAlpha	3.13 ±	2.1	2.2	8682-001	2.52 ± 2.0	2.4	22	160 sat	is.
	Gross Beta	42.1 ±	2.3	2.1		42.3 ± 2.4	2.4	0	44 sat	is.
	Ra-228	0.070 ±	0.15	0.42		0.145 ± 0.17	0.44	-	0 sat	is.
	K-40 (G)	42.6 ±	18	9.6		36.0 <u>±</u> 19	13	17	102 sat	is.
	Cs-137 (G)	U		0.92		Ū	1.1	-	0 sat	is.
	H-3	-73.7 ±	92	160		-62.4 ± 94	160	-	0 sat	is.
	Ra-226	0.111 ±	0.44	0.80		-0.149 ± 0.46	0.96	-	0 sat	is.
	Sr-90	-0.108 ±	0.44	1.1		0.032 ± 0.30	0.58	-	0 sat	is.
	Total U	2.88 ±	0.32	0.022		2.75 ± 0.30	0.022	5	30 sat	is.
8687-004	GrossAlpha	2.52 ±	1.2	1.5	8687-001	2.21 ± 1.1	1.4	13	112 sat	is.
	Gross Beta	4.02 ±	1.0	1.5		4.33 ± 1.0	1.5	7	66 sat	is.
	Ra-228	0.123 ±	0.17	0.47		0.159 ± 0.19	0.49	-	0 sat	is.
	K-40 (G)	U		35		Ū	12	-	0 sat	is.
	Cs-137 (G)	U		1.5		U	0.53	-	0 sat	is.
	H-3	-114 ±	91	160		-77.4 ± 91	160	-	0 sat	tis.
	Ra-226	-0.221 ±	0.37	0.81		0.047 ± 0.45	0.83	-	0 sat	tis.
	Sr-90	-0.019 ±	0.24	0.58		0.076 ± 0.32	0.68	-	0 sa	tis.

	SPIKED SAMPLE				ORI	GINAL SAN	MPLE			
Sample ID	Nuclide	Results ±	<u>2σ ΜΙ</u>	<u>DA</u>	Sample ID	Results	± 2σ	<u>MDA</u>	<u>Added</u>	%Recv
8682-005	GrossAlpha	225 ± 12	2	.5	8682-001	$2.52 \pm$	2.0	2.4	163	136
	Gross Beta	192 ± 4.	5 2	. 4		42.3 ±	2.4	2.4	145	103
	H-3	15800 ± 31	.0 16	60		-62.4 ±	94	160	16000	99
	Ra-226	124 ± 4.	7 0	.94		-0.149 ±	0.46	0.96	112	111
	Total U	120 ± 15	2	. 2		2.75 ±	0.30	0.022	113	104
8687-005	GrossAlpha	153 ± 7 .	3 1	.3	8687-001	2.21 ±	1.1	1.4	114	132
	Gross Beta	107 ± 2.	7 1	.3		4.33 ±	1.0	1.5	103	100
	H-3	14900 ± 30	00 16	60		-77.4 ±	91	160	16000	94
	Ra-226	134 ± 4 .	9 0	.85		0.047 ±	0.45	0.83	123	109

Certified by Report Date 02/27/08
Page 3

SUBCONTRACT ORDER

TestAmerica Irvine IRA2500

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614 Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Eberline Services - SUB 2030 Wright Avenue Richmond, CA 94804 Phone :(510) 235-2633 Fax: (510) 235-0438

Project Location: California

Receipt Temperature: 6 °C

Ice: $\langle Y \rangle / N$

Analysis	Units	Due	Expires	CONTROL OF THE PROPERTY OF THE	Comments
Sample ID: IRA2500-01	Water		Sampled: 0	1/25/08 08:25	pH=7.6, temp=47.7
Gamma Spec-O	mg/kg	02/05/08	01/24/09 08:25		Boeing, permit, J flags, K-40 and CS-137 only
Gross Alpha-O	pCi/L	02/05/08	07/23/08 08:25		Boeing, permit, J flags
Gross Beta-O	pCi/L	02/05/08	07/23/08 08:25		Boeing, permit, J flags
Level 4 Data Package	N/A	02/05/08	02/22/08 08:25		
Radium, Combined-O	pCi/L	02/05/08	01/24/09 08:25		Boeing, permit, J flags
Strontium 90-O	pCi/L	02/05/08	01/24/09 08:25		Boeing, permit, J flags
Tritium-O	pCi/L	02/05/08	01/24/09 08:25		Boeing, permit, J flags
Uranium, Combined-O	pCi/L	02/05/08	01/24/09 08:25		Boeing, permit, J flags
Containers Supplied:					
2.5 gal Poly (J)	500 mL Aml	oer (K)			

Released By Date/Time

Date/Time

Received By D

Date/Time

Page 1 of 1

Ü

EBERLIZE € EBERLIZE

RICHMOND, CA LABORATORY

SAMPLE RECEIPT CHECKLIST

Jr 1	241	OÌ
------	-----	----

Client: TEST AMERICA Sity / WINE State CA
Date/Time received 12/08 [0 15 coc No 114 2500
Container I No LE CHEST Requested TAT (Days P.C. Received Yes [] No []
INSPECTION
Custody seals on shipping container intact?
1 Sustooy seals on snipping container dated & signed? Rec. Vec. No. 1 (1997)
Custody seals or sample container; intact?
- Custody seats on sample containers dated & signed res the □ N/- ✓
E Pracking material is
6 Number of samples in shipping container Sample Watri: W
Number of containers per sample
E Samples are in correct container (res. 1/2) No. [1]
9 Paperwork agrees with samples" Yes 🕌 No 🖂
10 Samples have Tabe [] Hazard Jabels Flad Jabels [] Appropriate sample Jabels X]
11 Samples are in good condition 🔭 Leaking 🐪 Broken Container 📋 Missing 📋
12 Samples are Preserved Not preserved 7 pr Preservative
13 Describe any anomailes
14 Was F. M. notified of any anomalies () Yes () / Inc. Date
01/24/08 10:20
15 Inspected by Date Time
Customer Beta/Gamma for Chamber Sustomer Beta/Gamma for Chamber Sample No. com mR/mr Wide Sample No. com mR/mr wide
1r4 2500-1 460
ion Champer Ser No Calibration date
Alona Meter Ser No Calibration date
Beta/Gamma Meter Ser. No. $\frac{10048V}{10048V}$ Calibration date $\frac{09 \text{ MAY C.7}}{100000000000000000000000000000000000$
117

Form SCP-01 0T-30-07

over 55 years of quality nuclear cervice:

February 11, 2008

Vista Project I.D.: 30210

Mr. Joseph Doak Test America-Irvine, CA 17461 Derian Avenue Suite 100 Irvine, CA 92614

Dear Mr. Doak,

Enclosed are the results for the one aqueous sample received at Vista Analytical Laboratory on January 29, 2008 under your Project Name "IRA2500". This sample was extracted and analyzed using EPA Method 1613 for tetra-through-octa chlorinated dioxins and furans. A standard turnaround time was provided for this work.

The following report consists of a Sample Inventory (Section I), Analytical Results (Section II) and the Appendix, which contains the chain-of-custody, a list of data qualifiers and abbreviations, Vista's current certifications, and copies of the raw data (if requested).

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com. Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha M. Maier Laboratory Director

Macle Moier

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAC for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista Analytical Laboratory.

Section I: Sample Inventory Report Date Received: 1/29/2008

<u>Vista Lab. ID</u> <u>Client Sample ID</u>

30210-001 IRA2500-01

NPDES - 725 Page 2 of 306

SECTION II

Project 30210 NPDES - 726
Page 3 of 306

Method Blank									EPA Method 161
Matrix:	Aqueous	QC Batch No.:	992	21	Lab	Sample:	0-MB001		
Sample Size:	1.00 L	Date Extracted:	2-F	Feb-08	Date	Analyzed DB-5:	6-Feb-08	Date An	alyzed DB-225: NA
	1.00 2	zwe zwew.	21	20 00	Duic	Timary Zea DD 5.	0100 00	Dute 1111	ary 200 DD 220. TAT
Analyte	Conc. (ug/L)	DL a	EMPC b	Qualifiers		Labeled Standa	ard	%R	LCL-UCL ^d Qualifiers
2,3,7,8-TCDD	ND	0.00000165			<u>IS</u>	13C-2,3,7,8-TCI	DD	73.6	25 - 164
1,2,3,7,8-PeCDD	ND ND	0.00000120				13C-1,2,3,7,8-Pe	eCDD	76.1	25 - 181
1,2,3,4,7,8-HxCI	DD ND	0.00000316				13C-1,2,3,4,7,8-	HxCDD	74.4	32 - 141
1,2,3,6,7,8-HxCI	DD ND	0.00000300				13C-1,2,3,6,7,8-	HxCDD	73.5	28 - 130
1,2,3,7,8,9-HxCI	DD ND	0.00000295				13C-1,2,3,4,6,7,	8-HpCDD	77.2	23 - 140
1,2,3,4,6,7,8-HpC	CDD ND	0.00000197				13C-OCDD		65.9	17 - 157
OCDD	ND	0.00000682				13C-2,3,7,8-TCI	DF	72.7	24 - 169
2,3,7,8-TCDF	ND	0.000000988				13C-1,2,3,7,8-Pe	eCDF	80.3	24 - 185
1,2,3,7,8-PeCDF	ND	0.00000123				13C-2,3,4,7,8-Pe	eCDF	66.6	21 - 178
2,3,4,7,8-PeCDF	ND	0.00000151				13C-1,2,3,4,7,8-	HxCDF	95.5	26 - 152
1,2,3,4,7,8-HxCI	OF ND	0.000000596				13C-1,2,3,6,7,8-	HxCDF	77.3	26 - 123
1,2,3,6,7,8-HxCI	DF ND	0.000000816				13C-2,3,4,6,7,8-	HxCDF	67.6	28 - 136
2,3,4,6,7,8-HxCI	DF ND	0.000000976				13C-1,2,3,7,8,9-	HxCDF	76.1	29 - 147
1,2,3,7,8,9-HxCI	DF ND	0.00000111				13C-1,2,3,4,6,7,	8-HpCDF	72.0	28 - 143
1,2,3,4,6,7,8-HpC	CDF ND	0.00000146				13C-1,2,3,4,7,8,	9-HpCDF	75.2	26 - 138
1,2,3,4,7,8,9-HpC	CDF ND	0.00000154				13C-OCDF		71.7	17 - 157
OCDF	ND	0.00000455			CRS	37Cl-2,3,7,8-TC	DD	77.0	35 - 197
Totals					Foot	tnotes			
Total TCDD	ND	0.00000165			a. Sar	nple specific estimated	detection limit.		
Total PeCDD	ND	0.00000209			b. Est	imated maximum possi	ble concentration.		
Total HxCDD	ND	0.00000304			c. Me	thod detection limit.			
Total HpCDD	0.000	000138			d. Lov	wer control limit - uppe	r control limit.		
Total TCDF	ND	0.000000988							
Total PeCDF	ND	0.00000136							
Total HxCDF	ND	0.000000843							
Total HpCDF	ND	0.00000150							

Analyst: MAS William J. Luksemburg 09-Feb-2008 13:10

OPR Results					EP A	A Method 1	1613
Matrix: Aqueous Sample Size: 1.00 L	QC Bate	J, 21	Lab Sample: Date Analyzed DB-5:	0-OPR001 6-Feb-08	Date Analyz	zed DB-225:	NA
Analyte	Spike Conc. Conc.	(ng/mL) OPR Limits	Labeled Standard	I	%R	LCL-UCL	Qualifier
2,3,7,8-TCDD	10.0 11	.2 6.7 - 15.8	<u>IS</u> 13C-2,3,7,8-TCDI)	77.8	25 - 164	
1,2,3,7,8-PeCDD	50.0 55	.0 35 - 71	13C-1,2,3,7,8-PeC	CDD	74.8	25 - 181	
1,2,3,4,7,8-HxCDD	50.0 54	.7 35 - 82	13C-1,2,3,4,7,8-H	xCDD	74.8	32 - 141	
1,2,3,6,7,8-HxCDD	50.0 54	.1 38 - 67	13C-1,2,3,6,7,8-H	xCDD	75.4	28 - 130	
1,2,3,7,8,9-HxCDD	50.0 54	.8 32 - 81	13C-1,2,3,4,6,7,8-	HpCDD	80.9	23 - 140	
1,2,3,4,6,7,8-HpCDD	50.0 54	.0 35 - 70	13C-OCDD		71.4	17 - 157	
OCDD	100 11	3 78 - 144	13C-2,3,7,8-TCDI	7	77.3	24 - 169	
2,3,7,8-TCDF	10.0 10	7.5 - 15.8	13C-1,2,3,7,8-PeC	DF	73.3	24 - 185	
1,2,3,7,8-PeCDF	50.0 55	.0 40 - 67	13C-2,3,4,7,8-PeC	DF	66.3	21 - 178	
2,3,4,7,8-PeCDF	50.0 55	.4 34 - 80	13C-1,2,3,4,7,8-H	xCDF	90.2	26 - 152	
1,2,3,4,7,8-HxCDF	50.0 54	.4 36 - 67	13C-1,2,3,6,7,8-H	xCDF	73.1	26 - 123	
1,2,3,6,7,8-HxCDF	50.0 56	6.0 42 - 65	13C-2,3,4,6,7,8-H	xCDF	69.8	28 - 136	
2,3,4,6,7,8-HxCDF	50.0 56	35 - 78	13C-1,2,3,7,8,9-H	xCDF	74.7	29 - 147	
1,2,3,7,8,9-HxCDF	50.0 55	.4 39 - 65	13C-1,2,3,4,6,7,8-	HpCDF	71.2	28 - 143	
1,2,3,4,6,7,8-HpCDF	50.0 55	.5 41 - 61	13C-1,2,3,4,7,8,9-	HpCDF	77.2	26 - 138	
1,2,3,4,7,8,9-HpCDF	50.0 55	.7 39 - 69	13C-OCDF		72.9	17 - 157	
OCDF	100 10	63 - 170	<u>CRS</u> 37Cl-2,3,7,8-TCD	D	86.5	35 - 197	

Analyst: MAS William J. Luksemburg 08-Feb-2008 12:17

Sample ID: IRAZ	2500-01								EPA N	Aethod 1613
Client Data			Sample Data		Lab	oratory Data				
	America-Irvine, CA		Matrix:	Aqueous	Lab	Sample:	30210-001	Date Re	ceived:	29-Jan-08
Project: IRA2 Date Collected: 25-Ja	2500 an-08		Sample Size:	1.00 L	QC	Batch No.:	9921	Date Ex	tracted:	2-Feb-08
Time Collected: 0825					Date	Analyzed DB-5:	7-Feb-08	Date An	alyzed DB-225:	NA
Analyte	Conc. (ug/L)	DL a	EMPC ^b	Qualifiers		Labeled Standa	ard	%R	LCL-UCL ^d	Qualifiers
2,3,7,8-TCDD	ND	0.000001	05		<u>IS</u>	13C-2,3,7,8-TCD	D	79.6	25 - 164	
1,2,3,7,8-PeCDD	ND	0.000000	764			13C-1,2,3,7,8-Pe	CDD	69.2	25 - 181	
1,2,3,4,7,8-HxCDD	ND	0.000001	90			13C-1,2,3,4,7,8-H	HxCDD	67.9	32 - 141	
1,2,3,6,7,8-HxCDD	ND	0.000001	91			13C-1,2,3,6,7,8-H	łxCDD	70.3	28 - 130	
1,2,3,7,8,9-HxCDD	ND	0.000001	83			13C-1,2,3,4,6,7,8	-HpCDD	71.6	23 - 140	
1,2,3,4,6,7,8-HpCDD	0.00000816			J		13C-OCDD		57.7	17 - 157	
OCDD	0.0000552					13C-2,3,7,8-TCD	F	79.1	24 - 169	
2,3,7,8-TCDF	ND	0.000000	724			13C-1,2,3,7,8-Pe	CDF	76.0	24 - 185	
1,2,3,7,8-PeCDF	ND	0.000000	757			13C-2,3,4,7,8-Pe	CDF	64.4	21 - 178	
2,3,4,7,8-PeCDF	ND	0.000000	932			13C-1,2,3,4,7,8-H	HxCDF	72.1	26 - 152	
1,2,3,4,7,8-HxCDF	ND	0.000000	686			13C-1,2,3,6,7,8-H	łxCDF	66.1	26 - 123	
1,2,3,6,7,8-HxCDF	ND	0.000000	784			13C-2,3,4,6,7,8-H	łxCDF	61.3	28 - 136	
2,3,4,6,7,8-HxCDF	ND	0.000000	968			13C-1,2,3,7,8,9-H	łxCDF	65.8	29 - 147	
1,2,3,7,8,9-HxCDF	ND	0.000001	20			13C-1,2,3,4,6,7,8	-HpCDF	60.1	28 - 143	
1,2,3,4,6,7,8-HpCDF	ND	0.000001	74			13C-1,2,3,4,7,8,9	-HpCDF	65.3	26 - 138	
1,2,3,4,7,8,9-HpCDF	ND	0.000001	79			13C-OCDF		62.2	17 - 157	
OCDF	ND	0.000010	1		CRS	37Cl-2,3,7,8-TCI)D	88.4	35 - 197	
Totals					Foo	tnotes				
Total TCDD	ND	0.000001	05		a. Sa	mple specific estimated	detection limit.			
Total PeCDD	ND	0.000002	31		b. Es	timated maximum poss	ible concentration.			
Total HxCDD	ND	0.000002	73		c. M	ethod detection limit.				
Total HpCDD	0.0000173			В	d. Lo	ower control limit - uppe	er control limit.			
Total TCDF	ND	0.000000	724							
Total PeCDF	ND	0.000000	836							
Total HxCDF	ND	0.000000	890							
Total HpCDF	ND	0.000002	43							

Analyst: William J. Luksemburg 08-Feb-2008 12:17

NPDES - 729
Project 30210

Page 6 of 306

APPENDIX

Project 30210 NPDES - 730
Page 7 of 306

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank.

D Dilution

E The amount detected is above the High Calibration Limit.

P The amount reported is the maximum possible concentration due to possible

chlorinated diphenylether interference.

H The signal-to-noise ratio is greater than 10:1.

I Chemical Interference

J The amount detected is below the Low Calibration Limit.

* See Cover Letter

Conc. Concentration

DL Sample-specific estimated detection limit

MDL The minimum concentration of a substance that can be measured and

reported with 99% confidence that the analyte concentration is greater

than zero in the matrix tested.

EMPC Estimated Maximum Possible Concentration

NA Not applicable

RL Reporting Limit – concentrations that correspond to low calibration point

ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
State of Alaska, DEC	CA413-02
State of Arizona	AZ0639
State of Arkansas, DEQ	05-013-0
State of Arkansas, DOH	Reciprocity through CA
State of California – NELAP Primary AA	02102CA
State of Colorado	
State of Connecticut	PH-0182
State of Florida, DEP	E87777
Commonwealth of Kentucky	90063
State of Louisiana, Health and Hospitals	LA050001
State of Louisiana, DEQ	01977
State of Maine	CA0413
State of Michigan	81178087
State of Mississippi	Reciprocity through CA
Naval Facilities Engineering Service Center	
State of Nevada	CA413
State of New Jersey	CA003
State of New Mexico	Reciprocity through CA
State of New York, DOH	11411
State of North Carolina	06700
State of North Dakota, DOH	R-078
State of Oklahoma	D9919
State of Oregon	CA200001-002
State of Pennsylvania	68-00490
State of South Carolina	87002001
State of Tennessee	02996
State of Texas	TX247-2005A
U.S. Army Corps of Engineers	
State of Utah	9169330940
Commonwealth of Virginia	00013
State of Washington	C1285
State of Wisconsin	998036160
State of Wyoming	8TMS-Q

SUBCONTRACT ORDER

TestAmerica Irvine

IRA2500

30210

°C

1.80

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Vista Analytical Laboratory-SUB

1104 Windfield Way

El Dorado Hills, CA 95762

Phone :(916) 673-1520

Fax: (916) 673-0106

Project Location: California

Receipt Temperature:

Ice: Y / N

Analysis	Units	Due	Expires	Comments	
Sample ID: IRA2500-01	Water		Sampled: 01/25/08 08:25	pH=7.6, temp=47.7	
1613-Dioxin-HR-Alta	ug/l	02/05/08	02/01/08 08:25	J flags,17 congeners,no TEQ,ug/L,sub=Vista	
Level 4 Data Package - Out	t N/A	02/05/08	02/22/08 08:25		
Containers Supplied: 1 L Amber (C)	1 L Amber (D)				

Released By

128/08 17:00

Date/Time

ne Received

Received By

Date/Time

Date/Time

Page 1 of 1

SAMPLE LOG-IN CHECKLIST

Vista Project #:	30210				1	TAT U	nsp	ecif	ied
Samples Arrival:	Date/Time	MAE	Initials:		Loc	cation	:10	2-2	}
	1/29/08	900	Shelf/Rack: Initials: Location: Shelf/Rack: Shelf/Rack: Cal DHL Hand Delivere Blue Ice Dry Ice C911 Thermomet Y Y Present? Location: Shelf/Rack: And DHL Hand Delivere N Present?						
	Date/Time		Initials:		Loc	ation	: W	R-2	\
Logged In:	1/29/08	1507	Bd	B	She	elf/Ra	ck:	<u>C</u> 2	·
Delivered By:	FedEx	UPS	Cal	DHL	-			Oth	ner
Preservation:	tce	Blue	e Ice	Dr	y Ice)		None	
Temp °C /, 8	E T	ime:	911		The	rmon	neter ID: IR-1		
•							\/F0	NO	NI A
							YES	NO	NA
Adequate Sample	Volume Receive	ed?		···-·			V /		
Holding Time Acce	ptable?	· · · · · · · · · · · · · · · · · · ·	. <u> </u>				V /	<u> </u>	
Shipping Containe	(s) Intact?								
Shipping Custody	Seals Intact?		:				V		
Shipping Documer	tation Present?		٠.				V		
Airbill	Trk# 70	904 34	1539	195	0		V		
Sample Container	Intact?								
Sample Custody Seals Intact?									1
Chain of Custody /	V								
COC Anomaly/Sar	nple Acceptanc	e Form comp	leted?			:			
If Chlorinated or Di	inking Water S	amples, Acce	ptable Pre	eservatio	n?				L

COC

Client

Vista

(None)

Dispose

Sample

Container

Retain

Return

Na₂S₂O₃ Preservation Documented?

Shipping Container

Comments:

SUBCONTRACT ORDER

TestAmerica Irvine IRA2500

8012813

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Weck Laboratories, Inc-SUB

14859 E. Clark Avenue

City of Industry, CA 91745

Phone: (626) 336-2139

Fax: (626) 336-2634

Project Location: California

Receipt Temperature:

°C Ice

Ice: Y / N

Analysis	Units	Due	Expires	Comments
Sample ID: IRA2500-01	Water		Sampled: 01/25/	708 08:25 pH=7.6, temp=47.7
Level 4 Data Package - We	c N/A	02/05/0	8 02/22/08 08:25	
Mercury - 245.1, Diss -OUT	mg/l	02/05/0	8 02/22/08 08:25	
Mercury - 245.1-OUT	mg/l	02/05/0	8 02/22/08 08:25	Boeing, permit, J flags
Containers Supplied:				
125 mL Poly w/HNO3 (N)	125 mL Po	oly (O)		

Reference By

Data/Tim

Received By

Received By

Date/Time,

6//2

NHDESPages 1 of 1

Weck Laboratories, Inc.

Analytical Laboratory Services - Since 1964

14859 E. Clark Ave., Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634 info@wecklabs.com www.wecklabs.com

CERTIFICATE OF ANALYSIS

TestAmerica, Inc. - Irvine **Client:**

Report Date:

02/04/08 10:39

17461 Derian Ave, Suite 100

Received Date:

01/28/08 08:45

Irvine, CA 92614

Turn Around:

Attention: Joseph Doak

Work Order #:

8012813

6 days

(949) 261-1022 Phone:

Fax: (949) 260-3297

Client Project:

IRA2500

NELAP #04229CA ELAP#1132 NEVADA #CA211 HAWAII LACSD #10143

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. Weck Laboratories, Inc. certifies that the test results meet all NELAC requirements unless noted in the case narrative. This analytical report is confidential and is only intended for the use of Weck Laboratories, Inc. and its client. This report contains the Chain of Custody document, which is an integral part of it, and can only be reproduced in full with the authorization of Weck Laboratories, Inc.

Dear Joseph Doak:

Enclosed are the results of analyses for samples received 01/28/08 08:45 with the Chain of Custody document. The samples were received in good condition. The samples were received at 7.9 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Reviewed by:

Kim G Tu

Project Manager

Page 1 of 6

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8012813 Project ID: IRA2500 Date Received: 01/28/08 08:45 Date Reported: 02/04/08 10:39

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Sampled by:	Sample Comments	Laboratory	Matrix	Date Sampled
IRA2500-01	Client		8012813-01	Water	01/25/08 08:25

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8012813 Project ID: IRA2500 Date Received: 01/28/08 08:45 Date Reported: 02/04/08 10:39

IRA2500-01 8012813-01 (Water)

Date Sampled: 01/25/08 08:25

Metals by EPA 200 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed		Data Qualifiers
Mercury, Dissolved	ND	0.050	ug/l	0.20	1	EPA 245.1	W8A1076	01/30/08	01/31/08	jlp	
Mercury, Total	ND	0.050	ug/l	0.20	1	EPA 245.1	W8A1076	01/30/08	01/31/08	jlp	

Week Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8012813 Project ID: IRA2500 Date Received: 01/28/08 08:45 Date Reported: 02/04/08 10:39

QUALITY CONTROL SECTION

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8012813 Project ID: IRA2500 Date Received: 01/28/08 08:45 Date Reported: 02/04/08 10:39

Metals by EPA 200 Series Methods - Quality Control

%REC

	Reporting			Spike S	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch W8A1076 - EPA 245.1										
Blank (W8A1076-BLK1)				Analyzed: 01/31/08						
Mercury, Dissolved	ND	0.20	ug/l							
Mercury, Total	ND	0.20	ug/l							
LCS (W8A1076-BS1)				Analyzed	01/31/08					
Mercury, Dissolved	0.913	0.20	ug/l	1.00		91	85-115			
Mercury, Total	0.913	0.20	ug/l	1.00		91	85-115			
Matrix Spike (W8A1076-MS1) Source: 8012935-01			Analyzed: 01/31/08							
Mercury, Dissolved	0.971	0.20	ug/l	1.00	0.0450	93	70-130			
Mercury, Total	0.971	0.20	ug/l	1.00	0.0450	93	70-130			
Matrix Spike (W8A1076-MS2)	Source: 8012939-01			Analyzed:	01/31/08					
Mercury, Dissolved	2.01	0.20	ug/l	1.00	1.18	83	70-130			
Mercury, Total	2.01	0.20	ug/l	1.00	1.18	83	70-130			
Matrix Spike Dup (W8A1076-MSD1)	Source: 8012935-01			Analyzed	01/31/08					
Mercury, Dissolved	0.957	0.20	ug/l	1.00	0.0450	91	70-130	1	20	
Mercury, Total	0.957	0.20	ug/l	1.00	0.0450	91	70-130	1	20	
Matrix Spike Dup (W8A1076-MSD2)	Source: 8012939-01		Analyzed: 01/31/08							
Mercury, Dissolved	1.99	0.20	ug/l	1.00	1.18	81	70-130	1	20	
Mercury, Total	1.99	0.20	ug/l	1.00	1.18	81	70-130	1	20	

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745

Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 8012813 Project ID: IRA2500 Date Received: 01/28/08 08:45 Date Reported: 02/04/08 10:39

Notes and Definitions

ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL)

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

% Rec Percent Recovery

Sub Subcontracted analysis, original report available upon request

MDL Method Detection Limit

MDA Minimum Detectable Activity

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California Department of Health Services.

The Reporting Limit (RL) is referenced as the Laboratory's Practical Quantitation Limit (PQL) or the Detection Limit for Reporting Purposes (DLR).

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS002.

APPENDIX G

Section 15

Outfall 003 – BMP Effectiveness, January 26, 2008 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project: BMP Effectiveness

Monitoring Program

Sampled: 01/26/08 Received: 01/26/08

Issued: 02/06/08 17:08

NELAP #01108CA California ELAP#1197 CSDLAC #10256

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

LABORATORY ID CLIENT ID MATRIX
IRA2558-01 003 EFF-1 Water

Reviewed By:

TestAmerica Irvine

Joseph Dock

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: BMP Effectiveness

Monitoring Program Sampled: 01/26/08

Report Number: IRA2558

Received: 01/26/08

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

INORGANICS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: IRA2558-01 (003 EFF-1 - Wa	ter)										
Reporting Units: g/cc	Dianlacament	0D01112	NI/A	NIA	0.00	1	02/01/08	02/01/08			
Density	Displacement	8B01112	N/A	NA	0.99	1	02/01/08	02/01/08			
Sample ID: IRA2558-01 (003 EFF-1 - Water)											
Reporting Units: mg/l											
Sediment	ASTM D3977	8B04100	10	10	ND	1	02/04/08	02/04/08			
Total Suspended Solids	EPA 160.2	8A30131	10	10	ND	1	01/30/08	01/30/08			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: BMP Effectiveness

Monitoring Program

Report Number: IRA2558

Sampled: 01/26/08

Received: 01/26/08

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 8A30131 Extracted: 01/30/08	-										
Blank Analyzed: 01/30/2008 (8A30131-B	LK1)										
Total Suspended Solids	ND	10	10	mg/l							
LCS Analyzed: 01/30/2008 (8A30131-BS	1)										
Total Suspended Solids	953	10	10	mg/l	1000		95	85-115			
Duplicate Analyzed: 01/30/2008 (8A3013	1-DUP1)				Sou	rce: IRA	2772-01				
Total Suspended Solids	3120	10	10	mg/l		3060			2	10	
Batch: 8B01112 Extracted: 02/01/08	_										
Duplicate Analyzed: 02/01/2008 (8B0111)	2-DUP1)				Sou	rce: IRA	2560-01				
Density	0.996	NA	N/A	g/cc		0.997			0	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: BMP Effectiveness

Monitoring Program Sampled: 01/26/08

Report Number: IRA2558 Received: 01/26/08

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

MWH-Pasadena/Boeing

Arcadia, CA 91007

DATA QUALIFIERS AND DEFINITIONS

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: BMP Effectiveness

Monitoring Program

Report Number: IRA2558

Sampled: 01/26/08

Received: 01/26/08

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
ASTM D3977	Water		
Displacement	Water		
EPA 160.2	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Test America version 12/20/07	rica v	ersion 12/20/07		CHAIN OF	ပ	RAZ TOD	TRA2558 USTODY FORM		Page 1 of 1
Client Name/Address	Address.			Project: Boeing BMP	g BMP			ANALYSIS REQUIRED	RED
MWH-Arcadia	Jia			Effectiveness Monitoring	Monitoring				Field readings:
618 Michillinda Avenue, Suite 200	Avenue, \$	Suite 200		Program			-MT		
Arcadia, CA 91	,						t SA		t ? = dwa!
Test America Contact: Joseph Doak	Sontact: Jc	seph Doak					SC,		PH = 7
Project Manager: Bronwyn Kelly	ger: Broi	nwyn Kelly		Phone Number: (626) 568-6691	∴ ←		s) (Time of readings = V
Sampler: X	426-64	7 \$		(626) 568-6515 (626) 568-6515	- ك		S bebne entratior (7991-7		Comments
Sample	Sample	Container	# of Cont.	Sampling Date/Time	Preservative	Bottle #	Conc		
003 EFF-1	*	500 mL Poly	-	01/26/08- 103 }	None	-	×		
000 FFF-9	A	500 mt Poly	 		None	4	*		
003 EFF-3	3	500 mL Poly	1		None	က	×		
003 EFF-4	>	500 mL Poly	-		None	4 4	× >		
003 EFF-5	3	500 mL Poly			None	9	××		
003 EFF-6	A 3	500 mL Poly	- -		None	7	×		
003 EFF-7	3 3	500 mL Poly	-		None	8	×		
003 EFF-9	3	500 mL Poly	-		None	0	×		
003 EFF-10	8	500 mL Poly	-		None	9	× ;		
003 EFF-11	Ν	500 mL Poly	-		None	-	× >		
003 EFF-12	>	500 mL Poly	-		None	7 5	< ×		
003 EFF-13	>	500 mL Poly	-		None	5 4	< ×		
003 EFF-14	> 3	500 mL Poly			None	15	×	XX	
003 EFF-15	A >	500 ml Poly	-		None	16	×		
003 EFF-10	3	500 mL Poly	-		None	17	×)	
003 EFF-18	3	500 mL Poly	-		None	18	×		
003 EFF-19	8	500 mL Poly	1		None	19	×		
003 EFF-20	Λ	500 mL Poly	-		None	8 2	× >		
003 EFF-21	8	500 mL Poly	-		None	27	< >		
003 EFF-22	>	500 mL Poly	- -		None	27 55	< ×		
003 EFF-23	> =	500 mL Poly			None	24	(
	≥	SOUTHL POIN	Date/Time:	me:	Received/By		Da	Date/Time: /	
Kelinduished by	` ! `	0		1245		7		1.26.05 1245	24 Hours
Relinquished By	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Bate/Time:	me:	Received By		Da	Date/Time:	
7	, 	ノ	1-76	6-08 153					72 Hours Normal
Relinquished By	2 >	\		me:	Received By	,	ا ا	Date/Time:	Intact On Ice:
					Times /	\mathcal{H}	Service of the servic	12608 1530	7.6/5.6
					,		M	189	
								ゆか、一	126.CB CB3D

APPENDIX G

Section 16

Outfall 003, February 3, 2008

MECX Data Validation Reports

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: IRB0148

Prepared by

MEC^x, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00

Sample Delivery Group: IRB0148
Project Manager: B. Kelly

Matrix: Water QC Level: IV

No. of Samples: 1
No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 003	IRB0148-01	30226-001, 8020459-01, CRA0034-01, 8696-001	Water	02/03/08 1445	200.7, 200.8, 245.1, 525.2, 624, 900.0, 901.1, 903.0, 904.0, 905.0, 906.0, 1613, ASTM D-5174
Trip Blank	IRB0148-02	N/A	Water	02/03/08	624

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at TestAmerica-Irvine above the temperature limits; however, the samples had insufficient time to cool. The samples were received marginally below the temperature limit at Vista and Weck; however, the samples were not noted to be damaged or frozen. The samples were received within the temperature limits at Eberline and TestAmerica-Colton. According to the case narrative for this SDG, the sample was received intact at all laboratories. The FedEx courier did not relinquish custody of the sample to Eberline. The remaining COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine, and Weck custody seals were not required. Custody seals were intact upon arrival at Eberline and Vista. If necessary, the client ID was added to the sample result summary by the reviewer.

1

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
T	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
* , *	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: March 22, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - o GC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was not analyzed prior to the initial calibration sequence or at the beginning of each analytical sequence; however, the first and last eluting congeners and isomer specificity compounds were added to the midpoint of the initial calibration and to the continuing calibration standards. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 16 native compounds (calibration by isotope dilution) and ≤35% for the one native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: OCDD was reported in the method blank at 0.00000899µ/L. The detect for OCDD in the sample was less than five times the concentration reported in the method blank; therefore, the OCDD detect was qualified as an estimated nondetect, "UJ," and raised to

the reporting limit in sample Outfall 003. The method blank had no other target compound detects above the EDL.

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHODS 200.7, 200.8, 245.1—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: March 26, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.7, 200.8, and 245.1, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding times, 6 months for metals and 28 days for mercury, were met.
- Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤0.1 amu and ≤0.9 amu at 10% peak height, except for cerium associated with the dissolved metals fraction. The cerium mass calibration marginally exceeded the control limit; therefore, antimony, lead,

and thallium were qualified as estimated in the dissolved metals fraction, "J," for detects and, "UJ," for nondetects.

- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP-MS metals and 85-115% for mercury. All CRI/CRA and check standard recoveries were within the control limits of 70-130%.
- Blanks: Selenium was reported in the method blank associated with the total metals fraction at -8.4 μg/L; therefore, nondetected selenium in the total metals fraction was qualified as an estimated nondetect, "UJ." There were no other applicable detects in the method blanks or CCBs.
- Interference Check Samples: ICSA/B analyses were performed in association with all analyses except total antimony. Recoveries were within the method-established control limits. Most analytes were reported in the ICSA solutions. No 6010 analytes required qualification as the concentrations of the interferents were not significant. For the 6020 analytes, the reviewer was not able to ascertain if the detections were indicative of matrix interference.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on the sample in this SDG. Evaluation of method accuracy was based on LCS results.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. The bracketing CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on the sample result summary were verified against the raw data. No transcription errors or calculation errors were noted. Detects reported below the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDL.

The reviewer noted that nickel was detected at a slightly higher concentration in the dissolved metals sample fraction and that vanadium was detected marginally above the MDL in the dissolved metals fraction but was not detected in the total metals fraction. In both cases the difference between the dissolved and total results was within the sensitivity

limits of the analytical instruments and, therefore, the reviewer considered the total and dissolved results to be equivalent.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

C. EPA METHOD 525.2 — Pesticides

Reviewed By: P. Meeks

Date Reviewed: March 27, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Organochlorine Pesticides by GC (DVP-4, Rev. 0), EPA Method 525.2, and the National Functional Guidelines for Organic Data Review (02/94).

- Holding Times: Extraction and analytical holding times were met. The water sample pH
 was not adjusted within 24 hours; therefore, nondetected diazinon was qualified as an
 estimated nondetect, "UJ." The sample was analyzed within 30 days of extraction.
- GC/MS Tuning: The DFTPP tunes met the method abundance criteria. The sample was analyzed within 12 hours of the DFTPP injection time.
- Calibration: Calibration criteria were met. For both target compounds, initial calibration average RRFs were ≥0.05 and %RSDs ≤30%. Continuing calibration RRFs were ≥0.05 and applicable target compound responses were within the method QC limits of 70-130%.
- Blanks: The method blank had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries and RPDs were within laboratory-established QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the sample from this SDG. Evaluation of method accuracy and precision was based on the LCS/LCSD results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC

data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: The internal standard area counts and retention times were within the method control limits established by the continuing calibration standards of ±30%.
- Compound Identification: Compound identification was verified. The laboratory analyzed for chlorpyrifos and diazinon by Method 525.2. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Reported nondetects are valid to the reporting limit.
- System Performance: Review of the raw data indicated no problems with system performance.

D. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: March 28, 2008

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the EPA Methods 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The tritium sample was analyzed within 180 days of collection. Aliquots
 for gross alpha and gross beta, were prepared within the five-day analytical holding time
 for unpreserved samples. Aliquots for radium-226, radium-228, strontium-90, total
 uranium, and gamma spectroscopy were prepared beyond the five-day holding time for
 unpreserved samples; therefore, results for these analytes were qualified as estimated,
 "J," for detects and, "UJ," for nondetects.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

The gross alpha detector efficiency was less than 20%; therefore, nondetected gross alpha in the sample was qualified as an estimated nondetect, "UJ." The gross beta detector efficiency was greater than 20%.

The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. The tritium detector efficiency for the sample was at least 20% and was considered acceptable. The strontium chemical yield was at least 70% and was considered acceptable. The strontium continuing calibration results were within the laboratory control limits. The radium-226 continuing calibration results were within the laboratory-established control limits. The radium-228 tracer, yttrium oxalate, yields were greater than 70%. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: There were no analytes detected in the method blanks.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this
 data package. The sample results and MDAs reported on the sample result form were
 verified against the raw data and no calculation or transcription errors were noted.
 Reported nondetects are valid to the MDA.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

E. EPA METHOD 624—Volatile Organic Compounds (VOCs)

Reviewed By: L. Calvin

Date Reviewed: April 2, 2008

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Volatile Organics (DVP-2, Rev. 0), EPA Method 8260B, and the National Functional Guidelines for Organic Data Review (2/94).

 Holding Times: Analytical holding times were met. The preserved water samples were analyzed within 14 days of collection, and the unpreserved aliquots were analyzed within seven days of collection.

- GC/MS Tuning: The BFB tunes met the method abundance criteria. Samples were analyzed within 12 hours of the BFB injection time.
- Calibration: For applicable target compounds, initial calibration average RRFs were ≥0.05, with the exception of the average RRF for acrolein. Nondetect results for acrolein were rejected, "R," in both samples. Initial calibration %RSDs were ≤35%. Continuing calibration RRFs were ≥0.05 and %Ds ≤20%, with the exception of %Ds for 1,1,1-trichloroethane, carbon tetrachloride, trichlorofluoromethane, acrolein, and acrylonitrile. As acrolein was previously rejected for the initial calibration average RRF, it was not further qualified for the %D outlier. Nondetect results for the remaining %D outliers were qualified as estimated, "UJ," in site sample Outfall 003. Sample Trip Blanks was identified as field QC and required no qualification for the %D outliers.
- Blanks: The method blank had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits. The reviewer noted that acrolein and acrylonitrile were not included in the LCS,
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the site sample in this SDG. Evaluation of method accuracy was based on the LCS results.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Trip Blanks: Sample Trip Blanks was the trip blank associated with site sample Outfall 003. Methylene chloride was detected above the reporting limit in the trip blank at 1.2 μg/L. The sample detect above the reporting limit was qualified as an estimated nondetect, "UJ," at the level of contamination in sample Outfall 003. The trip blank had no target other compound detects above the MDL.
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

DATA VALIDATION REPORT SSFL NPDES
SDG: IRB0148

Internal Standards Performance: The internal standard area counts and retention times were within the control limits established by the continuing calibration standards:
 -50%/+100% for internal standard areas and ±30 seconds for retention times.

- Compound Identification: Compound identification was verified. The laboratory analyzed for volatile target compounds by EPA Method 624. Review of the sample chromatogram, retention times, and spectra indicated no problems with target compound identification.
- Compound Quantification and Reported Detection Limits: Compound quantification was verified. The reporting limits were supported by the low point of the initial calibration and the laboratory MDLs. Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review of the raw data indicated no problems with system performance.

William J. Luksemburg 22-Feb-2008 15:48

Approved By:

Cilculat Data human: Test Aurerical-Irvine, CA Inches Data Agueous Sumple Brant Laboratory Data Laboratory Data Laboratory Data Laboratory Data Data Aurical Data Laboratory Data Laboratory Data Data Aurical Data Laboratory Data Data Aurical Data Laboratory Data Data Aurical Data Laboratory Data Data Aurical Data Data Aurical Data Data Aurical Data Data Aurical Data Data Aurical Data Data Data Data Data Data Data Data	Sample ID: IRB(IRB0148-01 Outstan ans	800					EPA M	EPA Method 1613
Conc. (ug/L) DL a EMPCb Qualifiers Labeled Standard 96R ND 0.000000433 13C-2,3,7,8-TCDD 87.4 ND 0.000000110 13C-1,2,3,7,8-PCDD 78.0 ND 0.00000112 13C-1,2,3,7,8-PCDD 82.4 ND 0.00000112 13C-1,2,3,7,8-PCDD 82.0 ND 0.00000012 13C-1,2,3,7,8-PCDD 82.0 ND 0.000000731 13C-1,2,3,7,8-PCDF 82.7 ND 0.000000731 13C-1,2,3,7,8-PCDF 75.0 ND 0.000000731 13C-1,2,3,7,8-PCDF 77.5 ND 0.0000000431 13C-1,2,3,7,8-PCDF 77.5 ND 0.0000000431 13C-1,2,3,7,8-PCDF 77.5 ND 0.0000000431 13C-1,2,3,7,8-PCDF 77.5 ND 0.0000000431 13C-1,2,3,7,8-PCDF 77.5 ND 0.000000033 13C-1,2,3,7,8-PCDF 77.5 ND 0.000000033 13C-1,2,3,4,5,7,8-PCDF 80.5 ND 0.000000121 13C-1,2,3,4,7,8-PCDF	Data	America-Irvine, CA 0148 b-08		Sample Data Matrix: Sample Size:	Aqueous 1.00 L	atn DB-5-		cd: led:	5-Feb-08 15-Feb-08
ND 0.000000433 IS 13C-1,2,3,7,8-TCDD 87.4 ND 0.000000534 13C-1,2,3,7,8-TCDD 78.0 ND 0.00000110 13C-1,2,3,7,8-TCDD 82.4 ND 0.00000106 13C-1,2,3,4,6,7,8-HxCDD 82.0 0.0000042 13C-0CDD 13C-1,2,3,4,6,7,8-HxCDD 82.0 0.0000042 1,B 13C-1,2,3,4,8-PcCDF 92.7 ND 0.000000723 13C-1,2,3,4,8-PcCDF 78.1 ND 0.000000723 13C-1,2,3,4,8-HxCDF 77.5 ND 0.000000723 13C-1,2,3,4,7,8-HxCDF 77.5 ND 0.000000433 13C-1,2,3,4,7,8-HxCDF 77.5 ND 0.000000433 13C-1,2,3,4,7,8-HxCDF 80.5 ND 0.000000121 13C-1,2,3,4,6,7,8-HxCDF 80.5 ND 0.00000013 13C-1,2,3,4,7,8-HxCDF 80.5 ND 0.00000013 13C-1,2,3,4,7,8-HxCDF 77.6 ND 0.0000013 13C-1,2,3,4,7,8-HxCDF 80.5 ND 0.0000013 0.00000013 13C		Conc.	- 1	EMPCb	Qualifiers	andard	%R	-	Oualifiers
ND 0.000000334 1.0C-1,2,3,7,8-PeCDD 78.0 ND 0.000000110 13C-1,2,3,7,8-PeCDD 78.0 ND 0.00000012 13C-1,2,3,6,7,8-PeCDD 82.4 ND 0.00000012 13C-1,2,3,4,6,7,8-HxCDD 82.6 0.000042 13C-1,2,3,4,6,7,8-HxCDD 82.0 0.0000042 13C-1,2,3,4,6,7,8-HxCDD 73.8 ND 0.000000731 13C-2,3,7,8-PeCDF 76.0 ND 0.000000731 13C-2,3,4,7,8-PeCDF 77.5 ND 0.000000731 13C-1,2,3,4,7,8-PeCDF 77.5 ND 0.000000431 13C-2,3,4,7,8-PeCDF 77.5 ND 0.000000431 13C-1,2,3,4,7,8-PeCDF 77.5 ND 0.000000433 13C-1,2,3,4,7,8-PeCDF 77.5 ND 0.000000433 13C-1,2,3,4,7,8-PeCDF 77.6 ND 0.000000121 13C-1,2,3,4,7,8-PeCDF 77.6 ND 0.000000137 13C-1,2,3,4,7,8-PeCDF 77.6 ND 0.000000139 CRS 37C1-2,3,4,7,8-PeCDF 77.6 ND <th>2378-TCDD</th> <th>1</th> <th>0 00000</th> <th>133</th> <th>,</th> <th> -</th> <th></th> <th>- 1</th> <th></th>	2378-TCDD	1	0 00000	133	,	-		- 1	
ND	CO. T. 0. 1. C. 1.	5 5	0.000000	100		, ,		to - c7	
130,00000110 130,13,4,7,8-HXCDD 82.0 130,00000442 130,00000106 130,13,4,6,7,8-HXCDD 82.0 130,00000442 130,00000052 130,13,7,8-PCDF 92.7 130,00000442 130,00000073 130,13,7,8-PCDF 73.8 130,00000073 130,13,7,8-PCDF 77.3 130,00000073 130,13,7,8-PCDF 77.3 130,00000000000000000000000000000000000	1,2,3,7,8-PeCDD	ט ג גע	0.000000	534		13C-1,2,3,7,8-PeCDD		25 - 181	
ND 0.00000106 J 13C-1,2,3,4,6,7,8-HpCDD 85.6 0.00000442 J,B 13C-0CDD 73.8 0.00000240 J,B 13C-2,3,7,8-TCDF 92.7 ND 0.000000731 13C-1,2,3,7,8-PcDF 76.0 ND 0.000000471 13C-1,2,3,4,7,8-HxCDF 77.3 ND 0.000000471 13C-1,2,3,4,7,8-HxCDF 77.4 ND 0.000000493 13C-1,2,3,4,7,8-HxCDF 77.4 ND 0.000000703 13C-1,2,3,4,6,7,8-HyCDF 81.2 ND 0.00000121 13C-1,2,3,4,6,7,8-HyCDF 80.5 ND 0.00000107 13C-1,2,3,4,6,7,8-HyCDF 80.5 ND 0.00000107 13C-1,2,3,4,6,7,8-HyCDF 80.5 ND 0.00000107 13C-1,2,3,4,6,7,8-HyCDF 80.5 ND 0.00000130 a. Sample specific estimated detection limit. ND 0.00000143 a. Sample specific estimated detection limit. ND 0.000000153 c. Method detection limit. c. Method detection limit. ND 0.0000000153 c. M	1,2,3,6,7,8-HxCDD	N ON	0.000001	12		13C-1,2,3,4,7,8-HXCDD		22 - 141 28 - 130	
0.00000442 J,B 13C-OCDD 73.8 0.0000240 1,B 13C-2,3,7,8-TCDF 92.7 ND 0.000000731 13C-1,2,3,7,8-PcDF 76.0 ND 0.000000731 13C-1,2,3,4,7,8-PcDF 78.7 ND 0.000000471 13C-1,2,3,4,7,8-PcDF 77.5 ND 0.000000493 13C-1,2,3,4,7,8-PcDF 77.4 ND 0.000000033 13C-1,2,3,4,6,7,8-HxCDF 77.4 ND 0.00000121 13C-1,2,3,4,6,7,8-HpCDF 80.5 ND 0.00000121 13C-1,2,3,4,6,7,8-HpCDF 80.5 ND 0.00000121 13C-1,2,3,4,6,7,8-HpCDF 80.5 ND 0.00000137 13C-0CDF 77.6 ND 0.000001387 CRS 37C1-2,3,7,8-TCDD 87.2 ND 0.00000130 a. Sample specific estimated detection limit. A. Lower control limit. ND 0.00000163 c. Method detection limit. d. Lower control limit. c. Method detection limit. ND 0.000000163 c. Method detection limit. d. Lower control limit. d. Lower	1,2,3,7,8,9-HxCDD	ND	0.000001(90		13C-1,2,3,4,6,7,8-HpCDD		23 - 140	
0.0000240 J,B 13C-2,3,7,8-TCDF 92.7 ND 0.000000731 13C-1,2,3,7,8-PcDF 76.0 ND 0.000000731 13C-1,2,3,4,7,8-PcDF 77.3 ND 0.000000731 13C-1,2,3,4,7,8-PcDF 77.3 DF ND 0.000000471 13C-1,2,3,4,7,8-HxCDF 77.4 DF ND 0.000000433 13C-1,2,3,4,6,7,8-HxCDF 77.4 DF ND 0.00000121 13C-1,2,3,4,6,7,8-HxCDF 77.4 DF ND 0.00000121 13C-1,2,3,4,6,7,8-HyCDF 80.5 CDF ND 0.00000121 13C-1,2,3,4,6,7,8-HyCDF 80.5 ND 0.00000121 13C-1,2,3,4,7,8,9-HyCDF 80.5 ND 0.00000137 CRS 37C1-2,3,4,7,8,9-HyCDF 80.5 ND 0.00000130 Lestimated atecion limit. A. Sample specific estimated detection limit. ND 0.000000130 C. Method detection limit. A. Lower control limit. A. Lower control limit. ND 0.0000000522 C. Method detection limit. A. Lower control limit. A.	(1,2,3,4,6,7,8-HpCDD	0.00000442			Г	13C-OCDD		17 - 157	
ND 0.000000522 13C-1,2,3,7,8-PeCDF 76.0 ND 0.000000731 13C-2,3,4,7,8-PeCDF 78.7 ND 0.000000723 13C-1,2,3,4,7,8-PeCDF 77.3 DF ND 0.000000471 13C-1,2,3,4,7,8-HxCDF 77.4 DF ND 0.000000433 13C-1,2,3,4,6,7,8-HxCDF 77.4 DF ND 0.000000121 13C-1,2,3,4,6,7,8-HxCDF 81.2 DF ND 0.000000121 13C-1,2,3,4,6,7,8-HpCDF 80.5 CDF ND 0.00000121 13C-1,2,3,4,6,7,8-HpCDF 80.5 CDF ND 0.00000121 13C-1,2,3,4,6,7,8-HpCDF 80.5 CDF ND 0.00000130 ESES 37C1-2,3,4,6,7,8-HpCDF 87.2 ND 0.00000130 a. Sample specific estimated detection limit. b. Estimated maximum possible concentration. ND 0.000000163 c. Method detection limit. d. Lower control limit upper control limit. ND 0.000000522 c. Method detection limit. d. Lower control limit upper control limit. ND 0.00000022	OCDD	0.0000240			J,B	13C-2,3,7,8-TCDF		24 - 169	
ND 0.000000731 13C-2,3,4,7,8-PeCDF 78.7 ND 0.000000723 13C-1,2,3,4,7,8-PeCDF 77.3 DF ND 0.000000471 77.5 DF ND 0.000000493 13C-1,2,3,4,6,7,8-HxCDF 77.4 DF ND 0.000000533 13C-1,2,3,4,6,7,8-HxCDF 77.4 DF ND 0.000000703 13C-1,2,3,4,6,7,8-HyCDF 80.5 CDF ND 0.00000121 13C-1,2,3,4,7,8,9-HyCDF 80.5 CDF ND 0.00000121 13C-1,2,3,4,7,8,9-HyCDF 80.5 ND 0.00000107 CRS 37C1-C,3,4,7,8,9-HyCDF 87.2 ND 0.00000137 CRS 37C1-C,3,4,7,8,9-HyCDF 87.2 ND 0.00000130 a. Sample specific estimated detection limit. b. Estimated maximum possible concentration. ND 0.00000163 c. Method detection limit. d. Lower control limit. d. Lower control limit. ND 0.000000522 c. Method detection limit. d. Lower control limit. d. Lower control limit. ND 0.000000202 c. Metho	2,3,7,8-TCDF	ND	0.000000	522		13C-1,2,3,7,8-PeCDF		24 - 185	
ND 0.000000723 13C-1,2,3,4,7,8-HxCDF 77.3 DF ND 0.000000471 77.5 DF ND 0.000000493 13C-1,2,3,6,7,8-HxCDF 77.4 DF ND 0.000000533 13C-1,2,3,7,8,9-HpCDF 81.2 DF ND 0.000000703 13C-1,2,3,7,8,9-HpCDF 80.5 DF ND 0.00000121 13C-1,2,3,4,6,7,8-HpCDF 80.5 CDF ND 0.00000107 13C-1,2,3,4,7,8,9-HpCDF 80.5 CDF ND 0.00000107 CRS 37C1-2,3,7,8-TCDD 87.2 ND 0.000000433 a. Sample specific estimated detection limit. b. Estimated maximum possible concentration. ND 0.00000163 c. Method detection limit. c. Method detection limit. ND 0.000000522 c. Method detection limit. d. Lower control limit. ND 0.000000522 c. Method detection limit. d. Lower control limit. ND 0.000000525 c. Method detection limit. d. Lower control limit. ND 0.0000000527 d. Lower control limit.	1,2,3,7,8-PeCDF	ND	0.000000	731		13C-2,3,4,7,8-PeCDF		21 - 178	•
7,8-HxCDF ND 0.000000471 13C-1,2,3,6,7,8-HxCDF 77.5 7,8-HxCDF ND 0.000000493 13C-2,3,4,6,7,8-HxCDF 77.4 7,8-HxCDF ND 0.00000073 13C-1,2,3,7,8,9-HxCDF 81.2 8,9-HxCDF ND 0.00000121 13C-1,2,3,4,6,7,8-HpCDF 80.5 6,7,8-HpCDF ND 0.00000121 13C-1,2,3,4,7,8,9-HpCDF 80.5 7,8,9-HpCDF ND 0.00000107 87.2 87.2 7,8,9-HpCDF ND 0.00000137 CRS 37C1-2,3,4,7,8,7-HpCDF 80.5 7,8,9-HpCDF ND 0.00000133 a. Sample specific estimated detection limit. 77.6 CDD ND 0.00000130 b. Estimated maximum possible concentration. c. Method detection limit. CDF ND 0.000000522 c. Method detection limit. d. Lower control limit. upper control limit. CDF ND 0.000000522 c. Method detection limit. d. Lower control limit. ACDF ND 0.000000202 c. Method detection limit. ACDF ND 0.000000202	2,3,4,7,8-PeCDF	ND	0.000000	723		13C-1,2,3,4,7,8-HxCDF		26 - 152	
7,8-HxCDF ND 0.000000493 13C-2,3,4,6,7,8-HxCDF 77.4 7,8-HxCDF ND 0.000000533 13C-1,2,3,7,8,9-HxCDF 81.2 8,9-HxCDF ND 0.000000121 13C-1,2,3,4,5,7,8-HpCDF 76.0 6,7,8-HpCDF ND 0.00000121 13C-1,2,3,4,7,8,9-HpCDF 80.5 7,8,9-HpCDF ND 0.00000107 CRS 37C1-2,3,4,7,8,9-HpCDF 80.5 7,8,9-HpCDF ND 0.000001387 CRS 37C1-2,3,7,8-TCDD 87.2 CDD ND 0.000000433 a. Sample specific estimated detection limit. b. Estimated maximum possible concentration. CDF ND 0.000000163 c. Method detection limit. d. Lower control limit. d. Lower control limit. d. Lower control limit. CDF ND 0.000000522 c. Method detection limit. d. Lower control limit. d. Lower control limit. d. Lower control limit. CDF ND 0.000000522 c. Method detection limit. d. Lower control limit. d. Lower control limit. CDF ND 0.0000000522 c. Method detection limit. </td <td>1,2,3,4,7,8-HxCDF</td> <td>ND</td> <td>0.000000</td> <td>471</td> <td></td> <td>13C-1,2,3,6,7,8-HxCDF</td> <td></td> <td>26 - 123</td> <td></td>	1,2,3,4,7,8-HxCDF	ND	0.000000	471		13C-1,2,3,6,7,8-HxCDF		26 - 123	
7,8-HxCDF ND 0.000000533 13C-1,2,3,7,8,9-HxCDF 81.2 8,9-HxCDF ND 0.000000703 13C-1,2,3,4,6,7,8-HpCDF 76.0 6,7,8-HpCDF ND 0.00000121 13C-1,2,3,4,7,8,9-HpCDF 80.5 7,8,9-HpCDF ND 0.00000107 CRS 37C1-2,3,4,7,8,9-HpCDF 80.5 7,8,9-HpCDF ND 0.000000387 CRS 37C1-2,3,4,7,8-TCDD 87.2 CDD ND 0.000000433 a. Sample specific estimated detection limit. b. Estimated maximum possible concentration. cCDD ND 0.00000130 b. Estimated maximum possible concentration. cCDF ND 0.000000522 d. Lower control limit. cCDF ND 0.000000727 d. Lower control limit. cCDF ND 0.000000202 d. Lower control limit. pCDF ND 0.000000202 d. Lower control limit.	1,2,3,6,7,8-HxCDF	ND	0.000000	493		13C-2,3,4,6,7,8-HxCDF		28 - 136	
8,9-HxCDF ND 0.000000703 13C-1,2,3,4,6,7,8-HpCDF 76.0 6,7,8-HpCDF ND 0.00000121 13C-0CDF 80.5 7,8,9-HpCDF ND 0.00000137 CRS 37Cl-2,3,4,7,8,9-HpCDF 87.2 CDD ND 0.00000433 a. Sample specific estimated detection limit. b. Estimated maximum possible concentration. CDD ND 0.00000130 c. Method detection limit. b. Estimated maximum possible concentration. CDF ND 0.000000522 d. Lower control limit. d. Lower control limit. CDF ND 0.000000522 d. Lower control limit. CDF ND 0.000000525 d. Lower control limit. ACDF ND 0.000000545 c. Method detection limit.	2,3,4,6,7,8-HxCDF	ND	0.000000	533		13C-1,2,3,7,8,9-HxCDF		29 - 147	
6,7,8-HpCDF ND 0.00000121 13C-1,2,3,4,7,8,9-HpCDF 80.5 7,8,9-HpCDF ND 0.00000107 CRS 37C1-2,3,4,7,8,9-HpCDF 80.5 7,8,9-HpCDF ND 0.00000387 CRS 37C1-2,3,7,8-TCDD 87.2 CDD ND 0.00000433 a. Sample specific estimated detection limit. b. Estimated maximum possible concentration. cCDD ND 0.00000163 c. Method detection limit. pCDD ND 0.000000522 d. Lower control limit - upper control limit. cCDF ND 0.000000522 d. Lower control limit - upper control limit. cCDF ND 0.000000525 d. Lower control limit - upper control limit. cCDF ND 0.000000522 d. Lower control limit - upper control limit. cCDF ND 0.000000525 d. Lower control limit - upper control limit.	1,2,3,7,8,9-HxCDF	ND	0.000000	703 -		13C-1,2,3,4,6,7,8-HpCDF		28 - 143	
7,8,9-HpCDF ND 0.00000107 I3C-OCDF 77.6 CDD ND 0.000000433 a. Sample specific estimated detection limit. Pootnotes CDD ND 0.00000130 b. Estimated maximum possible concentration. CDD ND 0.00000163 c. Method detection limit. pCDF ND 0.000000522 c. Method detection limit. cCDF ND 0.000000727 d. Lower control limit. upper control limit. cCDF ND 0.000000522 c. Method detection limit. cCDF ND 0.000000052 c. Method detection limit.	1,2,3,4,6,7,8-HpCDF	ND	0.000001.	2,1		13C-1,2,3,4,7,8,9-HpCDF		26 - 138	
ND 0.00000387 CRS 37CI-2,3,7,8-TCDD 87.2 CDD ND 0.000000433 a. Sample specific estimated detection limit. CDD ND 0.00000130 c. Method detection limit. CDD ND 0.00000163 c. Method detection limit. PCDD 0.00000781 d. Lower control limit. d. Lower control limit. CDF ND 0.000000727 d. Lower control limit. xCDF ND 0.000000545 e.CDF pCDF ND 0.000000202 e.CDF pCDF ND 0.000000202 e.CDF	1,2,3,4,7,8,9-HpCDF	NΩ	0.0000010	27		13C-OCDF		17 - 157	
ND 0.00000433 ND 0.00000130 ND 0.00000163 0.00000781 ND 0.000000522 ND 0.000000727 ND 0.000000545 ND 0.00000202	OCDF	ND	0.000003	87		CRS 37CI-2,3,7,8-TCDD		35 - 197	
ND 0.000000433 ND 0.00000130 ND 0.00000163 0.00000781 ND 0.000000522 ND 0.000000727 ND 0.000000545 ND 0.00000202	Totals					Footnotes			
ND 0.00000130 ND 0.00000163 0.00000781 ND 0.000000522 ND 0.000000727 ND 0.000000545 ND 0.00000202	Total TCDD	ND	0.000000	433		a. Sample specific estimated detection lin	nit.		
ND 0.00000163 0.00000781 ND 0.000000522 ND 0.000000727 ND 0.000000545 ND 0.00000202	Total PeCDD	ND	0.000001.	30		b. Estimated maximum possible concentra	ation.		,
0.00000781 ND 0.000000522 ND 0.000000727 ND 0.000000545 ND 0.00000202	Total HxCDD	ND	0.000001	53		c. Method detection limit.			
Q Q Q Q	Total HpCDD	0.00000781				d. Lower control limit - upper control lim	it.		
ON ON ON ON	Total TCDF	ND	0.000000	522					
N QN QN	Total PeCDF	ND	0.000000	727					
ND	Total HxCDF	ND	0.000000	545					
	Total HpCDF	ND	0.0000020	02					

NPDES - 763

Analyst: MAS

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08

Received: 02/03/08

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0148-01 (Outfall 00	3 - Water) - cont.								
Reporting Units: mg/l									
Hardness as CaCO3	SM2340B	[CALC]	N/A	0.33	160	1	02/04/08	02/04/08	
Boron	EPA 200.7	8B04079	0.020	0.050	0.12	1	02/04/08	02/04/08	
Calcium	EPA 200.7	8B04079	0.050	0.10	44	1	02/04/08	02/04/08	
Iron	EPA 200.7	8B04079	0.015	0.040	0.081	1	02/04/08	02/04/08	
Magnesium	EPA 200.7	8B04079	0.012	0.020	12	1	02/04/08	02/04/08	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 003

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Report Number: IRB0148

Sampled: 02/03/08

Received: 02/03/08

Attention: Bronwyn Kelly

METALS

		-							
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0148-01 (Outfall 003 -	Water) - cont.								
Reporting Units: ug/l									
Aluminum	EPA 200.7	8B04079	40	50	61	1	02/04/08	02/04/08	
Antimony J/DNQ	EPA 200.8	8B04080	0.20	2.0	0.42	1	02/04/08	02/05/08	J
Arsenic U	EPA 200.7	8B04079	7.0	10	ND	1	02/04/08	02/04/08	
Beryllium V	EPA 200.7	8B04079	0.90	2.0	ND	1	02/04/08	02/04/08	
Cadmium JON9	EPA 200.8	8B04080	0.11	1.0	0.19	1	02/04/08	02/04/08	J
Chromium ψ	EPA 200.7	8B04079	2.0	5.0	2.2	1	02/04/08	02/04/08	J
Copper	EPA 200.8	8B04080	0.75	2.0	3.4	1	02/04/08	02/04/08	
Lead	EPA 200.8	8B04080	0.30	1.0	ND	1	02/04/08	02/04/08	
Nickel J DNQ	EPA 200.7	8B04079	2.0	10	2.3	1	02/04/08	02/04/08	J
Selenium UJ/B	EPA 200.7	8B04079	8.0	10	ND	1	02/04/08	02/04/08	
Silver U	EPA 200.7	8B04079	6.0	10	ND	1	02/04/08	02/04/08	
Thallium	EPA 200.8	8B04080	0.20	1.0	ND	1	02/04/08	02/04/08	
Vanadium √	EPA 200.7	8B04079	3.0	10	ND	1	02/04/08	02/04/08	
Zinc J/DWQ	EPA 200.7	8B04079	6.0	20	14	1	02/04/08	02/04/08	J

LEVEL IV

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 003

618 Michillinda Avenue, Suite 200 Arcadia, CA 91007

Report Number: IRB0148

Sampled: 02/03/08

Received: 02/03/08

Attention: Bronwyn Kelly

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0148-01 (Outfall 003 - V	Water) - cont.								
Reporting Units: mg/l									
Boron	EPA 200.7-Diss	8B05111	0.020	0.050	0.11	1	02/05/08	02/06/08	
Calcium	EPA 200.7-Diss	8B05111	0.050	0.10	44	1	02/05/08	02/06/08	
Iron J/DNQ	EPA 200.7-Diss	8B05111	0.015	0.040	0.026	1	02/05/08	02/06/08	J
Magnesium	EPA 200.7-Diss	8B05111	0.012	0.020	12	1	02/05/08	02/06/08	
Hardness (as CaCO3)	SM2340B	8B05111	1.0	1.0	160	1	02/05/08	02/06/08	

LEVEL IV

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

Project ID: Annual Outfall 003

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Report Number: IRB0148

Sampled: 02/03/08

Received: 02/03/08

DISSOLVED METALS

		DIDDO	J V LLD						
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0148-01 (Outfall (003 - Water) - cont.								
Reporting Units: ug/l									
Aluminum U	EPA 200.7-Diss	8B05111	40	50	ND	1	02/05/08	02/06/08	
Antimony JON Q XIII	EPA 200.8-Diss	8B04144	0.20	2.0	0.33	1	02/04/08	02/05/08	J
Arsenic Q	EPA 200.7-Diss	8B05111	7.0	10	ND	1	02/05/08	02/06/08	
Beryllium	EPA 200.7-Diss	8B05111	0.90	2.0	ND	1	02/05/08	02/06/08	
Cadmium	EPA 200.8-Diss	8B04144	0.11	1.0	ND	1	02/04/08	02/05/08	
Chromium	EPA 200.7-Diss	8B05111	2.0	5.0	ND	1	02/05/08	02/06/08	
Copper	EPA 200.8-Diss	8B04144	0.75	2.0	2.5	1	02/04/08	02/05/08	
Lead UJ ATI	EPA 200.8-Diss	8B04144	0.30	1.0	ND	1	02/04/08	02/05/08	
Nickel J/DNG	EPA 200.7-Diss	8B05111	2.0	10	2.4	1	02/05/08	02/06/08	J
Selenium	EPA 200.7-Diss	8B05111	8.0	10	ND	1	02/05/08	02/06/08	
Silver	EPA 200.7-Diss	8B05111	6.0	10	ND	1	02/05/08	02/06/08	
Thallium KUKIII	EPA 200.8-Diss	8B04144	0.20	1.0	ND	1	02/04/08	02/05/08	
Vanadium JON Q	EPA 200.7-Diss	8B05111	3.0	10	3.3	1	02/05/08	02/06/08	J
Zinc V	EPA 200.7-Diss	8B05111	6.0	20	11	1	02/05/08	02/06/08	J
	PM 3	126/08							

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 003

Sampled: 02/03/08

Report Number: IRB0148

Received: 02/03/08

Metals by EPA 200 Series Methods

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0148-01 (Ou	tfall 003 - Water) - cont.								
Reporting Units: ug/l									
Mercury, Dissolved U	EPA 245.1	W8B0171	0.050	0.20	ND	1	02/06/08	02/07/08	
Mercury, Total	EPA 245.1	W8B0171	0.050	0.20	ND	1	02/06/08	02/07/08	

EVEL IV

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08

Received: 02/03/08

ORGANIC COMPOUNDS BY GC/MS (EPA 525.2)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0148-01 (Outfall 00:	3 - Water) - cont.								P, pH
Reporting Units: ug/l									
Chlorpyrifos U	EPA 525.2	C8B0516	0.10	1.0	ND	1.01	02/05/08	02/07/08	
Diazinon UJ / H	EPA 525.2	C8B0516	0.24	0.25	ND	1.01	02/05/08	02/07/08	
Surrogate: 1,3-Dimethyl-2-nitrobenze	ene (70-130%)				90 %				
Surrogate: Triphenylphosphate (70-1	(30%)				107 %				
Surrogate: Perylene-d12 (70-130%)					88 %				

LEVEL IV

TestAmerica Irvine

Eberline Services

ANALYSIS RESULTS

SDG	8696		Client TA IRVINE
Work Order	R802042-01		Contract PROJECT# IRB0148
Received Date	02/05/08	٠.	Matrix WATER

Client	٠.	Lab						
Sample ID		 Sample II	Collected	Analyzed	Nuclide '	Results ± 20	Units	MDA
Outfall	003							
IRB0148-01		8696-001	02/03/08	02/27/08	GrossAlpha	0.628 ± 0.82	pCi/L	1.2 UJ/R
			2.0	02/27/08	Gross Beta	6.13 ± 1.0	pCi/L	1.4
				02/27/08	'Ra-228	1.36 ± 0.92	pCi/L	0.64 J/H
				02/23/08	K-40 (G)	υ .	pCi/L	54 UJ/H
				02/23/08	Cs-137 (G)	ū	pCi/L	2.0
		**		02/28/08	H-3	31.6 ± 84	pCi/L	150 U
42				03/03/08	Ra-226	0.807 ± 0.54	pCi/L	0.74 J/H
				02/18/08	Sr-90	1.50 ± 0.50	pCi/L	0.66
			*	02/26/08	Total U	1.26 ± 0.14	pCi/L	0.022

LEVEL IV

Certified by Report Date 03/11/08
Page 1

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

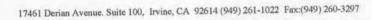
Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08

Received: 02/03/08

PURGEABLES BY GC/MS (EPA 624)


Analyte		Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0148-01 (O	utfall 003 - Wa	ter)								
Reporting Units: ug/l	,									
1,1,1-Trichloroethane	NJ/C	EPA 624	8B04007	0.30	0.50	ND	1	02/04/08	02/04/08	
1,1,2,2-Tetrachloroethane	U	EPA 624	8B04007	0.24	0.50	ND	1	02/04/08	02/04/08	
1,1,2-Trichloroethane	I .	EPA 624	8B04007	0.30	0.50	ND	1	02/04/08	02/04/08	
1,1-Dichloroethane		EPA 624	8B04007	0.27	0.50	ND	1	02/04/08	02/04/08	
1,1-Dichloroethene		EPA 624	8B04007	0.42	0.50	ND	1	02/04/08	02/04/08	
1,2-Dichloroethane		EPA 624	8B04007	0.28	0.50	ND	1	02/04/08	02/04/08	
1,2-Dichlorobenzene		EPA 624	8B04007	0.32	0.50	ND	1	02/04/08	02/04/08	
1,2-Dichloropropane		EPA 624	8B04007	0.35	0.50	ND	1	02/04/08	02/04/08	
1,3-Dichlorobenzene		EPA 624	8B04007	0.35	0.50	ND	1	02/04/08	02/04/08	
1,4-Dichlorobenzene		EPA 624	8B04007	0.37	0.50	ND	1	02/04/08	02/04/08	
Benzene		EPA 624	8B04007	0.28	0.50	ND	1	02/04/08	02/04/08	
Bromodichloromethane		EPA 624	8B04007	0.30	0.50	ND	1	02/04/08	02/04/08	
Bromoform		EPA 624	8B04007	0.40	0.50	ND	1	02/04/08	02/04/08	
Bromomethane	V	EPA 624	8B04007	0.42	1.0	ND	1	02/04/08	02/04/08	
Carbon tetrachloride	UJ/C	EPA 624	8B04007	0.28	0.50	ND	1	02/04/08	02/04/08	
Chlorobenzene	u	EPA 624	8B04007	0.36	0.50	ND	1	02/04/08	02/04/08	
Chloroethane	1	EPA 624	8B04007	0.40	1.0	ND	1	02/04/08	02/04/08	
Chloroform		EPA 624	8B04007	0.33	0.50	ND	1	02/04/08	02/04/08	
Chloromethane		EPA 624	8B04007	0.40	0.50	ND	1	02/04/08	02/04/08	
cis-1,3-Dichloropropene		EPA 624	8B04007	0.22	0.50	ND	1	02/04/08	02/04/08	
Dibromochloromethane		EPA 624	8B04007	0.28	0.50	ND	1	02/04/08	02/04/08	
Ethylbenzene	1/.	EPA 624	8B04007	0.25	0.50	ND	1	02/04/08	02/04/08	
Methylene chloride	uth	EPA 624	8B04007	0.95	1.0	1.6	1	02/04/08	02/04/08	
Tetrachloroethene	My I	EPA 624	8B04007	0.32	0.50	ND	1	02/04/08	02/04/08	
Toluene	4	EPA 624			0.50	ND		02/04/08	02/04/08	
		EPA 624	8B04007	0.36	0.50	ND	1	02/04/08	02/04/08	
trans-1,2-Dichloroethene			8B04007							
trans-1,3-Dichloropropene		EPA 624	8B04007	0.32	0.50	ND	1	02/04/08	02/04/08	
Trichloroethene	WI/C	EPA 624	8B04007	0.26	0.50	ND	1	02/04/08	02/04/08	
Trichlorofluoromethane		EPA 624	8B04007	0.34	0.50	ND	1	02/04/08	02/04/08	
Trichlorotrifluoroethane (Freon	113)	EPA 624	8B04007	0.50	5.0	ND	1	02/04/08	02/04/08	
Vinyl chloride	.//	EPA 624	8B04007	0.30	0.50	ND	1	02/04/08	02/04/08	
Xylenes, Total	4	EPA 624	8B04007	0.90	1.5	ND	1	02/04/08	02/04/08	
Surrogate: Dibromofluorome	A CONTRACTOR OF THE PARTY OF TH					113%				
Surrogate: Toluene-d8 (80-1	20%)					102%				
Surrogate: Toluene-d8 (80-1 Surrogate: 4-Bromofluorobe	evel I	5)				93 %				
000										

TestAmerica Irvine

Joseph Doak Project Manager

> The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRB0148 <Page 2 of 50>

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08

Received: 02/03/08

PURGEABLES BY GC/MS (EPA 624)

				MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte		Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IRB0148-02 (Tr	ip Blanks - V	Water)								
Reporting Units: ug/l						No.		00 10 4 100	02/04/00	
1,1,1-Trichloroethane	U	EPA 624	8B04007	0.30	0.50	ND	1	02/04/08	02/04/08	
1,1,2,2-Tetrachloroethane		EPA 624	8B04007	0.24	0.50	ND	1	02/04/08	02/04/08	
1,1,2-Trichloroethane		EPA 624	8B04007	0.30	0.50	ND	1	02/04/08		
1,1-Dichloroethane		EPA 624	8B04007	0.27	0.50	ND	1	02/04/08	02/04/08	
1,1-Dichloroethene		EPA 624	8B04007	0.42	0.50	ND	1	02/04/08	02/04/08	
1,2-Dichloroethane		EPA 624	8B04007	0.28	0.50	ND	1	02/04/08	02/04/08	
1,2-Dichlorobenzene		EPA 624	8B04007	0.32	0.50	ND	1	02/04/08	02/04/08	
1,2-Dichloropropane		EPA 624	8B04007	0.35	0.50	ND	1	02/04/08	02/04/08	
1,3-Dichlorobenzene		EPA 624	8B04007	0.35	0.50	ND	1	02/04/08	02/04/08	
1,4-Dichlorobenzene		EPA 624	8B04007	0.37	0.50	ND	1	02/04/08	02/04/08	
Benzene		EPA 624	8B04007	0.28	0.50	ND	1	02/04/08	02/04/08	
Bromodichloromethane		EPA 624	8B04007	0.30	0.50	ND	1	02/04/08	02/04/08	
Bromoform		EPA 624	8B04007	0.40	0.50	ND	1	02/04/08	02/04/08	
Bromomethane		EPA 624	8B04007	0.42	1.0	ND	1	02/04/08	02/04/08	
Carbon tetrachloride		EPA 624	8B04007	0.28	0.50	ND	1	02/04/08	02/04/08	
Chlorobenzene		EPA 624	8B04007	0.36	0.50	ND	1	02/04/08	02/04/08	
Chloroethane		EPA 624	8B04007	0.40	1.0	ND	1	02/04/08	02/04/08	
Chloroform		EPA 624	8B04007	0.33	0.50	ND	1	02/04/08	02/04/08	
Chloromethane		EPA 624	8B04007	0.40	0.50	ND	1	02/04/08	02/04/08	
cis-1,3-Dichloropropene		EPA 624	8B04007	0.22	0.50	ND	1	02/04/08	02/04/08	
Dibromochloromethane		EPA 624	8B04007	0.28	0.50	ND	1	02/04/08	02/04/08	
Ethylbenzene	1	EPA 624	8B04007	0.25	0.50	ND	1	02/04/08	02/04/08	
Methylene chloride		EPA 624	8B04007	0.95	1.0	1.2	1	02/04/08	02/04/08	
Tetrachloroethene	u	EPA 624	8B04007	0.32	0.50	ND	1	02/04/08	02/04/08	
Toluene		EPA 624	8B04007	0.36	0.50	ND	1	02/04/08	02/04/08	
trans-1,2-Dichloroethene		EPA 624	8B04007	0.27	0.50	ND	1	02/04/08	02/04/08	
trans-1,3-Dichloropropene		EPA 624	8B04007	0.32	0.50	ND	1	02/04/08	02/04/08	
Trichloroethene		EPA 624	8B04007	0.26	0.50	ND	1	02/04/08		
Trichlorofluoromethane		EPA 624	8B04007	0.34	0.50	ND	1	02/04/08		
Trichlorotrifluoroethane (Freor	113)	EPA 624	8B04007		5.0	ND	1	02/04/08		
Vinyl chloride		EPA 624	8B04007		0.50	ND	1	02/04/08		
Xylenes, Total	1	EPA 624	8B04007			ND	1	02/04/08	02/04/08	
Surrogate: Dibromofluoron	nethane (80-					111%				
Surrogate: Toluene-d8 (80-						102%				
Surrogate: 4-Bromofluorob		(20%)				94%				
Surrogate: 4-Bromojiaoroo	cheene (out)	2070)								

Leve IV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRB0148 <Page 3 of 50>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 003

Report Number: IRB0148

Sampled: 02/03/08

Received: 02/03/08

PURGEABLES-- GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IRB0148-01 (Outfall 003 - W	ater)								
Reporting Units: ug/l									
Acrolein R/R	EPA 624	8B04007	4.0	5.0	ND	1	02/04/08	02/04/08	
Acrylonitrile WT/C	EPA 624	8B04007	0.70	2.0	ND	1	02/04/08	02/04/08	
2-Chloroethyl vinyl ether U	EPA 624	8B04007	1.8	5.0	ND	1	02/04/08	02/04/08	
Surrogate: Dibromofluoromethane (80-120	0%)				113%				
Surrogate: Toluene-d8 (80-120%)					102%				
Surrogate: 4-Bromofluorobenzene (80-120	96)				93 %				
Sample ID: IRB0148-02 (Trip Blanks - W	/ater)								
Reporting Units: ug/l									
Acrolein R/R	EPA 624	8B04007	4.0	5.0	ND	1	02/04/08	02/04/08	
Acrylonitrile · 'U	EPA 624	8B04007	0.70	2.0	ND	1	02/04/08	02/04/08	
2-Chloroethyl vinyl ether	EPA 624	8B04007	1.8	5.0	ND	1	02/04/08	02/04/08	
Surrogate: Dibromofluoromethane (80-120	0%)				111%				
Surrogate: Toluene-d8 (80-120%)					102%				
Surrogate: 4-Bromofluorobenzene (80-120	%)				94%				

LevelIV

TestAmerica Irvine

Joseph Doak Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IRB0148 <Page 4 of 50>